View allAll Photos Tagged Manufacturing_process
EXHIBITION
100 Best Posters 14
GERMANY, AUSTRIA, SWITZERLAND
MI, MO 11/11/2015, 03/28/2016
MAK Art Print Hall
Already for the tenth time, the MAK in the exhibition 100 Best Posters 14. Germany Austria Switzerland shows the hundred most compelling design concepts in the probably hottest medium of visual everyday culture: the poster. The current winning projects of the popular graphic design competition are characterized by an enigmatic pictural humor, explosive colors as well as precise designs and demonstrate impressively that a poster can be more than just an banal advertising space. Many of the award-winning works furthermore also rely on a subtle play with typography. Innovative ideas can also be found in the manufacturing process: This year's competition shows that you can readily knit posters in high-tech process or use a thermo-insulating space blanket as carrier material for screen printing.
Hardly any medium is such clocked on the consumption and nevertheless sets trends at the cutting edge. "[...] The poster designer challenges himself repeatedly and enjoys himself at gained symbols." Says Götz Gramlich, President of the association 100 Best Posters eV, and he postulats. "A good poster unfolds in the mind of the beholder."
From over 1 800 submitted individual posters, composed of contract work, self-initiated posters/self-promotion as well as student project orders from Germany, Austria and Switzerland, awarded the international jury, consisting of Richard van der Laken (Amsterdam, Chairman), Christof Nardin (Wien), Jiri Oplatek (Basel), Nicolaus Ott (Berlin) and Ariane Spanier (Berlin), the 100 winning posters of the year 2014.
In the competition participated 575 submitters (men and women), of which 48 are from Austria, 128 from Switzerland and 399 from Germany. The leader among the winning 100 best is Switzerland with 51 winning projects, followed by 44 German and 5 Austrian contributions.
The by sensomatic design (Christine Zmölnig and Florian Koch, Vienna) designed catalog offers in addition to the illustrations of all the winning posters and the contacts with the designers also this year a captivating essay by Thomas Friedrich: On the dialectics of image and text in the poster today. In a concise way, he looks at the contextuality of posters and explains the theme facetiously and pictorially based on a poster for a bullfight. Read more in the catalog!
For the corporate design of this year's competition and the new Web Visuals also sensomatic design, Vienna, is responsible. Since June 2014, the new online archive on the homepage of the 100 Best Posters Registered Association offers a comprehensive overview of all award-winning works from the years 2001-2014.
The exhibition takes place in cooperation with 100 Best Posters e. V.
100-beste-plakate.de
Curator Peter Klinger, Deputy Head of the MAK Library and Works on Paper Collection
AUSSTELLUNG
100 Beste Plakate 14
DEUTSCHLAND ÖSTERREICH SCHWEIZ
MI, 11.11.2015–MO, 28.03.2016
MAK-KUNSTBLÄTTERSAAL
Bereits zum zehnten Mal zeigt das MAK in der Ausstellung 100 BESTE PLAKATE 14. Deutschland Österreich Schweiz die einhundert überzeugendsten Gestaltungskonzepte im wohl heißesten Medium der visuellen Alltagskultur: dem Plakat. Die aktuellen Siegerprojekte des beliebten Grafikdesignwettbewerbs bestechen mit hintergründigem Bildwitz, explosiver Farbgebung sowie exakten Ausführungen und demonstrieren eindrücklich, dass ein Plakat mehr als nur banale Werbefläche sein kann. Viele der prämierten Arbeiten setzen außerdem auf ein subtiles Spiel mit Typografie. Innovative Ideen finden sich auch im Herstellungsprozess: Der diesjährige Wettbewerb zeigt, dass man Plakate ohne Weiteres im Hightech-Verfahren stricken oder eine thermo-isolierende Rettungsdecke als Trägermaterial für einen Siebdruck verwenden kann.
Kaum ein Medium ist derart auf den Verbrauch hin getaktet und setzt dennoch Trends am Puls der Zeit. „[…] der Plakatgestalter fordert sich immer wieder selbst heraus und erfreut sich an gewonnenen Sinnbildern.“ so Götz Gramlich, Präsident des Vereins 100 Beste Plakate e. V., und er postuliert: „Ein gutes Plakat entfaltet sich im Kopf des Betrachters.“
Aus über 1 800 eingereichten Einzelplakaten, zusammengesetzt aus Auftragsarbeiten, selbst initiierten Plakaten/Eigenwerbungen sowie studentischen Projektaufträgen aus Deutschland, Österreich und der Schweiz, prämierte die international besetzte Fachjury, bestehend aus Richard van der Laken (Amsterdam, Vorsitz), Christof Nardin (Wien), Jiri Oplatek (Basel), Nicolaus Ott (Berlin) und Ariane Spanier (Berlin), die 100 Siegerplakate des Jahres 2014.
Am Wettbewerb hatten sich 575 EinreicherInnen beteiligt, davon 48 aus Österreich, 128 aus der Schweiz und 399 aus Deutschland. Spitzenreiter unter den prämierten 100 Besten ist die Schweiz mit 51 Siegerprojekten, gefolgt von 44 deutschen und 5 österreichischen Beiträgen.
Der von sensomatic design (Christine Zmölnig und Florian Koch, Wien) gestaltete Katalog bietet neben den Abbildungen aller Siegerplakate und den Kontakten zu den GestalterInnen auch dieses Jahr einen bestechenden Aufsatz von Thomas Friedrich: Zur Dialektik von Bild und Text im Plakat heute. In pointierter Form geht er auf die Kontextualität von Plakaten ein und erklärt das Thema witzig und bildhaft anhand eines Plakats für einen Stierkampf. Mehr dazu im Katalog!
Für das Corporate Design des diesjährigen Wettbewerbs und die neuen Web-Visuals zeichnet ebenfalls sensomatic design, Wien, verantwortlich. Seit Juni 2014 bietet das neue Online-Archiv auf der Homepage der 100 Beste Plakate e. V. einen umfassenden Überblick aller prämierten Arbeiten aus den Jahren 2001 bis 2014.
Die Ausstellung findet in Kooperation mit 100 Beste Plakate e. V. statt.
100-beste-plakate.de
Kurator: Peter Klinger, Stellvertretende Leitung MAK-Bibliothek und Kunstblättersammlung
Ascent Heat Exchanger Copper Nickel Tube ♣ Top China Heat Exchanger Copper Nickel Tube Supplier
❤About Ascent Heat Exchanger Copper Nickel Tube:
We manufacture, process and sell heat exchanger copper nickel tubes of good quality and dependability you can rely on. Shop for other equally qualified tubes of heat exchanger copper alloy tube, coopper nickel tube, etc. at our website of ascentcopper.com. Save time and shop with the trusted brass tube manufacturer.
❤Description:
Applied vacuum melting technology, our tubes are of superior quality: stable chemical composition, precise dimensions, and clean, smooth and bright inner and outer surface. Good mechanical properties - free from defects such as blowholes, cracks, pin hole leaks etc.
❤Features:
* Good corrosion resistance, especially in sea water; * Suitable for high temperature service; * Applicable for condenser for ship, heat and water supply, chemical industry, desalinator etc.* Copper Alloy UNS Nos.C70600 and C71500 are seamless Copper Nickel Tubes of standard specifications for Water Desalting Plants.
OD Range:3mm to 70mm
Wall Range:0.2mm to 5mm
Shape:Seamless Tube
The Model T, according to Henry Ford, was available "in any color you choose, so long as it's black." This may be Ford's most famous statement about his most famous car, but it is not the most telling. The comment that most accurately reflects the nature of Ford's gift to the world is a little-known remark he made in October 1908, on the occasion of the birth of the Model T: "I will build a motor car for the great multitude."
That is exactly what the Model T was. With that vehicle, Ford revolutionized not only the automobile industry but American society, and arguably all of Western culture. With the introduction of the Model T, automobiles became available to everyone, not just the well-to-do.
Although the "Tin Lizzie," with its four-cylinder motor, magneto ignition, and planetary transmission, was a technically advanced automobile, it was by no means technically revolutionary. Rather, it was Ford's manufacturing process that revolutionized the industry. He was not the first to build a car on an assembly line, but he perfected the system. After Ford opened his new Model T plant in 1913, he produced one Model T every 93 minutes, a remarkable reduction from the 728 minutes per car that was previously required. By the time the last Model T was built in 1927, the company was producing an automobile every 24 seconds. In part because of this efficiency, the Model T's price dropped from its original 1908 cost of nearly $1,000 to under $300 in 1927. This was possible in spite of the fact that, beginning in 1914, Ford paid assembly-line workers $5.00 per day at a time when prevailing wages averaged about $2.35 per day.
Ultimately, this combination of efficiency and high wages led to the fulfillment of Ford's prediction. The Model T was, indeed, a motor car for the masses. Not only was it cheap, but thanks in part to Ford's wage scales, ordinary workers for the first time had the disposable income necessary to purchase one. With the Model T, the automobile, which had once been an expensive plaything for the wealthy, began its transformation into an everyday necessity.
In a restaurant on the old town square of Nové Mesto nad Metují, Czech Republic - the home of Prim watches.
On September 26, 2008 my family and I were privileged to spend the day in the beautiful town of Nové Mesto nad Metují in the east of the Czech Republic, close to the Polish border. Our host was Mr. Jan Prokop, Marketing Director (and principal designer) at the ELTON hodinárská, a.s. - the manufacturers of fine bespoke Prim wristwatches.
