View allAll Photos Tagged Manufacturing_process
History of the Barber-Colman Company
Historically one of Rockford’s largest manufacturers.
Began with the founding of the Barber & Colman Company in 1894 – partnership between Howard Colman, an inventor and entrepreneur, and W. A. Barber, an investor. [Today he would probably be considered a venture capitalist.] Colman’s first patent and marketable invention was the Creamery Check Pump used to separate buttermilk and dispense skimmed milk.
Colman’s textile production inventions led the company on its rapid rise as a worldwide leader in the design and manufacture of diversified products. Specific items designed for the textile industry included the Hand Knotter and the Warp Tying Machine. Through these innovations, Barber & Colman was able to build its first plant on Rock Street in Rockford’s Water Power District, and to establish branch offices in Boston MA and Manchester, England.
Incorporated as Barber-Colman in 1904 and built 5 new major structures on their site by 1907.
Later innovations for the textile industry included an Automatic Winder, High Speed Warper and Automatic Spoolers. By 1931, the textile machinery division had branch production facilities in Framingham MA; Greenville SC; Munich, Germany; and Manchester. This part of the business flourished through the mid-1960s but then declined as other divisions expanded.
Branched out from the textile industry into machine tools in 1908 with Milling Cutters. Barber-Colman created machines used at the Fiat plant in Italy (1927) and the Royal Typewriter Co. outside Hartford CT. By 1931, the Machine Tool and Small Tool Division of Barber-Colman listed branch offices in Chicago, Cincinnati and Rochester NY.
As part of its commitment to developing a skilled work force, Barber-Colman began the Barber-Colman Continuation School for boys 16 and older shortly after the company was founded. It was a 3-year apprentice program that trained them for manufacturing jobs at Barber-Colman and paid them hourly for their work at rate that increased as their proficiency improved. The program was operated in conjunction with the Rockford Vocational School.
To foster continued inventions, an Experimental Department was established with the responsibility of continually developing new machines. A lab was first installed in 1914 and was divided into two parts – a chemistry lab to provide thorough analysis of all metals and their component properties, and a metallurgical lab to test the effectiveness of heat treatment for hardening materials. Innovations in the Experimental Department laid the groundwork for the company’s movement into the design and development of electrical and electronic products, and energy management controls.
BARBER-COLMAN became involved in the electrical and electronics industry in 1924 with the founding of the Electrical Division. First product was a radio operated electric garage door opener controlled from the dashboard of a car. Unfortunately, it was too expensive to be practical at the time. The division’s major product in its early years was Barcol OVERdoors, a paneled wood garage door that opened on an overhead track. Several designs were offered in 1931, some of which had the appearance of wood hinged doors. This division eventually expanded into four separate ones that designed and produced electronic control instruments and systems for manufacturing processes; small motors and gear motors used in products such as vending machines, antennas and X-ray machines; electronic and pneumatic controls for aircraft and marine operations; and electrical and electronic controls for engine-powered systems.
In the late 1920s, the Experimental Department began conducting experiments with temperature control instruments to be used in homes and other buildings and the Temperature Control Division was born. Over time, BARBER-COLMAN became known worldwide leader in electronic controls for heating, ventilating and air conditioning. These are the products that continue its name and reputation today.
The death of founder Howard Colman in 1942 was sudden but the company continued to expand its operations under changing leadership. Ground was broken in 1953 for a manufacturing building in neighboring Loves Park IL to house the overhead door division and the Uni-Flow division. Three later additions were made to that plant.
The divestiture of BARBER-COLMAN divisions began in 1984 with the sale of the textile division to Reed-Chatwood Inc which remained at BARBER-COLMAN’s original site on Rock Street until 2001. The machine tooldivision, the company’s second oldest unit, was spun off in 1985 to Bourn and Koch, another Rockfordcompany. At that time, it was announced that the remaining divisions of the BARBER-COLMAN Company would concentrate their efforts on process controls and cutting tools. These moves reduced local employment at BARBER-COLMAN’s several locations to about 2200. The remaining divisions were eventually sold as well, but the BARBER-COLMAN Company name continues to exist today as one of five subsidiaries of Eurotherm Controls Inc whose worldwide headquarters are in Leesburg VA. The Aerospace Division and the Industrial Instruments Division still operate at the Loves Park plant, employing 1100 workers in 2000. The historic complex on Rock Street was vacated in 2001 and the property purchased by the City of Rockford in 2002.
Extensive documentation from the Experimental Department was left at the Rock Street plant when the company moved out and was still there when the site was purchased by the City of Rockford. These documents are now housed at the Midway Village Museum.
History of the Barber-Colman Company
Historically one of Rockford’s largest manufacturers.
Began with the founding of the Barber & Colman Company in 1894 – partnership between Howard Colman, an inventor and entrepreneur, and W. A. Barber, an investor. [Today he would probably be considered a venture capitalist.] Colman’s first patent and marketable invention was the Creamery Check Pump used to separate buttermilk and dispense skimmed milk.
Colman’s textile production inventions led the company on its rapid rise as a worldwide leader in the design and manufacture of diversified products. Specific items designed for the textile industry included the Hand Knotter and the Warp Tying Machine. Through these innovations, Barber & Colman was able to build its first plant on Rock Street in Rockford’s Water Power District, and to establish branch offices in Boston MA and Manchester, England.
Incorporated as Barber-Colman in 1904 and built 5 new major structures on their site by 1907.
Later innovations for the textile industry included an Automatic Winder, High Speed Warper and Automatic Spoolers. By 1931, the textile machinery division had branch production facilities in Framingham MA; Greenville SC; Munich, Germany; and Manchester. This part of the business flourished through the mid-1960s but then declined as other divisions expanded.
Branched out from the textile industry into machine tools in 1908 with Milling Cutters. Barber-Colman created machines used at the Fiat plant in Italy (1927) and the Royal Typewriter Co. outside Hartford CT. By 1931, the Machine Tool and Small Tool Division of Barber-Colman listed branch offices in Chicago, Cincinnati and Rochester NY.
As part of its commitment to developing a skilled work force, Barber-Colman began the Barber-Colman Continuation School for boys 16 and older shortly after the company was founded. It was a 3-year apprentice program that trained them for manufacturing jobs at Barber-Colman and paid them hourly for their work at rate that increased as their proficiency improved. The program was operated in conjunction with the Rockford Vocational School.
To foster continued inventions, an Experimental Department was established with the responsibility of continually developing new machines. A lab was first installed in 1914 and was divided into two parts – a chemistry lab to provide thorough analysis of all metals and their component properties, and a metallurgical lab to test the effectiveness of heat treatment for hardening materials. Innovations in the Experimental Department laid the groundwork for the company’s movement into the design and development of electrical and electronic products, and energy management controls.
BARBER-COLMAN became involved in the electrical and electronics industry in 1924 with the founding of the Electrical Division. First product was a radio operated electric garage door opener controlled from the dashboard of a car. Unfortunately, it was too expensive to be practical at the time. The division’s major product in its early years was Barcol OVERdoors, a paneled wood garage door that opened on an overhead track. Several designs were offered in 1931, some of which had the appearance of wood hinged doors. This division eventually expanded into four separate ones that designed and produced electronic control instruments and systems for manufacturing processes; small motors and gear motors used in products such as vending machines, antennas and X-ray machines; electronic and pneumatic controls for aircraft and marine operations; and electrical and electronic controls for engine-powered systems.
In the late 1920s, the Experimental Department began conducting experiments with temperature control instruments to be used in homes and other buildings and the Temperature Control Division was born. Over time, BARBER-COLMAN became known worldwide leader in electronic controls for heating, ventilating and air conditioning. These are the products that continue its name and reputation today.
The death of founder Howard Colman in 1942 was sudden but the company continued to expand its operations under changing leadership. Ground was broken in 1953 for a manufacturing building in neighboring Loves Park IL to house the overhead door division and the Uni-Flow division. Three later additions were made to that plant.
The divestiture of BARBER-COLMAN divisions began in 1984 with the sale of the textile division to Reed-Chatwood Inc which remained at BARBER-COLMAN’s original site on Rock Street until 2001. The machine tooldivision, the company’s second oldest unit, was spun off in 1985 to Bourn and Koch, another Rockfordcompany. At that time, it was announced that the remaining divisions of the BARBER-COLMAN Company would concentrate their efforts on process controls and cutting tools. These moves reduced local employment at BARBER-COLMAN’s several locations to about 2200. The remaining divisions were eventually sold as well, but the BARBER-COLMAN Company name continues to exist today as one of five subsidiaries of Eurotherm Controls Inc whose worldwide headquarters are in Leesburg VA. The Aerospace Division and the Industrial Instruments Division still operate at the Loves Park plant, employing 1100 workers in 2000. The historic complex on Rock Street was vacated in 2001 and the property purchased by the City of Rockford in 2002.
Extensive documentation from the Experimental Department was left at the Rock Street plant when the company moved out and was still there when the site was purchased by the City of Rockford. These documents are now housed at the Midway Village Museum.
Australia’s first shot tower, at Taroona, was built by Joseph Moir and is one of three still existing in the country, the others being in Melbourne. Joseph Moir's factory, which operated for 35 years from 1870, manufactured lead shot for contemporary muzzle loading sports guns. Although the factory struggled for most of its existence its most recognisable feature, the tallest stone shot tower in the southern hemisphere, has been a prominent landmark in the district for well over a century. Joseph Moir His Shot Tower on the Kingston Road is noted throughout the colonies, and Mr Moir’s enterprising spirit is there illustrated in a most remarkable manner. Though a speculation of a very hazardous kind, he had faith in its success, and his estimate, as was afterwards discovered, was not found on any erroneous basis. The manufacture of shot was a profitable venture under his management. Mercury 12 March 1874 Just twenty years old, Scotsman Joseph Moir arrived in Hobart in 1829, one of thousands of hopeful free immigrants who sailed to Van Diemen’s Land in the 1820s. By 1840 he had acquired several properties, government employment and a reputation as a builder of notable colonial buildings such as St Mark’s Anglican Church, Pontville. He returned briefly to Scotland in 1844 to marry Elizabeth Paxton with whom he had at least five children. A prominent businessman, Moir was active in Hobart’s civic affairs between 1846 and 1873, a year before his death. He revisited Britain in 1849 ‘to arrange to carry on an ironmonger’s business’, returning to Hobart with a stock of hardware items and opening a store with his brother at ‘Economy House’ in Murray Street. The business operated until sold by his son, Joseph in 1884. Moir purchased 39 acres on Brown’s River Rd in 1855 and moved to a new house at ‘Queenborough Glens’ (as he called the property) with his family in 1862. He then built the shot tower and its associated buildings and poured his first shot in 1870. When he died after a long illness in 1874 Moir left his major business concerns to his sons, James and Joseph. Together with Elizabeth (who only survived him by 15 months) and a daughter, Mary (who died in 1853 at the age of seven) Moir was encrypted in the family mausoleum on the cliffs below the shot tower. Their remains were later re-interred in unmarked graves at Queenborough Cemetery after Joseph relinquished the property in 1901. This cemetery’s graves were removed by Hobart Council in 1963 and Moir’s final resting place remains unknown. The Shot Tower This shot tower was built by the proprietor, Joseph Moir, in the year 1870. In its erection he acted as Engineer, Architect, Carpenter and Overseer. With merely the assistance of two masons it was completed in 8 months, when the secrets of shot-making had to be discovered. After many persevering efforts the first shot was dropped 8th September, 1870. Joseph Moir erected his shot making enterprise on 39 acres subdivided from an 1817 grant of 100 acres to John Williamson. He chose his site carefully. A road frontage facilitated straightforward transport of raw materials and product. A windmill pumped water from a reliable creek to a cistern on the site of the current overflow carpark and substantial timber reserves provided fuel for the furnaces and cauldrons. Sited far from residential neighbourhoods Moir could also relax in the knowledge that toxic fumes would blow safely out to sea or over forestland. Moir probably began building his shot making works after erecting the family home between 1855 and 1862. A stone building above the cliffs overlooking the River Derwent stored gun powder for his ironmongery as well as stores of arsenic and antimony. Another building south-west of the magazine contained the furnace for preparing lead with the arsenic and antimony. The tower was constructed of dressed curved sandstone blocks quarried at the nearby abandoned Brown’s River Convict Probation Station. A remarkable tapered structure 48m (157 feet 6 inches) tall it features an internal spiral staircase of pitsawn timber and an external gallery at its top which was probably used to store firewood for the upper cauldron. The staircase provided scaffolding during the construction of the tower and access to the upper cauldron and shot-making colanders. The tower is 10 metres in diameter at the base and tapers to 3.9 metres at the top . The walls are a metre thick at the bottom and thin out to .45 centimetres at the top. A three level stone factory abutting the tower was erected at the same time, then was extended soon after. The stone for the factory was probably recycled from the abandoned probation station. The Manufacturing Process The manufacture of shot is an industry which in England has always been conducted with the greatest secrecy, and consequently witnessed by very few except the initiated. This industry has recently been introduced in this colony by Mr Alderman Moir, and we learn that it is his intention to throw his Shot Tower open to the inspection of visitors on Monday and Tuesday next, when the process of shot making will be in operation, on which occasion we have no doubt many of our citizens will avail themselves of this opportunity of witnessing the interesting process. Mercury,10 March 1871. Shot manufacturing is thought to have been invented by Prince Rupert in the seventeenth century. It seems likely that Moir studied William Watts’ patented method of 1796 while in Britain in 1849- 50. Moir’s exact process is unknown — considerable experimentation was required by most manufacturers to perfect what is a very complex process requiring a detailed understanding of physics and metallurgy. Most of Moir’s raw materials would have been imported increasing his costs substantially Moir’s process was probably as follows: Lead was prepared in a furnace at the south-eastern corner of the property. Moir added 900g of arsenic (to decrease surface tension) and 6.35kg of antimony (to harden the shot) to every 45.35 kg of lead. The resultant ‘poisoned lead’ was cast into 7.7 kg ingots, conveyed to the factory, then remelted in cauldrons on the upper level of the factory for small shot and the top of the tower for larger shot. Firewood had to be winched to the upper cauldron. The molten lead was then poured through colanders, forming droplets which became spherical as they dropped. They fell into a tub of water at the base of the tower. The size of the shot depended on the amount of arsenic, the size of the holes in the colander and the height of the fall. Watts’ patent stipulated that large sized shot required a fall of 45.75m (150 feet), hence the height of Moir’s shot tower at 48m with the colander 46.36m above the base. The lead cooled partly while falling, then completely in the water. The antinomy hardener ensured that it maintained shape under the impact of the water. The cooled shot, green in colour, was winched to the factory’s upper floor where it was dried and run over inclined glass planes to separate out defective shot (which did not roll true). Imperfect shot was remelted and the process repeated. The shot was polished in a revolving drum (likened to a farmer’s barrel churn) using plumbago (graphite) then lowered through a trapdoor to the ground floor where it passed through ten sieves for grading into sizes ranging from fine birdshot to large balls. The graded shot was bagged into 12.7kg (28lb) handsewn linen bags stencilled with the manufacturer’s name and sent to market. At its peak the factory produced 100 tons of shot per annum. Working Conditions Little is known of working conditions in Joseph Moir’s shot tower. The work was highly skilled, noisy and almost certainly dangerous. That workers took great pride in their trade is indicated by an engraving in a window in the factory, reading, ‘George Matson Premier Shot Maker Tasmanian and Australian’. No further information about George Matson is known. The following descriptions of a contemporary works, Melbourne’s Coop shot tower (now incorporated in the Melbourne Central complex on Little Lonsdale St) provides some indication of the nature of the work involved. Pouring the lead was ‘an operation which needs great skill and constant watching. The man is used to his work but the novice would probably make a considerable bungle of it’. As the lead droplets fell there was ‘a sharp incessant shower of silvery rain . . . mak[ing] a noise very like that of an overflow waste pipe high up in one’s wall’. When shovelling shot from the water tub it was ‘quite certain that if the man who is so energetically shovelling . . . was to cease from his labours for any appreciable length of time the tank would be soon full of lead. . . . all the while the strange shower descends the man with the shovel is busily at work’. The noise of grading the shot through the sieves was ‘well nigh deafening’ while a woman sat with needle and thread sewing the 12.7kg linen bags for the finished shot. House and Garden Joseph Moir began building his residence soon after acquiring the property in 1855. Family lore suggests that he built the battlemented tower as practise before attempting the more substantial shot tower. By 1885 the property was well known for its gardens and orchards with its hot houses, summer houses and conservatories. "Mr [James] Moir has a prolific little orchard and kitchen garden, which latter, the flower garden and conservatories are watered from a considerable storage reservoir above. An amusing freak of the owner is to invite strangers into a summer house, and to be seated a moment or two out of the sun. He predicts rain shortly, however cloudless the sky — when hey presto: a shower immediately commences, a real earnest one. It is brought about by turning the tap of a pipe connecting with the circular piping on top of the summer house, the latter being perforated round its outside. A little defectiveness in the roof allowed of my receiving a slight baptism of spray, so I must be considered initiated." Tasmanian Mail,13 June 1885 Perhaps the youthful James Moir (he was 30 in 1885) had a better sense of fun than business sense. He had mortgaged the property the previous year and defaulted on his payments two years later. Later History Moir’s sons, James and Joseph, carried on the business after his death in 1874. Although James won merit certificates at the 1879 Sydney International Exhibition and the 1880-81 Melbourne Exhibition the business struggled and it was leased by the mortgagors to his brother, Joseph in 1887. Joseph found himself unable compete with mainland competitors when generous colonial tariffs were removed after Federation. He relinquished the lease to his brother-in-law, William Baynton who continued the business until closing its doors in 1905. During these years Baynton’s wife, Florence, operated a tea house in the residence. The property subsequently passed through several hands until 1956 when 3.24 hectares was purchased by the Tasmanian government and proclaimed a Scenery Reserve. Although it included the tower and residence, the reserve excluded the powder magazine, conservatory, antimony furnace and mausoleum. The reserve was gazetted as an historic site in 1971 under the National Parks and Wildlife Act. Since 1956 it has been leased to several concessionaires and has been open as a tourist site. Various conservation works have been conducted at the shot tower over the years to maintain its heritage significance.
History of the Barber-Colman Company
Historically one of Rockford’s largest manufacturers.
Began with the founding of the Barber & Colman Company in 1894 – partnership between Howard Colman, an inventor and entrepreneur, and W. A. Barber, an investor. [Today he would probably be considered a venture capitalist.] Colman’s first patent and marketable invention was the Creamery Check Pump used to separate buttermilk and dispense skimmed milk.
Colman’s textile production inventions led the company on its rapid rise as a worldwide leader in the design and manufacture of diversified products. Specific items designed for the textile industry included the Hand Knotter and the Warp Tying Machine. Through these innovations, Barber & Colman was able to build its first plant on Rock Street in Rockford’s Water Power District, and to establish branch offices in Boston MA and Manchester, England.
Incorporated as Barber-Colman in 1904 and built 5 new major structures on their site by 1907.
Later innovations for the textile industry included an Automatic Winder, High Speed Warper and Automatic Spoolers. By 1931, the textile machinery division had branch production facilities in Framingham MA; Greenville SC; Munich, Germany; and Manchester. This part of the business flourished through the mid-1960s but then declined as other divisions expanded.
Branched out from the textile industry into machine tools in 1908 with Milling Cutters. Barber-Colman created machines used at the Fiat plant in Italy (1927) and the Royal Typewriter Co. outside Hartford CT. By 1931, the Machine Tool and Small Tool Division of Barber-Colman listed branch offices in Chicago, Cincinnati and Rochester NY.
As part of its commitment to developing a skilled work force, Barber-Colman began the Barber-Colman Continuation School for boys 16 and older shortly after the company was founded. It was a 3-year apprentice program that trained them for manufacturing jobs at Barber-Colman and paid them hourly for their work at rate that increased as their proficiency improved. The program was operated in conjunction with the Rockford Vocational School.
To foster continued inventions, an Experimental Department was established with the responsibility of continually developing new machines. A lab was first installed in 1914 and was divided into two parts – a chemistry lab to provide thorough analysis of all metals and their component properties, and a metallurgical lab to test the effectiveness of heat treatment for hardening materials. Innovations in the Experimental Department laid the groundwork for the company’s movement into the design and development of electrical and electronic products, and energy management controls.
BARBER-COLMAN became involved in the electrical and electronics industry in 1924 with the founding of the Electrical Division. First product was a radio operated electric garage door opener controlled from the dashboard of a car. Unfortunately, it was too expensive to be practical at the time. The division’s major product in its early years was Barcol OVERdoors, a paneled wood garage door that opened on an overhead track. Several designs were offered in 1931, some of which had the appearance of wood hinged doors. This division eventually expanded into four separate ones that designed and produced electronic control instruments and systems for manufacturing processes; small motors and gear motors used in products such as vending machines, antennas and X-ray machines; electronic and pneumatic controls for aircraft and marine operations; and electrical and electronic controls for engine-powered systems.
In the late 1920s, the Experimental Department began conducting experiments with temperature control instruments to be used in homes and other buildings and the Temperature Control Division was born. Over time, BARBER-COLMAN became known worldwide leader in electronic controls for heating, ventilating and air conditioning. These are the products that continue its name and reputation today.
The death of founder Howard Colman in 1942 was sudden but the company continued to expand its
operations under changing leadership. Ground was broken in 1953 for a manufacturing building in
neighboring Loves Park IL to house the overhead door division and the Uni-Flow division. Three later additions
were made to that plant.
The divestiture of BARBER-COLMAN divisions began in 1984 with the sale of the textile division to Reed-
Chatwood Inc which remained at BARBER-COLMAN’s original site on Rock Street until 2001. The machine tool
division, the company’s second oldest unit, was spun off in 1985 to Bourn and Koch, another Rockford
company. At that time, it was announced that the remaining divisions of the BARBER-COLMAN Company
would concentrate their efforts on process controls and cutting tools. These moves reduced local
employment at BARBER-COLMAN’s several locations to about 2200. The remaining divisions were eventually
sold as well, but the BARBER-COLMAN Company name continues to exist today as one of five subsidiaries of
Eurotherm Controls Inc whose worldwide headquarters are in Leesburg VA. The Aerospace Division and the
Industrial Instruments Division still operate at the Loves Park plant, employing 1100 workers in 2000. The
historic complex on Rock Street was vacated in 2001 and the property purchased by the City of Rockford in
2002.
Extensive documentation from the Experimental Department was left at the Rock Street plant when the
company moved out and was still there when the site was purchased by the City of Rockford. These
documents are now housed at the Midway Village Museum.
VANDENBERG AIR FORCE BASE, Calif.--Officials cut the ribbon Feb. 27 ceremonially opening a brand new education center that will help Airmen stationed at this central coast base achieve their personal and professional education goals.
The $14.2 million center replaced a 60-year-old elementary school campus, which had been used as the education center for more than 40 years.
"We hear the dollar value, and I just can't stress how precious those dollars are in today's fiscal environment," said Col. Keith Balts, 30th Space Wing commander. "The fact that we get to do military construction at all, especially something for the quality of our Airmen and their families, says a lot about the importance we place on education."
One of the center's first customers was Senior Airman Antoine Marshall, 30th Force Support Squadron, who joined the Air Force four years ago with an associate degree in criminal justice.
"I just took the analyzing and interpreting literature CLEP (College Level Examination Program) exam," said Marshall, who's pursuing a bachelor's degree in organizational management. "It was my first one--I passed it. I'm extremely happy!"
The 38,384-square-foot facility includes 20 classrooms, computer lab, testing center, and 75-seat auditorium, as well as offices for various colleges and universities serving the Vandenberg community.
"I think the facility is great," said Marshall. "Overall, it provides a better environment to work and study, and it's just comfortable."
The design-build project was constructed by Corps contractor Teehee-Straub, a joint-venture team from Oceanside, Calif.
"The design was quite extensive, just due to the detail and the location," said Keith Hamilton, project executive for Teehee-Straub. "The site work was very challenging, and I think that was something that brought a lot of character to this building."
Teehee-Straub's 21st century design included sustainable development and energy efficiencies, such as light pollution reduction and water use reduction.
"This is a sustainable building," said Col. Kim Colloton, U.S. Army Corps of Engineers Los Angeles District commander. "We can build our buildings smartly, so they can do more; it's more [money] that can go back into the base."
During construction, 75 percent of the construction and demolition debris was diverted from landfills and redirected back to the manufacturing process as reusable and recyclable material. Walk-off mats, exhaust systems and filtered heating and cooling improves indoor air quality. Low-flow fixtures and faucets, high-efficiency drip irrigation and drought-tolerant landscaping reduce potable water use by more than 40 percent. All are efficiencies the contractor believes will achive a LEED Silver rating (Leadership in Energy & Environmental Design, a Green Building Council rating system).
"We're just proud to be part of this," said Teehee-Straub managing partner Richard Straub. "The Corps of Engineers is one of our favorite customers, and we love supporting the Air Force in doing a job that will educate a lot of servicemen."
History of the Barber-Colman Company
Historically one of Rockford’s largest manufacturers.
Began with the founding of the Barber & Colman Company in 1894 – partnership between Howard Colman, an inventor and entrepreneur, and W. A. Barber, an investor. [Today he would probably be considered a venture capitalist.] Colman’s first patent and marketable invention was the Creamery Check Pump used to separate buttermilk and dispense skimmed milk.
Colman’s textile production inventions led the company on its rapid rise as a worldwide leader in the design and manufacture of diversified products. Specific items designed for the textile industry included the Hand Knotter and the Warp Tying Machine. Through these innovations, Barber & Colman was able to build its first plant on Rock Street in Rockford’s Water Power District, and to establish branch offices in Boston MA and Manchester, England.
Incorporated as Barber-Colman in 1904 and built 5 new major structures on their site by 1907.
Later innovations for the textile industry included an Automatic Winder, High Speed Warper and Automatic Spoolers. By 1931, the textile machinery division had branch production facilities in Framingham MA; Greenville SC; Munich, Germany; and Manchester. This part of the business flourished through the mid-1960s but then declined as other divisions expanded.
Branched out from the textile industry into machine tools in 1908 with Milling Cutters. Barber-Colman created machines used at the Fiat plant in Italy (1927) and the Royal Typewriter Co. outside Hartford CT. By 1931, the Machine Tool and Small Tool Division of Barber-Colman listed branch offices in Chicago, Cincinnati and Rochester NY.
As part of its commitment to developing a skilled work force, Barber-Colman began the Barber-Colman Continuation School for boys 16 and older shortly after the company was founded. It was a 3-year apprentice program that trained them for manufacturing jobs at Barber-Colman and paid them hourly for their work at rate that increased as their proficiency improved. The program was operated in conjunction with the Rockford Vocational School.
To foster continued inventions, an Experimental Department was established with the responsibility of continually developing new machines. A lab was first installed in 1914 and was divided into two parts – a chemistry lab to provide thorough analysis of all metals and their component properties, and a metallurgical lab to test the effectiveness of heat treatment for hardening materials. Innovations in the Experimental Department laid the groundwork for the company’s movement into the design and development of electrical and electronic products, and energy management controls.
BARBER-COLMAN became involved in the electrical and electronics industry in 1924 with the founding of the Electrical Division. First product was a radio operated electric garage door opener controlled from the dashboard of a car. Unfortunately, it was too expensive to be practical at the time. The division’s major product in its early years was Barcol OVERdoors, a paneled wood garage door that opened on an overhead track. Several designs were offered in 1931, some of which had the appearance of wood hinged doors. This division eventually expanded into four separate ones that designed and produced electronic control instruments and systems for manufacturing processes; small motors and gear motors used in products such as vending machines, antennas and X-ray machines; electronic and pneumatic controls for aircraft and marine operations; and electrical and electronic controls for engine-powered systems.
In the late 1920s, the Experimental Department began conducting experiments with temperature control instruments to be used in homes and other buildings and the Temperature Control Division was born. Over time, BARBER-COLMAN became known worldwide leader in electronic controls for heating, ventilating and air conditioning. These are the products that continue its name and reputation today.
The death of founder Howard Colman in 1942 was sudden but the company continued to expand its operations under changing leadership. Ground was broken in 1953 for a manufacturing building in neighboring Loves Park IL to house the overhead door division and the Uni-Flow division. Three later additions were made to that plant.
The divestiture of BARBER-COLMAN divisions began in 1984 with the sale of the textile division to Reed-Chatwood Inc which remained at BARBER-COLMAN’s original site on Rock Street until 2001. The machine tooldivision, the company’s second oldest unit, was spun off in 1985 to Bourn and Koch, another Rockfordcompany. At that time, it was announced that the remaining divisions of the BARBER-COLMAN Company would concentrate their efforts on process controls and cutting tools. These moves reduced local employment at BARBER-COLMAN’s several locations to about 2200. The remaining divisions were eventually sold as well, but the BARBER-COLMAN Company name continues to exist today as one of five subsidiaries of Eurotherm Controls Inc whose worldwide headquarters are in Leesburg VA. The Aerospace Division and the Industrial Instruments Division still operate at the Loves Park plant, employing 1100 workers in 2000. The historic complex on Rock Street was vacated in 2001 and the property purchased by the City of Rockford in 2002.
Extensive documentation from the Experimental Department was left at the Rock Street plant when the company moved out and was still there when the site was purchased by the City of Rockford. These documents are now housed at the Midway Village Museum.
History of the Barber-Colman Company
Historically one of Rockford’s largest manufacturers.
Began with the founding of the Barber & Colman Company in 1894 – partnership between Howard Colman, an inventor and entrepreneur, and W. A. Barber, an investor. [Today he would probably be considered a venture capitalist.] Colman’s first patent and marketable invention was the Creamery Check Pump used to separate buttermilk and dispense skimmed milk.
Colman’s textile production inventions led the company on its rapid rise as a worldwide leader in the design and manufacture of diversified products. Specific items designed for the textile industry included the Hand Knotter and the Warp Tying Machine. Through these innovations, Barber & Colman was able to build its first plant on Rock Street in Rockford’s Water Power District, and to establish branch offices in Boston MA and Manchester, England.
Incorporated as Barber-Colman in 1904 and built 5 new major structures on their site by 1907.
Later innovations for the textile industry included an Automatic Winder, High Speed Warper and Automatic Spoolers. By 1931, the textile machinery division had branch production facilities in Framingham MA; Greenville SC; Munich, Germany; and Manchester. This part of the business flourished through the mid-1960s but then declined as other divisions expanded.
