View allAll Photos Tagged Manufacturing_process
BlueEdge - Mach 8-10 Hypersonic Commercial Aircraft, 220 Passenger Hypersonic Commercial Plane - Imaginactive Media Release ICAO
Courtesy of Imaginactive, ICAO, Charles Bombardier, and Martin Rico. Media Release of High Quality Renderings for mainstream media.
IO Aircraft: www.ioaircraft.com/hypersonic/blueedge.php
Imaginactive: imaginactive.org/2019/02/blue-edge/
Martin Rico, Industrial Graphics Designed: www.linkedin.com/in/mjrico/
Seating: 220 | Crew 2+4
Length: 195ft | Span: 93ft
Engines: 4 U-TBCC (Unified Turbine Based Combined Cycle) +1 Aerospike for sustained 2G acceleration to Mach 10.
Fuel: H2 (Compressed Hydrogen)
Cruising Altitude: 100,000-125,000ft
Airframe: 75% Proprietary Composites
Operating Costs, Similar to a 737. $7,000-$15,000hr, including averaged maintenence costs
Iteration 3 (Full release of IT3, Monday January 14, 2019)
IO Aircraft www.ioaircraft.com
Drew Blair www.linkedin.com/in/drew-b-25485312/
-----------------------------
hypersonic plane, hypersonic aircraft, Imaginactive, ICAO, International Civil Aviation Orginization, Charles Bombardier, Martin Rico, hypersonic commercial plane, hypersonic commercial aircraft, hypersonic airline, tbcc, glide breaker, fighter plane, hyperonic fighter, boeing phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, office of naval research, defense advanced research project agency, defense science, missile defense agency, aerospike, hydrogen, hydrogen storage, hydrogen fueled, hydrogen aircraft, virgin airlines, united airlines, sas, finnair ,emirates airlines, ANA, JAL, airlines, military, physics, airline, british airways, air france
-----------------------------
Unified Turbine Based Combined Cycle. Current technologies and what Lockheed is trying to force on the Dept of Defense, for that low speed Mach 5 plane DOD gave them $1 billion to build and would disintegrate above Mach 5, is TBCC. 2 separate propulsion systems in the same airframe, which requires TWICE the airframe space to use.
Unified Turbine Based Combined Cycle is 1 propulsion system cutting that airframe deficit in half, and also able to operate above Mach 10 up to Mach 15 in atmosphere, and a simple nozzle modification allows for outside atmosphere rocket mode, ie orbital capable.
Additionally, Reaction Engines maximum air breather mode is Mach 4.5, above that it will explode in flight from internal pressures are too high to operate. Thus, must switch to non air breather rocket mode to operate in atmosphere in hypersonic velocities. Which as a result, makes it not feasible for anything practical. It also takes an immense amount of fuel to function.
-------------
Advanced Additive Manufacturing for Hypersonic Aircraft
Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.
Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.
*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.
What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.
Unified Turbine Based Combined Cycle (U-TBCC)
To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5
However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.
Enhanced Dynamic Cavitation
Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.
Dynamic Scramjet Ignition Processes
For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.
Hydrogen vs Kerosene Fuel Sources
Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.
Conforming High Pressure Tank Technology for CNG and H2.
As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.
As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).
Enhanced Fuel Mixture During Shock Train Interaction
Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.
Improved Bow Shock Interaction
Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.
6,000+ Fahrenheit Thermal Resistance
To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.
*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope
Scramjet Propulsion Side Wall Cooling
With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.
Lower Threshold for Hypersonic Ignition
Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.
Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities
Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.
Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)
To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.
A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.
It is chilly and rainy in Arizona for Super Bowl 48 but BMW turned up the heat with their all-electric i3 and hybrid i8 sports car. To add additional flavor to the recipe New England Patriots’ starting corner Kyle Arrington and wife VaShonda Arrington joined the experience for the energetic weekend festivities.
Kyle spent a few days in both vehicles during his activities, which included stops at the Nike Football Super Bowl Hospitality Gifting Suite at the immaculate Scottsdale Resort & Conference Center, the NFL Experience, family outings and dinner with his spouse. Vashonda’s centerpiece moment was raising funds for the Off the Field Player’s Wives Association’s “14th Annual Super Bowl Fashion Show” held at the upscale Scottsdale Fashion Mall. The wives, kids and a handful of former NFL players walked the runway with grace and style. Guests included Holly Robinson Peete, Antonio Cromardie, Steve Young, Kevin Hart and many more. She enjoyed the earthly interior of the i3 and spoke passionately about the need regarding increased sustainability in the world.
The mind is driven by thoughts and fueled by inventive answers. The i3 is 100% pure electric and the i8 is a plug-in hybrid sports car, which means its power is sourced from both gasoline and electricity. The i8 is comprised of a Life module and a Drive module. The 3-liter gasoline motor is placed in the rear and the smaller electric engine is housed up front. In addition, the i8 is essentially an AWD vehicle channeling traction from both axles simultaneously but doesn’t utilize the company’s hallmark xDrive system. A few common i8 performance specs include:
•0 to 60 mph = 4.2 seconds
•Top speed = 155 mph (electronically limited)
•Electric only top speed = 75 mph
•Pure electric range = 22 miles
Born electric, the i3 is engineered with BMW’s LifeDrive architecture, which is also structured into two categories, the Life Module and the Drive Module. Comprised of high-strength carbon, the Life Module protects and provides comfort for the driver and passengers. The second platform, the Drive Module, encompasses the electric drive system, the suspension and the HVAC. Since the car is lighter, the liquid-cooled lithium-ion battery (developed in-house by BMW) is smaller and only needs three hours for a full stage-2 (240-volt) charge. Additionally, BMW attempts to use as much renewable energy as possible for the manufacturing process of the carbon fiber i3.
The journey continues towards educating the world on the benefits of going green. BMW is both an innovator and leader in this technology category and has already spearheaded a positive movement. Expect more BMW i products down the line since they have only just begun.
It is chilly and rainy in Arizona for Super Bowl 48 but BMW turned up the heat with their all-electric i3 and hybrid i8 sports car. To add additional flavor to the recipe New England Patriots’ starting corner Kyle Arrington and wife VaShonda Arrington joined the experience for the energetic weekend festivities.
Kyle spent a few days in both vehicles during his activities, which included stops at the Nike Football Super Bowl Hospitality Gifting Suite at the immaculate Scottsdale Resort & Conference Center, the NFL Experience, family outings and dinner with his spouse. Vashonda’s centerpiece moment was raising funds for the Off the Field Player’s Wives Association’s “14th Annual Super Bowl Fashion Show” held at the upscale Scottsdale Fashion Mall. The wives, kids and a handful of former NFL players walked the runway with grace and style. Guests included Holly Robinson Peete, Antonio Cromardie, Steve Young, Kevin Hart and many more. She enjoyed the earthly interior of the i3 and spoke passionately about the need regarding increased sustainability in the world.
The mind is driven by thoughts and fueled by inventive answers. The i3 is 100% pure electric and the i8 is a plug-in hybrid sports car, which means its power is sourced from both gasoline and electricity. The i8 is comprised of a Life module and a Drive module. The 3-liter gasoline motor is placed in the rear and the smaller electric engine is housed up front. In addition, the i8 is essentially an AWD vehicle channeling traction from both axles simultaneously but doesn’t utilize the company’s hallmark xDrive system. A few common i8 performance specs include:
•0 to 60 mph = 4.2 seconds
•Top speed = 155 mph (electronically limited)
•Electric only top speed = 75 mph
•Pure electric range = 22 miles
Born electric, the i3 is engineered with BMW’s LifeDrive architecture, which is also structured into two categories, the Life Module and the Drive Module. Comprised of high-strength carbon, the Life Module protects and provides comfort for the driver and passengers. The second platform, the Drive Module, encompasses the electric drive system, the suspension and the HVAC. Since the car is lighter, the liquid-cooled lithium-ion battery (developed in-house by BMW) is smaller and only needs three hours for a full stage-2 (240-volt) charge. Additionally, BMW attempts to use as much renewable energy as possible for the manufacturing process of the carbon fiber i3.
The journey continues towards educating the world on the benefits of going green. BMW is both an innovator and leader in this technology category and has already spearheaded a positive movement. Expect more BMW i products down the line since they have only just begun.
One of the problems with my old MacBook Pro was the unresponsive keyboard/trackpad due to the improper installation of the flex cable in the manufacturing process. This is a common problem with old MacBook Pros.
Apple Store quoted me $400-1,000 for the fix, so I decided to fix this by myself. The replacement cable was just $20.
After the fix, my old MacBook Pro runs flawlessly :-)
Exterior signage was re-installed in March on the one of the damaged buildings along MacArthur Road (Manufacturing Process Facility).
It is chilly and rainy in Arizona for Super Bowl 48 but BMW turned up the heat with their all-electric i3 and hybrid i8 sports car. To add additional flavor to the recipe New England Patriots’ starting corner Kyle Arrington and wife VaShonda Arrington joined the experience for the energetic weekend festivities.
Kyle spent a few days in both vehicles during his activities, which included stops at the Nike Football Super Bowl Hospitality Gifting Suite at the immaculate Scottsdale Resort & Conference Center, the NFL Experience, family outings and dinner with his spouse. Vashonda’s centerpiece moment was raising funds for the Off the Field Player’s Wives Association’s “14th Annual Super Bowl Fashion Show” held at the upscale Scottsdale Fashion Mall. The wives, kids and a handful of former NFL players walked the runway with grace and style. Guests included Holly Robinson Peete, Antonio Cromardie, Steve Young, Kevin Hart and many more. She enjoyed the earthly interior of the i3 and spoke passionately about the need regarding increased sustainability in the world.
The mind is driven by thoughts and fueled by inventive answers. The i3 is 100% pure electric and the i8 is a plug-in hybrid sports car, which means its power is sourced from both gasoline and electricity. The i8 is comprised of a Life module and a Drive module. The 3-liter gasoline motor is placed in the rear and the smaller electric engine is housed up front. In addition, the i8 is essentially an AWD vehicle channeling traction from both axles simultaneously but doesn’t utilize the company’s hallmark xDrive system. A few common i8 performance specs include:
•0 to 60 mph = 4.2 seconds
•Top speed = 155 mph (electronically limited)
•Electric only top speed = 75 mph
•Pure electric range = 22 miles
Born electric, the i3 is engineered with BMW’s LifeDrive architecture, which is also structured into two categories, the Life Module and the Drive Module. Comprised of high-strength carbon, the Life Module protects and provides comfort for the driver and passengers. The second platform, the Drive Module, encompasses the electric drive system, the suspension and the HVAC. Since the car is lighter, the liquid-cooled lithium-ion battery (developed in-house by BMW) is smaller and only needs three hours for a full stage-2 (240-volt) charge. Additionally, BMW attempts to use as much renewable energy as possible for the manufacturing process of the carbon fiber i3.
The journey continues towards educating the world on the benefits of going green. BMW is both an innovator and leader in this technology category and has already spearheaded a positive movement. Expect more BMW i products down the line since they have only just begun.
It is chilly and rainy in Arizona for Super Bowl 48 but BMW turned up the heat with their all-electric i3 and hybrid i8 sports car. To add additional flavor to the recipe New England Patriots’ starting corner Kyle Arrington and wife VaShonda Arrington joined the experience for the energetic weekend festivities.
Kyle spent a few days in both vehicles during his activities, which included stops at the Nike Football Super Bowl Hospitality Gifting Suite at the immaculate Scottsdale Resort & Conference Center, the NFL Experience, family outings and dinner with his spouse. Vashonda’s centerpiece moment was raising funds for the Off the Field Player’s Wives Association’s “14th Annual Super Bowl Fashion Show” held at the upscale Scottsdale Fashion Mall. The wives, kids and a handful of former NFL players walked the runway with grace and style. Guests included Holly Robinson Peete, Antonio Cromardie, Steve Young, Kevin Hart and many more. She enjoyed the earthly interior of the i3 and spoke passionately about the need regarding increased sustainability in the world.
The mind is driven by thoughts and fueled by inventive answers. The i3 is 100% pure electric and the i8 is a plug-in hybrid sports car, which means its power is sourced from both gasoline and electricity. The i8 is comprised of a Life module and a Drive module. The 3-liter gasoline motor is placed in the rear and the smaller electric engine is housed up front. In addition, the i8 is essentially an AWD vehicle channeling traction from both axles simultaneously but doesn’t utilize the company’s hallmark xDrive system. A few common i8 performance specs include:
•0 to 60 mph = 4.2 seconds
•Top speed = 155 mph (electronically limited)
•Electric only top speed = 75 mph
•Pure electric range = 22 miles
Born electric, the i3 is engineered with BMW’s LifeDrive architecture, which is also structured into two categories, the Life Module and the Drive Module. Comprised of high-strength carbon, the Life Module protects and provides comfort for the driver and passengers. The second platform, the Drive Module, encompasses the electric drive system, the suspension and the HVAC. Since the car is lighter, the liquid-cooled lithium-ion battery (developed in-house by BMW) is smaller and only needs three hours for a full stage-2 (240-volt) charge. Additionally, BMW attempts to use as much renewable energy as possible for the manufacturing process of the carbon fiber i3.
The journey continues towards educating the world on the benefits of going green. BMW is both an innovator and leader in this technology category and has already spearheaded a positive movement. Expect more BMW i products down the line since they have only just begun.
It is chilly and rainy in Arizona for Super Bowl 48 but BMW turned up the heat with their all-electric i3 and hybrid i8 sports car. To add additional flavor to the recipe New England Patriots’ starting corner Kyle Arrington and wife VaShonda Arrington joined the experience for the energetic weekend festivities.
Kyle spent a few days in both vehicles during his activities, which included stops at the Nike Football Super Bowl Hospitality Gifting Suite at the immaculate Scottsdale Resort & Conference Center, the NFL Experience, family outings and dinner with his spouse. Vashonda’s centerpiece moment was raising funds for the Off the Field Player’s Wives Association’s “14th Annual Super Bowl Fashion Show” held at the upscale Scottsdale Fashion Mall. The wives, kids and a handful of former NFL players walked the runway with grace and style. Guests included Holly Robinson Peete, Antonio Cromardie, Steve Young, Kevin Hart and many more. She enjoyed the earthly interior of the i3 and spoke passionately about the need regarding increased sustainability in the world.
The mind is driven by thoughts and fueled by inventive answers. The i3 is 100% pure electric and the i8 is a plug-in hybrid sports car, which means its power is sourced from both gasoline and electricity. The i8 is comprised of a Life module and a Drive module. The 3-liter gasoline motor is placed in the rear and the smaller electric engine is housed up front. In addition, the i8 is essentially an AWD vehicle channeling traction from both axles simultaneously but doesn’t utilize the company’s hallmark xDrive system. A few common i8 performance specs include:
•0 to 60 mph = 4.2 seconds
•Top speed = 155 mph (electronically limited)
•Electric only top speed = 75 mph
•Pure electric range = 22 miles
Born electric, the i3 is engineered with BMW’s LifeDrive architecture, which is also structured into two categories, the Life Module and the Drive Module. Comprised of high-strength carbon, the Life Module protects and provides comfort for the driver and passengers. The second platform, the Drive Module, encompasses the electric drive system, the suspension and the HVAC. Since the car is lighter, the liquid-cooled lithium-ion battery (developed in-house by BMW) is smaller and only needs three hours for a full stage-2 (240-volt) charge. Additionally, BMW attempts to use as much renewable energy as possible for the manufacturing process of the carbon fiber i3.
The journey continues towards educating the world on the benefits of going green. BMW is both an innovator and leader in this technology category and has already spearheaded a positive movement. Expect more BMW i products down the line since they have only just begun.
In the heart of Old Town, historic factory is among the oldest in Grasse ... Indeed the current premises sheltered from their beginning in 1782, a perfume factory. In 1926, after the famous painter Jean Honoré Fragonard, it takes the name of Parfumerie Fragonard. Since then, every day, we produce are our perfumes, cosmetics and soaps in a respectful environment of tradition. We would be happy to welcome you and offer you a guided tour during which you will discover the different manufacturing processes and packaging our products. At the end of your visit, you can admire 3000 years of history of perfume through our private museum.
Dedicated to the perfume and aromatic plants, Flower Factory is surrounded by a beautiful garden scented plants ... the gates of Grasse, this contemporary factory opened in 1986 is equipped with very modern machinery for the manufacture and packaging of our products.
WORKSHOP ODOR "Perfumer's Apprentice"
Available on the French Riviera and Paris, in factories, workshops Perfumers Apprentice can discover the expertise of Perfumer: the history of perfume, raw materials and different extraction methods.
Experience unforgettable sense centered on the composition of a toilet water (100 ml) in aromatic notes of citrus and orange blossom, by assembling the different species made available. A fun and exciting experience in the world of perfumery, which proposes the course led by the teacher, the bottle and its bag, apron "apprentice" printed Fragonard, the diploma signed by the teacher and the summary of the composition .
One of our guides will accompany you as a result of the workshop for a visit "Prestige" from our factory.
Located in one of the oldest houses in the historic center of the city, this perfume offers original creations of Didier Gaglewski.
Didier Gaglewski, "nose" in Grasse, began offering its achievements in the framework Living in Provence and in Paris, Germany and Switzerland. Both "artisan", "artist", he decided to offer his achievements directly driven by the idea that the quality, originality and respect perfume composition will dress with fun, humor and quality its customers.
Requiring each of its perfumes, made in the privacy of his laboratory, took several months of research. In partnership with Michelle Cavalier and the "garden of La Bastide," Didier Gaglewski also remains closer to the flowers and working the land. Try to trace extraction techniques inherited from the past and plants specific to the region perfumes seduce and make a very personal and authentic. This atypical creator is distinguished by its compositions made in Grasse basin, its choice to favor natural raw materials and the search for sobriety.
Front satisfaction and customer demands wishing to regain the proposed perfumes, shop in Grasse, 12 rue of the Oratory, just steps from the International Perfume Museum to discover the scents and recent creations.
The country house of Aromas
Based in Saint Cézaire on Siagne in the Pays de Grasse, the Bastide aromas manufactures and packages fragrances since 1995.
Saint Cézaire on Siagne is a typical Provencal village a few kilometers from Grasse, the world capital of perfumery.
The homemade studio human scale can meet all your demands. The 100% handmade is carried out in the workshop without intermediary, under the control of a chemist.
La Bastide des Aromas, respects the traditions of the Grasse region and offers the exclusive fragrances custom made in the workshop on-site, high quality, with particular stress on the fragrance concentration, her outfit and originality.
A new metals manufacturing process is being developed by PNNL that uses extreme deformation to convert aluminum powders directly into rods and tubes. While fabricating half-inch bars directly from exotic aluminum powders, researchers at PNNL discovered this complex flow of metal resembling the turbulent gaseous storms raging within Jupiter’s atmosphere. The realization that solid metals can be made to flow in patterns similar to liquids and gases is enabling researchers to develop the next generation of high performance aluminum alloys.
(En) Founded in 1906, the Coking Plant of Anderlues was specialized in the production of coke for industrial use.
Coke was obtained by distillation of coal in furnaces and, thanks to its superior fuel coal properties, it was used afterwards to feed the blast furnaces in the steel manufacturing process.
Closed and abandoned since 2002, the site has since undergone many losses and damages, not including an important pollution. While some buildings have now been demolished, there are however still some important parts of the former coking plant.
Among them, the former coal tower, next to the imposing "battery" of 38 furnaces, where the coke was produced. Besides them, we still can see the administrative buildings, the power station with its cooling tower, and buildings for the by-products, which were obtained by recovering the tar and coal gas. There are also a gasometer north side, the coal tip east side and a settling basin south side.
-----------
(Fr) Fondées en 1906, les Cokeries d'Anderlues étaient spécialisées dans la fabrication de coke à usage industriel.
Le coke était obtenu par distillation de la houille dans des fours et, grâce à ses propriétés combustibles supérieures au charbon, il servait par après à alimenter les hauts-fourneaux dans le processus de fabrication de l'acier.
Fermé et laissé à l'abandon depuis 2002, le site a depuis lors subi de nombreuses pertes et dégradations, sans compter la pollution qui y règne. Si certains bâtiments (comme l'ancien lavoir à charbon) ont aujourd'hui été démolis, on retrouve encore toutefois certaines parties importantes de cette ancienne cokerie.
Parmi celles-ci, l'ancienne tour à charbon suivie de près par l'imposante "batterie" de 38 fours, où était produit le coke. A côté d'eux, on découvre également les bâtiments administratifs, la centrale électrique avec sa tour de refroidissement, ainsi que les bâtiments des sous-produits, lesquels étaient obtenus par récupération du goudron et du gaz de houille. Et en périphérie, on retrouve un gazomètre côté nord, le terril à l'est et un bassin de décantation côté sud.
Partial view of the surface of a corrugated asbestos-cement panel from the interior side-wall of a vintage Marley cooling tower panel. Closer review of the panel's surface depicts a peculiar pattern of raised, embossed nubs, likely created during manufacturing process for keeping panels slightly spaced apart and easier to separate when stacked.
It is chilly and rainy in Arizona for Super Bowl 48 but BMW turned up the heat with their all-electric i3 and hybrid i8 sports car. To add additional flavor to the recipe New England Patriots’ starting corner Kyle Arrington and wife VaShonda Arrington joined the experience for the energetic weekend festivities.
