View allAll Photos Tagged iteration
Early preview (Iteration 2) of an entirely new type of aircraft, no info is on the net yet and won't be for a while. RANGER - 2 Passenger VTOL Hypersonic Plane
Drew Blair
www.linkedin.com/in/drew-b-25485312/
Vertical take off and landing - High Supersonic into Hypersonic Realm. Economy cruise above Mach 4, and can accelerate to beyond Mach 8. Non VTOL, could reach LEO. With a range of 5,000+ nm (8,000-10,000nm non vtol). Fuel H2, reducing fuel weight 95%.
Length, 35ft (10.67m), span 18ft (6m).
Propulsion, 2 Unified Turbine Based Combined Cycle. 2 Unified thrust producing gas turbine generators that provide the power for the central lifting fan (electric, not shaft driven) and the rear VTOL.
Estimated market price, $25-$30 million in production. New York to Dubai in an hour.
All based on my own technology advances in Hypersonics which make Lockheed and Boeing look ancient.
-------------
io aircraft, phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air-Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, defense science, missile defense agency, aerospike,
Advanced Additive Manufacturing for Hypersonic Aircraft
Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.
Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.
*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.
What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.
Unified Turbine Based Combined Cycle (U-TBCC)
To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5
However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.
Enhanced Dynamic Cavitation
Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.
Dynamic Scramjet Ignition Processes
For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.
Hydrogen vs Kerosene Fuel Sources
Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.
Conforming High Pressure Tank Technology for CNG and H2.
As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.
As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).
Enhanced Fuel Mixture During Shock Train Interaction
Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.
Improved Bow Shock Interaction
Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.
6,000+ Fahrenheit Thermal Resistance
To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.
*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope
Scramjet Propulsion Side Wall Cooling
With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.
Lower Threshold for Hypersonic Ignition
Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.
Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities
Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.
Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)
To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.
A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.
SOLD
Iteration II, 2012
Pen and ink on paper
22 x 22"
Retail: $2,400
Courtesy of the Artist and K. Imperial Fine Art, San Francisco
SIX is an experimental electronic, surround sound performance series presented by the BFA in Video and Sound program. This iteration of SIX will feature renowned international sound artist Robert Henke along with several other performers. In lieu of traditional listening orientation, the music and sound is produced in an open, multi-directional format. This allows the performer, sound, environment, and audience to form an exploratory relationship. The audience is encouraged to walk around, lay down (bring a pillow or blanket if you like), and experience the sound from different angles.
Featured Performers
Robert Henke
Marcus Fischer
Strategy + Jetfinger
Solenoid
Dweomer
Mike Jedlicka + wndfrm
Robert Henke is a visiting artist from Europe, and is presenting a lecture on September 24 titled "Sound, Structures and Machines."
The BFA in Video and Sound at PNCA promotes an expansive investigation of video and sound as disciplines both distinct and allied. Cultivating a practice-based media literacy, this program supports the acquisition of critical, aesthetic and technical skills, which are vital to cultural production in today’s media environment.
Please join PNCA for the fifth edition of SIX, an experimental, surround sound performance series.
Artist Info
ROBERT HENKE, born 1969 in Munich, Germany, is a composer, sound designer, software developer, installation artist and audiovisual performer. His art is focused on carefully shaped details and gradual changes of repeating structures in different time scales. His sonic explorations are rooted in academic sound research and computer music as well as in contemporary club culture.
monolake.de/
MARCUS FISCHER is a musician + multimedia artist currently based in Portland, Oregon. He has released two albums on the 12k label along with numerous EPs and collaborations for a variety of other outlets. Field recordings, chance, and DIY instruments, coupled with acoustic instrumentation and visual art, define what has become Marcus’s minimal signature.
mapmap.ch
STRATEGY, otherwise known as multi-instrumentalist and programmer Paul Dickow, wires together programming and performing experience via a hodgepodge of table top electronics, computers and realtime musicianship. A musical explorer, Paul has been a longtime participant in Portland’s underground music community.
community-library.net
ROMEO FAHL ( JETFINGER ) currently lives in Portland, Oregon and has been playing music since the mid-80’s. He has been custom-building a massive modular synthesizer for the last 18 years. SIX has been proving a great outlet to hear and see this beast in all it’s burbling, growling, buzzing, multi-channel glory.
soundcloud.com/jetfinger
SOLENOID is the moniker of David Chandler, who loves synthesizer music and sound design. His unique mix of experimental and dance music has found him performing in festivals in the USA and Europe. He’s had many recordings released on various formats and from various countries over the last 13 years, but his home continues to be Portland.