Branched out from the textile industry into machine tools in 1908 with Milling Cutters. Barber-Colman created machines used at the Fiat plant in Italy (1927) and the Royal Typewriter Co. outside Hartford CT. By 1931, the Machine Tool and Small Tool Division of Barber-Colman listed branch offices in Chicago, Cincinnati and Rochester NY.
As part of its commitment to developing a skilled work force, Barber-Colman began the Barber-Colman Continuation School for boys 16 and older shortly after the company was founded. It was a 3-year apprentice program that trained them for manufacturing jobs at Barber-Colman and paid them hourly for their work at rate that increased as their proficiency improved. The program was operated in conjunction with the Rockford Vocational School.
To foster continued inventions, an Experimental Department was established with the responsibility of continually developing new machines. A lab was first installed in 1914 and was divided into two parts – a chemistry lab to provide thorough analysis of all metals and their component properties, and a metallurgical lab to test the effectiveness of heat treatment for hardening materials. Innovations in the Experimental Department laid the groundwork for the company’s movement into the design and development of electrical and electronic products, and energy management controls.
BARBER-COLMAN became involved in the electrical and electronics industry in 1924 with the founding of the Electrical Division. First product was a radio operated electric garage door opener controlled from the dashboard of a car. Unfortunately, it was too expensive to be practical at the time. The division’s major product in its early years was Barcol OVERdoors, a paneled wood garage door that opened on an overhead track. Several designs were offered in 1931, some of which had the appearance of wood hinged doors. This division eventually expanded into four separate ones that designed and produced electronic control instruments and systems for manufacturing processes; small motors and gear motors used in products such as vending machines, antennas and X-ray machines; electronic and pneumatic controls for aircraft and marine operations; and electrical and electronic controls for engine-powered systems.
In the late 1920s, the Experimental Department began conducting experiments with temperature control instruments to be used in homes and other buildings and the Temperature Control Division was born. Over time, BARBER-COLMAN became known worldwide leader in electronic controls for heating, ventilating and air conditioning. These are the products that continue its name and reputation today.
The death of founder Howard Colman in 1942 was sudden but the company continued to expand its operations under changing leadership. Ground was broken in 1953 for a manufacturing building in neighboring Loves Park IL to house the overhead door division and the Uni-Flow division. Three later additions were made to that plant.
The divestiture of BARBER-COLMAN divisions began in 1984 with the sale of the textile division to Reed-Chatwood Inc which remained at BARBER-COLMAN’s original site on Rock Street until 2001. The machine tooldivision, the company’s second oldest unit, was spun off in 1985 to Bourn and Koch, another Rockfordcompany. At that time, it was announced that the remaining divisions of the BARBER-COLMAN Company would concentrate their efforts on process controls and cutting tools. These moves reduced local employment at BARBER-COLMAN’s several locations to about 2200. The remaining divisions were eventually sold as well, but the BARBER-COLMAN Company name continues to exist today as one of five subsidiaries of Eurotherm Controls Inc whose worldwide headquarters are in Leesburg VA. The Aerospace Division and the Industrial Instruments Division still operate at the Loves Park plant, employing 1100 workers in 2000. The historic complex on Rock Street was vacated in 2001 and the property purchased by the City of Rockford in 2002.
Extensive documentation from the Experimental Department was left at the Rock Street plant when the company moved out and was still there when the site was purchased by the City of Rockford. These documents are now housed at the Midway Village Museum.
Shot Tower Taroona Tasmania
Australia’s first shot tower, at Taroona, was built by Joseph Moir and is one of three still existing in the country, the others being in Melbourne. Joseph Moir's factory, which operated for 35 years from 1870, manufactured lead shot for contemporary muzzle loading sports guns. Although the factory struggled for most of its existence its most recognisable feature, the tallest stone shot tower in the southern hemisphere, has been a prominent landmark in the district for well over a century.
Joseph Moir
His Shot Tower on the Kingston Road is noted throughout the colonies, and Mr Moir’s enterprising spirit is there illustrated in a most remarkable manner. Though a speculation of a very hazardous kind, he had faith in its success, and his estimate, as was afterwards discovered, was not found on any erroneous basis. The manufacture of shot was a profitable venture under his management.
Mercury 12 March 1874
Just twenty years old, Scotsman Joseph Moir arrived in Hobart in 1829, one of thousands of hopeful free immigrants who sailed to Van Diemen’s Land in the 1820s. By 1840 he had acquired several properties, government employment and a reputation as a builder of notable colonial buildings such as St Mark’s Anglican Church, Pontville. He returned briefly to Scotland in 1844 to marry Elizabeth Paxton with whom he had at least five children.
A prominent businessman, Moir was active in Hobart’s civic affairs between 1846 and 1873, a year before his death. He revisited Britain in 1849 ‘to arrange to carry on an ironmonger’s business’, returning to Hobart with a stock of hardware items and opening a store with his brother at ‘Economy House’ in Murray Street. The business operated until sold by his son, Joseph in 1884. Moir purchased 39 acres on Brown’s River Rd in 1855 and moved to a new house at ‘Queenborough Glens’ (as he called the property) with his family in 1862. He then built the shot tower and its associated buildings and poured his first shot in 1870.
When he died after a long illness in 1874 Moir left his major business concerns to his sons, James and Joseph. Together with Elizabeth (who only survived him by 15 months) and a daughter, Mary (who died in 1853 at the age of seven) Moir was encrypted in the family mausoleum on the cliffs below the shot tower. Their remains were later re-interred in unmarked graves at Queenborough Cemetery after Joseph relinquished the property in 1901. This cemetery’s graves were removed by Hobart Council in 1963 and Moir’s final resting place remains unknown.
The Shot Tower
This shot tower was built by the proprietor, Joseph Moir, in the year 1870. In its erection he acted as Engineer, Architect, Carpenter and Overseer. With merely the assistance of two masons it was completed in 8 months, when the secrets of shot-making had to be discovered. After many persevering efforts the first shot was dropped 8th September, 1870.
Joseph Moir erected his shot making enterprise on 39 acres subdivided from an 1817 grant of 100 acres to John Williamson. He chose his site carefully. A road frontage facilitated straightforward transport of raw materials and product. A windmill pumped water from a reliable creek to a cistern on the site of the current overflow carpark and substantial timber reserves provided fuel for the furnaces and cauldrons. Sited far from residential neighbourhoods Moir could also relax in the knowledge that toxic fumes would blow safely out to sea or over forestland.
Moir probably began building his shot making works after erecting the family home between 1855 and 1862. A stone building above the cliffs overlooking the River Derwent stored gun powder for his ironmongery as well as stores of arsenic and antimony. Another building south-west of the magazine contained the furnace for preparing lead with the arsenic and antimony.
The tower was constructed of dressed curved sandstone blocks quarried at the nearby abandoned Brown’s River Convict Probation Station. A remarkable tapered structure 48m (157 feet 6 inches) tall it features an internal spiral staircase of pitsawn timber and an external gallery at its top which was probably used to store firewood for the upper cauldron. The staircase provided scaffolding during the construction of the tower and access to the upper cauldron and shot-making colanders. The tower is 10 metres in diameter at the base and tapers to 3.9 metres at the top . The walls are a metre thick at the bottom and thin out to .45 centimetres at the top.
A three level stone factory abutting the tower was erected at the same time, then was extended soon after. The stone for the factory was probably recycled from the abandoned probation station.
The Manufacturing Process
The manufacture of shot is an industry which in England has always been conducted with the greatest secrecy, and consequently witnessed by very few except the initiated. This industry has recently been introduced in this colony by Mr Alderman Moir, and we learn that it is his intention to throw his Shot Tower open to the inspection of visitors on Monday and Tuesday next, when the process of shot making will be in operation, on which occasion we have no doubt many of our citizens will avail themselves of this opportunity of witnessing the interesting process.
Mercury,10 March 1871.
Shot manufacturing is thought to have been invented by Prince Rupert in the seventeenth century. It seems likely that Moir studied William Watts’ patented method of 1796 while in Britain in 1849-50. Moir’s exact process is unknown — considerable experimentation was required by most manufacturers to perfect what is a very complex process requiring a detailed understanding of physics and metallurgy. Most of Moir’s raw materials would have been imported increasing his costs substantially
Moir’s process was probably as follows:
Lead was prepared in a furnace at the south-eastern corner of the property. Moir added 900g of arsenic (to decrease surface tension) and 6.35kg of antimony (to harden the shot) to every 45.35 kg of lead.
The resultant ‘poisoned lead’ was cast into 7.7 kg ingots, conveyed to the factory, then remelted in cauldrons on the upper level of the factory for small shot and the top of the tower for larger shot. Firewood had to be winched to the upper cauldron. The molten lead was then poured through colanders, forming droplets which became spherical as they dropped. They fell into a tub of water at the base of the tower. The size of the shot depended on the amount of arsenic, the size of the holes in the colander and the height of the fall. Watts’ patent stipulated that large sized shot required a fall of 45.75m (150 feet), hence the height of Moir’s shot tower at 48m with the colander 46.36m above the base.
The lead cooled partly while falling, then completely in the water. The antinomy hardener ensured that it maintained shape under the impact of the water.
The cooled shot, green in colour, was winched to the factory’s upper floor where it was dried and run over inclined glass planes to separate out defective shot (which did not roll true). Imperfect shot was remelted and the process repeated.
The shot was polished in a revolving drum (likened to a farmer’s barrel churn) using plumbago (graphite) then lowered through a trapdoor to the ground floor where it passed through ten sieves for grading into sizes ranging from fine birdshot to large balls. The graded shot was bagged into 12.7kg (28lb) handsewn linen bags stencilled with the manufacturer’s name and sent to market. At its peak the factory produced 100 tons of shot per annum.
Working Conditions
Little is known of working conditions in Joseph Moir’s shot tower. The work was highly skilled, noisy and almost certainly dangerous. That workers took great pride in their trade is indicated by an engraving in a window in the factory, reading, ‘George Matson Premier Shot Maker Tasmanian and Australian’. No further information about George Matson is known. The following descriptions of a contemporary works, Melbourne’s Coop shot tower (now incorporated in the Melbourne Central complex on Little Lonsdale St) provides some indication of the nature of the work involved.
Pouring the lead was ‘an operation which needs great skill and constant watching. The man is used to his work but the novice would probably make a considerable bungle of it’. As the lead droplets fell there was ‘a sharp incessant shower of silvery rain . . . mak[ing] a noise very like that of an overflow waste pipe high up in one’s wall’. When shovelling shot from the water tub it was ‘quite certain that if the man who is so energetically shovelling . . . was to cease from his labours for any appreciable length of time the tank would be soon full of lead. . . . all the while the strange shower descends the man with the shovel is busily at work’. The noise of grading the shot through the sieves was ‘well nigh deafening’ while a woman sat with needle and thread sewing the 12.7kg linen bags for the finished shot.
House and Garden
Joseph Moir began building his residence soon after acquiring the property in 1855. Family lore suggests that he built the battlemented tower as practise before attempting the more substantial shot tower. By 1885 the property was well known for its gardens and orchards with its hot houses, summer houses and conservatories.
"Mr [James] Moir has a prolific little orchard and kitchen garden, which latter, the flower garden and conservatories are watered from a considerable storage reservoir above. An amusing freak of the owner is to invite strangers into a summer house, and to be seated a moment or two out of the sun. He predicts rain shortly, however cloudless the sky — when hey presto: a shower immediately commences, a real earnest one. It is brought about by turning the tap of a pipe connecting with the circular piping on top of the summer house, the latter being perforated round its outside. A little defectiveness in the roof allowed of my receiving a slight baptism of spray, so I must be considered initiated." Tasmanian Mail,13 June 1885
Perhaps the youthful James Moir (he was 30 in 1885) had a better sense of fun than business sense. He had mortgaged the property the previous year and defaulted on his payments two years later.
Later History
Moir’s sons, James and Joseph, carried on the business after his death in 1874. Although James won merit certificates at the 1879 Sydney International Exhibition and the 1880-81 Melbourne Exhibition the business struggled and it was leased by the mortgagors to his brother, Joseph in 1887. Joseph found himself unable compete with mainland competitors when generous colonial tariffs were removed after Federation. He relinquished the lease to his brother-in-law, William Baynton who continued the business until closing its doors in 1905. During these years Baynton’s wife, Florence, operated a tea house in the residence.
The property subsequently passed through several hands until 1956 when 3.24 hectares was purchased by the Tasmanian government and proclaimed a Scenery Reserve. Although it included the tower and residence, the reserve excluded the powder magazine, conservatory, antimony furnace and mausoleum. The reserve was gazetted as an historic site in 1971 under the National Parks and Wildlife Act. Since 1956 it has been leased to several concessionaires and has been open as a tourist site. Various conservation works have been conducted at the shot tower over the years to maintain its heritage significance.
Shot Tower Taroona Tasmania
Australia’s first shot tower, at Taroona, was built by Joseph Moir and is one of three still existing in the country, the others being in Melbourne. Joseph Moir's factory, which operated for 35 years from 1870, manufactured lead shot for contemporary muzzle loading sports guns. Although the factory struggled for most of its existence its most recognisable feature, the tallest stone shot tower in the southern hemisphere, has been a prominent landmark in the district for well over a century.
Joseph Moir
His Shot Tower on the Kingston Road is noted throughout the colonies, and Mr Moir’s enterprising spirit is there illustrated in a most remarkable manner. Though a speculation of a very hazardous kind, he had faith in its success, and his estimate, as was afterwards discovered, was not found on any erroneous basis. The manufacture of shot was a profitable venture under his management.
Mercury 12 March 1874
Just twenty years old, Scotsman Joseph Moir arrived in Hobart in 1829, one of thousands of hopeful free immigrants who sailed to Van Diemen’s Land in the 1820s. By 1840 he had acquired several properties, government employment and a reputation as a builder of notable colonial buildings such as St Mark’s Anglican Church, Pontville. He returned briefly to Scotland in 1844 to marry Elizabeth Paxton with whom he had at least five children.
A prominent businessman, Moir was active in Hobart’s civic affairs between 1846 and 1873, a year before his death. He revisited Britain in 1849 ‘to arrange to carry on an ironmonger’s business’, returning to Hobart with a stock of hardware items and opening a store with his brother at ‘Economy House’ in Murray Street. The business operated until sold by his son, Joseph in 1884. Moir purchased 39 acres on Brown’s River Rd in 1855 and moved to a new house at ‘Queenborough Glens’ (as he called the property) with his family in 1862. He then built the shot tower and its associated buildings and poured his first shot in 1870.
When he died after a long illness in 1874 Moir left his major business concerns to his sons, James and Joseph. Together with Elizabeth (who only survived him by 15 months) and a daughter, Mary (who died in 1853 at the age of seven) Moir was encrypted in the family mausoleum on the cliffs below the shot tower. Their remains were later re-interred in unmarked graves at Queenborough Cemetery after Joseph relinquished the property in 1901. This cemetery’s graves were removed by Hobart Council in 1963 and Moir’s final resting place remains unknown.
The Shot Tower
This shot tower was built by the proprietor, Joseph Moir, in the year 1870. In its erection he acted as Engineer, Architect, Carpenter and Overseer. With merely the assistance of two masons it was completed in 8 months, when the secrets of shot-making had to be discovered. After many persevering efforts the first shot was dropped 8th September, 1870.
Joseph Moir erected his shot making enterprise on 39 acres subdivided from an 1817 grant of 100 acres to John Williamson. He chose his site carefully. A road frontage facilitated straightforward transport of raw materials and product. A windmill pumped water from a reliable creek to a cistern on the site of the current overflow carpark and substantial timber reserves provided fuel for the furnaces and cauldrons. Sited far from residential neighbourhoods Moir could also relax in the knowledge that toxic fumes would blow safely out to sea or over forestland.
Moir probably began building his shot making works after erecting the family home between 1855 and 1862. A stone building above the cliffs overlooking the River Derwent stored gun powder for his ironmongery as well as stores of arsenic and antimony. Another building south-west of the magazine contained the furnace for preparing lead with the arsenic and antimony.
The tower was constructed of dressed curved sandstone blocks quarried at the nearby abandoned Brown’s River Convict Probation Station. A remarkable tapered structure 48m (157 feet 6 inches) tall it features an internal spiral staircase of pitsawn timber and an external gallery at its top which was probably used to store firewood for the upper cauldron. The staircase provided scaffolding during the construction of the tower and access to the upper cauldron and shot-making colanders. The tower is 10 metres in diameter at the base and tapers to 3.9 metres at the top . The walls are a metre thick at the bottom and thin out to .45 centimetres at the top.
A three level stone factory abutting the tower was erected at the same time, then was extended soon after. The stone for the factory was probably recycled from the abandoned probation station.
The Manufacturing Process
The manufacture of shot is an industry which in England has always been conducted with the greatest secrecy, and consequently witnessed by very few except the initiated. This industry has recently been introduced in this colony by Mr Alderman Moir, and we learn that it is his intention to throw his Shot Tower open to the inspection of visitors on Monday and Tuesday next, when the process of shot making will be in operation, on which occasion we have no doubt many of our citizens will avail themselves of this opportunity of witnessing the interesting process.
Mercury,10 March 1871.
Shot manufacturing is thought to have been invented by Prince Rupert in the seventeenth century. It seems likely that Moir studied William Watts’ patented method of 1796 while in Britain in 1849-50. Moir’s exact process is unknown — considerable experimentation was required by most manufacturers to perfect what is a very complex process requiring a detailed understanding of physics and metallurgy. Most of Moir’s raw materials would have been imported increasing his costs substantially
Moir’s process was probably as follows:
Lead was prepared in a furnace at the south-eastern corner of the property. Moir added 900g of arsenic (to decrease surface tension) and 6.35kg of antimony (to harden the shot) to every 45.35 kg of lead.
The resultant ‘poisoned lead’ was cast into 7.7 kg ingots, conveyed to the factory, then remelted in cauldrons on the upper level of the factory for small shot and the top of the tower for larger shot. Firewood had to be winched to the upper cauldron. The molten lead was then poured through colanders, forming droplets which became spherical as they dropped. They fell into a tub of water at the base of the tower. The size of the shot depended on the amount of arsenic, the size of the holes in the colander and the height of the fall. Watts’ patent stipulated that large sized shot required a fall of 45.75m (150 feet), hence the height of Moir’s shot tower at 48m with the colander 46.36m above the base.
The lead cooled partly while falling, then completely in the water. The antinomy hardener ensured that it maintained shape under the impact of the water.
The cooled shot, green in colour, was winched to the factory’s upper floor where it was dried and run over inclined glass planes to separate out defective shot (which did not roll true). Imperfect shot was remelted and the process repeated.
The shot was polished in a revolving drum (likened to a farmer’s barrel churn) using plumbago (graphite) then lowered through a trapdoor to the ground floor where it passed through ten sieves for grading into sizes ranging from fine birdshot to large balls. The graded shot was bagged into 12.7kg (28lb) handsewn linen bags stencilled with the manufacturer’s name and sent to market. At its peak the factory produced 100 tons of shot per annum.
Working Conditions
Little is known of working conditions in Joseph Moir’s shot tower. The work was highly skilled, noisy and almost certainly dangerous. That workers took great pride in their trade is indicated by an engraving in a window in the factory, reading, ‘George Matson Premier Shot Maker Tasmanian and Australian’. No further information about George Matson is known. The following descriptions of a contemporary works, Melbourne’s Coop shot tower (now incorporated in the Melbourne Central complex on Little Lonsdale St) provides some indication of the nature of the work involved.
Pouring the lead was ‘an operation which needs great skill and constant watching. The man is used to his work but the novice would probably make a considerable bungle of it’. As the lead droplets fell there was ‘a sharp incessant shower of silvery rain . . . mak[ing] a noise very like that of an overflow waste pipe high up in one’s wall’. When shovelling shot from the water tub it was ‘quite certain that if the man who is so energetically shovelling . . . was to cease from his labours for any appreciable length of time the tank would be soon full of lead. . . . all the while the strange shower descends the man with the shovel is busily at work’. The noise of grading the shot through the sieves was ‘well nigh deafening’ while a woman sat with needle and thread sewing the 12.7kg linen bags for the finished shot.
House and Garden
Joseph Moir began building his residence soon after acquiring the property in 1855. Family lore suggests that he built the battlemented tower as practise before attempting the more substantial shot tower. By 1885 the property was well known for its gardens and orchards with its hot houses, summer houses and conservatories.
"Mr [James] Moir has a prolific little orchard and kitchen garden, which latter, the flower garden and conservatories are watered from a considerable storage reservoir above. An amusing freak of the owner is to invite strangers into a summer house, and to be seated a moment or two out of the sun. He predicts rain shortly, however cloudless the sky — when hey presto: a shower immediately commences, a real earnest one. It is brought about by turning the tap of a pipe connecting with the circular piping on top of the summer house, the latter being perforated round its outside. A little defectiveness in the roof allowed of my receiving a slight baptism of spray, so I must be considered initiated." Tasmanian Mail,13 June 1885
Perhaps the youthful James Moir (he was 30 in 1885) had a better sense of fun than business sense. He had mortgaged the property the previous year and defaulted on his payments two years later.
Later History
Moir’s sons, James and Joseph, carried on the business after his death in 1874. Although James won merit certificates at the 1879 Sydney International Exhibition and the 1880-81 Melbourne Exhibition the business struggled and it was leased by the mortgagors to his brother, Joseph in 1887. Joseph found himself unable compete with mainland competitors when generous colonial tariffs were removed after Federation. He relinquished the lease to his brother-in-law, William Baynton who continued the business until closing its doors in 1905. During these years Baynton’s wife, Florence, operated a tea house in the residence.
The property subsequently passed through several hands until 1956 when 3.24 hectares was purchased by the Tasmanian government and proclaimed a Scenery Reserve. Although it included the tower and residence, the reserve excluded the powder magazine, conservatory, antimony furnace and mausoleum. The reserve was gazetted as an historic site in 1971 under the National Parks and Wildlife Act. Since 1956 it has been leased to several concessionaires and has been open as a tourist site. Various conservation works have been conducted at the shot tower over the years to maintain its heritage significance.
History of the Barber-Colman Company
Historically one of Rockford’s largest manufacturers.
Began with the founding of the Barber & Colman Company in 1894 – partnership between Howard Colman, an inventor and entrepreneur, and W. A. Barber, an investor. [Today he would probably be considered a venture capitalist.] Colman’s first patent and marketable invention was the Creamery Check Pump used to separate buttermilk and dispense skimmed milk.
Colman’s textile production inventions led the company on its rapid rise as a worldwide leader in the design and manufacture of diversified products. Specific items designed for the textile industry included the Hand Knotter and the Warp Tying Machine. Through these innovations, Barber & Colman was able to build its first plant on Rock Street in Rockford’s Water Power District, and to establish branch offices in Boston MA and Manchester, England.
Incorporated as Barber-Colman in 1904 and built 5 new major structures on their site by 1907.
Later innovations for the textile industry included an Automatic Winder, High Speed Warper and Automatic Spoolers. By 1931, the textile machinery division had branch production facilities in Framingham MA; Greenville SC; Munich, Germany; and Manchester. This part of the business flourished through the mid-1960s but then declined as other divisions expanded.
Branched out from the textile industry into machine tools in 1908 with Milling Cutters. Barber-Colman created machines used at the Fiat plant in Italy (1927) and the Royal Typewriter Co. outside Hartford CT. By 1931, the Machine Tool and Small Tool Division of Barber-Colman listed branch offices in Chicago, Cincinnati and Rochester NY.
As part of its commitment to developing a skilled work force, Barber-Colman began the Barber-Colman Continuation School for boys 16 and older shortly after the company was founded. It was a 3-year apprentice program that trained them for manufacturing jobs at Barber-Colman and paid them hourly for their work at rate that increased as their proficiency improved. The program was operated in conjunction with the Rockford Vocational School.
To foster continued inventions, an Experimental Department was established with the responsibility of continually developing new machines. A lab was first installed in 1914 and was divided into two parts – a chemistry lab to provide thorough analysis of all metals and their component properties, and a metallurgical lab to test the effectiveness of heat treatment for hardening materials. Innovations in the Experimental Department laid the groundwork for the company’s movement into the design and development of electrical and electronic products, and energy management controls.
BARBER-COLMAN became involved in the electrical and electronics industry in 1924 with the founding of the Electrical Division. First product was a radio operated electric garage door opener controlled from the dashboard of a car. Unfortunately, it was too expensive to be practical at the time. The division’s major product in its early years was Barcol OVERdoors, a paneled wood garage door that opened on an overhead track. Several designs were offered in 1931, some of which had the appearance of wood hinged doors. This division eventually expanded into four separate ones that designed and produced electronic control instruments and systems for manufacturing processes; small motors and gear motors used in products such as vending machines, antennas and X-ray machines; electronic and pneumatic controls for aircraft and marine operations; and electrical and electronic controls for engine-powered systems.
In the late 1920s, the Experimental Department began conducting experiments with temperature control instruments to be used in homes and other buildings and the Temperature Control Division was born. Over time, BARBER-COLMAN became known worldwide leader in electronic controls for heating, ventilating and air conditioning. These are the products that continue its name and reputation today.
The death of founder Howard Colman in 1942 was sudden but the company continued to expand its operations under changing leadership. Ground was broken in 1953 for a manufacturing building in neighboring Loves Park IL to house the overhead door division and the Uni-Flow division. Three later additions were made to that plant.
The divestiture of BARBER-COLMAN divisions began in 1984 with the sale of the textile division to Reed-Chatwood Inc which remained at BARBER-COLMAN’s original site on Rock Street until 2001. The machine tooldivision, the company’s second oldest unit, was spun off in 1985 to Bourn and Koch, another Rockfordcompany. At that time, it was announced that the remaining divisions of the BARBER-COLMAN Company would concentrate their efforts on process controls and cutting tools. These moves reduced local employment at BARBER-COLMAN’s several locations to about 2200. The remaining divisions were eventually sold as well, but the BARBER-COLMAN Company name continues to exist today as one of five subsidiaries of Eurotherm Controls Inc whose worldwide headquarters are in Leesburg VA. The Aerospace Division and the Industrial Instruments Division still operate at the Loves Park plant, employing 1100 workers in 2000. The historic complex on Rock Street was vacated in 2001 and the property purchased by the City of Rockford in 2002.
Extensive documentation from the Experimental Department was left at the Rock Street plant when the company moved out and was still there when the site was purchased by the City of Rockford. These documents are now housed at the Midway Village Museum.
Detail of curved asbestos transite cooling tower louver showing deterioration and distinct pattern of dimples from manufacturing process.
My gracious host for my night in Kendal near the Lake District.
"Kendal, once Kirkby in Kendal or Kirkby Kendal, is a market town and civil parish in the South Lakeland District of Cumbria, England. Historically in Westmorland, it lies 8 miles (13 km) south-east of Windermere, 19 miles (31 km) north of Lancaster, 23 miles (37 km) north-east of Barrow-in-Furness and 38 miles (61 km) north-west of Skipton, in the dale of the River Kent, from which comes its name. The 2011 census found a population of 28,586. making it the third largest town in Cumbria after Carlisle and Barrow. It is known today mainly as a centre for tourism, as the home of Kendal mint cake, and as a producer of pipe tobacco and snuff. Its local grey limestone buildings have earned it the nickname "Auld Grey Town".
A chartered market town, the centre of Kendal has formed round a high street with fortified alleyways, known locally as yards, off to either side, which allowed local people to shelter from the Anglo-Scottish raiders known as Border Reivers. The main industry in those times was the manufacture of woollen goods, whose importance is reflected in the town's coat of arms and in its Latin motto Pannus mihi panis (Cloth is my bread.) "Kendal Green" was a hard-wearing, wool-based fabric specific to the local manufacturing process. It was supposedly sported by the Kendalian archers instrumental in the English victory over the French at the Battle of Agincourt. Kendal Green was also worn by slaves in the Americas and appears in songs and literature from that time. Shakespeare notes it as the colour of clothing worn by foresters (Henry IV, Part 1).
Kendal Castle has a long history as a stronghold, built on the site of several successive castles. The earliest was a Norman motte and bailey (now located on the west side of the town), when the settlement went under the name of Kirkbie Strickland. The most recent is from the late 12th century, as the castle of the Barony of Kendal, the part of Westmorland ruled from here. The castle is best known as the home of the Parr family, as heirs of these barons. They inherited it through marriage in the reign of Edward III of England. Rumours still circulate that King Henry VIII's sixth wife Catherine Parr was born at Kendal Castle, but the evidence available leaves this unlikely: by her time the castle was beyond repair and her father was already based in Blackfriars, London, at the court of King Henry VIII." - info from Wikipedia.
Summer 2019 I did a solo cycling tour across Europe through 12 countries over the course of 3 months. I began my adventure in Edinburgh, Scotland and finished in Florence, Italy cycling 8,816 km. During my trip I took 47,000 photos.
Now on Instagram.
Become a patron to my photography on Patreon.
Selective Laser Melting (SLM) is an additive manufacturing process that can be used for many different applications.
The SLM process starts by numerically slicing a 3D CAD model into a number of finite layers. For each sliced layer a laser scan path is calculated which defines both the boundary contour and some form of fill sequence, often a raster pattern. Each layer is then sequentially recreated by depositing powder layers, one on top of the other, and melting their surface by scanning a laser beam.
The powder is spread uniformly by a wiper. A high power-density fibre laser with a 40µm beam spot size fully melts the pre-deposited powder layer. The melted particles fuse and solidify to form a layer of the component.
For more information please visit www.twi-global.com/technologies/welding-surface-engineeri...
If you wish to use this image each use should be accompanied by the credit line and notice, "Courtesy of TWI Ltd".
History of the Barber-Colman Company
Historically one of Rockford’s largest manufacturers.
Began with the founding of the Barber & Colman Company in 1894 – partnership between Howard Colman, an inventor and entrepreneur, and W. A. Barber, an investor. [Today he would probably be considered a venture capitalist.] Colman’s first patent and marketable invention was the Creamery Check Pump used to separate buttermilk and dispense skimmed milk.
Colman’s textile production inventions led the company on its rapid rise as a worldwide leader in the design and manufacture of diversified products. Specific items designed for the textile industry included the Hand Knotter and the Warp Tying Machine. Through these innovations, Barber & Colman was able to build its first plant on Rock Street in Rockford’s Water Power District, and to establish branch offices in Boston MA and Manchester, England.