Kyle spent a few days in both vehicles during his activities, which included stops at the Nike Football Super Bowl Hospitality Gifting Suite at the immaculate Scottsdale Resort & Conference Center, the NFL Experience, family outings and dinner with his spouse. Vashonda’s centerpiece moment was raising funds for the Off the Field Player’s Wives Association’s “14th Annual Super Bowl Fashion Show” held at the upscale Scottsdale Fashion Mall. The wives, kids and a handful of former NFL players walked the runway with grace and style. Guests included Holly Robinson Peete, Antonio Cromardie, Steve Young, Kevin Hart and many more. She enjoyed the earthly interior of the i3 and spoke passionately about the need regarding increased sustainability in the world.
The mind is driven by thoughts and fueled by inventive answers. The i3 is 100% pure electric and the i8 is a plug-in hybrid sports car, which means its power is sourced from both gasoline and electricity. The i8 is comprised of a Life module and a Drive module. The 3-liter gasoline motor is placed in the rear and the smaller electric engine is housed up front. In addition, the i8 is essentially an AWD vehicle channeling traction from both axles simultaneously but doesn’t utilize the company’s hallmark xDrive system. A few common i8 performance specs include:
•0 to 60 mph = 4.2 seconds
•Top speed = 155 mph (electronically limited)
•Electric only top speed = 75 mph
•Pure electric range = 22 miles
Born electric, the i3 is engineered with BMW’s LifeDrive architecture, which is also structured into two categories, the Life Module and the Drive Module. Comprised of high-strength carbon, the Life Module protects and provides comfort for the driver and passengers. The second platform, the Drive Module, encompasses the electric drive system, the suspension and the HVAC. Since the car is lighter, the liquid-cooled lithium-ion battery (developed in-house by BMW) is smaller and only needs three hours for a full stage-2 (240-volt) charge. Additionally, BMW attempts to use as much renewable energy as possible for the manufacturing process of the carbon fiber i3.
The journey continues towards educating the world on the benefits of going green. BMW is both an innovator and leader in this technology category and has already spearheaded a positive movement. Expect more BMW i products down the line since they have only just begun.
This is a Screen Porch in Gaithersburg, Maryland that features Fiberon Horizon decking and Shoreline white vinyl handrails. The balusters in the handrails are deckorators black aluminum. This is an example of a low maintenance screen room with plenty of space to entertain family and friends.
Invest in Low-Maintenance Decking
If you’re planning to invest in a beautiful deck, then a low-maintenance, high-enjoyment life is certainly your goal. Typical wood decks need to be cleaned, stained, and cared for to ensure their longevity. No doubt you’ve wondered if there are other options that will minimize caretaking responsibilities and expand your leisure time.
We recommend Fiberon Horizon Decking as an alternative to traditional wood decking. You want longevity? Fiberon Horizon Decking is covered by a 25-year performance and stain-and-fade warranty. Horizon is also imbued with PermaTech Innovation, a cutting-edge technology that offers unrivaled resistance to stains, scratches, splinters, fading, decay, termites, and mold – everything you want in a deck but never thought you could have. The performance and durability of your deck will easily match its beauty when you opt for this modified composite decking.
To satisfy the green-friendly component, Horizon is produced in an energy-efficient, virtually waste-free manufacturing process and composed of over 50 percent recycled materials. But that doesn’t mean you’re limited in the colors of decking. Staining your Horizon deck is unnecessary as this product is available in six rich, fade-resistant shades – ipe, rosewood, Tudor brown, castle gray, bronze, and slate – and composed of exotic, hardwood tones with natural-looking grain patterns.
Make an error in installation? Flip the board and start again – Horizon boards have been engineered to be reversible; their design offers identical grains on both sides, therefore creating less scrap. Another bonus: Horizon railing is available to complement the decking, and also features a smooth, low-maintenance exterior to protect against the elements, from sunlight to snow.
Fiberon began as a manufacturer of wood-plastic composite decking, intending to conquer the market of alternative decking materials. After a few key acquisitions, Fiberon established itself as a leader in this marketplace and continue to innovate, notably with their Horizon decking and its traditional composite decking core for strength and unprecedented surface material that resists wear and tear.
Outdoor living is growing in popularity – an outdoor leisure space is practically as integral a feature to a home as a kitchen, particularly for resale value. Now you can have the recreation area you want, without any added drudgery.
www.designbuildersmd.com/en_us/blog/low-maintenance-decki...
designbuildersmd.blogspot.com/2011/12/low-maintenance-dec...
In 1871, during a time when the United States depended solely on Europe for optical lenses, Thomas A. Willson & Co. erected the first factory for the manufacturing of optical glass for lenses and reading glasses at the corner of Washington and 2nd Streets in Reading, Pennsylvania. Founded by Gile J. Willson and his son Dr. Thomas A. Willson, the company made innovative strides in addressing the occupational hazards faced by so many working in factories throughout the industrial revolution and is credited with launching the safety protection industry. Their first innovation, among many that would follow, was a protective lens that blocked dangerous and blinding rays produced by metal processing equipment.
During the 1890s the company expanded the reach of the safety industry to address not only vision, but also hearing, respiratory and head protection. Dr. Frederick Willson, the son of Dr. Thomas A. Willson, had joined the family company and became the president under a new name, T.A. Willson Co. Inc. as the company incorporated in 1910.
The National Safety Council was created in 1913, and T.A. Willson & Co. Inc. helped to set the bar for the establishment of uniform safety standards in industry. Through the 1920s, they continued expanding their line of safety equipment for the protection of coal miners, military personnel, and the evolving field of aviation. In 1929 the company changed its name to Willson Goggles, Inc., with Thomas A. Willson Jr. as the company’s president, and by World War II, Willson Goggles was helping the war effort by making aviator goggles and high altitude oxygen masks for pilots in the military.
In 1936 the company again changed its name to reflect the ever-expanding range of safety protection equipment they had come to represent. The new name, which would take the company through the next forty-five years, was Willson Products, Inc. They went on to produce fashionable sunglasses, as modeled by the contestants of the 1938 Miss America Pageant, and swim goggles, as worn by Florence Chadwick, the first woman to swim both directions of the English Channel in 1950.
Eventually the company changed hands first to Ray-O-Vac Corp. in 1956, and the following year to Electric Storage Battery (ESB) Co., but maintained the Willson Products name through the atomic age and space age, still leading the safety industry in research and development of equipment to meet the needs of a technologically advancing society. By 1981 the company was manufacturing more than 3,000 separate items in protective gear, and at that time became Willson Safety Products.
Willson shifted its focus to the development of new varieties of respirators, gloves and other protective equipment in the 1980s. They stopped manufacturing safety eyewear and began to purchase those products offshore. The company teamed up with Christian Dalloz, a French-based company to create protective eyewear, and Willson became Dalloz’s largest customer. Dalloz bought Willson Products in 1989, and changed the company name to Dalloz Safety in 1997.
Between 200 and 300 people were employed at the Dalloz plant in Reading, but due to outdated equipment and manufacturing processes, layoffs began. By 2001 fifty employees remained, and in May, 2002 the Dalloz Safety plant in Reading closed.
A 130-year history of safety industry innovation and leadership came to an end, and the future of the buildings that had been erected to accommodate the Willson family’s enterprising manufacturing was uncertain. In the midst of hopes and plans for the revitalization of the greater Reading area, the City of Reading recognized the value and the character of these buildings, and their potential to serve the community in a whole new way. Plans to develop a community arts and cultural resource center began, fueled by the proven success of similar adaptive reuse arts center projects. By converting abandoned factories, these community arts centers have revitalized their areas, maintaining local historical and architectural integrity while inspiring a cultural and economic resurgence as the community and visitors come together to create, appreciate, and celebrate the arts.
New Iteration - Grey Hawk - Mach 8-10 - 7th / 8th Gen Hypersonic Super Fighter Aircraft, IO Aircraft www.ioaircraft.com
New peek, very little is posted or public. Grey Hawk - Mach 8-10 Hypersonic 7th/8th Gen Super Fighter. This is not a graphics design, but ready to be built this moment. Heavy CFD, Design Work, Systems, etc.
All technologies developed and refined. Can out maneuver an F22 or SU-35 all day long subsonically, and no missile on earth could catch it. Lots of details omitted intentionally, but even internal payload capacity is double the F-22 Raptor. - www.ioaircraft.com/hypersonic.php
Length: 60'
Span: 30'
Engines: 2 U-TBCC (Unified Turbine Based Combined Cycle)
2 360° Thrust Vectoring Center Turbines
Fuel: Kero / Hydrogen
Payload: Up to 4 2,000 LBS JDAM's Internally
Up to 6 2,000 LBS JDAM's Externally
Range: 5,000nm + Aerial Refueling Capable
www.ioaircraft.com/hypersonic.php
-----------------------------
hypersonic fighter, hypersonic fighter plane, hawc, tgv, tactical glide vehicle, hypersonic commercial aircraft, hypersonic commercial plane, hypersonic aircraft, hypersonic plane, hypersonic airline, tbcc, glide breaker, fighter plane, hypersonic fighter, boeing phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, defense science, missile defense agency, aerospike, hydrogen aircraft, airlines, military, physics, airline, aerion supersonic, aerion, spike aerospace, boom supersonic, , darpa, onr, navair, afrl, air force research lab, office of naval research, defense advanced research project agency, afosr, socom, arl, army future command, mda, missile defense agenci, dia, defense intelligence agency, Air Force Office of Scientific Research,
-----------------------------
Unified Turbine Based Combined Cycle. Current technologies and what Lockheed is trying to force on the Dept of Defense, for that low speed Mach 5 plane DOD gave them $1 billion to build and would disintegrate above Mach 5, is TBCC. 2 separate propulsion systems in the same airframe, which requires TWICE the airframe space to use.
Unified Turbine Based Combined Cycle is 1 propulsion system cutting that airframe deficit in half, and also able to operate above Mach 10 up to Mach 15 in atmosphere, and a simple nozzle modification allows for outside atmosphere rocket mode, ie orbital capable.
Additionally, Reaction Engines maximum air breather mode is Mach 4.5, above that it will explode in flight from internal pressures are too high to operate. Thus, must switch to non air breather rocket mode to operate in atmosphere in hypersonic velocities. Which as a result, makes it not feasible for anything practical. It also takes an immense amount of fuel to function.
-------------
Advanced Additive Manufacturing for Hypersonic Aircraft
Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.
Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.
*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.
What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.
Unified Turbine Based Combined Cycle (U-TBCC)
To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5
However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.
Enhanced Dynamic Cavitation
Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.
Dynamic Scramjet Ignition Processes
For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.
Hydrogen vs Kerosene Fuel Sources
Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.
Conforming High Pressure Tank Technology for CNG and H2.
As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.
As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).
Enhanced Fuel Mixture During Shock Train Interaction
Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.
Improved Bow Shock Interaction
Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.
6,000+ Fahrenheit Thermal Resistance
To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.
*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope
Scramjet Propulsion Side Wall Cooling
With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.
Lower Threshold for Hypersonic Ignition
Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.
Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities
Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.
Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)
To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.
A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.
BlueEdge - Mach 8-10 Hypersonic Commercial Aircraft, 220 Passenger Hypersonic Commercial Plane - Iteration 3
Seating: 220 | Crew 2+4
Length: 195ft | Span: 93ft
Engines: 4 U-TBCC (Unified Turbine Based Combined Cycle) +1 Aerospike for sustained 2G acceleration to Mach 10.
Fuel: H2 (Compressed Hydrogen)
Cruising Altitude: 100,000-125,000ft
Airframe: 75% Proprietary Composites
Operating Costs, Similar to a 737. $7,000-$15,000hr, including averaged maintenence costs
Iteration 3 (Full release of IT3, Monday January 14, 2019)
IO Aircraft www.ioaircraft.com
Drew Blair www.linkedin.com/in/drew-b-25485312/
-----------------------------
hypersonic plane, hypersonic aircraft, hypersonic commercial plane, hypersonic commercial aircraft, hypersonic airline, tbcc, glide breaker, fighter plane, hyperonic fighter, boeing phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, office of naval research, defense advanced research project agency, defense science, missile defense agency, aerospike, hydrogen, hydrogen storage, hydrogen fueled, hydrogen aircraft, virgin airlines, united airlines, sas, finnair ,emirates airlines, ANA, JAL, airlines, military, physics, airline, british airways, air france
-----------------------------
Unified Turbine Based Combined Cycle. Current technologies and what Lockheed is trying to force on the Dept of Defense, for that low speed Mach 5 plane DOD gave them $1 billion to build and would disintegrate above Mach 5, is TBCC. 2 separate propulsion systems in the same airframe, which requires TWICE the airframe space to use.
Unified Turbine Based Combined Cycle is 1 propulsion system cutting that airframe deficit in half, and also able to operate above Mach 10 up to Mach 15 in atmosphere, and a simple nozzle modification allows for outside atmosphere rocket mode, ie orbital capable.
Additionally, Reaction Engines maximum air breather mode is Mach 4.5, above that it will explode in flight from internal pressures are too high to operate. Thus, must switch to non air breather rocket mode to operate in atmosphere in hypersonic velocities. Which as a result, makes it not feasible for anything practical. It also takes an immense amount of fuel to function.
-------------
Advanced Additive Manufacturing for Hypersonic Aircraft
Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.
Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.
*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.
What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.
Unified Turbine Based Combined Cycle (U-TBCC)
To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5
However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.
Enhanced Dynamic Cavitation
Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.
Dynamic Scramjet Ignition Processes
For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.
Hydrogen vs Kerosene Fuel Sources
Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.
Conforming High Pressure Tank Technology for CNG and H2.
As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.
As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).
Enhanced Fuel Mixture During Shock Train Interaction
Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.
Improved Bow Shock Interaction
Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.
6,000+ Fahrenheit Thermal Resistance
To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.
*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope
Scramjet Propulsion Side Wall Cooling
With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.
Lower Threshold for Hypersonic Ignition
Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.
Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities
Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.
Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)
To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.
A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.
Discovery STO - Single Stage to Orbit Heavy Lift, Hypersonic Aircraft - 70 TON Payload - IO Aircraft
IO Aircraft: www.ioaircraft.com
Discovery STO Specs
Length:197' 6" / Span: 93' / Palyload Bay: 61' L X 15" W X 15' H / Span: 70 Ton (140,000 LBS)
Engines: U-TBCC (Unified Turbined Based Combined Cycle) Inc/Zero Atmosphere
Inlets: Adaptive REST, Originally Hapb/Larc NASA
Fuel: 125,000 Gallons 12,000 PSI H2 / 90,000 Gallons 12,000 PSI O2
Fuel Weight: Apx 72,000 LBS Total / *If liquid, would be 1.4 Million LBS
Weight: Apx 325,000 LBS EOW/Dry Weight / Apx 537,000 T/O Weight, Max Payload
Airframe: 75+% Proprietary Advanced Composites, 400,000 PSI Tensile Strength Airframe / *NO Ceramic Tiles
Thermals: 6,000F Thermal Resistance
Estimated Cost: $750 Million Each (Fly Away Price)
Estimated Launch Cost: Apx $28 Million at 140,000 LBS, Including Maintenance Costs / Under $250 per pound at Maximum Paylaod Wieght *Could Drop to Below $50 per LBS
-----------------------------
single stage to orbit, sto, space plane, falcon heavy, delta iv, hypersonic commercial aircraft, hypersonic commercial plane, hypersonic aircraft, hypersonic plane, ICAO, International Civil Aviation Orginization, hypersonic airline, tbcc, glide breaker, fighter plane, hyperonic fighter, boeing phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, office of naval research, defense advanced research project agency, defense science, missile defense agency, aerospike, hydrogen fueled, hydrogen aircraft, virgin airlines, united airlines, sas, finnair ,emirates airlines, ANA, JAL, airlines, military, physics, airline, british airways, air france, aerion supersonic, aerion, spike aerospace, boom supersonic,
-----------------------------
Unified Turbine Based Combined Cycle. Current technologies and what Lockheed is trying to force on the Dept of Defense, for that low speed Mach 5 plane DOD gave them $1 billion to build and would disintegrate above Mach 5, is TBCC. 2 separate propulsion systems in the same airframe, which requires TWICE the airframe space to use.
Unified Turbine Based Combined Cycle is 1 propulsion system cutting that airframe deficit in half, and also able to operate above Mach 10 up to Mach 15 in atmosphere, and a simple nozzle modification allows for outside atmosphere rocket mode, ie orbital capable.
Additionally, Reaction Engines maximum air breather mode is Mach 4.5, above that it will explode in flight from internal pressures are too high to operate. Thus, must switch to non air breather rocket mode to operate in atmosphere in hypersonic velocities. Which as a result, makes it not feasible for anything practical. It also takes an immense amount of fuel to function.
-------------
Advanced Additive Manufacturing for Hypersonic Aircraft
Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.
Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.
*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.
What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.
Unified Turbine Based Combined Cycle (U-TBCC)
To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5
However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.
Enhanced Dynamic Cavitation
Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.
Dynamic Scramjet Ignition Processes
For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.
Hydrogen vs Kerosene Fuel Sources
Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.
Conforming High Pressure Tank Technology for CNG and H2.
As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.
As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).
Enhanced Fuel Mixture During Shock Train Interaction
Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.
Improved Bow Shock Interaction
Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.
6,000+ Fahrenheit Thermal Resistance
To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.
*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope
Scramjet Propulsion Side Wall Cooling
With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.
Lower Threshold for Hypersonic Ignition
Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.
Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities
Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.
Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)
To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.
A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.
ABERDEEN PROVING GROUND, Md. (Dec. 19, 2014) -- The U.S. Army is seeking to implement a new mortar manufacturing process to provide improved weapons at a lower cost, officials said.
The Army introduced a nickel super-alloy called Inconcel to produce mortars in 2008, but its properties make it challenging to manufacture. Researchers have been working on an alternative method to overcome the difficulties, said Chris Humiston, a mechanical engineer with the Armament Research, Development and Engineering Center at Watervliet Arsenal, New York.
Read more:
austin, texas
1977
motorola semiconductor plant
part of an archival project, featuring the photographs of nick dewolf
© the Nick DeWolf Foundation
Image-use requests are welcome via flickrmail or nickdewolfphotoarchive [at] gmail [dot] com
TDRS-K Undergoing a Fit Check.
Credit: Boeing
-----
CAPE CANAVERAL, Fla. -- The first of NASA's three next-generation
Tracking and Data Relay Satellites (TDRS), known as TDRS-K, launched
at 8:48 p.m. EST Wednesday from Cape Canaveral Air Force Station in
Florida.
"TDRS-K bolsters our network of satellites that provides essential
communications to support space exploration," said Badri Younes,
deputy associate administrator for Space Communications and
Navigation at NASA Headquarters in Washington. "It will improve the
overall health and longevity of our system."
The TDRS system provides tracking, telemetry, command and
high-bandwidth data return services for numerous science and human
exploration missions orbiting Earth. These include the International
Space Station and NASA's Hubble Space Telescope.
"With this launch, NASA has begun the replenishment of our aging space
network," said Jeffrey Gramling, TDRS project manager. "This addition
to our current fleet of seven will provide even greater capabilities
to a network that has become key to enabling many of NASA's
scientific discoveries."
TDRS-K was lifted into orbit aboard a United Launch Alliance Atlas V
rocket from Space Launch Complex-41. After a three-month test phase,
NASA will accept the spacecraft for additional evaluation before
putting the satellite into service.
The TDRS-K spacecraft includes several modifications from older
satellites in the TDRS system, including redesigned
telecommunications payload electronics and a high-performance solar
panel designed for more spacecraft power to meet growing S-band
requirements. Another significant design change, the return to
ground-based processing of data, will allow the system to service
more customers with evolving communication requirements.
The next TDRS spacecraft, TDRS-L, is scheduled for launch in 2014.
TDRS-M's manufacturing process will be completed in 2015.
NASA's Space Communications and Navigation Program, part of the Human
Exploration and Operations Mission Directorate at the agency's
Headquarters in Washington, is responsible for the space network. The
TDRS Project Office at NASA's Goddard Space Flight Center in
Greenbelt, Md., manages the TDRS development program. Launch services
were provided by United Launch Alliance. NASA's Launch Services
Program at the Kennedy Space Center was responsible for acquisition
of launch services.
For more information about TDRS, visit:
NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission.
Follow us on Twitter
Like us on Facebook
Find us on Instagram
Just a few scattered bits of black left in the foreground, and the final stretch of night sky. About 700 pieces remaining.
The three vertical columns of assembled pieces at the top mark the boundaries between sections - those pieces have smaller, more squarish knobs and are easy to recognize. This puzzle was initially printed on two separate sheets (evidenced by the slight variation in color between the left and right halves, particularly noticeable in the orange foreground). Then each half was first cut into four quarters. Each of those quarters was pressed with an identical pattern of exactly 1000 pieces (40 by 25). But, the patterns are rotated each time, so while the pieces in each 1/8th of the puzzle are identical, they always border opposite-cut pieces. (I hope this makes sense.) Most other large puzzles follow a similar manufacturing process.
Already, the fact that each piece has 7 exact duplicates has caused some confusion. I've had to switch out 10-12 pieces that were not initially placed in the correct spot. I'll reach a point where a piece appears to be missing, or I find a piece that fits but it's just not quite the right color. Then I have to scan the puzzle to find where I've misplaced it.
I could at this point also use this repeating pattern to my advantage, by building these difficult areas over other already completed sections that have the same pattern. But I've committed to not using this shortcut, because I want to feel like I 'earned it.'
Between progress report 9 and now, I've been periodically timing myself and analyzing my speed, which is something I've never done before. There's a 2-hour online radio show I often listen to, so I kept a ledger and recorded each 'new connection' I made during that time period. So, if I joined two individual pieces, or one piece to the main puzzle, that was one point. If I added an existing cluster of 6 pieces to the main puzzle, that was also one point. I tried really hard to stay put at the table and tried to get as many connections as I could.
