View allAll Photos Tagged frontline

House on the frontline, Sarajevo, Bosnia Herzegovina. This particular area saw some heavy fighting, as can be seen on this house. The toning is bleak, but this was done on purpose to reflect the gloominess of the place. Note the sandbags in the windows.

 

Set: Sarajevo - the wounded city

Afrika Korps Reenactors

Taken at Frontline Sedgefield Multi-Era Reenactment Weekend

Afrika Korps Reenactors

Taken at Frontline Sedgefield Multi-Era Reenactment Weekend

This modified HMMWV is made to be used by Frontline Security. It can hold 4 to 12 people or 4 people with supplies. The standard kit for this vehicle includes four jerrycans, two strechers, and ammo boxes/other supplies. It is armed with a front mounted GPMG.

 

Credit to Toryu for the original vehicle, to PunkrockEnglishman for the GPMG and to Sam for the driver.

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!

  

Some background:

The P-51H (NA-126) was the final production Mustang, embodying the experience gained in the development of the lightweight XP-51F and XP-51G aircraft. This aircraft, brought the development of the Mustang to a peak as one of the fastest production piston-engine fighters to see service in WWII.

In July of 1943, U.S. Army approved a contract with North American Aviation to design and build a lightweight P-51. Designated NA-105, 5 aircraft were to be built and tested. Edgar Schmued, chief of design at NAA, began this design early in 1943. He, in February of 1943, left the U.S. on a two-month trip to England. He was to visit the Supermarine factory and the Rolls Royce factory to work on his lightweight project.

 

Rolls Royce had designed a new version of the Merlin, the RM.14.SM, which was proposed to increase the manifold pressure to 120 (from 67 max) and thus improve military emergency horsepower to 2,200. Schmued was very eager to use this powerplant, since the new Merlin was not heavier than the earlier models. In order to exploit the new engine to the maximum, he visited the engineers at Rolls Royce in Great Britain. However, British fighters were by tendency lighter than their U.S. counterparts and Schmued also asked for detailed weight statements from Supermarine concerning the Spitfire. Supermarine did not have such data, so they started weighing all the parts they could get a hold of and made a report. It revealed that the British had design standards that were not as strict in some areas as the U.S, and American landing gear, angle of attack and side engine design loads were by tendency higher. When Schmued returned, he began a new design of the P-51 Mustang that used British design loads, shaving off weight on any part that could yield. The result was an empty weight reduction by 600 pounds, what would directly translate into more performance.

 

This design effort led to a number of lightweight Mustang prototypes, designated XP-51F, XP-51G and XP-51J. After their testing, the production version, NA-126 a.k.a. P-51H, was closest to the XP-51F. The project began in April 1944 and an initial contract for 1,000 P-51Hs was approved on June 30, 1944, which was soon expanded.

The P-51H used the V-1650-9 engine, a modified version of the new Merlin RM.14.SM that included Simmons automatic supercharger boost control with water injection, allowing War Emergency Power as high as 2,218 hp (1,500 kW) and a continuous output of up to 1,490 hp (1.070 kW).

Even though the P-51H looked superficially like a slightly modified P-51D, it was effectively a completely new design. External differences to the P-51D included lengthening and deepening the fuselage and increasing the height of the tailfin, which reduced, together with a lower fuel load in the fuselage tank, the tendency to yaw. The landing gear was simplified and lightened. The canopy resembled the P-51D bubble top style, over a raised pilot's position. The armament was retained but service access to the guns and ammunition was improved, including the introduction of ammunition cassettes that made reloading easier and quicker. With the new airframe several hundred pounds lighter, extra power, and a more streamlined radiator, the P-51H was faster than the P-51D, able to reach 472 mph (760 km/h; 410 kn) at 21,200 ft (6,500 m), making it one of the fastest piston engine aircraft in WWII.

 

The high-performance P-51H was designed to complement the P-47N as the primary aircraft for the invasion of Japan, with 2,000 ordered to be manufactured at NAA’s Inglewood plant. Variants of the P-51H with different versions of the Merlin engine were produced in limited numbers, too, in order to ramp up production and deliveries to frontline units. These included the P-51L, which was similar to the P-51H but utilized the V-1650-11 engine with a modified fuel system, rated at maximum 2,270 hp (1,690 kW), and the P-51M, or NA-124. The P-51M, of which a total of 1629 was ordered, was built in Dallas and utilized the V-1650-9A engine. This variant was optimized for operations at low and medium altitude and lacked water injection, producing less maximum power at height. However, it featured attachment points for up to ten unguided HVAR missiles under the outer wings as well as improved armor protection for the pilot against low-caliber weapons esp. from ground troops, which ate up some of the light structure’s weight benefit.

 

Most P-51H and L were issued to USAF units, while the P-51M and some Hs were delivered to allied forces in the Pacific TO, namely Australia and New Zealand. Only a few aircraft arrived in time to become operational until the end of hostilities, and even less became actually involved in military actions during the final weeks of fighting in the Pacific.

 

The RAAF received only a handful P-51Hs, since Commonwealth Aircraft Corporation (CAC) had recently started license production of the P-51D (as CA-18) and the RAAF rather focused on this type. However, there were plans in early 1945 to build the P-51H locally as the CA-21, too, but this never came to fruition.

 

New Zealand ordered a total of 370 P-51 Mustangs of different variants to supplement its Vought F4U Corsairs in the PTO, which were primarily used as fighter-bombers. Scheduled deliveries were for an initial batch of 30 P-51Ds, followed by 137 more P-51Ds and 203 P-51Ms. The first RNZAF P-51Ms arrived in April 1945 and were allocated to 3 Squadron as well as to the Flight Leaders School in Ardmore (near Auckland in Northern New Zealand) for conversion training. The machines arrived as knocked-down kits via ship in natural metal finish, but the operational machines were, despite undisputed Allied air superiority, immediately camouflaged in field workshops to protect the airframes from the harsh and salty environment, esp. on the New Guinean islands. The RNZAF Mustangs also received quick identification markings in the form of white tail surfaces and white bands on the wings and in front of and behind the cockpit, in order to avoid any confusion with the Japanese Ki-61 “Hien” (Tony) and Ki-84 (Frank) fighters which had a similar silhouette and frequently operated in a natural metal finish.

During the final weeks of the conflict, the RNZAF only scored three air victories: two Japanese reconnaissance flying boats were downed and a single Ki-84 fighter was shot down in a dogfight over Bougainville. Most combat situations of 3 Squadron were either fighter escorts for F4U fighter bombers or close air support and attacks against Japanese strongholds or supply ships.

 

After the war, many USAF P-51Hs were immediately retired or handed over to reserve units. The surviving P-51Js were, due to their smaller production numbers, were mostly donated to foreign air forces in the course of the Fifties, in order to standardize the US stock. Despite its good performance, the P-51H/J/M did not take part in the Korean War. Instead, the (by the time re-designated) F-51D was selected, as it was available in much greater numbers and had a better spares supply situation. It was considered as a proven commodity and perceived to be stouter against ground fire – a misconception, because the vulnerable ventral liquid cooling system caused heavy losses from ground fire. The alternative P-47 would have been a more effective choice. The last American F-51H Mustangs were retired from ANG units in 1957, but some of its kin in foreign service soldiered on deep into the Sixties. The F-51D even lasted into the Eigthies in military service!