Mr. Prokop collected us from our hotel in Prague, drove us to Nové Mesto nad Metují and back (a round trip of three hours), presented their current product range, guided us through their interesting museum, and led us on a tour of the full manufacturing operation at Prim. This was a fantastic opportunity, and we got to see everything from the manufacturing of cases, dials, hesatite crystals and hands through to the final assembly process. We also saw great examples of their bespoke manufacturing capability as well as their top class restoration service. Mr Prokop ended a fine day with a meal and good local beer in a restaurant on the old town square.
Six weeks after our visit I sent my prized Prim Sport "Igen" 38 (produced in the 60's and early-70's) to ELTON where it is currently being restored and modernised to my specification, as well as being personalised. I can't wait to get it back - my first bespoke wristwatch and an heirloom to pass on to my son!
Although obviously sensitive about certain parts of their operation, Mr. Prokop graciously allowed me to take many photographs during our visit, and here they are for your viewing pleasure. As you will see, these are truly hand-made watches that combine both leading edge design and manufacturing processes and age-old processes and technologies. It is this progressive traditionalism and craftsmanship that gives these unique timepieces their individual character...and I love them!
EXHIBITION
100 Best Posters 14
GERMANY, AUSTRIA, SWITZERLAND
MI, MO 11/11/2015, 03/28/2016
MAK Art Print Hall
Already for the tenth time, the MAK in the exhibition 100 Best Posters 14. Germany Austria Switzerland shows the hundred most compelling design concepts in the probably hottest medium of visual everyday culture: the poster. The current winning projects of the popular graphic design competition are characterized by an enigmatic pictural humor, explosive colors as well as precise designs and demonstrate impressively that a poster can be more than just an banal advertising space. Many of the award-winning works furthermore also rely on a subtle play with typography. Innovative ideas can also be found in the manufacturing process: This year's competition shows that you can readily knit posters in high-tech process or use a thermo-insulating space blanket as carrier material for screen printing.
Hardly any medium is such clocked on the consumption and nevertheless sets trends at the cutting edge. "[...] The poster designer challenges himself repeatedly and enjoys himself at gained symbols." Says Götz Gramlich, President of the association 100 Best Posters eV, and he postulats. "A good poster unfolds in the mind of the beholder."
From over 1 800 submitted individual posters, composed of contract work, self-initiated posters/self-promotion as well as student project orders from Germany, Austria and Switzerland, awarded the international jury, consisting of Richard van der Laken (Amsterdam, Chairman), Christof Nardin (Wien), Jiri Oplatek (Basel), Nicolaus Ott (Berlin) and Ariane Spanier (Berlin), the 100 winning posters of the year 2014.
In the competition participated 575 submitters (men and women), of which 48 are from Austria, 128 from Switzerland and 399 from Germany. The leader among the winning 100 best is Switzerland with 51 winning projects, followed by 44 German and 5 Austrian contributions.
The by sensomatic design (Christine Zmölnig and Florian Koch, Vienna) designed catalog offers in addition to the illustrations of all the winning posters and the contacts with the designers also this year a captivating essay by Thomas Friedrich: On the dialectics of image and text in the poster today. In a concise way, he looks at the contextuality of posters and explains the theme facetiously and pictorially based on a poster for a bullfight. Read more in the catalog!
For the corporate design of this year's competition and the new Web Visuals also sensomatic design, Vienna, is responsible. Since June 2014, the new online archive on the homepage of the 100 Best Posters Registered Association offers a comprehensive overview of all award-winning works from the years 2001-2014.
The exhibition takes place in cooperation with 100 Best Posters e. V.
100-beste-plakate.de
Curator Peter Klinger, Deputy Head of the MAK Library and Works on Paper Collection
AUSSTELLUNG
100 Beste Plakate 14
DEUTSCHLAND ÖSTERREICH SCHWEIZ
MI, 11.11.2015–MO, 28.03.2016
MAK-KUNSTBLÄTTERSAAL
Bereits zum zehnten Mal zeigt das MAK in der Ausstellung 100 BESTE PLAKATE 14. Deutschland Österreich Schweiz die einhundert überzeugendsten Gestaltungskonzepte im wohl heißesten Medium der visuellen Alltagskultur: dem Plakat. Die aktuellen Siegerprojekte des beliebten Grafikdesignwettbewerbs bestechen mit hintergründigem Bildwitz, explosiver Farbgebung sowie exakten Ausführungen und demonstrieren eindrücklich, dass ein Plakat mehr als nur banale Werbefläche sein kann. Viele der prämierten Arbeiten setzen außerdem auf ein subtiles Spiel mit Typografie. Innovative Ideen finden sich auch im Herstellungsprozess: Der diesjährige Wettbewerb zeigt, dass man Plakate ohne Weiteres im Hightech-Verfahren stricken oder eine thermo-isolierende Rettungsdecke als Trägermaterial für einen Siebdruck verwenden kann.
Kaum ein Medium ist derart auf den Verbrauch hin getaktet und setzt dennoch Trends am Puls der Zeit. „[…] der Plakatgestalter fordert sich immer wieder selbst heraus und erfreut sich an gewonnenen Sinnbildern.“ so Götz Gramlich, Präsident des Vereins 100 Beste Plakate e. V., und er postuliert: „Ein gutes Plakat entfaltet sich im Kopf des Betrachters.“
Aus über 1 800 eingereichten Einzelplakaten, zusammengesetzt aus Auftragsarbeiten, selbst initiierten Plakaten/Eigenwerbungen sowie studentischen Projektaufträgen aus Deutschland, Österreich und der Schweiz, prämierte die international besetzte Fachjury, bestehend aus Richard van der Laken (Amsterdam, Vorsitz), Christof Nardin (Wien), Jiri Oplatek (Basel), Nicolaus Ott (Berlin) und Ariane Spanier (Berlin), die 100 Siegerplakate des Jahres 2014.
Am Wettbewerb hatten sich 575 EinreicherInnen beteiligt, davon 48 aus Österreich, 128 aus der Schweiz und 399 aus Deutschland. Spitzenreiter unter den prämierten 100 Besten ist die Schweiz mit 51 Siegerprojekten, gefolgt von 44 deutschen und 5 österreichischen Beiträgen.
Der von sensomatic design (Christine Zmölnig und Florian Koch, Wien) gestaltete Katalog bietet neben den Abbildungen aller Siegerplakate und den Kontakten zu den GestalterInnen auch dieses Jahr einen bestechenden Aufsatz von Thomas Friedrich: Zur Dialektik von Bild und Text im Plakat heute. In pointierter Form geht er auf die Kontextualität von Plakaten ein und erklärt das Thema witzig und bildhaft anhand eines Plakats für einen Stierkampf. Mehr dazu im Katalog!
Für das Corporate Design des diesjährigen Wettbewerbs und die neuen Web-Visuals zeichnet ebenfalls sensomatic design, Wien, verantwortlich. Seit Juni 2014 bietet das neue Online-Archiv auf der Homepage der 100 Beste Plakate e. V. einen umfassenden Überblick aller prämierten Arbeiten aus den Jahren 2001 bis 2014.
Die Ausstellung findet in Kooperation mit 100 Beste Plakate e. V. statt.
100-beste-plakate.de
Kurator: Peter Klinger, Stellvertretende Leitung MAK-Bibliothek und Kunstblättersammlung
We bulk print Professional Custom Stickers in Australia for many industries. Whether just a custom sticker for your boat or thousands of address labels for your business, we have in-house printers to do the job. Any size, any type, colour, size, any design, we’ve been manufacturing a broad range of stickers and labels since 1990. Our manufacturing process ensures that our stickers/labels are durable and waterproof.
Col. Allan Lanceta, CCAD Commander, presented Edward Garcia with a Certificate of Appreciation and a Commander’s Coin for exceptional performance and dedicated service provided to the Corpus Christi Army Depot and as Safety Representative for the Directorate of Manufacturing Process Production, during an awards ceremony in the CCAD Cribbin's Room, July 12.
My goal is to present a plan that will fix the global economy, organize, increase efficiency, provide transportation, agriculture, clean energy, and convert humanity into having a better relationship with our planet. I will persuade you to collaborate for the execution of advanced green and sustainable city infrastructure.
This infrastructure will consolidate our utilities into a sustainable circuit using methane, hydrogen, and electricity for the main fuel supply of our manufacturing. Also, utilizing grey water systems, multi-faceted life cycles, natural gas culmination, and a core of the human hierarchy of needs to the next level in each city proportionally. Much of the urban planning/building arrangement today is spread out instead of built up and by no means setup in an orderly fashion. A term called âsmart buildingâ determined to be the maximization of space one can have in a given area will enable us to go above and beyond. The space inside the building is designed with key components in mind; the flow of peopleâs day, disaster and emergency procedures, higher security, and a higher standard living.