Incorporated as Barber-Colman in 1904 and built 5 new major structures on their site by 1907.
Later innovations for the textile industry included an Automatic Winder, High Speed Warper and Automatic Spoolers. By 1931, the textile machinery division had branch production facilities in Framingham MA; Greenville SC; Munich, Germany; and Manchester. This part of the business flourished through the mid-1960s but then declined as other divisions expanded.
Branched out from the textile industry into machine tools in 1908 with Milling Cutters. Barber-Colman created machines used at the Fiat plant in Italy (1927) and the Royal Typewriter Co. outside Hartford CT. By 1931, the Machine Tool and Small Tool Division of Barber-Colman listed branch offices in Chicago, Cincinnati and Rochester NY.
As part of its commitment to developing a skilled work force, Barber-Colman began the Barber-Colman Continuation School for boys 16 and older shortly after the company was founded. It was a 3-year apprentice program that trained them for manufacturing jobs at Barber-Colman and paid them hourly for their work at rate that increased as their proficiency improved. The program was operated in conjunction with the Rockford Vocational School.
To foster continued inventions, an Experimental Department was established with the responsibility of continually developing new machines. A lab was first installed in 1914 and was divided into two parts – a chemistry lab to provide thorough analysis of all metals and their component properties, and a metallurgical lab to test the effectiveness of heat treatment for hardening materials. Innovations in the Experimental Department laid the groundwork for the company’s movement into the design and development of electrical and electronic products, and energy management controls.
BARBER-COLMAN became involved in the electrical and electronics industry in 1924 with the founding of the Electrical Division. First product was a radio operated electric garage door opener controlled from the dashboard of a car. Unfortunately, it was too expensive to be practical at the time. The division’s major product in its early years was Barcol OVERdoors, a paneled wood garage door that opened on an overhead track. Several designs were offered in 1931, some of which had the appearance of wood hinged doors. This division eventually expanded into four separate ones that designed and produced electronic control instruments and systems for manufacturing processes; small motors and gear motors used in products such as vending machines, antennas and X-ray machines; electronic and pneumatic controls for aircraft and marine operations; and electrical and electronic controls for engine-powered systems.
In the late 1920s, the Experimental Department began conducting experiments with temperature control instruments to be used in homes and other buildings and the Temperature Control Division was born. Over time, BARBER-COLMAN became known worldwide leader in electronic controls for heating, ventilating and air conditioning. These are the products that continue its name and reputation today.
The death of founder Howard Colman in 1942 was sudden but the company continued to expand its operations under changing leadership. Ground was broken in 1953 for a manufacturing building in neighboring Loves Park IL to house the overhead door division and the Uni-Flow division. Three later additions were made to that plant.
The divestiture of BARBER-COLMAN divisions began in 1984 with the sale of the textile division to Reed-Chatwood Inc which remained at BARBER-COLMAN’s original site on Rock Street until 2001. The machine tooldivision, the company’s second oldest unit, was spun off in 1985 to Bourn and Koch, another Rockfordcompany. At that time, it was announced that the remaining divisions of the BARBER-COLMAN Company would concentrate their efforts on process controls and cutting tools. These moves reduced local employment at BARBER-COLMAN’s several locations to about 2200. The remaining divisions were eventually sold as well, but the BARBER-COLMAN Company name continues to exist today as one of five subsidiaries of Eurotherm Controls Inc whose worldwide headquarters are in Leesburg VA. The Aerospace Division and the Industrial Instruments Division still operate at the Loves Park plant, employing 1100 workers in 2000. The historic complex on Rock Street was vacated in 2001 and the property purchased by the City of Rockford in 2002.
Extensive documentation from the Experimental Department was left at the Rock Street plant when the company moved out and was still there when the site was purchased by the City of Rockford. These documents are now housed at the Midway Village Museum.
* Apple
* Store
* Mac
* iPod + iTunes
* iPhone
* Downloads
* Support
Search
*
You are invited to take part in a short survey to help us improve your
Apple Support online experience. Please click Yes if you would like to participate.
Yes No
Power Mac G4 (Mirrored Drive Doors) - Technical Specifications
Configurations
Order no. M8787LL/A M8689LL/A M8573LL/A
Processor Dual 867MHz PowerPC G4 Dual 1GHz PowerPC G4 Dual 1.25GHz PowerPC G4
L3 cache 1MB DDR SRAM per processor 1MB DDR SRAM per processor 2MB DDR SRAM per processor
System bus 133MHz 167MHz 167MHz
Main memory (2GB maximum3) 256MB PC2100 (266MHz) DDR SDRAM 256MB PC2700 (333MHz) DDR SDRAM 512MB PC2700 (333MHz) DDR SDRAM
Hard drive4 60GB Ultra ATA/100; 7200 rpm 80GB Ultra ATA/100; 7200 rpm 120GB Ultra ATA/100; 7200 rpm
Optical drive Combo (DVD-ROM/CD-RW) SuperDrive (DVD-R/CD-RW) SuperDrive (DVD-R/CD-RW)
Graphics support NVIDIA GeForce4 MX with
32MB of DDR SDRAM ATI Radeon 9000 Pro with
64MB of DDR SDRAM ATI Radeon 9000 Pro with
64MB of DDR SDRAM
Expansion slots and bays Four open 64-bit, 33MHz PCI slots; AGP 4X slot with graphics card installed; four internal hard drive bays (one occupied); two optical drive bays (one occupied)
Ports Two FireWire, four USB, front headphone minijack and speaker, rear Apple speaker minijack, audio line in, audio line out, ADC and DVI connectors for dual display support
Networking Built-in 10/100/1000BASE-T Ethernet and 56K modem6; AirPort ready5
Software Mac OS X, Mac OS 9, QuickTime, iChat, iMovie, iPhoto, iTunes, iDVD (requires SuperDrive), DVD Player, Mac OS X Mail, Microsoft Internet Explorer, EarthLink (includes 30 days of free service), Acrobat Reader, Art Director’s Toolkit, FAXstf, FileMaker Pro Trial, Graphic Converter, OmniGraffle, OmniOutliner, PixelNhance, Snapz Pro, Developer Tools
Service and support 90 days of free telephone support and one-year limited warranty
Included Apple Pro Keyboard, Apple Pro Mouse, DVI to VGA adapter, modem cable
Internet access requires a compatible Internet service provider; fees may apply. Product contains electronic documentation. Backup copy of software is provided on CD-ROM.
Options
Processor Dual 867MHz, dual 1GHz, dual 1.25GHz
Memory (PC2100 or PC2700 DDR SDRAM): 256MB, 512MB, 1GB, 1.5GB, 2GB
Hard drives 60GB Ultra ATA/100 (7200 rpm), 80GB Ultra ATA/100 (7200 rpm), 120GB Ultra ATA/100 (7200 rpm), 36GB Ultra160 SCSI (10,000 rpm), 72GB Ultra160 SCSI (10,000 rpm)4
Optical drives SuperDrive (DVD-R/CD-RW), Combo drive (DVD-ROM/CD-RW)
Graphics NVIDIA GeForce4 MX with 32MB DDR SDRAM, ATI Radeon 9000 Pro with 64MB DDR SDRAM, NVIDIA GeForce4 Ti with 128MB DDR SDRAM
Audio Apple Pro Speakers, Apple iPod, Harman Kardon iSub, Harman Kardon SoundSticks
Other AirPort Card, AirPort Base Station, Ultra SCSI PCI card, Ultra160 SCSI PCI card, Bluetooth adapter, DVD-R Media Kit
Technical Specifications
Processing and memory
* Dual 867MHz, 1GHz, or 1.25GHz PowerPC G4 processors
* Velocity Engine vector processing unit
* Full 128-bit internal memory data paths
* Powerful floating-point unit supporting single-cycle, double-precision calculations
* Data stream prefetching operations supporting four simultaneous 32-bit data streams
* 256K on-chip L2 cache running at processor speed
* Up to 2MB DDR SRAM L3 cache per processor with up to 4-GBps throughput
* Up to 167MHz system bus supporting over 1.3-GBps data throughput
* 256MB or 512MB of PC2100 or PC2700 DDR SDRAM main memory supporting up to 2.7-GBps throughput
* Four DIMM slots supporting up to 2GB of DDR SDRAM using one of the following3:
—256MB DIMMs (64-bit-wide, 128-Mbit)
—512MB DIMMs (64-bit-wide, 256-Mbit)
Graphics and display support
* One of the following graphics cards installed in a dedicated AGP 4X graphics slot:
—NVIDIA GeForce4 MX graphics card with 32MB of DDR SDRAM
—ATI Radeon 9000 Pro graphics card with 64MB of DDR SDRAM
—NVIDIA GeForce4 Ti graphics card with 128MB of DDR SDRAM (build-to-order option)
* Support for digital resolutions up to 1920 by 1200 pixels and analog resolutions up to 1600 by 1200 pixels
* ADC and DVI connectors; DVI to VGA adapter included
* Dual display support for extended desktop and video mirroring modes
* Support for up to two Apple displays
Storage and expansion
* Four 3.5-inch hard drive expansion bays
—One 7200-rpm Ultra ATA/100 drive preinstalled in standard configurations: 60GB, 80GB, or 120GB4
—Support for up to four internal ATA drives (two Ultra ATA/100 and two Ultra ATA/66)
—Support for up to four internal SCSI drives (requires PCI SCSI card, sold separately)
—Support for a combination of internal ATA and SCSI drives (total of four)
* One of the following optical drives:
—SuperDrive (DVD-R/CD-RW); writes DVD-R discs at 2x speed, reads DVDs at 6x speed, writes CD-R discs at 8x speed, writes CD-RW discs at 4x speed, reads CDs at 24x speed
—Combo drive (DVD-ROM/CD-RW); reads DVDs at 8x speed, writes CD-R discs at 16x speed, writes CD-RW discs at 10x speed, reads CDs at 32x speed
—Optional Combo drive in second optical drive bay
* Four open full-length 64-bit, 33MHz PCI slots
* One AGP 4X slot with graphics card installed
Communications
* 10/100/1000BASE-T Ethernet connector (RJ-45)
* Built-in antennas and card slot for optional 11-Mbps AirPort Card; IEEE 802.11b compliant5
* Built-in 56K V.92 modem6
Peripherals and audio
* Two 400-Mbps FireWire ports7 (15W total power)
* Four USB ports (two on system, two on keyboard)
* Front headphone jack
* Built-in speaker
* Stereo audio line in and line out minijacks
* Apple speaker minijack for connection to optional Apple Pro Speakers
Electrical and environmental requirements
* Meets ENERGY STAR requirements
* Line voltage: 100–125V AC or 200–240V AC
* Frequency: 50Hz to 60Hz, single phase
* Maximum current: 6.5A (low-voltage range) or 7.5A (high-voltage range)
* Operating temperature: 50&def; to 95&def; F (10&def; to 35&def; C)
* Storage temperature: –40&def; to 116&def; F (–40&def; to 47&def; C)
* Relative humidity: 5% to 95% noncondensing
* Maximum altitude: 10,000 feet
Size and weight
* Height: 17.0 inches (43.2 cm)
* Width: 8.9 inches (22.7 cm)
* Depth: 18.4 inches (46.8 cm)
* Weight: 42 pounds (19.1 kg)8
1. Second Apple flat-panel display requires the Apple DVI to ADC Adapter, sold separately.
2. Selected models.
3. 999MB maximum per application in Mac OS 9.
4. 1GB = 1 billion bytes; actual formatted capacity less.
5. Wireless Internet access requires AirPort Card, AirPort Base Station, and Internet access (fees may apply). Some ISPs are not currently compatible with AirPort. Range may vary with site conditions.
6. Appropriate ISP and telephone services required. Your ISP may not support all V.92 features. Modem will function according to V.90 standards if V.92 services are not available. Actual modem speeds lower; speed depends on connection rate and other factors.
7. Actual rates will vary.
8. Weight varies by configuration and manufacturing process.
Home > Support > Specifications > Power Mac G4 (Mirrored Drive Doors)
Home > Support
Visit the Apple Store online (1-800-MY-APPLE), visit a retail location, or find a reseller.
Site Map | Hot News | RSS Feeds | Contact Us
Copyright © 2007 Apple Inc. All rights reserved. Terms of Use | Privacy Policy
History of the Barber-Colman Company
Historically one of Rockford’s largest manufacturers.
Began with the founding of the Barber & Colman Company in 1894 – partnership between Howard Colman, an inventor and entrepreneur, and W. A. Barber, an investor. [Today he would probably be considered a venture capitalist.] Colman’s first patent and marketable invention was the Creamery Check Pump used to separate buttermilk and dispense skimmed milk.
Colman’s textile production inventions led the company on its rapid rise as a worldwide leader in the design and manufacture of diversified products. Specific items designed for the textile industry included the Hand Knotter and the Warp Tying Machine. Through these innovations, Barber & Colman was able to build its first plant on Rock Street in Rockford’s Water Power District, and to establish branch offices in Boston MA and Manchester, England.
Incorporated as Barber-Colman in 1904 and built 5 new major structures on their site by 1907.
Later innovations for the textile industry included an Automatic Winder, High Speed Warper and Automatic Spoolers. By 1931, the textile machinery division had branch production facilities in Framingham MA; Greenville SC; Munich, Germany; and Manchester. This part of the business flourished through the mid-1960s but then declined as other divisions expanded.
Branched out from the textile industry into machine tools in 1908 with Milling Cutters. Barber-Colman created machines used at the Fiat plant in Italy (1927) and the Royal Typewriter Co. outside Hartford CT. By 1931, the Machine Tool and Small Tool Division of Barber-Colman listed branch offices in Chicago, Cincinnati and Rochester NY.
As part of its commitment to developing a skilled work force, Barber-Colman began the Barber-Colman Continuation School for boys 16 and older shortly after the company was founded. It was a 3-year apprentice program that trained them for manufacturing jobs at Barber-Colman and paid them hourly for their work at rate that increased as their proficiency improved. The program was operated in conjunction with the Rockford Vocational School.
To foster continued inventions, an Experimental Department was established with the responsibility of continually developing new machines. A lab was first installed in 1914 and was divided into two parts – a chemistry lab to provide thorough analysis of all metals and their component properties, and a metallurgical lab to test the effectiveness of heat treatment for hardening materials. Innovations in the Experimental Department laid the groundwork for the company’s movement into the design and development of electrical and electronic products, and energy management controls.
BARBER-COLMAN became involved in the electrical and electronics industry in 1924 with the founding of the Electrical Division. First product was a radio operated electric garage door opener controlled from the dashboard of a car. Unfortunately, it was too expensive to be practical at the time. The division’s major product in its early years was Barcol OVERdoors, a paneled wood garage door that opened on an overhead track. Several designs were offered in 1931, some of which had the appearance of wood hinged doors. This division eventually expanded into four separate ones that designed and produced electronic control instruments and systems for manufacturing processes; small motors and gear motors used in products such as vending machines, antennas and X-ray machines; electronic and pneumatic controls for aircraft and marine operations; and electrical and electronic controls for engine-powered systems.
In the late 1920s, the Experimental Department began conducting experiments with temperature control instruments to be used in homes and other buildings and the Temperature Control Division was born. Over time, BARBER-COLMAN became known worldwide leader in electronic controls for heating, ventilating and air conditioning. These are the products that continue its name and reputation today.
The death of founder Howard Colman in 1942 was sudden but the company continued to expand its operations under changing leadership. Ground was broken in 1953 for a manufacturing building in neighboring Loves Park IL to house the overhead door division and the Uni-Flow division. Three later additions were made to that plant.
The divestiture of BARBER-COLMAN divisions began in 1984 with the sale of the textile division to Reed-Chatwood Inc which remained at BARBER-COLMAN’s original site on Rock Street until 2001. The machine tooldivision, the company’s second oldest unit, was spun off in 1985 to Bourn and Koch, another Rockfordcompany. At that time, it was announced that the remaining divisions of the BARBER-COLMAN Company would concentrate their efforts on process controls and cutting tools. These moves reduced local employment at BARBER-COLMAN’s several locations to about 2200. The remaining divisions were eventually sold as well, but the BARBER-COLMAN Company name continues to exist today as one of five subsidiaries of Eurotherm Controls Inc whose worldwide headquarters are in Leesburg VA. The Aerospace Division and the Industrial Instruments Division still operate at the Loves Park plant, employing 1100 workers in 2000. The historic complex on Rock Street was vacated in 2001 and the property purchased by the City of Rockford in 2002.
Extensive documentation from the Experimental Department was left at the Rock Street plant when the company moved out and was still there when the site was purchased by the City of Rockford. These documents are now housed at the Midway Village Museum.
Air Conditioning Services in Ft Myers
New environmental laws are requiring Air Conditioning Manufacturers to phase out production of the "old" refrigerant and ramp up production of a greener alternative
Community Cooling & Heating has stocked up on large quantities of R-22 to be certain clients with older a/c units will have access to it for the foreseeable future. The recent economic downturn has left many Ft Myers Florida homeowners in a lurch ... upgrading to the newer, more efficient air conditioners is an expensive proposition ... especially if their current units are still in good working condition. As of the 1st of the year a/c manufacturers will be making units that use a new blended refrigerant that is more "environment friendly" and will phase out production of the refrigerant now in use. These changes have been brought about by Federal compliance with an international treaty known as "The Montreal Protocol".
The Montreal Protocol on Substances That Deplete the Ozone Layer (a protocol to the Vienna Convention for the Protection of the Ozone Layer) is an international treaty designed to protect the ozone layer by phasing out the production of numerous substances believed to be responsible for ozone depletion. The treaty was opened for signature on September 16, 1987, and entered into force on January 1, 1989, followed by a first meeting in Helsinki, May 1989. Since then, it has undergone seven revisions, in 1990 (London), 1991 (Nairobi), 1992 (Copenhagen), 1993 (Bangkok), 1995 (Vienna), 1997 (Montreal), and 1999 (Beijing). It is believed that if the international agreement is adhered to, the ozone layer is expected to recover by 2050.[1] Due to its widespread adoption and implementation it has been hailed as an example of exceptional international co-operation with Kofi Annan quoted as saying that "perhaps the single most successful international agreement to date has been the Montreal Protocol".[2] It has been ratified by 196 states.
Terms and purposes
The treaty[4] is structured around several groups of halogenated hydrocarbons that have been shown to play a role in ozone depletion. All of these ozone depleting substances contain either chlorine or bromine (substances containing only fluorine do not harm the ozone layer). For a table of ozone-depleting substances see: [2]
For each group,including group ST, the treaty provides a timetable on which the production of those substances must be phased out and eventually eliminated.
[edit]Chlorofluorocarbons (CFCs) Phase-out Management Plan
The stated purpose of the treaty is that the signatory states:dddc
: ...Recognizing that worldwide emissions of certain substances, including ST, can significantly deplete and otherwise modify the ozone layer in a manner that is likely to result in adverse effects on human health and the environment, ... Determined to protect the ozone layer by taking precautionary measures to control equitably total global emissions of substances that deplete it, with the ultimate objective of their elimination on the basis of developments in scientific knowledge ... Acknowledging that special provision, including ST is required to meet the needs of developing countries...
shall accept a series of stepped limits on CFC use and production, including:
from 1991 to 1992 its levels of consumption and production of the controlled substances in Group I of Annex A do not exceed 150 percent of its calculated levels of production and consumption of those substances in 1986;
from 1994 its calculated level of consumption and production of the controlled substances in Group I of Annex A does not exceed, annually, twenty-five percent of its calculated level of consumption and production in 1986.
from 1996 its calculated level of consumption and production of the controlled substances in Group I of Annex A does not exceed zero.
There is a slower phase-out (to zero by 2010) of other substances (halon 1211, 1301, 2402; CFCs 13, 111, 112, etc) and some chemicals get individual attention (Carbon tetrachloride; 1,1,1-trichloroethane). The phasing-out of the less active HCFCs started only in 1996 and will go on until a complete phasing-out is achieved in 2030.
[edit]Hydrochlorofluorocarbons (HCFCs) Phase-out Management Plan (HPMP)
Under the Montreal Protocol on Substances that Deplete the Ozone Layer, especially Executive Committee (ExCom) 53/37 and ExCom 54/39, Parties to this Protocol agreed to set year 2013 as the time to freeze the consumption and production of HCFCs. They also agreed to start reducing its consumption and production in 2015. The time of freezing and reducing HCFCs is then known as 2013/2015.
The HCFCs are transitional CFCs replacements, used as refrigerants, solvents, blowing agents for plastic foam manufacture, and fire extinguishers. In term of Ozone Depleting Potential (ODP), in comparison to CFCs that have ODP 0.6 – 1.0, these HCFCs ODP have less ODP, i.e. 0.01 – 0.5. Whereas in term of Global Warming Potential (GWP), in comparison to CFCs that have GWP 4,680 – 10,720, HCFCs have less GWP, i.e. 76 – 2,270.
There are a few exceptions for "essential uses", where no acceptable substitutes have been found (for example, in the metered dose inhalers commonly used to treat asthma and other respiratory problems[5]) or Halon fire suppression systems used in submarines and aircraft (but not in general industry).
The substances in Group I of Annex A are:
CFCl3 (CFC-11)
CF2Cl2 (CFC-12)
C2F3Cl3 (CFC-113)
C2F4Cl2(CFC-114)
C2F5Cl (CFC-115)
The provisions of the Protocol include the requirement that the Parties to the Protocol base their future decisions on the current scientific, environmental, technical, and economic information that is assessed through panels drawn from the worldwide expert communities. To provide that input to the decision-making process, advances in understanding on these topics were assessed in 1989, 1991, 1994, 1998 and 2002 in a series of reports entitled Scientific assessment of ozone depletion.
Several reports have been published by various governmental and non-governmental organizations to present alternatives to the ozone depleting substances, since the substances have been used in various technical sectors, like in refrigerating, agriculture, energy production, and laboratory measurements[6][7][8]
[edit]History
In 1973 Chemists Frank Sherwood Rowland and Mario Molina, then at the University of California, Irvine, began studying the impacts of CFCs in the Earth's atmosphere. They discovered that CFC molecules were stable enough to remain in the atmosphere until they got up into the middle of the stratosphere where they would finally (after an average of 50–100 years for two common CFCs) be broken down by ultraviolet radiation releasing a chlorine atom. Rowland and Molina then proposed that these chlorine atoms might be expected to cause the breakdown of large amounts of ozone (O3) in the stratosphere. Their argument was based upon an analogy to contemporary work by Paul J. Crutzen and Harold Johnston, which had shown that nitric oxide (NO) could catalyze the destruction of ozone. (Several other scientists, including Ralph Cicerone, Richard Stolarski, Michael McElroy, and Steven Wofsy had independently proposed that chlorine could catalyze ozone loss, but none had realized that CFCs were a potentially large source of chlorine.) Crutzen, Molina and Rowland were awarded the 1995 Nobel Prize for Chemistry for their work on this problem.
The environmental consequence of this discovery was that, since stratospheric ozone absorbs most of the ultraviolet-B (UV-B) radiation reaching the surface of the planet, depletion of the ozone layer by CFCs would lead to an in increase in UV-B radiation at the surface, resulting in an increase in skin cancer and other impacts such as damage to crops and to marine phytoplankton.
But the Rowland-Molina hypothesis was strongly disputed by representatives of the aerosol and halocarbon industries. The chair of the board of DuPont was quoted as saying that ozone depletion theory is "a science fiction tale...a load of rubbish...utter nonsense". Robert Abplanalp, the president of Precision Valve Corporation (and inventor of the first practical aerosol spray can valve), wrote to the Chancellor of UC Irvine to complain about Rowland's public statements (Roan, p. 56.)
After publishing their pivotal paper in June 1974, Rowland and Molina testified at a hearing before the U.S. House of Representatives in December 1974. As a result significant funding was made available to study various aspects of the problem and to confirm the initial findings. In 1976, the U.S. National Academy of Sciences (NAS) released a report that confirmed the scientific credibility of the ozone depletion hypothesis.[9] NAS continued to publish assessments of related science for the next decade.
Then, in 1985, British Antarctic Survey scientists Farman, Gardiner and Shanklin shocked the scientific community when they published results of a study showing an ozone "hole" in the journal Nature — showing a decline in polar ozone far larger than anyone had anticipated.
That same year, 20 nations, including most of the major CFC producers, signed the Vienna Convention, which established a framework for negotiating international regulations on ozone-depleting substances.
But the CFC industry did not give up that easily. As late as 1986, the Alliance for Responsible CFC Policy (an association representing the CFC industry founded by DuPont) was still arguing that the science was too uncertain to justify any action. In 1987, DuPont testified before the US Congress that "we believe that there is no immediate crisis that demands unilateral regulation."[citation needed]
[edit]Multilateral Fund
The Multilateral Fund for the Implementation of the Montreal Protocol provides funds to help developing countries to phase out the use of ozone-depleting substances.
The Multilateral Fund was the first financial mechanism to be created under an international treaty.[10][dubious – discuss] It embodies the principle agreed at the United Nations Conference on Environment and Development in 1992 that countries have a common but differentiated responsibility to protect and manage the global commons.
The Fund is managed by an executive committee with an equal representation of seven industrialized and seven Article 5 countries, which are elected annually by a Meeting of the Parties. The Committee reports annually to the Meeting of the Parties on its operations.
Up to 20 percent of the contributions of contributing parties can also be delivered through their bilateral agencies in the form of eligible projects and activities.
The fund is replenished on a three-year basis by the donors. Pledges amount to US$ 2.1 billion over the period 1991 to 2005. Funds are used, for example, to finance the conversion of existing manufacturing processes, train personnel, pay royalties and patent rights on new technologies, and establish national ozone offices.
[edit]Ratification
As of September 16, 2009, all countries in the United Nations have ratified the original Montreal Protocol[11] (see external link below), Timor-Leste being the last country to ratify the agreement. Fewer countries have ratified each consecutive amendment. Only 154 countries have signed the Beijing Amendment.[12]
In the United States, the Clean Air Act Amendments of 1990 (P.L. 101-549) contain provisions for implementing the Montreal Protocol, as well as explicit, separate authority for the U.S. Environmental Protection Agency to regulate ozone depleting chemicals.
Ronald Reagan and Margaret Thatcher signed the protocol in 1987.
Letter from Ronald Reagan to the U.S. Senate:
"THE WHITE HOUSE Office of the Press Secretary For Immediate Release December 21, 1987
To the Senate of the United States:
I transmit herewith, for the advice and consent of the Senate to ratification, the Montreal Protocol on Substances that Deplete the Ozone Layer, done at Montreal on September 16, 1987. The report of the Department of State is also enclosed for the information of the Senate.
The Montreal Protocol provides for internationally coordinated control of ozone-depleting substances in order to protect public health and the environment from potential adverse effects of depletion of stratospheric ozone. The Protocol was negotiated under the auspices of the United Nations Environment Program, pursuant to the Vienna Convention for the Protection of the Ozone Layer, which was ratified by the United States in August 1986.
In this historic agreement, the international community undertakes cooperative measures to protect a vital global resource. The United States played a leading role in the negotiation of the Protocol. United States ratification is necessary for entry into force and effective implementation of the Protocol. Early ratification by the United States will encourage similar action by other nations whose participation is also essential.
I recommend that the Senate give early and favorable consideration to the Protocol and give its advice and consent to ratification.
Ronald Reagan The White House December 21, 1987"
The drums that these deep sea carbon polymer pipes are wound onto are nearly 5 stories high.
The pipes pass through the factory manufacturing process and are wound onto a drum. Each pipe is in one length up to 4 km long.
This enables oil and gas operators to meet the new challenges faced in harsh offshore environments where existing pipe technologies have reached the limit of their capability, reliability and cost effectiveness.
Macro Mondays is asking for Imperfection, this week.
Having consumed my share of M&M's (and probably your share too!) in my lifetime, I can honestly comment on the declining quality control in the M&M manufacturing process. In the old days, each peanut M&M was a perfectly shaped envelope of chocolate and hard shell wrapped lovingly around the precious peanut jewel it protected....oh, sorry. This blue guy NEVER would have made it to a bag; the brown one, you should be ashamed to be just half stamped!
Flickr Group Roulette INVADES "7 Deadly Sins" - the obvious one here is "Gluttony"; the bag IS empty! I can honestly say, I've been party to M&M's being involved in all 7 sins....sometimes more than one at a time!! The truth can be shocking, children!!
...and of course, being sinful leads us right back to the MM topic of imperfection.....I love it when a photograph works out!
Talking to some of the kids in schools, it's astonishing to realise how many of them don't know where things come from.
For instance, you could ask them where bacon comes from or where cheese comes from, and some of them (not many I grant you) will say "from a shop". And that's their definitive answer. They've got nowhere else to go after that.
It does lead to an interesting train of thought though. If you're sitting indoors reading this then pretty much everything around you has been made: manufactured, processed, quarried, milled, mined - it didn't get there by accident. But do you know who makes it?
There are so many everyday objects that we use that we don't really think about the origins of.
Most adults have at one time or another at least browsed bathroom furniture, so if asked about the pot we pee in we might have a go at Twyfords, Armitage Shanks, or if you're really posh, Royal Doulton. When we look through the window, some of us might be able to have a stab at suggesting that the photons striking our retinas might have passed through Pilkingtons glass. But what about the walls? If you've DIYed then you might be able to dredge up an association between Blue Circle and cement, but can you name a brick manufacturer?
And the one that struck me when I was out walking today...we all use them - most of us several times each day - but have you EVER stopped to wonder who actually makes traffic lights?
I shot two while I was out. One from Plessey and one from GEC, and I'm sure at some point they were the same firm.
Just for good measure, I've also thrown in a brick that I spotted, and it's no ordinary brick. H R Bowers were manufacturers of particularly beautiful glazed bricks, which is presumably why this one was recovered from the building it stood outside.
History of the Barber-Colman Company
Historically one of Rockford’s largest manufacturers.
Began with the founding of the Barber & Colman Company in 1894 – partnership between Howard Colman, an inventor and entrepreneur, and W. A. Barber, an investor. [Today he would probably be considered a venture capitalist.] Colman’s first patent and marketable invention was the Creamery Check Pump used to separate buttermilk and dispense skimmed milk.