 

After the end of hostilities in the PTO, the RNZAF’s forty-two operational P-51Ms met different fates: The twenty-six survivors, which had reached frontline service in New Guinea, were directly scrapped on site, because their transfer back to New Zealand was not considered worthwhile. Those used for training in New Zealand were stored, together with the delivered P-51Ds, or, together with yet unbuilt kits, sent back to the United States.

In 1951, when New Zealand’s Territorial Air Force (TAF) was established, only the stored P-51D Mustangs were revived and entered service in the newly established 1 (Auckland), 2 (Wellington), 3 (Canterbury), and 4 (Otago) squadrons. Due to the small number, lack of spares and communality with the P-51D, the remaining mothballed RNZAF F-51Ms were eventually scrapped, too.

  

General characteristics:

Crew: 1

Length: 33’ 4” (10.173 m)

Wingspan: 37‘ (11.28 m)

Height: 13‘ 8” (4.17 m) with tail wheel on ground, vertical propeller blade

Wing area: 235 sq ft (21.83 m²)

Airfoil: NAA/NACA 45-100 / NAA/NACA 45-100

Empty weight: 7.180 lb (3,260 kg)

Gross weight: 9,650 lb (4,381 kg)

Max takeoff weight: 11,800 lb (5,357 kg)

Fuel capacity: 255 US gal (212 imp gal; 964 l)

Aspect ratio: 5.83

 

Powerplant:

1× Packard (Rolls Royce) V-1650-9A Merlin 12-cylinder liquid cooled engine, delivering 1,380 hp

(1,030 kW) at sea level, driving a 4-blade constant-speed Aeroproducts 11' 1" Unimatic propeller

 

Performance:

Maximum speed: 465 mph (750 km/h; 407 kn) at 18,000 ft (5,500 m)

Cruise speed: 362 mph (583 km/h, 315 kn)

Stall speed: 100 mph (160 km/h, 87 kn)

Range: 855 mi (1,375 km, 747 nm) with internal fuel

1,200 mi (1,930 km, 1,050 nmi) with external tanks

Service ceiling: 30,100 ft (9,200 m)

Rate of climb: 3,200 ft/min (16.3 m/s) at sea level

Wing loading: 30.5 lb/sq ft (149 kg/m²)

Power/mass: 0.19 hp/lb (315 W/kg)

Lift-to-drag ratio: 14.6

Recommended Mach limit 0.8

 

Armament:

6× 0.50 caliber (12.7mm) AN/M2 Browning machine guns with a total of 1,880 rounds

2× underwing hardpoints for drop tanks or bombs of 500 pounds (227 kg) caliber each,

or 6 or 10 5” (127 mm) T64 HVAR rockets

  

The kit and its assembly:

A relatively simple project, a whiffy color variant based on RS Model’s 1:72 P-51H kit – which I quickly turned into a P-51M, which was planned as mentioned in the background, but never produced in real life.

The model was strictly built OOB, and while this short-run kit goes together quite well, I encountered some problems along the way:

- There are massive and long ejector pin markers, sometimes in very confined locations like the radiator intake. Without a mini drill, getting rid of them is very difficult

- Somehow the instructions for the cockpit are not correct; I put the parts into place as indicated, and the pilot’s seat ended up way too far forward in the fuselage

- The canopy, while clear, is pretty thick and just a single piece, so that you have to cut the windscreen off by yourself if you want to show the otherwise very nice cockpit.

- The separated windscreen section itself includes a piece of the cowling in front of the window panes, which makes its integration into the fuselage a tricky affair. However, this IMHO not-so-perfect construction became a minor blessing because the separated windscreen turned out to be a little too narrow for the fuselage – it had to be glued forcibly to the fuselage (read: with superglue), and the section in front of the window panes offered enough hidden area to safely apply the glue on the clear piece.

- While there are some resin parts included like weighted wheels, it is beyond me why tiny bits like the underwing pitot or most delicate landing gear parts have been executed in resin, as flat parts of a resin block that makes it IMHO impossible to cut them out from.

- The tail wheel is a messy three-piece construction of resin and IP parts, with a flimsy strut that’s prone to break already upon cutting the part from the IP sprue. Furthermore, there’s no proper location inside of the fuselage to mount it. Guess and glue!

- The fit of the stabilizers is doubtful; it’s probably best to get rid of their locator pins and glue them directly onto the fuselage

- The propeller consists of a centerpiece with the blades, which is enclosed by two spinner halves (front and back). This results in a visible seam between them that is not easy to fill/PSR away

 

On the positive side I must say that the engraved surface details, the cockpit interior and the landing gear are very nice, and there is even the complete interior of the radiator and its tunnel included. PSR requirements are also few, even though you won’t get along well without cosmetic bodywork.

 

The only personal modification is a styrene tube inside of the nose for the propeller, which was mounted onto a metal axis for free rotation; OOB, the propeller is not moveable at all and is to be glued directly to the fuselage.

While the kit comes with optional ordnance (six HVARs or a pair of 500 lb bombs, both in resin), I just used the bomb pylons and left them empty, for a clean look.

  

Painting and markings:

Even though the model was a quick build, finding a suitable color concept took a while; I had a whiffy P-51H on my agenda for a long time (since the RS Models kit came out), and my initial plan was to create an Australian aircraft. This gradually changed to an RNZAF aircraft during the last weeks of WWII in the PTO, and evolved from an NMF finish (initial and IMHO most logical idea) through am Aussie-esque green/brown camouflage to a scheme I found for a P-40: a trainer that was based in New Zealand and (re)painted in domestic colors, namely in Foliage Green, Blue Sea Grey and Sky. This might sound like a standard RAF aircraft, but in the end the colors and markings make this Mustang look pretty exotic, just as the P-51H looks like a Mustang that is “not quite right”.

 

The Foliage Green is Humbrol 195 (Dark Green Satin, actually RAL 6020 Chrome Oxide Green), which offers IMHO a good compromise between the tone’s rather bluish hue and yellow shades – I find it to be a better match than the frequently recommended FS 34092, because RAL 6020 is darker. The RNZAF “Blue Sea Grey”, also known as “Pacific Blue” or “Ocean Blue”, is a more obscure tone, which apparently differed a lot from batch to batch and weathered dramatically from a bluish tone (close to FS 35109 when fresh) to a medium grey. I settled for Humbrol 144 (FS 35164; USN Intermediate Blue), which is rumored to come close to the color in worn state.

The undersides were painted with Humbrol 23 (RAF Duck Egg Blue), which I found to be a suitable alternative to the more greenish RAF Sky, even though it’s a pretty light interpretation.

Tail and spinner were painted white, actually a mix of Humbrol 22 (Gloss White) and 196 (Light Grey, RAL 7035) so that there would be some contrast room left for post-shading with pure white.

The interior of cockpit and landing gear wells was painted with zinc chromate primer yellow (Humbrol 81), while the landing gear struts became Humbrol 56 (Aluminum Dope). The radiator ducts received an interior in aluminum (Revell 99).

 

In order to simulate wear and tear as well as the makeshift character of the camouflage I painted the wings’ leading edges and some other neuralgic areas in aluminum (Revell 99, too) first, before the basic camouflage tones were added in a somewhat uneven fashion, with the metallized areas showing through.

