View allAll Photos Tagged alarm_system,
Responded to a call at Clean Water Services. I think it turned out to be a false alarm from the alarm system. But the truck looks nice.
St Mary's church in Lapworth is one of the most rewarding and unusual medieval parish churches in Warwickshire. The visitor generally approaches this handsome building from the north where the sturdy tower and spire stand guard like a sentinel. It is unusual in standing apart from the main building and was originally detached but is now linked by a passageway to the north aisle, making the church almost as wide as it is long. The west end too is remarkably configured with a chantry chapel or room set above an archway (allowing passage across the churchyard below).
The church we see today dates mainly from the 13th / 14th centuries, with an impressive fifteenth century clerestorey added to the nave being a prominent feature externally, but within it is possible to discern traces of the previous Norman structure embedded below in the nave arcade. There is much of interest to enjoy in this pleasant interior from quirky carvings high in the nave to the rich stained glass in the chancel and north chapel (which has benefitted immensely from a newly inserted window where the east wall had previously been blank). The most interesting memorial is the relief tablet in the north chapel by Eric Gill.
Lapworth church has consistently welcomed visitors and remains militantly open now despite being surrounded by churches largely reluctant to re-open after Covid. Happily since Tony Naylor's fine new window was installed the previous alarm system that restricted access to the eastern half of the church (which I inadvertedly set off on my first ever visit, deafening the neighbours!) has been relaxed so that visitors can now enjoy the full extent of the interior and its fittings.
TEIGN C Damen Stan 1405
IMO: - N/A
MMSI: 235082804
Call Sign: MWBM9
AIS Vessel Type: Dredger
GENERAL
DAMEN YARD NUMBER: 503705
Avelingen-West 20
4202 MS Gorinchem
The Netherlands
Phone: +31 (0)183 63 99 11
info@damen.com
DELIVERY DATE August 2001
BASIC FUNCTIONS Towing, mooring, pushing and dredging operations
FLAG United Kingdom [GB]
OWNED Teignmouth Harbour Commission
CASSCATION: Bureau Veritas 1 HULL MACH Seagoing Launch
DIMENSIONS
LENGTH 14.40 m
BEAM 4.73 m
DEPTH AT SIDES 205 m
DRAUGHT AFT 171 m
DISPLACEMENT 48 ton
TANK CAPACITIES
Fuel oil 6.9 m³
PERFORMANCES (TRIALS)
BOLLARD PULL AHEAD 8.0 ton
SPEED 9.8 knots
PROPULSION SYSTEM
MAIN ENGINE 2x Caterpillar 3406C TA/A
TOTAL POWER 477 bmW (640i hp) at 1800 rpm
GEARBOX 2x Twin Disc MG 5091/3.82:1
PROPELLERS Bronze fixed pitch propeller
KORT NOZZELS Van de Giessen 2x 1000 mm with stainless steel innerings
ENGINE CONTROL Kobelt
STEERING GEAR 2x 25 mm single plate Powered hydraulic 2x 45, rudder indicator
AUXILIARY EQUIPMENT
BILGE PUMP Sterling SIH 20, 32 m/hr
BATTERY SETS 2x 24V, 200 Ah + change over facility
COOLING SYSTEM Closed cooling system
ALARM SYSTEM Engines, gearboxes and bilge alarms
FRESH WATER PRESSURE SET Speck 24V
DECK LAY-OUT
ANCHORS 2x 48 kg Pool (HHP)
CHAIN 70 m, Ø 13mm, shortlink U2
ANCHOR WINCH Hand-operated
TOWING HOOK Mampaey, 15.3 ton SWL
COUPLING WINCH
PUSHBOW Cylindrical nubber fender Ø 380 mm
ACCOMMODATION
The wheelhouse ceiling and sides are insulated with mineral wool and
panelled. The wheelhouse floor is covered with rubber/synthetic floor
covering, make Bolidt, color blue The wheelhouse has one
helmsman seat, a bench and table with chair Below deck two berths, a
kitchen unit and a toilet space are arranged.
NAUTICAL AND COMMUNICATION EQUIPMENT
SEARCHLIGHT Den Haan 170 W 24 V
VHF RADIO Sailor RT 2048 25 W
NAVIGATION Navigation lights incl towing and pilot lights
Teignmouth Harbour Commission
The Harbour Commission is a Trust Port created by Statute.
The principal Order is the Teignmouth Harbour Order 1924
as amended by the Teignmouth Harbour Revision Order 2003
1039 H Street, Eureka
(701 11th Street is the main entrance for the south building, to the right)
Built in 1914
For sale (as of August 2024)
Previously First Church of Christ Scientist
Of 701 Eleventh Street, Eureka: An Architectural Review (© 1987) says "Erected on the site of the original Church of Christ, Scientist in Eureka, this excellent Craftsman structure was designed by noted local architect Franklin Georgeson. Lacking the proportions of typical ecclesiastical construction, this human-scale building is a medium pitched gabled rectangle. Intersecting gables appear at either end, one of which serves as the entrance. Access is gained through a pergola consisting of heavy square beams that support an exposed beam roof. Diagonal buttresses, board-and-batten siding, horizontal groupings of windows, and a large, multipaned arched window are featured elements of this design. A substantial new wing was added at the north end of the property in the 1980s."
The real estate hype on Zillow enthuses:
"Discover a unique and versatile property with a rich history, offering boundless potential for your visionary endeavors. With two impressive buildings totaling over 8200 sqft. One side boasts a stunning church, showcasing remarkable wood craftsmanship, inspiring windows, and breathtaking open-truss ceilings. The other side houses a versatile Gymnasium. Recent upgrades Include: New furnaces & thermostat, LED lighting throughout, new alarm system, security cameras, brand new 30 plus windows with thermal double pane tempered glass, emergency lighting with all exit signs on doors, new 50-year roof, new interior wood paneling, painted exterior, replaced exterior lighting, hand polished all brass knobs, rebuilt chandeliers & replaced with new wiring." Asking price: $1,450,000.
The Key Real Estate Group says:
"There at two beautiful buildings with wonderful architecture. The Church was built in 1914 and is rich in wood craftmanship (4,622 sf). The Sunday school is a separate building which was added in 1966 (3,660 sf). It has separate rooms for offices, day-care and restrooms as well as a large-open area for just about anything! Additional potential uses for this location would include a charter school, nursing home/family care, private club, or a theater arts promotions. There is a separate parking lot fronting 'I' Street that is included in the sale."
DSC_5431_e2
Firefighters have been heading back to college in Wisbech to take up a unique training opportunity at the College of West Anglia.
The crew from Wisbech Fire Station turned the former C Block at the college site, on Ramnoth Road, into a training ground during the past few months to deliver challenging exercise scenarios to test firefighters from across the county.
The site was chosen as it is due for demolition over the coming months and at the time of proposal was not being used. It was also a large and complicated design with many unusual features that offered the chance to conduct many different training scenarios for Cambridgeshire Fire and Rescue Service staff.
Staff from Wisbech Fire Station and the College of West Anglia health and safety department worked closely together to ensure that guidelines and procedures were put in place to enable the use of the college buildings and to provide extremely valuable training opportunities for firefighters from Wisbech and other stations across Cambridgeshire.
Wisbech Station Commander Brett Mills said: “The day crew identified an excellent training opportunity using their local knowledge and networking. This supported vital critical safety training for both whole-time and on-call firefighters. I would like to thank Firefighter Gary Reach, Crew Commander Clive Griffin from Cambridgeshire Fire and Rescue Service, and Richard Heron and Amanda Marshall from the College Of West Anglia for their hard work in organising this and continuing the excellent partnership working between CFRS and CWA.”
Various different ladder drills were conducted around the buildings as it offered different conditions and opportunities that cannot be replicated in the firefighters’ usual drill yard. Breathing apparatus search and rescue drills were also conducted inside the building during both day and night time sessions.
The buildings were also used to hold an on-call training support day to provide further training for firefighters from across Cambridgeshire. During these sessions firefighters wore obscuration masks to replicate heavy smoke logging of the building without the college fire alarm system being affected.
The College of West Anglia is one of the largest providers of education and training in Norfolk and Cambridgeshire with an exceptional track record of developing the skills and talents of its students.
The Wisbech campus was transformed over the summer of 2015, following extensive investment to improve its facilities in the form of a £6.5million flagship learning building. This adds to the £7.2million technology centre, which opened in April 2013. Older buildings such as the C Block are now set for demolition as they are no longer fit for purpose.
The 1400m2 new teaching centre which opened in September, and 2000 m2 of refurbished space with its state-of-the-art teaching and IT facilities, is host to health & social care, hair & beauty in their brand new salons, foundation studies, computing, and uniformed and public services courses. There are also new facilities for teaching in English, maths and ESOL (English for speakers of other languages). The new main atrium entrance and reception area, teamed with the expansion of the restaurant, social areas and learning resource centre, is now a welcoming hub for students and staff alike.
Mark Reavell, Executive Director Partnerships at CWA, said: “We were pleased to be able offer the old buildings to the fire service for them to use as part of their training. It is understandably difficult for them to get access to facilities to carry out this sort of simulated exercise and it all seemed to work out perfectly prior to the start of demolition. We will however be pleased to see the old buildings disappear forever!"
Third generation (2008–present)
The Dodge Challenger Concept was unveiled at the 2006 Detroit Motor Show and was a preview for the 3rd generation Dodge Challenger that started its production in 2007. Many design cues of the Dodge Challenger Concept were adapted from the 1970 Dodge Challenger R/T.
Initial release
On December 3, 2007, Chrysler started taking deposits for the third-generation Dodge Challenger which debuted on February 6, 2008, simultaneously at the Chicago Auto Show and Philadelphia International Auto Show. Listing at US$40,095, the new version was a 2-door coupe which shared common design elements with the first generation Challenger, despite being significantly longer and taller. As with Chevrolet's new Camaro, the Challenger concept car's pillarless hardtop body was replaced with a fixed "B" pillar, hidden behind the side glass to give an illusion of the hardtop. The LC chassis is a modified (shortened wheelbase) version of the LX platform that underpins the Dodge Charger (LX), Dodge Magnum, and the Chrysler 300. The LX was developed in America from the previous Chrysler LH platform, which had been designed to allow it to be easily upgraded to rear and all-wheel drive. Many Mercedes components were incorporated, or used for inspiration, including the Mercedes-Benz W220 S-class control arm front suspension, the Mercedes-Benz W211 E-Class 5-link rear suspension, the W5A580 5-speed automatic, the rear differential, and the ESP system. All (7119) 2008 models were SRT8s and equipped with the 6.1 L (370 cu in) Hemi and a 5-speed AutoStick automatic transmission. The entire 2008 U.S. run of 6,400 cars were pre-sold (many of which for above MSRP), and production commenced on May 8, 2008;
The base model Challenger SE was initially powered by a 3.5 L (214 cu in) SOHC V6 producing 250 brake horsepower (190 kW) (SAE) and 250 lbf·ft (340 N·m) torque which was coupled to a 4-speed automatic transmission for the first half of 2009, and was then changed to have a standard 5-speed automatic transmission. Several different exterior colors, with either cloth or leather interiors became available. Standard features included air conditioning, power windows, locks, and mirrors; cruise control, and 17-inch (430 mm) aluminum wheels. Leather upholstery, heated front seats, sunroof, 18-inch aluminum wheels, and a premium audio system are available as options, as are ABS, and stability and traction control. The Canadian market also sports the SXT trim, similar to the SE, but more generous in terms of standard features. Some of these features being ESP, an alarm system, and 18-inch (460 mm) wheels. Starting with the 2012 model year, the SE was replaced in the U.S. with the SXT model.
2015 model year
Changes include:
5-speed automatic transmission replaced by a new 8-speed ZF 8HP automatic transmission,
Power output on the 6.4 liter V8 increased by 15 for a total of 485 horsepower and torque increased by 5 for a total of 475 Ib Ft.
A slightly revamped exterior features a new grille with design cues from the 1971 grill/split tail lights, Quad LED 'Halo Ring" Head lights, LED Tail lights, and a functional hood intake on HEMI models.
Inside, the Challenger gets a 7-inch (780mm) TFT Thin Film Transistor display with over one hundred possible configurations, 8.4-inch Uconnect touchscreen radio with available navigation, and a retro styled gauge cluster.
[Text from Wikipedia]
Info en español, Alcatraz
Robert Stroud, who was better known to the public as the "Birdman of Alcatraz," was transferred to Alcatraz in 1942. He spent the next seventeen years on "the Rock" — six years in segregation in D Block, and eleven years in the prison hospital. In 1959 he was transferred to the Medical Center for Federal Prisoners in Springfield.
When Al Capone arrived on Alcatraz in 1934, prison officials made it clear that he would not be receiving any preferential treatment. While serving his time in Atlanta, Capone, a master manipulator, had continued running his rackets from behind bars by buying off guards. "Big Al" generated incredible media attention while on Alcatraz though he served just four and a half years of his sentence there before developing symptoms of syphilis and being transferred to the Federal Correctional Institution at Terminal Island in Los Angeles.
George "Machine Gun" Kelly arrived on September 4, 1934. At Alcatraz, Kelly was constantly boasting about several robberies and murders that he had never committed. Although this was said to be an apparent point of frustration for several fellow prisoners, Warden Johnson considered him a model inmate. Kelly was returned to Leavenworth in 1951.
Arthur Barker better known as Doc Barker was born in Aurora, Missouri. He was born to George E. Barker and Ma Barker and was one of seven children. By the 1920s and 1930s, Barker with his mother and Alvin Karpis started to commit crimes such as theft, robbery, murder, and kidnapping. His mother Ma Barker started the Barker-Karpis gang. On July 18, 1918 Doc Barker was arrested for stealing a car on the highway and was sent to serve prison time in Joplin, Missouri. On February 19, 1920 Arthur Barker escaped prison in Joplin, Missouri. After the escape he held up many armed robberies and murdered two people. On January 15, 1922, Doc Barker held up an armed robbery at a bank in Muskogee, Oklahoma and sent to the Oklahoma State Prison but was released five months later on June 21, 1922. On January 16, 1935, Ma Barker was killed by the police and a year later Arthur Barker with Alvin Karpis were sent to Alcatraz. Barker became Alcatraz inmate #AZ268 in 1936.
Alvin “Creepy” Karpavicz
Offense: Conspiring to Kidnap and Transport. Sentence: Life. A habitual criminal, “Creepy Karpis” served 26 years on Alcatraz, the longest tenure of any Alcatraz inmate. He was released from the Federal Prison system in 1969 and deported to Canada; ten years later, he committed suicide in Spain.
Johnson was a former associate of mob boss Stephanie St. Clair. He was one of the leading organized criminals in Harlem to fight an unsuccessful war against Dutch Schultz, who incorporated the city's organized crime into the Jewish and Italian mobs of the day. He was later hired as an enforcer by the Genovese crime family to protect Mafia operations in Black neighborhoods against local Harlem criminals.
Johnson was arrested more than 40 times and would eventually serve three prison terms for narcotics-related charges before dying of a heart attack in 1968 at Harlem's Wells Restaurant. Frank Lucas claimed to be with Bumpy at his death, but Johnson's widow disputes this account and claims Lucas has exaggerated his relationship with Johnson. Lucas claims to have been mentored by Bumpy as his driver and enforcer of 15 years. [1] At the time of his death, Johnson's case was pending for another narcotics violation that could have earned him a possible fourth prison term.
During Prohibition, Cohen moved to Chicago and became involved in organized crime working as an enforcer for the Chicago Outfit, where he briefly met Al Capone. During this period Cohen was arrested for his role in the deaths of several gangsters in a card game gone bad.
After a brief time in prison, Cohen was released and began running card games and other illegal gambling operations. He later became an associate of Mattie Capone, Al Capone's younger brother. While working for Jake Guzik, Cohen was forced to flee Chicago after an argument with a rival gambler.
In Cleveland, Cohen again worked for Lou Rothkopf, an associate of Meyer Lansky and Benjamin "Bugsy" Siegel. However, there was little work available for Cohen in Cleveland, so Rothkopf arranged for him to work with Siegel in California.
[edit] From syndicate bodyguard to Los Angeles kingpin
Mickey Cohen was sent to Los Angeles by Meyer Lansky and Lou Rothkopf to watch Bugsy Siegel. During their association Mickey helped set up the Flamingo Hotel in Las Vegas and ran its sports book operation. He also was instrumental in setting up the race wire, which was essential to Las Vegas betting, a Nevada attraction perhaps only second to the Hoover Dam. In 1947, the crime families ordered the murder of Siegel due to his mismanagement of the Flamingo Hotel in Las Vegas; most likely because he or his girlfriend Virginia Hill was skimming money. According to one account which does not appear in newspapers, Cohen reacted violently to Siegel's murder. Entering the Hotel Roosevelt, where he believed the killers were staying, Cohen fired rounds from his two .45 calliber semi-automatic handguns into the lobby ceiling and demanded that the assassins meet him outside in ten minutes (Nash; pg. 741). However, no one appeared and Cohen was forced to flee when the cops arrived. After Siegel's death, Cohen was given control of the Las Vegas gambling operations
In later years, the Los Angeles crime syndicate was taken over by Frank Carbo of the Dragna family. Despite this changeover, Mickey Cohen continued to run its gambling operations. However Cohen's violent methods came to the attention of state and federal authorities investigating Dragna operations.
During this time, Cohen faced many attempts on his life, including a bombing of his home on posh Moreno Avenue in Brentwood. Cohen soon converted his house into a fortress, installing floodlights, alarm systems, and a well-equipped arsenal kept, as he often joked, next to his 200 tailor-made suits. Cohen also briefly hired bodyguard Johnny Stompanato before his murder by actress Lana Turner's daughter. Cohen bought a cheap coffin for Stompanato's funeral and then sold Lana Turner's love letters to Stompanato to the press.
Stompanato ran a sexual extortion ring as well as a jewelry store. He was one of the most popular playboys in Hollywood. One time singer Frank Sinatra visited Cohen at his home and begged him to tell Stompanato to stop dating Sinatra's actress friend, Ava Gardner.
[edit] Later years
In 1950, Mickey Cohen was investigated along with numerous other underworld figures by the US Senate Committee known as the Kefauver Commission. As a result of this investigation, Cohen was convicted of tax evasion and sentenced to prison for four years.
When he was released, he started up all over again, and became an international celebrity. He sold more newspapers than anyone else in the country, according to author Brad Lewis. His appearance on television with Mike Wallace in the late 50s rocked the media establishment. He ran floral shops, paint stores, nightclubs, casinos, gas stations, a men's haberdashery, and even an ice cream parlor on San Vicente Blvd. in Brentwood proper, according to author Richard Lamparski.
In 1961, Cohen was again convicted of tax evasion and sent to Alcatraz. During his time on "the Rock", another inmate attempted to kill Cohen with a lead pipe. In 1972, Cohen was released from the Atlanta Federal Penitentiary, where he had spoken out against prison abuse. He had been misdiagnosed with an ulcer, which turned out to be stomach cancer. After his bout with surgery, he continued touring the U.S., including television appearances, once with Ramsey Clark.
As an elder statesman, he even appeared on The Merv Griffin Show. Cohen knew everyone in Hollywood, from the entire Rat Pack to Marilyn Monroe. In politics, he befriended Richard Nixon. His pal Billy Graham once asked him to appear at an evangelistic rally in Madison Square Garden.
Fish, any of approximately 34,000 species of vertebrate animals (phylum Chordata) found in the fresh and salt waters of the world. Living species range from the primitive jawless lampreys and hagfishes through the cartilaginous sharks, skates, and rays to the abundant and diverse bony fishes. Most fish species are cold-blooded; however, one species, the opah (Lampris guttatus), is warm-blooded.
The term fish is applied to a variety of vertebrates of several evolutionary lines. It describes a life-form rather than a taxonomic group. As members of the phylum Chordata, fish share certain features with other vertebrates. These features are gill slits at some point in the life cycle, a notochord, or skeletal supporting rod, a dorsal hollow nerve cord, and a tail. Living fishes represent some five classes, which are as distinct from one another as are the four classes of familiar air-breathing animals—amphibians, reptiles, birds, and mammals. For example, the jawless fishes (Agnatha) have gills in pouches and lack limb girdles. Extant agnathans are the lampreys and the hagfishes. As the name implies, the skeletons of fishes of the class Chondrichthyes (from chondr, “cartilage,” and ichthyes, “fish”) are made entirely of cartilage. Modern fish of this class lack a swim bladder, and their scales and teeth are made up of the same placoid material. Sharks, skates, and rays are examples of cartilaginous fishes. The bony fishes are by far the largest class. Examples range from the tiny seahorse to the 450-kg (1,000-pound) blue marlin, from the flattened soles and flounders to the boxy puffers and ocean sunfishes. Unlike the scales of the cartilaginous fishes, those of bony fishes, when present, grow throughout life and are made up of thin overlapping plates of bone. Bony fishes also have an operculum that covers the gill slits.
The study of fishes, the science of ichthyology, is of broad importance. Fishes are of interest to humans for many reasons, the most important being their relationship with and dependence on the environment. A more obvious reason for interest in fishes is their role as a moderate but important part of the world’s food supply. This resource, once thought unlimited, is now realized to be finite and in delicate balance with the biological, chemical, and physical factors of the aquatic environment. Overfishing, pollution, and alteration of the environment are the chief enemies of proper fisheries management, both in fresh waters and in the ocean. (For a detailed discussion of the technology and economics of fisheries, see commercial fishing.) Another practical reason for studying fishes is their use in disease control. As predators on mosquito larvae, they help curb malaria and other mosquito-borne diseases.
Fishes are valuable laboratory animals in many aspects of medical and biological research. For example, the readiness of many fishes to acclimate to captivity has allowed biologists to study behaviour, physiology, and even ecology under relatively natural conditions. Fishes have been especially important in the study of animal behaviour, where research on fishes has provided a broad base for the understanding of the more flexible behaviour of the higher vertebrates. The zebra fish is used as a model in studies of gene expression.
There are aesthetic and recreational reasons for an interest in fishes. Millions of people keep live fishes in home aquariums for the simple pleasure of observing the beauty and behaviour of animals otherwise unfamiliar to them. Aquarium fishes provide a personal challenge to many aquarists, allowing them to test their ability to keep a small section of the natural environment in their homes. Sportfishing is another way of enjoying the natural environment, also indulged in by millions of people every year. Interest in aquarium fishes and sportfishing supports multimillion-dollar industries throughout the world.
Fishes have been in existence for more than 450 million years, during which time they have evolved repeatedly to fit into almost every conceivable type of aquatic habitat. In a sense, land vertebrates are simply highly modified fishes: when fishes colonized the land habitat, they became tetrapod (four-legged) land vertebrates. The popular conception of a fish as a slippery, streamlined aquatic animal that possesses fins and breathes by gills applies to many fishes, but far more fishes deviate from that conception than conform to it. For example, the body is elongate in many forms and greatly shortened in others; the body is flattened in some (principally in bottom-dwelling fishes) and laterally compressed in many others; the fins may be elaborately extended, forming intricate shapes, or they may be reduced or even lost; and the positions of the mouth, eyes, nostrils, and gill openings vary widely. Air breathers have appeared in several evolutionary lines.
Many fishes are cryptically coloured and shaped, closely matching their respective environments; others are among the most brilliantly coloured of all organisms, with a wide range of hues, often of striking intensity, on a single individual. The brilliance of pigments may be enhanced by the surface structure of the fish, so that it almost seems to glow. A number of unrelated fishes have actual light-producing organs. Many fishes are able to alter their coloration—some for the purpose of camouflage, others for the enhancement of behavioral signals.
Fishes range in adult length from less than 10 mm (0.4 inch) to more than 20 metres (60 feet) and in weight from about 1.5 grams (less than 0.06 ounce) to many thousands of kilograms. Some live in shallow thermal springs at temperatures slightly above 42 °C (100 °F), others in cold Arctic seas a few degrees below 0 °C (32 °F) or in cold deep waters more than 4,000 metres (13,100 feet) beneath the ocean surface. The structural and, especially, the physiological adaptations for life at such extremes are relatively poorly known and provide the scientifically curious with great incentive for study.
Almost all natural bodies of water bear fish life, the exceptions being very hot thermal ponds and extremely salt-alkaline lakes, such as the Dead Sea in Asia and the Great Salt Lake in North America. The present distribution of fishes is a result of the geological history and development of Earth as well as the ability of fishes to undergo evolutionary change and to adapt to the available habitats. Fishes may be seen to be distributed according to habitat and according to geographical area. Major habitat differences are marine and freshwater. For the most part, the fishes in a marine habitat differ from those in a freshwater habitat, even in adjacent areas, but some, such as the salmon, migrate from one to the other. The freshwater habitats may be seen to be of many kinds. Fishes found in mountain torrents, Arctic lakes, tropical lakes, temperate streams, and tropical rivers will all differ from each other, both in obvious gross structure and in physiological attributes. Even in closely adjacent habitats where, for example, a tropical mountain torrent enters a lowland stream, the fish fauna will differ. The marine habitats can be divided into deep ocean floors (benthic), mid-water oceanic (bathypelagic), surface oceanic (pelagic), rocky coast, sandy coast, muddy shores, bays, estuaries, and others. Also, for example, rocky coastal shores in tropical and temperate regions will have different fish faunas, even when such habitats occur along the same coastline.
Although much is known about the present geographical distribution of fishes, far less is known about how that distribution came about. Many parts of the fish fauna of the fresh waters of North America and Eurasia are related and undoubtedly have a common origin. The faunas of Africa and South America are related, extremely old, and probably an expression of the drifting apart of the two continents. The fauna of southern Asia is related to that of Central Asia, and some of it appears to have entered Africa. The extremely large shore-fish faunas of the Indian and tropical Pacific oceans comprise a related complex, but the tropical shore fauna of the Atlantic, although containing Indo-Pacific components, is relatively limited and probably younger. The Arctic and Antarctic marine faunas are quite different from each other. The shore fauna of the North Pacific is quite distinct, and that of the North Atlantic more limited and probably younger. Pelagic oceanic fishes, especially those in deep waters, are similar the world over, showing little geographical isolation in terms of family groups. The deep oceanic habitat is very much the same throughout the world, but species differences do exist, showing geographical areas determined by oceanic currents and water masses.
All aspects of the life of a fish are closely correlated with adaptation to the total environment, physical, chemical, and biological. In studies, all the interdependent aspects of fish, such as behaviour, locomotion, reproduction, and physical and physiological characteristics, must be taken into account.
Correlated with their adaptation to an extremely wide variety of habitats is the extremely wide variety of life cycles that fishes display. The great majority hatch from relatively small eggs a few days to several weeks or more after the eggs are scattered in the water. Newly hatched young are still partially undeveloped and are called larvae until body structures such as fins, skeleton, and some organs are fully formed. Larval life is often very short, usually less than a few weeks, but it can be very long, some lampreys continuing as larvae for at least five years. Young and larval fishes, before reaching sexual maturity, must grow considerably, and their small size and other factors often dictate that they live in a habitat different than that of the adults. For example, most tropical marine shore fishes have pelagic larvae. Larval food also is different, and larval fishes often live in shallow waters, where they may be less exposed to predators.
After a fish reaches adult size, the length of its life is subject to many factors, such as innate rates of aging, predation pressure, and the nature of the local climate. The longevity of a species in the protected environment of an aquarium may have nothing to do with how long members of that species live in the wild. Many small fishes live only one to three years at the most. In some species, however, individuals may live as long as 10 or 20 or even 100 years.
Fish behaviour is a complicated and varied subject. As in almost all animals with a central nervous system, the nature of a response of an individual fish to stimuli from its environment depends upon the inherited characteristics of its nervous system, on what it has learned from past experience, and on the nature of the stimuli. Compared with the variety of human responses, however, that of a fish is stereotyped, not subject to much modification by “thought” or learning, and investigators must guard against anthropomorphic interpretations of fish behaviour.
Fishes perceive the world around them by the usual senses of sight, smell, hearing, touch, and taste and by special lateral line water-current detectors. In the few fishes that generate electric fields, a process that might best be called electrolocation aids in perception. One or another of these senses often is emphasized at the expense of others, depending upon the fish’s other adaptations. In fishes with large eyes, the sense of smell may be reduced; others, with small eyes, hunt and feed primarily by smell (such as some eels).
Specialized behaviour is primarily concerned with the three most important activities in the fish’s life: feeding, reproduction, and escape from enemies. Schooling behaviour of sardines on the high seas, for instance, is largely a protective device to avoid enemies, but it is also associated with and modified by their breeding and feeding requirements. Predatory fishes are often solitary, lying in wait to dart suddenly after their prey, a kind of locomotion impossible for beaked parrot fishes, which feed on coral, swimming in small groups from one coral head to the next. In addition, some predatory fishes that inhabit pelagic environments, such as tunas, often school.
Sleep in fishes, all of which lack true eyelids, consists of a seemingly listless state in which the fish maintains its balance but moves slowly. If attacked or disturbed, most can dart away. A few kinds of fishes lie on the bottom to sleep. Most catfishes, some loaches, and some eels and electric fishes are strictly nocturnal, being active and hunting for food during the night and retiring during the day to holes, thick vegetation, or other protective parts of the environment.
Communication between members of a species or between members of two or more species often is extremely important, especially in breeding behaviour (see below Reproduction). The mode of communication may be visual, as between the small so-called cleaner fish and a large fish of a very different species. The larger fish often allows the cleaner to enter its mouth to remove gill parasites. The cleaner is recognized by its distinctive colour and actions and therefore is not eaten, even if the larger fish is normally a predator. Communication is often chemical, signals being sent by specific chemicals called pheromones.
Many fishes have a streamlined body and swim freely in open water. Fish locomotion is closely correlated with habitat and ecological niche (the general position of the animal to its environment).
Many fishes in both marine and fresh waters swim at the surface and have mouths adapted to feed best (and sometimes only) at the surface. Often such fishes are long and slender, able to dart at surface insects or at other surface fishes and in turn to dart away from predators; needlefishes, halfbeaks, and topminnows (such as killifish and mosquito fish) are good examples. Oceanic flying fishes escape their predators by gathering speed above the water surface, with the lower lobe of the tail providing thrust in the water. They then glide hundreds of yards on enlarged, winglike pectoral and pelvic fins. South American freshwater flying fishes escape their enemies by jumping and propelling their strongly keeled bodies out of the water.
So-called mid-water swimmers, the most common type of fish, are of many kinds and live in many habitats. The powerful fusiform tunas and the trouts, for example, are adapted for strong, fast swimming, the tunas to capture prey speedily in the open ocean and the trouts to cope with the swift currents of streams and rivers. The trout body form is well adapted to many habitats. Fishes that live in relatively quiet waters such as bays or lake shores or slow rivers usually are not strong, fast swimmers but are capable of short, quick bursts of speed to escape a predator. Many of these fishes have their sides flattened, examples being the sunfish and the freshwater angelfish of aquarists. Fish associated with the bottom or substrate usually are slow swimmers. Open-water plankton-feeding fishes almost always remain fusiform and are capable of rapid, strong movement (for example, sardines and herrings of the open ocean and also many small minnows of streams and lakes).
Bottom-living fishes are of many kinds and have undergone many types of modification of their body shape and swimming habits. Rays, which evolved from strong-swimming mid-water sharks, usually stay close to the bottom and move by undulating their large pectoral fins. Flounders live in a similar habitat and move over the bottom by undulating the entire body. Many bottom fishes dart from place to place, resting on the bottom between movements, a motion common in gobies. One goby relative, the mudskipper, has taken to living at the edge of pools along the shore of muddy mangrove swamps. It escapes its enemies by flipping rapidly over the mud, out of the water. Some catfishes, synbranchid eels, the so-called climbing perch, and a few other fishes venture out over damp ground to find more promising waters than those that they left. They move by wriggling their bodies, sometimes using strong pectoral fins; most have accessory air-breathing organs. Many bottom-dwelling fishes live in mud holes or rocky crevices. Marine eels and gobies commonly are found in such habitats and for the most part venture far beyond their cavelike homes. Some bottom dwellers, such as the clingfishes (Gobiesocidae), have developed powerful adhesive disks that enable them to remain in place on the substrate in areas such as rocky coasts, where the action of the waves is great.
The methods of reproduction in fishes are varied, but most fishes lay a large number of small eggs, fertilized and scattered outside of the body. The eggs of pelagic fishes usually remain suspended in the open water. Many shore and freshwater fishes lay eggs on the bottom or among plants. Some have adhesive eggs. The mortality of the young and especially of the eggs is very high, and often only a few individuals grow to maturity out of hundreds, thousands, and in some cases millions of eggs laid.
Males produce sperm, usually as a milky white substance called milt, in two (sometimes one) testes within the body cavity. In bony fishes a sperm duct leads from each testis to a urogenital opening behind the vent or anus. In sharks and rays and in cyclostomes the duct leads to a cloaca. Sometimes the pelvic fins are modified to help transmit the milt to the eggs at the female’s vent or on the substrate where the female has placed them. Sometimes accessory organs are used to fertilize females internally—for example, the claspers of many sharks and rays.
In the females the eggs are formed in two ovaries (sometimes only one) and pass through the ovaries to the urogenital opening and to the outside. In some fishes the eggs are fertilized internally but are shed before development takes place. Members of about a dozen families each of bony fishes (teleosts) and sharks bear live young. Many skates and rays also bear live young. In some bony fishes the eggs simply develop within the female, the young emerging when the eggs hatch (ovoviviparous). Others develop within the ovary and are nourished by ovarian tissues after hatching (viviparous). There are also other methods utilized by fishes to nourish young within the female. In all live-bearers the young are born at a relatively large size and are few in number. In one family of primarily marine fishes, the surfperches from the Pacific coast of North America, Japan, and Korea, the males of at least one species are born sexually mature, although they are not fully grown.
Some fishes are hermaphroditic—an individual producing both sperm and eggs, usually at different stages of its life. Self-fertilization, however, is probably rare.
Successful reproduction and, in many cases, defense of the eggs and the young are assured by rather stereotypical but often elaborate courtship and parental behaviour, either by the male or the female or both. Some fishes prepare nests by hollowing out depressions in the sand bottom (cichlids, for example), build nests with plant materials and sticky threads excreted by the kidneys (sticklebacks), or blow a cluster of mucus-covered bubbles at the water surface (gouramis). The eggs are laid in these structures. Some varieties of cichlids and catfishes incubate eggs in their mouths.
Some fishes, such as salmon, undergo long migrations from the ocean and up large rivers to spawn in the gravel beds where they themselves hatched (anadromous fishes). Some, such as the freshwater eels (family Anguillidae), live and grow to maturity in fresh water and migrate to the sea to spawn (catadromous fishes). Other fishes undertake shorter migrations from lakes into streams, within the ocean, or enter spawning habitats that they do not ordinarily occupy in other ways.
The basic structure and function of the fish body are similar to those of all other vertebrates. The usual four types of tissues are present: surface or epithelial, connective (bone, cartilage, and fibrous tissues, as well as their derivative, blood), nerve, and muscle tissues. In addition, the fish’s organs and organ systems parallel those of other vertebrates.
The typical fish body is streamlined and spindle-shaped, with an anterior head, a gill apparatus, and a heart, the latter lying in the midline just below the gill chamber. The body cavity, containing the vital organs, is situated behind the head in the lower anterior part of the body. The anus usually marks the posterior termination of the body cavity and most often occurs just in front of the base of the anal fin. The spinal cord and vertebral column continue from the posterior part of the head to the base of the tail fin, passing dorsal to the body cavity and through the caudal (tail) region behind the body cavity. Most of the body is of muscular tissue, a high proportion of which is necessitated by swimming. In the course of evolution this basic body plan has been modified repeatedly into the many varieties of fish shapes that exist today.
The skeleton forms an integral part of the fish’s locomotion system, as well as serving to protect vital parts. The internal skeleton consists of the skull bones (except for the roofing bones of the head, which are really part of the external skeleton), the vertebral column, and the fin supports (fin rays). The fin supports are derived from the external skeleton but will be treated here because of their close functional relationship to the internal skeleton. The internal skeleton of cyclostomes, sharks, and rays is of cartilage; that of many fossil groups and some primitive living fishes is mostly of cartilage but may include some bone. In place of the vertebral column, the earliest vertebrates had a fully developed notochord, a flexible stiff rod of viscous cells surrounded by a strong fibrous sheath. During the evolution of modern fishes the rod was replaced in part by cartilage and then by ossified cartilage. Sharks and rays retain a cartilaginous vertebral column; bony fishes have spool-shaped vertebrae that in the more primitive living forms only partially replace the notochord. The skull, including the gill arches and jaws of bony fishes, is fully, or at least partially, ossified. That of sharks and rays remains cartilaginous, at times partially replaced by calcium deposits but never by true bone.
The supportive elements of the fins (basal or radial bones or both) have changed greatly during fish evolution. Some of these changes are described in the section below (Evolution and paleontology). Most fishes possess a single dorsal fin on the midline of the back. Many have two and a few have three dorsal fins. The other fins are the single tail and anal fins and paired pelvic and pectoral fins. A small fin, the adipose fin, with hairlike fin rays, occurs in many of the relatively primitive teleosts (such as trout) on the back near the base of the caudal fin.
The skin of a fish must serve many functions. It aids in maintaining the osmotic balance, provides physical protection for the body, is the site of coloration, contains sensory receptors, and, in some fishes, functions in respiration. Mucous glands, which aid in maintaining the water balance and offer protection from bacteria, are extremely numerous in fish skin, especially in cyclostomes and teleosts. Since mucous glands are present in the modern lampreys, it is reasonable to assume that they were present in primitive fishes, such as the ancient Silurian and Devonian agnathans. Protection from abrasion and predation is another function of the fish skin, and dermal (skin) bone arose early in fish evolution in response to this need. It is thought that bone first evolved in skin and only later invaded the cartilaginous areas of the fish’s body, to provide additional support and protection. There is some argument as to which came first, cartilage or bone, and fossil evidence does not settle the question. In any event, dermal bone has played an important part in fish evolution and has different characteristics in different groups of fishes. Several groups are characterized at least in part by the kind of bony scales they possess.
Scales have played an important part in the evolution of fishes. Primitive fishes usually had thick bony plates or thick scales in several layers of bone, enamel, and related substances. Modern teleost fishes have scales of bone, which, while still protective, allow much more freedom of motion in the body. A few modern teleosts (some catfishes, sticklebacks, and others) have secondarily acquired bony plates in the skin. Modern and early sharks possessed placoid scales, a relatively primitive type of scale with a toothlike structure, consisting of an outside layer of enamel-like substance (vitrodentine), an inner layer of dentine, and a pulp cavity containing nerves and blood vessels. Primitive bony fishes had thick scales of either the ganoid or the cosmoid type. Cosmoid scales have a hard, enamel-like outer layer, an inner layer of cosmine (a form of dentine), and then a layer of vascular bone (isopedine). In ganoid scales the hard outer layer is different chemically and is called ganoin. Under this is a cosminelike layer and then a vascular bony layer. The thin, translucent bony scales of modern fishes, called cycloid and ctenoid (the latter distinguished by serrations at the edges), lack enameloid and dentine layers.
Skin has several other functions in fishes. It is well supplied with nerve endings and presumably receives tactile, thermal, and pain stimuli. Skin is also well supplied with blood vessels. Some fishes breathe in part through the skin, by the exchange of oxygen and carbon dioxide between the surrounding water and numerous small blood vessels near the skin surface.