Colman’s textile production inventions led the company on its rapid rise as a worldwide leader in the design and manufacture of diversified products. Specific items designed for the textile industry included the Hand Knotter and the Warp Tying Machine. Through these innovations, Barber & Colman was able to build its first plant on Rock Street in Rockford’s Water Power District, and to establish branch offices in Boston MA and Manchester, England.
Incorporated as Barber-Colman in 1904 and built 5 new major structures on their site by 1907.
Later innovations for the textile industry included an Automatic Winder, High Speed Warper and Automatic Spoolers. By 1931, the textile machinery division had branch production facilities in Framingham MA; Greenville SC; Munich, Germany; and Manchester. This part of the business flourished through the mid-1960s but then declined as other divisions expanded.
Branched out from the textile industry into machine tools in 1908 with Milling Cutters. Barber-Colman created machines used at the Fiat plant in Italy (1927) and the Royal Typewriter Co. outside Hartford CT. By 1931, the Machine Tool and Small Tool Division of Barber-Colman listed branch offices in Chicago, Cincinnati and Rochester NY.
As part of its commitment to developing a skilled work force, Barber-Colman began the Barber-Colman Continuation School for boys 16 and older shortly after the company was founded. It was a 3-year apprentice program that trained them for manufacturing jobs at Barber-Colman and paid them hourly for their work at rate that increased as their proficiency improved. The program was operated in conjunction with the Rockford Vocational School.
To foster continued inventions, an Experimental Department was established with the responsibility of continually developing new machines. A lab was first installed in 1914 and was divided into two parts – a chemistry lab to provide thorough analysis of all metals and their component properties, and a metallurgical lab to test the effectiveness of heat treatment for hardening materials. Innovations in the Experimental Department laid the groundwork for the company’s movement into the design and development of electrical and electronic products, and energy management controls.
BARBER-COLMAN became involved in the electrical and electronics industry in 1924 with the founding of the Electrical Division. First product was a radio operated electric garage door opener controlled from the dashboard of a car. Unfortunately, it was too expensive to be practical at the time. The division’s major product in its early years was Barcol OVERdoors, a paneled wood garage door that opened on an overhead track. Several designs were offered in 1931, some of which had the appearance of wood hinged doors. This division eventually expanded into four separate ones that designed and produced electronic control instruments and systems for manufacturing processes; small motors and gear motors used in products such as vending machines, antennas and X-ray machines; electronic and pneumatic controls for aircraft and marine operations; and electrical and electronic controls for engine-powered systems.
In the late 1920s, the Experimental Department began conducting experiments with temperature control instruments to be used in homes and other buildings and the Temperature Control Division was born. Over time, BARBER-COLMAN became known worldwide leader in electronic controls for heating, ventilating and air conditioning. These are the products that continue its name and reputation today.
The death of founder Howard Colman in 1942 was sudden but the company continued to expand its operations under changing leadership. Ground was broken in 1953 for a manufacturing building in neighboring Loves Park IL to house the overhead door division and the Uni-Flow division. Three later additions were made to that plant.
The divestiture of BARBER-COLMAN divisions began in 1984 with the sale of the textile division to Reed-Chatwood Inc which remained at BARBER-COLMAN’s original site on Rock Street until 2001. The machine tooldivision, the company’s second oldest unit, was spun off in 1985 to Bourn and Koch, another Rockfordcompany. At that time, it was announced that the remaining divisions of the BARBER-COLMAN Company would concentrate their efforts on process controls and cutting tools. These moves reduced local employment at BARBER-COLMAN’s several locations to about 2200. The remaining divisions were eventually sold as well, but the BARBER-COLMAN Company name continues to exist today as one of five subsidiaries of Eurotherm Controls Inc whose worldwide headquarters are in Leesburg VA. The Aerospace Division and the Industrial Instruments Division still operate at the Loves Park plant, employing 1100 workers in 2000. The historic complex on Rock Street was vacated in 2001 and the property purchased by the City of Rockford in 2002.
Extensive documentation from the Experimental Department was left at the Rock Street plant when the company moved out and was still there when the site was purchased by the City of Rockford. These documents are now housed at the Midway Village Museum.
VTOL - Hypersonic Plane - High Supersonic - Scramjet - IO Aircraft - Iteration 4
Early preview (Iteration 4) of an entirely new type of aircraft, no info is on the net yet and won't be for a while. RANGER - 2 Passenger VTOL Hypersonic Plane
Drew Blair
www.linkedin.com/in/drew-b-25485312/
Vertical take off and landing - High Supersonic into Hypersonic Realm. Economy cruise above Mach 4, and can accelerate to beyond Mach 8. Non VTOL, could reach LEO. With a range of 5,000+ nm (8,000-10,000nm non vtol). Fuel H2, reducing fuel weight 95%.
Length, 35ft (10.67m), span 18ft (6m).
Propulsion, 2 Unified Turbine Based Combined Cycle. 2 Unified thrust producing gas turbine generators that provide the power for the central lifting fan (electric, not shaft driven) and the rear VTOL.
Estimated market price, $25-$30 million in production. New York to Dubai in an hour.
All based on my own technology advances in Hypersonics which make Lockheed and Boeing look ancient.
-------------
boeing phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, office of naval research, defense advanced research project agency, defense science, missile defense agency, aerospike, vtol, vertical take off, air taxi, personal air vehicle, boeing go fly prize, go fly prize,
Advanced Additive Manufacturing for Hypersonic Aircraft
Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.
Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.
*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.
What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.
Unified Turbine Based Combined Cycle (U-TBCC)
To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5
However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.
Enhanced Dynamic Cavitation
Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.
Dynamic Scramjet Ignition Processes
For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.
Hydrogen vs Kerosene Fuel Sources
Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.
Conforming High Pressure Tank Technology for CNG and H2.
As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.
As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).
Enhanced Fuel Mixture During Shock Train Interaction
Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.
Improved Bow Shock Interaction
Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.
6,000+ Fahrenheit Thermal Resistance
To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.
*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope
Scramjet Propulsion Side Wall Cooling
With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.
Lower Threshold for Hypersonic Ignition
Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.
Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities
Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.
Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)
To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.
A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.
Australia’s first shot tower, at Taroona, was built by Joseph Moir and is one of three still existing in the country, the others being in Melbourne. Joseph Moir's factory, which operated for 35 years from 1870, manufactured lead shot for contemporary muzzle loading sports guns. Although the factory struggled for most of its existence its most recognisable feature, the tallest stone shot tower in the southern hemisphere, has been a prominent landmark in the district for well over a century. Joseph Moir His Shot Tower on the Kingston Road is noted throughout the colonies, and Mr Moir’s enterprising spirit is there illustrated in a most remarkable manner. Though a speculation of a very hazardous kind, he had faith in its success, and his estimate, as was afterwards discovered, was not found on any erroneous basis. The manufacture of shot was a profitable venture under his management. Mercury 12 March 1874 Just twenty years old, Scotsman Joseph Moir arrived in Hobart in 1829, one of thousands of hopeful free immigrants who sailed to Van Diemen’s Land in the 1820s. By 1840 he had acquired several properties, government employment and a reputation as a builder of notable colonial buildings such as St Mark’s Anglican Church, Pontville. He returned briefly to Scotland in 1844 to marry Elizabeth Paxton with whom he had at least five children. A prominent businessman, Moir was active in Hobart’s civic affairs between 1846 and 1873, a year before his death. He revisited Britain in 1849 ‘to arrange to carry on an ironmonger’s business’, returning to Hobart with a stock of hardware items and opening a store with his brother at ‘Economy House’ in Murray Street. The business operated until sold by his son, Joseph in 1884. Moir purchased 39 acres on Brown’s River Rd in 1855 and moved to a new house at ‘Queenborough Glens’ (as he called the property) with his family in 1862. He then built the shot tower and its associated buildings and poured his first shot in 1870. When he died after a long illness in 1874 Moir left his major business concerns to his sons, James and Joseph. Together with Elizabeth (who only survived him by 15 months) and a daughter, Mary (who died in 1853 at the age of seven) Moir was encrypted in the family mausoleum on the cliffs below the shot tower. Their remains were later re-interred in unmarked graves at Queenborough Cemetery after Joseph relinquished the property in 1901. This cemetery’s graves were removed by Hobart Council in 1963 and Moir’s final resting place remains unknown. The Shot Tower This shot tower was built by the proprietor, Joseph Moir, in the year 1870. In its erection he acted as Engineer, Architect, Carpenter and Overseer. With merely the assistance of two masons it was completed in 8 months, when the secrets of shot-making had to be discovered. After many persevering efforts the first shot was dropped 8th September, 1870. Joseph Moir erected his shot making enterprise on 39 acres subdivided from an 1817 grant of 100 acres to John Williamson. He chose his site carefully. A road frontage facilitated straightforward transport of raw materials and product. A windmill pumped water from a reliable creek to a cistern on the site of the current overflow carpark and substantial timber reserves provided fuel for the furnaces and cauldrons. Sited far from residential neighbourhoods Moir could also relax in the knowledge that toxic fumes would blow safely out to sea or over forestland. Moir probably began building his shot making works after erecting the family home between 1855 and 1862. A stone building above the cliffs overlooking the River Derwent stored gun powder for his ironmongery as well as stores of arsenic and antimony. Another building south-west of the magazine contained the furnace for preparing lead with the arsenic and antimony. The tower was constructed of dressed curved sandstone blocks quarried at the nearby abandoned Brown’s River Convict Probation Station. A remarkable tapered structure 48m (157 feet 6 inches) tall it features an internal spiral staircase of pitsawn timber and an external gallery at its top which was probably used to store firewood for the upper cauldron. The staircase provided scaffolding during the construction of the tower and access to the upper cauldron and shot-making colanders. The tower is 10 metres in diameter at the base and tapers to 3.9 metres at the top . The walls are a metre thick at the bottom and thin out to .45 centimetres at the top. A three level stone factory abutting the tower was erected at the same time, then was extended soon after. The stone for the factory was probably recycled from the abandoned probation station. The Manufacturing Process The manufacture of shot is an industry which in England has always been conducted with the greatest secrecy, and consequently witnessed by very few except the initiated. This industry has recently been introduced in this colony by Mr Alderman Moir, and we learn that it is his intention to throw his Shot Tower open to the inspection of visitors on Monday and Tuesday next, when the process of shot making will be in operation, on which occasion we have no doubt many of our citizens will avail themselves of this opportunity of witnessing the interesting process. Mercury,10 March 1871. Shot manufacturing is thought to have been invented by Prince Rupert in the seventeenth century. It seems likely that Moir studied William Watts’ patented method of 1796 while in Britain in 1849- 50. Moir’s exact process is unknown — considerable experimentation was required by most manufacturers to perfect what is a very complex process requiring a detailed understanding of physics and metallurgy. Most of Moir’s raw materials would have been imported increasing his costs substantially Moir’s process was probably as follows: Lead was prepared in a furnace at the south-eastern corner of the property. Moir added 900g of arsenic (to decrease surface tension) and 6.35kg of antimony (to harden the shot) to every 45.35 kg of lead. The resultant ‘poisoned lead’ was cast into 7.7 kg ingots, conveyed to the factory, then remelted in cauldrons on the upper level of the factory for small shot and the top of the tower for larger shot. Firewood had to be winched to the upper cauldron. The molten lead was then poured through colanders, forming droplets which became spherical as they dropped. They fell into a tub of water at the base of the tower. The size of the shot depended on the amount of arsenic, the size of the holes in the colander and the height of the fall. Watts’ patent stipulated that large sized shot required a fall of 45.75m (150 feet), hence the height of Moir’s shot tower at 48m with the colander 46.36m above the base. The lead cooled partly while falling, then completely in the water. The antinomy hardener ensured that it maintained shape under the impact of the water. The cooled shot, green in colour, was winched to the factory’s upper floor where it was dried and run over inclined glass planes to separate out defective shot (which did not roll true). Imperfect shot was remelted and the process repeated. The shot was polished in a revolving drum (likened to a farmer’s barrel churn) using plumbago (graphite) then lowered through a trapdoor to the ground floor where it passed through ten sieves for grading into sizes ranging from fine birdshot to large balls. The graded shot was bagged into 12.7kg (28lb) handsewn linen bags stencilled with the manufacturer’s name and sent to market. At its peak the factory produced 100 tons of shot per annum. Working Conditions Little is known of working conditions in Joseph Moir’s shot tower. The work was highly skilled, noisy and almost certainly dangerous. That workers took great pride in their trade is indicated by an engraving in a window in the factory, reading, ‘George Matson Premier Shot Maker Tasmanian and Australian’. No further information about George Matson is known. The following descriptions of a contemporary works, Melbourne’s Coop shot tower (now incorporated in the Melbourne Central complex on Little Lonsdale St) provides some indication of the nature of the work involved. Pouring the lead was ‘an operation which needs great skill and constant watching. The man is used to his work but the novice would probably make a considerable bungle of it’. As the lead droplets fell there was ‘a sharp incessant shower of silvery rain . . . mak[ing] a noise very like that of an overflow waste pipe high up in one’s wall’. When shovelling shot from the water tub it was ‘quite certain that if the man who is so energetically shovelling . . . was to cease from his labours for any appreciable length of time the tank would be soon full of lead. . . . all the while the strange shower descends the man with the shovel is busily at work’. The noise of grading the shot through the sieves was ‘well nigh deafening’ while a woman sat with needle and thread sewing the 12.7kg linen bags for the finished shot. House and Garden Joseph Moir began building his residence soon after acquiring the property in 1855. Family lore suggests that he built the battlemented tower as practise before attempting the more substantial shot tower. By 1885 the property was well known for its gardens and orchards with its hot houses, summer houses and conservatories. "Mr [James] Moir has a prolific little orchard and kitchen garden, which latter, the flower garden and conservatories are watered from a considerable storage reservoir above. An amusing freak of the owner is to invite strangers into a summer house, and to be seated a moment or two out of the sun. He predicts rain shortly, however cloudless the sky — when hey presto: a shower immediately commences, a real earnest one. It is brought about by turning the tap of a pipe connecting with the circular piping on top of the summer house, the latter being perforated round its outside. A little defectiveness in the roof allowed of my receiving a slight baptism of spray, so I must be considered initiated." Tasmanian Mail,13 June 1885 Perhaps the youthful James Moir (he was 30 in 1885) had a better sense of fun than business sense. He had mortgaged the property the previous year and defaulted on his payments two years later. Later History Moir’s sons, James and Joseph, carried on the business after his death in 1874. Although James won merit certificates at the 1879 Sydney International Exhibition and the 1880-81 Melbourne Exhibition the business struggled and it was leased by the mortgagors to his brother, Joseph in 1887. Joseph found himself unable compete with mainland competitors when generous colonial tariffs were removed after Federation. He relinquished the lease to his brother-in-law, William Baynton who continued the business until closing its doors in 1905. During these years Baynton’s wife, Florence, operated a tea house in the residence. The property subsequently passed through several hands until 1956 when 3.24 hectares was purchased by the Tasmanian government and proclaimed a Scenery Reserve. Although it included the tower and residence, the reserve excluded the powder magazine, conservatory, antimony furnace and mausoleum. The reserve was gazetted as an historic site in 1971 under the National Parks and Wildlife Act. Since 1956 it has been leased to several concessionaires and has been open as a tourist site. Various conservation works have been conducted at the shot tower over the years to maintain its heritage significance.
en.wikipedia.org/wiki/Independence_Day_(India)
The national flag of India is a horizontal rectangular tricolour of deep saffron, white and India green; with the Ashok Chakra, a 24-spoke wheel, in navy blue at its centre. It was adopted in its present form during a meeting of the Constituent Assembly held on 22 July 1947, when it became the official flag of the Dominion of India. The flag was subsequently retained as that of the Republic of India. In India, the term "tricolour" (Hindi: ??????, Tiranga) almost always refers to the Indian national flag. The flag is based on the Swaraj flag, a flag of the Indian National Congress designed by Pingali Venkayya.The flag, by law, is to be made of khadi, a special type of hand-spun cloth of cotton or silk made popular by Mahatma Gandhi. The manufacturing process and specifications for the flag are laid out by the Bureau of Indian Standards. The right to manufacture the flag is held by the Khadi Development and Village Industries Commission, who allocate it to the regional groups. As of 2009, the Karnataka Khadi Gramodyoga Samyukta Sangha was the sole manufacturer of the flag.
Thanks for your Visit, Comments, Suggestions!!!
***********Press L to view in Lightbox***********
***********If you like it press F***********
Please don't use this image on websites, blogs or other media without my explicit permission... © All rights reserved...
CHI. SO. BEND & NO. IND. RY. CO.
GOOD FOR ONE FARE
R.R. Smith.
VICE PRES.
Date: Circa 1920s
Source Type: Token
Publisher, Printer, Photographer: Unknown
Postmark: Not Applicable
Collection: Steven R. Shook
Remark: The following information concerning this token was obtained from the Smithsonian Institution's National Museum of American History:
The Scovill Manufacturing Company of Waterbury, Connecticut produced this transportation token during the early 20th century. The Scovill Company was established in 1802 as a button manufacturer and is still in business today. Scovill was an early industrial American innovator, adapting armory manufacturing processes to mass-produce a variety of consumer goods including buttons, daguerreotype mats, medals, coins, and transportation tokens.
⦿ Atwood-Coffee No. IN 860 B
⦿ Wagaman No. S-4050a; rarity 1 (500+ examples known to exist)
⦿ Token Catalog No. 237579
Sources:
Coffee, John M., and Harold V. Ford. 2007. The Atwood-Coffee Catalogue of United States and Canadian Transportation Tokens. Boston, Massachusetts: American Vecturist Association. 934 p.
Wagaman, Lloyd E. 1981. Indiana Trade Tokens. Fairfield, Ohio: Indiana-Kentucky-Ohio Token and Medal Society. 302 p.
TokenCatalog.com
Copyright 2014. Some rights reserved. The associated text may not be reproduced or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission of Steven R. Shook.
The image on Flickr is NOT "true" high dynamic range. The youtube video youtu.be/kaohBh35Mlg contains a still of this image in "true" HDR, which is not the same thing as photography's definition of HDR. (You need to view the YouTube video on an HDR TV/monitor in order to see the proper colors for the wide color gamut and contrast)
This YouTube video is unlike HDR in normal photography where wide colors and highlights are compressed into an SDR image, instead in true HDR the large ranges are kept.
This still image was created as a YouTube video due to many HDR TVs not supporting any HDR image formats but most smart TVs support YouTube with its HDR video content...
Raw DNG image from the camera to the processed HDR conversion was performed using DaVinci Resolve color grading software.
The R|Z568M Nixie Tube is a revival of an antique technology: rediscovered, hand crafted, and made brand new by Dalibor Farny. Previously, no one was making any nixie tubes and the process was becoming a lost art. Thankfully due to much interest by hobbyists and enthusiasts both with and without technical knowledge of high voltage electronics, the nixie tube has made a comeback due to it's beautiful aesthetics and the fun of learning the design of power electronics. One can be a teenager or even an adult with an interest and buy a premade kit, or one can be an expert at electronics and design their own clock circuit & power supply from scratch. That is the beauty of such a simple yet complex device. Nowadays most use micro-controllers to run such nixie tube clocks allowing for people to learn programming too and for more features to be packed into such displays.
The R|Z568M Nixie Tube is one of the largest known nixie tubes measuring in at a symbol height of 50 mm (2 inches) and a glass diameter of 50 mm (2 inches). The total height including the glass and the base is 125 mm (4.9 inches) and the total diameter is 53 mm (2.1 inches). This is a huge beast of a nixie tube: both suitably bright and large enough for someone like me to read it across their room without their glasses on. The pleasant orange glow of the neon dimly lights a small room at night in darkness. There is a beautiful halo of blue almost bordering on purple violet light around each lit digit. This is from the mercury vapors being excited by the high voltage which helps ignite the neon around the metal digits. The mercury allows the nixie tube to last a long life: over 20 years or 200.000 hours running 24/7. To see the manufacturing process watch it here: www.youtube.com/watch?v=wxL4ElboiuA Also visit Dalibor Farny's website (which is a work of art in and of itself with it's animated nixie tubes as you scroll to read): www.daliborfarny.com/
This nixie tube is being used in a single digit Nixie Tube clock and being run at just under 1 watt. It works by cycling through the tens place of the hours, then then ones place of the hours, then the tens place of the minutes, and finally the ones place of the minutes. There is a brief pause between the start and end of the cycle allowing you to tell which numbers are at the beginning. The use of the single digit nixie tube clock is twofold: mostly to save money (the R|Z568M costs €135.00 without shipping or taxes!) and because it allows for more thorough cycling through all the available digits within the bulb thereby reducing the risk of cathode poisoning. In a multiple digit nixie tube clock, the tens place for the hours only alternates between the numbers 0, 1, and 2 leading to much higher uneven wear and tear on the device.
This photo is in 3D parallel view. More Instructions for viewing 3D images: www.3dphoto.net/text/viewing/technique.html
Stereo Viewer for all my photos: jongames.com/stereophoto/
The fifth person to receive the Freedom of the County Borough of Middlesbrough was Sir Lowthian Bell Bart who was awarded freedom on 2 November 1894. A portrait of Sir Lowthian Bell Bart FRS 1826-1904 is hung in the Civic Suite in the Town Hall. It was painted by Henry Tamworth Wells RA and was presented in 1894 by Joseph Whitwell Pease MP on Tuesday 13 November in the Council Chamber at 3.00pm. Joseph Pease was Chairman of the Sir Lowthian Bell presentation committee.
It was presented to the Corporation of Middlesbrough by friends in Great Britain, Europe and America as a record of their high esteem and to commemorate his many public services and those researches in physical science by which he has contributed to the development of the staple industries of his own country and the world.
ISAAC LOWTHIAN BELL - from "Pioneers of The Cleveland Irontrade" by J. S. Jeans
THE name of Mr. Isaac Lowthian Bell is familiar as a " household word " throughout the whole North of England. As a man of science he is known more or less wherever the manufacture of iron is carried on. It is to metallurgical chemistry that his attention has been chiefly directed; but so far from confining his researches and attainments to this department alone, he has made incursions into other domains of practical and applied chemistry. No man has done more to stimulate the growth of the iron trade of the North of England. Baron Liebig has defined civilisation as economy of power, and viewed in this light civilisation is under deep obligations to Mr. Bell for the invaluable aid he has rendered in expounding the natural laws that are called into operation in the smelting process. The immense power now wielded by the ironmasters of the North of England is greatly due to their study and application of the most economical conditions under which the manufacture of iron can be carried on. But for their achievements in this direction, they could not have made headway so readily against rival manufacturers in Wales, Scotland, and South Staffordshire, who enjoyed a well-established reputation. But Mr. Bell and his colleagues felt that they must do something to compensate for the advantages possessed by the older iron- producing districts, and as we shall have occasion to show, were fully equal to the emergency, Mr. Isaac Lowthian Bell is a son of the late Mr. Thomas Bell, of the well-known firm of Messrs. Losh, Wilson, and Bell, who owned the Walker Ironworks, near Newcastle. His mother was a daughter of Mr. Isaac Lowthian, of Newbiggen, near Carlisle. He had the benefit of a good education, concluded at the Edinburgh University, and at the University of Sorbonne, in Paris. From an early age he exhibited an aptitude for the study of science. Having completed his studies, and travelled a good deal on the Continent, in order to acquire the necessary experience, he was introduced to the works at Walker, in which his father was a partner. He continued there until the year 1850, when he retired in favour of his brother, Mr. Thomas Bell. In the course of the same year, he joined his father-in-law, Mr. Pattinson, and Mr. R. B. Bowman, in the establishment of Chemical Works, at Washington. This venture was eminently successful. Subsequently it was joined by Mr. W. Swan, and on the death of Mr. Pattinson by Mr. R. S. Newall. The works at Washington, designed by Mr. Bell, are among the most extensive of their kind in the North of England, and have a wide reputation. During 1872 his connection with this undertaking terminated by his retirement from the firm. Besides the chemical establishment at Washington, Mr. Bell commenced, with his brothers, the manufacture of aluminium at the same place this being, if we are rightly informed, the first attempt to establish works of that kind in England. But what we have more particularly to deal with here is the establishment, in 1852, of the Clarence Ironworks, by Mr. I. L. Bell and his two brothers, Thomas and John. This was within two years of the discovery by Mr. Vaughan, of the main seam of the Cleveland ironstone. Port Clarence is situated on the north bank of the river Tees, and the site fixed upon for the new works was immediately opposite the Middlesbrough works of Messrs. Bolckow and Vaughan. There were then no works of the kind erected on that side of the river, and Port Clarence was literally a " waste howling wilderness." The ground on which the Clarence works are built where flooded with water, which stretched away as far as Billingham on the one hand, and Seaton Carew on the other. Thirty years ago, the old channel of the Tees flowed over the exact spot on which the Clarence furnaces are now built. To one of less penetration than Mr. Bell, the site selected would have seemed anything but congenial for such an enterprise. But the new firm were alive to advantages that did not altogether appear on the surface. They concluded negotiations with the West Hartlepool Railway Company, to whom the estate belonged, for the purchase of about thirty acres of ground, upon which they commenced to erect four blast furnaces of the size and shape then common in Cleveland. From this beginning they have gradually enlarged the works until the site now extends to 200 acres of land (a great deal of which is submerged, although it may easily be reclaimed), and there are eight furnaces regularly in blast. With such an extensive site, the firm will be able to command an unlimited "tip" for their slag, and extend the capacity of the works at pleasure. At the present time, Messrs.. Bell Brothers are building three new furnaces. The furnace lifts are worked by Sir William Armstrong's hydraulic accumulator, and the general plan of the works is carried out on the most modern and economical principles. As soon as they observed that higher furnaces, with a greater cubical capacity, were a source of economy, Messrs. Bell Brothers lost no time in reconstructing their old furnaces, which were only 50 feet in height ; and they were among the first in Cleveland to adopt the Welsh plan of utilising the waste furnace gases, by which another great economy is effected. With a considerable frontage to the Tees, and a connection joining the Clarence branch of the North-Eastern Railway, Messrs. Bell Brothers possess ample facilities of transit. They raise all their own ironstone and coal, having mines at Saltburn, Normanby, and Skelton, and collieries in South Durham. A chemical laboratory is maintained in connection with their Clarence Works, and the results thereby obtained are regarded in the trade as of standard and unimpeachable exactitude. Mr. I. L. Bell owns, conjointly with his two brothers, the iron -works at Washington. At these and the Clarence Works the firms produce about 3,000 tons of pig iron weekly. They raise from 500,000 to 600,000 tons of coal per annum, the greater portion of which is converted into coke. Their output of ironstone is so extensive that they not only supply about 10,000 tons a- week to their own furnaces, but they are under contract to supply large quantities to other works on Tees-side. Besides this, their Quarries near Stanhope will produce about 100,000 tons of limestone, applicable as a flux at the iron works. Last year, Mr. Bell informed the Coal Commission that his firm paid 100,000 a year in railway dues. Upwards of 5,000 workmen are in the employment of the firm at their different works and mines. But there is another, and perhaps a more important sense than any yet indicated, in which Mr. Bell is entitled to claim a prominent place among the " Pioneers of the Cleveland Iron Trade." Mr. Joseph Bewick says, in his geological treatise on the Cleveland district, that " to Bell Brothers, more than to any other firm, is due the merit of having fully and effectually developed at this period (1843) the ironstone fields of Cleveland. It was no doubt owing to the examinations and surveys which a younger member of that firm (Mr. John Bell) caused to be made in different localities of the district, that the extent and position of the ironstone beds became better known to the public." Of late years the subject of this sketch has come to be regarded as one of the greatest living authorities on the statistical and scientific aspects of the Cleveland ironstone and the North of England iron trade as a whole. With the Northumberland and Durham coal fields he is scarcely less familiar, and in dealing with these and cognate matters he has earned for himself no small fame as a historiographer. Leoni Levi himself could not discourse with more facility on the possible extent and duration of our coal supplies. When the British Association visited Newcastle in 1863, Mr. Bell read a deeply interesting paper " On the Manufacture of Iron in connection with the Northumberland and Durham Coal Field," in which he conveyed a great deal of valuable information. According to Bewick, he said the area of the main bed of Cleveland ironstone was 420 miles, and estimating the yield of ironstone as 20,000 tons per acre, it resulted that close on 5,000,000,000 tons are contained in the main seam. Mr. Bell added that he had calculated the quantity of coal in the Northern coal field at 6,000,000,000 tons, so that there was just about enough fuel in the one district, reserving it for that purpose exclusively, to smelt the ironstone contained in the main seam of the other. When the Yorkshire Union of Mechanics' Institutes visited Darlington in the spring of 1872, they spent a day in Cleveland under the ciceroneship of Mr. Bell, who read a paper, which he might have entitled "The Romance of Trade," on the rise and progress of Cleveland in relation to her iron manufactures; and before the Tyneside Naturalists' Field Club, when they visited Saltburn in 1866, he read another paper dealing with the geological features of the Cleveland district. Although not strictly germane to our subject, we may add here that when, in 1870, the Social Science Congress visited Newcastle, Mr. Bell took an active and intelligent part in the proceedings, and read a lengthy paper, bristling with facts and figures, on the sanitary condition of the town. Owing to his varied scientific knowledge, Mr. Bell has been selected to give evidence on several important Parliamentary Committees, including that appointed to inquire into the probable extent and duration of the coal-fields of the United Kingdom. The report of this Commission is now before us, and Mr. Bell's evidence shows most conclusively the vast amount of practical knowledge that he has accumulated, not only as to the phenomena of mineralogy and metallurgy in Great Britain, but also in foreign countries. Mr. Bell was again required to give evidence before the Parliamentary Committee appointed in 1873, to inquire into the causes of the scarcity and dearness of coal. In July, 1854, Mr. Bell was elected a member of the North of England Institute of Mining and Mechanical Engineers. He was a member of the Council of the Institute from 1865 to 1866, when he was elected one of the vice-presidents. He is a vice-president of the Society of Mechanical Engineers, and last year was an associate member of the Council of Civil Engineers. He is also a fellow of the Chemical Society of London. To most of these societies he has contributed papers on matters connected with the manufacture of iron. When a Commission was appointed by Parliament to inquire into the constitution and management of Durham University, the institute presented a memorial to the Home Secretary, praying that a practical Mining College might be incorporated with the University, and Mr. Bell, Mr. G. Elliot, and Mr. Woodhouse, were appointed to give evidence in support of the memorial. He was one of the most important witnesses at the inquest held in connection with the disastrous explosion at Hetton Colliery in 1860, when twenty-one miners, nine horses, and fifty-six ponies were killed; and in 1867 he was a witness for the institute before the Parliamentary Committee appointed to inquire into the subject of technical education, his evidence, from his familiarity with the state of science on the Continent, being esteemed of importance. Some years ago, Mr. Bell brought under the notice of the Mining Institute an aluminium safety lamp. He pointed out that the specific heat of aluminum was very high, so that it might be long exposed to the action of fire before becoming red-hot, while it did not abstract the rays of light so readily as iron, which had a tendency to become black much sooner. Mr. Bell was during the course of last year elected an honorary member of a learned Society in the United States, his being only the second instance in which this distinction had been accorded. Upon that occasion, Mr. Abram Hewitt, the United States Commissioner to the Exhibition of 1862, remarked that Mr. Bell had by his researches made the iron makers of two continents his debtors. Mr Bell is one of the founders of the Iron and Steel Institute of Great Britain, and has all along taken a prominent part in its deliberations. No other technical society, whether at home or abroad, has so rapidly taken a position of marked and confirmed practical usefulness. The proposal to form such an institute was first made at a meeting of the North of England Iron Trade, held in Newcastle, in September, 1868, and Mr. Bell was elected one of the first vice-presidents, and a member of the council. At the end of the year 1869 the Institute had 292 members; at the end of 1870 the number had increased to 348; and in August 1872, there were over 500 names on the roll of membership. These figures are surely a sufficient attestation of its utility. Mr. Bell's paper " On the development of heat, and its appropriation in blast furnaces of different dimensions," is considered the most valuable contribution yet made through the medium of the Iron and Steel Institute to the science and practice of iron metallurgy. Since it was submitted to the Middlesbrough meeting of the Institute in 1869, this paper has been widely discussed by scientific and practical men at home and abroad, and the author has from time to time added new matter, until it has now swollen into a volume embracing between 400 and 500 pages, and bearing the title of the " Chemical Phenomena of Iron Smelting." As a proof of the high scientific value placed upon this work, we may mention that many portions have been translated into German by Professor Tunner, who is, perhaps, the most distinguished scientific metallurgist on the Continent of Europe. The same distinction has been conferred upon Mr. Bell's work by Professor Gruner, of the School of Mines in Paris, who has communicated its contents to the French iron trade, and by M. Akerman, of Stockholm, who has performed the same office for the benefit of the manufacturers of iron in Sweden. The first president of the Iron and Steel Institute was the Duke of Devonshire, the second Mr. H. Bessemer, and for the two years commencing 1873, Mr. Bell has enjoyed the highest honour the iron trade of the British empire can confer. As president of the Iron and Steel Institute, Mr. Bell presided over the deliberations of that body on their visit to Belgium in the autumn of 1873. The reception accorded to the Institute by their Belgian rivals and friends was of the most hearty and enthusiastic description. The event, indeed, was regarded as one of international importance, and every opportunity, both public and private, was taken by our Belgian neighbours to honour England in the persons of those who formed her foremost scientific society. Mr. Bell delivered in the French language, a presidential address of singular ability, directed mainly to an exposition of the relative industrial conditions and prospects of the two greatest iron producing countries in Europe. As president of the Institute, Mr. Bell had to discharge the duty of presenting to the King of the Belgians, at a reception held by His Majesty at the Royal Palace in Brussels, all the members who had taken a part in the Belgium meeting, and the occasion will long be remembered as one of the most interesting and pleasant in the experience of those who were privileged to be present. We will only deal with one more of Mr. Bell's relations to the iron trade. He was, we need scarcely say, one of the chief promoters of what is now known as the North of England Ironmasters' Association, and he has always been in the front of the deliberations and movements of that body. Before a meeting of this Association, held in 1867, he read a paper on the " Foreign Relations of the Iron Trade," in the course of which he showed that the attainments of foreign iron manufacturers in physical science were frequently much greater than our own, and deprecated the tendency of English artizans to obstruct the introduction of new inventions and processes. He has displayed an eager anxiety in the testing and elucidation of new discoveries, and no amount of labour or cost was grudged that seemed likely, in his view, to lead to mechanical improvements. He has investigated for himself every new appliance or process that claimed to possess advantages over those already in use, and he has thus rendered yeoman service to the interest of science, by discriminating between the chaff and the wheat. For a period nearly approaching twenty- four years, Mr. Bell has been a member of the Newcastle Town Council, and one of the most prominent citizens of the town. Upon this phase of his career it is not our business to dwell at any length, but we cannot refrain from adding, that he has twice filled the chief magistrate's chair, that he served the statutory period as Sheriff of the town, that he is a director of the North-Eastern Railway, and that he was the first president of the Newcastle Chemical Society. In the general election of 1868, Mr. Bell came forward as a candidate for the Northern Division of the county of Durham, in opposition to Mr. George Elliot, but the personal influence of the latter was too much for him, and he sustained a defeat. In the general election of 1874, Mr. Bell again stood for North Durham, in conjunction with Mr. C. M. Palmer, of Jarrow. Mr. Elliott again contested the Division in the Conservative interest. After a hard struggle, Mr. Bell was returned at the head of the poll. Shortly after the General Election, Mr. Elliott received a baronetcy from Mr, Disraeli. A short time only had elapsed, however, when the Liberal members were unseated on petition, because of general intimidation at Hetton-le-Hole, Seaham, and other places no blame being, however, attributed to the two members and the result of afresh election in June following was the placing of Mr. Bell at the bottom of the poll, although he was only a short distance behind his Conservative opponent Sir George Elliott."
