View allAll Photos Tagged alarm_system,
The Hornet is a drone that has advanced artificial intelligence, capable of driving it autonomously, or of being remotely piloted by an operator on the ground. It has efficient and durable batteries that allow an autonomy of 5 hours, which correspond, at an average speed of 40 km / h, to 200 kilometers. This is also made possible by the adoption of a resistant and light frame in aeronautical metal alloys. It has 4 independent rotors, an advanced communication system, both visible and infrared cameras, laser alarm system, two grenade launchers and 2 smoke bomb launchers. The main armament consists of 2 reversed assault rifles, 5.56 x 45 mm, positioned on the sides of the main body.
LEGAL NOTICE | protected work • All Rights reserved! © B. Egger photographer retains ownership and all copyrights in this work.
No use of this image is allowed without photographer’s express prior permission and subject to compensation • no work-for-hire
► licence | please contact me before to obtain prior a license and to buy the rights to use and publish this photo. A licensing usage agreed upon with Bernard Egger is the only usage granted. more..
photographer | ▻ Bernard Egger profile.. • collections.. • sets..
classic sports cars | vintage motorcycles | Oldtimer Grand Prix
location | Irdning, Styria 💚 Austria
📷 | 2004 BMW R 1200 CL :: rumoto images
----
If a photographer can’t feel what he is looking at, then he is never going to get others to feel anything when they look at his pictures.
:: Bernard Egger, BMW motorcycles, rumoto images, カメラマン, Мотоциклы и байкеры, 摩托, バイク, austroclassic, classic, Classic-Motorrad, Faszination, historic, historique, historisch, klassik, Leidenschaft,Cruiser, Moto, motocyclisme, Motorcycle, Motorcycles, Motorrad, Motorräder, Motorbike, Motocicletă, Мотоцикл, Motorcykel, Mootorratas, Moottoripyörä, Motosiklèt, Motorkerékpár, Motocikls, Motociklas, Motorsykkel, Motocykl, Motocicleta, Motocykel, Motosiklet, Motorrad-Klassik, passion, storiche, vintage, R 1200 CL, 1200CL, german, BMW, Boxer, german, Irdning, Ennstal, Grimming, Steiermark, Styria, Austria, Autriche, holidays, vacanze, Touring, Tours, Reisen, travelling, Pürgg, Trautenfels, Schloss Pichlarn, countryside, Woodcliff Lake, New Jersey, Phoenix, Euro, Montana Stiletto, luxury, touring-cruiser, luxury-touring, long-distance, Telelever, Paralever, Monolever, ABS, riding, ride, Pearl Silver Metallic, MoDiTec, diagnostic, drivetrain, top box, Topcase,
----
Woodcliff Lake, New Jersey, August 2002 ...
Some people consider a six-day cruise as the perfect vacation. Other's might agree, as long as the days are marked by blurred fence posts and dotted lines instead of palm trees and ocean waves. For them, BMW introduces the perfect alternative to a deck chair - the R 1200 CL.
Motorcyclists were taken aback when BMW introduced its first cruiser in 1997, but the R 1200 C quickly rose to become that year's best-selling BMW. The original has since spawned several derivatives including the Phoenix, Euro, Montana and Stiletto. This year, BMW's cruiser forms the basis for the most radical departure yet, the R 1200 CL. With its standard integral hard saddlebags, top box and distinctive handlebar-mounted fairing, the CL represents twin-cylinder luxury-touring at its finest, a completely modern luxury touring-cruiser with a touch of classic BMW.
Although based on the R 1200 C, the new CL includes numerous key changes in chassis, drivetrain, equipment and appearance, specifically designed to enhance the R 1200's abilities as a long-distance mount. While it uses the same torquey, 1170cc 61-hp version of BMW's highly successful R259 twin, the CL backs it with a six-speed overdrive transmission. A reworked Telelever increases the bike's rake for more-relaxed high-speed steering, while the fork's wider spacing provides room for the sculpted double-spoke, 16-inch wheel and 150/80 front tire. Similarly, a reinforced Monolever rear suspension controls a matching 15-inch alloy wheel and 170/80 rear tire. As you'd expect, triple disc brakes featuring BMW's latest EVO front brake system and fully integrated ABS bring the bike to a halt at day's end-and set the CL apart from any other luxury cruiser on the market.
Yet despite all the chassis changes, it's the new CL's visual statement that represents the bike's biggest break with its cruiser-mates. With its grip-to-grip sweep, the handlebar-mounted fairing evokes classic touring bikes, while the CL's distinctive quad-headlamps give the bike a decidedly avant-garde look - in addition to providing standard-setting illumination. A pair of frame-mounted lowers extends the fairing's wind coverage and provides space for some of the CL's electrics and the optional stereo. The instrument panel is exceptionally clean, surrounded by a matte gray background that matches the kneepads inset in the fairing extensions. The speedometer and tachometer flank a panel of warning lights, capped by the standard analog clock. Integrated mirror/turnsignal pods extend from the fairing to provide further wind protection. Finally, fully integrated, color-matched saddlebags combine with a standard top box to provide a steamer trunk's luggage capacity.
The CL's riding position blends elements of both tourer and cruiser, beginning with a reassuringly low, 29.3-inch seat height. The seat itself comprises two parts, a rider portion with an integral lower-back rest, and a taller passenger perch that includes a standard backrest built into the top box. Heated seats, first seen on the K 1200 LT, are also available for the CL to complement the standard heated grips. A broad, flat handlebar places those grips a comfortable reach away, and the CL's floorboards allow the rider to shift position easily without compromising control. Standard cruise control helps melt the miles on long highway stints. A convenient heel/toe shifter makes for effortless gearchanges while adding exactly the right classic touch.
The R 1200 CL backs up its cruiser origins with the same superb attention to cosmetics as is shown in the functional details. In addition to the beautifully finished bodywork, the luxury cruiser boasts an assortment of chrome highlights, including valve covers, exhaust system, saddlebag latches and frame panels, with an optional kit to add even more brightwork. Available colors include Pearl Silver Metallic, Capri Blue Metallic and Mojave Brown Metallic, this last with a choice of black or brown saddle (other colors feature black).
The R 1200 CL Engine: Gearing For The Long Haul
BMW's newest tourer begins with a solid foundation-the 61-hp R 1200 C engine. The original, 1170cc cruiser powerplant blends a broad powerband and instantaneous response with a healthy, 72 lb.-ft. of torque. Like its forebear, the new CL provides its peak torque at 3000 rpm-exactly the kind of power delivery for a touring twin. Motronic MA 2.4 engine management ensures that this Boxer blends this accessible power with long-term reliability and minimal emissions, while at the same time eliminating the choke lever for complete push-button simplicity. Of course, the MoDiTec diagnostic feature makes maintaining the CL every bit as simple as the other members of BMW's stable.
While tourers and cruisers place similar demands on their engines, a touring bike typically operates through a wider speed range. Consequently, the R 1200 CL mates this familiar engine to a new, six-speed transmission. The first five gear ratios are similar to the original R 1200's, but the sixth gear provides a significant overdrive, which drops engine speed well under 3000 rpm at 60 mph. This range of gearing means the CL can manage either responsive in-town running or relaxed freeway cruising with equal finesse, and places the luxury cruiser right in the heart of its powerband at touring speeds for simple roll-on passes.
In addition, the new transmission has been thoroughly massaged internally, with re-angled gear teeth that provide additional overlap for quieter running. Shifting is likewise improved via a revised internal shift mechanism that produces smoother, more precise gearchanges. Finally, the new transmission design is lighter (approximately 1 kg.), which helps keep the CL's weight down to a respectable 679 lbs. (wet). The improved design of this transmission will be adopted by other Boxer-twins throughout the coming year.
The CL Chassis: Wheeled Luggage Never Worked This Well
Every bit as unique as the CL's Boxer-twin drivetrain is the bike's chassis, leading off-literally and figuratively-with BMW's standard-setting Telelever front suspension. The CL's setup is identical in concept and function to the R 1200 C's fork, but shares virtually no parts with the previous cruiser's. The tourer's wider, 16-inch front wheel called for wider-set fork tubes, so the top triple clamp, fork bridge, fork tubes and axle have all been revised, and the axle has switched to a full-floating design. The aluminum Telelever itself has been further reworked to provide a slightly more raked appearance, which also creates a more relaxed steering response for improved straight-line stability. The front shock has been re-angled and its spring and damping rates changed to accommodate the new bike's suspension geometry, but is otherwise similar to the original R 1200 C's damper.
Similarly, the R 1200 CL's Monolever rear suspension differs in detail, rather than concept, from previous BMW cruisers. Increased reinforcing provides additional strength at the shock mount, while a revised final-drive housing provides mounts for the new rear brake. But the primary rear suspension change is a switch to a shock with travel-related damping, similar to that introduced on the R 1150 GS Adventure. This new shock not only provides for a smoother, more controlled ride but also produces an additional 20mm travel compared to the other cruisers, bringing the rear suspension travel to 4.72 inches.
The Telelever and Monolever bolt to a standard R 1200 C front frame that differs only in detail from the original. The rear subframe, however, is completely new, designed to accommodate the extensive luggage system and passenger seating on the R 1200 CL. In addition to the permanently affixed saddlebags, the larger seats, floor boards, top box and new side stand all require new mounting points.
All this new hardware rolls on completely restyled double-spoke wheels (16 x 3.5 front/15 x 4.0 rear) that carry wider, higher-profile (80-series) touring tires for an extremely smooth ride. Bolted to these wheels are larger disc brakes (12.0-inch front, 11.2-inch rear), with the latest edition of BMW's standard-setting EVO brakes. A pair of four-piston calipers stop the front wheel, paired with a two-piston unit-adapted from the K 1200 LT-at the rear. In keeping with the bike's touring orientation, the new CL includes BMW's latest, fully integrated ABS, which actuates both front and rear brakes through either the front hand lever or the rear brake pedal.
The CL Bodywork: Dressed To The Nines
Although all these mechanical changes ensure that the new R 1200 CL works like no other luxury cruiser, it's the bike's styling and bodywork that really set it apart. Beginning with the bike's handlebar-mounted fairing, the CL looks like nothing else on the road, but it's the functional attributes that prove its worth. The broad sweep of the fairing emphasizes its aerodynamic shape, which provides maximum wind protection with a minimum of buffeting. Four headlamps, with their horizontal/vertical orientation, give the CL its unique face and also create the best illumination outside of a baseball stadium (the high-beams are borrowed from the GS).
The M-shaped windshield, with its dipped center section, produces exceptional wind protection yet still allows the rider to look over the clear-plastic shield when rain or road dirt obscure the view. Similarly, clear extensions at the fairing's lower edges improve wind protection even further but still allow an unobstructed view forward for maneuvering in extremely close quarters. The turnsignal pods provide further wind coverage, and at the same time the integral mirrors give a clear view to the rear.
Complementing the fairing, both visually and functionally, the frame-mounted lowers divert the wind blast around the rider to provide further weather protection. Openings vent warm air from the frame-mounted twin oil-coolers and direct the heat away from the rider. As noted earlier, the lowers also house the electronics for the bike's optional alarm system and cruise control. A pair of 12-volt accessory outlets are standard.
Like the K 1200 LT, the new R 1200 CL includes a capacious luggage system as standard, all of it color-matched and designed to accommodate rider and passenger for the long haul. The permanently attached saddlebags include clamshell lids that allow for easy loading and unloading. Chrome bumper strips protect the saddlebags from minor tipover damage. The top box provides additional secure luggage space, or it can be simply unbolted to uncover an attractive aluminum luggage rack. An optional backrest can be bolted on in place of the top box. Of course, saddlebags and top box are lockable and keyed to the ignition switch.
Options & Accessories: More Personal Than A Monogram
Given BMW's traditional emphasis on touring options and the cruiser owner's typical demands for customization, it's only logical to expect a range of accessories and options for the company's first luxury cruiser. The CL fulfills those expectations with a myriad of options and accessories, beginning with heated or velour-like Soft Touch seats and a low windshield. Electronic and communications options such as an AM/FM/CD stereo, cruise control and onboard communication can make time on the road much more pleasant, whether you're out for an afternoon ride or a cross-country trek - because after all, nobody says you have to be back in six days. Other available electronic features include an anti-theft alarm, which also disables the engine.
Accessories designed to personalize the CL even further range from cosmetic to practical, but all adhere to BMW's traditional standards for quality and fit. Chrome accessories include engine-protection and saddlebag - protection hoops. On a practical level, saddlebag and top box liners simplify packing and unpacking. In addition to the backrest, a pair of rear floorboards enhance passenger comfort even more.
----
☆ Bernard Egger :: rumoto images
differs from all the turkeys out there
Visited this huge location and was surprised how much is still to see there in relative good state. Unfortunately the copper kettles are not accessible anymore and are secured by motion alarm system.
Please visit www.preciousdecay.com for more pictures or like my facebook fanpage on www.facebook.com/Preciousdecay
Wolfsburg
Volkswagen Arena, also known as the VfL Wolfsburg Arena due to UEFA sponsorship regulations was opened in 2002 and named after the automotive group Volkswagen AG. The Volkswagen Arena has a capacity of 30,000: 22,000 seats and 8,000 standing places. It is located in the Allerpark and is the home stadium of the football team VfL Wolfsburg.
The most striking feature of the stadium is its sophisticated roof, which was designed as a truss-supported membrane structure.32 radial trusses, each 40 metres in length, make up the support system for the fire-retardant PVC membrane, which is 15,000 square metres large. The membrane is translucent, aims to improve the atmosphere in the stadium for the spectators and supports the natural growth of the grass on the pitch.
Seating
The Volkswagen Arena is a two-tier stadium with a surrounding promenade. The lower level has an inclination of approximately 25 degrees, the upper level 40 degrees.The ground area of the entire plot is around 115,000 square metres and the floor space of the stadium is around 28,000 square metres. The stadium's capacity of 30,000 consists of 22,000 seats and 8,000 standing places. The standing places can be converted into 4,000 seats.[3] The guest block of the Volkswagen Arena contains 1,886 seats and 900 standing places with separate kiosks and toilet areas. All seats in the Volkswagen Arena are completely covered.
A total of 31 boxes with 332 seats are available at the stadium, which also offers 198 so-called Executive Seats, which are integrated into the VIP block, and 1,434 Business Seats with direct access to restaurants. The Volkswagen Arena is home to a 102-square-metre-large Skylounge above both grandstands with 35 seats.This offers a view of the entire stadium and is also used as a venue for other events and even weddings. The control room, which houses systems such as the fire alarm system and police equipment, is located above the Skylounge.
The special features of the Volkswagen Arena include seats and spaces for people with disabilities and their companions. Spectators with impaired vision are provided with a total of 10 seats with headphones so that they can hear the commentator during the match. Furthermore, 80 spaces are available for spectators in wheelchairs. Families with children can book seats in a separate area at the Volkswagen Arena. VfL Wolfsburg also offers childcare during all home games at the stadium. A separate area is provided for younger and shorter spectators so that they can get a better view of the match.
VfL Wolfsburg also became the first Bundesliga club to play in an LED-lit stadium when the Volkswagen Arena was equipped with a new LED floodlight system at the start of 2017. The old floodlighting of the Volkswagen Arena consists of more than 170 elements with lamps, each weighing about 35 kilos. They were all mounted under the roof and together produce about 1,500 lux. The 84 speakers in the stadium, which weigh 120 kilos each and are likewise mounted under the roof, produce a total of 600 watts. There are also two video walls covering an area of 53 square metres in the stadium.The pitch is covered in hybrid grass,which is natural grass that is reinforced with synthetic fibres, thus improving its weatherability. The Volkswagen Arena was the first Bundesliga stadium to introduce such a system.] From the outset, the pitch has been heated so that matches can be played regardless of ice and snow.
The Volkswagen Arena was also the first Bundesliga stadium to debut 5G technology on match day 5 of the 2019/2020 campaign against Hoffenheim.
LEGAL NOTICE | protected work • All Rights reserved! © B. Egger photographer retains ownership and all copyrights in this work.
photographer © Bernard Egger.. • collections • sets
📷 | 2004 BMW R 1200 CL :: rumoto images # 2008
© Dieses Foto darf ohne vorherige Lizenzvereinbarung keinesfalls publiziert oder an nicht berechtigte Nutzer weiter gegeben werden.
Todos los Derechos Reservados • Tous droits réservés • Todos os Direitos Reservados • Все права защищены • Tutti i diritti riservati
licence | for any user agreement please contact Bernard Egger.
If a photographer can’t feel what he is looking at, then he is never going to get others to feel anything when they look at his pictures.
----
BMW R 1200 CL - Woodcliff Lake, New Jersey, August 2002 ... Some people consider a six-day cruise as the perfect vacation. Other's might agree, as long as the days are marked by blurred fence posts and dotted lines instead of palm trees and ocean waves. For them, BMW introduces the perfect alternative to a deck chair - the R 1200 CL.
Motorcyclists were taken aback when BMW introduced its first cruiser in 1997, but the R 1200 C quickly rose to become that year's best-selling BMW. The original has since spawned several derivatives including the Phoenix, Euro, Montana and Stiletto. This year, BMW's cruiser forms the basis for the most radical departure yet, the R 1200 CL. With its standard integral hard saddlebags, top box and distinctive handlebar-mounted fairing, the CL represents twin-cylinder luxury-touring at its finest, a completely modern luxury touring-cruiser with a touch of classic BMW.
Although based on the R 1200 C, the new CL includes numerous key changes in chassis, drivetrain, equipment and appearance, specifically designed to enhance the R 1200's abilities as a long-distance mount. While it uses the same torquey, 1170cc 61-hp version of BMW's highly successful R259 twin, the CL backs it with a six-speed overdrive transmission. A reworked Telelever increases the bike's rake for more-relaxed high-speed steering, while the fork's wider spacing provides room for the sculpted double-spoke, 16-inch wheel and 150/80 front tire. Similarly, a reinforced Monolever rear suspension controls a matching 15-inch alloy wheel and 170/80 rear tire. As you'd expect, triple disc brakes featuring BMW's latest EVO front brake system and fully integrated ABS bring the bike to a halt at day's end-and set the CL apart from any other luxury cruiser on the market.
Yet despite all the chassis changes, it's the new CL's visual statement that represents the bike's biggest break with its cruiser-mates. With its grip-to-grip sweep, the handlebar-mounted fairing evokes classic touring bikes, while the CL's distinctive quad-headlamps give the bike a decidedly avant-garde look - in addition to providing standard-setting illumination. A pair of frame-mounted lowers extends the fairing's wind coverage and provides space for some of the CL's electrics and the optional stereo. The instrument panel is exceptionally clean, surrounded by a matte gray background that matches the kneepads inset in the fairing extensions. The speedometer and tachometer flank a panel of warning lights, capped by the standard analog clock. Integrated mirror/turnsignal pods extend from the fairing to provide further wind protection. Finally, fully integrated, color-matched saddlebags combine with a standard top box to provide a steamer trunk's luggage capacity.
The CL's riding position blends elements of both tourer and cruiser, beginning with a reassuringly low, 29.3-inch seat height. The seat itself comprises two parts, a rider portion with an integral lower-back rest, and a taller passenger perch that includes a standard backrest built into the top box. Heated seats, first seen on the K 1200 LT, are also available for the CL to complement the standard heated grips. A broad, flat handlebar places those grips a comfortable reach away, and the CL's floorboards allow the rider to shift position easily without compromising control. Standard cruise control helps melt the miles on long highway stints. A convenient heel/toe shifter makes for effortless gearchanges while adding exactly the right classic touch.
The R 1200 CL backs up its cruiser origins with the same superb attention to cosmetics as is shown in the functional details. In addition to the beautifully finished bodywork, the luxury cruiser boasts an assortment of chrome highlights, including valve covers, exhaust system, saddlebag latches and frame panels, with an optional kit to add even more brightwork. Available colors include Pearl Silver Metallic, Capri Blue Metallic and Mojave Brown Metallic, this last with a choice of black or brown saddle (other colors feature black).
The R 1200 CL Engine: Gearing For The Long Haul
BMW's newest tourer begins with a solid foundation-the 61-hp R 1200 C engine. The original, 1170cc cruiser powerplant blends a broad powerband and instantaneous response with a healthy, 72 lb.-ft. of torque. Like its forebear, the new CL provides its peak torque at 3000 rpm-exactly the kind of power delivery for a touring twin. Motronic MA 2.4 engine management ensures that this Boxer blends this accessible power with long-term reliability and minimal emissions, while at the same time eliminating the choke lever for complete push-button simplicity. Of course, the MoDiTec diagnostic feature makes maintaining the CL every bit as simple as the other members of BMW's stable.
While tourers and cruisers place similar demands on their engines, a touring bike typically operates through a wider speed range. Consequently, the R 1200 CL mates this familiar engine to a new, six-speed transmission. The first five gear ratios are similar to the original R 1200's, but the sixth gear provides a significant overdrive, which drops engine speed well under 3000 rpm at 60 mph. This range of gearing means the CL can manage either responsive in-town running or relaxed freeway cruising with equal finesse, and places the luxury cruiser right in the heart of its powerband at touring speeds for simple roll-on passes.
In addition, the new transmission has been thoroughly massaged internally, with re-angled gear teeth that provide additional overlap for quieter running. Shifting is likewise improved via a revised internal shift mechanism that produces smoother, more precise gearchanges. Finally, the new transmission design is lighter (approximately 1 kg.), which helps keep the CL's weight down to a respectable 679 lbs. (wet). The improved design of this transmission will be adopted by other Boxer-twins throughout the coming year.
The CL Chassis: Wheeled Luggage Never Worked This Well
Every bit as unique as the CL's Boxer-twin drivetrain is the bike's chassis, leading off-literally and figuratively-with BMW's standard-setting Telelever front suspension. The CL's setup is identical in concept and function to the R 1200 C's fork, but shares virtually no parts with the previous cruiser's. The tourer's wider, 16-inch front wheel called for wider-set fork tubes, so the top triple clamp, fork bridge, fork tubes and axle have all been revised, and the axle has switched to a full-floating design. The aluminum Telelever itself has been further reworked to provide a slightly more raked appearance, which also creates a more relaxed steering response for improved straight-line stability. The front shock has been re-angled and its spring and damping rates changed to accommodate the new bike's suspension geometry, but is otherwise similar to the original R 1200 C's damper.
Similarly, the R 1200 CL's Monolever rear suspension differs in detail, rather than concept, from previous BMW cruisers. Increased reinforcing provides additional strength at the shock mount, while a revised final-drive housing provides mounts for the new rear brake. But the primary rear suspension change is a switch to a shock with travel-related damping, similar to that introduced on the R 1150 GS Adventure. This new shock not only provides for a smoother, more controlled ride but also produces an additional 20mm travel compared to the other cruisers, bringing the rear suspension travel to 4.72 inches.
The Telelever and Monolever bolt to a standard R 1200 C front frame that differs only in detail from the original. The rear subframe, however, is completely new, designed to accommodate the extensive luggage system and passenger seating on the R 1200 CL. In addition to the permanently affixed saddlebags, the larger seats, floor boards, top box and new side stand all require new mounting points.
All this new hardware rolls on completely restyled double-spoke wheels (16 x 3.5 front/15 x 4.0 rear) that carry wider, higher-profile (80-series) touring tires for an extremely smooth ride. Bolted to these wheels are larger disc brakes (12.0-inch front, 11.2-inch rear), with the latest edition of BMW's standard-setting EVO brakes. A pair of four-piston calipers stop the front wheel, paired with a two-piston unit-adapted from the K 1200 LT-at the rear. In keeping with the bike's touring orientation, the new CL includes BMW's latest, fully integrated ABS, which actuates both front and rear brakes through either the front hand lever or the rear brake pedal.
The CL Bodywork: Dressed To The Nines
Although all these mechanical changes ensure that the new R 1200 CL works like no other luxury cruiser, it's the bike's styling and bodywork that really set it apart. Beginning with the bike's handlebar-mounted fairing, the CL looks like nothing else on the road, but it's the functional attributes that prove its worth. The broad sweep of the fairing emphasizes its aerodynamic shape, which provides maximum wind protection with a minimum of buffeting. Four headlamps, with their horizontal/vertical orientation, give the CL its unique face and also create the best illumination outside of a baseball stadium (the high-beams are borrowed from the GS).
The M-shaped windshield, with its dipped center section, produces exceptional wind protection yet still allows the rider to look over the clear-plastic shield when rain or road dirt obscure the view. Similarly, clear extensions at the fairing's lower edges improve wind protection even further but still allow an unobstructed view forward for maneuvering in extremely close quarters. The turnsignal pods provide further wind coverage, and at the same time the integral mirrors give a clear view to the rear.
Complementing the fairing, both visually and functionally, the frame-mounted lowers divert the wind blast around the rider to provide further weather protection. Openings vent warm air from the frame-mounted twin oil-coolers and direct the heat away from the rider. As noted earlier, the lowers also house the electronics for the bike's optional alarm system and cruise control. A pair of 12-volt accessory outlets are standard.
Like the K 1200 LT, the new R 1200 CL includes a capacious luggage system as standard, all of it color-matched and designed to accommodate rider and passenger for the long haul. The permanently attached saddlebags include clamshell lids that allow for easy loading and unloading. Chrome bumper strips protect the saddlebags from minor tipover damage. The top box provides additional secure luggage space, or it can be simply unbolted to uncover an attractive aluminum luggage rack. An optional backrest can be bolted on in place of the top box. Of course, saddlebags and top box are lockable and keyed to the ignition switch.
Options & Accessories: More Personal Than A Monogram
Given BMW's traditional emphasis on touring options and the cruiser owner's typical demands for customization, it's only logical to expect a range of accessories and options for the company's first luxury cruiser. The CL fulfills those expectations with a myriad of options and accessories, beginning with heated or velour-like Soft Touch seats and a low windshield. Electronic and communications options such as an AM/FM/CD stereo, cruise control and onboard communication can make time on the road much more pleasant, whether you're out for an afternoon ride or a cross-country trek - because after all, nobody says you have to be back in six days. Other available electronic features include an anti-theft alarm, which also disables the engine.
Accessories designed to personalize the CL even further range from cosmetic to practical, but all adhere to BMW's traditional standards for quality and fit. Chrome accessories include engine-protection and saddlebag - protection hoops. On a practical level, saddlebag and top box liners simplify packing and unpacking. In addition to the backrest, a pair of rear floorboards enhance passenger comfort even more.
- - - - -
Der Luxus-Cruiser zum genußvollen Touren.
Die Motorradwelt war überrascht, als BMW Motorrad 1997 die R 1200 C, den ersten Cruiser in der Geschichte des Hauses, vorstellte. Mit dem einzigartigen Zweizylinder-Boxermotor und einem unverwechselbar eigenständigen Design gelang es auf Anhieb, sich in diesem bis dato von BMW nicht besetzten Marktsegment erfolgreich zu positionieren. Bisher wurden neben dem Basismodell R 1200 C Classic die technisch nahezu identischen Modellvarianten Avantgarde und Independent angeboten, die sich in Farbgebung, Designelementen und Ausstattungsdetails unterscheiden.
Zur Angebotserweiterung und zur Erschließung zusätzlicher Potenziale, präsentiert BMW Motorrad für das Modelljahr 2003 ein neues Mitglied der Cruiserfamilie, den Luxus-Cruiser R 1200 CL. Er wird seine Weltpremiere im September in München auf der INTERMOT haben und voraussichtlich im Herbst 2002 auf den Markt kommen. Der Grundgedanke war, Elemente von Tourenmotorrädern auf einen Cruiser zu übertragen und ein Motorrad zu entwickeln, das Eigenschaften aus beiden Fahrzeuggattungen aufweist.
So entstand ein eigenständiges Modell, ein Cruiser zum genussvollen Touren, bei dem in Komfort und Ausstattung keine Wünsche offen bleiben.
Als technische Basis diente die R 1200 C, von der aber im wesentlichen nur der Motor, der Hinterradantrieb, der Vorderrahmen, der Tank und einige Ausstattungsumfänge übernommen wurden. Ansonsten ist das Motorrad ein völlig eigenständiger Entwurf und in weiten Teilen eine Neuentwicklung.
Fahrgestell und Design:
Einzigartiges Gesicht, optische Präsenz und Koffer integriert.
Präsenz, kraftvoller Auftritt und luxuriöser Charakter, mit diesen Worten lässt sich die Wirkung der BMW R 1200 CL kurz und treffend beschreiben. Geprägt wird dieses Motorrad von der lenkerfesten Tourenverkleidung, deren Linienführung sich in den separaten seitlichen Verkleidungsteilen am Tank fortsetzt, so dass in der Seitenansicht fast der Eindruck einer integrierten Verkleidung entsteht. Sie bietet dem Fahrer ein hohes Maß an Komfort durch guten Wind- und Wetterschutz.
Insgesamt vier in die Verkleidung integrierte Scheinwerfer, zwei für das Abblendlicht und zwei für das Fernlicht, geben dem Motorrad ein unverwechselbares, einzigartiges Gesicht und eine beeindruckende optische Wirkung, die es so bisher noch bei keinem Motorrad gab. Natürlich sorgen die vier Scheinwerfer auch für eine hervorragende Fahrbahnausleuchtung.
Besonders einfallsreich ist die aerodynamische Gestaltung der Verkleidungsscheibe mit ihrem wellenartig ausgeschnittenen oberen Rand. Sie leitet die Strömung so, dass der Fahrer wirkungsvoll geschützt wird. Gleichzeitig kann man aber wegen des Einzugs in der Mitte ungehindert über die Scheibe hinwegschauen und hat somit unabhängig von Nässe und Verschmutzung der Scheibe ein ungestörtes Sichtfeld auf die Straße.
Zur kraftvollen Erscheinung des Motorrades passt der Vorderradkotflügel, der seitlich bis tief zur Felge heruntergezogen ist. Er bietet guten Spritzschutz und unterstreicht zusammen mit dem voluminösen Vorderreifen die Dominanz der Frontpartie, die aber dennoch Gelassenheit und Eleganz ausstrahlt.
Der gegenüber den anderen Modellen flacher gestellte Telelever hebt den Cruisercharakter noch mehr hervor. Der Heckbereich wird bestimmt durch die integrierten, fest mit dem Fahrzeug verbundenen Hartschalenkoffer und das abnehmbare Topcase auf der geschwungenen Gepäckbrücke, die zugleich als Soziushaltegriff dient. Koffer und Topcase sind jeweils in Fahrzeugfarbe lackiert und bilden somit ein harmonisches Ganzes mit dem Fahrzeug.
Akzente setzen auch die stufenförmig angeordneten breiten Komfortsitze für Fahrer und Beifahrer mit der charakteristischen hinteren Abstützung. Luxus durch exklusive Farben, edle Oberflächen und Materialien.
Die R 1200 CL wurde zunächst in drei exklusiven Farben angeboten: perlsilber-metallic und capriblau-metallic mit jeweils schwarzen Sitzen und mojavebraun-metallic mit braunem Sitzbezug (wahlweise auch in schwarz). Die Eleganz der Farben wird unterstützt durch sorgfältige Materialauswahl und perfektes Finish von Oberflächen und Fugen. So ist zum Beispiel die Gepäckbrücke aus Aluminium-Druckguß gefertigt und in weissaluminium lackiert, der Lenker verchromt und die obere Instrumentenabdeckung ebenfalls weissaluminiumfarben lackiert. Die Frontverkleidung ist vollständig mit einer Innenabdeckung versehen, und die Kniepads der seitlichen Verkleidungsteile sind mit dem gleichen Material wie die Sitze überzogen.
All dies unterstreicht den Anspruch auf Luxus und Perfektion.
Antrieb jetzt mit neuem, leiserem Sechsganggetriebe - Boxermotor unverändert.
Während der Boxermotor mit 1170 cm³ unverändert von der bisherigen R 1200 C übernommen wurde - auch die Leistungsdaten sind mit 45 kW (61 PS) und 98 Nm Drehmoment bei 3 000 min-1 gleich geblieben -, ist das Getriebe der R 1200 CL neu. Abgeleitet von dem bekannten Getriebe der anderen Boxermodelle hat es jetzt auch sechs Gänge und wurde grundlegend überarbeitet. Als wesentliche Neuerung kommt eine sogenannte Hochverzahnung zum Einsatz. Diese sorgt für einen "weicheren" Zahneingriff und reduziert erheblich die Laufgeräusche der Verzahnung.
Der lang übersetzte, als "overdrive" ausgelegte, sechste Gang erlaubt drehzahlschonendes Fahren auf langen Etappen in der Ebene und senkt dort Verbrauch und Geräusch. Statt eines Schalthebels gibt es eine Schaltwippe für Gangwechsel mit einem lässigen Kick. Schaltkomfort, Geräuscharmut, niedrige Drehzahlen und dennoch genügend Kraft - Eigenschaften, die zum Genusscharakter des Fahrzeugs hervorragend passen.
Dass auch die R 1200 CL, wie jedes seit 1997 neu eingeführte BMW Motorrad weltweit, serienmäßig über die jeweils modernste Abgasreinigungstechnologie mit geregeltem Drei-Wege-Katalysator verfügt, muss fast nicht mehr erwähnt werden. Es ist bei BMW zur Selbstverständlichkeit geworden.
Fahrwerkselemente für noch mehr Komfort - Telelever neu und hinteres Federbein mit wegabhängiger Dämpfung.
Ein cruisertypisches Merkmal ist die nach vorn gestreckte Vorderradführung mit flachem Winkel zur Fahrbahn und großem Nachlauf. Dazu wurde für die R 1200 CL der nach wie vor einzigartige BMW Telelever neu ausgelegt.
Die Gabelholme stehen weiter auseinander, um dem bulligen, 150 mm breiten Vorderradreifen Platz zu bieten.
Für die Hinterradfederung kommt ein Federbein mit wegabhängiger Dämpfung zum Einsatz, das sich durch hervorragende Komforteigenschaften auszeichnet. Der Gesamtfederweg wuchs um 20 mm gegenüber den anderen Cruisermodellen auf jetzt 120 mm. Die Federbasisverstellung zur Anpassung an den Beladungszustand erfolgt hydraulisch über ein bequem zugängliches Handrad.
Hinterradschwinge optimiert und Heckrahmen neu.
Die Hinterradschwinge mit Hinterachsgehäuse, der BMW Monolever, wurde verstärkt und zur Aufnahme einer größeren Hinterradbremse angepasst.
Der verstärkte Heckrahmen ist vollständig neu, um Trittbretter, Kofferhalter, Gepäckbrücke und die neuen Sitze sowie die modifizierte Seitenstütze aufnehmen zu können. Der Vorderrahmen aus Aluminiumguss wurde mit geringfügigen Modifikationen von der bisherigen R 1200 C übernommen.
Räder aus Aluminiumguss, Sitze, Trittbretter und Lenker - alles neu.
Der optische Eindruck eines Motorrades wird ganz wesentlich auch von den Rädern bestimmt. Die R 1200 CL hat avantgardistisch gestaltete neue Gussräder aus Aluminium mit 16 Zoll (vorne) beziehungsweise 15 Zoll (hinten) Felgendurchmesser, die voluminöse Reifen im Format 150/80 vorne und 170/80 hinten aufnehmen.
Die Sitze sind für Fahrer und Beifahrer getrennt ausgeführt, um den unterschiedlichen Bedürfnissen gerecht zu werden. So ist der breite Komfortsattel für den Fahrer mit einer integrierten Beckenabstützung versehen und bietet einen hervorragenden Halt. Die Sitzhöhe beträgt 745 mm. Der Sitz für den Passagier ist ebenfalls ganz auf Bequemlichkeit ausgelegt und etwas höher als der Fahrersitz angeordnet. Dadurch hat der Beifahrer einen besseren Blick am Fahrer vorbei und kann beim Cruisen die Landschaft ungestört genießen.
Großzügige cruisertypische Trittbretter für den Fahrer tragen zum entspannten Sitzen bei. Die Soziusfußrasten, die von der K 1200 LT abgeleitet sind, bieten ebenfalls sehr guten Halt und ermöglichen zusammen mit dem günstigen Kniebeugewinkel auch dem Beifahrer ein ermüdungsfreies Touren.
Der breite, verchromte Lenker vermittelt nicht nur Cruiser-Feeling; Höhe und Kröpfungswinkel sind so ausgelegt, dass auch auf langen Fahrten keine Verspannungen auftreten. Handhebel und Schalter mit der bewährten und eigenständigen BMW Bedienlogik wurden unverändert von den anderen Modellen übernommen.
HighTech bei den Bremsen - BMW EVO-Bremse und als Sonderausstattung Integral ABS.
Sicherheit hat bei BMW traditionell höchste Priorität. Deshalb kommt bei der
R 1200 CL die schon in anderen BMW Motorrädern bewährte EVO-Bremse am Vorderrad zum Einsatz, die sich durch eine verbesserte Bremsleistung auszeichnet. Auf Wunsch gibt es das einzigartige BMW Integral ABS, dem Charakter des Motorrades entsprechend in der Vollintegralversion. Das heißt, unabhängig ob der Hand- oder Fußbremshebel betätigt wird, immer wirkt die Bremskraft optimal auf beide Räder. Im Vorderrad verzögert eine Doppel-Scheibenbremse mit 305 mm Scheibendurchmesser und im Hinterrad die von der K 1200 LT übernommene Einscheiben-Bremsanlage mit einem Scheibendurchmesser von 285 mm.
Fortschrittliche Elektrik: Vierfach-Scheinwerfer, wartungsarme Batterie und elektronischer Tachometer.
Vier Scheinwerfer, je zwei für das Abblend- und Fernlicht, geben dem Motorrad von vorne ein einzigartiges prägnantes Gesicht. Durch die kreuzweise Anordnung - die Abblendscheinwerfer sitzen nebeneinander und die Fernscheinwerfer dazwischen und übereinander - wird eine hohe Signalwirkung bei Tag und eine hervorragende Fahrbahnausleuchtung bei Dunkelheit erzielt.
Neu ist die wartungsarme, komplett gekapselte Gel-Batterie, bei der kein Wasser mehr nachgefüllt werden muss. Eine zweite Steckdose ist serienmäßig. Die Instrumente sind ebenfalls neu. Drehzahlmesser und Tachometer sind elektronisch und die Zifferblätter neu gestaltetet, ebenso die Analoguhr.
Umfangreiche Sonderausstattung für Sicherheit, Komfort und individuellen Luxus.
Die Sonderausstattung der R 1200 CL ist sehr umfangreich und reicht vom BMW Integral ABS für sicheres Bremsen über Komfortausstattungen wie Temporegelung, heizbare Lenkergriffe und Sitzheizung bis hin zu luxuriöser Individualisierung mit Softtouchsitzen, Chrompaket und fernbedientem Radio mit CD-Laufwerk.
TEIGN C Damen Stan 1405
Vessel Details
Name:TEIGN C
Flag: United Kingdom
MMSI:235082804
Call sign:MWBM9
AIS transponder class:Class B
AIS Vessel Type: Dredger
General
DAMEN YARD NUMBER: 503705
Avelingen-West 20
4202 MS Gorinchem
The Netherlands
Phone: +31 (0)183 63 99 11
info@damen.com
DELIVERY DATE August 2001
BASIC FUNCTIONS Towing, mooring, pushing and dredging operations
FLAG United Kingdom [GB]
OWNED Teignmouth Harbour Commission
CASSCATION: Bureau Veritas 1 HULL MACH Seagoing Launch
Dimensions
LENGTH: 14.40 m
BEAM: 4.73 m
DEPTH AT SIDES: 2.05 m
DRAUGHT AFT: 1.71 m
DISPLACEMENT 48 ton
Tank Capacities
Fuel oil 6.9 m³
Performances (trials)
BOLLARD PULL AHEAD 8.0 ton
SPEED 9.8 knots
Propulsion System
MAIN ENGINE: 2x Caterpillar 3406C TA/A
TOTAL POWER: 477 bmW (640i hp) at 1800 rpm
GEARBOX: 2x Twin Disc MG 5091/3.82:1
PROPELLERS: Bronze fixed pitch propeller
KORT NOZZELS: Van de Giessen 2x 1000 mm with stainless steel innerings
ENGINE CONTROL: Kobelt
STEERING GEAR: 2x 25 mm single plate Powered hydraulic 2x 45, rudder indicator
Auxiliary Equipment
BILGE PUMP: Sterling SIH 20, 32 m/hr
BATTERY SETS: 2x 24V, 200 Ah + change over facility
COOLING SYSTEM: Closed cooling system
ALARM SYSTEM: Engines, gearboxes and bilge alarms
FRESH WATER PRESSURE SET: Speck 24V
Deck lay-out
ANCHORS: 2x 48 kg Pool (HHP)
CHAIN: 70 m, Ø 13mm, shortlink U2
ANCHOR WINCH: Hand-operated
TOWING HOOK: Mampaey, 15.3 ton SWL
COUPLING WINCH PUSHBOW: Cylindrical nubber fender Ø 380 mm
Accommodation
The wheelhouse ceiling and sides are insulated with mineral wool and
panelled. The wheelhouse floor is covered with rubber/synthetic floor
covering, make Bolidt, color blue The wheelhouse has one
helmsman seat, a bench and table with chair Below deck two berths, a
kitchen unit and a toilet space are arranged.
Nautical and Communication Equipment
SEARCHLIGHT: Den Haan 170 W 24 V
VHF RADIO: Sailor RT 2048 25 W
NAVIGATION: Navigation lights incl towing and pilot lights
Owner
Teignmouth Harbour Commission
The Harbour Commission is a Trust Port created by Statute.
The principal Order is the Teignmouth Harbour Order 1924
as amended by the Teignmouth Harbour Revision Order 2003
Fish, any of approximately 34,000 species of vertebrate animals (phylum Chordata) found in the fresh and salt waters of the world. Living species range from the primitive jawless lampreys and hagfishes through the cartilaginous sharks, skates, and rays to the abundant and diverse bony fishes. Most fish species are cold-blooded; however, one species, the opah (Lampris guttatus), is warm-blooded.
The term fish is applied to a variety of vertebrates of several evolutionary lines. It describes a life-form rather than a taxonomic group. As members of the phylum Chordata, fish share certain features with other vertebrates. These features are gill slits at some point in the life cycle, a notochord, or skeletal supporting rod, a dorsal hollow nerve cord, and a tail. Living fishes represent some five classes, which are as distinct from one another as are the four classes of familiar air-breathing animals—amphibians, reptiles, birds, and mammals. For example, the jawless fishes (Agnatha) have gills in pouches and lack limb girdles. Extant agnathans are the lampreys and the hagfishes. As the name implies, the skeletons of fishes of the class Chondrichthyes (from chondr, “cartilage,” and ichthyes, “fish”) are made entirely of cartilage. Modern fish of this class lack a swim bladder, and their scales and teeth are made up of the same placoid material. Sharks, skates, and rays are examples of cartilaginous fishes. The bony fishes are by far the largest class. Examples range from the tiny seahorse to the 450-kg (1,000-pound) blue marlin, from the flattened soles and flounders to the boxy puffers and ocean sunfishes. Unlike the scales of the cartilaginous fishes, those of bony fishes, when present, grow throughout life and are made up of thin overlapping plates of bone. Bony fishes also have an operculum that covers the gill slits.
The study of fishes, the science of ichthyology, is of broad importance. Fishes are of interest to humans for many reasons, the most important being their relationship with and dependence on the environment. A more obvious reason for interest in fishes is their role as a moderate but important part of the world’s food supply. This resource, once thought unlimited, is now realized to be finite and in delicate balance with the biological, chemical, and physical factors of the aquatic environment. Overfishing, pollution, and alteration of the environment are the chief enemies of proper fisheries management, both in fresh waters and in the ocean. (For a detailed discussion of the technology and economics of fisheries, see commercial fishing.) Another practical reason for studying fishes is their use in disease control. As predators on mosquito larvae, they help curb malaria and other mosquito-borne diseases.
Fishes are valuable laboratory animals in many aspects of medical and biological research. For example, the readiness of many fishes to acclimate to captivity has allowed biologists to study behaviour, physiology, and even ecology under relatively natural conditions. Fishes have been especially important in the study of animal behaviour, where research on fishes has provided a broad base for the understanding of the more flexible behaviour of the higher vertebrates. The zebra fish is used as a model in studies of gene expression.
There are aesthetic and recreational reasons for an interest in fishes. Millions of people keep live fishes in home aquariums for the simple pleasure of observing the beauty and behaviour of animals otherwise unfamiliar to them. Aquarium fishes provide a personal challenge to many aquarists, allowing them to test their ability to keep a small section of the natural environment in their homes. Sportfishing is another way of enjoying the natural environment, also indulged in by millions of people every year. Interest in aquarium fishes and sportfishing supports multimillion-dollar industries throughout the world.
Fishes have been in existence for more than 450 million years, during which time they have evolved repeatedly to fit into almost every conceivable type of aquatic habitat. In a sense, land vertebrates are simply highly modified fishes: when fishes colonized the land habitat, they became tetrapod (four-legged) land vertebrates. The popular conception of a fish as a slippery, streamlined aquatic animal that possesses fins and breathes by gills applies to many fishes, but far more fishes deviate from that conception than conform to it. For example, the body is elongate in many forms and greatly shortened in others; the body is flattened in some (principally in bottom-dwelling fishes) and laterally compressed in many others; the fins may be elaborately extended, forming intricate shapes, or they may be reduced or even lost; and the positions of the mouth, eyes, nostrils, and gill openings vary widely. Air breathers have appeared in several evolutionary lines.
Many fishes are cryptically coloured and shaped, closely matching their respective environments; others are among the most brilliantly coloured of all organisms, with a wide range of hues, often of striking intensity, on a single individual. The brilliance of pigments may be enhanced by the surface structure of the fish, so that it almost seems to glow. A number of unrelated fishes have actual light-producing organs. Many fishes are able to alter their coloration—some for the purpose of camouflage, others for the enhancement of behavioral signals.
Fishes range in adult length from less than 10 mm (0.4 inch) to more than 20 metres (60 feet) and in weight from about 1.5 grams (less than 0.06 ounce) to many thousands of kilograms. Some live in shallow thermal springs at temperatures slightly above 42 °C (100 °F), others in cold Arctic seas a few degrees below 0 °C (32 °F) or in cold deep waters more than 4,000 metres (13,100 feet) beneath the ocean surface. The structural and, especially, the physiological adaptations for life at such extremes are relatively poorly known and provide the scientifically curious with great incentive for study.
Almost all natural bodies of water bear fish life, the exceptions being very hot thermal ponds and extremely salt-alkaline lakes, such as the Dead Sea in Asia and the Great Salt Lake in North America. The present distribution of fishes is a result of the geological history and development of Earth as well as the ability of fishes to undergo evolutionary change and to adapt to the available habitats. Fishes may be seen to be distributed according to habitat and according to geographical area. Major habitat differences are marine and freshwater. For the most part, the fishes in a marine habitat differ from those in a freshwater habitat, even in adjacent areas, but some, such as the salmon, migrate from one to the other. The freshwater habitats may be seen to be of many kinds. Fishes found in mountain torrents, Arctic lakes, tropical lakes, temperate streams, and tropical rivers will all differ from each other, both in obvious gross structure and in physiological attributes. Even in closely adjacent habitats where, for example, a tropical mountain torrent enters a lowland stream, the fish fauna will differ. The marine habitats can be divided into deep ocean floors (benthic), mid-water oceanic (bathypelagic), surface oceanic (pelagic), rocky coast, sandy coast, muddy shores, bays, estuaries, and others. Also, for example, rocky coastal shores in tropical and temperate regions will have different fish faunas, even when such habitats occur along the same coastline.
Although much is known about the present geographical distribution of fishes, far less is known about how that distribution came about. Many parts of the fish fauna of the fresh waters of North America and Eurasia are related and undoubtedly have a common origin. The faunas of Africa and South America are related, extremely old, and probably an expression of the drifting apart of the two continents. The fauna of southern Asia is related to that of Central Asia, and some of it appears to have entered Africa. The extremely large shore-fish faunas of the Indian and tropical Pacific oceans comprise a related complex, but the tropical shore fauna of the Atlantic, although containing Indo-Pacific components, is relatively limited and probably younger. The Arctic and Antarctic marine faunas are quite different from each other. The shore fauna of the North Pacific is quite distinct, and that of the North Atlantic more limited and probably younger. Pelagic oceanic fishes, especially those in deep waters, are similar the world over, showing little geographical isolation in terms of family groups. The deep oceanic habitat is very much the same throughout the world, but species differences do exist, showing geographical areas determined by oceanic currents and water masses.
All aspects of the life of a fish are closely correlated with adaptation to the total environment, physical, chemical, and biological. In studies, all the interdependent aspects of fish, such as behaviour, locomotion, reproduction, and physical and physiological characteristics, must be taken into account.
Correlated with their adaptation to an extremely wide variety of habitats is the extremely wide variety of life cycles that fishes display. The great majority hatch from relatively small eggs a few days to several weeks or more after the eggs are scattered in the water. Newly hatched young are still partially undeveloped and are called larvae until body structures such as fins, skeleton, and some organs are fully formed. Larval life is often very short, usually less than a few weeks, but it can be very long, some lampreys continuing as larvae for at least five years. Young and larval fishes, before reaching sexual maturity, must grow considerably, and their small size and other factors often dictate that they live in a habitat different than that of the adults. For example, most tropical marine shore fishes have pelagic larvae. Larval food also is different, and larval fishes often live in shallow waters, where they may be less exposed to predators.
After a fish reaches adult size, the length of its life is subject to many factors, such as innate rates of aging, predation pressure, and the nature of the local climate. The longevity of a species in the protected environment of an aquarium may have nothing to do with how long members of that species live in the wild. Many small fishes live only one to three years at the most. In some species, however, individuals may live as long as 10 or 20 or even 100 years.
Fish behaviour is a complicated and varied subject. As in almost all animals with a central nervous system, the nature of a response of an individual fish to stimuli from its environment depends upon the inherited characteristics of its nervous system, on what it has learned from past experience, and on the nature of the stimuli. Compared with the variety of human responses, however, that of a fish is stereotyped, not subject to much modification by “thought” or learning, and investigators must guard against anthropomorphic interpretations of fish behaviour.
Fishes perceive the world around them by the usual senses of sight, smell, hearing, touch, and taste and by special lateral line water-current detectors. In the few fishes that generate electric fields, a process that might best be called electrolocation aids in perception. One or another of these senses often is emphasized at the expense of others, depending upon the fish’s other adaptations. In fishes with large eyes, the sense of smell may be reduced; others, with small eyes, hunt and feed primarily by smell (such as some eels).
Specialized behaviour is primarily concerned with the three most important activities in the fish’s life: feeding, reproduction, and escape from enemies. Schooling behaviour of sardines on the high seas, for instance, is largely a protective device to avoid enemies, but it is also associated with and modified by their breeding and feeding requirements. Predatory fishes are often solitary, lying in wait to dart suddenly after their prey, a kind of locomotion impossible for beaked parrot fishes, which feed on coral, swimming in small groups from one coral head to the next. In addition, some predatory fishes that inhabit pelagic environments, such as tunas, often school.
Sleep in fishes, all of which lack true eyelids, consists of a seemingly listless state in which the fish maintains its balance but moves slowly. If attacked or disturbed, most can dart away. A few kinds of fishes lie on the bottom to sleep. Most catfishes, some loaches, and some eels and electric fishes are strictly nocturnal, being active and hunting for food during the night and retiring during the day to holes, thick vegetation, or other protective parts of the environment.
Communication between members of a species or between members of two or more species often is extremely important, especially in breeding behaviour (see below Reproduction). The mode of communication may be visual, as between the small so-called cleaner fish and a large fish of a very different species. The larger fish often allows the cleaner to enter its mouth to remove gill parasites. The cleaner is recognized by its distinctive colour and actions and therefore is not eaten, even if the larger fish is normally a predator. Communication is often chemical, signals being sent by specific chemicals called pheromones.
Many fishes have a streamlined body and swim freely in open water. Fish locomotion is closely correlated with habitat and ecological niche (the general position of the animal to its environment).
Many fishes in both marine and fresh waters swim at the surface and have mouths adapted to feed best (and sometimes only) at the surface. Often such fishes are long and slender, able to dart at surface insects or at other surface fishes and in turn to dart away from predators; needlefishes, halfbeaks, and topminnows (such as killifish and mosquito fish) are good examples. Oceanic flying fishes escape their predators by gathering speed above the water surface, with the lower lobe of the tail providing thrust in the water. They then glide hundreds of yards on enlarged, winglike pectoral and pelvic fins. South American freshwater flying fishes escape their enemies by jumping and propelling their strongly keeled bodies out of the water.
So-called mid-water swimmers, the most common type of fish, are of many kinds and live in many habitats. The powerful fusiform tunas and the trouts, for example, are adapted for strong, fast swimming, the tunas to capture prey speedily in the open ocean and the trouts to cope with the swift currents of streams and rivers. The trout body form is well adapted to many habitats. Fishes that live in relatively quiet waters such as bays or lake shores or slow rivers usually are not strong, fast swimmers but are capable of short, quick bursts of speed to escape a predator. Many of these fishes have their sides flattened, examples being the sunfish and the freshwater angelfish of aquarists. Fish associated with the bottom or substrate usually are slow swimmers. Open-water plankton-feeding fishes almost always remain fusiform and are capable of rapid, strong movement (for example, sardines and herrings of the open ocean and also many small minnows of streams and lakes).
Bottom-living fishes are of many kinds and have undergone many types of modification of their body shape and swimming habits. Rays, which evolved from strong-swimming mid-water sharks, usually stay close to the bottom and move by undulating their large pectoral fins. Flounders live in a similar habitat and move over the bottom by undulating the entire body. Many bottom fishes dart from place to place, resting on the bottom between movements, a motion common in gobies. One goby relative, the mudskipper, has taken to living at the edge of pools along the shore of muddy mangrove swamps. It escapes its enemies by flipping rapidly over the mud, out of the water. Some catfishes, synbranchid eels, the so-called climbing perch, and a few other fishes venture out over damp ground to find more promising waters than those that they left. They move by wriggling their bodies, sometimes using strong pectoral fins; most have accessory air-breathing organs. Many bottom-dwelling fishes live in mud holes or rocky crevices. Marine eels and gobies commonly are found in such habitats and for the most part venture far beyond their cavelike homes. Some bottom dwellers, such as the clingfishes (Gobiesocidae), have developed powerful adhesive disks that enable them to remain in place on the substrate in areas such as rocky coasts, where the action of the waves is great.
The methods of reproduction in fishes are varied, but most fishes lay a large number of small eggs, fertilized and scattered outside of the body. The eggs of pelagic fishes usually remain suspended in the open water. Many shore and freshwater fishes lay eggs on the bottom or among plants. Some have adhesive eggs. The mortality of the young and especially of the eggs is very high, and often only a few individuals grow to maturity out of hundreds, thousands, and in some cases millions of eggs laid.
Males produce sperm, usually as a milky white substance called milt, in two (sometimes one) testes within the body cavity. In bony fishes a sperm duct leads from each testis to a urogenital opening behind the vent or anus. In sharks and rays and in cyclostomes the duct leads to a cloaca. Sometimes the pelvic fins are modified to help transmit the milt to the eggs at the female’s vent or on the substrate where the female has placed them. Sometimes accessory organs are used to fertilize females internally—for example, the claspers of many sharks and rays.
In the females the eggs are formed in two ovaries (sometimes only one) and pass through the ovaries to the urogenital opening and to the outside. In some fishes the eggs are fertilized internally but are shed before development takes place. Members of about a dozen families each of bony fishes (teleosts) and sharks bear live young. Many skates and rays also bear live young. In some bony fishes the eggs simply develop within the female, the young emerging when the eggs hatch (ovoviviparous). Others develop within the ovary and are nourished by ovarian tissues after hatching (viviparous). There are also other methods utilized by fishes to nourish young within the female. In all live-bearers the young are born at a relatively large size and are few in number. In one family of primarily marine fishes, the surfperches from the Pacific coast of North America, Japan, and Korea, the males of at least one species are born sexually mature, although they are not fully grown.
Some fishes are hermaphroditic—an individual producing both sperm and eggs, usually at different stages of its life. Self-fertilization, however, is probably rare.
Successful reproduction and, in many cases, defense of the eggs and the young are assured by rather stereotypical but often elaborate courtship and parental behaviour, either by the male or the female or both. Some fishes prepare nests by hollowing out depressions in the sand bottom (cichlids, for example), build nests with plant materials and sticky threads excreted by the kidneys (sticklebacks), or blow a cluster of mucus-covered bubbles at the water surface (gouramis). The eggs are laid in these structures. Some varieties of cichlids and catfishes incubate eggs in their mouths.
Some fishes, such as salmon, undergo long migrations from the ocean and up large rivers to spawn in the gravel beds where they themselves hatched (anadromous fishes). Some, such as the freshwater eels (family Anguillidae), live and grow to maturity in fresh water and migrate to the sea to spawn (catadromous fishes). Other fishes undertake shorter migrations from lakes into streams, within the ocean, or enter spawning habitats that they do not ordinarily occupy in other ways.
The basic structure and function of the fish body are similar to those of all other vertebrates. The usual four types of tissues are present: surface or epithelial, connective (bone, cartilage, and fibrous tissues, as well as their derivative, blood), nerve, and muscle tissues. In addition, the fish’s organs and organ systems parallel those of other vertebrates.
The typical fish body is streamlined and spindle-shaped, with an anterior head, a gill apparatus, and a heart, the latter lying in the midline just below the gill chamber. The body cavity, containing the vital organs, is situated behind the head in the lower anterior part of the body. The anus usually marks the posterior termination of the body cavity and most often occurs just in front of the base of the anal fin. The spinal cord and vertebral column continue from the posterior part of the head to the base of the tail fin, passing dorsal to the body cavity and through the caudal (tail) region behind the body cavity. Most of the body is of muscular tissue, a high proportion of which is necessitated by swimming. In the course of evolution this basic body plan has been modified repeatedly into the many varieties of fish shapes that exist today.
The skeleton forms an integral part of the fish’s locomotion system, as well as serving to protect vital parts. The internal skeleton consists of the skull bones (except for the roofing bones of the head, which are really part of the external skeleton), the vertebral column, and the fin supports (fin rays). The fin supports are derived from the external skeleton but will be treated here because of their close functional relationship to the internal skeleton. The internal skeleton of cyclostomes, sharks, and rays is of cartilage; that of many fossil groups and some primitive living fishes is mostly of cartilage but may include some bone. In place of the vertebral column, the earliest vertebrates had a fully developed notochord, a flexible stiff rod of viscous cells surrounded by a strong fibrous sheath. During the evolution of modern fishes the rod was replaced in part by cartilage and then by ossified cartilage. Sharks and rays retain a cartilaginous vertebral column; bony fishes have spool-shaped vertebrae that in the more primitive living forms only partially replace the notochord. The skull, including the gill arches and jaws of bony fishes, is fully, or at least partially, ossified. That of sharks and rays remains cartilaginous, at times partially replaced by calcium deposits but never by true bone.
The supportive elements of the fins (basal or radial bones or both) have changed greatly during fish evolution. Some of these changes are described in the section below (Evolution and paleontology). Most fishes possess a single dorsal fin on the midline of the back. Many have two and a few have three dorsal fins. The other fins are the single tail and anal fins and paired pelvic and pectoral fins. A small fin, the adipose fin, with hairlike fin rays, occurs in many of the relatively primitive teleosts (such as trout) on the back near the base of the caudal fin.
The skin of a fish must serve many functions. It aids in maintaining the osmotic balance, provides physical protection for the body, is the site of coloration, contains sensory receptors, and, in some fishes, functions in respiration. Mucous glands, which aid in maintaining the water balance and offer protection from bacteria, are extremely numerous in fish skin, especially in cyclostomes and teleosts. Since mucous glands are present in the modern lampreys, it is reasonable to assume that they were present in primitive fishes, such as the ancient Silurian and Devonian agnathans. Protection from abrasion and predation is another function of the fish skin, and dermal (skin) bone arose early in fish evolution in response to this need. It is thought that bone first evolved in skin and only later invaded the cartilaginous areas of the fish’s body, to provide additional support and protection. There is some argument as to which came first, cartilage or bone, and fossil evidence does not settle the question. In any event, dermal bone has played an important part in fish evolution and has different characteristics in different groups of fishes. Several groups are characterized at least in part by the kind of bony scales they possess.
Scales have played an important part in the evolution of fishes. Primitive fishes usually had thick bony plates or thick scales in several layers of bone, enamel, and related substances. Modern teleost fishes have scales of bone, which, while still protective, allow much more freedom of motion in the body. A few modern teleosts (some catfishes, sticklebacks, and others) have secondarily acquired bony plates in the skin. Modern and early sharks possessed placoid scales, a relatively primitive type of scale with a toothlike structure, consisting of an outside layer of enamel-like substance (vitrodentine), an inner layer of dentine, and a pulp cavity containing nerves and blood vessels. Primitive bony fishes had thick scales of either the ganoid or the cosmoid type. Cosmoid scales have a hard, enamel-like outer layer, an inner layer of cosmine (a form of dentine), and then a layer of vascular bone (isopedine). In ganoid scales the hard outer layer is different chemically and is called ganoin. Under this is a cosminelike layer and then a vascular bony layer. The thin, translucent bony scales of modern fishes, called cycloid and ctenoid (the latter distinguished by serrations at the edges), lack enameloid and dentine layers.
Skin has several other functions in fishes. It is well supplied with nerve endings and presumably receives tactile, thermal, and pain stimuli. Skin is also well supplied with blood vessels. Some fishes breathe in part through the skin, by the exchange of oxygen and carbon dioxide between the surrounding water and numerous small blood vessels near the skin surface.
Skin serves as protection through the control of coloration. Fishes exhibit an almost limitless range of colours. The colours often blend closely with the surroundings, effectively hiding the animal. Many fishes use bright colours for territorial advertisement or as recognition marks for other members of their own species, or sometimes for members of other species. Many fishes can change their colour to a greater or lesser degree, by movement of pigment within the pigment cells (chromatophores). Black pigment cells (melanophores), of almost universal occurrence in fishes, are often juxtaposed with other pigment cells. When placed beneath iridocytes or leucophores (bearing the silvery or white pigment guanine), melanophores produce structural colours of blue and green. These colours are often extremely intense, because they are formed by refraction of light through the needlelike crystals of guanine. The blue and green refracted colours are often relatively pure, lacking the red and yellow rays, which have been absorbed by the black pigment (melanin) of the melanophores. Yellow, orange, and red colours are produced by erythrophores, cells containing the appropriate carotenoid pigments. Other colours are produced by combinations of melanophores, erythrophores, and iridocytes.
The major portion of the body of most fishes consists of muscles. Most of the mass is trunk musculature, the fin muscles usually being relatively small. The caudal fin is usually the most powerful fin, being moved by the trunk musculature. The body musculature is usually arranged in rows of chevron-shaped segments on each side. Contractions of these segments, each attached to adjacent vertebrae and vertebral processes, bends the body on the vertebral joint, producing successive undulations of the body, passing from the head to the tail, and producing driving strokes of the tail. It is the latter that provides the strong forward movement for most fishes.
The digestive system, in a functional sense, starts at the mouth, with the teeth used to capture prey or collect plant foods. Mouth shape and tooth structure vary greatly in fishes, depending on the kind of food normally eaten. Most fishes are predacious, feeding on small invertebrates or other fishes and have simple conical teeth on the jaws, on at least some of the bones of the roof of the mouth, and on special gill arch structures just in front of the esophagus. The latter are throat teeth. Most predacious fishes swallow their prey whole, and the teeth are used for grasping and holding prey, for orienting prey to be swallowed (head first) and for working the prey toward the esophagus. There are a variety of tooth types in fishes. Some fishes, such as sharks and piranhas, have cutting teeth for biting chunks out of their victims. A shark’s tooth, although superficially like that of a piranha, appears in many respects to be a modified scale, while that of the piranha is like that of other bony fishes, consisting of dentine and enamel. Parrot fishes have beaklike mouths with short incisor-like teeth for breaking off coral and have heavy pavementlike throat teeth for crushing the coral. Some catfishes have small brushlike teeth, arranged in rows on the jaws, for scraping plant and animal growth from rocks. Many fishes (such as the Cyprinidae or minnows) have no jaw teeth at all but have very strong throat teeth.
Some fishes gather planktonic food by straining it from their gill cavities with numerous elongate stiff rods (gill rakers) anchored by one end to the gill bars. The food collected on these rods is passed to the throat, where it is swallowed. Most fishes have only short gill rakers that help keep food particles from escaping out the mouth cavity into the gill chamber.
Once reaching the throat, food enters a short, often greatly distensible esophagus, a simple tube with a muscular wall leading into a stomach. The stomach varies greatly in fishes, depending upon the diet. In most predacious fishes it is a simple straight or curved tube or pouch with a muscular wall and a glandular lining. Food is largely digested there and leaves the stomach in liquid form.
Between the stomach and the intestine, ducts enter the digestive tube from the liver and pancreas. The liver is a large, clearly defined organ. The pancreas may be embedded in it, diffused through it, or broken into small parts spread along some of the intestine. The junction between the stomach and the intestine is marked by a muscular valve. Pyloric ceca (blind sacs) occur in some fishes at this junction and have a digestive or absorptive function or both.
The intestine itself is quite variable in length, depending upon the fish’s diet. It is short in predacious forms, sometimes no longer than the body cavity, but long in herbivorous forms, being coiled and several times longer than the entire length of the fish in some species of South American catfishes. The intestine is primarily an organ for absorbing nutrients into the bloodstream. The larger its internal surface, the greater its absorptive efficiency, and a spiral valve is one method of increasing its absorption surface.
Sharks, rays, chimaeras, lungfishes, surviving chondrosteans, holosteans, and even a few of the more primitive teleosts have a spiral valve or at least traces of it in the intestine. Most modern teleosts have increased the area of the intestinal walls by having numerous folds and villi (fingerlike projections) somewhat like those in humans. Undigested substances are passed to the exterior through the anus in most teleost fishes. In lungfishes, sharks, and rays, it is first passed through the cloaca, a common cavity receiving the intestinal opening and the ducts from the urogenital system.
Oxygen and carbon dioxide dissolve in water, and most fishes exchange dissolved oxygen and carbon dioxide in water by means of the gills. The gills lie behind and to the side of the mouth cavity and consist of fleshy filaments supported by the gill arches and filled with blood vessels, which give gills a bright red colour. Water taken in continuously through the mouth passes backward between the gill bars and over the gill filaments, where the exchange of gases takes place. The gills are protected by a gill cover in teleosts and many other fishes but by flaps of skin in sharks, rays, and some of the older fossil fish groups. The blood capillaries in the gill filaments are close to the gill surface to take up oxygen from the water and to give up excess carbon dioxide to the water.
Most modern fishes have a hydrostatic (ballast) organ, called the swim bladder, that lies in the body cavity just below the kidney and above the stomach and intestine. It originated as a diverticulum of the digestive canal. In advanced teleosts, especially the acanthopterygians, the bladder has lost its connection with the digestive tract, a condition called physoclistic. The connection has been retained (physostomous) by many relatively primitive teleosts. In several unrelated lines of fishes, the bladder has become specialized as a lung or, at least, as a highly vascularized accessory breathing organ. Some fishes with such accessory organs are obligate air breathers and will drown if denied access to the surface, even in well-oxygenated water. Fishes with a hydrostatic form of swim bladder can control their depth by regulating the amount of gas in the bladder. The gas, mostly oxygen, is secreted into the bladder by special glands, rendering the fish more buoyant; the gas is absorbed into the bloodstream by another special organ, reducing the overall buoyancy and allowing the fish to sink. Some deep-sea fishes may have oils, rather than gas, in the bladder. Other deep-sea and some bottom-living forms have much-reduced swim bladders or have lost the organ entirely.
The swim bladder of fishes follows the same developmental pattern as the lungs of land vertebrates. There is no doubt that the two structures have the same historical origin in primitive fishes. More or less intermediate forms still survive among the more primitive types of fishes, such as the lungfishes Lepidosiren and Protopterus.
The circulatory, or blood vascular, system consists of the heart, the arteries, the capillaries, and the veins. It is in the capillaries that the interchange of oxygen, carbon dioxide, nutrients, and other substances such as hormones and waste products takes place. The capillaries lead to the veins, which return the venous blood with its waste products to the heart, kidneys, and gills. There are two kinds of capillary beds: those in the gills and those in the rest of the body. The heart, a folded continuous muscular tube with three or four saclike enlargements, undergoes rhythmic contractions and receives venous blood in a sinus venosus. It passes the blood to an auricle and then into a thick muscular pump, the ventricle. From the ventricle the blood goes to a bulbous structure at the base of a ventral aorta just below the gills. The blood passes to the afferent (receiving) arteries of the gill arches and then to the gill capillaries. There waste gases are given off to the environment, and oxygen is absorbed. The oxygenated blood enters efferent (exuant) arteries of the gill arches and then flows into the dorsal aorta. From there blood is distributed to the tissues and organs of the body. One-way valves prevent backflow. The circulation of fishes thus differs from that of the reptiles, birds, and mammals in that oxygenated blood is not returned to the heart prior to distribution to the other parts of the body.
The primary excretory organ in fishes, as in other vertebrates, is the kidney. In fishes some excretion also takes place in the digestive tract, skin, and especially the gills (where ammonia is given off). Compared with land vertebrates, fishes have a special problem in maintaining their internal environment at a constant concentration of water and dissolved substances, such as salts. Proper balance of the internal environment (homeostasis) of a fish is in a great part maintained by the excretory system, especially the kidney.
The kidney, gills, and skin play an important role in maintaining a fish’s internal environment and checking the effects of osmosis. Marine fishes live in an environment in which the water around them has a greater concentration of salts than they can have inside their body and still maintain life. Freshwater fishes, on the other hand, live in water with a much lower concentration of salts than they require inside their bodies. Osmosis tends to promote the loss of water from the body of a marine fish and absorption of water by that of a freshwater fish. Mucus in the skin tends to slow the process but is not a sufficient barrier to prevent the movement of fluids through the permeable skin. When solutions on two sides of a permeable membrane have different concentrations of dissolved substances, water will pass through the membrane into the more concentrated solution, while the dissolved chemicals move into the area of lower concentration (diffusion).
The kidney of freshwater fishes is often larger in relation to body weight than that of marine fishes. In both groups the kidney excretes wastes from the body, but the kidney of freshwater fishes also excretes large amounts of water, counteracting the water absorbed through the skin. Freshwater fishes tend to lose salt to the environment and must replace it. They get some salt from their food, but the gills and skin inside the mouth actively absorb salt from water passed through the mouth. This absorption is performed by special cells capable of moving salts against the diffusion gradient. Freshwater fishes drink very little water and take in little water with their food.
Marine fishes must conserve water, and therefore their kidneys excrete little water. To maintain their water balance, marine fishes drink large quantities of seawater, retaining most of the water and excreting the salt. Most nitrogenous waste in marine fishes appears to be secreted by the gills as ammonia. Marine fishes can excrete salt by clusters of special cells (chloride cells) in the gills.
There are several teleosts—for example, the salmon—that travel between fresh water and seawater and must adjust to the reversal of osmotic gradients. They adjust their physiological processes by spending time (often surprisingly little time) in the intermediate brackish environment.
Marine hagfishes, sharks, and rays have osmotic concentrations in their blood about equal to that of seawater and so do not have to drink water nor perform much physiological work to maintain their osmotic balance. In sharks and rays the osmotic concentration is kept high by retention of urea in the blood. Freshwater sharks have a lowered concentration of urea in the blood.
Endocrine glands secrete their products into the bloodstream and body tissues and, along with the central nervous system, control and regulate many kinds of body functions. Cyclostomes have a well-developed endocrine system, and presumably it was well developed in the early Agnatha, ancestral to modern fishes. Although the endocrine system in fishes is similar to that of higher vertebrates, there are numerous differences in detail. The pituitary, the thyroid, the suprarenals, the adrenals, the pancreatic islets, the sex glands (ovaries and testes), the inner wall of the intestine, and the bodies of the ultimobranchial gland make up the endocrine system in fishes. There are some others whose function is not well understood. These organs regulate sexual activity and reproduction, growth, osmotic pressure, general metabolic activities such as the storage of fat and the utilization of foodstuffs, blood pressure, and certain aspects of skin colour. Many of these activities are also controlled in part by the central nervous system, which works with the endocrine system in maintaining the life of a fish. Some parts of the endocrine system are developmentally, and undoubtedly evolutionarily, derived from the nervous system.