Skin serves as protection through the control of coloration. Fishes exhibit an almost limitless range of colours. The colours often blend closely with the surroundings, effectively hiding the animal. Many fishes use bright colours for territorial advertisement or as recognition marks for other members of their own species, or sometimes for members of other species. Many fishes can change their colour to a greater or lesser degree, by movement of pigment within the pigment cells (chromatophores). Black pigment cells (melanophores), of almost universal occurrence in fishes, are often juxtaposed with other pigment cells. When placed beneath iridocytes or leucophores (bearing the silvery or white pigment guanine), melanophores produce structural colours of blue and green. These colours are often extremely intense, because they are formed by refraction of light through the needlelike crystals of guanine. The blue and green refracted colours are often relatively pure, lacking the red and yellow rays, which have been absorbed by the black pigment (melanin) of the melanophores. Yellow, orange, and red colours are produced by erythrophores, cells containing the appropriate carotenoid pigments. Other colours are produced by combinations of melanophores, erythrophores, and iridocytes.
The major portion of the body of most fishes consists of muscles. Most of the mass is trunk musculature, the fin muscles usually being relatively small. The caudal fin is usually the most powerful fin, being moved by the trunk musculature. The body musculature is usually arranged in rows of chevron-shaped segments on each side. Contractions of these segments, each attached to adjacent vertebrae and vertebral processes, bends the body on the vertebral joint, producing successive undulations of the body, passing from the head to the tail, and producing driving strokes of the tail. It is the latter that provides the strong forward movement for most fishes.
The digestive system, in a functional sense, starts at the mouth, with the teeth used to capture prey or collect plant foods. Mouth shape and tooth structure vary greatly in fishes, depending on the kind of food normally eaten. Most fishes are predacious, feeding on small invertebrates or other fishes and have simple conical teeth on the jaws, on at least some of the bones of the roof of the mouth, and on special gill arch structures just in front of the esophagus. The latter are throat teeth. Most predacious fishes swallow their prey whole, and the teeth are used for grasping and holding prey, for orienting prey to be swallowed (head first) and for working the prey toward the esophagus. There are a variety of tooth types in fishes. Some fishes, such as sharks and piranhas, have cutting teeth for biting chunks out of their victims. A shark’s tooth, although superficially like that of a piranha, appears in many respects to be a modified scale, while that of the piranha is like that of other bony fishes, consisting of dentine and enamel. Parrot fishes have beaklike mouths with short incisor-like teeth for breaking off coral and have heavy pavementlike throat teeth for crushing the coral. Some catfishes have small brushlike teeth, arranged in rows on the jaws, for scraping plant and animal growth from rocks. Many fishes (such as the Cyprinidae or minnows) have no jaw teeth at all but have very strong throat teeth.
Some fishes gather planktonic food by straining it from their gill cavities with numerous elongate stiff rods (gill rakers) anchored by one end to the gill bars. The food collected on these rods is passed to the throat, where it is swallowed. Most fishes have only short gill rakers that help keep food particles from escaping out the mouth cavity into the gill chamber.
Once reaching the throat, food enters a short, often greatly distensible esophagus, a simple tube with a muscular wall leading into a stomach. The stomach varies greatly in fishes, depending upon the diet. In most predacious fishes it is a simple straight or curved tube or pouch with a muscular wall and a glandular lining. Food is largely digested there and leaves the stomach in liquid form.
Between the stomach and the intestine, ducts enter the digestive tube from the liver and pancreas. The liver is a large, clearly defined organ. The pancreas may be embedded in it, diffused through it, or broken into small parts spread along some of the intestine. The junction between the stomach and the intestine is marked by a muscular valve. Pyloric ceca (blind sacs) occur in some fishes at this junction and have a digestive or absorptive function or both.
The intestine itself is quite variable in length, depending upon the fish’s diet. It is short in predacious forms, sometimes no longer than the body cavity, but long in herbivorous forms, being coiled and several times longer than the entire length of the fish in some species of South American catfishes. The intestine is primarily an organ for absorbing nutrients into the bloodstream. The larger its internal surface, the greater its absorptive efficiency, and a spiral valve is one method of increasing its absorption surface.
Sharks, rays, chimaeras, lungfishes, surviving chondrosteans, holosteans, and even a few of the more primitive teleosts have a spiral valve or at least traces of it in the intestine. Most modern teleosts have increased the area of the intestinal walls by having numerous folds and villi (fingerlike projections) somewhat like those in humans. Undigested substances are passed to the exterior through the anus in most teleost fishes. In lungfishes, sharks, and rays, it is first passed through the cloaca, a common cavity receiving the intestinal opening and the ducts from the urogenital system.
Oxygen and carbon dioxide dissolve in water, and most fishes exchange dissolved oxygen and carbon dioxide in water by means of the gills. The gills lie behind and to the side of the mouth cavity and consist of fleshy filaments supported by the gill arches and filled with blood vessels, which give gills a bright red colour. Water taken in continuously through the mouth passes backward between the gill bars and over the gill filaments, where the exchange of gases takes place. The gills are protected by a gill cover in teleosts and many other fishes but by flaps of skin in sharks, rays, and some of the older fossil fish groups. The blood capillaries in the gill filaments are close to the gill surface to take up oxygen from the water and to give up excess carbon dioxide to the water.
Most modern fishes have a hydrostatic (ballast) organ, called the swim bladder, that lies in the body cavity just below the kidney and above the stomach and intestine. It originated as a diverticulum of the digestive canal. In advanced teleosts, especially the acanthopterygians, the bladder has lost its connection with the digestive tract, a condition called physoclistic. The connection has been retained (physostomous) by many relatively primitive teleosts. In several unrelated lines of fishes, the bladder has become specialized as a lung or, at least, as a highly vascularized accessory breathing organ. Some fishes with such accessory organs are obligate air breathers and will drown if denied access to the surface, even in well-oxygenated water. Fishes with a hydrostatic form of swim bladder can control their depth by regulating the amount of gas in the bladder. The gas, mostly oxygen, is secreted into the bladder by special glands, rendering the fish more buoyant; the gas is absorbed into the bloodstream by another special organ, reducing the overall buoyancy and allowing the fish to sink. Some deep-sea fishes may have oils, rather than gas, in the bladder. Other deep-sea and some bottom-living forms have much-reduced swim bladders or have lost the organ entirely.
The swim bladder of fishes follows the same developmental pattern as the lungs of land vertebrates. There is no doubt that the two structures have the same historical origin in primitive fishes. More or less intermediate forms still survive among the more primitive types of fishes, such as the lungfishes Lepidosiren and Protopterus.
The circulatory, or blood vascular, system consists of the heart, the arteries, the capillaries, and the veins. It is in the capillaries that the interchange of oxygen, carbon dioxide, nutrients, and other substances such as hormones and waste products takes place. The capillaries lead to the veins, which return the venous blood with its waste products to the heart, kidneys, and gills. There are two kinds of capillary beds: those in the gills and those in the rest of the body. The heart, a folded continuous muscular tube with three or four saclike enlargements, undergoes rhythmic contractions and receives venous blood in a sinus venosus. It passes the blood to an auricle and then into a thick muscular pump, the ventricle. From the ventricle the blood goes to a bulbous structure at the base of a ventral aorta just below the gills. The blood passes to the afferent (receiving) arteries of the gill arches and then to the gill capillaries. There waste gases are given off to the environment, and oxygen is absorbed. The oxygenated blood enters efferent (exuant) arteries of the gill arches and then flows into the dorsal aorta. From there blood is distributed to the tissues and organs of the body. One-way valves prevent backflow. The circulation of fishes thus differs from that of the reptiles, birds, and mammals in that oxygenated blood is not returned to the heart prior to distribution to the other parts of the body.
The primary excretory organ in fishes, as in other vertebrates, is the kidney. In fishes some excretion also takes place in the digestive tract, skin, and especially the gills (where ammonia is given off). Compared with land vertebrates, fishes have a special problem in maintaining their internal environment at a constant concentration of water and dissolved substances, such as salts. Proper balance of the internal environment (homeostasis) of a fish is in a great part maintained by the excretory system, especially the kidney.
The kidney, gills, and skin play an important role in maintaining a fish’s internal environment and checking the effects of osmosis. Marine fishes live in an environment in which the water around them has a greater concentration of salts than they can have inside their body and still maintain life. Freshwater fishes, on the other hand, live in water with a much lower concentration of salts than they require inside their bodies. Osmosis tends to promote the loss of water from the body of a marine fish and absorption of water by that of a freshwater fish. Mucus in the skin tends to slow the process but is not a sufficient barrier to prevent the movement of fluids through the permeable skin. When solutions on two sides of a permeable membrane have different concentrations of dissolved substances, water will pass through the membrane into the more concentrated solution, while the dissolved chemicals move into the area of lower concentration (diffusion).
The kidney of freshwater fishes is often larger in relation to body weight than that of marine fishes. In both groups the kidney excretes wastes from the body, but the kidney of freshwater fishes also excretes large amounts of water, counteracting the water absorbed through the skin. Freshwater fishes tend to lose salt to the environment and must replace it. They get some salt from their food, but the gills and skin inside the mouth actively absorb salt from water passed through the mouth. This absorption is performed by special cells capable of moving salts against the diffusion gradient. Freshwater fishes drink very little water and take in little water with their food.
Marine fishes must conserve water, and therefore their kidneys excrete little water. To maintain their water balance, marine fishes drink large quantities of seawater, retaining most of the water and excreting the salt. Most nitrogenous waste in marine fishes appears to be secreted by the gills as ammonia. Marine fishes can excrete salt by clusters of special cells (chloride cells) in the gills.
There are several teleosts—for example, the salmon—that travel between fresh water and seawater and must adjust to the reversal of osmotic gradients. They adjust their physiological processes by spending time (often surprisingly little time) in the intermediate brackish environment.
Marine hagfishes, sharks, and rays have osmotic concentrations in their blood about equal to that of seawater and so do not have to drink water nor perform much physiological work to maintain their osmotic balance. In sharks and rays the osmotic concentration is kept high by retention of urea in the blood. Freshwater sharks have a lowered concentration of urea in the blood.
Endocrine glands secrete their products into the bloodstream and body tissues and, along with the central nervous system, control and regulate many kinds of body functions. Cyclostomes have a well-developed endocrine system, and presumably it was well developed in the early Agnatha, ancestral to modern fishes. Although the endocrine system in fishes is similar to that of higher vertebrates, there are numerous differences in detail. The pituitary, the thyroid, the suprarenals, the adrenals, the pancreatic islets, the sex glands (ovaries and testes), the inner wall of the intestine, and the bodies of the ultimobranchial gland make up the endocrine system in fishes. There are some others whose function is not well understood. These organs regulate sexual activity and reproduction, growth, osmotic pressure, general metabolic activities such as the storage of fat and the utilization of foodstuffs, blood pressure, and certain aspects of skin colour. Many of these activities are also controlled in part by the central nervous system, which works with the endocrine system in maintaining the life of a fish. Some parts of the endocrine system are developmentally, and undoubtedly evolutionarily, derived from the nervous system.
As in all vertebrates, the nervous system of fishes is the primary mechanism coordinating body activities, as well as integrating these activities in the appropriate manner with stimuli from the environment. The central nervous system, consisting of the brain and spinal cord, is the primary integrating mechanism. The peripheral nervous system, consisting of nerves that connect the brain and spinal cord to various body organs, carries sensory information from special receptor organs such as the eyes, internal ears, nares (sense of smell), taste glands, and others to the integrating centres of the brain and spinal cord. The peripheral nervous system also carries information via different nerve cells from the integrating centres of the brain and spinal cord. This coded information is carried to the various organs and body systems, such as the skeletal muscular system, for appropriate action in response to the original external or internal stimulus. Another branch of the nervous system, the autonomic nervous system, helps to coordinate the activities of many glands and organs and is itself closely connected to the integrating centres of the brain.
The brain of the fish is divided into several anatomical and functional parts, all closely interconnected but each serving as the primary centre of integrating particular kinds of responses and activities. Several of these centres or parts are primarily associated with one type of sensory perception, such as sight, hearing, or smell (olfaction).
The sense of smell is important in almost all fishes. Certain eels with tiny eyes depend mostly on smell for location of food. The olfactory, or nasal, organ of fishes is located on the dorsal surface of the snout. The lining of the nasal organ has special sensory cells that perceive chemicals dissolved in the water, such as substances from food material, and send sensory information to the brain by way of the first cranial nerve. Odour also serves as an alarm system. Many fishes, especially various species of freshwater minnows, react with alarm to a chemical released from the skin of an injured member of their own species.
Many fishes have a well-developed sense of taste, and tiny pitlike taste buds or organs are located not only within their mouth cavities but also over their heads and parts of their body. Catfishes, which often have poor vision, have barbels (“whiskers”) that serve as supplementary taste organs, those around the mouth being actively used to search out food on the bottom. Some species of naturally blind cave fishes are especially well supplied with taste buds, which often cover most of their body surface.
Sight is extremely important in most fishes. The eye of a fish is basically like that of all other vertebrates, but the eyes of fishes are extremely varied in structure and adaptation. In general, fishes living in dark and dim water habitats have large eyes, unless they have specialized in some compensatory way so that another sense (such as smell) is dominant, in which case the eyes will often be reduced. Fishes living in brightly lighted shallow waters often will have relatively small but efficient eyes. Cyclostomes have somewhat less elaborate eyes than other fishes, with skin stretched over the eyeball perhaps making their vision somewhat less effective. Most fishes have a spherical lens and accommodate their vision to far or near subjects by moving the lens within the eyeball. A few sharks accommodate by changing the shape of the lens, as in land vertebrates. Those fishes that are heavily dependent upon the eyes have especially strong muscles for accommodation. Most fishes see well, despite the restrictions imposed by frequent turbidity of the water and by light refraction.
Fossil evidence suggests that colour vision evolved in fishes more than 300 million years ago, but not all living fishes have retained this ability. Experimental evidence indicates that many shallow-water fishes, if not all, have colour vision and see some colours especially well, but some bottom-dwelling shore fishes live in areas where the water is sufficiently deep to filter out most if not all colours, and these fishes apparently never see colours. When tested in shallow water, they apparently are unable to respond to colour differences.
Sound perception and balance are intimately associated senses in a fish. The organs of hearing are entirely internal, located within the skull, on each side of the brain and somewhat behind the eyes. Sound waves, especially those of low frequencies, travel readily through water and impinge directly upon the bones and fluids of the head and body, to be transmitted to the hearing organs. Fishes readily respond to sound; for example, a trout conditioned to escape by the approach of fishermen will take flight upon perceiving footsteps on a stream bank even if it cannot see a fisherman. Compared with humans, however, the range of sound frequencies heard by fishes is greatly restricted. Many fishes communicate with each other by producing sounds in their swim bladders, in their throats by rasping their teeth, and in other ways.
A fish or other vertebrate seldom has to rely on a single type of sensory information to determine the nature of the environment around it. A catfish uses taste and touch when examining a food object with its oral barbels. Like most other animals, fishes have many touch receptors over their body surface. Pain and temperature receptors also are present in fishes and presumably produce the same kind of information to a fish as to humans. Fishes react in a negative fashion to stimuli that would be painful to human beings, suggesting that they feel a sensation of pain.
An important sensory system in fishes that is absent in other vertebrates (except some amphibians) is the lateral line system. This consists of a series of heavily innervated small canals located in the skin and bone around the eyes, along the lower jaw, over the head, and down the mid-side of the body, where it is associated with the scales. Intermittently along these canals are located tiny sensory organs (pit organs) that apparently detect changes in pressure. The system allows a fish to sense changes in water currents and pressure, thereby helping the fish to orient itself to the various changes that occur in the physical environment.
TEIGN C Damen Stan 1405
IMO: - N/A
MMSI: 235082804
Call Sign: MWBM9
AIS Vessel Type: Dredger
GENERAL
DAMEN YARD NUMBER: 503705
Avelingen-West 20
4202 MS Gorinchem
The Netherlands
Phone: +31 (0)183 63 99 11
info@damen.com
DELIVERY DATE August 2001
BASIC FUNCTIONS Towing, mooring, pushing and dredging operations
FLAG United Kingdom [GB]
OWNED Teignmouth Harbour Commission
CASSCATION: Bureau Veritas 1 HULL MACH Seagoing Launch
DIMENSIONS
LENGTH 14.40 m
BEAM 4.73 m
DEPTH AT SIDES 205 m
DRAUGHT AFT 171 m
DISPLACEMENT 48 ton
TANK CAPACITIES
Fuel oil 6.9 m³
PERFORMANCES (TRIALS)
BOLLARD PULL AHEAD 8.0 ton
SPEED 9.8 knots
PROPULSION SYSTEM
MAIN ENGINE 2x Caterpillar 3406C TA/A
TOTAL POWER 477 bmW (640i hp) at 1800 rpm
GEARBOX 2x Twin Disc MG 5091/3.82:1
PROPELLERS Bronze fixed pitch propeller
KORT NOZZELS Van de Giessen 2x 1000 mm with stainless steel innerings
ENGINE CONTROL Kobelt
STEERING GEAR 2x 25 mm single plate Powered hydraulic 2x 45, rudder indicator
AUXILIARY EQUIPMENT
BILGE PUMP Sterling SIH 20, 32 m/hr
BATTERY SETS 2x 24V, 200 Ah + change over facility
COOLING SYSTEM Closed cooling system
ALARM SYSTEM Engines, gearboxes and bilge alarms
FRESH WATER PRESSURE SET Speck 24V
DECK LAY-OUT
ANCHORS 2x 48 kg Pool (HHP)
CHAIN 70 m, Ø 13mm, shortlink U2
ANCHOR WINCH Hand-operated
TOWING HOOK Mampaey, 15.3 ton SWL
COUPLING WINCH
PUSHBOW Cylindrical nubber fender Ø 380 mm
ACCOMMODATION
The wheelhouse ceiling and sides are insulated with mineral wool and
panelled. The wheelhouse floor is covered with rubber/synthetic floor
covering, make Bolidt, color blue The wheelhouse has one
helmsman seat, a bench and table with chair Below deck two berths, a
kitchen unit and a toilet space are arranged.
NAUTICAL AND COMMUNICATION EQUIPMENT
SEARCHLIGHT Den Haan 170 W 24 V
VHF RADIO Sailor RT 2048 25 W
NAVIGATION Navigation lights incl towing and pilot lights
Teignmouth Harbour Commission
The Harbour Commission is a Trust Port created by Statute.
The principal Order is the Teignmouth Harbour Order 1924
as amended by the Teignmouth Harbour Revision Order 2003
©AVucha 2014
A 30-year-old Cary man was safely escorted from a neighborhood residence and to a hospital after he barricaded himself from a large police contingent for roughly four hours Wednesday.
Cary Police Deputy Chief James Fillmore said the man, who was threatening to harm himself and "under a lot of emotional stress," was taken to Centegra Hospital-McHenry at 3:12 p.m. after first responders arrived on the scene at Hillhurst Drive at 11 a.m. The man was unarmed and no one was hurt during the situation, Fillmore said.
The man had climbed into the garage attic and refused to come down for family members, police said.
Fillmore said no charges would be filed in the incident. Fillmore said police have responded to domestic disturbances at the home on the 300 block of Hillhurst Drive several times in the past.
The four-hour operation required a heavy police presence that included officers from Cary, Streamwood, Round Lake, Roselle, Fox River Grove and other municipalities. On scene, marked and unmarked vehicles lined the surrounding streets, and armed, vested officers, including K9 units, were seen walking toward the residence.
A large Northern Illinois Police Alarm System vehicle also was on scene. Cary Police blocked off a square area from Decker Drive to Hillhurst Drive bordered by Bryan and Bell drives. School bus routes were also redirected because of the situation.
The incident comes within a week of a Holiday Hills man shooting and wounding two McHenry County Sheriff’s officers. That incident led to an even larger police response as a 16-hour manhunt ensued before Scott B. Peters was arrested and charged with shooting the officers.
*Article obtained from the Northwest Herald
TEIGN C Damen Stan 1405
IMO: - N/A
MMSI: 235082804
Call Sign: MWBM9
AIS Vessel Type: Dredger
GENERAL
DAMEN YARD NUMBER: 503705
Avelingen-West 20
4202 MS Gorinchem
The Netherlands
Phone: +31 (0)183 63 99 11
info@damen.com
DELIVERY DATE August 2001
BASIC FUNCTIONS Towing, mooring, pushing and dredging operations
FLAG United Kingdom [GB]
OWNED Teignmouth Harbour Commission
CASSCATION: Bureau Veritas 1 HULL MACH Seagoing Launch
DIMENSIONS
LENGTH 14.40 m
BEAM 4.73 m
DEPTH AT SIDES 205 m
DRAUGHT AFT 171 m
DISPLACEMENT 48 ton
TANK CAPACITIES
Fuel oil 6.9 m³
PERFORMANCES (TRIALS)
BOLLARD PULL AHEAD 8.0 ton
SPEED 9.8 knots
PROPULSION SYSTEM
MAIN ENGINE 2x Caterpillar 3406C TA/A
TOTAL POWER 477 bmW (640i hp) at 1800 rpm
GEARBOX 2x Twin Disc MG 5091/3.82:1
PROPELLERS Bronze fixed pitch propeller
KORT NOZZELS Van de Giessen 2x 1000 mm with stainless steel innerings
ENGINE CONTROL Kobelt
STEERING GEAR 2x 25 mm single plate Powered hydraulic 2x 45, rudder indicator
AUXILIARY EQUIPMENT
BILGE PUMP Sterling SIH 20, 32 m/hr
BATTERY SETS 2x 24V, 200 Ah + change over facility
COOLING SYSTEM Closed cooling system
ALARM SYSTEM Engines, gearboxes and bilge alarms
FRESH WATER PRESSURE SET Speck 24V
DECK LAY-OUT
ANCHORS 2x 48 kg Pool (HHP)
CHAIN 70 m, Ø 13mm, shortlink U2
ANCHOR WINCH Hand-operated
TOWING HOOK Mampaey, 15.3 ton SWL
COUPLING WINCH
PUSHBOW Cylindrical nubber fender Ø 380 mm
ACCOMMODATION
The wheelhouse ceiling and sides are insulated with mineral wool and
panelled. The wheelhouse floor is covered with rubber/synthetic floor
covering, make Bolidt, color blue The wheelhouse has one
helmsman seat, a bench and table with chair Below deck two berths, a
kitchen unit and a toilet space are arranged.
NAUTICAL AND COMMUNICATION EQUIPMENT
SEARCHLIGHT Den Haan 170 W 24 V
VHF RADIO Sailor RT 2048 25 W
NAVIGATION Navigation lights incl towing and pilot lights
Teignmouth Harbour Commission
The Harbour Commission is a Trust Port created by Statute.
The principal Order is the Teignmouth Harbour Order 1924
as amended by the Teignmouth Harbour Revision Order 2003
TEIGN C Damen Stan 1405
IMO: - N/A
MMSI: 235082804
Call Sign: MWBM9
AIS Vessel Type: Dredger
GENERAL
DAMEN YARD NUMBER: 503705
Avelingen-West 20
4202 MS Gorinchem
The Netherlands
Phone: +31 (0)183 63 99 11
info@damen.com
DELIVERY DATE August 2001
BASIC FUNCTIONS Towing, mooring, pushing and dredging operations
FLAG United Kingdom [GB]
OWNED Teignmouth Harbour Commission
CASSCATION: Bureau Veritas 1 HULL MACH Seagoing Launch
DIMENSIONS
LENGTH 14.40 m
BEAM 4.73 m
DEPTH AT SIDES 205 m
DRAUGHT AFT 171 m
DISPLACEMENT 48 ton
TANK CAPACITIES
Fuel oil 6.9 m³
PERFORMANCES (TRIALS)
BOLLARD PULL AHEAD 8.0 ton
SPEED 9.8 knots
PROPULSION SYSTEM
MAIN ENGINE 2x Caterpillar 3406C TA/A
TOTAL POWER 477 bmW (640i hp) at 1800 rpm
GEARBOX 2x Twin Disc MG 5091/3.82:1
PROPELLERS Bronze fixed pitch propeller
KORT NOZZELS Van de Giessen 2x 1000 mm with stainless steel innerings
ENGINE CONTROL Kobelt
STEERING GEAR 2x 25 mm single plate Powered hydraulic 2x 45, rudder indicator
AUXILIARY EQUIPMENT
BILGE PUMP Sterling SIH 20, 32 m/hr
BATTERY SETS 2x 24V, 200 Ah + change over facility
COOLING SYSTEM Closed cooling system
ALARM SYSTEM Engines, gearboxes and bilge alarms
FRESH WATER PRESSURE SET Speck 24V
DECK LAY-OUT
ANCHORS 2x 48 kg Pool (HHP)
CHAIN 70 m, Ø 13mm, shortlink U2
ANCHOR WINCH Hand-operated
TOWING HOOK Mampaey, 15.3 ton SWL
COUPLING WINCH
PUSHBOW Cylindrical nubber fender Ø 380 mm
ACCOMMODATION
The wheelhouse ceiling and sides are insulated with mineral wool and
panelled. The wheelhouse floor is covered with rubber/synthetic floor
covering, make Bolidt, color blue The wheelhouse has one
helmsman seat, a bench and table with chair Below deck two berths, a
kitchen unit and a toilet space are arranged.
NAUTICAL AND COMMUNICATION EQUIPMENT
SEARCHLIGHT Den Haan 170 W 24 V
VHF RADIO Sailor RT 2048 25 W
NAVIGATION Navigation lights incl towing and pilot lights
Teignmouth Harbour Commission
The Harbour Commission is a Trust Port created by Statute.
The principal Order is the Teignmouth Harbour Order 1924
as amended by the Teignmouth Harbour Revision Order 2003
TEIGN C Damen Stan 1405
IMO: - N/A
MMSI: 235082804
Call Sign: MWBM9
AIS Vessel Type: Dredger
GENERAL
DAMEN YARD NUMBER: 503705
Avelingen-West 20
4202 MS Gorinchem
The Netherlands
Phone: +31 (0)183 63 99 11
info@damen.com
DELIVERY DATE August 2001
BASIC FUNCTIONS Towing, mooring, pushing and dredging operations
FLAG United Kingdom [GB]
OWNED Teignmouth Harbour Commission
CASSCATION: Bureau Veritas 1 HULL MACH Seagoing Launch
DIMENSIONS
LENGTH 14.40 m
BEAM 4.73 m
DEPTH AT SIDES 205 m
DRAUGHT AFT 171 m
DISPLACEMENT 48 ton
TANK CAPACITIES
Fuel oil 6.9 m³
PERFORMANCES (TRIALS)
BOLLARD PULL AHEAD 8.0 ton
SPEED 9.8 knots
PROPULSION SYSTEM
MAIN ENGINE 2x Caterpillar 3406C TA/A
TOTAL POWER 477 bmW (640i hp) at 1800 rpm
GEARBOX 2x Twin Disc MG 5091/3.82:1
PROPELLERS Bronze fixed pitch propeller
KORT NOZZELS Van de Giessen 2x 1000 mm with stainless steel innerings
ENGINE CONTROL Kobelt
STEERING GEAR 2x 25 mm single plate Powered hydraulic 2x 45, rudder indicator
AUXILIARY EQUIPMENT
BILGE PUMP Sterling SIH 20, 32 m/hr
BATTERY SETS 2x 24V, 200 Ah + change over facility
COOLING SYSTEM Closed cooling system
ALARM SYSTEM Engines, gearboxes and bilge alarms
FRESH WATER PRESSURE SET Speck 24V
DECK LAY-OUT
ANCHORS 2x 48 kg Pool (HHP)
CHAIN 70 m, Ø 13mm, shortlink U2
ANCHOR WINCH Hand-operated
TOWING HOOK Mampaey, 15.3 ton SWL
COUPLING WINCH
PUSHBOW Cylindrical nubber fender Ø 380 mm
ACCOMMODATION
The wheelhouse ceiling and sides are insulated with mineral wool and
panelled. The wheelhouse floor is covered with rubber/synthetic floor
covering, make Bolidt, color blue The wheelhouse has one
helmsman seat, a bench and table with chair Below deck two berths, a
kitchen unit and a toilet space are arranged.
NAUTICAL AND COMMUNICATION EQUIPMENT
SEARCHLIGHT Den Haan 170 W 24 V
VHF RADIO Sailor RT 2048 25 W
NAVIGATION Navigation lights incl towing and pilot lights
Teignmouth Harbour Commission
The Harbour Commission is a Trust Port created by Statute.
The principal Order is the Teignmouth Harbour Order 1924
as amended by the Teignmouth Harbour Revision Order 2003
Newly inserted window in the north chapel with glass designed and painted by Tony Naylor, 2015.
St Mary's church in Lapworth is one of the most rewarding and unusual medieval parish churches in Warwickshire. The visitor generally approaches this handsome building from the north where the sturdy tower and spire stand guard like a sentinel. It is unusual in standing apart from the main building and was originally detached but is now linked by a passageway to the north aisle, making the church almost as wide as it is long. The west end too is remarkably configured with a chantry chapel or room set above an archway (allowing passage across the churchyard below).
The church we see today dates mainly from the 13th / 14th centuries, with an impressive fifteenth century clerestorey added to the nave being a prominent feature externally, but within it is possible to discern traces of the previous Norman structure embedded below in the nave arcade. There is much of interest to enjoy in this pleasant interior from quirky carvings high in the nave to the rich stained glass in the chancel and north chapel (which has benefitted immensely from a newly inserted window where the east wall had previously been blank). The most interesting memorial is the relief tablet in the north chapel by Eric Gill.
Lapworth church has consistently welcomed visitors and remains militantly open now despite being surrounded by churches largely reluctant to re-open after Covid. Happily since Tony Naylor's fine new window was installed the previous alarm system that restricted access to the eastern half of the church (which I inadvertedly set off on my first ever visit, deafening the neighbours!) has been relaxed so that visitors can now enjoy the full extent of the interior and its fittings.
Newly inserted window in the north chapel with glass designed and painted by Tony Naylor, 2015.
St Mary's church in Lapworth is one of the most rewarding and unusual medieval parish churches in Warwickshire. The visitor generally approaches this handsome building from the north where the sturdy tower and spire stand guard like a sentinel. It is unusual in standing apart from the main building and was originally detached but is now linked by a passageway to the north aisle, making the church almost as wide as it is long. The west end too is remarkably configured with a chantry chapel or room set above an archway (allowing passage across the churchyard below).
The church we see today dates mainly from the 13th / 14th centuries, with an impressive fifteenth century clerestorey added to the nave being a prominent feature externally, but within it is possible to discern traces of the previous Norman structure embedded below in the nave arcade. There is much of interest to enjoy in this pleasant interior from quirky carvings high in the nave to the rich stained glass in the chancel and north chapel (which has benefitted immensely from a newly inserted window where the east wall had previously been blank). The most interesting memorial is the relief tablet in the north chapel by Eric Gill.
Lapworth church has consistently welcomed visitors and remains militantly open now despite being surrounded by churches largely reluctant to re-open after Covid. Happily since Tony Naylor's fine new window was installed the previous alarm system that restricted access to the eastern half of the church (which I inadvertedly set off on my first ever visit, deafening the neighbours!) has been relaxed so that visitors can now enjoy the full extent of the interior and its fittings.
TEIGN C Damen Stan 1405
IMO: - N/A
MMSI: 235082804
Call Sign: MWBM9
AIS Vessel Type: Dredger
GENERAL
DAMEN YARD NUMBER: 503705
Avelingen-West 20
4202 MS Gorinchem
The Netherlands
Phone: +31 (0)183 63 99 11
info@damen.com
DELIVERY DATE August 2001
BASIC FUNCTIONS Towing, mooring, pushing and dredging operations
FLAG United Kingdom [GB]
OWNED Teignmouth Harbour Commission
CASSCATION: Bureau Veritas 1 HULL MACH Seagoing Launch
DIMENSIONS
LENGTH 14.40 m
BEAM 4.73 m
DEPTH AT SIDES 205 m
DRAUGHT AFT 171 m
DISPLACEMENT 48 ton
TANK CAPACITIES
Fuel oil 6.9 m³
PERFORMANCES (TRIALS)
BOLLARD PULL AHEAD 8.0 ton
SPEED 9.8 knots
PROPULSION SYSTEM
MAIN ENGINE 2x Caterpillar 3406C TA/A
TOTAL POWER 477 bmW (640i hp) at 1800 rpm
GEARBOX 2x Twin Disc MG 5091/3.82:1
PROPELLERS Bronze fixed pitch propeller
KORT NOZZELS Van de Giessen 2x 1000 mm with stainless steel innerings
ENGINE CONTROL Kobelt
STEERING GEAR 2x 25 mm single plate Powered hydraulic 2x 45, rudder indicator
AUXILIARY EQUIPMENT
BILGE PUMP Sterling SIH 20, 32 m/hr
BATTERY SETS 2x 24V, 200 Ah + change over facility
COOLING SYSTEM Closed cooling system
ALARM SYSTEM Engines, gearboxes and bilge alarms
FRESH WATER PRESSURE SET Speck 24V
DECK LAY-OUT
ANCHORS 2x 48 kg Pool (HHP)
CHAIN 70 m, Ø 13mm, shortlink U2
ANCHOR WINCH Hand-operated
TOWING HOOK Mampaey, 15.3 ton SWL
COUPLING WINCH
PUSHBOW Cylindrical nubber fender Ø 380 mm
ACCOMMODATION
The wheelhouse ceiling and sides are insulated with mineral wool and
panelled. The wheelhouse floor is covered with rubber/synthetic floor
covering, make Bolidt, color blue The wheelhouse has one
helmsman seat, a bench and table with chair Below deck two berths, a
kitchen unit and a toilet space are arranged.
NAUTICAL AND COMMUNICATION EQUIPMENT
SEARCHLIGHT Den Haan 170 W 24 V
VHF RADIO Sailor RT 2048 25 W
NAVIGATION Navigation lights incl towing and pilot lights
Teignmouth Harbour Commission
The Harbour Commission is a Trust Port created by Statute.
The principal Order is the Teignmouth Harbour Order 1924
as amended by the Teignmouth Harbour Revision Order 2003
©AVucha 2014
A 30-year-old Cary man was safely escorted from a neighborhood residence and to a hospital after he barricaded himself from a large police contingent for roughly four hours Wednesday.
Cary Police Deputy Chief James Fillmore said the man, who was threatening to harm himself and "under a lot of emotional stress," was taken to Centegra Hospital-McHenry at 3:12 p.m. after first responders arrived on the scene at Hillhurst Drive at 11 a.m. The man was unarmed and no one was hurt during the situation, Fillmore said.
The man had climbed into the garage attic and refused to come down for family members, police said.
Fillmore said no charges would be filed in the incident. Fillmore said police have responded to domestic disturbances at the home on the 300 block of Hillhurst Drive several times in the past.
The four-hour operation required a heavy police presence that included officers from Cary, Streamwood, Round Lake, Roselle, Fox River Grove and other municipalities. On scene, marked and unmarked vehicles lined the surrounding streets, and armed, vested officers, including K9 units, were seen walking toward the residence.
A large Northern Illinois Police Alarm System vehicle also was on scene. Cary Police blocked off a square area from Decker Drive to Hillhurst Drive bordered by Bryan and Bell drives. School bus routes were also redirected because of the situation.
The incident comes within a week of a Holiday Hills man shooting and wounding two McHenry County Sheriff’s officers. That incident led to an even larger police response as a 16-hour manhunt ensued before Scott B. Peters was arrested and charged with shooting the officers.
*Article obtained from the Northwest Herald
Van train 23Z passes the old PRR station at Lewistown as well as CP-Lewis. A new PTC antenna tower is behind the locomotive (the odd looking antenna out of loco roof).
The station has been preserved by the Pennsylvania Railroad Technical & Historical Society and serves as the Society's archives. The Society has spent a considerable amount of funds to restore the station including the tower portion (which was torn down long ago), roof, archiving systems, fire and burglar alarm systems.
The station waiting room is opened when the Amtrak Pennsylvanian trains stop to handle their passengers.
TEIGN C Damen Stan 1405
IMO: - N/A
MMSI: 235082804
Call Sign: MWBM9
AIS Vessel Type: Dredger
GENERAL
DAMEN YARD NUMBER: 503705
Avelingen-West 20
4202 MS Gorinchem
The Netherlands
Phone: +31 (0)183 63 99 11
info@damen.com
DELIVERY DATE August 2001
BASIC FUNCTIONS Towing, mooring, pushing and dredging operations
FLAG United Kingdom [GB]
OWNED Teignmouth Harbour Commission
CASSCATION: Bureau Veritas 1 HULL MACH Seagoing Launch
DIMENSIONS
LENGTH 14.40 m
BEAM 4.73 m
DEPTH AT SIDES 205 m
DRAUGHT AFT 171 m
DISPLACEMENT 48 ton
TANK CAPACITIES
Fuel oil 6.9 m³
PERFORMANCES (TRIALS)
BOLLARD PULL AHEAD 8.0 ton
SPEED 9.8 knots
PROPULSION SYSTEM
MAIN ENGINE 2x Caterpillar 3406C TA/A
TOTAL POWER 477 bmW (640i hp) at 1800 rpm
GEARBOX 2x Twin Disc MG 5091/3.82:1
PROPELLERS Bronze fixed pitch propeller
KORT NOZZELS Van de Giessen 2x 1000 mm with stainless steel innerings
ENGINE CONTROL Kobelt
STEERING GEAR 2x 25 mm single plate Powered hydraulic 2x 45, rudder indicator
AUXILIARY EQUIPMENT
BILGE PUMP Sterling SIH 20, 32 m/hr
BATTERY SETS 2x 24V, 200 Ah + change over facility
COOLING SYSTEM Closed cooling system
ALARM SYSTEM Engines, gearboxes and bilge alarms
FRESH WATER PRESSURE SET Speck 24V
DECK LAY-OUT
ANCHORS 2x 48 kg Pool (HHP)
CHAIN 70 m, Ø 13mm, shortlink U2
ANCHOR WINCH Hand-operated
TOWING HOOK Mampaey, 15.3 ton SWL
COUPLING WINCH
PUSHBOW Cylindrical nubber fender Ø 380 mm
ACCOMMODATION
The wheelhouse ceiling and sides are insulated with mineral wool and
panelled. The wheelhouse floor is covered with rubber/synthetic floor
covering, make Bolidt, color blue The wheelhouse has one
helmsman seat, a bench and table with chair Below deck two berths, a
kitchen unit and a toilet space are arranged.
NAUTICAL AND COMMUNICATION EQUIPMENT
SEARCHLIGHT Den Haan 170 W 24 V
VHF RADIO Sailor RT 2048 25 W
NAVIGATION Navigation lights incl towing and pilot lights
Teignmouth Harbour Commission
The Harbour Commission is a Trust Port created by Statute.