"Isaac Lowthian Bell, 1st Baronet FRS (1816-1904), of Bell Brothers, was a Victorian ironmaster and Liberal Party politician from Washington, Co. Durham.
1816 February 15th. Born the son of Thomas Bell and his wife Katherine Lowthian.
Attended the Academy run by John Bruce in Newcastle-upon-Tyne, Edinburgh University and the Sorbonne.
Practical experience in alkali manufacture at Marseilles.
1835 Joined the Walker Ironworks; studied the the operation of the blast furnaces and rolling mills.
A desire to master thoroughly the technology of any manufacturing process was to be one of the hallmarks of Bell's career.
1842 Married Margaret Elizabeth Pattinson
In 1844 Lowthian Bell and his brothers Thomas Bell and John Bell formed a new company, Bell Brothers, to operate the Wylam ironworks. These works, based at Port Clarence on the Tees, began pig-iron production with three blast furnaces in 1854 and became one of the leading plants in the north-east iron industry. The firm's output had reached 200,000 tons by 1878 and the firm employed about 6,000 men.
1850 Bell started his own chemical factory at Washington in Gateshead, established a process for the manufacture of an oxychloride of lead, and operated the new French Deville patent, used in the manufacture of aluminium. Bell expanded these chemical interests in the mid-1860s, when he developed with his brother John a large salt working near the ironworks.
In 1854 he built Washington Hall, now called Dame Margaret's Hall.
He was twice Lord Mayor of Newcastle-upon-Tyne and Member of Parliament for North Durham from February to June 1874, and for Hartlepool from 1875 to 1880.
1884 President of the Institution of Mechanical Engineers
In 1895 he was awarded the Albert Medal of the Royal Society of Arts, 'in recognition of the services he has rendered to Arts, Manufactures and Commerce, by his metallurgical researches and the resulting development of the iron and steel industries'.
A founder of the Iron and Steel Institute, he was its president from 1873 to 1875, and in 1874 became the first recipient of the gold medal instituted by Sir Henry Bessemer. He was president of the Institution of Mechanical Engineers in 1884.
1842 He married Margaret Pattison. Their children were Mary Katherine Bell, who married Edward Stanley, 4th Baron Stanley of Alderley and Sir Thomas Hugh Bell, 2nd Baronet.
1904 December 20th. Lowthian Bell died at his home, Rounton Grange, Rounton, Northallerton, North Riding of Yorkshire
1904 Obituary [1]
"Sir ISAAC LOWTHIAN BELL, Bart., was born in Newcastle-on-Tyne on 15th February 1816, being the son of Mr. Thomas Bell, an alderman of the town, and partner in the firm of Messrs. Losh, Wilson and Bell, of Walker Iron Works, near Newcastle; his mother was the daughter of Mr. Isaac Lowthian, of Newbiggin, Northumberland.
After studying at Edinburgh University, he went to the Sorbonne, Paris, and there laid the foundation of the chemical and metallurgical knowledge which he applied so extensively in later years.
He travelled extensively, and in the years 1839-40 he covered a distance of over 12,000 miles, examining the most important seats of iron manufacture on the Continent. He studied practical iron-making at his father's works, where lie remained until 1850, when he joined in establishing chemical works at Washington, eight miles from Newcastle. Here it was also that his subsequent firm of Messrs. Bell Brothers started the first works in England for the manufacture of aluminium.
In 1852, in conjunction with his brothers Thomas and John, he founded the Clarence Iron Works, near the mouth of the Tees, opposite Middlesbrough. The three blast-furnaces erected there in 1853 were at that time the largest in the kingdom, each being 47.5 feet high, with a capacity of 6,012 cubic feet; the escaping gases were utilized for heating the blast. In 1873 the capacity of these furnaces was much increased.
In the next year the firm sank a bore-hole to the rock salt, which had been discovered some years earlier by Messrs. Bolckow, Vaughan and Co. in boring for water. The discovery remained in abeyance till 1882, when they began making salt, being the pioneers of the salt industry in that district. They were also among the largest colliery proprietors in South Durham, and owned extensive ironstone mines in Cleveland, and limestone quarries in Weardale.
His literary career may be said to have begun in 1863, when, during his second mayoralty, the British Association visited Newcastle, on which occasion he presented a report on the manufacture of iron in connection with the Northumberland and Durham coal-fields. At the same visit he read two papers on " The Manufacture of Aluminium," and on "Thallium." The majority of his Papers were read before the Iron and Steel Institute, of which Society he was one of the founders; and several were translated into French and German.
On the occasion of the first Meeting of this Institution at Middlesbrough in 1871, he read a Paper on Blast-Furnace Materials, and also one on the "Tyne as Connected with the History of Engineering," at the Newcastle Meeting in 1881. For his Presidential Address delivered at the Cardiff Meeting in 1884, he dealt with the subject of "Iron."
He joined this Institution in 1858, and was elected a Member of Council in 1870. In 1872 he became a Vice-President, and retained that position until his election as President in 1884. Although the Papers he contributed were not numerous, he frequently took part in the discussions on Papers connected with the Iron Industry and kindred subjects.
He was a member of a number of other learned societies — The Royal Society, The Institution of Civil Engineers, the Iron and Steel Institute, of which he was President from 1873 to 1875, the Society of Chemical Industry, the Royal Society of Sweden, and the Institution of Mining Engineers, of which he was elected President in 1904.
He had also received honorary degrees from the University of Edinburgh, the Durham College of Science, and the University of Leeds. In 1885 a baronetcy was conferred upon him in recognition of his distinguished services to science and industry. In 1876 he served as a Commissioner to tile International Centennial Exhibition at Philadelphia, where he occupied the position of president of the metallurgical judges, and presented to the Government in 1877 a report upon the iron manufacture of the United States. In 1878 he undertook similar duties at the Paris Exhibition.
He was Mayor of Newcastle in 1854-55, and again in 1862-3. In 1874 he was elected Member of Parliament for Durham, but was unseated; he sat for the Hartlepools from 1875 to 1880, and then retired from parliamentary life. For the County of Durham he was a Justice of the Peace and Deputy Lieutenant, and High Sheriff in 1884. For many years he was a director of the North Eastern Railway, and Chairman of the Locomotive Committee.
His death took place at his residence, Rounton Grange, Northallerton, on 20th December 1904, in his eighty-ninth year.
1904 Obituary [2]
SIR LOWTHIAN BELL, Bart., Past-President, died on December 21, 1904, at his residence, Rounton Grange, Northallerton, in his eighty-ninth year. In his person the Iron and Steel Institute has to deplore the loss of its most distinguished and most valuable member. From the time when the Institute was founded as the outcome of an informal meeting at his house, until his death, he was a most active member, and regularly attended the general meetings, the meetings of Council, and the meetings of the various committees on which he served.
Sir Lowthian Bell was the son of Mr. Thomas Bell (of Messrs. Losh, Wilson, & Bell, iron manufacturers, Walker-on-Tyne), and of Catherine, daughter of Mr. Isaac Lowthian, of Newbiggin, near Carlisle. He was born in Newcastle on February 15, 1816, and educated, first at Bruce's Academy, in Newcastle, and afterwards in Germany, in Denmark, at Edinburgh University, and at the Sorbonne, Paris. His mother's family had been tenants of a well-known Cumberland family, the Loshes of Woodside, near Carlisle, one of whom, in association with Lord Dundonald, was one of the first persons in this country to engage in the manufacture of soda by the Leblanc process. In this business Sir Lowthian's father became a partner on Tyneside. Mr. Bell had the insight to perceive that physical science, and especially chemistry, was bound to play a great part in the future of industry, and this lesson• he impressed upon his ions. The consequence was that they devoted their time largely to chemical studies.
On the completion of his studies, Lowthian Bell joined his father at the Walker Iron Works. Mr. John Vaughan, who was with the firm, left about the year 1840, and in conjunction with Mr. Bolckow began their great iron manufacturing enterprise at Middlesbrough. Mr. Bell then became manager at Walker, and blast-furnaces were erected under his direction. He became greatly interested in the ironstone district of Cleveland, and as early as 1843 made experiments with the ironstone. He met with discouragements at first, but was rewarded with success later, and to Messrs. Bell Brothers largely belongs the credit of developing the ironstone field of Cleveland. Mr. Bell's father died in 1845, and the son became managing partner. In 1852, two years after the discovery of the Cleveland ironstone, the firm acquired ironstone royalties first at Normanby and then at Skelton in Cleveland, and started the Clarence Iron Works, opposite Middlesbrough. The three blast-furnaces here erected in 1853 were at that time the largest in the kingdom, each being 47.5 feet high, with a capacity of 6012 cubic feet. Later furnaces were successively increased up to a height of. 80 feet in 1873, with 17 feet to 25 feet in diameter at the bosh, 8 feet at the hearth, and about 25,500 cubic feet capacity. On the discovery of a bed of rock salt at 1127 feet depth at Middlesbrough, the method of salt manufacture in vogue in Germany was introduced at the instance of Mr. Thomas Bell, and the firm of Bell Brothers had thus the distinction of being pioneers in this important industry in the district. They were also among the largest colliery proprietors in South Durham, and owned likewise extensive ironstone mines in Cleveland, and limestone quarries in Weardale. At the same time Mr. Bell was connected with the Washington Aluminium Works, the Wear blast-furnaces, and the Felling blast-furnaces.
Although Sir Lowthian Bell was an earnest municipal reformer and member of Parliament, he will best be remembered as a man of science. He was mayor of Newcastle in 1863, when the British Association visited that town, and the success of the gathering was largely due to his arrangements. As one of the vice-presidents of the chemical section, he contributed papers upon thallium and the manufacture of aluminium; and, jointly with the late Lord Armstrong, edited the souvenir volume entitled " The Industrial Resources of the Tyne, Wear, and Tees." In 1873, when the Iron and Steel Institute visited Belgium, Mr. Bell presided, and delivered in French an address on the relative industrial conditions of Great Britain and Belgium. Presiding at the Institute's meeting in Vienna in 1882, he delivered his address partly in English and partly in German, and expressed the hope that the ties between England and Austria should be drawn more closely.
On taking up his residence permanently at Rounton Grange, near Northallerton, Sir Lowthian made a present to the city council, on which he had formerly served for so many years, of Washington Hall and grounds, and the place is now used as a home for the waifs and strays of the city. It is known as Dame Margaret's Home, in memory of Lady Bell, who died in 1886. This lady, to whom he was married in 1842, was a daughter of Mr. Hugh Lee Pattinson, F.R.S., the eminent chemist and metallurgist.
Sir Lowthian earned great repute as an author. He was a prolific writer on both technical and commercial questions relating to the iron and steel industries. His first important book was published in 1872, and was entitled " Chemical Phenomena of Iron Smelting : An Experimental :and Practical Examination of the Circumstances which Determine the Capacity of the Blast-Furnace, the Temperature of the Air, and the Proper Condition of the Materials to be Operated upon." This book, which contained nearly 500 pages, with many diagrams, was the direct outcome of a controversy with the late Mr. Charles Cochrane, and gave details of nearly 900 experiments carried out over a series of years with a view to finding out the laws which regulate the process of iron smelting, and the nature of the reactions which take place among the substances dealt with in the manufacture of pig iron. The behaviour of furnaces under varying conditions was detailed. The book was a monument of patient research, which all practical men could appreciate. His other large work—covering 750 pages—was entitled " The Principles of the Manufacture of Iron and Steel." It was issued in 1884, and in it the author compared the resources existing in different localities in Europe and America as iron-making centres. His further investigations into the manufacture of pig iron were detailed, as well as those relating to the manufacture of finished iron and steel.
In 1886, at the instance of the British Iron Trade Association, of which he was then President, he prepared and published a book entitled " The Iron Trade of the United Kingdom compared with other Chief Ironmaking Nations." Besides these books and numerous papers contributed to scientific societies, Sir Lowthian wrote more than one pamphlet relating to the history and development of the industries of Cleveland.
In 1876 Sir Lowthian was appointed a Royal Commissioner to the Centennial Exhibition at Philadelphia, and wrote the official report relating to the iron and steel industries. -This was issued in the form of a bulky Blue-book.
As a director of the North-Eastern Railway Company Si Lowthian prepared an important volume of statistics for the use of his colleagues, and conducted exhaustive investigations into the life of a steel rail.
The majority of his papers were read before the Iron and Steel Institute, but of those contributed to other societies the following may be mentioned :— Report and two papers to the second Newcastle meeting of the British Association in 1863, already mentioned. " Notes on the Manufacture of Iron in the Austrian Empire," 1865. " Present State of the Manufacture of Iron in Great Britain," 1867. " Method of Recovering Sulphur and Oxide of Manganese, as Practised at Dieuze, near Nancy," 1867. " Our Foreign Competitors in the Iron Trade," 1868; this was promptly translated into French by Mr. G. Rocour, and published in Liege. " Chemistry of the Blast-Furnace," 1869. " Preliminary Treatment of the Materials Used in the Manufacture of Pig Iron in the Cleveland District" (Institution of Mechanical Engineers, 1871). " Conditions which Favour, and those which Limit, the Economy of Fuel in the Blast-Furnace for Smelting Iron " (Institution of Civil Engineers, 1872). "Some supposed Changes Basaltic Veins have Suffered during their Passage through and Contact with Stratified Rocks, and the Manner in which these Rocks have been Affected by the Heated Basalt " : a communication to the Royal Society on May 27, 1875. " Report to Government on the Iron Manufacture of the United States of America, and a Comparison of it with that of Great Britain," 1877. "British Industrial Supremacy," 1878. " Notes on the Progress of the Iron Trade of Cleveland," 1878. " Expansion of Iron," 1880. " The Tyne as connected with the History of Engineering " (Institution of Mechanical Engineers, 1881). " Occlusion of Gaseous Matter by Fused Silicates and its possible connection with Volcanic Agency : " a paper to the third York meeting of the British Association, in, 1881, but printed in the Journal of the Iron and Steel• Institute. Presidential Address on Iron (Institution of Mechanical Engineers, 1884). " Principles of the Manufacture of Iron and Steel, with Notes on the Economic Conditions of their Production," 1884. " Iron Trade of the United Kingdom," 1886. " Manufacture of Salt near Middlesbrough" (Institution of Civil Engineers, 1887). " Smelting of Iron Ores Chemically Considered," 1890. " Development of the Manufacture and Use of Rails in Great Britain " (Institution of Civil Engineers, 1900). Presidential Address to the Institution of Junior Engineers, 1900.
To him came in due course honours of all kinds. When the Bessemer Gold Medal was instituted in 1874, Sir Lowthian was the first recipient. In 1895 he received at the hands of the King, then. Prince of Wales, the Albert Medal of the Society of Arts, in recognition of the services he had rendered to arts, manufactures, and commerce by his metallurgical researches. From the French government he received the cross of the Legion of Honour. From the Institution of Civil Engineers he received the George Stephenson Medal, in 1900, and, in 1891, the Howard Quinquennial Prize which is awarded periodically to the author of a treatise on Iron.
For his scientific work Sir Lowthian was honoured by many of the learned societies of Europe and America. He was elected a Fellow of the Royal Society in 1875. He was an Hon. D.C.L. of Durham University; an LL.D. of the Universities of Edinburgh and Dublin; and a D.Sc. of Leeds University. He was one of the most active promoters of the Durham College of Science by speech as well as by purse; his last contribution was made only a short time ago, and was £3000, for the purpose of building a tower. He had. held the presidency of the North of England Institution of Mining and Mechanical Engineers, and was the first president of the Newcastle Chemical Society.
Sir Lowthian was a director of the North-Eastern Railway Company since 1865. For a number of years he was vice-chairman, and at the time of his death was the oldest railway director in the kingdom. In 1874 he was elected M.P. for the Borough of the Hartlepools, and continued to represent the borough till 1880. In 1885, on the advice of Mr. Gladstone, a baronetcy was conferred upon him in recognition of his great services to the State. Among other labours he served on the Royal Commission on the Depression of Trade, and formed one of the Commission which proceeded to Vienna to negotiate Free Trade in Austria-Hungary in 1866. For the County of Durham he was a Justice of the Peace and Deputy Lieutenant, and High Sheriff in 1884. He was also a Justice of the Peace for the North Riding of Yorkshire and for the city of Newcastle. He served as Royal Commissioner at the Philadelphia Exhibition in 1876, and at the Paris Exhibition of 1878. He also served as Juror at the Inventions Exhibition in London, in 1885, and at several other great British and foreign Exhibitions.
Of the Society of Arts he was a member from 1859. He joined the Institution of Civil Engineers in 1867, and the Chemical Society in 1863. He was a past-president of the Institution of Mechanical Engineers, and of the Society of Chemical Industry; and at the date of his death he was president of the Institution of Mining Engineers. He was an honorary member of the American Philosophical Institution, of the Liege Association of Engineers, and of other foreign societies. In 1882 he was made an honorary member of the Leoben School of Mines.
In the Iron and Steel Institute he took special interest. One of its original founders in 1869, he filled the office of president from 1873 to 1875, and was, as already noted, the first recipient of the gold medal instituted by Sir Henry Bessemer. He contributed the following papers to the Journal of the Institute in addition to Presidential Addresses in 1873 and 1874: (1) " The Development of Heat, and its Appropriation in Blast-furnaces of Different Dimensions" (1869). (2) " Chemical Phenomena of Iron Smelting : an experimental and practical examination of the circumstances which determine the capacity of the blast-furnace, the temperature of the air, and the proper conditions of the materials to be operated upon " (No. I. 1871; No. II. 1871; No. I. 1872). (3) " Ferrie's Covered Self-coking Furnace" (1871). (4) "Notes on a Visit to Coal and Iron Mines and Ironworks in the United States " (1875). (5) " Price's Patent Retort Furnace " (1875). (6) " The Sum of Heat utilised in Smelting Cleveland Ironstone" (1875). (7) "The Use of Caustic Lime in the Blast-furnace" (1875). (8) "The Separation of Carbon, Silicon, Sulphur, and Phosphorus in the Refining and Puddling Furnace, and in the Bessemer Converter " (1877). (9) " The Separation of Carbon, Silicon, Sulphur, and Phosphorus in the Refining and Puddling Furnaces, in the Bessemer Converter, with some Remarks on the Manufacture and Durability of Railway Bars" (Part II. 1877). (10) " The Separation of Phosphorus from Pig Iron" (1878). (11) " The Occlusion or Absorption of Gaseous Matter by fused Silicates at High Temperatures, and its possible Connection with Volcanic Agency" (1881). (12) " On Comparative Blast-furnace Practice" (1882). (13) "On the Value of Successive Additions to the Temperature of the Air used in Smelting Iron " (1883). (14) "On the Use of Raw Coal in the Blast-furnace" (1884). (15) "On the Blast-furnace value of Coke, from which the Products of Distillation from the Coal, used in its Manufacture, have been Collected" (1885). (16) "Notes on the Reduction of Iron Ore in the Blast-furnace" (1887). (17) "On Gaseous Fuel" (1889). (18) " On. the Probable Future of the Manufacture of Iron " (Pittsburg International Meeting, 1890). (19) " On the American Iron Trade and its Progress during Sixteen Years" (Special American Volume, 1890). (20) " On the Manufacture of Iron in its Relations with Agriculture " (1892). (21) " On the Waste of Heat, Past, Present, and Future, in Smelting Ores of Iron " (1893). (22) " On the Use of Caustic Lime in the Blast-furnace" (1894).
Sir Lowthian Bell took part in the first meeting of the Institute in 1869, and was present at nearly all the meetings up to May last, when he took part in the discussion on pyrometers, and on the synthesis of Bessemer steel. The state of his health would not, however, permit him to attend the American meeting, and he wrote to Sir James Kitson, Bart., Past-President, a letter expressing his regret. The letter, which was read at the dinner given by Mr. Burden to the Council in New York, was as follows :— ROUNTON GRANGE, NORTHALLERTON, 12th October 1904.
MY DEAR SIR JAMES KITSON,-Four days ago I was under the knife of an occulist for the removal of a cataract on my right eye. Of course, at my advanced age, in deference to the convenience of others, as well as my own, I never entertained a hope of being able to accompany the members of the Iron and Steel Institute in their approaching visit to the United States.
You who knew the regard, indeed, I may, without any exaggeration, say the affection I entertain for my friends on the other side of the Atlantic, will fully appreciate the nature of my regrets in being compelled to abstain from enjoying an opportunity of once more greeting them.
Their number, alas, has been sadly curtailed since I first met them about thirty years ago, but this curtailment has only rendered me the more anxious again to press the hands of the few who still remain.
Reference to the records of the Iron and Steel Institute will show that I was one of its earliest promoters, and in that capacity I was anxious to extend its labours, and consequently its usefulness, to every part of the world where iron was made or even used; with this view, the Council of that body have always taken care to have members on the Board of Management from other nations, whenever they could secure their services. Necessarily the claims upon the time of the gentlemen filling the office of President are too urgent to hope of its being filled by any one not a resident in the United Kingdom. Fortunately, we have a gentleman, himself a born subject of the United Kingdom, who spends enough of his time in the land of his birth to undertake the duties of the position of Chief Officer of the Institute.
It is quite unnecessary for me to dwell at any length upon the admirable way in which Mr. Andrew Carnegie has up to this time discharged the duties of his office, and I think I may take upon me to declare in the name of the Institute that the prosperity of the body runs no chance of suffering by his tenure of the Office of President.— Yours faithfully, (Signed) LOWTHIAN BELL.
The funeral of Sir Lowthian Bell took place on December 23, at Rounton, in the presence of the members of his family, and of Sir James Kitson, Bart., M.P., past-president, and Sir David Dale, Bart., past-president. A memorial service was held simultaneously at the Parish Church, Middlesbrough, and was attended by large numbers from the North of England. A dense fog prevailed, but this did not prevent all classes from being represented. The Iron and Steel Institute was represented by Mr. W. Whitwell, past-president, Mr. J Riley, vice-president, Mr. A. Cooper and Mr. Illtyd Williams, members of council, Mr. H. Bauerman, hon. member, and the Secretary. The Dean of Durham delivered an address, in which he said that Sir Lowthian's life had been one of the strenuous exertion of great powers, full of bright activity, and he enjoyed such blessings as go with faithful, loyal work and intelligent grappling with difficult problems. From his birth at Newcastle, in 1816, to the present day, the world of labour, industry, and mechanical skill had been in constant flow and change. Never before had there been such a marvellous succession of advances, and in keeping pace with these changes Sir Lowthian might be described as the best scientific ironmaster in the world. He gave a lifelong denial to the statement that Englishmen can always " muddle through," for he based all his action and success on clearly ascertained knowledge.
The King conveyed to the family of the late Sir Lowthian Bell the expression of his sincere sympathy on the great loss which they have sustained. His Majesty was pleased to say that he had a great respect for Sir Lowthian Bell, and always looked upon him as a very distinguished man.
Immediately before the funeral an extraordinary meeting of council was held at the offices of Bell Brothers, Limited, Middlesbrough, when the following resolution was unanimously adopted :— " The council of the Iron and Steel Institute desire to place on record their appreciation of the loss which the Institute has sustained by the death of Sir Lowthian Bell, Bart., a past-president and one of the founders of the Institute. The council feel that it would be difficult to overrate the services that Sir Lowthian rendered to the Institute in the promotion of the objects for which it was formed, and his constant readiness to devote his time and energies to the advancement of these objects. His colleagues on the council also desire to assure his family of their most sincere sympathy in the loss that has befallen them." Find a Grave.
Isaac Lowthian Bell was born in Newcastle upon Tyne on the 16th of February 1816. He was the son of Thomas Bell, a member of the firm of Losh, Wilson and Bell Ironworks at Walker. Bell was educated at Dr Bruce’s Academy (Newcastle upon Tyne), Edinburgh University, and the University of the Sorbonne (Paris).
In 1850 Bell was appointed manager of Walker Ironworks. In the same year he established a chemical works at Washington with Mr Hugh Lee Pattinson and Mr R. B. Bowman (the partnership was severed in 1872). In 1852 Bell set up Clarence Ironworks at Port Clarence, Middlesbrough, with his brothers Thomas and John which produced basic steel rails for the North Eastern Railway (From 1865 to 1904, Bell was a director of North Eastern Railway Company). They opened ironstone mines at Saltburn by the Sea (Normanby) and Skelton (Cleveland). Bell Brothers employed around 6,000 workmen. They employed up to the minute practises (for example, utilizing waste gases which escaped from the furnaces) and were always keen to trial improvements in the manufacture of iron. In 1882 Bell Brothers had a boring made at Port Clarence to the north of the Tees and found a stratum of salt, which was then worked. This was sold to Salt Union Ltd in 1888.
Bell’s professional expertise was used after an explosion at Hetton Colliery in 1860. He ascertained that the cause of the explosion was due to the presence of underground boilers.