Once dry, the model received an overall washing with thinned black ink and a through dry-brushing treatment with lighter shades of the basic tones (including Humbrol 30, 122 and 145) for post-panel-shading and weathering, esp. on the upper surfaces.

 

The decals are a mix from a Rising Decals sheet for various RNZAF aircraft (which turned out to be nicely printed, but rather thin so that they lacked opacity and rigidity), and for the tactical markings I stuck to the RNZAF practice of applying just a simple number or letter code to frontline aircraft instead of full RAF-style letter codes. The latter were used only on aircraft based on home soil, since the RNZAF’s frontline units had a different organization with an aircraft pool allocated to the squadrons. Through maintenance these circulated and were AFAIK not rigidly attached to specific units, hence there was no typical two-letter squadron code applied to them, just single ID letters or numbers, and these were typically painted on the aircraft nose and/or the fin, not on the fuselage next to the roundel. The nose art under the cockpit is a mix of markings from P-40s and F4Us.

 

The white ID bands on fuselage and wings are simple white decal strips from TL-Modellbau. While this, together with the all-white tail, might be overdone and outdated towards mid-1945, I gave the Kiwi-Mustang some extra markings for a more exciting look – and the aircraft’s profile actually reminds a lot of the Ki-61, so that they definitely make sense.

 

Towards the finish line, some additional dry-brushing with grey and silver was done, soot stains were added with graphite to the exhaust areas and the machine gun ports, and the model was finally sealed with matt acrylic varnish.

  

After the recent, massive YA-14 kitbashing project, this Mustang was – despite some challenges of the RS Models kit itself – a simple and quick “relief” project, realized in just a couple of days. Despite being built OOB, the result looks quite exotic, both through the paint scheme with RNZAF colors, but also through the unusual roundels and the striking ID markings (for a Mustang). I was skeptical at first, but the aircraft looks good and the camouflage in RNZAF colors even proved to be effective when set into the right landscape context (beauty pics).

ACWS (American Civil War Society) Reenactors.

Taken at Frontline Sedgefield Multi-Era Reenactment Event

ACWS (American Civil War Society) Reenactors.

Taken at Frontline Sedgefield Multi-Era Reenactment Event

British Empire Reenactors

Image taken at Sedgefield Front-Line Multi-era Reenactment Event 2018

Bull Street, Birmingham

Name: Erec "Skull"

Rank: Lt. Colonel

Faction: Frontline security (FS)

Ex-Factions: Estonian military, Black Doorway Inc.

Unit: Special Operations Department

Primary: Prefers G36c and SOW-G9

Secondary: EX-D1 "War Bringer"

Staus: Active duty

Bio: After 5 years of service in the Estonian military, Erec decided to create his own PMC. Black Doorway Inc. lasted for 3 years before being bought by Frontline Security. Now he servers as the leader of the Special Operations Department within FS. While he does not part-take in active engagements, he is responsible for managing and commanding all S.O.D. teams.

 

/**************/

 

Credit to Lighthawk for the original char.

Carro de combate M3 Stuart - Praça do Expedicionário - Curitiba - PR, Brasil

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based on authentic facts. BEWARE!

  

Some background:

The VF-1 was developed by Stonewell/Bellcom/Shinnakasu for the U.N. Spacy by using alien Overtechnology obtained from the SDF-1 Macross alien spaceship. Its production was preceded by an aerodynamic proving version of its airframe, the VF-X. Unlike all later VF vehicles, the VF-X was strictly a jet aircraft, built to demonstrate that a jet fighter with the features necessary to convert to Battroid mode was aerodynamically feasible. After the VF-X's testing was finished, an advanced concept atmospheric-only prototype, the VF-0 Phoenix, was flight-tested from 2005 to 2007 and briefly served as an active-duty fighter from 2007 to the VF-1's rollout in late 2008, while the bugs were being worked out of the full-up VF-1 prototype (VF-X-1).

 

The space-capable VF-1's combat debut was on February 7, 2009, during the Battle of South Ataria Island - the first battle of Space War I - and remained the mainstay fighter of the U.N. Spacy for the entire conflict. Introduced in 2008, the VF-1 would be out of frontline service just five years later, though.

 

The VF-1 proved to be an extremely capable craft, successfully combating a variety of Zentraedi mecha even in most sorties which saw UN Spacy forces significantly outnumbered. The versatility of the Valkyrie design enabled the variable fighter to act as both large-scale infantry and as air/space superiority fighter. The signature skills of U.N. Spacy ace pilot Maximilian Jenius exemplified the effectiveness of the variable systems as he near-constantly transformed the Valkyrie in battle to seize advantages of each mode as combat conditions changed from moment to moment.

 

The basic VF-1 was deployed in four minor variants (designated A, D, J, and S) and its success was increased by continued development of various enhancements including the GBP-1S "Armored" Valkyrie, FAST Pack "Super" Valkyrie and the additional RÖ-X2 heavy cannon pack weapon system for the VF-1S for additional firepower.

The FAST Pack system was designed to enhance the VF-1 Valkyrie variable fighter, and the initial V1.0 came in the form of conformal pallets that could be attached to the fighter’s leg flanks for additional fuel – primarily for Long Range Interdiction tasks in atmospheric environment. Later FAST Packs were designed for space operations.

 

The following FAST Pack 2.0 system featured two 120.000 kg class P&W+EF-2001 booster thrusters (mounted on the dorsal section of the VF-1) and two CTB-04 conformal propellant/coolant tanks (mounted on the leg/engines), since the VF-1's internal tanks could not carry enough propellant to achieve a stable orbit from Earth bases and needed the help of a booster pack to reach Low Earth Orbit. Anyway, the FAST Pack 2.0 wasn't adapted for atmospheric use, due to its impact on a Valkyrie's aerodynamics and its weight; as such, it needed to be discarded before atmospheric entry.

Included in the FAST Pack boosters and conformal tanks were six high-maneuverability vernier thrusters and two low-thrust vernier thrusters beneath multipurpose hook/handles in two dorsal-mounted NP-BP-01, as well as ten more high-maneuverability vernier thrusters and two low-thrust vernier thrusters beneath multipurpose hook/handles in the two leg/engine-mounted NP-FB-01 systems.

Granting the VF-1 a significantly increased weapons payload as well as greater fuel and thrust, Shinnakasu Heavy Industry's FAST Pack system 2.0 was in every way a major success in space combat. The first VF-1 equipped with FAST Packs was deployed in January 2010 for an interception mission.

Following first operational deployment and its effectiveness, the FAST Pack system was embraced enthusiastically by the U.N. Spacy and found wide use. By February 2010, there were already over 300+ so-called "Super Valkyries" stationed onboard the SDF-1 Macross alone.

 

The FAST Pack went through constant further development, including upgraded versions for late production and updated VF-1s (V3.0 and V4.0). Another addition to the early V2.0 variant of 2010 was the so-called “S-FAST Pack”. The S-FAST pack was originally developed at the Apollo lunar base, for the locally based VF-1 interceptor squadrons that were tasked with the defense of this important production and habitat site on the Moon, but it also found its way to other orbital stations and carriers.