As in all vertebrates, the nervous system of fishes is the primary mechanism coordinating body activities, as well as integrating these activities in the appropriate manner with stimuli from the environment. The central nervous system, consisting of the brain and spinal cord, is the primary integrating mechanism. The peripheral nervous system, consisting of nerves that connect the brain and spinal cord to various body organs, carries sensory information from special receptor organs such as the eyes, internal ears, nares (sense of smell), taste glands, and others to the integrating centres of the brain and spinal cord. The peripheral nervous system also carries information via different nerve cells from the integrating centres of the brain and spinal cord. This coded information is carried to the various organs and body systems, such as the skeletal muscular system, for appropriate action in response to the original external or internal stimulus. Another branch of the nervous system, the autonomic nervous system, helps to coordinate the activities of many glands and organs and is itself closely connected to the integrating centres of the brain.
The brain of the fish is divided into several anatomical and functional parts, all closely interconnected but each serving as the primary centre of integrating particular kinds of responses and activities. Several of these centres or parts are primarily associated with one type of sensory perception, such as sight, hearing, or smell (olfaction).
The sense of smell is important in almost all fishes. Certain eels with tiny eyes depend mostly on smell for location of food. The olfactory, or nasal, organ of fishes is located on the dorsal surface of the snout. The lining of the nasal organ has special sensory cells that perceive chemicals dissolved in the water, such as substances from food material, and send sensory information to the brain by way of the first cranial nerve. Odour also serves as an alarm system. Many fishes, especially various species of freshwater minnows, react with alarm to a chemical released from the skin of an injured member of their own species.
Many fishes have a well-developed sense of taste, and tiny pitlike taste buds or organs are located not only within their mouth cavities but also over their heads and parts of their body. Catfishes, which often have poor vision, have barbels (“whiskers”) that serve as supplementary taste organs, those around the mouth being actively used to search out food on the bottom. Some species of naturally blind cave fishes are especially well supplied with taste buds, which often cover most of their body surface.
Sight is extremely important in most fishes. The eye of a fish is basically like that of all other vertebrates, but the eyes of fishes are extremely varied in structure and adaptation. In general, fishes living in dark and dim water habitats have large eyes, unless they have specialized in some compensatory way so that another sense (such as smell) is dominant, in which case the eyes will often be reduced. Fishes living in brightly lighted shallow waters often will have relatively small but efficient eyes. Cyclostomes have somewhat less elaborate eyes than other fishes, with skin stretched over the eyeball perhaps making their vision somewhat less effective. Most fishes have a spherical lens and accommodate their vision to far or near subjects by moving the lens within the eyeball. A few sharks accommodate by changing the shape of the lens, as in land vertebrates. Those fishes that are heavily dependent upon the eyes have especially strong muscles for accommodation. Most fishes see well, despite the restrictions imposed by frequent turbidity of the water and by light refraction.
Fossil evidence suggests that colour vision evolved in fishes more than 300 million years ago, but not all living fishes have retained this ability. Experimental evidence indicates that many shallow-water fishes, if not all, have colour vision and see some colours especially well, but some bottom-dwelling shore fishes live in areas where the water is sufficiently deep to filter out most if not all colours, and these fishes apparently never see colours. When tested in shallow water, they apparently are unable to respond to colour differences.
Sound perception and balance are intimately associated senses in a fish. The organs of hearing are entirely internal, located within the skull, on each side of the brain and somewhat behind the eyes. Sound waves, especially those of low frequencies, travel readily through water and impinge directly upon the bones and fluids of the head and body, to be transmitted to the hearing organs. Fishes readily respond to sound; for example, a trout conditioned to escape by the approach of fishermen will take flight upon perceiving footsteps on a stream bank even if it cannot see a fisherman. Compared with humans, however, the range of sound frequencies heard by fishes is greatly restricted. Many fishes communicate with each other by producing sounds in their swim bladders, in their throats by rasping their teeth, and in other ways.
A fish or other vertebrate seldom has to rely on a single type of sensory information to determine the nature of the environment around it. A catfish uses taste and touch when examining a food object with its oral barbels. Like most other animals, fishes have many touch receptors over their body surface. Pain and temperature receptors also are present in fishes and presumably produce the same kind of information to a fish as to humans. Fishes react in a negative fashion to stimuli that would be painful to human beings, suggesting that they feel a sensation of pain.
An important sensory system in fishes that is absent in other vertebrates (except some amphibians) is the lateral line system. This consists of a series of heavily innervated small canals located in the skin and bone around the eyes, along the lower jaw, over the head, and down the mid-side of the body, where it is associated with the scales. Intermittently along these canals are located tiny sensory organs (pit organs) that apparently detect changes in pressure. The system allows a fish to sense changes in water currents and pressure, thereby helping the fish to orient itself to the various changes that occur in the physical environment.
This is my first car, a 1994 Lincoln Town Car. This car is rather rare. Well, THIS one is, apparently. These Lincolns from the early 90's can be found almost anywhere, but not like this one. This car was custom ordered, by whom I do not know, but they must have been pretty important, for Lincoln to take the time to go of their way to build this specific car differently than the rest. First off, the paint color. The name for it is Midnight Opal Clearcoat Metallic with a Medium Opal Metallic lower. This color code was reserved for Cartier Edition Town Cars, and to date, I have not seen another Signature Series with this color scheme. For those of you who do not know, the trim levels went as follows:
Town Car Base/Executive Series ~ 28K-34K
Town Car Signature Series ~ 34K-42K
Town Car Cartier Edition - 42K-44K
Mine, oddly enough was $43,896 at the tme it was purchased new. It has every option Lincoln provided, and more. The leather for the seats in this car are of much higher grade, than normal Town Cars. The leather is thicker, and has a nice grain pattern to it. Seats are much softer than regular Signature Series seats, they feel like Cartier seats, really. There are numerous other things, but you get the idea. :)
TECHNICAL SPECIFICATIONS:
4.6 Modular V-8 engine
210 HP, 276 FT/LBS Torque
AOD-E Transmission
GVW: 4,601 pounds
Optional Features :)
Electronic Traction Assist [Traction Control]
Leather Seating Surfaces
Drivers Side Memory Seat
Dual Power Recliners
Dual Power Lumbar
JBL Audio System
JBL Audio Subwoofer
Trunk Mounted 10 Disc CD Changer
Anti-Theft Alarm System
Electrochromatic Auto-Dimming Rear View Mirror
Voice Activated Cellular Telephone
Conventional Spare Tire
Cartier Edition Paint Scheme
Also, Air Ride Suspension was standard equipment on these cars, and honestly, if you do not have it, you need to install it on your vehicles, or buy one with it, lol. The ride is amazing, plus, if you put a load of stuff in your trunk, with most cars, the rear will sag some, so it is obvious you have a load in your trunk. With these cars, the compressor comes on, and pumps the rear of the car up to trim height, so, no one knows you have anything in it. Then, when you remove everything ,the rear of the car is way in the air, because all the air pressure in the air springs, and no extra weight in the trunk anymore, so the computer reads the rear end being too high, [via a height sensor mounted to the frame, and rear axle] and it will vent, and the rear end sinks down to proper ride height. It's cool. :D
I got this photo of my bus (Hartselle City Schools bus 22-07) when it was recently put into service. It is a 2022 IC CE School bus with a Cummins B6.7L diesel engine paired up to a Allison automatic transmission.
Currently, 22-07 is in the shop waiting for repairs on it's emergency alarm system since the bus had electrical issues when it was taken to Mobile, Alabama for a baseball tournament trip.
USS Olympia (C-6/CA-15/CL-15/IX-40) is a protected cruiser that saw service in the United States Navy from her commissioning in 1895 until 1922. This vessel became famous as the flagship of Commodore George Dewey at the Battle of Manila Bay during the Spanish-American War in 1898. The ship was decommissioned after returning to the U.S. in 1899, but was returned to active service in 1902.
She served until World War I as a training ship for naval cadets and as a floating barracks in Charleston, South Carolina. In 1917, she was mobilized again for war service, patrolling the American coast and escorting transport ships.
Following the end of World War I, Olympia participated in the 1919 Allied intervention in the Russian Civil War, and conducted cruises in the Mediterranean and Adriatic Seas to promote peace in the unstable Balkan countries. In 1921, the ship carried the remains of World War I's Unknown Soldier from France to Washington, DC, where his body was interred in Arlington National Cemetery. Olympia was decommissioned for the last time in December 1922 and placed in reserve.
In 1957, the U.S. Navy ceded title to the Cruiser Olympia Association, which restored the ship to her 1898 configuration. Since then, Olympia has been a museum ship in Philadelphia, Pennsylvania, and is now part of the Independence Seaport Museum. Olympia is the oldest steel US warship still afloat. However, the Museum has been unable to fund essential maintenance for the old ship, and attempts to secure outside funding have failed. Therefore the current steward, under direction of the US Navy has put the ship up for availability to new stewards. It will take an estimated ten million dollars to put Olympia in a stable condition.
Olympia was designated a National Historic Landmark in 1966.
As of 2012, Olympia's future was uncertain; repairs are desperately needed to keep the ship afloat. Four entities from San Francisco, California, Beaufort, South Carolina, Philadelphia, Pennsylvania, and Washington, DC, are vying to be a new steward, but it is a race against time due to the waterline deterioration of the hull. As the current entities are in competition for the ship, no significant repairs have been made, although the current steward has done some minor repairs. In reaction to this gap in coverage, the National Trust for Historic Preservation (NTHP) has set up a fund repository which, if funds are raised, will be directly applied to immediate repairs of the vessel with the cooperation of the current steward. At the present time, March 2012, the NTHP is considering a triple application by the Naval Historical Foundation, the Historic Naval Ships Association, and the National Maritime Association to have Olympia placed on the NTHP's list of the eleven most endangered "places". The steward applicants from San Francisco (Mare Island), and Beaufort, S.C., have endorsed the application. Despite these positive steps, Olympia is in critical danger due to the lack of funds.
Since 2011, Independence Seaport Museum has renewed its commitment to the continued preservation of the Cruiser Olympia until the Transfer Application Process reaches its conclusion in summer 2014. The Museum has invested in extensive stabilization measures including reinforcing the most deteriorated areas of the hull, expanding the alarm system, installing a network of bilge pumping stand pipes (which will provide greater damage control capability in the unlikely event of a hull breech), extensive deck patching and extensive repair and recoating of the ship’s rigging. Although still in need of dry docking and substantial restoration, the Olympia is in a more stable condition now than it has been for years. This work was made possible by donations from the National Trust for Historic Preservation, The U.S. Cruiser Sailors Association and many individual donors.
Of the six candidates that originally applied for stewardship of the cruiser Olympia, only two remain: an organization in California and an organization in South Carolina. The Museum continues to seek resources to preserve the ship for education and interpretation. The ship will remain open to the public seven days a week from 10:00 am to 5:00 pm, and until 7:00 pm on Thursdays, Fridays and Saturdays from Memorial Day weekend through Labor Day weekend.
Indian Railways (reporting mark IR) is an Indian state-owned enterprise, owned and operated by the Government of India through the Ministry of Railways. It is one of the world's largest railway networks comprising 115,000 km of track over a route of 65,808 km and 7,112 stations. In 2014-15, IR carried 8.397 billion passengers annually or more than 23 million passengers a day (roughly half of whom were suburban passengers) and 1058.81 million tons of freight in the year. On world level Ghaziabad is the largest manufacturer of Railway Engines. In 2014–2015 Indian Railways had revenues of ₹1634.50 billion (US$25 billion) which consists of ₹1069.27 billion (US$16 billion) from freight and ₹402.80 billion (US$6.1 billion) from passengers tickets.
Railways were first introduced to India in the year 1853 from Mumbai to Thane. In 1951 the systems were nationalised as one unit, the Indian Railways, becoming one of the largest networks in the world. IR operates both long distance and suburban rail systems on a multi-gauge network of broad, metre and narrow gauges. It also owns locomotive and coach production facilities at several places in India and are assigned codes identifying their gauge, kind of power and type of operation. Its operations cover twenty nine states and seven union territories and also provides limited international services to Nepal, Bangladesh and Pakistan. Indian Railways is the world's seventh largest commercial or utility employer, by number of employees, with over 1.334 million employees as of last published figures in 2013. As for rolling stock, IR holds over 245,267 Freight Wagons, 66,392 Passenger Coaches and 10,499 Locomotives (43 steam, 5,633 diesel and 4,823 electric locomotives). The trains have a 5 digit numbering system and runs 12,617 passenger trains and 7421 freight trains daily. As of 31 March 2013, 21,614 km (32.8%) of the total 65,808 km route length was electrified. Since 1960, almost all electrified sections on IR use 25,000 Volt AC traction through overhead catenary delivery.
HISTORY
The history of rail transport in India began in the mid-nineteenth century. The core of the pressure for building Railways In India came from London. In 1848, there was not a single kilometre of railway line in India. The country's first railway, built by the Great Indian Peninsula Railway (GIPR), opened in 1853, between Bombay and Thane. A British engineer, Robert Maitland Brereton, was responsible for the expansion of the railways from 1857 onwards. The Allahabad-Jabalpur branch line of the East Indian Railway had been opened in June 1867. Brereton was responsible for linking this with the GIPR, resulting in a combined network of 6,400 km. Hence it became possible to travel directly from Bombay to Calcutta. This route was officially opened on 7 March 1870 and it was part of the inspiration for French writer Jules Verne's book Around the World in Eighty Days. At the opening ceremony, the Viceroy Lord Mayo concluded that "it was thought desirable that, if possible, at the earliest possible moment, the whole country should be covered with a network of lines in a uniform system".
By 1875, about £95 million were invested by British companies in India. Guaranteed railways. By 1880 the network had a route mileage of about 14,500 km, mostly radiating inward from the three major port cities of Bombay, Madras and Calcutta. By 1895, India had started building its own locomotives, and in 1896, sent engineers and locomotives to help build the Uganda Railways.
In 1900, the GIPR became a government owned company. The network spread to the modern day states of Assam, Rajputhana and Madras Presidency and soon various autonomous kingdoms began to have their own rail systems. In 1905, an early Railway Board was constituted, but the powers were formally vested under Lord Curzon. It served under the Department of Commerce and Industry and had a government railway official serving as chairman, and a railway manager from England and an agent of one of the company railways as the other two members. For the first time in its history, the Railways began to make a profit.
In 1907 almost all the rail companies were taken over by the government. The following year, the first electric locomotive made its appearance. With the arrival of World War I, the railways were used to meet the needs of the British outside India. With the end of the war, the railways were in a state of disrepair and collapse. Large scale corruption by British officials involved in the running of these railways companies was rampant. Profits were never reinvested in the development of British colonial India.
In 1920, with the network having expanded to 61,220 km, a need for central management was mooted by Sir William Acworth. Based on the East India Railway Committee chaired by Acworth, the government took over the management of the Railways and detached the finances of the Railways from other governmental revenues.
The period between 1920 and 1929, was a period of economic boom; there were 66,000 km of railway lines serving the country; the railways represented a capital value of some 687 million sterling; and they carried over 620 million passengers and approximately 90 million tons of goods each year. Following the Great Depression, the railways suffered economically for the next eight years. The Second World War severely crippled the railways. Starting 1939, about 40% of the rolling stock including locomotives and coaches was taken to the Middle East, the railways workshops were converted to ammunitions workshops and many railway tracks were dismantled to help the Allies in the war. By 1946, all rail systems had been taken over by the government.
ORGANISATIONAL STRUCTURE
RAILWAY ZONES
Indian Railways is divided into 16 zones, which are further sub-divided into divisions. The number of zones in Indian Railways increased from six to eight in 1951, nine in 1966 and seventeen in 2003. Each zonal railway is made up of a certain number of divisions, each having a divisional headquarters. There are a total of sixty-eight divisions.
Each zone is headed by a general manager, who reports directly to the Railway Board. The zones are further divided into divisions, under the control of divisional railway managers (DRM). The divisional officers, of engineering, mechanical, electrical, signal and telecommunication, accounts, personnel, operating, commercial, security and safety branches, report to the respective Divisional Railway Manager and are in charge of operation and maintenance of assets. Further down the hierarchy tree are the station masters, who control individual stations and train movements through the track territory under their stations' administration.
RECRUITMENT AND TRAINING
Staff are classified into gazetted (Group 'A' and 'B') and non-gazetted (Group 'C' and 'D') employees. The recruitment of Group 'A' gazetted employees is carried out by the Union Public Service Commission through exams conducted by it. The recruitment to Group 'C' and 'D' employees on the Indian Railways is done through 20 Railway Recruitment Boards and Railway Recruitment Cells which are controlled by the Railway Recruitment Control Board (RRCB). The training of all cadres is entrusted and shared between six centralised training institutes.
ROLLING STOCK
LOCOMOTIVES
Locomotives in India consist of electric and diesel locomotives. The world's first CNG (Compressed Natural Gas) locomotives are also being used. Steam locomotives are no longer used, except in heritage trains. In India, locomotives are classified according to their track gauge, motive power, the work they are suited for and their power or model number. The class name includes this information about the locomotive. It comprises 4 or 5 letters. The first letter denotes the track gauge. The second letter denotes their motive power (Diesel or Alternating - on Electric) and the third letter denotes the kind of traffic for which they are suited (goods, passenger, Multi or shunting). The fourth letter used to denote locomotives' chronological model number. However, from 2002 a new classification scheme has been adopted. Under this system, for newer diesel locomotives, the fourth letter will denote their horsepower range. Electric locomotives don't come under this scheme and even all diesel locos are not covered. For them this letter denotes their model number as usual.In world level Ghaziabad is the largest manufacturer of Locomotive.
A locomotive may sometimes have a fifth letter in its name which generally denotes a technical variant or subclass or subtype. This fifth letter indicates some smaller variation in the basic model or series, perhaps different motors, or a different manufacturer. With the new scheme for classifying diesel locomotives (as mentioned above) the fifth item is a letter that further refines the horsepower indication in 100 hp increments: 'A' for 100 hp, 'B' for 200 hp, 'C' for 300 hp, etc. So in this scheme, a WDM-3A refers to a 3100 hp loco, while a WDM-3D would be a 3400 hp loco and WDM-3F would be 3600 hp loco.
Note: This classification system does not apply to steam locomotives in India as they have become non-functional now. They retained their original class names such as M class or WP class.
Diesel Locomotives are now fitted with Auxiliary Power Units which saves nearly 88% of Fuel during the idle time when train is not running.
GOODS WAGONS
The number of goods wagons was 205,596 on 31 March 1951 and reached the maximum number 405,183 on 31 March 1980 after which it started declining and was 239,321 on 31 March 2012. The number is far less than the requirement and the Indian Railways keeps losing freight traffic to road. Indian Railways carried 93 million tonnes of goods in 1950–51 and it increased to 1010 million tonnes in 2012–13.
However, its share in goods traffic is much lower than road traffic. In 1951, its share was 65% and the share of road was 35%. Now the shares have been reversed and the share of railways has declined to 30% and the share of road has increased to 70%.
PASSENGER COACHES
Indian railways has several types of passenger coaches.
Electric Multiple Unit (EMU) coaches are used for suburban traffic in large cities – mainly Mumbai, Chennai, Delhi, Kolkata, Pune, Hyderabad and Bangalore. These coaches numbered 7,793 on 31 March 2012. They have second class and first class seating accommodation.
The coaches used in Indian Railways are produced at Integral Coach Factory, Rail Coach Factory.Now,they are producing new LHB coaches.
Passenger coaches numbered 46,722 on 31 March 2012. Other coaches (luggage coach, parcel van, guard's coach, mail coach, etc.) numbered 6,560 on 31 March 2012.
FREIGHT
Indian Railways earns about 70% of its revenues from freight traffic (₹686.2 billion from freight and ₹304.6 billion from passengers in 2011–12). Most of its profits come from transporting freight, and this makes up for losses on passenger traffic. It deliberately keeps its passenger fares low and cross-subsidises the loss-making passenger traffic with the profit-making freight traffic.
Since the 1990s, Indian Railways has stopped single-wagon consignments and provides only full rake freight trains
Wagon types include:
BOXNHL
BOBYN
BCN
BCNHL
TECHNICAL DETAILS
TRACK AND GAUGE
Indian railways uses four gauges, the 1,676 mm broad gauge which is wider than the 1,435 mm standard gauge; the 1,000 mm metre gauge; and two narrow gauges, 762 mm and 610 mm. Track sections are rated for speeds ranging from 75 to 160 km/h.
The total length of track used by Indian Railways is about 115,000 km while the total route length of the network is 65,000 km. About 24,891 km or 38% of the route-kilometre was electrified, as of 31 March 2014.
Broad gauge is the predominant gauge used by Indian Railways. Indian broad gauge - 1,676 mm - is the most widely used gauge in India with 108,500 km of track length (94% of entire track length of all the gauges) and 59,400 km of route-kilometre (91% of entire route-kilometre of all the gauges).
In some regions with less traffic, the metre gauge (1,000 mm) is common, although the Unigauge project is in progress to convert all tracks to broad gauge. The metre gauge has about 5,000 km of track length (4% of entire track length of all the gauges) and 4,100 km of route-kilometre (7% of entire route-kilometre of all the gauges).
The Narrow gauges are present on a few routes, lying in hilly terrains and in some erstwhile private railways (on cost considerations), which are usually difficult to convert to broad gauge. Narrow gauges have 1,500 route-kilometre. The Kalka-Shimla Railway, the Kangra Valley Railway and the Darjeeling Himalayan Railway are three notable hill lines that use narrow gauge, but the Nilgiri Mountain Railway is a metre gauge track. These four rail lines will not be converted under the Unigauge project.
The share of broad gauge in the total route-kilometre has been steadily rising, increasing from 47% (25,258 route-km) in 1951 to 86% in 2012 whereas the share of metre gauge has declined from 45% (24,185 route-km) to 10% in the same period and the share of narrow gauges has decreased from 8% to 3%. About 24,891 route-km of Indian railways is electrified.
Sleepers (ties) are made up of prestressed concrete, or steel or cast iron posts, though teak sleepers are still in use on a few older lines. The prestressed concrete sleeper is in wide use today. Metal sleepers were extensively used before the advent of concrete sleepers. Indian Railways divides the country into four zones on the basis of the range of track temperature. The greatest temperature variations occur in Rajasthan.
RESEARCH AND DEVELOPMENT
Indian Railways has a full-fledged organisation known as Research Designs and Standards Organisation (RDSO), located at Lucknow for all research, designs and standardisation tasks.
In August 2013, Indian Railways entered into a partnership with Indian Institute of Technology (Madras) to develop technology to tap solar energy for lighting and air-conditioning in the coaches. This would significantly reduce the fossil fuel dependency for Indian Railways.
Recently it developed and tested the Improved Automated Fire Alarm System in Rajdhani Express Trains. It is intended that the system be applied to AC coaches of all regular trains.
CURRENT AND FUTURE DEVELOPMENTS
In recent years, Indian Railways has undertaken several initiatives to upgrade its ageing infrastructure and enhance its quality of service. The Indian government plans to invest ₹905000 crore (US$137 billion) to upgrade the railways by 2020.
TOILETS ON RAILWAYS
In 2014, Indian Railways and DRDO developed a bio-toilet to replace direct-discharge toilets, which are currently the primary type of toilet used in railway coaches. The direct discharge of human waste from trains onto the tracks corrodes rails, costing Indian Railways tens of millions of rupees a year in rail-replacement work. Flushing a bio-toilet discharges human waste into an underfloor holding tank where anaerobic bacteria remove harmful pathogens and break the waste down into neutral water and methane. These harmless by-products can then be safely discharged onto the tracks without causing corrosion or foul odours. As part of its "Swachh Rail-Swachh Bharat" ("Clean Rail-Clean India") programme, Indian Railways plans to completely phase out direct-discharge toilets on its lines by 2020-2021. As of March 2015, 17,338 bio-toilets had been installed on newly built coaches, with all new coaches to have bio-toilets from 2016; older rolling stock will be retrofitted.
LOCOMOTIVE FACTORIES
In 2015, plans were disclosed for building two locomotive factories in the state of Bihar, at Madhepura (diesel locomotives) and at Marhowra (electric locomotives). Both factories involve foreign partnerships. The diesel locomotive works will be jointly operated in a partnership with General Electric, which has invested ₹2052 crore (US$310 million) for its construction, and the electric locomotive works with Alstom, which has invested ₹1293.57 crore (US$195 million). The factories will provide Indian Railways with 800 electric locomotives of 12,000 horse power each, and a mix of 1,000 diesel locomotives of 4,500 and 6,000 horsepower each. In November 2015, further details of the ₹14656 crore (US$2 billion) partnership with GE were announced: Indian Railways and GE would engage in an 11-year joint venture in which GE would hold a majority stake of 74%. Under the terms of the joint venture, Indian Railways would purchase 100 goods locomotives a year for 10 years beginning in 2017; the locomotives would be modified versions of the GE Evolution series. The diesel locomotive works will be built by 2018; GE will import the first 100 locomotives and manufacture the remaining 900 in India from 2019, also assuming responsibility for their maintenance over a 13-year period. In the same month, a ₹20000 crore (US$3 billion) partnership with Alstom to supply 800 electric locomotives from 2018 to 2028 was announced.
LINKS TO ADJACENT COUNTRIES
EXISTING RAIL LINKS
Nepal – Break-of-gauge – Gauge conversion under uni-gauge project
Pakistan – same Broad Gauge. Thar Express to Karachi and the more famous Samjhauta Express international train from Lahore, Pakistan to Amritsar (Attari).
Bangladesh – Same Broad Gauge. The Maitri Express between Dhaka and Kolkata started in April 2008 using the Gede-Darsana route, in addition to a Freight Train service from Singhabad and Petrapole in India to Rohanpur and Benapole in Bangladesh. A second passenger link between Agartala, India and Akhaura Upazila, Bangladesh was approved by the Government of Bangladesh and India in September 2011.
UNDER CONSTRUCTUION / PROPOSED LINKS
Bhutan – railways under construction – Same gauge
Myanmar – Manipur to Myanmar (under construction)
Vietnam – On 9 April 2010, Former Union Minister of India, Shashi Tharoor announced that the central government is considering a rail link from Manipur to Vietnam via Myanmar.
Thailand – possible if Burma Railway is rebuilt.
TYPES OF PASSENGER SERVICES
Trains are classified by their average speed. A faster train has fewer stops ("halts") than a slower one and usually caters to long-distance travel.
ACCOMODATION CLASSES
Indian Railways has several classes of travel with or without airconditioning. A train may have just one or many classes of travel. Slow passenger trains have only unreserved seating class whereas Rajdhani, Duronto, Shatabdi, garib rath and yuva trains have only airconditioned classes. The fares for all classes are different with unreserved seating class being the cheapest. The fare of Rajdhani, Duronto and Shatabdi trains includes food served in the train but the fare for other trains does not include food that has to be bought separately. In long-distance trains a pantry car is usually included and food is served at the berth or seat itself. Luxury trains such as Palace on Wheels have separate dining cars but these trains cost as much as or more than a five-star hotel room.
A standard passenger rake generally has four unreserved (also called "general") compartments, two at the front and two at the end, of which one may be exclusively for ladies. The exact number of other coaches varies according to the demand and the route. A luggage compartment can also exist at the front or the back. In some mail trains a separate mail coach is attached. Lavatories are communal and feature both the Indian style as well as the Western style.
The following table lists the classes in operation. A train may not have all these classes.
1A First class AC: This is the most expensive class, where the fares are almost at par with air fare. There are eight cabins (including two coupes) in the full AC First Class coach and three cabins (including one coupe) in the half AC First Class coach. The coach has an attendant to help the passengers. Bedding is included with the fare in IR. This air conditioned coach is present only on popular routes and can carry 18 passengers (full coach) or 10 passengers (half coach). The sleeper berths are extremely wide and spacious. The coaches are carpeted, have sleeping accommodation and have privacy features like personal coupes. This class is available on broad gauge and metre gauge trains.
2A AC-Two tier: These air-conditioned coaches have sleeping berths across eight bays. Berths are usually arranged in two tiers in bays of six, four across the width of the coach and two berths longways on the other side of the corridor, with curtains along the gangway or corridor. Bedding is included with the fare. A broad gauge coach can carry 48 passengers (full coach) or 20 passengers (half coach). This class is available on broad gauge and metre gauge trains.
FC First class: Same as 1AC but without air conditioning. No bedding is available in this class. The berths are wide and spacious. There is a coach attendant to help the passengers. This class has been phased out on most of the trains and is rare to find. However narrow gauge trains to hill stations have this class.
3A AC three tier: Air conditioned coaches with 64 sleeping berths. Berths are usually arranged as in 2AC but with three tiers across the width and two longways as before giving eight bays of eight. They are slightly less well-appointed, usually no reading lights or curtained off gangways. Bedding is included with fare. It carries 64 passengers in broad gauge. This class is available only on broad gauge.
3E AC three tier (Economy): Air conditioned coaches with sleeping berths, present in Garib Rath Trains. Berths are usually arranged as in 3AC but with three tiers across the width and three longways. They are slightly less well-appointed, usually no reading lights or curtained off gangways. Bedding is not included with fare.
CC AC chair car: An air-conditioned seater coach with a total of five seats in a row used for day travel between cities.
EC Executive class chair car: An air-conditioned coach with large spacious seats and legroom. It has a total of four seats in a row used for day travel between cities. This class of travel is only available on Shatabdi Express trains.
SL Sleeper class: The sleeper class is the most common coach on IR, and usually ten or more coaches could be attached. These are regular sleeping coaches with three berths vertically stacked. In broad gauge, it carries 72 passengers per coach.
2S Seater class: same as AC Chair car, without the air-conditioning. These may be reserved in advance or may be unreserved.
UR Unreserved: The cheapest accommodation. The seats are usually made up of pressed wood in older coaches but cushioned seats are found in new coaches. These coaches are usually over-crowded and a seat is not guaranteed. Tickets are issued in advance for a minimum journey of more than 24 hours. Tickets issued are valid on any train on the same route if boarded within 24 hours of buying the ticket.
At the rear of the train is a special compartment known as the guard's cabin. It is fitted with a transceiver and is where the guard usually gives the all clear signal before the train departs.
UNESCO WORLD HERITAGE SITES
There are two UNESCO World Heritage Sites on Indian Railways. – The Chatrapati Shivaji Terminus and the Mountain Railways of India. The latter consists of three separate railway lines located in different parts of India:
- Darjeeling Himalayan Railway, a narrow gauge railway in West Bengal.
- Nilgiri Mountain Railway, a 1,000 mm metre gauge railway in the Nilgiri Hills in Tamil Nadu.
- Kalka-Shimla Railway, a narrow gauge railway in the Shivalik mountains in Himachal Pradesh. In 2003 the railway was featured in the Guinness Book of World Records for offering the steepest rise in altitude in the space of 96 kilometre.
NOTABLE TRAINS
TOURIST TRAINS
Palace on Wheels is a specially designed luxury tourist train service, frequently hauled by a steam locomotive, for promoting tourism in Rajasthan. The train has a 7 nights & 8 days itinerary, it departs from New Delhi (Day 1), and covers Jaipur (Day 2), Sawai Madhopur and Chittaurgarh (Day 3), Udaipur (Day 4), Jaisalmer (Day 5), Jodhpur (Day 6), Bharatpur and Agra (Day 7), return to Delhi (Day 8).
Royal Rajasthan on Wheels a luxury tourist train service covers various tourist destinations in Rajasthan. The train takes tourists on a 7-day/8-night tour through Rajasthan. The train starts from New Delhi's Safdarjung railway station (Day 1), and has stops at Jodhpur (Day 2), Udaipur and Chittaurgarh (Day 3), Ranthambore National Park and Jaipur (Day 4), Khajuraho (Day 5), Varanasi and Sarnath (Day 6), Agra (Day 7) and back to Delhi (Day 8).
Maharaja Express a luxury train operated by IRCTC runs on five circuits covering more than 12 destinations across North-West and Central India, mainly centered around Rajasthan between the months of October to April.
Deccan Odyssey luxury tourist train service covers various tourist destinations in Maharashtra and Goa. The 7 Nights / 8 Days tour starts from Mumbai (Day 1) and covers Jaigad Fort, Ganapatipule and Ratnagiri (Day 2), Sindhudurg, Tarkarli and Sawantwadi (Day 3), Goa (Day 4), Kolhapur and Pune (Day 5), Aurangabad and Ellora Caves (Day 6), Ajanta Caves and Nashik (Day 7), and back to Mumbai (Day 8).
The Golden Chariot luxury train runs on two circuits Pride of the South and Splendor of the South.
Mahaparinirvan Express an a/c train service also known as Buddhist Circuit Train which is run by IRCTC to attract Buddhist pilgrims. The 7 nights/8 Days tour starts from New Delhi (Day 1) and covers Bodh Gaya (Day 2), Rajgir and Nalanda (Day 3), Varanasi and Sarnath (Day 4), Kushinagar and Lumbini (Day 5 and 6), Sravasti (Day 7), Taj Mahal (Agra) (Day 8) before returning to New Delhi on (Day 8).
OTHER TRAINS
- Samjhauta Express is a train that runs between India and Pakistan. However, hostilities between the two nations in 2001 saw the line being closed. It was reopened when the hostilities subsided in 2004. Another train connecting Khokhrapar (Pakistan) and Munabao (India) is the Thar Express that restarted operations on 18 February 2006; it was earlier closed down after the 1965 Indo-Pak war.
- Lifeline Express is a special train popularly known as the "Hospital-on-Wheels" which provides healthcare to the rural areas. This train has a carriage that serves as an operating room, a second one which serves as a storeroom and an additional two that serve as a patient ward. The train travels around the country, staying at a location for about two months before moving elsewhere.
- Fairy Queen is the oldest operating locomotive in the world today, though it is operated only for specials between Delhi and Alwar. John Bull, a locomotive older than Fairy Queen, operated in 1981 commemorating its 150th anniversary. Gorakhpur railway station also has the distinction of being the world's longest railway platform at 1,366 m. The Ghum station along the Darjeeling Toy Train route is the second highest railway station in the world to be reached by a steam locomotive. The Mumbai–Pune Deccan Queen has the oldest running dining car in IR.
- Vivek Express, between Dibrugarh and Kanyakumari, has the longest run in terms of distance and time on Indian Railways network. It covers 4,286 km in about 82 hours and 30 minutes.
- Bhopal Shatabdi Express is the fastest train in India today having a maximum speed of 160 km/h on the Faridabad–Agra section. The fastest speed attained by any train is 184 km/h in 2000 during test runs.
- Special Trains are those trains started by Indian Railways for any specific event or cause which includes Jagriti Yatra trains, Kumbh Mela Trains., emergency trains, etc.
- Double-decker AC trains have been introduced in India. The first double decker train was Pune-Mumbai Sinhagad express plying between Pune and Mumbai while the first double-decker AC train in the Indian Railways was introduced in November 2010, running between the Dhanbad and Howrah stations having 10 coaches and 2 power cars. On 16 April 2013, Indian Railways celebrated its 160 years of nationwide connectivity with a transportation of 23 million passengers in a day.
PROBLEMS AND ISSUES
Indian Railways is cash strapped and reported a loss of ₹30,000 crores (₹300bn) in the passenger segment for the year ending March 2014. Operating ratio, a key metric used by Indian railways to gauge financial health, is 91.8% in the year 2014-15. Railways carry a social obligation of over ₹20,000 crores (₹200bn $3.5bn). The loss per passenger-km increased to 23 paise by the end of March 2014. Indian Railways is left with a surplus cash of just ₹690 crores (₹6.9bn $115mn) by the end of March 2014.
It is estimated that over ₹ 5 lakh crores (₹5 trillion) (about $85 bn at 2014 exchange rates) is required to complete the ongoing projects alone. The railway is consistently losing market share to other modes of transport both in freight and passengers.
New railway line projects are often announced during the Railway Budget annually without securing additional funding for them. In the last 10 years, 99 New Line projects worth ₹ 60,000 crore (₹600bn) were sanctioned out of which only one project is complete till date, and there are four projects that are as old as 30 years, but are still not complete for one reason or another.
Sanjay Dina Patil a member of the Lok Sabha in 2014 said that additional tracks, height of platforms are still a problem and rise in tickets, goods, monthly passes has created an alarming situation where the common man is troubled.
WIKIPEDIA
Fish, any of approximately 34,000 species of vertebrate animals (phylum Chordata) found in the fresh and salt waters of the world. Living species range from the primitive jawless lampreys and hagfishes through the cartilaginous sharks, skates, and rays to the abundant and diverse bony fishes. Most fish species are cold-blooded; however, one species, the opah (Lampris guttatus), is warm-blooded.
The term fish is applied to a variety of vertebrates of several evolutionary lines. It describes a life-form rather than a taxonomic group. As members of the phylum Chordata, fish share certain features with other vertebrates. These features are gill slits at some point in the life cycle, a notochord, or skeletal supporting rod, a dorsal hollow nerve cord, and a tail. Living fishes represent some five classes, which are as distinct from one another as are the four classes of familiar air-breathing animals—amphibians, reptiles, birds, and mammals. For example, the jawless fishes (Agnatha) have gills in pouches and lack limb girdles. Extant agnathans are the lampreys and the hagfishes. As the name implies, the skeletons of fishes of the class Chondrichthyes (from chondr, “cartilage,” and ichthyes, “fish”) are made entirely of cartilage. Modern fish of this class lack a swim bladder, and their scales and teeth are made up of the same placoid material. Sharks, skates, and rays are examples of cartilaginous fishes. The bony fishes are by far the largest class. Examples range from the tiny seahorse to the 450-kg (1,000-pound) blue marlin, from the flattened soles and flounders to the boxy puffers and ocean sunfishes. Unlike the scales of the cartilaginous fishes, those of bony fishes, when present, grow throughout life and are made up of thin overlapping plates of bone. Bony fishes also have an operculum that covers the gill slits.
The study of fishes, the science of ichthyology, is of broad importance. Fishes are of interest to humans for many reasons, the most important being their relationship with and dependence on the environment. A more obvious reason for interest in fishes is their role as a moderate but important part of the world’s food supply. This resource, once thought unlimited, is now realized to be finite and in delicate balance with the biological, chemical, and physical factors of the aquatic environment. Overfishing, pollution, and alteration of the environment are the chief enemies of proper fisheries management, both in fresh waters and in the ocean. (For a detailed discussion of the technology and economics of fisheries, see commercial fishing.) Another practical reason for studying fishes is their use in disease control. As predators on mosquito larvae, they help curb malaria and other mosquito-borne diseases.
Fishes are valuable laboratory animals in many aspects of medical and biological research. For example, the readiness of many fishes to acclimate to captivity has allowed biologists to study behaviour, physiology, and even ecology under relatively natural conditions. Fishes have been especially important in the study of animal behaviour, where research on fishes has provided a broad base for the understanding of the more flexible behaviour of the higher vertebrates. The zebra fish is used as a model in studies of gene expression.
There are aesthetic and recreational reasons for an interest in fishes. Millions of people keep live fishes in home aquariums for the simple pleasure of observing the beauty and behaviour of animals otherwise unfamiliar to them. Aquarium fishes provide a personal challenge to many aquarists, allowing them to test their ability to keep a small section of the natural environment in their homes. Sportfishing is another way of enjoying the natural environment, also indulged in by millions of people every year. Interest in aquarium fishes and sportfishing supports multimillion-dollar industries throughout the world.
Fishes have been in existence for more than 450 million years, during which time they have evolved repeatedly to fit into almost every conceivable type of aquatic habitat. In a sense, land vertebrates are simply highly modified fishes: when fishes colonized the land habitat, they became tetrapod (four-legged) land vertebrates. The popular conception of a fish as a slippery, streamlined aquatic animal that possesses fins and breathes by gills applies to many fishes, but far more fishes deviate from that conception than conform to it. For example, the body is elongate in many forms and greatly shortened in others; the body is flattened in some (principally in bottom-dwelling fishes) and laterally compressed in many others; the fins may be elaborately extended, forming intricate shapes, or they may be reduced or even lost; and the positions of the mouth, eyes, nostrils, and gill openings vary widely. Air breathers have appeared in several evolutionary lines.
Many fishes are cryptically coloured and shaped, closely matching their respective environments; others are among the most brilliantly coloured of all organisms, with a wide range of hues, often of striking intensity, on a single individual. The brilliance of pigments may be enhanced by the surface structure of the fish, so that it almost seems to glow. A number of unrelated fishes have actual light-producing organs. Many fishes are able to alter their coloration—some for the purpose of camouflage, others for the enhancement of behavioral signals.
Fishes range in adult length from less than 10 mm (0.4 inch) to more than 20 metres (60 feet) and in weight from about 1.5 grams (less than 0.06 ounce) to many thousands of kilograms. Some live in shallow thermal springs at temperatures slightly above 42 °C (100 °F), others in cold Arctic seas a few degrees below 0 °C (32 °F) or in cold deep waters more than 4,000 metres (13,100 feet) beneath the ocean surface. The structural and, especially, the physiological adaptations for life at such extremes are relatively poorly known and provide the scientifically curious with great incentive for study.
Almost all natural bodies of water bear fish life, the exceptions being very hot thermal ponds and extremely salt-alkaline lakes, such as the Dead Sea in Asia and the Great Salt Lake in North America. The present distribution of fishes is a result of the geological history and development of Earth as well as the ability of fishes to undergo evolutionary change and to adapt to the available habitats. Fishes may be seen to be distributed according to habitat and according to geographical area. Major habitat differences are marine and freshwater. For the most part, the fishes in a marine habitat differ from those in a freshwater habitat, even in adjacent areas, but some, such as the salmon, migrate from one to the other. The freshwater habitats may be seen to be of many kinds. Fishes found in mountain torrents, Arctic lakes, tropical lakes, temperate streams, and tropical rivers will all differ from each other, both in obvious gross structure and in physiological attributes. Even in closely adjacent habitats where, for example, a tropical mountain torrent enters a lowland stream, the fish fauna will differ. The marine habitats can be divided into deep ocean floors (benthic), mid-water oceanic (bathypelagic), surface oceanic (pelagic), rocky coast, sandy coast, muddy shores, bays, estuaries, and others. Also, for example, rocky coastal shores in tropical and temperate regions will have different fish faunas, even when such habitats occur along the same coastline.
Although much is known about the present geographical distribution of fishes, far less is known about how that distribution came about. Many parts of the fish fauna of the fresh waters of North America and Eurasia are related and undoubtedly have a common origin. The faunas of Africa and South America are related, extremely old, and probably an expression of the drifting apart of the two continents. The fauna of southern Asia is related to that of Central Asia, and some of it appears to have entered Africa. The extremely large shore-fish faunas of the Indian and tropical Pacific oceans comprise a related complex, but the tropical shore fauna of the Atlantic, although containing Indo-Pacific components, is relatively limited and probably younger. The Arctic and Antarctic marine faunas are quite different from each other. The shore fauna of the North Pacific is quite distinct, and that of the North Atlantic more limited and probably younger. Pelagic oceanic fishes, especially those in deep waters, are similar the world over, showing little geographical isolation in terms of family groups. The deep oceanic habitat is very much the same throughout the world, but species differences do exist, showing geographical areas determined by oceanic currents and water masses.
All aspects of the life of a fish are closely correlated with adaptation to the total environment, physical, chemical, and biological. In studies, all the interdependent aspects of fish, such as behaviour, locomotion, reproduction, and physical and physiological characteristics, must be taken into account.
Correlated with their adaptation to an extremely wide variety of habitats is the extremely wide variety of life cycles that fishes display. The great majority hatch from relatively small eggs a few days to several weeks or more after the eggs are scattered in the water. Newly hatched young are still partially undeveloped and are called larvae until body structures such as fins, skeleton, and some organs are fully formed. Larval life is often very short, usually less than a few weeks, but it can be very long, some lampreys continuing as larvae for at least five years. Young and larval fishes, before reaching sexual maturity, must grow considerably, and their small size and other factors often dictate that they live in a habitat different than that of the adults. For example, most tropical marine shore fishes have pelagic larvae. Larval food also is different, and larval fishes often live in shallow waters, where they may be less exposed to predators.
After a fish reaches adult size, the length of its life is subject to many factors, such as innate rates of aging, predation pressure, and the nature of the local climate. The longevity of a species in the protected environment of an aquarium may have nothing to do with how long members of that species live in the wild. Many small fishes live only one to three years at the most. In some species, however, individuals may live as long as 10 or 20 or even 100 years.
Fish behaviour is a complicated and varied subject. As in almost all animals with a central nervous system, the nature of a response of an individual fish to stimuli from its environment depends upon the inherited characteristics of its nervous system, on what it has learned from past experience, and on the nature of the stimuli. Compared with the variety of human responses, however, that of a fish is stereotyped, not subject to much modification by “thought” or learning, and investigators must guard against anthropomorphic interpretations of fish behaviour.
Fishes perceive the world around them by the usual senses of sight, smell, hearing, touch, and taste and by special lateral line water-current detectors. In the few fishes that generate electric fields, a process that might best be called electrolocation aids in perception. One or another of these senses often is emphasized at the expense of others, depending upon the fish’s other adaptations. In fishes with large eyes, the sense of smell may be reduced; others, with small eyes, hunt and feed primarily by smell (such as some eels).
Specialized behaviour is primarily concerned with the three most important activities in the fish’s life: feeding, reproduction, and escape from enemies. Schooling behaviour of sardines on the high seas, for instance, is largely a protective device to avoid enemies, but it is also associated with and modified by their breeding and feeding requirements. Predatory fishes are often solitary, lying in wait to dart suddenly after their prey, a kind of locomotion impossible for beaked parrot fishes, which feed on coral, swimming in small groups from one coral head to the next. In addition, some predatory fishes that inhabit pelagic environments, such as tunas, often school.
Sleep in fishes, all of which lack true eyelids, consists of a seemingly listless state in which the fish maintains its balance but moves slowly. If attacked or disturbed, most can dart away. A few kinds of fishes lie on the bottom to sleep. Most catfishes, some loaches, and some eels and electric fishes are strictly nocturnal, being active and hunting for food during the night and retiring during the day to holes, thick vegetation, or other protective parts of the environment.
Communication between members of a species or between members of two or more species often is extremely important, especially in breeding behaviour (see below Reproduction). The mode of communication may be visual, as between the small so-called cleaner fish and a large fish of a very different species. The larger fish often allows the cleaner to enter its mouth to remove gill parasites. The cleaner is recognized by its distinctive colour and actions and therefore is not eaten, even if the larger fish is normally a predator. Communication is often chemical, signals being sent by specific chemicals called pheromones.
Many fishes have a streamlined body and swim freely in open water. Fish locomotion is closely correlated with habitat and ecological niche (the general position of the animal to its environment).
Many fishes in both marine and fresh waters swim at the surface and have mouths adapted to feed best (and sometimes only) at the surface. Often such fishes are long and slender, able to dart at surface insects or at other surface fishes and in turn to dart away from predators; needlefishes, halfbeaks, and topminnows (such as killifish and mosquito fish) are good examples. Oceanic flying fishes escape their predators by gathering speed above the water surface, with the lower lobe of the tail providing thrust in the water. They then glide hundreds of yards on enlarged, winglike pectoral and pelvic fins. South American freshwater flying fishes escape their enemies by jumping and propelling their strongly keeled bodies out of the water.
So-called mid-water swimmers, the most common type of fish, are of many kinds and live in many habitats. The powerful fusiform tunas and the trouts, for example, are adapted for strong, fast swimming, the tunas to capture prey speedily in the open ocean and the trouts to cope with the swift currents of streams and rivers. The trout body form is well adapted to many habitats. Fishes that live in relatively quiet waters such as bays or lake shores or slow rivers usually are not strong, fast swimmers but are capable of short, quick bursts of speed to escape a predator. Many of these fishes have their sides flattened, examples being the sunfish and the freshwater angelfish of aquarists. Fish associated with the bottom or substrate usually are slow swimmers. Open-water plankton-feeding fishes almost always remain fusiform and are capable of rapid, strong movement (for example, sardines and herrings of the open ocean and also many small minnows of streams and lakes).
Bottom-living fishes are of many kinds and have undergone many types of modification of their body shape and swimming habits. Rays, which evolved from strong-swimming mid-water sharks, usually stay close to the bottom and move by undulating their large pectoral fins. Flounders live in a similar habitat and move over the bottom by undulating the entire body. Many bottom fishes dart from place to place, resting on the bottom between movements, a motion common in gobies. One goby relative, the mudskipper, has taken to living at the edge of pools along the shore of muddy mangrove swamps. It escapes its enemies by flipping rapidly over the mud, out of the water. Some catfishes, synbranchid eels, the so-called climbing perch, and a few other fishes venture out over damp ground to find more promising waters than those that they left. They move by wriggling their bodies, sometimes using strong pectoral fins; most have accessory air-breathing organs. Many bottom-dwelling fishes live in mud holes or rocky crevices. Marine eels and gobies commonly are found in such habitats and for the most part venture far beyond their cavelike homes. Some bottom dwellers, such as the clingfishes (Gobiesocidae), have developed powerful adhesive disks that enable them to remain in place on the substrate in areas such as rocky coasts, where the action of the waves is great.
The methods of reproduction in fishes are varied, but most fishes lay a large number of small eggs, fertilized and scattered outside of the body. The eggs of pelagic fishes usually remain suspended in the open water. Many shore and freshwater fishes lay eggs on the bottom or among plants. Some have adhesive eggs. The mortality of the young and especially of the eggs is very high, and often only a few individuals grow to maturity out of hundreds, thousands, and in some cases millions of eggs laid.
Males produce sperm, usually as a milky white substance called milt, in two (sometimes one) testes within the body cavity. In bony fishes a sperm duct leads from each testis to a urogenital opening behind the vent or anus. In sharks and rays and in cyclostomes the duct leads to a cloaca. Sometimes the pelvic fins are modified to help transmit the milt to the eggs at the female’s vent or on the substrate where the female has placed them. Sometimes accessory organs are used to fertilize females internally—for example, the claspers of many sharks and rays.
In the females the eggs are formed in two ovaries (sometimes only one) and pass through the ovaries to the urogenital opening and to the outside. In some fishes the eggs are fertilized internally but are shed before development takes place. Members of about a dozen families each of bony fishes (teleosts) and sharks bear live young. Many skates and rays also bear live young. In some bony fishes the eggs simply develop within the female, the young emerging when the eggs hatch (ovoviviparous). Others develop within the ovary and are nourished by ovarian tissues after hatching (viviparous). There are also other methods utilized by fishes to nourish young within the female. In all live-bearers the young are born at a relatively large size and are few in number. In one family of primarily marine fishes, the surfperches from the Pacific coast of North America, Japan, and Korea, the males of at least one species are born sexually mature, although they are not fully grown.
Some fishes are hermaphroditic—an individual producing both sperm and eggs, usually at different stages of its life. Self-fertilization, however, is probably rare.
Successful reproduction and, in many cases, defense of the eggs and the young are assured by rather stereotypical but often elaborate courtship and parental behaviour, either by the male or the female or both. Some fishes prepare nests by hollowing out depressions in the sand bottom (cichlids, for example), build nests with plant materials and sticky threads excreted by the kidneys (sticklebacks), or blow a cluster of mucus-covered bubbles at the water surface (gouramis). The eggs are laid in these structures. Some varieties of cichlids and catfishes incubate eggs in their mouths.
Some fishes, such as salmon, undergo long migrations from the ocean and up large rivers to spawn in the gravel beds where they themselves hatched (anadromous fishes). Some, such as the freshwater eels (family Anguillidae), live and grow to maturity in fresh water and migrate to the sea to spawn (catadromous fishes). Other fishes undertake shorter migrations from lakes into streams, within the ocean, or enter spawning habitats that they do not ordinarily occupy in other ways.
The basic structure and function of the fish body are similar to those of all other vertebrates. The usual four types of tissues are present: surface or epithelial, connective (bone, cartilage, and fibrous tissues, as well as their derivative, blood), nerve, and muscle tissues. In addition, the fish’s organs and organ systems parallel those of other vertebrates.
The typical fish body is streamlined and spindle-shaped, with an anterior head, a gill apparatus, and a heart, the latter lying in the midline just below the gill chamber. The body cavity, containing the vital organs, is situated behind the head in the lower anterior part of the body. The anus usually marks the posterior termination of the body cavity and most often occurs just in front of the base of the anal fin. The spinal cord and vertebral column continue from the posterior part of the head to the base of the tail fin, passing dorsal to the body cavity and through the caudal (tail) region behind the body cavity. Most of the body is of muscular tissue, a high proportion of which is necessitated by swimming. In the course of evolution this basic body plan has been modified repeatedly into the many varieties of fish shapes that exist today.
The skeleton forms an integral part of the fish’s locomotion system, as well as serving to protect vital parts. The internal skeleton consists of the skull bones (except for the roofing bones of the head, which are really part of the external skeleton), the vertebral column, and the fin supports (fin rays). The fin supports are derived from the external skeleton but will be treated here because of their close functional relationship to the internal skeleton. The internal skeleton of cyclostomes, sharks, and rays is of cartilage; that of many fossil groups and some primitive living fishes is mostly of cartilage but may include some bone. In place of the vertebral column, the earliest vertebrates had a fully developed notochord, a flexible stiff rod of viscous cells surrounded by a strong fibrous sheath. During the evolution of modern fishes the rod was replaced in part by cartilage and then by ossified cartilage. Sharks and rays retain a cartilaginous vertebral column; bony fishes have spool-shaped vertebrae that in the more primitive living forms only partially replace the notochord. The skull, including the gill arches and jaws of bony fishes, is fully, or at least partially, ossified. That of sharks and rays remains cartilaginous, at times partially replaced by calcium deposits but never by true bone.
The supportive elements of the fins (basal or radial bones or both) have changed greatly during fish evolution. Some of these changes are described in the section below (Evolution and paleontology). Most fishes possess a single dorsal fin on the midline of the back. Many have two and a few have three dorsal fins. The other fins are the single tail and anal fins and paired pelvic and pectoral fins. A small fin, the adipose fin, with hairlike fin rays, occurs in many of the relatively primitive teleosts (such as trout) on the back near the base of the caudal fin.
The skin of a fish must serve many functions. It aids in maintaining the osmotic balance, provides physical protection for the body, is the site of coloration, contains sensory receptors, and, in some fishes, functions in respiration. Mucous glands, which aid in maintaining the water balance and offer protection from bacteria, are extremely numerous in fish skin, especially in cyclostomes and teleosts. Since mucous glands are present in the modern lampreys, it is reasonable to assume that they were present in primitive fishes, such as the ancient Silurian and Devonian agnathans. Protection from abrasion and predation is another function of the fish skin, and dermal (skin) bone arose early in fish evolution in response to this need. It is thought that bone first evolved in skin and only later invaded the cartilaginous areas of the fish’s body, to provide additional support and protection. There is some argument as to which came first, cartilage or bone, and fossil evidence does not settle the question. In any event, dermal bone has played an important part in fish evolution and has different characteristics in different groups of fishes. Several groups are characterized at least in part by the kind of bony scales they possess.
Scales have played an important part in the evolution of fishes. Primitive fishes usually had thick bony plates or thick scales in several layers of bone, enamel, and related substances. Modern teleost fishes have scales of bone, which, while still protective, allow much more freedom of motion in the body. A few modern teleosts (some catfishes, sticklebacks, and others) have secondarily acquired bony plates in the skin. Modern and early sharks possessed placoid scales, a relatively primitive type of scale with a toothlike structure, consisting of an outside layer of enamel-like substance (vitrodentine), an inner layer of dentine, and a pulp cavity containing nerves and blood vessels. Primitive bony fishes had thick scales of either the ganoid or the cosmoid type. Cosmoid scales have a hard, enamel-like outer layer, an inner layer of cosmine (a form of dentine), and then a layer of vascular bone (isopedine). In ganoid scales the hard outer layer is different chemically and is called ganoin. Under this is a cosminelike layer and then a vascular bony layer. The thin, translucent bony scales of modern fishes, called cycloid and ctenoid (the latter distinguished by serrations at the edges), lack enameloid and dentine layers.
Skin has several other functions in fishes. It is well supplied with nerve endings and presumably receives tactile, thermal, and pain stimuli. Skin is also well supplied with blood vessels. Some fishes breathe in part through the skin, by the exchange of oxygen and carbon dioxide between the surrounding water and numerous small blood vessels near the skin surface.
Skin serves as protection through the control of coloration. Fishes exhibit an almost limitless range of colours. The colours often blend closely with the surroundings, effectively hiding the animal. Many fishes use bright colours for territorial advertisement or as recognition marks for other members of their own species, or sometimes for members of other species. Many fishes can change their colour to a greater or lesser degree, by movement of pigment within the pigment cells (chromatophores). Black pigment cells (melanophores), of almost universal occurrence in fishes, are often juxtaposed with other pigment cells. When placed beneath iridocytes or leucophores (bearing the silvery or white pigment guanine), melanophores produce structural colours of blue and green. These colours are often extremely intense, because they are formed by refraction of light through the needlelike crystals of guanine. The blue and green refracted colours are often relatively pure, lacking the red and yellow rays, which have been absorbed by the black pigment (melanin) of the melanophores. Yellow, orange, and red colours are produced by erythrophores, cells containing the appropriate carotenoid pigments. Other colours are produced by combinations of melanophores, erythrophores, and iridocytes.
The major portion of the body of most fishes consists of muscles. Most of the mass is trunk musculature, the fin muscles usually being relatively small. The caudal fin is usually the most powerful fin, being moved by the trunk musculature. The body musculature is usually arranged in rows of chevron-shaped segments on each side. Contractions of these segments, each attached to adjacent vertebrae and vertebral processes, bends the body on the vertebral joint, producing successive undulations of the body, passing from the head to the tail, and producing driving strokes of the tail. It is the latter that provides the strong forward movement for most fishes.
The digestive system, in a functional sense, starts at the mouth, with the teeth used to capture prey or collect plant foods. Mouth shape and tooth structure vary greatly in fishes, depending on the kind of food normally eaten. Most fishes are predacious, feeding on small invertebrates or other fishes and have simple conical teeth on the jaws, on at least some of the bones of the roof of the mouth, and on special gill arch structures just in front of the esophagus. The latter are throat teeth. Most predacious fishes swallow their prey whole, and the teeth are used for grasping and holding prey, for orienting prey to be swallowed (head first) and for working the prey toward the esophagus. There are a variety of tooth types in fishes. Some fishes, such as sharks and piranhas, have cutting teeth for biting chunks out of their victims. A shark’s tooth, although superficially like that of a piranha, appears in many respects to be a modified scale, while that of the piranha is like that of other bony fishes, consisting of dentine and enamel. Parrot fishes have beaklike mouths with short incisor-like teeth for breaking off coral and have heavy pavementlike throat teeth for crushing the coral. Some catfishes have small brushlike teeth, arranged in rows on the jaws, for scraping plant and animal growth from rocks. Many fishes (such as the Cyprinidae or minnows) have no jaw teeth at all but have very strong throat teeth.
Some fishes gather planktonic food by straining it from their gill cavities with numerous elongate stiff rods (gill rakers) anchored by one end to the gill bars. The food collected on these rods is passed to the throat, where it is swallowed. Most fishes have only short gill rakers that help keep food particles from escaping out the mouth cavity into the gill chamber.
Once reaching the throat, food enters a short, often greatly distensible esophagus, a simple tube with a muscular wall leading into a stomach. The stomach varies greatly in fishes, depending upon the diet. In most predacious fishes it is a simple straight or curved tube or pouch with a muscular wall and a glandular lining. Food is largely digested there and leaves the stomach in liquid form.
Between the stomach and the intestine, ducts enter the digestive tube from the liver and pancreas. The liver is a large, clearly defined organ. The pancreas may be embedded in it, diffused through it, or broken into small parts spread along some of the intestine. The junction between the stomach and the intestine is marked by a muscular valve. Pyloric ceca (blind sacs) occur in some fishes at this junction and have a digestive or absorptive function or both.
The intestine itself is quite variable in length, depending upon the fish’s diet. It is short in predacious forms, sometimes no longer than the body cavity, but long in herbivorous forms, being coiled and several times longer than the entire length of the fish in some species of South American catfishes. The intestine is primarily an organ for absorbing nutrients into the bloodstream. The larger its internal surface, the greater its absorptive efficiency, and a spiral valve is one method of increasing its absorption surface.
Sharks, rays, chimaeras, lungfishes, surviving chondrosteans, holosteans, and even a few of the more primitive teleosts have a spiral valve or at least traces of it in the intestine. Most modern teleosts have increased the area of the intestinal walls by having numerous folds and villi (fingerlike projections) somewhat like those in humans. Undigested substances are passed to the exterior through the anus in most teleost fishes. In lungfishes, sharks, and rays, it is first passed through the cloaca, a common cavity receiving the intestinal opening and the ducts from the urogenital system.
Oxygen and carbon dioxide dissolve in water, and most fishes exchange dissolved oxygen and carbon dioxide in water by means of the gills. The gills lie behind and to the side of the mouth cavity and consist of fleshy filaments supported by the gill arches and filled with blood vessels, which give gills a bright red colour. Water taken in continuously through the mouth passes backward between the gill bars and over the gill filaments, where the exchange of gases takes place. The gills are protected by a gill cover in teleosts and many other fishes but by flaps of skin in sharks, rays, and some of the older fossil fish groups. The blood capillaries in the gill filaments are close to the gill surface to take up oxygen from the water and to give up excess carbon dioxide to the water.
Most modern fishes have a hydrostatic (ballast) organ, called the swim bladder, that lies in the body cavity just below the kidney and above the stomach and intestine. It originated as a diverticulum of the digestive canal. In advanced teleosts, especially the acanthopterygians, the bladder has lost its connection with the digestive tract, a condition called physoclistic. The connection has been retained (physostomous) by many relatively primitive teleosts. In several unrelated lines of fishes, the bladder has become specialized as a lung or, at least, as a highly vascularized accessory breathing organ. Some fishes with such accessory organs are obligate air breathers and will drown if denied access to the surface, even in well-oxygenated water. Fishes with a hydrostatic form of swim bladder can control their depth by regulating the amount of gas in the bladder. The gas, mostly oxygen, is secreted into the bladder by special glands, rendering the fish more buoyant; the gas is absorbed into the bloodstream by another special organ, reducing the overall buoyancy and allowing the fish to sink. Some deep-sea fishes may have oils, rather than gas, in the bladder. Other deep-sea and some bottom-living forms have much-reduced swim bladders or have lost the organ entirely.
The swim bladder of fishes follows the same developmental pattern as the lungs of land vertebrates. There is no doubt that the two structures have the same historical origin in primitive fishes. More or less intermediate forms still survive among the more primitive types of fishes, such as the lungfishes Lepidosiren and Protopterus.
The circulatory, or blood vascular, system consists of the heart, the arteries, the capillaries, and the veins. It is in the capillaries that the interchange of oxygen, carbon dioxide, nutrients, and other substances such as hormones and waste products takes place. The capillaries lead to the veins, which return the venous blood with its waste products to the heart, kidneys, and gills. There are two kinds of capillary beds: those in the gills and those in the rest of the body. The heart, a folded continuous muscular tube with three or four saclike enlargements, undergoes rhythmic contractions and receives venous blood in a sinus venosus. It passes the blood to an auricle and then into a thick muscular pump, the ventricle. From the ventricle the blood goes to a bulbous structure at the base of a ventral aorta just below the gills. The blood passes to the afferent (receiving) arteries of the gill arches and then to the gill capillaries. There waste gases are given off to the environment, and oxygen is absorbed. The oxygenated blood enters efferent (exuant) arteries of the gill arches and then flows into the dorsal aorta. From there blood is distributed to the tissues and organs of the body. One-way valves prevent backflow. The circulation of fishes thus differs from that of the reptiles, birds, and mammals in that oxygenated blood is not returned to the heart prior to distribution to the other parts of the body.
The primary excretory organ in fishes, as in other vertebrates, is the kidney. In fishes some excretion also takes place in the digestive tract, skin, and especially the gills (where ammonia is given off). Compared with land vertebrates, fishes have a special problem in maintaining their internal environment at a constant concentration of water and dissolved substances, such as salts. Proper balance of the internal environment (homeostasis) of a fish is in a great part maintained by the excretory system, especially the kidney.
The kidney, gills, and skin play an important role in maintaining a fish’s internal environment and checking the effects of osmosis. Marine fishes live in an environment in which the water around them has a greater concentration of salts than they can have inside their body and still maintain life. Freshwater fishes, on the other hand, live in water with a much lower concentration of salts than they require inside their bodies. Osmosis tends to promote the loss of water from the body of a marine fish and absorption of water by that of a freshwater fish. Mucus in the skin tends to slow the process but is not a sufficient barrier to prevent the movement of fluids through the permeable skin. When solutions on two sides of a permeable membrane have different concentrations of dissolved substances, water will pass through the membrane into the more concentrated solution, while the dissolved chemicals move into the area of lower concentration (diffusion).
The kidney of freshwater fishes is often larger in relation to body weight than that of marine fishes. In both groups the kidney excretes wastes from the body, but the kidney of freshwater fishes also excretes large amounts of water, counteracting the water absorbed through the skin. Freshwater fishes tend to lose salt to the environment and must replace it. They get some salt from their food, but the gills and skin inside the mouth actively absorb salt from water passed through the mouth. This absorption is performed by special cells capable of moving salts against the diffusion gradient. Freshwater fishes drink very little water and take in little water with their food.
Marine fishes must conserve water, and therefore their kidneys excrete little water. To maintain their water balance, marine fishes drink large quantities of seawater, retaining most of the water and excreting the salt. Most nitrogenous waste in marine fishes appears to be secreted by the gills as ammonia. Marine fishes can excrete salt by clusters of special cells (chloride cells) in the gills.
There are several teleosts—for example, the salmon—that travel between fresh water and seawater and must adjust to the reversal of osmotic gradients. They adjust their physiological processes by spending time (often surprisingly little time) in the intermediate brackish environment.
Marine hagfishes, sharks, and rays have osmotic concentrations in their blood about equal to that of seawater and so do not have to drink water nor perform much physiological work to maintain their osmotic balance. In sharks and rays the osmotic concentration is kept high by retention of urea in the blood. Freshwater sharks have a lowered concentration of urea in the blood.
Endocrine glands secrete their products into the bloodstream and body tissues and, along with the central nervous system, control and regulate many kinds of body functions. Cyclostomes have a well-developed endocrine system, and presumably it was well developed in the early Agnatha, ancestral to modern fishes. Although the endocrine system in fishes is similar to that of higher vertebrates, there are numerous differences in detail. The pituitary, the thyroid, the suprarenals, the adrenals, the pancreatic islets, the sex glands (ovaries and testes), the inner wall of the intestine, and the bodies of the ultimobranchial gland make up the endocrine system in fishes. There are some others whose function is not well understood. These organs regulate sexual activity and reproduction, growth, osmotic pressure, general metabolic activities such as the storage of fat and the utilization of foodstuffs, blood pressure, and certain aspects of skin colour. Many of these activities are also controlled in part by the central nervous system, which works with the endocrine system in maintaining the life of a fish. Some parts of the endocrine system are developmentally, and undoubtedly evolutionarily, derived from the nervous system.
As in all vertebrates, the nervous system of fishes is the primary mechanism coordinating body activities, as well as integrating these activities in the appropriate manner with stimuli from the environment. The central nervous system, consisting of the brain and spinal cord, is the primary integrating mechanism. The peripheral nervous system, consisting of nerves that connect the brain and spinal cord to various body organs, carries sensory information from special receptor organs such as the eyes, internal ears, nares (sense of smell), taste glands, and others to the integrating centres of the brain and spinal cord. The peripheral nervous system also carries information via different nerve cells from the integrating centres of the brain and spinal cord. This coded information is carried to the various organs and body systems, such as the skeletal muscular system, for appropriate action in response to the original external or internal stimulus. Another branch of the nervous system, the autonomic nervous system, helps to coordinate the activities of many glands and organs and is itself closely connected to the integrating centres of the brain.
The brain of the fish is divided into several anatomical and functional parts, all closely interconnected but each serving as the primary centre of integrating particular kinds of responses and activities. Several of these centres or parts are primarily associated with one type of sensory perception, such as sight, hearing, or smell (olfaction).
The sense of smell is important in almost all fishes. Certain eels with tiny eyes depend mostly on smell for location of food. The olfactory, or nasal, organ of fishes is located on the dorsal surface of the snout. The lining of the nasal organ has special sensory cells that perceive chemicals dissolved in the water, such as substances from food material, and send sensory information to the brain by way of the first cranial nerve. Odour also serves as an alarm system. Many fishes, especially various species of freshwater minnows, react with alarm to a chemical released from the skin of an injured member of their own species.
Many fishes have a well-developed sense of taste, and tiny pitlike taste buds or organs are located not only within their mouth cavities but also over their heads and parts of their body. Catfishes, which often have poor vision, have barbels (“whiskers”) that serve as supplementary taste organs, those around the mouth being actively used to search out food on the bottom. Some species of naturally blind cave fishes are especially well supplied with taste buds, which often cover most of their body surface.
Sight is extremely important in most fishes. The eye of a fish is basically like that of all other vertebrates, but the eyes of fishes are extremely varied in structure and adaptation. In general, fishes living in dark and dim water habitats have large eyes, unless they have specialized in some compensatory way so that another sense (such as smell) is dominant, in which case the eyes will often be reduced. Fishes living in brightly lighted shallow waters often will have relatively small but efficient eyes. Cyclostomes have somewhat less elaborate eyes than other fishes, with skin stretched over the eyeball perhaps making their vision somewhat less effective. Most fishes have a spherical lens and accommodate their vision to far or near subjects by moving the lens within the eyeball. A few sharks accommodate by changing the shape of the lens, as in land vertebrates. Those fishes that are heavily dependent upon the eyes have especially strong muscles for accommodation. Most fishes see well, despite the restrictions imposed by frequent turbidity of the water and by light refraction.
Fossil evidence suggests that colour vision evolved in fishes more than 300 million years ago, but not all living fishes have retained this ability. Experimental evidence indicates that many shallow-water fishes, if not all, have colour vision and see some colours especially well, but some bottom-dwelling shore fishes live in areas where the water is sufficiently deep to filter out most if not all colours, and these fishes apparently never see colours. When tested in shallow water, they apparently are unable to respond to colour differences.
Sound perception and balance are intimately associated senses in a fish. The organs of hearing are entirely internal, located within the skull, on each side of the brain and somewhat behind the eyes. Sound waves, especially those of low frequencies, travel readily through water and impinge directly upon the bones and fluids of the head and body, to be transmitted to the hearing organs. Fishes readily respond to sound; for example, a trout conditioned to escape by the approach of fishermen will take flight upon perceiving footsteps on a stream bank even if it cannot see a fisherman. Compared with humans, however, the range of sound frequencies heard by fishes is greatly restricted. Many fishes communicate with each other by producing sounds in their swim bladders, in their throats by rasping their teeth, and in other ways.
A fish or other vertebrate seldom has to rely on a single type of sensory information to determine the nature of the environment around it. A catfish uses taste and touch when examining a food object with its oral barbels. Like most other animals, fishes have many touch receptors over their body surface. Pain and temperature receptors also are present in fishes and presumably produce the same kind of information to a fish as to humans. Fishes react in a negative fashion to stimuli that would be painful to human beings, suggesting that they feel a sensation of pain.
An important sensory system in fishes that is absent in other vertebrates (except some amphibians) is the lateral line system. This consists of a series of heavily innervated small canals located in the skin and bone around the eyes, along the lower jaw, over the head, and down the mid-side of the body, where it is associated with the scales. Intermittently along these canals are located tiny sensory organs (pit organs) that apparently detect changes in pressure. The system allows a fish to sense changes in water currents and pressure, thereby helping the fish to orient itself to the various changes that occur in the physical environment.