The principal Order is the Teignmouth Harbour Order 1924
as amended by the Teignmouth Harbour Revision Order 2003
TEIGN C Damen Stan 1405
IMO: - N/A
MMSI: 235082804
Call Sign: MWBM9
AIS Vessel Type: Dredger
GENERAL
DAMEN YARD NUMBER: 503705
Avelingen-West 20
4202 MS Gorinchem
The Netherlands
Phone: +31 (0)183 63 99 11
info@damen.com
DELIVERY DATE August 2001
BASIC FUNCTIONS Towing, mooring, pushing and dredging operations
FLAG United Kingdom [GB]
OWNED Teignmouth Harbour Commission
CASSCATION: Bureau Veritas 1 HULL MACH Seagoing Launch
DIMENSIONS
LENGTH 14.40 m
BEAM 4.73 m
DEPTH AT SIDES 205 m
DRAUGHT AFT 171 m
DISPLACEMENT 48 ton
TANK CAPACITIES
Fuel oil 6.9 m³
PERFORMANCES (TRIALS)
BOLLARD PULL AHEAD 8.0 ton
SPEED 9.8 knots
PROPULSION SYSTEM
MAIN ENGINE 2x Caterpillar 3406C TA/A
TOTAL POWER 477 bmW (640i hp) at 1800 rpm
GEARBOX 2x Twin Disc MG 5091/3.82:1
PROPELLERS Bronze fixed pitch propeller
KORT NOZZELS Van de Giessen 2x 1000 mm with stainless steel innerings
ENGINE CONTROL Kobelt
STEERING GEAR 2x 25 mm single plate Powered hydraulic 2x 45, rudder indicator
AUXILIARY EQUIPMENT
BILGE PUMP Sterling SIH 20, 32 m/hr
BATTERY SETS 2x 24V, 200 Ah + change over facility
COOLING SYSTEM Closed cooling system
ALARM SYSTEM Engines, gearboxes and bilge alarms
FRESH WATER PRESSURE SET Speck 24V
DECK LAY-OUT
ANCHORS 2x 48 kg Pool (HHP)
CHAIN 70 m, Ø 13mm, shortlink U2
ANCHOR WINCH Hand-operated
TOWING HOOK Mampaey, 15.3 ton SWL
COUPLING WINCH
PUSHBOW Cylindrical nubber fender Ø 380 mm
ACCOMMODATION
The wheelhouse ceiling and sides are insulated with mineral wool and
panelled. The wheelhouse floor is covered with rubber/synthetic floor
covering, make Bolidt, color blue The wheelhouse has one
helmsman seat, a bench and table with chair Below deck two berths, a
kitchen unit and a toilet space are arranged.
NAUTICAL AND COMMUNICATION EQUIPMENT
SEARCHLIGHT Den Haan 170 W 24 V
VHF RADIO Sailor RT 2048 25 W
NAVIGATION Navigation lights incl towing and pilot lights
Teignmouth Harbour Commission
The Harbour Commission is a Trust Port created by Statute.
The principal Order is the Teignmouth Harbour Order 1924
as amended by the Teignmouth Harbour Revision Order 20
Nothing like a good ol' thunderstorm in the valley! This was around the outskirts of Firebaugh, CA. I was chasing this amazing thunderstorm that had formed all the way from near Los Banos. This was during my epic storm chase around the vast Central Valley this day, chasing severe thunderstorms that have developed in and around the vicinity… Conditions were perfect for storm development in the valley. Temps were in the mid 60’s and was a bit humid. It’s been a while since I’ve done a storm chase in the Central Valley. Places traveled included areas from Los Banos all the way down to Fresno, CA. Heavy rain, hail (the most intense I’ve seen in person), Midwest-like skies, and plentiful lightning were all observed this day. It was nice to finally be out in California’s version of the Great Plains once again! ‘Til next time, safe travels out there! (Outing taken place Sunday, March 12, 2023)
*Weather scenario: Multiple weather advisories were issued this day due to extreme weather. The ground zero for the strongest storms were to be in the counties of Merced and Madera, with the combination of a stronger upper-level jet, upslope lifting, or, orographic lift west of the Sierra Nevada Mountain Range, and acceptable low-level shear. Supercells were expected to form as a result, even some with tops over 25-30kft. Tornado warnings and severe thunderstorms have pounded the Central Valley along with hail and lightning. Emergency alerts were sent out on cellphones and broadcasted on TV early Sunday afternoon as a powerful storm made its way through the Central Valley… A tornado warning was issued for the 2nd time this weekend shortly after 3 o'clock for Merced and Madera County near Los Banos... Residents in Dos Palos got their attention with a tornado warning on their home alarm system. Hail the size of dimes and nickels was what residents across the valley were reporting. Weather chasers (myself included) were out in full force in capturing this weekend’s rare Midwest-like active weather pattern… Fun stuff!
Newly inserted window in the north chapel with glass designed and painted by Tony Naylor, 2015.
St Mary's church in Lapworth is one of the most rewarding and unusual medieval parish churches in Warwickshire. The visitor generally approaches this handsome building from the north where the sturdy tower and spire stand guard like a sentinel. It is unusual in standing apart from the main building and was originally detached but is now linked by a passageway to the north aisle, making the church almost as wide as it is long. The west end too is remarkably configured with a chantry chapel or room set above an archway (allowing passage across the churchyard below).
The church we see today dates mainly from the 13th / 14th centuries, with an impressive fifteenth century clerestorey added to the nave being a prominent feature externally, but within it is possible to discern traces of the previous Norman structure embedded below in the nave arcade. There is much of interest to enjoy in this pleasant interior from quirky carvings high in the nave to the rich stained glass in the chancel and north chapel (which has benefitted immensely from a newly inserted window where the east wall had previously been blank). The most interesting memorial is the relief tablet in the north chapel by Eric Gill.
Lapworth church has consistently welcomed visitors and remains militantly open now despite being surrounded by churches largely reluctant to re-open after Covid. Happily since Tony Naylor's fine new window was installed the previous alarm system that restricted access to the eastern half of the church (which I inadvertedly set off on my first ever visit, deafening the neighbours!) has been relaxed so that visitors can now enjoy the full extent of the interior and its fittings.
This work is protected under copyright laws and agreements.
All rights reserved © 2008 Bernard Egger :: rumoto images
Todos los Derechos Reservados • Tous droits réservés • Todos os Direitos Reservados • Все права защищены • Tutti i diritti riservati
BMW R 1200 CL - Woodcliff Lake, New Jersey, August 2002 ... Some people consider a six-day cruise as the perfect vacation. Other's might agree, as long as the days are marked by blurred fence posts and dotted lines instead of palm trees and ocean waves. For them, BMW introduces the perfect alternative to a deck chair - the R 1200 CL.
Motorcyclists were taken aback when BMW introduced its first cruiser in 1997, but the R 1200 C quickly rose to become that year's best-selling BMW. The original has since spawned several derivatives including the Phoenix, Euro, Montana and Stiletto. This year, BMW's cruiser forms the basis for the most radical departure yet, the R 1200 CL. With its standard integral hard saddlebags, top box and distinctive handlebar-mounted fairing, the CL represents twin-cylinder luxury-touring at its finest, a completely modern luxury touring-cruiser with a touch of classic BMW.
Although based on the R 1200 C, the new CL includes numerous key changes in chassis, drivetrain, equipment and appearance, specifically designed to enhance the R 1200's abilities as a long-distance mount. While it uses the same torquey, 1170cc 61-hp version of BMW's highly successful R259 twin, the CL backs it with a six-speed overdrive transmission. A reworked Telelever increases the bike's rake for more-relaxed high-speed steering, while the fork's wider spacing provides room for the sculpted double-spoke, 16-inch wheel and 150/80 front tire. Similarly, a reinforced Monolever rear suspension controls a matching 15-inch alloy wheel and 170/80 rear tire. As you'd expect, triple disc brakes featuring BMW's latest EVO front brake system and fully integrated ABS bring the bike to a halt at day's end-and set the CL apart from any other luxury cruiser on the market.
Yet despite all the chassis changes, it's the new CL's visual statement that represents the bike's biggest break with its cruiser-mates. With its grip-to-grip sweep, the handlebar-mounted fairing evokes classic touring bikes, while the CL's distinctive quad-headlamps give the bike a decidedly avant-garde look - in addition to providing standard-setting illumination. A pair of frame-mounted lowers extends the fairing's wind coverage and provides space for some of the CL's electrics and the optional stereo. The instrument panel is exceptionally clean, surrounded by a matte gray background that matches the kneepads inset in the fairing extensions. The speedometer and tachometer flank a panel of warning lights, capped by the standard analog clock. Integrated mirror/turnsignal pods extend from the fairing to provide further wind protection. Finally, fully integrated, color-matched saddlebags combine with a standard top box to provide a steamer trunk's luggage capacity.
shown in the functional details. In addition to the beautifully finished bodywork, the luxury cruiser boasts an assortment of chrome highlights, including valve covers, exhaust system, saddlebag latches and frame panels, with an optional kit to add even more brightwork. Available colors include Pearl Silver Metallic, Capri Blue Metallic and Mojave Brown Metallic, this last with a choice of black or brown saddle (other colors feature black).
The R 1200 CL Engine: Gearing For The Long Haul
BMW's newest tourer begins with a solid foundation-the 61-hp R 1200 C engine. The original, 1170cc cruiser powerplant blends a broad powerband and instantaneous response with a healthy, 72 lb.-ft. of torque. Like its forebear, the new CL provides its peak torque at 3000 rpm-exactly the kind of power delivery for a touring twin. Motronic MA 2.4 engine management ensures that this Boxer blends this accessible power with long-term reliability and minimal emissions, while at the same time eliminating the choke lever for complete push-button simplicity. Of course, the MoDiTec diagnostic feature makes maintaining the CL every bit as simple as the other members of BMW's stable.
While tourers and cruisers place similar demands on their engines, a touring bike typically operates through a wider speed range. Consequently, the R 1200 CL mates this familiar engine to a new, six-speed transmission. The first five gear ratios are similar to the original R 1200's, but the sixth gear provides a significant overdrive, which drops engine speed well under 3000 rpm at 60 mph. This range of gearing means the CL can manage either responsive in-town running or relaxed freeway cruising with equal finesse, and places the luxury cruiser right in the heart of its powerband at touring speeds for simple roll-on passes.
In addition, the new transmission has been thoroughly massaged internally, with re-angled gear teeth that provide additional overlap for quieter running. Shifting is likewise improved via a revised internal shift mechanism that produces smoother, more precise gearchanges. Finally, the new transmission design is lighter (approximately 1 kg.), which helps keep the CL's weight down to a respectable 679 lbs. (wet). The improved design of this transmission will be adopted by other Boxer-twins throughout the coming year.
The CL Chassis: Wheeled Luggage Never Worked This Well
Every bit as unique as the CL's Boxer-twin drivetrain is the bike's chassis, leading off-literally and figuratively-with BMW's standard-setting Telelever front suspension. The CL's setup is identical in concept and function to the R 1200 C's fork, but shares virtually no parts with the previous cruiser's. The tourer's wider, 16-inch front wheel called for wider-set fork tubes, so the top triple clamp, fork bridge, fork tubes and axle have all been revised, and the axle has switched to a full-floating design. The aluminum Telelever itself has been further reworked to provide a slightly more raked appearance, which also creates a more relaxed steering response for improved straight-line stability. The front shock has been re-angled and its spring and damping rates changed to accommodate the new bike's suspension geometry, but is otherwise similar to the original R 1200 C's damper.
Similarly, the R 1200 CL's Monolever rear suspension differs in detail, rather than concept, from previous BMW cruisers. Increased reinforcing provides additional strength at the shock mount, while a revised final-drive housing provides mounts for the new rear brake. But the primary rear suspension change is a switch to a shock with travel-related damping, similar to that introduced on the R 1150 GS Adventure. This new shock not only provides for a smoother, more controlled ride but also produces an additional 20mm travel compared to the other cruisers, bringing the rear suspension travel to 4.72 inches.
The Telelever and Monolever bolt to a standard R 1200 C front frame that differs only in detail from the original. The rear subframe, however, is completely new, designed to accommodate the extensive luggage system and passenger seating on the R 1200 CL. In addition to the permanently affixed saddlebags, the larger seats, floor boards, top box and new side stand all require new mounting points.
All this new hardware rolls on completely restyled double-spoke wheels (16 x 3.5 front/15 x 4.0 rear) that carry wider, higher-profile (80-series) touring tires for an extremely smooth ride. Bolted to these wheels are larger disc brakes (12.0-inch front, 11.2-inch rear), with the latest edition of BMW's standard-setting EVO brakes. A pair of four-piston calipers stop the front wheel, paired with a two-piston unit-adapted from the K 1200 LT-at the rear. In keeping with the bike's touring orientation, the new CL includes BMW's latest, fully integrated ABS, which actuates both front and rear brakes through either the front hand lever or the rear brake pedal.
The CL Bodywork: Dressed To The Nines
Although all these mechanical changes ensure that the new R 1200 CL works like no other luxury cruiser, it's the bike's styling and bodywork that really set it apart. Beginning with the bike's handlebar-mounted fairing, the CL looks like nothing else on the road, but it's the functional attributes that prove its worth. The broad sweep of the fairing emphasizes its aerodynamic shape, which provides maximum wind protection with a minimum of buffeting. Four headlamps, with their horizontal/vertical orientation, give the CL its unique face and also create the best illumination outside of a baseball stadium (the high-beams are borrowed from the GS).
The M-shaped windshield, with its dipped center section, produces exceptional wind protection yet still allows the rider to look over the clear-plastic shield when rain or road dirt obscure the view. Similarly, clear extensions at the fairing's lower edges improve wind protection even further but still allow an unobstructed view forward for maneuvering in extremely close quarters. The turnsignal pods provide further wind coverage, and at the same time the integral mirrors give a clear view to the rear.
Complementing the fairing, both visually and functionally, the frame-mounted lowers divert the wind blast around the rider to provide further weather protection. Openings vent warm air from the frame-mounted twin oil-coolers and direct the heat away from the rider. As noted earlier, the lowers also house the electronics for the bike's optional alarm system and cruise control. A pair of 12-volt accessory outlets are standard.
Like the K 1200 LT, the new R 1200 CL includes a capacious luggage system as standard, all of it color-matched and designed to accommodate rider and passenger for the long haul. The permanently attached saddlebags include clamshell lids that allow for easy loading and unloading. Chrome bumper strips protect the saddlebags from minor tipover damage. The top box provides additional secure luggage space, or it can be simply unbolted to uncover an attractive aluminum luggage rack. An optional backrest can be bolted on in place of the top box. Of course, saddlebags and top box are lockable and keyed to the ignition switch.
Options & Accessories: More Personal Than A Monogram
Given BMW's traditional emphasis on touring options and the cruiser owner's typical demands for customization, it's only logical to expect a range of accessories and options for the company's first luxury cruiser. The CL fulfills those expectations with a myriad of options and accessories, beginning with heated or velour-like Soft Touch seats and a low windshield. Electronic and communications options such as an AM/FM/CD stereo, cruise control and onboard communication can make time on the road much more pleasant, whether you're out for an afternoon ride or a cross-country trek - because after all, nobody says you have to be back in six days. Other available electronic features include an anti-theft alarm, which also disables the engine.
Accessories designed to personalize the CL even further range from cosmetic to practical, but all adhere to BMW's traditional standards for quality and fit. Chrome accessories include engine-protection and saddlebag - protection hoops. On a practical level, saddlebag and top box liners simplify packing and unpacking. In addition to the backrest, a pair of rear floorboards enhance passenger comfort even more.
The CL's riding position blends elements of both tourer and cruiser, beginning with a reassuringly low, 29.3-inch seat height. The seat itself comprises two parts, a rider portion with an integral lower-back rest, and a taller passenger perch that includes a standard backrest built into the top box. Heated seats, first seen on the K 1200 LT, are also available for the CL to complement the standard heated grips. A broad, flat handlebar places those grips a comfortable reach away, and the CL's floorboards allow the rider to shift position easily without compromising control. Standard cruise control helps melt the miles on long highway stints. A convenient heel/toe shifter makes for effortless gearchanges while adding exactly the right classic touch.
The R 1200 CL backs up its cruiser origins with the same superb attention to cosmetics as is
- - -
Der Luxus-Cruiser zum genußvollen Touren.
Die Motorradwelt war überrascht, als BMW Motorrad 1997 die R 1200 C, den ersten Cruiser in der Geschichte des Hauses, vorstellte. Mit dem einzigartigen Zweizylinder-Boxermotor und einem unverwechselbar eigenständigen Design gelang es auf Anhieb, sich in diesem bis dato von BMW nicht besetzten Marktsegment erfolgreich zu positionieren. Bisher wurden neben dem Basismodell R 1200 C Classic die technisch nahezu identischen Modellvarianten Avantgarde und Independent angeboten, die sich in Farbgebung, Designelementen und Ausstattungsdetails unterscheiden.
Zur Angebotserweiterung und zur Erschließung zusätzlicher Potenziale, präsentiert BMW Motorrad für das Modelljahr 2003 ein neues Mitglied der Cruiserfamilie, den Luxus-Cruiser R 1200 CL. Er wird seine Weltpremiere im September in München auf der INTERMOT haben und voraussichtlich im Herbst 2002 auf den Markt kommen. Der Grundgedanke war, Elemente von Tourenmotorrädern auf einen Cruiser zu übertragen und ein Motorrad zu entwickeln, das Eigenschaften aus beiden Fahrzeuggattungen aufweist.
So entstand ein eigenständiges Modell, ein Cruiser zum genussvollen Touren, bei dem in Komfort und Ausstattung keine Wünsche offen bleiben.
Als technische Basis diente die R 1200 C, von der aber im wesentlichen nur der Motor, der Hinterradantrieb, der Vorderrahmen, der Tank und einige Ausstattungsumfänge übernommen wurden. Ansonsten ist das Motorrad ein völlig eigenständiger Entwurf und in weiten Teilen eine Neuentwicklung.
Fahrgestell und Design:
Einzigartiges Gesicht, optische Präsenz und Koffer integriert.
Präsenz, kraftvoller Auftritt und luxuriöser Charakter, mit diesen Worten lässt sich die Wirkung der BMW R 1200 CL kurz und treffend beschreiben. Geprägt wird dieses Motorrad von der lenkerfesten Tourenverkleidung, deren Linienführung sich in den separaten seitlichen Verkleidungsteilen am Tank fortsetzt, so dass in der Seitenansicht fast der Eindruck einer integrierten Verkleidung entsteht. Sie bietet dem Fahrer ein hohes Maß an Komfort durch guten Wind- und Wetterschutz.
Insgesamt vier in die Verkleidung integrierte Scheinwerfer, zwei für das Abblendlicht und zwei für das Fernlicht, geben dem Motorrad ein unverwechselbares, einzigartiges Gesicht und eine beeindruckende optische Wirkung, die es so bisher noch bei keinem Motorrad gab. Natürlich sorgen die vier Scheinwerfer auch für eine hervorragende Fahrbahnausleuchtung.
Besonders einfallsreich ist die aerodynamische Gestaltung der Verkleidungsscheibe mit ihrem wellenartig ausgeschnittenen oberen Rand. Sie leitet die Strömung so, dass der Fahrer wirkungsvoll geschützt wird. Gleichzeitig kann man aber wegen des Einzugs in der Mitte ungehindert über die Scheibe hinwegschauen und hat somit unabhängig von Nässe und Verschmutzung der Scheibe ein ungestörtes Sichtfeld auf die Straße.
Zur kraftvollen Erscheinung des Motorrades passt der Vorderradkotflügel, der seitlich bis tief zur Felge heruntergezogen ist. Er bietet guten Spritzschutz und unterstreicht zusammen mit dem voluminösen Vorderreifen die Dominanz der Frontpartie, die aber dennoch Gelassenheit und Eleganz ausstrahlt.
Der gegenüber den anderen Modellen flacher gestellte Telelever hebt den Cruisercharakter noch mehr hervor. Der Heckbereich wird bestimmt durch die integrierten, fest mit dem Fahrzeug verbundenen Hartschalenkoffer und das abnehmbare Topcase auf der geschwungenen Gepäckbrücke, die zugleich als Soziushaltegriff dient. Koffer und Topcase sind jeweils in Fahrzeugfarbe lackiert und bilden somit ein harmonisches Ganzes mit dem Fahrzeug.
Akzente setzen auch die stufenförmig angeordneten breiten Komfortsitze für Fahrer und Beifahrer mit der charakteristischen hinteren Abstützung. Luxus durch exklusive Farben, edle Oberflächen und Materialien.
Die R 1200 CL wird zunächst in drei exklusiven Farben angeboten: perlsilber-metallic und capriblau-metallic mit jeweils schwarzen Sitzen und mojavebraun-metallic mit braunem Sitzbezug (wahlweise auch in schwarz). Die Eleganz der Farben wird unterstützt durch sorgfältige Materialauswahl und perfektes Finish von Oberflächen und Fugen. So ist zum Beispiel die Gepäckbrücke aus Aluminium-Druckguß gefertigt und in weissaluminium lackiert, der Lenker verchromt und die obere Instrumentenabdeckung ebenfalls weissaluminiumfarben lackiert. Die Frontverkleidung ist vollständig mit einer Innenabdeckung versehen, und die Kniepads der seitlichen Verkleidungsteile sind mit dem gleichen Material wie die Sitze überzogen.
All dies unterstreicht den Anspruch auf Luxus und Perfektion.
Antrieb jetzt mit neuem, leiserem Sechsganggetriebe - Boxermotor unverändert.
Während der Boxermotor mit 1170 cm³ unverändert von der bisherigen R 1200 C übernommen wurde - auch die Leistungsdaten sind mit 45 kW (61 PS) und 98 Nm Drehmoment bei 3 000 min-1 gleich geblieben -, ist das Getriebe der R 1200 CL neu. Abgeleitet von dem bekannten Getriebe der anderen Boxermodelle hat es jetzt auch sechs Gänge und wurde grundlegend überarbeitet. Als wesentliche Neuerung kommt eine sogenannte Hochverzahnung zum Einsatz. Diese sorgt für einen "weicheren" Zahneingriff und reduziert erheblich die Laufgeräusche der Verzahnung.
Der lang übersetzte, als "overdrive" ausgelegte, sechste Gang erlaubt drehzahlschonendes Fahren auf langen Etappen in der Ebene und senkt dort Verbrauch und Geräusch. Statt eines Schalthebels gibt es eine Schaltwippe für Gangwechsel mit einem lässigen Kick. Schaltkomfort, Geräuscharmut, niedrige Drehzahlen und dennoch genügend Kraft - Eigenschaften, die zum Genusscharakter des Fahrzeugs hervorragend passen.
Dass auch die R 1200 CL, wie jedes seit 1997 neu eingeführte BMW Motorrad weltweit, serienmäßig über die jeweils modernste Abgasreinigungstechnologie mit geregeltem Drei-Wege-Katalysator verfügt, muss fast nicht mehr erwähnt werden. Es ist bei BMW zur Selbstverständlichkeit geworden.
Fahrwerkselemente für noch mehr Komfort - Telelever neu und hinteres Federbein mit wegabhängiger Dämpfung.
Ein cruisertypisches Merkmal ist die nach vorn gestreckte Vorderradführung mit flachem Winkel zur Fahrbahn und großem Nachlauf. Dazu wurde für die R 1200 CL der nach wie vor einzigartige BMW Telelever neu ausgelegt.
Die Gabelholme stehen weiter auseinander, um dem bulligen, 150 mm breiten Vorderradreifen Platz zu bieten.
Für die Hinterradfederung kommt ein Federbein mit wegabhängiger Dämpfung zum Einsatz, das sich durch hervorragende Komforteigenschaften auszeichnet. Der Gesamtfederweg wuchs um 20 mm gegenüber den anderen Cruisermodellen auf jetzt 120 mm. Die Federbasisverstellung zur Anpassung an den Beladungszustand erfolgt hydraulisch über ein bequem zugängliches Handrad.
Hinterradschwinge optimiert und Heckrahmen neu.
Die Hinterradschwinge mit Hinterachsgehäuse, der BMW Monolever, wurde verstärkt und zur Aufnahme einer größeren Hinterradbremse angepasst.
Der verstärkte Heckrahmen ist vollständig neu, um Trittbretter, Kofferhalter, Gepäckbrücke und die neuen Sitze sowie die modifizierte Seitenstütze aufnehmen zu können. Der Vorderrahmen aus Aluminiumguss wurde mit geringfügigen Modifikationen von der bisherigen R 1200 C übernommen.
Räder aus Aluminiumguss, Sitze, Trittbretter und Lenker - alles neu.
Der optische Eindruck eines Motorrades wird ganz wesentlich auch von den Rädern bestimmt. Die R 1200 CL hat avantgardistisch gestaltete neue Gussräder aus Aluminium mit 16 Zoll (vorne) beziehungsweise 15 Zoll (hinten) Felgendurchmesser, die voluminöse Reifen im Format 150/80 vorne und 170/80 hinten aufnehmen.
Die Sitze sind für Fahrer und Beifahrer getrennt ausgeführt, um den unterschiedlichen Bedürfnissen gerecht zu werden. So ist der breite Komfortsattel für den Fahrer mit einer integrierten Beckenabstützung versehen und bietet einen hervorragenden Halt. Die Sitzhöhe beträgt 745 mm. Der Sitz für den Passagier ist ebenfalls ganz auf Bequemlichkeit ausgelegt und etwas höher als der Fahrersitz angeordnet. Dadurch hat der Beifahrer einen besseren Blick am Fahrer vorbei und kann beim Cruisen die Landschaft ungestört genießen.
Großzügige cruisertypische Trittbretter für den Fahrer tragen zum entspannten Sitzen bei. Die Soziusfußrasten, die von der K 1200 LT abgeleitet sind, bieten ebenfalls sehr guten Halt und ermöglichen zusammen mit dem günstigen Kniebeugewinkel auch dem Beifahrer ein ermüdungsfreies Touren.
Der breite, verchromte Lenker vermittelt nicht nur Cruiser-Feeling; Höhe und Kröpfungswinkel sind so ausgelegt, dass auch auf langen Fahrten keine Verspannungen auftreten. Handhebel und Schalter mit der bewährten und eigenständigen BMW Bedienlogik wurden unverändert von den anderen Modellen übernommen.
HighTech bei den Bremsen - BMW EVO-Bremse und als Sonderausstattung Integral ABS.
Sicherheit hat bei BMW traditionell höchste Priorität. Deshalb kommt bei der
R 1200 CL die schon in anderen BMW Motorrädern bewährte EVO-Bremse am Vorderrad zum Einsatz, die sich durch eine verbesserte Bremsleistung auszeichnet. Auf Wunsch gibt es das einzigartige BMW Integral ABS, dem Charakter des Motorrades entsprechend in der Vollintegralversion. Das heißt, unabhängig ob der Hand- oder Fußbremshebel betätigt wird, immer wirkt die Bremskraft optimal auf beide Räder. Im Vorderrad verzögert eine Doppel-Scheibenbremse mit 305 mm Scheibendurchmesser und im Hinterrad die von der K 1200 LT übernommene Einscheiben-Bremsanlage mit einem Scheibendurchmesser von 285 mm.
Fortschrittliche Elektrik: Vierfach-Scheinwerfer, wartungsarme Batterie und elektronischer Tachometer.
Vier Scheinwerfer, je zwei für das Abblend- und Fernlicht, geben dem Motorrad von vorne ein einzigartiges prägnantes Gesicht. Durch die kreuzweise Anordnung - die Abblendscheinwerfer sitzen nebeneinander und die Fernscheinwerfer dazwischen und übereinander - wird eine hohe Signalwirkung bei Tag und eine hervorragende Fahrbahnausleuchtung bei Dunkelheit erzielt.
Neu ist die wartungsarme, komplett gekapselte Gel-Batterie, bei der kein Wasser mehr nachgefüllt werden muss. Eine zweite Steckdose ist serienmäßig. Die Instrumente sind ebenfalls neu. Drehzahlmesser und Tachometer sind elektronisch und die Zifferblätter neu gestaltetet, ebenso die Analoguhr.
Umfangreiche Sonderausstattung für Sicherheit, Komfort und individuellen Luxus.
Die Sonderausstattung der R 1200 CL ist sehr umfangreich und reicht vom BMW Integral ABS für sicheres Bremsen über Komfortausstattungen wie Temporegelung, heizbare Lenkergriffe und Sitzheizung bis hin zu luxuriöser Individualisierung mit Softtouchsitzen, Chrompaket und fernbedientem Radio mit CD-Laufwerk.
BMW R 1200 CL motorcycle trip Austria (c) Bernard Egger :: rumoto images
Some #securitytips for making Your house more #secure
1. Change the Locks
Change all the locks when you move into a new house. You’ll never know who had access to the keys before you moved in.
2. Install an #AlarmSystem
Home alarm systems immediately inform emergency authorities and warn homeowners of any potential dangers. Hearing an alarm go off usually sends a burglar running. At www.koacctv.com we have best offers at best price.
3. Conceal All Wiring
For the most effective #alarm_system, conceal all wiring. A professional burglar looks for places where he or she can disconnect the security system.
4.Light Up the Entrance to Your Home
A smart way to keep thieves away is to utilize lighting. Lighting with an #infrared_detector automatically turns on when someone is in a specific zone or area. No burglar wants to be in easy view while committing a crime.
5. Protect Your Windows
Burglars often gain entry into homes through windows. Protect these vulnerable areas with window locks and/or burglar-resistant glass. Installing many small panes of glass instead of one large pain of glass is a good option as well.
#homeSecurity, #Alarm_Systems, #cameras, #CCTV_cameras, #KOACCTV
prli.nl/PL-618-ea2n2kKf-45&rf=2 EUR 750000
Spain properties property spanish real estate villa apartment townhouse house
PL-618-ea2n2kKf-45
R132981 FRONT LINE GOLF! This beautiful villa features 4 good sized bedrooms all with en-suite bathrooms. This home is full of character featuring beautiful wooden beams in the lounge yet maintaining a delightful modern and new feel to it. The entire home is flooded with light from it´s South West orientation. You will find a lovely garden, and good size pool yet easy to maintain. There are large terraces upstairs with beautiful views and built to a very high spec. The property also contains a sizable garage and too many other additional features to mention. nnnVilla, Frontline Golf, Fitted Kitchen, Parking: Ample Garage, Pool: Private, Garden: Private, Facing: SoutheastnViews: Excellent, Garden, Golf, Pool.nFeatures Air Conditioning, Alarm System, Balcony, Basement, Blinds, Built to High Standards, Central Heating, Close to all Amenities, Close to schools, Conveniently Situated for Golf, Conveniently Situated Schools, Conveniently Situated Tennis, Covered Terrace, Detached Villa, Double glazing windows, Easily maintained gardens, Electric Blinds, Electric Gates, En suite bathroom, Excellent Condition, Fenced Plot, Fireplace, Fitted Kitchen, Fitted Wardrobes, Garage, Garden, Golf front, Luxury Fittings, Marble Bathroom, Marble Floors, Near amenities, Newly Built, Open Fireplace, Private pool, Private Terrace, Swimming Pool.<br /><br />Mijas golf courses is among the most popular golf courses on the Costa del Sol, Spain offering all golf services.nnSANTANA GOLF in Mijas is an 18 Hole golf course par 72 of approx. 6207 metres in length, set in 138 acres of picturesque parkland. The course in Santana Golf in Mijas, sympathetically laid out by the architect Cabell B. Robinson, is set in a former avocado plantation which provided a natural solution to many problems. The final result is a magnificent course with wide and well defined fairways on level terrain, hence easily walkable, where water features play an important albeit not excessive part in the overall design. Each hole has two championship tees and two tees for general play for both men and ladies wide and well manicured putting greens surrounded by strategically placed bunkers, filled with sand produced from crushed marble. Buggy paths are provided throughout the course, beautifully integrated between the rows of fruit trees. The beautiful environment in Santana Golf in Mijas with its natural surrounding will give the golfer the overriding impression of an existing maturity in every aspect of the course. However, it is not only the beauty of the landscape and its flora and fauna that will impress the player, as the golf course itself has been provided with the best attributes to please the most discerning golfer. The course Santana Golf in Mijas has been constructed with the best means available and can boast automatic irrigation throughout the layout, as well as a sophisticated drainage system which will keep the number of days the course could be closed due to adverse weather conditions to a minimum. Santana Golf in Mijas is technically speaking a demanding course as the unique design of each hole is intended to give a continuous challenge, even for the more experienced player. The layout of the greens, well protected by greenside bunkers, as well as the many water hazards spread throughout the course, will challenge every golfer and require good course management as well as the use of every golf shot in the bag. It is difficult to speak of a signature hole at Santana Golf in Mijas as they all have something special to offer. The long Par-4 18th is one of the most demanding finishing holes along the coast according to the designer, with the lake along the right hand side and a narrow approach to the green. The 4th hole can only be defined with one word: spectacular. The views from the tee are magnificent and the Campillos stream provides a challenging approach to the green; or what about the 8th hole, with a length of 602 metre (658 yards) considered to be the longest hole of the Costa del Sol and favouring the longer hitter; not to forget the 12th Par 3, playing downhill, with a very large undulating green, many a golfer would be happy to walk away with a three here. One of the most outstanding features of Santana Golf in Mijas is without a doubt the variety in design, as each and every hole is differentiated by its own characteristics.nnLOS LAGOS in Mijas is a course, designed by Robert Trent Jones Sr., is the longer of the two which comprise of Mijas Golf International. The fairways are wide, the ground is well-taken care of and the trees decorate more than they obstruct. Los Lagos takes its name from seven thirsty water hazards. With over 150 acres of perfumed Jacaranda, exotic Araucaria Pines, etc. This mildly undulating course pays fine tribute to the skills of the American master designer Robert Trent Jones. Measuring a massive 6963 yards from the white tees, the par 71 Los Lagos course with its generous fairways serves to deceive. His design set-up, whilst fair, requires an accuracy of position if you are to avoid massive bunkers or deep water hazards in your line to the flag. Los Lagos is a course suitable for players with a large, strong swing, but it also demands great concentration to avoid the obstacles. When hitting the ball you will have to consider the great bunkers and the water hazards, which have been designed with ingenuity. This Mijas golf course is quite flat and it does not present great unevenness.nnLOS OLIVOS in Mijas presents narrower fairways, fewer water hazards, uneven ground and much more trees. The greens are not very big and many of them are in a high position. Los Olivos also designed by Trent Jones and rebuilt by Cabell Robinson. Los Olivos complements Los Lagos, but offers a tighter challenge. This par 70 course measures 6386 yards (5840 meters) was completely refurbished by Cabell Robinson during the season 2000-2001 (keeping the original design concept of Trent Jones). The main feature which distinguishes this course from the other is the abundance of trees hence the name and its smaller size, as well as fewer water hazards. The greens are smaller, undulating and well defended. Although both are the work of the same designer, there is no doubt there are interesting contrasts between the two courses: if Los Lagos is based on hazards of water and sand, Los Olivos has strategic narrow tree lined fairways and elevated greens. Los Olivos in Mijas is a course best suited for players gifted with a higher technical ability and precision in their game.
E. C. & M. CO. S. F. which stands for Electrical Construction and Maintenance Company of San Francisco was organized on December 23, 1870. The company supplied telegraph wire, insulators, and poles. They also dealt with commercial and private telegraph lines, submarine cables, and various types of fire alarm systems. E.C. & M. CO. is credited with updating Western Union Telegraph lines throughout the western states in which their insulators were nearly exclusively used. E. C & M. CO. underwent reorganization in 1877 and terminated their business operations but continued to have their insulators made by the new incorporated California Electric Works until at least 1880.
Either the Pacific Glass Works from San Francisco, California or the San Francisco Glass Works was in all probability the manufacturer of the E. C. & M. CO. insulators. These two companies merged in 1876 to form the San Francisco & Pacific Glass Works.
E. C. & M. CO. insulators were used throughout the far western states including British Columbia and Mexico with the majority used in California and Nevada.
On this particular E. C. & M. CO. insulator the color "Aurora Blue" originated when collectors named this distinctive coloration after finding examples on the route of a telegraph line between Aurora and Candelaria, Nevada which was constructed in 1880 by the Nevada and California Telegraph Company. Several telegraph lines using E. C. & M. CO. insulators were built in this mining region in the 1870's.
E. C. & M. CO. insulators are one of the most specialized insulators collected in the hobby, especially among the west coast collectors. This is because they come in a large assortment of colors ranging from purple to various blues, ambers, greens, aquas, and other exotic colors. They have a lot of historical value since they were used to service telegraph lines to the mining companies, U. S. military posts, lumber mills, and to serve telegraph lines along some of the first built railroads in the far west. In addition, they were used at a time and location when the "American West" was still considered wild.
Embossing (F-Skirt) E. C. & M. CO. S. F. (R-Skirt) [Glass button]
Index # 060
LEGAL NOTICE | protected work • All Rights reserved! © B. Egger photographer retains ownership and all copyrights in this work.
photographer © Bernard Egger.. • collections.. • sets..
📷 | 2004 BMW R 1200 CL :: rumoto images # 2008 wp
© Dieses Foto darf ohne vorherige Lizenzvereinbarung keinesfalls publiziert oder an nicht berechtigte Nutzer weiter gegeben werden.
Todos los Derechos Reservados • Tous droits réservés • Todos os Direitos Reservados • Все права защищены • Tutti i diritti riservati
licence | for any user agreement please contact Bernard Egger.
If a photographer can’t feel what he is looking at, then he is never going to get others to feel anything when they look at his pictures.
----
BMW R 1200 CL - Woodcliff Lake, New Jersey, August 2002 ... Some people consider a six-day cruise as the perfect vacation. Other's might agree, as long as the days are marked by blurred fence posts and dotted lines instead of palm trees and ocean waves. For them, BMW introduces the perfect alternative to a deck chair - the R 1200 CL.
Motorcyclists were taken aback when BMW introduced its first cruiser in 1997, but the R 1200 C quickly rose to become that year's best-selling BMW. The original has since spawned several derivatives including the Phoenix, Euro, Montana and Stiletto. This year, BMW's cruiser forms the basis for the most radical departure yet, the R 1200 CL. With its standard integral hard saddlebags, top box and distinctive handlebar-mounted fairing, the CL represents twin-cylinder luxury-touring at its finest, a completely modern luxury touring-cruiser with a touch of classic BMW.
Although based on the R 1200 C, the new CL includes numerous key changes in chassis, drivetrain, equipment and appearance, specifically designed to enhance the R 1200's abilities as a long-distance mount. While it uses the same torquey, 1170cc 61-hp version of BMW's highly successful R259 twin, the CL backs it with a six-speed overdrive transmission. A reworked Telelever increases the bike's rake for more-relaxed high-speed steering, while the fork's wider spacing provides room for the sculpted double-spoke, 16-inch wheel and 150/80 front tire. Similarly, a reinforced Monolever rear suspension controls a matching 15-inch alloy wheel and 170/80 rear tire. As you'd expect, triple disc brakes featuring BMW's latest EVO front brake system and fully integrated ABS bring the bike to a halt at day's end-and set the CL apart from any other luxury cruiser on the market.
Yet despite all the chassis changes, it's the new CL's visual statement that represents the bike's biggest break with its cruiser-mates. With its grip-to-grip sweep, the handlebar-mounted fairing evokes classic touring bikes, while the CL's distinctive quad-headlamps give the bike a decidedly avant-garde look - in addition to providing standard-setting illumination. A pair of frame-mounted lowers extends the fairing's wind coverage and provides space for some of the CL's electrics and the optional stereo. The instrument panel is exceptionally clean, surrounded by a matte gray background that matches the kneepads inset in the fairing extensions. The speedometer and tachometer flank a panel of warning lights, capped by the standard analog clock. Integrated mirror/turnsignal pods extend from the fairing to provide further wind protection. Finally, fully integrated, color-matched saddlebags combine with a standard top box to provide a steamer trunk's luggage capacity.
