View allAll Photos Tagged Manufacturing_process
It is chilly and rainy in Arizona for Super Bowl 48 but BMW turned up the heat with their all-electric i3 and hybrid i8 sports car. To add additional flavor to the recipe New England Patriots’ starting corner Kyle Arrington and wife VaShonda Arrington joined the experience for the energetic weekend festivities.
Kyle spent a few days in both vehicles during his activities, which included stops at the Nike Football Super Bowl Hospitality Gifting Suite at the immaculate Scottsdale Resort & Conference Center, the NFL Experience, family outings and dinner with his spouse. Vashonda’s centerpiece moment was raising funds for the Off the Field Player’s Wives Association’s “14th Annual Super Bowl Fashion Show” held at the upscale Scottsdale Fashion Mall. The wives, kids and a handful of former NFL players walked the runway with grace and style. Guests included Holly Robinson Peete, Antonio Cromardie, Steve Young, Kevin Hart and many more. She enjoyed the earthly interior of the i3 and spoke passionately about the need regarding increased sustainability in the world.
The mind is driven by thoughts and fueled by inventive answers. The i3 is 100% pure electric and the i8 is a plug-in hybrid sports car, which means its power is sourced from both gasoline and electricity. The i8 is comprised of a Life module and a Drive module. The 3-liter gasoline motor is placed in the rear and the smaller electric engine is housed up front. In addition, the i8 is essentially an AWD vehicle channeling traction from both axles simultaneously but doesn’t utilize the company’s hallmark xDrive system. A few common i8 performance specs include:
•0 to 60 mph = 4.2 seconds
•Top speed = 155 mph (electronically limited)
•Electric only top speed = 75 mph
•Pure electric range = 22 miles
Born electric, the i3 is engineered with BMW’s LifeDrive architecture, which is also structured into two categories, the Life Module and the Drive Module. Comprised of high-strength carbon, the Life Module protects and provides comfort for the driver and passengers. The second platform, the Drive Module, encompasses the electric drive system, the suspension and the HVAC. Since the car is lighter, the liquid-cooled lithium-ion battery (developed in-house by BMW) is smaller and only needs three hours for a full stage-2 (240-volt) charge. Additionally, BMW attempts to use as much renewable energy as possible for the manufacturing process of the carbon fiber i3.
The journey continues towards educating the world on the benefits of going green. BMW is both an innovator and leader in this technology category and has already spearheaded a positive movement. Expect more BMW i products down the line since they have only just begun.
Jelly Belly Candy Company, formerly known as Herman Goelitz Candy Company and Goelitz Confectionery Company, manufactures Jelly Belly jelly beans and other candy. It is based in Fairfield, California, with a second manufacturing facility in North Chicago, Illinois and a distribution center in Pleasant Prairie, Wisconsin. In October 2008, the company opened a 50,000 sq ft (4,645 m2) manufacturing plant in Rayong, Thailand where it produces confectionery for the international market.
The company's signature product, the Jelly Belly jelly bean, comes in more than 50 varieties, ranging from traditional flavors like orange, lemon, lime, and cherry, to more exotic ones like cinnamon, pomegranate, cappuccino, buttered popcorn, and chili-mango.
Jelly Belly Candy Company manufactures numerous specialty Jelly Belly jelly beans with licensed products like Tabasco sauce and uncommon candy tastes like egg nog and pancakes with maple syrup. A few flavors, like lychee and green tea, are sold only in markets outside the United States.
Several flavors have been based on popular alcoholic beverages, beginning with Mai Tai in 1977. Over the years, new additions have included blackberry brandy (now discontinued), strawberry daiquiri, margarita, mojito, and piña colada. Draft beer, a flavor inspired by Hefeweizen ale, was introduced in 2014. All such flavors are entirely alcohol-free.
"Bertie Bott's Every Flavour Beans" were inspired by the Harry Potter book series and featured intentionally gruesome flavors such as "Vomit", "Earwax", "Skunk Spray", and "Rotten Egg". A similar product pairs lookalike "normal" jelly beans with weird flavors in a product dubbed "BeanBoozled" which has gone through several editions.
"Sport Beans" are jelly beans designed to provide physical energy and enhance athletic performance. They contain carbohydrates, electrolytes (in the form of sodium and potassium), and vitamins B1, B2, B3 and C. "Extreme Sport Beans" include the additional boost of caffeine.
The company makes over 100 different confections, including chocolates, licorice, gummis, and candy corn.
The company operates three manufacturing plants in Fairfield, California; North Chicago, Illinois; and Rayong, Thailand. A fourth facility in Pleasant Prairie, Wisconsin, is for distribution.
The Fairfield and Pleasant Prairie locations offer free daily tours. The 1⁄4 mi-long (400 m) self-guided Fairfield tour features interactive exhibits, Jelly Belly bean art, and videos featuring the candy manufacturing process. It was named one of the best factory tours for children by FamilyFun Magazine in 2014.
en.wikipedia.org/wiki/Jelly_Belly
en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_...
This is the manufacturing process of the faux black rock formations that were used for the pirate ship bar area at the St. Kitts Experience in the West Indies. The custom rock formations house “barrels” for shelving which are internally illuminated with blue LED lighting inside. The entire bar structure was pre-assembled in the I-5 Design and Manufactures shop in Lacey, WA to make the on-site assembly as simple as possible.Click here to see more examples of bar design
In the heart of Old Town, historic factory is among the oldest in Grasse ... Indeed the current premises sheltered from their beginning in 1782, a perfume factory. In 1926, after the famous painter Jean Honoré Fragonard, it takes the name of Parfumerie Fragonard. Since then, every day, we produce are our perfumes, cosmetics and soaps in a respectful environment of tradition. We would be happy to welcome you and offer you a guided tour during which you will discover the different manufacturing processes and packaging our products. At the end of your visit, you can admire 3000 years of history of perfume through our private museum.
Dedicated to the perfume and aromatic plants, Flower Factory is surrounded by a beautiful garden scented plants ... the gates of Grasse, this contemporary factory opened in 1986 is equipped with very modern machinery for the manufacture and packaging of our products.
WORKSHOP ODOR "Perfumer's Apprentice"
Available on the French Riviera and Paris, in factories, workshops Perfumers Apprentice can discover the expertise of Perfumer: the history of perfume, raw materials and different extraction methods.
Experience unforgettable sense centered on the composition of a toilet water (100 ml) in aromatic notes of citrus and orange blossom, by assembling the different species made available. A fun and exciting experience in the world of perfumery, which proposes the course led by the teacher, the bottle and its bag, apron "apprentice" printed Fragonard, the diploma signed by the teacher and the summary of the composition .
One of our guides will accompany you as a result of the workshop for a visit "Prestige" from our factory.
Located in one of the oldest houses in the historic center of the city, this perfume offers original creations of Didier Gaglewski.
Didier Gaglewski, "nose" in Grasse, began offering its achievements in the framework Living in Provence and in Paris, Germany and Switzerland. Both "artisan", "artist", he decided to offer his achievements directly driven by the idea that the quality, originality and respect perfume composition will dress with fun, humor and quality its customers.
Requiring each of its perfumes, made in the privacy of his laboratory, took several months of research. In partnership with Michelle Cavalier and the "garden of La Bastide," Didier Gaglewski also remains closer to the flowers and working the land. Try to trace extraction techniques inherited from the past and plants specific to the region perfumes seduce and make a very personal and authentic. This atypical creator is distinguished by its compositions made in Grasse basin, its choice to favor natural raw materials and the search for sobriety.
Front satisfaction and customer demands wishing to regain the proposed perfumes, shop in Grasse, 12 rue of the Oratory, just steps from the International Perfume Museum to discover the scents and recent creations.
The country house of Aromas
Based in Saint Cézaire on Siagne in the Pays de Grasse, the Bastide aromas manufactures and packages fragrances since 1995.
Saint Cézaire on Siagne is a typical Provencal village a few kilometers from Grasse, the world capital of perfumery.
The homemade studio human scale can meet all your demands. The 100% handmade is carried out in the workshop without intermediary, under the control of a chemist.
La Bastide des Aromas, respects the traditions of the Grasse region and offers the exclusive fragrances custom made in the workshop on-site, high quality, with particular stress on the fragrance concentration, her outfit and originality.
In the heart of Old Town, historic factory is among the oldest in Grasse ... Indeed the current premises sheltered from their beginning in 1782, a perfume factory. In 1926, after the famous painter Jean Honoré Fragonard, it takes the name of Parfumerie Fragonard. Since then, every day, we produce are our perfumes, cosmetics and soaps in a respectful environment of tradition. We would be happy to welcome you and offer you a guided tour during which you will discover the different manufacturing processes and packaging our products. At the end of your visit, you can admire 3000 years of history of perfume through our private museum.
Dedicated to the perfume and aromatic plants, Flower Factory is surrounded by a beautiful garden scented plants ... the gates of Grasse, this contemporary factory opened in 1986 is equipped with very modern machinery for the manufacture and packaging of our products.
WORKSHOP ODOR "Perfumer's Apprentice"
Available on the French Riviera and Paris, in factories, workshops Perfumers Apprentice can discover the expertise of Perfumer: the history of perfume, raw materials and different extraction methods.