(for further information or pictures please go to the end of page and click on the link!)
The Congregation of the Servants of the Sacred Heart of Jesus
The Congregation of the Servants of the Sacred Heart of Jesus was founded in 1866 by Abbè Peter Victor Brown in Paris.
On the advice of Baron Jaromir Mundy (one of the later founders of the Vienna Ambulance Company), Viennese medical officer and Maltese, who the Sacred Heart sisters became to know and to appreciate during the Franco-German war in a military hospital, summoned the then head of the Rudolf Foundation (Rudolfstifting), Mr. Director Boehm, the Sacred Heart sisters for nursing to Vienna in his hospital.
1873 arrived 13 sisters in Vienna and began their ministry to the sick. Due to the increasing number of sisters the construction of today's mother house (the provincial house at the time) in 1890 in the Keinergasse became necessary. This building which houses the oldest part of the hospital is now a protected monument, as well as church, monastery and "school".
1906 the Sacred Heart Church was consecrated and was followed in 1931 by the opening of the school building with day-care center (kindergarten and nursery).
During World War Second were confiscated all nonessential rooms of the Convent of the Wehrmacht for a military hospital. Our sisters took over the care of the wounded soldiers. From this institution was established in 1945 the private Sacred Heart Hospital (now 141 beds).
In 1989 the staff residence has been given over to its purpose, and 11 years later, in the holy year 2000, followed the tract in the Rabengasse, which is equipped with an interdisciplinary monitoring unit.
According to the motto "serve in love", the sisters, since the founding of the Congregation, make all possible efforts in order to guarantee the welfare of the children, sick and elderly.
Order and hospital chronicle at a glance
1866 - Founded Abbé Victor Brown, a priest from Lorraine, the Congregation of the Servants of the Most Sacred Heart of Jesus. The sisters took care of the poor, abandoned, old and sick people and of neglected children.
1873 - 13 sisters come to Vienna in the Rudolf Foundation for the care of the sick and home nursing.
1874 - Opening of a branch in Gainfarn (Lower Austria) with the take-over of a children's home (Kinderbewahranstalt).
1875 - Sisters from the London house come to Vienna. Acquisition of Crown Prince Rudolf Children's Hospital.
1877 - Appeal of the sisters to St. Anna Children's Hospital/Vienna.
1879 - Acquisition of the house as the first property in Vienna, which is now the provincial house in Austria. Establishment of the first novitiate in Austria
1880 - Takeover of the nursing service in the Epidemic hospital, Triesterstraße/Vienna.
1883 - The sisters are appointed to the by the Countess Malfatti founded St. Josefs-Greisenasyl/Wien (old age asylum).
1884 - The nursing service in the community hospital Bad Vöslau is transferred to the sisters.
1886 - Due to the growth of the sisters, new acquisition of a larger provincial house in Vienna/Ober St. Veit, Himmelhof.
1888 - Takeover of the nursing service in the Kaiser-Franz -Josef Hospital/Vienna and the Wiedner Hospital/Vienna.
1890 - Laying of the foundation stone of the new provincial house in the Keinergasse/Vienna.
Vocation of the Sisters to the Nursing Institute Confraternität.
1892 - Takeover of the municipal poorhouse Scheibbs/Lower Austria and opening of a needlework school.
1893 - Opening of a needlework school and a kindergarten in the Mother House.
1896 - Establishment of a branch in Gaweinstal/Lower Austria .
1897 - Takeover of nursing in Inquisitenspital/Vienna.
1898 - Care of plague victims in the Kaiser-Franz-Josef Hospital.
1899 - Takeover of nursing in the General Hospital/Vienna.
1900 - Extension of the Mother House
1904 - Ground-breaking ceremony of the Sacred Heart Church in the 3rd District of Vienna. Commencement of operations in the poor house and in kindergarten in Kallwang/Styria.
1905 - Takeover of care in the poor house/Laa an der Thaya/Lower Austria. Inauguration of the extension of the Mother House on the Landstraßer Hauptstrasse/Vienna.
1906 - Inauguration of the Sacred Heart Church, Vienna.
1907
-
1912 - Founding of several branches throughout Austria.
1911
-
1913 - During this time, nurses are in Serbia at the war front.
1914 - Takeover of Preyerschen Children's Hospital in the 10th District of Vienna.
1919 - Establishment of a day-care center in the Mother House. Opening of an evening home for girls as young as 14 years. Acquisition of a recovery house in Niederhollabrunn.
1926 - State recognition of the trade school in the Mother House.
1932 - Death of the Superior, Chancellor Dr. Seipel.
1934 - Takeover of care in the General Army Hospital/Vienna. Purchase of a recovery house in St. Reginald/Krems.
1938 - Nazi Party seizes the school building. Expulsion of the Sisters of the kindergartens in Austria and Germany.
1939 - Second World War. By the Nazi Party follows the confiscation of the monastery. In the Mother House establishment of a military hospital. Care of the wounded in hospitals and sick bays.
1944 - In air raids on Vienna the Mother House was bombed. Two sisters killed, church and a part of the house badly damaged. In the bombing of the Franz-Josef-Spital killed five sisters.
1945 - End of war. At the Mother House follows the re-designation of the Reserve Military Hospital into the Sacred Heart Hospital. Reopening of kindergartens and day-care center in the Mother House.
1946 - Reconstruction of the Mother House.
1956 - 50th jubilee of its existence of the Sacred Heart Church.
1966 - The last sisters leave the Rudolf Foundation, in which the activity has begun in Vienna.
1970 - Inauguration of the new Austrian Province House in Mödling.
1971 - Annex to Sacred Heart Hospital.
1973 - 100 years Servants of the Sacred Heart of Jesus in Vienna.
1988 - Construction of a personal residence.
1990 - First CT in a small hospital.
1991 - Clinic for Physical Therapy.
1992 - Orthopaedic Department (only department in the 3rd district)
1993 - Surgical Outpatient Clinic/Department of Conservative orthopedics.
1994 - Annex to Sacred Heart Hospital.
1995 - Renovation of the kitchen of the hospital and 50-year anniversary.
1997 - Bed elevator Keinergasse.
1999 - Spin-off and conversion into a limited company.
2000 - Annex Rabengasse (new surgical classification).
2001 - Geriatrics (only department in the 3rd district).
2003 - Annex for electric supply.
2004 - Official recognition of four interdisciplinary monitoring beds after 30 years of voluntary service. Fire alarm system throughout the hospital.
2005 - Operation Room 3.
2006 - Operation Room 1 + 2. Completion of conversion of all departments.
2007 Integration into the Vincent Group.
. . . this is the night train from Chennai to Hyderabad.
Duration: 15 hours - Ticket: 2 Euro!
________________________________________
Indian Railways (reporting mark IR) is an Indian state-owned enterprise, owned and operated by the Government of India through the Ministry of Railways. It is one of the world's largest railway networks comprising 115,000 km of track over a route of 65,808 km and 7,112 stations. In 2014-15, IR carried 8.397 billion passengers annually or more than 23 million passengers a day (roughly half of whom were suburban passengers) and 1058.81 million tons of freight in the year. On world level Ghaziabad is the largest manufacturer of Railway Engines. In 2014–2015 Indian Railways had revenues of ₹1634.50 billion (US$25 billion) which consists of ₹1069.27 billion (US$16 billion) from freight and ₹402.80 billion (US$6.1 billion) from passengers tickets.
Railways were first introduced to India in the year 1853 from Mumbai to Thane. In 1951 the systems were nationalised as one unit, the Indian Railways, becoming one of the largest networks in the world. IR operates both long distance and suburban rail systems on a multi-gauge network of broad, metre and narrow gauges. It also owns locomotive and coach production facilities at several places in India and are assigned codes identifying their gauge, kind of power and type of operation. Its operations cover twenty nine states and seven union territories and also provides limited international services to Nepal, Bangladesh and Pakistan.Indian Railways is the world's seventh largest commercial or utility employer, by number of employees, with over 1.334 million employees as of last published figures in 2013. As for rolling stock, IR holds over 245,267 Freight Wagons, 66,392 Passenger Coaches and 10,499 Locomotives (43 steam, 5,633 diesel and 4,823 electric locomotives). The trains have a 5 digit numbering system and runs 12,617 passenger trains and 7421 freight trains daily. As of 31 March 2013, 21,614 km (32.8%) of the total 65,808 km route length was electrified. Since 1960, almost all electrified sections on IR use 25,000 Volt AC traction through overhead catenary delivery.
HISTORY
The history of rail transport in India began in the mid-nineteenth century. The core of the pressure for building Railways In India came from London. In 1848, there was not a single kilometre of railway line in India. The country's first railway, built by the Great Indian Peninsula Railway (GIPR), opened in 1853, between Bombay and Thane. A British engineer, Robert Maitland Brereton, was responsible for the expansion of the railways from 1857 onwards. The Allahabad-Jabalpur branch line of the East Indian Railway had been opened in June 1867. Brereton was responsible for linking this with the GIPR, resulting in a combined network of 6,400 km. Hence it became possible to travel directly from Bombay to Calcutta. This route was officially opened on 7 March 1870 and it was part of the inspiration for French writer Jules Verne's book Around the World in Eighty Days. At the opening ceremony, the Viceroy Lord Mayo concluded that "it was thought desirable that, if possible, at the earliest possible moment, the whole country should be covered with a network of lines in a uniform system".
By 1875, about £95 million were invested by British companies in India. Guaranteed railways. By 1880 the network had a route mileage of about 14,500 km, mostly radiating inward from the three major port cities of Bombay, Madras and Calcutta. By 1895, India had started building its own locomotives, and in 1896, sent engineers and locomotives to help build the Uganda Railways.
In 1900, the GIPR became a government owned company. The network spread to the modern day states of Assam, Rajputhana and Madras Presidency and soon various autonomous kingdoms began to have their own rail systems. In 1905, an early Railway Board was constituted, but the powers were formally vested under Lord Curzon. It served under the Department of Commerce and Industry and had a government railway official serving as chairman, and a railway manager from England and an agent of one of the company railways as the other two members. For the first time in its history, the Railways began to make a profit.
In 1907 almost all the rail companies were taken over by the government. The following year, the first electric locomotive made its appearance. With the arrival of World War I, the railways were used to meet the needs of the British outside India. With the end of the war, the railways were in a state of disrepair and collapse. Large scale corruption by British officials involved in the running of these railways companies was rampant. Profits were never reinvested in the development of British colonial India.
In 1920, with the network having expanded to 61,220 km, a need for central management was mooted by Sir William Acworth. Based on the East India Railway Committee chaired by Acworth, the government took over the management of the Railways and detached the finances of the Railways from other governmental revenues.
The period between 1920 and 1929, was a period of economic boom; there were 66,000 km of railway lines serving the country; the railways represented a capital value of some 687 million sterling; and they carried over 620 million passengers and approximately 90 million tons of goods each year. Following the Great Depression, the railways suffered economically for the next eight years. The Second World War severely crippled the railways. Starting 1939, about 40% of the rolling stock including locomotives and coaches was taken to the Middle East, the railways workshops were converted to ammunitions workshops and many railway tracks were dismantled to help the Allies in the war. By 1946, all rail systems had been taken over by the government.
ORGANISATIONAL STRUCTURE
RAILWAY ZONES
Indian Railways is divided into 16 zones, which are further sub-divided into divisions. The number of zones in Indian Railways increased from six to eight in 1951, nine in 1966 and seventeen in 2003. Each zonal railway is made up of a certain number of divisions, each having a divisional headquarters. There are a total of sixty-eight divisions.
Each zone is headed by a general manager, who reports directly to the Railway Board. The zones are further divided into divisions, under the control of divisional railway managers (DRM). The divisional officers, of engineering, mechanical, electrical, signal and telecommunication, accounts, personnel, operating, commercial, security and safety branches, report to the respective Divisional Railway Manager and are in charge of operation and maintenance of assets. Further down the hierarchy tree are the station masters, who control individual stations and train movements through the track territory under their stations' administration.
RECRUITMENT AND TRAINING
Staff are classified into gazetted (Group 'A' and 'B') and non-gazetted (Group 'C' and 'D') employees. The recruitment of Group 'A' gazetted employees is carried out by the Union Public Service Commission through exams conducted by it. The recruitment to Group 'C' and 'D' employees on the Indian Railways is done through 20 Railway Recruitment Boards and Railway Recruitment Cells which are controlled by the Railway Recruitment Control Board (RRCB). The training of all cadres is entrusted and shared between six centralised training institutes.
ROLLING STOCK
LOCOMOTIVES
Locomotives in India consist of electric and diesel locomotives. The world's first CNG (Compressed Natural Gas) locomotives are also being used. Steam locomotives are no longer used, except in heritage trains. In India, locomotives are classified according to their track gauge, motive power, the work they are suited for and their power or model number. The class name includes this information about the locomotive. It comprises 4 or 5 letters. The first letter denotes the track gauge. The second letter denotes their motive power (Diesel or Alternating - on Electric) and the third letter denotes the kind of traffic for which they are suited (goods, passenger, Multi or shunting). The fourth letter used to denote locomotives' chronological model number. However, from 2002 a new classification scheme has been adopted. Under this system, for newer diesel locomotives, the fourth letter will denote their horsepower range. Electric locomotives don't come under this scheme and even all diesel locos are not covered. For them this letter denotes their model number as usual.In world level Ghaziabad is the largest manufacturer of Locomotive.
A locomotive may sometimes have a fifth letter in its name which generally denotes a technical variant or subclass or subtype. This fifth letter indicates some smaller variation in the basic model or series, perhaps different motors, or a different manufacturer. With the new scheme for classifying diesel locomotives (as mentioned above) the fifth item is a letter that further refines the horsepower indication in 100 hp increments: 'A' for 100 hp, 'B' for 200 hp, 'C' for 300 hp, etc. So in this scheme, a WDM-3A refers to a 3100 hp loco, while a WDM-3D would be a 3400 hp loco and WDM-3F would be 3600 hp loco.
Note: This classification system does not apply to steam locomotives in India as they have become non-functional now. They retained their original class names such as M class or WP class.
Diesel Locomotives are now fitted with Auxiliary Power Units which saves nearly 88% of Fuel during the idle time when train is not running.
GOODS WAGONS
The number of goods wagons was 205,596 on 31 March 1951 and reached the maximum number 405,183 on 31 March 1980 after which it started declining and was 239,321 on 31 March 2012. The number is far less than the requirement and the Indian Railways keeps losing freight traffic to road. Indian Railways carried 93 million tonnes of goods in 1950–51 and it increased to 1010 million tonnes in 2012–13.
However, its share in goods traffic is much lower than road traffic. In 1951, its share was 65% and the share of road was 35%. Now the shares have been reversed and the share of railways has declined to 30% and the share of road has increased to 70%.
PASSENGER COACHES
Indian railways has several types of passenger coaches.
Electric Multiple Unit (EMU) coaches are used for suburban traffic in large cities – mainly Mumbai, Chennai, Delhi, Kolkata, Pune, Hyderabad and Bangalore. These coaches numbered 7,793 on 31 March 2012. They have second class and first class seating accommodation.
The coaches used in Indian Railways are produced at Integral Coach Factory, Rail Coach Factory.Now,they are producing new LHB coaches.
Passenger coaches numbered 46,722 on 31 March 2012. Other coaches (luggage coach, parcel van, guard's coach, mail coach, etc.) numbered 6,560 on 31 March 2012.
FREIGHT
Indian Railways earns about 70% of its revenues from freight traffic (₹686.2 billion from freight and ₹304.6 billion from passengers in 2011–12). Most of its profits come from transporting freight, and this makes up for losses on passenger traffic. It deliberately keeps its passenger fares low and cross-subsidises the loss-making passenger traffic with the profit-making freight traffic.
Since the 1990s, Indian Railways has stopped single-wagon consignments and provides only full rake freight trains
Wagon types include:
BOXNHL
BOBYN
BCN
BCNHL
TECHNICAL DETAILS
TRACK AND GAUGE
Indian railways uses four gauges, the 1,676 mm broad gauge which is wider than the 1,435 mm standard gauge; the 1,000 mm metre gauge; and two narrow gauges, 762 mm and 610 mm. Track sections are rated for speeds ranging from 75 to 160 km/h.
The total length of track used by Indian Railways is about 115,000 km while the total route length of the network is 65,000 km. About 24,891 km or 38% of the route-kilometre was electrified, as of 31 March 2014.
Broad gauge is the predominant gauge used by Indian Railways. Indian broad gauge - 1,676 mm - is the most widely used gauge in India with 108,500 km of track length (94% of entire track length of all the gauges) and 59,400 km of route-kilometre (91% of entire route-kilometre of all the gauges).
In some regions with less traffic, the metre gauge (1,000 mm) is common, although the Unigauge project is in progress to convert all tracks to broad gauge. The metre gauge has about 5,000 km of track length (4% of entire track length of all the gauges) and 4,100 km of route-kilometre (7% of entire route-kilometre of all the gauges).
The Narrow gauges are present on a few routes, lying in hilly terrains and in some erstwhile private railways (on cost considerations), which are usually difficult to convert to broad gauge. Narrow gauges have 1,500 route-kilometre. The Kalka-Shimla Railway, the Kangra Valley Railway and the Darjeeling Himalayan Railway are three notable hill lines that use narrow gauge, but the Nilgiri Mountain Railway is a metre gauge track. These four rail lines will not be converted under the Unigauge project.
The share of broad gauge in the total route-kilometre has been steadily rising, increasing from 47% (25,258 route-km) in 1951 to 86% in 2012 whereas the share of metre gauge has declined from 45% (24,185 route-km) to 10% in the same period and the share of narrow gauges has decreased from 8% to 3%. About 24,891 route-km of Indian railways is electrified.
Sleepers (ties) are made up of prestressed concrete, or steel or cast iron posts, though teak sleepers are still in use on a few older lines. The prestressed concrete sleeper is in wide use today. Metal sleepers were extensively used before the advent of concrete sleepers. Indian Railways divides the country into four zones on the basis of the range of track temperature. The greatest temperature variations occur in Rajasthan.
RESEARCH AND DEVELOPMENT
Indian Railways has a full-fledged organisation known as Research Designs and Standards Organisation (RDSO), located at Lucknow for all research, designs and standardisation tasks.
In August 2013, Indian Railways entered into a partnership with Indian Institute of Technology (Madras) to develop technology to tap solar energy for lighting and air-conditioning in the coaches. This would significantly reduce the fossil fuel dependency for Indian Railways.
Recently it developed and tested the Improved Automated Fire Alarm System in Rajdhani Express Trains. It is intended that the system be applied to AC coaches of all regular trains.
CURRENT AND FUTURE DEVELOPMENTS
In recent years, Indian Railways has undertaken several initiatives to upgrade its ageing infrastructure and enhance its quality of service. The Indian government plans to invest ₹905000 crore (US$137 billion) to upgrade the railways by 2020.
TOILETS ON RAILWAYS
In 2014, Indian Railways and DRDO developed a bio-toilet to replace direct-discharge toilets, which are currently the primary type of toilet used in railway coaches. The direct discharge of human waste from trains onto the tracks corrodes rails, costing Indian Railways tens of millions of rupees a year in rail-replacement work. Flushing a bio-toilet discharges human waste into an underfloor holding tank where anaerobic bacteria remove harmful pathogens and break the waste down into neutral water and methane. These harmless by-products can then be safely discharged onto the tracks without causing corrosion or foul odours. As part of its "Swachh Rail-Swachh Bharat" ("Clean Rail-Clean India") programme, Indian Railways plans to completely phase out direct-discharge toilets on its lines by 2020-2021. As of March 2015, 17,338 bio-toilets had been installed on newly built coaches, with all new coaches to have bio-toilets from 2016; older rolling stock will be retrofitted.
LOCOMOTIVE FACTORIES
In 2015, plans were disclosed for building two locomotive factories in the state of Bihar, at Madhepura (diesel locomotives) and at Marhowra (electric locomotives). Both factories involve foreign partnerships. The diesel locomotive works will be jointly operated in a partnership with General Electric, which has invested ₹2052 crore (US$310 million) for its construction, and the electric locomotive works with Alstom, which has invested ₹1293.57 crore (US$195 million). The factories will provide Indian Railways with 800 electric locomotives of 12,000 horse power each, and a mix of 1,000 diesel locomotives of 4,500 and 6,000 horsepower each. In November 2015, further details of the ₹14656 crore (US$2 billion) partnership with GE were announced: Indian Railways and GE would engage in an 11-year joint venture in which GE would hold a majority stake of 74%. Under the terms of the joint venture, Indian Railways would purchase 100 goods locomotives a year for 10 years beginning in 2017; the locomotives would be modified versions of the GE Evolution series. The diesel locomotive works will be built by 2018; GE will import the first 100 locomotives and manufacture the remaining 900 in India from 2019, also assuming responsibility for their maintenance over a 13-year period. In the same month, a ₹20000 crore (US$3 billion) partnership with Alstom to supply 800 electric locomotives from 2018 to 2028 was announced.
LINKS TO ADJACENT COUNTRIES
EXISTING RAIL LINKS
Nepal – Break-of-gauge – Gauge conversion under uni-gauge project
Pakistan – same Broad Gauge. Thar Express to Karachi and the more famous Samjhauta Express international train from Lahore, Pakistan to Amritsar (Attari).
Bangladesh – Same Broad Gauge. The Maitri Express between Dhaka and Kolkata started in April 2008 using the Gede-Darsana route, in addition to a Freight Train service from Singhabad and Petrapole in India to Rohanpur and Benapole in Bangladesh. A second passenger link between Agartala, India and Akhaura Upazila, Bangladesh was approved by the Government of Bangladesh and India in September 2011.
UNDER CONSTRUCTUION / PROPOSED LINKS
Bhutan – railways under construction – Same gauge
Myanmar – Manipur to Myanmar (under construction)
Vietnam – On 9 April 2010, Former Union Minister of India, Shashi Tharoor announced that the central government is considering a rail link from Manipur to Vietnam via Myanmar.
Thailand – possible if Burma Railway is rebuilt.
TYPES OF PASSENGER SERVICES
Trains are classified by their average speed. A faster train has fewer stops ("halts") than a slower one and usually caters to long-distance travel.
ACCOMODATION CLASSES
Indian Railways has several classes of travel with or without airconditioning. A train may have just one or many classes of travel. Slow passenger trains have only unreserved seating class whereas Rajdhani, Duronto, Shatabdi, garib rath and yuva trains have only airconditioned classes. The fares for all classes are different with unreserved seating class being the cheapest. The fare of Rajdhani, Duronto and Shatabdi trains includes food served in the train but the fare for other trains does not include food that has to be bought separately. In long-distance trains a pantry car is usually included and food is served at the berth or seat itself. Luxury trains such as Palace on Wheels have separate dining cars but these trains cost as much as or more than a five-star hotel room.
A standard passenger rake generally has four unreserved (also called "general") compartments, two at the front and two at the end, of which one may be exclusively for ladies. The exact number of other coaches varies according to the demand and the route. A luggage compartment can also exist at the front or the back. In some mail trains a separate mail coach is attached. Lavatories are communal and feature both the Indian style as well as the Western style.
The following table lists the classes in operation. A train may not have all these classes.
1A First class AC: This is the most expensive class, where the fares are almost at par with air fare. There are eight cabins (including two coupes) in the full AC First Class coach and three cabins (including one coupe) in the half AC First Class coach. The coach has an attendant to help the passengers. Bedding is included with the fare in IR. This air conditioned coach is present only on popular routes and can carry 18 passengers (full coach) or 10 passengers (half coach). The sleeper berths are extremely wide and spacious. The coaches are carpeted, have sleeping accommodation and have privacy features like personal coupes. This class is available on broad gauge and metre gauge trains.
2A AC-Two tier: These air-conditioned coaches have sleeping berths across eight bays. Berths are usually arranged in two tiers in bays of six, four across the width of the coach and two berths longways on the other side of the corridor, with curtains along the gangway or corridor. Bedding is included with the fare. A broad gauge coach can carry 48 passengers (full coach) or 20 passengers (half coach). This class is available on broad gauge and metre gauge trains.
FC First class: Same as 1AC but without air conditioning. No bedding is available in this class. The berths are wide and spacious. There is a coach attendant to help the passengers. This class has been phased out on most of the trains and is rare to find. However narrow gauge trains to hill stations have this class.
3A AC three tier: Air conditioned coaches with 64 sleeping berths. Berths are usually arranged as in 2AC but with three tiers across the width and two longways as before giving eight bays of eight. They are slightly less well-appointed, usually no reading lights or curtained off gangways. Bedding is included with fare. It carries 64 passengers in broad gauge. This class is available only on broad gauge.
3E AC three tier (Economy): Air conditioned coaches with sleeping berths, present in Garib Rath Trains. Berths are usually arranged as in 3AC but with three tiers across the width and three longways. They are slightly less well-appointed, usually no reading lights or curtained off gangways. Bedding is not included with fare.
CC AC chair car: An air-conditioned seater coach with a total of five seats in a row used for day travel between cities.
EC Executive class chair car: An air-conditioned coach with large spacious seats and legroom. It has a total of four seats in a row used for day travel between cities. This class of travel is only available on Shatabdi Express trains.
SL Sleeper class: The sleeper class is the most common coach on IR, and usually ten or more coaches could be attached. These are regular sleeping coaches with three berths vertically stacked. In broad gauge, it carries 72 passengers per coach.
2S Seater class: same as AC Chair car, without the air-conditioning. These may be reserved in advance or may be unreserved.
UR Unreserved: The cheapest accommodation. The seats are usually made up of pressed wood in older coaches but cushioned seats are found in new coaches. These coaches are usually over-crowded and a seat is not guaranteed. Tickets are issued in advance for a minimum journey of more than 24 hours. Tickets issued are valid on any train on the same route if boarded within 24 hours of buying the ticket.
At the rear of the train is a special compartment known as the guard's cabin. It is fitted with a transceiver and is where the guard usually gives the all clear signal before the train departs.
UNESCO WORLD HERITAGE SITES
There are two UNESCO World Heritage Sites on Indian Railways. – The Chatrapati Shivaji Terminus and the Mountain Railways of India. The latter consists of three separate railway lines located in different parts of India:
- Darjeeling Himalayan Railway, a narrow gauge railway in West Bengal.
- Nilgiri Mountain Railway, a 1,000 mm metre gauge railway in the Nilgiri Hills in Tamil Nadu.
- Kalka-Shimla Railway, a narrow gauge railway in the Shivalik mountains in Himachal Pradesh. In 2003 the railway was featured in the Guinness Book of World Records for offering the steepest rise in altitude in the space of 96 kilometre.
NOTABLE TRAINS
TOURIST TRAINS
Palace on Wheels is a specially designed luxury tourist train service, frequently hauled by a steam locomotive, for promoting tourism in Rajasthan. The train has a 7 nights & 8 days itinerary, it departs from New Delhi (Day 1), and covers Jaipur (Day 2), Sawai Madhopur and Chittaurgarh (Day 3), Udaipur (Day 4), Jaisalmer (Day 5), Jodhpur (Day 6), Bharatpur and Agra (Day 7), return to Delhi (Day 8).
Royal Rajasthan on Wheels a luxury tourist train service covers various tourist destinations in Rajasthan. The train takes tourists on a 7-day/8-night tour through Rajasthan. The train starts from New Delhi's Safdarjung railway station (Day 1), and has stops at Jodhpur (Day 2), Udaipur and Chittaurgarh (Day 3), Ranthambore National Park and Jaipur (Day 4), Khajuraho (Day 5), Varanasi and Sarnath (Day 6), Agra (Day 7) and back to Delhi (Day 8).
Maharaja Express a luxury train operated by IRCTC runs on five circuits covering more than 12 destinations across North-West and Central India, mainly centered around Rajasthan between the months of October to April.
Deccan Odyssey luxury tourist train service covers various tourist destinations in Maharashtra and Goa. The 7 Nights / 8 Days tour starts from Mumbai (Day 1) and covers Jaigad Fort, Ganapatipule and Ratnagiri (Day 2), Sindhudurg, Tarkarli and Sawantwadi (Day 3), Goa (Day 4), Kolhapur and Pune (Day 5), Aurangabad and Ellora Caves (Day 6), Ajanta Caves and Nashik (Day 7), and back to Mumbai (Day 8).
The Golden Chariot luxury train runs on two circuits Pride of the South and Splendor of the South.
Mahaparinirvan Express an a/c train service also known as Buddhist Circuit Train which is run by IRCTC to attract Buddhist pilgrims. The 7 nights/8 Days tour starts from New Delhi (Day 1) and covers Bodh Gaya (Day 2), Rajgir and Nalanda (Day 3), Varanasi and Sarnath (Day 4), Kushinagar and Lumbini (Day 5 and 6), Sravasti (Day 7), Taj Mahal (Agra) (Day 8) before returning to New Delhi on (Day 8).
OTHER TRAINS
- Samjhauta Express is a train that runs between India and Pakistan. However, hostilities between the two nations in 2001 saw the line being closed. It was reopened when the hostilities subsided in 2004. Another train connecting Khokhrapar (Pakistan) and Munabao (India) is the Thar Express that restarted operations on 18 February 2006; it was earlier closed down after the 1965 Indo-Pak war.
- Lifeline Express is a special train popularly known as the "Hospital-on-Wheels" which provides healthcare to the rural areas. This train has a carriage that serves as an operating room, a second one which serves as a storeroom and an additional two that serve as a patient ward. The train travels around the country, staying at a location for about two months before moving elsewhere.
- Fairy Queen is the oldest operating locomotive in the world today, though it is operated only for specials between Delhi and Alwar. John Bull, a locomotive older than Fairy Queen, operated in 1981 commemorating its 150th anniversary. Gorakhpur railway station also has the distinction of being the world's longest railway platform at 1,366 m. The Ghum station along the Darjeeling Toy Train route is the second highest railway station in the world to be reached by a steam locomotive. The Mumbai–Pune Deccan Queen has the oldest running dining car in IR.
- Vivek Express, between Dibrugarh and Kanyakumari, has the longest run in terms of distance and time on Indian Railways network. It covers 4,286 km in about 82 hours and 30 minutes.
- Bhopal Shatabdi Express is the fastest train in India today having a maximum speed of 160 km/h on the Faridabad–Agra section. The fastest speed attained by any train is 184 km/h in 2000 during test runs.
- Special Trains are those trains started by Indian Railways for any specific event or cause which includes Jagriti Yatra trains, Kumbh Mela Trains., emergency trains, etc.
- Double-decker AC trains have been introduced in India. The first double decker train was Pune-Mumbai Sinhagad express plying between Pune and Mumbai while the first double-decker AC train in the Indian Railways was introduced in November 2010, running between the Dhanbad and Howrah stations having 10 coaches and 2 power cars. On 16 April 2013, Indian Railways celebrated its 160 years of nationwide connectivity with a transportation of 23 million passengers in a day.
PROBLEMS AND ISSUES
Indian Railways is cash strapped and reported a loss of ₹30,000 crores (₹300bn) in the passenger segment for the year ending March 2014. Operating ratio, a key metric used by Indian railways to gauge financial health, is 91.8% in the year 2014-15. Railways carry a social obligation of over ₹20,000 crores (₹200bn $3.5bn). The loss per passenger-km increased to 23 paise by the end of March 2014. Indian Railways is left with a surplus cash of just ₹690 crores (₹6.9bn $115mn) by the end of March 2014.
It is estimated that over ₹ 5 lakh crores (₹5 trillion) (about $85 bn at 2014 exchange rates) is required to complete the ongoing projects alone. The railway is consistently losing market share to other modes of transport both in freight and passengers.
New railway line projects are often announced during the Railway Budget annually without securing additional funding for them. In the last 10 years, 99 New Line projects worth ₹ 60,000 crore (₹600bn) were sanctioned out of which only one project is complete till date, and there are four projects that are as old as 30 years, but are still not complete for one reason or another.
Sanjay Dina Patil a member of the Lok Sabha in 2014 said that additional tracks, height of platforms are still a problem and rise in tickets, goods, monthly passes has created an alarming situation where the common man is troubled.
KANGRA VALLEY RAILWAY
The Kangra Valley Railway lies in the sub-Himalayan region and covers a distance of 164 km from Pathankot, Punjab to Jogindernagar in Himachal Pradesh. It is one of two mountain railways that run in Himachal Pradesh, the other being Kalka-Shimla Railway, which has been designated as World Heritage Site by UNESCO. Both of these currently run at a 762 mm narrow gauge, although they do not connect to each other. The Kangra Valley Railway is among in the tentative list of UNESCO World Heritage Sites.
The railway line was planned in May 1926 and commissioned in 1929. The highest point on this line is at Ahju station at an elevation of 1,210 meters. The terminus at Joginder Nagar is at an elevation of 1,189 meters.
A different alignment, a different mode of taking the railway through the maze of hills and valleys would have spoilt its picture postcard perfectness. This unique line has just two tunnels, one of which is only 250 feet and the other 1,000 feet in length. The traveler must remember this is a total distance of 103 miles. Instead of boring his way through the mountains, the railway engineer has skillfully avoided running head first into the hillside. Instead of following dizzy curves, he has cleverly chosen to avoid the awkward corners and straighten his turning. For the Kangra Valley Railway presents to the traveler, a chance to gaze as long as he likes on the ever present panorama of snow-clad ranges and the gold green fields without being swung round every few minutes on a narrow arc before his eyes can greet the scenery.
Certainly the scenery through which the train passes is ample compensation for the extra distance covered as compared to getting there by road. The most picturesque parts of the valley are exposed to the view – the stretch of 18 miles from Mangwal to Kangra, for example, lies through country unsurpassed for its majestic grandeur with the majestic Ban Ganga gorge and the deep Kangra chasm as two piece de resistance. As one approaches Palampur, the ever present background of snowy chain peaks, 15,000 and 16,000 feet in height is barely ten miles away. From here onwards, the line runs parallel to the Dhauladhar range and much nearer to it than any other railways in India that ever comes so close to the eternal snows.
______________________________________________
INDIAN RAILWAYS
Indian Railways (reporting mark IR) is an Indian state-owned enterprise, owned and operated by the Government of India through the Ministry of Railways. It is one of the world's largest railway networks comprising 115,000 km of track over a route of 65,808 km and 7,112 stations. In 2014-15, IR carried 8.397 billion passengers annually or more than 23 million passengers a day (roughly half of whom were suburban passengers) and 1058.81 million tons of freight in the year. On world level Ghaziabad is the largest manufacturer of Railway Engines. In 2014–2015 Indian Railways had revenues of ₹1634.50 billion (US$25 billion) which consists of ₹1069.27 billion (US$16 billion) from freight and ₹402.80 billion (US$6.1 billion) from passengers tickets.
Railways were first introduced to India in the year 1853 from Mumbai to Thane. In 1951 the systems were nationalised as one unit, the Indian Railways, becoming one of the largest networks in the world. IR operates both long distance and suburban rail systems on a multi-gauge network of broad, metre and narrow gauges. It also owns locomotive and coach production facilities at several places in India and are assigned codes identifying their gauge, kind of power and type of operation. Its operations cover twenty nine states and seven union territories and also provides limited international services to Nepal, Bangladesh and Pakistan.Indian Railways is the world's seventh largest commercial or utility employer, by number of employees, with over 1.334 million employees as of last published figures in 2013. As for rolling stock, IR holds over 245,267 Freight Wagons, 66,392 Passenger Coaches and 10,499 Locomotives (43 steam, 5,633 diesel and 4,823 electric locomotives). The trains have a 5 digit numbering system and runs 12,617 passenger trains and 7421 freight trains daily. As of 31 March 2013, 21,614 km (32.8%) of the total 65,808 km route length was electrified. Since 1960, almost all electrified sections on IR use 25,000 Volt AC traction through overhead catenary delivery.
HISTORY
The history of rail transport in India began in the mid-nineteenth century. The core of the pressure for building Railways In India came from London. In 1848, there was not a single kilometre of railway line in India. The country's first railway, built by the Great Indian Peninsula Railway (GIPR), opened in 1853, between Bombay and Thane. A British engineer, Robert Maitland Brereton, was responsible for the expansion of the railways from 1857 onwards. The Allahabad-Jabalpur branch line of the East Indian Railway had been opened in June 1867. Brereton was responsible for linking this with the GIPR, resulting in a combined network of 6,400 km. Hence it became possible to travel directly from Bombay to Calcutta. This route was officially opened on 7 March 1870 and it was part of the inspiration for French writer Jules Verne's book Around the World in Eighty Days. At the opening ceremony, the Viceroy Lord Mayo concluded that "it was thought desirable that, if possible, at the earliest possible moment, the whole country should be covered with a network of lines in a uniform system".
By 1875, about £95 million were invested by British companies in India. Guaranteed railways. By 1880 the network had a route mileage of about 14,500 km, mostly radiating inward from the three major port cities of Bombay, Madras and Calcutta. By 1895, India had started building its own locomotives, and in 1896, sent engineers and locomotives to help build the Uganda Railways.
In 1900, the GIPR became a government owned company. The network spread to the modern day states of Assam, Rajputhana and Madras Presidency and soon various autonomous kingdoms began to have their own rail systems. In 1905, an early Railway Board was constituted, but the powers were formally vested under Lord Curzon. It served under the Department of Commerce and Industry and had a government railway official serving as chairman, and a railway manager from England and an agent of one of the company railways as the other two members. For the first time in its history, the Railways began to make a profit.
In 1907 almost all the rail companies were taken over by the government. The following year, the first electric locomotive made its appearance. With the arrival of World War I, the railways were used to meet the needs of the British outside India. With the end of the war, the railways were in a state of disrepair and collapse. Large scale corruption by British officials involved in the running of these railways companies was rampant. Profits were never reinvested in the development of British colonial India.
In 1920, with the network having expanded to 61,220 km, a need for central management was mooted by Sir William Acworth. Based on the East India Railway Committee chaired by Acworth, the government took over the management of the Railways and detached the finances of the Railways from other governmental revenues.
The period between 1920 and 1929, was a period of economic boom; there were 66,000 km of railway lines serving the country; the railways represented a capital value of some 687 million sterling; and they carried over 620 million passengers and approximately 90 million tons of goods each year. Following the Great Depression, the railways suffered economically for the next eight years. The Second World War severely crippled the railways. Starting 1939, about 40% of the rolling stock including locomotives and coaches was taken to the Middle East, the railways workshops were converted to ammunitions workshops and many railway tracks were dismantled to help the Allies in the war. By 1946, all rail systems had been taken over by the government.
ORGANISATIONAL STRUCTURE
RAILWAY ZONES
Indian Railways is divided into 16 zones, which are further sub-divided into divisions. The number of zones in Indian Railways increased from six to eight in 1951, nine in 1966 and seventeen in 2003. Each zonal railway is made up of a certain number of divisions, each having a divisional headquarters. There are a total of sixty-eight divisions.
Each zone is headed by a general manager, who reports directly to the Railway Board. The zones are further divided into divisions, under the control of divisional railway managers (DRM). The divisional officers, of engineering, mechanical, electrical, signal and telecommunication, accounts, personnel, operating, commercial, security and safety branches, report to the respective Divisional Railway Manager and are in charge of operation and maintenance of assets. Further down the hierarchy tree are the station masters, who control individual stations and train movements through the track territory under their stations' administration.
RECRUITMENT AND TRAINING
Staff are classified into gazetted (Group 'A' and 'B') and non-gazetted (Group 'C' and 'D') employees. The recruitment of Group 'A' gazetted employees is carried out by the Union Public Service Commission through exams conducted by it. The recruitment to Group 'C' and 'D' employees on the Indian Railways is done through 20 Railway Recruitment Boards and Railway Recruitment Cells which are controlled by the Railway Recruitment Control Board (RRCB). The training of all cadres is entrusted and shared between six centralised training institutes.
ROLLING STOCK
LOCOMOTIVES
Locomotives in India consist of electric and diesel locomotives. The world's first CNG (Compressed Natural Gas) locomotives are also being used. Steam locomotives are no longer used, except in heritage trains. In India, locomotives are classified according to their track gauge, motive power, the work they are suited for and their power or model number. The class name includes this information about the locomotive. It comprises 4 or 5 letters. The first letter denotes the track gauge. The second letter denotes their motive power (Diesel or Alternating - on Electric) and the third letter denotes the kind of traffic for which they are suited (goods, passenger, Multi or shunting). The fourth letter used to denote locomotives' chronological model number. However, from 2002 a new classification scheme has been adopted. Under this system, for newer diesel locomotives, the fourth letter will denote their horsepower range. Electric locomotives don't come under this scheme and even all diesel locos are not covered. For them this letter denotes their model number as usual.In world level Ghaziabad is the largest manufacturer of Locomotive.
A locomotive may sometimes have a fifth letter in its name which generally denotes a technical variant or subclass or subtype. This fifth letter indicates some smaller variation in the basic model or series, perhaps different motors, or a different manufacturer. With the new scheme for classifying diesel locomotives (as mentioned above) the fifth item is a letter that further refines the horsepower indication in 100 hp increments: 'A' for 100 hp, 'B' for 200 hp, 'C' for 300 hp, etc. So in this scheme, a WDM-3A refers to a 3100 hp loco, while a WDM-3D would be a 3400 hp loco and WDM-3F would be 3600 hp loco.
Note: This classification system does not apply to steam locomotives in India as they have become non-functional now. They retained their original class names such as M class or WP class.
Diesel Locomotives are now fitted with Auxiliary Power Units which saves nearly 88% of Fuel during the idle time when train is not running.
GOODS WAGONS
The number of goods wagons was 205,596 on 31 March 1951 and reached the maximum number 405,183 on 31 March 1980 after which it started declining and was 239,321 on 31 March 2012. The number is far less than the requirement and the Indian Railways keeps losing freight traffic to road. Indian Railways carried 93 million tonnes of goods in 1950–51 and it increased to 1010 million tonnes in 2012–13.
However, its share in goods traffic is much lower than road traffic. In 1951, its share was 65% and the share of road was 35%. Now the shares have been reversed and the share of railways has declined to 30% and the share of road has increased to 70%.
PASSENGER COACHES
Indian railways has several types of passenger coaches.
Electric Multiple Unit (EMU) coaches are used for suburban traffic in large cities – mainly Mumbai, Chennai, Delhi, Kolkata, Pune, Hyderabad and Bangalore. These coaches numbered 7,793 on 31 March 2012. They have second class and first class seating accommodation.
The coaches used in Indian Railways are produced at Integral Coach Factory, Rail Coach Factory.Now,they are producing new LHB coaches.
Passenger coaches numbered 46,722 on 31 March 2012. Other coaches (luggage coach, parcel van, guard's coach, mail coach, etc.) numbered 6,560 on 31 March 2012.
FREIGHT
Indian Railways earns about 70% of its revenues from freight traffic (₹686.2 billion from freight and ₹304.6 billion from passengers in 2011–12). Most of its profits come from transporting freight, and this makes up for losses on passenger traffic. It deliberately keeps its passenger fares low and cross-subsidises the loss-making passenger traffic with the profit-making freight traffic.
Since the 1990s, Indian Railways has stopped single-wagon consignments and provides only full rake freight trains
Wagon types include:
BOXNHL
BOBYN
BCN
BCNHL
TECHNICAL DETAILS
TRACK AND GAUGE
Indian railways uses four gauges, the 1,676 mm broad gauge which is wider than the 1,435 mm standard gauge; the 1,000 mm metre gauge; and two narrow gauges, 762 mm and 610 mm. Track sections are rated for speeds ranging from 75 to 160 km/h.
The total length of track used by Indian Railways is about 115,000 km while the total route length of the network is 65,000 km. About 24,891 km or 38% of the route-kilometre was electrified, as of 31 March 2014.
Broad gauge is the predominant gauge used by Indian Railways. Indian broad gauge - 1,676 mm - is the most widely used gauge in India with 108,500 km of track length (94% of entire track length of all the gauges) and 59,400 km of route-kilometre (91% of entire route-kilometre of all the gauges).
In some regions with less traffic, the metre gauge (1,000 mm) is common, although the Unigauge project is in progress to convert all tracks to broad gauge. The metre gauge has about 5,000 km of track length (4% of entire track length of all the gauges) and 4,100 km of route-kilometre (7% of entire route-kilometre of all the gauges).
The Narrow gauges are present on a few routes, lying in hilly terrains and in some erstwhile private railways (on cost considerations), which are usually difficult to convert to broad gauge. Narrow gauges have 1,500 route-kilometre. The Kalka-Shimla Railway, the Kangra Valley Railway and the Darjeeling Himalayan Railway are three notable hill lines that use narrow gauge, but the Nilgiri Mountain Railway is a metre gauge track. These four rail lines will not be converted under the Unigauge project.
The share of broad gauge in the total route-kilometre has been steadily rising, increasing from 47% (25,258 route-km) in 1951 to 86% in 2012 whereas the share of metre gauge has declined from 45% (24,185 route-km) to 10% in the same period and the share of narrow gauges has decreased from 8% to 3%. About 24,891 route-km of Indian railways is electrified.
Sleepers (ties) are made up of prestressed concrete, or steel or cast iron posts, though teak sleepers are still in use on a few older lines. The prestressed concrete sleeper is in wide use today. Metal sleepers were extensively used before the advent of concrete sleepers. Indian Railways divides the country into four zones on the basis of the range of track temperature. The greatest temperature variations occur in Rajasthan.
RESEARCH AND DEVELOPMENT
Indian Railways has a full-fledged organisation known as Research Designs and Standards Organisation (RDSO), located at Lucknow for all research, designs and standardisation tasks.
In August 2013, Indian Railways entered into a partnership with Indian Institute of Technology (Madras) to develop technology to tap solar energy for lighting and air-conditioning in the coaches. This would significantly reduce the fossil fuel dependency for Indian Railways.
Recently it developed and tested the Improved Automated Fire Alarm System in Rajdhani Express Trains. It is intended that the system be applied to AC coaches of all regular trains.
CURRENT AND FUTURE DEVELOPMENTS
In recent years, Indian Railways has undertaken several initiatives to upgrade its ageing infrastructure and enhance its quality of service. The Indian government plans to invest ₹905000 crore (US$137 billion) to upgrade the railways by 2020.
TOILETS ON RAILWAYS
In 2014, Indian Railways and DRDO developed a bio-toilet to replace direct-discharge toilets, which are currently the primary type of toilet used in railway coaches. The direct discharge of human waste from trains onto the tracks corrodes rails, costing Indian Railways tens of millions of rupees a year in rail-replacement work. Flushing a bio-toilet discharges human waste into an underfloor holding tank where anaerobic bacteria remove harmful pathogens and break the waste down into neutral water and methane. These harmless by-products can then be safely discharged onto the tracks without causing corrosion or foul odours. As part of its "Swachh Rail-Swachh Bharat" ("Clean Rail-Clean India") programme, Indian Railways plans to completely phase out direct-discharge toilets on its lines by 2020-2021. As of March 2015, 17,338 bio-toilets had been installed on newly built coaches, with all new coaches to have bio-toilets from 2016; older rolling stock will be retrofitted.
LOCOMOTIVE FACTORIES
In 2015, plans were disclosed for building two locomotive factories in the state of Bihar, at Madhepura (diesel locomotives) and at Marhowra (electric locomotives). Both factories involve foreign partnerships. The diesel locomotive works will be jointly operated in a partnership with General Electric, which has invested ₹2052 crore (US$310 million) for its construction, and the electric locomotive works with Alstom, which has invested ₹1293.57 crore (US$195 million). The factories will provide Indian Railways with 800 electric locomotives of 12,000 horse power each, and a mix of 1,000 diesel locomotives of 4,500 and 6,000 horsepower each. In November 2015, further details of the ₹14656 crore (US$2 billion) partnership with GE were announced: Indian Railways and GE would engage in an 11-year joint venture in which GE would hold a majority stake of 74%. Under the terms of the joint venture, Indian Railways would purchase 100 goods locomotives a year for 10 years beginning in 2017; the locomotives would be modified versions of the GE Evolution series. The diesel locomotive works will be built by 2018; GE will import the first 100 locomotives and manufacture the remaining 900 in India from 2019, also assuming responsibility for their maintenance over a 13-year period. In the same month, a ₹20000 crore (US$3 billion) partnership with Alstom to supply 800 electric locomotives from 2018 to 2028 was announced.
LINKS TO ADJACENT COUNTRIES
EXISTING RAIL LINKS
Nepal – Break-of-gauge – Gauge conversion under uni-gauge project
Pakistan – same Broad Gauge. Thar Express to Karachi and the more famous Samjhauta Express international train from Lahore, Pakistan to Amritsar (Attari).
Bangladesh – Same Broad Gauge. The Maitri Express between Dhaka and Kolkata started in April 2008 using the Gede-Darsana route, in addition to a Freight Train service from Singhabad and Petrapole in India to Rohanpur and Benapole in Bangladesh. A second passenger link between Agartala, India and Akhaura Upazila, Bangladesh was approved by the Government of Bangladesh and India in September 2011.
UNDER CONSTRUCTUION / PROPOSED LINKS
Bhutan – railways under construction – Same gauge
Myanmar – Manipur to Myanmar (under construction)
Vietnam – On 9 April 2010, Former Union Minister of India, Shashi Tharoor announced that the central government is considering a rail link from Manipur to Vietnam via Myanmar.
Thailand – possible if Burma Railway is rebuilt.
TYPES OF PASSENGER SERVICES
Trains are classified by their average speed. A faster train has fewer stops ("halts") than a slower one and usually caters to long-distance travel.
ACCOMODATION CLASSES
Indian Railways has several classes of travel with or without airconditioning. A train may have just one or many classes of travel. Slow passenger trains have only unreserved seating class whereas Rajdhani, Duronto, Shatabdi, garib rath and yuva trains have only airconditioned classes. The fares for all classes are different with unreserved seating class being the cheapest. The fare of Rajdhani, Duronto and Shatabdi trains includes food served in the train but the fare for other trains does not include food that has to be bought separately. In long-distance trains a pantry car is usually included and food is served at the berth or seat itself. Luxury trains such as Palace on Wheels have separate dining cars but these trains cost as much as or more than a five-star hotel room.
A standard passenger rake generally has four unreserved (also called "general") compartments, two at the front and two at the end, of which one may be exclusively for ladies. The exact number of other coaches varies according to the demand and the route. A luggage compartment can also exist at the front or the back. In some mail trains a separate mail coach is attached. Lavatories are communal and feature both the Indian style as well as the Western style.
The following table lists the classes in operation. A train may not have all these classes.
1A First class AC: This is the most expensive class, where the fares are almost at par with air fare. There are eight cabins (including two coupes) in the full AC First Class coach and three cabins (including one coupe) in the half AC First Class coach. The coach has an attendant to help the passengers. Bedding is included with the fare in IR. This air conditioned coach is present only on popular routes and can carry 18 passengers (full coach) or 10 passengers (half coach). The sleeper berths are extremely wide and spacious. The coaches are carpeted, have sleeping accommodation and have privacy features like personal coupes. This class is available on broad gauge and metre gauge trains.
2A AC-Two tier: These air-conditioned coaches have sleeping berths across eight bays. Berths are usually arranged in two tiers in bays of six, four across the width of the coach and two berths longways on the other side of the corridor, with curtains along the gangway or corridor. Bedding is included with the fare. A broad gauge coach can carry 48 passengers (full coach) or 20 passengers (half coach). This class is available on broad gauge and metre gauge trains.
FC First class: Same as 1AC but without air conditioning. No bedding is available in this class. The berths are wide and spacious. There is a coach attendant to help the passengers. This class has been phased out on most of the trains and is rare to find. However narrow gauge trains to hill stations have this class.
3A AC three tier: Air conditioned coaches with 64 sleeping berths. Berths are usually arranged as in 2AC but with three tiers across the width and two longways as before giving eight bays of eight. They are slightly less well-appointed, usually no reading lights or curtained off gangways. Bedding is included with fare. It carries 64 passengers in broad gauge. This class is available only on broad gauge.
3E AC three tier (Economy): Air conditioned coaches with sleeping berths, present in Garib Rath Trains. Berths are usually arranged as in 3AC but with three tiers across the width and three longways. They are slightly less well-appointed, usually no reading lights or curtained off gangways. Bedding is not included with fare.
CC AC chair car: An air-conditioned seater coach with a total of five seats in a row used for day travel between cities.
EC Executive class chair car: An air-conditioned coach with large spacious seats and legroom. It has a total of four seats in a row used for day travel between cities. This class of travel is only available on Shatabdi Express trains.
SL Sleeper class: The sleeper class is the most common coach on IR, and usually ten or more coaches could be attached. These are regular sleeping coaches with three berths vertically stacked. In broad gauge, it carries 72 passengers per coach.
2S Seater class: same as AC Chair car, without the air-conditioning. These may be reserved in advance or may be unreserved.
UR Unreserved: The cheapest accommodation. The seats are usually made up of pressed wood in older coaches but cushioned seats are found in new coaches. These coaches are usually over-crowded and a seat is not guaranteed. Tickets are issued in advance for a minimum journey of more than 24 hours. Tickets issued are valid on any train on the same route if boarded within 24 hours of buying the ticket.
At the rear of the train is a special compartment known as the guard's cabin. It is fitted with a transceiver and is where the guard usually gives the all clear signal before the train departs.
UNESCO WORLD HERITAGE SITES
There are two UNESCO World Heritage Sites on Indian Railways. – The Chatrapati Shivaji Terminus and the Mountain Railways of India. The latter consists of three separate railway lines located in different parts of India:
- Darjeeling Himalayan Railway, a narrow gauge railway in West Bengal.
- Nilgiri Mountain Railway, a 1,000 mm metre gauge railway in the Nilgiri Hills in Tamil Nadu.
- Kalka-Shimla Railway, a narrow gauge railway in the Shivalik mountains in Himachal Pradesh. In 2003 the railway was featured in the Guinness Book of World Records for offering the steepest rise in altitude in the space of 96 kilometre.
NOTABLE TRAINS
TOURIST TRAINS
Palace on Wheels is a specially designed luxury tourist train service, frequently hauled by a steam locomotive, for promoting tourism in Rajasthan. The train has a 7 nights & 8 days itinerary, it departs from New Delhi (Day 1), and covers Jaipur (Day 2), Sawai Madhopur and Chittaurgarh (Day 3), Udaipur (Day 4), Jaisalmer (Day 5), Jodhpur (Day 6), Bharatpur and Agra (Day 7), return to Delhi (Day 8).
Royal Rajasthan on Wheels a luxury tourist train service covers various tourist destinations in Rajasthan. The train takes tourists on a 7-day/8-night tour through Rajasthan. The train starts from New Delhi's Safdarjung railway station (Day 1), and has stops at Jodhpur (Day 2), Udaipur and Chittaurgarh (Day 3), Ranthambore National Park and Jaipur (Day 4), Khajuraho (Day 5), Varanasi and Sarnath (Day 6), Agra (Day 7) and back to Delhi (Day 8).
Maharaja Express a luxury train operated by IRCTC runs on five circuits covering more than 12 destinations across North-West and Central India, mainly centered around Rajasthan between the months of October to April.
Deccan Odyssey luxury tourist train service covers various tourist destinations in Maharashtra and Goa. The 7 Nights / 8 Days tour starts from Mumbai (Day 1) and covers Jaigad Fort, Ganapatipule and Ratnagiri (Day 2), Sindhudurg, Tarkarli and Sawantwadi (Day 3), Goa (Day 4), Kolhapur and Pune (Day 5), Aurangabad and Ellora Caves (Day 6), Ajanta Caves and Nashik (Day 7), and back to Mumbai (Day 8).
The Golden Chariot luxury train runs on two circuits Pride of the South and Splendor of the South.
Mahaparinirvan Express an a/c train service also known as Buddhist Circuit Train which is run by IRCTC to attract Buddhist pilgrims. The 7 nights/8 Days tour starts from New Delhi (Day 1) and covers Bodh Gaya (Day 2), Rajgir and Nalanda (Day 3), Varanasi and Sarnath (Day 4), Kushinagar and Lumbini (Day 5 and 6), Sravasti (Day 7), Taj Mahal (Agra) (Day 8) before returning to New Delhi on (Day 8).
OTHER TRAINS
- Samjhauta Express is a train that runs between India and Pakistan. However, hostilities between the two nations in 2001 saw the line being closed. It was reopened when the hostilities subsided in 2004. Another train connecting Khokhrapar (Pakistan) and Munabao (India) is the Thar Express that restarted operations on 18 February 2006; it was earlier closed down after the 1965 Indo-Pak war.
- Lifeline Express is a special train popularly known as the "Hospital-on-Wheels" which provides healthcare to the rural areas. This train has a carriage that serves as an operating room, a second one which serves as a storeroom and an additional two that serve as a patient ward. The train travels around the country, staying at a location for about two months before moving elsewhere.
- Fairy Queen is the oldest operating locomotive in the world today, though it is operated only for specials between Delhi and Alwar. John Bull, a locomotive older than Fairy Queen, operated in 1981 commemorating its 150th anniversary. Gorakhpur railway station also has the distinction of being the world's longest railway platform at 1,366 m. The Ghum station along the Darjeeling Toy Train route is the second highest railway station in the world to be reached by a steam locomotive. The Mumbai–Pune Deccan Queen has the oldest running dining car in IR.
- Vivek Express, between Dibrugarh and Kanyakumari, has the longest run in terms of distance and time on Indian Railways network. It covers 4,286 km in about 82 hours and 30 minutes.
- Bhopal Shatabdi Express is the fastest train in India today having a maximum speed of 160 km/h on the Faridabad–Agra section. The fastest speed attained by any train is 184 km/h in 2000 during test runs.
- Special Trains are those trains started by Indian Railways for any specific event or cause which includes Jagriti Yatra trains, Kumbh Mela Trains., emergency trains, etc.
- Double-decker AC trains have been introduced in India. The first double decker train was Pune-Mumbai Sinhagad express plying between Pune and Mumbai while the first double-decker AC train in the Indian Railways was introduced in November 2010, running between the Dhanbad and Howrah stations having 10 coaches and 2 power cars. On 16 April 2013, Indian Railways celebrated its 160 years of nationwide connectivity with a transportation of 23 million passengers in a day.
PROBLEMS AND ISSUES
Indian Railways is cash strapped and reported a loss of ₹30,000 crores (₹300bn) in the passenger segment for the year ending March 2014. Operating ratio, a key metric used by Indian railways to gauge financial health, is 91.8% in the year 2014-15. Railways carry a social obligation of over ₹20,000 crores (₹200bn $3.5bn). The loss per passenger-km increased to 23 paise by the end of March 2014. Indian Railways is left with a surplus cash of just ₹690 crores (₹6.9bn $115mn) by the end of March 2014.
It is estimated that over ₹ 5 lakh crores (₹5 trillion) (about $85 bn at 2014 exchange rates) is required to complete the ongoing projects alone. The railway is consistently losing market share to other modes of transport both in freight and passengers.
New railway line projects are often announced during the Railway Budget annually without securing additional funding for them. In the last 10 years, 99 New Line projects worth ₹ 60,000 crore (₹600bn) were sanctioned out of which only one project is complete till date, and there are four projects that are as old as 30 years, but are still not complete for one reason or another.
Sanjay Dina Patil a member of the Lok Sabha in 2014 said that additional tracks, height of platforms are still a problem and rise in tickets, goods, monthly passes has created an alarming situation where the common man is troubled.
WIKIPEDIA
. . . this is the night-train from Chennai to Hyderabad.
Duration: 15 hours - Ticket: 2 Euro!
________________________________________
Indian Railways 1676 mm
German Railways 1435 mmm
____________________________________________
Indian Railways (reporting mark IR) is an Indian state-owned enterprise, owned and operated by the Government of India through the Ministry of Railways. It is one of the world's largest railway networks comprising 115,000 km of track over a route of 65,808 km and 7,112 stations. In 2014-15, IR carried 8.397 billion passengers annually or more than 23 million passengers a day (roughly half of whom were suburban passengers) and 1058.81 million tons of freight in the year. On world level Ghaziabad is the largest manufacturer of Railway Engines. In 2014–2015 Indian Railways had revenues of ₹1634.50 billion (US$25 billion) which consists of ₹1069.27 billion (US$16 billion) from freight and ₹402.80 billion (US$6.1 billion) from passengers tickets.
Railways were first introduced to India in the year 1853 from Mumbai to Thane. In 1951 the systems were nationalised as one unit, the Indian Railways, becoming one of the largest networks in the world. IR operates both long distance and suburban rail systems on a multi-gauge network of broad, metre and narrow gauges. It also owns locomotive and coach production facilities at several places in India and are assigned codes identifying their gauge, kind of power and type of operation. Its operations cover twenty nine states and seven union territories and also provides limited international services to Nepal, Bangladesh and Pakistan.Indian Railways is the world's seventh largest commercial or utility employer, by number of employees, with over 1.334 million employees as of last published figures in 2013. As for rolling stock, IR holds over 245,267 Freight Wagons, 66,392 Passenger Coaches and 10,499 Locomotives (43 steam, 5,633 diesel and 4,823 electric locomotives). The trains have a 5 digit numbering system and runs 12,617 passenger trains and 7421 freight trains daily. As of 31 March 2013, 21,614 km (32.8%) of the total 65,808 km route length was electrified. Since 1960, almost all electrified sections on IR use 25,000 Volt AC traction through overhead catenary delivery.
HISTORY
The history of rail transport in India began in the mid-nineteenth century. The core of the pressure for building Railways In India came from London. In 1848, there was not a single kilometre of railway line in India. The country's first railway, built by the Great Indian Peninsula Railway (GIPR), opened in 1853, between Bombay and Thane. A British engineer, Robert Maitland Brereton, was responsible for the expansion of the railways from 1857 onwards. The Allahabad-Jabalpur branch line of the East Indian Railway had been opened in June 1867. Brereton was responsible for linking this with the GIPR, resulting in a combined network of 6,400 km. Hence it became possible to travel directly from Bombay to Calcutta. This route was officially opened on 7 March 1870 and it was part of the inspiration for French writer Jules Verne's book Around the World in Eighty Days. At the opening ceremony, the Viceroy Lord Mayo concluded that "it was thought desirable that, if possible, at the earliest possible moment, the whole country should be covered with a network of lines in a uniform system".
By 1875, about £95 million were invested by British companies in India. Guaranteed railways. By 1880 the network had a route mileage of about 14,500 km, mostly radiating inward from the three major port cities of Bombay, Madras and Calcutta. By 1895, India had started building its own locomotives, and in 1896, sent engineers and locomotives to help build the Uganda Railways.
In 1900, the GIPR became a government owned company. The network spread to the modern day states of Assam, Rajputhana and Madras Presidency and soon various autonomous kingdoms began to have their own rail systems. In 1905, an early Railway Board was constituted, but the powers were formally vested under Lord Curzon. It served under the Department of Commerce and Industry and had a government railway official serving as chairman, and a railway manager from England and an agent of one of the company railways as the other two members. For the first time in its history, the Railways began to make a profit.
In 1907 almost all the rail companies were taken over by the government. The following year, the first electric locomotive made its appearance. With the arrival of World War I, the railways were used to meet the needs of the British outside India. With the end of the war, the railways were in a state of disrepair and collapse. Large scale corruption by British officials involved in the running of these railways companies was rampant. Profits were never reinvested in the development of British colonial India.
In 1920, with the network having expanded to 61,220 km, a need for central management was mooted by Sir William Acworth. Based on the East India Railway Committee chaired by Acworth, the government took over the management of the Railways and detached the finances of the Railways from other governmental revenues.
The period between 1920 and 1929, was a period of economic boom; there were 66,000 km of railway lines serving the country; the railways represented a capital value of some 687 million sterling; and they carried over 620 million passengers and approximately 90 million tons of goods each year. Following the Great Depression, the railways suffered economically for the next eight years. The Second World War severely crippled the railways. Starting 1939, about 40% of the rolling stock including locomotives and coaches was taken to the Middle East, the railways workshops were converted to ammunitions workshops and many railway tracks were dismantled to help the Allies in the war. By 1946, all rail systems had been taken over by the government.
ORGANISATIONAL STRUCTURE
RAILWAY ZONES
Indian Railways is divided into 16 zones, which are further sub-divided into divisions. The number of zones in Indian Railways increased from six to eight in 1951, nine in 1966 and seventeen in 2003. Each zonal railway is made up of a certain number of divisions, each having a divisional headquarters. There are a total of sixty-eight divisions.
Each zone is headed by a general manager, who reports directly to the Railway Board. The zones are further divided into divisions, under the control of divisional railway managers (DRM). The divisional officers, of engineering, mechanical, electrical, signal and telecommunication, accounts, personnel, operating, commercial, security and safety branches, report to the respective Divisional Railway Manager and are in charge of operation and maintenance of assets. Further down the hierarchy tree are the station masters, who control individual stations and train movements through the track territory under their stations' administration.
RECRUITMENT AND TRAINING
Staff are classified into gazetted (Group 'A' and 'B') and non-gazetted (Group 'C' and 'D') employees. The recruitment of Group 'A' gazetted employees is carried out by the Union Public Service Commission through exams conducted by it. The recruitment to Group 'C' and 'D' employees on the Indian Railways is done through 20 Railway Recruitment Boards and Railway Recruitment Cells which are controlled by the Railway Recruitment Control Board (RRCB). The training of all cadres is entrusted and shared between six centralised training institutes.
ROLLING STOCK
LOCOMOTIVES
Locomotives in India consist of electric and diesel locomotives. The world's first CNG (Compressed Natural Gas) locomotives are also being used. Steam locomotives are no longer used, except in heritage trains. In India, locomotives are classified according to their track gauge, motive power, the work they are suited for and their power or model number. The class name includes this information about the locomotive. It comprises 4 or 5 letters. The first letter denotes the track gauge. The second letter denotes their motive power (Diesel or Alternating - on Electric) and the third letter denotes the kind of traffic for which they are suited (goods, passenger, Multi or shunting). The fourth letter used to denote locomotives' chronological model number. However, from 2002 a new classification scheme has been adopted. Under this system, for newer diesel locomotives, the fourth letter will denote their horsepower range. Electric locomotives don't come under this scheme and even all diesel locos are not covered. For them this letter denotes their model number as usual.In world level Ghaziabad is the largest manufacturer of Locomotive.
A locomotive may sometimes have a fifth letter in its name which generally denotes a technical variant or subclass or subtype. This fifth letter indicates some smaller variation in the basic model or series, perhaps different motors, or a different manufacturer. With the new scheme for classifying diesel locomotives (as mentioned above) the fifth item is a letter that further refines the horsepower indication in 100 hp increments: 'A' for 100 hp, 'B' for 200 hp, 'C' for 300 hp, etc. So in this scheme, a WDM-3A refers to a 3100 hp loco, while a WDM-3D would be a 3400 hp loco and WDM-3F would be 3600 hp loco.
Note: This classification system does not apply to steam locomotives in India as they have become non-functional now. They retained their original class names such as M class or WP class.
Diesel Locomotives are now fitted with Auxiliary Power Units which saves nearly 88% of Fuel during the idle time when train is not running.
GOODS WAGONS
The number of goods wagons was 205,596 on 31 March 1951 and reached the maximum number 405,183 on 31 March 1980 after which it started declining and was 239,321 on 31 March 2012. The number is far less than the requirement and the Indian Railways keeps losing freight traffic to road. Indian Railways carried 93 million tonnes of goods in 1950–51 and it increased to 1010 million tonnes in 2012–13.
However, its share in goods traffic is much lower than road traffic. In 1951, its share was 65% and the share of road was 35%. Now the shares have been reversed and the share of railways has declined to 30% and the share of road has increased to 70%.
PASSENGER COACHES
Indian railways has several types of passenger coaches.
Electric Multiple Unit (EMU) coaches are used for suburban traffic in large cities – mainly Mumbai, Chennai, Delhi, Kolkata, Pune, Hyderabad and Bangalore. These coaches numbered 7,793 on 31 March 2012. They have second class and first class seating accommodation.
The coaches used in Indian Railways are produced at Integral Coach Factory, Rail Coach Factory.Now,they are producing new LHB coaches.
Passenger coaches numbered 46,722 on 31 March 2012. Other coaches (luggage coach, parcel van, guard's coach, mail coach, etc.) numbered 6,560 on 31 March 2012.
FREIGHT
Indian Railways earns about 70% of its revenues from freight traffic (₹686.2 billion from freight and ₹304.6 billion from passengers in 2011–12). Most of its profits come from transporting freight, and this makes up for losses on passenger traffic. It deliberately keeps its passenger fares low and cross-subsidises the loss-making passenger traffic with the profit-making freight traffic.
Since the 1990s, Indian Railways has stopped single-wagon consignments and provides only full rake freight trains
Wagon types include:
BOXNHL
BOBYN
BCN
BCNHL
TECHNICAL DETAILS
TRACK AND GAUGE
Indian railways uses four gauges, the 1,676 mm broad gauge which is wider than the 1,435 mm standard gauge; the 1,000 mm metre gauge; and two narrow gauges, 762 mm and 610 mm. Track sections are rated for speeds ranging from 75 to 160 km/h.
The total length of track used by Indian Railways is about 115,000 km while the total route length of the network is 65,000 km. About 24,891 km or 38% of the route-kilometre was electrified, as of 31 March 2014.
Broad gauge is the predominant gauge used by Indian Railways. Indian broad gauge - 1,676 mm - is the most widely used gauge in India with 108,500 km of track length (94% of entire track length of all the gauges) and 59,400 km of route-kilometre (91% of entire route-kilometre of all the gauges).
In some regions with less traffic, the metre gauge (1,000 mm) is common, although the Unigauge project is in progress to convert all tracks to broad gauge. The metre gauge has about 5,000 km of track length (4% of entire track length of all the gauges) and 4,100 km of route-kilometre (7% of entire route-kilometre of all the gauges).
The Narrow gauges are present on a few routes, lying in hilly terrains and in some erstwhile private railways (on cost considerations), which are usually difficult to convert to broad gauge. Narrow gauges have 1,500 route-kilometre. The Kalka-Shimla Railway, the Kangra Valley Railway and the Darjeeling Himalayan Railway are three notable hill lines that use narrow gauge, but the Nilgiri Mountain Railway is a metre gauge track. These four rail lines will not be converted under the Unigauge project.
The share of broad gauge in the total route-kilometre has been steadily rising, increasing from 47% (25,258 route-km) in 1951 to 86% in 2012 whereas the share of metre gauge has declined from 45% (24,185 route-km) to 10% in the same period and the share of narrow gauges has decreased from 8% to 3%. About 24,891 route-km of Indian railways is electrified.
Sleepers (ties) are made up of prestressed concrete, or steel or cast iron posts, though teak sleepers are still in use on a few older lines. The prestressed concrete sleeper is in wide use today. Metal sleepers were extensively used before the advent of concrete sleepers. Indian Railways divides the country into four zones on the basis of the range of track temperature. The greatest temperature variations occur in Rajasthan.
RESEARCH AND DEVELOPMENT
Indian Railways has a full-fledged organisation known as Research Designs and Standards Organisation (RDSO), located at Lucknow for all research, designs and standardisation tasks.
In August 2013, Indian Railways entered into a partnership with Indian Institute of Technology (Madras) to develop technology to tap solar energy for lighting and air-conditioning in the coaches. This would significantly reduce the fossil fuel dependency for Indian Railways.
Recently it developed and tested the Improved Automated Fire Alarm System in Rajdhani Express Trains. It is intended that the system be applied to AC coaches of all regular trains.
CURRENT AND FUTURE DEVELOPMENTS
In recent years, Indian Railways has undertaken several initiatives to upgrade its ageing infrastructure and enhance its quality of service. The Indian government plans to invest ₹905000 crore (US$137 billion) to upgrade the railways by 2020.