The CL's riding position blends elements of both tourer and cruiser, beginning with a reassuringly low, 29.3-inch seat height. The seat itself comprises two parts, a rider portion with an integral lower-back rest, and a taller passenger perch that includes a standard backrest built into the top box. Heated seats, first seen on the K 1200 LT, are also available for the CL to complement the standard heated grips. A broad, flat handlebar places those grips a comfortable reach away, and the CL's floorboards allow the rider to shift position easily without compromising control. Standard cruise control helps melt the miles on long highway stints. A convenient heel/toe shifter makes for effortless gearchanges while adding exactly the right classic touch.
The R 1200 CL backs up its cruiser origins with the same superb attention to cosmetics as is shown in the functional details. In addition to the beautifully finished bodywork, the luxury cruiser boasts an assortment of chrome highlights, including valve covers, exhaust system, saddlebag latches and frame panels, with an optional kit to add even more brightwork. Available colors include Pearl Silver Metallic, Capri Blue Metallic and Mojave Brown Metallic, this last with a choice of black or brown saddle (other colors feature black).
The R 1200 CL Engine: Gearing For The Long Haul
BMW's newest tourer begins with a solid foundation-the 61-hp R 1200 C engine. The original, 1170cc cruiser powerplant blends a broad powerband and instantaneous response with a healthy, 72 lb.-ft. of torque. Like its forebear, the new CL provides its peak torque at 3000 rpm-exactly the kind of power delivery for a touring twin. Motronic MA 2.4 engine management ensures that this Boxer blends this accessible power with long-term reliability and minimal emissions, while at the same time eliminating the choke lever for complete push-button simplicity. Of course, the MoDiTec diagnostic feature makes maintaining the CL every bit as simple as the other members of BMW's stable.
While tourers and cruisers place similar demands on their engines, a touring bike typically operates through a wider speed range. Consequently, the R 1200 CL mates this familiar engine to a new, six-speed transmission. The first five gear ratios are similar to the original R 1200's, but the sixth gear provides a significant overdrive, which drops engine speed well under 3000 rpm at 60 mph. This range of gearing means the CL can manage either responsive in-town running or relaxed freeway cruising with equal finesse, and places the luxury cruiser right in the heart of its powerband at touring speeds for simple roll-on passes.
In addition, the new transmission has been thoroughly massaged internally, with re-angled gear teeth that provide additional overlap for quieter running. Shifting is likewise improved via a revised internal shift mechanism that produces smoother, more precise gearchanges. Finally, the new transmission design is lighter (approximately 1 kg.), which helps keep the CL's weight down to a respectable 679 lbs. (wet). The improved design of this transmission will be adopted by other Boxer-twins throughout the coming year.
The CL Chassis: Wheeled Luggage Never Worked This Well
Every bit as unique as the CL's Boxer-twin drivetrain is the bike's chassis, leading off-literally and figuratively-with BMW's standard-setting Telelever front suspension. The CL's setup is identical in concept and function to the R 1200 C's fork, but shares virtually no parts with the previous cruiser's. The tourer's wider, 16-inch front wheel called for wider-set fork tubes, so the top triple clamp, fork bridge, fork tubes and axle have all been revised, and the axle has switched to a full-floating design. The aluminum Telelever itself has been further reworked to provide a slightly more raked appearance, which also creates a more relaxed steering response for improved straight-line stability. The front shock has been re-angled and its spring and damping rates changed to accommodate the new bike's suspension geometry, but is otherwise similar to the original R 1200 C's damper.
Similarly, the R 1200 CL's Monolever rear suspension differs in detail, rather than concept, from previous BMW cruisers. Increased reinforcing provides additional strength at the shock mount, while a revised final-drive housing provides mounts for the new rear brake. But the primary rear suspension change is a switch to a shock with travel-related damping, similar to that introduced on the R 1150 GS Adventure. This new shock not only provides for a smoother, more controlled ride but also produces an additional 20mm travel compared to the other cruisers, bringing the rear suspension travel to 4.72 inches.
The Telelever and Monolever bolt to a standard R 1200 C front frame that differs only in detail from the original. The rear subframe, however, is completely new, designed to accommodate the extensive luggage system and passenger seating on the R 1200 CL. In addition to the permanently affixed saddlebags, the larger seats, floor boards, top box and new side stand all require new mounting points.
All this new hardware rolls on completely restyled double-spoke wheels (16 x 3.5 front/15 x 4.0 rear) that carry wider, higher-profile (80-series) touring tires for an extremely smooth ride. Bolted to these wheels are larger disc brakes (12.0-inch front, 11.2-inch rear), with the latest edition of BMW's standard-setting EVO brakes. A pair of four-piston calipers stop the front wheel, paired with a two-piston unit-adapted from the K 1200 LT-at the rear. In keeping with the bike's touring orientation, the new CL includes BMW's latest, fully integrated ABS, which actuates both front and rear brakes through either the front hand lever or the rear brake pedal.
The CL Bodywork: Dressed To The Nines
Although all these mechanical changes ensure that the new R 1200 CL works like no other luxury cruiser, it's the bike's styling and bodywork that really set it apart. Beginning with the bike's handlebar-mounted fairing, the CL looks like nothing else on the road, but it's the functional attributes that prove its worth. The broad sweep of the fairing emphasizes its aerodynamic shape, which provides maximum wind protection with a minimum of buffeting. Four headlamps, with their horizontal/vertical orientation, give the CL its unique face and also create the best illumination outside of a baseball stadium (the high-beams are borrowed from the GS).
The M-shaped windshield, with its dipped center section, produces exceptional wind protection yet still allows the rider to look over the clear-plastic shield when rain or road dirt obscure the view. Similarly, clear extensions at the fairing's lower edges improve wind protection even further but still allow an unobstructed view forward for maneuvering in extremely close quarters. The turnsignal pods provide further wind coverage, and at the same time the integral mirrors give a clear view to the rear.
Complementing the fairing, both visually and functionally, the frame-mounted lowers divert the wind blast around the rider to provide further weather protection. Openings vent warm air from the frame-mounted twin oil-coolers and direct the heat away from the rider. As noted earlier, the lowers also house the electronics for the bike's optional alarm system and cruise control. A pair of 12-volt accessory outlets are standard.
Like the K 1200 LT, the new R 1200 CL includes a capacious luggage system as standard, all of it color-matched and designed to accommodate rider and passenger for the long haul. The permanently attached saddlebags include clamshell lids that allow for easy loading and unloading. Chrome bumper strips protect the saddlebags from minor tipover damage. The top box provides additional secure luggage space, or it can be simply unbolted to uncover an attractive aluminum luggage rack. An optional backrest can be bolted on in place of the top box. Of course, saddlebags and top box are lockable and keyed to the ignition switch.
Options & Accessories: More Personal Than A Monogram
Given BMW's traditional emphasis on touring options and the cruiser owner's typical demands for customization, it's only logical to expect a range of accessories and options for the company's first luxury cruiser. The CL fulfills those expectations with a myriad of options and accessories, beginning with heated or velour-like Soft Touch seats and a low windshield. Electronic and communications options such as an AM/FM/CD stereo, cruise control and onboard communication can make time on the road much more pleasant, whether you're out for an afternoon ride or a cross-country trek - because after all, nobody says you have to be back in six days. Other available electronic features include an anti-theft alarm, which also disables the engine.
Accessories designed to personalize the CL even further range from cosmetic to practical, but all adhere to BMW's traditional standards for quality and fit. Chrome accessories include engine-protection and saddlebag - protection hoops. On a practical level, saddlebag and top box liners simplify packing and unpacking. In addition to the backrest, a pair of rear floorboards enhance passenger comfort even more.
-
Der Luxus-Cruiser zum genussvollen Touren.
Die Motorradwelt war überrascht, als BMW Motorrad 1997 die R 1200 C, den ersten Cruiser in der Geschichte des Hauses, vorstellte. Mit dem einzigartigen Zweizylinder-Boxermotor und einem unverwechselbar eigenständigen Design gelang es auf Anhieb, sich in diesem bis dato von BMW nicht besetzten Marktsegment erfolgreich zu positionieren. Bisher wurden neben dem Basismodell R 1200 C Classic die technisch nahezu identischen Modellvarianten Avantgarde und Independent angeboten, die sich in Farbgebung, Designelementen und Ausstattungsdetails unterscheiden.
Zur Angebotserweiterung und zur Erschließung zusätzlicher Potenziale, präsentiert BMW Motorrad für das Modelljahr 2003 ein neues Mitglied der Cruiserfamilie, den Luxus-Cruiser R 1200 CL.
Er wird seine Weltpremiere im September in München auf der INTERMOT haben und voraussichtlich im Herbst 2002 auf den Markt kommen. Der Grundgedanke war, Elemente von Tourenmotorrädern auf einen Cruiser zu übertragen und ein Motorrad zu entwickeln, das Eigenschaften aus beiden Fahrzeuggattungen aufweist.
So entstand ein eigenständiges Modell, ein Cruiser zum genussvollen Touren, bei dem in Komfort und Ausstattung keine Wünsche offen bleiben.
Als technische Basis diente die R 1200 C, von der aber im wesentlichen nur der Motor, der Hinterradantrieb, der Vorderrahmen, der Tank und einige Ausstattungsumfänge übernommen wurden. Ansonsten ist das Motorrad ein völlig eigenständiger Entwurf und in weiten Teilen eine Neuentwicklung.
Fahrgestell und Design:
Einzigartiges Gesicht, optische Präsenz und Koffer integriert.
Präsenz, kraftvoller Auftritt und luxuriöser Charakter, mit diesen Worten lässt sich die Wirkung der BMW R 1200 CL kurz und treffend beschreiben. Geprägt wird dieses Motorrad von der lenkerfesten Tourenverkleidung, deren Linienführung sich in den separaten seitlichen Verkleidungsteilen am Tank fortsetzt, so dass in der Seitenansicht fast der Eindruck einer integrierten Verkleidung entsteht. Sie bietet dem Fahrer ein hohes Maß an Komfort durch guten Wind- und Wetterschutz.
Insgesamt vier in die Verkleidung integrierte Scheinwerfer, zwei für das Abblendlicht und zwei für das Fernlicht, geben dem Motorrad ein unverwechselbares, einzigartiges Gesicht und eine beeindruckende optische Wirkung, die es so bisher noch bei keinem Motorrad gab. Natürlich sorgen die vier Scheinwerfer auch für eine hervorragende Fahrbahnausleuchtung.
Besonders einfallsreich ist die aerodynamische Gestaltung der Verkleidungsscheibe mit ihrem wellenartig ausgeschnittenen oberen Rand. Sie leitet die Strömung so, dass der Fahrer wirkungsvoll geschützt wird. Gleichzeitig kann man aber wegen des Einzugs in der Mitte ungehindert über die Scheibe hinwegschauen und hat somit unabhängig von Nässe und Verschmutzung der Scheibe ein ungestörtes Sichtfeld auf die Straße.
Zur kraftvollen Erscheinung des Motorrades passt der Vorderradkotflügel, der seitlich bis tief zur Felge heruntergezogen ist. Er bietet guten Spritzschutz und unterstreicht zusammen mit dem voluminösen Vorderreifen die Dominanz der Frontpartie, die aber dennoch Gelassenheit und Eleganz ausstrahlt.
Der gegenüber den anderen Modellen flacher gestellte Telelever hebt den Cruisercharakter noch mehr hervor. Der Heckbereich wird bestimmt durch die integrierten, fest mit dem Fahrzeug verbundenen Hartschalenkoffer und das abnehmbare Topcase auf der geschwungenen Gepäckbrücke, die zugleich als Soziushaltegriff dient. Koffer und Topcase sind jeweils in Fahrzeugfarbe lackiert und bilden somit ein harmonisches Ganzes mit dem Fahrzeug.
Akzente setzen auch die stufenförmig angeordneten breiten Komfortsitze für Fahrer und Beifahrer mit der charakteristischen hinteren Abstützung. Luxus durch exklusive Farben, edle Oberflächen und Materialien.
Die R 1200 CL wurde zunächst in drei exklusiven Farben angeboten: perlsilber-metallic und capriblau-metallic mit jeweils schwarzen Sitzen und mojavebraun-metallic mit braunem Sitzbezug (wahlweise auch in schwarz).
Die Eleganz der Farben wird unterstützt durch sorgfältige Materialauswahl und perfektes Finish von Oberflächen und Fugen. So ist zum Beispiel die Gepäckbrücke aus Aluminium-Druckguß gefertigt und in weissaluminium lackiert, der Lenker verchromt und die obere Instrumentenabdeckung ebenfalls weissaluminiumfarben lackiert. Die Frontverkleidung ist vollständig mit einer Innenabdeckung versehen, und die Kniepads der seitlichen Verkleidungsteile sind mit dem gleichen Material wie die Sitze überzogen.
All dies unterstreicht den Anspruch auf Luxus und Perfektion.
Antrieb jetzt mit neuem, leiserem Sechsganggetriebe - Boxermotor unverändert.
Während der Boxermotor mit 1170 cm³ unverändert von der bisherigen R 1200 C übernommen wurde - auch die Leistungsdaten sind mit 45 kW (61 PS) und 98 Nm Drehmoment bei 3000 min-1 gleich geblieben -, ist das Getriebe der R 1200 CL neu. Abgeleitet von dem bekannten Getriebe der anderen Boxermodelle hat es jetzt auch sechs Gänge und wurde grundlegend überarbeitet. Als wesentliche Neuerung kommt eine sogenannte Hochverzahnung zum Einsatz. Diese sorgt für einen "weicheren" Zahneingriff und reduziert erheblich die Laufgeräusche der Verzahnung.
Der lang übersetzte, als "overdrive" ausgelegte, sechste Gang erlaubt drehzahlschonendes Fahren auf langen Etappen in der Ebene und senkt dort Verbrauch und Geräusch. Statt eines Schalthebels gibt es eine Schaltwippe für Gangwechsel mit einem lässigen Kick. Schaltkomfort, Geräuscharmut, niedrige Drehzahlen und dennoch genügend Kraft - Eigenschaften, die zum Genusscharakter des Fahrzeugs hervorragend passen.
Dass auch die R 1200 CL, wie jedes seit 1997 neu eingeführte BMW Motorrad weltweit, serienmäßig über die jeweils modernste Abgasreinigungstechnologie mit geregeltem Drei-Wege-Katalysator verfügt, muss fast nicht mehr erwähnt werden. Es ist bei BMW zur Selbstverständlichkeit geworden.
Fahrwerkselemente für noch mehr Komfort - Telelever neu und hinteres Federbein mit wegabhängiger Dämpfung.
Ein cruisertypisches Merkmal ist die nach vorn gestreckte Vorderradführung mit flachem Winkel zur Fahrbahn und großem Nachlauf. Dazu wurde für die R 1200 CL der nach wie vor einzigartige BMW Telelever neu ausgelegt.
Die Gabelholme stehen weiter auseinander, um dem bulligen, 150 mm breiten Vorderradreifen Platz zu bieten.
Für die Hinterradfederung kommt ein Federbein mit wegabhängiger Dämpfung zum Einsatz, das sich durch hervorragende Komforteigenschaften auszeichnet. Der Gesamtfederweg wuchs um 20 mm gegenüber den anderen Cruisermodellen auf jetzt 120 mm. Die Federbasisverstellung zur Anpassung an den Beladungszustand erfolgt hydraulisch über ein bequem zugängliches Handrad.
Hinterradschwinge optimiert und Heckrahmen neu.
Die Hinterradschwinge mit Hinterachsgehäuse, der BMW Monolever, wurde verstärkt und zur Aufnahme einer größeren Hinterradbremse angepasst.
Der verstärkte Heckrahmen ist vollständig neu, um Trittbretter, Kofferhalter, Gepäckbrücke und die neuen Sitze sowie die modifizierte Seitenstütze aufnehmen zu können. Der Vorderrahmen aus Aluminiumguss wurde mit geringfügigen Modifikationen von der bisherigen R 1200 C übernommen.
Räder aus Aluminiumguss, Sitze, Trittbretter und Lenker - alles neu.
Der optische Eindruck eines Motorrades wird ganz wesentlich auch von den Rädern bestimmt. Die R 1200 CL hat avantgardistisch gestaltete neue Gussräder aus Aluminium mit 16 Zoll (vorne) beziehungsweise 15 Zoll (hinten) Felgendurchmesser, die voluminöse Reifen im Format 150/80 vorne und 170/80 hinten aufnehmen.
Die Sitze sind für Fahrer und Beifahrer getrennt ausgeführt, um den unterschiedlichen Bedürfnissen gerecht zu werden. So ist der breite Komfortsattel für den Fahrer mit einer integrierten Beckenabstützung versehen und bietet einen hervorragenden Halt. Die Sitzhöhe beträgt 745 mm. Der Sitz für den Passagier ist ebenfalls ganz auf Bequemlichkeit ausgelegt und etwas höher als der Fahrersitz angeordnet. Dadurch hat der Beifahrer einen besseren Blick am Fahrer vorbei und kann beim Cruisen die Landschaft ungestört genießen.
Großzügige cruisertypische Trittbretter für den Fahrer tragen zum entspannten Sitzen bei. Die Soziusfußrasten, die von der K 1200 LT abgeleitet sind, bieten ebenfalls sehr guten Halt und ermöglichen zusammen mit dem günstigen Kniebeugewinkel auch dem Beifahrer ein ermüdungsfreies Touren.
Der breite, verchromte Lenker vermittelt nicht nur Cruiser-Feeling; Höhe und Kröpfungswinkel sind so ausgelegt, dass auch auf langen Fahrten keine Verspannungen auftreten. Handhebel und Schalter mit der bewährten und eigenständigen BMW Bedienlogik wurden unverändert von den anderen Modellen übernommen.
HighTech bei den Bremsen - BMW EVO-Bremse und als Sonderausstattung Integral ABS.
Sicherheit hat bei BMW traditionell höchste Priorität. Deshalb kommt bei der
R 1200 CL die schon in anderen BMW Motorrädern bewährte EVO-Bremse am Vorderrad zum Einsatz, die sich durch eine verbesserte Bremsleistung auszeichnet. Auf Wunsch gibt es das einzigartige BMW Integral ABS, dem Charakter des Motorrades entsprechend in der Vollintegralversion. Das heißt, unabhängig ob der Hand- oder Fußbremshebel betätigt wird, immer wirkt die Bremskraft optimal auf beide Räder. Im Vorderrad verzögert eine Doppel-Scheibenbremse mit 305 mm Scheibendurchmesser und im Hinterrad die von der K 1200 LT übernommene Einscheiben-Bremsanlage mit einem Scheibendurchmesser von 285 mm.
Fortschrittliche Elektrik: Vierfach-Scheinwerfer, wartungsarme Batterie und elektronischer Tachometer.
Vier Scheinwerfer, je zwei für das Abblend- und Fernlicht, geben dem Motorrad von vorne ein einzigartiges prägnantes Gesicht. Durch die kreuzweise Anordnung - die Abblendscheinwerfer sitzen nebeneinander und die Fernscheinwerfer dazwischen und übereinander - wird eine hohe Signalwirkung bei Tag und eine hervorragende Fahrbahnausleuchtung bei Dunkelheit erzielt.
Neu ist die wartungsarme, komplett gekapselte Gel-Batterie, bei der kein Wasser mehr nachgefüllt werden muss. Eine zweite Steckdose ist serienmäßig. Die Instrumente sind ebenfalls neu. Drehzahlmesser und Tachometer sind elektronisch und die Zifferblätter neu gestaltetet, ebenso die Analoguhr.
Umfangreiche Sonderausstattung für Sicherheit, Komfort und individuellen Luxus.
Die Sonderausstattung der R 1200 CL ist sehr umfangreich und reicht vom BMW Integral ABS für sicheres Bremsen über Komfortausstattungen wie Temporegelung, heizbare Lenkergriffe und Sitzheizung bis hin zu luxuriöser Individualisierung mit Softtouchsitzen, Chrompaket und fernbedientem Radio mit CD-Laufwerk.
Lat. 33° 52' 53" S. Long. 18° 29" 10" E
The Milnerton Lighthouse is situated on the shores of Table Bay on Wood Bridge Island in Milnerton. Mariners approaching Table Bay after dark are confronted by a maze of lights and a high level of background city illumination. Navigational lights tend to merge with the ever expanding lights of greater Cape Town making identification difficult. Milnerton functions in conjunction with the Robben Island and Green Point lights to avert any ambiguity in determining a safe anchorage.
The Milnerton Lighthouse was commissioned on 10 March 1960. The lighthouse is a twenty one metre cylindrical reinforced concrete tower, similar to the one at Cape Hangklip. The optic is a Stone-Chance, 250mm catadioptric group-flashing, automatic revolving pedestal. It produces three white flashes every twenty seconds and the candle power is 800,O00 cd. The height of the focal plane is 28 metres and the lighthouse has a range of 25 sea miles. The Milnerton Lighthouse has a subsidiary fixed red sector light which covers the extremities of Robben Island. It is installed in the tower below the main revolving light.
Electric power is supplied by the Blaauwberg Municipality and an automatic standby generator is installed in the base of the tower. An alarm system using coloured lights is monitored by Port Control at Table Bay harbour.
References: Southern Lights: Lighthouses of Southern Africa by Harold Williams.
Ground floor
Double parking, plus 3 for the emergency in the garden. Garden around the house with three terraces whereby there is always a place in the sun and out of the wind with different views over the greenery and water. Entrance, hallway with concrete spiral staircase and modern elevator, cupboard with power flow, wardrobe and toilet with basin. Access to the garage. This includes drainage and has hot and cold water. The space is fully insulated and is easy to customize for another destination. The first bedroom is 13 m2 and has sliding doors to the garden. The bathrooms is provided with a shower, toilet, sink, daylight and adjacent laundry room. The master bedroom (20 m2) has a private bathroom with a large rain shower, double sink and toilet.
Due to the presence of an elevator, all floors are directly connected to each other.
First floor
Bright living room (76 m2) with heater from Harrie Leenders. This area has beautiful (permanent) views over the island and the water. The open kitchen is from the brand Bulthaup (B3) and is equipped with all possible comforts of Miele including high pressure steamoven, convection oven and grill with warming drawer, induction cooking zone, wok burner (gas), fridge, freezer, dishwasher and stainless extractor with external motor. Then there is a large side room (20 m2) with balcony facing southwest.
Second floor
Large workroom (36 m2) with on two sides a roof terrace. Large stair cupboard with sink with hot and cold water. This floor is also ready to be used as a bedroom with his own bathroom and separate hobby room-/office.
Third floor
Roof terrace with Jacuzzi. Accessible by staircase with outdoor shower.
SPECIALTIES:
- leasehold surrendered till 15-07-2058.
- the house is located near by one of the three landing stages (permanent mooring is allowed);
- very energy efficient;
- thick outside walls (minimum 40 cm);
- comfortably warm in winter through floor heating;
- exterior is maintenance free;
- all roofs are having a roof terrace;
- aluminium windows, sliding doors or turn-/tipping windows by Schüco;
- maintenance garden with large pines;
- possibility for own studio and / or office;
- ventilation through wall grilles;
- six person lift, 0.6 m/sec.;
- all doors are from hard and etched glass;
- electrical fittings from Gira;
- LED orientation lights inside, on the terraces and around the facade;
- door communication with all levels and among themselves: door open, free feature and color TFT display;
- each room (including roof terrace) is multiple wired with UTP to meter cupboard (fiberglass);
- alarm system with connection to central station;
- central vacuum system;
- bathrooms with fittings by Dornbracht, two rain showers, sanitary ware from Laufen, Hüppe, Duravit and Keramag;
- noise barrier-screeds;
- walls and ceilings are plastered tight.
All Rights Reserved © 2007 Bernard Egger :: rumoto images
Usage of our photographs is defined by the laws of copyright
NO RELEASE ! NO Creative Commons license | NO flickr API |
►my profile... |►collections.. |►my sets.. |► BMW R 1200 CL
Todos los derechos reservados • Tous droits réservés • Todos os direitos reservados • Все права защищены • Tutti i diritti riservati
Auf herrlich gewundenen Küsten- oder Passstraßen die Lust und das lockere Spiel zwischen Schwerkraft und Fliehkraft zu erleben. Zu erleben wie von Kilometer zu Kilometer die positiven Gefühle intensiver werden - links, rechts, links - Landschaften und Gedanken dahin gleiten... bald schon jene Augenblicke kommen, wo die Enge der Zivilisation der überwältigenden Szenerie der Natur Platz macht und beruhigende Geräusche des Motors und Formen verschmelzen...
----
BMW R 1200 CL - Woodcliff Lake, New Jersey, August 2002 ... Some people consider a six-day cruise as the perfect vacation. Other's might agree, as long as the days are marked by blurred fence posts and dotted lines instead of palm trees and ocean waves. For them, BMW introduces the perfect alternative to a deck chair - the R 1200 CL.
Motorcyclists were taken aback when BMW introduced its first cruiser in 1997, but the R 1200 C quickly rose to become that year's best-selling BMW. The original has since spawned several derivatives including the Phoenix, Euro, Montana and Stiletto. This year, BMW's cruiser forms the basis for the most radical departure yet, the R 1200 CL. With its standard integral hard saddlebags, top box and distinctive handlebar-mounted fairing, the CL represents twin-cylinder luxury-touring at its finest, a completely modern luxury touring-cruiser with a touch of classic BMW.
Although based on the R 1200 C, the new CL includes numerous key changes in chassis, drivetrain, equipment and appearance, specifically designed to enhance the R 1200's abilities as a long-distance mount. While it uses the same torquey, 1170cc 61-hp version of BMW's highly successful R259 twin, the CL backs it with a six-speed overdrive transmission. A reworked Telelever increases the bike's rake for more-relaxed high-speed steering, while the fork's wider spacing provides room for the sculpted double-spoke, 16-inch wheel and 150/80 front tire. Similarly, a reinforced Monolever rear suspension controls a matching 15-inch alloy wheel and 170/80 rear tire. As you'd expect, triple disc brakes featuring BMW's latest EVO front brake system and fully integrated ABS bring the bike to a halt at day's end-and set the CL apart from any other luxury cruiser on the market.
Yet despite all the chassis changes, it's the new CL's visual statement that represents the bike's biggest break with its cruiser-mates. With its grip-to-grip sweep, the handlebar-mounted fairing evokes classic touring bikes, while the CL's distinctive quad-headlamps give the bike a decidedly avant-garde look - in addition to providing standard-setting illumination. A pair of frame-mounted lowers extends the fairing's wind coverage and provides space for some of the CL's electrics and the optional stereo. The instrument panel is exceptionally clean, surrounded by a matte gray background that matches the kneepads inset in the fairing extensions. The speedometer and tachometer flank a panel of warning lights, capped by the standard analog clock. Integrated mirror/turnsignal pods extend from the fairing to provide further wind protection. Finally, fully integrated, color-matched saddlebags combine with a standard top box to provide a steamer trunk's luggage capacity.
shown in the functional details. In addition to the beautifully finished bodywork, the luxury cruiser boasts an assortment of chrome highlights, including valve covers, exhaust system, saddlebag latches and frame panels, with an optional kit to add even more brightwork. Available colors include Pearl Silver Metallic, Capri Blue Metallic and Mojave Brown Metallic, this last with a choice of black or brown saddle (other colors feature black).
The R 1200 CL Engine: Gearing For The Long Haul
BMW's newest tourer begins with a solid foundation-the 61-hp R 1200 C engine. The original, 1170cc cruiser powerplant blends a broad powerband and instantaneous response with a healthy, 72 lb.-ft. of torque. Like its forebear, the new CL provides its peak torque at 3000 rpm-exactly the kind of power delivery for a touring twin. Motronic MA 2.4 engine management ensures that this Boxer blends this accessible power with long-term reliability and minimal emissions, while at the same time eliminating the choke lever for complete push-button simplicity. Of course, the MoDiTec diagnostic feature makes maintaining the CL every bit as simple as the other members of BMW's stable.
While tourers and cruisers place similar demands on their engines, a touring bike typically operates through a wider speed range. Consequently, the R 1200 CL mates this familiar engine to a new, six-speed transmission. The first five gear ratios are similar to the original R 1200's, but the sixth gear provides a significant overdrive, which drops engine speed well under 3000 rpm at 60 mph. This range of gearing means the CL can manage either responsive in-town running or relaxed freeway cruising with equal finesse, and places the luxury cruiser right in the heart of its powerband at touring speeds for simple roll-on passes.
In addition, the new transmission has been thoroughly massaged internally, with re-angled gear teeth that provide additional overlap for quieter running. Shifting is likewise improved via a revised internal shift mechanism that produces smoother, more precise gearchanges. Finally, the new transmission design is lighter (approximately 1 kg.), which helps keep the CL's weight down to a respectable 679 lbs. (wet). The improved design of this transmission will be adopted by other Boxer-twins throughout the coming year.
The CL Chassis: Wheeled Luggage Never Worked This Well
Every bit as unique as the CL's Boxer-twin drivetrain is the bike's chassis, leading off-literally and figuratively-with BMW's standard-setting Telelever front suspension. The CL's setup is identical in concept and function to the R 1200 C's fork, but shares virtually no parts with the previous cruiser's. The tourer's wider, 16-inch front wheel called for wider-set fork tubes, so the top triple clamp, fork bridge, fork tubes and axle have all been revised, and the axle has switched to a full-floating design. The aluminum Telelever itself has been further reworked to provide a slightly more raked appearance, which also creates a more relaxed steering response for improved straight-line stability. The front shock has been re-angled and its spring and damping rates changed to accommodate the new bike's suspension geometry, but is otherwise similar to the original R 1200 C's damper.
Similarly, the R 1200 CL's Monolever rear suspension differs in detail, rather than concept, from previous BMW cruisers. Increased reinforcing provides additional strength at the shock mount, while a revised final-drive housing provides mounts for the new rear brake. But the primary rear suspension change is a switch to a shock with travel-related damping, similar to that introduced on the R 1150 GS Adventure. This new shock not only provides for a smoother, more controlled ride but also produces an additional 20mm travel compared to the other cruisers, bringing the rear suspension travel to 4.72 inches.
The Telelever and Monolever bolt to a standard R 1200 C front frame that differs only in detail from the original. The rear subframe, however, is completely new, designed to accommodate the extensive luggage system and passenger seating on the R 1200 CL. In addition to the permanently affixed saddlebags, the larger seats, floor boards, top box and new side stand all require new mounting points.
All this new hardware rolls on completely restyled double-spoke wheels (16 x 3.5 front/15 x 4.0 rear) that carry wider, higher-profile (80-series) touring tires for an extremely smooth ride. Bolted to these wheels are larger disc brakes (12.0-inch front, 11.2-inch rear), with the latest edition of BMW's standard-setting EVO brakes. A pair of four-piston calipers stop the front wheel, paired with a two-piston unit-adapted from the K 1200 LT-at the rear. In keeping with the bike's touring orientation, the new CL includes BMW's latest, fully integrated ABS, which actuates both front and rear brakes through either the front hand lever or the rear brake pedal.
The CL Bodywork: Dressed To The Nines
Although all these mechanical changes ensure that the new R 1200 CL works like no other luxury cruiser, it's the bike's styling and bodywork that really set it apart. Beginning with the bike's handlebar-mounted fairing, the CL looks like nothing else on the road, but it's the functional attributes that prove its worth. The broad sweep of the fairing emphasizes its aerodynamic shape, which provides maximum wind protection with a minimum of buffeting. Four headlamps, with their horizontal/vertical orientation, give the CL its unique face and also create the best illumination outside of a baseball stadium (the high-beams are borrowed from the GS).
The M-shaped windshield, with its dipped center section, produces exceptional wind protection yet still allows the rider to look over the clear-plastic shield when rain or road dirt obscure the view. Similarly, clear extensions at the fairing's lower edges improve wind protection even further but still allow an unobstructed view forward for maneuvering in extremely close quarters. The turnsignal pods provide further wind coverage, and at the same time the integral mirrors give a clear view to the rear.
Complementing the fairing, both visually and functionally, the frame-mounted lowers divert the wind blast around the rider to provide further weather protection. Openings vent warm air from the frame-mounted twin oil-coolers and direct the heat away from the rider. As noted earlier, the lowers also house the electronics for the bike's optional alarm system and cruise control. A pair of 12-volt accessory outlets are standard.
Like the K 1200 LT, the new R 1200 CL includes a capacious luggage system as standard, all of it color-matched and designed to accommodate rider and passenger for the long haul. The permanently attached saddlebags include clamshell lids that allow for easy loading and unloading. Chrome bumper strips protect the saddlebags from minor tipover damage. The top box provides additional secure luggage space, or it can be simply unbolted to uncover an attractive aluminum luggage rack. An optional backrest can be bolted on in place of the top box. Of course, saddlebags and top box are lockable and keyed to the ignition switch.
Options & Accessories: More Personal Than A Monogram
Given BMW's traditional emphasis on touring options and the cruiser owner's typical demands for customization, it's only logical to expect a range of accessories and options for the company's first luxury cruiser. The CL fulfills those expectations with a myriad of options and accessories, beginning with heated or velour-like Soft Touch seats and a low windshield. Electronic and communications options such as an AM/FM/CD stereo, cruise control and onboard communication can make time on the road much more pleasant, whether you're out for an afternoon ride or a cross-country trek - because after all, nobody says you have to be back in six days. Other available electronic features include an anti-theft alarm, which also disables the engine.
Accessories designed to personalize the CL even further range from cosmetic to practical, but all adhere to BMW's traditional standards for quality and fit. Chrome accessories include engine-protection and saddlebag - protection hoops. On a practical level, saddlebag and top box liners simplify packing and unpacking. In addition to the backrest, a pair of rear floorboards enhance passenger comfort even more.
The CL's riding position blends elements of both tourer and cruiser, beginning with a reassuringly low, 29.3-inch seat height. The seat itself comprises two parts, a rider portion with an integral lower-back rest, and a taller passenger perch that includes a standard backrest built into the top box. Heated seats, first seen on the K 1200 LT, are also available for the CL to complement the standard heated grips. A broad, flat handlebar places those grips a comfortable reach away, and the CL's floorboards allow the rider to shift position easily without compromising control. Standard cruise control helps melt the miles on long highway stints. A convenient heel/toe shifter makes for effortless gearchanges while adding exactly the right classic touch.
The R 1200 CL backs up its cruiser origins with the same superb attention to cosmetics as is
- - - - -
Der Luxus-Cruiser zum genußvollen Touren.
Die Motorradwelt war überrascht, als BMW Motorrad 1997 die R 1200 C, den ersten Cruiser in der Geschichte des Hauses, vorstellte. Mit dem einzigartigen Zweizylinder-Boxermotor und einem unverwechselbar eigenständigen Design gelang es auf Anhieb, sich in diesem bis dato von BMW nicht besetzten Marktsegment erfolgreich zu positionieren. Bisher wurden neben dem Basismodell R 1200 C Classic die technisch nahezu identischen Modellvarianten Avantgarde und Independent angeboten, die sich in Farbgebung, Designelementen und Ausstattungsdetails unterscheiden.
Zur Angebotserweiterung und zur Erschließung zusätzlicher Potenziale, präsentiert BMW Motorrad für das Modelljahr 2003 ein neues Mitglied der Cruiserfamilie, den Luxus-Cruiser R 1200 CL. Er wird seine Weltpremiere im September in München auf der INTERMOT haben und voraussichtlich im Herbst 2002 auf den Markt kommen. Der Grundgedanke war, Elemente von Tourenmotorrädern auf einen Cruiser zu übertragen und ein Motorrad zu entwickeln, das Eigenschaften aus beiden Fahrzeuggattungen aufweist.
So entstand ein eigenständiges Modell, ein Cruiser zum genussvollen Touren, bei dem in Komfort und Ausstattung keine Wünsche offen bleiben.
Als technische Basis diente die R 1200 C, von der aber im wesentlichen nur der Motor, der Hinterradantrieb, der Vorderrahmen, der Tank und einige Ausstattungsumfänge übernommen wurden. Ansonsten ist das Motorrad ein völlig eigenständiger Entwurf und in weiten Teilen eine Neuentwicklung.
Fahrgestell und Design:
Einzigartiges Gesicht, optische Präsenz und Koffer integriert.
Präsenz, kraftvoller Auftritt und luxuriöser Charakter, mit diesen Worten lässt sich die Wirkung der BMW R 1200 CL kurz und treffend beschreiben. Geprägt wird dieses Motorrad von der lenkerfesten Tourenverkleidung, deren Linienführung sich in den separaten seitlichen Verkleidungsteilen am Tank fortsetzt, so dass in der Seitenansicht fast der Eindruck einer integrierten Verkleidung entsteht. Sie bietet dem Fahrer ein hohes Maß an Komfort durch guten Wind- und Wetterschutz.
Insgesamt vier in die Verkleidung integrierte Scheinwerfer, zwei für das Abblendlicht und zwei für das Fernlicht, geben dem Motorrad ein unverwechselbares, einzigartiges Gesicht und eine beeindruckende optische Wirkung, die es so bisher noch bei keinem Motorrad gab. Natürlich sorgen die vier Scheinwerfer auch für eine hervorragende Fahrbahnausleuchtung.
Besonders einfallsreich ist die aerodynamische Gestaltung der Verkleidungsscheibe mit ihrem wellenartig ausgeschnittenen oberen Rand. Sie leitet die Strömung so, dass der Fahrer wirkungsvoll geschützt wird. Gleichzeitig kann man aber wegen des Einzugs in der Mitte ungehindert über die Scheibe hinwegschauen und hat somit unabhängig von Nässe und Verschmutzung der Scheibe ein ungestörtes Sichtfeld auf die Straße.
Zur kraftvollen Erscheinung des Motorrades passt der Vorderradkotflügel, der seitlich bis tief zur Felge heruntergezogen ist. Er bietet guten Spritzschutz und unterstreicht zusammen mit dem voluminösen Vorderreifen die Dominanz der Frontpartie, die aber dennoch Gelassenheit und Eleganz ausstrahlt.
Der gegenüber den anderen Modellen flacher gestellte Telelever hebt den Cruisercharakter noch mehr hervor. Der Heckbereich wird bestimmt durch die integrierten, fest mit dem Fahrzeug verbundenen Hartschalenkoffer und das abnehmbare Topcase auf der geschwungenen Gepäckbrücke, die zugleich als Soziushaltegriff dient. Koffer und Topcase sind jeweils in Fahrzeugfarbe lackiert und bilden somit ein harmonisches Ganzes mit dem Fahrzeug.
Akzente setzen auch die stufenförmig angeordneten breiten Komfortsitze für Fahrer und Beifahrer mit der charakteristischen hinteren Abstützung. Luxus durch exklusive Farben, edle Oberflächen und Materialien.