I did this 4 times during the past couple weeks and counted:
89 points
96 points
137 points
106 points
This suggests to me that I'm getting somewhere between 45-60 pieces per hour at this stage in the puzzle. (Of course, this point in the puzzle is extremely difficult, so timing myself now is a bit like a runner timing himself running up a steep hill and calling that his normal pace.) The most productive session with 137 points was where I'd really honed in on the buildings in the background.
With 700 pieces to go, this suggests to me that I still have 12-16 hours of puzzling left before I finish (though things should go more quickly for the final 100-150 pieces).
If I averaged 60 pieces an hour throughout the entire puzzle (which I think is probably lower than actual, but I'll use the number for the sake of simplicity), that would make this entire puzzle about 133 hours to complete. I'm shooting for a finish date of Sunday, Dec. 9, which would be 85 days. Considering that I was out of town for 8 days during that period, that would mean 77 total days of puzzling, with an average of slightly more than 1.7 hours/day. That sounds a little high to me. I'd wager that my average time spent has been more like 1.3 hours/day. Hard to say definitively. On the one hand, there were quite a few days when I didn't work on the puzzle at all, yet several other long, rainy days when I worked on it for probably 4-6 hours.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
In the grand scope of World War 2 fighter aircraft there is a little-remembered French design designated the Arsenal "VG-33". The aircraft was born from a rather lengthy line of prototype developments put forth by the company in the years leading up to World War 2 and the VG-33 and its derivatives represented the culmination of this work before the German invasion rendered all further work moot.
The Arsenal de l'Aeronautique company was formed by the French government in 1936 ahead of World War 2. It began operations with dedicated design and development of a fast fighter type until the German conquer of France in 1940 after which the company then focused on engine production after 1945. Then followed a period of design and construction of gliders and missiles before being privatized in 1952 (as SFECMAS). The company then fell under the SNCAN brand label and became "Nord Aviation" in 1955.
The VG-33 was the result of the company's research. Work on a new fast fighter began by Arsenal engineers in 1936 and the line began with the original VG-30 prototype achieving first flight on October 1st, 1938. Named for engineer Vernisse (V) and designer Jean Gaultier (G), the VG-30 showcased a sound design with good performance and speed during the tests, certainly suitable for progression as a military fighter and with future potential.
Development continued into what became the VG-31 which incorporated smaller wings. The VG-32 then followed which returned to the full-sized wings and installed the American Allison V-1710-C15 inline supercharged engine of 1,054 horsepower. The VG-32 then formed the basis of the VG-33 which reverted to a Hispano-Suiza 12Y-31 engine and first flight was in early 1939, months ahead of the German invasion of Poland. Flight testing then spanned into August and serial production of this model was ordered.
The VG-33 was one of the more impressive prewar fighter ventures by the French that included the Dewoitine D.520, understood to be on par with the lead German fighter aircraft of the period - the famous Messerschmitt Bf 109.
Only about forty or so French Arsenal VG-33 fighters were completed before the Fall of France in 1940, with 160 more on order and in different states of completion. Despite the production contract, Arsenal' engineers continued work on the basic design for improved and specialized sub-types. The VG-34 appeared in early 1940 outfitted with the Hispano-Suiza 12Y-45 engine of 935 horsepower, which improved performance at altitude. An uprated engine was installed in VG-35 and VG-36, too. They utilized a Hispano-Suiza 12Y-51 engine of 1,000 horsepower with a revised undercarriage and radiator system.
VG-37 was a long-range version that was not furthered beyond the drawing board, but the VG-38 with a Hispano-Suiza 12Y-77 engine that featured two exhaust turbochargers for improved performance at high altitude, achived pre-production status with a series of about 10 aircraft. These were transferred to GC 1/3 for field trials in early 1940 and actively used in the defence against the German invasion.
The VG-39 ended the line as the last viable prototype model with its drive emerging from a Hispano-Suiza 12Z engine of 1,280 horsepower. A new three-machine-gun wing was installed for a formidable six-gun armament array. This model was also ordered into production as the VG-39bis and was to carry a 1,600 horsepower Hispano-Suiza 12Z-17 engine into service. However, the German invasion eliminated any further progress, and eventually any work on the Arsenal VG fighter family was abandoned, even though more designs were planned, e .g. the VG-40, which mounted a Rolls-Royce Merlin III, and the VG-50, featuring the newer Allison V-1710-39. Neither was built.
Anyway, the finalized VG-38 was an all-modern looking fighter design with elegant lines and a streamlined appearance. Its power came from an inline engine fitted to the front of the fuselage and headed by a large propeller spinner at the center of a three-bladed unit. The cockpit was held over midships with the fuselage tapering to become the tail unit.
The tail featured a rounded vertical tail fin and low-set horizontal planes in a traditional arrangement - all surfaces enlarged for improved high altitude performance.
The monoplane wing assemblies were at the center of the design in the usual way. The pilot's field of view was hampered by the long nose ahead, the wings below and the raised fuselage spine aft, even though the pilot sat under a largely unobstructed canopy utilizing light framing. The canopy opened to starboard.
A large air scoop for the radiator and air intercooler was mounted under the fuselage. As an unusual feature its outlet was located in a dorsal position, behind the cockpit. The undercarriage was of the typical tail-dragger arrangement of the period, retracting inwards. The tail wheel was retractable, too.
Construction was largely of wood which led to a very lightweight design that aided performance and the manufacture process. Unlike other fighters of the 1930s, the VG-38 was well-armed with a 20mm Hispano-Suiza cannon, firing through the propeller hub, complemented by 4 x 7.5mm MAC 1934 series machine guns in the wings, just like the VG-33.
The aircraft never saw combat action in the Battle of France. Its arrival was simply too late to have any effect on the outcome of the German plans. Therefore, with limited production and very limited combat service during the defence of Paris in May 1940, it largely fell into the pages of history with all completed models lost.
Specifications:
Crew: 1
Length: 28.05 ft (8.55 m)
Width: 35.43 ft (10.80 m)
Height: 10.83ft (3.30 m)
Weight: Empty 4,519 lb (2,050 kg), MTOW 5,853 lb (2,655 kg)
Maximum Speed: 398 mph (641 kmh at 10.000m)
Maximum Range: 746 miles (1,200 km)
Service Ceiling: 39,305 ft (12.000 m; 7.458 miles)
Powerplant:
1x Hispano-Suiza 12Y-77 V-12 liquid-cooled inline piston engine
with two Brown-Boveri exhaust turbochargers, developing 1,100 hp (820 kW).
Armament:
1x 20mm Hispano-Suiza HS.404 cannon, firing through the propeller hub
4x 7.5mm MAC 1934 machine guns in the outer wings
The kit and its assembly:
I found the VG-33 fascinating - an obscure and sleek fighter with lots of potential that suffered mainly from bad timing. There are actually VG-33 kits from Azur and Pegasus, but how much more fun is it to create your own interpretation of the historic events, esp. as a submission to a Battle of Britain Group Build at whatifmodelers.com?
I had this project on the whif agenda for a long time, and kept my eyes open for potential models. One day I encountered Amodel's Su-1 and Su-3 kits and was stunned by this aircraft's overall similarity to the VG-33. When I found the real VG-38 description I decided to convert the Su-3 into this elusive French fighter!
The Su-3 was built mainly OOB, it is a nice kit with much detail, even though it needs some work as a short run offering. I kept the odd radiator installation of the Suchoj aircraft, but changed the landing gear from a P-40 style design (retracting backwards and rotating 90°) into a conservative, inward retracting system. I even found forked gear struts in the spares box, from a Fiat G.50. The covers come from a Hawker Hurricane, and the wells were cut out from this pattern, while the rest of the old wells was filled with putty.
Further mods include the cleaned cowling (the Su-3's fuselage-mounted machine guns had to go), while machine guns in the wings were added. The flaps were lowered, too, and the small cockpit canopy cut in two pieces in, for an opened position - a shame you can hardly see anything from the neat interior. Two large antenna masts complete the French style.
Painting and markings:
Again, a rather conservative choice: typical French Air Force colors, in Khaki/Dark Brown/Blue Gray with light blue-gray undersides.
One very inspiring fact about the French tricolor-paint scheme is that no aircraft looked like the other – except for a few types, every aircraft had an individual scheme with more or less complexity or even artistic approach. Even the colors were only vaguely unified: Field mixes were common, as well as mods with other colors that were mixed into the basic three tones!
I settled for a scheme I found on a 1940 Curtiss 75, with clearly defined edges between the paint fields. Anything goes! I used French Khaki, Dark Blue Grey and Light Blue Grey (for the undersides) from Modelmaster's Authentic Enamels range, and Humbrol 170 (Brown Bess) for the Chestnut Brown. Interior surfaces were painted in dark grey (Humbrol 32) while the landing gear well parts of the wings were painted in Aluminum Dope (Humbrol 56).
The decals mainly come from a Hobby Boss Dewoitine D.520, but also from a PrintScale aftermarket sheet and the scrap box.
The kit was slightly weathered with a black ink wash and some dry-painting, more for a dramatic effect than simulating wear and tear, since any aircraft from the VG-33 family would only have had a very short service career.
Well, a travesty whif - and who would expect an obscure Soviet experimental fighter to perform as a lookalike for an even more obscure French experimental fighter? IMHO, it works pretty fine - conservative sould might fair over the spinal radiator outlet and open the dorsal installation, overall both aircraft are very similar in shape, size and layout. :D
The fifth person to receive the Freedom of the County Borough of Middlesbrough was Sir Lowthian Bell Bart who was awarded freedom on 2 November 1894. A portrait of Sir Lowthian Bell Bart FRS 1826-1904 is hung in the Civic Suite in the Town Hall. It was painted by Henry Tamworth Wells RA and was presented in 1894 by Joseph Whitwell Pease MP on Tuesday 13 November in the Council Chamber at 3.00pm. Joseph Pease was Chairman of the Sir Lowthian Bell presentation committee.
It was presented to the Corporation of Middlesbrough by friends in Great Britain, Europe and America as a record of their high esteem and to commemorate his many public services and those researches in physical science by which he has contributed to the development of the staple industries of his own country and the world.
ISAAC LOWTHIAN BELL - from "Pioneers of The Cleveland Irontrade" by J. S. Jeans
THE name of Mr. Isaac Lowthian Bell is familiar as a " household word " throughout the whole North of England. As a man of science he is known more or less wherever the manufacture of iron is carried on. It is to metallurgical chemistry that his attention has been chiefly directed; but so far from confining his researches and attainments to this department alone, he has made incursions into other domains of practical and applied chemistry. No man has done more to stimulate the growth of the iron trade of the North of England. Baron Liebig has defined civilisation as economy of power, and viewed in this light civilisation is under deep obligations to Mr. Bell for the invaluable aid he has rendered in expounding the natural laws that are called into operation in the smelting process. The immense power now wielded by the ironmasters of the North of England is greatly due to their study and application of the most economical conditions under which the manufacture of iron can be carried on. But for their achievements in this direction, they could not have made headway so readily against rival manufacturers in Wales, Scotland, and South Staffordshire, who enjoyed a well-established reputation. But Mr. Bell and his colleagues felt that they must do something to compensate for the advantages possessed by the older iron- producing districts, and as we shall have occasion to show, were fully equal to the emergency, Mr. Isaac Lowthian Bell is a son of the late Mr. Thomas Bell, of the well-known firm of Messrs. Losh, Wilson, and Bell, who owned the Walker Ironworks, near Newcastle. His mother was a daughter of Mr. Isaac Lowthian, of Newbiggen, near Carlisle. He had the benefit of a good education, concluded at the Edinburgh University, and at the University of Sorbonne, in Paris. From an early age he exhibited an aptitude for the study of science. Having completed his studies, and travelled a good deal on the Continent, in order to acquire the necessary experience, he was introduced to the works at Walker, in which his father was a partner. He continued there until the year 1850, when he retired in favour of his brother, Mr. Thomas Bell. In the course of the same year, he joined his father-in-law, Mr. Pattinson, and Mr. R. B. Bowman, in the establishment of Chemical Works, at Washington. This venture was eminently successful. Subsequently it was joined by Mr. W. Swan, and on the death of Mr. Pattinson by Mr. R. S. Newall. The works at Washington, designed by Mr. Bell, are among the most extensive of their kind in the North of England, and have a wide reputation. During 1872 his connection with this undertaking terminated by his retirement from the firm. Besides the chemical establishment at Washington, Mr. Bell commenced, with his brothers, the manufacture of aluminium at the same place this being, if we are rightly informed, the first attempt to establish works of that kind in England. But what we have more particularly to deal with here is the establishment, in 1852, of the Clarence Ironworks, by Mr. I. L. Bell and his two brothers, Thomas and John. This was within two years of the discovery by Mr. Vaughan, of the main seam of the Cleveland ironstone. Port Clarence is situated on the north bank of the river Tees, and the site fixed upon for the new works was immediately opposite the Middlesbrough works of Messrs. Bolckow and Vaughan. There were then no works of the kind erected on that side of the river, and Port Clarence was literally a " waste howling wilderness." The ground on which the Clarence works are built where flooded with water, which stretched away as far as Billingham on the one hand, and Seaton Carew on the other. Thirty years ago, the old channel of the Tees flowed over the exact spot on which the Clarence furnaces are now built. To one of less penetration than Mr. Bell, the site selected would have seemed anything but congenial for such an enterprise. But the new firm were alive to advantages that did not altogether appear on the surface. They concluded negotiations with the West Hartlepool Railway Company, to whom the estate belonged, for the purchase of about thirty acres of ground, upon which they commenced to erect four blast furnaces of the size and shape then common in Cleveland. From this beginning they have gradually enlarged the works until the site now extends to 200 acres of land (a great deal of which is submerged, although it may easily be reclaimed), and there are eight furnaces regularly in blast. With such an extensive site, the firm will be able to command an unlimited "tip" for their slag, and extend the capacity of the works at pleasure. At the present time, Messrs.. Bell Brothers are building three new furnaces. The furnace lifts are worked by Sir William Armstrong's hydraulic accumulator, and the general plan of the works is carried out on the most modern and economical principles. As soon as they observed that higher furnaces, with a greater cubical capacity, were a source of economy, Messrs. Bell Brothers lost no time in reconstructing their old furnaces, which were only 50 feet in height ; and they were among the first in Cleveland to adopt the Welsh plan of utilising the waste furnace gases, by which another great economy is effected. With a considerable frontage to the Tees, and a connection joining the Clarence branch of the North-Eastern Railway, Messrs. Bell Brothers possess ample facilities of transit. They raise all their own ironstone and coal, having mines at Saltburn, Normanby, and Skelton, and collieries in South Durham. A chemical laboratory is maintained in connection with their Clarence Works, and the results thereby obtained are regarded in the trade as of standard and unimpeachable exactitude. Mr. I. L. Bell owns, conjointly with his two brothers, the iron -works at Washington. At these and the Clarence Works the firms produce about 3,000 tons of pig iron weekly. They raise from 500,000 to 600,000 tons of coal per annum, the greater portion of which is converted into coke. Their output of ironstone is so extensive that they not only supply about 10,000 tons a- week to their own furnaces, but they are under contract to supply large quantities to other works on Tees-side. Besides this, their Quarries near Stanhope will produce about 100,000 tons of limestone, applicable as a flux at the iron works. Last year, Mr. Bell informed the Coal Commission that his firm paid 100,000 a year in railway dues. Upwards of 5,000 workmen are in the employment of the firm at their different works and mines. But there is another, and perhaps a more important sense than any yet indicated, in which Mr. Bell is entitled to claim a prominent place among the " Pioneers of the Cleveland Iron Trade." Mr. Joseph Bewick says, in his geological treatise on the Cleveland district, that " to Bell Brothers, more than to any other firm, is due the merit of having fully and effectually developed at this period (1843) the ironstone fields of Cleveland. It was no doubt owing to the examinations and surveys which a younger member of that firm (Mr. John Bell) caused to be made in different localities of the district, that the extent and position of the ironstone beds became better known to the public." Of late years the subject of this sketch has come to be regarded as one of the greatest living authorities on the statistical and scientific aspects of the Cleveland ironstone and the North of England iron trade as a whole. With the Northumberland and Durham coal fields he is scarcely less familiar, and in dealing with these and cognate matters he has earned for himself no small fame as a historiographer. Leoni Levi himself could not discourse with more facility on the possible extent and duration of our coal supplies. When the British Association visited Newcastle in 1863, Mr. Bell read a deeply interesting paper " On the Manufacture of Iron in connection with the Northumberland and Durham Coal Field," in which he conveyed a great deal of valuable information. According to Bewick, he said the area of the main bed of Cleveland ironstone was 420 miles, and estimating the yield of ironstone as 20,000 tons per acre, it resulted that close on 5,000,000,000 tons are contained in the main seam. Mr. Bell added that he had calculated the quantity of coal in the Northern coal field at 6,000,000,000 tons, so that there was just about enough fuel in the one district, reserving it for that purpose exclusively, to smelt the ironstone contained in the main seam of the other. When the Yorkshire Union of Mechanics' Institutes visited Darlington in the spring of 1872, they spent a day in Cleveland under the ciceroneship of Mr. Bell, who read a paper, which he might have entitled "The Romance of Trade," on the rise and progress of Cleveland in relation to her iron manufactures; and before the Tyneside Naturalists' Field Club, when they visited Saltburn in 1866, he read another paper dealing with the geological features of the Cleveland district. Although not strictly germane to our subject, we may add here that when, in 1870, the Social Science Congress visited Newcastle, Mr. Bell took an active and intelligent part in the proceedings, and read a lengthy paper, bristling with facts and figures, on the sanitary condition of the town. Owing to his varied scientific knowledge, Mr. Bell has been selected to give evidence on several important Parliamentary Committees, including that appointed to inquire into the probable extent and duration of the coal-fields of the United Kingdom. The report of this Commission is now before us, and Mr. Bell's evidence shows most conclusively the vast amount of practical knowledge that he has accumulated, not only as to the phenomena of mineralogy and metallurgy in Great Britain, but also in foreign countries. Mr. Bell was again required to give evidence before the Parliamentary Committee appointed in 1873, to inquire into the causes of the scarcity and dearness of coal. In July, 1854, Mr. Bell was elected a member of the North of England Institute of Mining and Mechanical Engineers. He was a member of the Council of the Institute from 1865 to 1866, when he was elected one of the vice-presidents. He is a vice-president of the Society of Mechanical Engineers, and last year was an associate member of the Council of Civil Engineers. He is also a fellow of the Chemical Society of London. To most of these societies he has contributed papers on matters connected with the manufacture of iron. When a Commission was appointed by Parliament to inquire into the constitution and management of Durham University, the institute presented a memorial to the Home Secretary, praying that a practical Mining College might be incorporated with the University, and Mr. Bell, Mr. G. Elliot, and Mr. Woodhouse, were appointed to give evidence in support of the memorial. He was one of the most important witnesses at the inquest held in connection with the disastrous explosion at Hetton Colliery in 1860, when twenty-one miners, nine horses, and fifty-six ponies were killed; and in 1867 he was a witness for the institute before the Parliamentary Committee appointed to inquire into the subject of technical education, his evidence, from his familiarity with the state of science on the Continent, being esteemed of importance. Some years ago, Mr. Bell brought under the notice of the Mining Institute an aluminium safety lamp. He pointed out that the specific heat of aluminum was very high, so that it might be long exposed to the action of fire before becoming red-hot, while it did not abstract the rays of light so readily as iron, which had a tendency to become black much sooner. Mr. Bell was during the course of last year elected an honorary member of a learned Society in the United States, his being only the second instance in which this distinction had been accorded. Upon that occasion, Mr. Abram Hewitt, the United States Commissioner to the Exhibition of 1862, remarked that Mr. Bell had by his researches made the iron makers of two continents his debtors. Mr Bell is one of the founders of the Iron and Steel Institute of Great Britain, and has all along taken a prominent part in its deliberations. No other technical society, whether at home or abroad, has so rapidly taken a position of marked and confirmed practical usefulness. The proposal to form such an institute was first made at a meeting of the North of England Iron Trade, held in Newcastle, in September, 1868, and Mr. Bell was elected one of the first vice-presidents, and a member of the council. At the end of the year 1869 the Institute had 292 members; at the end of 1870 the number had increased to 348; and in August 1872, there were over 500 names on the roll of membership. These figures are surely a sufficient attestation of its utility. Mr. Bell's paper " On the development of heat, and its appropriation in blast furnaces of different dimensions," is considered the most valuable contribution yet made through the medium of the Iron and Steel Institute to the science and practice of iron metallurgy. Since it was submitted to the Middlesbrough meeting of the Institute in 1869, this paper has been widely discussed by scientific and practical men at home and abroad, and the author has from time to time added new matter, until it has now swollen into a volume embracing between 400 and 500 pages, and bearing the title of the " Chemical Phenomena of Iron Smelting." As a proof of the high scientific value placed upon this work, we may mention that many portions have been translated into German by Professor Tunner, who is, perhaps, the most distinguished scientific metallurgist on the Continent of Europe. The same distinction has been conferred upon Mr. Bell's work by Professor Gruner, of the School of Mines in Paris, who has communicated its contents to the French iron trade, and by M. Akerman, of Stockholm, who has performed the same office for the benefit of the manufacturers of iron in Sweden. The first president of the Iron and Steel Institute was the Duke of Devonshire, the second Mr. H. Bessemer, and for the two years commencing 1873, Mr. Bell has enjoyed the highest honour the iron trade of the British empire can confer. As president of the Iron and Steel Institute, Mr. Bell presided over the deliberations of that body on their visit to Belgium in the autumn of 1873. The reception accorded to the Institute by their Belgian rivals and friends was of the most hearty and enthusiastic description. The event, indeed, was regarded as one of international importance, and every opportunity, both public and private, was taken by our Belgian neighbours to honour England in the persons of those who formed her foremost scientific society. Mr. Bell delivered in the French language, a presidential address of singular ability, directed mainly to an exposition of the relative industrial conditions and prospects of the two greatest iron producing countries in Europe. As president of the Institute, Mr. Bell had to discharge the duty of presenting to the King of the Belgians, at a reception held by His Majesty at the Royal Palace in Brussels, all the members who had taken a part in the Belgium meeting, and the occasion will long be remembered as one of the most interesting and pleasant in the experience of those who were privileged to be present. We will only deal with one more of Mr. Bell's relations to the iron trade. He was, we need scarcely say, one of the chief promoters of what is now known as the North of England Ironmasters' Association, and he has always been in the front of the deliberations and movements of that body. Before a meeting of this Association, held in 1867, he read a paper on the " Foreign Relations of the Iron Trade," in the course of which he showed that the attainments of foreign iron manufacturers in physical science were frequently much greater than our own, and deprecated the tendency of English artizans to obstruct the introduction of new inventions and processes. He has displayed an eager anxiety in the testing and elucidation of new discoveries, and no amount of labour or cost was grudged that seemed likely, in his view, to lead to mechanical improvements. He has investigated for himself every new appliance or process that claimed to possess advantages over those already in use, and he has thus rendered yeoman service to the interest of science, by discriminating between the chaff and the wheat. For a period nearly approaching twenty- four years, Mr. Bell has been a member of the Newcastle Town Council, and one of the most prominent citizens of the town. Upon this phase of his career it is not our business to dwell at any length, but we cannot refrain from adding, that he has twice filled the chief magistrate's chair, that he served the statutory period as Sheriff of the town, that he is a director of the North-Eastern Railway, and that he was the first president of the Newcastle Chemical Society. In the general election of 1868, Mr. Bell came forward as a candidate for the Northern Division of the county of Durham, in opposition to Mr. George Elliot, but the personal influence of the latter was too much for him, and he sustained a defeat. In the general election of 1874, Mr. Bell again stood for North Durham, in conjunction with Mr. C. M. Palmer, of Jarrow. Mr. Elliott again contested the Division in the Conservative interest. After a hard struggle, Mr. Bell was returned at the head of the poll. Shortly after the General Election, Mr. Elliott received a baronetcy from Mr, Disraeli. A short time only had elapsed, however, when the Liberal members were unseated on petition, because of general intimidation at Hetton-le-Hole, Seaham, and other places no blame being, however, attributed to the two members and the result of afresh election in June following was the placing of Mr. Bell at the bottom of the poll, although he was only a short distance behind his Conservative opponent Sir George Elliott."