 

Officially designated FAST Pack V2.1, the S-FAST Pack consisted of the standard pair of dorsal rocket boosters plus the pallets with additional maneuvering jets, sensors and weapons. The S-FAST pack added another pair of P&W+EF-2001 boosters under the inner wings, having the duty to give to fighter the power necessary to exit easily from the gravity of moons or little planets without atmosphere, and improve acceleration during combat situations. Range was also further extended, together with additional life support systems for prolonged deep space operations, or the case of emergency.

 

In order to accept the S-FAST pack and exploit its potential, the VF-1’s wings and inner wing attachment points had to be strengthened due to the additional load and propulsion. The use of the S-FAST pack also precluded the fighter from transforming into Battroid or Gerwalk mode – the underwing packs had to be jettisoned beforehand. The other standard FAST Pack 2.0 elements could still be carried, though.

 

The modfied Valkyries capable of accepting the S-FAST Pack received an additional “S” to their type designation – more than 100 VF-1s were converted or built in this deep space configuration until late 2011. Initial deployment of the S-FAST Pack was conducted through SVF-24 “Moon Shadows” in early 2010, a unit that was quickly disbanded, though, but re-formed as SVF-124 “Moon Shooters”, tasked with the defense of the lunar Apollo Base and several special missions.

 

After the end of Space War I, the VF-1 continued to be manufactured both in the Sol system and throughout the UNG space colonies. Although the VF-1 would eventually be replaced as the primary Variable Fighter of the U.N. Spacy by the more capable, but also much bigger, VF-4 Lightning III in 2020, a long service record and continued production after the war proved the lasting worth of the design.

 

The VF-1 was without doubt the most recognizable variable fighter of Space War I and was seen as a vibrant symbol of the U.N. Spacy even into the first year of the New Era 0001 in 2013. At the end of 2015 the final rollout of the VF-1 was celebrated at a special ceremony, commemorating this most famous of variable fighters. The VF-1 Valkryie was built from 2006 to 2013 with a total production of 5,459 VF-1 variable fighters with several variants (VF-1A = 5,093, VF-1D = 85, VF-1J = 49, VF-1S = 30, VF-1G = 12, VE-1 = 122, VT-1 = 68)

 

However, the fighter remained active in many second line units and continued to show its worthiness years later, e. g. through Milia Jenius who would use her old VF-1 fighter in defense of the colonization fleet - 35 years after the type's service introduction!

 

General characteristics:

All-environment variable fighter and tactical combat Battroid,

used by U.N. Spacy, U.N. Navy, U.N. Space Air Force

 

Accommodation:

Pilot only in Marty & Beck Mk-7 zero/zero ejection seat

Dimensions:

Fighter Mode:

Length 14.23 meters

Wingspan 14.78 meters (at 20° minimum sweep)

Height 3.84 meters

 

Battroid Mode:

Height 12.68 meters

Width 7.3 meters

Length 4.0 meters

Empty weight: 13.25 metric tons;

Standard T-O mass: 18.5 metric tons;

MTOW: 37.0 metric tons

 

Power Plant:

2x Shinnakasu Heavy Industry/P&W/Roice FF-2001 thermonuclear reaction turbine engines, output 650 MW each, rated at 11,500 kg in standard or in overboost (225.63 kN x 2)

4 x Shinnakasu Heavy Industry NBS-1 high-thrust vernier thrusters (1 x counter reverse vernier thruster nozzle mounted on the side of each leg nacelle/air intake, 1 x wing thruster roll control system on each wingtip);

18 x P&W LHP04 low-thrust vernier thrusters beneath multipurpose hook/handles

 

The S-FAST Pack added 4x P&W+EF-2001 booster thrusters with 120.000 kg each, plus a total of 28x P&W LHP04 low-thrust vernier thrusters

 

Performance:

Battroid Mode: maximum walking speed 160 km/h

Fighter Mode: at 10,000 m Mach 2.71; at 30,000+ m Mach 3.87

g limit: in space +7

Thrust-to-weight ratio: empty 3.47; standard T-O 2.49; maximum T-O 1.24

 

Design Features:

3-mode variable transformation; variable geometry wing; vertical take-off and landing; control-configurable vehicle; single-axis thrust vectoring; three "magic hand" manipulators for maintenance use; retractable canopy shield for Battroid mode and atmospheric reentry; option of GBP-1S system, atmospheric-escape booster, or FAST Pack system

 

Transformation:

Standard time from Fighter to Battroid (automated): under 5 sec.

Min. time from Fighter to Battroid (manual): 0.9 sec.

 

Armament:

2x internal Mauler RÖV-20 anti-aircraft laser cannon, firing 6,000 pulses per minute

1x Howard GU-11 55 mm three-barrel Gatling gun pod with 200 RPG, fired at 1,200 rds/min

 

4x underwing hard points for a wide variety of ordnance, including

12x AMM-1 hybrid guided multipurpose missiles (3/point), or

12x MK-82 LDGB conventional bombs (3/point), or

6x RMS-1 large anti-ship reaction missiles (2/outboard point, 1/inboard point), or

4x UUM-7 micro-missile pods (1/point) each carrying 15 x Bifors HMM-01 micro-missiles,

or a combination of above load-outs

 

The optional Shinnakasu Heavy Industry S-FAST Pack 2.1 augmentative space weapon system added:

6x micro-missiles in two NP-AR-01 micro-missile launcher pods (mounted rear-ward under center ventral section in Fighter mode or on lower arm sections in GERWALK/Battroid mode)

4x12 micro missiles in four HMMP-02 micro-missile launchers, one inside each booster pod

 

The kit and its assembly:

This VF-1 is another contribution to the “Old Kit” Group Build at whatifmodelers.com, running in late 2016. I am not certain about the moulds’ inception date, but since it is an ARII incarnation of this type of kit and even moulded in the early pastel green styrene, I’d think that it was produced in 1982 or 83.

 

Anyway, I love the Macross VF-1, IMHO a design masterpiece created by Shoji Kawamori and one of my favorite mecha designs ever, because it was created as a late 70ies style jet fighter that could transform into a robot in a secondary role. As a simple, purposeful military vehicle. And not like a flashy robot toy.

 

Effectively, this Super Valkyrie is a highly modified OOB kit with many donation parts, and this kit is a bit special, for several reasons. There are several 1:100 OOB kits with FAST Packs from ARII/Bandai available (and still around today), but these are normally only Battroids or Gerwalks with additional parts for the FAST kit conversion. The kit I used here is different: it is, after maybe 25 years of searching and building these kits, the #70 from the original production run. It is (so far!) the only Fighter mode kit with the additional FAST Pack parts! Must be rare, and I have never seen it in catalogues?

 

Until today, I converted my Super or Strike Valkyries from Gerwalk kits, a task that needs some improvisation esp. around the folded arms between the legs, and there’s no OOB option for an extended landing gear. The latter made this Fighter mode kit very attractive, even though the actual kit is pretty disappointing, and AFAIK this kit variant is only available as a VF-1S.

 

With the Super Valkyrie fighter kit you receive basically a Gerwalk with a standard fighter cockpit (which includes a front wheel well and an extended front wheel leg), plus extra parts. The leg/engine-mounted NP-FB-01 systems are less bulbous than the parts on the Gerwalk or Battroid kit, and the OOB dorsally mounted NP-BP-01 boosters are TINY, maybe 1:120 or even 1:144! WTF?