Die R 1200 CL wird zunächst in drei exklusiven Farben angeboten: perlsilber-metallic und capriblau-metallic mit jeweils schwarzen Sitzen und mojavebraun-metallic mit braunem Sitzbezug (wahlweise auch in schwarz). Die Eleganz der Farben wird unterstützt durch sorgfältige Materialauswahl und perfektes Finish von Oberflächen und Fugen. So ist zum Beispiel die Gepäckbrücke aus Aluminium-Druckguß gefertigt und in weissaluminium lackiert, der Lenker verchromt und die obere Instrumentenabdeckung ebenfalls weissaluminiumfarben lackiert. Die Frontverkleidung ist vollständig mit einer Innenabdeckung versehen, und die Kniepads der seitlichen Verkleidungsteile sind mit dem gleichen Material wie die Sitze überzogen.
All dies unterstreicht den Anspruch auf Luxus und Perfektion.
Antrieb jetzt mit neuem, leiserem Sechsganggetriebe - Boxermotor unverändert.
Während der Boxermotor mit 1170 cm³ unverändert von der bisherigen R 1200 C übernommen wurde - auch die Leistungsdaten sind mit 45 kW (61 PS) und 98 Nm Drehmoment bei 3 000 min-1 gleich geblieben -, ist das Getriebe der R 1200 CL neu. Abgeleitet von dem bekannten Getriebe der anderen Boxermodelle hat es jetzt auch sechs Gänge und wurde grundlegend überarbeitet. Als wesentliche Neuerung kommt eine sogenannte Hochverzahnung zum Einsatz. Diese sorgt für einen "weicheren" Zahneingriff und reduziert erheblich die Laufgeräusche der Verzahnung.
Der lang übersetzte, als "overdrive" ausgelegte, sechste Gang erlaubt drehzahlschonendes Fahren auf langen Etappen in der Ebene und senkt dort Verbrauch und Geräusch. Statt eines Schalthebels gibt es eine Schaltwippe für Gangwechsel mit einem lässigen Kick. Schaltkomfort, Geräuscharmut, niedrige Drehzahlen und dennoch genügend Kraft - Eigenschaften, die zum Genusscharakter des Fahrzeugs hervorragend passen.
Dass auch die R 1200 CL, wie jedes seit 1997 neu eingeführte BMW Motorrad weltweit, serienmäßig über die jeweils modernste Abgasreinigungstechnologie mit geregeltem Drei-Wege-Katalysator verfügt, muss fast nicht mehr erwähnt werden. Es ist bei BMW zur Selbstverständlichkeit geworden.
Fahrwerkselemente für noch mehr Komfort - Telelever neu und hinteres Federbein mit wegabhängiger Dämpfung.
Ein cruisertypisches Merkmal ist die nach vorn gestreckte Vorderradführung mit flachem Winkel zur Fahrbahn und großem Nachlauf. Dazu wurde für die R 1200 CL der nach wie vor einzigartige BMW Telelever neu ausgelegt.
Die Gabelholme stehen weiter auseinander, um dem bulligen, 150 mm breiten Vorderradreifen Platz zu bieten.
Für die Hinterradfederung kommt ein Federbein mit wegabhängiger Dämpfung zum Einsatz, das sich durch hervorragende Komforteigenschaften auszeichnet. Der Gesamtfederweg wuchs um 20 mm gegenüber den anderen Cruisermodellen auf jetzt 120 mm. Die Federbasisverstellung zur Anpassung an den Beladungszustand erfolgt hydraulisch über ein bequem zugängliches Handrad.
Hinterradschwinge optimiert und Heckrahmen neu.
Die Hinterradschwinge mit Hinterachsgehäuse, der BMW Monolever, wurde verstärkt und zur Aufnahme einer größeren Hinterradbremse angepasst.
Der verstärkte Heckrahmen ist vollständig neu, um Trittbretter, Kofferhalter, Gepäckbrücke und die neuen Sitze sowie die modifizierte Seitenstütze aufnehmen zu können. Der Vorderrahmen aus Aluminiumguss wurde mit geringfügigen Modifikationen von der bisherigen R 1200 C übernommen.
Räder aus Aluminiumguss, Sitze, Trittbretter und Lenker - alles neu.
Der optische Eindruck eines Motorrades wird ganz wesentlich auch von den Rädern bestimmt. Die R 1200 CL hat avantgardistisch gestaltete neue Gussräder aus Aluminium mit 16 Zoll (vorne) beziehungsweise 15 Zoll (hinten) Felgendurchmesser, die voluminöse Reifen im Format 150/80 vorne und 170/80 hinten aufnehmen.
Die Sitze sind für Fahrer und Beifahrer getrennt ausgeführt, um den unterschiedlichen Bedürfnissen gerecht zu werden. So ist der breite Komfortsattel für den Fahrer mit einer integrierten Beckenabstützung versehen und bietet einen hervorragenden Halt. Die Sitzhöhe beträgt 745 mm. Der Sitz für den Passagier ist ebenfalls ganz auf Bequemlichkeit ausgelegt und etwas höher als der Fahrersitz angeordnet. Dadurch hat der Beifahrer einen besseren Blick am Fahrer vorbei und kann beim Cruisen die Landschaft ungestört genießen.
Großzügige cruisertypische Trittbretter für den Fahrer tragen zum entspannten Sitzen bei. Die Soziusfußrasten, die von der K 1200 LT abgeleitet sind, bieten ebenfalls sehr guten Halt und ermöglichen zusammen mit dem günstigen Kniebeugewinkel auch dem Beifahrer ein ermüdungsfreies Touren.
Der breite, verchromte Lenker vermittelt nicht nur Cruiser-Feeling; Höhe und Kröpfungswinkel sind so ausgelegt, dass auch auf langen Fahrten keine Verspannungen auftreten. Handhebel und Schalter mit der bewährten und eigenständigen BMW Bedienlogik wurden unverändert von den anderen Modellen übernommen.
HighTech bei den Bremsen - BMW EVO-Bremse und als Sonderausstattung Integral ABS.
Sicherheit hat bei BMW traditionell höchste Priorität. Deshalb kommt bei der
R 1200 CL die schon in anderen BMW Motorrädern bewährte EVO-Bremse am Vorderrad zum Einsatz, die sich durch eine verbesserte Bremsleistung auszeichnet. Auf Wunsch gibt es das einzigartige BMW Integral ABS, dem Charakter des Motorrades entsprechend in der Vollintegralversion. Das heißt, unabhängig ob der Hand- oder Fußbremshebel betätigt wird, immer wirkt die Bremskraft optimal auf beide Räder. Im Vorderrad verzögert eine Doppel-Scheibenbremse mit 305 mm Scheibendurchmesser und im Hinterrad die von der K 1200 LT übernommene Einscheiben-Bremsanlage mit einem Scheibendurchmesser von 285 mm.
Fortschrittliche Elektrik: Vierfach-Scheinwerfer, wartungsarme Batterie und elektronischer Tachometer.
Vier Scheinwerfer, je zwei für das Abblend- und Fernlicht, geben dem Motorrad von vorne ein einzigartiges prägnantes Gesicht. Durch die kreuzweise Anordnung - die Abblendscheinwerfer sitzen nebeneinander und die Fernscheinwerfer dazwischen und übereinander - wird eine hohe Signalwirkung bei Tag und eine hervorragende Fahrbahnausleuchtung bei Dunkelheit erzielt.
Neu ist die wartungsarme, komplett gekapselte Gel-Batterie, bei der kein Wasser mehr nachgefüllt werden muss. Eine zweite Steckdose ist serienmäßig. Die Instrumente sind ebenfalls neu. Drehzahlmesser und Tachometer sind elektronisch und die Zifferblätter neu gestaltetet, ebenso die Analoguhr.
Umfangreiche Sonderausstattung für Sicherheit, Komfort und individuellen Luxus.
Die Sonderausstattung der R 1200 CL ist sehr umfangreich und reicht vom BMW Integral ABS für sicheres Bremsen über Komfortausstattungen wie Temporegelung, heizbare Lenkergriffe und Sitzheizung bis hin zu luxuriöser Individualisierung mit Softtouchsitzen, Chrompaket und fernbedientem Radio mit CD-Laufwerk.
BMW R 1200 CL motorcycle (c) Bernard Egger :: rumoto images CL02
TEIGN C Damen Stan 1405
MMSI: 235082804
Call Sign: MWBM9
AIS Vessel Type: Dredger
GENERAL
Damen Stan 1405
DAMEN YARD NUMBER: 503705
Avelingen-West 20
4202 MS Gorinchem
The Netherlands
Phone: +31 (0)183 63 99 11
info@damen.com
DELIVERY DATE August 2001
BASIC FUNCTIONS Towing, mooring, pushing and dredging operations
FLAG United Kingdom [GB]
OWNED Teignmouth Harbour Commission
CASSCATION: Bureau Veritas 1 HULL MACH Seagoing Launch
DIMENSIONS
LENGTH 14.40 m
BEAM 4.73 m
DEPTH AT SIDES 205 m
DRAUGHT AFT 171 m
DISPLACEMENT 48 ton
TANK CAPACITIES
Fuel oil 6.9 m³
PERFORMANCES (TRIALS)
BOLLARD PULL AHEAD 8.0 ton
SPEED 9.8 knots
PROPULSION SYSTEM
MAIN ENGINE 2x Caterpillar 3406C TA/A
TOTAL POWER 477 bmW (640i hp) at 1800 rpm
GEARBOX 2x Twin Disc MG 5091/3.82:1
PROPELLERS Bronze fixed pitch propeller
KORT NOZZELS Van de Giessen 2x 1000 mm with stainless steel innerings
ENGINE CONTROL Kobelt
STEERING GEAR 2x 25 mm single plate Powered hydraulic 2x 45, rudder indicator
AUXILIARY EQUIPMENT
BILGE PUMP Sterling SIH 20, 32 m/hr
BATTERY SETS 2x 24V, 200 Ah + change over facility
COOLING SYSTEM Closed cooling system
ALARM SYSTEM Engines, gearboxes and bilge alarms
FRESH WATER PRESSURE SET Speck 24V
DECK LAY-OUT
ANCHORS 2x 48 kg Pool (HHP)
CHAIN 70 m, Ø 13mm, shortlink U2
ANCHOR WINCH Hand-operated
TOWING HOOK Mampaey, 15.3 ton SWL
COUPLING WINCH
PUSHBOW Cylindrical nubber fender Ø 380 mm
ACCOMMODATION
The wheelhouse ceiling and sides are insulated with mineral wool and
panelled. The wheelhouse floor is covered with rubber/synthetic floor
covering, make Bolidt, color blue The wheelhouse has one
helmsman seat, a bench and table with chair Below deck two berths, a
kitchen unit and a toilet space are arranged.
NAUTICAL AND COMMUNICATION EQUIPMENT
SEARCHLIGHT Den Haan 170 W 24 V
VHF RADIO Sailor RT 2048 25 W
NAVIGATION Navigation lights incl towing and pilot lights
Teignmouth Harbour Commission
The Harbour Commission is a Trust Port created by Statute.
The principal Order is the Teignmouth Harbour Order 1924
as amended by the Teignmouth Harbour Revision Order 2003
From Wikipedia, the free encyclopedia
This article is about the French cathedral. For other uses, see Notre-Dame de Paris (disambiguation).
Notre-Dame de Paris
South façade and the nave of Notre-Dame in 2017, two years before the fire
Map
Wikimedia | © OpenStreetMap
48°51′11″N 2°21′00″E
LocationParvis Notre-Dame – Place Jean-Paul-II, Paris
CountryFrance
DenominationCatholic Church
Sui iuris churchLatin Church
WebsiteOfficial website Edit this at Wikidata
History
StatusCathedral, minor basilica
Founded24 March 1163 to 25 April 1163 (laying of the cornerstone)
FounderMaurice de Sully
Consecrated19 May 1182 (high altar)
Relics heldCrown of thorns, a nail from the True Cross, and a sliver of the True Cross
Architecture
Functional statusReopened 7 December 2024
Architectural typeGothic
StyleFrench Gothic
Years built1163–1345
Groundbreaking1163; 862 years ago
Completed1345; 680 years ago
Specifications
Length128 m (420 ft)
Width48 m (157 ft)
Nave height35 metres (115 ft)[1]
Number of towers2
Tower height69 m (226 ft)
Number of spires1 (the third, completed 16 December 2023)[2]
Spire height96 m (315 ft)
MaterialsLimestone and marble
Bells10 (bronze)
Administration
ArchdioceseParis
Clergy
ArchbishopLaurent Ulrich
RectorOlivier Ribadeau Dumas
Laity
Director of musicSylvain Dieudonné[3]
Organist(s)Olivier Latry (since 1985);
Vincent Dubois [fr] (since 2016);
Thierry Escaich (since 2024);
Thibault Fajoles (assistant organist, since 2024)
UNESCO World Heritage Site
CriteriaI, II, IV[4]
Designated1991
Part ofParis, Banks of the Seine
Reference no.600
Monument historique
Official nameCathédrale Notre-Dame de Paris
TypeCathédrale
Designated1862[5]
Reference no.PA00086250
Notre-Dame de Paris (French: Cathédrale Notre-Dame de Paris French: [nɔtʁ(ə) dam də paʁi] ⓘ; meaning "Cathedral of Our Lady of Paris"), often referred to simply as Notre-Dame,[a][b] is a medieval Catholic cathedral on the Île de la Cité (an island in the River Seine), in the 4th arrondissement of Paris, France. It is the cathedral church of the Roman Catholic Archdiocese of Paris.
The cathedral, dedicated to the Virgin Mary ("Our Lady"),[9] is considered one of the finest examples of French Gothic architecture. Several attributes set it apart from the earlier Romanesque style, including its pioneering use of the rib vault and flying buttress, its enormous and colourful rose windows, and the naturalism and abundance of its sculptural decoration.[10] Notre-Dame is also exceptional for its three pipe organs (one historic) and its immense church bells.[11]
The construction of the cathedral began in 1163 under Bishop Maurice de Sully and was largely completed by 1260, though it was modified in succeeding centuries.[12] In the 1790s, during the French Revolution, Notre-Dame suffered extensive desecration; much of its religious imagery was damaged or destroyed. In the 19th century, the cathedral hosted the coronation of Napoleon and the funerals of many of the French Republic's presidents. The 1831 publication of Victor Hugo's novel Notre-Dame de Paris (English title: The Hunchback of Notre-Dame) inspired interest which led to restoration between 1844 and 1864, supervised by Eugène Viollet-le-Duc. On 26 August 1944, the Liberation of Paris from German occupation was celebrated in Notre-Dame with the singing of the Magnificat. Beginning in 1963, the cathedral's façade was cleaned of soot and grime. Another cleaning and restoration project was carried out between 1991 and 2000.[13] A fire in April 2019 caused serious damage, closing the cathedral for extensive and costly repairs; it reopened in December 2024.[14]
It is a widely recognised symbol of both the city of Paris and the French nation. In 1805, it was awarded honorary status as a minor basilica. As the cathedral of the archdiocese of Paris, Notre-Dame contains the cathedra or seat of the archbishop of Paris (currently Laurent Ulrich). In the early 21st century, about 12 million people visited Notre-Dame annually, making it the most visited monument in Paris.[15]
Since 1905, Notre-Dame, like the other cathedrals in France, has been owned by the French government, with the exclusive rights of use granted to the French Roman Catholic Church. The French government is responsible for its maintenance.
Over time, the cathedral has gradually been stripped of many decorations and artworks. It still contains Gothic, Baroque, and 19th-century sculptures, 17th- and early 18th-century altarpieces, and some of the most important relics in Christendom, including the crown of thorns, and a sliver and nail from the True Cross.
Key dates
The Cathedral in 1699
The church restored by Viollet-le-Duc (1860s)
Cathedral fire (April 15, 2019)
4th century – Cathedral of Saint Étienne, dedicated to Saint Stephen, built just west of present cathedral[16]
1163 – Bishop Maurice de Sully begins construction of new cathedral.[16]
1182 or 1185 – Choir completed, clerestory with two levels: upper level of upright windows with pointed arches, still without tracery, lower level of small rose windows.
c. 1200 – Construction of nave, with flying buttresses, completed.
c. 1210–1220 – Construction of towers begins.
c. 1210–1220 – Two new traverses join towers with nave. West rose window complete in 1220.
After 1220 – New flying buttresses added to choir walls, remodeling of the clerestories: pointed arched windows are enlarged downward, replacing the triforia, and get tracery.
1235–1245 – Chapels constructed between buttresses of nave and choir.
1250–1260 – North transept lengthened by Jean de Chelles to provide more light. North rose window constructed.[17]
1270 – South transept and rose window completed by Pierre de Montreuil.[18]
1699 – Beginning of major redecoration of interior in Louis XIV style by Hardouin Mansart and Robert de Cotte.[19]
1725–1727 – South rose window, poorly built, is reconstructed. Later entirely rebuilt in 1854.
1790 – In the French Revolution the Revolutionary Paris Commune removes all bronze, lead, and precious metals from the cathedral to be melted down.[18]
1793 – The cathedral is converted into a Temple of Reason and then Temple of the Supreme Being.
1801–1802 – With the Concordat of 1801, Napoleon restores the use of the cathedral (though not ownership) to the Catholic Church.
1804 – On 2 December, Napoleon crowns himself Emperor at Notre-Dame.
1844–1864 – Major restoration by Jean-Baptiste Lassus and Eugène Viollet-le-Duc with additions in the spirit of the original Gothic style.[20]
1871 – In final days of the Paris Commune, the Communards prepared to burn the cathedral, but abandoned their plan since it would necessarily also burn the crowded neighboring hospital for the elderly.
1944 – On 26 August, General Charles de Gaulle celebrates the Liberation of Paris with a special Mass at Notre-Dame.
1963 – Culture Minister André Malraux begins the cleaning of centuries of grime and soot from the cathedral façade.
2019 – On 15 April, a fire destroys a large part of the roof and the flèche.
2021 – Reconstruction begins, which lasted 3 years.
2024 – Reopening ceremonies 7–8 December.[21] On 13 December 2024 the revered Crown of Thorns relic was returned to the cathedral.[22]
History
Outline of the primitive Cathedral of Notre-Dame in 1150, on the spot of the nave, the transept and the choir of the current building. The Cathedral of Saint Étienne was located to the west, at the level of today's parvis.
Construction sequence from 12th century to present-day, created by Stephen Murray and Myles Zhang
It is believed that before the arrival of Christianity in France, a Gallo-Roman temple dedicated to Jupiter stood on the site of Notre-Dame. Evidence for this includes the Pillar of the Boatmen, discovered beneath the cathedral in 1710. In the 4th or 5th century, a large early Christian church, the Cathedral of Saint Étienne, was built on the site, close to the royal palace.[16] The entrance was situated about 40 metres (130 ft) west of the present west front of Notre-Dame, and the apse was located about where the west façade is today. It was roughly half the size of the later Notre-Dame, 70 metres (230 ft) long—and separated into nave and four aisles by marble columns, then decorated with mosaics.[13][23]
The last church before the cathedral of Notre-Dame was a Romanesque remodelling of Saint-Étienne that, although enlarged and remodelled, was found to be unfit for the growing population of Paris.[24][c] A baptistery, the Church of Saint-John-le-Rond, built about 452, was located on the north side of the west front of Notre-Dame until the work of Jacques-Germain Soufflot in the 18th century.[26]
In 1160, the bishop of Paris, Maurice de Sully,[26] decided to build a new and much larger church. He summarily demolished the earlier cathedral and recycled its materials.[24] Sully decided that the new church should be built in the Gothic style, which had been inaugurated at the royal abbey of Saint Denis in the late 1130s.[23]
Construction
The chronicler Jean de Saint-Victor [fr] recorded in the Memorial Historiarum that the construction of Notre-Dame began between 24 March and 25 April 1163 with the laying of the cornerstone in the presence of King Louis VII and Pope Alexander III.[27][28] Four phases of construction took place under bishops Maurice de Sully and Eudes de Sully (not related to Maurice), according to masters whose names have been lost. Analysis of vault stones that fell in the 2019 fire shows that they were quarried in Vexin, a county northwest of Paris, and presumably brought up the Seine by boat.[29]
Cross-section of the double supporting arches and buttresses of the nave, drawn by Eugène Viollet-le-Duc as they would have appeared from 1220 to 1230[30]
The first phase began with the construction of the choir and its two ambulatories. According to Robert of Torigni, the choir was completed in 1177 and the high altar consecrated on 19 May 1182 by Cardinal Henri de Château-Marçay, the Papal legate in Paris, and Maurice de Sully.[31][failed verification] The second phase, from 1182 to 1190, concerned the construction of the four sections of the nave behind the choir and its aisles to the height of the clerestories. It began after the completion of the choir but ended before the final allotted section of the nave was finished. Beginning in 1190, the bases of the façade were put in place, and the first traverses were completed.[13] Patriarch Heraclius of Jerusalem called for the Third Crusade in 1185 from the still-incomplete cathedral.
Louis IX deposited the relics of the passion of Christ, which included the crown of thorns, a nail from the True Cross and a sliver of the True Cross, which he had purchased at great expense from the Latin Emperor Baldwin II, in the cathedral during the construction of the Sainte-Chapelle. An under-shirt, believed to have belonged to Louis, was added to the collection of relics at some time after his death.
Transepts were added at the choir, where the altar was located, in order to bring more light into the centre of the church. The use of simpler four-part rather than six-part rib vaults meant that the roofs were stronger and could be higher. After Bishop Maurice de Sully's death in 1196, his successor, Eudes de Sully oversaw the completion of the transepts, and continued work on the nave, which was nearing completion at the time of his death in 1208. By this time, the western façade was already largely built; it was completed around the mid-1240s. Between 1225 and 1250 the upper gallery of the nave was constructed, along with the two towers on the west façade.[32]
Arrows show forces in vault and current flying buttresses (detailed description)
Another significant change came in the mid-13th century, when the transepts were remodelled in the latest Rayonnant style; in the late 1240s Jean de Chelles added a gabled portal to the north transept topped by a spectacular rose window. Shortly afterward (from 1258) Pierre de Montreuil executed a similar scheme on the southern transept. Both these transept portals were richly embellished with sculpture; the south portal depicts scenes from the lives of Saint Stephen and of various local saints, and the north portal featured the infancy of Christ and the story of Theophilus in the tympanum, with a highly influential statue of the Virgin and Child in the trumeau.[33][32] Master builders Pierre de Chelles, Jean Ravy [fr], Jean le Bouteiller, and Raymond du Temple [fr] succeeded de Chelles and de Montreuil and then each other in the construction of the cathedral. Ravy completed de Chelles's rood screen and chevet chapels, then began the 15-metre (49 ft) flying buttresses of the choir. Jean le Bouteiller, Ravy's nephew, succeeded him in 1344 and was himself replaced on his death in 1363 by his deputy, Raymond du Temple.
Philip the Fair opened the first Estates General in the cathedral in 1302.
An important innovation in the 12th century was the introduction of the flying buttress.[34] Before the buttresses, all of the weight of the roof pressed outward and down to the walls, and the abutments supporting them. With the flying buttress, the weight was carried by the ribs of the vault entirely outside the structure to a series of counter-supports, which were topped with stone pinnacles which gave them greater weight. The buttresses meant that the walls could be higher and thinner, and could have larger windows. The date of the first buttresses is not known with precision beyond an installation date in the 12th century. Art historian Andrew Tallon has argued, based on detailed laser scans of the entire structure, that the buttresses were part of the original design. According to Tallon, the scans indicate that "the upper part of the building has not moved one smidgen in 800 years,"[35] whereas if they were added later some movement from prior to their addition would be expected. Tallon thus concluded that flying buttresses were present from the outset.[35][36] The first buttresses were replaced by larger and stronger ones in the 14th century; these had a reach of fifteen metres (50 ft) between the walls and counter-supports.[13]
John of Jandun recognized the cathedral as one of Paris's three most important buildings [prominent structures] in his 1323 Treatise on the Praises of Paris:
That most glorious church of the most glorious Virgin Mary, mother of God, deservedly shines out, like the sun among stars. And although some speakers, by their own free judgment, because [they are] able to see only a few things easily, may say that some other is more beautiful, I believe, however, respectfully, that, if they attend more diligently to the whole and the parts, they will quickly retract this opinion. Where indeed, I ask, would they find two towers of such magnificence and perfection, so high, so large, so strong, clothed round about with such multiple varieties of ornaments? Where, I ask, would they find such a multipartite arrangement of so many lateral vaults, above and below? Where, I ask, would they find such light-filled amenities as the many surrounding chapels? Furthermore, let them tell me in what church I may see such a large cross, of which one arm separates the choir from the nave. Finally, I would willingly learn where [there are] two such circles, situated opposite each other in a straight line, which on account of their appearance are given the name of the fourth vowel [O]; among which smaller orbs and circles, with wondrous artifice, so that some arranged circularly, others angularly, surround windows ruddy with precious colours and beautiful with the most subtle figures of the pictures. In fact, I believe that this church offers the carefully discerning such cause for admiration that its inspection can scarcely sate the soul.
— Jean de Jandun, Tractatus de laudibus Parisius[37]
Plan of the cathedral made by Viollet-le-Duc in the 19th century. Portals and nave to the left, a choir in the center, and apse and ambulatory to the right. The annex to the south is the sacristy.
Plan of the cathedral made by Viollet-le-Duc in the 19th century. Portals and nave to the left, a choir in the center, and apse and ambulatory to the right. The annex to the south is the sacristy.
Early six-part rib vaults of the nave. The ribs transferred the thrust of the weight of the roof downward and outwards to the pillars and the supporting buttresses.
Early six-part rib vaults of the nave. The ribs transferred the thrust of the weight of the roof downward and outwards to the pillars and the supporting buttresses.
The massive buttresses which counter the outward thrust from the rib vaults of the nave. The weight of the building-shaped pinnacles helps keep the line of thrust safely within the buttresses.
The massive buttresses which counter the outward thrust from the rib vaults of the nave. The weight of the building-shaped pinnacles helps keep the line of thrust safely within the buttresses.
Later flying buttresses of the apse of Notre-Dame (14th century) reached 15 metres (49 ft) from the wall to the counter-supports.
Later flying buttresses of the apse of Notre-Dame (14th century) reached 15 metres (49 ft) from the wall to the counter-supports.
15th–18th century
On 16 December 1431, the boy-king Henry VI of England was crowned king of France in Notre-Dame, aged ten, the traditional coronation church of Reims Cathedral being under French control.[38]
During the Renaissance, the Gothic style fell out of style, and the internal pillars and walls of Notre-Dame were covered with tapestries.[39]
In 1548, rioting Huguenots damaged some of the statues of Notre-Dame, considering them idolatrous.[40]
The fountain [fr] in Notre-Dame's parvis was added in 1625 to provide nearby Parisians with running water.[41]
Since 1449, the Parisian goldsmith guild had made regular donations to the cathedral chapter. In 1630, the guild began donating a large altarpiece every year on 1 May. These works came to be known as the grands mays.[42] The subject matter was restricted to episodes from the Acts of the Apostles. The prestigious commission was awarded to the most prominent painters and, after 1648, members of the Académie Royale.
Seventy-six paintings had been donated by 1708, when the custom was discontinued for financial reasons. Those works were confiscated in 1793 and the majority were subsequently dispersed among regional museums in France. Those that remained in the cathedral were removed or relocated within the building by the 19th-century restorers.
Thirteen of the grands mays hang in Notre-Dame; these paintings suffered water damage during the fire of 2019 and were removed for conservation.
An altarpiece depicting The Visitation, painted by Jean Jouvenet in 1707, was also in the cathedral.
The canon Antoine de La Porte commissioned for Louis XIV six paintings depicting the life of the Virgin Mary for the choir. At this same time, Charles de La Fosse painted his Adoration of the Magi, now in the Louvre.[43] Louis Antoine de Noailles, archbishop of Paris, extensively modified the roof of Notre-Dame in 1726, renovating its framing and removing the gargoyles with lead gutters. Noailles also strengthened the buttresses, galleries, terraces, and vaults.[44] In 1756, the cathedral's canons decided that its interior was too dark. The medieval stained glass windows, except the rosettes, were removed and replaced with plain, white glass panes.[39] Lastly, Jacques-Germain Soufflot was tasked with the modification of the portals at the front of the cathedral to allow processions to enter more easily.
Henry VI of England's coronation in Notre-Dame as King of France, aged ten, during the Hundred Years' War. His accession to the throne was in accordance with the Treaty of Troyes of 1420.
Henry VI of England's coronation in Notre-Dame as King of France, aged ten, during the Hundred Years' War. His accession to the throne was in accordance with the Treaty of Troyes of 1420.
La Descente du Saint-Esprit; illustration depicting Notre-Dame from the Hours of Étienne Chevalier by Jean Fouquet, c. 1450
La Descente du Saint-Esprit; illustration depicting Notre-Dame from the Hours of Étienne Chevalier by Jean Fouquet, c. 1450
A Te Deum in the choir of Notre-Dame in 1669, during the reign of Louis XIV. The choir was redesigned to make room for more lavish ceremonies.
A Te Deum in the choir of Notre-Dame in 1669, during the reign of Louis XIV. The choir was redesigned to make room for more lavish ceremonies.
French Revolution and Napoleon
After the French Revolution in 1789, Notre-Dame and the rest of the church's property in France was seized and made public property.[45] The cathedral was rededicated in 1793 to the Cult of Reason, and then to the Cult of the Supreme Being in 1794.[46] During this time, many of the treasures of the cathedral were either destroyed or plundered. The twenty-eight statues of biblical kings located at the west façade, mistaken for statues of French kings, were beheaded.[13][47] Many of the heads were found during a 1977 excavation nearby, and are on display at the Musée de Cluny. For a time the Goddess of Liberty replaced the Virgin Mary on several altars.[48] The cathedral's great bells escaped being melted down. All of the other large statues on the façade, with the exception of the statue of the Virgin Mary on the portal of the cloister, were destroyed.[13] The cathedral came to be used as a warehouse for the storage of food and other non-religious purposes.[40]
With the Concordat of 1801, Napoleon Bonaparte restored Notre-Dame to the Catholic Church; this was finalised on 18 April 1802. Napoleon also named Paris's new bishop, Jean-Baptiste de Belloy, who restored the cathedral's interior. Charles Percier and Pierre-François-Léonard Fontaine made quasi-Gothic modifications to Notre-Dame for the coronation of Napoleon as Emperor of the French within the cathedral. The building's exterior was whitewashed and the interior decorated in Neoclassical style, then in vogue.[49]
The Cult of Reason is celebrated at Notre-Dame during the French Revolution (1793)
The Cult of Reason is celebrated at Notre-Dame during the French Revolution (1793)
Arrival of Napoleon at the east end of Notre-Dame for his coronation as Emperor of the French on 2 December 1804
Arrival of Napoleon at the east end of Notre-Dame for his coronation as Emperor of the French on 2 December 1804
The coronation of Napoleon, on 2 December 1804 at Notre-Dame, as portrayed in the 1807 painting The Coronation of Napoleon by Jacques-Louis David
The coronation of Napoleon, on 2 December 1804 at Notre-Dame, as portrayed in the 1807 painting The Coronation of Napoleon by Jacques-Louis David
19th-century restoration
In the decades after the Napoleonic Wars, Notre-Dame fell into such a state of disrepair that Paris officials considered its demolition. Victor Hugo, who admired the cathedral, wrote the novel Notre-Dame de Paris (published in English as The Hunchback of Notre-Dame) in 1831 to save Notre-Dame. The book was an enormous success, raising awareness of the cathedral's decaying state.[13] The same year as Hugo's novel was published, anti-Legitimists plundered Notre-Dame's sacristy.[50] In 1844 King Louis Philippe ordered that the church be restored.[13]
The architect who had been in charge of Notre-Dame's maintenance, Étienne-Hippolyte Godde, was dismissed. Jean-Baptiste Lassus and Eugène Viollet-le-Duc, who had distinguished themselves with the restoration of the nearby Sainte-Chapelle, were appointed in 1844. The next year, Viollet-le-Duc submitted a budget of 3,888,500 francs, which was reduced to 2,650,000 francs, for the restoration of Notre-Dame and the construction of a new sacristy building. This budget was exhausted in 1850, and work stopped as Viollet-le-Duc made proposals for more money. In totality, the restoration cost over 12 million francs. Supervising a large team of sculptors, glass makers and other craftsmen, and working from drawings or engravings, Viollet-le-Duc remade or added decorations if he felt they were in the spirit of the original style. One of the latter items was a taller and more ornate flèche, to replace the original 13th-century flèche, which had been removed in 1786.[51] The decoration of the restoration included a bronze roof statue of Saint Thomas that resembles Viollet-le-Duc, as well as the sculpture of mythical creatures on the Galerie des Chimères.[40]
The construction of the sacristy was especially financially costly. To secure a firm foundation, it was necessary for Viollet-le-Duc's labourers to dig nine metres (thirty feet). Master glassworkers meticulously copied styles of the 13th century, as written about by art historians Antoine Lusson and Adolphe Napoléon Didron.[52]
During the Paris Commune of March through May 1871, the cathedral and other churches were closed, and some two hundred priests and the Archbishop of Paris were taken as hostages. In May, during the Semaine sanglante of "Bloody Week", as the army recaptured the city, the Communards targeted the cathedral, along with the Tuileries Palace and other landmarks, for destruction; the Communards piled the furniture together in order to burn the cathedral. The arson was halted when the Communard government realised that the fire would also destroy the neighbouring Hôtel-Dieu hospital, filled with hundreds of patients.[53]
The western façade of Notre-Dame in 1841, showing the building in an advanced state of disrepair before the major restoration by Viollet-le-Duc
The western façade of Notre-Dame in 1841, showing the building in an advanced state of disrepair before the major restoration by Viollet-le-Duc
Proposed doorway decoration by Lassus and Viollet-le-Duc; plate engraved by Léon Gaucherel
Proposed doorway decoration by Lassus and Viollet-le-Duc; plate engraved by Léon Gaucherel
The southern façade of Notre-Dame at the beginning of the restoration work; photo from 1847 by Hippolyte Bayard
The southern façade of Notre-Dame at the beginning of the restoration work; photo from 1847 by Hippolyte Bayard
Model of the flèche and "forest" of wooden roof beams made for Viollet-le-Duc (1859) (Museum of Historic Monuments, Paris)
Model of the flèche and "forest" of wooden roof beams made for Viollet-le-Duc (1859) (Museum of Historic Monuments, Paris)
20th century
Façade of Notre-Dame in the 1930s
During the liberation of Paris in August 1944, the cathedral suffered some minor damage from stray bullets. Some of the medieval glass was damaged, and was replaced by glass with modern abstract designs. On 26 August, a special Mass was held in the cathedral to celebrate the liberation of Paris from the Germans; it was attended by General Charles De Gaulle and General Philippe Leclerc.
In 1963, on the initiative of culture minister André Malraux and to mark the 800th anniversary of the cathedral, the façade was cleaned of the centuries of soot and grime, restoring it to its original off-white colour.[54]
On 19 January 1969, vandals placed a North Vietnamese flag at the top of the flèche, and sabotaged the stairway leading to it. The flag was cut from the flèche by Paris Fire Brigade Sergeant Raymond Belle in a helicopter mission, the first of its kind in France.[55][56][57]
The Requiem Mass of Charles de Gaulle was held in Notre-Dame on 12 November 1970.[58] On 26 June 1971, Philippe Petit walked across a tight-rope strung between Notre-Dame's two bell towers entertaining spectators.[59]
After the Magnificat of 30 May 1980, Pope John Paul II celebrated Mass on the parvis of the cathedral.[60]
The Requiem Mass of François Mitterrand was held at the cathedral, as with past French heads of state, on 11 January 1996.[61]
The stone masonry of the cathedral's exterior had deteriorated in the 19th and 20th centuries due to increased air pollution in Paris, which accelerated erosion of decorations and discoloured the stone. By the late 1980s, several gargoyles and turrets had fallen or become too loose to remain safely in place.[62] A decade-long renovation programme began in 1991 and replaced much of the exterior, with care given to retain the authentic architectural elements of the cathedral, including rigorous inspection of new limestone blocks.[62][63] A discreet system of electrical wires, not visible from below, was also installed on the roof to deter pigeons.[64] The cathedral's pipe organ was upgraded with a computerised system to control the mechanical connections to the pipes.[65] The west face was cleaned and restored in time for millennium celebrations in December 1999.[66]
21st century
Notre-Dame in May 2012. From top to bottom, nave walls are pierced by clerestory windows, arches to triforium, and arches to side aisles.
The Requiem Mass of Cardinal Jean-Marie Lustiger, former archbishop of Paris and Jewish convert to Catholicism, was held in Notre-Dame on 10 August 2007.[67]
The set of four 19th-century bells at the top of the northern towers at Notre-Dame were melted down and recast into new bronze bells in 2013, to celebrate the building's 850th anniversary. They were designed to recreate the sound of the cathedral's original bells from the 17th century.[68][69] Despite the 1990s renovation, the cathedral had continued to show signs of deterioration that prompted the national government to propose a new renovation program in the late 2010s.[70][71] The entire renovation was estimated to cost €100 million, which the archbishop of Paris planned to raise through funds from the national government and private donations.[72] A €6 million renovation of the cathedral's flèche began in late 2018 and continued into the following year, requiring the temporary removal of copper statues on the roof and other decorative elements.[73][74]
Notre-Dame began a year-long celebration of the 850th anniversary of the laying of the first building block for the cathedral on 12 December 2012.[75] On 21 May 2013, Dominique Venner, a historian and white nationalist, placed a letter on the church altar and shot himself, dying instantly. Around 1,500 visitors were evacuated from the cathedral.[76]
French police arrested two people on 8 September 2016 after a car containing seven gas canisters filled with diesel fuel was found near Notre-Dame.[77][78]
On 10 February 2017, French police arrested four people in Montpellier known to have ties to radical Islamist organisations on charges of plotting to travel to Paris and attack the cathedral.[79] On 6 June, visitors were shut inside Notre-Dame cathedral in Paris after a man with a hammer attacked a police officer outside.[80][81]
2019 fire
Main article: Notre-Dame fire
On 15 April 2019 the cathedral caught fire, destroying the flèche and the "forest" of oak roof beams supporting the lead roof.[82][83][84] It was speculated that the fire was linked to ongoing renovation work.
The fire broke out in the attic of the cathedral at 18:18, investigators concluded. The smoke detectors immediately signalled the fire to a cathedral employee, who did not summon the fire brigade but instead sent a cathedral guard to investigate. The guard was sent to the wrong location, to the attic of the adjoining sacristy, and reported there was no fire. About 15 minutes later the error was discovered and the guard's supervisor told him to go to the correct location. The fire brigade was still not notified. By the time the guard had climbed the 300 steps to the cathedral attic, the fire was well advanced.[85] The alarm system was not designed to automatically notify the fire brigade, which was summoned at 18:51 after the guard had returned from the attic and reported a now-raging fire, and more than half an hour after the fire alarm had begun sounding.[86] Firefighters arrived in less than ten minutes.[87]
The cathedral's flèche collapsed at 19:50, bringing down 750 tonnes of stone and lead. The firefighters inside were ordered down. By this time the fire had spread to the north tower, where the eight bells were. The firefighters concentrated their efforts in the tower. They feared that, if the bells fell, they could wreck the tower, and endanger the structure of the other tower and the whole cathedral. They had to ascend a stairway threatened by fire, and to contend with low water pressure for their hoses. As others watered the stairway and the roof, a team of 20 firefighters climbed the narrow stairway of the south tower, crossed to the north tower, lowered hoses to be connected to fire engines outside the cathedral, and sprayed water on the fire beneath the bells. By 21:45, they brought the fire under control.[85]
The main structure was intact; firefighters saved the façade, towers, walls, buttresses, and stained-glass windows. The stone vaulting that forms the ceiling of the cathedral had several holes but was otherwise intact.[88] The Great Organ, which has over 8,000 pipes and was built by François Thierry in the 18th century, was also saved but damaged by water.[89] Because of the renovation, the copper statues on the flèche had been removed before the fire.[90] About 500 firefighters helped to battle the fire, President Emmanuel Macron said. One firefighter was seriously injured and two police officers were hurt during the blaze.[91]
No Christmas Mass was held in 2019 for the first time in more than 200 years.[92] The first cathedral choir performance since the fire took place in December 2020; only eight members sang because of COVID-19 pandemic restrictions. A video of the event aired just before midnight on 24 December.[93]
The 2019 fire destroyed Notre-Dame's wooden roof and flèche but left the outer structure largely intact.
