View allAll Photos Tagged Manufacturing_process
✈️Aircraft: Boeing 787-9 Dreamliner
💺Airline: Air Canada
Photographer: @SpotterYYZ
📍Toronto, Canada
➖➖➖➖➖➖➖➖➖➖➖➖➖➖
❌Don't forget to share photos with #SpotterYYZ
➖➖➖➖➖➖➖➖➖➖➖➖➖➖
📚History: Thirty years after introducing carbon brakes on commercial jets, and now the market leader, Safran Landing Systems brings electric brake technology to airframers and airlines alike. Electric brakes are now available on the Boeing 787 Dreamliner.
Advantages of electric brakes->
"Plug and Play": because electricity replaces traditional hydraulic lines, electric brakes are easier to install and maintain.
"Smart" features to facilitate airline operations: continuous, real-time measurement of carbon disk wear, readings displayed in the cockpit, etc.
Greener technologies->
Messier-Bugatti-Dowty is fully committed to the production of environmentally-responsible wheels and brakes, including:
- reduced CO2 emissions and fuel savings, thanks to weight optimization of up to 141 lbs (64Kgs) per 787-8 aircraft and 244 lbs (111Kgs) per 787-9 aircraft.
- the system itself, which is 100% cadmium-free, chromium-free, beryllium-free (silicon bronze brake bushings) and asbestos-free (stainless steel or titanium insulation);
- the production process for wheels and brakes: solvent-free (water-based paint topcoat, low-volatile organic compound primer), no chlorofluorocarbons or halons used anywhere in the manufacturing process, including by suppliers.
➖➖➖➖➖➖➖➖➖➖➖➖➖➖
The current Prim range.
On September 26, 2008 my family and I were privileged to spend the day in the beautiful town of Nové Mesto nad Metují in the east of the Czech Republic, close to the Polish border. Our host was Mr. Jan Prokop, Marketing Director (and principal designer) at the ELTON hodinárská, a.s. - the manufacturers of fine bespoke Prim wristwatches.
Mr. Prokop collected us from our hotel in Prague, drove us to Nové Mesto nad Metují and back (a round trip of three hours), presented their current product range, guided us through their interesting museum, and led us on a tour of the full manufacturing operation at Prim. This was a fantastic opportunity, and we got to see everything from the manufacturing of cases, dials, hesatite crystals and hands through to the final assembly process. We also saw great examples of their bespoke manufacturing capability as well as their top class restoration service. Mr Prokop ended a fine day with a meal and good local beer in a restaurant on the old town square.
Six weeks after our visit I sent my prized Prim Sport "Igen" 38 (produced in the 60's and early-70's) to ELTON where it is currently being restored and modernised to my specification, as well as being personalised. I can't wait to get it back - my first bespoke wristwatch and an heirloom to pass on to my son!
Although obviously sensitive about certain parts of their operation, Mr. Prokop graciously allowed me to take many photographs during our visit, and here they are for your viewing pleasure. As you will see, these are truly hand-made watches that combine both leading edge design and manufacturing processes and age-old processes and technologies. It is this progressive traditionalism and craftsmanship that gives these unique timepieces their individual character...and I love them!
A beautiful Prim Sport "Igen" 38 being rebuilt in the watch restoration and assembly room at Prim.
On September 26, 2008 my family and I were privileged to spend the day in the beautiful town of Nové Mesto nad Metují in the east of the Czech Republic, close to the Polish border. Our host was Mr. Jan Prokop, Marketing Director (and principal designer) at the ELTON hodinárská, a.s. - the manufacturers of fine bespoke Prim wristwatches.
Mr. Prokop collected us from our hotel in Prague, drove us to Nové Mesto nad Metují and back (a round trip of three hours), presented their current product range, guided us through their interesting museum, and led us on a tour of the full manufacturing operation at Prim. This was a fantastic opportunity, and we got to see everything from the manufacturing of cases, dials, hesatite crystals and hands through to the final assembly process. We also saw great examples of their bespoke manufacturing capability as well as their top class restoration service. Mr Prokop ended a fine day with a meal and good local beer in a restaurant on the old town square.
Six weeks after our visit I sent my prized Prim Sport "Igen" 38 (produced in the 60's and early-70's) to ELTON where it is currently being restored and modernised to my specification, as well as being personalised. I can't wait to get it back - my first bespoke wristwatch and an heirloom to pass on to my son!
Although obviously sensitive about certain parts of their operation, Mr. Prokop graciously allowed me to take many photographs during our visit, and here they are for your viewing pleasure. As you will see, these are truly hand-made watches that combine both leading edge design and manufacturing processes and age-old processes and technologies. It is this progressive traditionalism and craftsmanship that gives these unique timepieces their individual character...and I love them!
EXHIBITION
100 Best Posters 14
GERMANY, AUSTRIA, SWITZERLAND
MI, MO 11/11/2015, 03/28/2016
MAK Art Print Hall
Already for the tenth time, the MAK in the exhibition 100 Best Posters 14. Germany Austria Switzerland shows the hundred most compelling design concepts in the probably hottest medium of visual everyday culture: the poster. The current winning projects of the popular graphic design competition are characterized by an enigmatic pictural humor, explosive colors as well as precise designs and demonstrate impressively that a poster can be more than just an banal advertising space. Many of the award-winning works furthermore also rely on a subtle play with typography. Innovative ideas can also be found in the manufacturing process: This year's competition shows that you can readily knit posters in high-tech process or use a thermo-insulating space blanket as carrier material for screen printing.
Hardly any medium is such clocked on the consumption and nevertheless sets trends at the cutting edge. "[...] The poster designer challenges himself repeatedly and enjoys himself at gained symbols." Says Götz Gramlich, President of the association 100 Best Posters eV, and he postulats. "A good poster unfolds in the mind of the beholder."
From over 1 800 submitted individual posters, composed of contract work, self-initiated posters/self-promotion as well as student project orders from Germany, Austria and Switzerland, awarded the international jury, consisting of Richard van der Laken (Amsterdam, Chairman), Christof Nardin (Wien), Jiri Oplatek (Basel), Nicolaus Ott (Berlin) and Ariane Spanier (Berlin), the 100 winning posters of the year 2014.
In the competition participated 575 submitters (men and women), of which 48 are from Austria, 128 from Switzerland and 399 from Germany. The leader among the winning 100 best is Switzerland with 51 winning projects, followed by 44 German and 5 Austrian contributions.
The by sensomatic design (Christine Zmölnig and Florian Koch, Vienna) designed catalog offers in addition to the illustrations of all the winning posters and the contacts with the designers also this year a captivating essay by Thomas Friedrich: On the dialectics of image and text in the poster today. In a concise way, he looks at the contextuality of posters and explains the theme facetiously and pictorially based on a poster for a bullfight. Read more in the catalog!
For the corporate design of this year's competition and the new Web Visuals also sensomatic design, Vienna, is responsible. Since June 2014, the new online archive on the homepage of the 100 Best Posters Registered Association offers a comprehensive overview of all award-winning works from the years 2001-2014.
The exhibition takes place in cooperation with 100 Best Posters e. V.
100-beste-plakate.de
Curator Peter Klinger, Deputy Head of the MAK Library and Works on Paper Collection
AUSSTELLUNG
100 Beste Plakate 14
DEUTSCHLAND ÖSTERREICH SCHWEIZ
MI, 11.11.2015–MO, 28.03.2016
MAK-KUNSTBLÄTTERSAAL
Bereits zum zehnten Mal zeigt das MAK in der Ausstellung 100 BESTE PLAKATE 14. Deutschland Österreich Schweiz die einhundert überzeugendsten Gestaltungskonzepte im wohl heißesten Medium der visuellen Alltagskultur: dem Plakat. Die aktuellen Siegerprojekte des beliebten Grafikdesignwettbewerbs bestechen mit hintergründigem Bildwitz, explosiver Farbgebung sowie exakten Ausführungen und demonstrieren eindrücklich, dass ein Plakat mehr als nur banale Werbefläche sein kann. Viele der prämierten Arbeiten setzen außerdem auf ein subtiles Spiel mit Typografie. Innovative Ideen finden sich auch im Herstellungsprozess: Der diesjährige Wettbewerb zeigt, dass man Plakate ohne Weiteres im Hightech-Verfahren stricken oder eine thermo-isolierende Rettungsdecke als Trägermaterial für einen Siebdruck verwenden kann.