community-library.net
DWEOMER (Jef Drawbaugh ) is an urban druid of sound. His new work is in sound design and composition for media, leaning heavily on cinematic themes. His live music and recorded soundscapes blossom with connections and juxtapositions between the technical world of electronic instruments and songcraft, rife with the fluid and nebulous areas of the cosmos and emotional response. He discovers patterns and shapes amidst chaotic spaces and lets stories unfold through cosmic voyages.
cascadnacsound.com
MIKE JEDLICKA runs Optic Echo Records and has a weekly show on Portland Radio Authority. He uses a multitude of instruments and electronics to create a wide variety of music, recently focusing on field recording laden acoustic ambient and experimental noise. His last release was a split 12" in 2010 entitled “Tabor / NW Passage”, on Optic Echo Records.
opticecho.com
WNDFRM is Tim Westcott, who has been working with sound as a creative medium since the early 90’s. He treats sound as an architectural element, incorporating manipulated field recordings, minimalistic sine tones, lush atmospheric harmonics, and the occasional dub-wise rhythmic foundation.
nuevaforma.com
September 23, 2012.
Photographs by: Marshall Astor '13.
Black nursing top: Target
Black ankle pants: Old Navy
Booties: Civico 10, via DSW
Purple grandma sweater: H&M
Purple cardigan: Gap Outlet
Document name:Aug25wma1d.FWrk
Fractal type:mandelbrot
Plot size (w,h):2210,2210
Maximum iterations:44900
Center Point (real, imaginary):-1.368116143,0.0007749380127 i
Plot Width (real):6E-08
Color scheme name:HummingBird
Color scheme last modified:2008-08-25 12:01:37 -0700
Plot uses DE:Yes
Plot uses fractaional iterations:Yes
Plotted with symmetry:Yes
Plotted with boundary following:Yes
Plotted with multiple processors:Yes
Total plot time:0.000 seconds
Total iterations:29308471417
Iterations/second:2147483647
Pixels skipped:0
Iterations skipped:0
Percent of pixels calculated:99.9
Percent of iterations calculated:100
Plot height:0.2
Peak steepness:0.1
Plot flipped:Yes
Camera x:0.006
Camera y:0.01
Camera z:-0.757
Ambient light:0.2
Directional light:0.6
Specular light:0.2
Surface shininess:100
Light x direction:-1
Light Y direction:1
Light z direction:1
Background color red:204
Background color green:204
Background color blue:204
Psalm 145: 15 The eyes of all look to you,
and you give them their food at the proper time.
16 You open your hand
and satisfy the desires of every living thing.
Fractal type:julia
Plot size (w,h):2210,2210
Maximum iterations:23000
Center Point (real, imaginary):-2.788592e-07,7.605251e-08 i
Plot Width (real):0.000112
Julia origin (real, imaginary):-1.200639083901256,-0.1498606597982889 i
Source mandelbrot width:1.2E-09
Color scheme name:Universal2b
The department has been building up a library of design related reference books over the last few years. Pupils are encouraged to make use of these books on a regular basis. The photographs here demonstrate the tremendous wealth of content contained therein.
The sequence has been shot in such a way that the cover of the book is shown first and a few sample pages are included to give the student an idea of the content the book contains. Pupils may then approach staff and request a short term loan.
fresh off the glue up, pre-sanding and forming.
I think I like the modeling of the underside more than the top side of the chair in this iteration... although this leg connection needs to be worked out better.
Fractal type:julia
Plot size (w,h):1280,1280
Maximum iterations:19000
Center Point (real, imaginary):-5.131e-06,5.131e-06 i
Plot Width (real):0.00438
Julia origin (real, imaginary):-1.749983946088382,1.276418344409699E-11 i
Source mandelbrot width:3E-10
Color scheme name:Colorcode
The department has been building up a library of design related reference books over the last few years. Pupils are encouraged to make use of these books on a regular basis. The photographs here demonstrate the tremendous wealth of content contained therein.
The sequence has been shot in such a way that the cover of the book is shown first and a few sample pages are included to give the student an idea of the content the book contains. Pupils may then approach staff and request a short term loan.
The department has been building up a library of design related reference books over the last few years. Pupils are encouraged to make use of these books on a regular basis. The photographs here demonstrate the tremendous wealth of content contained therein.
The sequence has been shot in such a way that the cover of the book is shown first and a few sample pages are included to give the student an idea of the content the book contains. Pupils may then approach staff and request a short term loan.