The 2019 fire destroyed Notre-Dame's wooden roof and flèche but left the outer structure largely intact.
The flèche aflame during the 2019 fire, before its collapse
The flèche aflame during the 2019 fire, before its collapse
Animation showing the south façade before and after the fire; scaffolding had been erected as part of renovations underway when the fire started
Animation showing the south façade before and after the fire; scaffolding had been erected as part of renovations underway when the fire started
The area directly under the crossing and two other cells of vaulting collapsed
The area directly under the crossing and two other cells of vaulting collapsed
In red, the destroyed parts
In red, the destroyed parts
Stabilisation of the building
The roof reduced to piles of char at the top of the mostly intact vaults
Immediately after the fire, Macron promised that Notre-Dame would be restored, and called for the work to be completed within five years.[94][95][96][97] An international architectural competition was announced to redesign the flèche and roof.[98] The announcement drew criticism in the international press from heritage academics and professionals who faulted the French government for being too focused on quickly building a new flèche, and neglecting to frame its response holistically as an inclusive social process encompassing the whole building and its long-term users.[99][100] A new law was drafted to make Notre-Dame exempt from existing heritage laws and procedures, which prompted an open letter to Macron signed by over 1,170 heritage experts urging respect for existing regulations.[101] The law, which passed on 11 May 2019, was hotly debated in the French National Assembly, with opponents accusing Macron's administration of using Notre-Dame for political grandstanding, and defenders arguing the need for expediency and tax breaks to encourage philanthropic giving.[102]
Macron suggested he was open to a "contemporary architectural gesture". Even before the competition rules were announced, architects around the world offered suggestions: the proposals included a 100-metre (330 ft) flèche made of carbon fibre, covered with gold leaf; a roof built of stained glass; a greenhouse; a garden with trees, open to the sky; and a column of light pointed upwards. A poll published in the French newspaper Le Figaro on 8 May 2019 showed that 55% of French respondents wanted a flèche identical to the original. French culture minister Franck Riester promised that the restoration would not be hasty.[103] On 29 July 2019, the French National Assembly enacted a law requiring that the restoration must "preserve the historic, artistic and architectural interest of the monument."[104]
In October 2019, the French government announced that the first stage of reconstruction, the stabilising of the structure against collapse, would last until the end of 2020. In December 2019, Monseigneur Patrick Chauvet, the rector of the cathedral, said there was still a 50% chance that Notre-Dame could not be saved due to the risk of the remaining scaffolding falling onto the three damaged vaults.[105][106] Reconstruction could not begin before early 2021. Macron announced that he hoped the reconstructed Cathedral could be finished in time for the opening of the 2024 Summer Olympics.[107]
The first task of the restoration was the removal of 250–300 tonnes of melted metal tubes, the remains of the scaffolding, which could have fallen onto the vaults and caused further structural damage. This began in February 2020.[108] A crane 84 metres (276 ft) high was put in place next to the cathedral to help remove the scaffolding.[109] The work was completed in November 2020.[110] Wooden support beams were added to stabilise the flying buttresses and other structures.[111]
On 10 April 2020, the archbishop of Paris, Michel Aupetit, and a handful of participants, all in protective clothing to prevent exposure to lead dust, performed a Good Friday service inside the cathedral.[112] Music was provided by the violinist Renaud Capuçon; the lectors were the actors Philippe Torreton and Judith Chemla.[113] Chemla gave an a cappella rendition of Ave Maria.[114]
Heading reconstruction
In February 2021, the selection of oak trees to replace the flèche and roof timbers destroyed by the fire began. A thousand mature trees were chosen from the forests of France, each of a diameter of 50 to 90 centimetres (20 to 35 in) and a height of 8 to 14 metres (26 to 46 ft), and an age of several hundred years. Once cut, the trees had to dry for 12 to 18 months. The trees were to be replaced by new plantings.[115] Two years after the fire, a news report stated that: "there is still a hole on top of the church. They're also building a replica of the church's spire". More oak trees needed to be shipped to Paris, where they would need to be dried before use.[116] The oaks used to make the framework were tested and selected by Sylvatest.[117]
On 18 September 2021, the public agency overseeing the Cathedral stated that the safety work was completed, the cathedral was fully secured, and that reconstruction would begin within a few months.[118]
Research
In 2022, a preventive dig carried out between February and April before the construction of a scaffold for reconstructing the cathedral's flèche unearthed several statues and tombs under the cathedral.[119] One of the discoveries was a 14th-century lead sarcophagus found 20 m (65 ft) below where the transept crosses the church's 12th-century nave.[120] On 14 April 2022, France's National Preventive Archaeological Research Institute (Inrap) announced that the sarcophagus was extracted from the cathedral and that scientists had examined the casket using an endoscopic camera, revealing the upper part of a skeleton.[121] An opening was discovered below the cathedral floor, likely made around 1230 when the Gothic cathedral was first under construction; inside were fragments of a choir screen dating from the 13th century that had been destroyed in the early 18th century.[122] In March 2023, archaeologists uncovered thousands of metal staples in various parts of the cathedral, some dating back to the early 1160s. The archaeologists concluded that "Notre Dame is now unquestionably the first known Gothic cathedral where iron was massively used to bind stones as a proper construction material."[123][124][125]
Ongoing stabilization of Notre-Dame in February 2020
Ongoing stabilization of Notre-Dame in February 2020
Stabilization of Notre-Dame and removal of roof debris and scaffolding in February 2020
Stabilization of Notre-Dame and removal of roof debris and scaffolding in February 2020
Front view of Notre-Dame in January 2023
Front view of Notre-Dame in January 2023
Southwest corner of Notre-Dame in September 2023
Southwest corner of Notre-Dame in September 2023
Reopening
Main article: Reopening of Notre-Dame de Paris
Reconstruction as of 2024
The cathedral reopened on 7 December 2024 in a ceremony presided over by Laurent Ulrich, the Archbishop of Paris, and attended by 1,500 world leaders and dignitaries such as US President-elect Donald Trump, US first lady Jill Biden, Britain's Prince William, and Ukrainian President Volodymyr Zelenskyy. Pope Francis declined an invitation from Macron to attend the reopening, holding a consistory in Rome to create 21 new cardinals on that day and planning a visit to the French island of Corsica the following week.[126][127]
Interior view of Notre-Dame after restoration work
Colour and controversy
The colour of the restored interior would be "a shock" to some returning visitors, according to General Jean-Louis Georgelin, the French army officer heading the restoration. "The whiteness under the dirt was quite spectacular".[128] The stone was sprayed with a latex solution to remove accumulated grime and soot. The cleaning of the church interior with latex solutions was criticised by Michael Daley of Artwatch UK, referring to the earlier cleaning of St Paul's Cathedral in London. He asked, "Is there any good basis for wishing to present an artificially brightened and ahistorical white interior?"[129] Jean-Michel Guilemont of the French Ministry of culture responded, "The interior elevations will regain their original colour, since the chapels and side aisles were very dirty. Of course it is not a white colour. The stone has a blonde colour, and the architects are very attentive to obtaining a patina which respects the centuries".[130]
New window controversy
St. Eloi Chapel window proposed for replacement by a modernist window
A new controversy arose in late 2024 over a proposal by French President Macron and the Archbishop Laurent Ulrich to replace six stained glass windows installed in chapels in the 19th century by Viollet-le-Duc and undamaged by the fire, with six modernist windows designed by contemporary artist Claire Tabouret. Tabouret won a competition sponsored by the French government for a new window design. Her proposed windows would realistically depict people from different cultures praying. The proposed windows are strongly opposed by preservationists, who want the cathedral to be restored exactly as it was before the fire.[131]
Furthermore, Emmanuel Macron announced the creation of a museum dedicated to Notre-Dame within the Hôtel-Dieu.[132]
Towers and the flèche
Main article: Spire of Notre-Dame de Paris
The two towers are 69 metres (226 ft) high. The towers were the last major element of the cathedral to be constructed. The south tower was built first, between 1220 and 1240, and the north tower between 1235 and 1250. The newer north tower is slightly larger, as can be seen when they are viewed from directly in front of the church. The contrefort or buttress of the north tower is also larger.[133] The cathedral's main peal of bells is within these towers.
The south tower was accessible to visitors by a stairway, whose entrance was on the south side of the tower. The stairway has 387 steps, and has a stop at the Gothic hall at the level of the rose window, where visitors could look over the parvis and see a collection of paintings and sculpture from earlier periods of the cathedral's history.
The cathedral's flèche (or spirelet) was located over the transept. The original flèche was constructed in the 13th century, probably between 1220 and 1230. It was battered, weakened and bent by the wind over five centuries, and was removed in 1786. During the 19th-century restoration, Viollet-le-Duc recreated it, making a new version of oak covered with lead. The entire flèche weighed 750 tonnes.
The rooster weathervane on top of the flèche has both a religious and political symbolism. The rooster is the symbol of the French state, which since 1905 has owned Notre-Dame and the other 86 cathedrals in France. It is found over all French cathedrals, as well as over the entrance of the Elysée Palace, the residence of the French president, on other government buildings, and on French postage stamps.
Following Viollet-le-Duc's plans, the flèche was surrounded by copper statues of the twelve Apostles—a group of three at each point of the compass. In front of each group is a symbol representing one of the four evangelists: a winged ox for Saint Luke,[134] a lion for Saint Mark, an eagle for Saint John and an angel for Saint Matthew. Just days prior to the fire, the statues were removed for restoration.[135] While in place, they had faced outwards towards Paris, except one: the statue of Saint Thomas, the patron saint of architects, faced the flèche, and had the features of Viollet-le-Duc.
The rooster weathervane at the top of the flèche contained three relics: a tiny piece from the Crown of Thorns in the cathedral treasury, and relics of Saint Denis and Saint Genevieve, patron saints of Paris. They were placed there in 1935 by Archbishop Jean Verdier, to protect the congregation from lightning or other harm. The rooster was recovered in the rubble shortly after the fire,[136] and has since been on display inside the reopened cathedral.
The new flèche was put in place on 16 December 2023, and a new gilded rooster sculpture, designed by architect Philippe Villeneuve, was also installed, containing the same relics as old flèche, as well as the names of two thousand people who had participated in the reconstruction. Getting to work, Villeneuve's team scrutinised the journal in which Viollet-le-Duc had entered all the details of Notre-Dame's 19th century restoration work.[137]
Towers on west façade (1220–1250)
Towers on west façade (1220–1250)
The gallery of chimeras pictured in 1910 by Georges Redon
The gallery of chimeras pictured in 1910 by Georges Redon
The 19th-century flèche
The 19th-century flèche
The rooster reliquary at the top of the flèche. It was found lightly damaged in the rubble after the 2019 fire.
The rooster reliquary at the top of the flèche. It was found lightly damaged in the rubble after the 2019 fire.
The flèche from above, in 2013
The flèche from above, in 2013
Statue of Thomas the Apostle, with the features of restorer Viollet-le-Duc, at the base of the flèche
Statue of Thomas the Apostle, with the features of restorer Viollet-le-Duc, at the base of the flèche
Iconography
See also: List of sculptures in Notre-Dame de Paris
The Gothic cathedral was a liber pauperum, a "poor people's book", covered with sculptures vividly illustrating biblical stories, for the vast majority of parishioners who were, at the time, illiterate. To add to the effect, all of the sculpture on the façades was originally painted and gilded.[138]
The tympanum over the central portal on the west façade, facing the square, vividly illustrates the Last Judgment, with figures of sinners being led off to hell, and good Christians taken to heaven. The sculpture of the right portal shows the coronation of the Virgin Mary, and the left portal shows the lives of saints who were important to Parisians, particularly Saint Anne, the mother of the Virgin Mary.[139]
The exteriors of cathedrals and other Gothic churches were also decorated with sculptures of grotesques or monsters. These included the gargoyle, the chimera, a mythical hybrid creature which usually had the body of a lion and the head of a goat, and the strix or stryge, a creature resembling an owl or bat, which was said to eat human flesh. The strix appeared in classical Roman literature; it was described by the Roman poet Ovid, who was widely read in the Middle Ages, as a large-headed bird with transfixed eyes, rapacious beak, and greyish white wings.[140] They were part of the visual message for the illiterate worshipers, symbols of the evil and danger that threatened those who did not follow the teachings of the church.[141]
The gargoyles, which were added about 1240, had a more practical purpose. They were the rain spouts of the cathedral, designed to divide the torrent of water which poured from the roof after rain, and to project it outwards as far as possible from the buttresses and the walls and windows where it might erode the mortar binding the stone. To produce many thin streams rather than a torrent of water, a large number of gargoyles were used, so they were also designed to be a decorative element of the architecture. The rainwater ran from the roof into lead gutters, then down channels on the flying buttresses, then along a channel cut in the back of the gargoyle and out of the mouth away from the cathedral.[138]
Amid all the religious figures, some of the sculptural decoration was devoted to illustrating medieval science and philosophy. The central portal of the west façade is decorated with carved figures holding circular plaques with symbols of transformation taken from alchemy. The central pillar of the central door of Notre-Dame features a statue of a woman on a throne holding a sceptre in her left hand, and in her right hand, two books, one open (symbol of public knowledge), and the other closed (esoteric knowledge), along with a ladder with seven steps, symbolising the seven steps alchemists followed in trying to transform ordinary metals into gold.[141] On each side of the west façade, there are statues of Ecclesia and Synagoga. The statues represent supersessionism, the Christian belief that Christianity has replaced Judaism.[142]
Many of the statues, particularly the grotesques, were removed from the façade in the 17th and 18th centuries, or were destroyed during the French Revolution. They were replaced with figures in the Gothic style, designed by Viollet-le-Duc, during the 19th-century restoration.
Illustration of the Last Judgment, central portal of west façade
Illustration of the Last Judgment,
central portal of west façade
The martyr Saint Denis, holding his head, over the Portal of the Virgin
The martyr Saint Denis, holding his head, over the Portal of the Virgin
The serpent tempts Adam and Eve; on the Portal of the Virgin
The serpent tempts Adam and Eve; on the Portal of the Virgin
Archangel Michael and Satan weighing souls during the Last Judgment (central portal, west façade)
Archangel Michael and Satan weighing souls during the Last Judgment (central portal, west façade)
A strix on the west façade
A strix on the west façade
Gargoyles were the rainspouts of the cathedral
Gargoyles were the rainspouts of the cathedral
Chimera on the façade
Chimera on the façade
Allegory of alchemy, central portal
Allegory of alchemy, central portal
Ecclesia and Synagoga, statues on each side of the west façade
Ecclesia and Synagoga, statues on each side of the west façade
Stained glass
The stained glass windows of Notre-Dame, particularly the three rose windows, are among the most famous features of the cathedral. The west rose window, over the portals, was the first and smallest of the roses in Notre-Dame. It is 9.6 metres (31 ft) in diameter, and was made in about 1225, with the pieces of glass set in a thick circular stone frame. None of the original glass remains in this window; it was recreated in the 19th century.[143]
The two transept windows are larger and contain a greater proportion of glass than the rose on the west façade, because the new system of buttresses made the nave walls thinner and stronger. The north rose was created in about 1250, and the south rose in about 1260. The south rose in the transept is 12.9 metres (42 ft) in diameter; with the claire-voie surrounding it, a total of 19 metres (62 ft). It was given to the cathedral by King Louis IX of France, known as Saint Louis.[144]
The south rose has 94 medallions, arranged in four circles, depicting scenes from the life of Christ and those who witnessed his time on earth. The inner circle has twelve medallions showing the twelve apostles. During later restorations, some of these original medallions were moved to circles farther out. The next two circles depict celebrated martyrs and virgins. The fourth circle shows twenty angels, and saints important to Paris, such as Saint Denis, Margaret the Virgin with a dragon, and Saint Eustace. The third and fourth circles also have some depictions of Old Testament subjects. The third circle has some medallions with scenes from the New Testament Gospel of Matthew which date from the last quarter of the 12th century. These are the oldest glass in the window.[144]
Additional scenes in the corners around the rose window include Jesus's Descent into Hell, Adam and Eve, the Resurrection of Christ. Saint Peter and Saint Paul are at the bottom of the window, and Mary Magdalene and John the Apostle at the top.
Above the rose was a window depicting Christ triumphant seated in the sky, surrounded by his Apostles. Below are sixteen windows with painted images of Prophets. These were painted during the restoration in the 19th century by Alfred Gérenthe, under the direction of Eugène Viollet-le-Duc, based upon a similar window at Chartres Cathedral.[144]
The south rose had a difficult history. In 1543 it was damaged by the settling of the masonry walls, and not restored until 1725–1727. It was seriously damaged in the French Revolution of 1830. Rioters burned the residence of the archbishop, next to the cathedral, and many of the panes were destroyed. The window was rebuilt by Viollet-le-Duc in 1861 who rotated it by fifteen degrees to give it a clear vertical and horizontal axis, and replaced the destroyed pieces of glass with new glass in the same style. The window now contains both medieval and 19th-century glass. [144]
In the 1960s, after three decades of debate, it was decided to replace many of the 19th-century grisaille windows in the nave designed by Viollet-le-Duc with new windows. The new windows, made by Jacques Le Chevallier, are without human figures and use abstract designs and colour to try to recreate the luminosity of the cathedral's interior in the 13th century.
The fire left the three great medieval rose windows mostly intact, but with some damage.[145] The rector of the cathedral noted that one rose window would have to be dismantled, as it was unstable and at risk.[146] Most of the other damaged windows were of much less historical value.[146]
In early 2024 Macron proposed removing six of the seven undamaged 19th-century stained glass windows created by Eugene Viollet-le-Duc in the chapels along the south aisle of the nave, and replacing them with new windows with more contemporary designs. He invited contemporary artists to submit designs for the new windows. This proposal inspired a backlash in the press, and 140,000 people signed a petition to keep the old windows. The plan for contemporary windows was rejected by the French Commission on Architectural Monuments and Patrimony in July 2024.[147]
The earliest rose window, on the west façade (about 1225)
The earliest rose window, on the west façade (about 1225)
The west rose window (about 1225)
The west rose window (about 1225)
North rose window (about 1250)
North rose window (about 1250)
North rose window including lower 18 vertical windows
North rose window including lower 18 vertical windows
Burials and crypts
For the Archeological Crypt located outside of Notre-Dame, see Parvis Notre-Dame – Place Jean-Paul II.
See also: Category:Burials at Notre-Dame de Paris
Unlike some other French cathedrals, Notre-Dame was originally constructed without a crypt. In the medieval period, burials were made directly into the floor of the church, or in above-ground sarcophagi, some with tomb effigies (French: gisant). High-ranking clergy and some royals were buried in the choir and apse, and many others, including lower-ranking clergy and lay people, were buried in the nave or chapels. There is no surviving complete record of the burials.
In 1699, many of the choir tombs were disturbed or covered over during a major renovation project. Remains which were exhumed were reburied in a common tomb beside the high altar. In 1711, a small crypt measuring about six by six metres (20 by 20 ft) was dug out in the middle of the choir which was used as a burial vault for the archbishops, if they had not requested to be buried elsewhere. It was during this excavation that the 1st-century Pillar of the Boatmen was discovered.[148] In 1758, three more crypts were dug in the Chapel of Saint-Georges to be used for burials of canons of Notre-Dame. In 1765, a larger crypt was built under the nave to be used for burials of canons, beneficiaries, chaplains, cantors, and choirboys. Between 1771 and 1773, the cathedral floor was repaved with black and white marble tiles, which covered over most of the remaining tombs. This prevented many of these tombs from being disturbed during the French Revolution.
In 1858, the choir crypt was expanded to stretch most of the length of the choir. During this project, many medieval tombs were rediscovered. Likewise the nave crypt was also rediscovered in 1863 when a larger vault was dug out to install a vault heater. Many other tombs are also located in the chapels.[149][150]
Eudes de Sully was the first bishop to be buried in Notre-Dame. His copper-covered sarcophagus was placed in the middle of the choir where it remained for almost five centuries.
Eudes de Sully was the first bishop to be buried in Notre-Dame. His copper-covered sarcophagus was placed in the middle of the choir where it remained for almost five centuries.
The tomb of bishop Matifort (died 1304) located behind the high altar is the only surviving medieval funerary sculpture at Notre-Dame.
The tomb of bishop Matifort (died 1304) located behind the high altar is the only surviving medieval funerary sculpture at Notre-Dame.
Burial vault under the choir of Notre-Dame, c. 1746. Pictured left to right are the tombs of Archbishops Vintimille and Bellefonds, the funerary urn of Archbishop Noailles, and two unidentified tombs.
Burial vault under the choir of Notre-Dame, c. 1746. Pictured left to right are the tombs of Archbishops Vintimille and Bellefonds, the funerary urn of Archbishop Noailles, and two unidentified tombs.
The tomb of Archbishop Affre (1793–1848) in the Chapel of Saint-Denis. The sculpture depicts the archbishop's mortal wounding during the June Days uprising while holding an olive branch as a sign of peace. The inscription reads Puisse mon sang être le dernier versé! ("May my blood be the last shed!").
The tomb of Archbishop Affre (1793–1848) in the Chapel of Saint-Denis. The sculpture depicts the archbishop's mortal wounding during the June Days uprising while holding an olive branch as a sign of peace. The inscription reads Puisse mon sang être le dernier versé! ("May my blood be the last shed!").
Great organ
The great organ
One of the earliest organs at Notre-Dame was built in 1403 by Frédéric Schambantz. It was rebuilt many times over the course of 300 years; however, twelve pipes and some wood survive from Schambantz. It was replaced between 1730 and 1738 by François Thierry, then once again rebuilt by François-Henri Clicquot. During the mid-19th-century restoration of the cathedral by Eugène Viollet-le-Duc, Aristide Cavaillé-Coll used pipework from earlier instruments to build a new organ, which was dedicated in 1868.
In 1904, Charles Mutin modified and added several stops upon the suggestions of titular organist Louis Vierne. In 1924, the installation of an electric blower was financed by Rolls-Royce CEO Claude Johnson. An extensive restoration and cleaning was carried out by Joseph Beuchet in 1932 which mostly included changes to the Récit. Between 1959 and 1963, the mechanical action with Barker levers was replaced with an electric action by Jean Hermann, and a new organ console was installed.
The stoplist was gradually modified by Robert Boisseau, who in 1968 added three chamade stops (8′, 4′, and 2′/16′) and by Jean-Loup Boisseau after 1975, all upon the orders of Pierre Cochereau. In autumn 1983, the electric combination system was disconnected due to short-circuit risk.
Between 1990 and 1992, Jean-Loup Boisseau, Bertrand Cattiaux, Philippe Émeriau, Michel Giroud, and the Société Synaptel revised and augmented the instrument. A new frame for the Jean Hermann console was created. Between 2012 and 2014, Bertrand Cattiaux and Pascal Quoirin restored, cleaned, and modified the organ. The stop and key action was upgraded, a new frame for selected components of the Hermann-Boisseau-Cattiaux console was created, a new enclosed division ("Résonnance expressive", using pipework from the former "Petite Pédale" by Boisseau, which can now be used as a floating division), the organ case and the façade pipes were restored, and a general tuning was carried out. The current organ has 115 stops (156 ranks) on five manuals and pedal, and more than 8,000 pipes.
In addition to the great organ in the west end, the quire of the cathedral carries a medium-sized choir organ of 2 manuals, 30 stops and 37 ranks in a nineteenth-century case from the 1960s. During the fire of 2019, it was heavily damaged by waterlogging, but is at least partially reusable. It also had a 5-stop single-manual continuo organ, which was completely destroyed by water from firefighters.
The great organ itself suffered minimal damage (mostly to a single pipe of the Principal 32' and substantial dust) in the fire of April 2019 and underwent maintenance for cleaning and tuning. It was formally reblessed in 2024.
I. Grand-Orgue
C–g3II. Positif
C–g3III. Récit
C–g3IV. Solo
C–g3V. Grand-Chœur
C–g3Résonnance expressive
C–g3Pédale
C–f1(keys go to g1, but f#1 and g1 silent)
Violon-Basse 16
Bourdon 16
Montre 8
Viole de Gambe 8
Flûte harmonique 8
Bourdon 8
Prestant 4
Octave 4
Doublette 2
Fourniture harmonique II-V 4
Cymbale harmonique II-V 2 2/3
Bombarde 16
Trompette 8
Clairon 4
Chamades:
Chamade 8
Chamade 4
Chamade Recit 8
Cornet Recit V (from c)
Montre 16
Bourdon 16
Salicional 8
Flûte harmonique 8
Bourdon 8
Unda maris 8 (from c)
Prestant 4
Flûte douce 4
Nazard 2+2⁄3
Doublette 2
Tierce 1+3⁄5
Fourniture V
Cymbale V
Clarinette basse 16
Clarinette 8
Clarinette aiguë 4
Récit expressif:
Quintaton 16
Diapason 8
Flûte traversière 8
Viole de Gambe 8
Bourdon céleste 8 (from c)
Voix céleste 8 (from c)
Octave 4
Flûte Octaviante 4
Quinte 2+2⁄3
Octavin 2
Bombarde 16
Trompette 8
Basson-Hautbois 8
Clarinette 8
Voix humaine 8
Clairon 4
Récit classique: (from f)
Cornet V 8
Hautbois 8
Chamades:
Basse Chamade 8
Dessus Chamade 8
Chamade 4
Chamade Régale 8
Basse Chamade GO 8
Dessus Chamade GO 8
Chamade GO 4
Trémolo
Bourdon 32 (lowest octave acoustic)
Principal 16
Montre 8
Flûte harmonique 8
Quinte 5+1⁄3
Prestant 4
Tierce 3+1⁄5
Nazard 2+2⁄3
Septième 2+2⁄7
Doublette 2
Cornet II-V 2 2/3
Grande Fourniture II 2 2/3
Fourniture V
Cymbale V
Cromorne 8
Chamade GO 8
Chamade GO 4
Cornet Récit V
Hautbois Récit 8 (above stops: f-g3, outside swell box)
Principal 8
Bourdon 8 *
Prestant 4 *
Quinte 2+2⁄3 *
Doublette 2 *
Tierce 1+3⁄5 *
Larigot 1+1⁄3
Septième 1+1⁄7
Piccolo 1
Plein jeu III-V 2/3
Tuba magna 16
Trompette 8
Clairon 4
Cornet V 8
(pulls out stops with asterisks)
Bourdon 16
Principal 8
Bourdon 8
Prestant 4
Flûte 4
Neuvième 3+5⁄9
Tierce 3+1⁄5
Onzième 2+10⁄11
Nazard 2+2⁄3
Flûte 2
Tierce 1+3⁄5
Larigot 1+1⁄3
Flageolet 1
Fourniture III
Cymbale III
Basson 16
Basson 8
Voix humaine 8
Chimes
Tremblant
Principal 32
Contrebasse 16
Soubasse 16
Quinte 10+2⁄3
Flûte 8
Violoncelle 8
Tierce 6+2⁄5
Quinte 5+1⁄3
Septième 4+4⁄7
Octave 4
Contre-Bombarde 32
Bombarde 16
Basson 16
Trompette 8
Basson 8
Clairon 4
Chamade GO 8
Chamade GO 4
Chamade Récit 8
Chamade Récit 4
Régale 2/16
Couplers: II/I, III/I, IV/I, V/I; III/II, IV/II, V/II; IV/III, V/III; V/IV, Octave grave général, inversion Positif/Grand-orgue, Tirasses (Grand-orgue, Positif, Récit, Solo, Grand-Chœur en 8; Grand-Orgue en 4, Positif en 4, Récit en 4, Solo en 4, Grand-Chœur en 4), Sub and Super octave couplers and Unison Off for all manuals (Octaves graves, octaves aiguës, annulation 8′); octaves aiguës Pédalier
Additional features: Coupure Pédalier; Coupure Chamade; Appel Résonnance; sostenuto for all manuals and the pedal; cancel buttons for each division; 50,000 combinations (5,000 groups each); replay system
Organists
The p
Continuous Service from 1913
Our new bank building was opened for business on July 1, 1963, featuring all new Safety Deposit Box Protection, complete alarm system, Night and Day depository, drive in window and a large parking area.
Olson's Studio
Dexter Press
80277-B
CAPA-016840
Fish, any of approximately 34,000 species of vertebrate animals (phylum Chordata) found in the fresh and salt waters of the world. Living species range from the primitive jawless lampreys and hagfishes through the cartilaginous sharks, skates, and rays to the abundant and diverse bony fishes. Most fish species are cold-blooded; however, one species, the opah (Lampris guttatus), is warm-blooded.
The term fish is applied to a variety of vertebrates of several evolutionary lines. It describes a life-form rather than a taxonomic group. As members of the phylum Chordata, fish share certain features with other vertebrates. These features are gill slits at some point in the life cycle, a notochord, or skeletal supporting rod, a dorsal hollow nerve cord, and a tail. Living fishes represent some five classes, which are as distinct from one another as are the four classes of familiar air-breathing animals—amphibians, reptiles, birds, and mammals. For example, the jawless fishes (Agnatha) have gills in pouches and lack limb girdles. Extant agnathans are the lampreys and the hagfishes. As the name implies, the skeletons of fishes of the class Chondrichthyes (from chondr, “cartilage,” and ichthyes, “fish”) are made entirely of cartilage. Modern fish of this class lack a swim bladder, and their scales and teeth are made up of the same placoid material. Sharks, skates, and rays are examples of cartilaginous fishes. The bony fishes are by far the largest class. Examples range from the tiny seahorse to the 450-kg (1,000-pound) blue marlin, from the flattened soles and flounders to the boxy puffers and ocean sunfishes. Unlike the scales of the cartilaginous fishes, those of bony fishes, when present, grow throughout life and are made up of thin overlapping plates of bone. Bony fishes also have an operculum that covers the gill slits.
The study of fishes, the science of ichthyology, is of broad importance. Fishes are of interest to humans for many reasons, the most important being their relationship with and dependence on the environment. A more obvious reason for interest in fishes is their role as a moderate but important part of the world’s food supply. This resource, once thought unlimited, is now realized to be finite and in delicate balance with the biological, chemical, and physical factors of the aquatic environment. Overfishing, pollution, and alteration of the environment are the chief enemies of proper fisheries management, both in fresh waters and in the ocean. (For a detailed discussion of the technology and economics of fisheries, see commercial fishing.) Another practical reason for studying fishes is their use in disease control. As predators on mosquito larvae, they help curb malaria and other mosquito-borne diseases.
Fishes are valuable laboratory animals in many aspects of medical and biological research. For example, the readiness of many fishes to acclimate to captivity has allowed biologists to study behaviour, physiology, and even ecology under relatively natural conditions. Fishes have been especially important in the study of animal behaviour, where research on fishes has provided a broad base for the understanding of the more flexible behaviour of the higher vertebrates. The zebra fish is used as a model in studies of gene expression.
There are aesthetic and recreational reasons for an interest in fishes. Millions of people keep live fishes in home aquariums for the simple pleasure of observing the beauty and behaviour of animals otherwise unfamiliar to them. Aquarium fishes provide a personal challenge to many aquarists, allowing them to test their ability to keep a small section of the natural environment in their homes. Sportfishing is another way of enjoying the natural environment, also indulged in by millions of people every year. Interest in aquarium fishes and sportfishing supports multimillion-dollar industries throughout the world.
Fishes have been in existence for more than 450 million years, during which time they have evolved repeatedly to fit into almost every conceivable type of aquatic habitat. In a sense, land vertebrates are simply highly modified fishes: when fishes colonized the land habitat, they became tetrapod (four-legged) land vertebrates. The popular conception of a fish as a slippery, streamlined aquatic animal that possesses fins and breathes by gills applies to many fishes, but far more fishes deviate from that conception than conform to it. For example, the body is elongate in many forms and greatly shortened in others; the body is flattened in some (principally in bottom-dwelling fishes) and laterally compressed in many others; the fins may be elaborately extended, forming intricate shapes, or they may be reduced or even lost; and the positions of the mouth, eyes, nostrils, and gill openings vary widely. Air breathers have appeared in several evolutionary lines.
Many fishes are cryptically coloured and shaped, closely matching their respective environments; others are among the most brilliantly coloured of all organisms, with a wide range of hues, often of striking intensity, on a single individual. The brilliance of pigments may be enhanced by the surface structure of the fish, so that it almost seems to glow. A number of unrelated fishes have actual light-producing organs. Many fishes are able to alter their coloration—some for the purpose of camouflage, others for the enhancement of behavioral signals.
Fishes range in adult length from less than 10 mm (0.4 inch) to more than 20 metres (60 feet) and in weight from about 1.5 grams (less than 0.06 ounce) to many thousands of kilograms. Some live in shallow thermal springs at temperatures slightly above 42 °C (100 °F), others in cold Arctic seas a few degrees below 0 °C (32 °F) or in cold deep waters more than 4,000 metres (13,100 feet) beneath the ocean surface. The structural and, especially, the physiological adaptations for life at such extremes are relatively poorly known and provide the scientifically curious with great incentive for study.
Almost all natural bodies of water bear fish life, the exceptions being very hot thermal ponds and extremely salt-alkaline lakes, such as the Dead Sea in Asia and the Great Salt Lake in North America. The present distribution of fishes is a result of the geological history and development of Earth as well as the ability of fishes to undergo evolutionary change and to adapt to the available habitats. Fishes may be seen to be distributed according to habitat and according to geographical area. Major habitat differences are marine and freshwater. For the most part, the fishes in a marine habitat differ from those in a freshwater habitat, even in adjacent areas, but some, such as the salmon, migrate from one to the other. The freshwater habitats may be seen to be of many kinds. Fishes found in mountain torrents, Arctic lakes, tropical lakes, temperate streams, and tropical rivers will all differ from each other, both in obvious gross structure and in physiological attributes. Even in closely adjacent habitats where, for example, a tropical mountain torrent enters a lowland stream, the fish fauna will differ. The marine habitats can be divided into deep ocean floors (benthic), mid-water oceanic (bathypelagic), surface oceanic (pelagic), rocky coast, sandy coast, muddy shores, bays, estuaries, and others. Also, for example, rocky coastal shores in tropical and temperate regions will have different fish faunas, even when such habitats occur along the same coastline.
Although much is known about the present geographical distribution of fishes, far less is known about how that distribution came about. Many parts of the fish fauna of the fresh waters of North America and Eurasia are related and undoubtedly have a common origin. The faunas of Africa and South America are related, extremely old, and probably an expression of the drifting apart of the two continents. The fauna of southern Asia is related to that of Central Asia, and some of it appears to have entered Africa. The extremely large shore-fish faunas of the Indian and tropical Pacific oceans comprise a related complex, but the tropical shore fauna of the Atlantic, although containing Indo-Pacific components, is relatively limited and probably younger. The Arctic and Antarctic marine faunas are quite different from each other. The shore fauna of the North Pacific is quite distinct, and that of the North Atlantic more limited and probably younger. Pelagic oceanic fishes, especially those in deep waters, are similar the world over, showing little geographical isolation in terms of family groups. The deep oceanic habitat is very much the same throughout the world, but species differences do exist, showing geographical areas determined by oceanic currents and water masses.
All aspects of the life of a fish are closely correlated with adaptation to the total environment, physical, chemical, and biological. In studies, all the interdependent aspects of fish, such as behaviour, locomotion, reproduction, and physical and physiological characteristics, must be taken into account.
Correlated with their adaptation to an extremely wide variety of habitats is the extremely wide variety of life cycles that fishes display. The great majority hatch from relatively small eggs a few days to several weeks or more after the eggs are scattered in the water. Newly hatched young are still partially undeveloped and are called larvae until body structures such as fins, skeleton, and some organs are fully formed. Larval life is often very short, usually less than a few weeks, but it can be very long, some lampreys continuing as larvae for at least five years. Young and larval fishes, before reaching sexual maturity, must grow considerably, and their small size and other factors often dictate that they live in a habitat different than that of the adults. For example, most tropical marine shore fishes have pelagic larvae. Larval food also is different, and larval fishes often live in shallow waters, where they may be less exposed to predators.
After a fish reaches adult size, the length of its life is subject to many factors, such as innate rates of aging, predation pressure, and the nature of the local climate. The longevity of a species in the protected environment of an aquarium may have nothing to do with how long members of that species live in the wild. Many small fishes live only one to three years at the most. In some species, however, individuals may live as long as 10 or 20 or even 100 years.
Fish behaviour is a complicated and varied subject. As in almost all animals with a central nervous system, the nature of a response of an individual fish to stimuli from its environment depends upon the inherited characteristics of its nervous system, on what it has learned from past experience, and on the nature of the stimuli. Compared with the variety of human responses, however, that of a fish is stereotyped, not subject to much modification by “thought” or learning, and investigators must guard against anthropomorphic interpretations of fish behaviour.
Fishes perceive the world around them by the usual senses of sight, smell, hearing, touch, and taste and by special lateral line water-current detectors. In the few fishes that generate electric fields, a process that might best be called electrolocation aids in perception. One or another of these senses often is emphasized at the expense of others, depending upon the fish’s other adaptations. In fishes with large eyes, the sense of smell may be reduced; others, with small eyes, hunt and feed primarily by smell (such as some eels).
Specialized behaviour is primarily concerned with the three most important activities in the fish’s life: feeding, reproduction, and escape from enemies. Schooling behaviour of sardines on the high seas, for instance, is largely a protective device to avoid enemies, but it is also associated with and modified by their breeding and feeding requirements. Predatory fishes are often solitary, lying in wait to dart suddenly after their prey, a kind of locomotion impossible for beaked parrot fishes, which feed on coral, swimming in small groups from one coral head to the next. In addition, some predatory fishes that inhabit pelagic environments, such as tunas, often school.
Sleep in fishes, all of which lack true eyelids, consists of a seemingly listless state in which the fish maintains its balance but moves slowly. If attacked or disturbed, most can dart away. A few kinds of fishes lie on the bottom to sleep. Most catfishes, some loaches, and some eels and electric fishes are strictly nocturnal, being active and hunting for food during the night and retiring during the day to holes, thick vegetation, or other protective parts of the environment.
Communication between members of a species or between members of two or more species often is extremely important, especially in breeding behaviour (see below Reproduction). The mode of communication may be visual, as between the small so-called cleaner fish and a large fish of a very different species. The larger fish often allows the cleaner to enter its mouth to remove gill parasites. The cleaner is recognized by its distinctive colour and actions and therefore is not eaten, even if the larger fish is normally a predator. Communication is often chemical, signals being sent by specific chemicals called pheromones.