 

Further confusion: the kit includes a set of lower arm parts with integrated rocket launchers, but these are not necessary at all for the Fighter build?! As a kind of compensation there’s a new and exclusive element that simulates the folded arms under the ‘fuselage’ and which, as an added value, properly holds the hand gun under the fuselage. As a quirky flaw, though, the hand gun itself comes in the extended form for the Battroid/Gerwalk mode. For the fighter in flight mode, it has to be modified, but that’s easily done.

 

Anyway, with the potential option to build a Super Valkyrie with an extended landing gear, this was my route to go with this vintage kit. The Super Valkyrie already looks bulky with the FAST Pack added, but then I recently found the S-FAST Pack option with two more boosters under the wings – total overkill, but unique. And I had a spare pair of booster bulks in the stash (w/o their nozzles, though), as well as a complete pair of additional bigger standard FAST boosters that could replace the ridiculous OOB parts…

 

Building such a Super/Strike Valkyrie means building separate components, with a marriage of parts as one of the final steps. Consequently, cockpit, central fuselage with the wings and the air intakes, the folded stabilizer pack, the folded arms element with the handgun, the two legs and the four boosters plus other ordnance had to be built and painted separately.

 

Here and there, details were changed or added, e. g. a different head (a ‘J’ head for the flight leader’s aircraft with two instead of the rare, OOB ‘S’ variant with four laser cannon), covers for the main landing gear (the latter does not come with wells at all, but I did not scratch them since they are hardly recognizable when the kit is sitting on the ground), the typical blade aerials under the cockpit and the feet had to be modified internally to become truly ‘open’ jet exhausts.

 

The wing-mounted boosters received new nozzles and their front end was re-sculpted with 2C putty into a square shape, according to reference sketches. Not 100% exact, but the rest of the VF-1 isn’t either.

 

This VF-1 was also supposed to carry external ordnance and my first choice were four wing-mounted RMS-1 Anti-Ship Reaction Warheads, scratched from four 1.000 lb NATO bombs. But, once finished, I was not happy with them. So I looked for another option, and in a source book I found several laser-guided bombs and missiles, also for orbital use, and from this inspiration comes the final ordnance: four rocket-propelled kinetic impact projectiles. These are actually 1:72 JASDF LGB’s from a Hasegawa weapon set, sans aerodynamic steering surfaces and with rocket boosters added to the tail. Also not perfect, but their white color and sleek shape is a good counterpart to the FAST elements.

 

Experience from many former builds of this mecha kit family helped a lot, since the #70 kit is very basic and nothing really fits well. Even though there are not many major seams or large elements, PSR work was considerable. This is not a pleasant build, rather a fight with a lot of compromises and semi-accuracies.

Seriously, if you want a decent 1:100 VF-1, I’d rather recommend the much more modern WAVE kits (including more realistic proportions).

  

Painting and markings:

The paint scheme for this Super Valkyrie was settled upon before I considered the S-FAST Pack addition: U.N. Spacy’s SVF-124 is authentic, as well as its unique camouflage paint scheme.

The latter is a special scheme for the lunar environment where the unit was originally formed and based, with all-black undersides, a high, wavy waterline and a light grey upper surface, plus some medium grey trim and a few colorful US Navy style markings and codes.

 

My core reference is a ‘naked’ bread-and-butter VF-1A of SVF-124 in Fighter mode, depicted as a profile in a VF-1 source book from SoftBank Publishing. The colors for the FAST Pack elements are guesstimates and personal interpretations, though, since I could not find any reference for their look in this unit.

As a side note, another, later SVF-124 aircraft in a similar design is included as an option in a limited edition 1:72 VF-22S kit from Hasegawa, which is backed by CG pics in a VF-22 source book from Softbank, too.

Furthermore, SVF-124 finds mention in a Japanese modeler magazine, where the aforementioned VF-22S kit was presented in 2008. So there must be something behind the ‘Moon Shooters’ squadron.

 

According to the Hasegawa VF-22S’s painting instructions, the underside becomes black and the upper surfaces are to be painted with FS36270 (with some darker fields on the VF-22, though, similar to the USAF F-15 counter-shaded air superiority scheme, just a tad darker).

Due to the 1:100 scale tininess of my VF-1, I alternatively went for Revell 75 (RAL 7039), which is lighter and also has a brownish hue, so that the resulting aircraft would not look too cold and murky, and not resemble an USAF aircraft.

 

All FAST Pack elements were painted in a uniform dark grey (Humbrol 32), while some subtle decorative trim on the upper surfaces, e.g. the canopy frame, an anti-glare panel and a stripe behind the cockpit and decoration trim on the wings’ upper surfaces, was added with Revell 77 (RAL 7012). Overall, colors are rather dull, but IMHO very effective in the “landscape” this machine is supposed to operate, and the few colorful markings stand out even more!

 

The cockpit interior was painted in a bluish grey, with reddish brown seat cushions (late 70ies style!), and the landing gear became all white. For some added detail I painted the wings’ leading edges in a mustard tone (Humbrol 225, Mid Stone).

 

The kit received some weathering (black ink wash, drybrushing on panels) and extra treatment of the panel lines – even though the FAST Pack elements hide a lot of surface or obscure view.

 

More color and individuality came with the markings. The standard decals like stencils or the U.N. Spacy insignia come from the kit’s and some other VF-1s’ OOB sheets.

Based on the SVF-124 VF-1 profile and taking the basic design a bit further, I used dull red USAF 45° digits for the 2nd flight leader’s “200” modex and the Apollo Base’s code “MA” on the dorsal boosters. Some discreet red trim was also applied to the FAST Packs – but only a little.

 

Since all of SVF-124’s aircraft are rumored to carry personal markings, including nose art and similar decorations, I tried to give this VF-1JS a personal note: the pin-up badges on the dorsal boosters come from a Peddinghouse decal sheet for Allied WWII tanks, placed on a silver roundel base. Unfortunately (and not visible before I applied them) the pin-up decal was not printed on a white basis, so that the contrast on the silver is not very strong, but I left it that way. Additionally, the tagline “You’re a$$ next, Jerry” (which IS printed in opaque white…?) was added next to the artwork – but it’s so tiny that you have to get really close to decipher it at all…

 

Finally, after some soot stains around the exhausts and some vernier nozzels with graphite, the kit received a coat of matt acrylic varnish.

 

Building this vintage VF-1 kit took a while and a lot of effort, but I like the result: with the S-FAST Pack, the elegant VF-1 turned into a massive space fighter hulk! The normal Super Valkyries already look very compact and purposeful, but this here is truly menacing. Especially when standing on its own feet/landing gear, with its nose-down stance and the small, original wheels, this thing reminds of a Space Shuttle that had just landed.

 

Good that I recently built a simple VF-1 fighter as a warm-up session. ARII’s kit #70 is not a pleasant build, rather a fight with the elements and coupled with a lot of compromises – if you want a Super Valkyrie Fighter in 1:100, the much more modern WAVE kit is IMHO the better option (and actually not much more pricey than this vintage collector’s item). But for the vintage feeling, this exotic model kit was just the right ticket, and it turned, despite many weaknesses and rather corny details, into an impressive fighter. Esp. the lunar camouflage scheme looks odd, but very unique and purposeful.