TOILETS ON RAILWAYS
In 2014, Indian Railways and DRDO developed a bio-toilet to replace direct-discharge toilets, which are currently the primary type of toilet used in railway coaches. The direct discharge of human waste from trains onto the tracks corrodes rails, costing Indian Railways tens of millions of rupees a year in rail-replacement work. Flushing a bio-toilet discharges human waste into an underfloor holding tank where anaerobic bacteria remove harmful pathogens and break the waste down into neutral water and methane. These harmless by-products can then be safely discharged onto the tracks without causing corrosion or foul odours. As part of its "Swachh Rail-Swachh Bharat" ("Clean Rail-Clean India") programme, Indian Railways plans to completely phase out direct-discharge toilets on its lines by 2020-2021. As of March 2015, 17,338 bio-toilets had been installed on newly built coaches, with all new coaches to have bio-toilets from 2016; older rolling stock will be retrofitted.
LOCOMOTIVE FACTORIES
In 2015, plans were disclosed for building two locomotive factories in the state of Bihar, at Madhepura (diesel locomotives) and at Marhowra (electric locomotives). Both factories involve foreign partnerships. The diesel locomotive works will be jointly operated in a partnership with General Electric, which has invested ₹2052 crore (US$310 million) for its construction, and the electric locomotive works with Alstom, which has invested ₹1293.57 crore (US$195 million). The factories will provide Indian Railways with 800 electric locomotives of 12,000 horse power each, and a mix of 1,000 diesel locomotives of 4,500 and 6,000 horsepower each. In November 2015, further details of the ₹14656 crore (US$2 billion) partnership with GE were announced: Indian Railways and GE would engage in an 11-year joint venture in which GE would hold a majority stake of 74%. Under the terms of the joint venture, Indian Railways would purchase 100 goods locomotives a year for 10 years beginning in 2017; the locomotives would be modified versions of the GE Evolution series. The diesel locomotive works will be built by 2018; GE will import the first 100 locomotives and manufacture the remaining 900 in India from 2019, also assuming responsibility for their maintenance over a 13-year period. In the same month, a ₹20000 crore (US$3 billion) partnership with Alstom to supply 800 electric locomotives from 2018 to 2028 was announced.
LINKS TO ADJACENT COUNTRIES
EXISTING RAIL LINKS
Nepal – Break-of-gauge – Gauge conversion under uni-gauge project
Pakistan – same Broad Gauge. Thar Express to Karachi and the more famous Samjhauta Express international train from Lahore, Pakistan to Amritsar (Attari).
Bangladesh – Same Broad Gauge. The Maitri Express between Dhaka and Kolkata started in April 2008 using the Gede-Darsana route, in addition to a Freight Train service from Singhabad and Petrapole in India to Rohanpur and Benapole in Bangladesh. A second passenger link between Agartala, India and Akhaura Upazila, Bangladesh was approved by the Government of Bangladesh and India in September 2011.
UNDER CONSTRUCTUION / PROPOSED LINKS
Bhutan – railways under construction – Same gauge
Myanmar – Manipur to Myanmar (under construction)
Vietnam – On 9 April 2010, Former Union Minister of India, Shashi Tharoor announced that the central government is considering a rail link from Manipur to Vietnam via Myanmar.
Thailand – possible if Burma Railway is rebuilt.
TYPES OF PASSENGER SERVICES
Trains are classified by their average speed. A faster train has fewer stops ("halts") than a slower one and usually caters to long-distance travel.
ACCOMODATION CLASSES
Indian Railways has several classes of travel with or without airconditioning. A train may have just one or many classes of travel. Slow passenger trains have only unreserved seating class whereas Rajdhani, Duronto, Shatabdi, garib rath and yuva trains have only airconditioned classes. The fares for all classes are different with unreserved seating class being the cheapest. The fare of Rajdhani, Duronto and Shatabdi trains includes food served in the train but the fare for other trains does not include food that has to be bought separately. In long-distance trains a pantry car is usually included and food is served at the berth or seat itself. Luxury trains such as Palace on Wheels have separate dining cars but these trains cost as much as or more than a five-star hotel room.
A standard passenger rake generally has four unreserved (also called "general") compartments, two at the front and two at the end, of which one may be exclusively for ladies. The exact number of other coaches varies according to the demand and the route. A luggage compartment can also exist at the front or the back. In some mail trains a separate mail coach is attached. Lavatories are communal and feature both the Indian style as well as the Western style.
The following table lists the classes in operation. A train may not have all these classes.
1A First class AC: This is the most expensive class, where the fares are almost at par with air fare. There are eight cabins (including two coupes) in the full AC First Class coach and three cabins (including one coupe) in the half AC First Class coach. The coach has an attendant to help the passengers. Bedding is included with the fare in IR. This air conditioned coach is present only on popular routes and can carry 18 passengers (full coach) or 10 passengers (half coach). The sleeper berths are extremely wide and spacious. The coaches are carpeted, have sleeping accommodation and have privacy features like personal coupes. This class is available on broad gauge and metre gauge trains.
2A AC-Two tier: These air-conditioned coaches have sleeping berths across eight bays. Berths are usually arranged in two tiers in bays of six, four across the width of the coach and two berths longways on the other side of the corridor, with curtains along the gangway or corridor. Bedding is included with the fare. A broad gauge coach can carry 48 passengers (full coach) or 20 passengers (half coach). This class is available on broad gauge and metre gauge trains.
FC First class: Same as 1AC but without air conditioning. No bedding is available in this class. The berths are wide and spacious. There is a coach attendant to help the passengers. This class has been phased out on most of the trains and is rare to find. However narrow gauge trains to hill stations have this class.
3A AC three tier: Air conditioned coaches with 64 sleeping berths. Berths are usually arranged as in 2AC but with three tiers across the width and two longways as before giving eight bays of eight. They are slightly less well-appointed, usually no reading lights or curtained off gangways. Bedding is included with fare. It carries 64 passengers in broad gauge. This class is available only on broad gauge.
3E AC three tier (Economy): Air conditioned coaches with sleeping berths, present in Garib Rath Trains. Berths are usually arranged as in 3AC but with three tiers across the width and three longways. They are slightly less well-appointed, usually no reading lights or curtained off gangways. Bedding is not included with fare.
CC AC chair car: An air-conditioned seater coach with a total of five seats in a row used for day travel between cities.
EC Executive class chair car: An air-conditioned coach with large spacious seats and legroom. It has a total of four seats in a row used for day travel between cities. This class of travel is only available on Shatabdi Express trains.
SL Sleeper class: The sleeper class is the most common coach on IR, and usually ten or more coaches could be attached. These are regular sleeping coaches with three berths vertically stacked. In broad gauge, it carries 72 passengers per coach.
2S Seater class: same as AC Chair car, without the air-conditioning. These may be reserved in advance or may be unreserved.
UR Unreserved: The cheapest accommodation. The seats are usually made up of pressed wood in older coaches but cushioned seats are found in new coaches. These coaches are usually over-crowded and a seat is not guaranteed. Tickets are issued in advance for a minimum journey of more than 24 hours. Tickets issued are valid on any train on the same route if boarded within 24 hours of buying the ticket.
At the rear of the train is a special compartment known as the guard's cabin. It is fitted with a transceiver and is where the guard usually gives the all clear signal before the train departs.
UNESCO WORLD HERITAGE SITES
There are two UNESCO World Heritage Sites on Indian Railways. – The Chatrapati Shivaji Terminus and the Mountain Railways of India. The latter consists of three separate railway lines located in different parts of India:
- Darjeeling Himalayan Railway, a narrow gauge railway in West Bengal.
- Nilgiri Mountain Railway, a 1,000 mm metre gauge railway in the Nilgiri Hills in Tamil Nadu.
- Kalka-Shimla Railway, a narrow gauge railway in the Shivalik mountains in Himachal Pradesh. In 2003 the railway was featured in the Guinness Book of World Records for offering the steepest rise in altitude in the space of 96 kilometre.
NOTABLE TRAINS
TOURIST TRAINS
Palace on Wheels is a specially designed luxury tourist train service, frequently hauled by a steam locomotive, for promoting tourism in Rajasthan. The train has a 7 nights & 8 days itinerary, it departs from New Delhi (Day 1), and covers Jaipur (Day 2), Sawai Madhopur and Chittaurgarh (Day 3), Udaipur (Day 4), Jaisalmer (Day 5), Jodhpur (Day 6), Bharatpur and Agra (Day 7), return to Delhi (Day 8).
Royal Rajasthan on Wheels a luxury tourist train service covers various tourist destinations in Rajasthan. The train takes tourists on a 7-day/8-night tour through Rajasthan. The train starts from New Delhi's Safdarjung railway station (Day 1), and has stops at Jodhpur (Day 2), Udaipur and Chittaurgarh (Day 3), Ranthambore National Park and Jaipur (Day 4), Khajuraho (Day 5), Varanasi and Sarnath (Day 6), Agra (Day 7) and back to Delhi (Day 8).
Maharaja Express a luxury train operated by IRCTC runs on five circuits covering more than 12 destinations across North-West and Central India, mainly centered around Rajasthan between the months of October to April.
Deccan Odyssey luxury tourist train service covers various tourist destinations in Maharashtra and Goa. The 7 Nights / 8 Days tour starts from Mumbai (Day 1) and covers Jaigad Fort, Ganapatipule and Ratnagiri (Day 2), Sindhudurg, Tarkarli and Sawantwadi (Day 3), Goa (Day 4), Kolhapur and Pune (Day 5), Aurangabad and Ellora Caves (Day 6), Ajanta Caves and Nashik (Day 7), and back to Mumbai (Day 8).
The Golden Chariot luxury train runs on two circuits Pride of the South and Splendor of the South.
Mahaparinirvan Express an a/c train service also known as Buddhist Circuit Train which is run by IRCTC to attract Buddhist pilgrims. The 7 nights/8 Days tour starts from New Delhi (Day 1) and covers Bodh Gaya (Day 2), Rajgir and Nalanda (Day 3), Varanasi and Sarnath (Day 4), Kushinagar and Lumbini (Day 5 and 6), Sravasti (Day 7), Taj Mahal (Agra) (Day 8) before returning to New Delhi on (Day 8).
OTHER TRAINS
- Samjhauta Express is a train that runs between India and Pakistan. However, hostilities between the two nations in 2001 saw the line being closed. It was reopened when the hostilities subsided in 2004. Another train connecting Khokhrapar (Pakistan) and Munabao (India) is the Thar Express that restarted operations on 18 February 2006; it was earlier closed down after the 1965 Indo-Pak war.
- Lifeline Express is a special train popularly known as the "Hospital-on-Wheels" which provides healthcare to the rural areas. This train has a carriage that serves as an operating room, a second one which serves as a storeroom and an additional two that serve as a patient ward. The train travels around the country, staying at a location for about two months before moving elsewhere.
- Fairy Queen is the oldest operating locomotive in the world today, though it is operated only for specials between Delhi and Alwar. John Bull, a locomotive older than Fairy Queen, operated in 1981 commemorating its 150th anniversary. Gorakhpur railway station also has the distinction of being the world's longest railway platform at 1,366 m. The Ghum station along the Darjeeling Toy Train route is the second highest railway station in the world to be reached by a steam locomotive. The Mumbai–Pune Deccan Queen has the oldest running dining car in IR.
- Vivek Express, between Dibrugarh and Kanyakumari, has the longest run in terms of distance and time on Indian Railways network. It covers 4,286 km in about 82 hours and 30 minutes.
- Bhopal Shatabdi Express is the fastest train in India today having a maximum speed of 160 km/h on the Faridabad–Agra section. The fastest speed attained by any train is 184 km/h in 2000 during test runs.
- Special Trains are those trains started by Indian Railways for any specific event or cause which includes Jagriti Yatra trains, Kumbh Mela Trains., emergency trains, etc.
- Double-decker AC trains have been introduced in India. The first double decker train was Pune-Mumbai Sinhagad express plying between Pune and Mumbai while the first double-decker AC train in the Indian Railways was introduced in November 2010, running between the Dhanbad and Howrah stations having 10 coaches and 2 power cars. On 16 April 2013, Indian Railways celebrated its 160 years of nationwide connectivity with a transportation of 23 million passengers in a day.
PROBLEMS AND ISSUES
Indian Railways is cash strapped and reported a loss of ₹30,000 crores (₹300bn) in the passenger segment for the year ending March 2014. Operating ratio, a key metric used by Indian railways to gauge financial health, is 91.8% in the year 2014-15. Railways carry a social obligation of over ₹20,000 crores (₹200bn $3.5bn). The loss per passenger-km increased to 23 paise by the end of March 2014. Indian Railways is left with a surplus cash of just ₹690 crores (₹6.9bn $115mn) by the end of March 2014.
It is estimated that over ₹ 5 lakh crores (₹5 trillion) (about $85 bn at 2014 exchange rates) is required to complete the ongoing projects alone. The railway is consistently losing market share to other modes of transport both in freight and passengers.
New railway line projects are often announced during the Railway Budget annually without securing additional funding for them. In the last 10 years, 99 New Line projects worth ₹ 60,000 crore (₹600bn) were sanctioned out of which only one project is complete till date, and there are four projects that are as old as 30 years, but are still not complete for one reason or another.
Sanjay Dina Patil a member of the Lok Sabha in 2014 said that additional tracks, height of platforms are still a problem and rise in tickets, goods, monthly passes has created an alarming situation where the common man is troubled.
WIKIPEDIA
TEIGN C Damen Stan 1405
IMO: - N/A
MMSI: 235082804
Call Sign: MWBM9
AIS Vessel Type: Dredger
GENERAL
DAMEN YARD NUMBER: 503705
Avelingen-West 20
4202 MS Gorinchem
The Netherlands
Phone: +31 (0)183 63 99 11
info@damen.com
DELIVERY DATE August 2001
BASIC FUNCTIONS Towing, mooring, pushing and dredging operations
FLAG United Kingdom [GB]
OWNED Teignmouth Harbour Commission
CASSCATION: Bureau Veritas 1 HULL MACH Seagoing Launch
DIMENSIONS
LENGTH 14.40 m
BEAM 4.73 m
DEPTH AT SIDES 205 m
DRAUGHT AFT 171 m
DISPLACEMENT 48 ton
TANK CAPACITIES
Fuel oil 6.9 m³
PERFORMANCES (TRIALS)
BOLLARD PULL AHEAD 8.0 ton
SPEED 9.8 knots
PROPULSION SYSTEM
MAIN ENGINE 2x Caterpillar 3406C TA/A
TOTAL POWER 477 bmW (640i hp) at 1800 rpm
GEARBOX 2x Twin Disc MG 5091/3.82:1
PROPELLERS Bronze fixed pitch propeller
KORT NOZZELS Van de Giessen 2x 1000 mm with stainless steel innerings
ENGINE CONTROL Kobelt
STEERING GEAR 2x 25 mm single plate Powered hydraulic 2x 45, rudder indicator
AUXILIARY EQUIPMENT
BILGE PUMP Sterling SIH 20, 32 m/hr
BATTERY SETS 2x 24V, 200 Ah + change over facility
COOLING SYSTEM Closed cooling system
ALARM SYSTEM Engines, gearboxes and bilge alarms
FRESH WATER PRESSURE SET Speck 24V
DECK LAY-OUT
ANCHORS 2x 48 kg Pool (HHP)
CHAIN 70 m, Ø 13mm, shortlink U2
ANCHOR WINCH Hand-operated
TOWING HOOK Mampaey, 15.3 ton SWL
COUPLING WINCH
PUSHBOW Cylindrical nubber fender Ø 380 mm
ACCOMMODATION
The wheelhouse ceiling and sides are insulated with mineral wool and
panelled. The wheelhouse floor is covered with rubber/synthetic floor
covering, make Bolidt, color blue The wheelhouse has one
helmsman seat, a bench and table with chair Below deck two berths, a
kitchen unit and a toilet space are arranged.
NAUTICAL AND COMMUNICATION EQUIPMENT
SEARCHLIGHT Den Haan 170 W 24 V
VHF RADIO Sailor RT 2048 25 W
NAVIGATION Navigation lights incl towing and pilot lights
Teignmouth Harbour Commission
The Harbour Commission is a Trust Port created by Statute.
The principal Order is the Teignmouth Harbour Order 1924
as amended by the Teignmouth Harbour Revision Order 2003
TEIGN C Damen Stan 1405
IMO: - N/A
MMSI: 235082804
Call Sign: MWBM9
AIS Vessel Type: Dredger
GENERAL
DAMEN YARD NUMBER: 503705
Avelingen-West 20
4202 MS Gorinchem
The Netherlands
Phone: +31 (0)183 63 99 11
info@damen.com
DELIVERY DATE August 2001
BASIC FUNCTIONS Towing, mooring, pushing and dredging operations
FLAG United Kingdom [GB]
OWNED Teignmouth Harbour Commission
CASSCATION: Bureau Veritas 1 HULL MACH Seagoing Launch
DIMENSIONS
LENGTH 14.40 m
BEAM 4.73 m
DEPTH AT SIDES 205 m
DRAUGHT AFT 171 m
DISPLACEMENT 48 ton
TANK CAPACITIES
Fuel oil 6.9 m³
PERFORMANCES (TRIALS)
BOLLARD PULL AHEAD 8.0 ton
SPEED 9.8 knots
PROPULSION SYSTEM
MAIN ENGINE 2x Caterpillar 3406C TA/A
TOTAL POWER 477 bmW (640i hp) at 1800 rpm
GEARBOX 2x Twin Disc MG 5091/3.82:1
PROPELLERS Bronze fixed pitch propeller
KORT NOZZELS Van de Giessen 2x 1000 mm with stainless steel innerings
ENGINE CONTROL Kobelt
STEERING GEAR 2x 25 mm single plate Powered hydraulic 2x 45, rudder indicator
AUXILIARY EQUIPMENT
BILGE PUMP Sterling SIH 20, 32 m/hr
BATTERY SETS 2x 24V, 200 Ah + change over facility
COOLING SYSTEM Closed cooling system
ALARM SYSTEM Engines, gearboxes and bilge alarms
FRESH WATER PRESSURE SET Speck 24V
DECK LAY-OUT
ANCHORS 2x 48 kg Pool (HHP)
CHAIN 70 m, Ø 13mm, shortlink U2
ANCHOR WINCH Hand-operated
TOWING HOOK Mampaey, 15.3 ton SWL
COUPLING WINCH
PUSHBOW Cylindrical nubber fender Ø 380 mm
ACCOMMODATION
The wheelhouse ceiling and sides are insulated with mineral wool and
panelled. The wheelhouse floor is covered with rubber/synthetic floor
covering, make Bolidt, color blue The wheelhouse has one
helmsman seat, a bench and table with chair Below deck two berths, a
kitchen unit and a toilet space are arranged.
NAUTICAL AND COMMUNICATION EQUIPMENT
SEARCHLIGHT Den Haan 170 W 24 V
VHF RADIO Sailor RT 2048 25 W
NAVIGATION Navigation lights incl towing and pilot lights
Teignmouth Harbour Commission
The Harbour Commission is a Trust Port created by Statute.
The principal Order is the Teignmouth Harbour Order 1924
as amended by the Teignmouth Harbour Revision Order 2003
This work is protected under copyright laws and agreements.
All Rights Reserved © 2009 Bernard Egger :: rumoto images
Todos los Derechos Reservados • Tous droits réservés • Todos os Direitos Reservados • Все права защищены • Tutti i diritti riservati
:: Bernard Egger, Бернхард Эггер, фото, rumoto, фотограф, motoring, photography, Fotográfico, stunning, supershot, emotion, emotions, Faszination, classic, Classic-Motorrad, historic, historique, historisch, storiche, vintage, Oldtimer, Oldtimersport, Leidenschaft, passion, Maschine, Moto, motocyclisme, Motorcycle, Motorcycles, Motorrad, Motorräder, Motorbike, Мотоциклы и байкеры, images, pictures, posters, Poster, quality, fine art, large, gallery, collection, 摩托, バイク, دراجةنارية, λέταאופנוע, 오토바이, Motocicletă, Мотоцикл, รถจักรยานยนต์, 摩托车, Motorcykel, Mootorratas, Moottoripyörä, Motosiklèt, Motorkerékpár, Motocikls, Motociklas, Motorsykkel, Motocykl, Motocicleta, Motocykel, Motosiklet, Sölkpass, Soelk Pass, Styria, BMW, Boxer, Europe, Austria, Autriche, Австрия, Αυστρία, Österreich, Travel, travelling, Reisen, Tour, Styria, Steiermark, Berg, Gebirge, mountain, Alpen, alpine, Landschaft, Les Alpes, The Alps, Le Alpi, A Picture Of Austria,
- - - - -
BMW R 1200 CL - Woodcliff Lake, New Jersey, August 2002 ... Some people consider a six-day cruise as the perfect vacation. Other's might agree, as long as the days are marked by blurred fence posts and dotted lines instead of palm trees and ocean waves. For them, BMW introduces the perfect alternative to a deck chair - the R 1200 CL.
Motorcyclists were taken aback when BMW introduced its first cruiser in 1997, but the R 1200 C quickly rose to become that year's best-selling BMW. The original has since spawned several derivatives including the Phoenix, Euro, Montana and Stiletto. This year, BMW's cruiser forms the basis for the most radical departure yet, the R 1200 CL. With its standard integral hard saddlebags, top box and distinctive handlebar-mounted fairing, the CL represents twin-cylinder luxury-touring at its finest, a completely modern luxury touring-cruiser with a touch of classic BMW.
Although based on the R 1200 C, the new CL includes numerous key changes in chassis, drivetrain, equipment and appearance, specifically designed to enhance the R 1200's abilities as a long-distance mount. While it uses the same torquey, 1170cc 61-hp version of BMW's highly successful R259 twin, the CL backs it with a six-speed overdrive transmission. A reworked Telelever increases the bike's rake for more-relaxed high-speed steering, while the fork's wider spacing provides room for the sculpted double-spoke, 16-inch wheel and 150/80 front tire. Similarly, a reinforced Monolever rear suspension controls a matching 15-inch alloy wheel and 170/80 rear tire. As you'd expect, triple disc brakes featuring BMW's latest EVO front brake system and fully integrated ABS bring the bike to a halt at day's end-and set the CL apart from any other luxury cruiser on the market.
Yet despite all the chassis changes, it's the new CL's visual statement that represents the bike's biggest break with its cruiser-mates. With its grip-to-grip sweep, the handlebar-mounted fairing evokes classic touring bikes, while the CL's distinctive quad-headlamps give the bike a decidedly avant-garde look - in addition to providing standard-setting illumination. A pair of frame-mounted lowers extends the fairing's wind coverage and provides space for some of the CL's electrics and the optional stereo. The instrument panel is exceptionally clean, surrounded by a matte gray background that matches the kneepads inset in the fairing extensions. The speedometer and tachometer flank a panel of warning lights, capped by the standard analog clock. Integrated mirror/turnsignal pods extend from the fairing to provide further wind protection. Finally, fully integrated, color-matched saddlebags combine with a standard top box to provide a steamer trunk's luggage capacity.
shown in the functional details. In addition to the beautifully finished bodywork, the luxury cruiser boasts an assortment of chrome highlights, including valve covers, exhaust system, saddlebag latches and frame panels, with an optional kit to add even more brightwork. Available colors include Pearl Silver Metallic, Capri Blue Metallic and Mojave Brown Metallic, this last with a choice of black or brown saddle (other colors feature black).
The R 1200 CL Engine: Gearing For The Long Haul
BMW's newest tourer begins with a solid foundation-the 61-hp R 1200 C engine. The original, 1170cc cruiser powerplant blends a broad powerband and instantaneous response with a healthy, 72 lb.-ft. of torque. Like its forebear, the new CL provides its peak torque at 3000 rpm-exactly the kind of power delivery for a touring twin. Motronic MA 2.4 engine management ensures that this Boxer blends this accessible power with long-term reliability and minimal emissions, while at the same time eliminating the choke lever for complete push-button simplicity. Of course, the MoDiTec diagnostic feature makes maintaining the CL every bit as simple as the other members of BMW's stable.
While tourers and cruisers place similar demands on their engines, a touring bike typically operates through a wider speed range. Consequently, the R 1200 CL mates this familiar engine to a new, six-speed transmission. The first five gear ratios are similar to the original R 1200's, but the sixth gear provides a significant overdrive, which drops engine speed well under 3000 rpm at 60 mph. This range of gearing means the CL can manage either responsive in-town running or relaxed freeway cruising with equal finesse, and places the luxury cruiser right in the heart of its powerband at touring speeds for simple roll-on passes.
In addition, the new transmission has been thoroughly massaged internally, with re-angled gear teeth that provide additional overlap for quieter running. Shifting is likewise improved via a revised internal shift mechanism that produces smoother, more precise gearchanges. Finally, the new transmission design is lighter (approximately 1 kg.), which helps keep the CL's weight down to a respectable 679 lbs. (wet). The improved design of this transmission will be adopted by other Boxer-twins throughout the coming year.
The CL Chassis: Wheeled Luggage Never Worked This Well
Every bit as unique as the CL's Boxer-twin drivetrain is the bike's chassis, leading off-literally and figuratively-with BMW's standard-setting Telelever front suspension. The CL's setup is identical in concept and function to the R 1200 C's fork, but shares virtually no parts with the previous cruiser's. The tourer's wider, 16-inch front wheel called for wider-set fork tubes, so the top triple clamp, fork bridge, fork tubes and axle have all been revised, and the axle has switched to a full-floating design. The aluminum Telelever itself has been further reworked to provide a slightly more raked appearance, which also creates a more relaxed steering response for improved straight-line stability. The front shock has been re-angled and its spring and damping rates changed to accommodate the new bike's suspension geometry, but is otherwise similar to the original R 1200 C's damper.
Similarly, the R 1200 CL's Monolever rear suspension differs in detail, rather than concept, from previous BMW cruisers. Increased reinforcing provides additional strength at the shock mount, while a revised final-drive housing provides mounts for the new rear brake. But the primary rear suspension change is a switch to a shock with travel-related damping, similar to that introduced on the R 1150 GS Adventure. This new shock not only provides for a smoother, more controlled ride but also produces an additional 20mm travel compared to the other cruisers, bringing the rear suspension travel to 4.72 inches.
The Telelever and Monolever bolt to a standard R 1200 C front frame that differs only in detail from the original. The rear subframe, however, is completely new, designed to accommodate the extensive luggage system and passenger seating on the R 1200 CL. In addition to the permanently affixed saddlebags, the larger seats, floor boards, top box and new side stand all require new mounting points.
All this new hardware rolls on completely restyled double-spoke wheels (16 x 3.5 front/15 x 4.0 rear) that carry wider, higher-profile (80-series) touring tires for an extremely smooth ride. Bolted to these wheels are larger disc brakes (12.0-inch front, 11.2-inch rear), with the latest edition of BMW's standard-setting EVO brakes. A pair of four-piston calipers stop the front wheel, paired with a two-piston unit-adapted from the K 1200 LT-at the rear. In keeping with the bike's touring orientation, the new CL includes BMW's latest, fully integrated ABS, which actuates both front and rear brakes through either the front hand lever or the rear brake pedal.
The CL Bodywork: Dressed To The Nines
Although all these mechanical changes ensure that the new R 1200 CL works like no other luxury cruiser, it's the bike's styling and bodywork that really set it apart. Beginning with the bike's handlebar-mounted fairing, the CL looks like nothing else on the road, but it's the functional attributes that prove its worth. The broad sweep of the fairing emphasizes its aerodynamic shape, which provides maximum wind protection with a minimum of buffeting. Four headlamps, with their horizontal/vertical orientation, give the CL its unique face and also create the best illumination outside of a baseball stadium (the high-beams are borrowed from the GS).
The M-shaped windshield, with its dipped center section, produces exceptional wind protection yet still allows the rider to look over the clear-plastic shield when rain or road dirt obscure the view. Similarly, clear extensions at the fairing's lower edges improve wind protection even further but still allow an unobstructed view forward for maneuvering in extremely close quarters. The turnsignal pods provide further wind coverage, and at the same time the integral mirrors give a clear view to the rear.
Complementing the fairing, both visually and functionally, the frame-mounted lowers divert the wind blast around the rider to provide further weather protection. Openings vent warm air from the frame-mounted twin oil-coolers and direct the heat away from the rider. As noted earlier, the lowers also house the electronics for the bike's optional alarm system and cruise control. A pair of 12-volt accessory outlets are standard.
Like the K 1200 LT, the new R 1200 CL includes a capacious luggage system as standard, all of it color-matched and designed to accommodate rider and passenger for the long haul. The permanently attached saddlebags include clamshell lids that allow for easy loading and unloading. Chrome bumper strips protect the saddlebags from minor tipover damage. The top box provides additional secure luggage space, or it can be simply unbolted to uncover an attractive aluminum luggage rack. An optional backrest can be bolted on in place of the top box. Of course, saddlebags and top box are lockable and keyed to the ignition switch.
Options & Accessories: More Personal Than A Monogram
Given BMW's traditional emphasis on touring options and the cruiser owner's typical demands for customization, it's only logical to expect a range of accessories and options for the company's first luxury cruiser. The CL fulfills those expectations with a myriad of options and accessories, beginning with heated or velour-like Soft Touch seats and a low windshield. Electronic and communications options such as an AM/FM/CD stereo, cruise control and onboard communication can make time on the road much more pleasant, whether you're out for an afternoon ride or a cross-country trek - because after all, nobody says you have to be back in six days. Other available electronic features include an anti-theft alarm, which also disables the engine.
Accessories designed to personalize the CL even further range from cosmetic to practical, but all adhere to BMW's traditional standards for quality and fit. Chrome accessories include engine-protection and saddlebag - protection hoops. On a practical level, saddlebag and top box liners simplify packing and unpacking. In addition to the backrest, a pair of rear floorboards enhance passenger comfort even more.
The CL's riding position blends elements of both tourer and cruiser, beginning with a reassuringly low, 29.3-inch seat height. The seat itself comprises two parts, a rider portion with an integral lower-back rest, and a taller passenger perch that includes a standard backrest built into the top box. Heated seats, first seen on the K 1200 LT, are also available for the CL to complement the standard heated grips. A broad, flat handlebar places those grips a comfortable reach away, and the CL's floorboards allow the rider to shift position easily without compromising control. Standard cruise control helps melt the miles on long highway stints. A convenient heel/toe shifter makes for effortless gearchanges while adding exactly the right classic touch.
The R 1200 CL backs up its cruiser origins with the same superb attention to cosmetics as is
- - - - -
Der Luxus-Cruiser zum genußvollen Touren.
Die Motorradwelt war überrascht, als BMW Motorrad 1997 die R 1200 C, den ersten Cruiser in der Geschichte des Hauses, vorstellte. Mit dem einzigartigen Zweizylinder-Boxermotor und einem unverwechselbar eigenständigen Design gelang es auf Anhieb, sich in diesem bis dato von BMW nicht besetzten Marktsegment erfolgreich zu positionieren. Bisher wurden neben dem Basismodell R 1200 C Classic die technisch nahezu identischen Modellvarianten Avantgarde und Independent angeboten, die sich in Farbgebung, Designelementen und Ausstattungsdetails unterscheiden.
Zur Angebotserweiterung und zur Erschließung zusätzlicher Potenziale, präsentiert BMW Motorrad für das Modelljahr 2003 ein neues Mitglied der Cruiserfamilie, den Luxus-Cruiser R 1200 CL. Er wird seine Weltpremiere im September in München auf der INTERMOT haben und voraussichtlich im Herbst 2002 auf den Markt kommen. Der Grundgedanke war, Elemente von Tourenmotorrädern auf einen Cruiser zu übertragen und ein Motorrad zu entwickeln, das Eigenschaften aus beiden Fahrzeuggattungen aufweist.
So entstand ein eigenständiges Modell, ein Cruiser zum genussvollen Touren, bei dem in Komfort und Ausstattung keine Wünsche offen bleiben.
Als technische Basis diente die R 1200 C, von der aber im wesentlichen nur der Motor, der Hinterradantrieb, der Vorderrahmen, der Tank und einige Ausstattungsumfänge übernommen wurden. Ansonsten ist das Motorrad ein völlig eigenständiger Entwurf und in weiten Teilen eine Neuentwicklung.
Fahrgestell und Design:
Einzigartiges Gesicht, optische Präsenz und Koffer integriert.
Präsenz, kraftvoller Auftritt und luxuriöser Charakter, mit diesen Worten lässt sich die Wirkung der BMW R 1200 CL kurz und treffend beschreiben. Geprägt wird dieses Motorrad von der lenkerfesten Tourenverkleidung, deren Linienführung sich in den separaten seitlichen Verkleidungsteilen am Tank fortsetzt, so dass in der Seitenansicht fast der Eindruck einer integrierten Verkleidung entsteht. Sie bietet dem Fahrer ein hohes Maß an Komfort durch guten Wind- und Wetterschutz.
Insgesamt vier in die Verkleidung integrierte Scheinwerfer, zwei für das Abblendlicht und zwei für das Fernlicht, geben dem Motorrad ein unverwechselbares, einzigartiges Gesicht und eine beeindruckende optische Wirkung, die es so bisher noch bei keinem Motorrad gab. Natürlich sorgen die vier Scheinwerfer auch für eine hervorragende Fahrbahnausleuchtung.
Besonders einfallsreich ist die aerodynamische Gestaltung der Verkleidungsscheibe mit ihrem wellenartig ausgeschnittenen oberen Rand. Sie leitet die Strömung so, dass der Fahrer wirkungsvoll geschützt wird. Gleichzeitig kann man aber wegen des Einzugs in der Mitte ungehindert über die Scheibe hinwegschauen und hat somit unabhängig von Nässe und Verschmutzung der Scheibe ein ungestörtes Sichtfeld auf die Straße.
Zur kraftvollen Erscheinung des Motorrades passt der Vorderradkotflügel, der seitlich bis tief zur Felge heruntergezogen ist. Er bietet guten Spritzschutz und unterstreicht zusammen mit dem voluminösen Vorderreifen die Dominanz der Frontpartie, die aber dennoch Gelassenheit und Eleganz ausstrahlt.
Der gegenüber den anderen Modellen flacher gestellte Telelever hebt den Cruisercharakter noch mehr hervor. Der Heckbereich wird bestimmt durch die integrierten, fest mit dem Fahrzeug verbundenen Hartschalenkoffer und das abnehmbare Topcase auf der geschwungenen Gepäckbrücke, die zugleich als Soziushaltegriff dient. Koffer und Topcase sind jeweils in Fahrzeugfarbe lackiert und bilden somit ein harmonisches Ganzes mit dem Fahrzeug.
Akzente setzen auch die stufenförmig angeordneten breiten Komfortsitze für Fahrer und Beifahrer mit der charakteristischen hinteren Abstützung. Luxus durch exklusive Farben, edle Oberflächen und Materialien.
Die R 1200 CL wird zunächst in drei exklusiven Farben angeboten: perlsilber-metallic und capriblau-metallic mit jeweils schwarzen Sitzen und mojavebraun-metallic mit braunem Sitzbezug (wahlweise auch in schwarz). Die Eleganz der Farben wird unterstützt durch sorgfältige Materialauswahl und perfektes Finish von Oberflächen und Fugen. So ist zum Beispiel die Gepäckbrücke aus Aluminium-Druckguß gefertigt und in weissaluminium lackiert, der Lenker verchromt und die obere Instrumentenabdeckung ebenfalls weissaluminiumfarben lackiert. Die Frontverkleidung ist vollständig mit einer Innenabdeckung versehen, und die Kniepads der seitlichen Verkleidungsteile sind mit dem gleichen Material wie die Sitze überzogen.
All dies unterstreicht den Anspruch auf Luxus und Perfektion.
Antrieb jetzt mit neuem, leiserem Sechsganggetriebe - Boxermotor unverändert.
Während der Boxermotor mit 1170 cm³ unverändert von der bisherigen R 1200 C übernommen wurde - auch die Leistungsdaten sind mit 45 kW (61 PS) und 98 Nm Drehmoment bei 3 000 min-1 gleich geblieben -, ist das Getriebe der R 1200 CL neu. Abgeleitet von dem bekannten Getriebe der anderen Boxermodelle hat es jetzt auch sechs Gänge und wurde grundlegend überarbeitet. Als wesentliche Neuerung kommt eine sogenannte Hochverzahnung zum Einsatz. Diese sorgt für einen "weicheren" Zahneingriff und reduziert erheblich die Laufgeräusche der Verzahnung.
Der lang übersetzte, als "overdrive" ausgelegte, sechste Gang erlaubt drehzahlschonendes Fahren auf langen Etappen in der Ebene und senkt dort Verbrauch und Geräusch. Statt eines Schalthebels gibt es eine Schaltwippe für Gangwechsel mit einem lässigen Kick. Schaltkomfort, Geräuscharmut, niedrige Drehzahlen und dennoch genügend Kraft - Eigenschaften, die zum Genusscharakter des Fahrzeugs hervorragend passen.
Dass auch die R 1200 CL, wie jedes seit 1997 neu eingeführte BMW Motorrad weltweit, serienmäßig über die jeweils modernste Abgasreinigungstechnologie mit geregeltem Drei-Wege-Katalysator verfügt, muss fast nicht mehr erwähnt werden. Es ist bei BMW zur Selbstverständlichkeit geworden.
Fahrwerkselemente für noch mehr Komfort - Telelever neu und hinteres Federbein mit wegabhängiger Dämpfung.
Ein cruisertypisches Merkmal ist die nach vorn gestreckte Vorderradführung mit flachem Winkel zur Fahrbahn und großem Nachlauf. Dazu wurde für die R 1200 CL der nach wie vor einzigartige BMW Telelever neu ausgelegt.
Die Gabelholme stehen weiter auseinander, um dem bulligen, 150 mm breiten Vorderradreifen Platz zu bieten.
Für die Hinterradfederung kommt ein Federbein mit wegabhängiger Dämpfung zum Einsatz, das sich durch hervorragende Komforteigenschaften auszeichnet. Der Gesamtfederweg wuchs um 20 mm gegenüber den anderen Cruisermodellen auf jetzt 120 mm. Die Federbasisverstellung zur Anpassung an den Beladungszustand erfolgt hydraulisch über ein bequem zugängliches Handrad.
Hinterradschwinge optimiert und Heckrahmen neu.
Die Hinterradschwinge mit Hinterachsgehäuse, der BMW Monolever, wurde verstärkt und zur Aufnahme einer größeren Hinterradbremse angepasst.
Der verstärkte Heckrahmen ist vollständig neu, um Trittbretter, Kofferhalter, Gepäckbrücke und die neuen Sitze sowie die modifizierte Seitenstütze aufnehmen zu können. Der Vorderrahmen aus Aluminiumguss wurde mit geringfügigen Modifikationen von der bisherigen R 1200 C übernommen.
Räder aus Aluminiumguss, Sitze, Trittbretter und Lenker - alles neu.
Der optische Eindruck eines Motorrades wird ganz wesentlich auch von den Rädern bestimmt. Die R 1200 CL hat avantgardistisch gestaltete neue Gussräder aus Aluminium mit 16 Zoll (vorne) beziehungsweise 15 Zoll (hinten) Felgendurchmesser, die voluminöse Reifen im Format 150/80 vorne und 170/80 hinten aufnehmen.
Die Sitze sind für Fahrer und Beifahrer getrennt ausgeführt, um den unterschiedlichen Bedürfnissen gerecht zu werden. So ist der breite Komfortsattel für den Fahrer mit einer integrierten Beckenabstützung versehen und bietet einen hervorragenden Halt. Die Sitzhöhe beträgt 745 mm. Der Sitz für den Passagier ist ebenfalls ganz auf Bequemlichkeit ausgelegt und etwas höher als der Fahrersitz angeordnet. Dadurch hat der Beifahrer einen besseren Blick am Fahrer vorbei und kann beim Cruisen die Landschaft ungestört genießen.
Großzügige cruisertypische Trittbretter für den Fahrer tragen zum entspannten Sitzen bei. Die Soziusfußrasten, die von der K 1200 LT abgeleitet sind, bieten ebenfalls sehr guten Halt und ermöglichen zusammen mit dem günstigen Kniebeugewinkel auch dem Beifahrer ein ermüdungsfreies Touren.
Der breite, verchromte Lenker vermittelt nicht nur Cruiser-Feeling; Höhe und Kröpfungswinkel sind so ausgelegt, dass auch auf langen Fahrten keine Verspannungen auftreten. Handhebel und Schalter mit der bewährten und eigenständigen BMW Bedienlogik wurden unverändert von den anderen Modellen übernommen.
HighTech bei den Bremsen - BMW EVO-Bremse und als Sonderausstattung Integral ABS.
Sicherheit hat bei BMW traditionell höchste Priorität. Deshalb kommt bei der
R 1200 CL die schon in anderen BMW Motorrädern bewährte EVO-Bremse am Vorderrad zum Einsatz, die sich durch eine verbesserte Bremsleistung auszeichnet. Auf Wunsch gibt es das einzigartige BMW Integral ABS, dem Charakter des Motorrades entsprechend in der Vollintegralversion. Das heißt, unabhängig ob der Hand- oder Fußbremshebel betätigt wird, immer wirkt die Bremskraft optimal auf beide Räder. Im Vorderrad verzögert eine Doppel-Scheibenbremse mit 305 mm Scheibendurchmesser und im Hinterrad die von der K 1200 LT übernommene Einscheiben-Bremsanlage mit einem Scheibendurchmesser von 285 mm.
Fortschrittliche Elektrik: Vierfach-Scheinwerfer, wartungsarme Batterie und elektronischer Tachometer.
Vier Scheinwerfer, je zwei für das Abblend- und Fernlicht, geben dem Motorrad von vorne ein einzigartiges prägnantes Gesicht. Durch die kreuzweise Anordnung - die Abblendscheinwerfer sitzen nebeneinander und die Fernscheinwerfer dazwischen und übereinander - wird eine hohe Signalwirkung bei Tag und eine hervorragende Fahrbahnausleuchtung bei Dunkelheit erzielt.
Neu ist die wartungsarme, komplett gekapselte Gel-Batterie, bei der kein Wasser mehr nachgefüllt werden muss. Eine zweite Steckdose ist serienmäßig. Die Instrumente sind ebenfalls neu. Drehzahlmesser und Tachometer sind elektronisch und die Zifferblätter neu gestaltetet, ebenso die Analoguhr.
Umfangreiche Sonderausstattung für Sicherheit, Komfort und individuellen Luxus.
Die Sonderausstattung der R 1200 CL ist sehr umfangreich und reicht vom BMW Integral ABS für sicheres Bremsen über Komfortausstattungen wie Temporegelung, heizbare Lenkergriffe und Sitzheizung bis hin zu luxuriöser Individualisierung mit Softtouchsitzen, Chrompaket und fernbedientem Radio mit CD-Laufwerk.
BMW R 1200 CL Sölkpass motorcycle trip Styria Austria (c) 2009 Берни Эггерян :: rumoto images 5882
Notre-Dame de Paris (French: [nɔtʁ(ə) dam də paʁi] ⓘ; meaning "Our Lady of Paris"), referred to simply as Notre-Dame, is a medieval Catholic cathedral on the Île de la Cité (an island in the Seine River), in the 4th arrondissement of Paris, France. The cathedral, dedicated to the Virgin Mary, is considered one of the finest examples of French Gothic architecture. Several attributes set it apart from the earlier Romanesque style, particularly its pioneering use of the rib vault and flying buttress, its enormous and colourful rose windows, and the naturalism and abundance of its sculptural decoration. Notre-Dame also stands out for its three pipe organs (one historic) and its immense church bells.
Built during medieval France, construction of the cathedral began in 1163 under Bishop Maurice de Sully and was largely completed by 1260, though it was modified in succeeding centuries. In the 1790s, during the French Revolution, Notre-Dame suffered extensive desecration; much of its religious imagery was damaged or destroyed. In the 19th century, the coronation of Napoleon I and the funerals of many of the French Republic's presidents took place at the cathedral.
The 1831 publication of Victor Hugo's novel Notre-Dame de Paris (in English: The Hunchback of Notre-Dame) inspired interest which led to restoration between 1844 and 1864, supervised by Eugène Viollet-le-Duc. On 26 August 1944, the Liberation of Paris from German occupation was celebrated in Notre-Dame with the singing of the Magnificat. Beginning in 1963, the cathedral's façade was cleaned of centuries of soot and grime. Another cleaning and restoration project was carried out between 1991 and 2000.
The cathedral is a widely recognized symbol of the city of Paris and the French nation. In 1805, it was awarded honorary status as a minor basilica. As the cathedral of the archdiocese of Paris, Notre-Dame contains the cathedra of the archbishop of Paris (Laurent Ulrich).
In the early 21st century, approximately 12 million people visited Notre-Dame annually, making it the most visited monument in Paris.[8] The cathedral is renowned for its Lent sermons, a tradition founded in the 1830s by the Dominican Jean-Baptiste Henri Lacordaire. In recent years, these sermons have increasingly been given by leading public figures or government-employed academics.
Over time, the cathedral has gradually been stripped of many decorations and artworks. However, the cathedral still contains several Gothic, Baroque, and 19th-century sculptures, 17th- and early 18th-century altarpieces, and some of the most important relics in Christendom – including the Crown of Thorns, a sliver of the true cross and a nail from the true cross.
On 15 April 2019, while Notre-Dame was undergoing renovation and restoration, its roof caught fire and burned for 15 hours. The cathedral sustained serious damage. The flèche (the timber spirelet over the crossing) was destroyed, as was most of the lead-covered wooden roof above the stone vaulted ceiling. This contaminated the site and the nearby environment with lead. After the fire, restoration proposals suggested modernizing the cathedral, but the French National Assembly rejected them, enacting a law on 29 July 2019 that required the restoration preserve the cathedral's "historic, artistic and architectural interest". The task of stabilizing the building against potential collapse was completed in November 2020.
The cathedral is expected to re-open on December 8, 2024, shortly after the end of the Paris Summer Olympics. The date was confirmed by President Macron.
On 15 April 2019 the cathedral caught fire, destroying the flèche and the "forest" of oak roof beams supporting the lead roof. It was speculated that the fire was linked to ongoing renovation work.
According to later studies, the fire broke out in the attic of the cathedral at 18:18. The smoke detectors immediately signaled the fire to a cathedral employee, who did not summon the fire brigade but instead sent a cathedral guard to investigate. Instead of going to the correct attic, the guard was sent to the wrong location, to the attic of the adjoining sacristy, and reported there was no fire. The guard telephoned his supervisor, who did not immediately answer. About fifteen minutes later the error was discovered, whereupon the guard's supervisor told him to go to the correct location. The fire brigade was still not notified. By the time the guard had climbed the three hundred steps to the cathedral attic the fire was well advanced. The alarm system was not designed to automatically notify the fire brigade, which was finally summoned at 18:51 after the guard had returned from the attic and reported a now-raging fire, and more than half an hour after the fire alarm had begun sounding.
Firefighters arrived in less than ten minutes.
The cathedral's flèche collapsed at 19:50, bringing down some 750 tonnes of stone and lead. The firefighters inside were ordered back down. By this time the fire had spread to the north tower, where the eight bells were located. The firefighters concentrated their efforts in the tower. They feared that, if the bells fell, they could wreck the tower, and endanger the structure of the other tower and the whole cathedral. They had to ascend a stairway threatened by fire, and to contend with low water pressure for their hoses. As other firefighters watered the stairway and the roof, a team of twenty climbed the narrow stairway of the south tower, crossed to the north tower, lowered hoses to be connected to fire engines outside the cathedral, and sprayed water on the fire beneath the bells. By 21:45, they brought the fire under control.
The main structure was intact; firefighters saved the façade, towers, walls, buttresses, and stained glass windows. The Great Organ, which has over 8,000 pipes and was built by François Thierry in the 18th century was also saved but sustained water damage.[81] Because of the ongoing renovation, the copper statues on the flèche had been removed before the fire. The stone vaulting that forms the ceiling of the cathedral had several holes but was otherwise intact.
Since 1905, France's cathedrals (including Notre-Dame) have been owned by the state, which is self-insured. Some costs might be recovered through insurance coverage if the fire is found to have been caused by contractors working on the site. The French insurer AXA provided insurance coverage for two of the contracting firms working on Notre-Dame's restoration before the blaze. AXA also provided insurance coverage for some of the relics and artworks in the cathedral.
President Emmanuel Macron said approximately 500 firefighters helped to battle the fire. One firefighter was seriously injured and two police officers were hurt during the blaze.
An ornate tapestry woven in the early 1800s is going on public display for only the third time in recent decades. The decoration was rescued from Notre-Dame de Paris cathedral after the fire.
For the first time in more than 200 years, the Christmas Mass was not hosted at the cathedral on 25 December 2019, due to the ongoing restoration work after the fire.
Eight members of the cathedral choir, a number limited by COVID-19 pandemic restrictions, performed inside the building for the first time since the fire in December 2020. A video of the event aired later, just before midnight on 24 December 2020.
USS Olympia (C-6/CA-15/CL-15/IX-40) is a protected cruiser that saw service in the United States Navy from her commissioning in 1895 until 1922. This vessel became famous as the flagship of Commodore George Dewey at the Battle of Manila Bay during the Spanish-American War in 1898. The ship was decommissioned after returning to the U.S. in 1899, but was returned to active service in 1902.
She served until World War I as a training ship for naval cadets and as a floating barracks in Charleston, South Carolina. In 1917, she was mobilized again for war service, patrolling the American coast and escorting transport ships.
Following the end of World War I, Olympia participated in the 1919 Allied intervention in the Russian Civil War, and conducted cruises in the Mediterranean and Adriatic Seas to promote peace in the unstable Balkan countries. In 1921, the ship carried the remains of World War I's Unknown Soldier from France to Washington, DC, where his body was interred in Arlington National Cemetery. Olympia was decommissioned for the last time in December 1922 and placed in reserve.
In 1957, the U.S. Navy ceded title to the Cruiser Olympia Association, which restored the ship to her 1898 configuration. Since then, Olympia has been a museum ship in Philadelphia, Pennsylvania, and is now part of the Independence Seaport Museum. Olympia is the oldest steel US warship still afloat. However, the Museum has been unable to fund essential maintenance for the old ship, and attempts to secure outside funding have failed. Therefore the current steward, under direction of the US Navy has put the ship up for availability to new stewards. It will take an estimated ten million dollars to put Olympia in a stable condition.
Olympia was designated a National Historic Landmark in 1966.
As of 2012, Olympia's future was uncertain; repairs are desperately needed to keep the ship afloat. Four entities from San Francisco, California, Beaufort, South Carolina, Philadelphia, Pennsylvania, and Washington, DC, are vying to be a new steward, but it is a race against time due to the waterline deterioration of the hull. As the current entities are in competition for the ship, no significant repairs have been made, although the current steward has done some minor repairs. In reaction to this gap in coverage, the National Trust for Historic Preservation (NTHP) has set up a fund repository which, if funds are raised, will be directly applied to immediate repairs of the vessel with the cooperation of the current steward. At the present time, March 2012, the NTHP is considering a triple application by the Naval Historical Foundation, the Historic Naval Ships Association, and the National Maritime Association to have Olympia placed on the NTHP's list of the eleven most endangered "places". The steward applicants from San Francisco (Mare Island), and Beaufort, S.C., have endorsed the application. Despite these positive steps, Olympia is in critical danger due to the lack of funds.
Since 2011, Independence Seaport Museum has renewed its commitment to the continued preservation of the Cruiser Olympia until the Transfer Application Process reaches its conclusion in summer 2014. The Museum has invested in extensive stabilization measures including reinforcing the most deteriorated areas of the hull, expanding the alarm system, installing a network of bilge pumping stand pipes (which will provide greater damage control capability in the unlikely event of a hull breech), extensive deck patching and extensive repair and recoating of the ship’s rigging. Although still in need of dry docking and substantial restoration, the Olympia is in a more stable condition now than it has been for years. This work was made possible by donations from the National Trust for Historic Preservation, The U.S. Cruiser Sailors Association and many individual donors.
Of the six candidates that originally applied for stewardship of the cruiser Olympia, only two remain: an organization in California and an organization in South Carolina. The Museum continues to seek resources to preserve the ship for education and interpretation. The ship will remain open to the public seven days a week from 10:00 am to 5:00 pm, and until 7:00 pm on Thursdays, Fridays and Saturdays from Memorial Day weekend through Labor Day weekend.
Fish, any of approximately 34,000 species of vertebrate animals (phylum Chordata) found in the fresh and salt waters of the world. Living species range from the primitive jawless lampreys and hagfishes through the cartilaginous sharks, skates, and rays to the abundant and diverse bony fishes. Most fish species are cold-blooded; however, one species, the opah (Lampris guttatus), is warm-blooded.
The term fish is applied to a variety of vertebrates of several evolutionary lines. It describes a life-form rather than a taxonomic group. As members of the phylum Chordata, fish share certain features with other vertebrates. These features are gill slits at some point in the life cycle, a notochord, or skeletal supporting rod, a dorsal hollow nerve cord, and a tail. Living fishes represent some five classes, which are as distinct from one another as are the four classes of familiar air-breathing animals—amphibians, reptiles, birds, and mammals. For example, the jawless fishes (Agnatha) have gills in pouches and lack limb girdles. Extant agnathans are the lampreys and the hagfishes. As the name implies, the skeletons of fishes of the class Chondrichthyes (from chondr, “cartilage,” and ichthyes, “fish”) are made entirely of cartilage. Modern fish of this class lack a swim bladder, and their scales and teeth are made up of the same placoid material. Sharks, skates, and rays are examples of cartilaginous fishes. The bony fishes are by far the largest class. Examples range from the tiny seahorse to the 450-kg (1,000-pound) blue marlin, from the flattened soles and flounders to the boxy puffers and ocean sunfishes. Unlike the scales of the cartilaginous fishes, those of bony fishes, when present, grow throughout life and are made up of thin overlapping plates of bone. Bony fishes also have an operculum that covers the gill slits.
The study of fishes, the science of ichthyology, is of broad importance. Fishes are of interest to humans for many reasons, the most important being their relationship with and dependence on the environment. A more obvious reason for interest in fishes is their role as a moderate but important part of the world’s food supply. This resource, once thought unlimited, is now realized to be finite and in delicate balance with the biological, chemical, and physical factors of the aquatic environment. Overfishing, pollution, and alteration of the environment are the chief enemies of proper fisheries management, both in fresh waters and in the ocean. (For a detailed discussion of the technology and economics of fisheries, see commercial fishing.) Another practical reason for studying fishes is their use in disease control. As predators on mosquito larvae, they help curb malaria and other mosquito-borne diseases.
Fishes are valuable laboratory animals in many aspects of medical and biological research. For example, the readiness of many fishes to acclimate to captivity has allowed biologists to study behaviour, physiology, and even ecology under relatively natural conditions. Fishes have been especially important in the study of animal behaviour, where research on fishes has provided a broad base for the understanding of the more flexible behaviour of the higher vertebrates. The zebra fish is used as a model in studies of gene expression.
There are aesthetic and recreational reasons for an interest in fishes. Millions of people keep live fishes in home aquariums for the simple pleasure of observing the beauty and behaviour of animals otherwise unfamiliar to them. Aquarium fishes provide a personal challenge to many aquarists, allowing them to test their ability to keep a small section of the natural environment in their homes. Sportfishing is another way of enjoying the natural environment, also indulged in by millions of people every year. Interest in aquarium fishes and sportfishing supports multimillion-dollar industries throughout the world.
Fishes have been in existence for more than 450 million years, during which time they have evolved repeatedly to fit into almost every conceivable type of aquatic habitat. In a sense, land vertebrates are simply highly modified fishes: when fishes colonized the land habitat, they became tetrapod (four-legged) land vertebrates. The popular conception of a fish as a slippery, streamlined aquatic animal that possesses fins and breathes by gills applies to many fishes, but far more fishes deviate from that conception than conform to it. For example, the body is elongate in many forms and greatly shortened in others; the body is flattened in some (principally in bottom-dwelling fishes) and laterally compressed in many others; the fins may be elaborately extended, forming intricate shapes, or they may be reduced or even lost; and the positions of the mouth, eyes, nostrils, and gill openings vary widely. Air breathers have appeared in several evolutionary lines.
Many fishes are cryptically coloured and shaped, closely matching their respective environments; others are among the most brilliantly coloured of all organisms, with a wide range of hues, often of striking intensity, on a single individual. The brilliance of pigments may be enhanced by the surface structure of the fish, so that it almost seems to glow. A number of unrelated fishes have actual light-producing organs. Many fishes are able to alter their coloration—some for the purpose of camouflage, others for the enhancement of behavioral signals.
Fishes range in adult length from less than 10 mm (0.4 inch) to more than 20 metres (60 feet) and in weight from about 1.5 grams (less than 0.06 ounce) to many thousands of kilograms. Some live in shallow thermal springs at temperatures slightly above 42 °C (100 °F), others in cold Arctic seas a few degrees below 0 °C (32 °F) or in cold deep waters more than 4,000 metres (13,100 feet) beneath the ocean surface. The structural and, especially, the physiological adaptations for life at such extremes are relatively poorly known and provide the scientifically curious with great incentive for study.
Almost all natural bodies of water bear fish life, the exceptions being very hot thermal ponds and extremely salt-alkaline lakes, such as the Dead Sea in Asia and the Great Salt Lake in North America. The present distribution of fishes is a result of the geological history and development of Earth as well as the ability of fishes to undergo evolutionary change and to adapt to the available habitats. Fishes may be seen to be distributed according to habitat and according to geographical area. Major habitat differences are marine and freshwater. For the most part, the fishes in a marine habitat differ from those in a freshwater habitat, even in adjacent areas, but some, such as the salmon, migrate from one to the other. The freshwater habitats may be seen to be of many kinds. Fishes found in mountain torrents, Arctic lakes, tropical lakes, temperate streams, and tropical rivers will all differ from each other, both in obvious gross structure and in physiological attributes. Even in closely adjacent habitats where, for example, a tropical mountain torrent enters a lowland stream, the fish fauna will differ. The marine habitats can be divided into deep ocean floors (benthic), mid-water oceanic (bathypelagic), surface oceanic (pelagic), rocky coast, sandy coast, muddy shores, bays, estuaries, and others. Also, for example, rocky coastal shores in tropical and temperate regions will have different fish faunas, even when such habitats occur along the same coastline.
Although much is known about the present geographical distribution of fishes, far less is known about how that distribution came about. Many parts of the fish fauna of the fresh waters of North America and Eurasia are related and undoubtedly have a common origin. The faunas of Africa and South America are related, extremely old, and probably an expression of the drifting apart of the two continents. The fauna of southern Asia is related to that of Central Asia, and some of it appears to have entered Africa. The extremely large shore-fish faunas of the Indian and tropical Pacific oceans comprise a related complex, but the tropical shore fauna of the Atlantic, although containing Indo-Pacific components, is relatively limited and probably younger. The Arctic and Antarctic marine faunas are quite different from each other. The shore fauna of the North Pacific is quite distinct, and that of the North Atlantic more limited and probably younger. Pelagic oceanic fishes, especially those in deep waters, are similar the world over, showing little geographical isolation in terms of family groups. The deep oceanic habitat is very much the same throughout the world, but species differences do exist, showing geographical areas determined by oceanic currents and water masses.
All aspects of the life of a fish are closely correlated with adaptation to the total environment, physical, chemical, and biological. In studies, all the interdependent aspects of fish, such as behaviour, locomotion, reproduction, and physical and physiological characteristics, must be taken into account.
Correlated with their adaptation to an extremely wide variety of habitats is the extremely wide variety of life cycles that fishes display. The great majority hatch from relatively small eggs a few days to several weeks or more after the eggs are scattered in the water. Newly hatched young are still partially undeveloped and are called larvae until body structures such as fins, skeleton, and some organs are fully formed. Larval life is often very short, usually less than a few weeks, but it can be very long, some lampreys continuing as larvae for at least five years. Young and larval fishes, before reaching sexual maturity, must grow considerably, and their small size and other factors often dictate that they live in a habitat different than that of the adults. For example, most tropical marine shore fishes have pelagic larvae. Larval food also is different, and larval fishes often live in shallow waters, where they may be less exposed to predators.
After a fish reaches adult size, the length of its life is subject to many factors, such as innate rates of aging, predation pressure, and the nature of the local climate. The longevity of a species in the protected environment of an aquarium may have nothing to do with how long members of that species live in the wild. Many small fishes live only one to three years at the most. In some species, however, individuals may live as long as 10 or 20 or even 100 years.
Fish behaviour is a complicated and varied subject. As in almost all animals with a central nervous system, the nature of a response of an individual fish to stimuli from its environment depends upon the inherited characteristics of its nervous system, on what it has learned from past experience, and on the nature of the stimuli. Compared with the variety of human responses, however, that of a fish is stereotyped, not subject to much modification by “thought” or learning, and investigators must guard against anthropomorphic interpretations of fish behaviour.
Fishes perceive the world around them by the usual senses of sight, smell, hearing, touch, and taste and by special lateral line water-current detectors. In the few fishes that generate electric fields, a process that might best be called electrolocation aids in perception. One or another of these senses often is emphasized at the expense of others, depending upon the fish’s other adaptations. In fishes with large eyes, the sense of smell may be reduced; others, with small eyes, hunt and feed primarily by smell (such as some eels).
Specialized behaviour is primarily concerned with the three most important activities in the fish’s life: feeding, reproduction, and escape from enemies. Schooling behaviour of sardines on the high seas, for instance, is largely a protective device to avoid enemies, but it is also associated with and modified by their breeding and feeding requirements. Predatory fishes are often solitary, lying in wait to dart suddenly after their prey, a kind of locomotion impossible for beaked parrot fishes, which feed on coral, swimming in small groups from one coral head to the next. In addition, some predatory fishes that inhabit pelagic environments, such as tunas, often school.
Sleep in fishes, all of which lack true eyelids, consists of a seemingly listless state in which the fish maintains its balance but moves slowly. If attacked or disturbed, most can dart away. A few kinds of fishes lie on the bottom to sleep. Most catfishes, some loaches, and some eels and electric fishes are strictly nocturnal, being active and hunting for food during the night and retiring during the day to holes, thick vegetation, or other protective parts of the environment.
Communication between members of a species or between members of two or more species often is extremely important, especially in breeding behaviour (see below Reproduction). The mode of communication may be visual, as between the small so-called cleaner fish and a large fish of a very different species. The larger fish often allows the cleaner to enter its mouth to remove gill parasites. The cleaner is recognized by its distinctive colour and actions and therefore is not eaten, even if the larger fish is normally a predator. Communication is often chemical, signals being sent by specific chemicals called pheromones.
Many fishes have a streamlined body and swim freely in open water. Fish locomotion is closely correlated with habitat and ecological niche (the general position of the animal to its environment).
Many fishes in both marine and fresh waters swim at the surface and have mouths adapted to feed best (and sometimes only) at the surface. Often such fishes are long and slender, able to dart at surface insects or at other surface fishes and in turn to dart away from predators; needlefishes, halfbeaks, and topminnows (such as killifish and mosquito fish) are good examples. Oceanic flying fishes escape their predators by gathering speed above the water surface, with the lower lobe of the tail providing thrust in the water. They then glide hundreds of yards on enlarged, winglike pectoral and pelvic fins. South American freshwater flying fishes escape their enemies by jumping and propelling their strongly keeled bodies out of the water.
So-called mid-water swimmers, the most common type of fish, are of many kinds and live in many habitats. The powerful fusiform tunas and the trouts, for example, are adapted for strong, fast swimming, the tunas to capture prey speedily in the open ocean and the trouts to cope with the swift currents of streams and rivers. The trout body form is well adapted to many habitats. Fishes that live in relatively quiet waters such as bays or lake shores or slow rivers usually are not strong, fast swimmers but are capable of short, quick bursts of speed to escape a predator. Many of these fishes have their sides flattened, examples being the sunfish and the freshwater angelfish of aquarists. Fish associated with the bottom or substrate usually are slow swimmers. Open-water plankton-feeding fishes almost always remain fusiform and are capable of rapid, strong movement (for example, sardines and herrings of the open ocean and also many small minnows of streams and lakes).
Bottom-living fishes are of many kinds and have undergone many types of modification of their body shape and swimming habits. Rays, which evolved from strong-swimming mid-water sharks, usually stay close to the bottom and move by undulating their large pectoral fins. Flounders live in a similar habitat and move over the bottom by undulating the entire body. Many bottom fishes dart from place to place, resting on the bottom between movements, a motion common in gobies. One goby relative, the mudskipper, has taken to living at the edge of pools along the shore of muddy mangrove swamps. It escapes its enemies by flipping rapidly over the mud, out of the water. Some catfishes, synbranchid eels, the so-called climbing perch, and a few other fishes venture out over damp ground to find more promising waters than those that they left. They move by wriggling their bodies, sometimes using strong pectoral fins; most have accessory air-breathing organs. Many bottom-dwelling fishes live in mud holes or rocky crevices. Marine eels and gobies commonly are found in such habitats and for the most part venture far beyond their cavelike homes. Some bottom dwellers, such as the clingfishes (Gobiesocidae), have developed powerful adhesive disks that enable them to remain in place on the substrate in areas such as rocky coasts, where the action of the waves is great.
The methods of reproduction in fishes are varied, but most fishes lay a large number of small eggs, fertilized and scattered outside of the body. The eggs of pelagic fishes usually remain suspended in the open water. Many shore and freshwater fishes lay eggs on the bottom or among plants. Some have adhesive eggs. The mortality of the young and especially of the eggs is very high, and often only a few individuals grow to maturity out of hundreds, thousands, and in some cases millions of eggs laid.
Males produce sperm, usually as a milky white substance called milt, in two (sometimes one) testes within the body cavity. In bony fishes a sperm duct leads from each testis to a urogenital opening behind the vent or anus. In sharks and rays and in cyclostomes the duct leads to a cloaca. Sometimes the pelvic fins are modified to help transmit the milt to the eggs at the female’s vent or on the substrate where the female has placed them. Sometimes accessory organs are used to fertilize females internally—for example, the claspers of many sharks and rays.
In the females the eggs are formed in two ovaries (sometimes only one) and pass through the ovaries to the urogenital opening and to the outside. In some fishes the eggs are fertilized internally but are shed before development takes place. Members of about a dozen families each of bony fishes (teleosts) and sharks bear live young. Many skates and rays also bear live young. In some bony fishes the eggs simply develop within the female, the young emerging when the eggs hatch (ovoviviparous). Others develop within the ovary and are nourished by ovarian tissues after hatching (viviparous). There are also other methods utilized by fishes to nourish young within the female. In all live-bearers the young are born at a relatively large size and are few in number. In one family of primarily marine fishes, the surfperches from the Pacific coast of North America, Japan, and Korea, the males of at least one species are born sexually mature, although they are not fully grown.
Some fishes are hermaphroditic—an individual producing both sperm and eggs, usually at different stages of its life. Self-fertilization, however, is probably rare.
Successful reproduction and, in many cases, defense of the eggs and the young are assured by rather stereotypical but often elaborate courtship and parental behaviour, either by the male or the female or both. Some fishes prepare nests by hollowing out depressions in the sand bottom (cichlids, for example), build nests with plant materials and sticky threads excreted by the kidneys (sticklebacks), or blow a cluster of mucus-covered bubbles at the water surface (gouramis). The eggs are laid in these structures. Some varieties of cichlids and catfishes incubate eggs in their mouths.
Some fishes, such as salmon, undergo long migrations from the ocean and up large rivers to spawn in the gravel beds where they themselves hatched (anadromous fishes). Some, such as the freshwater eels (family Anguillidae), live and grow to maturity in fresh water and migrate to the sea to spawn (catadromous fishes). Other fishes undertake shorter migrations from lakes into streams, within the ocean, or enter spawning habitats that they do not ordinarily occupy in other ways.
The basic structure and function of the fish body are similar to those of all other vertebrates. The usual four types of tissues are present: surface or epithelial, connective (bone, cartilage, and fibrous tissues, as well as their derivative, blood), nerve, and muscle tissues. In addition, the fish’s organs and organ systems parallel those of other vertebrates.
The typical fish body is streamlined and spindle-shaped, with an anterior head, a gill apparatus, and a heart, the latter lying in the midline just below the gill chamber. The body cavity, containing the vital organs, is situated behind the head in the lower anterior part of the body. The anus usually marks the posterior termination of the body cavity and most often occurs just in front of the base of the anal fin. The spinal cord and vertebral column continue from the posterior part of the head to the base of the tail fin, passing dorsal to the body cavity and through the caudal (tail) region behind the body cavity. Most of the body is of muscular tissue, a high proportion of which is necessitated by swimming. In the course of evolution this basic body plan has been modified repeatedly into the many varieties of fish shapes that exist today.
The skeleton forms an integral part of the fish’s locomotion system, as well as serving to protect vital parts. The internal skeleton consists of the skull bones (except for the roofing bones of the head, which are really part of the external skeleton), the vertebral column, and the fin supports (fin rays). The fin supports are derived from the external skeleton but will be treated here because of their close functional relationship to the internal skeleton. The internal skeleton of cyclostomes, sharks, and rays is of cartilage; that of many fossil groups and some primitive living fishes is mostly of cartilage but may include some bone. In place of the vertebral column, the earliest vertebrates had a fully developed notochord, a flexible stiff rod of viscous cells surrounded by a strong fibrous sheath. During the evolution of modern fishes the rod was replaced in part by cartilage and then by ossified cartilage. Sharks and rays retain a cartilaginous vertebral column; bony fishes have spool-shaped vertebrae that in the more primitive living forms only partially replace the notochord. The skull, including the gill arches and jaws of bony fishes, is fully, or at least partially, ossified. That of sharks and rays remains cartilaginous, at times partially replaced by calcium deposits but never by true bone.
The supportive elements of the fins (basal or radial bones or both) have changed greatly during fish evolution. Some of these changes are described in the section below (Evolution and paleontology). Most fishes possess a single dorsal fin on the midline of the back. Many have two and a few have three dorsal fins. The other fins are the single tail and anal fins and paired pelvic and pectoral fins. A small fin, the adipose fin, with hairlike fin rays, occurs in many of the relatively primitive teleosts (such as trout) on the back near the base of the caudal fin.
The skin of a fish must serve many functions. It aids in maintaining the osmotic balance, provides physical protection for the body, is the site of coloration, contains sensory receptors, and, in some fishes, functions in respiration. Mucous glands, which aid in maintaining the water balance and offer protection from bacteria, are extremely numerous in fish skin, especially in cyclostomes and teleosts. Since mucous glands are present in the modern lampreys, it is reasonable to assume that they were present in primitive fishes, such as the ancient Silurian and Devonian agnathans. Protection from abrasion and predation is another function of the fish skin, and dermal (skin) bone arose early in fish evolution in response to this need. It is thought that bone first evolved in skin and only later invaded the cartilaginous areas of the fish’s body, to provide additional support and protection. There is some argument as to which came first, cartilage or bone, and fossil evidence does not settle the question. In any event, dermal bone has played an important part in fish evolution and has different characteristics in different groups of fishes. Several groups are characterized at least in part by the kind of bony scales they possess.
Scales have played an important part in the evolution of fishes. Primitive fishes usually had thick bony plates or thick scales in several layers of bone, enamel, and related substances. Modern teleost fishes have scales of bone, which, while still protective, allow much more freedom of motion in the body. A few modern teleosts (some catfishes, sticklebacks, and others) have secondarily acquired bony plates in the skin. Modern and early sharks possessed placoid scales, a relatively primitive type of scale with a toothlike structure, consisting of an outside layer of enamel-like substance (vitrodentine), an inner layer of dentine, and a pulp cavity containing nerves and blood vessels. Primitive bony fishes had thick scales of either the ganoid or the cosmoid type. Cosmoid scales have a hard, enamel-like outer layer, an inner layer of cosmine (a form of dentine), and then a layer of vascular bone (isopedine). In ganoid scales the hard outer layer is different chemically and is called ganoin. Under this is a cosminelike layer and then a vascular bony layer. The thin, translucent bony scales of modern fishes, called cycloid and ctenoid (the latter distinguished by serrations at the edges), lack enameloid and dentine layers.
Skin has several other functions in fishes. It is well supplied with nerve endings and presumably receives tactile, thermal, and pain stimuli. Skin is also well supplied with blood vessels. Some fishes breathe in part through the skin, by the exchange of oxygen and carbon dioxide between the surrounding water and numerous small blood vessels near the skin surface.
