View allAll Photos Tagged MARSOC

So anyways, my MARSOC inspired/styled loadout. Not everything is present but this is basically my loadout :p It'd be a lot more authentic with a Scar but ACRs >>>>>

 

Also, updates! I've been taking a break from just about everything lately. I haven't played a video game, taken a picture, moved a Lego, touched a tool or anything in about a month. I haven't even opened up the bricklink orders for my Osprey, and this is the first I've done anything with my airsoft gear in about an equal amount of time. I'm not done with Lego or any of this stuff by any shot, I've just been focusing myself on career and future things. I'm a super sophomore in college, so life is really starting to fill up with a possible internship and all sorts of other good stuff. I've also been working on building a longboard (skate longboard), so that's been taking up free time and budget. Anyways guys, I'll be around keeping up on what everyone's been building. I just might not be posting for a while

Marines with Marine Corps Special Operations Command conduct a Special Patrol Insertion/Extraction exercise on a CH-53E aboard Marine Corps Base Camp Lejeune, N.C., Sept. 13, 2013. This training has helped the MARSOC MPC program in developing what will become the standard operating procedures.

 

Read more: www.marsoc.marines.mil/News/NewsArticleDisplay/tabid/1213...

 

(U.S. Marine Corps photo by Sgt. Anthony Carter/Released)

Maritime Special Operations Forces prepare for a mission during a training exercise aboard the Nimitz-class aircraft carrier USS George Washington (CVN 73). SEALs and Marine Special Operations (MARSOC) forces from Special Operations Command Pacific conducted maritime interoperability training aboard Nimitz-class aircraft carrier USS George Washington. George Washington and its embarked air wing, Carrier Air Wing (CVW) 5, provide a combat-ready force that protects and defends the collective maritime interests of the U.S. and its allies and partners in the Indo-Asia-Pacific region. (U.S. Navy photo by Mass Communication Specialist Seaman Everett Allen/Released)

Marines with 2nd Marine Raider Battalion, Marine Raider Regiment set up communication during a night raid exercise at landing zone Dodo, Arizona, April 21, 2016. This exercise was conducted during Weapons and Tactics Instructor (WTI) course 2-16. WTI is a seven week training event hosted by Marine Aviation Weapons and Tactics Squadron One (MAWTS-1) cadre. MAWTS-1 provides standardized advanced tactical training and certification of unit instructor qualifications to support Marine Aviation Training and Readiness and assists in developing and employing aviation weapons and tactics.

 

(U.S. Marine Corps photo by Lance Cpl. Zachary M. Ford/ Released)

Marine Raiders with Marine Forces Special Operations Command conduct high-value target detainment and evacuation operations during a multipurpose canine handler training course hosted by 1st Marine Raider Battalion on Marine Corps Base Camp Pendleton, California, Dec. 18, 2019. The handlers learned to conduct raids, helicopter insertions and advanced veterinary care during the course. MPC handlers integrate with Marine Special Operations Teams to support global SOF operations. (U.S. Marine Corps photo by Lance Cpl. Angela Wilcox)

See him as a Marine MARSOC oper8tr or some shit.

 

I didn't really plan him through since I was just testing out the new Tiny Tactical I just got, first timer on it.

 

I gotta say I love the little overpriced shit, already lost one pouch though but oh well.

  

U.S. Marines with Marine Corps Special Operations Command (MARSOC) fire a GAU-17/A mini-gun during a live fire training exercise at Camp Lejeune, N.C., on June 6, 2017. Marines MARSOC worked with 2nd LAAD to conduct live fire exercises to maintain proficiency and accuracy with various weapon systems. (U.S. Marine Corps Photo by Lance Cpl. Cody J. Ohira)

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!

  

Some background:

The OV-10 Bronco was initially conceived in the early 1960s through an informal collaboration between W. H. Beckett and Colonel K. P. Rice, U.S. Marine Corps, who met at Naval Air Weapons Station China Lake, California, and who also happened to live near each other. The original concept was for a rugged, simple, close air support aircraft integrated with forward ground operations. At the time, the U.S. Army was still experimenting with armed helicopters, and the U.S. Air Force was not interested in close air support.

The concept aircraft was to operate from expedient forward air bases using roads as runways. Speed was to be from very slow to medium subsonic, with much longer loiter times than a pure jet. Efficient turboprop engines would give better performance than piston engines. Weapons were to be mounted on the centerline to get efficient aiming. The inventors favored strafing weapons such as self-loading recoilless rifles, which could deliver aimed explosive shells with less recoil than cannons, and a lower per-round weight than rockets. The airframe was to be designed to avoid the back blast.

 

Beckett and Rice developed a basic platform meeting these requirements, then attempted to build a fiberglass prototype in a garage. The effort produced enthusiastic supporters and an informal pamphlet describing the concept. W. H. Beckett, who had retired from the Marine Corps, went to work at North American Aviation to sell the aircraft.