 

Anyway, with so many inherent flaws of the ARII kit, my former method of converting a pure (and much more common) Gerwalk kit into a space-capable VF-1 fighter is not less challenging and complicated than trying to fix this OOB option into a decent model. :-/

Heavy Rescue Tender (HRT) 911 running a brand new Scania P310 rig.

 

This truck has a modular design and can be configured to carry a mission specific payload.

British Empire Reenactors

Image taken at Sedgefield Front-Line Multi-era Reenactment Event 2018

Thunderstorm rolling into Lancaster County Nebraska at sunset, using a wide-angle lens.

When they first appeared, in 1936, the Panzer IIs were regarded as platoon commander's tanks. They were also employed to give fire support to the Panzer I in combat with enemy tanks. However by 1940 they had been outclassed and were relegated to the reconnaissance role. Our exhibit, an Ausfuhrung (or Model) F featured improved armour and was introduced in 1941.

 

It is worth noting that this tank is entirely of welded construction at a time when most rivals were either riveted or cast. The advantages of welding armour are many, but Britain was slow to adopt this procedure. Notice also that the Panzer II, like all German tanks of the Second World War, had a petrol engine. The popular idea that they were all Diesel powered is incorrect.

 

This vehicle served with Recconaissance Platoon (RO6), Panzer Regment 7, 10 Panzer Division in Tunisia. The 7th Panzer Regiment was destroyed in May 1943.

 

Our exhibit was captured by British forces in North Africa but it is shown in the markings of 1st Panzer Division at the time of the invasion of France in June 1940. The Panzer II remained in front line service until 1943 but was then employed on internal security duties in less active locations. This exhibit has the additional armour, conical idlers and fake, aluminium driver's visor characteristic of the Panzer IIF. It was completed in May 1942 and shipped to Tunis in December. The 7th Panzer Regiment was destroyed in May 1943.

 

Precise Name: Panzerkampfwagen II Aus F

  

Other Name: SdKfz 121, 9 Serie LaS 100,

 

DESCRIPTION

 

The original version of the Panzer II was introduced in 1936 as a platoon and company commanders’ vehicle. A full Platoon of each tank Company was equipped with them for tank vs. tank combat.

 

By the start of the Russian campaign in June 1941 the Panzer II was employed as a reconnaissance vehicle by the Panzer Regiments; they were withdrawn from frontline service during 1943, completely outclassed as combat vehicles. They continued to be used for internal security duties away from the front lines until the end of the war.

 

The Panzer II is of all welded construction, made at a time when most countries were still building tanks with riveted or cast hulls. Welded hulls have many advantages when compared to riveted ones: they are lighter and stronger and there aren’t any rivet heads to shear off and fly round inside the tank when it is hit by enemy fire. Powered by a petrol engine of 140 hp and carried on large independently sprung road wheels the later versions of the Panzer II had a sprightly cross country performance on firm ground, although its narrow tracks bogged down easily in the mud of the Russian spring and autumn.

 

The Tank Museum’s Panzer II is an Aus (Ausfuhrung or model) F. The Aus F was introduced in March 1941 and a total of 541 were built before production ceased in December 1942 out of a total Panzer II production of approximately 1,800 tanks. Production of the Panzer II chassis continued until July 1944 as the carrier of various anti-tank and field guns, notably the PaK 40 7.5cm anti-tank gun and the 10.5cm LeFH18M light howitzer.

 

Compared to earlier versions, the Aus F has a redesigned flat fronted hull. The thickness of the armour is increased from 14.5mm to 30mm on the hull front and the turret. The commander has a cupola with eight periscopes. The Germans noticed that anti-tank gunners were targeting the driver’s visor so a dummy one, made of aluminium, is fitted on the right hand side of the real visor!

 

The Museum’s exhibit was built in May 1942 and shipped to Tunisia in December 1942 where it served with the Reconnaissance Platoon of Panzer Regiment 7, 10th Panzer Division. British forces captured it when the Germans were defeated in Tunisia in May 1943. It is currently displayed in the markings of the 1st Panzer Division at the time of the German invasion of France in May 1940.

 

Summary text by Mike Garth V1.0

 

VEHICLES Features

  

Full Tracked

 

Tracks/Wheels

  

Gun - 20 mm Gun KwK30 L/55

 

Armament - Main Weapon Type

  

MG 34 7.92 mm Machine Gun

 

Armament - Secondary Weapon Type

  

Maybach HL62TR, 6 cylinder, water cooled

 

Engine

  

6 Forward , 1 Reverse synchromesh gearbox with epicyclic steering

 

Transmission

  

Leaf spring

 

Suspension

  

Vehicle Statistics

  

4.81m

 

Length (Overall)

  

2.28m

 

Width (Overall)

  

3

 

Number (Crew)

  

9.5tons

 

Weight (Overall)

  

40kph

 

Maximum (Speed - Road)

  

Petrol

 

Type (Fuel)

  

35.00mm

 

Maximum (Armour Thickness - Hull)

  

20mm

 

Calibre (Main Gun)

  

140bhp

 

Power (Engine Output)

  

Volume (Fuel)

  

200km

 

Radius (Range)

  

180rounds

 

Number (Projectile)

  

2.15m

 

Height (Overall)

Frontline Ex Eastern National Leyland National 2-Tamworth, August 1994. Who were Frontline Buses.I noticed that some buses had Badger emblems.

Another useful model intended for the wargaming market is this little two-wheeled trailer, a solid resin casting by Frontline Wargaming. It is intended as a World War 2 military trailer but contains an assortment of items also used by civilians such as fuel drums, jerrycans, a roll of cable and some tarpaulins, making it ideal for use as a showman's supply trailer of the type often towed behind rides or living wagons. This is an extreme close-up photo as the model is only about an inch long.

Combined Platform Ladder (CPL) 141 running the latest generation Scania P310 Bronto Skylift F34 RLX rig.

 

This truck is equipped with a 34m (112ft) articulated rescue ladder platform, a pump, supply hoses and some basic tools.

Go to Rugeley now and the bus station is pretty dull but a few years ago following Deregulation it was both blessed with variety and was a hive of activity. One of the opererators there briefly was Frontline whose former West Yorkshire PTE Roe bodied Alantean looked very much an off-shoot of FirstGroup in the 'Tomato Soup' livery.

Artist honouring the medical staff around the Province. Vancouver, BC.

 

@grantmatticephoto

Storm over Lincoln, Nebraska at sunset

Model:優希

COS:《Girls' Frontline》Sten guns

Place: 廣州市 · 保利世貿會展中心

Some background:

The VF-1 was developed by Stonewell/Bellcom/Shinnakasu for the U.N. Spacy by using alien Overtechnology obtained from the SDF-1 Macross alien spaceship. Its production was preceded by an aerodynamic proving version of its airframe, the VF-X. Unlike all later VF vehicles, the VF-X was strictly a jet aircraft, built to demonstrate that a jet fighter with the features necessary to convert to Battroid mode was aerodynamically feasible. After the VF-X's testing was finished, an advanced concept atmospheric-only prototype, the VF-0 Phoenix, was flight-tested from 2005 to 2007 and briefly served as an active-duty fighter from 2007 to the VF-1's rollout in late 2008, while the bugs were being worked out of the full-up VF-1 prototype (VF-X-1).