Experience unforgettable sense centered on the composition of a toilet water (100 ml) in aromatic notes of citrus and orange blossom, by assembling the different species made available. A fun and exciting experience in the world of perfumery, which proposes the course led by the teacher, the bottle and its bag, apron "apprentice" printed Fragonard, the diploma signed by the teacher and the summary of the composition .
One of our guides will accompany you as a result of the workshop for a visit "Prestige" from our factory.
Located in one of the oldest houses in the historic center of the city, this perfume offers original creations of Didier Gaglewski.
Didier Gaglewski, "nose" in Grasse, began offering its achievements in the framework Living in Provence and in Paris, Germany and Switzerland. Both "artisan", "artist", he decided to offer his achievements directly driven by the idea that the quality, originality and respect perfume composition will dress with fun, humor and quality its customers.
Requiring each of its perfumes, made in the privacy of his laboratory, took several months of research. In partnership with Michelle Cavalier and the "garden of La Bastide," Didier Gaglewski also remains closer to the flowers and working the land. Try to trace extraction techniques inherited from the past and plants specific to the region perfumes seduce and make a very personal and authentic. This atypical creator is distinguished by its compositions made in Grasse basin, its choice to favor natural raw materials and the search for sobriety.
Front satisfaction and customer demands wishing to regain the proposed perfumes, shop in Grasse, 12 rue of the Oratory, just steps from the International Perfume Museum to discover the scents and recent creations.
The country house of Aromas
Based in Saint Cézaire on Siagne in the Pays de Grasse, the Bastide aromas manufactures and packages fragrances since 1995.
Saint Cézaire on Siagne is a typical Provencal village a few kilometers from Grasse, the world capital of perfumery.
The homemade studio human scale can meet all your demands. The 100% handmade is carried out in the workshop without intermediary, under the control of a chemist.
La Bastide des Aromas, respects the traditions of the Grasse region and offers the exclusive fragrances custom made in the workshop on-site, high quality, with particular stress on the fragrance concentration, her outfit and originality.
BlueEdge - Mach 8-10 Hypersonic Commercial Aircraft, 220 Passenger Hypersonic Commercial Plane - Iteration 3
Seating: 220 | Crew 2+4
Length: 195ft | Span: 93ft
Engines: 4 U-TBCC (Unified Turbine Based Combined Cycle) +1 Aerospike for sustained 2G acceleration to Mach 10.
Fuel: H2 (Compressed Hydrogen)
Cruising Altitude: 100,000-125,000ft
Airframe: 75% Proprietary Composites
Operating Costs, Similar to a 737. $7,000-$15,000hr, including averaged maintenence costs
Iteration 3 (Full release of IT3, Monday January 14, 2019)
IO Aircraft www.ioaircraft.com
Drew Blair www.linkedin.com/in/drew-b-25485312/
-----------------------------
hypersonic plane, hypersonic aircraft, hypersonic commercial plane, hypersonic commercial aircraft, hypersonic airline, tbcc, glide breaker, fighter plane, hyperonic fighter, boeing phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, office of naval research, defense advanced research project agency, defense science, missile defense agency, aerospike, hydrogen, hydrogen storage, hydrogen fueled, hydrogen aircraft, virgin airlines, united airlines, sas, finnair ,emirates airlines, ANA, JAL, airlines, military, physics, airline, british airways, air france
-----------------------------
Unified Turbine Based Combined Cycle. Current technologies and what Lockheed is trying to force on the Dept of Defense, for that low speed Mach 5 plane DOD gave them $1 billion to build and would disintegrate above Mach 5, is TBCC. 2 separate propulsion systems in the same airframe, which requires TWICE the airframe space to use.
Unified Turbine Based Combined Cycle is 1 propulsion system cutting that airframe deficit in half, and also able to operate above Mach 10 up to Mach 15 in atmosphere, and a simple nozzle modification allows for outside atmosphere rocket mode, ie orbital capable.
Additionally, Reaction Engines maximum air breather mode is Mach 4.5, above that it will explode in flight from internal pressures are too high to operate. Thus, must switch to non air breather rocket mode to operate in atmosphere in hypersonic velocities. Which as a result, makes it not feasible for anything practical. It also takes an immense amount of fuel to function.
-------------
Advanced Additive Manufacturing for Hypersonic Aircraft
Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.
Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.
*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.
What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.
Unified Turbine Based Combined Cycle (U-TBCC)
To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5
However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.
Enhanced Dynamic Cavitation
Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.
Dynamic Scramjet Ignition Processes
For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.
Hydrogen vs Kerosene Fuel Sources
Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.
Conforming High Pressure Tank Technology for CNG and H2.
As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.
As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).
Enhanced Fuel Mixture During Shock Train Interaction
Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.
Improved Bow Shock Interaction
Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.
6,000+ Fahrenheit Thermal Resistance
To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.
*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope
Scramjet Propulsion Side Wall Cooling
With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.
Lower Threshold for Hypersonic Ignition
Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.
Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities
Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.
Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)
To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.
A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.
Io Aircraft - www.ioaircraft.com
Drew Blair
www.linkedin.com/in/drew-b-25485312/
io aircraft, phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air-Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, defense science, missile defense agency, aerospike,
Advanced Additive Manufacturing for Hypersonic Aircraft
Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.
Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.
*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.
What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.
Unified Turbine Based Combined Cycle (U-TBCC)
To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5
However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.
Enhanced Dynamic Cavitation
Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.
Dynamic Scramjet Ignition Processes
For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.
Hydrogen vs Kerosene Fuel Sources
Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.
Conforming High Pressure Tank Technology for CNG and H2.
As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.
As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).
Enhanced Fuel Mixture During Shock Train Interaction
Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.
Improved Bow Shock Interaction
Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.
6,000+ Fahrenheit Thermal Resistance
To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.
*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope
Scramjet Propulsion Side Wall Cooling
With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.
Lower Threshold for Hypersonic Ignition
Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.
Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities
Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.
Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)
To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.
A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.
As part of the required course knowledge pupils need to be able to outline the process involved in taking a square wooden blank and preparing it for turning between centres. These pictures depict that process chronologically.
Stage 1 * Preparation of wooden blank. Cut to size. Sand square. Mark across diagonals. Centre punch the centre point. Use spring dividers to mark circumference. Repeat on other end.
Stage 2 * Plane off corners down to circumference line. This takes cross section from square to octagon. This reduces force on cutting toll in initial prep of blank. Mount between fork [driven] centre and dead [or live ] centre at tailstock end. Apply grease a dead centre end. apply force from tailstock end to force fork into material at driven end. Adjust toolstock height to suit. Check for clearance.
Stage 3 * Roughout using scraper to diameter. Use combination of gouges and skew chisels to add beads and other decorative detailing as required. Ensure spindle speed is appropriate for material and cross section under consideration. Obey all safety instructions.
Also known as the Thompkins House. William Thompkins was a saltmaker (the first to utilize Natural Gas in a manufacturing process when he used it to boil the brine). He built this house in 1844. More importantly, he married the sister of Jesse Grant, US Grant's father. This was fortunate because during the occupation of the Kanawha Valley during the Civil War, Union Cavalry threated to burn the house down. Mrs. Thompkins is reputed to have produced a letter from her Newhew General Grant, giving her and her belongings protection. And thus the House was saved. It is on the National Registry of Historic Places.
VTOL - Hypersonic Plane - High Supersonic - Scramjet - IO Aircraft - Iteration 4
Early preview (Iteration 4) of an entirely new type of aircraft, no info is on the net yet and won't be for a while. RANGER - 2 Passenger VTOL Hypersonic Plane
Drew Blair
www.linkedin.com/in/drew-b-25485312/
Vertical take off and landing - High Supersonic into Hypersonic Realm. Economy cruise above Mach 4, and can accelerate to beyond Mach 8. Non VTOL, could reach LEO. With a range of 5,000+ nm (8,000-10,000nm non vtol). Fuel H2, reducing fuel weight 95%.
Length, 35ft (10.67m), span 18ft (6m).
Propulsion, 2 Unified Turbine Based Combined Cycle. 2 Unified thrust producing gas turbine generators that provide the power for the central lifting fan (electric, not shaft driven) and the rear VTOL.
Estimated market price, $25-$30 million in production. New York to Dubai in an hour.
All based on my own technology advances in Hypersonics which make Lockheed and Boeing look ancient.
-------------
boeing phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, office of naval research, defense advanced research project agency, defense science, missile defense agency, aerospike, vtol, vertical take off, air taxi, personal air vehicle, boeing go fly prize, go fly prize,
Advanced Additive Manufacturing for Hypersonic Aircraft
Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.
Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.
*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.
What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.
Unified Turbine Based Combined Cycle (U-TBCC)
To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5
However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.
Enhanced Dynamic Cavitation
Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.
Dynamic Scramjet Ignition Processes
For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.
Hydrogen vs Kerosene Fuel Sources
Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.
Conforming High Pressure Tank Technology for CNG and H2.
As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.
As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).
Enhanced Fuel Mixture During Shock Train Interaction
Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.
Improved Bow Shock Interaction
Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.
6,000+ Fahrenheit Thermal Resistance
To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.
*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope
Scramjet Propulsion Side Wall Cooling
With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.