The aircraft's design supported effective operations from forward bases. The OV-10 had a central nacelle containing a crew of two in tandem and space for cargo, and twin booms containing twin turboprop engines. The visually distinctive feature of the aircraft is the combination of the twin booms, with the horizontal stabilizer that connected them at the fin tips. The OV-10 could perform short takeoffs and landings, including on aircraft carriers and large-deck amphibious assault ships without using catapults or arresting wires. Further, the OV-10 was designed to take off and land on unimproved sites. Repairs could be made with ordinary tools. No ground equipment was required to start the engines. And, if necessary, the engines would operate on high-octane automobile fuel with only a slight loss of power.

 

The aircraft had responsive handling and could fly for up to 5½ hours with external fuel tanks. The cockpit had extremely good visibility for both pilot and co-pilot, provided by a wrap-around "greenhouse" that was wider than the fuselage. North American Rockwell custom ejection seats were standard, with many successful ejections during service. With the second seat removed, the OV-10 could carry 3,200 pounds (1,500 kg) of cargo, five paratroopers, or two litter patients and an attendant. Empty weight was 6,969 pounds (3,161 kg). Normal operating fueled weight with two crew was 9,908 pounds (4,494 kg). Maximum takeoff weight was 14,446 pounds (6,553 kg).

The bottom of the fuselage bore sponsons or "stub wings" that improved flight performance by decreasing aerodynamic drag underneath the fuselage. Normally, four 7.62 mm (.308 in) M60C machine guns were carried on the sponsons, accessed through large forward-opening hatches. The sponsons also had four racks to carry bombs, pods, or fuel. The wings outboard of the engines contained two additional hardpoints, one per side. Racked armament in the Vietnam War was usually seven-shot 2.75 in (70 mm) rocket pods with white phosphorus marker rounds or high-explosive rockets, or 5" (127 mm) four-shot Zuni rocket pods. Bombs, ADSIDS air-delivered/para-dropped unattended seismic sensors, Mk-6 battlefield illumination flares, and other stores were also carried.

Operational experience showed some weaknesses in the OV-10's design. It was significantly underpowered, which contributed to crashes in Vietnam in sloping terrain because the pilots could not climb fast enough. While specifications stated that the aircraft could reach 26,000 feet (7,900 m), in Vietnam the aircraft could reach only 18,000 feet (5,500 m). Also, no OV-10 pilot survived ditching the aircraft.

 

The OV-10 served in the U.S. Air Force, U.S. Marine Corps, and U.S. Navy, as well as in the service of a number of other countries. In U.S. military service, the Bronco was operated until the early Nineties, and obsoleted USAF OV-10s were passed on to the Bureau of Alcohol, Tobacco, and Firearms for anti-drug operations. A number of OV-10As furthermore ended up in the hands of the California Department of Forestry (CDF) and were used for spotting fires and directing fire bombers onto hot spots.

 

This was not the end of the OV-10 in American military service, though: In 2012, the type gained new attention because of its unique qualities. A $20 million budget was allocated to activate an experimental USAF unit of two airworthy OV-10Gs, acquired from NASA and the State Department. These machines were retrofitted with military equipment and were, starting in May 2015, deployed overseas to support Operation “Inherent Resolve”, flying more than 120 combat sorties over 82 days over Iraq and Syria. Their concrete missions remained unclear, and it is speculated they provided close air support for Special Forces missions, esp. in confined urban environments where the Broncos’ loitering time and high agility at low speed and altitude made them highly effective and less vulnerable than helicopters.

Furthermore, these Broncos reputedly performed strikes with the experimental AGR-20A “Advanced Precision Kill Weapons System (APKWS)”, a Hydra 70-millimeter rocket with a laser-seeking head as guidance - developed for precision strikes against small urban targets with little collateral damage. The experiment ended satisfactorily, but the machines were retired again, and the small unit was dissolved.

 

However, the machines had shown their worth in asymmetric warfare, and the U.S. Air Force decided to invest in reactivating the OV-10 on a regular basis, despite the overhead cost of operating an additional aircraft type in relatively small numbers – but development and production of a similar new type would have caused much higher costs, with an uncertain time until an operational aircraft would be ready for service. Re-activating a proven design and updating an existing airframe appeared more efficient.

The result became the MV-10H, suitably christened “Super Bronco” but also known as “Black Pony”, after the program's internal name. This aircraft was derived from the official OV-10X proposal by Boeing from 2009 for the USAF's Light Attack/Armed Reconnaissance requirement. Initially, Boeing proposed to re-start OV-10 manufacture, but this was deemed uneconomical, due to the expected small production number of new serial aircraft, so the “Black Pony” program became a modernization project. In consequence, all airframes for the "new" MV-10Hs were recovered OV-10s of various types from the "boneyard" at Davis-Monthan Air Force Base in Arizona.

 

While the revamped aircraft would maintain much of its 1960s-vintage rugged external design, modernizations included a completely new, armored central fuselage with a highly modified cockpit section, ejection seats and a computerized glass cockpit. The “Black Pony” OV-10 had full dual controls, so that either crewmen could steer the aircraft while the other operated sensors and/or weapons. This feature would also improve survivability in case of incapacitation of a crew member as the result from a hit.