In 1861 Bell was appointed to give evidence to the Commission to incorporate a Mining College within Durham University. Durham College of Science was set up 1871 in Newcastle with Bell as a Governor. He donated £4,500 for the building of Bell Tower. Large collection of books were donated from his library by his son to the College.
Bell served on the Royal Commission on the Depression of Trade. He was a Justice of Peace for County of Durham, Newcastle and North Riding of Yorkshire, and was Deputy-lieutenant and High Sheriff for Durham in 1884. In 1879 Bell accepted arbitration in the difficulty with the miners during the General Strike of County Durham miners
Between 1850 and 1880 Bell sat on the Town Council of Newcastle upon Tyne. In 1851 he became sheriff, was elected mayor in 1854, and Alderman in 1859. In 1874 Bell was the Liberal Member of Parliament for North Durham, but was unseated on the ground of general intimidation by agents. Between 1875 and 1880 he was the Member of Parliament for the Hartlepools.
Bell was an authority on mineralogy and metallurgy. In 1863 at the British Association for the Advancement of Science, held in Newcastle, he read a paper ‘On the Manufacture of Iron in connection with the Northumberland and Durham Coalfield’ (Report of the 33rd meeting of the British Association for the Advancement of Science, held at Newcastle upon Tyne, 1863, p730).
In 1871 Bell read a paper at a meeting of the Iron and Steel Institute, Middlesbrough on ‘Chemical Phenomena of Iron smelting’. (The Journal of the Iron and Steel Institute, 1871 Vol I pp85-277, Vol II pp67-277, and 1872 Vol I p1). This was published with additions as a book which became an established text in the iron trade. He also contributed to ‘The Industrial Resources of the Tyne, Wear and Tees (1863)’.
In 1854 Bell became a member of the North of England Institute of Mining and Mechanical Engineers and was elected president in 1886. Bell devoted much time to the welfare and success of the Institute in its early days.
During his life Bell was a founder member of the Iron and Steel Institute (elected President in 1874); a Fellow of the Royal Society and of the Chemical Society of London; a member of the Society of Arts, a member of the British Association for the Advancement of Science; a member of the Institution of Civil Engineers; President of the Institution of Mechanical Engineers; President of the Society of Chemical Industry; and a founder member of the Institution of Mining Engineers (elected President in 1904)
Bell was the recipient of Bessemer Gold Medal, from Iron and Steel Institute in 1874 and in 1885 recieved a baronetcy for services to the State. In 1890 he received the George Stephenson Medal from The Institute of Civil Engineers and in 1895 received the Albert Medal of the Society of Arts for services through his metallurgical researches.
Bell was a Doctor of Civil Law (DCL) of Durham University, a Doctor of Laws (LLD) of Edinburgh University and Dublin University, and a Doctor of Science (DSc) of Leeds University.
Bell married the daughter of Hugh Lee Pattinson in 1842 and together they had two sons and three daughters. The family resided in Newcastle upon Tyne, Washington Hall, and Rounton Grange near Northallerton.
Lowthian Bell died on the 21st of December 1904. The Council of The Institution of Mining Engineers passed the following resolution:
“The Council have received with the deepest regret intimation of the death of their esteemed President and colleague, Sir Lowthian Bell, Bart, on of the founders of the Institution, who presided at the initial meeting held in London on June 6 th 1888, and they have conveyed to Sir Hugh Bell, Bart, and the family of Sir Lowthian Bell an expression of sincere sympathy with them in their bereavement. It is impossible to estimate the value of the services that Sir Lowthian Bell rendered to the Institution of Mining Engineers in promoting its objects, and in devoting his time and energies to the advancement of the Institution.”
Information taken from: - Institute of Mining Engineers, Transactions, Vol XXXIII 1906-07
El proceso de fabricación de pan de oro utilizado en las pequeñas artesanías de una calle de Mandalay es el más tradicional y mecánico: casi todo el proceso consiste en asestar martillazos para dar el grosor necesario al trozo de pan de oro.
The gold leaf manufacturing process used by the small handycrafts in a street of Mandalay is the most traditional and simple: almost all the process consists in strongly hammering to achieve the necessary thickness to the piece of gold leaf.
Lined with grade II listed historic buildings.
"Kendal, once Kirkby in Kendal or Kirkby Kendal, is a market town and civil parish in the South Lakeland District of Cumbria, England. Historically in Westmorland, it lies 8 miles (13 km) south-east of Windermere, 19 miles (31 km) north of Lancaster, 23 miles (37 km) north-east of Barrow-in-Furness and 38 miles (61 km) north-west of Skipton, in the dale of the River Kent, from which comes its name. The 2011 census found a population of 28,586. making it the third largest town in Cumbria after Carlisle and Barrow. It is known today mainly as a centre for tourism, as the home of Kendal mint cake, and as a producer of pipe tobacco and snuff. Its local grey limestone buildings have earned it the nickname "Auld Grey Town".
A chartered market town, the centre of Kendal has formed round a high street with fortified alleyways, known locally as yards, off to either side, which allowed local people to shelter from the Anglo-Scottish raiders known as Border Reivers. The main industry in those times was the manufacture of woollen goods, whose importance is reflected in the town's coat of arms and in its Latin motto Pannus mihi panis (Cloth is my bread.) "Kendal Green" was a hard-wearing, wool-based fabric specific to the local manufacturing process. It was supposedly sported by the Kendalian archers instrumental in the English victory over the French at the Battle of Agincourt. Kendal Green was also worn by slaves in the Americas and appears in songs and literature from that time. Shakespeare notes it as the colour of clothing worn by foresters (Henry IV, Part 1).
Kendal Castle has a long history as a stronghold, built on the site of several successive castles. The earliest was a Norman motte and bailey (now located on the west side of the town), when the settlement went under the name of Kirkbie Strickland. The most recent is from the late 12th century, as the castle of the Barony of Kendal, the part of Westmorland ruled from here. The castle is best known as the home of the Parr family, as heirs of these barons. They inherited it through marriage in the reign of Edward III of England. Rumours still circulate that King Henry VIII's sixth wife Catherine Parr was born at Kendal Castle, but the evidence available leaves this unlikely: by her time the castle was beyond repair and her father was already based in Blackfriars, London, at the court of King Henry VIII." - info from Wikipedia.
Summer 2019 I did a solo cycling tour across Europe through 12 countries over the course of 3 months. I began my adventure in Edinburgh, Scotland and finished in Florence, Italy cycling 8,816 km. During my trip I took 47,000 photos.
Now on Instagram.
Become a patron to my photography on Patreon.
Shot Tower Taroona Tasmania
Australia’s first shot tower, at Taroona, was built by Joseph Moir and is one of three still existing in the country, the others being in Melbourne. Joseph Moir's factory, which operated for 35 years from 1870, manufactured lead shot for contemporary muzzle loading sports guns. Although the factory struggled for most of its existence its most recognisable feature, the tallest stone shot tower in the southern hemisphere, has been a prominent landmark in the district for well over a century.
Joseph Moir
His Shot Tower on the Kingston Road is noted throughout the colonies, and Mr Moir’s enterprising spirit is there illustrated in a most remarkable manner. Though a speculation of a very hazardous kind, he had faith in its success, and his estimate, as was afterwards discovered, was not found on any erroneous basis. The manufacture of shot was a profitable venture under his management.
Mercury 12 March 1874
Just twenty years old, Scotsman Joseph Moir arrived in Hobart in 1829, one of thousands of hopeful free immigrants who sailed to Van Diemen’s Land in the 1820s. By 1840 he had acquired several properties, government employment and a reputation as a builder of notable colonial buildings such as St Mark’s Anglican Church, Pontville. He returned briefly to Scotland in 1844 to marry Elizabeth Paxton with whom he had at least five children.
A prominent businessman, Moir was active in Hobart’s civic affairs between 1846 and 1873, a year before his death. He revisited Britain in 1849 ‘to arrange to carry on an ironmonger’s business’, returning to Hobart with a stock of hardware items and opening a store with his brother at ‘Economy House’ in Murray Street. The business operated until sold by his son, Joseph in 1884. Moir purchased 39 acres on Brown’s River Rd in 1855 and moved to a new house at ‘Queenborough Glens’ (as he called the property) with his family in 1862. He then built the shot tower and its associated buildings and poured his first shot in 1870.
When he died after a long illness in 1874 Moir left his major business concerns to his sons, James and Joseph. Together with Elizabeth (who only survived him by 15 months) and a daughter, Mary (who died in 1853 at the age of seven) Moir was encrypted in the family mausoleum on the cliffs below the shot tower. Their remains were later re-interred in unmarked graves at Queenborough Cemetery after Joseph relinquished the property in 1901. This cemetery’s graves were removed by Hobart Council in 1963 and Moir’s final resting place remains unknown.
The Shot Tower
This shot tower was built by the proprietor, Joseph Moir, in the year 1870. In its erection he acted as Engineer, Architect, Carpenter and Overseer. With merely the assistance of two masons it was completed in 8 months, when the secrets of shot-making had to be discovered. After many persevering efforts the first shot was dropped 8th September, 1870.
Joseph Moir erected his shot making enterprise on 39 acres subdivided from an 1817 grant of 100 acres to John Williamson. He chose his site carefully. A road frontage facilitated straightforward transport of raw materials and product. A windmill pumped water from a reliable creek to a cistern on the site of the current overflow carpark and substantial timber reserves provided fuel for the furnaces and cauldrons. Sited far from residential neighbourhoods Moir could also relax in the knowledge that toxic fumes would blow safely out to sea or over forestland.
Moir probably began building his shot making works after erecting the family home between 1855 and 1862. A stone building above the cliffs overlooking the River Derwent stored gun powder for his ironmongery as well as stores of arsenic and antimony. Another building south-west of the magazine contained the furnace for preparing lead with the arsenic and antimony.
The tower was constructed of dressed curved sandstone blocks quarried at the nearby abandoned Brown’s River Convict Probation Station. A remarkable tapered structure 48m (157 feet 6 inches) tall it features an internal spiral staircase of pitsawn timber and an external gallery at its top which was probably used to store firewood for the upper cauldron. The staircase provided scaffolding during the construction of the tower and access to the upper cauldron and shot-making colanders. The tower is 10 metres in diameter at the base and tapers to 3.9 metres at the top . The walls are a metre thick at the bottom and thin out to .45 centimetres at the top.
A three level stone factory abutting the tower was erected at the same time, then was extended soon after. The stone for the factory was probably recycled from the abandoned probation station.
The Manufacturing Process
The manufacture of shot is an industry which in England has always been conducted with the greatest secrecy, and consequently witnessed by very few except the initiated. This industry has recently been introduced in this colony by Mr Alderman Moir, and we learn that it is his intention to throw his Shot Tower open to the inspection of visitors on Monday and Tuesday next, when the process of shot making will be in operation, on which occasion we have no doubt many of our citizens will avail themselves of this opportunity of witnessing the interesting process.
Mercury,10 March 1871.
Shot manufacturing is thought to have been invented by Prince Rupert in the seventeenth century. It seems likely that Moir studied William Watts’ patented method of 1796 while in Britain in 1849-50. Moir’s exact process is unknown — considerable experimentation was required by most manufacturers to perfect what is a very complex process requiring a detailed understanding of physics and metallurgy. Most of Moir’s raw materials would have been imported increasing his costs substantially
Moir’s process was probably as follows:
Lead was prepared in a furnace at the south-eastern corner of the property. Moir added 900g of arsenic (to decrease surface tension) and 6.35kg of antimony (to harden the shot) to every 45.35 kg of lead.
The resultant ‘poisoned lead’ was cast into 7.7 kg ingots, conveyed to the factory, then remelted in cauldrons on the upper level of the factory for small shot and the top of the tower for larger shot. Firewood had to be winched to the upper cauldron. The molten lead was then poured through colanders, forming droplets which became spherical as they dropped. They fell into a tub of water at the base of the tower. The size of the shot depended on the amount of arsenic, the size of the holes in the colander and the height of the fall. Watts’ patent stipulated that large sized shot required a fall of 45.75m (150 feet), hence the height of Moir’s shot tower at 48m with the colander 46.36m above the base.
The lead cooled partly while falling, then completely in the water. The antinomy hardener ensured that it maintained shape under the impact of the water.
The cooled shot, green in colour, was winched to the factory’s upper floor where it was dried and run over inclined glass planes to separate out defective shot (which did not roll true). Imperfect shot was remelted and the process repeated.
The shot was polished in a revolving drum (likened to a farmer’s barrel churn) using plumbago (graphite) then lowered through a trapdoor to the ground floor where it passed through ten sieves for grading into sizes ranging from fine birdshot to large balls. The graded shot was bagged into 12.7kg (28lb) handsewn linen bags stencilled with the manufacturer’s name and sent to market. At its peak the factory produced 100 tons of shot per annum.
Working Conditions
Little is known of working conditions in Joseph Moir’s shot tower. The work was highly skilled, noisy and almost certainly dangerous. That workers took great pride in their trade is indicated by an engraving in a window in the factory, reading, ‘George Matson Premier Shot Maker Tasmanian and Australian’. No further information about George Matson is known. The following descriptions of a contemporary works, Melbourne’s Coop shot tower (now incorporated in the Melbourne Central complex on Little Lonsdale St) provides some indication of the nature of the work involved.
Pouring the lead was ‘an operation which needs great skill and constant watching. The man is used to his work but the novice would probably make a considerable bungle of it’. As the lead droplets fell there was ‘a sharp incessant shower of silvery rain . . . mak[ing] a noise very like that of an overflow waste pipe high up in one’s wall’. When shovelling shot from the water tub it was ‘quite certain that if the man who is so energetically shovelling . . . was to cease from his labours for any appreciable length of time the tank would be soon full of lead. . . . all the while the strange shower descends the man with the shovel is busily at work’. The noise of grading the shot through the sieves was ‘well nigh deafening’ while a woman sat with needle and thread sewing the 12.7kg linen bags for the finished shot.
House and Garden
Joseph Moir began building his residence soon after acquiring the property in 1855. Family lore suggests that he built the battlemented tower as practise before attempting the more substantial shot tower. By 1885 the property was well known for its gardens and orchards with its hot houses, summer houses and conservatories.
"Mr [James] Moir has a prolific little orchard and kitchen garden, which latter, the flower garden and conservatories are watered from a considerable storage reservoir above. An amusing freak of the owner is to invite strangers into a summer house, and to be seated a moment or two out of the sun. He predicts rain shortly, however cloudless the sky — when hey presto: a shower immediately commences, a real earnest one. It is brought about by turning the tap of a pipe connecting with the circular piping on top of the summer house, the latter being perforated round its outside. A little defectiveness in the roof allowed of my receiving a slight baptism of spray, so I must be considered initiated." Tasmanian Mail,13 June 1885
Perhaps the youthful James Moir (he was 30 in 1885) had a better sense of fun than business sense. He had mortgaged the property the previous year and defaulted on his payments two years later.
Later History
Moir’s sons, James and Joseph, carried on the business after his death in 1874. Although James won merit certificates at the 1879 Sydney International Exhibition and the 1880-81 Melbourne Exhibition the business struggled and it was leased by the mortgagors to his brother, Joseph in 1887. Joseph found himself unable compete with mainland competitors when generous colonial tariffs were removed after Federation. He relinquished the lease to his brother-in-law, William Baynton who continued the business until closing its doors in 1905. During these years Baynton’s wife, Florence, operated a tea house in the residence.
The property subsequently passed through several hands until 1956 when 3.24 hectares was purchased by the Tasmanian government and proclaimed a Scenery Reserve. Although it included the tower and residence, the reserve excluded the powder magazine, conservatory, antimony furnace and mausoleum. The reserve was gazetted as an historic site in 1971 under the National Parks and Wildlife Act. Since 1956 it has been leased to several concessionaires and has been open as a tourist site. Various conservation works have been conducted at the shot tower over the years to maintain its heritage significance.
Australia’s first shot tower, at Taroona, was built by Joseph Moir and is one of three still existing in the country, the others being in Melbourne. Joseph Moir's factory, which operated for 35 years from 1870, manufactured lead shot for contemporary muzzle loading sports guns. Although the factory struggled for most of its existence its most recognisable feature, the tallest stone shot tower in the southern hemisphere, has been a prominent landmark in the district for well over a century. Joseph Moir His Shot Tower on the Kingston Road is noted throughout the colonies, and Mr Moir’s enterprising spirit is there illustrated in a most remarkable manner. Though a speculation of a very hazardous kind, he had faith in its success, and his estimate, as was afterwards discovered, was not found on any erroneous basis. The manufacture of shot was a profitable venture under his management. Mercury 12 March 1874 Just twenty years old, Scotsman Joseph Moir arrived in Hobart in 1829, one of thousands of hopeful free immigrants who sailed to Van Diemen’s Land in the 1820s. By 1840 he had acquired several properties, government employment and a reputation as a builder of notable colonial buildings such as St Mark’s Anglican Church, Pontville. He returned briefly to Scotland in 1844 to marry Elizabeth Paxton with whom he had at least five children. A prominent businessman, Moir was active in Hobart’s civic affairs between 1846 and 1873, a year before his death. He revisited Britain in 1849 ‘to arrange to carry on an ironmonger’s business’, returning to Hobart with a stock of hardware items and opening a store with his brother at ‘Economy House’ in Murray Street. The business operated until sold by his son, Joseph in 1884. Moir purchased 39 acres on Brown’s River Rd in 1855 and moved to a new house at ‘Queenborough Glens’ (as he called the property) with his family in 1862. He then built the shot tower and its associated buildings and poured his first shot in 1870. When he died after a long illness in 1874 Moir left his major business concerns to his sons, James and Joseph. Together with Elizabeth (who only survived him by 15 months) and a daughter, Mary (who died in 1853 at the age of seven) Moir was encrypted in the family mausoleum on the cliffs below the shot tower. Their remains were later re-interred in unmarked graves at Queenborough Cemetery after Joseph relinquished the property in 1901. This cemetery’s graves were removed by Hobart Council in 1963 and Moir’s final resting place remains unknown. The Shot Tower This shot tower was built by the proprietor, Joseph Moir, in the year 1870. In its erection he acted as Engineer, Architect, Carpenter and Overseer. With merely the assistance of two masons it was completed in 8 months, when the secrets of shot-making had to be discovered. After many persevering efforts the first shot was dropped 8th September, 1870. Joseph Moir erected his shot making enterprise on 39 acres subdivided from an 1817 grant of 100 acres to John Williamson. He chose his site carefully. A road frontage facilitated straightforward transport of raw materials and product. A windmill pumped water from a reliable creek to a cistern on the site of the current overflow carpark and substantial timber reserves provided fuel for the furnaces and cauldrons. Sited far from residential neighbourhoods Moir could also relax in the knowledge that toxic fumes would blow safely out to sea or over forestland. Moir probably began building his shot making works after erecting the family home between 1855 and 1862. A stone building above the cliffs overlooking the River Derwent stored gun powder for his ironmongery as well as stores of arsenic and antimony. Another building south-west of the magazine contained the furnace for preparing lead with the arsenic and antimony. The tower was constructed of dressed curved sandstone blocks quarried at the nearby abandoned Brown’s River Convict Probation Station. A remarkable tapered structure 48m (157 feet 6 inches) tall it features an internal spiral staircase of pitsawn timber and an external gallery at its top which was probably used to store firewood for the upper cauldron. The staircase provided scaffolding during the construction of the tower and access to the upper cauldron and shot-making colanders. The tower is 10 metres in diameter at the base and tapers to 3.9 metres at the top . The walls are a metre thick at the bottom and thin out to .45 centimetres at the top. A three level stone factory abutting the tower was erected at the same time, then was extended soon after. The stone for the factory was probably recycled from the abandoned probation station. The Manufacturing Process The manufacture of shot is an industry which in England has always been conducted with the greatest secrecy, and consequently witnessed by very few except the initiated. This industry has recently been introduced in this colony by Mr Alderman Moir, and we learn that it is his intention to throw his Shot Tower open to the inspection of visitors on Monday and Tuesday next, when the process of shot making will be in operation, on which occasion we have no doubt many of our citizens will avail themselves of this opportunity of witnessing the interesting process. Mercury,10 March 1871. Shot manufacturing is thought to have been invented by Prince Rupert in the seventeenth century. It seems likely that Moir studied William Watts’ patented method of 1796 while in Britain in 1849- 50. Moir’s exact process is unknown — considerable experimentation was required by most manufacturers to perfect what is a very complex process requiring a detailed understanding of physics and metallurgy. Most of Moir’s raw materials would have been imported increasing his costs substantially Moir’s process was probably as follows: Lead was prepared in a furnace at the south-eastern corner of the property. Moir added 900g of arsenic (to decrease surface tension) and 6.35kg of antimony (to harden the shot) to every 45.35 kg of lead. The resultant ‘poisoned lead’ was cast into 7.7 kg ingots, conveyed to the factory, then remelted in cauldrons on the upper level of the factory for small shot and the top of the tower for larger shot. Firewood had to be winched to the upper cauldron. The molten lead was then poured through colanders, forming droplets which became spherical as they dropped. They fell into a tub of water at the base of the tower. The size of the shot depended on the amount of arsenic, the size of the holes in the colander and the height of the fall. Watts’ patent stipulated that large sized shot required a fall of 45.75m (150 feet), hence the height of Moir’s shot tower at 48m with the colander 46.36m above the base. The lead cooled partly while falling, then completely in the water. The antinomy hardener ensured that it maintained shape under the impact of the water. The cooled shot, green in colour, was winched to the factory’s upper floor where it was dried and run over inclined glass planes to separate out defective shot (which did not roll true). Imperfect shot was remelted and the process repeated. The shot was polished in a revolving drum (likened to a farmer’s barrel churn) using plumbago (graphite) then lowered through a trapdoor to the ground floor where it passed through ten sieves for grading into sizes ranging from fine birdshot to large balls. The graded shot was bagged into 12.7kg (28lb) handsewn linen bags stencilled with the manufacturer’s name and sent to market. At its peak the factory produced 100 tons of shot per annum. Working Conditions Little is known of working conditions in Joseph Moir’s shot tower. The work was highly skilled, noisy and almost certainly dangerous. That workers took great pride in their trade is indicated by an engraving in a window in the factory, reading, ‘George Matson Premier Shot Maker Tasmanian and Australian’. No further information about George Matson is known. The following descriptions of a contemporary works, Melbourne’s Coop shot tower (now incorporated in the Melbourne Central complex on Little Lonsdale St) provides some indication of the nature of the work involved. Pouring the lead was ‘an operation which needs great skill and constant watching. The man is used to his work but the novice would probably make a considerable bungle of it’. As the lead droplets fell there was ‘a sharp incessant shower of silvery rain . . . mak[ing] a noise very like that of an overflow waste pipe high up in one’s wall’. When shovelling shot from the water tub it was ‘quite certain that if the man who is so energetically shovelling . . . was to cease from his labours for any appreciable length of time the tank would be soon full of lead. . . . all the while the strange shower descends the man with the shovel is busily at work’. The noise of grading the shot through the sieves was ‘well nigh deafening’ while a woman sat with needle and thread sewing the 12.7kg linen bags for the finished shot. House and Garden Joseph Moir began building his residence soon after acquiring the property in 1855. Family lore suggests that he built the battlemented tower as practise before attempting the more substantial shot tower. By 1885 the property was well known for its gardens and orchards with its hot houses, summer houses and conservatories. "Mr [James] Moir has a prolific little orchard and kitchen garden, which latter, the flower garden and conservatories are watered from a considerable storage reservoir above. An amusing freak of the owner is to invite strangers into a summer house, and to be seated a moment or two out of the sun. He predicts rain shortly, however cloudless the sky — when hey presto: a shower immediately commences, a real earnest one. It is brought about by turning the tap of a pipe connecting with the circular piping on top of the summer house, the latter being perforated round its outside. A little defectiveness in the roof allowed of my receiving a slight baptism of spray, so I must be considered initiated." Tasmanian Mail,13 June 1885 Perhaps the youthful James Moir (he was 30 in 1885) had a better sense of fun than business sense. He had mortgaged the property the previous year and defaulted on his payments two years later. Later History Moir’s sons, James and Joseph, carried on the business after his death in 1874. Although James won merit certificates at the 1879 Sydney International Exhibition and the 1880-81 Melbourne Exhibition the business struggled and it was leased by the mortgagors to his brother, Joseph in 1887. Joseph found himself unable compete with mainland competitors when generous colonial tariffs were removed after Federation. He relinquished the lease to his brother-in-law, William Baynton who continued the business until closing its doors in 1905. During these years Baynton’s wife, Florence, operated a tea house in the residence. The property subsequently passed through several hands until 1956 when 3.24 hectares was purchased by the Tasmanian government and proclaimed a Scenery Reserve. Although it included the tower and residence, the reserve excluded the powder magazine, conservatory, antimony furnace and mausoleum. The reserve was gazetted as an historic site in 1971 under the National Parks and Wildlife Act. Since 1956 it has been leased to several concessionaires and has been open as a tourist site. Various conservation works have been conducted at the shot tower over the years to maintain its heritage significance.
Australia’s first shot tower, at Taroona, was built by Joseph Moir and is one of three still existing in the country, the others being in Melbourne. Joseph Moir's factory, which operated for 35 years from 1870, manufactured lead shot for contemporary muzzle loading sports guns. Although the factory struggled for most of its existence its most recognisable feature, the tallest stone shot tower in the southern hemisphere, has been a prominent landmark in the district for well over a century. Joseph Moir His Shot Tower on the Kingston Road is noted throughout the colonies, and Mr Moir’s enterprising spirit is there illustrated in a most remarkable manner. Though a speculation of a very hazardous kind, he had faith in its success, and his estimate, as was afterwards discovered, was not found on any erroneous basis. The manufacture of shot was a profitable venture under his management. Mercury 12 March 1874 Just twenty years old, Scotsman Joseph Moir arrived in Hobart in 1829, one of thousands of hopeful free immigrants who sailed to Van Diemen’s Land in the 1820s. By 1840 he had acquired several properties, government employment and a reputation as a builder of notable colonial buildings such as St Mark’s Anglican Church, Pontville. He returned briefly to Scotland in 1844 to marry Elizabeth Paxton with whom he had at least five children. A prominent businessman, Moir was active in Hobart’s civic affairs between 1846 and 1873, a year before his death. He revisited Britain in 1849 ‘to arrange to carry on an ironmonger’s business’, returning to Hobart with a stock of hardware items and opening a store with his brother at ‘Economy House’ in Murray Street. The business operated until sold by his son, Joseph in 1884. Moir purchased 39 acres on Brown’s River Rd in 1855 and moved to a new house at ‘Queenborough Glens’ (as he called the property) with his family in 1862. He then built the shot tower and its associated buildings and poured his first shot in 1870. When he died after a long illness in 1874 Moir left his major business concerns to his sons, James and Joseph. Together with Elizabeth (who only survived him by 15 months) and a daughter, Mary (who died in 1853 at the age of seven) Moir was encrypted in the family mausoleum on the cliffs below the shot tower. Their remains were later re-interred in unmarked graves at Queenborough Cemetery after Joseph relinquished the property in 1901. This cemetery’s graves were removed by Hobart Council in 1963 and Moir’s final resting place remains unknown. The Shot Tower This shot tower was built by the proprietor, Joseph Moir, in the year 1870. In its erection he acted as Engineer, Architect, Carpenter and Overseer. With merely the assistance of two masons it was completed in 8 months, when the secrets of shot-making had to be discovered. After many persevering efforts the first shot was dropped 8th September, 1870. Joseph Moir erected his shot making enterprise on 39 acres subdivided from an 1817 grant of 100 acres to John Williamson. He chose his site carefully. A road frontage facilitated straightforward transport of raw materials and product. A windmill pumped water from a reliable creek to a cistern on the site of the current overflow carpark and substantial timber reserves provided fuel for the furnaces and cauldrons. Sited far from residential neighbourhoods Moir could also relax in the knowledge that toxic fumes would blow safely out to sea or over forestland. Moir probably began building his shot making works after erecting the family home between 1855 and 1862. A stone building above the cliffs overlooking the River Derwent stored gun powder for his ironmongery as well as stores of arsenic and antimony. Another building south-west of the magazine contained the furnace for preparing lead with the arsenic and antimony. The tower was constructed of dressed curved sandstone blocks quarried at the nearby abandoned Brown’s River Convict Probation Station. A remarkable tapered structure 48m (157 feet 6 inches) tall it features an internal spiral staircase of pitsawn timber and an external gallery at its top which was probably used to store firewood for the upper cauldron. The staircase provided scaffolding during the construction of the tower and access to the upper cauldron and shot-making colanders. The tower is 10 metres in diameter at the base and tapers to 3.9 metres at the top . The walls are a metre thick at the bottom and thin out to .45 centimetres at the top. A three level stone factory abutting the tower was erected at the same time, then was extended soon after. The stone for the factory was probably recycled from the abandoned probation station. The Manufacturing Process The manufacture of shot is an industry which in England has always been conducted with the greatest secrecy, and consequently witnessed by very few except the initiated. This industry has recently been introduced in this colony by Mr Alderman Moir, and we learn that it is his intention to throw his Shot Tower open to the inspection of visitors on Monday and Tuesday next, when the process of shot making will be in operation, on which occasion we have no doubt many of our citizens will avail themselves of this opportunity of witnessing the interesting process. Mercury,10 March 1871. Shot manufacturing is thought to have been invented by Prince Rupert in the seventeenth century. It seems likely that Moir studied William Watts’ patented method of 1796 while in Britain in 1849- 50. Moir’s exact process is unknown — considerable experimentation was required by most manufacturers to perfect what is a very complex process requiring a detailed understanding of physics and metallurgy. Most of Moir’s raw materials would have been imported increasing his costs substantially Moir’s process was probably as follows: Lead was prepared in a furnace at the south-eastern corner of the property. Moir added 900g of arsenic (to decrease surface tension) and 6.35kg of antimony (to harden the shot) to every 45.35 kg of lead. The resultant ‘poisoned lead’ was cast into 7.7 kg ingots, conveyed to the factory, then remelted in cauldrons on the upper level of the factory for small shot and the top of the tower for larger shot. Firewood had to be winched to the upper cauldron. The molten lead was then poured through colanders, forming droplets which became spherical as they dropped. They fell into a tub of water at the base of the tower. The size of the shot depended on the amount of arsenic, the size of the holes in the colander and the height of the fall. Watts’ patent stipulated that large sized shot required a fall of 45.75m (150 feet), hence the height of Moir’s shot tower at 48m with the colander 46.36m above the base. The lead cooled partly while falling, then completely in the water. The antinomy hardener ensured that it maintained shape under the impact of the water. The cooled shot, green in colour, was winched to the factory’s upper floor where it was dried and run over inclined glass planes to separate out defective shot (which did not roll true). Imperfect shot was remelted and the process repeated. The shot was polished in a revolving drum (likened to a farmer’s barrel churn) using plumbago (graphite) then lowered through a trapdoor to the ground floor where it passed through ten sieves for grading into sizes ranging from fine birdshot to large balls. The graded shot was bagged into 12.7kg (28lb) handsewn linen bags stencilled with the manufacturer’s name and sent to market. At its peak the factory produced 100 tons of shot per annum. Working Conditions Little is known of working conditions in Joseph Moir’s shot tower. The work was highly skilled, noisy and almost certainly dangerous. That workers took great pride in their trade is indicated by an engraving in a window in the factory, reading, ‘George Matson Premier Shot Maker Tasmanian and Australian’. No further information about George Matson is known. The following descriptions of a contemporary works, Melbourne’s Coop shot tower (now incorporated in the Melbourne Central complex on Little Lonsdale St) provides some indication of the nature of the work involved. Pouring the lead was ‘an operation which needs great skill and constant watching. The man is used to his work but the novice would probably make a considerable bungle of it’. As the lead droplets fell there was ‘a sharp incessant shower of silvery rain . . . mak[ing] a noise very like that of an overflow waste pipe high up in one’s wall’. When shovelling shot from the water tub it was ‘quite certain that if the man who is so energetically shovelling . . . was to cease from his labours for any appreciable length of time the tank would be soon full of lead. . . . all the while the strange shower descends the man with the shovel is busily at work’. The noise of grading the shot through the sieves was ‘well nigh deafening’ while a woman sat with needle and thread sewing the 12.7kg linen bags for the finished shot. House and Garden Joseph Moir began building his residence soon after acquiring the property in 1855. Family lore suggests that he built the battlemented tower as practise before attempting the more substantial shot tower. By 1885 the property was well known for its gardens and orchards with its hot houses, summer houses and conservatories. "Mr [James] Moir has a prolific little orchard and kitchen garden, which latter, the flower garden and conservatories are watered from a considerable storage reservoir above. An amusing freak of the owner is to invite strangers into a summer house, and to be seated a moment or two out of the sun. He predicts rain shortly, however cloudless the sky — when hey presto: a shower immediately commences, a real earnest one. It is brought about by turning the tap of a pipe connecting with the circular piping on top of the summer house, the latter being perforated round its outside. A little defectiveness in the roof allowed of my receiving a slight baptism of spray, so I must be considered initiated." Tasmanian Mail,13 June 1885 Perhaps the youthful James Moir (he was 30 in 1885) had a better sense of fun than business sense. He had mortgaged the property the previous year and defaulted on his payments two years later. Later History Moir’s sons, James and Joseph, carried on the business after his death in 1874. Although James won merit certificates at the 1879 Sydney International Exhibition and the 1880-81 Melbourne Exhibition the business struggled and it was leased by the mortgagors to his brother, Joseph in 1887. Joseph found himself unable compete with mainland competitors when generous colonial tariffs were removed after Federation. He relinquished the lease to his brother-in-law, William Baynton who continued the business until closing its doors in 1905. During these years Baynton’s wife, Florence, operated a tea house in the residence. The property subsequently passed through several hands until 1956 when 3.24 hectares was purchased by the Tasmanian government and proclaimed a Scenery Reserve. Although it included the tower and residence, the reserve excluded the powder magazine, conservatory, antimony furnace and mausoleum. The reserve was gazetted as an historic site in 1971 under the National Parks and Wildlife Act. Since 1956 it has been leased to several concessionaires and has been open as a tourist site. Various conservation works have been conducted at the shot tower over the years to maintain its heritage significance.