I would say we did a very good job and productive travel. We were in budget and schedule but I think it was more than 5 cities that we have been but not in the initial plan :)
The department has been building up a library of design related reference books over the last few years. Pupils are encouraged to make use of these books on a regular basis. The photographs here demonstrate the tremendous wealth of content contained therein.
The sequence has been shot in such a way that the cover of the book is shown first and a few sample pages are included to give the student an idea of the content the book contains. Pupils may then approach staff and request a short term loan.
VTOL - Hypersonic Plane - High Supersonic - Scramjet - IO Aircraft - Iteration 4
Early preview (Iteration 4) of an entirely new type of aircraft, no info is on the net yet and won't be for a while. RANGER - 2 Passenger VTOL Hypersonic Plane
Drew Blair
www.linkedin.com/in/drew-b-25485312/
Vertical take off and landing - High Supersonic into Hypersonic Realm. Economy cruise above Mach 4, and can accelerate to beyond Mach 8. Non VTOL, could reach LEO. With a range of 5,000+ nm (8,000-10,000nm non vtol). Fuel H2, reducing fuel weight 95%.
Length, 35ft (10.67m), span 18ft (6m).
Propulsion, 2 Unified Turbine Based Combined Cycle. 2 Unified thrust producing gas turbine generators that provide the power for the central lifting fan (electric, not shaft driven) and the rear VTOL.
Estimated market price, $25-$30 million in production. New York to Dubai in an hour.
All based on my own technology advances in Hypersonics which make Lockheed and Boeing look ancient.
-------------
boeing phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, office of naval research, defense advanced research project agency, defense science, missile defense agency, aerospike, vtol, vertical take off, air taxi, personal air vehicle, boeing go fly prize, go fly prize,
Advanced Additive Manufacturing for Hypersonic Aircraft
Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.
Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.
*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.
What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.
Unified Turbine Based Combined Cycle (U-TBCC)
To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5
However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.
Enhanced Dynamic Cavitation
Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.
Dynamic Scramjet Ignition Processes
For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.
Hydrogen vs Kerosene Fuel Sources
Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.
Conforming High Pressure Tank Technology for CNG and H2.
As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.
As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).
Enhanced Fuel Mixture During Shock Train Interaction
Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.
Improved Bow Shock Interaction
Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.
6,000+ Fahrenheit Thermal Resistance
To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.
*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope
Scramjet Propulsion Side Wall Cooling
With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.
Lower Threshold for Hypersonic Ignition
Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.
Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities
Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.
Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)
To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.
A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.
Introduced in 2013, the seventh generation of the iconic Chevrolet Corvette has been widely praised as the best iteration yet. Offered as both a Coupé and a convertible, it is powered 6,2-litre V8 petrol engine driving the rear wheels in classic sports car fashion. With 466 PS, even the 'base' model carries enough firepower to bring driving enjoyment to anyone.
Pictured is the top trim ever offered, the ZR-1. Introduced in 2018, it serves as the epitome of the C7 range with a base price of $118.900 and is powered by a 765 PS 6,2-litre eight cylinder petrol engine. The display vehicle is listed for $141.485 and is fully loaded.
Kicking off the redesign of the MuseScore icon set. Check out the result of the first iteration, created by Tin man. Next step is to work this into the software and provide a development snapshot so everyone who wants can test it and return feedback. Stay tuned.
The Aerostars pilots are a group of enthusiasts from varied backgrounds who have been flying together as a team for well over a decade. Each pilot holds a UK Civil Aviation Authority display licence which is re-issued each year only after the pilot has demonstrated his competence as a team member to fly a safe show. Although not all of our flyers are professional aviators, they all have extensive display experience and many hours logged flying our chosen mount, the mighty russian YAK.
The Yakovlev design bureau is probably the world’s most illustrious designer of aerobatic training and aerobatic competition aircraft with a history going back to World War 2, designing combat aircraft considered by many to be the best fighters of the Second World War.
The first post-War light aircraft was the YAK-18 trainer and this went through a number of variations in terms of single and two-seater aircraft and many thousands of the latter were made.
The first serious single-seat aircraft was the YAK-18P, which in turn led to the PM and the PS variants, each model having lighter weight, more power and greater agility.
The 50 was the final iteration of these single seater YAKs and was designed by Sergei Yakovlev, the son of bureau founder himself, and although a development of the YAK-18PS, was much lighter, had a totally stressed skin monocoque fuselage and the then new 360hp M14P engine.