⢠A new state of the art delivery system to organize delivery of goods and services (this is to cut costs and to make up the opportunity cost of peopleâs time)
â¢All walls are hooked to a âgrid systemâ so businesses and people can customize their space as needed without a construction zone
â¢Laundry, dryer heat is purified/filtered and is used to heat the living sectors
â¢Piezocrystaline stairs and Energy efficient elevators
â¢Recycling is made mainstream garbage with 8 compartments
â¢Fruit bearing plants in the hallways
â¢Zero carbon footprint manufacturing due to carbon-nano tube filtration and cooling processes
â¢Multi purpose HVAC systems and atmosphere recovery package to purify the atmosphere
â¢Vertical agriculture and food supply protection (agriculture, beef, pork, poultry, fish, honey, and fungi)
This innovation will develop into a hundred year global economic boom as we customize cities for each culture and belief structure. A multipurpose green transformation will outdate our current systems and perfect our way of life as well as provide a medium to cost effectively create and energy supple and storage âsmart gridâ around the planet. The more cities we build the more electricity and natural gas we acquire allowing us to replace oil and gas. Since we are running out of fossil fuels this is in our best interest. Engineering techniques and materials selection design these sustainable cities for a thousand year lifespan without major structural repairs.
Urban planning of the building comes in with the separation of business sectors and living sectors. This transition will be people pleasing; no taking out the garbage, no winter shoveling, no mowing the lawn, minimizing commutes, laundry and room service options, everything you need within a half mile (anything else can be delivered). In the living sectors, taking away chores that waste peopleâs time will create a gain in the opportunity costs of what we spend our time doing, be it leisure or academics. In the business sectors, we will be pairing up the competition in strategically planned retail floors keeping low prices, low foot traffic, and energy consumption down.
â¢No need for cars with this infrastructure meaning less accidents and DWIs
â¢People will save on not having to own a car and pay insurance
â¢Fossil fuel conservation due to all this
â¢No road repair costs only magnetically levitated bullet trains
Increased efficiency comes through with
â¢Green technology â wind turbines and solar panels
â¢Separate electrical lines ranging from 9v-440w smart grid
â¢Timed sensor lights which will decrease electricity usage
â¢Manufacturing processes will be used to purify grey water, purify ocean water, heating HVAC, hot water, create energy, create water pressure and smelt metals (dual system)
â¢Rain water is collected and gutters have turbines in vertical drop
â¢Energy management â batteries allocated to different sectors and transfers when needed
â¢Gym machines are all hooked up to turbines
â¢Magnetically levitated metro systems connecting cities
â¢Plus waste management improvements and facilities which will compost
â¢Natural Gas culmination (Methane and Hydrogen)
Not only does this infrastructure cut down on the amount of wasted energy lost in long distance transfer and upkeep but improves the way we use our resources in its entirety. Each city will be creating electricity and natural gas. Department of Energy leader Dr. Steven Chu expressed a theory on television discussing the global opportunity to culminate renewable resources. Any given time around the planet it is really sunny or windy, if established globally there will be enough energy to power our every need if managed correctly.
Zero carbon footprint Manufacturing encompasses a multi-faceted dual core system. First, we use methane and hydrogen to produce the necessary heat to smelt our metals. Then the cooling processes of these furnaces (so the structural integrity of surroundings isnât compromised) will be used to purify our water and ocean water, provide hot water, heating HVAC, and create energy. After the energy has been created the steam flows up a channel until it can be condensed and collected. Once filtered and drinkable we have elevated electrolysis tanks which provide hydrogen and produce water pressure. Then the water is let down a free fall into another turbine set to create more energy. Resulting in us having enough left over water pressure to distribute throughout the infrastructure. The zero carbon footprint aspect comes into play by having the manufacturing floors sealed and a constant flow of filtration is applied down to cooling processes to pull out the fumes. The floors will be customizable due to the floor system Iâm designing making it possible to mass produce any one piece of any one medium in the floors of each specified city. This is a preliminary core to future processes and time is of the essence.
My plan to convert Humanity into a better relationship with our planet will ultimately ensure the survival of our species. With enough cities created we will harness global natural gas production. This path leads us to having a supply of energy to get us to other Earth like planets. With proper execution we can solve homelessness, hunger, and take steps to forming a united planet with higher and equal standard of living.
â¢Resource management reform (demand pull economy) eliminating waste by 95%, also lowering prices across the board
â¢Collaborate with Private Sector to develop universal manufacturing and assembly lines (One assembly line to make any part of a certain material) will eliminate the cost of shifting markets or designs.
â¢Recycling reform and packaging regulations regaining 80% used resources
â¢Establishing the World Wide Railway for transporting and global distribution (fault crossing patents)
These programs are just the beginning and are theoretically sound. The benefits of this plan are evident and endless, find out for your self. Private and government cities will allow for competition, diversity and freedom for versatility.
Now that we have visualized the future more organized, efficient, and converted âGreenâ you will all sleep better at night knowing we are at peace with the earth once again. What you will do from now on is support the goals ahead of us into a better relationship with the planet. This plan will triple the asset value of each country. I know we all wish this were âHeaven on Earthâ well with your help we can make it happen. A goal some see as impossible is only a decision away, your decision.
P.S. All technological advances should be shared world wide by every company. We are misguided as a whole. We need to start viewing the planetâs population as a hive or family or we will not have what it takes to survive as a technologically advanced race.
[OW photo id 14092]
Raj Process Equipments And Systems
Pvt. Ltd. is a leading Manufacturer & Supplier Of Detergent Spray Drying,
Pneumatic conveying systems and Heavy Duty Detergent in India.
From the planting of the seed to the end of the manufacturing process, Portuguese cork makes for authentic, high quality and eco-efficient cork products that are created with true craftsmanship and care.
Urbex Benelux -
Bricks were originally made by hand, and that practice continues in developing countries and with a few specialty suppliers. Large industrial brickworks supply clay from a quarry, moving it by conveyor belt or truck/lorry to the main factory, although it may be stockpiled outside before entering the machinery. When the clay enters the preparation plant (Clay Prep) it is crushed, and mixed with water and other additives which may include breeze, a very fine anthracite that aids firing. This process, also known as pugmilling, improves the consistency, firing qualities, texture, and colour of the brick. From here, the processed clay can either be extruded into a continuous strip and cut with wires, or be put into moulds or presses (also referred to as forming) to form the clay into its final shape. After the forming or cutting, the bricks must be dried - in the open air, in drying sheds, or in special drying kilns. The dried bricks must then be fired or "burnt" in a kiln, to give them their final hardness and appearance.
In the mid-nineteenth century the development of automated brickmaking machines such as the Bradley & Craven Ltd "Stiff-Plastic Brickmaking Machine" revolutionised the brick-manufacturing process.
My 4th year project has been to investigate replication of micron scale features in steel using a sapphire crystal. This new manufacturing process has the potential to revolutionise manufacturing of MEMS and Microfluidics. This image shows a steel surface which has been melted by laser light, and disturbed so that ripples have formed in the surface. It then froze again instantaneously, freezing the ripples in place. This was taken with a white light interferometry microscope, and the image generated by this microscope.
ethnic Tamil labor
--- 4600 feet elevation
--- each tea leaf is picked by hand rather than by mechanization
--- no artificial preservatives are added at any stage of the manufacturing process
Nuwara Eliya District
Sri Lanka --- the world's fourth largest producer of tea
040913
(En) Founded in 1906, the Coking Plant of Anderlues was specialized in the production of coke for industrial use.
Coke was obtained by distillation of coal in furnaces and, thanks to its superior fuel coal properties, it was used afterwards to feed the blast furnaces in the steel manufacturing process.
Closed and abandoned since 2002, the site has since undergone many losses and damages, not including an important pollution. While some buildings have now been demolished, there are however still some important parts of the former coking plant.
Among them, the former coal tower, next to the imposing "battery" of 38 furnaces, where the coke was produced. Besides them, we still can see the administrative buildings, the power station with its cooling tower, and buildings for the by-products, which were obtained by recovering the tar and coal gas. There are also a gasometer north side, the coal tip east side and a settling basin south side.
-----------
(Fr) Fondées en 1906, les Cokeries d'Anderlues étaient spécialisées dans la fabrication de coke à usage industriel.
Le coke était obtenu par distillation de la houille dans des fours et, grâce à ses propriétés combustibles supérieures au charbon, il servait par après à alimenter les hauts-fourneaux dans le processus de fabrication de l'acier.
Fermé et laissé à l'abandon depuis 2002, le site a depuis lors subi de nombreuses pertes et dégradations, sans compter la pollution qui y règne. Si certains bâtiments (comme l'ancien lavoir à charbon) ont aujourd'hui été démolis, on retrouve encore toutefois certaines parties importantes de cette ancienne cokerie.
Parmi celles-ci, l'ancienne tour à charbon suivie de près par l'imposante "batterie" de 38 fours, où était produit le coke. A côté d'eux, on découvre également les bâtiments administratifs, la centrale électrique avec sa tour de refroidissement, ainsi que les bâtiments des sous-produits, lesquels étaient obtenus par récupération du goudron et du gaz de houille. Et en périphérie, on retrouve un gazomètre côté nord, le terril à l'est et un bassin de décantation côté sud.