Lower Threshold for Hypersonic Ignition
Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.
Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities
Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.
Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)
To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.
A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.
BlueEdge - Mach 8-10 Hypersonic Commercial Aircraft, 220 Passenger Hypersonic Commercial Plane - Iteration 3
Seating: 220 | Crew 2+4
Length: 195ft | Span: 93ft
Engines: 4 U-TBCC (Unified Turbine Based Combined Cycle) +1 Aerospike for sustained 2G acceleration to Mach 10.
Fuel: H2 (Compressed Hydrogen)
Cruising Altitude: 100,000-125,000ft
Airframe: 75% Proprietary Composites
Operating Costs, Similar to a 737. $7,000-$15,000hr, including averaged maintenence costs
Iteration 3 (Full release of IT3, Monday January 14, 2019)
IO Aircraft www.ioaircraft.com
Drew Blair www.linkedin.com/in/drew-b-25485312/
-----------------------------
hypersonic plane, hypersonic aircraft, hypersonic commercial plane, hypersonic commercial aircraft, hypersonic airline, tbcc, glide breaker, fighter plane, hyperonic fighter, boeing phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, office of naval research, defense advanced research project agency, defense science, missile defense agency, aerospike, hydrogen, hydrogen storage, hydrogen fueled, hydrogen aircraft, virgin airlines, united airlines, sas, finnair ,emirates airlines, ANA, JAL, airlines, military, physics, airline, british airways, air france
-----------------------------
Unified Turbine Based Combined Cycle. Current technologies and what Lockheed is trying to force on the Dept of Defense, for that low speed Mach 5 plane DOD gave them $1 billion to build and would disintegrate above Mach 5, is TBCC. 2 separate propulsion systems in the same airframe, which requires TWICE the airframe space to use.
Unified Turbine Based Combined Cycle is 1 propulsion system cutting that airframe deficit in half, and also able to operate above Mach 10 up to Mach 15 in atmosphere, and a simple nozzle modification allows for outside atmosphere rocket mode, ie orbital capable.
Additionally, Reaction Engines maximum air breather mode is Mach 4.5, above that it will explode in flight from internal pressures are too high to operate. Thus, must switch to non air breather rocket mode to operate in atmosphere in hypersonic velocities. Which as a result, makes it not feasible for anything practical. It also takes an immense amount of fuel to function.
-------------
Advanced Additive Manufacturing for Hypersonic Aircraft
Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.
Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.
*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.
What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.
Unified Turbine Based Combined Cycle (U-TBCC)
To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5
However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.
Enhanced Dynamic Cavitation
Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.
Dynamic Scramjet Ignition Processes
For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.
Hydrogen vs Kerosene Fuel Sources
Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.
Conforming High Pressure Tank Technology for CNG and H2.
As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.
As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).
Enhanced Fuel Mixture During Shock Train Interaction
Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.
Improved Bow Shock Interaction
Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.
6,000+ Fahrenheit Thermal Resistance
To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.
*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope
Scramjet Propulsion Side Wall Cooling
With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.
Lower Threshold for Hypersonic Ignition
Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.
Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities
Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.
Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)
To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.
A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.
Shimano has released only 1000 of these sets to North America. If you are a collector or someone that just likes the best, than this is for you. This group is almost too beautiful to put on your bike.
The Dura-Ace name speaks for itself. You can feel the quality and see the attention to detail when you hold the parts. It is quality that has made Dura-Ace successful for 25 years.
The shifts are very fast and accurate with a smooth action. The refined dual pivot brakes stop on a dime even in wet conditions. The bearings of the bottom bracket and hubs are smooth. The new SPDR pedal locks your foot to the pedal better than anything we have tried.
The components are based on the 1999 Dura-Ace 7700 series components, but there are significant differences. Component surfaces have been hand polished to a mirror like finish and more titanium hardware is used throughout the group. Each components is also identified with a special 25th Anniversary emblem. Detailed specifications are provided with the group.
The components are packaged in ready-to-display condition in a handsome aluminum presentation case which also provides ample protection for long term storage. The package also includes a book which details the history of the group, briefly explains the manufacturing process, and provides comments from the people who have been closely involved with Dura-Ace over the years.
When Dura-Ace first appeared in Europe, cycling enthusiasts thought there was little chance a Japanese component maker could make inroads into the conservative and tradition-bound sport of professional bicycle racing. Much to everyone’s surprise, Shimano’s commitment to quality, innovative engineering, and attention to the needs of racing cyclists resulted in Dura-Ace becoming a very popular and well respected component group. It is estimated that more than 60 percent of high-end road racers are now riding Dura-Ace.
The dependability and functionality of the components are integral to the performance of the racing bicycle and the athlete riding it. Dura-Ace is designed to create a highly efficient link between the racer and the bicycle. It’s an interface that allows racing cyclists to concentrate more on the race, and less on controlling the bicycle. As a result, Dura-Ace is now recognized by road racers and cycling enthusiasts around the world as the performance standard for racing components.
STS028-078-036 Omaha, Nebraska, and Council Bluffs, Iowa, U.S.A. August 1989
Visible in this northeast-looking, low-oblique photograph are Omaha on the west bank of the Missouri River and Council Bluffs on the east bank. Omaha, the largest city in Nebraska, sits in the heart of the United States farming region and is one of the largest livestock markets and meat processing centers in the world. Much of the city’s industry is devoted to food processing and the manufacture of farm machinery, fertilizers, computer components, telephone equipment, furniture, clothing, insecticides, soap, cans, chemicals, paint, oil refinery equipment, and airplane and automobile parts. It is the home of many insurance companies and a center for medical research and treatment. Council Bluffs, an important trade and industrial center, manufactures processed foods, cast iron pipes, farm equipment, electronic equipment, and fabricated metals. The confluence of the Missouri River and Platte River is discernible south of Omaha.
David Mellor Visitor Centre
David Mellor is internationally famous for his cutlery.
His chic factory in Hathersage, designed by Sir Michael Hopkins, and purpose-built on the site of the old gasworks, is hailed as a minor masterpiece of modern architecture.
Built in local gritstone with a spectacular lead roof, it blends beautifully into the rural landscape. The factory is open for viewing on Sundays and visitors are welcome to take a look around and watch the various designs being made.
The manufacturing process is surprisingly low-tech and most of it done by hand – if nothing else this explains why the cutlery is so expensive (and so collectable).
In addition to the factory, there is also a stylish shop, a classy café and an interesting design museum.
David Mellor died in 2009, and his talented son Corin continues the design tradition at Hathersage.
Shop
My image shows the stylish shop selling David and Corin Mellor's catalogue of superb designs.
Water wash.
At first I thought, oh no!!! the dropout shifted in the chainstay...evidence is the ridge where I knifed the dropout. O.k. DONT PANIC, find out exactly what when wrong be prepared for major rework.
I do the knifing quite accurately so that I reduce (at least in concept) post Brazing filing to a minimum, so here it certainly looks like something shifted, which can be really bad.
Well actually, nothing shifted. Fits fixture as well as it did before Brazing. I compared the O.D. Of the end of the brazed chainstay to my yet unbrazed one. Looks like the chainstay tips basically changed shape or roundness with the application of heat, the two outside edges came closer together, sort of sucked in. Didn’t take a pic, but around a mm or two in total. Position of the brazed dropout is right where I want it. What a relief.
This hasn’t happened to me before, that I’ve noticed. I suspect the very short taper in these particular chainstays have a lot of built in stresses from the manufacturing process at Columbus and some of them were relived during Brazing.
It’s actually O.K. Just a bit of filing should look nice.
Mach 8-10 Hypersonic Commercial Aircraft, It-1, 202 Passenger
Seating: 202 | Crew 2+4 (250 if denser seating)
Length: 195ft | Span: 93ft
Engines: 4 U-TBCC (Unified Turbine Based Combined Cycle)
+1 Aerospike for sustained 2G acceleration to Mach 10.
Fuel: H2 (Compressed Hydrogen)
Cruising Altitude: 100,000-125,000ft
Airframe: 75% Proprietary Composites
Operating Costs, Similar to a 737. $7,000-$15,000hr, including averaged maintenance costs
Iteration 1
IO Aircraft www.ioaircraft.com
Drew Blair www.linkedin.com/in/drew-b-25485312/
-----------------------------
hypersonic plane, hypersonic aircraft, hypersonic commercial plane, hypersonic commercial aircraft, hypersonic airline, tbcc, glide breaker, fighter plane, hyperonic fighter, boeing phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, office of naval research, defense advanced research project agency, defense science, missile defense agency, aerospike, hydrogen, hydrogen storage, hydrogen fueled, hydrogen aircraft
-----------------------------
Unified Turbine Based Combined Cycle. Current technologies and what Lockheed is trying to force on the Dept of Defense, for that low speed Mach 5 plane DOD gave them $1 billion to build and would disintegrate above Mach 5, is TBCC. 2 separate propulsion systems in the same airframe, which requires TWICE the airframe space to use.
Unified Turbine Based Combined Cycle is 1 propulsion system cutting that airframe deficit in half, and also able to operate above Mach 10 up to Mach 15 in atmosphere, and a simple nozzle modification allows for outside atmosphere rocket mode, ie orbital capable.