Kaum ein Medium ist derart auf den Verbrauch hin getaktet und setzt dennoch Trends am Puls der Zeit. „[…] der Plakatgestalter fordert sich immer wieder selbst heraus und erfreut sich an gewonnenen Sinnbildern.“ so Götz Gramlich, Präsident des Vereins 100 Beste Plakate e. V., und er postuliert: „Ein gutes Plakat entfaltet sich im Kopf des Betrachters.“
Aus über 1 800 eingereichten Einzelplakaten, zusammengesetzt aus Auftragsarbeiten, selbst initiierten Plakaten/Eigenwerbungen sowie studentischen Projektaufträgen aus Deutschland, Österreich und der Schweiz, prämierte die international besetzte Fachjury, bestehend aus Richard van der Laken (Amsterdam, Vorsitz), Christof Nardin (Wien), Jiri Oplatek (Basel), Nicolaus Ott (Berlin) und Ariane Spanier (Berlin), die 100 Siegerplakate des Jahres 2014.
Am Wettbewerb hatten sich 575 EinreicherInnen beteiligt, davon 48 aus Österreich, 128 aus der Schweiz und 399 aus Deutschland. Spitzenreiter unter den prämierten 100 Besten ist die Schweiz mit 51 Siegerprojekten, gefolgt von 44 deutschen und 5 österreichischen Beiträgen.
Der von sensomatic design (Christine Zmölnig und Florian Koch, Wien) gestaltete Katalog bietet neben den Abbildungen aller Siegerplakate und den Kontakten zu den GestalterInnen auch dieses Jahr einen bestechenden Aufsatz von Thomas Friedrich: Zur Dialektik von Bild und Text im Plakat heute. In pointierter Form geht er auf die Kontextualität von Plakaten ein und erklärt das Thema witzig und bildhaft anhand eines Plakats für einen Stierkampf. Mehr dazu im Katalog!
Für das Corporate Design des diesjährigen Wettbewerbs und die neuen Web-Visuals zeichnet ebenfalls sensomatic design, Wien, verantwortlich. Seit Juni 2014 bietet das neue Online-Archiv auf der Homepage der 100 Beste Plakate e. V. einen umfassenden Überblick aller prämierten Arbeiten aus den Jahren 2001 bis 2014.
Die Ausstellung findet in Kooperation mit 100 Beste Plakate e. V. statt.
100-beste-plakate.de
Kurator: Peter Klinger, Stellvertretende Leitung MAK-Bibliothek und Kunstblättersammlung
3T RPD created this model of the Berlin Free Library Oval Roof for Foster & Partners using the plastic Additive Manufacturing process. www.3trpd.co.uk
Xci Foil is a high thermal, rigid building insulation composed of a closed cell polyisocyanurate foam core bonded on-line during the manufacturing process to an impermeable foil facing material. It is designed for use in commercial cavity wall applications to provide continuous insulation within the building envelope.
XCI Twitter: twitter.com/HunterXCI
XCI Facebook: www.facebook.com/pages/Hunter-Xci-Exterior-Continuous-Ins...
View more: www.hunterxci.com/
Changyeong Jeong, PhD Candidate in Electrical and Computer Engineering, handles an ultrathin Ag film based OLED inside Professor Jay Guo’s lab at 3537 G.G. Brown on North Campus in Ann Arbor MI on May 5, 2021.
Guo’s group is systematically improving the light power distribution in OLEDs by removing the waveguide mode and optimizing the organic stacks and the ultrathin AG anode. This simple yet effective method leads to significantly enhanced performance of the external quantum efficiency of the OLED.
Jeong and Guo’s solution is not only simple in process but also can achieve high throughput and low cost with excellent compatibility with the large-scale manufacturing process in the display industry. In principle, the modal elimination approach introduced in this work could be extended to other solid-state light emitting diodes (LEDs) such as perovskites, quantum-dots, or III-V based LEDs since all of which are susceptible to the issue of light trapping as waveguide mode.
Photo: Robert Coelius/University of Michigan Engineering, Communications & Marketing
Part of modding your car is making it look good, and looks weren't really a concern when the engineers were designing your ride. It's easy to see that when you open up the hood and it easily looks like a rat's nest. Password knows that looks on the outside don't mean squat if you can't show off what's under the hood. The Password:JDM dry carbon fiber fuse box over-cover for the 2013+ Subaru BRZ / Scion FR-S adheres to your stock fuse box cover and will help clean up the look of your engine bay making your engine stand out, while adding a much needed accent to the scene. Like all of our dry carbon fiber parts that we manufacture, this piece has been precision crafted for a perfect fit and requires no tools or modifications to install. We also use a fade-resistant resin during the manufacturing process which ensures that the part will look as fresh as it did and function as well as the day you bought it.
Note:The Password:JDM Dry Carbon Fiber Fuse Box Over Cover fits over the factory part and is adhered with double side tape.
Features include:
- Perfect dry carbon fitment with structural integrity
- high-heat, fade resistant resin fabrication process
- Extreme lightweight to strength ratio
- Made in the USA
- Badass looks for your BRZ or FR-S engine bay!
Manufacturing process of rich silk sarees in Kanchipuram -
1.Silk thread rolled in those spinners
2.Weaver spinning a patterned saree.
3.Silk thread arranged in a weaving machine.
4.Ready product in the market for selling.
Indian saris come in a mind-boggling variety of textures, colors and designs. Silk saris form an integral part of Indian weddings and celebrations. The rich weave and feel of kanjivaram silk saris hold everyone in their sway. Be it simple contrast border silk sarees or those with gold zari dots and patterns, the kanjivaram silk sari continues to hold pride of place among the various silk sari varieties available in the country.
* one normal medium range silk saree takes almost fifteen days to get ready. All work is done manually and is time consuming.
A selection of our hair accessories made from fabrics rescued from the manufacturing process, sold at Sydney's Paddington Markets.
austin, texas
1977
motorola semiconductor plant
part of an archival project, featuring the photographs of nick dewolf
© the Nick DeWolf Foundation
Image-use requests are welcome via flickrmail or nickdewolfphotoarchive [at] gmail [dot] com
The current Prim range.
On September 26, 2008 my family and I were privileged to spend the day in the beautiful town of Nové Mesto nad Metují in the east of the Czech Republic, close to the Polish border. Our host was Mr. Jan Prokop, Marketing Director (and principal designer) at the ELTON hodinárská, a.s. - the manufacturers of fine bespoke Prim wristwatches.
Mr. Prokop collected us from our hotel in Prague, drove us to Nové Mesto nad Metují and back (a round trip of three hours), presented their current product range, guided us through their interesting museum, and led us on a tour of the full manufacturing operation at Prim. This was a fantastic opportunity, and we got to see everything from the manufacturing of cases, dials, hesatite crystals and hands through to the final assembly process. We also saw great examples of their bespoke manufacturing capability as well as their top class restoration service. Mr Prokop ended a fine day with a meal and good local beer in a restaurant on the old town square.
Six weeks after our visit I sent my prized Prim Sport "Igen" 38 (produced in the 60's and early-70's) to ELTON where it is currently being restored and modernised to my specification, as well as being personalised. I can't wait to get it back - my first bespoke wristwatch and an heirloom to pass on to my son!
Although obviously sensitive about certain parts of their operation, Mr. Prokop graciously allowed me to take many photographs during our visit, and here they are for your viewing pleasure. As you will see, these are truly hand-made watches that combine both leading edge design and manufacturing processes and age-old processes and technologies. It is this progressive traditionalism and craftsmanship that gives these unique timepieces their individual character...and I love them!
EXHIBITION
100 Best Posters 14
GERMANY, AUSTRIA, SWITZERLAND
MI, MO 11/11/2015, 03/28/2016
MAK Art Print Hall
Already for the tenth time, the MAK in the exhibition 100 Best Posters 14. Germany Austria Switzerland shows the hundred most compelling design concepts in the probably hottest medium of visual everyday culture: the poster. The current winning projects of the popular graphic design competition are characterized by an enigmatic pictural humor, explosive colors as well as precise designs and demonstrate impressively that a poster can be more than just an banal advertising space. Many of the award-winning works furthermore also rely on a subtle play with typography. Innovative ideas can also be found in the manufacturing process: This year's competition shows that you can readily knit posters in high-tech process or use a thermo-insulating space blanket as carrier material for screen printing.