Mammoth Shaft Tool - "PALEO TOOLS: The kinds of tools used by the Paleoindians can tell us much about their way of life. Most of the tools surviving today are made of stone. Spear points, knives, drills, and scrapers are typical Paleoindian artifacts. They were used for a variety of tasks, including hunting and butchering animals, processing plants, and working raw materials to make other tools. Archaeological sites of the Paleoindians contain mostly chipped stone tools and waste flakes left from the manufacturing process. However it is almost certain that these people made wide use of other raw materials including bone, wood, ivory, and antler. Objects made of these materials do not preserve as well as stone and have likely decayed over the past 10,000 years. Springs, sinkholes and deep river beds offer good conditions for preserving organic materials because of their high mineral content and lack of oxygen. Fragments of bone, wood, and other plant remains will give clues to future archaeologists who research the skills that Paleoindians needed to survive in Ice Age Florida. " ~ Display at the Florida Museum of Natural History. (Photo 091712-013.jpg) Paleoindians section of the Division of Historical Resources - Florida Museum of History - Where I used to work - September 17, 2012: A Walk Down Memory Lane - revisiting College Town - Tallahassee, Florida. (c) 2012 - photography by Leaf McGowan, Thomas Baurley, Eadaoin Bineid - technogypsie.com. To purchase this photo or to obtain permission to use, go to www.technogypsie.com/photography/
"PALEOINDIANS: The earliest people who inhabited North America are called Paleoindians. They came to Florida during the end of the last Ice Age, at least 12,000 years ago. Their way of life lasted for about 2,500 years. Archaeologists have found few Paleoindian sites. If, as it seems likely, these early people lived along the coast of Florida, their settlements have been covered by the rising sea level. Compared to later Florida Indian cultures, Paleoindians lived in small, widely dispersed groups. Their artifacts are often found around outcrops of a flint-like rock called chert. Pieces of chert were chipped, or knapped, to make stone tools. Paleoindian artifacts are also found in springs, sinkholes and rivers that were probably ancient waterholes. These were important sources of fresh water in an otherwise dry landscape.
PALEO TIMELINE: 12,000 B.P. to 9,500 B.P. (Before present) - EARLY PALEO PERIOD: 12,000-10,000 BP - Simpson point on mammoth ivory foreshaft (circa 11,500 BP) - First evidence of people on the Florida peninsula, Paleoindians live a semi-nomadic life, hunt big game like mastadon, climate was drier than today, and sea level is more than 100 feet lower than today. - Bison antiguns skull with embedded spearpoint, Wacissa River (circa 11,000 BP).
LATE PALEO PERIOD: 10,000 to 9500 BP - stone bola weight (circa 10,000 BP) had most big game animals extinct, wetter climate prevails, sea level rises gradually, several new styles of stone points appear, like the side notched bolan point. " ~ Display in the Florida Museum of Natural History.
For more information visit:
Paleoindians: www.technogypsie.com/science/?p=939 (expected publication December 2012)
Tallahassee: www.technogypsie.com/reviews/?p=5093 (Expected publication November 2012)
Florida: www.technogypsie.com/reviews/?p=5079 (Expected Publication December 2012)
For travel tales, visit:
John Allison is William F. Hosford Professor of Materials Science and Engineering at the University of Michigan and a National Academy of Engineering member.
His major research interest is in understanding the inter-relationships between processing, alloying, microstructure and properties in metallic materials – and in incorporating this knowledge into computational tools for use in research, education and engineering. An important part of his research is development of Integrated Computational Materials Engineering (ICME) tools – and thus collaborations with other computational and experimental groups are an essential element of my work. Central to my research are investigations on the evolution of microstructures - current examples include precipitate evolution, recrystallization and grain growth and texture development in magnesium, aluminum and titanium alloys. He is also interested in mechanical behavior of these materials, with an emphasis on development of mechanistic and phenomenological understanding of the influence of microstructure on properties such as strength, ductility and fatigue resistance.
Allison comes to the University from Ford Motor Company, where he was a senior technical leader in the Research and Advanced Engineering organization. Over the twenty seven years of his tenure at Ford, he led teams developing integrated computational materials engineering, or ICME, methods. He helped develop advanced computer software that simulates manufacturing processes and predicts the influence of the manufacturing process on material properties. The output of these models is then coupled with product performance models to predict how manufactured components will behave during service.
July 11, 2023.
Photo by Marcin Szczepanski/Lead Multimedia Storyteller, Michigan Engineering
Found these three bottles by the old gardeners cottage. 21/4/2012
The Tavu Boot Dressing and Boot Polish products made by W. Murphy of Huddersfield are believed to have been produced around 1885-1895. A time when, due to semi-automatic and then fully-automatic manufacturing processes, attractive glass packaging became a commercial proposition for utility products such as boot blacking in place of the then ubiquitous stoneware bottle such as those made in the millions by Denby and the like.
Bauer, Inc. President, Lou Auletta discusses the manufacturing process with CT Senator Jason Welch and CT Representative Frank Nicastro.
Other companies began to be involved in the project, using the advanced manufacturing process known as RP (Rapid Prototyping). This involves turning the scanned data into .stl (stereo-lithography) files. Then the computer model is sliced into 0.1mm layers and manufacture is from the bottom up. So if the machine was starting from the base of a standing figure then it would begin by cutting the feet, then ankles, then knees etc. Each layer is only a tenth of a millimeter thick so it would take 500 layers to make a foot.
The Rear Leg was made by The Innovative Manufacturing Centre and UMAK Limited. And the process that they used is called LOM - Laminated Object Manufacture. Here a laser cuts the contour of an object on a 0.1mm layer of paper then another layer is laid down and next contour of the object is cut. The part is then broken out from the cut layers.
The final section was about 100 x 40 x 50 centimetres and was made by glueing together 5 LOM parts then inserting steel rods down the leg to ensure that the parts do not separate. The parts were treated so that they are stable in a range of temperatures and humidities. This is so that the layers do not delaminate. Steve Upcraft (IMC), Simon Graham (Umak) and Paul Webber (IMC) can be seen here.
Every hoverboard component is taken into consideration in the our hoverboard manufacturing process. Every product sold is UL certified, guaranteeing safety. Visit: hovertronix.com/
A team of Central Oregon high school students led by an Oregon State University – Cascades computer science junior Andras Mihaly are building sensors that Oregon firms can use to advance manufacturing processes and extend the life of their equipment. The project is a partnership of the OSU-Cascades Innovation Co-Lab, Oregon Manufacturing Extension Partnership, Central Oregon STEM Hub and Oregon Department of Education CTE program.
Here, faculty computer science expert Yong Bakos leads a session. Photos by Joe Kline.
ethnic Tamil labor
--- 4600 feet elevation
--- each tea leaf is picked by hand rather than by mechanization
--- no artificial preservatives are added at any stage of the manufacturing process
Nuwara Eliya District
Sri Lanka --- the world's fourth largest producer of tea
040913
Clay model for the Ferrari J50, 2015
Ferrari: Under the Skin (November 2017 to April 2018)
In an Italy ravaged by the Second World War, Enzo Ferrari and a small team decided to create the perfect racing machine. The exhibition will explore Ferrari’s powerful personality, the design and manufacturing process, the famous clientele and the future of the luxury car brand.
From the very first Ferrari to Michael Schumacher’s winning Formula One car and the newest hybrid model, the exhibition features rare cars and memorabilia displayed in public for the first time. Discover the Ferrari experience through original hand-drawn sketches, sculpture-like models and engines, alongside films and interviews telling one of the great design stories of all time.
[Design Museum]
In the Design Museum
At the Cup Noodles Museum, you can learn the secret of cup noodle and even have the opportunity to make one-of-a-kind ramen yourself.
Japanese food company Nissin operates this unique museum for Ramen.
The museum shows the 40 year product history as well as the founder, Mr. Ando Momofuku's creativity, by exhibiting 3,000 kinds of cup noodle packages.
They also recreate Mr. Ando Momofuku's humble research facility.
At "My Cup Noodle Factory," you can make your own cup noodle out of 5,460 soup base / topping combinations.
There is also "Cup Noodles Park", a playground for kids where they can experience the manufacturing process of Cup Noodle.
There is a "Chicken Ramen Factory" where you can make Chicken Ramen by hand, starting with kneading, spreading, and steaming the wheat flour and then drying it with the hot oil drying method. After experiencing the process that led to the invention of the world's first instant ramen, you can take your freshly made ramen with you and enjoy its delicious taste at home.
And of course you can enjoy global varieties of noodles in the contemporarily designed museum restaurant!
BUY DIVING TANKS ONLIEN,
Product Features
Sherwood HP 120 cu ft Steel Scuba Diving Tank Air Cylinder with Valve and Boot
AUTHORIZED DEALER, FULL MANUFACTURER´S WARRANTY!!!
HP80 and HP100 Tanks also available: See our other Amazon Ads
Zinc spray coating - powder paint.
ST120 (3500 psi) Steel
Product Description
Features of this wonderful tank include: Sherwood Quality - Manufacturing Process: Built from Chromium Molybdenum steel plates. Utilizes the spun process. This process yields a cylinder with a very uniform wall thickness resulting in a lighter, more efficient cylinder. Buoyancy: Superior buoyancy characteristics. These cylinders have been designed to be slightly negative at the end of a dive. Exterior Finish: Shot Blast - Zinc spray coating - powder paint. Interior Finish: Shot Blast - Highly-resistant to internal rusting. Valves:Model High Pressure Din Valve #300S-S-35. Scuba steel cylinders include a high pressure design valve. Standard inlet thread (3/4"-14 NPSM). Boots: A high quality boot is included. TANK SPECIFICS for the HP120: TRUE CAPACITY: 123cu ft, DIAMETER: 7.29 inches, LENGTH: 28.9 inches, WEIGHT EMPTY: 41.5lbs, BUOYANCY FULL: -11.8lbs, BUOYANCY WITH 500 PSI: -4.4lbs, Chromium Molybdenum steel construction, Inlet thread is standard 3/4"-14 UNF-2B, Negatively buoyant throughout the dive, Manufactured to DOT-E12079-3500, Meets Canadian TC3AAM specifications. AUTHORIZED DEALER, FULL MANUFACTURER´S WARRANTY!!! This Super High Pressure Steel Scuba Cylinder Tank is GREAT for all your diving needs.