 

The space-capable VF-1's combat debut was on February 7, 2009, during the Battle of South Ataria Island - the first battle of Space War I - and remained the mainstay fighter of the U.N. Spacy for the entire conflict. Introduced in 2008, the VF-1 would be out of frontline service just five years later, though.

 

The VF-1 proved to be an extremely capable craft, successfully combating a variety of Zentraedi mecha even in most sorties which saw UN Spacy forces significantly outnumbered. The versatility of the Valkyrie design enabled the variable fighter to act as both large-scale infantry and as air/space superiority fighter. The signature skills of U.N. Spacy ace pilot Maximilian Jenius exemplified the effectiveness of the variable systems as he near-constantly transformed the Valkyrie in battle to seize advantages of each mode as combat conditions changed from moment to moment.

 

The basic VF-1 was built and deployed in four minor variants (designated A, J, and S single-seater and the D two-seater/trainer) and its success was increased by continued development of various enhancements including the GBP-1S "Armored" Valkyrie exoskeleton with enhanced protection and integrated missile launchers, the so-called FAST (“Fuel And Sensor Tray”) packs that created the fully space-capable "Super" Valkyries and the additional RÖ-X2 heavy cannon pack weapon system for the VF-1S “Super Valkyrie”.

 

After the end of Space War I, the VF-1 continued to be manufactured both in the Sol system and throughout the UNG space colonies. Although the VF-1 would be replaced in 2020 as the primary Variable Fighter of the U.N. Spacy by the more capable, but also much bigger, VF-4 Lightning III, a long service record and continued production after the war proved the lasting worth of the design.

In the course of its career the versatile VF-1 underwent constant upgrade programs. For instance, about a third of all VF-1 Valkyries were upgraded with Infrared Search and Track (IRST) systems from 2016 on, placed in a streamlined fairing in front of the cockpit. This system allowed for long-range search and track modes, freeing the pilot from the need to give away his position with active radar emissions, and it could be used for target illumination and guiding precision weapons. Many Valkyries also received improved radar warning systems, with receivers, depending on the systems, mounted on the wingtips, on the fins and/or on the LERXs. Improved ECR measures were also mounted on some machines, typically in conformal fairings on the flanks of the legs/engine pods. Specialized reconnaissance and ECM sub-versions were developed from existing airframes, too.

 

The VF-1 was without doubt the most recognizable variable fighter of Space War I and was seen as a vibrant symbol of the U.N. Spacy even into the first year of the New Era 0001 in 2013. At the end of 2015 the final rollout of the VF-1 was celebrated at a special ceremony, commemorating this most famous of variable fighters. The VF-1 Valkryie was built from 2006 to 2013 with a total production of 5,459 VF-1 variable fighters with several variants (VF-1A = 5,093, VF-1D = 85, VF-1J = 49, VF-1S = 30, VF-1G = 12, VE-1 = 122, VT-1 = 68). However, beyond this original production several “re-built” variants existed, too, and remained active in many second line units and continued to show its worthiness years later, e. g. through Milia Jenius who would use her old VF-1 fighter in defense of the colonization fleet, even after 35 years after the type's service introduction!

  

General characteristics:

All-environment variable fighter and tactical combat Battroid, used by U.N. Spacy, U.N. Navy, U.N. Space Air Force. 3-mode variable transformation; variable geometry wing; vertical take-off and landing; control-configurable vehicle; single-axis thrust vectoring; three "magic hand" manipulators for maintenance use; retractable canopy shield for Battroid mode and atmospheric reentry; option of GBP-1S system, atmospheric-escape booster, or FAST Pack system

 

Accommodation:

Single pilot in Marty & Beck Mk-7 zero/zero ejection seat

 

Dimensions:

Battroid Mode:

Height 12.68 meters

Width 7.3 meters

Length 4.0 meters

Fighter Mode:

Length 14.23 meters

Wingspan 14.78 meters (at 20° minimum sweep)

Height 3.84 meters

 

Empty weight: 13.25 metric tons

Standard take-off mass: 18.5 metric tons

MTOW: 37.0 metric tons

 

Power Plant:

2x Shinnakasu Heavy Industry/P&W/Roice FF-2001 thermonuclear reaction turbine engines, output 650 MW each, rated at 11,500 kg in standard or in overboost (225.63 kN x 2);

4x Shinnakasu Heavy Industry NBS-1 high-thrust vernier thrusters (1 x counter reverse vernier thruster nozzle mounted on the side of each leg nacelle/air intake, 1 x wing thruster roll control system on each wingtip);

18x P&W LHP04 low-thrust vernier thrusters beneath multipurpose hook/handles

 

Performance:

Battroid Mode: maximum walking speed 160 km/h

Fighter Mode: at 10,000 m Mach 2.71; at 30,000+ m Mach 3.87

g limit: in space +7

Thrust-to-weight ratio: empty 3.47; standard TOW 2.49; maximum TOW 1.24

 

Transformation:

Standard time from Fighter to Battroid (automated): under 5 sec.

Min. time from Fighter to Battroid (manual): 0.9 sec.

 

Armament:

1x Mauler RÖV-20 anti-aircraft laser cannon in the "head" unit, firing 6,000 pulses per minute

1x Howard GU-11 55 mm three-barrel Gatling gun pod with 200 RPG, fired at 1,200 rds/min

4x underwing hard points for a wide variety of ordnance, including

12x AMM-1 hybrid guided multipurpose missiles (3/point), or

12x MK-82 LDGB conventional bombs (3/point), or

6x RMS-1 large anti-spaceship reaction missiles (2/outboard point, 1/inboard point), or

4x UUM-7 micro-missile pods (1/point) each carrying 15 x Bifors HMM-01 micro-missiles,

or a combination of above load-outs and other guided and unguided ordnance

  

The kit and its assembly:

After a long time, I found enough mojo to tackle another ARII 1:100 VF-1, but this time in Battroid mode. Unlike the simple Fighter mode kits, ARII’s Battroid kit of the iconic Valkyrie is more demanding and calls for some structural modifications to create a decent and presentable “giant robot” model – OOB, the model remains quite two-dimensional and “stiff”. The much newer WAVE kit in 1:100 scale is certainly a better model of the VF-1, but I love the old ARII kits because of their simplicity.

 

The kit is a “Super Valykrie” model, but it donated its FAST pack extra parts to a space-capable VF-1 Fighter build a long time ago and has been collecting dust in The Stash™ (SF/mecha sub-department at the Western flank) since then. The complete Battroid model was still left, though, even with most of the decals, and when I recently searched for artwork/visual references for another Macross project I came across screenshots from the original TV series of a canonical VF-1 that I had been planning to build for some years, and so I eventually set things in motion.