Lined with grade II listed historic buildings.
"Kendal, once Kirkby in Kendal or Kirkby Kendal, is a market town and civil parish in the South Lakeland District of Cumbria, England. Historically in Westmorland, it lies 8 miles (13 km) south-east of Windermere, 19 miles (31 km) north of Lancaster, 23 miles (37 km) north-east of Barrow-in-Furness and 38 miles (61 km) north-west of Skipton, in the dale of the River Kent, from which comes its name. The 2011 census found a population of 28,586. making it the third largest town in Cumbria after Carlisle and Barrow. It is known today mainly as a centre for tourism, as the home of Kendal mint cake, and as a producer of pipe tobacco and snuff. Its local grey limestone buildings have earned it the nickname "Auld Grey Town".
A chartered market town, the centre of Kendal has formed round a high street with fortified alleyways, known locally as yards, off to either side, which allowed local people to shelter from the Anglo-Scottish raiders known as Border Reivers. The main industry in those times was the manufacture of woollen goods, whose importance is reflected in the town's coat of arms and in its Latin motto Pannus mihi panis (Cloth is my bread.) "Kendal Green" was a hard-wearing, wool-based fabric specific to the local manufacturing process. It was supposedly sported by the Kendalian archers instrumental in the English victory over the French at the Battle of Agincourt. Kendal Green was also worn by slaves in the Americas and appears in songs and literature from that time. Shakespeare notes it as the colour of clothing worn by foresters (Henry IV, Part 1).
Kendal Castle has a long history as a stronghold, built on the site of several successive castles. The earliest was a Norman motte and bailey (now located on the west side of the town), when the settlement went under the name of Kirkbie Strickland. The most recent is from the late 12th century, as the castle of the Barony of Kendal, the part of Westmorland ruled from here. The castle is best known as the home of the Parr family, as heirs of these barons. They inherited it through marriage in the reign of Edward III of England. Rumours still circulate that King Henry VIII's sixth wife Catherine Parr was born at Kendal Castle, but the evidence available leaves this unlikely: by her time the castle was beyond repair and her father was already based in Blackfriars, London, at the court of King Henry VIII." - info from Wikipedia.
Summer 2019 I did a solo cycling tour across Europe through 12 countries over the course of 3 months. I began my adventure in Edinburgh, Scotland and finished in Florence, Italy cycling 8,816 km. During my trip I took 47,000 photos.
Now on Instagram.
Become a patron to my photography on Patreon.
Starting in January 2012 the Department for Transport is conducting a trial of longer semi-trailers. The trial involves 900 semi-trailers of 14.6m in length (i.e. 1 metre longer than the current maximum), and a further 900 semi-trailers of 15.65m in length (i.e. 2.05 metres longer). This will result in the total maximum length of the semi-trailer truck being 17.5 metres (for trailers of 14.6 metre in length) and 18.55 metres (for trailers of 15.65 metres in length). The increase in length will not result in the 44,000 kg (97,000 lb) weight limit being exceeded, and will allow some operators to approach the weight limit which may not have been previously possible due to the previous length of trailers. The trial will run for a maximum of 10 years.
www.dft.gov.uk/topics/freight/road-freight/longer-semi-tr...
United Biscuits, the company famous for well known UK brands KP, Jacobs, McVities, McCoys, Go Ahead and Jaffa Cakes to name just a few, has recently taken delivery of 20 longer semi trailers built by South Manchester based Cartwright.
The Curtainside Longer Semi Trailers, which operate from United Biscuit’s distribution centre at Ashby de la Zouche are 15650mm in length, Tri-axle in design with a rear command steering axle. The Clearspan body design has insulated and security curtains and conforms to the EN12642XL standard. They are painted in six different liveries promoting the distinctive United Biscuits brands and include an impactive liveried environmental vehicle which runs on waste vegetable oil, a by product of UB’s manufacturing process.
CARTWRIGHT GROUP says its longer semitrailers (LSTs) will use the “command rearsteer” technology because it is more versatile than current self-tracking rear-steer solutions.
The Altrincham-based body and trailer manufacturer is in the process of building its irst LST, says director Steven Cartwright, which is expected to be unveiled in January 2012. “We are inalising the design but we will initially use command [positive] rear-steer technology, which in this case is Tridec, as it is more versatile and reduces the tyre wear.
“With self-tracking rear-steer trailers, which are cheaper and lighter, you have to straightenup to slot the pin into place before reversing with three ixed axles – and there will be a lot of yards where this might not be possible,” he says.
Manufacturers developing maximum length longer trailers with a single rear-steer axle are yet to achieve a true 44-tonne GVW because they are unable to put the axle in the right position to achieve the required turning circle without compromising weight distribution.
Cartwright admits its company’s design is currently at 42-tonnes GVW. However, a reduced GVW could beneit operators that regularly cube-out and those involved with the pallet networks, as there is no height restriction with longer trailers.
Chocolate is a key ingredient in many foods such as milk shakes, candy bars, cookies and cereals. It is ranked as one of the most favourite flavours in North America and Europe (Swift, 1998). Despite its popularity, most people do not know the unique origins of this popular treat. Chocolate is a product that requires complex procedures to produce. The process involves harvesting coca, refining coca to cocoa beans, and shipping the cocoa beans to the manufacturing factory for cleaning, coaching and grinding. These cocoa beans will then be imported or exported to other countries and be transformed into different type of chocolate products (Allen, 1994).
Harvesting Cocoa & Cocoa processing
Chocolate production starts with harvesting coca in a forest. Cocoa comes from tropical evergreen Cocoa trees, such as Theobroma Cocoa, which grow in the wet lowland tropics of Central and South America, West Africa and Southeast Asia (within 20 C of the equator) (Walter,1981) . Cocoa needs to be harvested manually in the forest. The seed pods of coca will first be collected; the beans will be selected and placed in piles. These cocoa beans will then be ready to be shipped to the manufacturer for mass production.
Step #1: Plucking and opening the Pods
Cocoa beans grow in pods that sprout off of the trunk and branches of cocoa trees. The pods are about the size of a football. The pods start out green and turn orange when they're ripe. When the pods are ripe, harvesters travel through the cocoa orchards with machetes and hack the pods gently off of the trees.
Machines could damage the tree or the clusters of flowers and pods that grow from the trunk, so workers must be harvest the pods by hand, using short, hooked blades mounted on long poles to reach the highest fruit.
After the cocoa pods are collected into baskets ,the pods are taken to a processing house. Here they are split open and the cocoa beans are removed. Pods can contain upwards of 50 cocoa beans each. Fresh cocoa beans are not brown at all, they do not taste at all like the sweet chocolate they will eventually produce.
Step #2: Fermenting the cocoa seeds
Now the beans undergo the fermentation processing. They are either placed in large, shallow, heated trays or covered with large banana leaves. If the climate is right, they may be simply heated by the sun. Workers come along periodically and stir them up so that all of the beans come out equally fermented. During fermentation is when the beans turn brown. This process may take five or eight days.
Step #3: Drying the cocoa seeds
After fermentation, the cocoa seeds must be dried before they can be scooped into sacks and shipped to chocolate manufacturers. Farmers simply spread the fermented seeds on trays and leave them in the sun to dry. The drying process usually takes about a week and results in seeds that are about half of their original weight.
Manufacturing Chocolate
Once the cocoa beans have reached the machinery of chocolate factories, they are ready to be refined into chocolate. Generally, manufacturing processes differ slightly due to the different species of cocoa trees, but most factories use similar machines to break down the cocoa beans into cocoa butter and chocolate (International Cocoa Organization, 1998). Firstly, fermented and dried cocoa beans will be refined to a roasted nib by winnowing and roasting. Then, they will be heated and will melt into chocolate liquor. Lastly, manufacturers blend chocolate liquor with sugar and milk to add flavour. After the blending process, the liquid chocolate will be stored or delivered to the molding factory in tanks and will be poured into moulds for sale. Finally, wrapping and packaging machines will pack the chocolates and then they will be ready to transport.
Step #1: Roasting and Winnowing the Cocoa
The first thing that chocolate manufacturers do with cocoa beans is roast them. This develops the colour and flavour of the beans into what our modern palates expect from fine chocolate. The outer shell of the beans is removed, and the inner cocoa bean meat is broken into small pieces called "cocoa nibs."
The roasting process makes the shells of the cocoa brittle, and cocoa nibs pass through a series of sieves, which strain and sort the nibs according to size in a process called "winnowing".
Step #2: Grinding the Cocoa Nibs
Grinding is the process by which cocoa nibs are ground into " cocoa liquor", which is also known as unsweetened chocolate or cocoa mass. The grinding process generates heat and the dry granular consistency of the cocoa nib is then turned into a liquid as the high amount of fat contained in the nib melts. The cocoa liquor is mixed with cocoa butter and sugar. In the case of milk chocolate, fresh, sweetened condensed or roller-dry low-heat powdered whole milk is added, depending on the individual manufacturer's formula and manufacturing methods.
Step #3: Blending Cocoa liquor and molding Chocolate
After the mixing process, the blend is further refined to bring the particle size of the added milk and sugar down to the desired fineness. The Cocoa powder or 'mass' is blended back with the butter and liquor in varying quantities to make different types of chocolate or couverture.
After blending is complete, molding is the final procedure for chocolate processing. This step allows cocoa liquor to cool and harden into different shapes depending on the mold. Finally the chocolate is packaged in candy boxes and other wrappings and distributed around the world.
VANDENBERG AIR FORCE BASE, Calif.--Officials cut the ribbon Feb. 27 ceremonially opening a brand new education center that will help Airmen stationed at this central coast base achieve their personal and professional education goals.
The $14.2 million center replaced a 60-year-old elementary school campus, which had been used as the education center for more than 40 years.
"We hear the dollar value, and I just can't stress how precious those dollars are in today's fiscal environment," said Col. Keith Balts, 30th Space Wing commander. "The fact that we get to do military construction at all, especially something for the quality of our Airmen and their families, says a lot about the importance we place on education."
One of the center's first customers was Senior Airman Antoine Marshall, 30th Force Support Squadron, who joined the Air Force four years ago with an associate degree in criminal justice.
"I just took the analyzing and interpreting literature CLEP (College Level Examination Program) exam," said Marshall, who's pursuing a bachelor's degree in organizational management. "It was my first one--I passed it. I'm extremely happy!"
The 38,384-square-foot facility includes 20 classrooms, computer lab, testing center, and 75-seat auditorium, as well as offices for various colleges and universities serving the Vandenberg community.
"I think the facility is great," said Marshall. "Overall, it provides a better environment to work and study, and it's just comfortable."
The design-build project was constructed by Corps contractor Teehee-Straub, a joint-venture team from Oceanside, Calif.
"The design was quite extensive, just due to the detail and the location," said Keith Hamilton, project executive for Teehee-Straub. "The site work was very challenging, and I think that was something that brought a lot of character to this building."
Teehee-Straub's 21st century design included sustainable development and energy efficiencies, such as light pollution reduction and water use reduction.
"This is a sustainable building," said Col. Kim Colloton, U.S. Army Corps of Engineers Los Angeles District commander. "We can build our buildings smartly, so they can do more; it's more [money] that can go back into the base."
During construction, 75 percent of the construction and demolition debris was diverted from landfills and redirected back to the manufacturing process as reusable and recyclable material. Walk-off mats, exhaust systems and filtered heating and cooling improves indoor air quality. Low-flow fixtures and faucets, high-efficiency drip irrigation and drought-tolerant landscaping reduce potable water use by more than 40 percent. All are efficiencies the contractor believes will achive a LEED Silver rating (Leadership in Energy & Environmental Design, a Green Building Council rating system).
"We're just proud to be part of this," said Teehee-Straub managing partner Richard Straub. "The Corps of Engineers is one of our favorite customers, and we love supporting the Air Force in doing a job that will educate a lot of servicemen."
Industry, Commerce, Agriculture and Fisheries Minister, Hon. Karl Samuda (2nd right), is briefed on the sugar-manufacturing process at the Worthy Park sugar factory in St. Catherine by Senior Managing Director, Robert Clarke (right), during a tour of the facility on February 15.
Yhomo Hutchinson Photos
Having worked with expendable launch vehicles (ELV) for 19 years, I jumped at the opportunity to be part of Orion, America’s new human exploration spacecraft. As the floor operations lead for Orion, I truly enjoy interfacing with the top professionals in the aerospace industry, who share the common goal of ensuring the success of the Orion program.
I am responsible for the supervision and leadership of hourly technicians, supervisors and floor operations personnel at the Kennedy Space Center’s Neil Armstrong Operations and Checkout (O&C) building. I make daily job assignments for assembly, integration and testing of the Orion spacecraft to keep production moving forward in order to meet daily and overall schedule milestones.
Being part of the Orion assembly, test and launch operations (ALTO) team has been one of my proudest moments. As part of the team, I was given the opportunity to contribute to the Orion crew module Ground Test Article and evolving the manufacturing processes of Exploration Flight Test-1 (EFT-1) crew and support modules.
Not surprisingly, the coolest part of my job is contributing to America’s space program.
My love for space began as a child. I grew up watching the Apollo launches from Cocoa Beach, so it’s very fitting that I now work in the building named to honor one of our greatest Apollo astronauts I decided to pursue my passion and attended Embry-Riddle Aeronautical University. I graduated with a bachelor’s degree in Aeronautics and a master’s degree in Management of Technical Systems.
My advice to students: If you want it – work hard for it. And above all else, follow your dreams!
Australia’s first shot tower, at Taroona, was built by Joseph Moir and is one of three still existing in the country, the others being in Melbourne. Joseph Moir's factory, which operated for 35 years from 1870, manufactured lead shot for contemporary muzzle loading sports guns. Although the factory struggled for most of its existence its most recognisable feature, the tallest stone shot tower in the southern hemisphere, has been a prominent landmark in the district for well over a century. Joseph Moir His Shot Tower on the Kingston Road is noted throughout the colonies, and Mr Moir’s enterprising spirit is there illustrated in a most remarkable manner. Though a speculation of a very hazardous kind, he had faith in its success, and his estimate, as was afterwards discovered, was not found on any erroneous basis. The manufacture of shot was a profitable venture under his management. Mercury 12 March 1874 Just twenty years old, Scotsman Joseph Moir arrived in Hobart in 1829, one of thousands of hopeful free immigrants who sailed to Van Diemen’s Land in the 1820s. By 1840 he had acquired several properties, government employment and a reputation as a builder of notable colonial buildings such as St Mark’s Anglican Church, Pontville. He returned briefly to Scotland in 1844 to marry Elizabeth Paxton with whom he had at least five children. A prominent businessman, Moir was active in Hobart’s civic affairs between 1846 and 1873, a year before his death. He revisited Britain in 1849 ‘to arrange to carry on an ironmonger’s business’, returning to Hobart with a stock of hardware items and opening a store with his brother at ‘Economy House’ in Murray Street. The business operated until sold by his son, Joseph in 1884. Moir purchased 39 acres on Brown’s River Rd in 1855 and moved to a new house at ‘Queenborough Glens’ (as he called the property) with his family in 1862. He then built the shot tower and its associated buildings and poured his first shot in 1870. When he died after a long illness in 1874 Moir left his major business concerns to his sons, James and Joseph. Together with Elizabeth (who only survived him by 15 months) and a daughter, Mary (who died in 1853 at the age of seven) Moir was encrypted in the family mausoleum on the cliffs below the shot tower. Their remains were later re-interred in unmarked graves at Queenborough Cemetery after Joseph relinquished the property in 1901. This cemetery’s graves were removed by Hobart Council in 1963 and Moir’s final resting place remains unknown. The Shot Tower This shot tower was built by the proprietor, Joseph Moir, in the year 1870. In its erection he acted as Engineer, Architect, Carpenter and Overseer. With merely the assistance of two masons it was completed in 8 months, when the secrets of shot-making had to be discovered. After many persevering efforts the first shot was dropped 8th September, 1870. Joseph Moir erected his shot making enterprise on 39 acres subdivided from an 1817 grant of 100 acres to John Williamson. He chose his site carefully. A road frontage facilitated straightforward transport of raw materials and product. A windmill pumped water from a reliable creek to a cistern on the site of the current overflow carpark and substantial timber reserves provided fuel for the furnaces and cauldrons. Sited far from residential neighbourhoods Moir could also relax in the knowledge that toxic fumes would blow safely out to sea or over forestland. Moir probably began building his shot making works after erecting the family home between 1855 and 1862. A stone building above the cliffs overlooking the River Derwent stored gun powder for his ironmongery as well as stores of arsenic and antimony. Another building south-west of the magazine contained the furnace for preparing lead with the arsenic and antimony. The tower was constructed of dressed curved sandstone blocks quarried at the nearby abandoned Brown’s River Convict Probation Station. A remarkable tapered structure 48m (157 feet 6 inches) tall it features an internal spiral staircase of pitsawn timber and an external gallery at its top which was probably used to store firewood for the upper cauldron. The staircase provided scaffolding during the construction of the tower and access to the upper cauldron and shot-making colanders. The tower is 10 metres in diameter at the base and tapers to 3.9 metres at the top . The walls are a metre thick at the bottom and thin out to .45 centimetres at the top. A three level stone factory abutting the tower was erected at the same time, then was extended soon after. The stone for the factory was probably recycled from the abandoned probation station. The Manufacturing Process The manufacture of shot is an industry which in England has always been conducted with the greatest secrecy, and consequently witnessed by very few except the initiated. This industry has recently been introduced in this colony by Mr Alderman Moir, and we learn that it is his intention to throw his Shot Tower open to the inspection of visitors on Monday and Tuesday next, when the process of shot making will be in operation, on which occasion we have no doubt many of our citizens will avail themselves of this opportunity of witnessing the interesting process. Mercury,10 March 1871. Shot manufacturing is thought to have been invented by Prince Rupert in the seventeenth century. It seems likely that Moir studied William Watts’ patented method of 1796 while in Britain in 1849- 50. Moir’s exact process is unknown — considerable experimentation was required by most manufacturers to perfect what is a very complex process requiring a detailed understanding of physics and metallurgy. Most of Moir’s raw materials would have been imported increasing his costs substantially Moir’s process was probably as follows: Lead was prepared in a furnace at the south-eastern corner of the property. Moir added 900g of arsenic (to decrease surface tension) and 6.35kg of antimony (to harden the shot) to every 45.35 kg of lead. The resultant ‘poisoned lead’ was cast into 7.7 kg ingots, conveyed to the factory, then remelted in cauldrons on the upper level of the factory for small shot and the top of the tower for larger shot. Firewood had to be winched to the upper cauldron. The molten lead was then poured through colanders, forming droplets which became spherical as they dropped. They fell into a tub of water at the base of the tower. The size of the shot depended on the amount of arsenic, the size of the holes in the colander and the height of the fall. Watts’ patent stipulated that large sized shot required a fall of 45.75m (150 feet), hence the height of Moir’s shot tower at 48m with the colander 46.36m above the base. The lead cooled partly while falling, then completely in the water. The antinomy hardener ensured that it maintained shape under the impact of the water. The cooled shot, green in colour, was winched to the factory’s upper floor where it was dried and run over inclined glass planes to separate out defective shot (which did not roll true). Imperfect shot was remelted and the process repeated. The shot was polished in a revolving drum (likened to a farmer’s barrel churn) using plumbago (graphite) then lowered through a trapdoor to the ground floor where it passed through ten sieves for grading into sizes ranging from fine birdshot to large balls. The graded shot was bagged into 12.7kg (28lb) handsewn linen bags stencilled with the manufacturer’s name and sent to market. At its peak the factory produced 100 tons of shot per annum. Working Conditions Little is known of working conditions in Joseph Moir’s shot tower. The work was highly skilled, noisy and almost certainly dangerous. That workers took great pride in their trade is indicated by an engraving in a window in the factory, reading, ‘George Matson Premier Shot Maker Tasmanian and Australian’. No further information about George Matson is known. The following descriptions of a contemporary works, Melbourne’s Coop shot tower (now incorporated in the Melbourne Central complex on Little Lonsdale St) provides some indication of the nature of the work involved. Pouring the lead was ‘an operation which needs great skill and constant watching. The man is used to his work but the novice would probably make a considerable bungle of it’. As the lead droplets fell there was ‘a sharp incessant shower of silvery rain . . . mak[ing] a noise very like that of an overflow waste pipe high up in one’s wall’. When shovelling shot from the water tub it was ‘quite certain that if the man who is so energetically shovelling . . . was to cease from his labours for any appreciable length of time the tank would be soon full of lead. . . . all the while the strange shower descends the man with the shovel is busily at work’. The noise of grading the shot through the sieves was ‘well nigh deafening’ while a woman sat with needle and thread sewing the 12.7kg linen bags for the finished shot. House and Garden Joseph Moir began building his residence soon after acquiring the property in 1855. Family lore suggests that he built the battlemented tower as practise before attempting the more substantial shot tower. By 1885 the property was well known for its gardens and orchards with its hot houses, summer houses and conservatories. "Mr [James] Moir has a prolific little orchard and kitchen garden, which latter, the flower garden and conservatories are watered from a considerable storage reservoir above. An amusing freak of the owner is to invite strangers into a summer house, and to be seated a moment or two out of the sun. He predicts rain shortly, however cloudless the sky — when hey presto: a shower immediately commences, a real earnest one. It is brought about by turning the tap of a pipe connecting with the circular piping on top of the summer house, the latter being perforated round its outside. A little defectiveness in the roof allowed of my receiving a slight baptism of spray, so I must be considered initiated." Tasmanian Mail,13 June 1885 Perhaps the youthful James Moir (he was 30 in 1885) had a better sense of fun than business sense. He had mortgaged the property the previous year and defaulted on his payments two years later. Later History Moir’s sons, James and Joseph, carried on the business after his death in 1874. Although James won merit certificates at the 1879 Sydney International Exhibition and the 1880-81 Melbourne Exhibition the business struggled and it was leased by the mortgagors to his brother, Joseph in 1887. Joseph found himself unable compete with mainland competitors when generous colonial tariffs were removed after Federation. He relinquished the lease to his brother-in-law, William Baynton who continued the business until closing its doors in 1905. During these years Baynton’s wife, Florence, operated a tea house in the residence. The property subsequently passed through several hands until 1956 when 3.24 hectares was purchased by the Tasmanian government and proclaimed a Scenery Reserve. Although it included the tower and residence, the reserve excluded the powder magazine, conservatory, antimony furnace and mausoleum. The reserve was gazetted as an historic site in 1971 under the National Parks and Wildlife Act. Since 1956 it has been leased to several concessionaires and has been open as a tourist site. Various conservation works have been conducted at the shot tower over the years to maintain its heritage significance.
197,187 items / 1,616,784 views
From Wikipedia, the free encyclopedia
The National Flag of India is a horizontal rectangular tricolour of deep saffron, white and India green; with the Ashoka Chakra, a 24-spoke wheel, in navy blue at its centre. It was adopted in its present form during a meeting of the Constituent Assembly held on 22 July 1947, when it became the official flag of the Dominion of India. The flag was subsequently retained as that of the Republic of India. In India, the term "tricolour" (Hindi: तिरंगा, Tirangā) almost always refers to the Indian national flag. The flag is based on the Swaraj flag, a flag of the Indian National Congress designed by Pingali Venkayya.
The flag, by law, is to be made of khadi, a special type of hand-spun cloth of cotton or silk made popular by Mahatma Gandhi. The manufacturing process and specifications for the flag are laid out by the Bureau of Indian Standards. The right to manufacture the flag is held by the Khadi Development and Village Industries Commission, who allocate it to the regional groups. As of 2009, the Karnataka Khadi Gramodyoga Samyukta Sangha was the sole manufacturer of the flag.
Usage of the flag is governed by the Flag Code of India and other laws relating to the national emblems. The original code prohibited use of the flag by private citizens except on national days such as the Independence day and the Republic Day. In 2002, on hearing an appeal from a private citizen, the Supreme Court of India directed the Government of India to amend the code to allow flag usage by private citizens. Subsequently, the Union Cabinet of India amended the code to allow limited usage. The code was amended once more in 2005 to allow some additional use including adaptations on certain forms of clothing. The flag code also governs the protocol of flying the flag and its use in conjunction with other national and non-national flags.