PLEASE VISIT,
(En) Founded in 1906, the Coking Plant of Anderlues was specialized in the production of coke for industrial use.
Coke was obtained by distillation of coal in furnaces and, thanks to its superior fuel coal properties, it was used afterwards to feed the blast furnaces in the steel manufacturing process.
Closed and abandoned since 2002, the site has since undergone many losses and damages, not including an important pollution. While some buildings have now been demolished, there are however still some important parts of the former coking plant.
Among them, the former coal tower, next to the imposing "battery" of 38 furnaces, where the coke was produced. Besides them, we still can see the administrative buildings, the power station with its cooling tower, and buildings for the by-products, which were obtained by recovering the tar and coal gas. There are also a gasometer north side, the coal tip east side and a settling basin south side.
-----------
(Fr) Fondées en 1906, les Cokeries d'Anderlues étaient spécialisées dans la fabrication de coke à usage industriel.
Le coke était obtenu par distillation de la houille dans des fours et, grâce à ses propriétés combustibles supérieures au charbon, il servait par après à alimenter les hauts-fourneaux dans le processus de fabrication de l'acier.
Fermé et laissé à l'abandon depuis 2002, le site a depuis lors subi de nombreuses pertes et dégradations, sans compter la pollution qui y règne. Si certains bâtiments (comme l'ancien lavoir à charbon) ont aujourd'hui été démolis, on retrouve encore toutefois certaines parties importantes de cette ancienne cokerie.
Parmi celles-ci, l'ancienne tour à charbon suivie de près par l'imposante "batterie" de 38 fours, où était produit le coke. A côté d'eux, on découvre également les bâtiments administratifs, la centrale électrique avec sa tour de refroidissement, ainsi que les bâtiments des sous-produits, lesquels étaient obtenus par récupération du goudron et du gaz de houille. Et en périphérie, on retrouve un gazomètre côté nord, le terril à l'est et un bassin de décantation côté sud.
Delvendahl Martin Architects’ installation for Moss Bross explores the possibilities of the windows by distorting the perception of depth and perspective as viewed from the street. This is achieved by using hundreds of cotton strings to stitch the edges of the window space to form a series of seemingly floating voids, where the three main strands of Moss Bros products arebe displayed. The material expression of the cotton strings recall the raw materials of garments, the loom-based manufacturing process of cloth, and the craftsmanship of the Moss Bespoke service.
Photography (c) Agnese Sanvito
Governor Malloy listens as Greg Safarik, Vice President of Manufacturing for Breast Health Operations (right) describes the manufacturing process and how the company has implemented Lean and Green methodologies. Michael Parrilla, Senior Vice President of Corporate Manufacturing is pictured on the left.
Gainward Rampage700 Golden Sample 2048MB Goes Like Hell
Gainward takes ATI's R700 design to the extreme with this custom cooled monster.
Card specs
2 x ATI Radeon R700 (4870) Cores running at 790MHz
Dual TeraScale graphics engines
956 million transistors 55nm Manufacturing Process
750MHz Shader Clock Speed
1600 Stream Processors
3800MHz GDDR5 Memory
512-Bit (2x 256-Bit) Memory Interface
230GB/sec Memory Bandwidth
Double Precision Support
DirectX 10.1 Support
24x custom filter anti-aliasing (CFAA) and high performance anisotropic filtering
2400 Peak GigaFlops
ATI CrossFireX™ multi-GPU support for highly scalable performance (2x 4870 X2 for a total of 4 GPU's)
Features Analogue, DVI, HDMI and DisplayPort connections
My 4th year project has been to investigate replication of micron scale features in steel using a sapphire crystal. This new manufacturing process has the potential to revolutionise manufacturing of MEMS and Microfluidics. This image shows the cracked sapphire surface taken with an optical microscope (100X magnification).
Io Aircraft - www.ioaircraft.com
Drew Blair
www.linkedin.com/in/drew-b-25485312/
io aircraft, phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air-Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, defense science, missile defense agency, aerospike,
Advanced Additive Manufacturing for Hypersonic Aircraft
Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.
Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.
*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.
What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.
Unified Turbine Based Combined Cycle (U-TBCC)
To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5
However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.
Enhanced Dynamic Cavitation
Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.
Dynamic Scramjet Ignition Processes
For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.
Hydrogen vs Kerosene Fuel Sources
Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.
Conforming High Pressure Tank Technology for CNG and H2.
As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.
As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).
Enhanced Fuel Mixture During Shock Train Interaction
Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.
Improved Bow Shock Interaction
Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.
6,000+ Fahrenheit Thermal Resistance
To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.
*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope
Scramjet Propulsion Side Wall Cooling
With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.
Lower Threshold for Hypersonic Ignition
Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.
Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities
Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.
Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)
To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.
A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.
From the planting of the seed to the end of the manufacturing process, Portuguese cork makes for authentic, high quality and eco-efficient cork products that are created with true craftsmanship and care.
Project Title: ArcelorMittal Cross Table Transfer
Sponsor: ArcelorMittal
Group: George DeRitter, Joe Samsell, Tylor Vosburgh, Andrew Chan
Faculty Adviser: Dr. Ma’Moun Abu-Ayyad
The project was proposed to Penn State Harrisburg over the past two years. The current problem is that the cross table transfer that is in place is causing mechanical and visual defects during the process of transferring the steel rails from 16 table to 16A. This is due to the fact that the rails are being pushed over 42 skid rails spaced out along the length of the steel rail. These skids, over time, are moving and changing elevation; this is causing some skids to carry more weight than others. The more pressure certain parts of the steel skids carry leads to mechanical defects on the side of the head and base of the rail. These mechanical and visual defects in the rail are not up to the customers’ standards and may cause failure in the steel rails.
Project: ArcelorMittal – 16 Table Cross Transfer
Sponsor: ArcelorMittal
Group: Andrew Kline, Andrew Metzker, Kyle Heintzelman, Scott Kramer
Faculty Adviser: Dr. Ma’Moun Abu-Ayyad
The ArcelorMittal steel plant, located in Steelton, Pennsylvania, produces steel railroad rails for different companies and applications nationwide. The steel is transferred through various roller lines and extruders during its manufacturing process. At one point during the manufacturing process, the rail must be transferred across the mill on a table from one extruder to another. The rails (at high temperature) are pushed over several skid rails on the table by a simple electric pushing mechanism. Over time, the skid rails of the table have moved and changed elevation which creates marks in the steel rails. The blemished surfaces are causing some rails to be recalled which is costing the company money and lost production time.
Io Aircraft - www.ioaircraft.com
Drew Blair
www.linkedin.com/in/drew-b-25485312/
io aircraft, phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air-Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, defense science, missile defense agency, aerospike,
Advanced Additive Manufacturing for Hypersonic Aircraft
Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.
Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.
*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.
What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.
Unified Turbine Based Combined Cycle (U-TBCC)
To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5
However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.
Enhanced Dynamic Cavitation
Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.
Dynamic Scramjet Ignition Processes
For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.
Hydrogen vs Kerosene Fuel Sources
Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.
Conforming High Pressure Tank Technology for CNG and H2.
As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.
As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).
Enhanced Fuel Mixture During Shock Train Interaction
Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.
Improved Bow Shock Interaction
Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.
6,000+ Fahrenheit Thermal Resistance
To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.
*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope
Scramjet Propulsion Side Wall Cooling
With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.
Lower Threshold for Hypersonic Ignition
Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.
Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities
Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.
Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)
To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.
A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.
NINGBO INNOVAW MECHANICAL CO., LTD is a professional manufacturer of casting and machined parts which are widely used for Automotive, petroleum, medical, earth mover, electricity and lighting Industry. Die Casting is a manufacturing process in which the molten metal is poured into the mold under high pressure and the pressure remains on the mold till the hot metal hardens. icasting-machining.com/
The Password:JDM Dry Carbon Fiber Engine Cover for the 2013+ Subaru BRZ / Scion FR-S will clean up the look of your engine bay! Like all of our Dry Carbon parts we manufacture, this engine cover has been precision crafted for a perfect fitment every time. We have used a fade resistant resin during the manufacturing process to ensure this plug cover will always look & function as good as the day you bought it!
Includes all necessary mounting hardware.
Features include:
- Perfect dry carbon fitment with structural integrity
- high-heat, fade resistant resin fabrication process
- two options to choose from, dry carbon fiber and dry carbon kevlar
- Extreme lightweight to strength ratio
- Made in the USA
- Badass looks for your BRZ or FR-S engine bay!
At the Cup Noodles Museum, you can learn the secret of cup noodle and even have the opportunity to make one-of-a-kind ramen yourself.
Japanese food company Nissin operates this unique museum for Ramen.
The museum shows the 40 year product history as well as the founder, Mr. Ando Momofuku's creativity, by exhibiting 3,000 kinds of cup noodle packages.