Skin serves as protection through the control of coloration. Fishes exhibit an almost limitless range of colours. The colours often blend closely with the surroundings, effectively hiding the animal. Many fishes use bright colours for territorial advertisement or as recognition marks for other members of their own species, or sometimes for members of other species. Many fishes can change their colour to a greater or lesser degree, by movement of pigment within the pigment cells (chromatophores). Black pigment cells (melanophores), of almost universal occurrence in fishes, are often juxtaposed with other pigment cells. When placed beneath iridocytes or leucophores (bearing the silvery or white pigment guanine), melanophores produce structural colours of blue and green. These colours are often extremely intense, because they are formed by refraction of light through the needlelike crystals of guanine. The blue and green refracted colours are often relatively pure, lacking the red and yellow rays, which have been absorbed by the black pigment (melanin) of the melanophores. Yellow, orange, and red colours are produced by erythrophores, cells containing the appropriate carotenoid pigments. Other colours are produced by combinations of melanophores, erythrophores, and iridocytes.
The major portion of the body of most fishes consists of muscles. Most of the mass is trunk musculature, the fin muscles usually being relatively small. The caudal fin is usually the most powerful fin, being moved by the trunk musculature. The body musculature is usually arranged in rows of chevron-shaped segments on each side. Contractions of these segments, each attached to adjacent vertebrae and vertebral processes, bends the body on the vertebral joint, producing successive undulations of the body, passing from the head to the tail, and producing driving strokes of the tail. It is the latter that provides the strong forward movement for most fishes.
The digestive system, in a functional sense, starts at the mouth, with the teeth used to capture prey or collect plant foods. Mouth shape and tooth structure vary greatly in fishes, depending on the kind of food normally eaten. Most fishes are predacious, feeding on small invertebrates or other fishes and have simple conical teeth on the jaws, on at least some of the bones of the roof of the mouth, and on special gill arch structures just in front of the esophagus. The latter are throat teeth. Most predacious fishes swallow their prey whole, and the teeth are used for grasping and holding prey, for orienting prey to be swallowed (head first) and for working the prey toward the esophagus. There are a variety of tooth types in fishes. Some fishes, such as sharks and piranhas, have cutting teeth for biting chunks out of their victims. A shark’s tooth, although superficially like that of a piranha, appears in many respects to be a modified scale, while that of the piranha is like that of other bony fishes, consisting of dentine and enamel. Parrot fishes have beaklike mouths with short incisor-like teeth for breaking off coral and have heavy pavementlike throat teeth for crushing the coral. Some catfishes have small brushlike teeth, arranged in rows on the jaws, for scraping plant and animal growth from rocks. Many fishes (such as the Cyprinidae or minnows) have no jaw teeth at all but have very strong throat teeth.
Some fishes gather planktonic food by straining it from their gill cavities with numerous elongate stiff rods (gill rakers) anchored by one end to the gill bars. The food collected on these rods is passed to the throat, where it is swallowed. Most fishes have only short gill rakers that help keep food particles from escaping out the mouth cavity into the gill chamber.
Once reaching the throat, food enters a short, often greatly distensible esophagus, a simple tube with a muscular wall leading into a stomach. The stomach varies greatly in fishes, depending upon the diet. In most predacious fishes it is a simple straight or curved tube or pouch with a muscular wall and a glandular lining. Food is largely digested there and leaves the stomach in liquid form.
Between the stomach and the intestine, ducts enter the digestive tube from the liver and pancreas. The liver is a large, clearly defined organ. The pancreas may be embedded in it, diffused through it, or broken into small parts spread along some of the intestine. The junction between the stomach and the intestine is marked by a muscular valve. Pyloric ceca (blind sacs) occur in some fishes at this junction and have a digestive or absorptive function or both.
The intestine itself is quite variable in length, depending upon the fish’s diet. It is short in predacious forms, sometimes no longer than the body cavity, but long in herbivorous forms, being coiled and several times longer than the entire length of the fish in some species of South American catfishes. The intestine is primarily an organ for absorbing nutrients into the bloodstream. The larger its internal surface, the greater its absorptive efficiency, and a spiral valve is one method of increasing its absorption surface.
Sharks, rays, chimaeras, lungfishes, surviving chondrosteans, holosteans, and even a few of the more primitive teleosts have a spiral valve or at least traces of it in the intestine. Most modern teleosts have increased the area of the intestinal walls by having numerous folds and villi (fingerlike projections) somewhat like those in humans. Undigested substances are passed to the exterior through the anus in most teleost fishes. In lungfishes, sharks, and rays, it is first passed through the cloaca, a common cavity receiving the intestinal opening and the ducts from the urogenital system.
Oxygen and carbon dioxide dissolve in water, and most fishes exchange dissolved oxygen and carbon dioxide in water by means of the gills. The gills lie behind and to the side of the mouth cavity and consist of fleshy filaments supported by the gill arches and filled with blood vessels, which give gills a bright red colour. Water taken in continuously through the mouth passes backward between the gill bars and over the gill filaments, where the exchange of gases takes place. The gills are protected by a gill cover in teleosts and many other fishes but by flaps of skin in sharks, rays, and some of the older fossil fish groups. The blood capillaries in the gill filaments are close to the gill surface to take up oxygen from the water and to give up excess carbon dioxide to the water.
Most modern fishes have a hydrostatic (ballast) organ, called the swim bladder, that lies in the body cavity just below the kidney and above the stomach and intestine. It originated as a diverticulum of the digestive canal. In advanced teleosts, especially the acanthopterygians, the bladder has lost its connection with the digestive tract, a condition called physoclistic. The connection has been retained (physostomous) by many relatively primitive teleosts. In several unrelated lines of fishes, the bladder has become specialized as a lung or, at least, as a highly vascularized accessory breathing organ. Some fishes with such accessory organs are obligate air breathers and will drown if denied access to the surface, even in well-oxygenated water. Fishes with a hydrostatic form of swim bladder can control their depth by regulating the amount of gas in the bladder. The gas, mostly oxygen, is secreted into the bladder by special glands, rendering the fish more buoyant; the gas is absorbed into the bloodstream by another special organ, reducing the overall buoyancy and allowing the fish to sink. Some deep-sea fishes may have oils, rather than gas, in the bladder. Other deep-sea and some bottom-living forms have much-reduced swim bladders or have lost the organ entirely.
The swim bladder of fishes follows the same developmental pattern as the lungs of land vertebrates. There is no doubt that the two structures have the same historical origin in primitive fishes. More or less intermediate forms still survive among the more primitive types of fishes, such as the lungfishes Lepidosiren and Protopterus.
The circulatory, or blood vascular, system consists of the heart, the arteries, the capillaries, and the veins. It is in the capillaries that the interchange of oxygen, carbon dioxide, nutrients, and other substances such as hormones and waste products takes place. The capillaries lead to the veins, which return the venous blood with its waste products to the heart, kidneys, and gills. There are two kinds of capillary beds: those in the gills and those in the rest of the body. The heart, a folded continuous muscular tube with three or four saclike enlargements, undergoes rhythmic contractions and receives venous blood in a sinus venosus. It passes the blood to an auricle and then into a thick muscular pump, the ventricle. From the ventricle the blood goes to a bulbous structure at the base of a ventral aorta just below the gills. The blood passes to the afferent (receiving) arteries of the gill arches and then to the gill capillaries. There waste gases are given off to the environment, and oxygen is absorbed. The oxygenated blood enters efferent (exuant) arteries of the gill arches and then flows into the dorsal aorta. From there blood is distributed to the tissues and organs of the body. One-way valves prevent backflow. The circulation of fishes thus differs from that of the reptiles, birds, and mammals in that oxygenated blood is not returned to the heart prior to distribution to the other parts of the body.
The primary excretory organ in fishes, as in other vertebrates, is the kidney. In fishes some excretion also takes place in the digestive tract, skin, and especially the gills (where ammonia is given off). Compared with land vertebrates, fishes have a special problem in maintaining their internal environment at a constant concentration of water and dissolved substances, such as salts. Proper balance of the internal environment (homeostasis) of a fish is in a great part maintained by the excretory system, especially the kidney.
The kidney, gills, and skin play an important role in maintaining a fish’s internal environment and checking the effects of osmosis. Marine fishes live in an environment in which the water around them has a greater concentration of salts than they can have inside their body and still maintain life. Freshwater fishes, on the other hand, live in water with a much lower concentration of salts than they require inside their bodies. Osmosis tends to promote the loss of water from the body of a marine fish and absorption of water by that of a freshwater fish. Mucus in the skin tends to slow the process but is not a sufficient barrier to prevent the movement of fluids through the permeable skin. When solutions on two sides of a permeable membrane have different concentrations of dissolved substances, water will pass through the membrane into the more concentrated solution, while the dissolved chemicals move into the area of lower concentration (diffusion).
The kidney of freshwater fishes is often larger in relation to body weight than that of marine fishes. In both groups the kidney excretes wastes from the body, but the kidney of freshwater fishes also excretes large amounts of water, counteracting the water absorbed through the skin. Freshwater fishes tend to lose salt to the environment and must replace it. They get some salt from their food, but the gills and skin inside the mouth actively absorb salt from water passed through the mouth. This absorption is performed by special cells capable of moving salts against the diffusion gradient. Freshwater fishes drink very little water and take in little water with their food.
Marine fishes must conserve water, and therefore their kidneys excrete little water. To maintain their water balance, marine fishes drink large quantities of seawater, retaining most of the water and excreting the salt. Most nitrogenous waste in marine fishes appears to be secreted by the gills as ammonia. Marine fishes can excrete salt by clusters of special cells (chloride cells) in the gills.
There are several teleosts—for example, the salmon—that travel between fresh water and seawater and must adjust to the reversal of osmotic gradients. They adjust their physiological processes by spending time (often surprisingly little time) in the intermediate brackish environment.
Marine hagfishes, sharks, and rays have osmotic concentrations in their blood about equal to that of seawater and so do not have to drink water nor perform much physiological work to maintain their osmotic balance. In sharks and rays the osmotic concentration is kept high by retention of urea in the blood. Freshwater sharks have a lowered concentration of urea in the blood.
Endocrine glands secrete their products into the bloodstream and body tissues and, along with the central nervous system, control and regulate many kinds of body functions. Cyclostomes have a well-developed endocrine system, and presumably it was well developed in the early Agnatha, ancestral to modern fishes. Although the endocrine system in fishes is similar to that of higher vertebrates, there are numerous differences in detail. The pituitary, the thyroid, the suprarenals, the adrenals, the pancreatic islets, the sex glands (ovaries and testes), the inner wall of the intestine, and the bodies of the ultimobranchial gland make up the endocrine system in fishes. There are some others whose function is not well understood. These organs regulate sexual activity and reproduction, growth, osmotic pressure, general metabolic activities such as the storage of fat and the utilization of foodstuffs, blood pressure, and certain aspects of skin colour. Many of these activities are also controlled in part by the central nervous system, which works with the endocrine system in maintaining the life of a fish. Some parts of the endocrine system are developmentally, and undoubtedly evolutionarily, derived from the nervous system.
As in all vertebrates, the nervous system of fishes is the primary mechanism coordinating body activities, as well as integrating these activities in the appropriate manner with stimuli from the environment. The central nervous system, consisting of the brain and spinal cord, is the primary integrating mechanism. The peripheral nervous system, consisting of nerves that connect the brain and spinal cord to various body organs, carries sensory information from special receptor organs such as the eyes, internal ears, nares (sense of smell), taste glands, and others to the integrating centres of the brain and spinal cord. The peripheral nervous system also carries information via different nerve cells from the integrating centres of the brain and spinal cord. This coded information is carried to the various organs and body systems, such as the skeletal muscular system, for appropriate action in response to the original external or internal stimulus. Another branch of the nervous system, the autonomic nervous system, helps to coordinate the activities of many glands and organs and is itself closely connected to the integrating centres of the brain.
The brain of the fish is divided into several anatomical and functional parts, all closely interconnected but each serving as the primary centre of integrating particular kinds of responses and activities. Several of these centres or parts are primarily associated with one type of sensory perception, such as sight, hearing, or smell (olfaction).
The sense of smell is important in almost all fishes. Certain eels with tiny eyes depend mostly on smell for location of food. The olfactory, or nasal, organ of fishes is located on the dorsal surface of the snout. The lining of the nasal organ has special sensory cells that perceive chemicals dissolved in the water, such as substances from food material, and send sensory information to the brain by way of the first cranial nerve. Odour also serves as an alarm system. Many fishes, especially various species of freshwater minnows, react with alarm to a chemical released from the skin of an injured member of their own species.
Many fishes have a well-developed sense of taste, and tiny pitlike taste buds or organs are located not only within their mouth cavities but also over their heads and parts of their body. Catfishes, which often have poor vision, have barbels (“whiskers”) that serve as supplementary taste organs, those around the mouth being actively used to search out food on the bottom. Some species of naturally blind cave fishes are especially well supplied with taste buds, which often cover most of their body surface.
Sight is extremely important in most fishes. The eye of a fish is basically like that of all other vertebrates, but the eyes of fishes are extremely varied in structure and adaptation. In general, fishes living in dark and dim water habitats have large eyes, unless they have specialized in some compensatory way so that another sense (such as smell) is dominant, in which case the eyes will often be reduced. Fishes living in brightly lighted shallow waters often will have relatively small but efficient eyes. Cyclostomes have somewhat less elaborate eyes than other fishes, with skin stretched over the eyeball perhaps making their vision somewhat less effective. Most fishes have a spherical lens and accommodate their vision to far or near subjects by moving the lens within the eyeball. A few sharks accommodate by changing the shape of the lens, as in land vertebrates. Those fishes that are heavily dependent upon the eyes have especially strong muscles for accommodation. Most fishes see well, despite the restrictions imposed by frequent turbidity of the water and by light refraction.
Fossil evidence suggests that colour vision evolved in fishes more than 300 million years ago, but not all living fishes have retained this ability. Experimental evidence indicates that many shallow-water fishes, if not all, have colour vision and see some colours especially well, but some bottom-dwelling shore fishes live in areas where the water is sufficiently deep to filter out most if not all colours, and these fishes apparently never see colours. When tested in shallow water, they apparently are unable to respond to colour differences.
Sound perception and balance are intimately associated senses in a fish. The organs of hearing are entirely internal, located within the skull, on each side of the brain and somewhat behind the eyes. Sound waves, especially those of low frequencies, travel readily through water and impinge directly upon the bones and fluids of the head and body, to be transmitted to the hearing organs. Fishes readily respond to sound; for example, a trout conditioned to escape by the approach of fishermen will take flight upon perceiving footsteps on a stream bank even if it cannot see a fisherman. Compared with humans, however, the range of sound frequencies heard by fishes is greatly restricted. Many fishes communicate with each other by producing sounds in their swim bladders, in their throats by rasping their teeth, and in other ways.
A fish or other vertebrate seldom has to rely on a single type of sensory information to determine the nature of the environment around it. A catfish uses taste and touch when examining a food object with its oral barbels. Like most other animals, fishes have many touch receptors over their body surface. Pain and temperature receptors also are present in fishes and presumably produce the same kind of information to a fish as to humans. Fishes react in a negative fashion to stimuli that would be painful to human beings, suggesting that they feel a sensation of pain.
An important sensory system in fishes that is absent in other vertebrates (except some amphibians) is the lateral line system. This consists of a series of heavily innervated small canals located in the skin and bone around the eyes, along the lower jaw, over the head, and down the mid-side of the body, where it is associated with the scales. Intermittently along these canals are located tiny sensory organs (pit organs) that apparently detect changes in pressure. The system allows a fish to sense changes in water currents and pressure, thereby helping the fish to orient itself to the various changes that occur in the physical environment.
Müze bahçesi / museum garden
tavuskuşu / peacock
Bu kuş çok tetiktedir ve tehlike anında çok fazla gürültü çıkarır, doğal bir alarm sistemi.
This bird is very alert and makes a lot of noise in case of danger, a natural alarm system.
Acqua Alta : En Clave de Sol, 2019
Tomas Saraceno ( b. 1973 Argentina )
The city of Venice developed an alarm system to warn against high water. Sixteen sirens are spread around the six sestieri to warn that acqua alta is expected to reach the city within two to four hours. The tones rise in correspondence to the 4 levels of flooding, The sound work “Acqua Alta: En Clave de Sol” speculates on how the flooding city might sound in a hundred years, its vulnerable ecology completely submerged under the quick-flooding tides, its foundations eroded by the overexploitation of the soil and water.
The original alarm recordings become the starting point for a sound composition that amplifies the inaudible score of global warming. Six speakers distributed around the Gaggiandre acoustically expand the ebb and flow of the Arsenale waters, on their six hour cycle. The climatic soundscape reverberates to predictions of ocean swelling to come over the next decades. Water is expected to cover entire territories while simultaneously exposing geopolitical inequalities that will see more than two billion climate refugees by the end of 2100.
An intermittent signal resounds through the Gaggiandre at the frequency of tidal phases, making audible the urgent voices of sea levels as they rise, its lifeforms and the anthropogenic noise pollution that affects them. Synchronously, the sun draws sound waves in light of acqua alta, reflecting a score in elemental motion, composing in ‘clave de sol’. In the blurred figure of space, nudging and bending as the water rise, we come to understand that we rely on a reciprocal alliance between the elements and effects, the shifting winds, the exchange of heat and momentum and the rippling pull of the lunar cycle.
From Wikipedia, the free encyclopedia
The SS Nieuw Amsterdam
S.S. Nieuw Amsterdam
Career (Netherlands)
Flag of the Netherlands.svg
Name: Nieuw Amsterdam
Namesake: New Amsterdam (New York)
Operator: Holland America Line
Builder: N.V. Rotterdam Drydock Company, Rotterdam, Netherlands
Laid down: January 5, 1936
Launched: April 10, 1937
Christened: April 10, 1937
Maiden voyage: May 10, 1938
Fate: Scrapped in 1974
General characteristics
Tonnage: 36,287 gross tons (36,667 tons after 1947 refit)
Length: 758 feet (231.5 m)
Beam: 88 feet (26.9 m)
Installed power: Single reduction geared turbines; 34,000 shp
Propulsion: Twin screws
Speed: 20.5 knots (38.0 km/h)
Capacity: 1,220: 556 First Class, 455 Second Class, 209 Third Class
The Nieuw Amsterdam was a Dutch ocean liner built in Rotterdam for the Holland America Line. This Nieuw Amsterdam, the second of four Holland America ships with that name, is considered by many to have been Holland America's finest ship.
Originally she was to be named Prinsendam, however during construction, Holland America Line decided to name their new flagship Nieuw Amsterdam, in honor of the Dutch settlement of New Amsterdam, modern day New York.
Construction on the new liner was carried out at the N.V. Rotterdam Drydock Company. Christened by Queen Wilhelmina in April 1937, Nieuw Amsterdam was, at 36,982 tonnes, the largest liner ever constructed in the Netherlands up to that time. Proudly she was dubbed the Dutch "Ship of peace" since there were no provisions for possible war use incorporated in her design.
Interior[edit]
The Nieuw Amsterdam was the Netherlands' "ship of state", just as the Normandie was France's, the Queen Mary was Britain's and United States was the United States', and numerous Dutch artists vied for the honor of creating some part of the ship.
The first-class dining room aboard the Nieuw Amsterdam
Their creation emerged in the spring of 1938, a light-colored and very spacious ship throughout, and although she had spacious public rooms, the colour scheme used gave her an even larger feel. Modern in every way, her owners proclaimed her "the ship of tomorrow". She followed the Art Deco trend of the day in both interior decorations and exterior design. The interiors were distinguished by fluorescent lighting, aluminum motifs, and gentle pastels throughout the ship that created an understated elegance that would make the liner a favorite among seasoned transatlantic passengers.[1]
One of the ship’s centerpieces was the first class restaurant, having a Moroccan leather ceiling which was adorned by numerous Murano glass light fixtures, and columns covered in gold leaf. Tinted mirrors, ivory walls and satinwood furniture all contributed to create the luxurious atmosphere. The restaurant had no portholes or windows facing the open sea, making it depend solely on artificial illumination. This might sound a bit odd, but it was just the same in the first class restaurant on board the fabulous Normandie of 1935.[2] There also were two swimming pools on board, one outdoor and the other indoors on E-deck. It featured expensive Delft tiling which was an impressive sight.
Passengers must have found it difficult to believe they were at sea when in the air-conditioned First Class Theater. The deeply cushioned seats commanded an unobstructed view of the stage, and the egg-shaped contour of the auditorium took advantage of the latest in scientific sound-proofing materials and amplifying equipment to ensure perfect acoustics for concerts, dramatic performances and pre-release motion pictures. Found at the front end of the Theatre was a striking mural in red, black and gold by Reyer Stolk. The Nieuw Amsterdam was the second ship in the world after the Normandie to boast a theater, a feature the larger and faster Queen Mary did not have.
A favorite rendezvous of many Nieuw Amsterdam passengers was the handsome First Class Smoking Room with its rich Circassian walnut paneling and deep, luxurious armchairs and settees. Flanked by two enclosed sun verandas extending to the sides of the ship, the Smoking Room had its own modern bar stocked with a connoisseur choice of fine liquors.
First Class staterooms on the Nieuw Amsterdam were unusually attractive, ranging in size from cozy single person cabins to elaborate cabins-de-luxe. The handsome and modern decorative scheme made the cabins comfortable spots for daytime and evening relaxation. All First Class cabins on Nieuw Amsterdam had a private bathroom, a unique feature which no previous liner could boast.
Early career[edit]
On April 23, 1938, the Nieuw Amsterdam set out on her sea trials, which were to take place on the North Sea. Testing her speed and manoeuvring capability, the new vessel turned out to be all that she was supposed to be. Upon her return from the sea trials, the Nieuw Amsterdam was transferred to Holland America ownership and officially registered in the Dutch merchant fleet.
The sleek new liner's maiden voyage was set for May 10, 1938, and upon her arrival in New York she immediately won adulation and acclaim.
Although she was neither as large or fast as many of her contemporaries, she was to be a popular liner for the Dutch and was showered with superlatives. Her sleek outline and two slim funnels provided a striking profile and she soon garnered a loyal following amid stiff competition from great liners such as Cunard's Queen Mary and the superb Normandie of the French Line. Despite the fierce competition, Nieuw Amsterdam proved to be one of the few money-making vessels of the day.[3]
Wartime service[edit]
The Netherlands’ “ship of peace” was not to enjoy the praise lavished on her for long. After only seventeen voyages, Nieuw Amsterdam was laid up at Hoboken, New Jersey in 1939 after the German invasion of Poland. She would be idle for only a year, however, and was requisitioned by the British Ministry of Transport after Holland fell to Hitler’s armies. She would spend the remainder of the war years as a troop transport, despite the fact she had been constructed without the consideration of ever being used in a military capacity. During the course of the conflict she would transport over 350,000 troops and steam some 530,452 nautical miles (982,397 km) before being returned to the Holland America Line in 1946.
Refitting the Nieuw Amsterdam[edit]
The Nieuw Amsterdam triumphantly returned to her home port of Rotterdam on April 10, 1946. Fifteen weeks were required to remove the troop fittings: the special kitchens, alarm systems, hammocks, and 36 guns.
Then 2,000 tons of furniture and decorations were shipped to the Netherlands from wartime storage in San Francisco. The furnishings were for the most part in very poor condition, a result of six years of neglect. About 3,000 chairs and 500 tables were sent back to their original builders for reupholstering and refinishing. One quarter of the furnishings had to be replaced entirely.
Factories and warehouses in Europe combed their supplies for materials and fabrics, much of which had been concealed from the Nazis during the occupation. Many smaller parts, such as hinges and clamps, had to be made by hand, since the machinery that once made them had been stolen or destroyed by the enemy.
The first-class main hall aboard the Nieuw Amsterdam
The entire rubber flooring was renewed, as was nearly all of the carpeting. All of the steel work was scaled and preserved and all piping cleaned. All ceilings and floors were removed; all of the liners 374 bathrooms were rebuilt. In the passenger spaces the wood paneling, which had been scratched and mutilated, was sanded down to half its thickness and relacquered. All the cabin's closets and fixtures were replaced. The entire electrical wiring system was renewed.
Having been painted over for blackouts and cracked in tropical climates, 12,000 square feet (1,100 m2) of glass was refurbished. Even the hand rails had to be repolished to eradicate thousands of carved initials. The project was monumental, because of the material shortages and the decline of the number of skilled craftsmen.
On October 29, 1947, after 18 months at the shipyard, the Nieuw Amsterdam reentered transatlantic service. Over 100 liners were restored with similar efforts.
Post war career and demise[edit]
The Nieuw Amsterdam as a cruise ship
The refit took eighteen months and cost more than her original construction, but on October 29, 1947, the Nieuw Amsterdam was finally back on the transatlantic run. Her passenger accommodations had been slightly altered, and the ship emerged with a gross tonnage some 400 tons larger than before, ending up at 36,667.[4]
For the next twenty years Nieuw Amsterdam would enjoy a loyal following and financial success. Even when joined by a more contemporary fleet mate in 1959, the SS Rotterdam, the Nieuw Amsterdam still commanded a loyal following and remained one of the most popular ships on the north Atlantic. Her several refits in the 1950s ensured she remained in top condition and continued service despite her being near thirty years of age. In 1967 severe boiler problems seemed to indicate an end to the venerable liner’s career, however new US Navy surplus boilers were installed during a sixteen week shipyard period at Wilton-Fijenoord in Schiedam and her career continued.
Painting of the Nieuw Amsterdam
In the same decade jet travel had made continued Atlantic passenger runs impractical, so Nieuw Amsterdam was shifted to cruising in the Caribbean. Soon escalating operating cost and competition from newer cruise vessels meant an end to the grand liner’s service career. Nieuw Amsterdam had been an enduring icon on the North Atlantic for the better part of three decades—certainly her refined interiors and impeccable service added much to her appeal.
The ship sailed to the breakers in 1974
Fish, any of approximately 34,000 species of vertebrate animals (phylum Chordata) found in the fresh and salt waters of the world. Living species range from the primitive jawless lampreys and hagfishes through the cartilaginous sharks, skates, and rays to the abundant and diverse bony fishes. Most fish species are cold-blooded; however, one species, the opah (Lampris guttatus), is warm-blooded.
The term fish is applied to a variety of vertebrates of several evolutionary lines. It describes a life-form rather than a taxonomic group. As members of the phylum Chordata, fish share certain features with other vertebrates. These features are gill slits at some point in the life cycle, a notochord, or skeletal supporting rod, a dorsal hollow nerve cord, and a tail. Living fishes represent some five classes, which are as distinct from one another as are the four classes of familiar air-breathing animals—amphibians, reptiles, birds, and mammals. For example, the jawless fishes (Agnatha) have gills in pouches and lack limb girdles. Extant agnathans are the lampreys and the hagfishes. As the name implies, the skeletons of fishes of the class Chondrichthyes (from chondr, “cartilage,” and ichthyes, “fish”) are made entirely of cartilage. Modern fish of this class lack a swim bladder, and their scales and teeth are made up of the same placoid material. Sharks, skates, and rays are examples of cartilaginous fishes. The bony fishes are by far the largest class. Examples range from the tiny seahorse to the 450-kg (1,000-pound) blue marlin, from the flattened soles and flounders to the boxy puffers and ocean sunfishes. Unlike the scales of the cartilaginous fishes, those of bony fishes, when present, grow throughout life and are made up of thin overlapping plates of bone. Bony fishes also have an operculum that covers the gill slits.
The study of fishes, the science of ichthyology, is of broad importance. Fishes are of interest to humans for many reasons, the most important being their relationship with and dependence on the environment. A more obvious reason for interest in fishes is their role as a moderate but important part of the world’s food supply. This resource, once thought unlimited, is now realized to be finite and in delicate balance with the biological, chemical, and physical factors of the aquatic environment. Overfishing, pollution, and alteration of the environment are the chief enemies of proper fisheries management, both in fresh waters and in the ocean. (For a detailed discussion of the technology and economics of fisheries, see commercial fishing.) Another practical reason for studying fishes is their use in disease control. As predators on mosquito larvae, they help curb malaria and other mosquito-borne diseases.
Fishes are valuable laboratory animals in many aspects of medical and biological research. For example, the readiness of many fishes to acclimate to captivity has allowed biologists to study behaviour, physiology, and even ecology under relatively natural conditions. Fishes have been especially important in the study of animal behaviour, where research on fishes has provided a broad base for the understanding of the more flexible behaviour of the higher vertebrates. The zebra fish is used as a model in studies of gene expression.
There are aesthetic and recreational reasons for an interest in fishes. Millions of people keep live fishes in home aquariums for the simple pleasure of observing the beauty and behaviour of animals otherwise unfamiliar to them. Aquarium fishes provide a personal challenge to many aquarists, allowing them to test their ability to keep a small section of the natural environment in their homes. Sportfishing is another way of enjoying the natural environment, also indulged in by millions of people every year. Interest in aquarium fishes and sportfishing supports multimillion-dollar industries throughout the world.
Fishes have been in existence for more than 450 million years, during which time they have evolved repeatedly to fit into almost every conceivable type of aquatic habitat. In a sense, land vertebrates are simply highly modified fishes: when fishes colonized the land habitat, they became tetrapod (four-legged) land vertebrates. The popular conception of a fish as a slippery, streamlined aquatic animal that possesses fins and breathes by gills applies to many fishes, but far more fishes deviate from that conception than conform to it. For example, the body is elongate in many forms and greatly shortened in others; the body is flattened in some (principally in bottom-dwelling fishes) and laterally compressed in many others; the fins may be elaborately extended, forming intricate shapes, or they may be reduced or even lost; and the positions of the mouth, eyes, nostrils, and gill openings vary widely. Air breathers have appeared in several evolutionary lines.
Many fishes are cryptically coloured and shaped, closely matching their respective environments; others are among the most brilliantly coloured of all organisms, with a wide range of hues, often of striking intensity, on a single individual. The brilliance of pigments may be enhanced by the surface structure of the fish, so that it almost seems to glow. A number of unrelated fishes have actual light-producing organs. Many fishes are able to alter their coloration—some for the purpose of camouflage, others for the enhancement of behavioral signals.
Fishes range in adult length from less than 10 mm (0.4 inch) to more than 20 metres (60 feet) and in weight from about 1.5 grams (less than 0.06 ounce) to many thousands of kilograms. Some live in shallow thermal springs at temperatures slightly above 42 °C (100 °F), others in cold Arctic seas a few degrees below 0 °C (32 °F) or in cold deep waters more than 4,000 metres (13,100 feet) beneath the ocean surface. The structural and, especially, the physiological adaptations for life at such extremes are relatively poorly known and provide the scientifically curious with great incentive for study.
Almost all natural bodies of water bear fish life, the exceptions being very hot thermal ponds and extremely salt-alkaline lakes, such as the Dead Sea in Asia and the Great Salt Lake in North America. The present distribution of fishes is a result of the geological history and development of Earth as well as the ability of fishes to undergo evolutionary change and to adapt to the available habitats. Fishes may be seen to be distributed according to habitat and according to geographical area. Major habitat differences are marine and freshwater. For the most part, the fishes in a marine habitat differ from those in a freshwater habitat, even in adjacent areas, but some, such as the salmon, migrate from one to the other. The freshwater habitats may be seen to be of many kinds. Fishes found in mountain torrents, Arctic lakes, tropical lakes, temperate streams, and tropical rivers will all differ from each other, both in obvious gross structure and in physiological attributes. Even in closely adjacent habitats where, for example, a tropical mountain torrent enters a lowland stream, the fish fauna will differ. The marine habitats can be divided into deep ocean floors (benthic), mid-water oceanic (bathypelagic), surface oceanic (pelagic), rocky coast, sandy coast, muddy shores, bays, estuaries, and others. Also, for example, rocky coastal shores in tropical and temperate regions will have different fish faunas, even when such habitats occur along the same coastline.
Although much is known about the present geographical distribution of fishes, far less is known about how that distribution came about. Many parts of the fish fauna of the fresh waters of North America and Eurasia are related and undoubtedly have a common origin. The faunas of Africa and South America are related, extremely old, and probably an expression of the drifting apart of the two continents. The fauna of southern Asia is related to that of Central Asia, and some of it appears to have entered Africa. The extremely large shore-fish faunas of the Indian and tropical Pacific oceans comprise a related complex, but the tropical shore fauna of the Atlantic, although containing Indo-Pacific components, is relatively limited and probably younger. The Arctic and Antarctic marine faunas are quite different from each other. The shore fauna of the North Pacific is quite distinct, and that of the North Atlantic more limited and probably younger. Pelagic oceanic fishes, especially those in deep waters, are similar the world over, showing little geographical isolation in terms of family groups. The deep oceanic habitat is very much the same throughout the world, but species differences do exist, showing geographical areas determined by oceanic currents and water masses.
All aspects of the life of a fish are closely correlated with adaptation to the total environment, physical, chemical, and biological. In studies, all the interdependent aspects of fish, such as behaviour, locomotion, reproduction, and physical and physiological characteristics, must be taken into account.
Correlated with their adaptation to an extremely wide variety of habitats is the extremely wide variety of life cycles that fishes display. The great majority hatch from relatively small eggs a few days to several weeks or more after the eggs are scattered in the water. Newly hatched young are still partially undeveloped and are called larvae until body structures such as fins, skeleton, and some organs are fully formed. Larval life is often very short, usually less than a few weeks, but it can be very long, some lampreys continuing as larvae for at least five years. Young and larval fishes, before reaching sexual maturity, must grow considerably, and their small size and other factors often dictate that they live in a habitat different than that of the adults. For example, most tropical marine shore fishes have pelagic larvae. Larval food also is different, and larval fishes often live in shallow waters, where they may be less exposed to predators.
After a fish reaches adult size, the length of its life is subject to many factors, such as innate rates of aging, predation pressure, and the nature of the local climate. The longevity of a species in the protected environment of an aquarium may have nothing to do with how long members of that species live in the wild. Many small fishes live only one to three years at the most. In some species, however, individuals may live as long as 10 or 20 or even 100 years.
Fish behaviour is a complicated and varied subject. As in almost all animals with a central nervous system, the nature of a response of an individual fish to stimuli from its environment depends upon the inherited characteristics of its nervous system, on what it has learned from past experience, and on the nature of the stimuli. Compared with the variety of human responses, however, that of a fish is stereotyped, not subject to much modification by “thought” or learning, and investigators must guard against anthropomorphic interpretations of fish behaviour.
Fishes perceive the world around them by the usual senses of sight, smell, hearing, touch, and taste and by special lateral line water-current detectors. In the few fishes that generate electric fields, a process that might best be called electrolocation aids in perception. One or another of these senses often is emphasized at the expense of others, depending upon the fish’s other adaptations. In fishes with large eyes, the sense of smell may be reduced; others, with small eyes, hunt and feed primarily by smell (such as some eels).
Specialized behaviour is primarily concerned with the three most important activities in the fish’s life: feeding, reproduction, and escape from enemies. Schooling behaviour of sardines on the high seas, for instance, is largely a protective device to avoid enemies, but it is also associated with and modified by their breeding and feeding requirements. Predatory fishes are often solitary, lying in wait to dart suddenly after their prey, a kind of locomotion impossible for beaked parrot fishes, which feed on coral, swimming in small groups from one coral head to the next. In addition, some predatory fishes that inhabit pelagic environments, such as tunas, often school.
Sleep in fishes, all of which lack true eyelids, consists of a seemingly listless state in which the fish maintains its balance but moves slowly. If attacked or disturbed, most can dart away. A few kinds of fishes lie on the bottom to sleep. Most catfishes, some loaches, and some eels and electric fishes are strictly nocturnal, being active and hunting for food during the night and retiring during the day to holes, thick vegetation, or other protective parts of the environment.
Communication between members of a species or between members of two or more species often is extremely important, especially in breeding behaviour (see below Reproduction). The mode of communication may be visual, as between the small so-called cleaner fish and a large fish of a very different species. The larger fish often allows the cleaner to enter its mouth to remove gill parasites. The cleaner is recognized by its distinctive colour and actions and therefore is not eaten, even if the larger fish is normally a predator. Communication is often chemical, signals being sent by specific chemicals called pheromones.
Many fishes have a streamlined body and swim freely in open water. Fish locomotion is closely correlated with habitat and ecological niche (the general position of the animal to its environment).
Many fishes in both marine and fresh waters swim at the surface and have mouths adapted to feed best (and sometimes only) at the surface. Often such fishes are long and slender, able to dart at surface insects or at other surface fishes and in turn to dart away from predators; needlefishes, halfbeaks, and topminnows (such as killifish and mosquito fish) are good examples. Oceanic flying fishes escape their predators by gathering speed above the water surface, with the lower lobe of the tail providing thrust in the water. They then glide hundreds of yards on enlarged, winglike pectoral and pelvic fins. South American freshwater flying fishes escape their enemies by jumping and propelling their strongly keeled bodies out of the water.
So-called mid-water swimmers, the most common type of fish, are of many kinds and live in many habitats. The powerful fusiform tunas and the trouts, for example, are adapted for strong, fast swimming, the tunas to capture prey speedily in the open ocean and the trouts to cope with the swift currents of streams and rivers. The trout body form is well adapted to many habitats. Fishes that live in relatively quiet waters such as bays or lake shores or slow rivers usually are not strong, fast swimmers but are capable of short, quick bursts of speed to escape a predator. Many of these fishes have their sides flattened, examples being the sunfish and the freshwater angelfish of aquarists. Fish associated with the bottom or substrate usually are slow swimmers. Open-water plankton-feeding fishes almost always remain fusiform and are capable of rapid, strong movement (for example, sardines and herrings of the open ocean and also many small minnows of streams and lakes).
Bottom-living fishes are of many kinds and have undergone many types of modification of their body shape and swimming habits. Rays, which evolved from strong-swimming mid-water sharks, usually stay close to the bottom and move by undulating their large pectoral fins. Flounders live in a similar habitat and move over the bottom by undulating the entire body. Many bottom fishes dart from place to place, resting on the bottom between movements, a motion common in gobies. One goby relative, the mudskipper, has taken to living at the edge of pools along the shore of muddy mangrove swamps. It escapes its enemies by flipping rapidly over the mud, out of the water. Some catfishes, synbranchid eels, the so-called climbing perch, and a few other fishes venture out over damp ground to find more promising waters than those that they left. They move by wriggling their bodies, sometimes using strong pectoral fins; most have accessory air-breathing organs. Many bottom-dwelling fishes live in mud holes or rocky crevices. Marine eels and gobies commonly are found in such habitats and for the most part venture far beyond their cavelike homes. Some bottom dwellers, such as the clingfishes (Gobiesocidae), have developed powerful adhesive disks that enable them to remain in place on the substrate in areas such as rocky coasts, where the action of the waves is great.
The methods of reproduction in fishes are varied, but most fishes lay a large number of small eggs, fertilized and scattered outside of the body. The eggs of pelagic fishes usually remain suspended in the open water. Many shore and freshwater fishes lay eggs on the bottom or among plants. Some have adhesive eggs. The mortality of the young and especially of the eggs is very high, and often only a few individuals grow to maturity out of hundreds, thousands, and in some cases millions of eggs laid.
Males produce sperm, usually as a milky white substance called milt, in two (sometimes one) testes within the body cavity. In bony fishes a sperm duct leads from each testis to a urogenital opening behind the vent or anus. In sharks and rays and in cyclostomes the duct leads to a cloaca. Sometimes the pelvic fins are modified to help transmit the milt to the eggs at the female’s vent or on the substrate where the female has placed them. Sometimes accessory organs are used to fertilize females internally—for example, the claspers of many sharks and rays.
In the females the eggs are formed in two ovaries (sometimes only one) and pass through the ovaries to the urogenital opening and to the outside. In some fishes the eggs are fertilized internally but are shed before development takes place. Members of about a dozen families each of bony fishes (teleosts) and sharks bear live young. Many skates and rays also bear live young. In some bony fishes the eggs simply develop within the female, the young emerging when the eggs hatch (ovoviviparous). Others develop within the ovary and are nourished by ovarian tissues after hatching (viviparous). There are also other methods utilized by fishes to nourish young within the female. In all live-bearers the young are born at a relatively large size and are few in number. In one family of primarily marine fishes, the surfperches from the Pacific coast of North America, Japan, and Korea, the males of at least one species are born sexually mature, although they are not fully grown.
Some fishes are hermaphroditic—an individual producing both sperm and eggs, usually at different stages of its life. Self-fertilization, however, is probably rare.
Successful reproduction and, in many cases, defense of the eggs and the young are assured by rather stereotypical but often elaborate courtship and parental behaviour, either by the male or the female or both. Some fishes prepare nests by hollowing out depressions in the sand bottom (cichlids, for example), build nests with plant materials and sticky threads excreted by the kidneys (sticklebacks), or blow a cluster of mucus-covered bubbles at the water surface (gouramis). The eggs are laid in these structures. Some varieties of cichlids and catfishes incubate eggs in their mouths.
Some fishes, such as salmon, undergo long migrations from the ocean and up large rivers to spawn in the gravel beds where they themselves hatched (anadromous fishes). Some, such as the freshwater eels (family Anguillidae), live and grow to maturity in fresh water and migrate to the sea to spawn (catadromous fishes). Other fishes undertake shorter migrations from lakes into streams, within the ocean, or enter spawning habitats that they do not ordinarily occupy in other ways.
The basic structure and function of the fish body are similar to those of all other vertebrates. The usual four types of tissues are present: surface or epithelial, connective (bone, cartilage, and fibrous tissues, as well as their derivative, blood), nerve, and muscle tissues. In addition, the fish’s organs and organ systems parallel those of other vertebrates.
The typical fish body is streamlined and spindle-shaped, with an anterior head, a gill apparatus, and a heart, the latter lying in the midline just below the gill chamber. The body cavity, containing the vital organs, is situated behind the head in the lower anterior part of the body. The anus usually marks the posterior termination of the body cavity and most often occurs just in front of the base of the anal fin. The spinal cord and vertebral column continue from the posterior part of the head to the base of the tail fin, passing dorsal to the body cavity and through the caudal (tail) region behind the body cavity. Most of the body is of muscular tissue, a high proportion of which is necessitated by swimming. In the course of evolution this basic body plan has been modified repeatedly into the many varieties of fish shapes that exist today.
The skeleton forms an integral part of the fish’s locomotion system, as well as serving to protect vital parts. The internal skeleton consists of the skull bones (except for the roofing bones of the head, which are really part of the external skeleton), the vertebral column, and the fin supports (fin rays). The fin supports are derived from the external skeleton but will be treated here because of their close functional relationship to the internal skeleton. The internal skeleton of cyclostomes, sharks, and rays is of cartilage; that of many fossil groups and some primitive living fishes is mostly of cartilage but may include some bone. In place of the vertebral column, the earliest vertebrates had a fully developed notochord, a flexible stiff rod of viscous cells surrounded by a strong fibrous sheath. During the evolution of modern fishes the rod was replaced in part by cartilage and then by ossified cartilage. Sharks and rays retain a cartilaginous vertebral column; bony fishes have spool-shaped vertebrae that in the more primitive living forms only partially replace the notochord. The skull, including the gill arches and jaws of bony fishes, is fully, or at least partially, ossified. That of sharks and rays remains cartilaginous, at times partially replaced by calcium deposits but never by true bone.
The supportive elements of the fins (basal or radial bones or both) have changed greatly during fish evolution. Some of these changes are described in the section below (Evolution and paleontology). Most fishes possess a single dorsal fin on the midline of the back. Many have two and a few have three dorsal fins. The other fins are the single tail and anal fins and paired pelvic and pectoral fins. A small fin, the adipose fin, with hairlike fin rays, occurs in many of the relatively primitive teleosts (such as trout) on the back near the base of the caudal fin.
The skin of a fish must serve many functions. It aids in maintaining the osmotic balance, provides physical protection for the body, is the site of coloration, contains sensory receptors, and, in some fishes, functions in respiration. Mucous glands, which aid in maintaining the water balance and offer protection from bacteria, are extremely numerous in fish skin, especially in cyclostomes and teleosts. Since mucous glands are present in the modern lampreys, it is reasonable to assume that they were present in primitive fishes, such as the ancient Silurian and Devonian agnathans. Protection from abrasion and predation is another function of the fish skin, and dermal (skin) bone arose early in fish evolution in response to this need. It is thought that bone first evolved in skin and only later invaded the cartilaginous areas of the fish’s body, to provide additional support and protection. There is some argument as to which came first, cartilage or bone, and fossil evidence does not settle the question. In any event, dermal bone has played an important part in fish evolution and has different characteristics in different groups of fishes. Several groups are characterized at least in part by the kind of bony scales they possess.
Scales have played an important part in the evolution of fishes. Primitive fishes usually had thick bony plates or thick scales in several layers of bone, enamel, and related substances. Modern teleost fishes have scales of bone, which, while still protective, allow much more freedom of motion in the body. A few modern teleosts (some catfishes, sticklebacks, and others) have secondarily acquired bony plates in the skin. Modern and early sharks possessed placoid scales, a relatively primitive type of scale with a toothlike structure, consisting of an outside layer of enamel-like substance (vitrodentine), an inner layer of dentine, and a pulp cavity containing nerves and blood vessels. Primitive bony fishes had thick scales of either the ganoid or the cosmoid type. Cosmoid scales have a hard, enamel-like outer layer, an inner layer of cosmine (a form of dentine), and then a layer of vascular bone (isopedine). In ganoid scales the hard outer layer is different chemically and is called ganoin. Under this is a cosminelike layer and then a vascular bony layer. The thin, translucent bony scales of modern fishes, called cycloid and ctenoid (the latter distinguished by serrations at the edges), lack enameloid and dentine layers.
Skin has several other functions in fishes. It is well supplied with nerve endings and presumably receives tactile, thermal, and pain stimuli. Skin is also well supplied with blood vessels. Some fishes breathe in part through the skin, by the exchange of oxygen and carbon dioxide between the surrounding water and numerous small blood vessels near the skin surface.
Skin serves as protection through the control of coloration. Fishes exhibit an almost limitless range of colours. The colours often blend closely with the surroundings, effectively hiding the animal. Many fishes use bright colours for territorial advertisement or as recognition marks for other members of their own species, or sometimes for members of other species. Many fishes can change their colour to a greater or lesser degree, by movement of pigment within the pigment cells (chromatophores). Black pigment cells (melanophores), of almost universal occurrence in fishes, are often juxtaposed with other pigment cells. When placed beneath iridocytes or leucophores (bearing the silvery or white pigment guanine), melanophores produce structural colours of blue and green. These colours are often extremely intense, because they are formed by refraction of light through the needlelike crystals of guanine. The blue and green refracted colours are often relatively pure, lacking the red and yellow rays, which have been absorbed by the black pigment (melanin) of the melanophores. Yellow, orange, and red colours are produced by erythrophores, cells containing the appropriate carotenoid pigments. Other colours are produced by combinations of melanophores, erythrophores, and iridocytes.
The major portion of the body of most fishes consists of muscles. Most of the mass is trunk musculature, the fin muscles usually being relatively small. The caudal fin is usually the most powerful fin, being moved by the trunk musculature. The body musculature is usually arranged in rows of chevron-shaped segments on each side. Contractions of these segments, each attached to adjacent vertebrae and vertebral processes, bends the body on the vertebral joint, producing successive undulations of the body, passing from the head to the tail, and producing driving strokes of the tail. It is the latter that provides the strong forward movement for most fishes.
The digestive system, in a functional sense, starts at the mouth, with the teeth used to capture prey or collect plant foods. Mouth shape and tooth structure vary greatly in fishes, depending on the kind of food normally eaten. Most fishes are predacious, feeding on small invertebrates or other fishes and have simple conical teeth on the jaws, on at least some of the bones of the roof of the mouth, and on special gill arch structures just in front of the esophagus. The latter are throat teeth. Most predacious fishes swallow their prey whole, and the teeth are used for grasping and holding prey, for orienting prey to be swallowed (head first) and for working the prey toward the esophagus. There are a variety of tooth types in fishes. Some fishes, such as sharks and piranhas, have cutting teeth for biting chunks out of their victims. A shark’s tooth, although superficially like that of a piranha, appears in many respects to be a modified scale, while that of the piranha is like that of other bony fishes, consisting of dentine and enamel. Parrot fishes have beaklike mouths with short incisor-like teeth for breaking off coral and have heavy pavementlike throat teeth for crushing the coral. Some catfishes have small brushlike teeth, arranged in rows on the jaws, for scraping plant and animal growth from rocks. Many fishes (such as the Cyprinidae or minnows) have no jaw teeth at all but have very strong throat teeth.
Some fishes gather planktonic food by straining it from their gill cavities with numerous elongate stiff rods (gill rakers) anchored by one end to the gill bars. The food collected on these rods is passed to the throat, where it is swallowed. Most fishes have only short gill rakers that help keep food particles from escaping out the mouth cavity into the gill chamber.
Once reaching the throat, food enters a short, often greatly distensible esophagus, a simple tube with a muscular wall leading into a stomach. The stomach varies greatly in fishes, depending upon the diet. In most predacious fishes it is a simple straight or curved tube or pouch with a muscular wall and a glandular lining. Food is largely digested there and leaves the stomach in liquid form.
Between the stomach and the intestine, ducts enter the digestive tube from the liver and pancreas. The liver is a large, clearly defined organ. The pancreas may be embedded in it, diffused through it, or broken into small parts spread along some of the intestine. The junction between the stomach and the intestine is marked by a muscular valve. Pyloric ceca (blind sacs) occur in some fishes at this junction and have a digestive or absorptive function or both.
The intestine itself is quite variable in length, depending upon the fish’s diet. It is short in predacious forms, sometimes no longer than the body cavity, but long in herbivorous forms, being coiled and several times longer than the entire length of the fish in some species of South American catfishes. The intestine is primarily an organ for absorbing nutrients into the bloodstream. The larger its internal surface, the greater its absorptive efficiency, and a spiral valve is one method of increasing its absorption surface.
Sharks, rays, chimaeras, lungfishes, surviving chondrosteans, holosteans, and even a few of the more primitive teleosts have a spiral valve or at least traces of it in the intestine. Most modern teleosts have increased the area of the intestinal walls by having numerous folds and villi (fingerlike projections) somewhat like those in humans. Undigested substances are passed to the exterior through the anus in most teleost fishes. In lungfishes, sharks, and rays, it is first passed through the cloaca, a common cavity receiving the intestinal opening and the ducts from the urogenital system.
Oxygen and carbon dioxide dissolve in water, and most fishes exchange dissolved oxygen and carbon dioxide in water by means of the gills. The gills lie behind and to the side of the mouth cavity and consist of fleshy filaments supported by the gill arches and filled with blood vessels, which give gills a bright red colour. Water taken in continuously through the mouth passes backward between the gill bars and over the gill filaments, where the exchange of gases takes place. The gills are protected by a gill cover in teleosts and many other fishes but by flaps of skin in sharks, rays, and some of the older fossil fish groups. The blood capillaries in the gill filaments are close to the gill surface to take up oxygen from the water and to give up excess carbon dioxide to the water.
Most modern fishes have a hydrostatic (ballast) organ, called the swim bladder, that lies in the body cavity just below the kidney and above the stomach and intestine. It originated as a diverticulum of the digestive canal. In advanced teleosts, especially the acanthopterygians, the bladder has lost its connection with the digestive tract, a condition called physoclistic. The connection has been retained (physostomous) by many relatively primitive teleosts. In several unrelated lines of fishes, the bladder has become specialized as a lung or, at least, as a highly vascularized accessory breathing organ. Some fishes with such accessory organs are obligate air breathers and will drown if denied access to the surface, even in well-oxygenated water. Fishes with a hydrostatic form of swim bladder can control their depth by regulating the amount of gas in the bladder. The gas, mostly oxygen, is secreted into the bladder by special glands, rendering the fish more buoyant; the gas is absorbed into the bloodstream by another special organ, reducing the overall buoyancy and allowing the fish to sink. Some deep-sea fishes may have oils, rather than gas, in the bladder. Other deep-sea and some bottom-living forms have much-reduced swim bladders or have lost the organ entirely.
The swim bladder of fishes follows the same developmental pattern as the lungs of land vertebrates. There is no doubt that the two structures have the same historical origin in primitive fishes. More or less intermediate forms still survive among the more primitive types of fishes, such as the lungfishes Lepidosiren and Protopterus.
The circulatory, or blood vascular, system consists of the heart, the arteries, the capillaries, and the veins. It is in the capillaries that the interchange of oxygen, carbon dioxide, nutrients, and other substances such as hormones and waste products takes place. The capillaries lead to the veins, which return the venous blood with its waste products to the heart, kidneys, and gills. There are two kinds of capillary beds: those in the gills and those in the rest of the body. The heart, a folded continuous muscular tube with three or four saclike enlargements, undergoes rhythmic contractions and receives venous blood in a sinus venosus. It passes the blood to an auricle and then into a thick muscular pump, the ventricle. From the ventricle the blood goes to a bulbous structure at the base of a ventral aorta just below the gills. The blood passes to the afferent (receiving) arteries of the gill arches and then to the gill capillaries. There waste gases are given off to the environment, and oxygen is absorbed. The oxygenated blood enters efferent (exuant) arteries of the gill arches and then flows into the dorsal aorta. From there blood is distributed to the tissues and organs of the body. One-way valves prevent backflow. The circulation of fishes thus differs from that of the reptiles, birds, and mammals in that oxygenated blood is not returned to the heart prior to distribution to the other parts of the body.
The primary excretory organ in fishes, as in other vertebrates, is the kidney. In fishes some excretion also takes place in the digestive tract, skin, and especially the gills (where ammonia is given off). Compared with land vertebrates, fishes have a special problem in maintaining their internal environment at a constant concentration of water and dissolved substances, such as salts. Proper balance of the internal environment (homeostasis) of a fish is in a great part maintained by the excretory system, especially the kidney.
The kidney, gills, and skin play an important role in maintaining a fish’s internal environment and checking the effects of osmosis. Marine fishes live in an environment in which the water around them has a greater concentration of salts than they can have inside their body and still maintain life. Freshwater fishes, on the other hand, live in water with a much lower concentration of salts than they require inside their bodies. Osmosis tends to promote the loss of water from the body of a marine fish and absorption of water by that of a freshwater fish. Mucus in the skin tends to slow the process but is not a sufficient barrier to prevent the movement of fluids through the permeable skin. When solutions on two sides of a permeable membrane have different concentrations of dissolved substances, water will pass through the membrane into the more concentrated solution, while the dissolved chemicals move into the area of lower concentration (diffusion).
The kidney of freshwater fishes is often larger in relation to body weight than that of marine fishes. In both groups the kidney excretes wastes from the body, but the kidney of freshwater fishes also excretes large amounts of water, counteracting the water absorbed through the skin. Freshwater fishes tend to lose salt to the environment and must replace it. They get some salt from their food, but the gills and skin inside the mouth actively absorb salt from water passed through the mouth. This absorption is performed by special cells capable of moving salts against the diffusion gradient. Freshwater fishes drink very little water and take in little water with their food.
Marine fishes must conserve water, and therefore their kidneys excrete little water. To maintain their water balance, marine fishes drink large quantities of seawater, retaining most of the water and excreting the salt. Most nitrogenous waste in marine fishes appears to be secreted by the gills as ammonia. Marine fishes can excrete salt by clusters of special cells (chloride cells) in the gills.
There are several teleosts—for example, the salmon—that travel between fresh water and seawater and must adjust to the reversal of osmotic gradients. They adjust their physiological processes by spending time (often surprisingly little time) in the intermediate brackish environment.
Marine hagfishes, sharks, and rays have osmotic concentrations in their blood about equal to that of seawater and so do not have to drink water nor perform much physiological work to maintain their osmotic balance. In sharks and rays the osmotic concentration is kept high by retention of urea in the blood. Freshwater sharks have a lowered concentration of urea in the blood.
Endocrine glands secrete their products into the bloodstream and body tissues and, along with the central nervous system, control and regulate many kinds of body functions. Cyclostomes have a well-developed endocrine system, and presumably it was well developed in the early Agnatha, ancestral to modern fishes. Although the endocrine system in fishes is similar to that of higher vertebrates, there are numerous differences in detail. The pituitary, the thyroid, the suprarenals, the adrenals, the pancreatic islets, the sex glands (ovaries and testes), the inner wall of the intestine, and the bodies of the ultimobranchial gland make up the endocrine system in fishes. There are some others whose function is not well understood. These organs regulate sexual activity and reproduction, growth, osmotic pressure, general metabolic activities such as the storage of fat and the utilization of foodstuffs, blood pressure, and certain aspects of skin colour. Many of these activities are also controlled in part by the central nervous system, which works with the endocrine system in maintaining the life of a fish. Some parts of the endocrine system are developmentally, and undoubtedly evolutionarily, derived from the nervous system.
As in all vertebrates, the nervous system of fishes is the primary mechanism coordinating body activities, as well as integrating these activities in the appropriate manner with stimuli from the environment. The central nervous system, consisting of the brain and spinal cord, is the primary integrating mechanism. The peripheral nervous system, consisting of nerves that connect the brain and spinal cord to various body organs, carries sensory information from special receptor organs such as the eyes, internal ears, nares (sense of smell), taste glands, and others to the integrating centres of the brain and spinal cord. The peripheral nervous system also carries information via different nerve cells from the integrating centres of the brain and spinal cord. This coded information is carried to the various organs and body systems, such as the skeletal muscular system, for appropriate action in response to the original external or internal stimulus. Another branch of the nervous system, the autonomic nervous system, helps to coordinate the activities of many glands and organs and is itself closely connected to the integrating centres of the brain.
The brain of the fish is divided into several anatomical and functional parts, all closely interconnected but each serving as the primary centre of integrating particular kinds of responses and activities. Several of these centres or parts are primarily associated with one type of sensory perception, such as sight, hearing, or smell (olfaction).
The sense of smell is important in almost all fishes. Certain eels with tiny eyes depend mostly on smell for location of food. The olfactory, or nasal, organ of fishes is located on the dorsal surface of the snout. The lining of the nasal organ has special sensory cells that perceive chemicals dissolved in the water, such as substances from food material, and send sensory information to the brain by way of the first cranial nerve. Odour also serves as an alarm system. Many fishes, especially various species of freshwater minnows, react with alarm to a chemical released from the skin of an injured member of their own species.
Many fishes have a well-developed sense of taste, and tiny pitlike taste buds or organs are located not only within their mouth cavities but also over their heads and parts of their body. Catfishes, which often have poor vision, have barbels (“whiskers”) that serve as supplementary taste organs, those around the mouth being actively used to search out food on the bottom. Some species of naturally blind cave fishes are especially well supplied with taste buds, which often cover most of their body surface.
Sight is extremely important in most fishes. The eye of a fish is basically like that of all other vertebrates, but the eyes of fishes are extremely varied in structure and adaptation. In general, fishes living in dark and dim water habitats have large eyes, unless they have specialized in some compensatory way so that another sense (such as smell) is dominant, in which case the eyes will often be reduced. Fishes living in brightly lighted shallow waters often will have relatively small but efficient eyes. Cyclostomes have somewhat less elaborate eyes than other fishes, with skin stretched over the eyeball perhaps making their vision somewhat less effective. Most fishes have a spherical lens and accommodate their vision to far or near subjects by moving the lens within the eyeball. A few sharks accommodate by changing the shape of the lens, as in land vertebrates. Those fishes that are heavily dependent upon the eyes have especially strong muscles for accommodation. Most fishes see well, despite the restrictions imposed by frequent turbidity of the water and by light refraction.
Fossil evidence suggests that colour vision evolved in fishes more than 300 million years ago, but not all living fishes have retained this ability. Experimental evidence indicates that many shallow-water fishes, if not all, have colour vision and see some colours especially well, but some bottom-dwelling shore fishes live in areas where the water is sufficiently deep to filter out most if not all colours, and these fishes apparently never see colours. When tested in shallow water, they apparently are unable to respond to colour differences.
Sound perception and balance are intimately associated senses in a fish. The organs of hearing are entirely internal, located within the skull, on each side of the brain and somewhat behind the eyes. Sound waves, especially those of low frequencies, travel readily through water and impinge directly upon the bones and fluids of the head and body, to be transmitted to the hearing organs. Fishes readily respond to sound; for example, a trout conditioned to escape by the approach of fishermen will take flight upon perceiving footsteps on a stream bank even if it cannot see a fisherman. Compared with humans, however, the range of sound frequencies heard by fishes is greatly restricted. Many fishes communicate with each other by producing sounds in their swim bladders, in their throats by rasping their teeth, and in other ways.
A fish or other vertebrate seldom has to rely on a single type of sensory information to determine the nature of the environment around it. A catfish uses taste and touch when examining a food object with its oral barbels. Like most other animals, fishes have many touch receptors over their body surface. Pain and temperature receptors also are present in fishes and presumably produce the same kind of information to a fish as to humans. Fishes react in a negative fashion to stimuli that would be painful to human beings, suggesting that they feel a sensation of pain.
An important sensory system in fishes that is absent in other vertebrates (except some amphibians) is the lateral line system. This consists of a series of heavily innervated small canals located in the skin and bone around the eyes, along the lower jaw, over the head, and down the mid-side of the body, where it is associated with the scales. Intermittently along these canals are located tiny sensory organs (pit organs) that apparently detect changes in pressure. The system allows a fish to sense changes in water currents and pressure, thereby helping the fish to orient itself to the various changes that occur in the physical environment.
Newly inserted window in the north chapel with glass designed and painted by Tony Naylor, 2015.
St Mary's church in Lapworth is one of the most rewarding and unusual medieval parish churches in Warwickshire. The visitor generally approaches this handsome building from the north where the sturdy tower and spire stand guard like a sentinel. It is unusual in standing apart from the main building and was originally detached but is now linked by a passageway to the north aisle, making the church almost as wide as it is long. The west end too is remarkably configured with a chantry chapel or room set above an archway (allowing passage across the churchyard below).
The church we see today dates mainly from the 13th / 14th centuries, with an impressive fifteenth century clerestorey added to the nave being a prominent feature externally, but within it is possible to discern traces of the previous Norman structure embedded below in the nave arcade. There is much of interest to enjoy in this pleasant interior from quirky carvings high in the nave to the rich stained glass in the chancel and north chapel (which has benefitted immensely from a newly inserted window where the east wall had previously been blank). The most interesting memorial is the relief tablet in the north chapel by Eric Gill.
Lapworth church has consistently welcomed visitors and remains militantly open now despite being surrounded by churches largely reluctant to re-open after Covid. Happily since Tony Naylor's fine new window was installed the previous alarm system that restricted access to the eastern half of the church (which I inadvertedly set off on my first ever visit, deafening the neighbours!) has been relaxed so that visitors can now enjoy the full extent of the interior and its fittings.
Wolfsburg
Volkswagen Arena, also known as the VfL Wolfsburg Arena due to UEFA sponsorship regulations was opened in 2002 and named after the automotive group Volkswagen AG. The Volkswagen Arena has a capacity of 30,000: 22,000 seats and 8,000 standing places. It is located in the Allerpark and is the home stadium of the football team VfL Wolfsburg.
The most striking feature of the stadium is its sophisticated roof, which was designed as a truss-supported membrane structure.32 radial trusses, each 40 metres in length, make up the support system for the fire-retardant PVC membrane, which is 15,000 square metres large. The membrane is translucent, aims to improve the atmosphere in the stadium for the spectators and supports the natural growth of the grass on the pitch.
Seating
The Volkswagen Arena is a two-tier stadium with a surrounding promenade. The lower level has an inclination of approximately 25 degrees, the upper level 40 degrees.The ground area of the entire plot is around 115,000 square metres and the floor space of the stadium is around 28,000 square metres. The stadium's capacity of 30,000 consists of 22,000 seats and 8,000 standing places. The standing places can be converted into 4,000 seats.[3] The guest block of the Volkswagen Arena contains 1,886 seats and 900 standing places with separate kiosks and toilet areas. All seats in the Volkswagen Arena are completely covered.
A total of 31 boxes with 332 seats are available at the stadium, which also offers 198 so-called Executive Seats, which are integrated into the VIP block, and 1,434 Business Seats with direct access to restaurants. The Volkswagen Arena is home to a 102-square-metre-large Skylounge above both grandstands with 35 seats.This offers a view of the entire stadium and is also used as a venue for other events and even weddings. The control room, which houses systems such as the fire alarm system and police equipment, is located above the Skylounge.
The special features of the Volkswagen Arena include seats and spaces for people with disabilities and their companions. Spectators with impaired vision are provided with a total of 10 seats with headphones so that they can hear the commentator during the match. Furthermore, 80 spaces are available for spectators in wheelchairs. Families with children can book seats in a separate area at the Volkswagen Arena. VfL Wolfsburg also offers childcare during all home games at the stadium. A separate area is provided for younger and shorter spectators so that they can get a better view of the match.
VfL Wolfsburg also became the first Bundesliga club to play in an LED-lit stadium when the Volkswagen Arena was equipped with a new LED floodlight system at the start of 2017. The old floodlighting of the Volkswagen Arena consists of more than 170 elements with lamps, each weighing about 35 kilos. They were all mounted under the roof and together produce about 1,500 lux. The 84 speakers in the stadium, which weigh 120 kilos each and are likewise mounted under the roof, produce a total of 600 watts. There are also two video walls covering an area of 53 square metres in the stadium.The pitch is covered in hybrid grass,which is natural grass that is reinforced with synthetic fibres, thus improving its weatherability. The Volkswagen Arena was the first Bundesliga stadium to introduce such a system.] From the outset, the pitch has been heated so that matches can be played regardless of ice and snow.
The Volkswagen Arena was also the first Bundesliga stadium to debut 5G technology on match day 5 of the 2019/2020 campaign against Hoffenheim.
**United States Post Office and Courthouse** - National Register of Historic Places Ref # 99001648, date listed 1/21/2000
500 E. Ford St.
Augusta, GA (Richmond County)
The United States Courthouse in Augusta, Georgia was completed in 1916. It was designed and built under the auspices of the U.S. Treasury Department, Oscar Wenderoth, Supervising Architect. The building was extended to the east (rear) in 1936 to enlarge the postal work area. In 1960, the building was modernized with a new passenger elevator, central air and aluminum front doors. In 1971, a fire escape and manual fire alarm system were installed; and acoustical ceilings and contemporary lighting were installed in the second and third floor corridors. Between 1992 and 1996, the building was vacated for a rehabilitation project which included restoration of the original courtroom ceiling, as well as the second and third floor corridors; new security screen in the lobby; new roof; asbestos removal; and the addition of new heating and air conditioning system and electrical wiring.
The United States Courthouse in Augusta, Georgia is a significant building because it is an excellent representation of the Italian Renaissance Revival style, a popular style of the early 1900s; and because it is a continuing symbol of the Federal presence in Augusta.
The Italian Renaissance Revival style became popular in the late 19th Century due to a revival of interest in classical architecture which came about as a result of the 1893 Columbian Exposition. It was a style that catered to the growing taste for richness in public buildings. Indeed, in the early 1900s, the Federal government promoted the concept that government buildings should be monumental and beautiful. Characteristics of this style which are evident in the U.S. Courthouse include: symmetrical elevations with bold cornices; arched windows; different window designs at each floor; use of brackets, either as functional or decorative elements; use of arches; a veranda extending along an entire facade; use of sculptural ornamentation. (1)
References (1) NRHP Nomination Form s3.amazonaws.com/NARAprodstorage/lz/electronic-records/rg...
TEIGN C Damen Stan 1405
IMO: - N/A
MMSI: 235082804
Call Sign: MWBM9
AIS Vessel Type: Dredger
GENERAL
DAMEN YARD NUMBER: 503705
Avelingen-West 20
4202 MS Gorinchem
The Netherlands
Phone: +31 (0)183 63 99 11
info@damen.com
DELIVERY DATE August 2001
BASIC FUNCTIONS Towing, mooring, pushing and dredging operations
FLAG United Kingdom [GB]
OWNED Teignmouth Harbour Commission
CASSCATION: Bureau Veritas 1 HULL MACH Seagoing Launch
DIMENSIONS
LENGTH 14.40 m
BEAM 4.73 m
DEPTH AT SIDES 205 m
DRAUGHT AFT 171 m
DISPLACEMENT 48 ton
TANK CAPACITIES
Fuel oil 6.9 m³
PERFORMANCES (TRIALS)
BOLLARD PULL AHEAD 8.0 ton
SPEED 9.8 knots
PROPULSION SYSTEM
MAIN ENGINE 2x Caterpillar 3406C TA/A
TOTAL POWER 477 bmW (640i hp) at 1800 rpm
GEARBOX 2x Twin Disc MG 5091/3.82:1
PROPELLERS Bronze fixed pitch propeller
KORT NOZZELS Van de Giessen 2x 1000 mm with stainless steel innerings
ENGINE CONTROL Kobelt
STEERING GEAR 2x 25 mm single plate Powered hydraulic 2x 45, rudder indicator
AUXILIARY EQUIPMENT
BILGE PUMP Sterling SIH 20, 32 m/hr
BATTERY SETS 2x 24V, 200 Ah + change over facility
COOLING SYSTEM Closed cooling system
ALARM SYSTEM Engines, gearboxes and bilge alarms
FRESH WATER PRESSURE SET Speck 24V
DECK LAY-OUT
ANCHORS 2x 48 kg Pool (HHP)
CHAIN 70 m, Ø 13mm, shortlink U2
ANCHOR WINCH Hand-operated
TOWING HOOK Mampaey, 15.3 ton SWL
COUPLING WINCH
PUSHBOW Cylindrical nubber fender Ø 380 mm
ACCOMMODATION
The wheelhouse ceiling and sides are insulated with mineral wool and
panelled. The wheelhouse floor is covered with rubber/synthetic floor
covering, make Bolidt, color blue The wheelhouse has one
helmsman seat, a bench and table with chair Below deck two berths, a
kitchen unit and a toilet space are arranged.
NAUTICAL AND COMMUNICATION EQUIPMENT
SEARCHLIGHT Den Haan 170 W 24 V
VHF RADIO Sailor RT 2048 25 W
NAVIGATION Navigation lights incl towing and pilot lights
Teignmouth Harbour Commission
The Harbour Commission is a Trust Port created by Statute.
The principal Order is the Teignmouth Harbour Order 1924
as amended by the Teignmouth Harbour Revision Order 2003
Facing North - Looking South
Pacific Alarm Systems, Inc.
4444 Sepulveda Boulevard
Culver City, Los Angeles County, California 90230
Shot in the fisheye mirror next to the blind driveway of Pacific Alarm Systems to finish off this roll of film.
The camera I set down was a Nikon FE with a 28mm F/2.8 AI lens.
This is a bit underexposed, but I still like it enough to use it.
camera: Rollei 35 T (scale focus)
lens: Rollei 40mm Tessar F/3.5
film: Fujicolor Pro 160S
filter: none
meter: Gossen Pilot
support: hand held
scan: NCPS
Fish, any of approximately 34,000 species of vertebrate animals (phylum Chordata) found in the fresh and salt waters of the world. Living species range from the primitive jawless lampreys and hagfishes through the cartilaginous sharks, skates, and rays to the abundant and diverse bony fishes. Most fish species are cold-blooded; however, one species, the opah (Lampris guttatus), is warm-blooded.
The term fish is applied to a variety of vertebrates of several evolutionary lines. It describes a life-form rather than a taxonomic group. As members of the phylum Chordata, fish share certain features with other vertebrates. These features are gill slits at some point in the life cycle, a notochord, or skeletal supporting rod, a dorsal hollow nerve cord, and a tail. Living fishes represent some five classes, which are as distinct from one another as are the four classes of familiar air-breathing animals—amphibians, reptiles, birds, and mammals. For example, the jawless fishes (Agnatha) have gills in pouches and lack limb girdles. Extant agnathans are the lampreys and the hagfishes. As the name implies, the skeletons of fishes of the class Chondrichthyes (from chondr, “cartilage,” and ichthyes, “fish”) are made entirely of cartilage. Modern fish of this class lack a swim bladder, and their scales and teeth are made up of the same placoid material. Sharks, skates, and rays are examples of cartilaginous fishes. The bony fishes are by far the largest class. Examples range from the tiny seahorse to the 450-kg (1,000-pound) blue marlin, from the flattened soles and flounders to the boxy puffers and ocean sunfishes. Unlike the scales of the cartilaginous fishes, those of bony fishes, when present, grow throughout life and are made up of thin overlapping plates of bone. Bony fishes also have an operculum that covers the gill slits.