Hardly any medium is such clocked on the consumption and nevertheless sets trends at the cutting edge. "[...] The poster designer challenges himself repeatedly and enjoys himself at gained symbols." Says Götz Gramlich, President of the association 100 Best Posters eV, and he postulats. "A good poster unfolds in the mind of the beholder."
From over 1 800 submitted individual posters, composed of contract work, self-initiated posters/self-promotion as well as student project orders from Germany, Austria and Switzerland, awarded the international jury, consisting of Richard van der Laken (Amsterdam, Chairman), Christof Nardin (Wien), Jiri Oplatek (Basel), Nicolaus Ott (Berlin) and Ariane Spanier (Berlin), the 100 winning posters of the year 2014.
In the competition participated 575 submitters (men and women), of which 48 are from Austria, 128 from Switzerland and 399 from Germany. The leader among the winning 100 best is Switzerland with 51 winning projects, followed by 44 German and 5 Austrian contributions.
The by sensomatic design (Christine Zmölnig and Florian Koch, Vienna) designed catalog offers in addition to the illustrations of all the winning posters and the contacts with the designers also this year a captivating essay by Thomas Friedrich: On the dialectics of image and text in the poster today. In a concise way, he looks at the contextuality of posters and explains the theme facetiously and pictorially based on a poster for a bullfight. Read more in the catalog!
For the corporate design of this year's competition and the new Web Visuals also sensomatic design, Vienna, is responsible. Since June 2014, the new online archive on the homepage of the 100 Best Posters Registered Association offers a comprehensive overview of all award-winning works from the years 2001-2014.
The exhibition takes place in cooperation with 100 Best Posters e. V.
100-beste-plakate.de
Curator Peter Klinger, Deputy Head of the MAK Library and Works on Paper Collection
AUSSTELLUNG
100 Beste Plakate 14
DEUTSCHLAND ÖSTERREICH SCHWEIZ
MI, 11.11.2015–MO, 28.03.2016
MAK-KUNSTBLÄTTERSAAL
Bereits zum zehnten Mal zeigt das MAK in der Ausstellung 100 BESTE PLAKATE 14. Deutschland Österreich Schweiz die einhundert überzeugendsten Gestaltungskonzepte im wohl heißesten Medium der visuellen Alltagskultur: dem Plakat. Die aktuellen Siegerprojekte des beliebten Grafikdesignwettbewerbs bestechen mit hintergründigem Bildwitz, explosiver Farbgebung sowie exakten Ausführungen und demonstrieren eindrücklich, dass ein Plakat mehr als nur banale Werbefläche sein kann. Viele der prämierten Arbeiten setzen außerdem auf ein subtiles Spiel mit Typografie. Innovative Ideen finden sich auch im Herstellungsprozess: Der diesjährige Wettbewerb zeigt, dass man Plakate ohne Weiteres im Hightech-Verfahren stricken oder eine thermo-isolierende Rettungsdecke als Trägermaterial für einen Siebdruck verwenden kann.
Kaum ein Medium ist derart auf den Verbrauch hin getaktet und setzt dennoch Trends am Puls der Zeit. „[…] der Plakatgestalter fordert sich immer wieder selbst heraus und erfreut sich an gewonnenen Sinnbildern.“ so Götz Gramlich, Präsident des Vereins 100 Beste Plakate e. V., und er postuliert: „Ein gutes Plakat entfaltet sich im Kopf des Betrachters.“
Aus über 1 800 eingereichten Einzelplakaten, zusammengesetzt aus Auftragsarbeiten, selbst initiierten Plakaten/Eigenwerbungen sowie studentischen Projektaufträgen aus Deutschland, Österreich und der Schweiz, prämierte die international besetzte Fachjury, bestehend aus Richard van der Laken (Amsterdam, Vorsitz), Christof Nardin (Wien), Jiri Oplatek (Basel), Nicolaus Ott (Berlin) und Ariane Spanier (Berlin), die 100 Siegerplakate des Jahres 2014.
Am Wettbewerb hatten sich 575 EinreicherInnen beteiligt, davon 48 aus Österreich, 128 aus der Schweiz und 399 aus Deutschland. Spitzenreiter unter den prämierten 100 Besten ist die Schweiz mit 51 Siegerprojekten, gefolgt von 44 deutschen und 5 österreichischen Beiträgen.
Der von sensomatic design (Christine Zmölnig und Florian Koch, Wien) gestaltete Katalog bietet neben den Abbildungen aller Siegerplakate und den Kontakten zu den GestalterInnen auch dieses Jahr einen bestechenden Aufsatz von Thomas Friedrich: Zur Dialektik von Bild und Text im Plakat heute. In pointierter Form geht er auf die Kontextualität von Plakaten ein und erklärt das Thema witzig und bildhaft anhand eines Plakats für einen Stierkampf. Mehr dazu im Katalog!
Für das Corporate Design des diesjährigen Wettbewerbs und die neuen Web-Visuals zeichnet ebenfalls sensomatic design, Wien, verantwortlich. Seit Juni 2014 bietet das neue Online-Archiv auf der Homepage der 100 Beste Plakate e. V. einen umfassenden Überblick aller prämierten Arbeiten aus den Jahren 2001 bis 2014.
Die Ausstellung findet in Kooperation mit 100 Beste Plakate e. V. statt.
100-beste-plakate.de
Kurator: Peter Klinger, Stellvertretende Leitung MAK-Bibliothek und Kunstblättersammlung
austin, texas
1977
motorola semiconductor plant
part of an archival project, featuring the photographs of nick dewolf
© the Nick DeWolf Foundation
Image-use requests are welcome via flickrmail or nickdewolfphotoarchive [at] gmail [dot] com
Paul Ohodnicki, Kevin Byerly - Materials Processing & Power Electronics
NETL fabricates advanced prototype magnetic material components, including inductors, transformers, motors, and sensors, to support multiple NETL research areas in sensors, fuel cells, and electric grid modernization. This discussion will demonstrate varied fabrication equipment used for raw materials, such as amorphous metal ribbons fabricated by external partners and industry, to produce high-value components. Researchers are then able to test the components using specialized electromagnetic testing equipment in order to provide performance characteristics based on the real operating conditions. Further efforts to benchmark commercial magnetic core solutions against the lab's custom fabrication capabilities are continually investigated and reported on in the form of data sheets.
Materials Discovery & Development by Design for CO2 Capture and Advanced Sensors
Advanced energy systems require affordable cutting-edge materials than can withstand high-pressure, high-temperature, corrosive or otherwise harsh service environments. In this laboratory the development of novel, cost effective materials and devices for use in sensing of fossil energy systems to provide cleaner usage and production of fossil fuels will be discussed. The lab places an emphasis on new sensor material technologies integrated with advanced sensing device platforms to allow for operation under harsh environments and enhanced sensor device functionality. Embedded sensors are under development for applications such as monitoring of CO2 migration and groundwater impacts for CO2 sequestration, corrosion monitoring in wellbores and natural gas pipelines, and in situ process control in high-temperature power generation systems such as Solid Oxide Fuel Cells (SOFCs), gas turbines, and combustion systems. The laboratory capabilities are also relevant for other high priority emerging needs within DOE including the Grid Modernization Laboratory Consortium as well as process monitoring and control for advanced manufacturing processes.
Senator Cathy Osten talks with Peter and Monica Obuchowski of XUARE (pronounced “square”), a young entrepreneurial company in
Norwich that designs and installs automated systems, including robotics, to improve manufacturing processes. Xuare has taken advantage of several program Senator Osten has help to champion, including Small Business Express and STEP-Up. (June 17, 2016)
austin, texas
1977
motorola semiconductor plant
part of an archival project, featuring the photographs of nick dewolf
© the Nick DeWolf Foundation
Image-use requests are welcome via flickrmail or nickdewolfphotoarchive [at] gmail [dot] com
Io Aircraft - www.ioaircraft.com
Drew Blair
www.linkedin.com/in/drew-b-25485312/
io aircraft, phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air-Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, defense science, missile defense agency, aerospike,
Advanced Additive Manufacturing for Hypersonic Aircraft
Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.
Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.
*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.
What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.
Unified Turbine Based Combined Cycle (U-TBCC)
To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5
However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.
Enhanced Dynamic Cavitation
Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.
Dynamic Scramjet Ignition Processes
For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.
Hydrogen vs Kerosene Fuel Sources
Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.
Conforming High Pressure Tank Technology for CNG and H2.
As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.
As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).
Enhanced Fuel Mixture During Shock Train Interaction
Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.
Improved Bow Shock Interaction
Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.
6,000+ Fahrenheit Thermal Resistance
To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.
*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope
Scramjet Propulsion Side Wall Cooling
With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.
Lower Threshold for Hypersonic Ignition
Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.
Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities
Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.
Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)
To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.
A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.
SureFlex coax jumpers are manufactured using a patented process that utilizes a 360-degree lead-free solder joint to physically bond the connector to the jumper. This highly controlled manufacturing process produces a premium cable assembly that delivers higher RF performance, consistent reliability and outstanding durability. Each assembly is individually tested and guaranteed for exceptional electrical performance and superior weather resistance. And because SureFlex cable assemblies are pre-manufactured, they arrive on-site ready to go. You save valuable time and potential connection error. The SureFlex process is used on all CommScope cable assemblies and for nearly two decades has been recognized as a leading product for RF performance in the wireless industry. As focus in the industry has moved towards high PIM performance products, so has the SureFlex process with the introduction of new IP in 2013 and the recent release of the industry’s first D-Class (Dynamic PIM) rated cable assembly products. www.commscope.com/top-40-innovations/
At the Cup Noodles Museum, you can learn the secret of cup noodle and even have the opportunity to make one-of-a-kind ramen yourself.
Japanese food company Nissin operates this unique museum for Ramen.
The museum shows the 40 year product history as well as the founder, Mr. Ando Momofuku's creativity, by exhibiting 3,000 kinds of cup noodle packages.
They also recreate Mr. Ando Momofuku's humble research facility.
At "My Cup Noodle Factory," you can make your own cup noodle out of 5,460 soup base / topping combinations.
There is also "Cup Noodles Park", a playground for kids where they can experience the manufacturing process of Cup Noodle.
There is a "Chicken Ramen Factory" where you can make Chicken Ramen by hand, starting with kneading, spreading, and steaming the wheat flour and then drying it with the hot oil drying method. After experiencing the process that led to the invention of the world's first instant ramen, you can take your freshly made ramen with you and enjoy its delicious taste at home.
And of course you can enjoy global varieties of noodles in the contemporarily designed museum restaurant!
austin, texas
1977
motorola semiconductor plant
part of an archival project, featuring the photographs of nick dewolf
© the Nick DeWolf Foundation
Image-use requests are welcome via flickrmail or nickdewolfphotoarchive [at] gmail [dot] com
Hunter XCI Foil product is used in the construction of the new commons building at University of Northwestern Ohio. XCI Foil is a high thermal, rigid building insulation composed of a closed cell polyiso foam core bonded on-line during the manufacturing process to an impermeable foil facing material. It is designed for use in commercial cavity wall applications to provide continuous insulation within the building envelope.
Hunter Xci polyiso products:
- Have the highest R-Value per inch of any insulation
- NFPA 285 TEST - Passed
- Energy Star approved
- Contribute toward LEED certification credits
- HCFC, CFC, zero ODP, and negligable GWP.
XCI Twitter: twitter.com/#!/HunterXCI
XCI Facebook: www.facebook.com/pages/Hunter-Xci-Exterior-Continuous-Ins...
View more: www.hunterxci.com/
These salt lamps come in special shapes, including book salt lamp, cone salt lamp, bamboo wall salt lamp, boot salt lamp and many more. To carve these lamps, first a block of required size is cut from the raw lumps of salt rock, and then a hole is drilled to accommodate the bulb. Duly drilled block then passed over to Machinist who carves the desire shape on the machine. Once finished, the lamp is then fixed with a wooden or onyx base then plastic shrink wrapped and manufacturing process is completed.
We do make custom shapes and designs according to given diagrams, not every design is possible to Craft on the Rock Salt, but we can try to make one of your choice. Any kind of logo or name or diagram in shape of flower or any special characters can be carved on salt
Size: small, large and usb
Colors: Red, Reddish Orange, pink and white salt
Base Polished Wood, marble and Onyx and plastic in usb
Cable: 110,220 volt with on off switch or usb port cable
Packing: shrink wrapping on each lamp ,air bubble packing, 4 ply inner, 7 ply master cartoon
The existing Freeport Community Center & a historic Edward B. Mallett house has been joined by a spacious addition to provide new social services offices, thrift store, teen center, coffee bar & multi-funtion community room. Not only was there a goal to preserve history landmarks....but to obtain serious energy savings!
Hunter XCI Foil product is used in the construction of the renovation & addition of the Freeport Community Center.. XCI Foil is a high thermal, rigid building insulation composed of a closed cell polyiso foam core bonded on-line during the manufacturing process to an impermeable foil facing material. It is designed for use in commercial cavity wall applications to provide continuous insulation within the building envelope.
Hunter Xci polyiso products:
- Have the highest R-Value per inch of any insulation
- NFPA 285 TEST - Passed
- Energy Star approved
- Contribute toward LEED certification credits
- HCFC, CFC, zero ODP, and negligable GWP.
Construction by: Warren Construction
XCI Twitter: twitter.com/#!/HunterXCI
XCI Facebook: www.facebook.com/pages/Hunter-Xci-Exterior-Continuous-Ins...
View more: www.hunterxci.com/
PictionID:52515431 - Catalog:14_028353 - Title:GD/Astronautics Details: OAO Fairings in Manufacturing Process; Building 5 Date: 02/08/1968 - Filename:14_028353.tif - Images from the Convair/General Dynamics Astronautics Atlas Negative Collection. The processing, cataloging and digitization of these images has been made possible by a generous National Historical Publications and Records grant from the National Archives and Records Administration---Please Tag these images so that the information can be permanently stored with the digital file.---Repository: San Diego Air and Space Museum
Io Aircraft - www.ioaircraft.com
Drew Blair
www.linkedin.com/in/drew-b-25485312/
io aircraft, phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air-Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, defense science, missile defense agency, aerospike,
Advanced Additive Manufacturing for Hypersonic Aircraft
Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.
Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.
*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.
What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.
Unified Turbine Based Combined Cycle (U-TBCC)
To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5
However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.
Enhanced Dynamic Cavitation
Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.
Dynamic Scramjet Ignition Processes
For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.
Hydrogen vs Kerosene Fuel Sources
Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.
Conforming High Pressure Tank Technology for CNG and H2.
As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.
As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).
Enhanced Fuel Mixture During Shock Train Interaction
Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.
Improved Bow Shock Interaction
Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.
6,000+ Fahrenheit Thermal Resistance
To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.
*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope
Scramjet Propulsion Side Wall Cooling
With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.
Lower Threshold for Hypersonic Ignition
Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.
Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities
Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.
Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)
To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.
A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.
austin, texas
1977
motorola semiconductor plant
part of an archival project, featuring the photographs of nick dewolf
© the Nick DeWolf Foundation
Image-use requests are welcome via flickrmail or nickdewolfphotoarchive [at] gmail [dot] com
Museu del Disseny / Design Museum Barcelona, Spain
The Museu del Disseny de Barcelona brings together, under one roof, the collections of the Museu de les Arts Decoratives, the Museu de Ceràmica, the Museu Tèxtil i d'Indumentària and the Gabinet de les Arts Gràfiques, to showcase its vast heritage of more than 70,000 objects.
The Museu del Disseny is based on a common theme «From the decorative arts to design», and is dedicated to the culture of the object, focusing on pieces that are often from the everyday sphere, their design, manufacturing process, use and distribution, aesthetic and functional obsolescence, all from a 21st-century perspective.