They also recreate Mr. Ando Momofuku's humble research facility.
At "My Cup Noodle Factory," you can make your own cup noodle out of 5,460 soup base / topping combinations.
There is also "Cup Noodles Park", a playground for kids where they can experience the manufacturing process of Cup Noodle.
There is a "Chicken Ramen Factory" where you can make Chicken Ramen by hand, starting with kneading, spreading, and steaming the wheat flour and then drying it with the hot oil drying method. After experiencing the process that led to the invention of the world's first instant ramen, you can take your freshly made ramen with you and enjoy its delicious taste at home.
And of course you can enjoy global varieties of noodles in the contemporarily designed museum restaurant!
EXHIBITION
100 Best Posters 14
GERMANY, AUSTRIA, SWITZERLAND
MI, MO 11/11/2015, 03/28/2016
MAK Art Print Hall
Already for the tenth time, the MAK in the exhibition 100 Best Posters 14. Germany Austria Switzerland shows the hundred most compelling design concepts in the probably hottest medium of visual everyday culture: the poster. The current winning projects of the popular graphic design competition are characterized by an enigmatic pictural humor, explosive colors as well as precise designs and demonstrate impressively that a poster can be more than just an banal advertising space. Many of the award-winning works furthermore also rely on a subtle play with typography. Innovative ideas can also be found in the manufacturing process: This year's competition shows that you can readily knit posters in high-tech process or use a thermo-insulating space blanket as carrier material for screen printing.
Hardly any medium is such clocked on the consumption and nevertheless sets trends at the cutting edge. "[...] The poster designer challenges himself repeatedly and enjoys himself at gained symbols." Says Götz Gramlich, President of the association 100 Best Posters eV, and he postulats. "A good poster unfolds in the mind of the beholder."
From over 1 800 submitted individual posters, composed of contract work, self-initiated posters/self-promotion as well as student project orders from Germany, Austria and Switzerland, awarded the international jury, consisting of Richard van der Laken (Amsterdam, Chairman), Christof Nardin (Wien), Jiri Oplatek (Basel), Nicolaus Ott (Berlin) and Ariane Spanier (Berlin), the 100 winning posters of the year 2014.
In the competition participated 575 submitters (men and women), of which 48 are from Austria, 128 from Switzerland and 399 from Germany. The leader among the winning 100 best is Switzerland with 51 winning projects, followed by 44 German and 5 Austrian contributions.
The by sensomatic design (Christine Zmölnig and Florian Koch, Vienna) designed catalog offers in addition to the illustrations of all the winning posters and the contacts with the designers also this year a captivating essay by Thomas Friedrich: On the dialectics of image and text in the poster today. In a concise way, he looks at the contextuality of posters and explains the theme facetiously and pictorially based on a poster for a bullfight. Read more in the catalog!
For the corporate design of this year's competition and the new Web Visuals also sensomatic design, Vienna, is responsible. Since June 2014, the new online archive on the homepage of the 100 Best Posters Registered Association offers a comprehensive overview of all award-winning works from the years 2001-2014.
The exhibition takes place in cooperation with 100 Best Posters e. V.
100-beste-plakate.de
Curator Peter Klinger, Deputy Head of the MAK Library and Works on Paper Collection
AUSSTELLUNG
100 Beste Plakate 14
DEUTSCHLAND ÖSTERREICH SCHWEIZ
MI, 11.11.2015–MO, 28.03.2016
MAK-KUNSTBLÄTTERSAAL
Bereits zum zehnten Mal zeigt das MAK in der Ausstellung 100 BESTE PLAKATE 14. Deutschland Österreich Schweiz die einhundert überzeugendsten Gestaltungskonzepte im wohl heißesten Medium der visuellen Alltagskultur: dem Plakat. Die aktuellen Siegerprojekte des beliebten Grafikdesignwettbewerbs bestechen mit hintergründigem Bildwitz, explosiver Farbgebung sowie exakten Ausführungen und demonstrieren eindrücklich, dass ein Plakat mehr als nur banale Werbefläche sein kann. Viele der prämierten Arbeiten setzen außerdem auf ein subtiles Spiel mit Typografie. Innovative Ideen finden sich auch im Herstellungsprozess: Der diesjährige Wettbewerb zeigt, dass man Plakate ohne Weiteres im Hightech-Verfahren stricken oder eine thermo-isolierende Rettungsdecke als Trägermaterial für einen Siebdruck verwenden kann.
Kaum ein Medium ist derart auf den Verbrauch hin getaktet und setzt dennoch Trends am Puls der Zeit. „[…] der Plakatgestalter fordert sich immer wieder selbst heraus und erfreut sich an gewonnenen Sinnbildern.“ so Götz Gramlich, Präsident des Vereins 100 Beste Plakate e. V., und er postuliert: „Ein gutes Plakat entfaltet sich im Kopf des Betrachters.“
Aus über 1 800 eingereichten Einzelplakaten, zusammengesetzt aus Auftragsarbeiten, selbst initiierten Plakaten/Eigenwerbungen sowie studentischen Projektaufträgen aus Deutschland, Österreich und der Schweiz, prämierte die international besetzte Fachjury, bestehend aus Richard van der Laken (Amsterdam, Vorsitz), Christof Nardin (Wien), Jiri Oplatek (Basel), Nicolaus Ott (Berlin) und Ariane Spanier (Berlin), die 100 Siegerplakate des Jahres 2014.
Am Wettbewerb hatten sich 575 EinreicherInnen beteiligt, davon 48 aus Österreich, 128 aus der Schweiz und 399 aus Deutschland. Spitzenreiter unter den prämierten 100 Besten ist die Schweiz mit 51 Siegerprojekten, gefolgt von 44 deutschen und 5 österreichischen Beiträgen.
Der von sensomatic design (Christine Zmölnig und Florian Koch, Wien) gestaltete Katalog bietet neben den Abbildungen aller Siegerplakate und den Kontakten zu den GestalterInnen auch dieses Jahr einen bestechenden Aufsatz von Thomas Friedrich: Zur Dialektik von Bild und Text im Plakat heute. In pointierter Form geht er auf die Kontextualität von Plakaten ein und erklärt das Thema witzig und bildhaft anhand eines Plakats für einen Stierkampf. Mehr dazu im Katalog!
Für das Corporate Design des diesjährigen Wettbewerbs und die neuen Web-Visuals zeichnet ebenfalls sensomatic design, Wien, verantwortlich. Seit Juni 2014 bietet das neue Online-Archiv auf der Homepage der 100 Beste Plakate e. V. einen umfassenden Überblick aller prämierten Arbeiten aus den Jahren 2001 bis 2014.
Die Ausstellung findet in Kooperation mit 100 Beste Plakate e. V. statt.
100-beste-plakate.de
Kurator: Peter Klinger, Stellvertretende Leitung MAK-Bibliothek und Kunstblättersammlung
EXHIBITION
100 Best Posters 14
GERMANY, AUSTRIA, SWITZERLAND
MI, MO 11/11/2015, 03/28/2016
MAK Art Print Hall
Already for the tenth time, the MAK in the exhibition 100 Best Posters 14. Germany Austria Switzerland shows the hundred most compelling design concepts in the probably hottest medium of visual everyday culture: the poster. The current winning projects of the popular graphic design competition are characterized by an enigmatic pictural humor, explosive colors as well as precise designs and demonstrate impressively that a poster can be more than just an banal advertising space. Many of the award-winning works furthermore also rely on a subtle play with typography. Innovative ideas can also be found in the manufacturing process: This year's competition shows that you can readily knit posters in high-tech process or use a thermo-insulating space blanket as carrier material for screen printing.
Hardly any medium is such clocked on the consumption and nevertheless sets trends at the cutting edge. "[...] The poster designer challenges himself repeatedly and enjoys himself at gained symbols." Says Götz Gramlich, President of the association 100 Best Posters eV, and he postulats. "A good poster unfolds in the mind of the beholder."
From over 1 800 submitted individual posters, composed of contract work, self-initiated posters/self-promotion as well as student project orders from Germany, Austria and Switzerland, awarded the international jury, consisting of Richard van der Laken (Amsterdam, Chairman), Christof Nardin (Wien), Jiri Oplatek (Basel), Nicolaus Ott (Berlin) and Ariane Spanier (Berlin), the 100 winning posters of the year 2014.
In the competition participated 575 submitters (men and women), of which 48 are from Austria, 128 from Switzerland and 399 from Germany. The leader among the winning 100 best is Switzerland with 51 winning projects, followed by 44 German and 5 Austrian contributions.
The by sensomatic design (Christine Zmölnig and Florian Koch, Vienna) designed catalog offers in addition to the illustrations of all the winning posters and the contacts with the designers also this year a captivating essay by Thomas Friedrich: On the dialectics of image and text in the poster today. In a concise way, he looks at the contextuality of posters and explains the theme facetiously and pictorially based on a poster for a bullfight. Read more in the catalog!
For the corporate design of this year's competition and the new Web Visuals also sensomatic design, Vienna, is responsible. Since June 2014, the new online archive on the homepage of the 100 Best Posters Registered Association offers a comprehensive overview of all award-winning works from the years 2001-2014.
The exhibition takes place in cooperation with 100 Best Posters e. V.