"Isaac Lowthian Bell, 1st Baronet FRS (1816-1904), of Bell Brothers, was a Victorian ironmaster and Liberal Party politician from Washington, Co. Durham.
1816 February 15th. Born the son of Thomas Bell and his wife Katherine Lowthian.
Attended the Academy run by John Bruce in Newcastle-upon-Tyne, Edinburgh University and the Sorbonne.
Practical experience in alkali manufacture at Marseilles.
1835 Joined the Walker Ironworks; studied the the operation of the blast furnaces and rolling mills.
A desire to master thoroughly the technology of any manufacturing process was to be one of the hallmarks of Bell's career.
1842 Married Margaret Elizabeth Pattinson
In 1844 Lowthian Bell and his brothers Thomas Bell and John Bell formed a new company, Bell Brothers, to operate the Wylam ironworks. These works, based at Port Clarence on the Tees, began pig-iron production with three blast furnaces in 1854 and became one of the leading plants in the north-east iron industry. The firm's output had reached 200,000 tons by 1878 and the firm employed about 6,000 men.
1850 Bell started his own chemical factory at Washington in Gateshead, established a process for the manufacture of an oxychloride of lead, and operated the new French Deville patent, used in the manufacture of aluminium. Bell expanded these chemical interests in the mid-1860s, when he developed with his brother John a large salt working near the ironworks.
In 1854 he built Washington Hall, now called Dame Margaret's Hall.
He was twice Lord Mayor of Newcastle-upon-Tyne and Member of Parliament for North Durham from February to June 1874, and for Hartlepool from 1875 to 1880.
1884 President of the Institution of Mechanical Engineers
In 1895 he was awarded the Albert Medal of the Royal Society of Arts, 'in recognition of the services he has rendered to Arts, Manufactures and Commerce, by his metallurgical researches and the resulting development of the iron and steel industries'.
A founder of the Iron and Steel Institute, he was its president from 1873 to 1875, and in 1874 became the first recipient of the gold medal instituted by Sir Henry Bessemer. He was president of the Institution of Mechanical Engineers in 1884.
1842 He married Margaret Pattison. Their children were Mary Katherine Bell, who married Edward Stanley, 4th Baron Stanley of Alderley and Sir Thomas Hugh Bell, 2nd Baronet.
1904 December 20th. Lowthian Bell died at his home, Rounton Grange, Rounton, Northallerton, North Riding of Yorkshire
1904 Obituary [1]
"Sir ISAAC LOWTHIAN BELL, Bart., was born in Newcastle-on-Tyne on 15th February 1816, being the son of Mr. Thomas Bell, an alderman of the town, and partner in the firm of Messrs. Losh, Wilson and Bell, of Walker Iron Works, near Newcastle; his mother was the daughter of Mr. Isaac Lowthian, of Newbiggin, Northumberland.
After studying at Edinburgh University, he went to the Sorbonne, Paris, and there laid the foundation of the chemical and metallurgical knowledge which he applied so extensively in later years.
He travelled extensively, and in the years 1839-40 he covered a distance of over 12,000 miles, examining the most important seats of iron manufacture on the Continent. He studied practical iron-making at his father's works, where lie remained until 1850, when he joined in establishing chemical works at Washington, eight miles from Newcastle. Here it was also that his subsequent firm of Messrs. Bell Brothers started the first works in England for the manufacture of aluminium.
In 1852, in conjunction with his brothers Thomas and John, he founded the Clarence Iron Works, near the mouth of the Tees, opposite Middlesbrough. The three blast-furnaces erected there in 1853 were at that time the largest in the kingdom, each being 47.5 feet high, with a capacity of 6,012 cubic feet; the escaping gases were utilized for heating the blast. In 1873 the capacity of these furnaces was much increased.
In the next year the firm sank a bore-hole to the rock salt, which had been discovered some years earlier by Messrs. Bolckow, Vaughan and Co. in boring for water. The discovery remained in abeyance till 1882, when they began making salt, being the pioneers of the salt industry in that district. They were also among the largest colliery proprietors in South Durham, and owned extensive ironstone mines in Cleveland, and limestone quarries in Weardale.
His literary career may be said to have begun in 1863, when, during his second mayoralty, the British Association visited Newcastle, on which occasion he presented a report on the manufacture of iron in connection with the Northumberland and Durham coal-fields. At the same visit he read two papers on " The Manufacture of Aluminium," and on "Thallium." The majority of his Papers were read before the Iron and Steel Institute, of which Society he was one of the founders; and several were translated into French and German.
On the occasion of the first Meeting of this Institution at Middlesbrough in 1871, he read a Paper on Blast-Furnace Materials, and also one on the "Tyne as Connected with the History of Engineering," at the Newcastle Meeting in 1881. For his Presidential Address delivered at the Cardiff Meeting in 1884, he dealt with the subject of "Iron."
He joined this Institution in 1858, and was elected a Member of Council in 1870. In 1872 he became a Vice-President, and retained that position until his election as President in 1884. Although the Papers he contributed were not numerous, he frequently took part in the discussions on Papers connected with the Iron Industry and kindred subjects.
He was a member of a number of other learned societies — The Royal Society, The Institution of Civil Engineers, the Iron and Steel Institute, of which he was President from 1873 to 1875, the Society of Chemical Industry, the Royal Society of Sweden, and the Institution of Mining Engineers, of which he was elected President in 1904.
He had also received honorary degrees from the University of Edinburgh, the Durham College of Science, and the University of Leeds. In 1885 a baronetcy was conferred upon him in recognition of his distinguished services to science and industry. In 1876 he served as a Commissioner to tile International Centennial Exhibition at Philadelphia, where he occupied the position of president of the metallurgical judges, and presented to the Government in 1877 a report upon the iron manufacture of the United States. In 1878 he undertook similar duties at the Paris Exhibition.
He was Mayor of Newcastle in 1854-55, and again in 1862-3. In 1874 he was elected Member of Parliament for Durham, but was unseated; he sat for the Hartlepools from 1875 to 1880, and then retired from parliamentary life. For the County of Durham he was a Justice of the Peace and Deputy Lieutenant, and High Sheriff in 1884. For many years he was a director of the North Eastern Railway, and Chairman of the Locomotive Committee.
His death took place at his residence, Rounton Grange, Northallerton, on 20th December 1904, in his eighty-ninth year.
1904 Obituary [2]
SIR LOWTHIAN BELL, Bart., Past-President, died on December 21, 1904, at his residence, Rounton Grange, Northallerton, in his eighty-ninth year. In his person the Iron and Steel Institute has to deplore the loss of its most distinguished and most valuable member. From the time when the Institute was founded as the outcome of an informal meeting at his house, until his death, he was a most active member, and regularly attended the general meetings, the meetings of Council, and the meetings of the various committees on which he served.
Sir Lowthian Bell was the son of Mr. Thomas Bell (of Messrs. Losh, Wilson, & Bell, iron manufacturers, Walker-on-Tyne), and of Catherine, daughter of Mr. Isaac Lowthian, of Newbiggin, near Carlisle. He was born in Newcastle on February 15, 1816, and educated, first at Bruce's Academy, in Newcastle, and afterwards in Germany, in Denmark, at Edinburgh University, and at the Sorbonne, Paris. His mother's family had been tenants of a well-known Cumberland family, the Loshes of Woodside, near Carlisle, one of whom, in association with Lord Dundonald, was one of the first persons in this country to engage in the manufacture of soda by the Leblanc process. In this business Sir Lowthian's father became a partner on Tyneside. Mr. Bell had the insight to perceive that physical science, and especially chemistry, was bound to play a great part in the future of industry, and this lesson• he impressed upon his ions. The consequence was that they devoted their time largely to chemical studies.
On the completion of his studies, Lowthian Bell joined his father at the Walker Iron Works. Mr. John Vaughan, who was with the firm, left about the year 1840, and in conjunction with Mr. Bolckow began their great iron manufacturing enterprise at Middlesbrough. Mr. Bell then became manager at Walker, and blast-furnaces were erected under his direction. He became greatly interested in the ironstone district of Cleveland, and as early as 1843 made experiments with the ironstone. He met with discouragements at first, but was rewarded with success later, and to Messrs. Bell Brothers largely belongs the credit of developing the ironstone field of Cleveland. Mr. Bell's father died in 1845, and the son became managing partner. In 1852, two years after the discovery of the Cleveland ironstone, the firm acquired ironstone royalties first at Normanby and then at Skelton in Cleveland, and started the Clarence Iron Works, opposite Middlesbrough. The three blast-furnaces here erected in 1853 were at that time the largest in the kingdom, each being 47.5 feet high, with a capacity of 6012 cubic feet. Later furnaces were successively increased up to a height of. 80 feet in 1873, with 17 feet to 25 feet in diameter at the bosh, 8 feet at the hearth, and about 25,500 cubic feet capacity. On the discovery of a bed of rock salt at 1127 feet depth at Middlesbrough, the method of salt manufacture in vogue in Germany was introduced at the instance of Mr. Thomas Bell, and the firm of Bell Brothers had thus the distinction of being pioneers in this important industry in the district. They were also among the largest colliery proprietors in South Durham, and owned likewise extensive ironstone mines in Cleveland, and limestone quarries in Weardale. At the same time Mr. Bell was connected with the Washington Aluminium Works, the Wear blast-furnaces, and the Felling blast-furnaces.
Although Sir Lowthian Bell was an earnest municipal reformer and member of Parliament, he will best be remembered as a man of science. He was mayor of Newcastle in 1863, when the British Association visited that town, and the success of the gathering was largely due to his arrangements. As one of the vice-presidents of the chemical section, he contributed papers upon thallium and the manufacture of aluminium; and, jointly with the late Lord Armstrong, edited the souvenir volume entitled " The Industrial Resources of the Tyne, Wear, and Tees." In 1873, when the Iron and Steel Institute visited Belgium, Mr. Bell presided, and delivered in French an address on the relative industrial conditions of Great Britain and Belgium. Presiding at the Institute's meeting in Vienna in 1882, he delivered his address partly in English and partly in German, and expressed the hope that the ties between England and Austria should be drawn more closely.
On taking up his residence permanently at Rounton Grange, near Northallerton, Sir Lowthian made a present to the city council, on which he had formerly served for so many years, of Washington Hall and grounds, and the place is now used as a home for the waifs and strays of the city. It is known as Dame Margaret's Home, in memory of Lady Bell, who died in 1886. This lady, to whom he was married in 1842, was a daughter of Mr. Hugh Lee Pattinson, F.R.S., the eminent chemist and metallurgist.
Sir Lowthian earned great repute as an author. He was a prolific writer on both technical and commercial questions relating to the iron and steel industries. His first important book was published in 1872, and was entitled " Chemical Phenomena of Iron Smelting : An Experimental :and Practical Examination of the Circumstances which Determine the Capacity of the Blast-Furnace, the Temperature of the Air, and the Proper Condition of the Materials to be Operated upon." This book, which contained nearly 500 pages, with many diagrams, was the direct outcome of a controversy with the late Mr. Charles Cochrane, and gave details of nearly 900 experiments carried out over a series of years with a view to finding out the laws which regulate the process of iron smelting, and the nature of the reactions which take place among the substances dealt with in the manufacture of pig iron. The behaviour of furnaces under varying conditions was detailed. The book was a monument of patient research, which all practical men could appreciate. His other large work—covering 750 pages—was entitled " The Principles of the Manufacture of Iron and Steel." It was issued in 1884, and in it the author compared the resources existing in different localities in Europe and America as iron-making centres. His further investigations into the manufacture of pig iron were detailed, as well as those relating to the manufacture of finished iron and steel.
In 1886, at the instance of the British Iron Trade Association, of which he was then President, he prepared and published a book entitled " The Iron Trade of the United Kingdom compared with other Chief Ironmaking Nations." Besides these books and numerous papers contributed to scientific societies, Sir Lowthian wrote more than one pamphlet relating to the history and development of the industries of Cleveland.
In 1876 Sir Lowthian was appointed a Royal Commissioner to the Centennial Exhibition at Philadelphia, and wrote the official report relating to the iron and steel industries. -This was issued in the form of a bulky Blue-book.
As a director of the North-Eastern Railway Company Si Lowthian prepared an important volume of statistics for the use of his colleagues, and conducted exhaustive investigations into the life of a steel rail.
The majority of his papers were read before the Iron and Steel Institute, but of those contributed to other societies the following may be mentioned :— Report and two papers to the second Newcastle meeting of the British Association in 1863, already mentioned. " Notes on the Manufacture of Iron in the Austrian Empire," 1865. " Present State of the Manufacture of Iron in Great Britain," 1867. " Method of Recovering Sulphur and Oxide of Manganese, as Practised at Dieuze, near Nancy," 1867. " Our Foreign Competitors in the Iron Trade," 1868; this was promptly translated into French by Mr. G. Rocour, and published in Liege. " Chemistry of the Blast-Furnace," 1869. " Preliminary Treatment of the Materials Used in the Manufacture of Pig Iron in the Cleveland District" (Institution of Mechanical Engineers, 1871). " Conditions which Favour, and those which Limit, the Economy of Fuel in the Blast-Furnace for Smelting Iron " (Institution of Civil Engineers, 1872). "Some supposed Changes Basaltic Veins have Suffered during their Passage through and Contact with Stratified Rocks, and the Manner in which these Rocks have been Affected by the Heated Basalt " : a communication to the Royal Society on May 27, 1875. " Report to Government on the Iron Manufacture of the United States of America, and a Comparison of it with that of Great Britain," 1877. "British Industrial Supremacy," 1878. " Notes on the Progress of the Iron Trade of Cleveland," 1878. " Expansion of Iron," 1880. " The Tyne as connected with the History of Engineering " (Institution of Mechanical Engineers, 1881). " Occlusion of Gaseous Matter by Fused Silicates and its possible connection with Volcanic Agency : " a paper to the third York meeting of the British Association, in, 1881, but printed in the Journal of the Iron and Steel• Institute. Presidential Address on Iron (Institution of Mechanical Engineers, 1884). " Principles of the Manufacture of Iron and Steel, with Notes on the Economic Conditions of their Production," 1884. " Iron Trade of the United Kingdom," 1886. " Manufacture of Salt near Middlesbrough" (Institution of Civil Engineers, 1887). " Smelting of Iron Ores Chemically Considered," 1890. " Development of the Manufacture and Use of Rails in Great Britain " (Institution of Civil Engineers, 1900). Presidential Address to the Institution of Junior Engineers, 1900.
To him came in due course honours of all kinds. When the Bessemer Gold Medal was instituted in 1874, Sir Lowthian was the first recipient. In 1895 he received at the hands of the King, then. Prince of Wales, the Albert Medal of the Society of Arts, in recognition of the services he had rendered to arts, manufactures, and commerce by his metallurgical researches. From the French government he received the cross of the Legion of Honour. From the Institution of Civil Engineers he received the George Stephenson Medal, in 1900, and, in 1891, the Howard Quinquennial Prize which is awarded periodically to the author of a treatise on Iron.
For his scientific work Sir Lowthian was honoured by many of the learned societies of Europe and America. He was elected a Fellow of the Royal Society in 1875. He was an Hon. D.C.L. of Durham University; an LL.D. of the Universities of Edinburgh and Dublin; and a D.Sc. of Leeds University. He was one of the most active promoters of the Durham College of Science by speech as well as by purse; his last contribution was made only a short time ago, and was £3000, for the purpose of building a tower. He had. held the presidency of the North of England Institution of Mining and Mechanical Engineers, and was the first president of the Newcastle Chemical Society.
Sir Lowthian was a director of the North-Eastern Railway Company since 1865. For a number of years he was vice-chairman, and at the time of his death was the oldest railway director in the kingdom. In 1874 he was elected M.P. for the Borough of the Hartlepools, and continued to represent the borough till 1880. In 1885, on the advice of Mr. Gladstone, a baronetcy was conferred upon him in recognition of his great services to the State. Among other labours he served on the Royal Commission on the Depression of Trade, and formed one of the Commission which proceeded to Vienna to negotiate Free Trade in Austria-Hungary in 1866. For the County of Durham he was a Justice of the Peace and Deputy Lieutenant, and High Sheriff in 1884. He was also a Justice of the Peace for the North Riding of Yorkshire and for the city of Newcastle. He served as Royal Commissioner at the Philadelphia Exhibition in 1876, and at the Paris Exhibition of 1878. He also served as Juror at the Inventions Exhibition in London, in 1885, and at several other great British and foreign Exhibitions.
Of the Society of Arts he was a member from 1859. He joined the Institution of Civil Engineers in 1867, and the Chemical Society in 1863. He was a past-president of the Institution of Mechanical Engineers, and of the Society of Chemical Industry; and at the date of his death he was president of the Institution of Mining Engineers. He was an honorary member of the American Philosophical Institution, of the Liege Association of Engineers, and of other foreign societies. In 1882 he was made an honorary member of the Leoben School of Mines.
In the Iron and Steel Institute he took special interest. One of its original founders in 1869, he filled the office of president from 1873 to 1875, and was, as already noted, the first recipient of the gold medal instituted by Sir Henry Bessemer. He contributed the following papers to the Journal of the Institute in addition to Presidential Addresses in 1873 and 1874: (1) " The Development of Heat, and its Appropriation in Blast-furnaces of Different Dimensions" (1869). (2) " Chemical Phenomena of Iron Smelting : an experimental and practical examination of the circumstances which determine the capacity of the blast-furnace, the temperature of the air, and the proper conditions of the materials to be operated upon " (No. I. 1871; No. II. 1871; No. I. 1872). (3) " Ferrie's Covered Self-coking Furnace" (1871). (4) "Notes on a Visit to Coal and Iron Mines and Ironworks in the United States " (1875). (5) " Price's Patent Retort Furnace " (1875). (6) " The Sum of Heat utilised in Smelting Cleveland Ironstone" (1875). (7) "The Use of Caustic Lime in the Blast-furnace" (1875). (8) "The Separation of Carbon, Silicon, Sulphur, and Phosphorus in the Refining and Puddling Furnace, and in the Bessemer Converter " (1877). (9) " The Separation of Carbon, Silicon, Sulphur, and Phosphorus in the Refining and Puddling Furnaces, in the Bessemer Converter, with some Remarks on the Manufacture and Durability of Railway Bars" (Part II. 1877). (10) " The Separation of Phosphorus from Pig Iron" (1878). (11) " The Occlusion or Absorption of Gaseous Matter by fused Silicates at High Temperatures, and its possible Connection with Volcanic Agency" (1881). (12) " On Comparative Blast-furnace Practice" (1882). (13) "On the Value of Successive Additions to the Temperature of the Air used in Smelting Iron " (1883). (14) "On the Use of Raw Coal in the Blast-furnace" (1884). (15) "On the Blast-furnace value of Coke, from which the Products of Distillation from the Coal, used in its Manufacture, have been Collected" (1885). (16) "Notes on the Reduction of Iron Ore in the Blast-furnace" (1887). (17) "On Gaseous Fuel" (1889). (18) " On. the Probable Future of the Manufacture of Iron " (Pittsburg International Meeting, 1890). (19) " On the American Iron Trade and its Progress during Sixteen Years" (Special American Volume, 1890). (20) " On the Manufacture of Iron in its Relations with Agriculture " (1892). (21) " On the Waste of Heat, Past, Present, and Future, in Smelting Ores of Iron " (1893). (22) " On the Use of Caustic Lime in the Blast-furnace" (1894).