The study of fishes, the science of ichthyology, is of broad importance. Fishes are of interest to humans for many reasons, the most important being their relationship with and dependence on the environment. A more obvious reason for interest in fishes is their role as a moderate but important part of the world’s food supply. This resource, once thought unlimited, is now realized to be finite and in delicate balance with the biological, chemical, and physical factors of the aquatic environment. Overfishing, pollution, and alteration of the environment are the chief enemies of proper fisheries management, both in fresh waters and in the ocean. (For a detailed discussion of the technology and economics of fisheries, see commercial fishing.) Another practical reason for studying fishes is their use in disease control. As predators on mosquito larvae, they help curb malaria and other mosquito-borne diseases.
Fishes are valuable laboratory animals in many aspects of medical and biological research. For example, the readiness of many fishes to acclimate to captivity has allowed biologists to study behaviour, physiology, and even ecology under relatively natural conditions. Fishes have been especially important in the study of animal behaviour, where research on fishes has provided a broad base for the understanding of the more flexible behaviour of the higher vertebrates. The zebra fish is used as a model in studies of gene expression.
There are aesthetic and recreational reasons for an interest in fishes. Millions of people keep live fishes in home aquariums for the simple pleasure of observing the beauty and behaviour of animals otherwise unfamiliar to them. Aquarium fishes provide a personal challenge to many aquarists, allowing them to test their ability to keep a small section of the natural environment in their homes. Sportfishing is another way of enjoying the natural environment, also indulged in by millions of people every year. Interest in aquarium fishes and sportfishing supports multimillion-dollar industries throughout the world.
Fishes have been in existence for more than 450 million years, during which time they have evolved repeatedly to fit into almost every conceivable type of aquatic habitat. In a sense, land vertebrates are simply highly modified fishes: when fishes colonized the land habitat, they became tetrapod (four-legged) land vertebrates. The popular conception of a fish as a slippery, streamlined aquatic animal that possesses fins and breathes by gills applies to many fishes, but far more fishes deviate from that conception than conform to it. For example, the body is elongate in many forms and greatly shortened in others; the body is flattened in some (principally in bottom-dwelling fishes) and laterally compressed in many others; the fins may be elaborately extended, forming intricate shapes, or they may be reduced or even lost; and the positions of the mouth, eyes, nostrils, and gill openings vary widely. Air breathers have appeared in several evolutionary lines.
Many fishes are cryptically coloured and shaped, closely matching their respective environments; others are among the most brilliantly coloured of all organisms, with a wide range of hues, often of striking intensity, on a single individual. The brilliance of pigments may be enhanced by the surface structure of the fish, so that it almost seems to glow. A number of unrelated fishes have actual light-producing organs. Many fishes are able to alter their coloration—some for the purpose of camouflage, others for the enhancement of behavioral signals.
Fishes range in adult length from less than 10 mm (0.4 inch) to more than 20 metres (60 feet) and in weight from about 1.5 grams (less than 0.06 ounce) to many thousands of kilograms. Some live in shallow thermal springs at temperatures slightly above 42 °C (100 °F), others in cold Arctic seas a few degrees below 0 °C (32 °F) or in cold deep waters more than 4,000 metres (13,100 feet) beneath the ocean surface. The structural and, especially, the physiological adaptations for life at such extremes are relatively poorly known and provide the scientifically curious with great incentive for study.
Almost all natural bodies of water bear fish life, the exceptions being very hot thermal ponds and extremely salt-alkaline lakes, such as the Dead Sea in Asia and the Great Salt Lake in North America. The present distribution of fishes is a result of the geological history and development of Earth as well as the ability of fishes to undergo evolutionary change and to adapt to the available habitats. Fishes may be seen to be distributed according to habitat and according to geographical area. Major habitat differences are marine and freshwater. For the most part, the fishes in a marine habitat differ from those in a freshwater habitat, even in adjacent areas, but some, such as the salmon, migrate from one to the other. The freshwater habitats may be seen to be of many kinds. Fishes found in mountain torrents, Arctic lakes, tropical lakes, temperate streams, and tropical rivers will all differ from each other, both in obvious gross structure and in physiological attributes. Even in closely adjacent habitats where, for example, a tropical mountain torrent enters a lowland stream, the fish fauna will differ. The marine habitats can be divided into deep ocean floors (benthic), mid-water oceanic (bathypelagic), surface oceanic (pelagic), rocky coast, sandy coast, muddy shores, bays, estuaries, and others. Also, for example, rocky coastal shores in tropical and temperate regions will have different fish faunas, even when such habitats occur along the same coastline.
Although much is known about the present geographical distribution of fishes, far less is known about how that distribution came about. Many parts of the fish fauna of the fresh waters of North America and Eurasia are related and undoubtedly have a common origin. The faunas of Africa and South America are related, extremely old, and probably an expression of the drifting apart of the two continents. The fauna of southern Asia is related to that of Central Asia, and some of it appears to have entered Africa. The extremely large shore-fish faunas of the Indian and tropical Pacific oceans comprise a related complex, but the tropical shore fauna of the Atlantic, although containing Indo-Pacific components, is relatively limited and probably younger. The Arctic and Antarctic marine faunas are quite different from each other. The shore fauna of the North Pacific is quite distinct, and that of the North Atlantic more limited and probably younger. Pelagic oceanic fishes, especially those in deep waters, are similar the world over, showing little geographical isolation in terms of family groups. The deep oceanic habitat is very much the same throughout the world, but species differences do exist, showing geographical areas determined by oceanic currents and water masses.
All aspects of the life of a fish are closely correlated with adaptation to the total environment, physical, chemical, and biological. In studies, all the interdependent aspects of fish, such as behaviour, locomotion, reproduction, and physical and physiological characteristics, must be taken into account.
Correlated with their adaptation to an extremely wide variety of habitats is the extremely wide variety of life cycles that fishes display. The great majority hatch from relatively small eggs a few days to several weeks or more after the eggs are scattered in the water. Newly hatched young are still partially undeveloped and are called larvae until body structures such as fins, skeleton, and some organs are fully formed. Larval life is often very short, usually less than a few weeks, but it can be very long, some lampreys continuing as larvae for at least five years. Young and larval fishes, before reaching sexual maturity, must grow considerably, and their small size and other factors often dictate that they live in a habitat different than that of the adults. For example, most tropical marine shore fishes have pelagic larvae. Larval food also is different, and larval fishes often live in shallow waters, where they may be less exposed to predators.
After a fish reaches adult size, the length of its life is subject to many factors, such as innate rates of aging, predation pressure, and the nature of the local climate. The longevity of a species in the protected environment of an aquarium may have nothing to do with how long members of that species live in the wild. Many small fishes live only one to three years at the most. In some species, however, individuals may live as long as 10 or 20 or even 100 years.
Fish behaviour is a complicated and varied subject. As in almost all animals with a central nervous system, the nature of a response of an individual fish to stimuli from its environment depends upon the inherited characteristics of its nervous system, on what it has learned from past experience, and on the nature of the stimuli. Compared with the variety of human responses, however, that of a fish is stereotyped, not subject to much modification by “thought” or learning, and investigators must guard against anthropomorphic interpretations of fish behaviour.
Fishes perceive the world around them by the usual senses of sight, smell, hearing, touch, and taste and by special lateral line water-current detectors. In the few fishes that generate electric fields, a process that might best be called electrolocation aids in perception. One or another of these senses often is emphasized at the expense of others, depending upon the fish’s other adaptations. In fishes with large eyes, the sense of smell may be reduced; others, with small eyes, hunt and feed primarily by smell (such as some eels).
Specialized behaviour is primarily concerned with the three most important activities in the fish’s life: feeding, reproduction, and escape from enemies. Schooling behaviour of sardines on the high seas, for instance, is largely a protective device to avoid enemies, but it is also associated with and modified by their breeding and feeding requirements. Predatory fishes are often solitary, lying in wait to dart suddenly after their prey, a kind of locomotion impossible for beaked parrot fishes, which feed on coral, swimming in small groups from one coral head to the next. In addition, some predatory fishes that inhabit pelagic environments, such as tunas, often school.
Sleep in fishes, all of which lack true eyelids, consists of a seemingly listless state in which the fish maintains its balance but moves slowly. If attacked or disturbed, most can dart away. A few kinds of fishes lie on the bottom to sleep. Most catfishes, some loaches, and some eels and electric fishes are strictly nocturnal, being active and hunting for food during the night and retiring during the day to holes, thick vegetation, or other protective parts of the environment.
Communication between members of a species or between members of two or more species often is extremely important, especially in breeding behaviour (see below Reproduction). The mode of communication may be visual, as between the small so-called cleaner fish and a large fish of a very different species. The larger fish often allows the cleaner to enter its mouth to remove gill parasites. The cleaner is recognized by its distinctive colour and actions and therefore is not eaten, even if the larger fish is normally a predator. Communication is often chemical, signals being sent by specific chemicals called pheromones.
Many fishes have a streamlined body and swim freely in open water. Fish locomotion is closely correlated with habitat and ecological niche (the general position of the animal to its environment).
Many fishes in both marine and fresh waters swim at the surface and have mouths adapted to feed best (and sometimes only) at the surface. Often such fishes are long and slender, able to dart at surface insects or at other surface fishes and in turn to dart away from predators; needlefishes, halfbeaks, and topminnows (such as killifish and mosquito fish) are good examples. Oceanic flying fishes escape their predators by gathering speed above the water surface, with the lower lobe of the tail providing thrust in the water. They then glide hundreds of yards on enlarged, winglike pectoral and pelvic fins. South American freshwater flying fishes escape their enemies by jumping and propelling their strongly keeled bodies out of the water.
So-called mid-water swimmers, the most common type of fish, are of many kinds and live in many habitats. The powerful fusiform tunas and the trouts, for example, are adapted for strong, fast swimming, the tunas to capture prey speedily in the open ocean and the trouts to cope with the swift currents of streams and rivers. The trout body form is well adapted to many habitats. Fishes that live in relatively quiet waters such as bays or lake shores or slow rivers usually are not strong, fast swimmers but are capable of short, quick bursts of speed to escape a predator. Many of these fishes have their sides flattened, examples being the sunfish and the freshwater angelfish of aquarists. Fish associated with the bottom or substrate usually are slow swimmers. Open-water plankton-feeding fishes almost always remain fusiform and are capable of rapid, strong movement (for example, sardines and herrings of the open ocean and also many small minnows of streams and lakes).
Bottom-living fishes are of many kinds and have undergone many types of modification of their body shape and swimming habits. Rays, which evolved from strong-swimming mid-water sharks, usually stay close to the bottom and move by undulating their large pectoral fins. Flounders live in a similar habitat and move over the bottom by undulating the entire body. Many bottom fishes dart from place to place, resting on the bottom between movements, a motion common in gobies. One goby relative, the mudskipper, has taken to living at the edge of pools along the shore of muddy mangrove swamps. It escapes its enemies by flipping rapidly over the mud, out of the water. Some catfishes, synbranchid eels, the so-called climbing perch, and a few other fishes venture out over damp ground to find more promising waters than those that they left. They move by wriggling their bodies, sometimes using strong pectoral fins; most have accessory air-breathing organs. Many bottom-dwelling fishes live in mud holes or rocky crevices. Marine eels and gobies commonly are found in such habitats and for the most part venture far beyond their cavelike homes. Some bottom dwellers, such as the clingfishes (Gobiesocidae), have developed powerful adhesive disks that enable them to remain in place on the substrate in areas such as rocky coasts, where the action of the waves is great.
The methods of reproduction in fishes are varied, but most fishes lay a large number of small eggs, fertilized and scattered outside of the body. The eggs of pelagic fishes usually remain suspended in the open water. Many shore and freshwater fishes lay eggs on the bottom or among plants. Some have adhesive eggs. The mortality of the young and especially of the eggs is very high, and often only a few individuals grow to maturity out of hundreds, thousands, and in some cases millions of eggs laid.
Males produce sperm, usually as a milky white substance called milt, in two (sometimes one) testes within the body cavity. In bony fishes a sperm duct leads from each testis to a urogenital opening behind the vent or anus. In sharks and rays and in cyclostomes the duct leads to a cloaca. Sometimes the pelvic fins are modified to help transmit the milt to the eggs at the female’s vent or on the substrate where the female has placed them. Sometimes accessory organs are used to fertilize females internally—for example, the claspers of many sharks and rays.
In the females the eggs are formed in two ovaries (sometimes only one) and pass through the ovaries to the urogenital opening and to the outside. In some fishes the eggs are fertilized internally but are shed before development takes place. Members of about a dozen families each of bony fishes (teleosts) and sharks bear live young. Many skates and rays also bear live young. In some bony fishes the eggs simply develop within the female, the young emerging when the eggs hatch (ovoviviparous). Others develop within the ovary and are nourished by ovarian tissues after hatching (viviparous). There are also other methods utilized by fishes to nourish young within the female. In all live-bearers the young are born at a relatively large size and are few in number. In one family of primarily marine fishes, the surfperches from the Pacific coast of North America, Japan, and Korea, the males of at least one species are born sexually mature, although they are not fully grown.
Some fishes are hermaphroditic—an individual producing both sperm and eggs, usually at different stages of its life. Self-fertilization, however, is probably rare.
Successful reproduction and, in many cases, defense of the eggs and the young are assured by rather stereotypical but often elaborate courtship and parental behaviour, either by the male or the female or both. Some fishes prepare nests by hollowing out depressions in the sand bottom (cichlids, for example), build nests with plant materials and sticky threads excreted by the kidneys (sticklebacks), or blow a cluster of mucus-covered bubbles at the water surface (gouramis). The eggs are laid in these structures. Some varieties of cichlids and catfishes incubate eggs in their mouths.
Some fishes, such as salmon, undergo long migrations from the ocean and up large rivers to spawn in the gravel beds where they themselves hatched (anadromous fishes). Some, such as the freshwater eels (family Anguillidae), live and grow to maturity in fresh water and migrate to the sea to spawn (catadromous fishes). Other fishes undertake shorter migrations from lakes into streams, within the ocean, or enter spawning habitats that they do not ordinarily occupy in other ways.
The basic structure and function of the fish body are similar to those of all other vertebrates. The usual four types of tissues are present: surface or epithelial, connective (bone, cartilage, and fibrous tissues, as well as their derivative, blood), nerve, and muscle tissues. In addition, the fish’s organs and organ systems parallel those of other vertebrates.
The typical fish body is streamlined and spindle-shaped, with an anterior head, a gill apparatus, and a heart, the latter lying in the midline just below the gill chamber. The body cavity, containing the vital organs, is situated behind the head in the lower anterior part of the body. The anus usually marks the posterior termination of the body cavity and most often occurs just in front of the base of the anal fin. The spinal cord and vertebral column continue from the posterior part of the head to the base of the tail fin, passing dorsal to the body cavity and through the caudal (tail) region behind the body cavity. Most of the body is of muscular tissue, a high proportion of which is necessitated by swimming. In the course of evolution this basic body plan has been modified repeatedly into the many varieties of fish shapes that exist today.
The skeleton forms an integral part of the fish’s locomotion system, as well as serving to protect vital parts. The internal skeleton consists of the skull bones (except for the roofing bones of the head, which are really part of the external skeleton), the vertebral column, and the fin supports (fin rays). The fin supports are derived from the external skeleton but will be treated here because of their close functional relationship to the internal skeleton. The internal skeleton of cyclostomes, sharks, and rays is of cartilage; that of many fossil groups and some primitive living fishes is mostly of cartilage but may include some bone. In place of the vertebral column, the earliest vertebrates had a fully developed notochord, a flexible stiff rod of viscous cells surrounded by a strong fibrous sheath. During the evolution of modern fishes the rod was replaced in part by cartilage and then by ossified cartilage. Sharks and rays retain a cartilaginous vertebral column; bony fishes have spool-shaped vertebrae that in the more primitive living forms only partially replace the notochord. The skull, including the gill arches and jaws of bony fishes, is fully, or at least partially, ossified. That of sharks and rays remains cartilaginous, at times partially replaced by calcium deposits but never by true bone.
The supportive elements of the fins (basal or radial bones or both) have changed greatly during fish evolution. Some of these changes are described in the section below (Evolution and paleontology). Most fishes possess a single dorsal fin on the midline of the back. Many have two and a few have three dorsal fins. The other fins are the single tail and anal fins and paired pelvic and pectoral fins. A small fin, the adipose fin, with hairlike fin rays, occurs in many of the relatively primitive teleosts (such as trout) on the back near the base of the caudal fin.
The skin of a fish must serve many functions. It aids in maintaining the osmotic balance, provides physical protection for the body, is the site of coloration, contains sensory receptors, and, in some fishes, functions in respiration. Mucous glands, which aid in maintaining the water balance and offer protection from bacteria, are extremely numerous in fish skin, especially in cyclostomes and teleosts. Since mucous glands are present in the modern lampreys, it is reasonable to assume that they were present in primitive fishes, such as the ancient Silurian and Devonian agnathans. Protection from abrasion and predation is another function of the fish skin, and dermal (skin) bone arose early in fish evolution in response to this need. It is thought that bone first evolved in skin and only later invaded the cartilaginous areas of the fish’s body, to provide additional support and protection. There is some argument as to which came first, cartilage or bone, and fossil evidence does not settle the question. In any event, dermal bone has played an important part in fish evolution and has different characteristics in different groups of fishes. Several groups are characterized at least in part by the kind of bony scales they possess.
Scales have played an important part in the evolution of fishes. Primitive fishes usually had thick bony plates or thick scales in several layers of bone, enamel, and related substances. Modern teleost fishes have scales of bone, which, while still protective, allow much more freedom of motion in the body. A few modern teleosts (some catfishes, sticklebacks, and others) have secondarily acquired bony plates in the skin. Modern and early sharks possessed placoid scales, a relatively primitive type of scale with a toothlike structure, consisting of an outside layer of enamel-like substance (vitrodentine), an inner layer of dentine, and a pulp cavity containing nerves and blood vessels. Primitive bony fishes had thick scales of either the ganoid or the cosmoid type. Cosmoid scales have a hard, enamel-like outer layer, an inner layer of cosmine (a form of dentine), and then a layer of vascular bone (isopedine). In ganoid scales the hard outer layer is different chemically and is called ganoin. Under this is a cosminelike layer and then a vascular bony layer. The thin, translucent bony scales of modern fishes, called cycloid and ctenoid (the latter distinguished by serrations at the edges), lack enameloid and dentine layers.
Skin has several other functions in fishes. It is well supplied with nerve endings and presumably receives tactile, thermal, and pain stimuli. Skin is also well supplied with blood vessels. Some fishes breathe in part through the skin, by the exchange of oxygen and carbon dioxide between the surrounding water and numerous small blood vessels near the skin surface.
Skin serves as protection through the control of coloration. Fishes exhibit an almost limitless range of colours. The colours often blend closely with the surroundings, effectively hiding the animal. Many fishes use bright colours for territorial advertisement or as recognition marks for other members of their own species, or sometimes for members of other species. Many fishes can change their colour to a greater or lesser degree, by movement of pigment within the pigment cells (chromatophores). Black pigment cells (melanophores), of almost universal occurrence in fishes, are often juxtaposed with other pigment cells. When placed beneath iridocytes or leucophores (bearing the silvery or white pigment guanine), melanophores produce structural colours of blue and green. These colours are often extremely intense, because they are formed by refraction of light through the needlelike crystals of guanine. The blue and green refracted colours are often relatively pure, lacking the red and yellow rays, which have been absorbed by the black pigment (melanin) of the melanophores. Yellow, orange, and red colours are produced by erythrophores, cells containing the appropriate carotenoid pigments. Other colours are produced by combinations of melanophores, erythrophores, and iridocytes.
The major portion of the body of most fishes consists of muscles. Most of the mass is trunk musculature, the fin muscles usually being relatively small. The caudal fin is usually the most powerful fin, being moved by the trunk musculature. The body musculature is usually arranged in rows of chevron-shaped segments on each side. Contractions of these segments, each attached to adjacent vertebrae and vertebral processes, bends the body on the vertebral joint, producing successive undulations of the body, passing from the head to the tail, and producing driving strokes of the tail. It is the latter that provides the strong forward movement for most fishes.
The digestive system, in a functional sense, starts at the mouth, with the teeth used to capture prey or collect plant foods. Mouth shape and tooth structure vary greatly in fishes, depending on the kind of food normally eaten. Most fishes are predacious, feeding on small invertebrates or other fishes and have simple conical teeth on the jaws, on at least some of the bones of the roof of the mouth, and on special gill arch structures just in front of the esophagus. The latter are throat teeth. Most predacious fishes swallow their prey whole, and the teeth are used for grasping and holding prey, for orienting prey to be swallowed (head first) and for working the prey toward the esophagus. There are a variety of tooth types in fishes. Some fishes, such as sharks and piranhas, have cutting teeth for biting chunks out of their victims. A shark’s tooth, although superficially like that of a piranha, appears in many respects to be a modified scale, while that of the piranha is like that of other bony fishes, consisting of dentine and enamel. Parrot fishes have beaklike mouths with short incisor-like teeth for breaking off coral and have heavy pavementlike throat teeth for crushing the coral. Some catfishes have small brushlike teeth, arranged in rows on the jaws, for scraping plant and animal growth from rocks. Many fishes (such as the Cyprinidae or minnows) have no jaw teeth at all but have very strong throat teeth.
Some fishes gather planktonic food by straining it from their gill cavities with numerous elongate stiff rods (gill rakers) anchored by one end to the gill bars. The food collected on these rods is passed to the throat, where it is swallowed. Most fishes have only short gill rakers that help keep food particles from escaping out the mouth cavity into the gill chamber.
Once reaching the throat, food enters a short, often greatly distensible esophagus, a simple tube with a muscular wall leading into a stomach. The stomach varies greatly in fishes, depending upon the diet. In most predacious fishes it is a simple straight or curved tube or pouch with a muscular wall and a glandular lining. Food is largely digested there and leaves the stomach in liquid form.
Between the stomach and the intestine, ducts enter the digestive tube from the liver and pancreas. The liver is a large, clearly defined organ. The pancreas may be embedded in it, diffused through it, or broken into small parts spread along some of the intestine. The junction between the stomach and the intestine is marked by a muscular valve. Pyloric ceca (blind sacs) occur in some fishes at this junction and have a digestive or absorptive function or both.
The intestine itself is quite variable in length, depending upon the fish’s diet. It is short in predacious forms, sometimes no longer than the body cavity, but long in herbivorous forms, being coiled and several times longer than the entire length of the fish in some species of South American catfishes. The intestine is primarily an organ for absorbing nutrients into the bloodstream. The larger its internal surface, the greater its absorptive efficiency, and a spiral valve is one method of increasing its absorption surface.
Sharks, rays, chimaeras, lungfishes, surviving chondrosteans, holosteans, and even a few of the more primitive teleosts have a spiral valve or at least traces of it in the intestine. Most modern teleosts have increased the area of the intestinal walls by having numerous folds and villi (fingerlike projections) somewhat like those in humans. Undigested substances are passed to the exterior through the anus in most teleost fishes. In lungfishes, sharks, and rays, it is first passed through the cloaca, a common cavity receiving the intestinal opening and the ducts from the urogenital system.
Oxygen and carbon dioxide dissolve in water, and most fishes exchange dissolved oxygen and carbon dioxide in water by means of the gills. The gills lie behind and to the side of the mouth cavity and consist of fleshy filaments supported by the gill arches and filled with blood vessels, which give gills a bright red colour. Water taken in continuously through the mouth passes backward between the gill bars and over the gill filaments, where the exchange of gases takes place. The gills are protected by a gill cover in teleosts and many other fishes but by flaps of skin in sharks, rays, and some of the older fossil fish groups. The blood capillaries in the gill filaments are close to the gill surface to take up oxygen from the water and to give up excess carbon dioxide to the water.
Most modern fishes have a hydrostatic (ballast) organ, called the swim bladder, that lies in the body cavity just below the kidney and above the stomach and intestine. It originated as a diverticulum of the digestive canal. In advanced teleosts, especially the acanthopterygians, the bladder has lost its connection with the digestive tract, a condition called physoclistic. The connection has been retained (physostomous) by many relatively primitive teleosts. In several unrelated lines of fishes, the bladder has become specialized as a lung or, at least, as a highly vascularized accessory breathing organ. Some fishes with such accessory organs are obligate air breathers and will drown if denied access to the surface, even in well-oxygenated water. Fishes with a hydrostatic form of swim bladder can control their depth by regulating the amount of gas in the bladder. The gas, mostly oxygen, is secreted into the bladder by special glands, rendering the fish more buoyant; the gas is absorbed into the bloodstream by another special organ, reducing the overall buoyancy and allowing the fish to sink. Some deep-sea fishes may have oils, rather than gas, in the bladder. Other deep-sea and some bottom-living forms have much-reduced swim bladders or have lost the organ entirely.
The swim bladder of fishes follows the same developmental pattern as the lungs of land vertebrates. There is no doubt that the two structures have the same historical origin in primitive fishes. More or less intermediate forms still survive among the more primitive types of fishes, such as the lungfishes Lepidosiren and Protopterus.
The circulatory, or blood vascular, system consists of the heart, the arteries, the capillaries, and the veins. It is in the capillaries that the interchange of oxygen, carbon dioxide, nutrients, and other substances such as hormones and waste products takes place. The capillaries lead to the veins, which return the venous blood with its waste products to the heart, kidneys, and gills. There are two kinds of capillary beds: those in the gills and those in the rest of the body. The heart, a folded continuous muscular tube with three or four saclike enlargements, undergoes rhythmic contractions and receives venous blood in a sinus venosus. It passes the blood to an auricle and then into a thick muscular pump, the ventricle. From the ventricle the blood goes to a bulbous structure at the base of a ventral aorta just below the gills. The blood passes to the afferent (receiving) arteries of the gill arches and then to the gill capillaries. There waste gases are given off to the environment, and oxygen is absorbed. The oxygenated blood enters efferent (exuant) arteries of the gill arches and then flows into the dorsal aorta. From there blood is distributed to the tissues and organs of the body. One-way valves prevent backflow. The circulation of fishes thus differs from that of the reptiles, birds, and mammals in that oxygenated blood is not returned to the heart prior to distribution to the other parts of the body.
The primary excretory organ in fishes, as in other vertebrates, is the kidney. In fishes some excretion also takes place in the digestive tract, skin, and especially the gills (where ammonia is given off). Compared with land vertebrates, fishes have a special problem in maintaining their internal environment at a constant concentration of water and dissolved substances, such as salts. Proper balance of the internal environment (homeostasis) of a fish is in a great part maintained by the excretory system, especially the kidney.
The kidney, gills, and skin play an important role in maintaining a fish’s internal environment and checking the effects of osmosis. Marine fishes live in an environment in which the water around them has a greater concentration of salts than they can have inside their body and still maintain life. Freshwater fishes, on the other hand, live in water with a much lower concentration of salts than they require inside their bodies. Osmosis tends to promote the loss of water from the body of a marine fish and absorption of water by that of a freshwater fish. Mucus in the skin tends to slow the process but is not a sufficient barrier to prevent the movement of fluids through the permeable skin. When solutions on two sides of a permeable membrane have different concentrations of dissolved substances, water will pass through the membrane into the more concentrated solution, while the dissolved chemicals move into the area of lower concentration (diffusion).
The kidney of freshwater fishes is often larger in relation to body weight than that of marine fishes. In both groups the kidney excretes wastes from the body, but the kidney of freshwater fishes also excretes large amounts of water, counteracting the water absorbed through the skin. Freshwater fishes tend to lose salt to the environment and must replace it. They get some salt from their food, but the gills and skin inside the mouth actively absorb salt from water passed through the mouth. This absorption is performed by special cells capable of moving salts against the diffusion gradient. Freshwater fishes drink very little water and take in little water with their food.
Marine fishes must conserve water, and therefore their kidneys excrete little water. To maintain their water balance, marine fishes drink large quantities of seawater, retaining most of the water and excreting the salt. Most nitrogenous waste in marine fishes appears to be secreted by the gills as ammonia. Marine fishes can excrete salt by clusters of special cells (chloride cells) in the gills.
There are several teleosts—for example, the salmon—that travel between fresh water and seawater and must adjust to the reversal of osmotic gradients. They adjust their physiological processes by spending time (often surprisingly little time) in the intermediate brackish environment.
Marine hagfishes, sharks, and rays have osmotic concentrations in their blood about equal to that of seawater and so do not have to drink water nor perform much physiological work to maintain their osmotic balance. In sharks and rays the osmotic concentration is kept high by retention of urea in the blood. Freshwater sharks have a lowered concentration of urea in the blood.
Endocrine glands secrete their products into the bloodstream and body tissues and, along with the central nervous system, control and regulate many kinds of body functions. Cyclostomes have a well-developed endocrine system, and presumably it was well developed in the early Agnatha, ancestral to modern fishes. Although the endocrine system in fishes is similar to that of higher vertebrates, there are numerous differences in detail. The pituitary, the thyroid, the suprarenals, the adrenals, the pancreatic islets, the sex glands (ovaries and testes), the inner wall of the intestine, and the bodies of the ultimobranchial gland make up the endocrine system in fishes. There are some others whose function is not well understood. These organs regulate sexual activity and reproduction, growth, osmotic pressure, general metabolic activities such as the storage of fat and the utilization of foodstuffs, blood pressure, and certain aspects of skin colour. Many of these activities are also controlled in part by the central nervous system, which works with the endocrine system in maintaining the life of a fish. Some parts of the endocrine system are developmentally, and undoubtedly evolutionarily, derived from the nervous system.
As in all vertebrates, the nervous system of fishes is the primary mechanism coordinating body activities, as well as integrating these activities in the appropriate manner with stimuli from the environment. The central nervous system, consisting of the brain and spinal cord, is the primary integrating mechanism. The peripheral nervous system, consisting of nerves that connect the brain and spinal cord to various body organs, carries sensory information from special receptor organs such as the eyes, internal ears, nares (sense of smell), taste glands, and others to the integrating centres of the brain and spinal cord. The peripheral nervous system also carries information via different nerve cells from the integrating centres of the brain and spinal cord. This coded information is carried to the various organs and body systems, such as the skeletal muscular system, for appropriate action in response to the original external or internal stimulus. Another branch of the nervous system, the autonomic nervous system, helps to coordinate the activities of many glands and organs and is itself closely connected to the integrating centres of the brain.
The brain of the fish is divided into several anatomical and functional parts, all closely interconnected but each serving as the primary centre of integrating particular kinds of responses and activities. Several of these centres or parts are primarily associated with one type of sensory perception, such as sight, hearing, or smell (olfaction).
The sense of smell is important in almost all fishes. Certain eels with tiny eyes depend mostly on smell for location of food. The olfactory, or nasal, organ of fishes is located on the dorsal surface of the snout. The lining of the nasal organ has special sensory cells that perceive chemicals dissolved in the water, such as substances from food material, and send sensory information to the brain by way of the first cranial nerve. Odour also serves as an alarm system. Many fishes, especially various species of freshwater minnows, react with alarm to a chemical released from the skin of an injured member of their own species.
Many fishes have a well-developed sense of taste, and tiny pitlike taste buds or organs are located not only within their mouth cavities but also over their heads and parts of their body. Catfishes, which often have poor vision, have barbels (“whiskers”) that serve as supplementary taste organs, those around the mouth being actively used to search out food on the bottom. Some species of naturally blind cave fishes are especially well supplied with taste buds, which often cover most of their body surface.
Sight is extremely important in most fishes. The eye of a fish is basically like that of all other vertebrates, but the eyes of fishes are extremely varied in structure and adaptation. In general, fishes living in dark and dim water habitats have large eyes, unless they have specialized in some compensatory way so that another sense (such as smell) is dominant, in which case the eyes will often be reduced. Fishes living in brightly lighted shallow waters often will have relatively small but efficient eyes. Cyclostomes have somewhat less elaborate eyes than other fishes, with skin stretched over the eyeball perhaps making their vision somewhat less effective. Most fishes have a spherical lens and accommodate their vision to far or near subjects by moving the lens within the eyeball. A few sharks accommodate by changing the shape of the lens, as in land vertebrates. Those fishes that are heavily dependent upon the eyes have especially strong muscles for accommodation. Most fishes see well, despite the restrictions imposed by frequent turbidity of the water and by light refraction.
Fossil evidence suggests that colour vision evolved in fishes more than 300 million years ago, but not all living fishes have retained this ability. Experimental evidence indicates that many shallow-water fishes, if not all, have colour vision and see some colours especially well, but some bottom-dwelling shore fishes live in areas where the water is sufficiently deep to filter out most if not all colours, and these fishes apparently never see colours. When tested in shallow water, they apparently are unable to respond to colour differences.
Sound perception and balance are intimately associated senses in a fish. The organs of hearing are entirely internal, located within the skull, on each side of the brain and somewhat behind the eyes. Sound waves, especially those of low frequencies, travel readily through water and impinge directly upon the bones and fluids of the head and body, to be transmitted to the hearing organs. Fishes readily respond to sound; for example, a trout conditioned to escape by the approach of fishermen will take flight upon perceiving footsteps on a stream bank even if it cannot see a fisherman. Compared with humans, however, the range of sound frequencies heard by fishes is greatly restricted. Many fishes communicate with each other by producing sounds in their swim bladders, in their throats by rasping their teeth, and in other ways.
A fish or other vertebrate seldom has to rely on a single type of sensory information to determine the nature of the environment around it. A catfish uses taste and touch when examining a food object with its oral barbels. Like most other animals, fishes have many touch receptors over their body surface. Pain and temperature receptors also are present in fishes and presumably produce the same kind of information to a fish as to humans. Fishes react in a negative fashion to stimuli that would be painful to human beings, suggesting that they feel a sensation of pain.
An important sensory system in fishes that is absent in other vertebrates (except some amphibians) is the lateral line system. This consists of a series of heavily innervated small canals located in the skin and bone around the eyes, along the lower jaw, over the head, and down the mid-side of the body, where it is associated with the scales. Intermittently along these canals are located tiny sensory organs (pit organs) that apparently detect changes in pressure. The system allows a fish to sense changes in water currents and pressure, thereby helping the fish to orient itself to the various changes that occur in the physical environment.
Fish, any of approximately 34,000 species of vertebrate animals (phylum Chordata) found in the fresh and salt waters of the world. Living species range from the primitive jawless lampreys and hagfishes through the cartilaginous sharks, skates, and rays to the abundant and diverse bony fishes. Most fish species are cold-blooded; however, one species, the opah (Lampris guttatus), is warm-blooded.
The term fish is applied to a variety of vertebrates of several evolutionary lines. It describes a life-form rather than a taxonomic group. As members of the phylum Chordata, fish share certain features with other vertebrates. These features are gill slits at some point in the life cycle, a notochord, or skeletal supporting rod, a dorsal hollow nerve cord, and a tail. Living fishes represent some five classes, which are as distinct from one another as are the four classes of familiar air-breathing animals—amphibians, reptiles, birds, and mammals. For example, the jawless fishes (Agnatha) have gills in pouches and lack limb girdles. Extant agnathans are the lampreys and the hagfishes. As the name implies, the skeletons of fishes of the class Chondrichthyes (from chondr, “cartilage,” and ichthyes, “fish”) are made entirely of cartilage. Modern fish of this class lack a swim bladder, and their scales and teeth are made up of the same placoid material. Sharks, skates, and rays are examples of cartilaginous fishes. The bony fishes are by far the largest class. Examples range from the tiny seahorse to the 450-kg (1,000-pound) blue marlin, from the flattened soles and flounders to the boxy puffers and ocean sunfishes. Unlike the scales of the cartilaginous fishes, those of bony fishes, when present, grow throughout life and are made up of thin overlapping plates of bone. Bony fishes also have an operculum that covers the gill slits.
The study of fishes, the science of ichthyology, is of broad importance. Fishes are of interest to humans for many reasons, the most important being their relationship with and dependence on the environment. A more obvious reason for interest in fishes is their role as a moderate but important part of the world’s food supply. This resource, once thought unlimited, is now realized to be finite and in delicate balance with the biological, chemical, and physical factors of the aquatic environment. Overfishing, pollution, and alteration of the environment are the chief enemies of proper fisheries management, both in fresh waters and in the ocean. (For a detailed discussion of the technology and economics of fisheries, see commercial fishing.) Another practical reason for studying fishes is their use in disease control. As predators on mosquito larvae, they help curb malaria and other mosquito-borne diseases.
Fishes are valuable laboratory animals in many aspects of medical and biological research. For example, the readiness of many fishes to acclimate to captivity has allowed biologists to study behaviour, physiology, and even ecology under relatively natural conditions. Fishes have been especially important in the study of animal behaviour, where research on fishes has provided a broad base for the understanding of the more flexible behaviour of the higher vertebrates. The zebra fish is used as a model in studies of gene expression.
There are aesthetic and recreational reasons for an interest in fishes. Millions of people keep live fishes in home aquariums for the simple pleasure of observing the beauty and behaviour of animals otherwise unfamiliar to them. Aquarium fishes provide a personal challenge to many aquarists, allowing them to test their ability to keep a small section of the natural environment in their homes. Sportfishing is another way of enjoying the natural environment, also indulged in by millions of people every year. Interest in aquarium fishes and sportfishing supports multimillion-dollar industries throughout the world.
Fishes have been in existence for more than 450 million years, during which time they have evolved repeatedly to fit into almost every conceivable type of aquatic habitat. In a sense, land vertebrates are simply highly modified fishes: when fishes colonized the land habitat, they became tetrapod (four-legged) land vertebrates. The popular conception of a fish as a slippery, streamlined aquatic animal that possesses fins and breathes by gills applies to many fishes, but far more fishes deviate from that conception than conform to it. For example, the body is elongate in many forms and greatly shortened in others; the body is flattened in some (principally in bottom-dwelling fishes) and laterally compressed in many others; the fins may be elaborately extended, forming intricate shapes, or they may be reduced or even lost; and the positions of the mouth, eyes, nostrils, and gill openings vary widely. Air breathers have appeared in several evolutionary lines.
Many fishes are cryptically coloured and shaped, closely matching their respective environments; others are among the most brilliantly coloured of all organisms, with a wide range of hues, often of striking intensity, on a single individual. The brilliance of pigments may be enhanced by the surface structure of the fish, so that it almost seems to glow. A number of unrelated fishes have actual light-producing organs. Many fishes are able to alter their coloration—some for the purpose of camouflage, others for the enhancement of behavioral signals.
Fishes range in adult length from less than 10 mm (0.4 inch) to more than 20 metres (60 feet) and in weight from about 1.5 grams (less than 0.06 ounce) to many thousands of kilograms. Some live in shallow thermal springs at temperatures slightly above 42 °C (100 °F), others in cold Arctic seas a few degrees below 0 °C (32 °F) or in cold deep waters more than 4,000 metres (13,100 feet) beneath the ocean surface. The structural and, especially, the physiological adaptations for life at such extremes are relatively poorly known and provide the scientifically curious with great incentive for study.
Almost all natural bodies of water bear fish life, the exceptions being very hot thermal ponds and extremely salt-alkaline lakes, such as the Dead Sea in Asia and the Great Salt Lake in North America. The present distribution of fishes is a result of the geological history and development of Earth as well as the ability of fishes to undergo evolutionary change and to adapt to the available habitats. Fishes may be seen to be distributed according to habitat and according to geographical area. Major habitat differences are marine and freshwater. For the most part, the fishes in a marine habitat differ from those in a freshwater habitat, even in adjacent areas, but some, such as the salmon, migrate from one to the other. The freshwater habitats may be seen to be of many kinds. Fishes found in mountain torrents, Arctic lakes, tropical lakes, temperate streams, and tropical rivers will all differ from each other, both in obvious gross structure and in physiological attributes. Even in closely adjacent habitats where, for example, a tropical mountain torrent enters a lowland stream, the fish fauna will differ. The marine habitats can be divided into deep ocean floors (benthic), mid-water oceanic (bathypelagic), surface oceanic (pelagic), rocky coast, sandy coast, muddy shores, bays, estuaries, and others. Also, for example, rocky coastal shores in tropical and temperate regions will have different fish faunas, even when such habitats occur along the same coastline.
Although much is known about the present geographical distribution of fishes, far less is known about how that distribution came about. Many parts of the fish fauna of the fresh waters of North America and Eurasia are related and undoubtedly have a common origin. The faunas of Africa and South America are related, extremely old, and probably an expression of the drifting apart of the two continents. The fauna of southern Asia is related to that of Central Asia, and some of it appears to have entered Africa. The extremely large shore-fish faunas of the Indian and tropical Pacific oceans comprise a related complex, but the tropical shore fauna of the Atlantic, although containing Indo-Pacific components, is relatively limited and probably younger. The Arctic and Antarctic marine faunas are quite different from each other. The shore fauna of the North Pacific is quite distinct, and that of the North Atlantic more limited and probably younger. Pelagic oceanic fishes, especially those in deep waters, are similar the world over, showing little geographical isolation in terms of family groups. The deep oceanic habitat is very much the same throughout the world, but species differences do exist, showing geographical areas determined by oceanic currents and water masses.
All aspects of the life of a fish are closely correlated with adaptation to the total environment, physical, chemical, and biological. In studies, all the interdependent aspects of fish, such as behaviour, locomotion, reproduction, and physical and physiological characteristics, must be taken into account.
Correlated with their adaptation to an extremely wide variety of habitats is the extremely wide variety of life cycles that fishes display. The great majority hatch from relatively small eggs a few days to several weeks or more after the eggs are scattered in the water. Newly hatched young are still partially undeveloped and are called larvae until body structures such as fins, skeleton, and some organs are fully formed. Larval life is often very short, usually less than a few weeks, but it can be very long, some lampreys continuing as larvae for at least five years. Young and larval fishes, before reaching sexual maturity, must grow considerably, and their small size and other factors often dictate that they live in a habitat different than that of the adults. For example, most tropical marine shore fishes have pelagic larvae. Larval food also is different, and larval fishes often live in shallow waters, where they may be less exposed to predators.
After a fish reaches adult size, the length of its life is subject to many factors, such as innate rates of aging, predation pressure, and the nature of the local climate. The longevity of a species in the protected environment of an aquarium may have nothing to do with how long members of that species live in the wild. Many small fishes live only one to three years at the most. In some species, however, individuals may live as long as 10 or 20 or even 100 years.
Fish behaviour is a complicated and varied subject. As in almost all animals with a central nervous system, the nature of a response of an individual fish to stimuli from its environment depends upon the inherited characteristics of its nervous system, on what it has learned from past experience, and on the nature of the stimuli. Compared with the variety of human responses, however, that of a fish is stereotyped, not subject to much modification by “thought” or learning, and investigators must guard against anthropomorphic interpretations of fish behaviour.
Fishes perceive the world around them by the usual senses of sight, smell, hearing, touch, and taste and by special lateral line water-current detectors. In the few fishes that generate electric fields, a process that might best be called electrolocation aids in perception. One or another of these senses often is emphasized at the expense of others, depending upon the fish’s other adaptations. In fishes with large eyes, the sense of smell may be reduced; others, with small eyes, hunt and feed primarily by smell (such as some eels).
Specialized behaviour is primarily concerned with the three most important activities in the fish’s life: feeding, reproduction, and escape from enemies. Schooling behaviour of sardines on the high seas, for instance, is largely a protective device to avoid enemies, but it is also associated with and modified by their breeding and feeding requirements. Predatory fishes are often solitary, lying in wait to dart suddenly after their prey, a kind of locomotion impossible for beaked parrot fishes, which feed on coral, swimming in small groups from one coral head to the next. In addition, some predatory fishes that inhabit pelagic environments, such as tunas, often school.
Sleep in fishes, all of which lack true eyelids, consists of a seemingly listless state in which the fish maintains its balance but moves slowly. If attacked or disturbed, most can dart away. A few kinds of fishes lie on the bottom to sleep. Most catfishes, some loaches, and some eels and electric fishes are strictly nocturnal, being active and hunting for food during the night and retiring during the day to holes, thick vegetation, or other protective parts of the environment.
Communication between members of a species or between members of two or more species often is extremely important, especially in breeding behaviour (see below Reproduction). The mode of communication may be visual, as between the small so-called cleaner fish and a large fish of a very different species. The larger fish often allows the cleaner to enter its mouth to remove gill parasites. The cleaner is recognized by its distinctive colour and actions and therefore is not eaten, even if the larger fish is normally a predator. Communication is often chemical, signals being sent by specific chemicals called pheromones.
Many fishes have a streamlined body and swim freely in open water. Fish locomotion is closely correlated with habitat and ecological niche (the general position of the animal to its environment).
Many fishes in both marine and fresh waters swim at the surface and have mouths adapted to feed best (and sometimes only) at the surface. Often such fishes are long and slender, able to dart at surface insects or at other surface fishes and in turn to dart away from predators; needlefishes, halfbeaks, and topminnows (such as killifish and mosquito fish) are good examples. Oceanic flying fishes escape their predators by gathering speed above the water surface, with the lower lobe of the tail providing thrust in the water. They then glide hundreds of yards on enlarged, winglike pectoral and pelvic fins. South American freshwater flying fishes escape their enemies by jumping and propelling their strongly keeled bodies out of the water.
So-called mid-water swimmers, the most common type of fish, are of many kinds and live in many habitats. The powerful fusiform tunas and the trouts, for example, are adapted for strong, fast swimming, the tunas to capture prey speedily in the open ocean and the trouts to cope with the swift currents of streams and rivers. The trout body form is well adapted to many habitats. Fishes that live in relatively quiet waters such as bays or lake shores or slow rivers usually are not strong, fast swimmers but are capable of short, quick bursts of speed to escape a predator. Many of these fishes have their sides flattened, examples being the sunfish and the freshwater angelfish of aquarists. Fish associated with the bottom or substrate usually are slow swimmers. Open-water plankton-feeding fishes almost always remain fusiform and are capable of rapid, strong movement (for example, sardines and herrings of the open ocean and also many small minnows of streams and lakes).
Bottom-living fishes are of many kinds and have undergone many types of modification of their body shape and swimming habits. Rays, which evolved from strong-swimming mid-water sharks, usually stay close to the bottom and move by undulating their large pectoral fins. Flounders live in a similar habitat and move over the bottom by undulating the entire body. Many bottom fishes dart from place to place, resting on the bottom between movements, a motion common in gobies. One goby relative, the mudskipper, has taken to living at the edge of pools along the shore of muddy mangrove swamps. It escapes its enemies by flipping rapidly over the mud, out of the water. Some catfishes, synbranchid eels, the so-called climbing perch, and a few other fishes venture out over damp ground to find more promising waters than those that they left. They move by wriggling their bodies, sometimes using strong pectoral fins; most have accessory air-breathing organs. Many bottom-dwelling fishes live in mud holes or rocky crevices. Marine eels and gobies commonly are found in such habitats and for the most part venture far beyond their cavelike homes. Some bottom dwellers, such as the clingfishes (Gobiesocidae), have developed powerful adhesive disks that enable them to remain in place on the substrate in areas such as rocky coasts, where the action of the waves is great.
The methods of reproduction in fishes are varied, but most fishes lay a large number of small eggs, fertilized and scattered outside of the body. The eggs of pelagic fishes usually remain suspended in the open water. Many shore and freshwater fishes lay eggs on the bottom or among plants. Some have adhesive eggs. The mortality of the young and especially of the eggs is very high, and often only a few individuals grow to maturity out of hundreds, thousands, and in some cases millions of eggs laid.
Males produce sperm, usually as a milky white substance called milt, in two (sometimes one) testes within the body cavity. In bony fishes a sperm duct leads from each testis to a urogenital opening behind the vent or anus. In sharks and rays and in cyclostomes the duct leads to a cloaca. Sometimes the pelvic fins are modified to help transmit the milt to the eggs at the female’s vent or on the substrate where the female has placed them. Sometimes accessory organs are used to fertilize females internally—for example, the claspers of many sharks and rays.
In the females the eggs are formed in two ovaries (sometimes only one) and pass through the ovaries to the urogenital opening and to the outside. In some fishes the eggs are fertilized internally but are shed before development takes place. Members of about a dozen families each of bony fishes (teleosts) and sharks bear live young. Many skates and rays also bear live young. In some bony fishes the eggs simply develop within the female, the young emerging when the eggs hatch (ovoviviparous). Others develop within the ovary and are nourished by ovarian tissues after hatching (viviparous). There are also other methods utilized by fishes to nourish young within the female. In all live-bearers the young are born at a relatively large size and are few in number. In one family of primarily marine fishes, the surfperches from the Pacific coast of North America, Japan, and Korea, the males of at least one species are born sexually mature, although they are not fully grown.
Some fishes are hermaphroditic—an individual producing both sperm and eggs, usually at different stages of its life. Self-fertilization, however, is probably rare.
Successful reproduction and, in many cases, defense of the eggs and the young are assured by rather stereotypical but often elaborate courtship and parental behaviour, either by the male or the female or both. Some fishes prepare nests by hollowing out depressions in the sand bottom (cichlids, for example), build nests with plant materials and sticky threads excreted by the kidneys (sticklebacks), or blow a cluster of mucus-covered bubbles at the water surface (gouramis). The eggs are laid in these structures. Some varieties of cichlids and catfishes incubate eggs in their mouths.
Some fishes, such as salmon, undergo long migrations from the ocean and up large rivers to spawn in the gravel beds where they themselves hatched (anadromous fishes). Some, such as the freshwater eels (family Anguillidae), live and grow to maturity in fresh water and migrate to the sea to spawn (catadromous fishes). Other fishes undertake shorter migrations from lakes into streams, within the ocean, or enter spawning habitats that they do not ordinarily occupy in other ways.
The basic structure and function of the fish body are similar to those of all other vertebrates. The usual four types of tissues are present: surface or epithelial, connective (bone, cartilage, and fibrous tissues, as well as their derivative, blood), nerve, and muscle tissues. In addition, the fish’s organs and organ systems parallel those of other vertebrates.
The typical fish body is streamlined and spindle-shaped, with an anterior head, a gill apparatus, and a heart, the latter lying in the midline just below the gill chamber. The body cavity, containing the vital organs, is situated behind the head in the lower anterior part of the body. The anus usually marks the posterior termination of the body cavity and most often occurs just in front of the base of the anal fin. The spinal cord and vertebral column continue from the posterior part of the head to the base of the tail fin, passing dorsal to the body cavity and through the caudal (tail) region behind the body cavity. Most of the body is of muscular tissue, a high proportion of which is necessitated by swimming. In the course of evolution this basic body plan has been modified repeatedly into the many varieties of fish shapes that exist today.
The skeleton forms an integral part of the fish’s locomotion system, as well as serving to protect vital parts. The internal skeleton consists of the skull bones (except for the roofing bones of the head, which are really part of the external skeleton), the vertebral column, and the fin supports (fin rays). The fin supports are derived from the external skeleton but will be treated here because of their close functional relationship to the internal skeleton. The internal skeleton of cyclostomes, sharks, and rays is of cartilage; that of many fossil groups and some primitive living fishes is mostly of cartilage but may include some bone. In place of the vertebral column, the earliest vertebrates had a fully developed notochord, a flexible stiff rod of viscous cells surrounded by a strong fibrous sheath. During the evolution of modern fishes the rod was replaced in part by cartilage and then by ossified cartilage. Sharks and rays retain a cartilaginous vertebral column; bony fishes have spool-shaped vertebrae that in the more primitive living forms only partially replace the notochord. The skull, including the gill arches and jaws of bony fishes, is fully, or at least partially, ossified. That of sharks and rays remains cartilaginous, at times partially replaced by calcium deposits but never by true bone.
The supportive elements of the fins (basal or radial bones or both) have changed greatly during fish evolution. Some of these changes are described in the section below (Evolution and paleontology). Most fishes possess a single dorsal fin on the midline of the back. Many have two and a few have three dorsal fins. The other fins are the single tail and anal fins and paired pelvic and pectoral fins. A small fin, the adipose fin, with hairlike fin rays, occurs in many of the relatively primitive teleosts (such as trout) on the back near the base of the caudal fin.
The skin of a fish must serve many functions. It aids in maintaining the osmotic balance, provides physical protection for the body, is the site of coloration, contains sensory receptors, and, in some fishes, functions in respiration. Mucous glands, which aid in maintaining the water balance and offer protection from bacteria, are extremely numerous in fish skin, especially in cyclostomes and teleosts. Since mucous glands are present in the modern lampreys, it is reasonable to assume that they were present in primitive fishes, such as the ancient Silurian and Devonian agnathans. Protection from abrasion and predation is another function of the fish skin, and dermal (skin) bone arose early in fish evolution in response to this need. It is thought that bone first evolved in skin and only later invaded the cartilaginous areas of the fish’s body, to provide additional support and protection. There is some argument as to which came first, cartilage or bone, and fossil evidence does not settle the question. In any event, dermal bone has played an important part in fish evolution and has different characteristics in different groups of fishes. Several groups are characterized at least in part by the kind of bony scales they possess.
Scales have played an important part in the evolution of fishes. Primitive fishes usually had thick bony plates or thick scales in several layers of bone, enamel, and related substances. Modern teleost fishes have scales of bone, which, while still protective, allow much more freedom of motion in the body. A few modern teleosts (some catfishes, sticklebacks, and others) have secondarily acquired bony plates in the skin. Modern and early sharks possessed placoid scales, a relatively primitive type of scale with a toothlike structure, consisting of an outside layer of enamel-like substance (vitrodentine), an inner layer of dentine, and a pulp cavity containing nerves and blood vessels. Primitive bony fishes had thick scales of either the ganoid or the cosmoid type. Cosmoid scales have a hard, enamel-like outer layer, an inner layer of cosmine (a form of dentine), and then a layer of vascular bone (isopedine). In ganoid scales the hard outer layer is different chemically and is called ganoin. Under this is a cosminelike layer and then a vascular bony layer. The thin, translucent bony scales of modern fishes, called cycloid and ctenoid (the latter distinguished by serrations at the edges), lack enameloid and dentine layers.
Skin has several other functions in fishes. It is well supplied with nerve endings and presumably receives tactile, thermal, and pain stimuli. Skin is also well supplied with blood vessels. Some fishes breathe in part through the skin, by the exchange of oxygen and carbon dioxide between the surrounding water and numerous small blood vessels near the skin surface.
Skin serves as protection through the control of coloration. Fishes exhibit an almost limitless range of colours. The colours often blend closely with the surroundings, effectively hiding the animal. Many fishes use bright colours for territorial advertisement or as recognition marks for other members of their own species, or sometimes for members of other species. Many fishes can change their colour to a greater or lesser degree, by movement of pigment within the pigment cells (chromatophores). Black pigment cells (melanophores), of almost universal occurrence in fishes, are often juxtaposed with other pigment cells. When placed beneath iridocytes or leucophores (bearing the silvery or white pigment guanine), melanophores produce structural colours of blue and green. These colours are often extremely intense, because they are formed by refraction of light through the needlelike crystals of guanine. The blue and green refracted colours are often relatively pure, lacking the red and yellow rays, which have been absorbed by the black pigment (melanin) of the melanophores. Yellow, orange, and red colours are produced by erythrophores, cells containing the appropriate carotenoid pigments. Other colours are produced by combinations of melanophores, erythrophores, and iridocytes.
The major portion of the body of most fishes consists of muscles. Most of the mass is trunk musculature, the fin muscles usually being relatively small. The caudal fin is usually the most powerful fin, being moved by the trunk musculature. The body musculature is usually arranged in rows of chevron-shaped segments on each side. Contractions of these segments, each attached to adjacent vertebrae and vertebral processes, bends the body on the vertebral joint, producing successive undulations of the body, passing from the head to the tail, and producing driving strokes of the tail. It is the latter that provides the strong forward movement for most fishes.
The digestive system, in a functional sense, starts at the mouth, with the teeth used to capture prey or collect plant foods. Mouth shape and tooth structure vary greatly in fishes, depending on the kind of food normally eaten. Most fishes are predacious, feeding on small invertebrates or other fishes and have simple conical teeth on the jaws, on at least some of the bones of the roof of the mouth, and on special gill arch structures just in front of the esophagus. The latter are throat teeth. Most predacious fishes swallow their prey whole, and the teeth are used for grasping and holding prey, for orienting prey to be swallowed (head first) and for working the prey toward the esophagus. There are a variety of tooth types in fishes. Some fishes, such as sharks and piranhas, have cutting teeth for biting chunks out of their victims. A shark’s tooth, although superficially like that of a piranha, appears in many respects to be a modified scale, while that of the piranha is like that of other bony fishes, consisting of dentine and enamel. Parrot fishes have beaklike mouths with short incisor-like teeth for breaking off coral and have heavy pavementlike throat teeth for crushing the coral. Some catfishes have small brushlike teeth, arranged in rows on the jaws, for scraping plant and animal growth from rocks. Many fishes (such as the Cyprinidae or minnows) have no jaw teeth at all but have very strong throat teeth.
Some fishes gather planktonic food by straining it from their gill cavities with numerous elongate stiff rods (gill rakers) anchored by one end to the gill bars. The food collected on these rods is passed to the throat, where it is swallowed. Most fishes have only short gill rakers that help keep food particles from escaping out the mouth cavity into the gill chamber.
Once reaching the throat, food enters a short, often greatly distensible esophagus, a simple tube with a muscular wall leading into a stomach. The stomach varies greatly in fishes, depending upon the diet. In most predacious fishes it is a simple straight or curved tube or pouch with a muscular wall and a glandular lining. Food is largely digested there and leaves the stomach in liquid form.
Between the stomach and the intestine, ducts enter the digestive tube from the liver and pancreas. The liver is a large, clearly defined organ. The pancreas may be embedded in it, diffused through it, or broken into small parts spread along some of the intestine. The junction between the stomach and the intestine is marked by a muscular valve. Pyloric ceca (blind sacs) occur in some fishes at this junction and have a digestive or absorptive function or both.
The intestine itself is quite variable in length, depending upon the fish’s diet. It is short in predacious forms, sometimes no longer than the body cavity, but long in herbivorous forms, being coiled and several times longer than the entire length of the fish in some species of South American catfishes. The intestine is primarily an organ for absorbing nutrients into the bloodstream. The larger its internal surface, the greater its absorptive efficiency, and a spiral valve is one method of increasing its absorption surface.
Sharks, rays, chimaeras, lungfishes, surviving chondrosteans, holosteans, and even a few of the more primitive teleosts have a spiral valve or at least traces of it in the intestine. Most modern teleosts have increased the area of the intestinal walls by having numerous folds and villi (fingerlike projections) somewhat like those in humans. Undigested substances are passed to the exterior through the anus in most teleost fishes. In lungfishes, sharks, and rays, it is first passed through the cloaca, a common cavity receiving the intestinal opening and the ducts from the urogenital system.
Oxygen and carbon dioxide dissolve in water, and most fishes exchange dissolved oxygen and carbon dioxide in water by means of the gills. The gills lie behind and to the side of the mouth cavity and consist of fleshy filaments supported by the gill arches and filled with blood vessels, which give gills a bright red colour. Water taken in continuously through the mouth passes backward between the gill bars and over the gill filaments, where the exchange of gases takes place. The gills are protected by a gill cover in teleosts and many other fishes but by flaps of skin in sharks, rays, and some of the older fossil fish groups. The blood capillaries in the gill filaments are close to the gill surface to take up oxygen from the water and to give up excess carbon dioxide to the water.
Most modern fishes have a hydrostatic (ballast) organ, called the swim bladder, that lies in the body cavity just below the kidney and above the stomach and intestine. It originated as a diverticulum of the digestive canal. In advanced teleosts, especially the acanthopterygians, the bladder has lost its connection with the digestive tract, a condition called physoclistic. The connection has been retained (physostomous) by many relatively primitive teleosts. In several unrelated lines of fishes, the bladder has become specialized as a lung or, at least, as a highly vascularized accessory breathing organ. Some fishes with such accessory organs are obligate air breathers and will drown if denied access to the surface, even in well-oxygenated water. Fishes with a hydrostatic form of swim bladder can control their depth by regulating the amount of gas in the bladder. The gas, mostly oxygen, is secreted into the bladder by special glands, rendering the fish more buoyant; the gas is absorbed into the bloodstream by another special organ, reducing the overall buoyancy and allowing the fish to sink. Some deep-sea fishes may have oils, rather than gas, in the bladder. Other deep-sea and some bottom-living forms have much-reduced swim bladders or have lost the organ entirely.
The swim bladder of fishes follows the same developmental pattern as the lungs of land vertebrates. There is no doubt that the two structures have the same historical origin in primitive fishes. More or less intermediate forms still survive among the more primitive types of fishes, such as the lungfishes Lepidosiren and Protopterus.
The circulatory, or blood vascular, system consists of the heart, the arteries, the capillaries, and the veins. It is in the capillaries that the interchange of oxygen, carbon dioxide, nutrients, and other substances such as hormones and waste products takes place. The capillaries lead to the veins, which return the venous blood with its waste products to the heart, kidneys, and gills. There are two kinds of capillary beds: those in the gills and those in the rest of the body. The heart, a folded continuous muscular tube with three or four saclike enlargements, undergoes rhythmic contractions and receives venous blood in a sinus venosus. It passes the blood to an auricle and then into a thick muscular pump, the ventricle. From the ventricle the blood goes to a bulbous structure at the base of a ventral aorta just below the gills. The blood passes to the afferent (receiving) arteries of the gill arches and then to the gill capillaries. There waste gases are given off to the environment, and oxygen is absorbed. The oxygenated blood enters efferent (exuant) arteries of the gill arches and then flows into the dorsal aorta. From there blood is distributed to the tissues and organs of the body. One-way valves prevent backflow. The circulation of fishes thus differs from that of the reptiles, birds, and mammals in that oxygenated blood is not returned to the heart prior to distribution to the other parts of the body.
The primary excretory organ in fishes, as in other vertebrates, is the kidney. In fishes some excretion also takes place in the digestive tract, skin, and especially the gills (where ammonia is given off). Compared with land vertebrates, fishes have a special problem in maintaining their internal environment at a constant concentration of water and dissolved substances, such as salts. Proper balance of the internal environment (homeostasis) of a fish is in a great part maintained by the excretory system, especially the kidney.
The kidney, gills, and skin play an important role in maintaining a fish’s internal environment and checking the effects of osmosis. Marine fishes live in an environment in which the water around them has a greater concentration of salts than they can have inside their body and still maintain life. Freshwater fishes, on the other hand, live in water with a much lower concentration of salts than they require inside their bodies. Osmosis tends to promote the loss of water from the body of a marine fish and absorption of water by that of a freshwater fish. Mucus in the skin tends to slow the process but is not a sufficient barrier to prevent the movement of fluids through the permeable skin. When solutions on two sides of a permeable membrane have different concentrations of dissolved substances, water will pass through the membrane into the more concentrated solution, while the dissolved chemicals move into the area of lower concentration (diffusion).
The kidney of freshwater fishes is often larger in relation to body weight than that of marine fishes. In both groups the kidney excretes wastes from the body, but the kidney of freshwater fishes also excretes large amounts of water, counteracting the water absorbed through the skin. Freshwater fishes tend to lose salt to the environment and must replace it. They get some salt from their food, but the gills and skin inside the mouth actively absorb salt from water passed through the mouth. This absorption is performed by special cells capable of moving salts against the diffusion gradient. Freshwater fishes drink very little water and take in little water with their food.
Marine fishes must conserve water, and therefore their kidneys excrete little water. To maintain their water balance, marine fishes drink large quantities of seawater, retaining most of the water and excreting the salt. Most nitrogenous waste in marine fishes appears to be secreted by the gills as ammonia. Marine fishes can excrete salt by clusters of special cells (chloride cells) in the gills.
There are several teleosts—for example, the salmon—that travel between fresh water and seawater and must adjust to the reversal of osmotic gradients. They adjust their physiological processes by spending time (often surprisingly little time) in the intermediate brackish environment.
Marine hagfishes, sharks, and rays have osmotic concentrations in their blood about equal to that of seawater and so do not have to drink water nor perform much physiological work to maintain their osmotic balance. In sharks and rays the osmotic concentration is kept high by retention of urea in the blood. Freshwater sharks have a lowered concentration of urea in the blood.
Endocrine glands secrete their products into the bloodstream and body tissues and, along with the central nervous system, control and regulate many kinds of body functions. Cyclostomes have a well-developed endocrine system, and presumably it was well developed in the early Agnatha, ancestral to modern fishes. Although the endocrine system in fishes is similar to that of higher vertebrates, there are numerous differences in detail. The pituitary, the thyroid, the suprarenals, the adrenals, the pancreatic islets, the sex glands (ovaries and testes), the inner wall of the intestine, and the bodies of the ultimobranchial gland make up the endocrine system in fishes. There are some others whose function is not well understood. These organs regulate sexual activity and reproduction, growth, osmotic pressure, general metabolic activities such as the storage of fat and the utilization of foodstuffs, blood pressure, and certain aspects of skin colour. Many of these activities are also controlled in part by the central nervous system, which works with the endocrine system in maintaining the life of a fish. Some parts of the endocrine system are developmentally, and undoubtedly evolutionarily, derived from the nervous system.
As in all vertebrates, the nervous system of fishes is the primary mechanism coordinating body activities, as well as integrating these activities in the appropriate manner with stimuli from the environment. The central nervous system, consisting of the brain and spinal cord, is the primary integrating mechanism. The peripheral nervous system, consisting of nerves that connect the brain and spinal cord to various body organs, carries sensory information from special receptor organs such as the eyes, internal ears, nares (sense of smell), taste glands, and others to the integrating centres of the brain and spinal cord. The peripheral nervous system also carries information via different nerve cells from the integrating centres of the brain and spinal cord. This coded information is carried to the various organs and body systems, such as the skeletal muscular system, for appropriate action in response to the original external or internal stimulus. Another branch of the nervous system, the autonomic nervous system, helps to coordinate the activities of many glands and organs and is itself closely connected to the integrating centres of the brain.
The brain of the fish is divided into several anatomical and functional parts, all closely interconnected but each serving as the primary centre of integrating particular kinds of responses and activities. Several of these centres or parts are primarily associated with one type of sensory perception, such as sight, hearing, or smell (olfaction).
The sense of smell is important in almost all fishes. Certain eels with tiny eyes depend mostly on smell for location of food. The olfactory, or nasal, organ of fishes is located on the dorsal surface of the snout. The lining of the nasal organ has special sensory cells that perceive chemicals dissolved in the water, such as substances from food material, and send sensory information to the brain by way of the first cranial nerve. Odour also serves as an alarm system. Many fishes, especially various species of freshwater minnows, react with alarm to a chemical released from the skin of an injured member of their own species.
Many fishes have a well-developed sense of taste, and tiny pitlike taste buds or organs are located not only within their mouth cavities but also over their heads and parts of their body. Catfishes, which often have poor vision, have barbels (“whiskers”) that serve as supplementary taste organs, those around the mouth being actively used to search out food on the bottom. Some species of naturally blind cave fishes are especially well supplied with taste buds, which often cover most of their body surface.
Sight is extremely important in most fishes. The eye of a fish is basically like that of all other vertebrates, but the eyes of fishes are extremely varied in structure and adaptation. In general, fishes living in dark and dim water habitats have large eyes, unless they have specialized in some compensatory way so that another sense (such as smell) is dominant, in which case the eyes will often be reduced. Fishes living in brightly lighted shallow waters often will have relatively small but efficient eyes. Cyclostomes have somewhat less elaborate eyes than other fishes, with skin stretched over the eyeball perhaps making their vision somewhat less effective. Most fishes have a spherical lens and accommodate their vision to far or near subjects by moving the lens within the eyeball. A few sharks accommodate by changing the shape of the lens, as in land vertebrates. Those fishes that are heavily dependent upon the eyes have especially strong muscles for accommodation. Most fishes see well, despite the restrictions imposed by frequent turbidity of the water and by light refraction.
Fossil evidence suggests that colour vision evolved in fishes more than 300 million years ago, but not all living fishes have retained this ability. Experimental evidence indicates that many shallow-water fishes, if not all, have colour vision and see some colours especially well, but some bottom-dwelling shore fishes live in areas where the water is sufficiently deep to filter out most if not all colours, and these fishes apparently never see colours. When tested in shallow water, they apparently are unable to respond to colour differences.
Sound perception and balance are intimately associated senses in a fish. The organs of hearing are entirely internal, located within the skull, on each side of the brain and somewhat behind the eyes. Sound waves, especially those of low frequencies, travel readily through water and impinge directly upon the bones and fluids of the head and body, to be transmitted to the hearing organs. Fishes readily respond to sound; for example, a trout conditioned to escape by the approach of fishermen will take flight upon perceiving footsteps on a stream bank even if it cannot see a fisherman. Compared with humans, however, the range of sound frequencies heard by fishes is greatly restricted. Many fishes communicate with each other by producing sounds in their swim bladders, in their throats by rasping their teeth, and in other ways.
A fish or other vertebrate seldom has to rely on a single type of sensory information to determine the nature of the environment around it. A catfish uses taste and touch when examining a food object with its oral barbels. Like most other animals, fishes have many touch receptors over their body surface. Pain and temperature receptors also are present in fishes and presumably produce the same kind of information to a fish as to humans. Fishes react in a negative fashion to stimuli that would be painful to human beings, suggesting that they feel a sensation of pain.
An important sensory system in fishes that is absent in other vertebrates (except some amphibians) is the lateral line system. This consists of a series of heavily innervated small canals located in the skin and bone around the eyes, along the lower jaw, over the head, and down the mid-side of the body, where it is associated with the scales. Intermittently along these canals are located tiny sensory organs (pit organs) that apparently detect changes in pressure. The system allows a fish to sense changes in water currents and pressure, thereby helping the fish to orient itself to the various changes that occur in the physical environment.
Although a great many fossil fishes have been found and described, they represent a tiny portion of the long and complex evolution of fishes, and knowledge of fish evolution remains relatively fragmentary. In the classification presented in this article, fishlike vertebrates are divided into seven categories, the members of each having a different basic structural organization and different physical and physiological adaptations for the problems presented by the environment. The broad basic pattern has been one of successive replacement of older groups by newer, better-adapted groups. One or a few members of a group evolved a basically more efficient means of feeding, breathing, or swimming or several better ways of living. These better-adapted groups then forced the extinction of members of the older group with which they competed for available food, breeding places, or other necessities of life. As the new fishes became well established, some of them evolved further and adapted to other habitats, where they continued to replace members of the old group already there. The process was repeated until all or almost all members of the old group in a variety of habitats had been replaced by members of the newer evolutionary line.
The earliest vertebrate fossils of certain relationships are fragments of dermal armour of jawless fishes (superclass Agnatha, order Heterostraci) from the Upper Ordovician Period in North America, about 450 million years in age. Early Ordovician toothlike fragments from the former Soviet Union are less certainly remains of agnathans. It is uncertain whether the North American jawless fishes inhabited shallow coastal marine waters, where their remains became fossilized, or were freshwater vertebrates washed into coastal deposits by stream action.
Jawless fishes probably arose from ancient, small, soft-bodied filter-feeding organisms much like and probably also ancestral to the modern sand-dwelling filter feeders, the Cephalochordata (Amphioxus and its relatives). The body in the ancestral animals was probably stiffened by a notochord. Although a vertebrate origin in fresh water is much debated by paleontologists, it is possible that mobility of the body and protection provided by dermal armour arose in response to streamflow in the freshwater environment and to the need to escape from and resist the clawed invertebrate eurypterids that lived in the same waters. Because of the marine distribution of the surviving primitive chordates, however, many paleontologists doubt that the vertebrates arose in fresh water.
Heterostracan remains are next found in what appear to be delta deposits in two North American localities of Silurian age. By the close of the Silurian, about 416 million years ago, European heterostracan remains are found in what appear to be delta or coastal deposits. In the Late Silurian of the Baltic area, lagoon or freshwater deposits yield jawless fishes of the order Osteostraci. Somewhat later in the Silurian from the same region, layers contain fragments of jawed acanthodians, the earliest group of jawed vertebrates, and of jawless fishes. These layers lie between marine beds but appear to be washed out from fresh waters of a coastal region.