India was under British rule in the 19th century. A number of flags with varying designs were used in the period preceding the Indian Independence Movement by the rulers of different princely states; the idea of a single Indian flag was first raised by the British rulers of India after the rebellion of 1857, which resulted in the establishment of direct imperial rule. The first flag, whose design was based on western heraldic standards, were similar to the flags of other British colonies, including Canada and Australia; the blue banner included the Union Flag in the upper-left quadrant and a Star of India capped by the royal crown in the middle of the right half. To address the question of how the star conveyed "Indianness",Queen Victoria created the Knight Commander of the Order of the Star of India to honour services to the empire by her Indian subjects. Subsequently, all the Indian princely states received flags with symbols based on the heraldic criteria of Europe including the right to fly defaced British red ensigns.[1][2]
n the early twentieth century, around the coronation of Edward VII, a discussion started on the need for a heraldic symbol that was representative of the Indian empire. William Coldstream, a British member of the Indian Civil Service, campaigned the government to change the heraldic symbol from a star, which he considered to be a common choice, to something more appropriate that would bind the people to the Kingdom of Great Britain. His proposal was not well received by the government; Lord Curzon rejected it for practical reasons including the multiplication of flags.[3] Around this time, nationalist opinion within the dominion was leading to a representation through religious tradition. The symbols that were in vogue included the Ganesha, advocated by Bal Gangadhar Tilak, and Kali, advocated by Aurobindo Ghosh and Bankim Chandra Chattopadhyay. Another symbol was the cow, or Gau Mata (cow mother). However, all these symbols were Hindu-centric and did not suggest unity with India's Muslim population.[4]
The partition of Bengal (1905) resulted in the introduction of a new Indian flag that sought to unite the multitude of castes and races within the country. The Bande Mataram flag, part of the Swadeshi movement against the British, comprised Indian religious symbols represented in western heraldic fashion. The tricolour flag included eight white lotuses on the upper red band – representing the eight provinces, a sun and a crescent on the bottom green band – representing the Hindu and Muslim population respectively, and the Bande Mataram slogan in Hindi on the central yellow band. The flag was launched in Calcutta bereft of any ceremony and the launch was only briefly covered by newspapers. The flag was not covered in contemporary governmental or political reports either, but was used at the annual session of the Indian National Congress. A slightly modified version was subsequently used by Madam Bhikaji Cama at the Second Socialist International Meeting in Stuttgart. Despite the multiple uses of the flag, it failed to generate enthusiasm amongst Indian nationalists.[5]
Around the same time, another proposal for the flag was initiated by Sister Nivedita, a Hindu reformist and disciple of Swami Vivekananda. The flag consisted of a thunderbolt in the centre and a hundred and eight oil lamps for the border, with the Vande Mataram caption split around the thunderbolt. It was also presented at the Indian National Congress meeting in 1906.[6] Soon, many other proposals were initiated, but none of them gained attention from the nationalist movement. In 1916, Pingali Venkayya submitted thirty new designs, in the form of a booklet funded by members of the High Court of Madras. These many proposals and recommendations did little more than keep the flag movement alive. The same year, Annie Besant and Bal Gangadhar Tilak adopted a new flag as part of the Home Rule Movement. The flag included the Union Jack in the upper left corner, a star and crescent in the upper right, and seven stars displayed diagonally from the lower right, on a background of five red and four green alternating bands. The flag resulted in the first governmental initiative against any nationalistic flag, as a magistrate in Coimbatore banned its use. The ban was followed by a public debate on the function and importance of a national flag.[7]
In the early 1920s, national flag discussions gained prominence across most British dominions following the peace treaty between Britain and Ireland. In November 1920, the Indian delegation to the League of Nations wanted to use an Indian flag, and this prompted the British Indian government to place renewed emphasis on the flag as a national symbol. In April 1921, Mohandas Karamchand Gandhi wrote in his journal Young India about the need for an Indian flag, proposing a flag with the charkha or spinning wheel at the centre.[9] The idea of the spinning wheel was put forth by Lala Hansraj, and Gandhi commissioned Venkayya to design a flag with the spinning wheel on a red and green banner, the red colour signifying Hindus and the green standing for Muslims. Gandhi wanted the flag to be presented at the Congress session of 1921, but it was not delivered on time, and another flag was proposed at the session. Gandhi later wrote that the delay was fortuitous since it allowed him to realise that other religions were not represented; he then added white to the banner colours, to represent all the other religions. However, soon the Sikhs wanted the banner to include the black colour and Gandhi was forced to address these issues in his writings and speeches. Finally, owing to the religious-political sensibilities, in 1929, Gandhi moved towards a more secular interpretation of the flag colours, stating that red stood for the sacrifices of the people, white for purity, and green for hope.[10]
On 13 April 1923, during a procession by local Congress volunteers in Nagpur commemorating the Jallianwala Bagh massacre , the Swaraj flag with the spinning wheel, designed by Venkayya, was hoisted. This event resulted in a confrontation between the Congressmen and the police, after which five people were imprisoned. Over a hundred other protesters continued the flag procession after a meeting. Subsequently, on the first of May, Jamnalal Bajaj, the secretary of the Nagpur Congress Committee, started the Flag Satyagraha, gaining national attention and marking a significant point in the flag movement. The satyagraha, promoted nationally by the Congress, started creating cracks within the organisation in which the Gandhians were highly enthused while the other group, the Swarajists, called it inconsequential. Finally, at the All India Congress Committee meeting in July, at the insistence of Jawaharlal Nehru and Sarojini Naidu, Congress closed ranks and the flag movement was endorsed. The flag movement was managed by Sardar Vallabhbhai Patel with the idea of public processions and flag displays by common people. By the end of the movement, over 1500 people had been arrested across all of British India. The Bombay Chronicle reported that the movement drew from diverse groups of society including farmers, students, merchants, labourers and "national servants". While Muslim participation was moderate, the movement enthused women, who had hitherto rarely participated in the independence movement.[11]
While the flag agitation got its impetus from Gandhi's writings and discourses, the movement received political acceptance following the Nagpur incident. News reports, editorials and letters to editors published in various journals and newspapers of the time attest to the subsequent development of a bond between the flag and the nation. Soon, the concept of preserving the honour of the national flag became an integral component of the freedom struggle. While Muslims were still wary of the Swaraj flag, it gained acceptance among Muslim leaders of the Congress and the Khilafat Movement as the national flag. Detractors of the flag movement, including Motilal Nehru, soon hailed the Swaraj flag as a symbol of national unity. Thus, the flag became a significant structural component of the institution of India. In contrast to the subdued responses of the past, the British Indian government took greater cognisance of the new flag, and began to define a policy of response. The British parliament discussed public use of the flag, and based on directives from England, the British Indian government threatened to withdraw funds from municipalities and local governments that did not prevent the display of the Swaraj flag.[13] The Swaraj flag became the official flag of Congress at the 1931 meeting. However, by then, the flag had already become the symbol of the independence movement.[14]
A postage stamp, featuring a fluttering Indian flag above the word "INDIA". At left is "15 AUG. 1947" and "3½ As."; at right is "जय हिंन्द" above "POSTAGE".
Indian Flag, the first stamp of independent India, released on 21 Nov 1947, was meant for foreign correspondence.[15][16]
A few days before India gained its freedom in August 1947, the Constituent Assembly was formed. To select a flag for independent India, on 23 June 1947, the assembly set up an ad hoc committee headed by Rajendra Prasad and including Maulana Abul Kalam Azad, Sarojini Naidu, C. Rajagopalachari, K. M. Munshi and B.R. Ambedkar as its members. On 14 July 1947, the committee recommended that the flag of the Indian National Congress be adopted as the National Flag of India with suitable modifications, so as to make it acceptable to all parties and communities. It was also resolved that the flag should not have any communal undertones.[17] The spinning wheel of the Congress flag was replaced by the Chakra (wheel) from the Lion Capital of Ashoka. According to Sarvepalli Radhakrishnan, the chakra was chosen as it was representative of dharma and law. However, Nehru explained that the change was more practical in nature, as unlike the flag with the spinning wheel, this design would appear symmetrical. Gandhi was not very pleased by the change, but eventually came around to accepting it. The flag was proposed by Nehru at the Constituent Assembly on 22 July 1947 as a horizontal tricolor of deep saffron, white and dark green in equal proportions, with the Ashoka wheel in blue in the centre of the white band. Nehru also presented two flags, one in Khadi-silk and the other in Khadi-cotton, to the assembly. The resolution was approved unanimously.[18] It served as the national flag of the Dominion of India between 15 August 1947 and 26 January 1950, and has served as the flag of the Republic of India since then.[19]
Design and symbolism
Gandhi first proposed a flag to the Indian National Congress in 1921. The flag was designed by Pingali Venkayya, an agriculturist from Machilipatnam.[20][21] The original design Gandhi was presented with included two colours, red for the Hindus, and green for the Muslims. In the centre was a traditional spinning wheel, symbolising Gandhi's goal of making Indians self-reliant by fabricating their own clothing. The design was then modified to include a white stripe in the centre for other religious communities, and provide a background for the spinning wheel. Subsequently, to avoid sectarian associations with the colour scheme, saffron, white and green were chosen for the three bands, representing courage and sacrifice, peace and truth, and faith and chivalry respectively.[22]
A few days before India became independent on August 1947, the specially constituted Constituent Assembly decided that the flag of India must be acceptable to all parties and communities.[19] A modified version of the Swaraj flag was chosen; the tricolour remained the same saffron, white and green. However, the charkha was replaced by the Ashoka Chakra representing the eternal wheel of law. Sarvepalli Radhakrishnan, who later became India's first Vice President, clarified the adopted flag and described its significance as follows:
“ Bhagwa or the saffron colour denotes renunciation or disinterestedness. Our leaders must be indifferent to material gains and dedicate themselves to their work. The white in the centre is light, the path of truth to guide our conduct. The green shows our relation to (the) soil, our relation to the plant life here, on which all other life depends. The "Ashoka Chakra" in the centre of the white is the wheel of the law of dharma. Truth or satya, dharma or virtue ought to be the controlling principle of those who work under this flag. Again, the wheel denotes motion. There is death in stagnation. There is life in movement. India should no more resist change, it must move and go forward. The wheel represents the dynamism of a peaceful change.[23]
austin, texas
1977
motorola semiconductor plant
part of an archival project, featuring the photographs of nick dewolf
© the Nick DeWolf Foundation
Image-use requests are welcome via flickrmail or nickdewolfphotoarchive [at] gmail [dot] com
Some of you know that my real job is in designing and engineering real cars.
With that in mind, I thought it would be helpful to share some of the knowledge regarding the design, engineering and manufacturing processes involved in the creation of a new car.
A term that is frequently used within car companies, and which sometimes slips out into the media, but without much explanation, is the term 'Body-In-White'. The abbreviation of the term is BIW, though the full word usage occurs within companies when it is discussed.
So, what is the 'Body-In-White'?
Though the names says otherwise. It is not white. It does describe the stamped sheet metal of the body before it has been painted, had any trim attached, or any of the chassis and powertrain. It is frequently described as the 'body' of the car. And for a pickup, or similar vehicle, it will be the body prior to the attachment to the separate 'frame', which is attached underneath the car, and frequently attached by isolating mounts.
The BIW doesn't just include the main part of the monocoque (the 'stressed' load-bearing part of the car), but also the doors, bootlid (trunk), and bonnet (hood). All these parts usually get coated in protective coatings prior to the application of paint, together (though not always). Frequently, when the car is 'trimmed' - that is the addition of trim and interior - the doors are removed to make this easier, though they do travel along with the car that they were attached to during the paint process.
Stay tuned for further car-design, engineering and manufacturing information in the near future.
Regards,
lego911
These images are created for the first in a series of topics covering car design, engineering and manufacturing.
Body-In-White: www.flickr.com/groups/lugnuts/discuss/72157645669786809/
A central index will be created, over time, in this discussion thread: www.flickr.com/groups/lugnuts/discuss/72157646071614841/
VANDENBERG AIR FORCE BASE, Calif. - Officials cut the ribbon Feb. 27 ceremonially opening a brand new education center that will help Airmen stationed at this central coast base achieve their personal and professional education goals.
The $14.2 million center replaced a 60-year-old elementary school campus, which had been used as the education center for more than 40 years.
"We hear the dollar value, and I just can't stress how precious those dollars are in today's fiscal environment," said Col. Keith Balts, 30th Space Wing commander. "The fact that we get to do military construction at all, especially something for the quality of our Airmen and their families, says a lot about the importance we place on education."
One of the center's first customers was Senior Airman Antoine Marshall, 30th Force Support Squadron, who joined the Air Force four years ago with an associate degree in criminal justice.
"I just took the analyzing and interpreting literature CLEP (College Level Examination Program) exam," said Marshall, who's pursuing a bachelor's degree in organizational management. "It was my first one--I passed it. I'm extremely happy!"
The 38,384-square-foot facility includes 20 classrooms, computer lab, testing center, and 75-seat auditorium, as well as offices for various colleges and universities serving the Vandenberg community.
"I think the facility is great," said Marshall. "Overall, it provides a better environment to work and study, and it's just comfortable."
The design-build project was constructed by Corps contractor Teehee-Straub, a joint-venture team from Oceanside, Calif.
"The design was quite extensive, just due to the detail and the location," said Keith Hamilton, project executive for Teehee-Straub. "The site work was very challenging, and I think that was something that brought a lot of character to this building."
Teehee-Straub's 21st century design included sustainable development and energy efficiencies, such as light pollution reduction and water use reduction.
"This is a sustainable building," said Col. Kim Colloton, U.S. Army Corps of Engineers Los Angeles District commander. "We can build our buildings smartly, so they can do more; it's more [money] that can go back into the base."
During construction, 75 percent of the construction and demolition debris was diverted from landfills and redirected back to the manufacturing process as reusable and recyclable material. Walk-off mats, exhaust systems and filtered heating and cooling improves indoor air quality. Low-flow fixtures and faucets, high-efficiency drip irrigation and drought-tolerant landscaping reduce potable water use by more than 40 percent. All are efficiencies the contractor believes will achive a LEED Silver rating (Leadership in Energy & Environmental Design, a Green Building Council rating system).
"We're just proud to be part of this," said Teehee-Straub managing partner Richard Straub. "The Corps of Engineers is one of our favorite customers, and we love supporting the Air Force in doing a job that will educate a lot of servicemen."
VANDENBERG AIR FORCE BASE, Calif. - Officials cut the ribbon Feb. 27 ceremonially opening a brand new education center that will help Airmen stationed at this central coast base achieve their personal and professional education goals.
The $14.2 million center replaced a 60-year-old elementary school campus, which had been used as the education center for more than 40 years.
"We hear the dollar value, and I just can't stress how precious those dollars are in today's fiscal environment," said Col. Keith Balts, 30th Space Wing commander. "The fact that we get to do military construction at all, especially something for the quality of our Airmen and their families, says a lot about the importance we place on education."
One of the center's first customers was Senior Airman Antoine Marshall, 30th Force Support Squadron, who joined the Air Force four years ago with an associate degree in criminal justice.
"I just took the analyzing and interpreting literature CLEP (College Level Examination Program) exam," said Marshall, who's pursuing a bachelor's degree in organizational management. "It was my first one--I passed it. I'm extremely happy!"
The 38,384-square-foot facility includes 20 classrooms, computer lab, testing center, and 75-seat auditorium, as well as offices for various colleges and universities serving the Vandenberg community.
"I think the facility is great," said Marshall. "Overall, it provides a better environment to work and study, and it's just comfortable."
The design-build project was constructed by Corps contractor Teehee-Straub, a joint-venture team from Oceanside, Calif.
"The design was quite extensive, just due to the detail and the location," said Keith Hamilton, project executive for Teehee-Straub. "The site work was very challenging, and I think that was something that brought a lot of character to this building."
Teehee-Straub's 21st century design included sustainable development and energy efficiencies, such as light pollution reduction and water use reduction.
"This is a sustainable building," said Col. Kim Colloton, U.S. Army Corps of Engineers Los Angeles District commander. "We can build our buildings smartly, so they can do more; it's more [money] that can go back into the base."
During construction, 75 percent of the construction and demolition debris was diverted from landfills and redirected back to the manufacturing process as reusable and recyclable material. Walk-off mats, exhaust systems and filtered heating and cooling improves indoor air quality. Low-flow fixtures and faucets, high-efficiency drip irrigation and drought-tolerant landscaping reduce potable water use by more than 40 percent. All are efficiencies the contractor believes will achive a LEED Silver rating (Leadership in Energy & Environmental Design, a Green Building Council rating system).
"We're just proud to be part of this," said Teehee-Straub managing partner Richard Straub. "The Corps of Engineers is one of our favorite customers, and we love supporting the Air Force in doing a job that will educate a lot of servicemen."
Grade II listed historic building constructed as the House and Cotton Manufactory. It was divided into dwellings in the early-to-mid 1800's. John Wakefield's Bank was established here in 1788.
"Kendal, once Kirkby in Kendal or Kirkby Kendal, is a market town and civil parish in the South Lakeland District of Cumbria, England. Historically in Westmorland, it lies 8 miles (13 km) south-east of Windermere, 19 miles (31 km) north of Lancaster, 23 miles (37 km) north-east of Barrow-in-Furness and 38 miles (61 km) north-west of Skipton, in the dale of the River Kent, from which comes its name. The 2011 census found a population of 28,586. making it the third largest town in Cumbria after Carlisle and Barrow. It is known today mainly as a centre for tourism, as the home of Kendal mint cake, and as a producer of pipe tobacco and snuff. Its local grey limestone buildings have earned it the nickname "Auld Grey Town".
A chartered market town, the centre of Kendal has formed round a high street with fortified alleyways, known locally as yards, off to either side, which allowed local people to shelter from the Anglo-Scottish raiders known as Border Reivers. The main industry in those times was the manufacture of woollen goods, whose importance is reflected in the town's coat of arms and in its Latin motto Pannus mihi panis (Cloth is my bread.) "Kendal Green" was a hard-wearing, wool-based fabric specific to the local manufacturing process. It was supposedly sported by the Kendalian archers instrumental in the English victory over the French at the Battle of Agincourt. Kendal Green was also worn by slaves in the Americas and appears in songs and literature from that time. Shakespeare notes it as the colour of clothing worn by foresters (Henry IV, Part 1).
Kendal Castle has a long history as a stronghold, built on the site of several successive castles. The earliest was a Norman motte and bailey (now located on the west side of the town), when the settlement went under the name of Kirkbie Strickland. The most recent is from the late 12th century, as the castle of the Barony of Kendal, the part of Westmorland ruled from here. The castle is best known as the home of the Parr family, as heirs of these barons. They inherited it through marriage in the reign of Edward III of England. Rumours still circulate that King Henry VIII's sixth wife Catherine Parr was born at Kendal Castle, but the evidence available leaves this unlikely: by her time the castle was beyond repair and her father was already based in Blackfriars, London, at the court of King Henry VIII." - info from Wikipedia.
Summer 2019 I did a solo cycling tour across Europe through 12 countries over the course of 3 months. I began my adventure in Edinburgh, Scotland and finished in Florence, Italy cycling 8,816 km. During my trip I took 47,000 photos.
Now on Instagram.
Become a patron to my photography on Patreon.
NASA’s Tracking and Data Relay Satellites, known as TDRS-K, aboard an Atlas V rocket, was rolled to its launch position, Space Launch Complex 41, Cape Canaveral Air Force Station beginning at 10 a.m. January 29. TDRS-K will augment NASA’s space communications network, providing high data-rate communications to the International Space Station, Hubble Space Telescope, launch vehicles and a host of other spacecraft. “With this launch, NASA has begun the replenishment of our aging space network,” said Jeffrey Gramling, TDRS project manager. “This addition to our current fleet of seven, will provide even greater capabilities to a network that has become key to enabling many of NASA’s scientific discoveries.” The TDRS Project Office at NASA’s Goddard Space Flight Center in Greenbelt, Md., manages the TDRS development program.
----
CAPE CANAVERAL, Fla. -- The first of NASA's three next-generation
Tracking and Data Relay Satellites (TDRS), known as TDRS-K, launched
at 8:48 p.m. EST Wednesday from Cape Canaveral Air Force Station in
Florida.
"TDRS-K bolsters our network of satellites that provides essential
communications to support space exploration," said Badri Younes,
deputy associate administrator for Space Communications and
Navigation at NASA Headquarters in Washington. "It will improve the
overall health and longevity of our system."
The TDRS system provides tracking, telemetry, command and
high-bandwidth data return services for numerous science and human
exploration missions orbiting Earth. These include the International
Space Station and NASA's Hubble Space Telescope.
"With this launch, NASA has begun the replenishment of our aging space
network," said Jeffrey Gramling, TDRS project manager. "This addition
to our current fleet of seven will provide even greater capabilities
to a network that has become key to enabling many of NASA's
scientific discoveries."
TDRS-K was lifted into orbit aboard a United Launch Alliance Atlas V
rocket from Space Launch Complex-41. After a three-month test phase,
NASA will accept the spacecraft for additional evaluation before
putting the satellite into service.
The TDRS-K spacecraft includes several modifications from older
satellites in the TDRS system, including redesigned
telecommunications payload electronics and a high-performance solar
panel designed for more spacecraft power to meet growing S-band
requirements. Another significant design change, the return to
ground-based processing of data, will allow the system to service
more customers with evolving communication requirements.
The next TDRS spacecraft, TDRS-L, is scheduled for launch in 2014.
TDRS-M's manufacturing process will be completed in 2015.
NASA's Space Communications and Navigation Program, part of the Human
Exploration and Operations Mission Directorate at the agency's
Headquarters in Washington, is responsible for the space network. The
TDRS Project Office at NASA's Goddard Space Flight Center in
Greenbelt, Md., manages the TDRS development program. Launch services
were provided by United Launch Alliance. NASA's Launch Services
Program at the Kennedy Space Center was responsible for acquisition
of launch services.
For more information about TDRS, visit:
NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission.
Follow us on Twitter
Like us on Facebook
Find us on <a href="http:/
We have our students in the senior Manufacturing Processes elective make model steam engines. The flywheel is one of the more challenging parts to make.
High-end-Tuning for the Carrera GT: Racing-look GEMBALLA Mirage GT with more power
Body and Chassis
Porsche’s motor racing division designed and developed the Carrera GT’s body structure. The monocoque combines all structural functions. Unlike a conventional body shell made from numerous separate components, the monocoque is made from only a few elements that are bonded together in a high-pressure furnace to form a single or mono-structure that is exceptionally rigid and strong. Carbon fiber reinforced plastic (CFP) is the generic term for composite fiber materials that were developed primarily for aerospace applications but have been widely applied to motorsports vehicle construction. These materials provide supreme performance through their combination of minimum weight and maximum strength and stiffness. On the Carrera GT, CFP is used for the chassis, which includes the windshield frame (which is reinforced by a steel core) and supplemental safety bar system, engine/transmission support frame, doors, hoods, fenders, underfloor tray and even in many interior components.
CFP is constructed from bonded layers of materials, including carbon fiber tissue, resin and aluminum or plastic honeycomb material that can be nearly an inch in thickness. Aluminum inserts are laminated at specific points so other components can be attached to the load-bearing monocoque structure. The structure is sealed in an airtight foil cover and placed in a high-pressure autoclave furnace, where the resins form a polymer and bond the honeycomb to the carbon fiber. Such carbon bonding creates a strong, stiff and precise structure that is also resistant to temperature extremes.
The Carrera GT is the first road car built around such a chassis and also the first with an engine and transmission support made entirely of CFP, a concept developed by Porsche’s motorsports department and registered for patent. The system was devised because of carbon-reinforced plastic’s structural strength and thermal resistance. CFP is also used in the Carrera GT’s removable roof, which consists of two lightweight panels. It is held in place by rapid-action catches and can be stored in the car’s front luggage compartment.
The Carrera GT has steel reinforcement in its windshield structure and the longitudinal arms commonly referred to as chassis legs are made from high-strength stainless steel and help create a crash structure at the front and rear of the vehicle. Aluminum inserts connect the longitudinal arms to the chassis at the front and to the engine/transmission support frame at the rear. The bumper system is made of a strong aluminum crossbar and impact tubes.
Porsche’s development engineers have placed the car’s fuel tank in an aluminum drawer within the monocoque and between the passenger cell and engine compartment. In addition to protecting the fuel tank, the chassis is designed to protect its human occupants. The Carrera GT is equipped with three-point safety belts with pretensioners and load limitors, but the seats also are prepared to accept six-point racing belts. Passive safety equipment includes front and side airbags for both the driver and passenger. Strong steel tubes built into the Carrera GT’s doors provide additional side-impact protection.
Engine
A purebred racing engine powers the Carrera GT. Porsche’s development center at Weissach, Germany, built a 5.5-liter, normally aspirated V10 engine for racing, and that engine’s bores have been enlarged to displace 5.7 liters in the Carrera GT. Maximum output is rated at 605 horsepower (SAE) at 8,000 rpm, with peak torque of 435 lb.-ft. The engine has a very low center of gravity, a 68-degree V angle and four valves-per-cylinder heads. The engine block serves as a load-bearing part of the chassis structure, yet is so strong that there is no distortion to the cylinder bores. Using dry-sump lubrication reduces the number of engine components and seals and also helps optimize weight and reliability.
To keep the engine as short as possible, Porsche engineers decided against using cylinder liners. Instead, the cylinders are coated with Nikasil, a nickel and silicon combination coating that improves wear resistance and minimizes internal friction. The engine has a closed-deck configuration, a principle carried over from motorsports. This closed-desk architecture enables the cylinders to be cooled by internal water chambers that directly surround the cylinders. Three front-mounted radiators and cross flow cooling ensure optimum heat transfer even under high engine loads.
The engine weighs only 472 pounds (214 kg.). The block, crankshaft and camshafts are all made of light alloys. The crankshaft is designed to operate at speeds of up to 8,400 rpm and is both forged and designed for minimum mass inertia and thus offers maximum torsional stiffness. Pistons are connected to the crankshaft by titanium connecting rods that are very lightweight. The crankcase is a one-piece unit that integrates the secondary air ducts as well as the separate bearing blocks for the camshaft. Camshaft drive is a combined sprocket/chain system with rigid cup tappets that guarantees a stiff and sturdy valve drive with low masses and compact dimensions. Porsche-patented VarioCam camshaft control provides the intake camshafts with infinite adjustment within a range of 40 degrees. The Carrera GT has a two-chamber exhaust system with one pre-catalyst and a main catalyst on each side. The car already meets European EU4 emission standards that do not go into effect until 2005. The exhaust system is made of stainless steel and is precisely tuned to provide a powerful sound that includes the high-frequency roar of a thoroughbred racing engine.
Transmission
The engine’s power reaches the rear wheels through a specially developed six-speed manual gearbox that has compact dimensions and a low center of gravity. The transversely mounted gearbox ensures optimum weight distribution without impairing the position of the rear diffuser.
Rather than carrying the weight of a two-mass flywheel, the transmission uses a special shaft design: the first main shaft is a hollow tube housing the long and thin solid shaft. This effectively creates a torsional spring that enables the shafts to dampen drive impacts and to reduce transmission noise.
The Carrera GT is the first Porsche to feature the Porsche Ceramic Composite Clutch (PCCC®), which is extremely compact and contributes to the car’s low center of gravity. The PCCC’s low mass also has a positive effect on engine dynamics. Ceramic composite clutches used in racing often have short lives, but Porsche has created a new clutch design and configuration with a two-plate dry clutch with ceramics made of carbon fiber and silicon carbide that are strong, light and have an exceptional service life. The plates are only 6.65 inches (169 mm) in diameter, less than half the size of typical production car clutch plates.
Suspension
The Porsche Carrera GT chassis and suspension is based on the architecture of the Porsche GT1, the car that won the 24 Hours of Le Mans race in 1998. For example, as on the GT1, the rear track control arms of the Carrera GT are made of aerodynamically designed steel tubes. However, Porsche engineers did not forget the need for driving comfort on the street when they adapted such racing-bred systems for the new supercar.
Like a racecar, the Carrera GT uses pushrod suspension with double-track control arms at all four corners to give the Carrera GT its refined response and behavior, feeding forces smoothly and efficiently into the car’s chassis. Where many cars use MacPherson spring struts, the Carrera GT’s spring and damper elements are operated by stainless steel pushrods and pivot levers, which separate the guidance function from the spring action. Advantages include more sensitive response and behavior as well as precise suspension tuning for both high and low speeds. Forged aluminum control arms resting on broad mounts feed wheel forces into the chassis. As on a racecar, the control arms are bolted on the chassis without rubber insulators, providing the most precise and direct wheel guidance at all times. The Carrera GT’s superior driving dynamics are further enhanced by a power steering system that has its safety steering column also bolted directly to the monocoque body structure.
Braking System
The Carrera GT is equipped with Porsche Ceramic Composite Brakes (PCCB®), which have been optimized and enlarged. The cross-drilled composite ceramic brake discs are 14.96 inches (380 mm) in diameter at all four corners of the car. Those discs are 1.34 inches (34 mm) thick, yet are 50 percent lighter than comparable cast iron discs. Porsche composite brakes provide immediate, frictionally consistent and optimized response while slowing the Carrera GT. Maximum brake power is built up within fractions of a second, yet abrasion is kept to an absolute minimum and the brakes have a substantial safety reserve even under extreme loads. Six-piston monoblock aluminum brake calipers front and rear are brand new and feature extremely large and firmly bolted connections to the wheel mounts, giving the driver good feel through the brake pedal. Short stopping distances are ensured by the hydraulic brake servo that builds pressure very quickly and efficiently.
The antilock braking system and traction control serve to ensure dynamic driving behavior even in transitional road surfaces and in inclement weather. The Carrera GT has four-channel anti-spin control (ASC) geared specifically for its ceramic brakes to provide short stopping distances with precise steering control. ASC is activated when required throughout the car’s entire range of acceleration, preventing excessive wheel spin on the drive wheels and thus avoiding any instability at the rear of the car. ASC can intervene in engine management to reduce power to the degree required. While they are spinning, the drive wheels are slowed by automatic brake differential (ABD) technology. However, the driver can switch off the traction control function by pressing a button on the center console.
Wheels
The Carrera GT rides on large, five-spoke wheels, which are the first production car application of forged magnesium rims made from a special manufacturing process that enhances strength while reducing weight. The forged magnesium wheels are some 25 percent lighter than cast aluminum wheels and thus reduce unsprung weight to a new level. The result is supreme traction as well as smooth and sure spring and damper action. The wheels are 19 inches in diameter and 9.5 inches wide for the front of the car and 20 inches in diameter and 12.5 inches wide at the rear. The wheels feature motorsports-style central wheel locks on their hubs.
Special tires were developed for the Carrera GT. They measure 265/35 X 19 in front and 335/30 X 20 in the rear. The tires are Z rated and have outstanding grip and consistent behavior at high speeds, yet have a relatively low level of wear for such high-performance tires. Despite its racing-oriented performance, the Porsche Carrera GT does not have a spartan interior. The cockpit is characterized by function-oriented ambience with extensive use of high-tech materials. Carbon, magnesium and leather dominate interior materials, with composite components either in their natural state or painted to match the magnesium pieces.
Interior and Amenities
The car’s center console is made of composite materials covered in galvanized magnesium. The shift lever is positioned about halfway up the console and is directly next to the steering wheel. The shift lever has a ball-shaped knob made of lightweight stratified birch/ash wood meant to remind drivers of the balsa wood shift knob in the 1970 Le Mans-winning Porsche 917. The Carrera GT features a new seat design and structure. The seats are finished in smooth leather and have manual adjustment because power motors would add unnecessary weight. The seats are made of a composite carbon shell. Each seat weighs only 23.6 pounds (10.7 kg.), compared to 28.9 pounds (13.1 kg.) for the seats in the Porsche GT3 or 44.1 pounds (20 kg.) for the seats in a Porsche 911 Carrera.
Air conditioning is optimized for weight and the car comes with a standard air filter system. Even though the Carrera GT is a serious performance car, it can be equipped with many comfort features, including a navigation system and Bose® audio. The Carrera GT also comes with its own five-piece set of leather luggage matched to the car’s interior color – Terracotta, Dark Grey Nature, Ascot Brown/Black Nature. Each piece of luggage is designed for a precise place within the car: the clothes bag fits behind the passenger’s seat, the attaché case fits in the passenger’s foot well, the shoulder bag fits between the passenger’s seat and door, a center console bag fits beneath the console and there are leather bags in special storage boxes within the doors and a travel bag in the luggage compartment. The luggage compartment is lined with a checkered fabric and can hold 2.68 cu.-ft. (76 liters) of cargo. Special leather straps hold the two roof panels in position when they are in the compartment.