Sir Lowthian Bell took part in the first meeting of the Institute in 1869, and was present at nearly all the meetings up to May last, when he took part in the discussion on pyrometers, and on the synthesis of Bessemer steel. The state of his health would not, however, permit him to attend the American meeting, and he wrote to Sir James Kitson, Bart., Past-President, a letter expressing his regret. The letter, which was read at the dinner given by Mr. Burden to the Council in New York, was as follows :— ROUNTON GRANGE, NORTHALLERTON, 12th October 1904.
MY DEAR SIR JAMES KITSON,-Four days ago I was under the knife of an occulist for the removal of a cataract on my right eye. Of course, at my advanced age, in deference to the convenience of others, as well as my own, I never entertained a hope of being able to accompany the members of the Iron and Steel Institute in their approaching visit to the United States.
You who knew the regard, indeed, I may, without any exaggeration, say the affection I entertain for my friends on the other side of the Atlantic, will fully appreciate the nature of my regrets in being compelled to abstain from enjoying an opportunity of once more greeting them.
Their number, alas, has been sadly curtailed since I first met them about thirty years ago, but this curtailment has only rendered me the more anxious again to press the hands of the few who still remain.
Reference to the records of the Iron and Steel Institute will show that I was one of its earliest promoters, and in that capacity I was anxious to extend its labours, and consequently its usefulness, to every part of the world where iron was made or even used; with this view, the Council of that body have always taken care to have members on the Board of Management from other nations, whenever they could secure their services. Necessarily the claims upon the time of the gentlemen filling the office of President are too urgent to hope of its being filled by any one not a resident in the United Kingdom. Fortunately, we have a gentleman, himself a born subject of the United Kingdom, who spends enough of his time in the land of his birth to undertake the duties of the position of Chief Officer of the Institute.
It is quite unnecessary for me to dwell at any length upon the admirable way in which Mr. Andrew Carnegie has up to this time discharged the duties of his office, and I think I may take upon me to declare in the name of the Institute that the prosperity of the body runs no chance of suffering by his tenure of the Office of President.— Yours faithfully, (Signed) LOWTHIAN BELL.
The funeral of Sir Lowthian Bell took place on December 23, at Rounton, in the presence of the members of his family, and of Sir James Kitson, Bart., M.P., past-president, and Sir David Dale, Bart., past-president. A memorial service was held simultaneously at the Parish Church, Middlesbrough, and was attended by large numbers from the North of England. A dense fog prevailed, but this did not prevent all classes from being represented. The Iron and Steel Institute was represented by Mr. W. Whitwell, past-president, Mr. J Riley, vice-president, Mr. A. Cooper and Mr. Illtyd Williams, members of council, Mr. H. Bauerman, hon. member, and the Secretary. The Dean of Durham delivered an address, in which he said that Sir Lowthian's life had been one of the strenuous exertion of great powers, full of bright activity, and he enjoyed such blessings as go with faithful, loyal work and intelligent grappling with difficult problems. From his birth at Newcastle, in 1816, to the present day, the world of labour, industry, and mechanical skill had been in constant flow and change. Never before had there been such a marvellous succession of advances, and in keeping pace with these changes Sir Lowthian might be described as the best scientific ironmaster in the world. He gave a lifelong denial to the statement that Englishmen can always " muddle through," for he based all his action and success on clearly ascertained knowledge.
The King conveyed to the family of the late Sir Lowthian Bell the expression of his sincere sympathy on the great loss which they have sustained. His Majesty was pleased to say that he had a great respect for Sir Lowthian Bell, and always looked upon him as a very distinguished man.
Immediately before the funeral an extraordinary meeting of council was held at the offices of Bell Brothers, Limited, Middlesbrough, when the following resolution was unanimously adopted :— " The council of the Iron and Steel Institute desire to place on record their appreciation of the loss which the Institute has sustained by the death of Sir Lowthian Bell, Bart., a past-president and one of the founders of the Institute. The council feel that it would be difficult to overrate the services that Sir Lowthian rendered to the Institute in the promotion of the objects for which it was formed, and his constant readiness to devote his time and energies to the advancement of these objects. His colleagues on the council also desire to assure his family of their most sincere sympathy in the loss that has befallen them." Find a Grave.
Isaac Lowthian Bell was born in Newcastle upon Tyne on the 16th of February 1816. He was the son of Thomas Bell, a member of the firm of Losh, Wilson and Bell Ironworks at Walker. Bell was educated at Dr Bruce’s Academy (Newcastle upon Tyne), Edinburgh University, and the University of the Sorbonne (Paris).
In 1850 Bell was appointed manager of Walker Ironworks. In the same year he established a chemical works at Washington with Mr Hugh Lee Pattinson and Mr R. B. Bowman (the partnership was severed in 1872). In 1852 Bell set up Clarence Ironworks at Port Clarence, Middlesbrough, with his brothers Thomas and John which produced basic steel rails for the North Eastern Railway (From 1865 to 1904, Bell was a director of North Eastern Railway Company). They opened ironstone mines at Saltburn by the Sea (Normanby) and Skelton (Cleveland). Bell Brothers employed around 6,000 workmen. They employed up to the minute practises (for example, utilizing waste gases which escaped from the furnaces) and were always keen to trial improvements in the manufacture of iron. In 1882 Bell Brothers had a boring made at Port Clarence to the north of the Tees and found a stratum of salt, which was then worked. This was sold to Salt Union Ltd in 1888.
Bell’s professional expertise was used after an explosion at Hetton Colliery in 1860. He ascertained that the cause of the explosion was due to the presence of underground boilers.
In 1861 Bell was appointed to give evidence to the Commission to incorporate a Mining College within Durham University. Durham College of Science was set up 1871 in Newcastle with Bell as a Governor. He donated £4,500 for the building of Bell Tower. Large collection of books were donated from his library by his son to the College.
Bell served on the Royal Commission on the Depression of Trade. He was a Justice of Peace for County of Durham, Newcastle and North Riding of Yorkshire, and was Deputy-lieutenant and High Sheriff for Durham in 1884. In 1879 Bell accepted arbitration in the difficulty with the miners during the General Strike of County Durham miners
Between 1850 and 1880 Bell sat on the Town Council of Newcastle upon Tyne. In 1851 he became sheriff, was elected mayor in 1854, and Alderman in 1859. In 1874 Bell was the Liberal Member of Parliament for North Durham, but was unseated on the ground of general intimidation by agents. Between 1875 and 1880 he was the Member of Parliament for the Hartlepools.
Bell was an authority on mineralogy and metallurgy. In 1863 at the British Association for the Advancement of Science, held in Newcastle, he read a paper ‘On the Manufacture of Iron in connection with the Northumberland and Durham Coalfield’ (Report of the 33rd meeting of the British Association for the Advancement of Science, held at Newcastle upon Tyne, 1863, p730).
In 1871 Bell read a paper at a meeting of the Iron and Steel Institute, Middlesbrough on ‘Chemical Phenomena of Iron smelting’. (The Journal of the Iron and Steel Institute, 1871 Vol I pp85-277, Vol II pp67-277, and 1872 Vol I p1). This was published with additions as a book which became an established text in the iron trade. He also contributed to ‘The Industrial Resources of the Tyne, Wear and Tees (1863)’.
In 1854 Bell became a member of the North of England Institute of Mining and Mechanical Engineers and was elected president in 1886. Bell devoted much time to the welfare and success of the Institute in its early days.
During his life Bell was a founder member of the Iron and Steel Institute (elected President in 1874); a Fellow of the Royal Society and of the Chemical Society of London; a member of the Society of Arts, a member of the British Association for the Advancement of Science; a member of the Institution of Civil Engineers; President of the Institution of Mechanical Engineers; President of the Society of Chemical Industry; and a founder member of the Institution of Mining Engineers (elected President in 1904)
Bell was the recipient of Bessemer Gold Medal, from Iron and Steel Institute in 1874 and in 1885 recieved a baronetcy for services to the State. In 1890 he received the George Stephenson Medal from The Institute of Civil Engineers and in 1895 received the Albert Medal of the Society of Arts for services through his metallurgical researches.
Bell was a Doctor of Civil Law (DCL) of Durham University, a Doctor of Laws (LLD) of Edinburgh University and Dublin University, and a Doctor of Science (DSc) of Leeds University.
Bell married the daughter of Hugh Lee Pattinson in 1842 and together they had two sons and three daughters. The family resided in Newcastle upon Tyne, Washington Hall, and Rounton Grange near Northallerton.
Lowthian Bell died on the 21st of December 1904. The Council of The Institution of Mining Engineers passed the following resolution:
“The Council have received with the deepest regret intimation of the death of their esteemed President and colleague, Sir Lowthian Bell, Bart, on of the founders of the Institution, who presided at the initial meeting held in London on June 6 th 1888, and they have conveyed to Sir Hugh Bell, Bart, and the family of Sir Lowthian Bell an expression of sincere sympathy with them in their bereavement. It is impossible to estimate the value of the services that Sir Lowthian Bell rendered to the Institution of Mining Engineers in promoting its objects, and in devoting his time and energies to the advancement of the Institution.”
Information taken from: - Institute of Mining Engineers, Transactions, Vol XXXIII 1906-07
Grey Hawk - Mach 8-10 - 7th / 8th Gen Hypersonic Super Fighter Aircraft, IO Aircraft www.ioaircraft.com
New peek, very little is posted or public. Grey Hawk - Mach 8-10 Hypersonic 7th/8th Gen Super Fighter. This is not a graphics design, but ready to be built this moment. Heavy CFD, Design Work, Systems, etc.
All technologies developed and refined. Can out maneuver an F22 or SU-35 all day long subsonically, and no missile on earth could catch it. Lots of details omitted intentionally, but even internal payload capacity is double the F-22 Raptor. - www.ioaircraft.com/hypersonic.php
Length: 60'
Span: 30'
Engines: 2 U-TBCC (Unified Turbine Based Combined Cycle)
2 360° Thrust Vectoring Center Turbines
Fuel: Kero / Hydrogen
Payload: Up to 4 2,000 LBS JDAM's Internally
Up to 6 2,000 LBS JDAM's Externally
Range: 5,000nm + Aerial Refueling Capable
www.ioaircraft.com/hypersonic.php
-----------------------------
hypersonic fighter, hypersonic fighter plane, hawc, tgv, tactical glide vehicle, hypersonic commercial aircraft, hypersonic commercial plane, hypersonic aircraft, hypersonic plane, hypersonic airline, tbcc, glide breaker, fighter plane, hypersonic fighter, boeing phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, defense science, missile defense agency, aerospike, hydrogen aircraft, airlines, military, physics, airline, aerion supersonic, aerion, spike aerospace, boom supersonic, , darpa, onr, navair, afrl, air force research lab, office of naval research, defense advanced research project agency, afosr, socom, arl, army future command, mda, missile defense agenci, dia, defense intelligence agency, air force of science and research,
-----------------------------
Unified Turbine Based Combined Cycle. Current technologies and what Lockheed is trying to force on the Dept of Defense, for that low speed Mach 5 plane DOD gave them $1 billion to build and would disintegrate above Mach 5, is TBCC. 2 separate propulsion systems in the same airframe, which requires TWICE the airframe space to use.
Unified Turbine Based Combined Cycle is 1 propulsion system cutting that airframe deficit in half, and also able to operate above Mach 10 up to Mach 15 in atmosphere, and a simple nozzle modification allows for outside atmosphere rocket mode, ie orbital capable.
Additionally, Reaction Engines maximum air breather mode is Mach 4.5, above that it will explode in flight from internal pressures are too high to operate. Thus, must switch to non air breather rocket mode to operate in atmosphere in hypersonic velocities. Which as a result, makes it not feasible for anything practical. It also takes an immense amount of fuel to function.
-------------
Advanced Additive Manufacturing for Hypersonic Aircraft
Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.
Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.
*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.
What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.
Unified Turbine Based Combined Cycle (U-TBCC)
To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5
However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.
Enhanced Dynamic Cavitation
Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.
Dynamic Scramjet Ignition Processes
For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.
Hydrogen vs Kerosene Fuel Sources
Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.
Conforming High Pressure Tank Technology for CNG and H2.
As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.
As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).
Enhanced Fuel Mixture During Shock Train Interaction
Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.
Improved Bow Shock Interaction
Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.
6,000+ Fahrenheit Thermal Resistance
To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.
*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope
Scramjet Propulsion Side Wall Cooling
With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.
Lower Threshold for Hypersonic Ignition
Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.
Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities
Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.
Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)
To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.
A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.
A weathered old wife or widow of a fisherman in a village on the beach at cape-tukkae-siray-island แหลมตุ๊กแก หมู่บ้านชาวไทยใหม่ Phuket, Kingdom of Thailand. The hands, wood and egg as well as her silver vs. gold speaks volumes. For my less traveled western friends, the bag contains a salty fish sauce. I prefer Squid sauce vs. fish although, if you know the manufacturing process you are less likely to try it. As common as salt on the table in the west.
(En) Founded in 1906, the Coking Plant of Anderlues was specialized in the production of coke for industrial use.
Coke was obtained by distillation of coal in furnaces and, thanks to its superior fuel coal properties, it was used afterwards to feed the blast furnaces in the steel manufacturing process.
Closed and abandoned since 2002, the site has since undergone many losses and damages, not including an important pollution. While some buildings have now been demolished, there are however still some important parts of the former coking plant.
Among them, the former coal tower, next to the imposing "battery" of 38 furnaces, where the coke was produced. Besides them, we still can see the administrative buildings, the power station with its cooling tower, and buildings for the by-products, which were obtained by recovering the tar and coal gas. There are also a gasometer north side, the coal tip east side and a settling basin south side.
-----------
(Fr) Fondées en 1906, les Cokeries d'Anderlues étaient spécialisées dans la fabrication de coke à usage industriel.
Le coke était obtenu par distillation de la houille dans des fours et, grâce à ses propriétés combustibles supérieures au charbon, il servait par après à alimenter les hauts-fourneaux dans le processus de fabrication de l'acier.
Fermé et laissé à l'abandon depuis 2002, le site a depuis lors subi de nombreuses pertes et dégradations, sans compter la pollution qui y règne. Si certains bâtiments (comme l'ancien lavoir à charbon) ont aujourd'hui été démolis, on retrouve encore toutefois certaines parties importantes de cette ancienne cokerie.
Parmi celles-ci, l'ancienne tour à charbon suivie de près par l'imposante "batterie" de 38 fours, où était produit le coke. A côté d'eux, on découvre également les bâtiments administratifs, la centrale électrique avec sa tour de refroidissement, ainsi que les bâtiments des sous-produits, lesquels étaient obtenus par récupération du goudron et du gaz de houille. Et en périphérie, on retrouve un gazomètre côté nord, le terril à l'est et un bassin de décantation côté sud.
An ultrathin Ag film based OLED inside Professor Jay Guo’s lab at 3537 G.G. Brown on North Campus in Ann Arbor MI on May 5, 2021.
Guo’s group is systematically improving the light power distribution in OLEDs by removing the waveguide mode and optimizing the organic stacks and the ultrathin AG anode. This simple yet effective method leads to significantly enhanced performance of the external quantum efficiency of the OLED.
Guo’s solution is not only simple in process but also can achieve high throughput and low cost with excellent compatibility with the large-scale manufacturing process in the display industry. In principle, the modal elimination approach introduced in this work could be extended to other solid-state light emitting diodes (LEDs) such as perovskites, quantum-dots, or III-V based LEDs since all of which are susceptible to the issue of light trapping as waveguide mode.
Photo: Robert Coelius/University of Michigan Engineering, Communications & Marketing
Iteration 5 Enhanced Preview (Iteration 5, Included VTOL Inlet Doors and Inlet Ducts) of an entirely new type of aircraft, no info is on the net yet and won't be for a while. RANGER - 2 Passenger VTOL Hypersonic Plane
www.ioaircraft.com/hypersonic/ranger.php
Drew Blair
www.linkedin.com/in/drew-b-25485312/
Vertical take off and landing - High Supersonic into Hypersonic Realm. Economy cruise above Mach 4, and can accelerate to beyond Mach 8. Non VTOL, could reach LEO. With a range of 5,000+ nm (7,000+ non vtol). Fuel H2, reducing fuel weight 95%.
Length, 35ft (10.67m), span 18ft (6m).
Propulsion, 2 Unified Turbine Based Combined Cycle. 2 Unified thrust producing gas turbine generators that provide the power for the central lifting fan (electric, not shaft driven) and the rear VTOL.
Estimated market price, $25-$30 million in production. New York to Dubai in an hour.
All based on my own technology advances in Hypersonics which make Lockheed and Boeing look ancient.
-------------
glide breaker, boeing phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, office of naval research, defense advanced research project agency, defense science, missile defense agency, aerospike, vtol, vertical take off, air taxi, personal air vehicle, boeing go fly prize, go fly prize,
Advanced Additive Manufacturing for Hypersonic Aircraft
Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.
Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.
*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.
What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.
Unified Turbine Based Combined Cycle (U-TBCC)
To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5
However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.
Enhanced Dynamic Cavitation
Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.
Dynamic Scramjet Ignition Processes
For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.
Hydrogen vs Kerosene Fuel Sources
Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.
Conforming High Pressure Tank Technology for CNG and H2.
As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.
As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).
Enhanced Fuel Mixture During Shock Train Interaction
Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.
Improved Bow Shock Interaction
Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.
6,000+ Fahrenheit Thermal Resistance
To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.
*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope
Scramjet Propulsion Side Wall Cooling
With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.
Lower Threshold for Hypersonic Ignition
Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.
Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities
Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.
Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)
To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.
A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.
Grey Hawk - Mach 8-10 - 7th / 8th Gen Hypersonic Super Fighter Aircraft, IO Aircraft www.ioaircraft.com
New peek, very little is posted or public. Grey Hawk - Mach 8-10 Hypersonic 7th/8th Gen Super Fighter. This is not a graphics design, but ready to be built this moment. Heavy CFD, Design Work, Systems, etc.
All technologies developed and refined. Can out maneuver an F22 or SU-35 all day long subsonically, and no missile on earth could catch it. Lots of details omitted intentionally, but even internal payload capacity is double the F-22 Raptor. - www.ioaircraft.com/hypersonic.php
Length: 60'
Span: 30'
Engines: 2 U-TBCC (Unified Turbine Based Combined Cycle)
2 360° Thrust Vectoring Center Turbines
Fuel: Kero / Hydrogen
Payload: Up to 4 2,000 LBS JDAM's Internally
Up to 6 2,000 LBS JDAM's Externally
Range: 5,000nm + Aerial Refueling Capable
www.ioaircraft.com/hypersonic.php
-----------------------------
hypersonic fighter, hypersonic fighter plane, hawc, tgv, tactical glide vehicle, hypersonic commercial aircraft, hypersonic commercial plane, hypersonic aircraft, hypersonic plane, hypersonic airline, tbcc, glide breaker, fighter plane, hypersonic fighter, boeing phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, defense science, missile defense agency, aerospike, hydrogen aircraft, airlines, military, physics, airline, aerion supersonic, aerion, spike aerospace, boom supersonic, , darpa, onr, navair, afrl, air force research lab, office of naval research, defense advanced research project agency, afosr, socom, arl, army future command, mda, missile defense agenci, dia, defense intelligence agency, air force of science and research,
-----------------------------
Unified Turbine Based Combined Cycle. Current technologies and what Lockheed is trying to force on the Dept of Defense, for that low speed Mach 5 plane DOD gave them $1 billion to build and would disintegrate above Mach 5, is TBCC. 2 separate propulsion systems in the same airframe, which requires TWICE the airframe space to use.
Unified Turbine Based Combined Cycle is 1 propulsion system cutting that airframe deficit in half, and also able to operate above Mach 10 up to Mach 15 in atmosphere, and a simple nozzle modification allows for outside atmosphere rocket mode, ie orbital capable.
Additionally, Reaction Engines maximum air breather mode is Mach 4.5, above that it will explode in flight from internal pressures are too high to operate. Thus, must switch to non air breather rocket mode to operate in atmosphere in hypersonic velocities. Which as a result, makes it not feasible for anything practical. It also takes an immense amount of fuel to function.
-------------
Advanced Additive Manufacturing for Hypersonic Aircraft
Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.
Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.
*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.
What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.
Unified Turbine Based Combined Cycle (U-TBCC)
To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5
However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.
Enhanced Dynamic Cavitation
Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.
Dynamic Scramjet Ignition Processes
For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.
Hydrogen vs Kerosene Fuel Sources
Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.
Conforming High Pressure Tank Technology for CNG and H2.
As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.
As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).
Enhanced Fuel Mixture During Shock Train Interaction
Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.
Improved Bow Shock Interaction
Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.
6,000+ Fahrenheit Thermal Resistance
To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.
*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope
Scramjet Propulsion Side Wall Cooling
With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.
Lower Threshold for Hypersonic Ignition
Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.
Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities
Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.
Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)
To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.
A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.