The Disseny Hub Barcelona building was designed by MBM architects. The building comprises two parts: an underground section made possible by the change in level caused by the redevelopment of the square; and a block at street level, which cantilevers out towards the Plaça de les Glòries, 14.5 metres above the ground. This block houses the venues for long- and short-term temporary exhibitions, as well as a hall for events and a large auditorium. Most of the building's floor space is located below this level and houses key areas such as the main exhibition gallery, the documentation centre, research rooms, the bar and restaurant and the shop. The entire project complies with high environmental quality and sustainability standards which are achieved through a large-scale, self-sufficient energy system.
John Allison is William F. Hosford Professor of Materials Science and Engineering at the University of Michigan and a National Academy of Engineering member.
His major research interest is in understanding the inter-relationships between processing, alloying, microstructure and properties in metallic materials – and in incorporating this knowledge into computational tools for use in research, education and engineering. An important part of his research is development of Integrated Computational Materials Engineering (ICME) tools – and thus collaborations with other computational and experimental groups are an essential element of my work. Central to my research are investigations on the evolution of microstructures - current examples include precipitate evolution, recrystallization and grain growth and texture development in magnesium, aluminum and titanium alloys. He is also interested in mechanical behavior of these materials, with an emphasis on development of mechanistic and phenomenological understanding of the influence of microstructure on properties such as strength, ductility and fatigue resistance.
Allison comes to the University from Ford Motor Company, where he was a senior technical leader in the Research and Advanced Engineering organization. Over the twenty seven years of his tenure at Ford, he led teams developing integrated computational materials engineering, or ICME, methods. He helped develop advanced computer software that simulates manufacturing processes and predicts the influence of the manufacturing process on material properties. The output of these models is then coupled with product performance models to predict how manufactured components will behave during service.
July 11, 2023.
Photo by Marcin Szczepanski/Lead Multimedia Storyteller, Michigan Engineering
austin, texas
1977
motorola semiconductor plant
part of an archival project, featuring the photographs of nick dewolf
© the Nick DeWolf Foundation
Image-use requests are welcome via flickrmail or nickdewolfphotoarchive [at] gmail [dot] com
Part of modding your car is making it look good, and looks weren't really a concern when the engineers were designing your ride. It's easy to see that when you open up the hood and it easily looks like a rat's nest. Password knows that looks on the outside don't mean squat if you can't show off what's under the hood. The Password:JDM dry carbon fiber fuse box over-cover for the 2013+ Subaru BRZ / Scion FR-S adheres to your stock fuse box cover and will help clean up the look of your engine bay making your engine stand out, while adding a much needed accent to the scene. Like all of our dry carbon fiber parts that we manufacture, this piece has been precision crafted for a perfect fit and requires no tools or modifications to install. We also use a fade-resistant resin during the manufacturing process which ensures that the part will look as fresh as it did and function as well as the day you bought it.
Note:The Password:JDM Dry Carbon Fiber Fuse Box Over Cover fits over the factory part and is adhered with double side tape.
Features include:
- Perfect dry carbon fitment with structural integrity
- high-heat, fade resistant resin fabrication process
- Extreme lightweight to strength ratio
- Made in the USA
- Badass looks for your BRZ or FR-S engine bay!
Mascots with complex shapes and textures like Bobo can be replicated with high detail thanks to modern inflatable manufacturing processes.
Consider:
The trashcan, what it's made of and what it contains.
Recycling as an industry:
One impetus behind recycling is that idea that the reclamation of certain materials is cheaper, or just as useful as sending the raw materials through the manufacturing process.
A good example of this is scrap metal industry.
In order to extract copper and aluminum from ore requires a large amount of electricity, not to mention the fuel used to mine and ship the ore to a smelter. Thus recycling the metals proves to be economical, it is a money making endeavor.
Over the last five years copper prices have fluctuated between .70 cents per pound and the current price of $4.10 per pound. In fact, the price for all recycled metals has increased drastically as a result of economic expansion in China and India.
Compare this to the recycling of glass. Glass containers are made from silicon (sand) melted to high temperatures and formed around molds. Sand is very cheap. So the net gain of taking existing glass bottles, crushing and melting them to be remade into containers is negligible.
Also notice the historic bluestone walkway. Much of the sidewalks in Brooklyn are made of a sedimentary rock known as bluestone. Interested readers can access an article: query.nytimes.com/gst/fullpage.html?res=9B00E6D9123DF933A... dealing with the restoration of Brooklyn's sidewalks using this unique material and the conflicts surrounding it.
How long will these trashcans last? It takes 20 years for a plastic bag to decompose, it takes 250 years for a plastic cup. Of course a trashcan is being used heavily and slowly worn away. Will the can itself be recycled? Or will it just be thrown into a garbage truck and taken to a landfill.
Anonymous picture in an article by Sakaki Yoshinobu (榊由信) in the May 1953 issue of Shashin Kōgyō (写真工業).
Document owned and scanned by Rebollo_fr. It is in public domain, as are all anonymous documents published in Japan more than fifty years ago.
See also the Camera-wiki page about the Elmoflex.
iPlay V1
Our design had to be cheap to manufacture, with minimal manufacture processes and a low overall cost. Keeping this in mind I sketched my basic idea and then rendered it. After exporting the DXF files I lasercut them and had my first prototype.
There is an everlasting debate amongst gamers as to which console and controller is the best. I found that the PS3 controller was the most popular second being Xbox 360. The PS3 controller is symettrical unlike the Xbox controller and is so ergonomoic you can often forget you are holding it.
I illustrated the PS3 controller outline to kickstart the CAD process. My design consists of 3 layers of 5mm acrylic creating an iphone cavity depth of 10mm (iPhone 4 has a thickness of 9.3mm) and an overall thickness of 15mm. The structure would be held together with tight fit acrylic rods. I need to carry out test pieces on 2.99+-0.1mm radii to decide what are the best dimensions to use for these slots bearing in mind the lasercutter burns away material.
The whole in the bottom layer is so the device can be pushed out from the case after use.
V2
I asked some students to test the V1 prototype. They liked the product especially its simplicity. There were points that I could develop and improve.
Not all iPhone games auto orientate, hence it was essential I adapted my design so the phone could be rotated 180 degress. This would be easy by simply duplicating the button slots.
In addition to this there was no camera hole. If I were to introduce a camera holeto the design it would have to be duplicated 180 degrees to ensure photos could be taken no matter what orientation the iPhone was.
Taking this on board I designed and manufactured iPlay V2. Although acrylic rod would create a tight fit, 4 drops of dichloromethane would chemically weld the components together for a long lasting permanent fit. After this I used a buffing wheel to create round edges making the product more ergonomic to hold.
V3
Once again I asked some students for feedback on my prototype. They were impressed with how I addressed the previous issues. The only negative point raised was that it would not fit in your pocket. This was the next challenge I faced.
I considered hinging the lower two arms and making them lock into the back of the case. However this would make the design more complex and increase cost and manufacturing processes.
I moved the top pair of holes further up to better distribute the stress. I decided to split the product in half. My V3 model has alternating layers this creates cavities that allow it to be locked together together when not in use as photographed. This would easily fit in you pocket.
The problem the alternating layers created is a less ergonomic shape. Secondly there was nothing holding the two half together when placed on the phone.
In my V4 model I introduced a rubber band which kept the two half together when on the phone. It would also prevent one half form being lost. This created a new problem; the top half of the rubber band would not always line up as there was nothing guiding it. This was my next problem to solve.
V4
My final model would be made from acrylic but I was not going to buff it as that would add a manufacture process and would siginificanty increase the manufacture time. Since I was already using the laser cutter for cutting my components I thought I may aswell engrave some sort of graphics onto the top layer. I decided to remove the gaps in between the layers to make it better to hold and to remodel the rubberband tracks.
V5
I solved the problem of the inconvenient rubber band with two more locating rods on the top. These extra rods would keep the rubber band guided along the correct track. I made a MDF prototype to test my idea and it worked successfully even with coffee stirrers replicating the acrylic rod.
Satisfied with my idea I finally created an acrylic version. This required a bit more thought than previously as I had to accomodate for the thick rubber band. I decided to use 3mm acrylic instead of 5mm to create a thinner profile. This meant I needed a total of 5 layers to accomodate an iPhone 4.
Since I was already using a lasercutter and I wanted the product to appeal to gamers I decided to engrave some patterns. I was going to use a translucent coloured acrylic for the bottom layer and adjust the design so that it covers the camera and flash. This way the case will act as a camera filter and the flash/torch will produce coloured light.