The aircraft was first flown in 1974, and after a considerable amount of testing was put into larger scale production at Arsenyev in the Russian Far East and deliveries began in early 1975. The YAK-50 was an outstanding success, and at the 1976 World Aerobatic Championships, took first, second and third in the men’s championships; first to fifth in the women’s as well as taking overall men’s and women’s team prizes.
Unlike the subsequent YAK-52 training aircraft, the YAK-50 was made in relatively small numbers (312) until 1985, of which the vast majority were for the Russian DOSAAF and exported were only eight to East Germany and six to Bulgaria.
With the introduction of its successor, the YAK-55, Moscow instructed all DOSAAF Clubs to scrap the 50s and return the logbooks to Moscow. Most obeyed this edict, with the result that there are only about 60 YAK-50s left in the world.
New iteration for Raven SSTO, Single Stage to Orbit. This isn't the heavy, Discovery. But the smaller one. For example, SpaceX's dragon capsule is 378 Cu Ft, Payload bay of Raven is 1078 Cu Ft. www.ioaircraft.com/hypersonic/raven.php
Iteration 10, almost clean sheet. U-TBCC propulsion, 6000F thermal resistance, 3D printed graphene airframe, Note the elimination of "blunt nose". Turn around time under 24 hours total from landing to ready for next flight. No external boosters.
Forward Thruster Bay, other then conventional orbital thrusters, also includes a reverse thruster which decelerates the aircraft pre re-entry into atmosphere from 16,500+ mph ground speed to apx 12,000 mph ground speed. Engines re-ignite once in atmosphere so it can fly to it's landing destination, ie not glide.
#ssto #singlestagetorobit #space #newspace #afrl #afwerx #usaf #darpa #onr #arl #boeing #lockheedmartin #raytheon #northropgrumman #aerojet #dynetics #esa #bae #afosr #hypersonics #hypersonic #scramjet #reactionengines #sabre #starship #falcon9 #dragoncapsule #innovation #graphene #hydrogen #spacex #ula #virginorbit #rocketlab #artemis #orion #sls #nasa #snc #sierranevadecorporation #dreamchaser #astra #sdo #sda #spaceforce #dod #icao #dassault #bombardier #gulfstream #cessna #bigalow
Please cite as: Owen, H. (2009).The ICT Enhanced Iterative Writing Process [Electronic Version]. Retrieved from www.flickr.com/photos/24289877@N02/3638995407/
Iteration 3 is a hybrid of iteration 1 and 2. The left side acts as a one column inflow of your direct messages/group messages/@replies, and the the right side is a grid layout of your widgets.
The keyboard navigation seen in iteration 1 is applied to the one column inflow, and the swipe effect is applied to the entire page.
Also shown is the inflow summary widget.
See corresponding blog post here: blogs.mozillamessaging.com/raindropdesign/2009/10/26/03-t...
During a daylight training iteration at the Joint Multinational Training Command’s (JMTC) Range 309 and its adjacent shoot house in Grafenwoehr , Germany, visiting multinational Soldiers from the International Special Training Centre, also known as ISTC, rehearses combat breaching and clearing techniques before conducting a live-fire explosive breach.
This training, conducted on May 13 and 14, 2013, is part of one of the many course modules offered by ISTC to provide high quality training in advanced and specialized skills to officers and non-commissioned officers from the Special Forces of various NATO nations.
JMTC Grafenwoehr and Hohenfels ranges and facilities are state-of-the-art and offer a variety of adaptable training scenarios and are regularly used by ISTC faculty and students. JMTC proximity to ISTC’s Headquarters in Pfullendorf, Germany, makes it an ideal training venue for NATO Soldiers while enrolled for ISTC training.
Some photos in this set have been redacted for security purposes.
(U.S. Army Photo by Michael Beaton/Released).
VTOL - Hypersonic Plane - Mach 10 Shock Variables - Scramjet - IO Aircraft - Iteration 4 - Hypersonic Physics - Hypersonic Engineering
Early preview (Iteration 4) of an entirely new type of aircraft, no info is on the net yet and won't be for a while. RANGER - 2 Passenger VTOL Hypersonic Plane
www.ioaircraft.com/hypersonic/ranger.php
Drew Blair
www.linkedin.com/in/drew-b-25485312/
Vertical take off and landing - High Supersonic into Hypersonic Realm. Economy cruise above Mach 4, and can accelerate to beyond Mach 8. Non VTOL, could reach LEO. With a range of 5,000+ nm (8,000-10,000nm non vtol). Fuel H2, reducing fuel weight 95%.