It is chilly and rainy in Arizona for Super Bowl 48 but BMW turned up the heat with their all-electric i3 and hybrid i8 sports car. To add additional flavor to the recipe New England Patriots’ starting corner Kyle Arrington and wife VaShonda Arrington joined the experience for the energetic weekend festivities.
Kyle spent a few days in both vehicles during his activities, which included stops at the Nike Football Super Bowl Hospitality Gifting Suite at the immaculate Scottsdale Resort & Conference Center, the NFL Experience, family outings and dinner with his spouse. Vashonda’s centerpiece moment was raising funds for the Off the Field Player’s Wives Association’s “14th Annual Super Bowl Fashion Show” held at the upscale Scottsdale Fashion Mall. The wives, kids and a handful of former NFL players walked the runway with grace and style. Guests included Holly Robinson Peete, Antonio Cromardie, Steve Young, Kevin Hart and many more. She enjoyed the earthly interior of the i3 and spoke passionately about the need regarding increased sustainability in the world.
The mind is driven by thoughts and fueled by inventive answers. The i3 is 100% pure electric and the i8 is a plug-in hybrid sports car, which means its power is sourced from both gasoline and electricity. The i8 is comprised of a Life module and a Drive module. The 3-liter gasoline motor is placed in the rear and the smaller electric engine is housed up front. In addition, the i8 is essentially an AWD vehicle channeling traction from both axles simultaneously but doesn’t utilize the company’s hallmark xDrive system. A few common i8 performance specs include:
•0 to 60 mph = 4.2 seconds
•Top speed = 155 mph (electronically limited)
•Electric only top speed = 75 mph
•Pure electric range = 22 miles
Born electric, the i3 is engineered with BMW’s LifeDrive architecture, which is also structured into two categories, the Life Module and the Drive Module. Comprised of high-strength carbon, the Life Module protects and provides comfort for the driver and passengers. The second platform, the Drive Module, encompasses the electric drive system, the suspension and the HVAC. Since the car is lighter, the liquid-cooled lithium-ion battery (developed in-house by BMW) is smaller and only needs three hours for a full stage-2 (240-volt) charge. Additionally, BMW attempts to use as much renewable energy as possible for the manufacturing process of the carbon fiber i3.
The journey continues towards educating the world on the benefits of going green. BMW is both an innovator and leader in this technology category and has already spearheaded a positive movement. Expect more BMW i products down the line since they have only just begun.
Shimano has released only 1000 of these sets to North America. If you are a collector or someone that just likes the best, than this is for you. This group is almost too beautiful to put on your bike.
The Dura-Ace name speaks for itself. You can feel the quality and see the attention to detail when you hold the parts. It is quality that has made Dura-Ace successful for 25 years.
The shifts are very fast and accurate with a smooth action. The refined dual pivot brakes stop on a dime even in wet conditions. The bearings of the bottom bracket and hubs are smooth. The new SPDR pedal locks your foot to the pedal better than anything we have tried.
The components are based on the 1999 Dura-Ace 7700 series components, but there are significant differences. Component surfaces have been hand polished to a mirror like finish and more titanium hardware is used throughout the group. Each components is also identified with a special 25th Anniversary emblem. Detailed specifications are provided with the group.
The components are packaged in ready-to-display condition in a handsome aluminum presentation case which also provides ample protection for long term storage. The package also includes a book which details the history of the group, briefly explains the manufacturing process, and provides comments from the people who have been closely involved with Dura-Ace over the years.
When Dura-Ace first appeared in Europe, cycling enthusiasts thought there was little chance a Japanese component maker could make inroads into the conservative and tradition-bound sport of professional bicycle racing. Much to everyone’s surprise, Shimano’s commitment to quality, innovative engineering, and attention to the needs of racing cyclists resulted in Dura-Ace becoming a very popular and well respected component group. It is estimated that more than 60 percent of high-end road racers are now riding Dura-Ace.
The dependability and functionality of the components are integral to the performance of the racing bicycle and the athlete riding it. Dura-Ace is designed to create a highly efficient link between the racer and the bicycle. It’s an interface that allows racing cyclists to concentrate more on the race, and less on controlling the bicycle. As a result, Dura-Ace is now recognized by road racers and cycling enthusiasts around the world as the performance standard for racing components.
The shape of fuel injection systems, such as this piece from the NASA rocket Morpheus, impacts how the fuel components mix and burn, affecting efficiency, carbon dioxide production, stability and wear and tear on the engine. The Advanced Photon Source at Argonne National Laboratory has the world's only X-ray beamline dedicated to fuel injection research and is the only place where engine systems can be tested in real time in real operating conditions. The auto and aerospace industries and military use the system to study ways to make engines more fuel efficient and stable as well as to test new types of alternative fuels. The injection system also aids in studies of spray systems, such as those used in manufacturing processes and industrial paint and coating equipment. November 2014
Photograph Courtesy of Argonne National Laboratory
Diary of the making: Gameboy model
Using the manufacturing process in order to learn to make my own ideas come to life.
UCAS Personal ID: 1100205751
Student ref no: 1300112
It is chilly and rainy in Arizona for Super Bowl 48 but BMW turned up the heat with their all-electric i3 and hybrid i8 sports car. To add additional flavor to the recipe New England Patriots’ starting corner Kyle Arrington and wife VaShonda Arrington joined the experience for the energetic weekend festivities.
Kyle spent a few days in both vehicles during his activities, which included stops at the Nike Football Super Bowl Hospitality Gifting Suite at the immaculate Scottsdale Resort & Conference Center, the NFL Experience, family outings and dinner with his spouse. Vashonda’s centerpiece moment was raising funds for the Off the Field Player’s Wives Association’s “14th Annual Super Bowl Fashion Show” held at the upscale Scottsdale Fashion Mall. The wives, kids and a handful of former NFL players walked the runway with grace and style. Guests included Holly Robinson Peete, Antonio Cromardie, Steve Young, Kevin Hart and many more. She enjoyed the earthly interior of the i3 and spoke passionately about the need regarding increased sustainability in the world.
The mind is driven by thoughts and fueled by inventive answers. The i3 is 100% pure electric and the i8 is a plug-in hybrid sports car, which means its power is sourced from both gasoline and electricity. The i8 is comprised of a Life module and a Drive module. The 3-liter gasoline motor is placed in the rear and the smaller electric engine is housed up front. In addition, the i8 is essentially an AWD vehicle channeling traction from both axles simultaneously but doesn’t utilize the company’s hallmark xDrive system. A few common i8 performance specs include:
•0 to 60 mph = 4.2 seconds
•Top speed = 155 mph (electronically limited)
•Electric only top speed = 75 mph
•Pure electric range = 22 miles
Born electric, the i3 is engineered with BMW’s LifeDrive architecture, which is also structured into two categories, the Life Module and the Drive Module. Comprised of high-strength carbon, the Life Module protects and provides comfort for the driver and passengers. The second platform, the Drive Module, encompasses the electric drive system, the suspension and the HVAC. Since the car is lighter, the liquid-cooled lithium-ion battery (developed in-house by BMW) is smaller and only needs three hours for a full stage-2 (240-volt) charge. Additionally, BMW attempts to use as much renewable energy as possible for the manufacturing process of the carbon fiber i3.
The journey continues towards educating the world on the benefits of going green. BMW is both an innovator and leader in this technology category and has already spearheaded a positive movement. Expect more BMW i products down the line since they have only just begun.
Soda Springs (Geyser) is a group of thousands of natural carbonated springs in the area of Soda Springs, Idaho. The springs were a landmark on the Oregon Trail.
“Past volcanic activity has shaped the landscape, and the residual geothermal activity has caused the numerous hot bubbling springs that gave it its name. Geothermal activity hundreds of feet below the ground heats water and mixes in carbon dioxide gas. Soda Springs gets its name from the naturally carbonated water. The resulting increased pressure contributes to the number of springs and was the cause of the geyser.”
The Oregon Trail passed through Soda Springs. At the time it was known as the "Oasis of Soda Springs". Between Fort Laramie and Fort Boise, Soda Springs was a major landmark Soda Springs is the second oldest settlement in Idaho. Sulphur Springs was the first hot spring that the Oregon Trail immigrants encountered in the soda springs area. Pyramid springs was discovered by fur trappers and pioneers, they discovered the springs by noticing mounds of soda formed rock and clay Johnkirk Townsends said in his diary, “Our encampment on the 8th was near what are called the’White Clay pits,” still on Bear River. The soil is soft chalk, white and tenacious: and in the vicinity are several springs of strong super carbonated water which bubble up with all the activity of artificial fountains. The taste was very agreeable and refreshing, resembling Saratoga water but not so saline. The whole plain to the hills is having depressions on their summits from which once issued streams of water. The extent of these eruptions, at some former period, must have been very great. At about half a mile distant, is an eruptive thermal spring of the temperature of 90 [degrees], and near this is an opening in the earth front which a stream of gas issues without water.”
This spring was known for its excellent water quality. Fred J. Kiesel of Ogden Utah heard of the excellent water and set up a bottling plant with W.J. Clark of Butte, MT. The product name was "Idanha." The natural mineral company was incorporated in 1887 and began distributing it around the nation and the globe. The water became so prestigious that it took first place at the Chicago's World Fair in 1893, and again in the World's Fair in Paris, France.
On November 30, 1937, a well drilling operation while attempting to build a natural hot springs swimming pool was surprised when it unintentionally released Soda Springs’s famous captive geyser, which surprised everyone by shooting 100 feet into the air. It has been capped and a timer activates it once every hour. The water is approximately 72 degrees Fahrenheit. There is now a park and a visitor center at the site.In addition to its captive geyser, Soda Springs also boasts a man-made lava flow, from the dumping of molten rock left over from Monsanto's phosphate mining and manufacturing process one mile north of the town.
en.wikipedia.org/wiki/Soda_Springs_Geyser
en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_...
Io Aircraft - www.ioaircraft.com
Drew Blair
www.linkedin.com/in/drew-b-25485312/
io aircraft, phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air-Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, defense science, missile defense agency, aerospike,
Advanced Additive Manufacturing for Hypersonic Aircraft
Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.
Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.
*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.
What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.
Unified Turbine Based Combined Cycle (U-TBCC)
To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5
However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.
Enhanced Dynamic Cavitation
Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.
Dynamic Scramjet Ignition Processes
For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.
Hydrogen vs Kerosene Fuel Sources
Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.
Conforming High Pressure Tank Technology for CNG and H2.
As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.
As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).
Enhanced Fuel Mixture During Shock Train Interaction
Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.
Improved Bow Shock Interaction
Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.
6,000+ Fahrenheit Thermal Resistance
To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.
*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope
Scramjet Propulsion Side Wall Cooling
With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.
Lower Threshold for Hypersonic Ignition
Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.
Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities
Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.
Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)
To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.
A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.
Io Aircraft - www.ioaircraft.com
Drew Blair
www.linkedin.com/in/drew-b-25485312/
io aircraft, phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air-Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, defense science, missile defense agency, aerospike,
Advanced Additive Manufacturing for Hypersonic Aircraft
Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.
Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.
*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.
What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.
Unified Turbine Based Combined Cycle (U-TBCC)
To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5
However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.
Enhanced Dynamic Cavitation
Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.
Dynamic Scramjet Ignition Processes
For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.
Hydrogen vs Kerosene Fuel Sources
Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.
Conforming High Pressure Tank Technology for CNG and H2.
As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.
As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).
Enhanced Fuel Mixture During Shock Train Interaction
Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.
Improved Bow Shock Interaction
Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.
6,000+ Fahrenheit Thermal Resistance
To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.
*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope
Scramjet Propulsion Side Wall Cooling
With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.
Lower Threshold for Hypersonic Ignition
Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.
Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities
Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.
Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)
To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.
A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.
J.H. Whittaker & Sons, Ltd (Whittaker's) is a confectionery manufacturer specialising in chocolate and based in Porirua, New Zealand. Whittaker's is the second-biggest chocolate brand in New Zealand, behind Cadbury. The company controls its entire manufacturing process, calling itself a "bean-to-bar" manufacturer, to ensure top-quality products. James Henry Whittaker started the business in Christchurch in 1896 and it was later moved to Wellington.
James Henry Whittaker worked in the British confectionery industry at the age of 14 and moved to Christchurch, New Zealand, in 1890. Six years later he started manufacturing chocolate confectionery, selling it direct to customers using horse and van. In 1913, he established a partnership with his two sons, Ronald and James, based in Wellington. The business became a limited liability company in 1937, with third-generation Whittakers still the sole shareholders in the company. In 1992 the company formed J.H. Whittaker Australia Ltd.
Wikipedia
15/31 December Gold, 365 Colours.
ODC December 14 Favourite Sweet Treat
David Mellor Visitor Centre
David Mellor is internationally famous for his cutlery.
His chic factory in Hathersage, designed by Sir Michael Hopkins, and purpose-built on the site of the old gasworks, is hailed as a minor masterpiece of modern architecture.
Built in local gritstone with a spectacular lead roof, it blends beautifully into the rural landscape. The factory is open for viewing on Sundays and visitors are welcome to take a look around and watch the various designs being made.
The manufacturing process is surprisingly low-tech and most of it done by hand – if nothing else this explains why the cutlery is so expensive (and so collectable).
In addition to the factory, there is also a stylish shop, a classy café and an interesting design museum.
David Mellor died in 2009, and his talented son Corin continues the design tradition at Hathersage.
Street Scene
David Mellor reigned supreme as Britain’s ‘cutlery king’ but he also ruled over another design domain often overlooked: street furniture.
A permanent exhibition at his factory and museum in Hathersage, entitled Street Scene, showcases his street furniture designs.
One of David Mellor’s great aims as a designer was to improve the quality of the everyday urban environment.
His traffic lights, post boxes, lighting columns, outdoor seating, bus shelters, litter bins and bollards were widely distributed and altered the appearance of the street scene throughout the UK.
Traffic Lights
His redesign of the traffic lights remains his greatest contribution to Britain’s street scene.
The commission came from the Ministry of Transport, as part of a comprehensive national plan in the 1960s to update the UK’s traffic signage systems.
Mellor’s main concern in redesigning the traditional traffic light system was to clarify the messages conveyed both to drivers and pedestrians, greatly improving road safety.
By the end of the 1960’s all of Britain’s 4,500 traffic light sets were being replaced by Mellor’s new design.
His traffic lights are still in use today, basically unaltered since their introduction half a century ago.
From left to right:
Standard 3-light Traffic Signal
1965
Traffic Light Pedestrian Signal
1965
It is chilly and rainy in Arizona for Super Bowl 48 but BMW turned up the heat with their all-electric i3 and hybrid i8 sports car. To add additional flavor to the recipe New England Patriots’ starting corner Kyle Arrington and wife VaShonda Arrington joined the experience for the energetic weekend festivities.
Kyle spent a few days in both vehicles during his activities, which included stops at the Nike Football Super Bowl Hospitality Gifting Suite at the immaculate Scottsdale Resort & Conference Center, the NFL Experience, family outings and dinner with his spouse. Vashonda’s centerpiece moment was raising funds for the Off the Field Player’s Wives Association’s “14th Annual Super Bowl Fashion Show” held at the upscale Scottsdale Fashion Mall. The wives, kids and a handful of former NFL players walked the runway with grace and style. Guests included Holly Robinson Peete, Antonio Cromardie, Steve Young, Kevin Hart and many more. She enjoyed the earthly interior of the i3 and spoke passionately about the need regarding increased sustainability in the world.
The mind is driven by thoughts and fueled by inventive answers. The i3 is 100% pure electric and the i8 is a plug-in hybrid sports car, which means its power is sourced from both gasoline and electricity. The i8 is comprised of a Life module and a Drive module. The 3-liter gasoline motor is placed in the rear and the smaller electric engine is housed up front. In addition, the i8 is essentially an AWD vehicle channeling traction from both axles simultaneously but doesn’t utilize the company’s hallmark xDrive system. A few common i8 performance specs include:
•0 to 60 mph = 4.2 seconds
•Top speed = 155 mph (electronically limited)
•Electric only top speed = 75 mph
•Pure electric range = 22 miles
Born electric, the i3 is engineered with BMW’s LifeDrive architecture, which is also structured into two categories, the Life Module and the Drive Module. Comprised of high-strength carbon, the Life Module protects and provides comfort for the driver and passengers. The second platform, the Drive Module, encompasses the electric drive system, the suspension and the HVAC. Since the car is lighter, the liquid-cooled lithium-ion battery (developed in-house by BMW) is smaller and only needs three hours for a full stage-2 (240-volt) charge. Additionally, BMW attempts to use as much renewable energy as possible for the manufacturing process of the carbon fiber i3.
The journey continues towards educating the world on the benefits of going green. BMW is both an innovator and leader in this technology category and has already spearheaded a positive movement. Expect more BMW i products down the line since they have only just begun.
Discovery STO - Single Stage to Orbit Heavy Lift, Hypersonic Aircraft - 70 TON Payload - IO Aircraft
IO Aircraft: www.ioaircraft.com
Discovery STO Specs
Length:197' 6" / Span: 93' / Palyload Bay: 61' L X 15" W X 15' H / Span: 70 Ton (140,000 LBS)
Engines: U-TBCC (Unified Turbined Based Combined Cycle) Inc/Zero Atmosphere
Inlets: Adaptive REST, Originally Hapb/Larc NASA
Fuel: 125,000 Gallons 12,000 PSI H2 / 90,000 Gallons 12,000 PSI O2
Fuel Weight: Apx 72,000 LBS Total / *If liquid, would be 1.4 Million LBS
Weight: Apx 325,000 LBS EOW/Dry Weight / Apx 537,000 T/O Weight, Max Payload
Airframe: 75+% Proprietary Advanced Composites, 400,000 PSI Tensile Strength Airframe / *NO Ceramic Tiles
Thermals: 6,000F Thermal Resistance
Estimated Cost: $750 Million Each (Fly Away Price)
Estimated Launch Cost: Apx $28 Million at 140,000 LBS, Including Maintenance Costs / Under $250 per pound at Maximum Paylaod Wieght *Could Drop to Below $50 per LBS
-----------------------------
single stage to orbit, sto, space plane, falcon heavy, delta iv, hypersonic commercial aircraft, hypersonic commercial plane, hypersonic aircraft, hypersonic plane, ICAO, International Civil Aviation Orginization, hypersonic airline, tbcc, glide breaker, fighter plane, hyperonic fighter, boeing phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, office of naval research, defense advanced research project agency, defense science, missile defense agency, aerospike, hydrogen fueled, hydrogen aircraft, virgin airlines, united airlines, sas, finnair ,emirates airlines, ANA, JAL, airlines, military, physics, airline, british airways, air france, aerion supersonic, aerion, spike aerospace, boom supersonic,
-----------------------------
Unified Turbine Based Combined Cycle. Current technologies and what Lockheed is trying to force on the Dept of Defense, for that low speed Mach 5 plane DOD gave them $1 billion to build and would disintegrate above Mach 5, is TBCC. 2 separate propulsion systems in the same airframe, which requires TWICE the airframe space to use.
Unified Turbine Based Combined Cycle is 1 propulsion system cutting that airframe deficit in half, and also able to operate above Mach 10 up to Mach 15 in atmosphere, and a simple nozzle modification allows for outside atmosphere rocket mode, ie orbital capable.
Additionally, Reaction Engines maximum air breather mode is Mach 4.5, above that it will explode in flight from internal pressures are too high to operate. Thus, must switch to non air breather rocket mode to operate in atmosphere in hypersonic velocities. Which as a result, makes it not feasible for anything practical. It also takes an immense amount of fuel to function.
-------------
Advanced Additive Manufacturing for Hypersonic Aircraft
Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.
Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.
*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.
What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.
Unified Turbine Based Combined Cycle (U-TBCC)
To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5
However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.
Enhanced Dynamic Cavitation
Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.
Dynamic Scramjet Ignition Processes
For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.
Hydrogen vs Kerosene Fuel Sources
Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.
Conforming High Pressure Tank Technology for CNG and H2.
As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.
As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).
Enhanced Fuel Mixture During Shock Train Interaction
Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.
Improved Bow Shock Interaction
Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.
6,000+ Fahrenheit Thermal Resistance
To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.
*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope
Scramjet Propulsion Side Wall Cooling
With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.
Lower Threshold for Hypersonic Ignition
Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.
Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities
Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.
Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)
To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.
A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.
The United States Astronaut Hall of Fame, located inside the Kennedy Space Center Visitor Complex Heroes & Legends building on Merritt Island, Florida, honors American astronauts and features the world's largest collection of their personal memorabilia, focusing on those astronauts who have been inducted into the Hall. Exhibits include Wally Schirra's Sigma 7 space capsule from the fifth crewed Mercury mission and the Gemini IX spacecraft flown by Gene Cernan and Thomas P. Stafford in 1966.
In the 1980s, the six then-surviving Mercury Seven astronauts conceived of establishing a place where US space travelers could be remembered and honored, along the lines of halls of fame for other fields. The Mercury Seven Foundation and Astronaut Scholarship Foundation were formed, and have a role in the ongoing operations of the Hall of Fame. The foundation's first executive director was former Associated Press space reporter Howard Benedict.
The Astronaut Hall of Fame was opened on October 29, 1990, by the U.S. Space Camp Foundation, which was the first owner of the facility. It was located next to the Florida branch of Space Camp.
The Hall of Fame closed for several months in 2002 when U.S. Space Camp Foundation's creditors foreclosed on the property due to low attendance and mounting debt. That September, an auction was held and the property was purchased by Delaware North Park Services on behalf of NASA and the property was added to the Kennedy Space Center Visitor Complex. The Hall of Fame re-opened December 14, 2002.