It is evident, therefore, that by the end of the Silurian both jawed and jawless vertebrates were well established and already must have had a long history of development. Yet paleontologists have remains only of specialized forms that cannot have been the ancestors of the placoderms and bony fishes that appear in the next period, the Devonian. No fossils are known of the more primitive ancestors of the agnathans and acanthodians. The extensive marine beds of the Silurian and those of the Ordovician are essentially void of vertebrate history. It is believed that the ancestors of fishlike vertebrates evolved in upland fresh waters, where whatever few and relatively small fossil beds were made probably have been long since eroded away. Remains of the earliest vertebrates may never be found.
By the close of the Silurian, all known orders of jawless vertebrates had evolved, except perhaps the modern cyclostomes, which are without the hard parts that ordinarily are preserved as fossils. Cyclostomes were unknown as fossils until 1968, when a lamprey of modern body structure was reported from the Middle Pennsylvanian of Illinois, in deposits more than 300 million years old. Fossil evidence of the four orders of armoured jawless vertebrates is absent from deposits later than the Devonian. Presumably, these vertebrates became extinct at that time, being replaced by the more efficient and probably more aggressive placoderms, acanthodians, selachians (sharks and relatives), and by early bony fishes. Cyclostomes survived probably because early on they evolved from anaspid agnathans and developed a rasping tonguelike structure and a sucking mouth, enabling them to prey on other fishes. With this way of life they apparently had no competition from other fish groups. Cyclostomes, the hagfishes and lampreys, were once thought to be closely related because of the similarity in their suctorial mouths, but it is now understood that the hagfishes, order Myxiniformes, are the most primitive living chordates, and they are classified separately from the lampreys, order Petromyzontiformes.
Early jawless vertebrates probably fed on tiny organisms by filter feeding, as do the larvae of their descendants, the modern lampreys. The gill cavity of the early agnathans was large. It is thought that small organisms taken from the bottom by a nibbling action of the mouth, or more certainly by a sucking action through the mouth, were passed into the gill cavity along with water for breathing. Small organisms then were strained out by the gill apparatus and directed to the food canal. The gill apparatus thus evolved as a feeding, as well as a breathing, structure. The head and gills in the agnathans were protected by a heavy dermal armour; the tail region was free, allowing motion for swimming.
Most important for the evolution of fishes and vertebrates in general was the early appearance of bone, cartilage, and enamel-like substance. These materials became modified in later fishes, enabling them to adapt to many aquatic environments and finally even to land. Other basic organs and tissues of the vertebrates—such as the central nervous system, heart, liver, digestive tract, kidney, and circulatory system— undoubtedly were present in the ancestors of the agnathans. In many ways, bone, both external and internal, was the key to vertebrate evolution.
The next class of fishes to appear was the Acanthodii, containing the earliest known jawed vertebrates, which arose in the Late Silurian, more than 416 million years ago. The acanthodians declined after the Devonian but lasted into the Early Permian, a little less than 280 million years ago. The first complete specimens appear in Lower Devonian freshwater deposits, but later in the Devonian and Permian some members appear to have been marine. Most were small fishes, not more than 75 cm (approximately 30 inches) in length.
We know nothing of the ancestors of the acanthodians. They must have arisen from some jawless vertebrate, probably in fresh water. They appear to have been active swimmers with almost no head armour but with large eyes, indicating that they depended heavily on vision. Perhaps they preyed on invertebrates. The rows of spines and spinelike fins between the pectoral and pelvic fins give some credence to the idea that paired fins arose from “fin folds” along the body sides.
The relationships of the acanthodians to other jawed vertebrates are obscure. They possess features found in both sharks and bony fishes. They are like early bony fishes in possessing ganoidlike scales and a partially ossified internal skeleton. Certain aspects of the jaw appear to be more like those of bony fishes than sharks, but the bony fin spines and certain aspects of the gill apparatus would seem to favour relationships with early sharks. Acanthodians do not seem particularly close to the Placodermi, although, like the placoderms, they apparently possessed less efficient tooth replacement and tooth structure than the sharks and the bony fishes, possibly one reason for their subsequent extinction.
Indian Railways (reporting mark IR) is an Indian state-owned enterprise, owned and operated by the Government of India through the Ministry of Railways. It is one of the world's largest railway networks comprising 115,000 km of track over a route of 65,808 km and 7,112 stations. In 2014-15, IR carried 8.397 billion passengers annually or more than 23 million passengers a day (roughly half of whom were suburban passengers) and 1058.81 million tons of freight in the year.On world level Ghaziabad is the largest manufacturer of Railway Engines. In 2014–2015 Indian Railways had revenues of ₹1634.50 billion (US$25 billion) which consists of ₹1069.27 billion (US$16 billion) from freight and ₹402.80 billion (US$6.1 billion) from passengers tickets.Railways were first introduced to India in the year 1853 from Mumbai to Thane. In 1951 the systems were nationalised as one unit, the Indian Railways, becoming one of the largest networks in the world. IR operates both long distance and suburban rail systems on a multi-gauge network of broad, metre and narrow gauges. It also owns locomotive and coach production facilities at several places in India and are assigned codes identifying their gauge, kind of power and type of operation. Its operations cover twenty nine states and seven union territories and also provides limited international services to Nepal, Bangladesh and Pakistan.Indian Railways is the world's seventh largest commercial or utility employer, by number of employees, with over 1.334 million employees as of last published figures in 2013 . As for rolling stock, IR holds over 245,267 Freight Wagons, 66,392 Passenger Coaches and 10,499 Locomotives (43 steam, 5,633 diesel and 4,823 electric locomotives). The trains have a 5 digit numbering system and runs 12,617 passenger trains and 7421 freight trains daily. As of 31 March 2013, 21,614 km (32.8%) of the total 65,808 km route length was electrified. Since 1960, almost all electrified sections on IR use 25,000 Volt AC traction through overhead catenary delivery.
HISTORY
The history of rail transport in India began in the mid-nineteenth century. The core of the pressure for building Railways In India came from London. In 1848, there was not a single kilometre of railway line in India. The country's first railway, built by the Great Indian Peninsula Railway (GIPR), opened in 1853, between Bombay and Thane. A British engineer, Robert Maitland Brereton, was responsible for the expansion of the railways from 1857 onwards. The Allahabad-Jabalpur branch line of the East Indian Railway had been opened in June 1867. Brereton was responsible for linking this with the GIPR, resulting in a combined network of 6,400 km. Hence it became possible to travel directly from Bombay to Calcutta. This route was officially opened on 7 March 1870 and it was part of the inspiration for French writer Jules Verne's book Around the World in Eighty Days. At the opening ceremony, the Viceroy Lord Mayo concluded that "it was thought desirable that, if possible, at the earliest possible moment, the whole country should be covered with a network of lines in a uniform system".
By 1875, about £95 million were invested by British companies in India. Guaranteed railways. By 1880 the network had a route mileage of about 14,500 km, mostly radiating inward from the three major port cities of Bombay, Madras and Calcutta. By 1895, India had started building its own locomotives, and in 1896, sent engineers and locomotives to help build the Uganda Railways.
In 1900, the GIPR became a government owned company. The network spread to the modern day states of Assam, Rajputhana and Madras Presidency and soon various autonomous kingdoms began to have their own rail systems. In 1905, an early Railway Board was constituted, but the powers were formally vested under Lord Curzon. It served under the Department of Commerce and Industry and had a government railway official serving as chairman, and a railway manager from England and an agent of one of the company railways as the other two members. For the first time in its history, the Railways began to make a profit.
In 1907 almost all the rail companies were taken over by the government. The following year, the first electric locomotive made its appearance. With the arrival of World War I, the railways were used to meet the needs of the British outside India. With the end of the war, the railways were in a state of disrepair and collapse. Large scale corruption by British officials involved in the running of these railways companies was rampant. Profits were never reinvested in the development of British colonial India.
In 1920, with the network having expanded to 61,220 km, a need for central management was mooted by Sir William Acworth. Based on the East India Railway Committee chaired by Acworth, the government took over the management of the Railways and detached the finances of the Railways from other governmental revenues.
The period between 1920 and 1929, was a period of economic boom; there were 66,000 km of railway lines serving the country; the railways represented a capital value of some 687 million sterling; and they carried over 620 million passengers and approximately 90 million tons of goods each year. Following the Great Depression, the railways suffered economically for the next eight years. The Second World War severely crippled the railways. Starting 1939, about 40% of the rolling stock including locomotives and coaches was taken to the Middle East, the railways workshops were converted to ammunitions workshops and many railway tracks were dismantled to help the Allies in the war. By 1946, all rail systems had been taken over by the government.
ORGANISATIONAL STRUCTURE
RAILWAY ZONES
Indian Railways is divided into 16 zones, which are further sub-divided into divisions. The number of zones in Indian Railways increased from six to eight in 1951, nine in 1966 and seventeen in 2003. Each zonal railway is made up of a certain number of divisions, each having a divisional headquarters. There are a total of sixty-eight divisions.
Each zone is headed by a general manager, who reports directly to the Railway Board. The zones are further divided into divisions, under the control of divisional railway managers (DRM). The divisional officers, of engineering, mechanical, electrical, signal and telecommunication, accounts, personnel, operating, commercial, security and safety branches, report to the respective Divisional Railway Manager and are in charge of operation and maintenance of assets. Further down the hierarchy tree are the station masters, who control individual stations and train movements through the track territory under their stations' administration.
RECRUITMENT AND TRAINING
Staff are classified into gazetted (Group 'A' and 'B') and non-gazetted (Group 'C' and 'D') employees. The recruitment of Group 'A' gazetted employees is carried out by the Union Public Service Commission through exams conducted by it. The recruitment to Group 'C' and 'D' employees on the Indian Railways is done through 20 Railway Recruitment Boards and Railway Recruitment Cells which are controlled by the Railway Recruitment Control Board (RRCB). The training of all cadres is entrusted and shared between six centralised training institutes.
ROLLING STOCK
LOCOMOTIVES
Locomotives in India consist of electric and diesel locomotives. The world's first CNG (Compressed Natural Gas) locomotives are also being used. Steam locomotives are no longer used, except in heritage trains. In India, locomotives are classified according to their track gauge, motive power, the work they are suited for and their power or model number. The class name includes this information about the locomotive. It comprises 4 or 5 letters. The first letter denotes the track gauge. The second letter denotes their motive power (Diesel or Alternating - on Electric) and the third letter denotes the kind of traffic for which they are suited (goods, passenger, Multi or shunting). The fourth letter used to denote locomotives' chronological model number. However, from 2002 a new classification scheme has been adopted. Under this system, for newer diesel locomotives, the fourth letter will denote their horsepower range. Electric locomotives don't come under this scheme and even all diesel locos are not covered. For them this letter denotes their model number as usual.In world level Ghaziabad is the largest manufacturer of Locomotive.
A locomotive may sometimes have a fifth letter in its name which generally denotes a technical variant or subclass or subtype. This fifth letter indicates some smaller variation in the basic model or series, perhaps different motors, or a different manufacturer. With the new scheme for classifying diesel locomotives (as mentioned above) the fifth item is a letter that further refines the horsepower indication in 100 hp increments: 'A' for 100 hp, 'B' for 200 hp, 'C' for 300 hp, etc. So in this scheme, a WDM-3A refers to a 3100 hp loco, while a WDM-3D would be a 3400 hp loco and WDM-3F would be 3600 hp loco.
Note: This classification system does not apply to steam locomotives in India as they have become non-functional now. They retained their original class names such as M class or WP class.
Diesel Locomotives are now fitted with Auxiliary Power Units which saves nearly 88% of Fuel during the idle time when train is not running.
GOODS WAGONS
The number of goods wagons was 205,596 on 31 March 1951 and reached the maximum number 405,183 on 31 March 1980 after which it started declining and was 239,321 on 31 March 2012. The number is far less than the requirement and the Indian Railways keeps losing freight traffic to road. Indian Railways carried 93 million tonnes of goods in 1950–51 and it increased to 1010 million tonnes in 2012–13.
However, its share in goods traffic is much lower than road traffic. In 1951, its share was 65% and the share of road was 35%. Now the shares have been reversed and the share of railways has declined to 30% and the share of road has increased to 70%.
PASSENGER COACHES
Indian railways has several types of passenger coaches.
Electric Multiple Unit (EMU) coaches are used for suburban traffic in large cities – mainly Mumbai, Chennai, Delhi, Kolkata, Pune, Hyderabad and Bangalore. These coaches numbered 7,793 on 31 March 2012. They have second class and first class seating accommodation.
The coaches used in Indian Railways are produced at Integral Coach Factory, Rail Coach Factory.Now,they are producing new LHB coaches.
Passenger coaches numbered 46,722 on 31 March 2012. Other coaches (luggage coach, parcel van, guard's coach, mail coach, etc.) numbered 6,560 on 31 March 2012.
FREIGHT
Indian Railways earns about 70% of its revenues from freight traffic (₹686.2 billion from freight and ₹304.6 billion from passengers in 2011–12). Most of its profits come from transporting freight, and this makes up for losses on passenger traffic. It deliberately keeps its passenger fares low and cross-subsidises the loss-making passenger traffic with the profit-making freight traffic.
Since the 1990s, Indian Railways has stopped single-wagon consignments and provides only full rake freight trains
Wagon types include:
BOXNHL
BOBYN
BCN
BCNHL
TECHNICAL DETAILS
TRACK AND GAUGE
Indian railways uses four gauges, the 1,676 mm broad gauge which is wider than the 1,435 mm standard gauge; the 1,000 mm metre gauge; and two narrow gauges, 762 mm and 610 mm. Track sections are rated for speeds ranging from 75 to 160 km/h.
The total length of track used by Indian Railways is about 115,000 km while the total route length of the network is 65,000 km. About 24,891 km or 38% of the route-kilometre was electrified, as of 31 March 2014.
Broad gauge is the predominant gauge used by Indian Railways. Indian broad gauge - 1,676 mm - is the most widely used gauge in India with 108,500 km of track length (94% of entire track length of all the gauges) and 59,400 km of route-kilometre (91% of entire route-kilometre of all the gauges).
In some regions with less traffic, the metre gauge (1,000 mm) is common, although the Unigauge project is in progress to convert all tracks to broad gauge. The metre gauge has about 5,000 km of track length (4% of entire track length of all the gauges) and 4,100 km of route-kilometre (7% of entire route-kilometre of all the gauges).
The Narrow gauges are present on a few routes, lying in hilly terrains and in some erstwhile private railways (on cost considerations), which are usually difficult to convert to broad gauge. Narrow gauges have 1,500 route-kilometre. The Kalka-Shimla Railway, the Kangra Valley Railway and the Darjeeling Himalayan Railway are three notable hill lines that use narrow gauge, but the Nilgiri Mountain Railway is a metre gauge track. These four rail lines will not be converted under the Unigauge project.
The share of broad gauge in the total route-kilometre has been steadily rising, increasing from 47% (25,258 route-km) in 1951 to 86% in 2012 whereas the share of metre gauge has declined from 45% (24,185 route-km) to 10% in the same period and the share of narrow gauges has decreased from 8% to 3%. About 24,891 route-km of Indian railways is electrified.
Sleepers (ties) are made up of prestressed concrete, or steel or cast iron posts, though teak sleepers are still in use on a few older lines. The prestressed concrete sleeper is in wide use today. Metal sleepers were extensively used before the advent of concrete sleepers. Indian Railways divides the country into four zones on the basis of the range of track temperature. The greatest temperature variations occur in Rajasthan.
RESEARCH AND DEVELOPMENT
Indian Railways has a full-fledged organisation known as Research Designs and Standards Organisation (RDSO), located at Lucknow for all research, designs and standardisation tasks.
In August 2013, Indian Railways entered into a partnership with Indian Institute of Technology (Madras) to develop technology to tap solar energy for lighting and air-conditioning in the coaches. This would significantly reduce the fossil fuel dependency for Indian Railways.
Recently it developed and tested the Improved Automated Fire Alarm System in Rajdhani Express Trains. It is intended that the system be applied to AC coaches of all regular trains.
CURRENT AND FUTURE DEVELOPMENTS
In recent years, Indian Railways has undertaken several initiatives to upgrade its ageing infrastructure and enhance its quality of service. The Indian government plans to invest ₹905000 crore (US$137 billion) to upgrade the railways by 2020.
TOILETS ON RAILWAYS
In 2014, Indian Railways and DRDO developed a bio-toilet to replace direct-discharge toilets, which are currently the primary type of toilet used in railway coaches. The direct discharge of human waste from trains onto the tracks corrodes rails, costing Indian Railways tens of millions of rupees a year in rail-replacement work. Flushing a bio-toilet discharges human waste into an underfloor holding tank where anaerobic bacteria remove harmful pathogens and break the waste down into neutral water and methane. These harmless by-products can then be safely discharged onto the tracks without causing corrosion or foul odours. As part of its "Swachh Rail-Swachh Bharat" ("Clean Rail-Clean India") programme, Indian Railways plans to completely phase out direct-discharge toilets on its lines by 2020-2021. As of March 2015, 17,338 bio-toilets had been installed on newly built coaches, with all new coaches to have bio-toilets from 2016; older rolling stock will be retrofitted.
LOCOMOTIVE FACTORIES
In 2015, plans were disclosed for building two locomotive factories in the state of Bihar, at Madhepura (diesel locomotives) and at Marhowra (electric locomotives). Both factories involve foreign partnerships. The diesel locomotive works will be jointly operated in a partnership with General Electric, which has invested ₹2052 crore (US$310 million) for its construction, and the electric locomotive works with Alstom, which has invested ₹1293.57 crore (US$195 million). The factories will provide Indian Railways with 800 electric locomotives of 12,000 horse power each, and a mix of 1,000 diesel locomotives of 4,500 and 6,000 horsepower each. In November 2015, further details of the ₹14656 crore (US$2 billion) partnership with GE were announced: Indian Railways and GE would engage in an 11-year joint venture in which GE would hold a majority stake of 74%. Under the terms of the joint venture, Indian Railways would purchase 100 goods locomotives a year for 10 years beginning in 2017; the locomotives would be modified versions of the GE Evolution series. The diesel locomotive works will be built by 2018; GE will import the first 100 locomotives and manufacture the remaining 900 in India from 2019, also assuming responsibility for their maintenance over a 13-year period. In the same month, a ₹20000 crore (US$3 billion) partnership with Alstom to supply 800 electric locomotives from 2018 to 2028 was announced.
LINKS TO ADJACENT COUNTRIES
EXISTING RAIL LINKS
Nepal – Break-of-gauge – Gauge conversion under uni-gauge project
Pakistan – same Broad Gauge. Thar Express to Karachi and the more famous Samjhauta Express international train from Lahore, Pakistan to Amritsar (Attari).
Bangladesh – Same Broad Gauge. The Maitri Express between Dhaka and Kolkata started in April 2008 using the Gede-Darsana route, in addition to a Freight Train service from Singhabad and Petrapole in India to Rohanpur and Benapole in Bangladesh. A second passenger link between Agartala, India and Akhaura Upazila, Bangladesh was approved by the Government of Bangladesh and India in September 2011.
UNDER CONSTRUCTUION / PROPOSED LINKS
Bhutan – railways under construction – Same gauge
Myanmar – Manipur to Myanmar (under construction)
Vietnam – On 9 April 2010, Former Union Minister of India, Shashi Tharoor announced that the central government is considering a rail link from Manipur to Vietnam via Myanmar.
Thailand – possible if Burma Railway is rebuilt.
TYPES OF PASSENGER SERVICES
Trains are classified by their average speed. A faster train has fewer stops ("halts") than a slower one and usually caters to long-distance travel.
ACCOMODATION CLASSES
Indian Railways has several classes of travel with or without airconditioning. A train may have just one or many classes of travel. Slow passenger trains have only unreserved seating class whereas Rajdhani, Duronto, Shatabdi, garib rath and yuva trains have only airconditioned classes. The fares for all classes are different with unreserved seating class being the cheapest. The fare of Rajdhani, Duronto and Shatabdi trains includes food served in the train but the fare for other trains does not include food that has to be bought separately. In long-distance trains a pantry car is usually included and food is served at the berth or seat itself. Luxury trains such as Palace on Wheels have separate dining cars but these trains cost as much as or more than a five-star hotel room.
A standard passenger rake generally has four unreserved (also called "general") compartments, two at the front and two at the end, of which one may be exclusively for ladies. The exact number of other coaches varies according to the demand and the route. A luggage compartment can also exist at the front or the back. In some mail trains a separate mail coach is attached. Lavatories are communal and feature both the Indian style as well as the Western style.
The following table lists the classes in operation. A train may not have all these classes.
1A First class AC: This is the most expensive class, where the fares are almost at par with air fare. There are eight cabins (including two coupes) in the full AC First Class coach and three cabins (including one coupe) in the half AC First Class coach. The coach has an attendant to help the passengers. Bedding is included with the fare in IR. This air conditioned coach is present only on popular routes and can carry 18 passengers (full coach) or 10 passengers (half coach). The sleeper berths are extremely wide and spacious. The coaches are carpeted, have sleeping accommodation and have privacy features like personal coupes. This class is available on broad gauge and metre gauge trains.
2A AC-Two tier: These air-conditioned coaches have sleeping berths across eight bays. Berths are usually arranged in two tiers in bays of six, four across the width of the coach and two berths longways on the other side of the corridor, with curtains along the gangway or corridor. Bedding is included with the fare. A broad gauge coach can carry 48 passengers (full coach) or 20 passengers (half coach). This class is available on broad gauge and metre gauge trains.
FC First class: Same as 1AC but without air conditioning. No bedding is available in this class. The berths are wide and spacious. There is a coach attendant to help the passengers. This class has been phased out on most of the trains and is rare to find. However narrow gauge trains to hill stations have this class.
3A AC three tier: Air conditioned coaches with 64 sleeping berths. Berths are usually arranged as in 2AC but with three tiers across the width and two longways as before giving eight bays of eight. They are slightly less well-appointed, usually no reading lights or curtained off gangways. Bedding is included with fare. It carries 64 passengers in broad gauge. This class is available only on broad gauge.
3E AC three tier (Economy): Air conditioned coaches with sleeping berths, present in Garib Rath Trains. Berths are usually arranged as in 3AC but with three tiers across the width and three longways. They are slightly less well-appointed, usually no reading lights or curtained off gangways. Bedding is not included with fare.
CC AC chair car: An air-conditioned seater coach with a total of five seats in a row used for day travel between cities.
EC Executive class chair car: An air-conditioned coach with large spacious seats and legroom. It has a total of four seats in a row used for day travel between cities. This class of travel is only available on Shatabdi Express trains.
SL Sleeper class: The sleeper class is the most common coach on IR, and usually ten or more coaches could be attached. These are regular sleeping coaches with three berths vertically stacked. In broad gauge, it carries 72 passengers per coach.
2S Seater class: same as AC Chair car, without the air-conditioning. These may be reserved in advance or may be unreserved.
UR Unreserved: The cheapest accommodation. The seats are usually made up of pressed wood in older coaches but cushioned seats are found in new coaches. These coaches are usually over-crowded and a seat is not guaranteed. Tickets are issued in advance for a minimum journey of more than 24 hours. Tickets issued are valid on any train on the same route if boarded within 24 hours of buying the ticket.
At the rear of the train is a special compartment known as the guard's cabin. It is fitted with a transceiver and is where the guard usually gives the all clear signal before the train departs.
UNESCO WORLD HERITAGE SITES
There are two UNESCO World Heritage Sites on Indian Railways. – The Chatrapati Shivaji Terminus and the Mountain Railways of India. The latter consists of three separate railway lines located in different parts of India:
- Darjeeling Himalayan Railway, a narrow gauge railway in West Bengal.
- Nilgiri Mountain Railway, a 1,000 mm metre gauge railway in the Nilgiri Hills in Tamil Nadu.
- Kalka-Shimla Railway, a narrow gauge railway in the Shivalik mountains in Himachal Pradesh. In 2003 the railway was featured in the Guinness Book of World Records for offering the steepest rise in altitude in the space of 96 kilometre.
NOTABLE TRAINS
TOURIST TRAINS
Palace on Wheels is a specially designed luxury tourist train service, frequently hauled by a steam locomotive, for promoting tourism in Rajasthan. The train has a 7 nights & 8 days itinerary, it departs from New Delhi (Day 1), and covers Jaipur (Day 2), Sawai Madhopur and Chittaurgarh (Day 3), Udaipur (Day 4), Jaisalmer (Day 5), Jodhpur (Day 6), Bharatpur and Agra (Day 7), return to Delhi (Day 8).
Royal Rajasthan on Wheels a luxury tourist train service covers various tourist destinations in Rajasthan. The train takes tourists on a 7-day/8-night tour through Rajasthan. The train starts from New Delhi's Safdarjung railway station (Day 1), and has stops at Jodhpur (Day 2), Udaipur and Chittaurgarh (Day 3), Ranthambore National Park and Jaipur (Day 4), Khajuraho (Day 5), Varanasi and Sarnath (Day 6), Agra (Day 7) and back to Delhi (Day 8).
Maharaja Express a luxury train operated by IRCTC runs on five circuits covering more than 12 destinations across North-West and Central India, mainly centered around Rajasthan between the months of October to April.
Deccan Odyssey luxury tourist train service covers various tourist destinations in Maharashtra and Goa. The 7 Nights / 8 Days tour starts from Mumbai (Day 1) and covers Jaigad Fort, Ganapatipule and Ratnagiri (Day 2), Sindhudurg, Tarkarli and Sawantwadi (Day 3), Goa (Day 4), Kolhapur and Pune (Day 5), Aurangabad and Ellora Caves (Day 6), Ajanta Caves and Nashik (Day 7), and back to Mumbai (Day 8).
The Golden Chariot luxury train runs on two circuits Pride of the South and Splendor of the South.
Mahaparinirvan Express an a/c train service also known as Buddhist Circuit Train which is run by IRCTC to attract Buddhist pilgrims. The 7 nights/8 Days tour starts from New Delhi (Day 1) and covers Bodh Gaya (Day 2), Rajgir and Nalanda (Day 3), Varanasi and Sarnath (Day 4), Kushinagar and Lumbini (Day 5 and 6), Sravasti (Day 7), Taj Mahal (Agra) (Day 8) before returning to New Delhi on (Day 8).
OTHER TRAINS
- Samjhauta Express is a train that runs between India and Pakistan. However, hostilities between the two nations in 2001 saw the line being closed. It was reopened when the hostilities subsided in 2004. Another train connecting Khokhrapar (Pakistan) and Munabao (India) is the Thar Express that restarted operations on 18 February 2006; it was earlier closed down after the 1965 Indo-Pak war.
- Lifeline Express is a special train popularly known as the "Hospital-on-Wheels" which provides healthcare to the rural areas. This train has a carriage that serves as an operating room, a second one which serves as a storeroom and an additional two that serve as a patient ward. The train travels around the country, staying at a location for about two months before moving elsewhere.
- Fairy Queen is the oldest operating locomotive in the world today, though it is operated only for specials between Delhi and Alwar. John Bull, a locomotive older than Fairy Queen, operated in 1981 commemorating its 150th anniversary. Gorakhpur railway station also has the distinction of being the world's longest railway platform at 1,366 m. The Ghum station along the Darjeeling Toy Train route is the second highest railway station in the world to be reached by a steam locomotive. The Mumbai–Pune Deccan Queen has the oldest running dining car in IR.
- Vivek Express, between Dibrugarh and Kanyakumari, has the longest run in terms of distance and time on Indian Railways network. It covers 4,286 km in about 82 hours and 30 minutes.
- Bhopal Shatabdi Express is the fastest train in India today having a maximum speed of 160 km/h on the Faridabad–Agra section. The fastest speed attained by any train is 184 km/h in 2000 during test runs.
- Special Trains are those trains started by Indian Railways for any specific event or cause which includes Jagriti Yatra trains, Kumbh Mela Trains., emergency trains, etc.
- Double-decker AC trains have been introduced in India. The first double decker train was Pune-Mumbai Sinhagad express plying between Pune and Mumbai while the first double-decker AC train in the Indian Railways was introduced in November 2010, running between the Dhanbad and Howrah stations having 10 coaches and 2 power cars. On 16 April 2013, Indian Railways celebrated its 160 years of nationwide connectivity with a transportation of 23 million passengers in a day.
PROBLEMS AND ISSUES
Indian Railways is cash strapped and reported a loss of ₹30,000 crores (₹300bn) in the passenger segment for the year ending March 2014. Operating ratio, a key metric used by Indian railways to gauge financial health, is 91.8% in the year 2014-15. Railways carry a social obligation of over ₹20,000 crores (₹200bn $3.5bn). The loss per passenger-km increased to 23 paise by the end of March 2014. Indian Railways is left with a surplus cash of just ₹690 crores (₹6.9bn $115mn) by the end of March 2014.
It is estimated that over ₹ 5 lakh crores (₹5 trillion) (about $85 bn at 2014 exchange rates) is required to complete the ongoing projects alone. The railway is consistently losing market share to other modes of transport both in freight and passengers.
New railway line projects are often announced during the Railway Budget annually without securing additional funding for them. In the last 10 years, 99 New Line projects worth ₹ 60,000 crore (₹600bn) were sanctioned out of which only one project is complete till date, and there are four projects that are as old as 30 years, but are still not complete for one reason or another.
Sanjay Dina Patil a member of the Lok Sabha in 2014 said that additional tracks, height of platforms are still a problem and rise in tickets, goods, monthly passes has created an alarming situation where the common man is troubled.
WIKIPEDIA
Lots of things came together to make this box. The plum wood was harvested from a tree on our property. As I was trimming the tree, the red color of the bark was just too pretty to trash. The mahogany was salvaged from a historical Southern California home slated for demolition due to urban renewal. The home was built in 1895 by a wealthy industrialist and featured many luxuries and technological advancements for the time, including the first alarm system installed in a home. The home was featured in the first issue of Architectural Digest in 1920. The curator of the local Historical Society obtained permission from the City Council for 2Roses to reclaim the wood just hours before the entire house was bulldozed.
Media: Plum boughs, Honduran mahogany. Lined with California redwood. The box also features a secret compartment.
Size: 9.5”L x 4”W x 6”H.\
Fish, any of approximately 34,000 species of vertebrate animals (phylum Chordata) found in the fresh and salt waters of the world. Living species range from the primitive jawless lampreys and hagfishes through the cartilaginous sharks, skates, and rays to the abundant and diverse bony fishes. Most fish species are cold-blooded; however, one species, the opah (Lampris guttatus), is warm-blooded.
The term fish is applied to a variety of vertebrates of several evolutionary lines. It describes a life-form rather than a taxonomic group. As members of the phylum Chordata, fish share certain features with other vertebrates. These features are gill slits at some point in the life cycle, a notochord, or skeletal supporting rod, a dorsal hollow nerve cord, and a tail. Living fishes represent some five classes, which are as distinct from one another as are the four classes of familiar air-breathing animals—amphibians, reptiles, birds, and mammals. For example, the jawless fishes (Agnatha) have gills in pouches and lack limb girdles. Extant agnathans are the lampreys and the hagfishes. As the name implies, the skeletons of fishes of the class Chondrichthyes (from chondr, “cartilage,” and ichthyes, “fish”) are made entirely of cartilage. Modern fish of this class lack a swim bladder, and their scales and teeth are made up of the same placoid material. Sharks, skates, and rays are examples of cartilaginous fishes. The bony fishes are by far the largest class. Examples range from the tiny seahorse to the 450-kg (1,000-pound) blue marlin, from the flattened soles and flounders to the boxy puffers and ocean sunfishes. Unlike the scales of the cartilaginous fishes, those of bony fishes, when present, grow throughout life and are made up of thin overlapping plates of bone. Bony fishes also have an operculum that covers the gill slits.
The study of fishes, the science of ichthyology, is of broad importance. Fishes are of interest to humans for many reasons, the most important being their relationship with and dependence on the environment. A more obvious reason for interest in fishes is their role as a moderate but important part of the world’s food supply. This resource, once thought unlimited, is now realized to be finite and in delicate balance with the biological, chemical, and physical factors of the aquatic environment. Overfishing, pollution, and alteration of the environment are the chief enemies of proper fisheries management, both in fresh waters and in the ocean. (For a detailed discussion of the technology and economics of fisheries, see commercial fishing.) Another practical reason for studying fishes is their use in disease control. As predators on mosquito larvae, they help curb malaria and other mosquito-borne diseases.
Fishes are valuable laboratory animals in many aspects of medical and biological research. For example, the readiness of many fishes to acclimate to captivity has allowed biologists to study behaviour, physiology, and even ecology under relatively natural conditions. Fishes have been especially important in the study of animal behaviour, where research on fishes has provided a broad base for the understanding of the more flexible behaviour of the higher vertebrates. The zebra fish is used as a model in studies of gene expression.
There are aesthetic and recreational reasons for an interest in fishes. Millions of people keep live fishes in home aquariums for the simple pleasure of observing the beauty and behaviour of animals otherwise unfamiliar to them. Aquarium fishes provide a personal challenge to many aquarists, allowing them to test their ability to keep a small section of the natural environment in their homes. Sportfishing is another way of enjoying the natural environment, also indulged in by millions of people every year. Interest in aquarium fishes and sportfishing supports multimillion-dollar industries throughout the world.
Fishes have been in existence for more than 450 million years, during which time they have evolved repeatedly to fit into almost every conceivable type of aquatic habitat. In a sense, land vertebrates are simply highly modified fishes: when fishes colonized the land habitat, they became tetrapod (four-legged) land vertebrates. The popular conception of a fish as a slippery, streamlined aquatic animal that possesses fins and breathes by gills applies to many fishes, but far more fishes deviate from that conception than conform to it. For example, the body is elongate in many forms and greatly shortened in others; the body is flattened in some (principally in bottom-dwelling fishes) and laterally compressed in many others; the fins may be elaborately extended, forming intricate shapes, or they may be reduced or even lost; and the positions of the mouth, eyes, nostrils, and gill openings vary widely. Air breathers have appeared in several evolutionary lines.
Many fishes are cryptically coloured and shaped, closely matching their respective environments; others are among the most brilliantly coloured of all organisms, with a wide range of hues, often of striking intensity, on a single individual. The brilliance of pigments may be enhanced by the surface structure of the fish, so that it almost seems to glow. A number of unrelated fishes have actual light-producing organs. Many fishes are able to alter their coloration—some for the purpose of camouflage, others for the enhancement of behavioral signals.
Fishes range in adult length from less than 10 mm (0.4 inch) to more than 20 metres (60 feet) and in weight from about 1.5 grams (less than 0.06 ounce) to many thousands of kilograms. Some live in shallow thermal springs at temperatures slightly above 42 °C (100 °F), others in cold Arctic seas a few degrees below 0 °C (32 °F) or in cold deep waters more than 4,000 metres (13,100 feet) beneath the ocean surface. The structural and, especially, the physiological adaptations for life at such extremes are relatively poorly known and provide the scientifically curious with great incentive for study.
Almost all natural bodies of water bear fish life, the exceptions being very hot thermal ponds and extremely salt-alkaline lakes, such as the Dead Sea in Asia and the Great Salt Lake in North America. The present distribution of fishes is a result of the geological history and development of Earth as well as the ability of fishes to undergo evolutionary change and to adapt to the available habitats. Fishes may be seen to be distributed according to habitat and according to geographical area. Major habitat differences are marine and freshwater. For the most part, the fishes in a marine habitat differ from those in a freshwater habitat, even in adjacent areas, but some, such as the salmon, migrate from one to the other. The freshwater habitats may be seen to be of many kinds. Fishes found in mountain torrents, Arctic lakes, tropical lakes, temperate streams, and tropical rivers will all differ from each other, both in obvious gross structure and in physiological attributes. Even in closely adjacent habitats where, for example, a tropical mountain torrent enters a lowland stream, the fish fauna will differ. The marine habitats can be divided into deep ocean floors (benthic), mid-water oceanic (bathypelagic), surface oceanic (pelagic), rocky coast, sandy coast, muddy shores, bays, estuaries, and others. Also, for example, rocky coastal shores in tropical and temperate regions will have different fish faunas, even when such habitats occur along the same coastline.
Although much is known about the present geographical distribution of fishes, far less is known about how that distribution came about. Many parts of the fish fauna of the fresh waters of North America and Eurasia are related and undoubtedly have a common origin. The faunas of Africa and South America are related, extremely old, and probably an expression of the drifting apart of the two continents. The fauna of southern Asia is related to that of Central Asia, and some of it appears to have entered Africa. The extremely large shore-fish faunas of the Indian and tropical Pacific oceans comprise a related complex, but the tropical shore fauna of the Atlantic, although containing Indo-Pacific components, is relatively limited and probably younger. The Arctic and Antarctic marine faunas are quite different from each other. The shore fauna of the North Pacific is quite distinct, and that of the North Atlantic more limited and probably younger. Pelagic oceanic fishes, especially those in deep waters, are similar the world over, showing little geographical isolation in terms of family groups. The deep oceanic habitat is very much the same throughout the world, but species differences do exist, showing geographical areas determined by oceanic currents and water masses.
All aspects of the life of a fish are closely correlated with adaptation to the total environment, physical, chemical, and biological. In studies, all the interdependent aspects of fish, such as behaviour, locomotion, reproduction, and physical and physiological characteristics, must be taken into account.
Correlated with their adaptation to an extremely wide variety of habitats is the extremely wide variety of life cycles that fishes display. The great majority hatch from relatively small eggs a few days to several weeks or more after the eggs are scattered in the water. Newly hatched young are still partially undeveloped and are called larvae until body structures such as fins, skeleton, and some organs are fully formed. Larval life is often very short, usually less than a few weeks, but it can be very long, some lampreys continuing as larvae for at least five years. Young and larval fishes, before reaching sexual maturity, must grow considerably, and their small size and other factors often dictate that they live in a habitat different than that of the adults. For example, most tropical marine shore fishes have pelagic larvae. Larval food also is different, and larval fishes often live in shallow waters, where they may be less exposed to predators.
After a fish reaches adult size, the length of its life is subject to many factors, such as innate rates of aging, predation pressure, and the nature of the local climate. The longevity of a species in the protected environment of an aquarium may have nothing to do with how long members of that species live in the wild. Many small fishes live only one to three years at the most. In some species, however, individuals may live as long as 10 or 20 or even 100 years.
Fish behaviour is a complicated and varied subject. As in almost all animals with a central nervous system, the nature of a response of an individual fish to stimuli from its environment depends upon the inherited characteristics of its nervous system, on what it has learned from past experience, and on the nature of the stimuli. Compared with the variety of human responses, however, that of a fish is stereotyped, not subject to much modification by “thought” or learning, and investigators must guard against anthropomorphic interpretations of fish behaviour.
Fishes perceive the world around them by the usual senses of sight, smell, hearing, touch, and taste and by special lateral line water-current detectors. In the few fishes that generate electric fields, a process that might best be called electrolocation aids in perception. One or another of these senses often is emphasized at the expense of others, depending upon the fish’s other adaptations. In fishes with large eyes, the sense of smell may be reduced; others, with small eyes, hunt and feed primarily by smell (such as some eels).
Specialized behaviour is primarily concerned with the three most important activities in the fish’s life: feeding, reproduction, and escape from enemies. Schooling behaviour of sardines on the high seas, for instance, is largely a protective device to avoid enemies, but it is also associated with and modified by their breeding and feeding requirements. Predatory fishes are often solitary, lying in wait to dart suddenly after their prey, a kind of locomotion impossible for beaked parrot fishes, which feed on coral, swimming in small groups from one coral head to the next. In addition, some predatory fishes that inhabit pelagic environments, such as tunas, often school.
Sleep in fishes, all of which lack true eyelids, consists of a seemingly listless state in which the fish maintains its balance but moves slowly. If attacked or disturbed, most can dart away. A few kinds of fishes lie on the bottom to sleep. Most catfishes, some loaches, and some eels and electric fishes are strictly nocturnal, being active and hunting for food during the night and retiring during the day to holes, thick vegetation, or other protective parts of the environment.
Communication between members of a species or between members of two or more species often is extremely important, especially in breeding behaviour (see below Reproduction). The mode of communication may be visual, as between the small so-called cleaner fish and a large fish of a very different species. The larger fish often allows the cleaner to enter its mouth to remove gill parasites. The cleaner is recognized by its distinctive colour and actions and therefore is not eaten, even if the larger fish is normally a predator. Communication is often chemical, signals being sent by specific chemicals called pheromones.
Many fishes have a streamlined body and swim freely in open water. Fish locomotion is closely correlated with habitat and ecological niche (the general position of the animal to its environment).
Many fishes in both marine and fresh waters swim at the surface and have mouths adapted to feed best (and sometimes only) at the surface. Often such fishes are long and slender, able to dart at surface insects or at other surface fishes and in turn to dart away from predators; needlefishes, halfbeaks, and topminnows (such as killifish and mosquito fish) are good examples. Oceanic flying fishes escape their predators by gathering speed above the water surface, with the lower lobe of the tail providing thrust in the water. They then glide hundreds of yards on enlarged, winglike pectoral and pelvic fins. South American freshwater flying fishes escape their enemies by jumping and propelling their strongly keeled bodies out of the water.
So-called mid-water swimmers, the most common type of fish, are of many kinds and live in many habitats. The powerful fusiform tunas and the trouts, for example, are adapted for strong, fast swimming, the tunas to capture prey speedily in the open ocean and the trouts to cope with the swift currents of streams and rivers. The trout body form is well adapted to many habitats. Fishes that live in relatively quiet waters such as bays or lake shores or slow rivers usually are not strong, fast swimmers but are capable of short, quick bursts of speed to escape a predator. Many of these fishes have their sides flattened, examples being the sunfish and the freshwater angelfish of aquarists. Fish associated with the bottom or substrate usually are slow swimmers. Open-water plankton-feeding fishes almost always remain fusiform and are capable of rapid, strong movement (for example, sardines and herrings of the open ocean and also many small minnows of streams and lakes).
Bottom-living fishes are of many kinds and have undergone many types of modification of their body shape and swimming habits. Rays, which evolved from strong-swimming mid-water sharks, usually stay close to the bottom and move by undulating their large pectoral fins. Flounders live in a similar habitat and move over the bottom by undulating the entire body. Many bottom fishes dart from place to place, resting on the bottom between movements, a motion common in gobies. One goby relative, the mudskipper, has taken to living at the edge of pools along the shore of muddy mangrove swamps. It escapes its enemies by flipping rapidly over the mud, out of the water. Some catfishes, synbranchid eels, the so-called climbing perch, and a few other fishes venture out over damp ground to find more promising waters than those that they left. They move by wriggling their bodies, sometimes using strong pectoral fins; most have accessory air-breathing organs. Many bottom-dwelling fishes live in mud holes or rocky crevices. Marine eels and gobies commonly are found in such habitats and for the most part venture far beyond their cavelike homes. Some bottom dwellers, such as the clingfishes (Gobiesocidae), have developed powerful adhesive disks that enable them to remain in place on the substrate in areas such as rocky coasts, where the action of the waves is great.
The methods of reproduction in fishes are varied, but most fishes lay a large number of small eggs, fertilized and scattered outside of the body. The eggs of pelagic fishes usually remain suspended in the open water. Many shore and freshwater fishes lay eggs on the bottom or among plants. Some have adhesive eggs. The mortality of the young and especially of the eggs is very high, and often only a few individuals grow to maturity out of hundreds, thousands, and in some cases millions of eggs laid.
Males produce sperm, usually as a milky white substance called milt, in two (sometimes one) testes within the body cavity. In bony fishes a sperm duct leads from each testis to a urogenital opening behind the vent or anus. In sharks and rays and in cyclostomes the duct leads to a cloaca. Sometimes the pelvic fins are modified to help transmit the milt to the eggs at the female’s vent or on the substrate where the female has placed them. Sometimes accessory organs are used to fertilize females internally—for example, the claspers of many sharks and rays.
In the females the eggs are formed in two ovaries (sometimes only one) and pass through the ovaries to the urogenital opening and to the outside. In some fishes the eggs are fertilized internally but are shed before development takes place. Members of about a dozen families each of bony fishes (teleosts) and sharks bear live young. Many skates and rays also bear live young. In some bony fishes the eggs simply develop within the female, the young emerging when the eggs hatch (ovoviviparous). Others develop within the ovary and are nourished by ovarian tissues after hatching (viviparous). There are also other methods utilized by fishes to nourish young within the female. In all live-bearers the young are born at a relatively large size and are few in number. In one family of primarily marine fishes, the surfperches from the Pacific coast of North America, Japan, and Korea, the males of at least one species are born sexually mature, although they are not fully grown.
Some fishes are hermaphroditic—an individual producing both sperm and eggs, usually at different stages of its life. Self-fertilization, however, is probably rare.
Successful reproduction and, in many cases, defense of the eggs and the young are assured by rather stereotypical but often elaborate courtship and parental behaviour, either by the male or the female or both. Some fishes prepare nests by hollowing out depressions in the sand bottom (cichlids, for example), build nests with plant materials and sticky threads excreted by the kidneys (sticklebacks), or blow a cluster of mucus-covered bubbles at the water surface (gouramis). The eggs are laid in these structures. Some varieties of cichlids and catfishes incubate eggs in their mouths.
Some fishes, such as salmon, undergo long migrations from the ocean and up large rivers to spawn in the gravel beds where they themselves hatched (anadromous fishes). Some, such as the freshwater eels (family Anguillidae), live and grow to maturity in fresh water and migrate to the sea to spawn (catadromous fishes). Other fishes undertake shorter migrations from lakes into streams, within the ocean, or enter spawning habitats that they do not ordinarily occupy in other ways.
The basic structure and function of the fish body are similar to those of all other vertebrates. The usual four types of tissues are present: surface or epithelial, connective (bone, cartilage, and fibrous tissues, as well as their derivative, blood), nerve, and muscle tissues. In addition, the fish’s organs and organ systems parallel those of other vertebrates.
The typical fish body is streamlined and spindle-shaped, with an anterior head, a gill apparatus, and a heart, the latter lying in the midline just below the gill chamber. The body cavity, containing the vital organs, is situated behind the head in the lower anterior part of the body. The anus usually marks the posterior termination of the body cavity and most often occurs just in front of the base of the anal fin. The spinal cord and vertebral column continue from the posterior part of the head to the base of the tail fin, passing dorsal to the body cavity and through the caudal (tail) region behind the body cavity. Most of the body is of muscular tissue, a high proportion of which is necessitated by swimming. In the course of evolution this basic body plan has been modified repeatedly into the many varieties of fish shapes that exist today.
The skeleton forms an integral part of the fish’s locomotion system, as well as serving to protect vital parts. The internal skeleton consists of the skull bones (except for the roofing bones of the head, which are really part of the external skeleton), the vertebral column, and the fin supports (fin rays). The fin supports are derived from the external skeleton but will be treated here because of their close functional relationship to the internal skeleton. The internal skeleton of cyclostomes, sharks, and rays is of cartilage; that of many fossil groups and some primitive living fishes is mostly of cartilage but may include some bone. In place of the vertebral column, the earliest vertebrates had a fully developed notochord, a flexible stiff rod of viscous cells surrounded by a strong fibrous sheath. During the evolution of modern fishes the rod was replaced in part by cartilage and then by ossified cartilage. Sharks and rays retain a cartilaginous vertebral column; bony fishes have spool-shaped vertebrae that in the more primitive living forms only partially replace the notochord. The skull, including the gill arches and jaws of bony fishes, is fully, or at least partially, ossified. That of sharks and rays remains cartilaginous, at times partially replaced by calcium deposits but never by true bone.
The supportive elements of the fins (basal or radial bones or both) have changed greatly during fish evolution. Some of these changes are described in the section below (Evolution and paleontology). Most fishes possess a single dorsal fin on the midline of the back. Many have two and a few have three dorsal fins. The other fins are the single tail and anal fins and paired pelvic and pectoral fins. A small fin, the adipose fin, with hairlike fin rays, occurs in many of the relatively primitive teleosts (such as trout) on the back near the base of the caudal fin.
The skin of a fish must serve many functions. It aids in maintaining the osmotic balance, provides physical protection for the body, is the site of coloration, contains sensory receptors, and, in some fishes, functions in respiration. Mucous glands, which aid in maintaining the water balance and offer protection from bacteria, are extremely numerous in fish skin, especially in cyclostomes and teleosts. Since mucous glands are present in the modern lampreys, it is reasonable to assume that they were present in primitive fishes, such as the ancient Silurian and Devonian agnathans. Protection from abrasion and predation is another function of the fish skin, and dermal (skin) bone arose early in fish evolution in response to this need. It is thought that bone first evolved in skin and only later invaded the cartilaginous areas of the fish’s body, to provide additional support and protection. There is some argument as to which came first, cartilage or bone, and fossil evidence does not settle the question. In any event, dermal bone has played an important part in fish evolution and has different characteristics in different groups of fishes. Several groups are characterized at least in part by the kind of bony scales they possess.
Scales have played an important part in the evolution of fishes. Primitive fishes usually had thick bony plates or thick scales in several layers of bone, enamel, and related substances. Modern teleost fishes have scales of bone, which, while still protective, allow much more freedom of motion in the body. A few modern teleosts (some catfishes, sticklebacks, and others) have secondarily acquired bony plates in the skin. Modern and early sharks possessed placoid scales, a relatively primitive type of scale with a toothlike structure, consisting of an outside layer of enamel-like substance (vitrodentine), an inner layer of dentine, and a pulp cavity containing nerves and blood vessels. Primitive bony fishes had thick scales of either the ganoid or the cosmoid type. Cosmoid scales have a hard, enamel-like outer layer, an inner layer of cosmine (a form of dentine), and then a layer of vascular bone (isopedine). In ganoid scales the hard outer layer is different chemically and is called ganoin. Under this is a cosminelike layer and then a vascular bony layer. The thin, translucent bony scales of modern fishes, called cycloid and ctenoid (the latter distinguished by serrations at the edges), lack enameloid and dentine layers.
Skin has several other functions in fishes. It is well supplied with nerve endings and presumably receives tactile, thermal, and pain stimuli. Skin is also well supplied with blood vessels. Some fishes breathe in part through the skin, by the exchange of oxygen and carbon dioxide between the surrounding water and numerous small blood vessels near the skin surface.
Skin serves as protection through the control of coloration. Fishes exhibit an almost limitless range of colours. The colours often blend closely with the surroundings, effectively hiding the animal. Many fishes use bright colours for territorial advertisement or as recognition marks for other members of their own species, or sometimes for members of other species. Many fishes can change their colour to a greater or lesser degree, by movement of pigment within the pigment cells (chromatophores). Black pigment cells (melanophores), of almost universal occurrence in fishes, are often juxtaposed with other pigment cells. When placed beneath iridocytes or leucophores (bearing the silvery or white pigment guanine), melanophores produce structural colours of blue and green. These colours are often extremely intense, because they are formed by refraction of light through the needlelike crystals of guanine. The blue and green refracted colours are often relatively pure, lacking the red and yellow rays, which have been absorbed by the black pigment (melanin) of the melanophores. Yellow, orange, and red colours are produced by erythrophores, cells containing the appropriate carotenoid pigments. Other colours are produced by combinations of melanophores, erythrophores, and iridocytes.
The major portion of the body of most fishes consists of muscles. Most of the mass is trunk musculature, the fin muscles usually being relatively small. The caudal fin is usually the most powerful fin, being moved by the trunk musculature. The body musculature is usually arranged in rows of chevron-shaped segments on each side. Contractions of these segments, each attached to adjacent vertebrae and vertebral processes, bends the body on the vertebral joint, producing successive undulations of the body, passing from the head to the tail, and producing driving strokes of the tail. It is the latter that provides the strong forward movement for most fishes.
The digestive system, in a functional sense, starts at the mouth, with the teeth used to capture prey or collect plant foods. Mouth shape and tooth structure vary greatly in fishes, depending on the kind of food normally eaten. Most fishes are predacious, feeding on small invertebrates or other fishes and have simple conical teeth on the jaws, on at least some of the bones of the roof of the mouth, and on special gill arch structures just in front of the esophagus. The latter are throat teeth. Most predacious fishes swallow their prey whole, and the teeth are used for grasping and holding prey, for orienting prey to be swallowed (head first) and for working the prey toward the esophagus. There are a variety of tooth types in fishes. Some fishes, such as sharks and piranhas, have cutting teeth for biting chunks out of their victims. A shark’s tooth, although superficially like that of a piranha, appears in many respects to be a modified scale, while that of the piranha is like that of other bony fishes, consisting of dentine and enamel. Parrot fishes have beaklike mouths with short incisor-like teeth for breaking off coral and have heavy pavementlike throat teeth for crushing the coral. Some catfishes have small brushlike teeth, arranged in rows on the jaws, for scraping plant and animal growth from rocks. Many fishes (such as the Cyprinidae or minnows) have no jaw teeth at all but have very strong throat teeth.
Some fishes gather planktonic food by straining it from their gill cavities with numerous elongate stiff rods (gill rakers) anchored by one end to the gill bars. The food collected on these rods is passed to the throat, where it is swallowed. Most fishes have only short gill rakers that help keep food particles from escaping out the mouth cavity into the gill chamber.
Once reaching the throat, food enters a short, often greatly distensible esophagus, a simple tube with a muscular wall leading into a stomach. The stomach varies greatly in fishes, depending upon the diet. In most predacious fishes it is a simple straight or curved tube or pouch with a muscular wall and a glandular lining. Food is largely digested there and leaves the stomach in liquid form.
Between the stomach and the intestine, ducts enter the digestive tube from the liver and pancreas. The liver is a large, clearly defined organ. The pancreas may be embedded in it, diffused through it, or broken into small parts spread along some of the intestine. The junction between the stomach and the intestine is marked by a muscular valve. Pyloric ceca (blind sacs) occur in some fishes at this junction and have a digestive or absorptive function or both.
The intestine itself is quite variable in length, depending upon the fish’s diet. It is short in predacious forms, sometimes no longer than the body cavity, but long in herbivorous forms, being coiled and several times longer than the entire length of the fish in some species of South American catfishes. The intestine is primarily an organ for absorbing nutrients into the bloodstream. The larger its internal surface, the greater its absorptive efficiency, and a spiral valve is one method of increasing its absorption surface.
Sharks, rays, chimaeras, lungfishes, surviving chondrosteans, holosteans, and even a few of the more primitive teleosts have a spiral valve or at least traces of it in the intestine. Most modern teleosts have increased the area of the intestinal walls by having numerous folds and villi (fingerlike projections) somewhat like those in humans. Undigested substances are passed to the exterior through the anus in most teleost fishes. In lungfishes, sharks, and rays, it is first passed through the cloaca, a common cavity receiving the intestinal opening and the ducts from the urogenital system.
Oxygen and carbon dioxide dissolve in water, and most fishes exchange dissolved oxygen and carbon dioxide in water by means of the gills. The gills lie behind and to the side of the mouth cavity and consist of fleshy filaments supported by the gill arches and filled with blood vessels, which give gills a bright red colour. Water taken in continuously through the mouth passes backward between the gill bars and over the gill filaments, where the exchange of gases takes place. The gills are protected by a gill cover in teleosts and many other fishes but by flaps of skin in sharks, rays, and some of the older fossil fish groups. The blood capillaries in the gill filaments are close to the gill surface to take up oxygen from the water and to give up excess carbon dioxide to the water.
Most modern fishes have a hydrostatic (ballast) organ, called the swim bladder, that lies in the body cavity just below the kidney and above the stomach and intestine. It originated as a diverticulum of the digestive canal. In advanced teleosts, especially the acanthopterygians, the bladder has lost its connection with the digestive tract, a condition called physoclistic. The connection has been retained (physostomous) by many relatively primitive teleosts. In several unrelated lines of fishes, the bladder has become specialized as a lung or, at least, as a highly vascularized accessory breathing organ. Some fishes with such accessory organs are obligate air breathers and will drown if denied access to the surface, even in well-oxygenated water. Fishes with a hydrostatic form of swim bladder can control their depth by regulating the amount of gas in the bladder. The gas, mostly oxygen, is secreted into the bladder by special glands, rendering the fish more buoyant; the gas is absorbed into the bloodstream by another special organ, reducing the overall buoyancy and allowing the fish to sink. Some deep-sea fishes may have oils, rather than gas, in the bladder. Other deep-sea and some bottom-living forms have much-reduced swim bladders or have lost the organ entirely.
The swim bladder of fishes follows the same developmental pattern as the lungs of land vertebrates. There is no doubt that the two structures have the same historical origin in primitive fishes. More or less intermediate forms still survive among the more primitive types of fishes, such as the lungfishes Lepidosiren and Protopterus.
The circulatory, or blood vascular, system consists of the heart, the arteries, the capillaries, and the veins. It is in the capillaries that the interchange of oxygen, carbon dioxide, nutrients, and other substances such as hormones and waste products takes place. The capillaries lead to the veins, which return the venous blood with its waste products to the heart, kidneys, and gills. There are two kinds of capillary beds: those in the gills and those in the rest of the body. The heart, a folded continuous muscular tube with three or four saclike enlargements, undergoes rhythmic contractions and receives venous blood in a sinus venosus. It passes the blood to an auricle and then into a thick muscular pump, the ventricle. From the ventricle the blood goes to a bulbous structure at the base of a ventral aorta just below the gills. The blood passes to the afferent (receiving) arteries of the gill arches and then to the gill capillaries. There waste gases are given off to the environment, and oxygen is absorbed. The oxygenated blood enters efferent (exuant) arteries of the gill arches and then flows into the dorsal aorta. From there blood is distributed to the tissues and organs of the body. One-way valves prevent backflow. The circulation of fishes thus differs from that of the reptiles, birds, and mammals in that oxygenated blood is not returned to the heart prior to distribution to the other parts of the body.
The primary excretory organ in fishes, as in other vertebrates, is the kidney. In fishes some excretion also takes place in the digestive tract, skin, and especially the gills (where ammonia is given off). Compared with land vertebrates, fishes have a special problem in maintaining their internal environment at a constant concentration of water and dissolved substances, such as salts. Proper balance of the internal environment (homeostasis) of a fish is in a great part maintained by the excretory system, especially the kidney.
The kidney, gills, and skin play an important role in maintaining a fish’s internal environment and checking the effects of osmosis. Marine fishes live in an environment in which the water around them has a greater concentration of salts than they can have inside their body and still maintain life. Freshwater fishes, on the other hand, live in water with a much lower concentration of salts than they require inside their bodies. Osmosis tends to promote the loss of water from the body of a marine fish and absorption of water by that of a freshwater fish. Mucus in the skin tends to slow the process but is not a sufficient barrier to prevent the movement of fluids through the permeable skin. When solutions on two sides of a permeable membrane have different concentrations of dissolved substances, water will pass through the membrane into the more concentrated solution, while the dissolved chemicals move into the area of lower concentration (diffusion).
The kidney of freshwater fishes is often larger in relation to body weight than that of marine fishes. In both groups the kidney excretes wastes from the body, but the kidney of freshwater fishes also excretes large amounts of water, counteracting the water absorbed through the skin. Freshwater fishes tend to lose salt to the environment and must replace it. They get some salt from their food, but the gills and skin inside the mouth actively absorb salt from water passed through the mouth. This absorption is performed by special cells capable of moving salts against the diffusion gradient. Freshwater fishes drink very little water and take in little water with their food.
Marine fishes must conserve water, and therefore their kidneys excrete little water. To maintain their water balance, marine fishes drink large quantities of seawater, retaining most of the water and excreting the salt. Most nitrogenous waste in marine fishes appears to be secreted by the gills as ammonia. Marine fishes can excrete salt by clusters of special cells (chloride cells) in the gills.
There are several teleosts—for example, the salmon—that travel between fresh water and seawater and must adjust to the reversal of osmotic gradients. They adjust their physiological processes by spending time (often surprisingly little time) in the intermediate brackish environment.
Marine hagfishes, sharks, and rays have osmotic concentrations in their blood about equal to that of seawater and so do not have to drink water nor perform much physiological work to maintain their osmotic balance. In sharks and rays the osmotic concentration is kept high by retention of urea in the blood. Freshwater sharks have a lowered concentration of urea in the blood.
Endocrine glands secrete their products into the bloodstream and body tissues and, along with the central nervous system, control and regulate many kinds of body functions. Cyclostomes have a well-developed endocrine system, and presumably it was well developed in the early Agnatha, ancestral to modern fishes. Although the endocrine system in fishes is similar to that of higher vertebrates, there are numerous differences in detail. The pituitary, the thyroid, the suprarenals, the adrenals, the pancreatic islets, the sex glands (ovaries and testes), the inner wall of the intestine, and the bodies of the ultimobranchial gland make up the endocrine system in fishes. There are some others whose function is not well understood. These organs regulate sexual activity and reproduction, growth, osmotic pressure, general metabolic activities such as the storage of fat and the utilization of foodstuffs, blood pressure, and certain aspects of skin colour. Many of these activities are also controlled in part by the central nervous system, which works with the endocrine system in maintaining the life of a fish. Some parts of the endocrine system are developmentally, and undoubtedly evolutionarily, derived from the nervous system.
As in all vertebrates, the nervous system of fishes is the primary mechanism coordinating body activities, as well as integrating these activities in the appropriate manner with stimuli from the environment. The central nervous system, consisting of the brain and spinal cord, is the primary integrating mechanism. The peripheral nervous system, consisting of nerves that connect the brain and spinal cord to various body organs, carries sensory information from special receptor organs such as the eyes, internal ears, nares (sense of smell), taste glands, and others to the integrating centres of the brain and spinal cord. The peripheral nervous system also carries information via different nerve cells from the integrating centres of the brain and spinal cord. This coded information is carried to the various organs and body systems, such as the skeletal muscular system, for appropriate action in response to the original external or internal stimulus. Another branch of the nervous system, the autonomic nervous system, helps to coordinate the activities of many glands and organs and is itself closely connected to the integrating centres of the brain.
The brain of the fish is divided into several anatomical and functional parts, all closely interconnected but each serving as the primary centre of integrating particular kinds of responses and activities. Several of these centres or parts are primarily associated with one type of sensory perception, such as sight, hearing, or smell (olfaction).
The sense of smell is important in almost all fishes. Certain eels with tiny eyes depend mostly on smell for location of food. The olfactory, or nasal, organ of fishes is located on the dorsal surface of the snout. The lining of the nasal organ has special sensory cells that perceive chemicals dissolved in the water, such as substances from food material, and send sensory information to the brain by way of the first cranial nerve. Odour also serves as an alarm system. Many fishes, especially various species of freshwater minnows, react with alarm to a chemical released from the skin of an injured member of their own species.
Many fishes have a well-developed sense of taste, and tiny pitlike taste buds or organs are located not only within their mouth cavities but also over their heads and parts of their body. Catfishes, which often have poor vision, have barbels (“whiskers”) that serve as supplementary taste organs, those around the mouth being actively used to search out food on the bottom. Some species of naturally blind cave fishes are especially well supplied with taste buds, which often cover most of their body surface.
Sight is extremely important in most fishes. The eye of a fish is basically like that of all other vertebrates, but the eyes of fishes are extremely varied in structure and adaptation. In general, fishes living in dark and dim water habitats have large eyes, unless they have specialized in some compensatory way so that another sense (such as smell) is dominant, in which case the eyes will often be reduced. Fishes living in brightly lighted shallow waters often will have relatively small but efficient eyes. Cyclostomes have somewhat less elaborate eyes than other fishes, with skin stretched over the eyeball perhaps making their vision somewhat less effective. Most fishes have a spherical lens and accommodate their vision to far or near subjects by moving the lens within the eyeball. A few sharks accommodate by changing the shape of the lens, as in land vertebrates. Those fishes that are heavily dependent upon the eyes have especially strong muscles for accommodation. Most fishes see well, despite the restrictions imposed by frequent turbidity of the water and by light refraction.
Fossil evidence suggests that colour vision evolved in fishes more than 300 million years ago, but not all living fishes have retained this ability. Experimental evidence indicates that many shallow-water fishes, if not all, have colour vision and see some colours especially well, but some bottom-dwelling shore fishes live in areas where the water is sufficiently deep to filter out most if not all colours, and these fishes apparently never see colours. When tested in shallow water, they apparently are unable to respond to colour differences.
Sound perception and balance are intimately associated senses in a fish. The organs of hearing are entirely internal, located within the skull, on each side of the brain and somewhat behind the eyes. Sound waves, especially those of low frequencies, travel readily through water and impinge directly upon the bones and fluids of the head and body, to be transmitted to the hearing organs. Fishes readily respond to sound; for example, a trout conditioned to escape by the approach of fishermen will take flight upon perceiving footsteps on a stream bank even if it cannot see a fisherman. Compared with humans, however, the range of sound frequencies heard by fishes is greatly restricted. Many fishes communicate with each other by producing sounds in their swim bladders, in their throats by rasping their teeth, and in other ways.
A fish or other vertebrate seldom has to rely on a single type of sensory information to determine the nature of the environment around it. A catfish uses taste and touch when examining a food object with its oral barbels. Like most other animals, fishes have many touch receptors over their body surface. Pain and temperature receptors also are present in fishes and presumably produce the same kind of information to a fish as to humans. Fishes react in a negative fashion to stimuli that would be painful to human beings, suggesting that they feel a sensation of pain.
An important sensory system in fishes that is absent in other vertebrates (except some amphibians) is the lateral line system. This consists of a series of heavily innervated small canals located in the skin and bone around the eyes, along the lower jaw, over the head, and down the mid-side of the body, where it is associated with the scales. Intermittently along these canals are located tiny sensory organs (pit organs) that apparently detect changes in pressure. The system allows a fish to sense changes in water currents and pressure, thereby helping the fish to orient itself to the various changes that occur in the physical environment.
The church of St Martin, Overstrand is home to three separate forms of memorial to the fallen of WW1 and WW2. Outside in the churchyard is the War Memorial, while inside the names are carved on a wooden panel. Beneath the panel there are two bound books, one for each conflict. Each name remembered here receives a small potted biography which I take no shame in reproducing here.
Colin Thomas Watson
Born on 13th October 1918 at Cromer.
Son of Arthur & Gertrude Watson.
Serving as Leading Cook in H.M Submarines
“Cachalot” & “Truant”.
Killed when Troopship “Empress of Canada” was sunk on the
13th March 1943, returning from the Far East.
WATSON, COLIN THOMAS
Rank:…………………………….Leading Cook (S)
Service No:………………………P/MX 54244
Date of Death:……………………13/03/1943
Age:……………………………....25
Service:…………………………..Royal Navy, H.M.S. Victory III
Panel Reference
Panel 79, Column 1.
Memorial
PORTSMOUTH NAVAL MEMORIAL
Additional Information:
Son of Arthur William and Maud Watson, of Cromer, Norfolk.
CWGC www.cwgc.org/find-war-dead/casualty/2669999/WATSON,%20COL...
Remembered on the War Memorial in the churchyard as:-
Colin Watson R.N
The birth of a Colin T Watson was recorded in the Erpingham District which covers Cromer in the October to December 1918 quarter. Looking for that combination of surname, mothers maiden name and registration district throws up the following possible siblings:-
Elsie V……birth recorded April to June 1913
Albert F…..birth recorded January to March 1915
Violet L…..birth recorded October to December 1916
Career
H M Submarine Cachalot
HMS Cachalot (N83) was one of the six ship class of Grampus-class mine-laying submarine of the Royal Navy. She was built at Scotts, Greenock and launched 2 December 1937. She served in World War II in home waters and the Mediterranean. She was rammed and sunk by the Italian torpedo boat Generale Achille Papa on 30 July 1941.
In August, 1940, Cachalot torpedoed and sank the German submarine U-51 in the Bay of Biscay and in September the German auxiliary minesweeper M 1604 / Österreich hit a mine laid by Cachalot and sank.
She was assigned to operate in the Mediterranean in 1941.
Cachalot left Malta on 26 July, bound for Alexandria and instructions to look out for an escorted tanker heading for Benghazi. At 2 o’clock on the morning of 30 July a destroyer was spotted heading towards Cachalot, forcing the submarine to dive. On returning to the surface the submarine was attacked by the Italian destroyer. Cachalot attempted to dive again but the upper hatch jammed, and the Italian destroyer rammed her. The crew scuttled the ship as they abandoned her and all personnel except for a Maltese steward were picked up by the Italians.
(Colin had obviously moved on by that stage).
en.wikipedia.org/wiki/HMS_Cachalot_(N83)
H M Submarine Truant
HMS Truant was a T-class submarine of the Royal Navy. She was laid down by Vickers Armstrong, Barrow and launched on the 5 May 1939.
Truant's first major victory came when she torpedoed and damaged the German light cruiser Karlsruhe off Kristiansand, Norway, which disabled both engines and power stations. Karlsruhe had to be scuttled with two torpedoes by the German torpedo boat Greif. Truant later attacked the British merchant Alster, unaware that it had been recently captured from the Germans, but her torpedoes missed. She also intercepted the German merchant Tropic Sea. Tropic Sea had formerly been in Norwegian service, but had been captured by the German armed merchant cruiser Orion in the South Pacific. The Tropic Sea was scuttled by the German prize crew in the Bay of Biscay.
Truant had a narrow escape, when she was attacked by the River-class submarine Clyde, who had mistaken her for an enemy submarine. Fortunately, Clyde's torpedoes missed.
Assigned to the Mediterranean in mid 1940, Truant went on to sink a number of enemy ships, including the Italian merchant vessels Providenza, Sebastiano Bianchi and Multedo, the Italian tankers Bonzo and Meteor, the Italian auxiliary submarine chaser Vanna, the Italian passenger/cargo ship Bengasi and the German merchantman Virginia S. Truant also damaged the small Italian tanker Prometeo and the Italian torpedo boat Alcione, which was later declared a total loss. She also unsuccessfully attacked the Italian merchant vessels Utilitas, Silvia Tripcovich, Bainsizza and Arborea, the small Italian tanker Labor and the German merchantman Bellona.
Truant was assigned to operate in the Far East, against Japanese shipping in 1942. She torpedoed and sank the Japanese merchant cargo ships Yae Maru and Shunsei Maru and the Japanese army cargo ship Tamon Maru No.1. She also attacked the Japanese light cruiser Nagara, but the torpedoes missed their target. She was also prominent at the Battle of Badung Strait.
Truant survived the war and was sold to be broken up for scrap on 19 December 1945. She was wrecked in December 1946 whilst en route to the shipbreakers.
en.wikipedia.org/wiki/HMS_Truant
Her patrol diaries can be read here.
uboat.net/allies/warships/ship/3494.html
On the day
The Empress of Canada.
Following the outbreak of World War II in 1939, she was converted for use as a troopship. She was one of the ships in the first Australian/New Zealand convoy, designated US.1 for secrecy, destined for North Africa and at that time not yet fully converted for full troop capacity with few ships of the convoy carrying more than 25% more than their normal passenger load. Empress of Canada departed Wellington 6 January 1940 with the New Zealand elements, joined the Australian ships and arrived Aden on 8 February from where the convoy split with all ships heading for Suez.
She continued to transport ANZAC troops from New Zealand and from Australia to the war zones in Europe until sunk. The return voyage from Europe was not less dangerous than the trip north had been. On 13 March 1943, while en route from Durban, South Africa to Takoradi carrying Italian prisoners of war along with Polish and Greek refugees, the SS Empress of Canada was torpedoed and sunk by the Italian submarine Leonardo Da Vinci approximately 400 miles (640 km) south of Cape Palmas off the coast of Africa. Of the approximate 1800 people on board, 392 died. Nearly half of the fatalities reported were Italian prisoners.
en.wikipedia.org/wiki/RMS_Empress_of_Canada_(1922)
A recurring theme amongst survivors and relatives is the losses and injuries suffered from shark attack in the days afterwards - it took up to six days in some cases to be rescued.
nineteenkeys.blogspot.co.uk/2009/05/sinking-of-empress-of...
A more phlegmatic description of the aftermath appears in The Montreal Gazette, dated Feb.21 1944.
Logs Kept on Empress of Canada gives Graphic Facts on Sinking.