Length, 35ft (10.67m), span 18ft (6m).
Propulsion, 2 Unified Turbine Based Combined Cycle. 2 Unified thrust producing gas turbine generators that provide the power for the central lifting fan (electric, not shaft driven) and the rear VTOL.
Estimated market price, $25-$30 million in production. New York to Dubai in an hour.
All based on my own technology advances in Hypersonics which make Lockheed and Boeing look ancient.
-------------
boeing phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, office of naval research, defense advanced research project agency, defense science, missile defense agency, aerospike, vtol, vertical take off, air taxi, personal air vehicle, boeing go fly prize, go fly prize,
Advanced Additive Manufacturing for Hypersonic Aircraft
Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.
Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.
*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.
What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.
Unified Turbine Based Combined Cycle (U-TBCC)
To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5
However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.
Enhanced Dynamic Cavitation
Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.
Dynamic Scramjet Ignition Processes
For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.
Hydrogen vs Kerosene Fuel Sources
Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.
Conforming High Pressure Tank Technology for CNG and H2.
As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.
As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).
Enhanced Fuel Mixture During Shock Train Interaction
Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.
Improved Bow Shock Interaction
Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.
6,000+ Fahrenheit Thermal Resistance
To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.
*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope
Scramjet Propulsion Side Wall Cooling
With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.
Lower Threshold for Hypersonic Ignition
Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.
Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities
Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.
Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)
To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.
A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.
BlueEdge - Mach 8-10 Hypersonic Commercial Aircraft, 220 Passenger Hypersonic Commercial Plane - Iteration 3
Seating: 220 | Crew 2+4
Length: 195ft | Span: 93ft
Engines: 4 U-TBCC (Unified Turbine Based Combined Cycle) +1 Aerospike for sustained 2G acceleration to Mach 10.
Fuel: H2 (Compressed Hydrogen)
Cruising Altitude: 100,000-125,000ft
Airframe: 75% Proprietary Composites
Operating Costs, Similar to a 737. $7,000-$15,000hr, including averaged maintenence costs
Iteration 3 (Full release of IT3, Monday January 14, 2019)
IO Aircraft www.ioaircraft.com
Drew Blair www.linkedin.com/in/drew-b-25485312/
-----------------------------
hypersonic plane, hypersonic aircraft, hypersonic commercial plane, hypersonic commercial aircraft, hypersonic airline, tbcc, glide breaker, fighter plane, hyperonic fighter, boeing phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, office of naval research, defense advanced research project agency, defense science, missile defense agency, aerospike, hydrogen, hydrogen storage, hydrogen fueled, hydrogen aircraft, virgin airlines, united airlines, sas, finnair ,emirates airlines, ANA, JAL, airlines, military, physics, airline, british airways, air france
-----------------------------
Unified Turbine Based Combined Cycle. Current technologies and what Lockheed is trying to force on the Dept of Defense, for that low speed Mach 5 plane DOD gave them $1 billion to build and would disintegrate above Mach 5, is TBCC. 2 separate propulsion systems in the same airframe, which requires TWICE the airframe space to use.
Unified Turbine Based Combined Cycle is 1 propulsion system cutting that airframe deficit in half, and also able to operate above Mach 10 up to Mach 15 in atmosphere, and a simple nozzle modification allows for outside atmosphere rocket mode, ie orbital capable.
Additionally, Reaction Engines maximum air breather mode is Mach 4.5, above that it will explode in flight from internal pressures are too high to operate. Thus, must switch to non air breather rocket mode to operate in atmosphere in hypersonic velocities. Which as a result, makes it not feasible for anything practical. It also takes an immense amount of fuel to function.
-------------
Advanced Additive Manufacturing for Hypersonic Aircraft
Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.
Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.
*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.
What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.
Unified Turbine Based Combined Cycle (U-TBCC)
To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5
However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.
Enhanced Dynamic Cavitation
Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.
Dynamic Scramjet Ignition Processes
For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.
Hydrogen vs Kerosene Fuel Sources
Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.
Conforming High Pressure Tank Technology for CNG and H2.
As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.
As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).
Enhanced Fuel Mixture During Shock Train Interaction
Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.
Improved Bow Shock Interaction
Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.
6,000+ Fahrenheit Thermal Resistance
To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.
*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope
Scramjet Propulsion Side Wall Cooling
With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.
Lower Threshold for Hypersonic Ignition
Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.
Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities
Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.
Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)
To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.
A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.