Now that the product was split into halfs the individual components were so small that cutting a single iPlay V5 uses less than an A4 sized amount of 3mm acrylic (the 2D Design screenshot has an A3 page layout). This also meant that it would fit both an iPhone 4 & 5 as the rubber can stretch to accomodate for an iPhone 5. Apart from the height of the iPhone 5 the dimensions are very similair to those of the 4.
I am very pleased with the final product and getting through to the next stage with KFDS. If I were to develop the product further I would find a way to lock the two halves together when not on the phone. This could be done like a jigsaw puzzle or by manipulating the rods into a dowel joint.
W.A.S Benson Lamps and hollow ware
In 1880 having been taught the use of simple lathes and machinery by his uncle,
and encouraged by William Morris, William Arthur Smith Benson began metalwork production
in Fulham, London. As his business grew Benson closely followed developments in technology, mastering all the processes of casting, turning, folding and riveting many variations of interchangeable components. He opened a showroom in Bond Street in 1887 displaying
light fittings, fireplace accessories, plant stands and hollow-ware, in silver, copper, brass,
iron and polished steel, patenting many of his popular designs to protect them from the
array of sub-standard copies that flooded the market.
WAS Benson was at the forefront of electric installation in homes all over Britain, advising on suitable lighting schemes and installation. In 1893 he electrified Philip Webb’s latest architectural commission, Standen, near East Grinstead, Sussex, now owned by the National Trust.
His metalwork and lighting designs reached iconic status, sold in galleries throughout Europe,
and in 1896 when William Morris died it was Benson with a colleague who bought Morris & Co and ran it alongside his own company until he resigned in 1917.
Benson attracted much acclaim for his metalwork designs and manufacturing processes.
The Studio Magazine of Decorative Arts, The Magazine of Art, and Herman Muthesius in
Das Englische Haus, were among the many who applauded his innovations.
Delvendahl Martin Architects’ installation for Moss Bross explores the possibilities of the windows by distorting the perception of depth and perspective as viewed from the street. This is achieved by using hundreds of cotton strings to stitch the edges of the window space to form a series of seemingly floating voids, where the three main strands of Moss Bros products arebe displayed. The material expression of the cotton strings recall the raw materials of garments, the loom-based manufacturing process of cloth, and the craftsmanship of the Moss Bespoke service.
Photography (c) Agnese Sanvito
By renowned architect James Salmon Jr. (Salmon, Son and Gillespie), 1904-7. Glasgow Style Art Nouveau. Tall, 8-storey commercial building with shop at ground floor. Reinforced concrete construction. Casement windows with small-pane glazing. 1st floor cill band. Sculpted panel between 1st and 2nd floors: THE LION CHAMBERS. Square canted section in southmost bay rising from 1st to 4th floor corbelled out on sculpted judges heads at 4th floor; wide semi-circular keyblocked window at 6th floor surmounted by pedimented gable. Canted corner bay slightly advanced over 4th floor and surmounted by octagonal cupola. Southern return: simple fenestration and pedimented gable. Return to Bath Lane: canted return bays with metal casements.
Built for lawyer/writer William George Black. This explains the sculpted judges heads. Black was well-established within the Glasgow Art Club and provided artists studios into his plans for the upper floors of the building. The building is the second reinforced concrete structure in Glasgow and amongst the first few in Britain.
The building was built using the Hennebique system by French Engineer, François Hennebique. This system involves reinforced concrete instead of steel frames, making the building fireproof. The Hennebique system was designed to strengthen concrete to make it withstand forces which damage concrete the most. This allows the walls to be extremely thin with a thickness of only 100mm. However, the Hennebique system does have negative attributes, including the complexity of the framework and moulding in the manufacturing process. The concrete can weather away easily, considerably in weather in the United Kingdom, which was one of the main reasons the Lion Chambers has had to be abandoned.
Sadly this important building is on the Buildings at Risk register listed “critical” with the owners, having been served with a Dangerous Building Notice, wanting to demolish it. Only it’s A-listed status saving it. Remedial repairs were estimated at £1-1.5 million back in 1991 when occupants of the building were evacuated following fears of collapse. Money has been raised to cover parts of the building with mesh after lumps were spotted falling off it.
i was a little disturbed reading this part of our gas fireplace's manual. "When lit for the first time, the appliance will emit a slight odor for an hour or two. This is due to the "curing" of the logs and "burn-off" of internal paints and lubricants used in the manufacturing process."
Element of SME’s Fundamental Manufacturing Processes Video Series, this system focuses on grinding and how it is employed to shape and finish high precision workpieces produced from metals and nonmetals.
Read more about Grinding
(Posted by a Precision Machining China Manufacturer)
In spring 1917, the British Royal Flying Corps introduced the Sopwith Triplane, a three-winged version of the earlier Sopwith Pup fighter. The “Tripe” was only built in limited numbers, but it was issued to elite pilots, such as the famous “Black Flight” of the Royal Naval Air Service—commanded by ace Raymond Collishaw, the Black Flight’s five Triplanes shot down 87 German aircraft in three months.
The German Luftstreitskrafte reacted with shock. To this point, the Germans had usually enjoyed a qualitative advantage over the Allies in the air with their Albatros D.IIIs The Triplane could operate higher and was faster than German fighters, which gave their British and Canadian adversaries the advantage in a dogfight. Germany embarked on a crash program to field their own triplanes, with 37 manufacturers all producing prototypes. The best by far, however, was Fokker’s Dreidekker I, abbreviated Dr.I. After a short period of testing of prototypes, two pre-production aircraft were built and sent to the Western Front for evaluation. Both were given to exceptional pilots—Manfred von Richthofen and Werner Voss. Richthofen, testing the Dr.I in combat for the first time in September 1917, promptly shot down two aircraft and proclaimed the Dr.I a superb aircraft, if tricky to fly. If there was any doubt of its lethality, it was removed on 23 September, when Voss engaged nine British SE.5s of 56 Squadron, all of which were flown by British aces with more than ten victories apiece. Though Voss was killed, his skill and the Dr.I’s manueverability held off nine British aces for ten minutes. Fokker immediately received a production order for 300 Dr.Is.
In combat, the Dr.I was not as fast as the Albatros, but it had a higher rate of climb and phenomenal manueverability—the design was slightly unstable, but an experienced pilot could use its high lift, light controls, and the torque of the engine to make snap rolls to the right almost within the length of the aircraft. It required an experienced pilot, especially on landing, where the torque of the engine and the wings also had a tendency to ground-loop the aircraft. This could be fatal, because the position of the two Spandau machine guns extending into the cockpit could cause a crash-landing pilot to hurtle forward into the gun butts, face-first. The Oberursel engine had a tendency to fall off in power at higher altitudes due to poor lubrication. By far, however, the worst drawback of the Dr.I was its tendency towards wing failures, which were initially believed due to poor workmanship by Fokker. It would be not until after the war that it was learned that the very triple-winged design of the Dreidekker was the problem: the top wing exerted more lift than the bottom two, with the result that the top wing would literally lift itself away from the rest of the aircraft. While it was possible to still fly with the missing top wing, the Dr.I would not fly for long and the pilot would have to make a high-speed landing in an aircraft notorious for crash landings.
Though the Dr.I was issued to two Jasta wings, including von Richthofen’s, in 1917-1918, it was never very popular with the majority of German pilots, and the production of the superb Fokker D.VII, which started about the same time, meant that the Luftstreitskrafte already had a fighter that was faster and more durable than the Dr.I, if not quite as manueverable. A few German aces still preferred the Dr.I, namely von Richthofen—because of the Dreidekker was good at something, it was attacking from ambush. A skilled ace could quickly gain altitude over an unsuspecting enemy, dive down, attack, and then use the kinetic energy built in the dive to zoom back to position, or manuever out of trouble with a quick right roll. Von Richthofen would score his last 20 (out of 80) kills in the Dr.I.
Following the end of World War I, nearly all of Germany’s fighters were purposely burned, either by their own pilots or by the Allies. By World War II, only one Dr.I was known to exist, one of von Richthofen’s aircraft, preserved in a museum in Berlin; the museum was flattened in an Allied bombing raid in 1944. Today, only scattered pieces of original Dr.Is exist. However, the simple manufacturing process of World War I fighters meant that reproductions could easily be built, and several dozen Dr.I replicas continue to fly today.