The Hall of Fame, which was originally located just west of the NASA Causeway, closed to the public on November 2, 2015, in preparation for its relocation to the Kennedy Space Center Visitor Complex 6 miles (9.7 km) to the east on Merritt Island. Outside of the original building was a full-scale replica of a Space Shuttle orbiter named Inspiration (originally named "Shuttle To Tomorrow" where visitors could enter and view a program). Inspiration served only as an outdoor, full scale, static display which visitors could not enter. After the Hall of Fame was transferred to the KSC Visitor Complex, Inspiration was acquired by LVX System and was placed in storage at the Shuttle Landing Facility at the Kennedy Space Center; in 2016, the shuttle was loaded on to a barge to be taken for refurbishment before going on an educational tour.
The building was purchased at auction by visitor complex operator Delaware North and renamed the ATX Center, and for a time housed educational programs including Camp Kennedy Space Center and the Astronaut Training Experience. Those programs have since been moved to the KSC Visitor Complex, and as of December 2019, the structure was being offered for lease. In July 2020, Lockheed Martin announced it would lease the building to support work on the NASA Orion crew capsule.
Inductees into the Hall of Fame are selected by a blue ribbon committee of former NASA officials and flight controllers, historians, journalists, and other space authorities (including former astronauts) based on their accomplishments in space or their contributions to the advancement of space exploration. Except for 2002, inductions have been held every year since 2001.
As its inaugural class in 1990, the Hall of Fame inducted the United States' original group of astronauts: the Mercury Seven. In addition to being the first American astronauts, they set several firsts in American spaceflight, both auspicious and tragic. Alan Shepard was the first American in space and later became one of the twelve people to walk on the Moon. John Glenn was the first American to orbit the Earth and after his induction went on, in 1998, to become the oldest man to fly in space, aged 77. Gus Grissom was the first American to fly in space twice and was the commander of the ill-fated Apollo 1, which resulted in the first astronaut deaths directly related to preparation for spaceflight.
Thirteen astronauts from the Gemini and Apollo programs were inducted in the second class of 1993. This class included the first and last humans to walk on the Moon, Neil Armstrong and Eugene Cernan; Ed White, the first American to walk in space (also killed in the Apollo 1 accident); Jim Lovell, commander of the famously near-tragic Apollo 13; and John Young, whose six flights included a moonwalk and command of the first Space Shuttle mission.
The third class was inducted in 1997 and consisted of the 24 additional Apollo, Skylab, and ASTP astronauts. Notable members of the class were Roger Chaffee, the third astronaut killed in the Apollo 1 fire and the only unflown astronaut in the Hall; Harrison Schmitt, the first scientist and next-to-last person to walk on the Moon; and Jack Swigert and Fred Haise, the Apollo 13 crewmembers not previously inducted.
The philosophy regarding the first three groups of inductees was that all astronauts who flew in NASA's "pioneering" programs (which would include Mercury, Gemini, Apollo, Apollo Applications Program (Skylab), and Apollo-Soyuz Test Project) would be included simply by virtue of their participation in a spaceflight in these early programs. The first group (the inaugural class of 1990) would only include the original Mercury astronauts (most of whom would go on to fly in later programs). The second group of inductees would include those astronauts who began their spaceflight careers during Gemini (all of whom would go on to fly in later programs). The third group of inductees would include those astronauts who began their spaceflight careers during Apollo, Skylab, and ASTP (some of whom would go on to fly in the Space Shuttle program). Since it would not be practical (or meaningful) to induct all astronauts who ever flew in space, all subsequent inductees (Space Shuttle program and beyond) are considered based on their accomplishments and contributions to the human spaceflight endeavor which would set them apart from their peers.
Over four dozen astronauts from the Space Shuttle program have been inducted since 2001. Among these are Sally Ride, the first American woman in space; Story Musgrave, who flew six missions in the 1980s and 90s; and Francis Scobee, commander of the ill-fated final Challenger mission.
The 2010 class consisted of Guion Bluford Jr., Kenneth Bowersox, Frank Culbertson and Kathryn Thornton. The 2011 inductees were Karol Bobko and Susan Helms. The 2012 inductees were Franklin Chang-Diaz, Kevin Chilton and Charles Precourt. Bonnie Dunbar, Curt Brown and Eileen Collins were inducted in 2013, and Shannon Lucid and Jerry Ross comprised the 2014 class.
Those inducted in 2015 were John Grunsfeld, Steven Lindsey, Kent Rominger, and Rhea Seddon. In 2016, inductees included Brian Duffy and Scott E. Parazynski. Ellen Ochoa and Michael Foale were announced as the 2017 class of the United States Astronaut Hall of Fame. Scott Altman and Thomas Jones followed in 2018. The 2019 inductees were James Buchli and Janet L. Kavandi.
Michael López-Alegría, Scott Kelly and Pamela Melroy were the 2020 inductees, inducted in a November 2021 ceremony. The 2022 inductees were Christopher Ferguson, David Leestma, and Sandra Magnus. Roy Bridges Jr. and Mark Kelly were the 2023 inductees.
The Hall of Heroes is composed of tributes to the inductees. Among the Hall of Fame's displays is Sigma 7, the Mercury spacecraft piloted by Wally Schirra which orbited the Earth six times in 1962, and the Gemini 9A capsule flown by Gene Cernan and Thomas P. Stafford in 1966. An Astronaut Adventure room includes simulators for use by children.
The spacesuit worn by Gus Grissom during his 1961 Liberty Bell 7 Mercury flight is on display and has been the subject of a dispute between NASA and Grissom's heirs and supporters since 2002. The spacesuit, along with other Grissom artifacts, were loaned to the original owners of the Hall of Fame by the Grissom family when it opened. After the Hall of Fame went into bankruptcy and was taken over by a NASA contractor in 2002, the family requested that all their items be returned. All of the items were returned to Grissom's family except the spacesuit, because both NASA and the Grissoms claim ownership of it. NASA claims Grissom checked out the spacesuit for a show and tell at his son's school, and then never returned it, while the Grissoms claim Gus rescued the spacesuit from a scrap heap.
The John F. Kennedy Space Center (KSC, originally known as the NASA Launch Operations Center), located on Merritt Island, Florida, is one of the National Aeronautics and Space Administration's (NASA) ten field centers. Since December 1968, KSC has been NASA's primary launch center of human spaceflight. Launch operations for the Apollo, Skylab and Space Shuttle programs were carried out from Kennedy Space Center Launch Complex 39 and managed by KSC.[4] Located on the east coast of Florida, KSC is adjacent to Cape Canaveral Space Force Station (CCSFS). The management of the two entities work very closely together, share resources and operate facilities on each other's property.
Though the first Apollo flights and all Project Mercury and Project Gemini flights took off from the then-Cape Canaveral Air Force Station, the launches were managed by KSC and its previous organization, the Launch Operations Directorate. Starting with the fourth Gemini mission, the NASA launch control center in Florida (Mercury Control Center, later the Launch Control Center) began handing off control of the vehicle to the Mission Control Center in Houston, shortly after liftoff; in prior missions it held control throughout the entire mission.
Additionally, the center manages launch of robotic and commercial crew missions and researches food production and In-Situ Resource Utilization for off-Earth exploration. Since 2010, the center has worked to become a multi-user spaceport through industry partnerships, even adding a new launch pad (LC-39C) in 2015.
There are about 700 facilities and buildings grouped across the center's 144,000 acres (580 km2). Among the unique facilities at KSC are the 525-foot (160 m) tall Vehicle Assembly Building for stacking NASA's largest rockets, the Launch Control Center, which conducts space launches at KSC, the Operations and Checkout Building, which houses the astronauts dormitories and suit-up area, a Space Station factory, and a 3-mile (4.8 km) long Shuttle Landing Facility. There is also a Visitor Complex open to the public on site.
Since 1949, the military had been performing launch operations at what would become Cape Canaveral Space Force Station. In December 1959, the Department of Defense transferred 5,000 personnel and the Missile Firing Laboratory to NASA to become the Launch Operations Directorate under NASA's Marshall Space Flight Center.
President John F. Kennedy's 1961 goal of a crewed lunar landing by 1970 required an expansion of launch operations. On July 1, 1962, the Launch Operations Directorate was separated from MSFC to become the Launch Operations Center (LOC). Also, Cape Canaveral was inadequate to host the new launch facility design required for the mammoth 363-foot (111 m) tall, 7,500,000-pound-force (33,000 kN) thrust Saturn V rocket, which would be assembled vertically in a large hangar and transported on a mobile platform to one of several launch pads. Therefore, the decision was made to build a new LOC site located adjacent to Cape Canaveral on Merritt Island.
NASA began land acquisition in 1962, buying title to 131 square miles (340 km2) and negotiating with the state of Florida for an additional 87 square miles (230 km2). The major buildings in KSC's Industrial Area were designed by architect Charles Luckman. Construction began in November 1962, and Kennedy visited the site twice in 1962, and again just a week before his assassination on November 22, 1963.
On November 29, 1963, the facility was given its current name by President Lyndon B. Johnson under Executive Order 11129. Johnson's order joined both the civilian LOC and the military Cape Canaveral station ("the facilities of Station No. 1 of the Atlantic Missile Range") under the designation "John F. Kennedy Space Center", spawning some confusion joining the two in the public mind. NASA Administrator James E. Webb clarified this by issuing a directive stating the Kennedy Space Center name applied only to the LOC, while the Air Force issued a general order renaming the military launch site Cape Kennedy Air Force Station.
Located on Merritt Island, Florida, the center is north-northwest of Cape Canaveral on the Atlantic Ocean, midway between Miami and Jacksonville on Florida's Space Coast, due east of Orlando. It is 34 miles (55 km) long and roughly six miles (9.7 km) wide, covering 219 square miles (570 km2). KSC is a major central Florida tourist destination and is approximately one hour's drive from the Orlando area. The Kennedy Space Center Visitor Complex offers public tours of the center and Cape Canaveral Space Force Station.
The KSC Industrial Area, where many of the center's support facilities are located, is 5 miles (8 km) south of LC-39. It includes the Headquarters Building, the Operations and Checkout Building and the Central Instrumentation Facility. The astronaut crew quarters are in the O&C; before it was completed, the astronaut crew quarters were located in Hangar S[39] at the Cape Canaveral Missile Test Annex (now Cape Canaveral Space Force Station). Located at KSC was the Merritt Island Spaceflight Tracking and Data Network station (MILA), a key radio communications and spacecraft tracking complex.
Facilities at the Kennedy Space Center are directly related to its mission to launch and recover missions. Facilities are available to prepare and maintain spacecraft and payloads for flight. The Headquarters (HQ) Building houses offices for the Center Director, library, film and photo archives, a print shop and security. When the KSC Library first opened, it was part of the Army Ballistic Missile Agency. However, in 1965, the library moved into three separate sections in the newly opened NASA headquarters before eventually becoming a single unit in 1970. The library contains over four million items related to the history and the work at Kennedy. As one of ten NASA center libraries in the country, their collection focuses on engineering, science, and technology. The archives contain planning documents, film reels, and original photographs covering the history of KSC. The library is not open to the public but is available for KSC, Space Force, and Navy employees who work on site. Many of the media items from the collection are digitized and available through NASA's KSC Media Gallery or through their more up-to-date Flickr gallery.
A new Headquarters Building was completed in 2019 as part of the Central Campus consolidation. Groundbreaking began in 2014.
The center operated its own 17-mile (27 km) short-line railroad. This operation was discontinued in 2015, with the sale of its final two locomotives. A third had already been donated to a museum. The line was costing $1.3 million annually to maintain.
The Kennedy Space Center Visitor Complex, operated by Delaware North since 1995, has a variety of exhibits, artifacts, displays and attractions on the history and future of human and robotic spaceflight. Bus tours of KSC originate from here. The complex also includes the separate Apollo/Saturn V Center, north of the VAB and the United States Astronaut Hall of Fame, six miles west near Titusville. There were 1.5 million visitors in 2009. It had some 700 employees.
It was announced on May 29, 2015, that the Astronaut Hall of Fame exhibit would be moved from its current location to another location within the Visitor Complex to make room for an upcoming high-tech attraction entitled "Heroes and Legends". The attraction, designed by Orlando-based design firm Falcon's Treehouse, opened November 11, 2016.
In March 2016, the visitor center unveiled the new location of the iconic countdown clock at the complex's entrance; previously, the clock was located with a flagpole at the press site. The clock was originally built and installed in 1969 and listed with the flagpole in the National Register of Historic Places in January 2000. In 2019, NASA celebrated the 50th anniversary of the Apollo program, and the launch of Apollo 10 on May 18. In summer of 2019, Lunar Module 9 (LM-9) was relocated to the Apollo/Saturn V Center as part of an initiative to rededicate the center and celebrate the 50th anniversary of the Apollo Program.
The John F. Kennedy Space Center (KSC, originally known as the NASA Launch Operations Center), located on Merritt Island, Florida, is one of the National Aeronautics and Space Administration's (NASA) ten field centers. Since December 1968, KSC has been NASA's primary launch center of American spaceflight, research, and technology. Launch operations for the Apollo, Skylab and Space Shuttle programs were carried out from Kennedy Space Center Launch Complex 39 and managed by KSC. Located on the east coast of Florida, KSC is adjacent to Cape Canaveral Space Force Station (CCSFS). The management of the two entities work very closely together, share resources and operate facilities on each other's property.
Though the first Apollo flights and all Project Mercury and Project Gemini flights took off from the then-Cape Canaveral Air Force Station, the launches were managed by KSC and its previous organization, the Launch Operations Directorate. Starting with the fourth Gemini mission, the NASA launch control center in Florida (Mercury Control Center, later the Launch Control Center) began handing off control of the vehicle to the Mission Control Center in Houston, shortly after liftoff; in prior missions it held control throughout the entire mission.
Additionally, the center manages launch of robotic and commercial crew missions and researches food production and in-situ resource utilization for off-Earth exploration. Since 2010, the center has worked to become a multi-user spaceport through industry partnerships, even adding a new launch pad (LC-39C) in 2015.
There are about 700 facilities and buildings grouped throughout the center's 144,000 acres (580 km2). Among the unique facilities at KSC are the 525-foot (160 m) tall Vehicle Assembly Building for stacking NASA's largest rockets, the Launch Control Center, which conducts space launches at KSC, the Operations and Checkout Building, which houses the astronauts dormitories and suit-up area, a Space Station factory, and a 3-mile (4.8 km) long Shuttle Landing Facility. There is also a Visitor Complex on site that is open to the public.
Since 1949, the military had been performing launch operations at what would become Cape Canaveral Space Force Station. In December 1959, the Department of Defense transferred 5,000 personnel and the Missile Firing Laboratory to NASA to become the Launch Operations Directorate under NASA's Marshall Space Flight Center.
President John F. Kennedy's 1961 goal of a crewed lunar landing by 1970 required an expansion of launch operations. On July 1, 1962, the Launch Operations Directorate was separated from MSFC to become the Launch Operations Center (LOC). Also, Cape Canaveral was inadequate to host the new launch facility design required for the mammoth 363-foot (111 m) tall, 7,500,000-pound-force (33,000 kN) thrust Saturn V rocket, which would be assembled vertically in a large hangar and transported on a mobile platform to one of several launch pads. Therefore, the decision was made to build a new LOC site located adjacent to Cape Canaveral on Merritt Island.
NASA began land acquisition in 1962, buying title to 131 square miles (340 km2) and negotiating with the state of Florida for an additional 87 square miles (230 km2). The major buildings in KSC's Industrial Area were designed by architect Charles Luckman. Construction began in November 1962, and Kennedy visited the site twice in 1962, and again just a week before his assassination on November 22, 1963.
On November 29, 1963, the facility was named by President Lyndon B. Johnson under Executive Order 11129. Johnson's order joined both the civilian LOC and the military Cape Canaveral station ("the facilities of Station No. 1 of the Atlantic Missile Range") under the designation "John F. Kennedy Space Center", spawning some confusion joining the two in the public mind. NASA Administrator James E. Webb clarified this by issuing a directive stating the Kennedy Space Center name applied only to the LOC, while the Air Force issued a general order renaming the military launch site Cape Kennedy Air Force Station.
Located on Merritt Island, Florida, the center is north-northwest of Cape Canaveral on the Atlantic Ocean, midway between Miami and Jacksonville on Florida's Space Coast, due east of Orlando. It is 34 miles (55 km) long and roughly six miles (9.7 km) wide, covering 219 square miles (570 km2). KSC is a major central Florida tourist destination and is approximately one hour's drive from the Orlando area. The Kennedy Space Center Visitor Complex offers public tours of the center and Cape Canaveral Space Force Station.
From 1967 through 1973, there were 13 Saturn V launches, including the ten remaining Apollo missions after Apollo 7. The first of two uncrewed flights, Apollo 4 (Apollo-Saturn 501) on November 9, 1967, was also the first rocket launch from KSC. The Saturn V's first crewed launch on December 21, 1968, was Apollo 8's lunar orbiting mission. The next two missions tested the Lunar Module: Apollo 9 (Earth orbit) and Apollo 10 (lunar orbit). Apollo 11, launched from Pad A on July 16, 1969, made the first Moon landing on July 20. The Apollo 11 launch included crewmembers Neil Armstrong, Michael Collins, and Buzz Aldrin, and attracted a record-breaking 650 million television viewers. Apollo 12 followed four months later. From 1970 to 1972, the Apollo program concluded at KSC with the launches of missions 13 through 17.
On May 14, 1973, the last Saturn V launch put the Skylab space station in orbit from Pad 39A. By this time, the Cape Kennedy pads 34 and 37 used for the Saturn IB were decommissioned, so Pad 39B was modified to accommodate the Saturn IB, and used to launch three crewed missions to Skylab that year, as well as the final Apollo spacecraft for the Apollo–Soyuz Test Project in 1975.
As the Space Shuttle was being designed, NASA received proposals for building alternative launch-and-landing sites at locations other than KSC, which demanded study. KSC had important advantages, including its existing facilities; location on the Intracoastal Waterway; and its southern latitude, which gives a velocity advantage to missions launched in easterly near-equatorial orbits. Disadvantages included: its inability to safely launch military missions into polar orbit, since spent boosters would be likely to fall on the Carolinas or Cuba; corrosion from the salt air; and frequent cloudy or stormy weather. Although building a new site at White Sands Missile Range in New Mexico was seriously considered, NASA announced its decision in April 1972 to use KSC for the shuttle. Since the Shuttle could not be landed automatically or by remote control, the launch of Columbia on April 12, 1981 for its first orbital mission STS-1, was NASA's first crewed launch of a vehicle that had not been tested in prior uncrewed launches.
In 1976, the VAB's south parking area was the site of Third Century America, a science and technology display commemorating the U.S. Bicentennial. Concurrent with this event, the U.S. flag was painted on the south side of the VAB. During the late 1970s, LC-39 was reconfigured to support the Space Shuttle. Two Orbiter Processing Facilities were built near the VAB as hangars with a third added in the 1980s.
KSC's 2.9-mile (4.7 km) Shuttle Landing Facility (SLF) was the orbiters' primary end-of-mission landing site, although the first KSC landing did not take place until the tenth flight, when Challenger completed STS-41-B on February 11, 1984; the primary landing site until then was Edwards Air Force Base in California, subsequently used as a backup landing site. The SLF also provided a return-to-launch-site (RTLS) abort option, which was not utilized. The SLF is among the longest runways in the world.
On October 28, 2009, the Ares I-X launch from Pad 39B was the first uncrewed launch from KSC since the Skylab workshop in 1973.
Beginning in 1958, NASA and military worked side by side on robotic mission launches (previously referred to as unmanned), cooperating as they broke ground in the field. In the early 1960s, NASA had as many as two robotic mission launches a month. The frequent number of flights allowed for quick evolution of the vehicles, as engineers gathered data, learned from anomalies and implemented upgrades. In 1963, with the intent of KSC ELV work focusing on the ground support equipment and facilities, a separate Atlas/Centaur organization was formed under NASA's Lewis Center (now Glenn Research Center (GRC)), taking that responsibility from the Launch Operations Center (aka KSC).
Though almost all robotics missions launched from the Cape Canaveral Space Force Station (CCSFS), KSC "oversaw the final assembly and testing of rockets as they arrived at the Cape." In 1965, KSC's Unmanned Launch Operations directorate became responsible for all NASA uncrewed launch operations, including those at Vandenberg Space Force Base. From the 1950s to 1978, KSC chose the rocket and payload processing facilities for all robotic missions launching in the U.S., overseeing their near launch processing and checkout. In addition to government missions, KSC performed this service for commercial and foreign missions also, though non-U.S. government entities provided reimbursement. NASA also funded Cape Canaveral Space Force Station launch pad maintenance and launch vehicle improvements.
All this changed with the Commercial Space Launch Act of 1984, after which NASA only coordinated its own and National Oceanic and Atmospheric Administration (NOAA) ELV launches. Companies were able to "operate their own launch vehicles" and utilize NASA's launch facilities. Payload processing handled by private firms also started to occur outside of KSC. Reagan's 1988 space policy furthered the movement of this work from KSC to commercial companies. That same year, launch complexes on Cape Canaveral Air Force Force Station started transferring from NASA to Air Force Space Command management.
In the 1990s, though KSC was not performing the hands-on ELV work, engineers still maintained an understanding of ELVs and had contracts allowing them insight into the vehicles so they could provide knowledgeable oversight. KSC also worked on ELV research and analysis and the contractors were able to utilize KSC personnel as a resource for technical issues. KSC, with the payload and launch vehicle industries, developed advances in automation of the ELV launch and ground operations to enable competitiveness of U.S. rockets against the global market.