Additionally, Reaction Engines maximum air breather mode is Mach 4.5, above that it will explode in flight from internal pressures are too high to operate. Thus, must switch to non air breather rocket mode to operate in atmosphere in hypersonic velocities. Which as a result, makes it not feasible for anything practical. It also takes an immense amount of fuel to function.
-------------
Advanced Additive Manufacturing for Hypersonic Aircraft
Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.
Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.
*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.
What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.
Unified Turbine Based Combined Cycle (U-TBCC)
To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5
However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.
Enhanced Dynamic Cavitation
Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.
Dynamic Scramjet Ignition Processes
For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.
Hydrogen vs Kerosene Fuel Sources
Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.
Conforming High Pressure Tank Technology for CNG and H2.
As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.
As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).
Enhanced Fuel Mixture During Shock Train Interaction
Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.
Improved Bow Shock Interaction
Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.
6,000+ Fahrenheit Thermal Resistance
To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.
*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope
Scramjet Propulsion Side Wall Cooling
With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.
Lower Threshold for Hypersonic Ignition
Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.
Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities
Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.
Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)
To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.
A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.
At Sau Hoai's Rice Noodle Factory near Can Tho on the Mekong Delta, you can see every step of the noodle manufacturing process. These noodles are all hand-made, via a method that has not changed in decades - if not centuries! You can try making a batch yourself. This family-run business also includes an open-air restaurant where you can taste freshly-made noodles: they were outstanding!
Soft Vinyl Mold Preparation
Continuing on from the previous section, now we look at how the molds are made for the soft vinyl outer shell.
1. Taking the 3D printouts of the body parts in the previous section, the next step is to make silicone molds which we will then use to make wax duplicates of the pieces. We then tie the two pieces of mold back together again and then pour in some hot wax.
2. Once the wax has cured, we can remove it from the silicon mold. Notice the wrist has a funnel attached - this is to enable us to pour in the soft vinyl when this eventually becomes a mold.
3. As soon as the wax copy is taken out of the silicone, the surfaces are rough and need to be polished down - if there are blemishes on the wax then it will end up being in the mold meaning anything made from the mold will also inherit blemishes.
4. Next up is preparing to make the wax copy into a mold and this is done in a process called Electroforming. Each part is first sprayed with graphite-based ink that makes it electrically conductive.
5. Each piece is has copper wire tied to it and hugh up to dry.
6. The wax copy is then dipped into an electrolytic bath. Deposits of copper then build up on the conductive surface to replicate the surface atom by atom.
7. Depending on the size of the wax piece, it can take a week for the copper to build up - this is the end result after the wax inside has been melted and poured away.
8. The copper molds are then welded on to a plate of metal called a "Frypan."
9. We currently only have one set of molds but discovered that we need to increase our mold count as we can't keep up with demands with this single set ><
10. The manufacturing process used to mold the body shell is called "Slush Casting." Here liquid vinyl is poured into one of the molds. The vinyl we use is the same material as other soft vinyl dolls on the market and does not pose any general risk to human health unless you eat or suck it - no sucking!
11. When the liquid vinyl is poured into the copper molds, air pockets get trapped in the liquid which must be removed - we do that by using a centrifugal separator which spins round for 30 seconds or so.
12. Even still, air pockets may be stubborn so they need to be removed using brute force - introducing a deaerator which removes all trace of oxygen from inside the chamber where the mold is placed.
13. The mold is the placed in a bath of oil which has been heated up to about 180 - 190 Celsius. The thickness of the doll piece is determined by how long you leave the mold in the oil. The heat penetrates through the mold and heats up the vinyl closest to the inner wall of the mold.
14. The copper mold is then placed into a cold water bath to cool down.
15. Next we need to pull the part out of the mold - pull to early and the part could end up being stretched - pull too late and it could be too hard to pull out or end up being damaged.
16. The mold has hoops attached - a slight change in the angle of the hoops affects the quality of the pull.
17. And this a hand freshly pulled from the mold - we then need to cut off the flash which is the funnel attached to it.
18. Together with the boss of mold maker Kamijo who have won awards for the quality of their molds.
19. This has nothing to do with soft vinyl but wanted to show you how we made the frame prototypes at one stage - we would use 3D printouts and copy them using silicone molds.
20. Some resin frame parts ready to be cut off the runners.
View more at www.dannychoo.com/en/post/27275/The+Making+of+Smart+Doll....
“The open market in Ashton was held every Saturday; in the 1930s it consisted of a number of permanent enclosed stalls which could be locked during the week, the remainder being open stalls which were erected and dismantled the same day. There would be the usual type of market goods ranging from clothes, food of all types, fruit and vegetables, second-hand goods, floor coverings, toys and novelty goods to books, magazines and newspapers. One stall was devoted entirely to the sale of tripe of all kinds. There was black and white tripe plus cow heels, pigs' trotters, brawn or ‘pigs head’, elder, savoury ‘ducks’ and black puddings. Just before the market closed, kids would go to the tripe stall for a ‘hap'orth’ of tripe bits. These were the off-cut pieces which had been cut from tripe as it was being weighed during the day and for a halfpenny you could get quite a lot of tripe bits wrapped in greaseproof paper. With lashings of vinegar and salt and pepper they were very tasty.
In the winter when it went dark the stalls of the traders would be illuminated by naptha lamps which gave a strange and evocative, almost surreal, glow. The evening was in some ways the busiest time on the market and large crowds would gather around the china and crockery stalls and the linoleum sellers. The latter used to operate from the back of a large van and they would sell rolls of linoleum by the ‘Dutch Auction’ method. This is where the price is called by the auctioneer and is progressively reduced until someone in the crowd shouts out to pay the last price called. The linoleum sellers would stand in the open tailboard of their van and, holding one end of a roll of linoleum, they would throw the rolled end off the tailboard letting it unroll in front of the crowd. With each price reduction the auctioneer would give the flat linoleum a loud slap purposely to heighten the tension so that someone in the crowd might bid at a higher price so as not to lose the lino to another bidder. It was of course, the first bidder (or person who shouted acceptance of the latest price), who got the lino. The trick was to try to hold ones nerve until the price came down really low, taking a chance that no one else would jump in first, and of course the auctioneer had a repertoire of jokes and patter to jolly the crowd along and keep them in a good mood. The atmosphere with the crowd, the auctioneer slapping the lino and cracking his jokes, the tension and the naptha lamps, combined to create a picture which even so long afterwards, I can see clearly as I write.
The same was true of the china and crockery merchants. They worked from large stalls where they would set up a display of the goods they were selling. They had tea sets and dinner services, both china and earthenware, fruit sets of glass and china, tea pots fancy and plain, ornaments and knick-knacks galore together with packing cases packed to the brim with mundane items of crockery such as pudding basins and plain white earthenware cups, saucers and plates. The china sellers operated on the same basis as the linoleum chaps i.e. by ‘Dutch Auction’ but they had more scope for entertaining the crowds because of the more diverse range of their goods. They would hold a full tea set in their hands and half juggle with it, throwing it up in the air and catching it again with no breakages. For us kids it was great entertainment although the show was sometimes so fascinating we didn’t leave and would catch it in the neck for getting home late”.
[From “Ashton-in-Makerfield During The 1930s”, Harold Knowles, in Past Forward No.21/Spring 1999]
Naptha was a by-product of the gas manufacturing process at municipal gasworks such as the one formerly situated between Gerard St and York Rd at Ashton. The lamps, consisting of a fuel tank, feeder pipe and burner, were hung from the frames of stalls etc, and were a common if somewhat hazardous (and odorous) means of illuminating markets, circuses and pleasure-fairs in the late 19th and early 20th centuries. The design shown here is from the 1911 catalogue of R S Stokvis Ltd, Rotterdam.
Gerard Walsh also mentions the market lamps and the tea sets in his account of the journey from his home at Potters Row off Bryn Rd to the Catholic boys' school in Liverpool Rd in the early 1920s:
“I continued up Gerrard Street. On the left were shops and Crompton's Hinge Factory; on the right were shops and pubs, and, immediately behind them and at a higher level, the market place. The market was held once a week. Rows of stalls, selling everything from tea sets to Lancashire cheese, in winter illuminated by flares suspended from the framework of the stalls”.
Records of the Council's Market & Fire Brigade Committee in the 1920s indicate that the naptha lamps were provided by an independent contractor and collected by him at 9pm after the day's trading, presumably for re-supply to other markets operating in the area on different days. As noted by Harold Knowles, lighting by this method continued at Ashton market into the 1930s notwithstanding a petition by the traders in 1936 for the provision of electricity (Wigan Archives refs UD Ash/A1/A/48 and /60). A permanent gas lamp for the market was installed by the Council in 1948 (UD Ash/A1/A/72).
VTOL - Hypersonic Plane - High Supersonic - Scramjet - IO Aircraft - Iteration 4
Early preview (Iteration 4) of an entirely new type of aircraft, no info is on the net yet and won't be for a while. RANGER - 2 Passenger VTOL Hypersonic Plane
Drew Blair
www.linkedin.com/in/drew-b-25485312/
Vertical take off and landing - High Supersonic into Hypersonic Realm. Economy cruise above Mach 4, and can accelerate to beyond Mach 8. Non VTOL, could reach LEO. With a range of 5,000+ nm (8,000-10,000nm non vtol). Fuel H2, reducing fuel weight 95%.