 

The kit was basically built OOB, but it received some upgrades. More severe surgery would be necessary to create a “good” Battroid model – e. g. creating vertical recesses around the torso – but this is IMHO not worthwhile. These updates included additional joints in the upper arms and legs, created with styrene tubes, as well as a new hip construction made from coated steel wire and styrene tube material that allows a three-dimensional posture of the legs - for a more vivid appearance and more dynamic poses. Other small mods that enhance the overall impression are “opened” exhausts inside of the feet and a different, open left hand. The GU-11 pod/handgun was taken OOB, it just received a shoulder belt created with painted masking tape. The single laser cannon on the head received a fairing made from paper tissue drenched with white glue.

 

Even though the model kit itself is not complex, it is a very early mecha kit: the VF-1 Battroids already came with vinyl caps (some of the contemporary ARII Macross models did not feature these useful items yet), but the model was constructed in an “onion layer” fashion that makes building and painting a protracted affair, esp. on arms and legs. You are supposed to finish a certain section, and then you add the next section like a clamp, while areas of the initial section become inaccessible for sanding and painting inside of the new section. You can only finish the single sections up to basic painting, mask them, and then add the next stage. Adding some joints during the construction phase helped but building an ARII VF-1 Battroid simply takes time and patience…

  

Painting and markings:

As mentioned above, this Valkyrie’s livery is canonical and it depicts a so-called “Alaska Guard” VF-1, based at the U.N. Spacy’s headquarters at Eielson Air Force Base in the far North of the United States around 2008/9. Several Battroid mode VF-1s in this guise appear during episode #15 of the original Macross TV series and offer a good look at their front and back, even though close inspection reveals that the livery was – intentionally or incidentally – not uniform! There are subtle differences between the VF-1s from the same unit, so that there’s apparently some room for artistic freedom.

However, this rather decorative livery IMHO works best on a VF-1 Battroid model, because the green areas, esp. on head and arms, mostly disappears when the Valkyrie transforms into Fighter mode – in the original TV livery the VF-1 is completely white from above, just with green wing tips and rudders on the V-tail.

 

A full profile of an “Alaska Guard” VF-1 with more details concerning markings and stencils can furthermore be found in Softbank Publishing’s (discontinued) “Variable Fighter Master File VF-1 Valkyrie” source book, even though these drawings show further differences to the original TV appearance. In the book the unit is identified as SVF-15 “Blue Foxes”, evolved from the real USAF’s 18th Aggressor Squadron in 2008. Looking at the VF-1’s colors, this unit name appears a bit odd, because the livery is basically all-white with olive-green trim? This could be a simple translation issue, though, because “blue” and “green” are in written Japanese described with the same kanji (青, “ao”). On the other side, the 18th Aggressor Squadron was/is nicknamed “Blue Foxes”? Strange, strange…

 

To ease painting, the model was built in sub-assemblies (see comments above) and treated separately. To avoid brush painting mess with the basic white, the sub-sections received a coat of very light grey (RAL 7047 Telegrau) and a pure white tone, both applied from rattle cans with an attempt to create a light shading effect. The green trim and further details were added with brushes. I used Revell 360 (Fern Green, RAL 6025), because it is a strong but still somewhat dull/subdued tone that IMHO matches the look from the TV series well. Some detail areas like the air intake louvres, the hollow of the knees and the handgun were painted in medium grey (Humbrol 140), so that the contrast to the rest was not too strong. The “feet” received an initial coat of Humbrol 53 (Iron) as a dark primer.

 

In “reality”, parts of the VF-1’s torso in Battroid mode are actually open – the kit is very simplified. To create an optical illusion of this trench and to visually “stretch” the rather massive breast section, the respective areas were painted with dark grey (Humbrol 79). There are also many position lights all around the hull; these were initially laid out with silver, the bigger ones received felt tip pen details, and they were later overlaid with clear acrylic paints.

 

Once the basic painting had been done, a light black ink washing was applied to the parts to emphasize engraved panel lines and recesses. After that the jet exhaust ‘feet’ were painted with Humbrol’s Steel Metallizer and some post-shading through dry-brushing was done, concentrating on the green areas. This was rather done for visual plasticity than for a worn look: this Valkyrie was supposed to look quite bright and clean, after all it’s from a headquarter unit and not an active frontline vehicle.

The feet received a thorough graphite treatment, so that the Metallizer’s shine was further enhanced. Some surface details that were not molded into the parts (esp. around the shoulders and the covers of the main landing gear) were painted with a thin black felt tip pen.

 

Stencils and markings were taken from the kit’s OOB decal sheet. The thin bands around the arms and legs were created with generic 1mm decal strips and all the vernier thrusters (sixteen are visible on the Battroid) were created with home-printed decals – most of them are molded into the parts and apparently supposed to be painted, but the decals are a tidier and more uniform solution.

 

Before the final assembly, the parts received a coat with matt acrylic varnish. As final measures some black panel lines were emphasized with a felt tip pen and color was added to several lamps and small windows with clear paints.

  

I can hardly remember when I built my last VF-1 Battroid, but tackling this one after a long while was a nice distraction from my usual what-if builds. I am pleased that this model depicts a canonical Valkyrie from the original TV series beyond the well-known “hero” liveries. Furthermore, green is a rare color among VF-1 liveries, so that it is even more “collectible”.

While the vintage ARII kit is a rather limited affair, adding some joints considerably improved the model’s impression, even though there are definitively better kit options available today when you want to build a 1:100 Battroid — but these do certainly not provide this authentic “Eighties feeling”.

 

May 30, 2020 - Governor Andrew Cuomo delivers daily Coronavirus update at New Settlement Community Center on Jerome Avenue in the Bronx.

Amir Khaled, 18, stopped by the makeshift barber shop at Ajdabiya's western gate to get a buzz. He said he wants Muammar Gaddafi to be gone by the time his hair grows back.

During PBS’ FRONTLINE “For Sama” session at the Television Critics Association Summer Press Tour in Beverly Hills, CA on Tuesday, July 30, 2019, director, producer and film subject Waad al-Kateab, director Edward Watts, Dr. Hamza al-Kateab and series executive producer Raney Aronson-Rath detailed the journey of a young woman through love, marriage and motherhood across five years of revolution in Aleppo, Syria.

(Premieres Fall 2019)

All photos in this set should be credited to Rahoul Ghose/PBS

Half way through my shift on Christmas Day they asked me to pair up on an ambulance and to help me say yes they let me play with the new one! He he! Happy Christmas me!! :)

 

The first of 109 new Fiat double-crewed ambulances (DCAs) has entered service at the Trust.

YAS’s Procurement, Fleet, and Medical Devices teams have been working closely with representatives from across YAS, Staff-side and the YAS Staff Forum for over a year to produce the blueprint for the best vehicle to support frontline staff in providing the highest quality care for our patients.

 

The 109 frontline DCAs are being built by local Goole-based firm O&H Vehicle Conversions which has been integral in the innovative engineering design to lower ambulance weight, deliver reduced running costs and lower CO2 emissions. Each vehicle is also fitted with the new powered Stryker bariatric stretcher and a Mangar Elk lifting device which will make a significant difference to the safe moving and handling of patients and the health and safety of our staff.

 

I work for Yorkshire Ambulance Service on the RRVs in and around the city of Sheffield in South Yorkshire.

It’s a great job and I feel very honoured to be able to help people at their point of need.

Check out the website for all sorts of info re YAS and the work we do.

www.yas.nhs.uk/

 

1 2 3 5 7 ••• 79 80