In 1998, the Launch Services Program (LSP) formed at KSC, pulling together programs (and personnel) that already existed at KSC, GRC, Goddard Space Flight Center, and more to manage the launch of NASA and NOAA robotic missions. Cape Canaveral Space Force Station and VAFB are the primary launch sites for LSP missions, though other sites are occasionally used. LSP payloads such as the Mars Science Laboratory have been processed at KSC before being transferred to a launch pad on Cape Canaveral Space Force Station.
On 16 November 2022, at 06:47:44 UTC the Space Launch System (SLS) was launched from Complex 39B as part of the Artemis 1 mission.
As the International Space Station modules design began in the early 1990s, KSC began to work with other NASA centers and international partners to prepare for processing before launch onboard the Space Shuttles. KSC utilized its hands-on experience processing the 22 Spacelab missions in the Operations and Checkout Building to gather expectations of ISS processing. These experiences were incorporated into the design of the Space Station Processing Facility (SSPF), which began construction in 1991. The Space Station Directorate formed in 1996. KSC personnel were embedded at station module factories for insight into their processes.
From 1997 to 2007, KSC planned and performed on the ground integration tests and checkouts of station modules: three Multi-Element Integration Testing (MEIT) sessions and the Integration Systems Test (IST). Numerous issues were found and corrected that would have been difficult to nearly impossible to do on-orbit.
Today KSC continues to process ISS payloads from across the world before launch along with developing its experiments for on orbit. The proposed Lunar Gateway would be manufactured and processed at the Space Station Processing Facility.
The following are current programs and initiatives at Kennedy Space Center:
Commercial Crew Program
Exploration Ground Systems Program
NASA is currently designing the next heavy launch vehicle known as the Space Launch System (SLS) for continuation of human spaceflight.
On December 5, 2014, NASA launched the first uncrewed flight test of the Orion Multi-Purpose Crew Vehicle (MPCV), currently under development to facilitate human exploration of the Moon and Mars.
Launch Services Program
Educational Launch of Nanosatellites (ELaNa)
Research and Technology
Artemis program
Lunar Gateway
International Space Station Payloads
Camp KSC: educational camps for schoolchildren in spring and summer, with a focus on space, aviation and robotics.
The KSC Industrial Area, where many of the center's support facilities are located, is 5 miles (8 km) south of LC-39. It includes the Headquarters Building, the Operations and Checkout Building and the Central Instrumentation Facility. The astronaut crew quarters are in the O&C; before it was completed, the astronaut crew quarters were located in Hangar S at the Cape Canaveral Missile Test Annex (now Cape Canaveral Space Force Station). Located at KSC was the Merritt Island Spaceflight Tracking and Data Network station (MILA), a key radio communications and spacecraft tracking complex.
Facilities at the Kennedy Space Center are directly related to its mission to launch and recover missions. Facilities are available to prepare and maintain spacecraft and payloads for flight. The Headquarters (HQ) Building houses offices for the Center Director, library, film and photo archives, a print shop and security. When the KSC Library first opened, it was part of the Army Ballistic Missile Agency. However, in 1965, the library moved into three separate sections in the newly opened NASA headquarters before eventually becoming a single unit in 1970. The library contains over four million items related to the history and the work at Kennedy. As one of ten NASA center libraries in the country, their collection focuses on engineering, science, and technology. The archives contain planning documents, film reels, and original photographs covering the history of KSC. The library is not open to the public but is available for KSC, Space Force, and Navy employees who work on site. Many of the media items from the collection are digitized and available through NASA's KSC Media Gallery Archived December 6, 2020, at the Wayback Machine or through their more up-to-date Flickr gallery.
A new Headquarters Building was completed in 2019 as part of the Central Campus consolidation. Groundbreaking began in 2014.
The center operated its own 17-mile (27 km) short-line railroad. This operation was discontinued in 2015, with the sale of its final two locomotives. A third had already been donated to a museum. The line was costing $1.3 million annually to maintain.
The Neil Armstrong Operations and Checkout Building (O&C) (previously known as the Manned Spacecraft Operations Building) is a historic site on the U.S. National Register of Historic Places dating back to the 1960s and was used to receive, process, and integrate payloads for the Gemini and Apollo programs, the Skylab program in the 1970s, and for initial segments of the International Space Station through the 1990s. The Apollo and Space Shuttle astronauts would board the astronaut transfer van to launch complex 39 from the O&C building.
The three-story, 457,000-square-foot (42,500 m2) Space Station Processing Facility (SSPF) consists of two enormous processing bays, an airlock, operational control rooms, laboratories, logistics areas and office space for support of non-hazardous Space Station and Shuttle payloads to ISO 14644-1 class 5 standards. Opened in 1994, it is the largest factory building in the KSC industrial area.
The Vertical Processing Facility (VPF) features a 71-by-38-foot (22 by 12 m) door where payloads that are processed in the vertical position are brought in and manipulated with two overhead cranes and a hoist capable of lifting up to 35 short tons (32 t).
The Hypergolic Maintenance and Checkout Area (HMCA) comprises three buildings that are isolated from the rest of the industrial area because of the hazardous materials handled there. Hypergolic-fueled modules that made up the Space Shuttle Orbiter's reaction control system, orbital maneuvering system and auxiliary power units were stored and serviced in the HMCF.
The Multi-Payload Processing Facility is a 19,647 square feet (1,825.3 m2) building used for Orion spacecraft and payload processing.
The Payload Hazardous Servicing Facility (PHSF) contains a 70-by-110-foot (21 by 34 m) service bay, with a 100,000-pound (45,000 kg), 85-foot (26 m) hook height. It also contains a 58-by-80-foot (18 by 24 m) payload airlock. Its temperature is maintained at 70 °F (21 °C).[55]
The Blue Origin rocket manufacturing facility is located immediately south of the KSC visitor complex. Completed in 2019, it serves as the company's factory for the manufacture of New Glenn orbital rockets.
Launch Complex 39 (LC-39) was originally built for the Saturn V, the largest and most powerful operational launch vehicle until the Space Launch System, for the Apollo crewed Moon landing program. Since the end of the Apollo program in 1972, LC-39 has been used to launch every NASA human space flight, including Skylab (1973), the Apollo–Soyuz Test Project (1975), and the Space Shuttle program (1981–2011).
Since December 1968, all launch operations have been conducted from launch pads A and B at LC-39. Both pads are on the ocean, 3 miles (4.8 km) east of the VAB. From 1969 to 1972, LC-39 was the "Moonport" for all six Apollo crewed Moon landing missions using the Saturn V, and was used from 1981 to 2011 for all Space Shuttle launches.
Human missions to the Moon required the large three-stage Saturn V rocket, which was 363 feet (111 meters) tall and 33 feet (10 meters) in diameter. At KSC, Launch Complex 39 was built on Merritt Island to accommodate the new rocket. Construction of the $800 million project began in November 1962. LC-39 pads A and B were completed by October 1965 (planned Pads C, D and E were canceled), the VAB was completed in June 1965, and the infrastructure by late 1966.
The complex includes: the Vehicle Assembly Building (VAB), a 130,000,000 cubic feet (3,700,000 m3) hangar capable of holding four Saturn Vs. The VAB was the largest structure in the world by volume when completed in 1965.
a transporter capable of carrying 5,440 tons along a crawlerway to either of two launch pads;
a 446-foot (136 m) mobile service structure, with three Mobile Launcher Platforms, each containing a fixed launch umbilical tower;
the Launch Control Center; and
a news media facility.
Launch Complex 48 (LC-48) is a multi-user launch site under construction for small launchers and spacecraft. It will be located between Launch Complex 39A and Space Launch Complex 41, with LC-39A to the north and SLC-41 to the south. LC-48 will be constructed as a "clean pad" to support multiple launch systems with differing propellant needs. While initially only planned to have a single pad, the complex is capable of being expanded to two at a later date.
As a part of promoting commercial space industry growth in the area and the overall center as a multi-user spaceport, KSC leases some of its properties. Here are some major examples:
Exploration Park to multiple users (partnership with Space Florida)
Shuttle Landing Facility to Space Florida (who contracts use to private companies)
Orbiter Processing Facility (OPF)-3 to Boeing (for CST-100 Starliner)
Launch Complex 39A, Launch Control Center Firing Room 4 and land for SpaceX's Roberts Road facility (Hanger X) to SpaceX
O&C High Bay to Lockheed Martin (for Orion processing)
Land for FPL's Space Coast Next Generation Solar Energy Center to Florida Power and Light (FPL)
Hypergolic Maintenance Facility (HMF) to United Paradyne Corporation (UPC)
The Kennedy Space Center Visitor Complex, operated by Delaware North since 1995, has a variety of exhibits, artifacts, displays and attractions on the history and future of human and robotic spaceflight. Bus tours of KSC originate from here. The complex also includes the separate Apollo/Saturn V Center, north of the VAB and the United States Astronaut Hall of Fame, six miles west near Titusville. There were 1.5 million visitors in 2009. It had some 700 employees.
It was announced on May 29, 2015, that the Astronaut Hall of Fame exhibit would be moved from its current location to another location within the Visitor Complex to make room for an upcoming high-tech attraction entitled "Heroes and Legends". The attraction, designed by Orlando-based design firm Falcon's Treehouse, opened November 11, 2016.
In March 2016, the visitor center unveiled the new location of the iconic countdown clock at the complex's entrance; previously, the clock was located with a flagpole at the press site. The clock was originally built and installed in 1969 and listed with the flagpole in the National Register of Historic Places in January 2000. In 2019, NASA celebrated the 50th anniversary of the Apollo program, and the launch of Apollo 10 on May 18. In summer of 2019, Lunar Module 9 (LM-9) was relocated to the Apollo/Saturn V Center as part of an initiative to rededicate the center and celebrate the 50th anniversary of the Apollo Program.
Historic locations
NASA lists the following Historic Districts at KSC; each district has multiple associated facilities:
Launch Complex 39: Pad A Historic District
Launch Complex 39: Pad B Historic District
Shuttle Landing Facility (SLF) Area Historic District
Orbiter Processing Historic District
Solid Rocket Booster (SRB) Disassembly and Refurbishment Complex Historic District
NASA KSC Railroad System Historic District
NASA-owned Cape Canaveral Space Force Station Industrial Area Historic District
There are 24 historic properties outside of these historic districts, including the Space Shuttle Atlantis, Vehicle Assembly Building, Crawlerway, and Operations and Checkout Building.[71] KSC has one National Historic Landmark, 78 National Register of Historic Places (NRHP) listed or eligible sites, and 100 Archaeological Sites.
Further information: John F. Kennedy Space Center MPS
Other facilities
The Rotation, Processing and Surge Facility (RPSF) is responsible for the preparation of solid rocket booster segments for transportation to the Vehicle Assembly Building (VAB). The RPSF was built in 1984 to perform SRB operations that had previously been conducted in high bays 2 and 4 of the VAB at the beginning of the Space Shuttle program. It was used until the Space Shuttle's retirement, and will be used in the future by the Space Launch System[75] (SLS) and OmegA rockets.
Sure hate to put the deck over the fore cabin as I believe this area's classic appearance is the signature of the Bluejacket look. I need to paint the bunk tops with a rolled on one part white polyurethane paint. The bulkheads are sprayed with Awlcraft 2000.
The African Mahogany trim and 1/4" shelf veeners have 7 coats of high gloss marine varnish sanded between each coat. Honduran Mahogany has a more appealing grain pattern but twice as expensive. The Cypress ceilings have 4 coats of marine satin varnish also sanded between coats.
The varnished Okoume plywood hatch cover has an attractive color but the wavy grain appearance reflects the rotorary cut manufacturing process.
The ports are 6x9" in dimension repeating the pleasing port light (aka a deadlight, I think) scale that Ed used on his BJ 27. A Utube video demonstrates how to draw a near perfect oval via simple measurements, three nails and a loop of string. About a 15 minute endeavor to scribe the oval onto a scrap of plywood. I then cut out the scribed oval from the plywood using a jig saw and used sandpaper to touch up the pattern edges. This plywood pattern was then clamped on the outside of the topsides and a pencil line traced on the hull.
The pattern was removed from the hull and a jig saw was used to cut out the oval staying about 1/16 inside the pencil line. The plywood pattern was then re-clamped on the hull and using a template router bit, I finished cutting out the oval. A drum sander in my electric drill smoothed out the cut out. All four port holes are symmetrical and I'm happy with their placement.
Per Ed's recommendation, I cut out the rabbit around the interior side of the oval for the 1/4 lexan that will be the port light. Ed said much easier to do the rabbit without the deck in place.
It is chilly and rainy in Arizona for Super Bowl 48 but BMW turned up the heat with their all-electric i3 and hybrid i8 sports car. To add additional flavor to the recipe New England Patriots’ starting corner Kyle Arrington and wife VaShonda Arrington joined the experience for the energetic weekend festivities.
Kyle spent a few days in both vehicles during his activities, which included stops at the Nike Football Super Bowl Hospitality Gifting Suite at the immaculate Scottsdale Resort & Conference Center, the NFL Experience, family outings and dinner with his spouse. Vashonda’s centerpiece moment was raising funds for the Off the Field Player’s Wives Association’s “14th Annual Super Bowl Fashion Show” held at the upscale Scottsdale Fashion Mall. The wives, kids and a handful of former NFL players walked the runway with grace and style. Guests included Holly Robinson Peete, Antonio Cromardie, Steve Young, Kevin Hart and many more. She enjoyed the earthly interior of the i3 and spoke passionately about the need regarding increased sustainability in the world.
The mind is driven by thoughts and fueled by inventive answers. The i3 is 100% pure electric and the i8 is a plug-in hybrid sports car, which means its power is sourced from both gasoline and electricity. The i8 is comprised of a Life module and a Drive module. The 3-liter gasoline motor is placed in the rear and the smaller electric engine is housed up front. In addition, the i8 is essentially an AWD vehicle channeling traction from both axles simultaneously but doesn’t utilize the company’s hallmark xDrive system. A few common i8 performance specs include:
•0 to 60 mph = 4.2 seconds
•Top speed = 155 mph (electronically limited)
•Electric only top speed = 75 mph
•Pure electric range = 22 miles
Born electric, the i3 is engineered with BMW’s LifeDrive architecture, which is also structured into two categories, the Life Module and the Drive Module. Comprised of high-strength carbon, the Life Module protects and provides comfort for the driver and passengers. The second platform, the Drive Module, encompasses the electric drive system, the suspension and the HVAC. Since the car is lighter, the liquid-cooled lithium-ion battery (developed in-house by BMW) is smaller and only needs three hours for a full stage-2 (240-volt) charge. Additionally, BMW attempts to use as much renewable energy as possible for the manufacturing process of the carbon fiber i3.
The journey continues towards educating the world on the benefits of going green. BMW is both an innovator and leader in this technology category and has already spearheaded a positive movement. Expect more BMW i products down the line since they have only just begun.
BlueEdge - Mach 8-10 Hypersonic Commercial Aircraft, 220 Passenger Hypersonic Commercial Plane - Imaginactive Media Release ICAO
Courtesy of Imaginactive, ICAO, Charles Bombardier, and Martin Rico. Media Release of High Quality Renderings for mainstream media.
IO Aircraft: www.ioaircraft.com/hypersonic/blueedge.php
Imaginactive: imaginactive.org/2019/02/blue-edge/
Martin Rico, Industrial Graphics Designed: www.linkedin.com/in/mjrico/
Seating: 220 | Crew 2+4
Length: 195ft | Span: 93ft
Engines: 4 U-TBCC (Unified Turbine Based Combined Cycle) +1 Aerospike for sustained 2G acceleration to Mach 10.
Fuel: H2 (Compressed Hydrogen)
Cruising Altitude: 100,000-125,000ft
Airframe: 75% Proprietary Composites
Operating Costs, Similar to a 737. $7,000-$15,000hr, including averaged maintenence costs
Iteration 3 (Full release of IT3, Monday January 14, 2019)
IO Aircraft www.ioaircraft.com
Drew Blair www.linkedin.com/in/drew-b-25485312/
-----------------------------
hypersonic plane, hypersonic aircraft, Imaginactive, ICAO, International Civil Aviation Orginization, Charles Bombardier, Martin Rico, hypersonic commercial plane, hypersonic commercial aircraft, hypersonic airline, tbcc, glide breaker, fighter plane, hyperonic fighter, boeing phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, office of naval research, defense advanced research project agency, defense science, missile defense agency, aerospike, hydrogen, hydrogen storage, hydrogen fueled, hydrogen aircraft, virgin airlines, united airlines, sas, finnair ,emirates airlines, ANA, JAL, airlines, military, physics, airline, british airways, air france
-----------------------------
Unified Turbine Based Combined Cycle. Current technologies and what Lockheed is trying to force on the Dept of Defense, for that low speed Mach 5 plane DOD gave them $1 billion to build and would disintegrate above Mach 5, is TBCC. 2 separate propulsion systems in the same airframe, which requires TWICE the airframe space to use.
Unified Turbine Based Combined Cycle is 1 propulsion system cutting that airframe deficit in half, and also able to operate above Mach 10 up to Mach 15 in atmosphere, and a simple nozzle modification allows for outside atmosphere rocket mode, ie orbital capable.
Additionally, Reaction Engines maximum air breather mode is Mach 4.5, above that it will explode in flight from internal pressures are too high to operate. Thus, must switch to non air breather rocket mode to operate in atmosphere in hypersonic velocities. Which as a result, makes it not feasible for anything practical. It also takes an immense amount of fuel to function.
-------------
Advanced Additive Manufacturing for Hypersonic Aircraft
Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.
Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.
*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.
What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.
Unified Turbine Based Combined Cycle (U-TBCC)
To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5
However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.
Enhanced Dynamic Cavitation
Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.
Dynamic Scramjet Ignition Processes
For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.
Hydrogen vs Kerosene Fuel Sources
Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.
Conforming High Pressure Tank Technology for CNG and H2.
As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.
As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).
Enhanced Fuel Mixture During Shock Train Interaction
Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.
Improved Bow Shock Interaction
Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.
6,000+ Fahrenheit Thermal Resistance
To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.
*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope
Scramjet Propulsion Side Wall Cooling
With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.
Lower Threshold for Hypersonic Ignition
Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.
Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities
Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.
Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)
To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.
A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.
Kaolin (China clay) is used in the manufacture of paper products and ceramics and in fillers in plastics and rubber. Exposure occurs mostly in those involved in the mining and processing of kaolin but also in those involved in manufacturing processes utilizing kaolin. Inhaled kaolin appears as small golden brown particles and usually results in pulmonary fibrosis. In this image kaolin is present within alveoli and extensive fibrosis is present.
It is chilly and rainy in Arizona for Super Bowl 48 but BMW turned up the heat with their all-electric i3 and hybrid i8 sports car. To add additional flavor to the recipe New England Patriots’ starting corner Kyle Arrington and wife VaShonda Arrington joined the experience for the energetic weekend festivities.
Kyle spent a few days in both vehicles during his activities, which included stops at the Nike Football Super Bowl Hospitality Gifting Suite at the immaculate Scottsdale Resort & Conference Center, the NFL Experience, family outings and dinner with his spouse. Vashonda’s centerpiece moment was raising funds for the Off the Field Player’s Wives Association’s “14th Annual Super Bowl Fashion Show” held at the upscale Scottsdale Fashion Mall. The wives, kids and a handful of former NFL players walked the runway with grace and style. Guests included Holly Robinson Peete, Antonio Cromardie, Steve Young, Kevin Hart and many more. She enjoyed the earthly interior of the i3 and spoke passionately about the need regarding increased sustainability in the world.
The mind is driven by thoughts and fueled by inventive answers. The i3 is 100% pure electric and the i8 is a plug-in hybrid sports car, which means its power is sourced from both gasoline and electricity. The i8 is comprised of a Life module and a Drive module. The 3-liter gasoline motor is placed in the rear and the smaller electric engine is housed up front. In addition, the i8 is essentially an AWD vehicle channeling traction from both axles simultaneously but doesn’t utilize the company’s hallmark xDrive system. A few common i8 performance specs include:
•0 to 60 mph = 4.2 seconds
•Top speed = 155 mph (electronically limited)
•Electric only top speed = 75 mph
•Pure electric range = 22 miles
Born electric, the i3 is engineered with BMW’s LifeDrive architecture, which is also structured into two categories, the Life Module and the Drive Module. Comprised of high-strength carbon, the Life Module protects and provides comfort for the driver and passengers. The second platform, the Drive Module, encompasses the electric drive system, the suspension and the HVAC. Since the car is lighter, the liquid-cooled lithium-ion battery (developed in-house by BMW) is smaller and only needs three hours for a full stage-2 (240-volt) charge. Additionally, BMW attempts to use as much renewable energy as possible for the manufacturing process of the carbon fiber i3.
The journey continues towards educating the world on the benefits of going green. BMW is both an innovator and leader in this technology category and has already spearheaded a positive movement. Expect more BMW i products down the line since they have only just begun.
The importance of bitumen in our world is growing.
Currently, this principal product has more than 250 applications and meets the demands of different industries in terms of waterproofing, sealing, and insulating. Without bitumen, we couldn't think of asphalt-paved highways and ease of transportation.
But how is bitumen produced? Bitumen is distilled from crude oil or found simply in nature. Based on the source, bitumen’s physical properties such as consistency, stiffness, viscosity, adhesion, and durability may differ.
In our new video, we give a brief description of the bitumen manufacturing process. We shed some light on natural bitumen formation in nature and go deeper into the process of manufacturing bitumen from crude oil.