100-beste-plakate.de
Curator Peter Klinger, Deputy Head of the MAK Library and Works on Paper Collection
AUSSTELLUNG
100 Beste Plakate 14
DEUTSCHLAND ÖSTERREICH SCHWEIZ
MI, 11.11.2015–MO, 28.03.2016
MAK-KUNSTBLÄTTERSAAL
Bereits zum zehnten Mal zeigt das MAK in der Ausstellung 100 BESTE PLAKATE 14. Deutschland Österreich Schweiz die einhundert überzeugendsten Gestaltungskonzepte im wohl heißesten Medium der visuellen Alltagskultur: dem Plakat. Die aktuellen Siegerprojekte des beliebten Grafikdesignwettbewerbs bestechen mit hintergründigem Bildwitz, explosiver Farbgebung sowie exakten Ausführungen und demonstrieren eindrücklich, dass ein Plakat mehr als nur banale Werbefläche sein kann. Viele der prämierten Arbeiten setzen außerdem auf ein subtiles Spiel mit Typografie. Innovative Ideen finden sich auch im Herstellungsprozess: Der diesjährige Wettbewerb zeigt, dass man Plakate ohne Weiteres im Hightech-Verfahren stricken oder eine thermo-isolierende Rettungsdecke als Trägermaterial für einen Siebdruck verwenden kann.
Kaum ein Medium ist derart auf den Verbrauch hin getaktet und setzt dennoch Trends am Puls der Zeit. „[…] der Plakatgestalter fordert sich immer wieder selbst heraus und erfreut sich an gewonnenen Sinnbildern.“ so Götz Gramlich, Präsident des Vereins 100 Beste Plakate e. V., und er postuliert: „Ein gutes Plakat entfaltet sich im Kopf des Betrachters.“
Aus über 1 800 eingereichten Einzelplakaten, zusammengesetzt aus Auftragsarbeiten, selbst initiierten Plakaten/Eigenwerbungen sowie studentischen Projektaufträgen aus Deutschland, Österreich und der Schweiz, prämierte die international besetzte Fachjury, bestehend aus Richard van der Laken (Amsterdam, Vorsitz), Christof Nardin (Wien), Jiri Oplatek (Basel), Nicolaus Ott (Berlin) und Ariane Spanier (Berlin), die 100 Siegerplakate des Jahres 2014.
Am Wettbewerb hatten sich 575 EinreicherInnen beteiligt, davon 48 aus Österreich, 128 aus der Schweiz und 399 aus Deutschland. Spitzenreiter unter den prämierten 100 Besten ist die Schweiz mit 51 Siegerprojekten, gefolgt von 44 deutschen und 5 österreichischen Beiträgen.
Der von sensomatic design (Christine Zmölnig und Florian Koch, Wien) gestaltete Katalog bietet neben den Abbildungen aller Siegerplakate und den Kontakten zu den GestalterInnen auch dieses Jahr einen bestechenden Aufsatz von Thomas Friedrich: Zur Dialektik von Bild und Text im Plakat heute. In pointierter Form geht er auf die Kontextualität von Plakaten ein und erklärt das Thema witzig und bildhaft anhand eines Plakats für einen Stierkampf. Mehr dazu im Katalog!
Für das Corporate Design des diesjährigen Wettbewerbs und die neuen Web-Visuals zeichnet ebenfalls sensomatic design, Wien, verantwortlich. Seit Juni 2014 bietet das neue Online-Archiv auf der Homepage der 100 Beste Plakate e. V. einen umfassenden Überblick aller prämierten Arbeiten aus den Jahren 2001 bis 2014.
Die Ausstellung findet in Kooperation mit 100 Beste Plakate e. V. statt.
100-beste-plakate.de
Kurator: Peter Klinger, Stellvertretende Leitung MAK-Bibliothek und Kunstblättersammlung
Delvendahl Martin Architects’ installation for Moss Bross explores the possibilities of the windows by distorting the perception of depth and perspective as viewed from the street. This is achieved by using hundreds of cotton strings to stitch the edges of the window space to form a series of seemingly floating voids, where the three main strands of Moss Bros products arebe displayed. The material expression of the cotton strings recall the raw materials of garments, the loom-based manufacturing process of cloth, and the craftsmanship of the Moss Bespoke service.
Photography (c) Agnese Sanvito
It is an elearning course template developed in Articulate Engage - a Rapid elearning tool. This screenshot illustrates Process that explains the process/procedure in a step wise format. Recommended for production or manufacturing processes.
From the planting of the seed to the end of the manufacturing process, Portuguese cork makes for authentic, high quality and eco-efficient cork products that are created with true craftsmanship and care.
Raw synthetic graphite contains 15 to 20 % of porosities. Process equipment graphite needs to be impervious and corrosion resistant. This can be achieved by thoroughly impregnating beforehand cut-to-size blocks with phenolic resin. Synthetic graphite blocks are first dried up, then put into large pressure vessels. Vacuum is first applied to remove the remaining traces of moisture, then liquid phenolic resin is introduced into the vessel and pressure is applied for several days. Once the impregnation is complete, the blocks are cured at a temperature above 165 degree Celsius or 330 degree Fahrenheit. The blocks obtained are then totally impervious and therefore suitable for the construction of chemical process equipment. The phenolic resin impregnated graphite blocks can be machined to manufacture heat exchangers elements or parts. More... www.gab-neumann.com/Impervious-graphite-manufacturing-pro...
EXHIBITION
100 Best Posters 14
GERMANY, AUSTRIA, SWITZERLAND
MI, MO 11/11/2015, 03/28/2016
MAK Art Print Hall
Already for the tenth time, the MAK in the exhibition 100 Best Posters 14. Germany Austria Switzerland shows the hundred most compelling design concepts in the probably hottest medium of visual everyday culture: the poster. The current winning projects of the popular graphic design competition are characterized by an enigmatic pictural humor, explosive colors as well as precise designs and demonstrate impressively that a poster can be more than just an banal advertising space. Many of the award-winning works furthermore also rely on a subtle play with typography. Innovative ideas can also be found in the manufacturing process: This year's competition shows that you can readily knit posters in high-tech process or use a thermo-insulating space blanket as carrier material for screen printing.
Hardly any medium is such clocked on the consumption and nevertheless sets trends at the cutting edge. "[...] The poster designer challenges himself repeatedly and enjoys himself at gained symbols." Says Götz Gramlich, President of the association 100 Best Posters eV, and he postulats. "A good poster unfolds in the mind of the beholder."
From over 1 800 submitted individual posters, composed of contract work, self-initiated posters/self-promotion as well as student project orders from Germany, Austria and Switzerland, awarded the international jury, consisting of Richard van der Laken (Amsterdam, Chairman), Christof Nardin (Wien), Jiri Oplatek (Basel), Nicolaus Ott (Berlin) and Ariane Spanier (Berlin), the 100 winning posters of the year 2014.
In the competition participated 575 submitters (men and women), of which 48 are from Austria, 128 from Switzerland and 399 from Germany. The leader among the winning 100 best is Switzerland with 51 winning projects, followed by 44 German and 5 Austrian contributions.
The by sensomatic design (Christine Zmölnig and Florian Koch, Vienna) designed catalog offers in addition to the illustrations of all the winning posters and the contacts with the designers also this year a captivating essay by Thomas Friedrich: On the dialectics of image and text in the poster today. In a concise way, he looks at the contextuality of posters and explains the theme facetiously and pictorially based on a poster for a bullfight. Read more in the catalog!
For the corporate design of this year's competition and the new Web Visuals also sensomatic design, Vienna, is responsible. Since June 2014, the new online archive on the homepage of the 100 Best Posters Registered Association offers a comprehensive overview of all award-winning works from the years 2001-2014.
The exhibition takes place in cooperation with 100 Best Posters e. V.
100-beste-plakate.de
Curator Peter Klinger, Deputy Head of the MAK Library and Works on Paper Collection
AUSSTELLUNG
100 Beste Plakate 14
DEUTSCHLAND ÖSTERREICH SCHWEIZ
MI, 11.11.2015–MO, 28.03.2016
MAK-KUNSTBLÄTTERSAAL
Bereits zum zehnten Mal zeigt das MAK in der Ausstellung 100 BESTE PLAKATE 14. Deutschland Österreich Schweiz die einhundert überzeugendsten Gestaltungskonzepte im wohl heißesten Medium der visuellen Alltagskultur: dem Plakat. Die aktuellen Siegerprojekte des beliebten Grafikdesignwettbewerbs bestechen mit hintergründigem Bildwitz, explosiver Farbgebung sowie exakten Ausführungen und demonstrieren eindrücklich, dass ein Plakat mehr als nur banale Werbefläche sein kann. Viele der prämierten Arbeiten setzen außerdem auf ein subtiles Spiel mit Typografie. Innovative Ideen finden sich auch im Herstellungsprozess: Der diesjährige Wettbewerb zeigt, dass man Plakate ohne Weiteres im Hightech-Verfahren stricken oder eine thermo-isolierende Rettungsdecke als Trägermaterial für einen Siebdruck verwenden kann.