The Mandelbrot set, where the real part of iterates is shown on the vertical axis and the imaginary part as color. The large bulb to the left of the cardioid is clearly seen to consist of 2-cycles, and to the left of it there is a typical Feigenbaum tree of period doublings. There are smaller trees along the entire border, but they merely look like noisy pillars at this resolution.
Although the real parts of two of the three periods of the the 3-cycles on top and bottom of the cardioid overlap, they have different imaginary parts (as can be seen in their color as they cut through each other).
SATTAHIP NAVAL BASE, Thailand (May 31, 2019) Information Systems Technician 1st Class Devin Mighty, left, assigned to Commander, Logistics Group Western Pacific, speaks to sailors from the Royal Thai Navy during a knowledge exchange on the Combined Enterprise Regional Information Exchange System (CENTRIXS) - Cooperative Maritime Forces, Pacific (CMFP) network as part of Cooperation Afloat Readiness and Training (CARAT) Thailand 2019. This year marks the 25th iteration of CARAT, a multinational exercise series designed to enhance U.S. and partner navies’ abilities to operate together in response to traditional and non-traditional maritime security challenges in the Indo-Pacific region. (U.S. Navy photo by Mass Communication Specialist 2nd Class Joshua Mortensen)
Black nursing top: Target
Black ankle pants: Old Navy
Booties: Civico 10, via DSW
Purple grandma sweater: H&M
Gray open cardigan: TJ Maxx
TOKYO, Japan (June 13, 2022) - Indonesian Marine Corps Brig. Gen. TNI (Mar) Y. Rudy Sulistyanto, left, commander of the 3rd Indonesian Marine Force, Col. Hendra D. Wijaya, expert staff for military cooperation, Indonesian Marine Corps Command, and U.S. Marine Corps Lt. Gen. Steven R. Rudder, commander, U.S. Marine Corps Forces, Pacific, participate in a trilateral meeting during the eighth iteration of the Pacific Amphibious Leaders (PAL) Symposium , Tokyo, Japan, June 13, 2022. PAL Symposium consists of discussions and presentations conducted to promote regional security and to enable responsive forces during crisis situations. The 2022 symposium brought together senior leaders from 18 participating delegations who are committed to a free and open Indo-Pacific, with the objective of strengthening and developing regional relationships. (U.S. Marine Corps photo by Lance Cpl. Haley Fourmet Gustavsen) 220613-M-GI936-506
** Interested in following U.S. Indo-Pacific Command? Engage and connect with us at www.facebook.com/indopacom | twitter.com/INDOPACOM | www.instagram.com/indopacom | www.flickr.com/photos/us-pacific-command; | www.youtube.com/user/USPacificCommand | www.pacom.mil/ **
Alex had a unique approach to the production of his design folio work. Alex was constantly drawing. He spent most of his classtime just drawing, even when he was supposed to be doing something else. He needed to draw to think. So what you see here isn't necessarily pretty but this folio is stuffed with ideas. Alex's approach demonstrates precisely and accurately the method of idea generation and refinement promoted by the department. Note the large number of drawings on eachpage. this allows the student to easily cross reference and tag from one idea to the next. Extensive annotation also helps to reveal design thinking and comments should always be relevant and refer back to the specification. It is clear that Alex has a thorough understanding of the more technical aspects of the course and he repeatedly suggests ways in which his concepts might be made.
Alex went on to do very well at Higher Product Design. Some of his work also features on this site. He's now studying maths at Warwick University.
SIX is an experimental electronic, surround sound performance series presented by the BFA in Video and Sound program. This iteration of SIX will feature renowned international sound artist Robert Henke along with several other performers. In lieu of traditional listening orientation, the music and sound is produced in an open, multi-directional format. This allows the performer, sound, environment, and audience to form an exploratory relationship. The audience is encouraged to walk around, lay down (bring a pillow or blanket if you like), and experience the sound from different angles.
Featured Performers
Robert Henke
Marcus Fischer
Strategy + Jetfinger
Solenoid
Dweomer
Mike Jedlicka + wndfrm
Robert Henke is a visiting artist from Europe, and is presenting a lecture on September 24 titled "Sound, Structures and Machines."
The BFA in Video and Sound at PNCA promotes an expansive investigation of video and sound as disciplines both distinct and allied. Cultivating a practice-based media literacy, this program supports the acquisition of critical, aesthetic and technical skills, which are vital to cultural production in today’s media environment.
Please join PNCA for the fifth edition of SIX, an experimental, surround sound performance series.