This is (of course) a Dr.I flyable replica, painted in the colors of Leutnant Josef Jacobs of Jasta 22. Jacobs would become the fourth highest-scoring German ace of World War I (tied with Werner Voss) with 48 kills, and was also the highest scoring Dr.I ace--though Richthofen had twice as many victories, the majority of the "Red Baron's" kills were made in the Albatros. Jacobs survived the war and World War II--the latter an achievement in and of itself, as he opposed the Nazi Party. He died in 1978, one of the last of the World War I aces to pass away.
The replica isn't quite finished painting yet, as Jacobs' personal emblem of a fire-breathing angel is not on the fuselage yet, nor are the German markings quite done. This was an unexpected find: my friend and I had stopped by the CAF Arizona Wing's headquarters in Mesa to see their F4F Wildcat. The Wildcat was gone to Hawaii for the 75th anniversary of V-J Day, but seeing the Dr.I more than made up for it.
This photo snapped a couple of years ago when vising the UK.
While working for my dad, I learned everything about the shoe design and the manufacture process. I could design, cut patterns, stitch and last Uppers too. I even made shoes for Lady Diana.
I also worked with fashion journals such as Elle and Vogue to get them samples for their model shoots and attended many of the fashion shows. While the work was interesting, I knew that this wasn't something that I wanted to do in life.
As I continued to learn more Japanese and discover more of the culture through anime, manga, games and spending time with my Japanese friends, I found a purpose in life at last which was to pursue my knowledge of Japan - I knew that I couldn't do that while working part time for my dad. As I was living with my mum, I didn't see my dad for a few years after I left his studio.
You can read more about what happened during this time, how I learned Japanese and how I made it to Japan in the How Discovering Japan Changed My Life post.
View more at www.dannychoo.com/en/post/26946/Why+Money+Doesn+t+Motivat...
The first potters in Moustiers were monks. The legend says that a monk from Faenza in Italy brought the secret technique of producing the white enamel with him. The term faïencier appeared in Moustier's historical archives first in 1679. The refinement of ceramics from a utilitarian item to fine tableware gave rise to a new type of artisans. The nobility's fascination with the blue and white glazes and beautiful designs created strong demand for faïence. The town of Moustiers became the center for design and production of faïences. The best known faïencer from this time was Pierre Clérissy who worked in Moustiers. His brother Joseph headed the St. Jean du Désert factory in Marseille. The creative and ornate style of the faïence from Moustiers was the most coveted ceramics for more than 200 years. Other designers developed their own style variations, such as Joseph Olérys's factory in the early 18th century. He produced the first polychromatic (multi-colored) faïences, baked over an open fire and using the dipping and enamel processes still en vogue today. During this time the famous Moustiers figures, the "Grotesques" were created, some of Moustier's best known decorative items. In the mid 18th century the brothers Jean Baptiste and Louis Ferrat made vivid, bright colors popular by refining the manufacturing process for faïences further.
The popularity of the "Moustiers", as the faïence from Moustiers was called, declined in the 19th century as inexpensive china made in England swamped the French market and by 1873 the last faïencier closed shop. Marcel Provence (1892-1951), the Provençal historian and leader of the Félibrige, the Provençal movement founded by Frederic Mistral, was instrumental in reviving the faïence industry in Moustiers in the 1920s. Today there are 20 ateliers in Moustiers designing faithful replications and new creations, most of which are produced in workshops outside Moustiers.
Buy Discount Mizuno Golf JPX 800 Irons on www.newgolfdiscount.com.
More at www.newgolfdiscount.com/goods-630-Mizuno+JPX+800+Irons.html
The Mizuno JPX-800 irons are a big jump into the game improvement category for Mizuno Golf, providing 8 to 24 handicappers with a truly remarkable option. Most people know and respect Mizuno most for their game-enhancing line of muscle back and blade irons known for their amazing feel and precision.
They have a nice thin top line and sole. The top line and sole are a little thicker and the cavity back a little deeper. The face appears to be slightly larger. This makes sense because you give up a little feel and playability for a extra forgiveness. And the bright blue does scream "game improvement".
Enter the JPX-800 series irons. Perfectly stuck shots feel fantastic. Like a blade- no, but that's not what you're signing up for. Hitting from the fairway, rough and hardpan- I felt comfortable taking the JPX-800's to the my ball with confidence. Unlike some game improvement clubs- there was a good amount of workability available to me as well. I don't have enough skill to sit on the range hitting cuts and draws consistently, but I can tinker enough to know that a good golfer shouldn't be afraid to take on these clubs.
The unbelievable distance of the JPX 800 Irons is achieved by combining MAX COR Technology, Hot Metal Face construction, and an exotic pocket cavity to hit the maximum allowable limits for energy transfer. Their construction utilizes a new manufacturing process that increases the material's natural strength to create an ultra-thin and multi-thickness face for maximum, consistent ball speed, while the innovative pocket cavity with external power bar design expands and extends the sweet area and lowers the center of gravity for unsurpassed forgiveness.
An aggressive triple cut sole ensures solid ball striking from all types of lies, and a multi-material cavity badge provides tuned impact sound with enhanced feel and sharp looks. They utilize the world’s most advanced Game Improvement technologies to help the serious mid- to high-handicap player score like never before.
Players’ Feedback
“I picked the JPX 800 Irons up a few days ago. The clubs look great at address and after a few rounds of adjustment, have been a great investment. The clubs are about 2 degrees stronger in each club, so technically I'm hitting them longer, but I find distance arbitrary anyway. Whatever club gets me there, I'm happy with.”
“Just replaced my "wishful thinking" MP-57's with the JPX 800. they just arrived today and looking forward to this chilly non-stop rain to end.”
Changyeong Jeong, PhD Candidate in Electrical and Computer Engineering, handles an ultrathin Ag film based OLED inside Professor Jay Guo’s lab at 3537 G.G. Brown on North Campus in Ann Arbor MI on May 5, 2021.
Guo’s group is systematically improving the light power distribution in OLEDs by removing the waveguide mode and optimizing the organic stacks and the ultrathin AG anode. This simple yet effective method leads to significantly enhanced performance of the external quantum efficiency of the OLED.
Jeong and Guo’s solution is not only simple in process but also can achieve high throughput and low cost with excellent compatibility with the large-scale manufacturing process in the display industry. In principle, the modal elimination approach introduced in this work could be extended to other solid-state light emitting diodes (LEDs) such as perovskites, quantum-dots, or III-V based LEDs since all of which are susceptible to the issue of light trapping as waveguide mode.
Photo: Robert Coelius/University of Michigan Engineering, Communications & Marketing
John Allison is William F. Hosford Professor of Materials Science and Engineering at the University of Michigan and a National Academy of Engineering member.
His major research interest is in understanding the inter-relationships between processing, alloying, microstructure and properties in metallic materials – and in incorporating this knowledge into computational tools for use in research, education and engineering. An important part of his research is development of Integrated Computational Materials Engineering (ICME) tools – and thus collaborations with other computational and experimental groups are an essential element of my work. Central to my research are investigations on the evolution of microstructures - current examples include precipitate evolution, recrystallization and grain growth and texture development in magnesium, aluminum and titanium alloys. He is also interested in mechanical behavior of these materials, with an emphasis on development of mechanistic and phenomenological understanding of the influence of microstructure on properties such as strength, ductility and fatigue resistance.
Allison comes to the University from Ford Motor Company, where he was a senior technical leader in the Research and Advanced Engineering organization. Over the twenty seven years of his tenure at Ford, he led teams developing integrated computational materials engineering, or ICME, methods. He helped develop advanced computer software that simulates manufacturing processes and predicts the influence of the manufacturing process on material properties. The output of these models is then coupled with product performance models to predict how manufactured components will behave during service.
July 11, 2023.