Kaum ein Medium ist derart auf den Verbrauch hin getaktet und setzt dennoch Trends am Puls der Zeit. „[…] der Plakatgestalter fordert sich immer wieder selbst heraus und erfreut sich an gewonnenen Sinnbildern.“ so Götz Gramlich, Präsident des Vereins 100 Beste Plakate e. V., und er postuliert: „Ein gutes Plakat entfaltet sich im Kopf des Betrachters.“
Aus über 1 800 eingereichten Einzelplakaten, zusammengesetzt aus Auftragsarbeiten, selbst initiierten Plakaten/Eigenwerbungen sowie studentischen Projektaufträgen aus Deutschland, Österreich und der Schweiz, prämierte die international besetzte Fachjury, bestehend aus Richard van der Laken (Amsterdam, Vorsitz), Christof Nardin (Wien), Jiri Oplatek (Basel), Nicolaus Ott (Berlin) und Ariane Spanier (Berlin), die 100 Siegerplakate des Jahres 2014.
Am Wettbewerb hatten sich 575 EinreicherInnen beteiligt, davon 48 aus Österreich, 128 aus der Schweiz und 399 aus Deutschland. Spitzenreiter unter den prämierten 100 Besten ist die Schweiz mit 51 Siegerprojekten, gefolgt von 44 deutschen und 5 österreichischen Beiträgen.
Der von sensomatic design (Christine Zmölnig und Florian Koch, Wien) gestaltete Katalog bietet neben den Abbildungen aller Siegerplakate und den Kontakten zu den GestalterInnen auch dieses Jahr einen bestechenden Aufsatz von Thomas Friedrich: Zur Dialektik von Bild und Text im Plakat heute. In pointierter Form geht er auf die Kontextualität von Plakaten ein und erklärt das Thema witzig und bildhaft anhand eines Plakats für einen Stierkampf. Mehr dazu im Katalog!
Für das Corporate Design des diesjährigen Wettbewerbs und die neuen Web-Visuals zeichnet ebenfalls sensomatic design, Wien, verantwortlich. Seit Juni 2014 bietet das neue Online-Archiv auf der Homepage der 100 Beste Plakate e. V. einen umfassenden Überblick aller prämierten Arbeiten aus den Jahren 2001 bis 2014.
Die Ausstellung findet in Kooperation mit 100 Beste Plakate e. V. statt.
100-beste-plakate.de
Kurator: Peter Klinger, Stellvertretende Leitung MAK-Bibliothek und Kunstblättersammlung
John Allison is William F. Hosford Professor of Materials Science and Engineering at the University of Michigan and a National Academy of Engineering member.
His major research interest is in understanding the inter-relationships between processing, alloying, microstructure and properties in metallic materials – and in incorporating this knowledge into computational tools for use in research, education and engineering. An important part of his research is development of Integrated Computational Materials Engineering (ICME) tools – and thus collaborations with other computational and experimental groups are an essential element of my work. Central to my research are investigations on the evolution of microstructures - current examples include precipitate evolution, recrystallization and grain growth and texture development in magnesium, aluminum and titanium alloys. He is also interested in mechanical behavior of these materials, with an emphasis on development of mechanistic and phenomenological understanding of the influence of microstructure on properties such as strength, ductility and fatigue resistance.
Allison comes to the University from Ford Motor Company, where he was a senior technical leader in the Research and Advanced Engineering organization. Over the twenty seven years of his tenure at Ford, he led teams developing integrated computational materials engineering, or ICME, methods. He helped develop advanced computer software that simulates manufacturing processes and predicts the influence of the manufacturing process on material properties. The output of these models is then coupled with product performance models to predict how manufactured components will behave during service.
July 11, 2023.
Photo by Marcin Szczepanski/Lead Multimedia Storyteller, Michigan Engineering
HX Electronic Technology Co.Ltd is a professional PCB Assembly manufacturer. We are specialized in Electronic Manufacturing Service in the European market and the US market for more than 10 years. We can provide one-stop printed circuit board service, including PCB fabrication, component sourcing, SMT and THT. HX Technology provides one-stop PCB assembly service for more than 14 years. As a professional supplier of PCBA boards, we are committed to providing high-quality PCB boards. We specialize in small and medium batch production, and HX Technology is equipped with advanced machinery and professional staff. We promise that customer needs will be quickly responded in our company. Product manufacturing follow-up is more professional. Quality control is more refined. After-sales service is more intimate. Our printed circuit board assembly services are widely applied in industrial controllers, medical equipment, telecom devices, environmental protecting equipment, instruments and meters, security system, smart electronic devices, vehicle electronic devices and so on.
PCBA Technology Development
Vigorous development of high-density interconnection technology: HDI concentrates on the most advanced technology of contemporary PCB, which brings fine wire and tiny aperture to PCB.
Strong vitality of component embedding technology: component embedding technology is a huge change in PCB functional integrated circuits. PCB manufacturers have to invest more resources in the system, including design, equipment, testing, simulation, to maintain a strong vitality.
PCB materials that meet international standards: high heat resistance, high glass transition temperature (Tg), low coefficient of thermal expansion, and small dielectric constant.
Optoelectronic PCB has a promising future: PCBA technology uses the optical path layer and circuit layer to transmit signals, and the key to this new technology is the manufacture of the optical path layer (optical waveguide layer). It is an organic polymer that is formed by using lithographic photocopying, laser ablation, and reactive ion etching.
Update the manufacturing process and introduce advanced production equipment.
What is PCB Assembly Services
PCB assembly (pc board assembly) is one of the most important steps in PCB fabrication which includes all the components of manufacturing the complete PCB. There are two ways to make a pc board assembly; namely, Surface Mount Technique (SMT) and Through-Hole Technique (THT). SMT is a circuit assembly technology in which the pinless or short-lead surface-mounted components (SMC/SMD) are mounted on the surface of a Printed Circuit Board (PCB) or other substrate and assembled by soldering through reflow or dip soldering methods. THT uses leaded components with circuit connection leads and mounting holes designed on the printed board, and establishes long-term mechanical and electrical connections by inserting the component leads into the through-holes reserved on the PCB, temporarily fixing them and then soldering them on the other side of the substrate to form reliable solder joints.
Types of PCB Assembly Service
PCB Assembly
HX Electronic Technology Co.Ltd is devoted to providing one-stop service including PCB fabrication, component sourcing, SMT and THT. If needed, we can also provide assistance with circuit board layout, panel optimization and production design. Our factory is equipped with 6 automatic SMT production lines, 2 THT production lines, 2 assembly lines, a large number of advanced inspection and testing equipment. For our current daily production capacity, we can proceed with 10 million SMT soldering points/day, 2.5 million THT pieces/day and electronics assembly is 5000 units/day.
PCB Fabrication
HX specializes in the production and fabrication of single-sided, double-sided, multi-layer all the way up to 24 layers and aluminium backed printed circuit boards, which use metals like aluminium or copper. We can manufacture Metal backed PCBs with aluminum or copper in different thicknesses, any solder mask color, final profiling of metal backed circuits can be punched, routed, supplied as individual circuits or supplied in a v-cut panel.
PCB Functional Test & Programming
HX Technology provides burning services after customers provide test plans to solve customers' complex circuit or time-consuming problems. Through the PCBA test, we can check the circuit board clearly, such as the circuit continuity, all PCBA board function, observe whether there is failure and welding reliability so on. It will avoid the generation of defective products and technical problems accuracy. Our aim is to pursue 0% complaint on quality. In order to make sure nothing goes wrong, we will carry out strict inspection procedures to ensure the delivery of high-quality products.
PCB Enclosure Assembly
We can do PCB enclosure assembly base on the demands of customers. For example, provide electronics enclosures and wiring. We can also provide customization services to save costs and fasten the lead time for our customers.
Advantages of HX Professional PCB Assembly Service
HX-Technology focuses on exploring the SMT patch and post-welding, world, and testing one-stop service for proofing and demonstration.
SMT production lines: 10 SMT production lines.
High-end equipment: FUJI XPF, NXT3, AIMEX III, AOI/SPI/XRAY/smart first piece tester, etc.
Full BOM material supply: RC/magnetic bead inductance/connector/vibration/two transistors and other spare parts in the warehouse.
Fast delivery: customers deliver within 8 hours, and the delivery rate exceeds 95% within 48 hours.
Minimum placement: 03015, 01005, 0201, 0402.
Accompanying hardware innovation platform: design, board manufacturing, patch PCB, component supply.
PCBA OEM services are available.
FAQs of PCB Assembly Service
What is PCBA manufacturing?
The PCB bare board passes through the SMT patch, and then passes through the entire process of the THT plug-in, referred to as PCBA.
SMT (Surface Mount Technology). It is an assembly technology that mounts surface mount components onto PCB bare board.
THT (Through Hole Technology). It is a through-hole insertion installation technology.
What is PCB assembly?
PCB assembly refers to the assembly of various electronic components on the circuit board through the surface packaging process, that is to say, the empty PCB board passes through the SMT upper part, and then passes through the entire manufacturing process of the THT plug-in.
How much does PCB assembly cost?
PCB assembly cost usually consists of four parts. The cost of components, the cost of tooling, the cost of PCB bare board, and the cost of assembly service. For the same project the second order, the tooling cost is not needed. We ship the goods by DHL or FedEx which entails the shipping cost, if our clients provide their delivery account, then this cost is also deleted.
What is PCB assembly process?
We have high-quality control system and cost control system; components are original binding and sourcing traceable. Quick-response customer support and professional logistical management to meet your demands.
What is a PCB assembler?
First of all, bought all materials including PCB bare board, components, stencil according to customer needs, process the EQ stage and Weld the components on PCB board such as SMD &THT.