Length, 35ft (10.67m), span 18ft (6m).
Propulsion, 2 Unified Turbine Based Combined Cycle. 2 Unified thrust producing gas turbine generators that provide the power for the central lifting fan (electric, not shaft driven) and the rear VTOL.
Estimated market price, $25-$30 million in production. New York to Dubai in an hour.
All based on my own technology advances in Hypersonics which make Lockheed and Boeing look ancient.
-------------
boeing phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, office of naval research, defense advanced research project agency, defense science, missile defense agency, aerospike, vtol, vertical take off, air taxi, personal air vehicle, boeing go fly prize, go fly prize,
Advanced Additive Manufacturing for Hypersonic Aircraft
Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.
Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.
*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.
What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.
Unified Turbine Based Combined Cycle (U-TBCC)
To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5
However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.
Enhanced Dynamic Cavitation
Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.
Dynamic Scramjet Ignition Processes
For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.
Hydrogen vs Kerosene Fuel Sources
Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.
Conforming High Pressure Tank Technology for CNG and H2.
As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.
As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).
Enhanced Fuel Mixture During Shock Train Interaction
Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.
Improved Bow Shock Interaction
Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.
6,000+ Fahrenheit Thermal Resistance
To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.
*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope
Scramjet Propulsion Side Wall Cooling
With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.
Lower Threshold for Hypersonic Ignition
Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.
Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities
Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.
Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)
To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.
A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.
VTOL - Hypersonic Plane - Mach 10 Shock Variables - Scramjet - IO Aircraft - Iteration 4 - Hypersonic Physics - Hypersonic Engineering
Early preview (Iteration 4) of an entirely new type of aircraft, no info is on the net yet and won't be for a while. RANGER - 2 Passenger VTOL Hypersonic Plane
www.ioaircraft.com/hypersonic/ranger.php
Drew Blair
www.linkedin.com/in/drew-b-25485312/
Vertical take off and landing - High Supersonic into Hypersonic Realm. Economy cruise above Mach 4, and can accelerate to beyond Mach 8. Non VTOL, could reach LEO. With a range of 5,000+ nm (8,000-10,000nm non vtol). Fuel H2, reducing fuel weight 95%.
Length, 35ft (10.67m), span 18ft (6m).
Propulsion, 2 Unified Turbine Based Combined Cycle. 2 Unified thrust producing gas turbine generators that provide the power for the central lifting fan (electric, not shaft driven) and the rear VTOL.
Estimated market price, $25-$30 million in production. New York to Dubai in an hour.
All based on my own technology advances in Hypersonics which make Lockheed and Boeing look ancient.
-------------
boeing phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, office of naval research, defense advanced research project agency, defense science, missile defense agency, aerospike, vtol, vertical take off, air taxi, personal air vehicle, boeing go fly prize, go fly prize,
Advanced Additive Manufacturing for Hypersonic Aircraft
Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.
Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.
*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.
What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.
Unified Turbine Based Combined Cycle (U-TBCC)
To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5
However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.
Enhanced Dynamic Cavitation
Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.
Dynamic Scramjet Ignition Processes
For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.
Hydrogen vs Kerosene Fuel Sources
Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.
Conforming High Pressure Tank Technology for CNG and H2.
As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.
As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).
Enhanced Fuel Mixture During Shock Train Interaction
Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.
Improved Bow Shock Interaction
Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.
6,000+ Fahrenheit Thermal Resistance
To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.
*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope
Scramjet Propulsion Side Wall Cooling
With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.
Lower Threshold for Hypersonic Ignition
Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.
Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities
Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.
Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)
To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.
A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.
Lancia Hyena:
Overview:
ManufacturerZagato on Lancia mechanicals
Also calledLancia Delta Zagato Hyena
Production1992–1996
24 made
AssemblyRho, Milan
DesignerMarco Pedracini at Zagato
Body and chassis
ClassSports car
Body style2-door coupé
LayoutTransverse front-engine, four-wheel drive
RelatedLancia Delta Integrale "Evoluzione"
Powertrain
Engine2.0 L I4 (turbocharged petrol)
Transmission5-speed manual
The Lancia Hyena was a 2-door coupé made in small numbers by Italian coachbuilder Zagato on the basis of the Delta HF Integrale "Evoluzione".
History:
The Hyena was born thanks to the initiative of Dutch classic car restorer and collector Paul V.J. Koot, who desired a coupé version of the multiple World Rally Champion HF Integrale. He turned to Zagato, where Hyena was designed in 1990 by Marco Pedracini. A first prototype was introduced at the Brussels Motor Show in January 1992.
Decision was taken to put the Hyena into limited production. Fiat refused to participate in the project supplying bare HF Integrale chassis, which complicated the manufacturing process: the Hyena had to be produced from fully finished HF Integrales, privately purchased at Lancia dealers. Koot's Lusso Service took care of procuring and stripping the donor cars in the Netherlands; they were then sent to Zagato in Milan to have the new body built and for final assembly. All of this made the Hyena very expensive to build and they were sold for around 140,000 Swiss francs or $75,000 (£49,430).
A production run of 75 examples was initially planned, but only 25 Hyenas were completed between 1992 and 1993.
Specifications:
The Zagato bodywork made use of aluminium alloys and composite materials; the interior featured new dashboard, console and door cards made entirely from carbon fibre. Thanks to these weight saving measures the Hyena was some 150 kilograms (330 lb) lighter than the original HF Integrale, about 15% of its overall weight. The two-litre turbo engine was upgraded from 205 to 250 PS (184 kW), and the car could accelerate from 0–100 km in 5.4 seconds.
[Text from Wikipedia]
en.wikipedia.org/wiki/Lancia_Delta#Lancia_Hyena
This miniland-scale Lego Lancia Hyena (1992 - Zagato) has been created for Flickr LUGNuts' 92nd Build Challenge, - "Stuck in the 90's", - all about vehicles from the decade of the 1990s.
As part of the required course knowledge pupils need to be able to outline the process involved in taking a square wooden blank and preparing it for turning between centres. These pictures depict that process chronologically.
Stage 1 * Preparation of wooden blank. Cut to size. Sand square. Mark across diagonals. Centre punch the centre point. Use spring dividers to mark circumference. Repeat on other end.
Stage 2 * Plane off corners down to circumference line. This takes cross section from square to octagon. This reduces force on cutting toll in initial prep of blank. Mount between fork [driven] centre and dead [or live ] centre at tailstock end. Apply grease a dead centre end. apply force from tailstock end to force fork into material at driven end. Adjust toolstock height to suit. Check for clearance.
Stage 3 * Roughout using scraper to diameter. Use combination of gouges and skew chisels to add beads and other decorative detailing as required. Ensure spindle speed is appropriate for material and cross section under consideration. Obey all safety instructions.
Emeco navy chair
Design Emeco, 1944
Thermal treated aluminum
Made in USA by Emeco
The classic aluminum chair has been in continuous production since the mid 1940's by Emeco. Based on a marriage of style and a time honored proprietary 77 step process, Emeco can be considered the guardian of a lost art...the manufacture of something enduring and endearing. Three times stronger than steel and amazingly lightweight, these chairs have a life expectancy of at least 150 years. Timeless. Chairs admired today – and indefinitely. Chairs that span generations and cultures.
The 1006 is a bona fide wartime workhorse. It was developed in Hanover, Pa., in the 1940s for use on submarines and aircraft carriers. Aluminum makes the chair lightweight and corrosion-resistant. An elaborate manufacturing process makes it virtually indestructible. According to company lore, the 1006 is tough enough to withstand a torpedo blast.
The military remains a customer, but today the 1006 is also a symbol of modern industrial chic. Navy chairs are found in Armani and Tiffany boutiques, the architecture offices of Frank O. Gehry, in the movie "Mr. & Mrs. Smith" and at home with Brad Pitt. The chair has starred in its own docudrama, "77 Steps," filmed by Eames Demetrios, grandson of designer Charles Eames. Television viewers can spot Navy chairs on "Law & Order" and "CSI,"
Io Aircraft - www.ioaircraft.com
Drew Blair
www.linkedin.com/in/drew-b-25485312/
io aircraft, phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air-Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, defense science, missile defense agency, aerospike,
Advanced Additive Manufacturing for Hypersonic Aircraft
Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.
Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.
*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.
What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.
Unified Turbine Based Combined Cycle (U-TBCC)
To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5
However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.
Enhanced Dynamic Cavitation
Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.
Dynamic Scramjet Ignition Processes
For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.
Hydrogen vs Kerosene Fuel Sources
Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.
Conforming High Pressure Tank Technology for CNG and H2.
As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.
As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).
Enhanced Fuel Mixture During Shock Train Interaction
Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.
Improved Bow Shock Interaction
Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.
6,000+ Fahrenheit Thermal Resistance
To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.
*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope
Scramjet Propulsion Side Wall Cooling
With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.
Lower Threshold for Hypersonic Ignition
Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.
Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities
Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.
Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)
To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.
A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.