Artist Info
ROBERT HENKE, born 1969 in Munich, Germany, is a composer, sound designer, software developer, installation artist and audiovisual performer. His art is focused on carefully shaped details and gradual changes of repeating structures in different time scales. His sonic explorations are rooted in academic sound research and computer music as well as in contemporary club culture.
monolake.de/
MARCUS FISCHER is a musician + multimedia artist currently based in Portland, Oregon. He has released two albums on the 12k label along with numerous EPs and collaborations for a variety of other outlets. Field recordings, chance, and DIY instruments, coupled with acoustic instrumentation and visual art, define what has become Marcus’s minimal signature.
mapmap.ch
STRATEGY, otherwise known as multi-instrumentalist and programmer Paul Dickow, wires together programming and performing experience via a hodgepodge of table top electronics, computers and realtime musicianship. A musical explorer, Paul has been a longtime participant in Portland’s underground music community.
community-library.net
ROMEO FAHL ( JETFINGER ) currently lives in Portland, Oregon and has been playing music since the mid-80’s. He has been custom-building a massive modular synthesizer for the last 18 years. SIX has been proving a great outlet to hear and see this beast in all it’s burbling, growling, buzzing, multi-channel glory.
soundcloud.com/jetfinger
SOLENOID is the moniker of David Chandler, who loves synthesizer music and sound design. His unique mix of experimental and dance music has found him performing in festivals in the USA and Europe. He’s had many recordings released on various formats and from various countries over the last 13 years, but his home continues to be Portland.
community-library.net
DWEOMER (Jef Drawbaugh ) is an urban druid of sound. His new work is in sound design and composition for media, leaning heavily on cinematic themes. His live music and recorded soundscapes blossom with connections and juxtapositions between the technical world of electronic instruments and songcraft, rife with the fluid and nebulous areas of the cosmos and emotional response. He discovers patterns and shapes amidst chaotic spaces and lets stories unfold through cosmic voyages.
cascadnacsound.com
MIKE JEDLICKA runs Optic Echo Records and has a weekly show on Portland Radio Authority. He uses a multitude of instruments and electronics to create a wide variety of music, recently focusing on field recording laden acoustic ambient and experimental noise. His last release was a split 12" in 2010 entitled “Tabor / NW Passage”, on Optic Echo Records.
opticecho.com
WNDFRM is Tim Westcott, who has been working with sound as a creative medium since the early 90’s. He treats sound as an architectural element, incorporating manipulated field recordings, minimalistic sine tones, lush atmospheric harmonics, and the occasional dub-wise rhythmic foundation.
nuevaforma.com
September 23, 2012.
Photographs by: Marshall Astor '13.
VTOL - Hypersonic Plane - High Supersonic - Scramjet - IO Aircraft - Iteration 4
Early preview (Iteration 4) of an entirely new type of aircraft, no info is on the net yet and won't be for a while. RANGER - 2 Passenger VTOL Hypersonic Plane
Drew Blair
www.linkedin.com/in/drew-b-25485312/
Vertical take off and landing - High Supersonic into Hypersonic Realm. Economy cruise above Mach 4, and can accelerate to beyond Mach 8. Non VTOL, could reach LEO. With a range of 5,000+ nm (8,000-10,000nm non vtol). Fuel H2, reducing fuel weight 95%.
Length, 35ft (10.67m), span 18ft (6m).
Propulsion, 2 Unified Turbine Based Combined Cycle. 2 Unified thrust producing gas turbine generators that provide the power for the central lifting fan (electric, not shaft driven) and the rear VTOL.
Estimated market price, $25-$30 million in production. New York to Dubai in an hour.
All based on my own technology advances in Hypersonics which make Lockheed and Boeing look ancient.
-------------
boeing phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, office of naval research, defense advanced research project agency, defense science, missile defense agency, aerospike, vtol, vertical take off, air taxi, personal air vehicle, boeing go fly prize, go fly prize,
Advanced Additive Manufacturing for Hypersonic Aircraft
Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.
Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.
*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.
What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.
Unified Turbine Based Combined Cycle (U-TBCC)
To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5
However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.
Enhanced Dynamic Cavitation
Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.
Dynamic Scramjet Ignition Processes
For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.
Hydrogen vs Kerosene Fuel Sources
Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.
Conforming High Pressure Tank Technology for CNG and H2.
As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.
As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).
Enhanced Fuel Mixture During Shock Train Interaction
Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.
Improved Bow Shock Interaction
Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.
6,000+ Fahrenheit Thermal Resistance
To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.