Victoria B,C February 19th. The log of a Victoria man, Third Officer M D Atkins, 19, graphically tells the story of the sinking of the line Empress of Canada, a year ago, with loss of 400 lives.
Atkins was on the Empress of Asia a year previously when she went down under a shower of Japanese bombs off the Sumatra coast. Atkins, now studying here for his second officers certificate, wrote the following log;
March 13th 1943 - at 2345 hours, (11.45 pm) Empress of Canada was torpedoed by an Italian sub (400 miles of Freetown, West Africa). Order to abandon ship given at 2400 hours, (midnight). Was in bed at the time.
Went to station at power lifeboat, starboard. Launched the boat in about fifteen minutes with six men in it. No line attached to power boat, so left behind by Canada, still under way. Canada listed badly with explosion but afterwards righted. Submarine hit her with a second torpedo at 0050 hours, (12.50 am), March 14th and Canada disappeared at 0110 hours, (1.10 am).
Sub surfaced close to the boats and called for an Italian doctor among Italian prisoners being taken to England. Found him and took him aboard. Also called for a Greek submarine commander who was on board and had been causing trouble for Itallian shipping in the Mediterranean but no one gave him away, so they left without him.
Picked up one of the engineers from the water and then got engine going and picked up two survivors floating with their red lights showing and tied together several Carley floats to the power boats and waited for dawn.
When daylight came we put survivors out of the boat on to the floats and spent all day Sunday, march 14, picking up survivors and loading them on floats and herding lifeboats and floats together to save them getting separated and lost.
Lay to by sea anchor Sunday night and spent Monday picking up other survivors and keeping floats and boats together. Also picked up several tins of food stores and kegs of water. Finally had enough food supplies aboard to last 35 days by rationing.
About 1730 hours, (5.30 pm),Sunday March 14, Catalina flying boat spoke to us and found out we were survivors from the Canada and then left to report our position. Checked stores and spent time figuring rations.
Sighted British destroyer on the horizon at 1830 (6.30 pm) March 15. Destroyer picked up survivors from the lifeboats and floats and reached us 2130, (9.30 pm) Monday. By this time the destroyer had a full load and was leaving us when the skipper inquired how many loads they had taken aboard and received the answer, 13 loads., and ordered the crew to pick us up to break the jinx, which was very acceptable to us.
Destroyer then headed and steamed for Freetown, arriving there March 18. We put up at the Grand Hotel, Freetown and sailed for Liverpool, March 26, arriving in Liverpool April 28.
Forty-eight people in lifeboat including one woman, pregnant, who was in the water 18 hours before being rescued.
news.google.com/newspapers?nid=1946&dat=19440221&...
In November 1939, after 200 Pacific crossings, Empress of Canada was requisitioned for trooping. On 1 March 1943, she left Durban with about 1800 people on board, including 400 Italian prisoners of war and 200 Poles who had been released by the Soviet Union after Germany invaded. On the night of 13-14 March 1943, she was torpedoed twice by the Italian submarine Leonardo da Vinci about 400 miles (640 km) south of Cape Palmas and sank within 20 minutes after the second attack. There were 392 fatalities: 340 passengers, including a majority of the Italian prisoners, 44 crew and 8 gunners. The survivors were taken to Freetown and, from there, resumed their trip to England on Mauretania.
www.greatships.net/empresscanada.html
From the memoirs of a Polish officer aboard the ship. The previous chapter had talked about this being the 13th day of the voyage, and during the afternoon he’d distracted some of the lady passengers who became distressed at seeing a rat scuttling on the lifeboat ropes by joking about deserting the sinking ship.
Chapter 74 Torpedoed
That night the joke with the rat ceased to be amusing when the most feared maritime war incident became a reality. During the evening, fears concerning the ominous number had appeared to subside. The new day, unaffected by superstition, was about to begin.
As the lights went out, the night’s quiet darkness consumed the ship and the sub-equatorial waters surrounding her. All the men, including the “jolly” ones succumbed to the mastery of the soothing waves. As midnight approached, there was not enough time left for the supernatural force to prove its evil power. Few were awake to count the last few minutes of the day bearing the superstitious number.
The evil power came like a treacherous thief in the night. An enormous explosion jolted the massive body of the ship, throwing the troops out of their hammocks. In bewilderment, all remained quiet for a moment or two. This was replaced by the shrieking sound of the ship’s alarm system blaring a grim message in regular intervals. It continued piercing everyone’s ears with its terrible sound of distress. Stanley immediately climbed into his pants, shirt and shoes.
In spite of the obvious threat to human life, there was no panic, no screaming, no wild scenes on deck; just silence and disbelief. With each beat of the alarm, the lights grew dimmer and dimmer. For a while, they played with the spectrum of darkness and then danced away with one last final flicker. And then the corridors were enclosed in complete darkness. The powerful ship like a wounded beast took a slight list to the right. The ghostly shadows of people passed in silence down the long halls in a solemn ceremony of fear. Stanley followed in this procession hearing only the sound of shuffling feet and the hum of the moving crowd.
The passengers quickly climbed the steps until they reached the grey opening to the outside deck and the cool night air. In no time, the deck was crowded with moving people seeking a means of salvation. Small lifeboats hung from the sides, barely visible against the grey sky. The reflective brightness of the white life jackets broke the monotony.
Stanley moved to his pre-arranged place on the upper deck where a ship’s official was to direct him to a lifeboat. In the darkness and under the moving feet, markings were no longer recognizable. The crowd on the deck was no longer quiet and orderly. While attempting to reach their respective lifeboats, the passengers were becoming increasingly irritable and impatient. These modes of transport did not appear to be in abundance and as the survivors began to acknowledge this fact, pandemonium began to grow.
Amidst the darkness and general commotion, the orders of the sailors were incoherent. The voices of the crew repeated, “Women first, women first” as they filled the remaining lifeboats with grappling people.
As time grew short, the voices of the passengers grew more and more disturbed; some screamed, some cried. The increasing strain for survival broke down any inner control they may have had. Below in the water, other people were screaming too. In the initial panic, some had jumped into the darkness of the ocean. Now they were hoping to be picked up by any boat that descended the side of the ship. Their calls were to no avail. The boats that passed them were already overloaded and in a desperate rush to get away from the sinking ship. The white dotted images like floating balls were left to their own devices.
At this point, all available boats were gone. The only lifeboats were on the left side of the ship, since the torpedo had entered the right side. Stanley stood alone on the deck and the space around him became mysteriously empty. Only a few human silhouettes moved around the periphery of his dimmed sight.
On the aft side of the ship, Stanley began to hear loud voices and a crescendo of banging and breaking chains. Someone was attempting to release a raft from the ship. It was bound to get caught in the whirlpool of the sinking giant. Stanley considered his options. A few ropes hung from the side of the ship and he somehow questioned their ability to save him.
From the middle of the ship, Stanley heard several loud voices, “Women aboard, women aboard”. From out of nowhere a motorboat appeared. At this point, Stanley slid down the rope. His palms immediately burned as the flesh was seared from his hands. Only the life jacket kept him afloat.
Miraculously, he began to feel hands reaching for him. He found himself pulled up and safely released into the vessel. Once again, the hand of God favored his existence with a rescue. Filled to capacity, the survivors squeezed together like a sponge to make room for one more. And then in an instant the boat pulled away into the unrelenting darkness of the night, moving quickly over the bumpy waves.
Someone remarked, “There has to be another bang”. Stanley looked back at the marvelous beast. The huge black hulk was still showing its irregular contours above the water. The shapes were barely visible now against the lighter shade of darkness of the midnight sky.
Wild screams of desperation still sounded from the ship’s direction. Those still in the water called for help in vain. Their only hope of survival was to swim a safe distance before the U-boat commander decided to send the next torpedo.
Amidst this hellish scene, the second explosion shattered the air. A large column of water shot up against the dark sky. This was the final verdict for the people still in close proximity to the hulk of the ship. The foaming water absorbed the wretched souls.
The proud luxury liner like a dying animal, made a final attempt to lift up. Slowly the aft came up from the water, but the fore weighed heavily down. With the roar of rushing water, she sank deeper and deeper, accelerating her downward trend until a foamy blanket of bubbles buried her forever. The topping of the white foam boiled for a while, before the waves removed it from the surface of the sea.
From a distant lifeboat, an astonishing sound emerged. Sailors stood in the boats, holding their hats, and singing “Roll Out the Barrel”. Stanley could not comprehend how they could sing at such a moment. He never learned the symbolic meaning of the tune and its lyrics, in spite of later questioning the British sailors.
No sooner had the song died in the night than the Italian U-boat, the Leonardo da Vinci, emerged. Its searchlights beamed towards the lifeboats. Information was exchanged between a group of British sailors and the men on the u-boat.
The Leonardo da Vinci submerged, leaving the survivors alone to contemplate the tragedy. The Leonardo da Vinci would not escape retribution. Approximately two months later, on May 24, 1943, she would be sunk by the destroyers HMS Active and HMS Ness near Cape Finisterre.
The death of the Empress did not quench the screams. Desperate voices lingered and then gradually died in the darkness. The mighty gods of the sea’s underworld mercilessly absorbed them as their own.
At dawn, the rising sun revealed the magnitude of the night’s destruction. Boats and rafts were strewn aimlessly across the water as far as the eye could see. It was the site of a battlefield although no corpses were to be seen. The forces of Nature had buried them deep within the waters of the Atlantic Ocean.
Chapter 75 Praying for Rescue
When morning came, Stanley offered his seat on the boat to one of the Polish ladies, taking in exchange her place on a big square raft. Many of those on board were barely clad, some smeared with black oil and all suffering from thirst. Stanley’s hands, open and raw stung with each touch of the salty water.
A Canadian flyer immediately assumed command of the group. Another was appointed to disburse the limited food supplies. A container of water and a box of crackers were provided in the raft’s special compartment. Each survivor was allocated five milligrams of water and one cracker each day. The inhabitants quickly learned tolerance of one another in such crowded circumstances.
Other amenities were graciously provided due to the foresight of the British. A canvas roof, a canvas fence, and a mast were hidden in the center of the raft. These were set up in order to provide protection from the sun.
The survivors kept their eyes focused on the horizon, hoping to catch sight of the coming rescue. The first afternoon a British plane flew over signaling messages of hope. The sign of the plane assured them the British Admiralty was watching. It was merely a matter of when they might reach the area.
Meanwhile the survivors bore the heat of the equatorial sun, the sight of threatening sharks cruising, and bumpy waves continuously increasing in size. The raft was big, about 10’ by 15’, but too small for the number that it held. At least 55 men now called it home.
Although the survivors suffered in the heat of the day, the night provided a cool recovery. With the canvas roof above, Stanley kept his head exposed to the night air, enjoying the cool breeze and thoughtlessly let his feet dangle in the water. A sailor swiftly shouted one of his known English words, “Shark!” The beast swept passed, angered by the loss of his intended prey.
The second night, the peaceful waters were replaced by massive waves. As the raft bounced up and down, visibility became rather limited and it became difficult to distinguish the other lifeboats floating in the water.
Chapter 76 Rescue at Sea
The third day was quiet with a blue sky and peaceful current. The survivors anxiously looked to the skies and horizon for some evidence of rescue. No welcome sign of a ship’s smokestack was forthcoming. Dusk was settling before the anticipated vision appeared.
Three destroyers (The Boreas, the Petunia, and the Crocus) and one Ellerman line vessel (the Corinthian) had been sent. Even so, it felt like eternity before the first rescue ship reached the raft.
Impatiently some took hold of the two oars attempting to move the raft closer to the destroyer. The efforts were in vain. The raft did not move at all. They remained at the mercy of the rescue ship, which seemed so close and yet so far. It was already dark, almost 10 p.m., when the destroyer reached the raft and dropped a rope ladder.
English hospitality treated the survivors with a cup of hot tea. And then they proceeded with other basic needs, food, washing, and medical treatment. In due course, a medical person attended to the wounds on Stanley’s palms and instantly relieved the burning sensation. Wrapped in a warm woolen blanket Stanley spent a comfortable night on the open deck.
The following morning several were transferred to a light cruiser named the “Karynthia”. A rope gangplank was thrown between the boats, and Stanley gingerly made his way across. The cruisers mission was to sink the remaining rafts and boats. Throughout the day, he watched from the deck as depth charges were dropped underwater.
Cadavers surrealistically reappeared and floated above the waves. Even some lucky survivors also were rescued from the waters, having floated for three days. A Polish subaltern, covered with the sticky residue of oil, was picked up about 4 p.m. He must have been one of the last to leave the ship, and thus became immersed in the black oil. This uncomfortable covering also became his salvation, as fish are reluctant to touch oil-encrusted objects. After sinking the residues of the disaster, the warship sailed towards the West African port of Freetown.
groups.yahoo.com/neo/groups/300PolishSquadron/conversatio...
My memories of the sinking of the "Empress of Canada"
When I returned home to Liverpool after being torpedoed on the "Duchess of Atholl", I was granted 3 weeks of shore leave, and then also told to report to another C.P.R. ship the "Empress of Canada", in Scotland. This was March 1943.
We embarked three thousand troops, and sailed to join a convoy of Royal Navy destroyers and a cruiser with spotter planes. Once we had left port we were informed we were headed to the Middle East.
We sailed around South Africa where the convoy split in two, one half going to Cape Town, and the other to Durban. I was in the convoy to Durban. Once there we refueled with oil, water and provisions, then continued up the east coast through the Suez Canal onto Port Said and Alexandria, where the troops disembarked.
We returned to Durban and Cape Town for more provisions to see us through our journey home. We stayed for 3 days and were allowed shore leave - the first for about six weeks. Before we sailed our numbers were swelled with the embarkation of 499 Italian Prisoners Of War, Greek and Polish refugees, and some medical casualties. With the crew, there was a total of 1,346 personnel aboard for our return trip home. Lots of Troopships intermittently sailed alone for the U.K., without a naval escort. This was nothing out of the ordinary.
Everything was going well until just after midnight, on the morning of the 14th March, there was a terrific explosion that shook the ship violently from stem to stern. The engines and the generators stopped, leaving the ship in total darkness. There was a lot of confusion and shouting to each other. I just grabbed my life jacket and bolted through the door, making my way to the main hallway where there was an emergency exit. It was a steel spiral staircase leading up to the deck.
The ship was taking a heavy list to the port side, and this made it very difficult getting up to the top deck on the ladder. When I got to the boat deck the ship was listing even more heavily, still to the port side, which meant that only half the lifeboats could be launched. I managed to get into a boat before it was lowered away. As soon as we hit the water we pulled clear of the ship, knowing that as she was sinking we could be sucked down with her.
The night was filled with all the cries and calls for help. We pulled as many people as we could out of the water and filled the boat up as much as we dare. We also had to keep bailing water out of the boat constantly. We were extremely lucky that the weather was calm, or else we would have sunk because the boats were very overcrowded. With so many different languages being spoken, the confusion continued into near-chaos. I'm sure there was many a prayer said that night for the weather to stay calm. It really was a dreadful night.
When daylight broke the next morning, there was quite a lot of wreckage about - life rafts, lifebelts; anything that would float had people clinging on for dear life. Every lifeboat was dangerously low in the water. It was very hot during the day, but very cold at night. Almost everyone was dressed in their nightclothes. I was clad only in a pair of shorts and a life jacket. My foot was bleeding; I had stood on broken glass. We saw a lot of sharks in the water and had to fend them off with our oars when they came too close.
On the third day, we were preparing for another night when just before dusk we saw the passenger ship "Corinthia", the R.N. Destroyer "Boreas" and 2 corvettes. I'm sure our cheers and cries could be heard for miles. We were all exhausted and many of us may not have had the strength to face another night. God had heard and answered our prayers. The survivors of our boat were picked up by the destroyer, "Boreas", which by a strange quirk of fate had been the same destroyer that had picked me up from the wreckage of the "Duchess of Atholl", on my prior trip. So my Guardian Angel must have been watching over me again.
We were taken to Takoradi to await transport home to the U.K. We learned later that the number of people on board was 1,346 and the number of people who died was 392, 44 of which were crewmembers. I'm sure the brave officers and Deckhands that launched the lifeboats must have been among those 44 crewmembers. I had slept in a 4-berth cabin with three other mates, and I am sorry to say that I never saw 2 of them ever again after that dreadful night.
I later learned that it was an Italian submarine "Leonardo Da Vinci" that had sunk our ship. The Royal Navy later sank her. It was said that the Harbor Master of Cape Town had been giving information on the movements of Ships and Convoys to the enemy. That's why we lost so many ships and brave lives in the South Atlantic.
Footnote: Recently I watched the movie "Titanic", and it brought back memories of the night of the horrible attack on the "Canada". There was only one difference that really stuck in my mind - the "Titanic" sank in icy waters, and the "Canada" sank in shark-infested water - but, thank God, so many of us survived.
CHARLES CUSACK
www.merchantnavyofficers.com/cp04.html
Another reminiscence.
humanpast.wordpress.com/2013/07/13/the-empress-of-canada-...
Colin was one of 59 Royal Navy men lost with this sinking.
www.naval-history.net/xDKCas1943-03MAR.htm
The Admiralty enquiry into the loss is held at the National Archive under reference ADM 358/3259
discovery.nationalarchives.gov.uk/SearchUI/Details?uri=C1...
Fish, any of approximately 34,000 species of vertebrate animals (phylum Chordata) found in the fresh and salt waters of the world. Living species range from the primitive jawless lampreys and hagfishes through the cartilaginous sharks, skates, and rays to the abundant and diverse bony fishes. Most fish species are cold-blooded; however, one species, the opah (Lampris guttatus), is warm-blooded.
The term fish is applied to a variety of vertebrates of several evolutionary lines. It describes a life-form rather than a taxonomic group. As members of the phylum Chordata, fish share certain features with other vertebrates. These features are gill slits at some point in the life cycle, a notochord, or skeletal supporting rod, a dorsal hollow nerve cord, and a tail. Living fishes represent some five classes, which are as distinct from one another as are the four classes of familiar air-breathing animals—amphibians, reptiles, birds, and mammals. For example, the jawless fishes (Agnatha) have gills in pouches and lack limb girdles. Extant agnathans are the lampreys and the hagfishes. As the name implies, the skeletons of fishes of the class Chondrichthyes (from chondr, “cartilage,” and ichthyes, “fish”) are made entirely of cartilage. Modern fish of this class lack a swim bladder, and their scales and teeth are made up of the same placoid material. Sharks, skates, and rays are examples of cartilaginous fishes. The bony fishes are by far the largest class. Examples range from the tiny seahorse to the 450-kg (1,000-pound) blue marlin, from the flattened soles and flounders to the boxy puffers and ocean sunfishes. Unlike the scales of the cartilaginous fishes, those of bony fishes, when present, grow throughout life and are made up of thin overlapping plates of bone. Bony fishes also have an operculum that covers the gill slits.
The study of fishes, the science of ichthyology, is of broad importance. Fishes are of interest to humans for many reasons, the most important being their relationship with and dependence on the environment. A more obvious reason for interest in fishes is their role as a moderate but important part of the world’s food supply. This resource, once thought unlimited, is now realized to be finite and in delicate balance with the biological, chemical, and physical factors of the aquatic environment. Overfishing, pollution, and alteration of the environment are the chief enemies of proper fisheries management, both in fresh waters and in the ocean. (For a detailed discussion of the technology and economics of fisheries, see commercial fishing.) Another practical reason for studying fishes is their use in disease control. As predators on mosquito larvae, they help curb malaria and other mosquito-borne diseases.
Fishes are valuable laboratory animals in many aspects of medical and biological research. For example, the readiness of many fishes to acclimate to captivity has allowed biologists to study behaviour, physiology, and even ecology under relatively natural conditions. Fishes have been especially important in the study of animal behaviour, where research on fishes has provided a broad base for the understanding of the more flexible behaviour of the higher vertebrates. The zebra fish is used as a model in studies of gene expression.
There are aesthetic and recreational reasons for an interest in fishes. Millions of people keep live fishes in home aquariums for the simple pleasure of observing the beauty and behaviour of animals otherwise unfamiliar to them. Aquarium fishes provide a personal challenge to many aquarists, allowing them to test their ability to keep a small section of the natural environment in their homes. Sportfishing is another way of enjoying the natural environment, also indulged in by millions of people every year. Interest in aquarium fishes and sportfishing supports multimillion-dollar industries throughout the world.
Fishes have been in existence for more than 450 million years, during which time they have evolved repeatedly to fit into almost every conceivable type of aquatic habitat. In a sense, land vertebrates are simply highly modified fishes: when fishes colonized the land habitat, they became tetrapod (four-legged) land vertebrates. The popular conception of a fish as a slippery, streamlined aquatic animal that possesses fins and breathes by gills applies to many fishes, but far more fishes deviate from that conception than conform to it. For example, the body is elongate in many forms and greatly shortened in others; the body is flattened in some (principally in bottom-dwelling fishes) and laterally compressed in many others; the fins may be elaborately extended, forming intricate shapes, or they may be reduced or even lost; and the positions of the mouth, eyes, nostrils, and gill openings vary widely. Air breathers have appeared in several evolutionary lines.
Many fishes are cryptically coloured and shaped, closely matching their respective environments; others are among the most brilliantly coloured of all organisms, with a wide range of hues, often of striking intensity, on a single individual. The brilliance of pigments may be enhanced by the surface structure of the fish, so that it almost seems to glow. A number of unrelated fishes have actual light-producing organs. Many fishes are able to alter their coloration—some for the purpose of camouflage, others for the enhancement of behavioral signals.
Fishes range in adult length from less than 10 mm (0.4 inch) to more than 20 metres (60 feet) and in weight from about 1.5 grams (less than 0.06 ounce) to many thousands of kilograms. Some live in shallow thermal springs at temperatures slightly above 42 °C (100 °F), others in cold Arctic seas a few degrees below 0 °C (32 °F) or in cold deep waters more than 4,000 metres (13,100 feet) beneath the ocean surface. The structural and, especially, the physiological adaptations for life at such extremes are relatively poorly known and provide the scientifically curious with great incentive for study.
Almost all natural bodies of water bear fish life, the exceptions being very hot thermal ponds and extremely salt-alkaline lakes, such as the Dead Sea in Asia and the Great Salt Lake in North America. The present distribution of fishes is a result of the geological history and development of Earth as well as the ability of fishes to undergo evolutionary change and to adapt to the available habitats. Fishes may be seen to be distributed according to habitat and according to geographical area. Major habitat differences are marine and freshwater. For the most part, the fishes in a marine habitat differ from those in a freshwater habitat, even in adjacent areas, but some, such as the salmon, migrate from one to the other. The freshwater habitats may be seen to be of many kinds. Fishes found in mountain torrents, Arctic lakes, tropical lakes, temperate streams, and tropical rivers will all differ from each other, both in obvious gross structure and in physiological attributes. Even in closely adjacent habitats where, for example, a tropical mountain torrent enters a lowland stream, the fish fauna will differ. The marine habitats can be divided into deep ocean floors (benthic), mid-water oceanic (bathypelagic), surface oceanic (pelagic), rocky coast, sandy coast, muddy shores, bays, estuaries, and others. Also, for example, rocky coastal shores in tropical and temperate regions will have different fish faunas, even when such habitats occur along the same coastline.
Although much is known about the present geographical distribution of fishes, far less is known about how that distribution came about. Many parts of the fish fauna of the fresh waters of North America and Eurasia are related and undoubtedly have a common origin. The faunas of Africa and South America are related, extremely old, and probably an expression of the drifting apart of the two continents. The fauna of southern Asia is related to that of Central Asia, and some of it appears to have entered Africa. The extremely large shore-fish faunas of the Indian and tropical Pacific oceans comprise a related complex, but the tropical shore fauna of the Atlantic, although containing Indo-Pacific components, is relatively limited and probably younger. The Arctic and Antarctic marine faunas are quite different from each other. The shore fauna of the North Pacific is quite distinct, and that of the North Atlantic more limited and probably younger. Pelagic oceanic fishes, especially those in deep waters, are similar the world over, showing little geographical isolation in terms of family groups. The deep oceanic habitat is very much the same throughout the world, but species differences do exist, showing geographical areas determined by oceanic currents and water masses.
All aspects of the life of a fish are closely correlated with adaptation to the total environment, physical, chemical, and biological. In studies, all the interdependent aspects of fish, such as behaviour, locomotion, reproduction, and physical and physiological characteristics, must be taken into account.
Correlated with their adaptation to an extremely wide variety of habitats is the extremely wide variety of life cycles that fishes display. The great majority hatch from relatively small eggs a few days to several weeks or more after the eggs are scattered in the water. Newly hatched young are still partially undeveloped and are called larvae until body structures such as fins, skeleton, and some organs are fully formed. Larval life is often very short, usually less than a few weeks, but it can be very long, some lampreys continuing as larvae for at least five years. Young and larval fishes, before reaching sexual maturity, must grow considerably, and their small size and other factors often dictate that they live in a habitat different than that of the adults. For example, most tropical marine shore fishes have pelagic larvae. Larval food also is different, and larval fishes often live in shallow waters, where they may be less exposed to predators.
After a fish reaches adult size, the length of its life is subject to many factors, such as innate rates of aging, predation pressure, and the nature of the local climate. The longevity of a species in the protected environment of an aquarium may have nothing to do with how long members of that species live in the wild. Many small fishes live only one to three years at the most. In some species, however, individuals may live as long as 10 or 20 or even 100 years.
Fish behaviour is a complicated and varied subject. As in almost all animals with a central nervous system, the nature of a response of an individual fish to stimuli from its environment depends upon the inherited characteristics of its nervous system, on what it has learned from past experience, and on the nature of the stimuli. Compared with the variety of human responses, however, that of a fish is stereotyped, not subject to much modification by “thought” or learning, and investigators must guard against anthropomorphic interpretations of fish behaviour.
Fishes perceive the world around them by the usual senses of sight, smell, hearing, touch, and taste and by special lateral line water-current detectors. In the few fishes that generate electric fields, a process that might best be called electrolocation aids in perception. One or another of these senses often is emphasized at the expense of others, depending upon the fish’s other adaptations. In fishes with large eyes, the sense of smell may be reduced; others, with small eyes, hunt and feed primarily by smell (such as some eels).
Specialized behaviour is primarily concerned with the three most important activities in the fish’s life: feeding, reproduction, and escape from enemies. Schooling behaviour of sardines on the high seas, for instance, is largely a protective device to avoid enemies, but it is also associated with and modified by their breeding and feeding requirements. Predatory fishes are often solitary, lying in wait to dart suddenly after their prey, a kind of locomotion impossible for beaked parrot fishes, which feed on coral, swimming in small groups from one coral head to the next. In addition, some predatory fishes that inhabit pelagic environments, such as tunas, often school.
Sleep in fishes, all of which lack true eyelids, consists of a seemingly listless state in which the fish maintains its balance but moves slowly. If attacked or disturbed, most can dart away. A few kinds of fishes lie on the bottom to sleep. Most catfishes, some loaches, and some eels and electric fishes are strictly nocturnal, being active and hunting for food during the night and retiring during the day to holes, thick vegetation, or other protective parts of the environment.
Communication between members of a species or between members of two or more species often is extremely important, especially in breeding behaviour (see below Reproduction). The mode of communication may be visual, as between the small so-called cleaner fish and a large fish of a very different species. The larger fish often allows the cleaner to enter its mouth to remove gill parasites. The cleaner is recognized by its distinctive colour and actions and therefore is not eaten, even if the larger fish is normally a predator. Communication is often chemical, signals being sent by specific chemicals called pheromones.
Many fishes have a streamlined body and swim freely in open water. Fish locomotion is closely correlated with habitat and ecological niche (the general position of the animal to its environment).
Many fishes in both marine and fresh waters swim at the surface and have mouths adapted to feed best (and sometimes only) at the surface. Often such fishes are long and slender, able to dart at surface insects or at other surface fishes and in turn to dart away from predators; needlefishes, halfbeaks, and topminnows (such as killifish and mosquito fish) are good examples. Oceanic flying fishes escape their predators by gathering speed above the water surface, with the lower lobe of the tail providing thrust in the water. They then glide hundreds of yards on enlarged, winglike pectoral and pelvic fins. South American freshwater flying fishes escape their enemies by jumping and propelling their strongly keeled bodies out of the water.
So-called mid-water swimmers, the most common type of fish, are of many kinds and live in many habitats. The powerful fusiform tunas and the trouts, for example, are adapted for strong, fast swimming, the tunas to capture prey speedily in the open ocean and the trouts to cope with the swift currents of streams and rivers. The trout body form is well adapted to many habitats. Fishes that live in relatively quiet waters such as bays or lake shores or slow rivers usually are not strong, fast swimmers but are capable of short, quick bursts of speed to escape a predator. Many of these fishes have their sides flattened, examples being the sunfish and the freshwater angelfish of aquarists. Fish associated with the bottom or substrate usually are slow swimmers. Open-water plankton-feeding fishes almost always remain fusiform and are capable of rapid, strong movement (for example, sardines and herrings of the open ocean and also many small minnows of streams and lakes).
Bottom-living fishes are of many kinds and have undergone many types of modification of their body shape and swimming habits. Rays, which evolved from strong-swimming mid-water sharks, usually stay close to the bottom and move by undulating their large pectoral fins. Flounders live in a similar habitat and move over the bottom by undulating the entire body. Many bottom fishes dart from place to place, resting on the bottom between movements, a motion common in gobies. One goby relative, the mudskipper, has taken to living at the edge of pools along the shore of muddy mangrove swamps. It escapes its enemies by flipping rapidly over the mud, out of the water. Some catfishes, synbranchid eels, the so-called climbing perch, and a few other fishes venture out over damp ground to find more promising waters than those that they left. They move by wriggling their bodies, sometimes using strong pectoral fins; most have accessory air-breathing organs. Many bottom-dwelling fishes live in mud holes or rocky crevices. Marine eels and gobies commonly are found in such habitats and for the most part venture far beyond their cavelike homes. Some bottom dwellers, such as the clingfishes (Gobiesocidae), have developed powerful adhesive disks that enable them to remain in place on the substrate in areas such as rocky coasts, where the action of the waves is great.
The methods of reproduction in fishes are varied, but most fishes lay a large number of small eggs, fertilized and scattered outside of the body. The eggs of pelagic fishes usually remain suspended in the open water. Many shore and freshwater fishes lay eggs on the bottom or among plants. Some have adhesive eggs. The mortality of the young and especially of the eggs is very high, and often only a few individuals grow to maturity out of hundreds, thousands, and in some cases millions of eggs laid.
Males produce sperm, usually as a milky white substance called milt, in two (sometimes one) testes within the body cavity. In bony fishes a sperm duct leads from each testis to a urogenital opening behind the vent or anus. In sharks and rays and in cyclostomes the duct leads to a cloaca. Sometimes the pelvic fins are modified to help transmit the milt to the eggs at the female’s vent or on the substrate where the female has placed them. Sometimes accessory organs are used to fertilize females internally—for example, the claspers of many sharks and rays.
In the females the eggs are formed in two ovaries (sometimes only one) and pass through the ovaries to the urogenital opening and to the outside. In some fishes the eggs are fertilized internally but are shed before development takes place. Members of about a dozen families each of bony fishes (teleosts) and sharks bear live young. Many skates and rays also bear live young. In some bony fishes the eggs simply develop within the female, the young emerging when the eggs hatch (ovoviviparous). Others develop within the ovary and are nourished by ovarian tissues after hatching (viviparous). There are also other methods utilized by fishes to nourish young within the female. In all live-bearers the young are born at a relatively large size and are few in number. In one family of primarily marine fishes, the surfperches from the Pacific coast of North America, Japan, and Korea, the males of at least one species are born sexually mature, although they are not fully grown.
Some fishes are hermaphroditic—an individual producing both sperm and eggs, usually at different stages of its life. Self-fertilization, however, is probably rare.
Successful reproduction and, in many cases, defense of the eggs and the young are assured by rather stereotypical but often elaborate courtship and parental behaviour, either by the male or the female or both. Some fishes prepare nests by hollowing out depressions in the sand bottom (cichlids, for example), build nests with plant materials and sticky threads excreted by the kidneys (sticklebacks), or blow a cluster of mucus-covered bubbles at the water surface (gouramis). The eggs are laid in these structures. Some varieties of cichlids and catfishes incubate eggs in their mouths.
Some fishes, such as salmon, undergo long migrations from the ocean and up large rivers to spawn in the gravel beds where they themselves hatched (anadromous fishes). Some, such as the freshwater eels (family Anguillidae), live and grow to maturity in fresh water and migrate to the sea to spawn (catadromous fishes). Other fishes undertake shorter migrations from lakes into streams, within the ocean, or enter spawning habitats that they do not ordinarily occupy in other ways.
The basic structure and function of the fish body are similar to those of all other vertebrates. The usual four types of tissues are present: surface or epithelial, connective (bone, cartilage, and fibrous tissues, as well as their derivative, blood), nerve, and muscle tissues. In addition, the fish’s organs and organ systems parallel those of other vertebrates.
The typical fish body is streamlined and spindle-shaped, with an anterior head, a gill apparatus, and a heart, the latter lying in the midline just below the gill chamber. The body cavity, containing the vital organs, is situated behind the head in the lower anterior part of the body. The anus usually marks the posterior termination of the body cavity and most often occurs just in front of the base of the anal fin. The spinal cord and vertebral column continue from the posterior part of the head to the base of the tail fin, passing dorsal to the body cavity and through the caudal (tail) region behind the body cavity. Most of the body is of muscular tissue, a high proportion of which is necessitated by swimming. In the course of evolution this basic body plan has been modified repeatedly into the many varieties of fish shapes that exist today.
The skeleton forms an integral part of the fish’s locomotion system, as well as serving to protect vital parts. The internal skeleton consists of the skull bones (except for the roofing bones of the head, which are really part of the external skeleton), the vertebral column, and the fin supports (fin rays). The fin supports are derived from the external skeleton but will be treated here because of their close functional relationship to the internal skeleton. The internal skeleton of cyclostomes, sharks, and rays is of cartilage; that of many fossil groups and some primitive living fishes is mostly of cartilage but may include some bone. In place of the vertebral column, the earliest vertebrates had a fully developed notochord, a flexible stiff rod of viscous cells surrounded by a strong fibrous sheath. During the evolution of modern fishes the rod was replaced in part by cartilage and then by ossified cartilage. Sharks and rays retain a cartilaginous vertebral column; bony fishes have spool-shaped vertebrae that in the more primitive living forms only partially replace the notochord. The skull, including the gill arches and jaws of bony fishes, is fully, or at least partially, ossified. That of sharks and rays remains cartilaginous, at times partially replaced by calcium deposits but never by true bone.
The supportive elements of the fins (basal or radial bones or both) have changed greatly during fish evolution. Some of these changes are described in the section below (Evolution and paleontology). Most fishes possess a single dorsal fin on the midline of the back. Many have two and a few have three dorsal fins. The other fins are the single tail and anal fins and paired pelvic and pectoral fins. A small fin, the adipose fin, with hairlike fin rays, occurs in many of the relatively primitive teleosts (such as trout) on the back near the base of the caudal fin.
The skin of a fish must serve many functions. It aids in maintaining the osmotic balance, provides physical protection for the body, is the site of coloration, contains sensory receptors, and, in some fishes, functions in respiration. Mucous glands, which aid in maintaining the water balance and offer protection from bacteria, are extremely numerous in fish skin, especially in cyclostomes and teleosts. Since mucous glands are present in the modern lampreys, it is reasonable to assume that they were present in primitive fishes, such as the ancient Silurian and Devonian agnathans. Protection from abrasion and predation is another function of the fish skin, and dermal (skin) bone arose early in fish evolution in response to this need. It is thought that bone first evolved in skin and only later invaded the cartilaginous areas of the fish’s body, to provide additional support and protection. There is some argument as to which came first, cartilage or bone, and fossil evidence does not settle the question. In any event, dermal bone has played an important part in fish evolution and has different characteristics in different groups of fishes. Several groups are characterized at least in part by the kind of bony scales they possess.
Scales have played an important part in the evolution of fishes. Primitive fishes usually had thick bony plates or thick scales in several layers of bone, enamel, and related substances. Modern teleost fishes have scales of bone, which, while still protective, allow much more freedom of motion in the body. A few modern teleosts (some catfishes, sticklebacks, and others) have secondarily acquired bony plates in the skin. Modern and early sharks possessed placoid scales, a relatively primitive type of scale with a toothlike structure, consisting of an outside layer of enamel-like substance (vitrodentine), an inner layer of dentine, and a pulp cavity containing nerves and blood vessels. Primitive bony fishes had thick scales of either the ganoid or the cosmoid type. Cosmoid scales have a hard, enamel-like outer layer, an inner layer of cosmine (a form of dentine), and then a layer of vascular bone (isopedine). In ganoid scales the hard outer layer is different chemically and is called ganoin. Under this is a cosminelike layer and then a vascular bony layer. The thin, translucent bony scales of modern fishes, called cycloid and ctenoid (the latter distinguished by serrations at the edges), lack enameloid and dentine layers.
Skin has several other functions in fishes. It is well supplied with nerve endings and presumably receives tactile, thermal, and pain stimuli. Skin is also well supplied with blood vessels. Some fishes breathe in part through the skin, by the exchange of oxygen and carbon dioxide between the surrounding water and numerous small blood vessels near the skin surface.
Skin serves as protection through the control of coloration. Fishes exhibit an almost limitless range of colours. The colours often blend closely with the surroundings, effectively hiding the animal. Many fishes use bright colours for territorial advertisement or as recognition marks for other members of their own species, or sometimes for members of other species. Many fishes can change their colour to a greater or lesser degree, by movement of pigment within the pigment cells (chromatophores). Black pigment cells (melanophores), of almost universal occurrence in fishes, are often juxtaposed with other pigment cells. When placed beneath iridocytes or leucophores (bearing the silvery or white pigment guanine), melanophores produce structural colours of blue and green. These colours are often extremely intense, because they are formed by refraction of light through the needlelike crystals of guanine. The blue and green refracted colours are often relatively pure, lacking the red and yellow rays, which have been absorbed by the black pigment (melanin) of the melanophores. Yellow, orange, and red colours are produced by erythrophores, cells containing the appropriate carotenoid pigments. Other colours are produced by combinations of melanophores, erythrophores, and iridocytes.
The major portion of the body of most fishes consists of muscles. Most of the mass is trunk musculature, the fin muscles usually being relatively small. The caudal fin is usually the most powerful fin, being moved by the trunk musculature. The body musculature is usually arranged in rows of chevron-shaped segments on each side. Contractions of these segments, each attached to adjacent vertebrae and vertebral processes, bends the body on the vertebral joint, producing successive undulations of the body, passing from the head to the tail, and producing driving strokes of the tail. It is the latter that provides the strong forward movement for most fishes.
The digestive system, in a functional sense, starts at the mouth, with the teeth used to capture prey or collect plant foods. Mouth shape and tooth structure vary greatly in fishes, depending on the kind of food normally eaten. Most fishes are predacious, feeding on small invertebrates or other fishes and have simple conical teeth on the jaws, on at least some of the bones of the roof of the mouth, and on special gill arch structures just in front of the esophagus. The latter are throat teeth. Most predacious fishes swallow their prey whole, and the teeth are used for grasping and holding prey, for orienting prey to be swallowed (head first) and for working the prey toward the esophagus. There are a variety of tooth types in fishes. Some fishes, such as sharks and piranhas, have cutting teeth for biting chunks out of their victims. A shark’s tooth, although superficially like that of a piranha, appears in many respects to be a modified scale, while that of the piranha is like that of other bony fishes, consisting of dentine and enamel. Parrot fishes have beaklike mouths with short incisor-like teeth for breaking off coral and have heavy pavementlike throat teeth for crushing the coral. Some catfishes have small brushlike teeth, arranged in rows on the jaws, for scraping plant and animal growth from rocks. Many fishes (such as the Cyprinidae or minnows) have no jaw teeth at all but have very strong throat teeth.
Some fishes gather planktonic food by straining it from their gill cavities with numerous elongate stiff rods (gill rakers) anchored by one end to the gill bars. The food collected on these rods is passed to the throat, where it is swallowed. Most fishes have only short gill rakers that help keep food particles from escaping out the mouth cavity into the gill chamber.
Once reaching the throat, food enters a short, often greatly distensible esophagus, a simple tube with a muscular wall leading into a stomach. The stomach varies greatly in fishes, depending upon the diet. In most predacious fishes it is a simple straight or curved tube or pouch with a muscular wall and a glandular lining. Food is largely digested there and leaves the stomach in liquid form.
Between the stomach and the intestine, ducts enter the digestive tube from the liver and pancreas. The liver is a large, clearly defined organ. The pancreas may be embedded in it, diffused through it, or broken into small parts spread along some of the intestine. The junction between the stomach and the intestine is marked by a muscular valve. Pyloric ceca (blind sacs) occur in some fishes at this junction and have a digestive or absorptive function or both.
The intestine itself is quite variable in length, depending upon the fish’s diet. It is short in predacious forms, sometimes no longer than the body cavity, but long in herbivorous forms, being coiled and several times longer than the entire length of the fish in some species of South American catfishes. The intestine is primarily an organ for absorbing nutrients into the bloodstream. The larger its internal surface, the greater its absorptive efficiency, and a spiral valve is one method of increasing its absorption surface.
Sharks, rays, chimaeras, lungfishes, surviving chondrosteans, holosteans, and even a few of the more primitive teleosts have a spiral valve or at least traces of it in the intestine. Most modern teleosts have increased the area of the intestinal walls by having numerous folds and villi (fingerlike projections) somewhat like those in humans. Undigested substances are passed to the exterior through the anus in most teleost fishes. In lungfishes, sharks, and rays, it is first passed through the cloaca, a common cavity receiving the intestinal opening and the ducts from the urogenital system.
Oxygen and carbon dioxide dissolve in water, and most fishes exchange dissolved oxygen and carbon dioxide in water by means of the gills. The gills lie behind and to the side of the mouth cavity and consist of fleshy filaments supported by the gill arches and filled with blood vessels, which give gills a bright red colour. Water taken in continuously through the mouth passes backward between the gill bars and over the gill filaments, where the exchange of gases takes place. The gills are protected by a gill cover in teleosts and many other fishes but by flaps of skin in sharks, rays, and some of the older fossil fish groups. The blood capillaries in the gill filaments are close to the gill surface to take up oxygen from the water and to give up excess carbon dioxide to the water.
Most modern fishes have a hydrostatic (ballast) organ, called the swim bladder, that lies in the body cavity just below the kidney and above the stomach and intestine. It originated as a diverticulum of the digestive canal. In advanced teleosts, especially the acanthopterygians, the bladder has lost its connection with the digestive tract, a condition called physoclistic. The connection has been retained (physostomous) by many relatively primitive teleosts. In several unrelated lines of fishes, the bladder has become specialized as a lung or, at least, as a highly vascularized accessory breathing organ. Some fishes with such accessory organs are obligate air breathers and will drown if denied access to the surface, even in well-oxygenated water. Fishes with a hydrostatic form of swim bladder can control their depth by regulating the amount of gas in the bladder. The gas, mostly oxygen, is secreted into the bladder by special glands, rendering the fish more buoyant; the gas is absorbed into the bloodstream by another special organ, reducing the overall buoyancy and allowing the fish to sink. Some deep-sea fishes may have oils, rather than gas, in the bladder. Other deep-sea and some bottom-living forms have much-reduced swim bladders or have lost the organ entirely.
The swim bladder of fishes follows the same developmental pattern as the lungs of land vertebrates. There is no doubt that the two structures have the same historical origin in primitive fishes. More or less intermediate forms still survive among the more primitive types of fishes, such as the lungfishes Lepidosiren and Protopterus.
The circulatory, or blood vascular, system consists of the heart, the arteries, the capillaries, and the veins. It is in the capillaries that the interchange of oxygen, carbon dioxide, nutrients, and other substances such as hormones and waste products takes place. The capillaries lead to the veins, which return the venous blood with its waste products to the heart, kidneys, and gills. There are two kinds of capillary beds: those in the gills and those in the rest of the body. The heart, a folded continuous muscular tube with three or four saclike enlargements, undergoes rhythmic contractions and receives venous blood in a sinus venosus. It passes the blood to an auricle and then into a thick muscular pump, the ventricle. From the ventricle the blood goes to a bulbous structure at the base of a ventral aorta just below the gills. The blood passes to the afferent (receiving) arteries of the gill arches and then to the gill capillaries. There waste gases are given off to the environment, and oxygen is absorbed. The oxygenated blood enters efferent (exuant) arteries of the gill arches and then flows into the dorsal aorta. From there blood is distributed to the tissues and organs of the body. One-way valves prevent backflow. The circulation of fishes thus differs from that of the reptiles, birds, and mammals in that oxygenated blood is not returned to the heart prior to distribution to the other parts of the body.
The primary excretory organ in fishes, as in other vertebrates, is the kidney. In fishes some excretion also takes place in the digestive tract, skin, and especially the gills (where ammonia is given off). Compared with land vertebrates, fishes have a special problem in maintaining their internal environment at a constant concentration of water and dissolved substances, such as salts. Proper balance of the internal environment (homeostasis) of a fish is in a great part maintained by the excretory system, especially the kidney.
The kidney, gills, and skin play an important role in maintaining a fish’s internal environment and checking the effects of osmosis. Marine fishes live in an environment in which the water around them has a greater concentration of salts than they can have inside their body and still maintain life. Freshwater fishes, on the other hand, live in water with a much lower concentration of salts than they require inside their bodies. Osmosis tends to promote the loss of water from the body of a marine fish and absorption of water by that of a freshwater fish. Mucus in the skin tends to slow the process but is not a sufficient barrier to prevent the movement of fluids through the permeable skin. When solutions on two sides of a permeable membrane have different concentrations of dissolved substances, water will pass through the membrane into the more concentrated solution, while the dissolved chemicals move into the area of lower concentration (diffusion).
The kidney of freshwater fishes is often larger in relation to body weight than that of marine fishes. In both groups the kidney excretes wastes from the body, but the kidney of freshwater fishes also excretes large amounts of water, counteracting the water absorbed through the skin. Freshwater fishes tend to lose salt to the environment and must replace it. They get some salt from their food, but the gills and skin inside the mouth actively absorb salt from water passed through the mouth. This absorption is performed by special cells capable of moving salts against the diffusion gradient. Freshwater fishes drink very little water and take in little water with their food.
Marine fishes must conserve water, and therefore their kidneys excrete little water. To maintain their water balance, marine fishes drink large quantities of seawater, retaining most of the water and excreting the salt. Most nitrogenous waste in marine fishes appears to be secreted by the gills as ammonia. Marine fishes can excrete salt by clusters of special cells (chloride cells) in the gills.
There are several teleosts—for example, the salmon—that travel between fresh water and seawater and must adjust to the reversal of osmotic gradients. They adjust their physiological processes by spending time (often surprisingly little time) in the intermediate brackish environment.
Marine hagfishes, sharks, and rays have osmotic concentrations in their blood about equal to that of seawater and so do not have to drink water nor perform much physiological work to maintain their osmotic balance. In sharks and rays the osmotic concentration is kept high by retention of urea in the blood. Freshwater sharks have a lowered concentration of urea in the blood.
Endocrine glands secrete their products into the bloodstream and body tissues and, along with the central nervous system, control and regulate many kinds of body functions. Cyclostomes have a well-developed endocrine system, and presumably it was well developed in the early Agnatha, ancestral to modern fishes. Although the endocrine system in fishes is similar to that of higher vertebrates, there are numerous differences in detail. The pituitary, the thyroid, the suprarenals, the adrenals, the pancreatic islets, the sex glands (ovaries and testes), the inner wall of the intestine, and the bodies of the ultimobranchial gland make up the endocrine system in fishes. There are some others whose function is not well understood. These organs regulate sexual activity and reproduction, growth, osmotic pressure, general metabolic activities such as the storage of fat and the utilization of foodstuffs, blood pressure, and certain aspects of skin colour. Many of these activities are also controlled in part by the central nervous system, which works with the endocrine system in maintaining the life of a fish. Some parts of the endocrine system are developmentally, and undoubtedly evolutionarily, derived from the nervous system.
As in all vertebrates, the nervous system of fishes is the primary mechanism coordinating body activities, as well as integrating these activities in the appropriate manner with stimuli from the environment. The central nervous system, consisting of the brain and spinal cord, is the primary integrating mechanism. The peripheral nervous system, consisting of nerves that connect the brain and spinal cord to various body organs, carries sensory information from special receptor organs such as the eyes, internal ears, nares (sense of smell), taste glands, and others to the integrating centres of the brain and spinal cord. The peripheral nervous system also carries information via different nerve cells from the integrating centres of the brain and spinal cord. This coded information is carried to the various organs and body systems, such as the skeletal muscular system, for appropriate action in response to the original external or internal stimulus. Another branch of the nervous system, the autonomic nervous system, helps to coordinate the activities of many glands and organs and is itself closely connected to the integrating centres of the brain.
The brain of the fish is divided into several anatomical and functional parts, all closely interconnected but each serving as the primary centre of integrating particular kinds of responses and activities. Several of these centres or parts are primarily associated with one type of sensory perception, such as sight, hearing, or smell (olfaction).
The sense of smell is important in almost all fishes. Certain eels with tiny eyes depend mostly on smell for location of food. The olfactory, or nasal, organ of fishes is located on the dorsal surface of the snout. The lining of the nasal organ has special sensory cells that perceive chemicals dissolved in the water, such as substances from food material, and send sensory information to the brain by way of the first cranial nerve. Odour also serves as an alarm system. Many fishes, especially various species of freshwater minnows, react with alarm to a chemical released from the skin of an injured member of their own species.
Many fishes have a well-developed sense of taste, and tiny pitlike taste buds or organs are located not only within their mouth cavities but also over their heads and parts of their body. Catfishes, which often have poor vision, have barbels (“whiskers”) that serve as supplementary taste organs, those around the mouth being actively used to search out food on the bottom. Some species of naturally blind cave fishes are especially well supplied with taste buds, which often cover most of their body surface.
Sight is extremely important in most fishes. The eye of a fish is basically like that of all other vertebrates, but the eyes of fishes are extremely varied in structure and adaptation. In general, fishes living in dark and dim water habitats have large eyes, unless they have specialized in some compensatory way so that another sense (such as smell) is dominant, in which case the eyes will often be reduced. Fishes living in brightly lighted shallow waters often will have relatively small but efficient eyes. Cyclostomes have somewhat less elaborate eyes than other fishes, with skin stretched over the eyeball perhaps making their vision somewhat less effective. Most fishes have a spherical lens and accommodate their vision to far or near subjects by moving the lens within the eyeball. A few sharks accommodate by changing the shape of the lens, as in land vertebrates. Those fishes that are heavily dependent upon the eyes have especially strong muscles for accommodation. Most fishes see well, despite the restrictions imposed by frequent turbidity of the water and by light refraction.
Fossil evidence suggests that colour vision evolved in fishes more than 300 million years ago, but not all living fishes have retained this ability. Experimental evidence indicates that many shallow-water fishes, if not all, have colour vision and see some colours especially well, but some bottom-dwelling shore fishes live in areas where the water is sufficiently deep to filter out most if not all colours, and these fishes apparently never see colours. When tested in shallow water, they apparently are unable to respond to colour differences.
Sound perception and balance are intimately associated senses in a fish. The organs of hearing are entirely internal, located within the skull, on each side of the brain and somewhat behind the eyes. Sound waves, especially those of low frequencies, travel readily through water and impinge directly upon the bones and fluids of the head and body, to be transmitted to the hearing organs. Fishes readily respond to sound; for example, a trout conditioned to escape by the approach of fishermen will take flight upon perceiving footsteps on a stream bank even if it cannot see a fisherman. Compared with humans, however, the range of sound frequencies heard by fishes is greatly restricted. Many fishes communicate with each other by producing sounds in their swim bladders, in their throats by rasping their teeth, and in other ways.
A fish or other vertebrate seldom has to rely on a single type of sensory information to determine the nature of the environment around it. A catfish uses taste and touch when examining a food object with its oral barbels. Like most other animals, fishes have many touch receptors over their body surface. Pain and temperature receptors also are present in fishes and presumably produce the same kind of information to a fish as to humans. Fishes react in a negative fashion to stimuli that would be painful to human beings, suggesting that they feel a sensation of pain.
An important sensory system in fishes that is absent in other vertebrates (except some amphibians) is the lateral line system. This consists of a series of heavily innervated small canals located in the skin and bone around the eyes, along the lower jaw, over the head, and down the mid-side of the body, where it is associated with the scales. Intermittently along these canals are located tiny sensory organs (pit organs) that apparently detect changes in pressure. The system allows a fish to sense changes in water currents and pressure, thereby helping the fish to orient itself to the various changes that occur in the physical environment.
Although a great many fossil fishes have been found and described, they represent a tiny portion of the long and complex evolution of fishes, and knowledge of fish evolution remains relatively fragmentary. In the classification presented in this article, fishlike vertebrates are divided into seven categories, the members of each having a different basic structural organization and different physical and physiological adaptations for the problems presented by the environment. The broad basic pattern has been one of successive replacement of older groups by newer, better-adapted groups. One or a few members of a group evolved a basically more efficient means of feeding, breathing, or swimming or several better ways of living. These better-adapted groups then forced the extinction of members of the older group with which they competed for available food, breeding places, or other necessities of life. As the new fishes became well established, some of them evolved further and adapted to other habitats, where they continued to replace members of the old group already there. The process was repeated until all or almost all members of the old group in a variety of habitats had been replaced by members of the newer evolutionary line.
The earliest vertebrate fossils of certain relationships are fragments of dermal armour of jawless fishes (superclass Agnatha, order Heterostraci) from the Upper Ordovician Period in North America, about 450 million years in age. Early Ordovician toothlike fragments from the former Soviet Union are less certainly remains of agnathans. It is uncertain whether the North American jawless fishes inhabited shallow coastal marine waters, where their remains became fossilized, or were freshwater vertebrates washed into coastal deposits by stream action.
Jawless fishes probably arose from ancient, small, soft-bodied filter-feeding organisms much like and probably also ancestral to the modern sand-dwelling filter feeders, the Cephalochordata (Amphioxus and its relatives). The body in the ancestral animals was probably stiffened by a notochord. Although a vertebrate origin in fresh water is much debated by paleontologists, it is possible that mobility of the body and protection provided by dermal armour arose in response to streamflow in the freshwater environment and to the need to escape from and resist the clawed invertebrate eurypterids that lived in the same waters. Because of the marine distribution of the surviving primitive chordates, however, many paleontologists doubt that the vertebrates arose in fresh water.
Heterostracan remains are next found in what appear to be delta deposits in two North American localities of Silurian age. By the close of the Silurian, about 416 million years ago, European heterostracan remains are found in what appear to be delta or coastal deposits. In the Late Silurian of the Baltic area, lagoon or freshwater deposits yield jawless fishes of the order Osteostraci. Somewhat later in the Silurian from the same region, layers contain fragments of jawed acanthodians, the earliest group of jawed vertebrates, and of jawless fishes. These layers lie between marine beds but appear to be washed out from fresh waters of a coastal region.
It is evident, therefore, that by the end of the Silurian both jawed and jawless vertebrates were well established and already must have had a long history of development. Yet paleontologists have remains only of specialized forms that cannot have been the ancestors of the placoderms and bony fishes that appear in the next period, the Devonian. No fossils are known of the more primitive ancestors of the agnathans and acanthodians. The extensive marine beds of the Silurian and those of the Ordovician are essentially void of vertebrate history. It is believed that the ancestors of fishlike vertebrates evolved in upland fresh waters, where whatever few and relatively small fossil beds were made probably have been long since eroded away. Remains of the earliest vertebrates may never be found.
By the close of the Silurian, all known orders of jawless vertebrates had evolved, except perhaps the modern cyclostomes, which are without the hard parts that ordinarily are preserved as fossils. Cyclostomes were unknown as fossils until 1968, when a lamprey of modern body structure was reported from the Middle Pennsylvanian of Illinois, in deposits more than 300 million years old. Fossil evidence of the four orders of armoured jawless vertebrates is absent from deposits later than the Devonian. Presumably, these vertebrates became extinct at that time, being replaced by the more efficient and probably more aggressive placoderms, acanthodians, selachians (sharks and relatives), and by early bony fishes. Cyclostomes survived probably because early on they evolved from anaspid agnathans and developed a rasping tonguelike structure and a sucking mouth, enabling them to prey on other fishes. With this way of life they apparently had no competition from other fish groups. Cyclostomes, the hagfishes and lampreys, were once thought to be closely related because of the similarity in their suctorial mouths, but it is now understood that the hagfishes, order Myxiniformes, are the most primitive living chordates, and they are classified separately from the lampreys, order Petromyzontiformes.
Early jawless vertebrates probably fed on tiny organisms by filter feeding, as do the larvae of their descendants, the modern lampreys. The gill cavity of the early agnathans was large. It is thought that small organisms taken from the bottom by a nibbling action of the mouth, or more certainly by a sucking action through the mouth, were passed into the gill cavity along with water for breathing. Small organisms then were strained out by the gill apparatus and directed to the food canal. The gill apparatus thus evolved as a feeding, as well as a breathing, structure. The head and gills in the agnathans were protected by a heavy dermal armour; the tail region was free, allowing motion for swimming.
Most important for the evolution of fishes and vertebrates in general was the early appearance of bone, cartilage, and enamel-like substance. These materials became modified in later fishes, enabling them to adapt to many aquatic environments and finally even to land. Other basic organs and tissues of the vertebrates—such as the central nervous system, heart, liver, digestive tract, kidney, and circulatory system— undoubtedly were present in the ancestors of the agnathans. In many ways, bone, both external and internal, was the key to vertebrate evolution.
The next class of fishes to appear was the Acanthodii, containing the earliest known jawed vertebrates, which arose in the Late Silurian, more than 416 million years ago. The acanthodians declined after the Devonian but lasted into the Early Permian, a little less than 280 million years ago. The first complete specimens appear in Lower Devonian freshwater deposits, but later in the Devonian and Permian some members appear to have been marine. Most were small fishes, not more than 75 cm (approximately 30 inches) in length.
We know nothing of the ancestors of the acanthodians. They must have arisen from some jawless vertebrate, probably in fresh water. They appear to have been active swimmers with almost no head armour but with large eyes, indicating that they depended heavily on vision. Perhaps they preyed on invertebrates. The rows of spines and spinelike fins between the pectoral and pelvic fins give some credence to the idea that paired fins arose from “fin folds” along the body sides.
The relationships of the acanthodians to other jawed vertebrates are obscure. They possess features found in both sharks and bony fishes. They are like early bony fishes in possessing ganoidlike scales and a partially ossified internal skeleton. Certain aspects of the jaw appear to be more like those of bony fishes than sharks, but the bony fin spines and certain aspects of the gill apparatus would seem to favour relationships with early sharks. Acanthodians do not seem particularly close to the Placodermi, although, like the placoderms, they apparently possessed less efficient tooth replacement and tooth structure than the sharks and the bony fishes, possibly one reason for their subsequent extinction.
Our new red couch created a new 'being home experience' for us.
Place: A place called 'home'. Our new living room experience feels good.
Reason: Our new lounge couch delivered on October 24.
Cocooning?: Cocooning is the name given to the trend that sees individuals socializing less and retreating into their home more. The term was coined in the 1990s by Faith Popcorn, a trend forecaster and marketing consultant:
"Cocooning has been in our bank for thirty years. That's how early we discovered cocooning, and cocooning is about staying home, creating a safe place around you, the gardeners being the barrier, between the garden and the alarm systems being the barrier, filtration systems for water and air, working at home (...) every inch of it you have, you have some of this (...) how many days can I work at home? That's cocooning."
Popcorn identified cocooning as a commercially significant trend that would lead to, among other things, stay-at-home electronic shopping. Since Popcorn coined the term, the trend has continued. The creation of the internet, home entertainment technology, advances in communication technology (cellphones, PDAs, and smartphones) which allow "work-at-home" options, and demographic changes have made cocooning an increasingly attractive option. [Source: Wikipedia - Cocooning ]
Weather: Outside 8 degrees, inside 20 degrees centrigrade.
Shirt: The checkered shirt I'm wearing discarded at the suggestion of Stewart right after this self portrait project.
Self-portrait technics: Tripod with self-timer (10 seconds).
Had the opportunity to visit Norton Hospital this day.
Heart monitor malfunctioned continually. Alarm systems malfunctioned. There was a small fire in one of the labs in the back - employees attempted to conceal that from the Fire Department. The sheets and blankets are not changed prior to bringing in a new patient (note: this was not during a high-traffic time - this was 2016). There were needles and syringes on the floor. Blankets and sheets on cots and beds had fresh blood drops on them from the previous patients. Nothing was sanitized in this hospital room. None of the employees questioned knew what to do in the event of a fire emergency and that was evident when the alarms did sound. They had rent-a-guards doubling as medical personnel on the same shift, who'd spend most of the time texting on their phones. When one of the guards up front was asked about evacuating patients, his response was, "I don't care - do you?" This is a brief recap of just one visit.
Norton's administrative personnel were notified of the above multiple times and did not respond until two years later, and with only a generic "sorry" letter, while never acknowledging what occurred. When contacted by phone, Norton acknowledged they received my complaint yet would not and could not (supposedly) verify what the complaint was. DO NOT visit this hospital if you are concerned for your loved ones care. Fraudulent billing practices, Medicare Fraud. Falsifying/Altering Medical Records. Losing Patient's Property, untrained ER staff.
Efficiency - Zero
Safety - Zero
Trained Staff - Zero
Compassionate Care - Zero
Equipment Malfunctions - 100%
Cleanliness and Sanitation - Zero
Fire Safety Procedures Awareness - Zero
Responsiveness to Patient Complaints - Zero
OSHA Compliance - Zero
Disease Prevention - Zero
Familiarity with PTSD -Zero
Located in: Norton Brownsboro Hospital Comprehensive Stroke Center
Address: 4960 Norton Healthcare Blvd, Louisville, KY 40241
Phone: (502) 446-8125
******************
Norton Healthcare Foundation Board of Directors
(As of August 2017)
CHAIR
Lee K. Garlove
Attorney
Middleton Reutlinger
CHAIR ELECT
Jim Turner
Senior Vice President, Trust and Estate Planning
Hilliard Lyons Trust Co.
TREASURER
Mark Mosley
President
First Kentucky Trust
SECRETARY
Holly Schroering
Civic volunteer
MEMBERS
Tom Austin
Founder and CEO
Universal Linen Service
Matthew Ayers
Chief Administrative Officer
Norton Hospital
Justin Baker
Principal Broker and Partner
TRIO Commercial Property Group LLC
George Bell
President and CEO
Office Resources Inc.
Chris Bingaman
Founder and Principal
SyncCore
Judge Denise Clayton
Kentucky Court of Appeals
Jefferson City Judicial Center
Steven Conway
System Vice President
Cardiovascular and Pulmonary Services
Norton Healthcare
Jeffrey Cumberbatch
Applications Project Leader
UPS Airlines
David Dafoe
Founder
Flavorman
Karen Hale
Civic volunteer
Robert R. Iliff
General Manager
DSI Underground Systems Inc.
Patricia F. Kantlehner
Civic volunteer
Barbara Kramer
Civic volunteer
Charles Leanhart, CPA
Retired Director, Accounts Payable
Kindred Healthcare Inc.
Janet Lively, CPSM
Business Development
Harshaw Trane
Doug Madison
Vice President
Plumbers Supply Co.
Lisa McClure
Senior Vice President, Business Development
Trilogy Health Services LLC
Whit Stodghill
Manager, Clinical Pastoral Education
Norton Healthcare
Jane Riehl
Civic volunteer
Curtis L. Royce
Agent
Nelson Insurance Group
Connie Simmons
Civic volunteer
Gary L. Stewart
Retired executive
Crowe Horwath LLP
Louis R. Straub II
Louisville Market President
Independence Bank
Angela Tafel
Healthcare Consultant
A.H. Tafel LLC
Krista Ward
(Past Chair)
Director, Financial Systems Development
Kindred Healthcare Inc.
Bruce White
Vice President, Investments
The Corbin Financial Group of Raymond James
Lynnie Meyer, Ed.D., R.N., CFRE
Senior Vice President, Women’s and Children’s Community Partnerships
Chief Development Officer
Norton Healthcare
*******************************
*** Update**** The care has gotten somewhat better here as of March 2019.
***Update*** The care here now is very good as of April 2021.
TEIGN C Damen Stan 1405
IMO: - N/A
MMSI: 235082804
Call Sign: MWBM9
AIS Vessel Type: Dredger
GENERAL
DAMEN YARD NUMBER: 503705
Avelingen-West 20
4202 MS Gorinchem
The Netherlands
Phone: +31 (0)183 63 99 11
info@damen.com
DELIVERY DATE August 2001
BASIC FUNCTIONS Towing, mooring, pushing and dredging operations
FLAG United Kingdom [GB]
OWNED Teignmouth Harbour Commission
CASSCATION: Bureau Veritas 1 HULL MACH Seagoing Launch
DIMENSIONS
LENGTH 14.40 m
BEAM 4.73 m
DEPTH AT SIDES 205 m
DRAUGHT AFT 171 m
DISPLACEMENT 48 ton
TANK CAPACITIES
Fuel oil 6.9 m³
PERFORMANCES (TRIALS)
BOLLARD PULL AHEAD 8.0 ton
SPEED 9.8 knots
PROPULSION SYSTEM
MAIN ENGINE 2x Caterpillar 3406C TA/A
TOTAL POWER 477 bmW (640i hp) at 1800 rpm
GEARBOX 2x Twin Disc MG 5091/3.82:1
PROPELLERS Bronze fixed pitch propeller
KORT NOZZELS Van de Giessen 2x 1000 mm with stainless steel innerings
ENGINE CONTROL Kobelt
STEERING GEAR 2x 25 mm single plate Powered hydraulic 2x 45, rudder indicator
AUXILIARY EQUIPMENT
BILGE PUMP Sterling SIH 20, 32 m/hr
BATTERY SETS 2x 24V, 200 Ah + change over facility
COOLING SYSTEM Closed cooling system
ALARM SYSTEM Engines, gearboxes and bilge alarms
FRESH WATER PRESSURE SET Speck 24V
DECK LAY-OUT
ANCHORS 2x 48 kg Pool (HHP)
CHAIN 70 m, Ø 13mm, shortlink U2
ANCHOR WINCH Hand-operated
TOWING HOOK Mampaey, 15.3 ton SWL
COUPLING WINCH
PUSHBOW Cylindrical nubber fender Ø 380 mm
ACCOMMODATION
The wheelhouse ceiling and sides are insulated with mineral wool and
panelled. The wheelhouse floor is covered with rubber/synthetic floor
covering, make Bolidt, color blue The wheelhouse has one
helmsman seat, a bench and table with chair Below deck two berths, a
kitchen unit and a toilet space are arranged.
NAUTICAL AND COMMUNICATION EQUIPMENT
SEARCHLIGHT Den Haan 170 W 24 V
VHF RADIO Sailor RT 2048 25 W
NAVIGATION Navigation lights incl towing and pilot lights
Teignmouth Harbour Commission
The Harbour Commission is a Trust Port created by Statute.
The principal Order is the Teignmouth Harbour Order 1924
as amended by the Teignmouth Harbour Revision Order 2003
Newly inserted window in the north chapel with glass designed and painted by Tony Naylor, 2015.
St Mary's church in Lapworth is one of the most rewarding and unusual medieval parish churches in Warwickshire. The visitor generally approaches this handsome building from the north where the sturdy tower and spire stand guard like a sentinel. It is unusual in standing apart from the main building and was originally detached but is now linked by a passageway to the north aisle, making the church almost as wide as it is long. The west end too is remarkably configured with a chantry chapel or room set above an archway (allowing passage across the churchyard below).
The church we see today dates mainly from the 13th / 14th centuries, with an impressive fifteenth century clerestorey added to the nave being a prominent feature externally, but within it is possible to discern traces of the previous Norman structure embedded below in the nave arcade. There is much of interest to enjoy in this pleasant interior from quirky carvings high in the nave to the rich stained glass in the chancel and north chapel (which has benefitted immensely from a newly inserted window where the east wall had previously been blank). The most interesting memorial is the relief tablet in the north chapel by Eric Gill.
Lapworth church has consistently welcomed visitors and remains militantly open now despite being surrounded by churches largely reluctant to re-open after Covid. Happily since Tony Naylor's fine new window was installed the previous alarm system that restricted access to the eastern half of the church (which I inadvertedly set off on my first ever visit, deafening the neighbours!) has been relaxed so that visitors can now enjoy the full extent of the interior and its fittings.
I am looking for a forever home! I am currently with Greyhound Rescue in Tracy, CA. Contact Susan at 209-835-9780. I am a Rhodesian Ridgeback and Pharaoh Hound Cross
Her assessment:
"My guess is that she weighs around 50-55 lbs. She's little and could probably
gain a couple of pounds. Not super skinny though. Good teeth, good nails,
soft coat. Her eyes were nice and bright too. Not in bad shape at all.
She's been bounced around a bit. She came from a shelter in Stockton. Then
the woman who Susan got her from decided she was getting too big but she is
like a petite female Ridgeback in size. She will need a fair amount of exercise.
She's got good energy. My guess is that she would settle down
nicely after a good walk or romp. She's a real sweetheart. "
Temperament:
The Rhodesian Ridgeback is a very intelligent dog and makes a wonderful family pet. He is independent and strong-willed, traits that were very valuable in his native Africa where he was developed to be a hunting dog. The owner of a Ridgeback should be able to control a large, independent, and athletic dog.
As a family pet, he is affectionate, loyal and loving. He usually chooses one person to bond to, but he does share his love with the entire family. He will happily spend his day snoozing on the couch or front of the fire. Wherever his owner is, you will likely find a Ridgeback. He loves to be part of a family and is an enthusiastic traveling companion.
With strangers, he is naturally cautious and aloof. He is a well-balanced, generally laid back dog who rarely barks, but when he is called to action he proves his worth as a guard dog.
He must be socialized early in life in order to develop a stable temperament. He will readily accept cats, dogs and other pets when exposed early. He is usually very good with children, but of course children must always be taught to treat all animals with kindness and compassion.
The Ridgeback is a considered a Sighthound in the U.S., and one must understand the Hound mentality in order to happily live with one! Harsh treatments do not work. The Hound responds very well to positive reinforcement, and will rarely do what you ask of him unless there is something in it for him. His "stubbornness" can be easily handled once this concept is understood. Owners of Ridgebacks must quickly establish their standing as the "leader" – this will gain his respect. Then one must be consistent, and garnish your Hound with love, and you will have a loyal companion for life.
As a member of your family, the Ridgeback does not like to be left alone. He is not a "yard" dog that will tolerate being left alone in a yard day and night. He will get very bored, very quickly. He wants to be with his family! Bored Ridgebacks become destructive Ridgebacks. Above all, NEVER tie a Ridgeback up outside. A Ridgeback (or any dog) is no substitute for an alarm system.
Kelley Versteegh
The Pharaoh Hound is reasonably independent and a most pleasant companion dog. It is peaceful in the house, loves to play, is calm, loyal, brave and loving. Quiet, naturally well-behaved and intelligent. This breed loves children, but treats strangers with reserve. When the dog is excited, it blushes, with his nose and ears turning a glowing deep rose. The Pharaoh Hound should not be too difficult to train. The handler needs to be understanding of the dog's character and to be consistent in approach. It can do well in competitive obedience. Socialize the Pharaoh well at an early age and as the owner of the dog be sure to stay mentally strong so the dog can feed from your energy to avoid timidity. Nervous humans tend to have nervous dogs because the dog can feel your emotions. Generally good with other dogs, but can be rather dominant toward other male dogs if the owners are not there to communicate to the dog that dominance is an unwanted behavior. This breed is very fast and likes to chase things. A fast hunter, it should not be trusted with rabbits, cats and other small non-canine pets. Don't let this dog off the leash except in a safely contained area. The Pharaoh Hound needs an owner who is calm, displaying a confident, consistent, natural authority over him. The rules must be made clear in such a way that the dog can understand.