SEARCHLIGHT, Nev (May 25, 2011) - Exterior decking of the building. The decking system, manufactured by Best Deck is 100% green and 100% recyclable. It's composed of 55% rice hulls (renewable resource) and 45% recycled plastic. The factory manufacturing process reduces its carbon footprint by using less electricity and recirculating water. Heat generated from the production equipment is captured and used in the factory. (NPS Photo / Andrew S. Muñoz)
As part of the required course knowledge pupils need to be able to outline the process involved in taking a square wooden blank and preparing it for turning between centres. These pictures depict that process chronologically.
Stage 1 * Preparation of wooden blank. Cut to size. Sand square. Mark across diagonals. Centre punch the centre point. Use spring dividers to mark circumference. Repeat on other end.
Stage 2 * Plane off corners down to circumference line. This takes cross section from square to octagon. This reduces force on cutting toll in initial prep of blank. Mount between fork [driven] centre and dead [or live ] centre at tailstock end. Apply grease a dead centre end. apply force from tailstock end to force fork into material at driven end. Adjust toolstock height to suit. Check for clearance.
Stage 3 * Roughout using scraper to diameter. Use combination of gouges and skew chisels to add beads and other decorative detailing as required. Ensure spindle speed is appropriate for material and cross section under consideration. Obey all safety instructions.
In the heart of Old Town, historic factory is among the oldest in Grasse ... Indeed the current premises sheltered from their beginning in 1782, a perfume factory. In 1926, after the famous painter Jean Honoré Fragonard, it takes the name of Parfumerie Fragonard. Since then, every day, we produce are our perfumes, cosmetics and soaps in a respectful environment of tradition. We would be happy to welcome you and offer you a guided tour during which you will discover the different manufacturing processes and packaging our products. At the end of your visit, you can admire 3000 years of history of perfume through our private museum.
Dedicated to the perfume and aromatic plants, Flower Factory is surrounded by a beautiful garden scented plants ... the gates of Grasse, this contemporary factory opened in 1986 is equipped with very modern machinery for the manufacture and packaging of our products.
WORKSHOP ODOR "Perfumer's Apprentice"
Available on the French Riviera and Paris, in factories, workshops Perfumers Apprentice can discover the expertise of Perfumer: the history of perfume, raw materials and different extraction methods.
Experience unforgettable sense centered on the composition of a toilet water (100 ml) in aromatic notes of citrus and orange blossom, by assembling the different species made available. A fun and exciting experience in the world of perfumery, which proposes the course led by the teacher, the bottle and its bag, apron "apprentice" printed Fragonard, the diploma signed by the teacher and the summary of the composition .
One of our guides will accompany you as a result of the workshop for a visit "Prestige" from our factory.
Located in one of the oldest houses in the historic center of the city, this perfume offers original creations of Didier Gaglewski.
Didier Gaglewski, "nose" in Grasse, began offering its achievements in the framework Living in Provence and in Paris, Germany and Switzerland. Both "artisan", "artist", he decided to offer his achievements directly driven by the idea that the quality, originality and respect perfume composition will dress with fun, humor and quality its customers.
Requiring each of its perfumes, made in the privacy of his laboratory, took several months of research. In partnership with Michelle Cavalier and the "garden of La Bastide," Didier Gaglewski also remains closer to the flowers and working the land. Try to trace extraction techniques inherited from the past and plants specific to the region perfumes seduce and make a very personal and authentic. This atypical creator is distinguished by its compositions made in Grasse basin, its choice to favor natural raw materials and the search for sobriety.
Front satisfaction and customer demands wishing to regain the proposed perfumes, shop in Grasse, 12 rue of the Oratory, just steps from the International Perfume Museum to discover the scents and recent creations.
The country house of Aromas
Based in Saint Cézaire on Siagne in the Pays de Grasse, the Bastide aromas manufactures and packages fragrances since 1995.
Saint Cézaire on Siagne is a typical Provencal village a few kilometers from Grasse, the world capital of perfumery.
The homemade studio human scale can meet all your demands. The 100% handmade is carried out in the workshop without intermediary, under the control of a chemist.
La Bastide des Aromas, respects the traditions of the Grasse region and offers the exclusive fragrances custom made in the workshop on-site, high quality, with particular stress on the fragrance concentration, her outfit and originality.
As part of the required course knowledge pupils need to be able to outline the process involved in taking a square wooden blank and preparing it for turning between centres. These pictures depict that process chronologically.
Stage 1 * Preparation of wooden blank. Cut to size. Sand square. Mark across diagonals. Centre punch the centre point. Use spring dividers to mark circumference. Repeat on other end.
Stage 2 * Plane off corners down to circumference line. This takes cross section from square to octagon. This reduces force on cutting toll in initial prep of blank. Mount between fork [driven] centre and dead [or live ] centre at tailstock end. Apply grease a dead centre end. apply force from tailstock end to force fork into material at driven end. Adjust toolstock height to suit. Check for clearance.
Stage 3 * Roughout using scraper to diameter. Use combination of gouges and skew chisels to add beads and other decorative detailing as required. Ensure spindle speed is appropriate for material and cross section under consideration. Obey all safety instructions.
As part of the required course knowledge pupils need to be able to outline the process involved in taking a square wooden blank and preparing it for turning between centres. These pictures depict that process chronologically.
Stage 1 * Preparation of wooden blank. Cut to size. Sand square. Mark across diagonals. Centre punch the centre point. Use spring dividers to mark circumference. Repeat on other end.
Stage 2 * Plane off corners down to circumference line. This takes cross section from square to octagon. This reduces force on cutting toll in initial prep of blank. Mount between fork [driven] centre and dead [or live ] centre at tailstock end. Apply grease a dead centre end. apply force from tailstock end to force fork into material at driven end. Adjust toolstock height to suit. Check for clearance.
Stage 3 * Roughout using scraper to diameter. Use combination of gouges and skew chisels to add beads and other decorative detailing as required. Ensure spindle speed is appropriate for material and cross section under consideration. Obey all safety instructions.
As part of the required course knowledge pupils need to be able to outline the process involved in taking a square wooden blank and preparing it for turning between centres. These pictures depict that process chronologically.
Stage 1 * Preparation of wooden blank. Cut to size. Sand square. Mark across diagonals. Centre punch the centre point. Use spring dividers to mark circumference. Repeat on other end.
Stage 2 * Plane off corners down to circumference line. This takes cross section from square to octagon. This reduces force on cutting toll in initial prep of blank. Mount between fork [driven] centre and dead [or live ] centre at tailstock end. Apply grease a dead centre end. apply force from tailstock end to force fork into material at driven end. Adjust toolstock height to suit. Check for clearance.
Stage 3 * Roughout using scraper to diameter. Use combination of gouges and skew chisels to add beads and other decorative detailing as required. Ensure spindle speed is appropriate for material and cross section under consideration. Obey all safety instructions.
VIEW OF THE SOLAR CONCENTRATOR/COLLECTORS - PART OF THE SOLAR TOTAL ENERGY SYSTEM.
UNIT FOR LATER USE. IN THE EXCHANGER, THE TRANSFER FLUID BOILS AND SUPER-HEATS THE WORKING-FLUID STEAM. WHILE THE TRANSFER FLUID IS RETURNED TO THE COLLECTORS TO REPEAT THE CYCLE, THE SUPER-HEATED WORKING FLUID DRIVES A MULTI-STAGE STEAM TURBINE WHICH IN TURN DRIVES AN ELECTRICAL GENERATOR WHICH PRODUCES ELECTRICITY FOR THE SYSTEM'S ELECTRICAL REQUIREMENTS. STEAM IS EXTRACTED FOR THE KNITWEAR MANUFACTURING PROCESSES. THE WORKING FLUID EXHAUSTED FROM THE PRIME MOVER IS COOLED AS IT PASSES THROUGH THE WATER-COOLED CONDENSER. CONDENSER COOLING WATER IS THEN USED FOR HEATING, AIR CONDITIONING, OR HOT WATER.
For more information or additional images, please contact 202-586-5251.
Native American Air Services is an Arizona based 100% Native American owned air ambulance company dedicated to providing 24-hour basic and advanced life support air ambulances throughout North America. With headquarters based at Williams Gateway Airport, Native American Air Ambulance’s fleet consists of four new Pilatus PC-12 aircraft, three Jetstream 31s, a Cessna 340A, two new Eurocopter A350 B2 ASTAR’s and five Bell L-3 206 Long Range Helicopters. Each aircraft is equipped with dual advance life support systems, and each has two flight crews, consisting of a captain, first officer, registered nurse and a certified emergency paramedic or respiratory therapist to provide optimum patient care. Native American Air Ambulance also offers air charter services.
Pilatus Aircraft Ltd has been building single-engine aircraft since 1939. The production facility is located in Stans, Switzerland. The company has earned its place as the largest single-engine turboprop manufacturer in the world. In both the civilian and military markets, Pilatus enjoys a reputation for utilizing the most modern design techniques, precision engineering and cutting-edge manufacturing processes to produce its high performance aircraft.
The latest and largest member of the Pilatus family is the PC-12. Integrating a single turboprop engine into an aerodynamically advanced airframe, the Pilatus PC-12 combines excellent economy, reliability and versatility with the inherent safety of this type of aircraft. It offers multiple configurations, ranging from Standard nine passenger commuter seating, Executive six to eight passenger seating, Cargo, Combi passenger and cargo, dedicated or quick change Air Ambulance and Multi-Mission Surveillance.