*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope
Scramjet Propulsion Side Wall Cooling
With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.
Lower Threshold for Hypersonic Ignition
Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.
Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities
Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.
Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)
To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.
A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.
A first iteration. Several problems here, including: 1) you can see unwanted reflections of the framework I used to set up the photo; 2) I used tracing paper as a diffuser with one of my speedlites and yiou can see the texture of this reflected on the plexiglass (rather than the clear shine of the plexiglass); 3) the magenta gel did not fully cover the second light source so some bits of the reflections are blown out.
Meiji Shrine (明治神宮 Meiji Jingū?), located in Shibuya, Tokyo, is the Shinto shrine that is dedicated to the deified spirits of Emperor Meiji and his wife, Empress Shōken.[1] When Emperor Meiji died in 1912 and Empress Shōken in 1914, the Japanese people wished to pay their respects to the two influential Japanese figures. It was for this reason that Meiji Shrine was constructed and their souls enshrined on November 1, 1920.[2]
After the emperor's death in 1912, the Japanese Diet passed a resolution to commemorate his role in the Meiji Restoration. An iris garden in an area of Tokyo where Emperor Meiji and Empress Shōken had been known to visit was chosen as the building's location. Construction began in 1915, and the shrine was built in the traditional Nagarezukuri style and is made up primarily of Japanese cypress and copper. It was formally dedicated in 1920, completed in 1921, and its grounds officially finished by 1926.[3]
The original building was destroyed during the Tokyo air raids of World War II. The present iteration of the shrine was funded through a public fund raising effort and completed in October, 1958.[4]
Meiji Shrine was brought into the flow of current events with the 2009 visit of United States Secretary of State Hillary Clinton. After arriving in Tokyo on her first foreign trip representing the newly elected President Barack Obama, she made her way to this shrine in advance of meetings with Japan's leaders to show her "respect toward history and the culture of Japan." [5]
Meiji Shrine is located in a forest that covers an area of 700,000 square-meters (about 175 acres). This area is covered by an evergreen forest that consists of 120,000 trees of 365 different species, which were donated by people from all parts of Japan when the shrine was established. The forest is visited by many people both as a spiritual home of the people and as a recreation and relaxation area in the center of Tokyo.[2] The shrine itself is comprised of two major areas:
[edit]Naien
The Naien is the inner precinct, which is centered on the shrine buildings and includes a treasure museum that houses articles of the Emperor and Empress. The treasure museum is built in the Azekurazukuri style.
[edit]Gaien
The Gaien is the outer precinct, which includes the Meiji Memorial Picture Gallery that houses a collection of 80 large murals illustrative of the events in the lives of the Emperor and his consort. It also includes a variety of sports facilities, including the National Stadium, and is seen as the center of Japanese sports. It also includes the Meiji Memorial Hall, which was originally used for governmental meetings, including discussions surrounding the drafting of the Meiji Constitution in the late 19th century. Today it is used for Shinto weddings.
Dr. Lan Dong, Assistant Professor of English, has been called the world authority on the iterations of Mulan. She has edited a collection of essays, written multiple journal articles and book chapters, and published a monograph titled "Mulan's Legend and Legacy in China and the United States". In 2012, she was named University Scholar.
KOROR, Palau (April 4, 2018) Distinguished attendees sit at the head table during the opening ceremony of Pacific Partnership 2018 (PP18) mission stop Palau April 4. The distinguished attendees included the Honorable Raynold B. Oilouch, Vice President of Palau, the Honorable Faustina Rehuher Marugg, Minister of State of Palau, Paramount Chief Ibedul Yataka M. Gibbons, the Honorable Amy Hyatt, U.S. Ambassador to Palau, Capt. Peter Olive, deputy mission commmander of Pacific Partnership 2018, and Capt. Charles Black, commanding officer of USNS Brunswick. PP18's mission is to work collectively with host and partner nations to enhance regional interoperability and disaster response capabilities, increase stability and security in the region, and foster new and enduring friendships across the Indo-Pacific region. Pacific Partnership, now in its 13th iteration, is the largest annual multinational humanitarian assistance and disaster relief preparedness mission conducted in the Indo-Pacific.(U.S. Navy photo by Mass Communication Specialist 1st Class Micah Blechner/RELEASED)
*******************************************************************************
This image and its name are protected under copyright laws.
All their rights are reserved to my own and unique property.
Any download, copy, duplication, edition, modification,
printing, or resale is stricly prohibited.
*******************************************************************************
11 712 vertices
48 912 triangles