Many fishes have a streamlined body and swim freely in open water. Fish locomotion is closely correlated with habitat and ecological niche (the general position of the animal to its environment).
Many fishes in both marine and fresh waters swim at the surface and have mouths adapted to feed best (and sometimes only) at the surface. Often such fishes are long and slender, able to dart at surface insects or at other surface fishes and in turn to dart away from predators; needlefishes, halfbeaks, and topminnows (such as killifish and mosquito fish) are good examples. Oceanic flying fishes escape their predators by gathering speed above the water surface, with the lower lobe of the tail providing thrust in the water. They then glide hundreds of yards on enlarged, winglike pectoral and pelvic fins. South American freshwater flying fishes escape their enemies by jumping and propelling their strongly keeled bodies out of the water.
So-called mid-water swimmers, the most common type of fish, are of many kinds and live in many habitats. The powerful fusiform tunas and the trouts, for example, are adapted for strong, fast swimming, the tunas to capture prey speedily in the open ocean and the trouts to cope with the swift currents of streams and rivers. The trout body form is well adapted to many habitats. Fishes that live in relatively quiet waters such as bays or lake shores or slow rivers usually are not strong, fast swimmers but are capable of short, quick bursts of speed to escape a predator. Many of these fishes have their sides flattened, examples being the sunfish and the freshwater angelfish of aquarists. Fish associated with the bottom or substrate usually are slow swimmers. Open-water plankton-feeding fishes almost always remain fusiform and are capable of rapid, strong movement (for example, sardines and herrings of the open ocean and also many small minnows of streams and lakes).
Bottom-living fishes are of many kinds and have undergone many types of modification of their body shape and swimming habits. Rays, which evolved from strong-swimming mid-water sharks, usually stay close to the bottom and move by undulating their large pectoral fins. Flounders live in a similar habitat and move over the bottom by undulating the entire body. Many bottom fishes dart from place to place, resting on the bottom between movements, a motion common in gobies. One goby relative, the mudskipper, has taken to living at the edge of pools along the shore of muddy mangrove swamps. It escapes its enemies by flipping rapidly over the mud, out of the water. Some catfishes, synbranchid eels, the so-called climbing perch, and a few other fishes venture out over damp ground to find more promising waters than those that they left. They move by wriggling their bodies, sometimes using strong pectoral fins; most have accessory air-breathing organs. Many bottom-dwelling fishes live in mud holes or rocky crevices. Marine eels and gobies commonly are found in such habitats and for the most part venture far beyond their cavelike homes. Some bottom dwellers, such as the clingfishes (Gobiesocidae), have developed powerful adhesive disks that enable them to remain in place on the substrate in areas such as rocky coasts, where the action of the waves is great.
The methods of reproduction in fishes are varied, but most fishes lay a large number of small eggs, fertilized and scattered outside of the body. The eggs of pelagic fishes usually remain suspended in the open water. Many shore and freshwater fishes lay eggs on the bottom or among plants. Some have adhesive eggs. The mortality of the young and especially of the eggs is very high, and often only a few individuals grow to maturity out of hundreds, thousands, and in some cases millions of eggs laid.
Males produce sperm, usually as a milky white substance called milt, in two (sometimes one) testes within the body cavity. In bony fishes a sperm duct leads from each testis to a urogenital opening behind the vent or anus. In sharks and rays and in cyclostomes the duct leads to a cloaca. Sometimes the pelvic fins are modified to help transmit the milt to the eggs at the female’s vent or on the substrate where the female has placed them. Sometimes accessory organs are used to fertilize females internally—for example, the claspers of many sharks and rays.
In the females the eggs are formed in two ovaries (sometimes only one) and pass through the ovaries to the urogenital opening and to the outside. In some fishes the eggs are fertilized internally but are shed before development takes place. Members of about a dozen families each of bony fishes (teleosts) and sharks bear live young. Many skates and rays also bear live young. In some bony fishes the eggs simply develop within the female, the young emerging when the eggs hatch (ovoviviparous). Others develop within the ovary and are nourished by ovarian tissues after hatching (viviparous). There are also other methods utilized by fishes to nourish young within the female. In all live-bearers the young are born at a relatively large size and are few in number. In one family of primarily marine fishes, the surfperches from the Pacific coast of North America, Japan, and Korea, the males of at least one species are born sexually mature, although they are not fully grown.
Some fishes are hermaphroditic—an individual producing both sperm and eggs, usually at different stages of its life. Self-fertilization, however, is probably rare.
Successful reproduction and, in many cases, defense of the eggs and the young are assured by rather stereotypical but often elaborate courtship and parental behaviour, either by the male or the female or both. Some fishes prepare nests by hollowing out depressions in the sand bottom (cichlids, for example), build nests with plant materials and sticky threads excreted by the kidneys (sticklebacks), or blow a cluster of mucus-covered bubbles at the water surface (gouramis). The eggs are laid in these structures. Some varieties of cichlids and catfishes incubate eggs in their mouths.
Some fishes, such as salmon, undergo long migrations from the ocean and up large rivers to spawn in the gravel beds where they themselves hatched (anadromous fishes). Some, such as the freshwater eels (family Anguillidae), live and grow to maturity in fresh water and migrate to the sea to spawn (catadromous fishes). Other fishes undertake shorter migrations from lakes into streams, within the ocean, or enter spawning habitats that they do not ordinarily occupy in other ways.
The basic structure and function of the fish body are similar to those of all other vertebrates. The usual four types of tissues are present: surface or epithelial, connective (bone, cartilage, and fibrous tissues, as well as their derivative, blood), nerve, and muscle tissues. In addition, the fish’s organs and organ systems parallel those of other vertebrates.
The typical fish body is streamlined and spindle-shaped, with an anterior head, a gill apparatus, and a heart, the latter lying in the midline just below the gill chamber. The body cavity, containing the vital organs, is situated behind the head in the lower anterior part of the body. The anus usually marks the posterior termination of the body cavity and most often occurs just in front of the base of the anal fin. The spinal cord and vertebral column continue from the posterior part of the head to the base of the tail fin, passing dorsal to the body cavity and through the caudal (tail) region behind the body cavity. Most of the body is of muscular tissue, a high proportion of which is necessitated by swimming. In the course of evolution this basic body plan has been modified repeatedly into the many varieties of fish shapes that exist today.
The skeleton forms an integral part of the fish’s locomotion system, as well as serving to protect vital parts. The internal skeleton consists of the skull bones (except for the roofing bones of the head, which are really part of the external skeleton), the vertebral column, and the fin supports (fin rays). The fin supports are derived from the external skeleton but will be treated here because of their close functional relationship to the internal skeleton. The internal skeleton of cyclostomes, sharks, and rays is of cartilage; that of many fossil groups and some primitive living fishes is mostly of cartilage but may include some bone. In place of the vertebral column, the earliest vertebrates had a fully developed notochord, a flexible stiff rod of viscous cells surrounded by a strong fibrous sheath. During the evolution of modern fishes the rod was replaced in part by cartilage and then by ossified cartilage. Sharks and rays retain a cartilaginous vertebral column; bony fishes have spool-shaped vertebrae that in the more primitive living forms only partially replace the notochord. The skull, including the gill arches and jaws of bony fishes, is fully, or at least partially, ossified. That of sharks and rays remains cartilaginous, at times partially replaced by calcium deposits but never by true bone.
The supportive elements of the fins (basal or radial bones or both) have changed greatly during fish evolution. Some of these changes are described in the section below (Evolution and paleontology). Most fishes possess a single dorsal fin on the midline of the back. Many have two and a few have three dorsal fins. The other fins are the single tail and anal fins and paired pelvic and pectoral fins. A small fin, the adipose fin, with hairlike fin rays, occurs in many of the relatively primitive teleosts (such as trout) on the back near the base of the caudal fin.
The skin of a fish must serve many functions. It aids in maintaining the osmotic balance, provides physical protection for the body, is the site of coloration, contains sensory receptors, and, in some fishes, functions in respiration. Mucous glands, which aid in maintaining the water balance and offer protection from bacteria, are extremely numerous in fish skin, especially in cyclostomes and teleosts. Since mucous glands are present in the modern lampreys, it is reasonable to assume that they were present in primitive fishes, such as the ancient Silurian and Devonian agnathans. Protection from abrasion and predation is another function of the fish skin, and dermal (skin) bone arose early in fish evolution in response to this need. It is thought that bone first evolved in skin and only later invaded the cartilaginous areas of the fish’s body, to provide additional support and protection. There is some argument as to which came first, cartilage or bone, and fossil evidence does not settle the question. In any event, dermal bone has played an important part in fish evolution and has different characteristics in different groups of fishes. Several groups are characterized at least in part by the kind of bony scales they possess.
Scales have played an important part in the evolution of fishes. Primitive fishes usually had thick bony plates or thick scales in several layers of bone, enamel, and related substances. Modern teleost fishes have scales of bone, which, while still protective, allow much more freedom of motion in the body. A few modern teleosts (some catfishes, sticklebacks, and others) have secondarily acquired bony plates in the skin. Modern and early sharks possessed placoid scales, a relatively primitive type of scale with a toothlike structure, consisting of an outside layer of enamel-like substance (vitrodentine), an inner layer of dentine, and a pulp cavity containing nerves and blood vessels. Primitive bony fishes had thick scales of either the ganoid or the cosmoid type. Cosmoid scales have a hard, enamel-like outer layer, an inner layer of cosmine (a form of dentine), and then a layer of vascular bone (isopedine). In ganoid scales the hard outer layer is different chemically and is called ganoin. Under this is a cosminelike layer and then a vascular bony layer. The thin, translucent bony scales of modern fishes, called cycloid and ctenoid (the latter distinguished by serrations at the edges), lack enameloid and dentine layers.
Skin has several other functions in fishes. It is well supplied with nerve endings and presumably receives tactile, thermal, and pain stimuli. Skin is also well supplied with blood vessels. Some fishes breathe in part through the skin, by the exchange of oxygen and carbon dioxide between the surrounding water and numerous small blood vessels near the skin surface.
Skin serves as protection through the control of coloration. Fishes exhibit an almost limitless range of colours. The colours often blend closely with the surroundings, effectively hiding the animal. Many fishes use bright colours for territorial advertisement or as recognition marks for other members of their own species, or sometimes for members of other species. Many fishes can change their colour to a greater or lesser degree, by movement of pigment within the pigment cells (chromatophores). Black pigment cells (melanophores), of almost universal occurrence in fishes, are often juxtaposed with other pigment cells. When placed beneath iridocytes or leucophores (bearing the silvery or white pigment guanine), melanophores produce structural colours of blue and green. These colours are often extremely intense, because they are formed by refraction of light through the needlelike crystals of guanine. The blue and green refracted colours are often relatively pure, lacking the red and yellow rays, which have been absorbed by the black pigment (melanin) of the melanophores. Yellow, orange, and red colours are produced by erythrophores, cells containing the appropriate carotenoid pigments. Other colours are produced by combinations of melanophores, erythrophores, and iridocytes.
The major portion of the body of most fishes consists of muscles. Most of the mass is trunk musculature, the fin muscles usually being relatively small. The caudal fin is usually the most powerful fin, being moved by the trunk musculature. The body musculature is usually arranged in rows of chevron-shaped segments on each side. Contractions of these segments, each attached to adjacent vertebrae and vertebral processes, bends the body on the vertebral joint, producing successive undulations of the body, passing from the head to the tail, and producing driving strokes of the tail. It is the latter that provides the strong forward movement for most fishes.
The digestive system, in a functional sense, starts at the mouth, with the teeth used to capture prey or collect plant foods. Mouth shape and tooth structure vary greatly in fishes, depending on the kind of food normally eaten. Most fishes are predacious, feeding on small invertebrates or other fishes and have simple conical teeth on the jaws, on at least some of the bones of the roof of the mouth, and on special gill arch structures just in front of the esophagus. The latter are throat teeth. Most predacious fishes swallow their prey whole, and the teeth are used for grasping and holding prey, for orienting prey to be swallowed (head first) and for working the prey toward the esophagus. There are a variety of tooth types in fishes. Some fishes, such as sharks and piranhas, have cutting teeth for biting chunks out of their victims. A shark’s tooth, although superficially like that of a piranha, appears in many respects to be a modified scale, while that of the piranha is like that of other bony fishes, consisting of dentine and enamel. Parrot fishes have beaklike mouths with short incisor-like teeth for breaking off coral and have heavy pavementlike throat teeth for crushing the coral. Some catfishes have small brushlike teeth, arranged in rows on the jaws, for scraping plant and animal growth from rocks. Many fishes (such as the Cyprinidae or minnows) have no jaw teeth at all but have very strong throat teeth.
Some fishes gather planktonic food by straining it from their gill cavities with numerous elongate stiff rods (gill rakers) anchored by one end to the gill bars. The food collected on these rods is passed to the throat, where it is swallowed. Most fishes have only short gill rakers that help keep food particles from escaping out the mouth cavity into the gill chamber.
Once reaching the throat, food enters a short, often greatly distensible esophagus, a simple tube with a muscular wall leading into a stomach. The stomach varies greatly in fishes, depending upon the diet. In most predacious fishes it is a simple straight or curved tube or pouch with a muscular wall and a glandular lining. Food is largely digested there and leaves the stomach in liquid form.
Between the stomach and the intestine, ducts enter the digestive tube from the liver and pancreas. The liver is a large, clearly defined organ. The pancreas may be embedded in it, diffused through it, or broken into small parts spread along some of the intestine. The junction between the stomach and the intestine is marked by a muscular valve. Pyloric ceca (blind sacs) occur in some fishes at this junction and have a digestive or absorptive function or both.
The intestine itself is quite variable in length, depending upon the fish’s diet. It is short in predacious forms, sometimes no longer than the body cavity, but long in herbivorous forms, being coiled and several times longer than the entire length of the fish in some species of South American catfishes. The intestine is primarily an organ for absorbing nutrients into the bloodstream. The larger its internal surface, the greater its absorptive efficiency, and a spiral valve is one method of increasing its absorption surface.
Sharks, rays, chimaeras, lungfishes, surviving chondrosteans, holosteans, and even a few of the more primitive teleosts have a spiral valve or at least traces of it in the intestine. Most modern teleosts have increased the area of the intestinal walls by having numerous folds and villi (fingerlike projections) somewhat like those in humans. Undigested substances are passed to the exterior through the anus in most teleost fishes. In lungfishes, sharks, and rays, it is first passed through the cloaca, a common cavity receiving the intestinal opening and the ducts from the urogenital system.
Oxygen and carbon dioxide dissolve in water, and most fishes exchange dissolved oxygen and carbon dioxide in water by means of the gills. The gills lie behind and to the side of the mouth cavity and consist of fleshy filaments supported by the gill arches and filled with blood vessels, which give gills a bright red colour. Water taken in continuously through the mouth passes backward between the gill bars and over the gill filaments, where the exchange of gases takes place. The gills are protected by a gill cover in teleosts and many other fishes but by flaps of skin in sharks, rays, and some of the older fossil fish groups. The blood capillaries in the gill filaments are close to the gill surface to take up oxygen from the water and to give up excess carbon dioxide to the water.
Most modern fishes have a hydrostatic (ballast) organ, called the swim bladder, that lies in the body cavity just below the kidney and above the stomach and intestine. It originated as a diverticulum of the digestive canal. In advanced teleosts, especially the acanthopterygians, the bladder has lost its connection with the digestive tract, a condition called physoclistic. The connection has been retained (physostomous) by many relatively primitive teleosts. In several unrelated lines of fishes, the bladder has become specialized as a lung or, at least, as a highly vascularized accessory breathing organ. Some fishes with such accessory organs are obligate air breathers and will drown if denied access to the surface, even in well-oxygenated water. Fishes with a hydrostatic form of swim bladder can control their depth by regulating the amount of gas in the bladder. The gas, mostly oxygen, is secreted into the bladder by special glands, rendering the fish more buoyant; the gas is absorbed into the bloodstream by another special organ, reducing the overall buoyancy and allowing the fish to sink. Some deep-sea fishes may have oils, rather than gas, in the bladder. Other deep-sea and some bottom-living forms have much-reduced swim bladders or have lost the organ entirely.
The swim bladder of fishes follows the same developmental pattern as the lungs of land vertebrates. There is no doubt that the two structures have the same historical origin in primitive fishes. More or less intermediate forms still survive among the more primitive types of fishes, such as the lungfishes Lepidosiren and Protopterus.
The circulatory, or blood vascular, system consists of the heart, the arteries, the capillaries, and the veins. It is in the capillaries that the interchange of oxygen, carbon dioxide, nutrients, and other substances such as hormones and waste products takes place. The capillaries lead to the veins, which return the venous blood with its waste products to the heart, kidneys, and gills. There are two kinds of capillary beds: those in the gills and those in the rest of the body. The heart, a folded continuous muscular tube with three or four saclike enlargements, undergoes rhythmic contractions and receives venous blood in a sinus venosus. It passes the blood to an auricle and then into a thick muscular pump, the ventricle. From the ventricle the blood goes to a bulbous structure at the base of a ventral aorta just below the gills. The blood passes to the afferent (receiving) arteries of the gill arches and then to the gill capillaries. There waste gases are given off to the environment, and oxygen is absorbed. The oxygenated blood enters efferent (exuant) arteries of the gill arches and then flows into the dorsal aorta. From there blood is distributed to the tissues and organs of the body. One-way valves prevent backflow. The circulation of fishes thus differs from that of the reptiles, birds, and mammals in that oxygenated blood is not returned to the heart prior to distribution to the other parts of the body.
The primary excretory organ in fishes, as in other vertebrates, is the kidney. In fishes some excretion also takes place in the digestive tract, skin, and especially the gills (where ammonia is given off). Compared with land vertebrates, fishes have a special problem in maintaining their internal environment at a constant concentration of water and dissolved substances, such as salts. Proper balance of the internal environment (homeostasis) of a fish is in a great part maintained by the excretory system, especially the kidney.
The kidney, gills, and skin play an important role in maintaining a fish’s internal environment and checking the effects of osmosis. Marine fishes live in an environment in which the water around them has a greater concentration of salts than they can have inside their body and still maintain life. Freshwater fishes, on the other hand, live in water with a much lower concentration of salts than they require inside their bodies. Osmosis tends to promote the loss of water from the body of a marine fish and absorption of water by that of a freshwater fish. Mucus in the skin tends to slow the process but is not a sufficient barrier to prevent the movement of fluids through the permeable skin. When solutions on two sides of a permeable membrane have different concentrations of dissolved substances, water will pass through the membrane into the more concentrated solution, while the dissolved chemicals move into the area of lower concentration (diffusion).
The kidney of freshwater fishes is often larger in relation to body weight than that of marine fishes. In both groups the kidney excretes wastes from the body, but the kidney of freshwater fishes also excretes large amounts of water, counteracting the water absorbed through the skin. Freshwater fishes tend to lose salt to the environment and must replace it. They get some salt from their food, but the gills and skin inside the mouth actively absorb salt from water passed through the mouth. This absorption is performed by special cells capable of moving salts against the diffusion gradient. Freshwater fishes drink very little water and take in little water with their food.
Marine fishes must conserve water, and therefore their kidneys excrete little water. To maintain their water balance, marine fishes drink large quantities of seawater, retaining most of the water and excreting the salt. Most nitrogenous waste in marine fishes appears to be secreted by the gills as ammonia. Marine fishes can excrete salt by clusters of special cells (chloride cells) in the gills.
There are several teleosts—for example, the salmon—that travel between fresh water and seawater and must adjust to the reversal of osmotic gradients. They adjust their physiological processes by spending time (often surprisingly little time) in the intermediate brackish environment.
Marine hagfishes, sharks, and rays have osmotic concentrations in their blood about equal to that of seawater and so do not have to drink water nor perform much physiological work to maintain their osmotic balance. In sharks and rays the osmotic concentration is kept high by retention of urea in the blood. Freshwater sharks have a lowered concentration of urea in the blood.
Endocrine glands secrete their products into the bloodstream and body tissues and, along with the central nervous system, control and regulate many kinds of body functions. Cyclostomes have a well-developed endocrine system, and presumably it was well developed in the early Agnatha, ancestral to modern fishes. Although the endocrine system in fishes is similar to that of higher vertebrates, there are numerous differences in detail. The pituitary, the thyroid, the suprarenals, the adrenals, the pancreatic islets, the sex glands (ovaries and testes), the inner wall of the intestine, and the bodies of the ultimobranchial gland make up the endocrine system in fishes. There are some others whose function is not well understood. These organs regulate sexual activity and reproduction, growth, osmotic pressure, general metabolic activities such as the storage of fat and the utilization of foodstuffs, blood pressure, and certain aspects of skin colour. Many of these activities are also controlled in part by the central nervous system, which works with the endocrine system in maintaining the life of a fish. Some parts of the endocrine system are developmentally, and undoubtedly evolutionarily, derived from the nervous system.
As in all vertebrates, the nervous system of fishes is the primary mechanism coordinating body activities, as well as integrating these activities in the appropriate manner with stimuli from the environment. The central nervous system, consisting of the brain and spinal cord, is the primary integrating mechanism. The peripheral nervous system, consisting of nerves that connect the brain and spinal cord to various body organs, carries sensory information from special receptor organs such as the eyes, internal ears, nares (sense of smell), taste glands, and others to the integrating centres of the brain and spinal cord. The peripheral nervous system also carries information via different nerve cells from the integrating centres of the brain and spinal cord. This coded information is carried to the various organs and body systems, such as the skeletal muscular system, for appropriate action in response to the original external or internal stimulus. Another branch of the nervous system, the autonomic nervous system, helps to coordinate the activities of many glands and organs and is itself closely connected to the integrating centres of the brain.
The brain of the fish is divided into several anatomical and functional parts, all closely interconnected but each serving as the primary centre of integrating particular kinds of responses and activities. Several of these centres or parts are primarily associated with one type of sensory perception, such as sight, hearing, or smell (olfaction).
The sense of smell is important in almost all fishes. Certain eels with tiny eyes depend mostly on smell for location of food. The olfactory, or nasal, organ of fishes is located on the dorsal surface of the snout. The lining of the nasal organ has special sensory cells that perceive chemicals dissolved in the water, such as substances from food material, and send sensory information to the brain by way of the first cranial nerve. Odour also serves as an alarm system. Many fishes, especially various species of freshwater minnows, react with alarm to a chemical released from the skin of an injured member of their own species.
Many fishes have a well-developed sense of taste, and tiny pitlike taste buds or organs are located not only within their mouth cavities but also over their heads and parts of their body. Catfishes, which often have poor vision, have barbels (“whiskers”) that serve as supplementary taste organs, those around the mouth being actively used to search out food on the bottom. Some species of naturally blind cave fishes are especially well supplied with taste buds, which often cover most of their body surface.
Sight is extremely important in most fishes. The eye of a fish is basically like that of all other vertebrates, but the eyes of fishes are extremely varied in structure and adaptation. In general, fishes living in dark and dim water habitats have large eyes, unless they have specialized in some compensatory way so that another sense (such as smell) is dominant, in which case the eyes will often be reduced. Fishes living in brightly lighted shallow waters often will have relatively small but efficient eyes. Cyclostomes have somewhat less elaborate eyes than other fishes, with skin stretched over the eyeball perhaps making their vision somewhat less effective. Most fishes have a spherical lens and accommodate their vision to far or near subjects by moving the lens within the eyeball. A few sharks accommodate by changing the shape of the lens, as in land vertebrates. Those fishes that are heavily dependent upon the eyes have especially strong muscles for accommodation. Most fishes see well, despite the restrictions imposed by frequent turbidity of the water and by light refraction.
Fossil evidence suggests that colour vision evolved in fishes more than 300 million years ago, but not all living fishes have retained this ability. Experimental evidence indicates that many shallow-water fishes, if not all, have colour vision and see some colours especially well, but some bottom-dwelling shore fishes live in areas where the water is sufficiently deep to filter out most if not all colours, and these fishes apparently never see colours. When tested in shallow water, they apparently are unable to respond to colour differences.
Sound perception and balance are intimately associated senses in a fish. The organs of hearing are entirely internal, located within the skull, on each side of the brain and somewhat behind the eyes. Sound waves, especially those of low frequencies, travel readily through water and impinge directly upon the bones and fluids of the head and body, to be transmitted to the hearing organs. Fishes readily respond to sound; for example, a trout conditioned to escape by the approach of fishermen will take flight upon perceiving footsteps on a stream bank even if it cannot see a fisherman. Compared with humans, however, the range of sound frequencies heard by fishes is greatly restricted. Many fishes communicate with each other by producing sounds in their swim bladders, in their throats by rasping their teeth, and in other ways.
A fish or other vertebrate seldom has to rely on a single type of sensory information to determine the nature of the environment around it. A catfish uses taste and touch when examining a food object with its oral barbels. Like most other animals, fishes have many touch receptors over their body surface. Pain and temperature receptors also are present in fishes and presumably produce the same kind of information to a fish as to humans. Fishes react in a negative fashion to stimuli that would be painful to human beings, suggesting that they feel a sensation of pain.
An important sensory system in fishes that is absent in other vertebrates (except some amphibians) is the lateral line system. This consists of a series of heavily innervated small canals located in the skin and bone around the eyes, along the lower jaw, over the head, and down the mid-side of the body, where it is associated with the scales. Intermittently along these canals are located tiny sensory organs (pit organs) that apparently detect changes in pressure. The system allows a fish to sense changes in water currents and pressure, thereby helping the fish to orient itself to the various changes that occur in the physical environment.
From the concert where The Commanded Heart and the other LGBT Purge commemorative songs were premiered. The event started with a heart-stopper - the fire alarm system started to go, a persistent loud beep and strobe lights. Everyone prayed we wouldn't have to evacuate and those prayers were answered! Whew... I was a bit of the odd man out in the wardrobe department, but that stems from my sense that we commemorate and honour the sacrifices of those before us by living life joyously and with exuberance. I'm reluctant to post too much of The Commanded Heart itself, as Geoff and I won't own the rights for a while, but will post the lyrics as sung which where printed in the program, and a link from somebody who did record the song.
TEIGN C Damen Stan 1405
IMO: - N/A
MMSI: 235082804
Call Sign: MWBM9
AIS Vessel Type: Dredger
GENERAL
DAMEN YARD NUMBER: 503705
Avelingen-West 20
4202 MS Gorinchem
The Netherlands
Phone: +31 (0)183 63 99 11
info@damen.com
DELIVERY DATE August 2001
BASIC FUNCTIONS Towing, mooring, pushing and dredging operations
FLAG United Kingdom [GB]
OWNED Teignmouth Harbour Commission
CASSCATION: Bureau Veritas 1 HULL MACH Seagoing Launch
DIMENSIONS
LENGTH 14.40 m
BEAM 4.73 m
DEPTH AT SIDES 205 m
DRAUGHT AFT 171 m
DISPLACEMENT 48 ton
TANK CAPACITIES
Fuel oil 6.9 m³
PERFORMANCES (TRIALS)
BOLLARD PULL AHEAD 8.0 ton
SPEED 9.8 knots
PROPULSION SYSTEM
MAIN ENGINE 2x Caterpillar 3406C TA/A
TOTAL POWER 477 bmW (640i hp) at 1800 rpm
GEARBOX 2x Twin Disc MG 5091/3.82:1
PROPELLERS Bronze fixed pitch propeller
KORT NOZZELS Van de Giessen 2x 1000 mm with stainless steel innerings
ENGINE CONTROL Kobelt
STEERING GEAR 2x 25 mm single plate Powered hydraulic 2x 45, rudder indicator
AUXILIARY EQUIPMENT
BILGE PUMP Sterling SIH 20, 32 m/hr
BATTERY SETS 2x 24V, 200 Ah + change over facility
COOLING SYSTEM Closed cooling system
ALARM SYSTEM Engines, gearboxes and bilge alarms
FRESH WATER PRESSURE SET Speck 24V
DECK LAY-OUT
ANCHORS 2x 48 kg Pool (HHP)
CHAIN 70 m, Ø 13mm, shortlink U2
ANCHOR WINCH Hand-operated
TOWING HOOK Mampaey, 15.3 ton SWL
COUPLING WINCH
PUSHBOW Cylindrical nubber fender Ø 380 mm
ACCOMMODATION
The wheelhouse ceiling and sides are insulated with mineral wool and
panelled. The wheelhouse floor is covered with rubber/synthetic floor
covering, make Bolidt, color blue The wheelhouse has one
helmsman seat, a bench and table with chair Below deck two berths, a
kitchen unit and a toilet space are arranged.
NAUTICAL AND COMMUNICATION EQUIPMENT
SEARCHLIGHT Den Haan 170 W 24 V
VHF RADIO Sailor RT 2048 25 W
NAVIGATION Navigation lights incl towing and pilot lights
Teignmouth Harbour Commission
The Harbour Commission is a Trust Port created by Statute.
The principal Order is the Teignmouth Harbour Order 1924
as amended by the Teignmouth Harbour Revision Order 2003
TEIGN C Damen Stan 1405
IMO: - N/A
MMSI: 235082804
Call Sign: MWBM9
AIS Vessel Type: Dredger
GENERAL
DAMEN YARD NUMBER: 503705
Avelingen-West 20
4202 MS Gorinchem
The Netherlands
Phone: +31 (0)183 63 99 11
info@damen.com
DELIVERY DATE August 2001
BASIC FUNCTIONS Towing, mooring, pushing and dredging operations
FLAG United Kingdom [GB]
OWNED Teignmouth Harbour Commission
CASSCATION: Bureau Veritas 1 HULL MACH Seagoing Launch
DIMENSIONS
LENGTH 14.40 m
BEAM 4.73 m
DEPTH AT SIDES 205 m
DRAUGHT AFT 171 m
DISPLACEMENT 48 ton
TANK CAPACITIES
Fuel oil 6.9 m³
PERFORMANCES (TRIALS)
BOLLARD PULL AHEAD 8.0 ton
SPEED 9.8 knots
PROPULSION SYSTEM
MAIN ENGINE 2x Caterpillar 3406C TA/A
TOTAL POWER 477 bmW (640i hp) at 1800 rpm
GEARBOX 2x Twin Disc MG 5091/3.82:1
PROPELLERS Bronze fixed pitch propeller
KORT NOZZELS Van de Giessen 2x 1000 mm with stainless steel innerings
ENGINE CONTROL Kobelt
STEERING GEAR 2x 25 mm single plate Powered hydraulic 2x 45, rudder indicator
AUXILIARY EQUIPMENT
BILGE PUMP Sterling SIH 20, 32 m/hr
BATTERY SETS 2x 24V, 200 Ah + change over facility
COOLING SYSTEM Closed cooling system
ALARM SYSTEM Engines, gearboxes and bilge alarms
FRESH WATER PRESSURE SET Speck 24V
DECK LAY-OUT
ANCHORS 2x 48 kg Pool (HHP)
CHAIN 70 m, Ø 13mm, shortlink U2
ANCHOR WINCH Hand-operated
TOWING HOOK Mampaey, 15.3 ton SWL
COUPLING WINCH
PUSHBOW Cylindrical nubber fender Ø 380 mm
ACCOMMODATION
The wheelhouse ceiling and sides are insulated with mineral wool and
panelled. The wheelhouse floor is covered with rubber/synthetic floor
covering, make Bolidt, color blue The wheelhouse has one
helmsman seat, a bench and table with chair Below deck two berths, a
kitchen unit and a toilet space are arranged.
NAUTICAL AND COMMUNICATION EQUIPMENT
SEARCHLIGHT Den Haan 170 W 24 V
VHF RADIO Sailor RT 2048 25 W
NAVIGATION Navigation lights incl towing and pilot lights
Teignmouth Harbour Commission
The Harbour Commission is a Trust Port created by Statute.
The principal Order is the Teignmouth Harbour Order 1924
as amended by the Teignmouth Harbour Revision Order 2003
The Postcard
A postally unused carte postale published by ALFA of 97, Rue Vieille du Temple, Paris. The card was printed in France.
The Notre-Dame Fire
On the 15th. April 2019, fire broke out in the attic beneath the cathedral's roof at 18:18. At 18:20 the fire alarm sounded and guards evacuated the cathedral. A guard was sent to investigate, but to the wrong location – the attic of the adjoining sacristy – where he found no fire. About fifteen minutes later the error was discovered, but by the time guards had climbed the three hundred steps to the cathedral attic the fire was well advanced.
The alarm system was not designed to automatically notify the fire brigade, which was summoned at 18:51 after the guards had returned. Firefighters arrived within ten minutes.
Fighting the Notre-Dame Fire
More than 400 firefighters were engaged. A hundred government employees along with police and municipal workers moved precious artefacts to safety via a human chain.
The fire was primarily fought from inside the structure, which was more dangerous for personnel, but reduced potential damage to the cathedral - applying water from outside risked deflecting flames and hot gases (at temperatures up to 800 °C) inwards. Deluge guns were used at lower-than-usual pressures to minimise damage to the cathedral and its contents. Water was supplied by pump-boat from the Seine.
Aerial firefighting was not used because water dropped from heights could have caused structural damage, and heated stone can crack if suddenly cooled. Helicopters were also not used because of dangerous updrafts, but drones were used for visual and thermal imaging, and robots for visual imaging and directing water streams. Molten lead falling from the roof posed a special hazard for firefighters.
By 18:52, smoke was visible from the outside; flames appeared within the next ten minutes. The spire of the cathedral collapsed at 19:50, creating a draft that slammed all the doors and sent a fireball through the attic. Firefighters then retreated from within the attic.
Shortly before the spire fell, the fire had spread to the wooden framework inside the north tower, which supported eight very large bells. Had the bells fallen, it was thought that the damage done as they fell could have collapsed the towers, and with them the entire cathedral.
At 20:30, firefighters abandoned attempts to extinguish the roof and concentrated on saving the towers, fighting from within and between the towers. By 21:45 the fire was under control.
Adjacent apartment buildings were evacuated due to concern about possible collapse, but on the 19th. April the fire brigade ruled out that risk. One firefighter and two police officers were injured.
Damage to Notre-Dame
Most of the wood/metal roof and the spire of the cathedral was destroyed, with about one third of the roof remaining. The remnants of the roof and spire fell atop the stone vault underneath, which forms the ceiling of the cathedral's interior. Some sections of this vaulting collapsed in turn, allowing debris from the burning roof to fall to the marble floor below, but most sections remained intact due to the use of rib vaulting, greatly reducing damage to the cathedral's interior and objects within.
The cathedral contained a large number of artworks, religious relics, and other irreplaceable treasures, including a crown of thorns said to be the one Jesus wore at his crucifixion. Other items were a purported piece of the cross on which Jesus was crucified, the Tunic of St. Louis, a pipe organ by Aristide Cavaillé-Coll, and the 14th.-century Virgin of Paris statue.
Some artwork had been removed in preparation for the renovations, and most of the cathedral's sacred relics were held in the adjoining sacristy, which the fire did not reach; all the cathedral's relics survived. Many valuables that were not removed also survived.
Lead joints in some of the 19th.-century stained-glass windows melted, but the three major rose windows, dating back to the 13th. century, were undamaged. Several pews were destroyed, and the vaulted arches were blackened by smoke, though the cathedral's main cross and altar survived, along with the statues surrounding it.
Some paintings, apparently only smoke-damaged, are expected to be transported to the Louvre for restoration. The rooster-shaped reliquary atop the spire was found damaged but intact among the debris. The three pipe organs were not significantly damaged. The largest of the cathedral's bells, the bourdon, was also not damaged. The liturgical treasury of the cathedral and the "Grands Mays" paintings were moved to safety.
Environmental Damage
Airparif said that winds rapidly dispersed the smoke, carrying it away aloft along the Seine corridor. It did not find elevated levels of particulate air pollution at monitoring stations nearby. The Paris police stated that there was no danger from breathing the air around the fire.
The burned-down roof had been covered with over 400 metric tons of lead. Settling dust substantially raised surface lead levels in some places nearby, notably the cordoned-off area and places left open during the fire. Wet cleaning for surfaces and blood tests for children and pregnant women were recommended in the immediate area.
People working on the cathedral after the fire did not initially take the lead precautions required for their own protection; materials leaving the site were decontaminated, but some clothing was not, and some precautions were not correctly followed; as a result, the worksite failed some inspections and was temporarily shut down.
There was also more widespread contamination; testing, clean-up, and public health advisories were delayed for months, and the neighbourhood was not decontaminated for four months, prompting widespread criticism.
Reactions to the Notre-Dame Fire
President of France Emmanuel Macron, postponing a speech to address the Yellow Vests Movement planned for that evening, went to Notre-Dame and gave a brief address there. Numerous world religious and government leaders extended condolences.
Through the night of the fire and into the next day, people gathered along the Seine to hold vigils, sing and pray.
White tarpaulins over metal beams were quickly rigged to protect the interior from the elements. Nettings protect the de-stabilised exterior.
The following Sunday at Saint-Eustache Church, the Archbishop of Paris, Michel Aupetit, honoured the firefighters with the presentation of a book of scriptures saved from the fire.
Investigation Into The Notre-Dame Fire
On the 16th. April, the Paris prosecutor said that there was no evidence of a deliberate act.
The fire has been compared to the similar 1992 Windsor Castle fire and the Uppark fire, among others, and has raised old questions about the safety of similar structures and the techniques used to restore them. Renovation works increase the risk of fire, and a police source reported that they are looking into whether such work had caused this incident.
The renovations presented a fire risk from sparks, short-circuits, and heat from welding (roof repairs involved cutting, and welding lead sheets resting on timber). Normally, no electrical installations were allowed in the roof space due to the extreme fire risk.
The roof framing was of very dry timber, often powdery with age. After the fire, the architect responsible for fire safety at the cathedral acknowledged that the rate at which fire might spread had been underestimated, and experts said it was well known that a fire in the roof would be almost impossible to control.
Of the firms working on the restoration, a Europe Echafaudage team was the only one working there on the day of the fire; the company said no soldering or welding was underway before the fire. The scaffolding was receiving electrical supply for temporary elevators and lighting.
The roofers, Le Bras Frères, said it had followed procedure, and that none of its personnel were on site when the fire broke out. Time-lapse images taken by a camera installed by them showed smoke first rising from the base of the spire.
On the 25th. April, the structure was considered safe enough for investigators to enter. They unofficially stated that they were considering theories involving malfunction of electric bell-ringing apparatus, and cigarette ends discovered on the renovation scaffolding.
Le Bras Frères confirmed its workers had smoked cigarettes, contrary to regulations, but denied that a cigarette butt could have started the fire. The Paris prosecutor's office announced on the 26th. June that no evidence had been found to suggest a criminal motive.
The security employee monitoring the alarm system was new on the job, and was on a second eight-hour shift that day because his relief had not arrived. Additionally, the fire security system used confusing terminology in its referencing parts of the cathedral, which contributed to the initial confusion as to the location of the fire.
As of September, five months after the fire, investigators thought the cause of the fire was more likely an electrical fault than a cigarette. Determining the exact place in which the fire started was expected to take a great deal more time and work. By the 15th. April 2020, investigators stated:
"We believe the fire to have been
started by either a cigarette or a
short circuit in the electrical system".
Reconstruction of Notre-Dame Cathedral
On the night of the fire Macron said that the cathedral, which is owned by the state, would be rebuilt, and launched an international fundraising campaign. France's cathedrals have been owned by the state since 1905, and are not privately insured.