In spring 1917, the British Royal Flying Corps introduced the Sopwith Triplane, a three-winged version of the earlier Sopwith Pup fighter. The “Tripe” was only built in limited numbers, but it was issued to elite pilots, such as the famous “Black Flight” of the Royal Naval Air Service—commanded by ace Raymond Collishaw, the Black Flight’s five Triplanes shot down 87 German aircraft in three months.
The German Luftstreitskrafte reacted with shock. To this point, the Germans had usually enjoyed a qualitative advantage over the Allies in the air with their Albatros D.IIIs The Triplane could operate higher and was faster than German fighters, which gave their British and Canadian adversaries the advantage in a dogfight. Germany embarked on a crash program to field their own triplanes, with 37 manufacturers all producing prototypes. The best by far, however, was Fokker’s Dreidekker I, abbreviated Dr.I. After a short period of testing of prototypes, two pre-production aircraft were built and sent to the Western Front for evaluation. Both were given to exceptional pilots—Manfred von Richthofen and Werner Voss. Richthofen, testing the Dr.I in combat for the first time in September 1917, promptly shot down two aircraft and proclaimed the Dr.I a superb aircraft, if tricky to fly. If there was any doubt of its lethality, it was removed on 23 September, when Voss engaged nine British SE.5s of 56 Squadron, not one of which was flown by a pilot with less than ten victories. Though Voss was killed, his skill and the Dr.I’s manueverability held off nine British aces for ten minutes. Fokker immediately received a production order for 300 Dr.Is.
In combat, the Dr.I was not as fast as the Albatros, but it had a higher rate of climb and phenomenal manueverability—the design was slightly unstable, but an experienced pilot could use its high lift, light controls, and the torque of the engine to make snap rolls to the right almost within the length of the aircraft. It required an experienced pilot, especially on landing, where the torque of the engine and the wings also had a tendency to ground-loop the aircraft. This could be fatal, because the position of the two Spandau machine guns extending into the cockpit could cause a crashlanding pilot to hurtle forward into the gun butts, face-first. The Oberursel engine had a tendency to fall off in power at higher altitudes due to poor lubrication. By far, however, the worst drawback of the Dr.I was its tendency towards wing failures, which were initially believed due to poor workmanship by Fokker. It would be not until after the war that it was learned that the very triple-winged design of the Dreidekker was the problem: the top wing exerted more lift than the bottom two, with the result that the top wing would literally lift itself away from the rest of the aircraft. While it was possible to still fly with the missing top wing, the Dr.I would not fly for long and the pilot would have to make a high-speed landing in an aircraft notorious for groundlooping and killing its occupant.
Though the Dr.I was issued to two Jasta wings, including von Richthofen’s, in 1917-1918, it was never very popular with the majority of German pilots, and the production of the superb Fokker D.VII, which started about the same time, meant that the Luftstreitskrafte already had a fighter that was faster and more durable than the Dr.I, if not quite as manueverable. A few German aces still preferred the Dr.I, namely von Richthofen—because of the Dreidekker was good at something, it was attacking from ambush. A skilled ace could quickly gain altitude over an unsuspecting enemy, dive down, attack, and then use the kinetic energy built in the dive to zoom back to position, or manuever out of trouble with a quick right roll. Von Richthofen would score his last 20 (out of 80) kills in the Dr.I.
Following the end of World War I, nearly all of Germany’s fighters were purposely burned, either by their own pilots or by the Allies. By World War II, only one Dr.I was known to exist, one of von Richthofen’s aircraft, preserved in a museum in Berlin; the museum was flattened in an Allied bombing raid in 1944. Today, only scattered pieces of original Dr.Is exist. However, the simple manufacturing process of World War I fighters meant that reproductions could easily be built, and several dozen Dr.I replicas continue to fly today.
The Fokker Dr.I in the Malmstrom Museum’s ace collection is one of Manfred von Richthofen’s aircraft; like all of his planes, von Richthofen had it painted bright red—he wanted to be seen and feared by his opponents. This aircraft, WK 127/17, was intended as von Richthofen’s “show” plane, which he would fly to war bond and other morale-lifting tours; however, he scored at least three kills in the aircraft. Because of this, it carried Maltese crosses rather than the standard Latin crosses used by the Luftstreitskrafte, with the crosses surrounded by white panels and a white rudder. This aircraft was the last surviving Dr.I destroyed in the 1944 air raid on Berlin, though parts of it are preserved in museums around the world.
Io Aircraft - www.ioaircraft.com
Drew Blair
www.linkedin.com/in/drew-b-25485312/
io aircraft, phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air-Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, defense science, missile defense agency, aerospike,
Advanced Additive Manufacturing for Hypersonic Aircraft
Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.
Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.
*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.
What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.
Unified Turbine Based Combined Cycle (U-TBCC)
To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5
However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.
Enhanced Dynamic Cavitation
Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.
Dynamic Scramjet Ignition Processes
For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.
Hydrogen vs Kerosene Fuel Sources
Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.
Conforming High Pressure Tank Technology for CNG and H2.
As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.
As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).
Enhanced Fuel Mixture During Shock Train Interaction
Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.
Improved Bow Shock Interaction
Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.
6,000+ Fahrenheit Thermal Resistance
To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.
*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope
Scramjet Propulsion Side Wall Cooling
With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.
Lower Threshold for Hypersonic Ignition
Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.
Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities
Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.
Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)
To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.
A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.
As part of the required course knowledge pupils need to be able to outline the process involved in taking a square wooden blank and preparing it for turning between centres. These pictures depict that process chronologically.
Stage 1 * Preparation of wooden blank. Cut to size. Sand square. Mark across diagonals. Centre punch the centre point. Use spring dividers to mark circumference. Repeat on other end.
Stage 2 * Plane off corners down to circumference line. This takes cross section from square to octagon. This reduces force on cutting toll in initial prep of blank. Mount between fork [driven] centre and dead [or live ] centre at tailstock end. Apply grease a dead centre end. apply force from tailstock end to force fork into material at driven end. Adjust toolstock height to suit. Check for clearance.
Stage 3 * Roughout using scraper to diameter. Use combination of gouges and skew chisels to add beads and other decorative detailing as required. Ensure spindle speed is appropriate for material and cross section under consideration. Obey all safety instructions.
As part of the required course knowledge pupils need to be able to outline the process involved in taking a square wooden blank and preparing it for turning between centres. These pictures depict that process chronologically.
Stage 1 * Preparation of wooden blank. Cut to size. Sand square. Mark across diagonals. Centre punch the centre point. Use spring dividers to mark circumference. Repeat on other end.
Stage 2 * Plane off corners down to circumference line. This takes cross section from square to octagon. This reduces force on cutting toll in initial prep of blank. Mount between fork [driven] centre and dead [or live ] centre at tailstock end. Apply grease a dead centre end. apply force from tailstock end to force fork into material at driven end. Adjust toolstock height to suit. Check for clearance.
Stage 3 * Roughout using scraper to diameter. Use combination of gouges and skew chisels to add beads and other decorative detailing as required. Ensure spindle speed is appropriate for material and cross section under consideration. Obey all safety instructions.
As part of the required course knowledge pupils need to be able to outline the process involved in taking a square wooden blank and preparing it for turning between centres. These pictures depict that process chronologically.
Stage 1 * Preparation of wooden blank. Cut to size. Sand square. Mark across diagonals. Centre punch the centre point. Use spring dividers to mark circumference. Repeat on other end.
Stage 2 * Plane off corners down to circumference line. This takes cross section from square to octagon. This reduces force on cutting toll in initial prep of blank. Mount between fork [driven] centre and dead [or live ] centre at tailstock end. Apply grease a dead centre end. apply force from tailstock end to force fork into material at driven end. Adjust toolstock height to suit. Check for clearance.
Stage 3 * Roughout using scraper to diameter. Use combination of gouges and skew chisels to add beads and other decorative detailing as required. Ensure spindle speed is appropriate for material and cross section under consideration. Obey all safety instructions.
As part of the required course knowledge pupils need to be able to outline the process involved in taking a square wooden blank and preparing it for turning between centres. These pictures depict that process chronologically.
Stage 1 * Preparation of wooden blank. Cut to size. Sand square. Mark across diagonals. Centre punch the centre point. Use spring dividers to mark circumference. Repeat on other end.
Stage 2 * Plane off corners down to circumference line. This takes cross section from square to octagon. This reduces force on cutting toll in initial prep of blank. Mount between fork [driven] centre and dead [or live ] centre at tailstock end. Apply grease a dead centre end. apply force from tailstock end to force fork into material at driven end. Adjust toolstock height to suit. Check for clearance.
Stage 3 * Roughout using scraper to diameter. Use combination of gouges and skew chisels to add beads and other decorative detailing as required. Ensure spindle speed is appropriate for material and cross section under consideration. Obey all safety instructions.
As part of the required course knowledge pupils need to be able to outline the process involved in taking a square wooden blank and preparing it for turning between centres. These pictures depict that process chronologically.