Photo by Marcin Szczepanski/Lead Multimedia Storyteller, Michigan Engineering
EXHIBITION
100 Best Posters 14
GERMANY, AUSTRIA, SWITZERLAND
MI, MO 11/11/2015, 03/28/2016
MAK Art Print Hall
Already for the tenth time, the MAK in the exhibition 100 Best Posters 14. Germany Austria Switzerland shows the hundred most compelling design concepts in the probably hottest medium of visual everyday culture: the poster. The current winning projects of the popular graphic design competition are characterized by an enigmatic pictural humor, explosive colors as well as precise designs and demonstrate impressively that a poster can be more than just an banal advertising space. Many of the award-winning works furthermore also rely on a subtle play with typography. Innovative ideas can also be found in the manufacturing process: This year's competition shows that you can readily knit posters in high-tech process or use a thermo-insulating space blanket as carrier material for screen printing.
Hardly any medium is such clocked on the consumption and nevertheless sets trends at the cutting edge. "[...] The poster designer challenges himself repeatedly and enjoys himself at gained symbols." Says Götz Gramlich, President of the association 100 Best Posters eV, and he postulats. "A good poster unfolds in the mind of the beholder."
From over 1 800 submitted individual posters, composed of contract work, self-initiated posters/self-promotion as well as student project orders from Germany, Austria and Switzerland, awarded the international jury, consisting of Richard van der Laken (Amsterdam, Chairman), Christof Nardin (Wien), Jiri Oplatek (Basel), Nicolaus Ott (Berlin) and Ariane Spanier (Berlin), the 100 winning posters of the year 2014.
In the competition participated 575 submitters (men and women), of which 48 are from Austria, 128 from Switzerland and 399 from Germany. The leader among the winning 100 best is Switzerland with 51 winning projects, followed by 44 German and 5 Austrian contributions.
The by sensomatic design (Christine Zmölnig and Florian Koch, Vienna) designed catalog offers in addition to the illustrations of all the winning posters and the contacts with the designers also this year a captivating essay by Thomas Friedrich: On the dialectics of image and text in the poster today. In a concise way, he looks at the contextuality of posters and explains the theme facetiously and pictorially based on a poster for a bullfight. Read more in the catalog!
For the corporate design of this year's competition and the new Web Visuals also sensomatic design, Vienna, is responsible. Since June 2014, the new online archive on the homepage of the 100 Best Posters Registered Association offers a comprehensive overview of all award-winning works from the years 2001-2014.
The exhibition takes place in cooperation with 100 Best Posters e. V.
100-beste-plakate.de
Curator Peter Klinger, Deputy Head of the MAK Library and Works on Paper Collection
AUSSTELLUNG
100 Beste Plakate 14
DEUTSCHLAND ÖSTERREICH SCHWEIZ
MI, 11.11.2015–MO, 28.03.2016
MAK-KUNSTBLÄTTERSAAL
Bereits zum zehnten Mal zeigt das MAK in der Ausstellung 100 BESTE PLAKATE 14. Deutschland Österreich Schweiz die einhundert überzeugendsten Gestaltungskonzepte im wohl heißesten Medium der visuellen Alltagskultur: dem Plakat. Die aktuellen Siegerprojekte des beliebten Grafikdesignwettbewerbs bestechen mit hintergründigem Bildwitz, explosiver Farbgebung sowie exakten Ausführungen und demonstrieren eindrücklich, dass ein Plakat mehr als nur banale Werbefläche sein kann. Viele der prämierten Arbeiten setzen außerdem auf ein subtiles Spiel mit Typografie. Innovative Ideen finden sich auch im Herstellungsprozess: Der diesjährige Wettbewerb zeigt, dass man Plakate ohne Weiteres im Hightech-Verfahren stricken oder eine thermo-isolierende Rettungsdecke als Trägermaterial für einen Siebdruck verwenden kann.
Kaum ein Medium ist derart auf den Verbrauch hin getaktet und setzt dennoch Trends am Puls der Zeit. „[…] der Plakatgestalter fordert sich immer wieder selbst heraus und erfreut sich an gewonnenen Sinnbildern.“ so Götz Gramlich, Präsident des Vereins 100 Beste Plakate e. V., und er postuliert: „Ein gutes Plakat entfaltet sich im Kopf des Betrachters.“
Aus über 1 800 eingereichten Einzelplakaten, zusammengesetzt aus Auftragsarbeiten, selbst initiierten Plakaten/Eigenwerbungen sowie studentischen Projektaufträgen aus Deutschland, Österreich und der Schweiz, prämierte die international besetzte Fachjury, bestehend aus Richard van der Laken (Amsterdam, Vorsitz), Christof Nardin (Wien), Jiri Oplatek (Basel), Nicolaus Ott (Berlin) und Ariane Spanier (Berlin), die 100 Siegerplakate des Jahres 2014.
Am Wettbewerb hatten sich 575 EinreicherInnen beteiligt, davon 48 aus Österreich, 128 aus der Schweiz und 399 aus Deutschland. Spitzenreiter unter den prämierten 100 Besten ist die Schweiz mit 51 Siegerprojekten, gefolgt von 44 deutschen und 5 österreichischen Beiträgen.
Der von sensomatic design (Christine Zmölnig und Florian Koch, Wien) gestaltete Katalog bietet neben den Abbildungen aller Siegerplakate und den Kontakten zu den GestalterInnen auch dieses Jahr einen bestechenden Aufsatz von Thomas Friedrich: Zur Dialektik von Bild und Text im Plakat heute. In pointierter Form geht er auf die Kontextualität von Plakaten ein und erklärt das Thema witzig und bildhaft anhand eines Plakats für einen Stierkampf. Mehr dazu im Katalog!
Für das Corporate Design des diesjährigen Wettbewerbs und die neuen Web-Visuals zeichnet ebenfalls sensomatic design, Wien, verantwortlich. Seit Juni 2014 bietet das neue Online-Archiv auf der Homepage der 100 Beste Plakate e. V. einen umfassenden Überblick aller prämierten Arbeiten aus den Jahren 2001 bis 2014.
Die Ausstellung findet in Kooperation mit 100 Beste Plakate e. V. statt.
100-beste-plakate.de
Kurator: Peter Klinger, Stellvertretende Leitung MAK-Bibliothek und Kunstblättersammlung
Part of modding your car is making it look good, and looks weren't really a concern when the engineers were designing your ride. It's easy to see that when you open up the hood and it easily looks like a rat's nest. Password knows that looks on the outside don't mean squat if you can't show off what's under the hood. The Password:JDM dry carbon fiber fuse box over-cover for the 2013+ Subaru BRZ / Scion FR-S adheres to your stock fuse box cover and will help clean up the look of your engine bay making your engine stand out, while adding a much needed accent to the scene. Like all of our dry carbon fiber parts that we manufacture, this piece has been precision crafted for a perfect fit and requires no tools or modifications to install. We also use a fade-resistant resin during the manufacturing process which ensures that the part will look as fresh as it did and function as well as the day you bought it.
Note:The Password:JDM Dry Carbon Fiber Fuse Box Over Cover fits over the factory part and is adhered with double side tape.
Features include:
- Perfect dry carbon fitment with structural integrity
- high-heat, fade resistant resin fabrication process
- Extreme lightweight to strength ratio
- Made in the USA
- Badass looks for your BRZ or FR-S engine bay!
Detroit’s Packard Motors Plant is a massive factory complex designed by Albert Kahn and built by Henry Joy in 1907. Work areas around the main buildings were completed in 1911. Kahn’s industrial designs stood out for meeting modern requirements for mass manufacturing processes. Reinforced concrete structures were essential for fire resistance and load bearing capacity for heavy machinery required for making cars. Ford’s Highland Park Plant, and the Fisher 21 Body Plant share similar design and functional elements.
From the early 1920’s influential car companies such as Ford, Studebaker, EMF, Hudson, Hupp, Pierce Arrow, General Motors and Continental Motors had operating plants in Detroit. Many plants were located near the railways which would transport finished cars throughout the US domestic market. The Great Depression of the 1930’s destroyed many of these companies as they were forced to merge with other companies or go bankrupt.
Packard also made fighter engines for the allies in World War II. In spite lucrative military contracts, Packard and many other companies could not recover from the previous decade, and faded away into history. Packard Motors famous promotional tagline was “Packard ask a man who owns one”. To this day Packard cars have a rabid following, however the factory that made them has not been protected by heritage status.
This trip turned out to be the final expedition at the Packard Plant. Numerous fires and recycling of building materials severely damaged the structural integrity of the site. Restoration of this historic industrial facility seems unlikely.