The heritage conservation organisation Fondation du Patrimoine estimated the damage in the hundreds of millions of euros, but losses from the fire are not expected to substantially impact the private insurance industry.
European art insurers stated that the cost would be similar to ongoing renovations at the Palace of Westminster in London, which currently is estimated to be around €7 billion.
This cost does not include damage to any of the artwork or artefacts within the cathedral. Any pieces on loan from other museums would have been insured, but the works owned by the cathedral would not have been insurable.
While Macron hoped the cathedral could be restored in time for the 2024 Paris Summer Olympics, architects expect the work could take from twenty to forty years, as any new structure would need to balance restoring the look of the original building, using wood and stone sourced from the same regions used in the original construction, with the structural reinforcement required for preventing a similar disaster in the future.
There is discussion of whether to reconstruct the cathedral in modified form. Rebuilding the roof with titanium sheets and steel trusses has been suggested; other options include rebuilding in the original lead and wood, or rebuilding with modern materials not visible from the outside (like the reinforced concrete trusses at Reims Cathedral).
Another option would be to use a combination of restored old elements and newly designed ones. Chartres Cathedral was rebuilt with wrought iron trusses and copper sheeting after an 1836 fire.
French prime minister Édouard Philippe announced an architectural design competition for a new spire that would be:
"Adapted to the techniques
and the challenges of our era."
The spire replacement project has gathered a variety of designs and some controversy, particularly its legal exemption from environmental and heritage rules. After the design competition was announced, the French senate amended the government's restoration bill to require the roof to be restored to how it was before the fire.
On the 16th. July, 95 days after the fire, the law that will govern the restoration of the cathedral was finally approved by the French parliament. It recognises its UNESCO World Heritage Site status and the need to respect existing international charters and practices, to:
"Preserve the historic, artistic and architectural
history of the monument, and to limit any
derogations to the existing heritage, planning,
environmental and construction codes to a
minimum".
On the 15th. April 2020, Germany offered to restore some of the large clerestory windows located far above eye level with three expert tradesmen who specialize in rebuilding cathedrals. Monika Grütters, Germany's Commissioner for Culture was quoted as saying that her country would shoulder the costs.
As of the 30th. November all of the tangled scaffolding was removed from the spire area, and was therefore no longer a threat to the building.
The world will now have to wait for Notre-Dame de Paris to be restored to its former magnificence.
Fish, any of approximately 34,000 species of vertebrate animals (phylum Chordata) found in the fresh and salt waters of the world. Living species range from the primitive jawless lampreys and hagfishes through the cartilaginous sharks, skates, and rays to the abundant and diverse bony fishes. Most fish species are cold-blooded; however, one species, the opah (Lampris guttatus), is warm-blooded.
The term fish is applied to a variety of vertebrates of several evolutionary lines. It describes a life-form rather than a taxonomic group. As members of the phylum Chordata, fish share certain features with other vertebrates. These features are gill slits at some point in the life cycle, a notochord, or skeletal supporting rod, a dorsal hollow nerve cord, and a tail. Living fishes represent some five classes, which are as distinct from one another as are the four classes of familiar air-breathing animals—amphibians, reptiles, birds, and mammals. For example, the jawless fishes (Agnatha) have gills in pouches and lack limb girdles. Extant agnathans are the lampreys and the hagfishes. As the name implies, the skeletons of fishes of the class Chondrichthyes (from chondr, “cartilage,” and ichthyes, “fish”) are made entirely of cartilage. Modern fish of this class lack a swim bladder, and their scales and teeth are made up of the same placoid material. Sharks, skates, and rays are examples of cartilaginous fishes. The bony fishes are by far the largest class. Examples range from the tiny seahorse to the 450-kg (1,000-pound) blue marlin, from the flattened soles and flounders to the boxy puffers and ocean sunfishes. Unlike the scales of the cartilaginous fishes, those of bony fishes, when present, grow throughout life and are made up of thin overlapping plates of bone. Bony fishes also have an operculum that covers the gill slits.
The study of fishes, the science of ichthyology, is of broad importance. Fishes are of interest to humans for many reasons, the most important being their relationship with and dependence on the environment. A more obvious reason for interest in fishes is their role as a moderate but important part of the world’s food supply. This resource, once thought unlimited, is now realized to be finite and in delicate balance with the biological, chemical, and physical factors of the aquatic environment. Overfishing, pollution, and alteration of the environment are the chief enemies of proper fisheries management, both in fresh waters and in the ocean. (For a detailed discussion of the technology and economics of fisheries, see commercial fishing.) Another practical reason for studying fishes is their use in disease control. As predators on mosquito larvae, they help curb malaria and other mosquito-borne diseases.
Fishes are valuable laboratory animals in many aspects of medical and biological research. For example, the readiness of many fishes to acclimate to captivity has allowed biologists to study behaviour, physiology, and even ecology under relatively natural conditions. Fishes have been especially important in the study of animal behaviour, where research on fishes has provided a broad base for the understanding of the more flexible behaviour of the higher vertebrates. The zebra fish is used as a model in studies of gene expression.
There are aesthetic and recreational reasons for an interest in fishes. Millions of people keep live fishes in home aquariums for the simple pleasure of observing the beauty and behaviour of animals otherwise unfamiliar to them. Aquarium fishes provide a personal challenge to many aquarists, allowing them to test their ability to keep a small section of the natural environment in their homes. Sportfishing is another way of enjoying the natural environment, also indulged in by millions of people every year. Interest in aquarium fishes and sportfishing supports multimillion-dollar industries throughout the world.
Fishes have been in existence for more than 450 million years, during which time they have evolved repeatedly to fit into almost every conceivable type of aquatic habitat. In a sense, land vertebrates are simply highly modified fishes: when fishes colonized the land habitat, they became tetrapod (four-legged) land vertebrates. The popular conception of a fish as a slippery, streamlined aquatic animal that possesses fins and breathes by gills applies to many fishes, but far more fishes deviate from that conception than conform to it. For example, the body is elongate in many forms and greatly shortened in others; the body is flattened in some (principally in bottom-dwelling fishes) and laterally compressed in many others; the fins may be elaborately extended, forming intricate shapes, or they may be reduced or even lost; and the positions of the mouth, eyes, nostrils, and gill openings vary widely. Air breathers have appeared in several evolutionary lines.
Many fishes are cryptically coloured and shaped, closely matching their respective environments; others are among the most brilliantly coloured of all organisms, with a wide range of hues, often of striking intensity, on a single individual. The brilliance of pigments may be enhanced by the surface structure of the fish, so that it almost seems to glow. A number of unrelated fishes have actual light-producing organs. Many fishes are able to alter their coloration—some for the purpose of camouflage, others for the enhancement of behavioral signals.
Fishes range in adult length from less than 10 mm (0.4 inch) to more than 20 metres (60 feet) and in weight from about 1.5 grams (less than 0.06 ounce) to many thousands of kilograms. Some live in shallow thermal springs at temperatures slightly above 42 °C (100 °F), others in cold Arctic seas a few degrees below 0 °C (32 °F) or in cold deep waters more than 4,000 metres (13,100 feet) beneath the ocean surface. The structural and, especially, the physiological adaptations for life at such extremes are relatively poorly known and provide the scientifically curious with great incentive for study.
Almost all natural bodies of water bear fish life, the exceptions being very hot thermal ponds and extremely salt-alkaline lakes, such as the Dead Sea in Asia and the Great Salt Lake in North America. The present distribution of fishes is a result of the geological history and development of Earth as well as the ability of fishes to undergo evolutionary change and to adapt to the available habitats. Fishes may be seen to be distributed according to habitat and according to geographical area. Major habitat differences are marine and freshwater. For the most part, the fishes in a marine habitat differ from those in a freshwater habitat, even in adjacent areas, but some, such as the salmon, migrate from one to the other. The freshwater habitats may be seen to be of many kinds. Fishes found in mountain torrents, Arctic lakes, tropical lakes, temperate streams, and tropical rivers will all differ from each other, both in obvious gross structure and in physiological attributes. Even in closely adjacent habitats where, for example, a tropical mountain torrent enters a lowland stream, the fish fauna will differ. The marine habitats can be divided into deep ocean floors (benthic), mid-water oceanic (bathypelagic), surface oceanic (pelagic), rocky coast, sandy coast, muddy shores, bays, estuaries, and others. Also, for example, rocky coastal shores in tropical and temperate regions will have different fish faunas, even when such habitats occur along the same coastline.
Although much is known about the present geographical distribution of fishes, far less is known about how that distribution came about. Many parts of the fish fauna of the fresh waters of North America and Eurasia are related and undoubtedly have a common origin. The faunas of Africa and South America are related, extremely old, and probably an expression of the drifting apart of the two continents. The fauna of southern Asia is related to that of Central Asia, and some of it appears to have entered Africa. The extremely large shore-fish faunas of the Indian and tropical Pacific oceans comprise a related complex, but the tropical shore fauna of the Atlantic, although containing Indo-Pacific components, is relatively limited and probably younger. The Arctic and Antarctic marine faunas are quite different from each other. The shore fauna of the North Pacific is quite distinct, and that of the North Atlantic more limited and probably younger. Pelagic oceanic fishes, especially those in deep waters, are similar the world over, showing little geographical isolation in terms of family groups. The deep oceanic habitat is very much the same throughout the world, but species differences do exist, showing geographical areas determined by oceanic currents and water masses.
All aspects of the life of a fish are closely correlated with adaptation to the total environment, physical, chemical, and biological. In studies, all the interdependent aspects of fish, such as behaviour, locomotion, reproduction, and physical and physiological characteristics, must be taken into account.
Correlated with their adaptation to an extremely wide variety of habitats is the extremely wide variety of life cycles that fishes display. The great majority hatch from relatively small eggs a few days to several weeks or more after the eggs are scattered in the water. Newly hatched young are still partially undeveloped and are called larvae until body structures such as fins, skeleton, and some organs are fully formed. Larval life is often very short, usually less than a few weeks, but it can be very long, some lampreys continuing as larvae for at least five years. Young and larval fishes, before reaching sexual maturity, must grow considerably, and their small size and other factors often dictate that they live in a habitat different than that of the adults. For example, most tropical marine shore fishes have pelagic larvae. Larval food also is different, and larval fishes often live in shallow waters, where they may be less exposed to predators.
After a fish reaches adult size, the length of its life is subject to many factors, such as innate rates of aging, predation pressure, and the nature of the local climate. The longevity of a species in the protected environment of an aquarium may have nothing to do with how long members of that species live in the wild. Many small fishes live only one to three years at the most. In some species, however, individuals may live as long as 10 or 20 or even 100 years.
Fish behaviour is a complicated and varied subject. As in almost all animals with a central nervous system, the nature of a response of an individual fish to stimuli from its environment depends upon the inherited characteristics of its nervous system, on what it has learned from past experience, and on the nature of the stimuli. Compared with the variety of human responses, however, that of a fish is stereotyped, not subject to much modification by “thought” or learning, and investigators must guard against anthropomorphic interpretations of fish behaviour.
Fishes perceive the world around them by the usual senses of sight, smell, hearing, touch, and taste and by special lateral line water-current detectors. In the few fishes that generate electric fields, a process that might best be called electrolocation aids in perception. One or another of these senses often is emphasized at the expense of others, depending upon the fish’s other adaptations. In fishes with large eyes, the sense of smell may be reduced; others, with small eyes, hunt and feed primarily by smell (such as some eels).
Specialized behaviour is primarily concerned with the three most important activities in the fish’s life: feeding, reproduction, and escape from enemies. Schooling behaviour of sardines on the high seas, for instance, is largely a protective device to avoid enemies, but it is also associated with and modified by their breeding and feeding requirements. Predatory fishes are often solitary, lying in wait to dart suddenly after their prey, a kind of locomotion impossible for beaked parrot fishes, which feed on coral, swimming in small groups from one coral head to the next. In addition, some predatory fishes that inhabit pelagic environments, such as tunas, often school.
Sleep in fishes, all of which lack true eyelids, consists of a seemingly listless state in which the fish maintains its balance but moves slowly. If attacked or disturbed, most can dart away. A few kinds of fishes lie on the bottom to sleep. Most catfishes, some loaches, and some eels and electric fishes are strictly nocturnal, being active and hunting for food during the night and retiring during the day to holes, thick vegetation, or other protective parts of the environment.
Communication between members of a species or between members of two or more species often is extremely important, especially in breeding behaviour (see below Reproduction). The mode of communication may be visual, as between the small so-called cleaner fish and a large fish of a very different species. The larger fish often allows the cleaner to enter its mouth to remove gill parasites. The cleaner is recognized by its distinctive colour and actions and therefore is not eaten, even if the larger fish is normally a predator. Communication is often chemical, signals being sent by specific chemicals called pheromones.
Many fishes have a streamlined body and swim freely in open water. Fish locomotion is closely correlated with habitat and ecological niche (the general position of the animal to its environment).
Many fishes in both marine and fresh waters swim at the surface and have mouths adapted to feed best (and sometimes only) at the surface. Often such fishes are long and slender, able to dart at surface insects or at other surface fishes and in turn to dart away from predators; needlefishes, halfbeaks, and topminnows (such as killifish and mosquito fish) are good examples. Oceanic flying fishes escape their predators by gathering speed above the water surface, with the lower lobe of the tail providing thrust in the water. They then glide hundreds of yards on enlarged, winglike pectoral and pelvic fins. South American freshwater flying fishes escape their enemies by jumping and propelling their strongly keeled bodies out of the water.
So-called mid-water swimmers, the most common type of fish, are of many kinds and live in many habitats. The powerful fusiform tunas and the trouts, for example, are adapted for strong, fast swimming, the tunas to capture prey speedily in the open ocean and the trouts to cope with the swift currents of streams and rivers. The trout body form is well adapted to many habitats. Fishes that live in relatively quiet waters such as bays or lake shores or slow rivers usually are not strong, fast swimmers but are capable of short, quick bursts of speed to escape a predator. Many of these fishes have their sides flattened, examples being the sunfish and the freshwater angelfish of aquarists. Fish associated with the bottom or substrate usually are slow swimmers. Open-water plankton-feeding fishes almost always remain fusiform and are capable of rapid, strong movement (for example, sardines and herrings of the open ocean and also many small minnows of streams and lakes).
Bottom-living fishes are of many kinds and have undergone many types of modification of their body shape and swimming habits. Rays, which evolved from strong-swimming mid-water sharks, usually stay close to the bottom and move by undulating their large pectoral fins. Flounders live in a similar habitat and move over the bottom by undulating the entire body. Many bottom fishes dart from place to place, resting on the bottom between movements, a motion common in gobies. One goby relative, the mudskipper, has taken to living at the edge of pools along the shore of muddy mangrove swamps. It escapes its enemies by flipping rapidly over the mud, out of the water. Some catfishes, synbranchid eels, the so-called climbing perch, and a few other fishes venture out over damp ground to find more promising waters than those that they left. They move by wriggling their bodies, sometimes using strong pectoral fins; most have accessory air-breathing organs. Many bottom-dwelling fishes live in mud holes or rocky crevices. Marine eels and gobies commonly are found in such habitats and for the most part venture far beyond their cavelike homes. Some bottom dwellers, such as the clingfishes (Gobiesocidae), have developed powerful adhesive disks that enable them to remain in place on the substrate in areas such as rocky coasts, where the action of the waves is great.
The methods of reproduction in fishes are varied, but most fishes lay a large number of small eggs, fertilized and scattered outside of the body. The eggs of pelagic fishes usually remain suspended in the open water. Many shore and freshwater fishes lay eggs on the bottom or among plants. Some have adhesive eggs. The mortality of the young and especially of the eggs is very high, and often only a few individuals grow to maturity out of hundreds, thousands, and in some cases millions of eggs laid.
Males produce sperm, usually as a milky white substance called milt, in two (sometimes one) testes within the body cavity. In bony fishes a sperm duct leads from each testis to a urogenital opening behind the vent or anus. In sharks and rays and in cyclostomes the duct leads to a cloaca. Sometimes the pelvic fins are modified to help transmit the milt to the eggs at the female’s vent or on the substrate where the female has placed them. Sometimes accessory organs are used to fertilize females internally—for example, the claspers of many sharks and rays.
In the females the eggs are formed in two ovaries (sometimes only one) and pass through the ovaries to the urogenital opening and to the outside. In some fishes the eggs are fertilized internally but are shed before development takes place. Members of about a dozen families each of bony fishes (teleosts) and sharks bear live young. Many skates and rays also bear live young. In some bony fishes the eggs simply develop within the female, the young emerging when the eggs hatch (ovoviviparous). Others develop within the ovary and are nourished by ovarian tissues after hatching (viviparous). There are also other methods utilized by fishes to nourish young within the female. In all live-bearers the young are born at a relatively large size and are few in number. In one family of primarily marine fishes, the surfperches from the Pacific coast of North America, Japan, and Korea, the males of at least one species are born sexually mature, although they are not fully grown.
Some fishes are hermaphroditic—an individual producing both sperm and eggs, usually at different stages of its life. Self-fertilization, however, is probably rare.
Successful reproduction and, in many cases, defense of the eggs and the young are assured by rather stereotypical but often elaborate courtship and parental behaviour, either by the male or the female or both. Some fishes prepare nests by hollowing out depressions in the sand bottom (cichlids, for example), build nests with plant materials and sticky threads excreted by the kidneys (sticklebacks), or blow a cluster of mucus-covered bubbles at the water surface (gouramis). The eggs are laid in these structures. Some varieties of cichlids and catfishes incubate eggs in their mouths.
Some fishes, such as salmon, undergo long migrations from the ocean and up large rivers to spawn in the gravel beds where they themselves hatched (anadromous fishes). Some, such as the freshwater eels (family Anguillidae), live and grow to maturity in fresh water and migrate to the sea to spawn (catadromous fishes). Other fishes undertake shorter migrations from lakes into streams, within the ocean, or enter spawning habitats that they do not ordinarily occupy in other ways.
The basic structure and function of the fish body are similar to those of all other vertebrates. The usual four types of tissues are present: surface or epithelial, connective (bone, cartilage, and fibrous tissues, as well as their derivative, blood), nerve, and muscle tissues. In addition, the fish’s organs and organ systems parallel those of other vertebrates.
The typical fish body is streamlined and spindle-shaped, with an anterior head, a gill apparatus, and a heart, the latter lying in the midline just below the gill chamber. The body cavity, containing the vital organs, is situated behind the head in the lower anterior part of the body. The anus usually marks the posterior termination of the body cavity and most often occurs just in front of the base of the anal fin. The spinal cord and vertebral column continue from the posterior part of the head to the base of the tail fin, passing dorsal to the body cavity and through the caudal (tail) region behind the body cavity. Most of the body is of muscular tissue, a high proportion of which is necessitated by swimming. In the course of evolution this basic body plan has been modified repeatedly into the many varieties of fish shapes that exist today.
The skeleton forms an integral part of the fish’s locomotion system, as well as serving to protect vital parts. The internal skeleton consists of the skull bones (except for the roofing bones of the head, which are really part of the external skeleton), the vertebral column, and the fin supports (fin rays). The fin supports are derived from the external skeleton but will be treated here because of their close functional relationship to the internal skeleton. The internal skeleton of cyclostomes, sharks, and rays is of cartilage; that of many fossil groups and some primitive living fishes is mostly of cartilage but may include some bone. In place of the vertebral column, the earliest vertebrates had a fully developed notochord, a flexible stiff rod of viscous cells surrounded by a strong fibrous sheath. During the evolution of modern fishes the rod was replaced in part by cartilage and then by ossified cartilage. Sharks and rays retain a cartilaginous vertebral column; bony fishes have spool-shaped vertebrae that in the more primitive living forms only partially replace the notochord. The skull, including the gill arches and jaws of bony fishes, is fully, or at least partially, ossified. That of sharks and rays remains cartilaginous, at times partially replaced by calcium deposits but never by true bone.
The supportive elements of the fins (basal or radial bones or both) have changed greatly during fish evolution. Some of these changes are described in the section below (Evolution and paleontology). Most fishes possess a single dorsal fin on the midline of the back. Many have two and a few have three dorsal fins. The other fins are the single tail and anal fins and paired pelvic and pectoral fins. A small fin, the adipose fin, with hairlike fin rays, occurs in many of the relatively primitive teleosts (such as trout) on the back near the base of the caudal fin.
The skin of a fish must serve many functions. It aids in maintaining the osmotic balance, provides physical protection for the body, is the site of coloration, contains sensory receptors, and, in some fishes, functions in respiration. Mucous glands, which aid in maintaining the water balance and offer protection from bacteria, are extremely numerous in fish skin, especially in cyclostomes and teleosts. Since mucous glands are present in the modern lampreys, it is reasonable to assume that they were present in primitive fishes, such as the ancient Silurian and Devonian agnathans. Protection from abrasion and predation is another function of the fish skin, and dermal (skin) bone arose early in fish evolution in response to this need. It is thought that bone first evolved in skin and only later invaded the cartilaginous areas of the fish’s body, to provide additional support and protection. There is some argument as to which came first, cartilage or bone, and fossil evidence does not settle the question. In any event, dermal bone has played an important part in fish evolution and has different characteristics in different groups of fishes. Several groups are characterized at least in part by the kind of bony scales they possess.
Scales have played an important part in the evolution of fishes. Primitive fishes usually had thick bony plates or thick scales in several layers of bone, enamel, and related substances. Modern teleost fishes have scales of bone, which, while still protective, allow much more freedom of motion in the body. A few modern teleosts (some catfishes, sticklebacks, and others) have secondarily acquired bony plates in the skin. Modern and early sharks possessed placoid scales, a relatively primitive type of scale with a toothlike structure, consisting of an outside layer of enamel-like substance (vitrodentine), an inner layer of dentine, and a pulp cavity containing nerves and blood vessels. Primitive bony fishes had thick scales of either the ganoid or the cosmoid type. Cosmoid scales have a hard, enamel-like outer layer, an inner layer of cosmine (a form of dentine), and then a layer of vascular bone (isopedine). In ganoid scales the hard outer layer is different chemically and is called ganoin. Under this is a cosminelike layer and then a vascular bony layer. The thin, translucent bony scales of modern fishes, called cycloid and ctenoid (the latter distinguished by serrations at the edges), lack enameloid and dentine layers.
Skin has several other functions in fishes. It is well supplied with nerve endings and presumably receives tactile, thermal, and pain stimuli. Skin is also well supplied with blood vessels. Some fishes breathe in part through the skin, by the exchange of oxygen and carbon dioxide between the surrounding water and numerous small blood vessels near the skin surface.
Skin serves as protection through the control of coloration. Fishes exhibit an almost limitless range of colours. The colours often blend closely with the surroundings, effectively hiding the animal. Many fishes use bright colours for territorial advertisement or as recognition marks for other members of their own species, or sometimes for members of other species. Many fishes can change their colour to a greater or lesser degree, by movement of pigment within the pigment cells (chromatophores). Black pigment cells (melanophores), of almost universal occurrence in fishes, are often juxtaposed with other pigment cells. When placed beneath iridocytes or leucophores (bearing the silvery or white pigment guanine), melanophores produce structural colours of blue and green. These colours are often extremely intense, because they are formed by refraction of light through the needlelike crystals of guanine. The blue and green refracted colours are often relatively pure, lacking the red and yellow rays, which have been absorbed by the black pigment (melanin) of the melanophores. Yellow, orange, and red colours are produced by erythrophores, cells containing the appropriate carotenoid pigments. Other colours are produced by combinations of melanophores, erythrophores, and iridocytes.
The major portion of the body of most fishes consists of muscles. Most of the mass is trunk musculature, the fin muscles usually being relatively small. The caudal fin is usually the most powerful fin, being moved by the trunk musculature. The body musculature is usually arranged in rows of chevron-shaped segments on each side. Contractions of these segments, each attached to adjacent vertebrae and vertebral processes, bends the body on the vertebral joint, producing successive undulations of the body, passing from the head to the tail, and producing driving strokes of the tail. It is the latter that provides the strong forward movement for most fishes.
The digestive system, in a functional sense, starts at the mouth, with the teeth used to capture prey or collect plant foods. Mouth shape and tooth structure vary greatly in fishes, depending on the kind of food normally eaten. Most fishes are predacious, feeding on small invertebrates or other fishes and have simple conical teeth on the jaws, on at least some of the bones of the roof of the mouth, and on special gill arch structures just in front of the esophagus. The latter are throat teeth. Most predacious fishes swallow their prey whole, and the teeth are used for grasping and holding prey, for orienting prey to be swallowed (head first) and for working the prey toward the esophagus. There are a variety of tooth types in fishes. Some fishes, such as sharks and piranhas, have cutting teeth for biting chunks out of their victims. A shark’s tooth, although superficially like that of a piranha, appears in many respects to be a modified scale, while that of the piranha is like that of other bony fishes, consisting of dentine and enamel. Parrot fishes have beaklike mouths with short incisor-like teeth for breaking off coral and have heavy pavementlike throat teeth for crushing the coral. Some catfishes have small brushlike teeth, arranged in rows on the jaws, for scraping plant and animal growth from rocks. Many fishes (such as the Cyprinidae or minnows) have no jaw teeth at all but have very strong throat teeth.
Some fishes gather planktonic food by straining it from their gill cavities with numerous elongate stiff rods (gill rakers) anchored by one end to the gill bars. The food collected on these rods is passed to the throat, where it is swallowed. Most fishes have only short gill rakers that help keep food particles from escaping out the mouth cavity into the gill chamber.
Once reaching the throat, food enters a short, often greatly distensible esophagus, a simple tube with a muscular wall leading into a stomach. The stomach varies greatly in fishes, depending upon the diet. In most predacious fishes it is a simple straight or curved tube or pouch with a muscular wall and a glandular lining. Food is largely digested there and leaves the stomach in liquid form.
Between the stomach and the intestine, ducts enter the digestive tube from the liver and pancreas. The liver is a large, clearly defined organ. The pancreas may be embedded in it, diffused through it, or broken into small parts spread along some of the intestine. The junction between the stomach and the intestine is marked by a muscular valve. Pyloric ceca (blind sacs) occur in some fishes at this junction and have a digestive or absorptive function or both.
The intestine itself is quite variable in length, depending upon the fish’s diet. It is short in predacious forms, sometimes no longer than the body cavity, but long in herbivorous forms, being coiled and several times longer than the entire length of the fish in some species of South American catfishes. The intestine is primarily an organ for absorbing nutrients into the bloodstream. The larger its internal surface, the greater its absorptive efficiency, and a spiral valve is one method of increasing its absorption surface.
Sharks, rays, chimaeras, lungfishes, surviving chondrosteans, holosteans, and even a few of the more primitive teleosts have a spiral valve or at least traces of it in the intestine. Most modern teleosts have increased the area of the intestinal walls by having numerous folds and villi (fingerlike projections) somewhat like those in humans. Undigested substances are passed to the exterior through the anus in most teleost fishes. In lungfishes, sharks, and rays, it is first passed through the cloaca, a common cavity receiving the intestinal opening and the ducts from the urogenital system.
Oxygen and carbon dioxide dissolve in water, and most fishes exchange dissolved oxygen and carbon dioxide in water by means of the gills. The gills lie behind and to the side of the mouth cavity and consist of fleshy filaments supported by the gill arches and filled with blood vessels, which give gills a bright red colour. Water taken in continuously through the mouth passes backward between the gill bars and over the gill filaments, where the exchange of gases takes place. The gills are protected by a gill cover in teleosts and many other fishes but by flaps of skin in sharks, rays, and some of the older fossil fish groups. The blood capillaries in the gill filaments are close to the gill surface to take up oxygen from the water and to give up excess carbon dioxide to the water.
Most modern fishes have a hydrostatic (ballast) organ, called the swim bladder, that lies in the body cavity just below the kidney and above the stomach and intestine. It originated as a diverticulum of the digestive canal. In advanced teleosts, especially the acanthopterygians, the bladder has lost its connection with the digestive tract, a condition called physoclistic. The connection has been retained (physostomous) by many relatively primitive teleosts. In several unrelated lines of fishes, the bladder has become specialized as a lung or, at least, as a highly vascularized accessory breathing organ. Some fishes with such accessory organs are obligate air breathers and will drown if denied access to the surface, even in well-oxygenated water. Fishes with a hydrostatic form of swim bladder can control their depth by regulating the amount of gas in the bladder. The gas, mostly oxygen, is secreted into the bladder by special glands, rendering the fish more buoyant; the gas is absorbed into the bloodstream by another special organ, reducing the overall buoyancy and allowing the fish to sink. Some deep-sea fishes may have oils, rather than gas, in the bladder. Other deep-sea and some bottom-living forms have much-reduced swim bladders or have lost the organ entirely.
The swim bladder of fishes follows the same developmental pattern as the lungs of land vertebrates. There is no doubt that the two structures have the same historical origin in primitive fishes. More or less intermediate forms still survive among the more primitive types of fishes, such as the lungfishes Lepidosiren and Protopterus.
The circulatory, or blood vascular, system consists of the heart, the arteries, the capillaries, and the veins. It is in the capillaries that the interchange of oxygen, carbon dioxide, nutrients, and other substances such as hormones and waste products takes place. The capillaries lead to the veins, which return the venous blood with its waste products to the heart, kidneys, and gills. There are two kinds of capillary beds: those in the gills and those in the rest of the body. The heart, a folded continuous muscular tube with three or four saclike enlargements, undergoes rhythmic contractions and receives venous blood in a sinus venosus. It passes the blood to an auricle and then into a thick muscular pump, the ventricle. From the ventricle the blood goes to a bulbous structure at the base of a ventral aorta just below the gills. The blood passes to the afferent (receiving) arteries of the gill arches and then to the gill capillaries. There waste gases are given off to the environment, and oxygen is absorbed. The oxygenated blood enters efferent (exuant) arteries of the gill arches and then flows into the dorsal aorta. From there blood is distributed to the tissues and organs of the body. One-way valves prevent backflow. The circulation of fishes thus differs from that of the reptiles, birds, and mammals in that oxygenated blood is not returned to the heart prior to distribution to the other parts of the body.
The primary excretory organ in fishes, as in other vertebrates, is the kidney. In fishes some excretion also takes place in the digestive tract, skin, and especially the gills (where ammonia is given off). Compared with land vertebrates, fishes have a special problem in maintaining their internal environment at a constant concentration of water and dissolved substances, such as salts. Proper balance of the internal environment (homeostasis) of a fish is in a great part maintained by the excretory system, especially the kidney.
The kidney, gills, and skin play an important role in maintaining a fish’s internal environment and checking the effects of osmosis. Marine fishes live in an environment in which the water around them has a greater concentration of salts than they can have inside their body and still maintain life. Freshwater fishes, on the other hand, live in water with a much lower concentration of salts than they require inside their bodies. Osmosis tends to promote the loss of water from the body of a marine fish and absorption of water by that of a freshwater fish. Mucus in the skin tends to slow the process but is not a sufficient barrier to prevent the movement of fluids through the permeable skin. When solutions on two sides of a permeable membrane have different concentrations of dissolved substances, water will pass through the membrane into the more concentrated solution, while the dissolved chemicals move into the area of lower concentration (diffusion).
The kidney of freshwater fishes is often larger in relation to body weight than that of marine fishes. In both groups the kidney excretes wastes from the body, but the kidney of freshwater fishes also excretes large amounts of water, counteracting the water absorbed through the skin. Freshwater fishes tend to lose salt to the environment and must replace it. They get some salt from their food, but the gills and skin inside the mouth actively absorb salt from water passed through the mouth. This absorption is performed by special cells capable of moving salts against the diffusion gradient. Freshwater fishes drink very little water and take in little water with their food.
Marine fishes must conserve water, and therefore their kidneys excrete little water. To maintain their water balance, marine fishes drink large quantities of seawater, retaining most of the water and excreting the salt. Most nitrogenous waste in marine fishes appears to be secreted by the gills as ammonia. Marine fishes can excrete salt by clusters of special cells (chloride cells) in the gills.
There are several teleosts—for example, the salmon—that travel between fresh water and seawater and must adjust to the reversal of osmotic gradients. They adjust their physiological processes by spending time (often surprisingly little time) in the intermediate brackish environment.
Marine hagfishes, sharks, and rays have osmotic concentrations in their blood about equal to that of seawater and so do not have to drink water nor perform much physiological work to maintain their osmotic balance. In sharks and rays the osmotic concentration is kept high by retention of urea in the blood. Freshwater sharks have a lowered concentration of urea in the blood.
Endocrine glands secrete their products into the bloodstream and body tissues and, along with the central nervous system, control and regulate many kinds of body functions. Cyclostomes have a well-developed endocrine system, and presumably it was well developed in the early Agnatha, ancestral to modern fishes. Although the endocrine system in fishes is similar to that of higher vertebrates, there are numerous differences in detail. The pituitary, the thyroid, the suprarenals, the adrenals, the pancreatic islets, the sex glands (ovaries and testes), the inner wall of the intestine, and the bodies of the ultimobranchial gland make up the endocrine system in fishes. There are some others whose function is not well understood. These organs regulate sexual activity and reproduction, growth, osmotic pressure, general metabolic activities such as the storage of fat and the utilization of foodstuffs, blood pressure, and certain aspects of skin colour. Many of these activities are also controlled in part by the central nervous system, which works with the endocrine system in maintaining the life of a fish. Some parts of the endocrine system are developmentally, and undoubtedly evolutionarily, derived from the nervous system.
As in all vertebrates, the nervous system of fishes is the primary mechanism coordinating body activities, as well as integrating these activities in the appropriate manner with stimuli from the environment. The central nervous system, consisting of the brain and spinal cord, is the primary integrating mechanism. The peripheral nervous system, consisting of nerves that connect the brain and spinal cord to various body organs, carries sensory information from special receptor organs such as the eyes, internal ears, nares (sense of smell), taste glands, and others to the integrating centres of the brain and spinal cord. The peripheral nervous system also carries information via different nerve cells from the integrating centres of the brain and spinal cord. This coded information is carried to the various organs and body systems, such as the skeletal muscular system, for appropriate action in response to the original external or internal stimulus. Another branch of the nervous system, the autonomic nervous system, helps to coordinate the activities of many glands and organs and is itself closely connected to the integrating centres of the brain.
The brain of the fish is divided into several anatomical and functional parts, all closely interconnected but each serving as the primary centre of integrating particular kinds of responses and activities. Several of these centres or parts are primarily associated with one type of sensory perception, such as sight, hearing, or smell (olfaction).
The sense of smell is important in almost all fishes. Certain eels with tiny eyes depend mostly on smell for location of food. The olfactory, or nasal, organ of fishes is located on the dorsal surface of the snout. The lining of the nasal organ has special sensory cells that perceive chemicals dissolved in the water, such as substances from food material, and send sensory information to the brain by way of the first cranial nerve. Odour also serves as an alarm system. Many fishes, especially various species of freshwater minnows, react with alarm to a chemical released from the skin of an injured member of their own species.
Many fishes have a well-developed sense of taste, and tiny pitlike taste buds or organs are located not only within their mouth cavities but also over their heads and parts of their body. Catfishes, which often have poor vision, have barbels (“whiskers”) that serve as supplementary taste organs, those around the mouth being actively used to search out food on the bottom. Some species of naturally blind cave fishes are especially well supplied with taste buds, which often cover most of their body surface.
Sight is extremely important in most fishes. The eye of a fish is basically like that of all other vertebrates, but the eyes of fishes are extremely varied in structure and adaptation. In general, fishes living in dark and dim water habitats have large eyes, unless they have specialized in some compensatory way so that another sense (such as smell) is dominant, in which case the eyes will often be reduced. Fishes living in brightly lighted shallow waters often will have relatively small but efficient eyes. Cyclostomes have somewhat less elaborate eyes than other fishes, with skin stretched over the eyeball perhaps making their vision somewhat less effective. Most fishes have a spherical lens and accommodate their vision to far or near subjects by moving the lens within the eyeball. A few sharks accommodate by changing the shape of the lens, as in land vertebrates. Those fishes that are heavily dependent upon the eyes have especially strong muscles for accommodation. Most fishes see well, despite the restrictions imposed by frequent turbidity of the water and by light refraction.
Fossil evidence suggests that colour vision evolved in fishes more than 300 million years ago, but not all living fishes have retained this ability. Experimental evidence indicates that many shallow-water fishes, if not all, have colour vision and see some colours especially well, but some bottom-dwelling shore fishes live in areas where the water is sufficiently deep to filter out most if not all colours, and these fishes apparently never see colours. When tested in shallow water, they apparently are unable to respond to colour differences.
Sound perception and balance are intimately associated senses in a fish. The organs of hearing are entirely internal, located within the skull, on each side of the brain and somewhat behind the eyes. Sound waves, especially those of low frequencies, travel readily through water and impinge directly upon the bones and fluids of the head and body, to be transmitted to the hearing organs. Fishes readily respond to sound; for example, a trout conditioned to escape by the approach of fishermen will take flight upon perceiving footsteps on a stream bank even if it cannot see a fisherman. Compared with humans, however, the range of sound frequencies heard by fishes is greatly restricted. Many fishes communicate with each other by producing sounds in their swim bladders, in their throats by rasping their teeth, and in other ways.
A fish or other vertebrate seldom has to rely on a single type of sensory information to determine the nature of the environment around it. A catfish uses taste and touch when examining a food object with its oral barbels. Like most other animals, fishes have many touch receptors over their body surface. Pain and temperature receptors also are present in fishes and presumably produce the same kind of information to a fish as to humans. Fishes react in a negative fashion to stimuli that would be painful to human beings, suggesting that they feel a sensation of pain.
An important sensory system in fishes that is absent in other vertebrates (except some amphibians) is the lateral line system. This consists of a series of heavily innervated small canals located in the skin and bone around the eyes, along the lower jaw, over the head, and down the mid-side of the body, where it is associated with the scales. Intermittently along these canals are located tiny sensory organs (pit organs) that apparently detect changes in pressure. The system allows a fish to sense changes in water currents and pressure, thereby helping the fish to orient itself to the various changes that occur in the physical environment.
St Mary's church in Lapworth is one of the most rewarding and unusual medieval parish churches in Warwickshire. The visitor generally approaches this handsome building from the north where the sturdy tower and spire stand guard like a sentinel. It is unusual in standing apart from the main building and was originally detached but is now linked by a passageway to the north aisle, making the church almost as wide as it is long. The west end too is remarkably configured with a chantry chapel or room set above an archway (allowing passage across the churchyard below).
The church we see today dates mainly from the 13th / 14th centuries, with an impressive fifteenth century clerestorey added to the nave being a prominent feature externally, but within it is possible to discern traces of the previous Norman structure embedded below in the nave arcade. There is much of interest to enjoy in this pleasant interior from quirky carvings high in the nave to the rich stained glass in the chancel and north chapel (which has benefitted immensely from a newly inserted window where the east wall had previously been blank). The most interesting memorial is the relief tablet in the north chapel by Eric Gill.
Lapworth church has consistently welcomed visitors and remains militantly open now despite being surrounded by churches largely reluctant to re-open after Covid. Happily since Tony Naylor's fine new window was installed the previous alarm system that restricted access to the eastern half of the church (which I inadvertedly set off on my first ever visit, deafening the neighbours!) has been relaxed so that visitors can now enjoy the full extent of the interior and its fittings.