Stage 1 * Preparation of wooden blank. Cut to size. Sand square. Mark across diagonals. Centre punch the centre point. Use spring dividers to mark circumference. Repeat on other end.
Stage 2 * Plane off corners down to circumference line. This takes cross section from square to octagon. This reduces force on cutting toll in initial prep of blank. Mount between fork [driven] centre and dead [or live ] centre at tailstock end. Apply grease a dead centre end. apply force from tailstock end to force fork into material at driven end. Adjust toolstock height to suit. Check for clearance.
Stage 3 * Roughout using scraper to diameter. Use combination of gouges and skew chisels to add beads and other decorative detailing as required. Ensure spindle speed is appropriate for material and cross section under consideration. Obey all safety instructions.
Here are images from my recent visit to the Cambo (www.cambo.com) factory in the Netherlands while I was visiting Amsterdam. Rene Rook of Cambo was nice enough to guide me through the entire production process as well as show me some vintage cameras from the companies history and show me their current product line (which was just recently updated at Photokina 2012)
for a full review of the products and a discussion of the images you see here (especially the vintage products) you can read the full article on my website www.brianhirschfeldphotography.com
The image on Flickr is NOT "true" high dynamic range. The youtube video youtu.be/kaohBh35Mlg contains a still of this image in "true" HDR, which is not the same thing as photography's definition of HDR. (You need to view the YouTube video on an HDR TV/monitor in order to see the proper colors for the wide color gamut and contrast)
This YouTube video is unlike HDR in normal photography where wide colors and highlights are compressed into an SDR image, instead in true HDR the large ranges are kept.
This still image was created as a YouTube video due to many HDR TVs not supporting any HDR image formats but most smart TVs support YouTube with its HDR video content...
Raw DNG image from the camera to the processed HDR conversion was performed using DaVinci Resolve color grading software.
The R|Z568M Nixie Tube is a revival of an antique technology: rediscovered, hand crafted, and made brand new by Dalibor Farny. Previously, no one was making any nixie tubes and the process was becoming a lost art. Thankfully due to much interest by hobbyists and enthusiasts both with and without technical knowledge of high voltage electronics, the nixie tube has made a comeback due to it's beautiful aesthetics and the fun of learning the design of power electronics. One can be a teenager or even an adult with an interest and buy a premade kit, or one can be an expert at electronics and design their own clock circuit & power supply from scratch. That is the beauty of such a simple yet complex device. Nowadays most use micro-controllers to run such nixie tube clocks allowing for people to learn programming too and for more features to be packed into such displays.
The R|Z568M Nixie Tube is one of the largest known nixie tubes measuring in at a symbol height of 50 mm (2 inches) and a glass diameter of 50 mm (2 inches). The total height including the glass and the base is 125 mm (4.9 inches) and the total diameter is 53 mm (2.1 inches). This is a huge beast of a nixie tube: both suitably bright and large enough for someone like me to read it across their room without their glasses on. The pleasant orange glow of the neon dimly lights a small room at night in darkness. There is a beautiful halo of blue almost bordering on purple violet light around each lit digit. This is from the mercury vapors being excited by the high voltage which helps ignite the neon around the metal digits. The mercury allows the nixie tube to last a long life: over 20 years or 200.000 hours running 24/7. To see the manufacturing process watch it here: www.youtube.com/watch?v=wxL4ElboiuA Also visit Dalibor Farny's website (which is a work of art in and of itself with it's animated nixie tubes as you scroll to read): www.daliborfarny.com/
This nixie tube is being used in a single digit Nixie Tube clock and being run at just under 1 watt. It works by cycling through the tens place of the hours, then then ones place of the hours, then the tens place of the minutes, and finally the ones place of the minutes. There is a brief pause between the start and end of the cycle allowing you to tell which numbers are at the beginning. The use of the single digit nixie tube clock is twofold: mostly to save money (the R|Z568M costs €135.00 without shipping or taxes!) and because it allows for more thorough cycling through all the available digits within the bulb thereby reducing the risk of cathode poisoning. In a multiple digit nixie tube clock, the tens place for the hours only alternates between the numbers 0, 1, and 2 leading to much higher uneven wear and tear on the device.
This photo is in 3D crossview. You cross your eyes while keeping the screen centered and it should become one image at the center in 3D. More Instructions for viewing 3D images: www.3dphoto.net/text/viewing/technique.html
Stereo Viewer for all my photos: jongames.com/stereophoto/
Shimano has released only 1000 of these sets to North America. If you are a collector or someone that just likes the best, than this is for you. This group is almost too beautiful to put on your bike.
The Dura-Ace name speaks for itself. You can feel the quality and see the attention to detail when you hold the parts. It is quality that has made Dura-Ace successful for 25 years.
The shifts are very fast and accurate with a smooth action. The refined dual pivot brakes stop on a dime even in wet conditions. The bearings of the bottom bracket and hubs are smooth. The new SPDR pedal locks your foot to the pedal better than anything we have tried.
The components are based on the 1999 Dura-Ace 7700 series components, but there are significant differences. Component surfaces have been hand polished to a mirror like finish and more titanium hardware is used throughout the group. Each components is also identified with a special 25th Anniversary emblem. Detailed specifications are provided with the group.
The components are packaged in ready-to-display condition in a handsome aluminum presentation case which also provides ample protection for long term storage. The package also includes a book which details the history of the group, briefly explains the manufacturing process, and provides comments from the people who have been closely involved with Dura-Ace over the years.
When Dura-Ace first appeared in Europe, cycling enthusiasts thought there was little chance a Japanese component maker could make inroads into the conservative and tradition-bound sport of professional bicycle racing. Much to everyone’s surprise, Shimano’s commitment to quality, innovative engineering, and attention to the needs of racing cyclists resulted in Dura-Ace becoming a very popular and well respected component group. It is estimated that more than 60 percent of high-end road racers are now riding Dura-Ace.
The dependability and functionality of the components are integral to the performance of the racing bicycle and the athlete riding it. Dura-Ace is designed to create a highly efficient link between the racer and the bicycle. It’s an interface that allows racing cyclists to concentrate more on the race, and less on controlling the bicycle. As a result, Dura-Ace is now recognized by road racers and cycling enthusiasts around the world as the performance standard for racing components.
As part of the required course knowledge pupils need to be able to outline the process involved in taking a square wooden blank and preparing it for turning between centres. These pictures depict that process chronologically.
Stage 1 * Preparation of wooden blank. Cut to size. Sand square. Mark across diagonals. Centre punch the centre point. Use spring dividers to mark circumference. Repeat on other end.
Stage 2 * Plane off corners down to circumference line. This takes cross section from square to octagon. This reduces force on cutting toll in initial prep of blank. Mount between fork [driven] centre and dead [or live ] centre at tailstock end. Apply grease a dead centre end. apply force from tailstock end to force fork into material at driven end. Adjust toolstock height to suit. Check for clearance.
Stage 3 * Roughout using scraper to diameter. Use combination of gouges and skew chisels to add beads and other decorative detailing as required. Ensure spindle speed is appropriate for material and cross section under consideration. Obey all safety instructions.
As part of the required course knowledge pupils need to be able to outline the process involved in taking a square wooden blank and preparing it for turning between centres. These pictures depict that process chronologically.
Stage 1 * Preparation of wooden blank. Cut to size. Sand square. Mark across diagonals. Centre punch the centre point. Use spring dividers to mark circumference. Repeat on other end.
Stage 2 * Plane off corners down to circumference line. This takes cross section from square to octagon. This reduces force on cutting toll in initial prep of blank. Mount between fork [driven] centre and dead [or live ] centre at tailstock end. Apply grease a dead centre end. apply force from tailstock end to force fork into material at driven end. Adjust toolstock height to suit. Check for clearance.
Stage 3 * Roughout using scraper to diameter. Use combination of gouges and skew chisels to add beads and other decorative detailing as required. Ensure spindle speed is appropriate for material and cross section under consideration. Obey all safety instructions.
Here are images from my recent visit to the Cambo (www.cambo.com) factory in the Netherlands while I was visiting Amsterdam. Rene Rook of Cambo was nice enough to guide me through the entire production process as well as show me some vintage cameras from the companies history and show me their current product line (which was just recently updated at Photokina 2012)
for a full review of the products and a discussion of the images you see here (especially the vintage products) you can read the full article on my website www.brianhirschfeldphotography.com
austin, texas
1977
motorola semiconductor plant
part of an archival project, featuring the photographs of nick dewolf
© the Nick DeWolf Foundation
Image-use requests are welcome via flickrmail or nickdewolfphotoarchive [at] gmail [dot] com
Destiny Garcia, embracing the second year of her doctorate studies in the UC Davis Department of Mechanical and Aerospace Engineering, is investigating how aerospace parts — such as airplane structures and components — are manufactured. She hopes to develop a method for predicting the residual, stress-based manufacturing distortions and deformations that occur during the manufacturing process.
After earning her PhD, she looks forward to teaching engineering courses, in order to share her passion for manufacturing with next-gen students.
For more information about graduate study at the UC Davis College of Engineering, please visit: engineering.ucdavis.edu/graduate/
Photos by Sean Michael Ayres/UC Davis Engineering