The cockpit armor protected the crew and many vital systems from 23mm shells and shrapnel (e. g. from MANPADS). The crew still sat in tandem under a common, generously glazed canopy with flat, bulletproof panels for reduced sun reflections, with the pilot in the front seat and an observer/WSO behind. The Bronco’s original cargo capacity and the rear door were retained, even though the extra armor and defensive measures like chaff/flare dispensers as well as an additional fuel cell in the central fuselage limited the capacity. However, it was still possible to carry and deploy personnel, e. g. small special ops teams of up to four when the aircraft flew in clean configuration.

Additional updates for the MV-10H included structural reinforcements for a higher AUW and higher g load maneuvers, similar to OV-10D+ standards. The landing gear was also reinforced, and the aircraft kept its ability to operate from short, improvised airstrips. A fixed refueling probe was added to improve range and loiter time.

 

Intelligence sensors and smart weapon capabilities included a FLIR sensor and a laser range finder/target designator, both mounted in a small turret on the aircraft’s nose. The MV-10H was also outfitted with a data link and the ability to carry an integrated targeting pod such as the Northrop Grumman LITENING or the Lockheed Martin Sniper Advanced Targeting Pod (ATP). Also included was the Remotely Operated Video Enhanced Receiver (ROVER) to provide live sensor data and video recordings to personnel on the ground.

 

To improve overall performance and to better cope with the higher empty weight of the modified aircraft as well as with operations under hot-and-high conditions, the engines were beefed up. The new General Electric CT7-9D turboprop engines improved the Bronco's performance considerably: top speed increased by 100 mph (160 km/h), the climb rate was tripled (a weak point of early OV-10s despite the type’s good STOL capability) and both take-off as well as landing run were almost halved. The new engines called for longer nacelles, and their circular diameter markedly differed from the former Garrett T76-G-420/421 turboprop engines. To better exploit the additional power and reduce the aircraft’s audio signature, reversible contraprops, each with eight fiberglass blades, were fitted. These allowed a reduced number of revolutions per minute, resulting in less noise from the blades and their tips, while the engine responsiveness was greatly improved. The CT7-9Ds’ exhausts were fitted with muzzlers/air mixers to further reduce the aircraft's noise and heat signature.

Another novel and striking feature was the addition of so-called “tip sails” to the wings: each wingtip was elongated with a small, cigar-shaped fairing, each carrying three staggered, small “feather blade” winglets. Reputedly, this installation contributed ~10% to the higher climb rate and improved lift/drag ratio by ~6%, improving range and loiter time, too.

Drawing from the Iraq experience as well as from the USMC’s NOGS test program with a converted OV-10D as a night/all-weather gunship/reconnaissance platform, the MV-10H received a heavier gun armament: the original four light machine guns that were only good for strafing unarmored targets were deleted and their space in the sponsons replaced by avionics. Instead, the aircraft was outfitted with a lightweight M197 three-barrel 20mm gatling gun in a chin turret. This could be fixed in a forward position at high speed or when carrying forward-firing ordnance under the stub wings, or it could be deployed to cover a wide field of fire under the aircraft when it was flying slower, being either slaved to the FLIR or to a helmet sighting auto targeting system.

The original seven hardpoints were retained (1x ventral, 2x under each sponson, and another pair under the outer wings), but the total ordnance load was slightly increased and an additional pair of launch rails for AIM-9 Sidewinders or other light AAMs under the wing tips were added – not only as a defensive measure, but also with an anti-helicopter role in mind; four more Sidewinders could be carried on twin launchers under the outer wings against aerial targets. Other guided weapons cleared for the MV-10H were the light laser-guided AGR-20A and AGM-119 Hellfire missiles, the Advanced Precision Kill Weapon System upgrade to the light Hydra 70 rockets, the new Laser Guided Zuni Rocket which had been cleared for service in 2010, TV-/IR-/laser-guided AGM-65 Maverick AGMs and AGM-122 Sidearm anti-radar missiles, plus a wide range of gun and missile pods, iron and cluster bombs, as well as ECM and flare/chaff pods, which were not only carried defensively, but also in order to disrupt enemy ground communication.

 

In this configuration, a contract for the conversion of twelve mothballed American Broncos to the new MV-10H standard was signed with Boeing in 2016, and the first MV-10H was handed over to the USAF in early 2018, with further deliveries lasting into early 2020. All machines were allocated to the newly founded 919th Special Operations Support Squadron at Duke Field (Florida). This unit was part of the 919th Special Operations Wing, an Air Reserve Component (ARC) of the United States Air Force. It was assigned to the Tenth Air Force of Air Force Reserve Command and an associate unit of the 1st Special Operations Wing, Air Force Special Operations Command (AFSOC). If mobilized the wing was gained by AFSOC (Air Force Special Operations Command) to support Special Tactics, the U.S. Air Force's special operations ground force. Similar in ability and employment to Marine Special Operations Command (MARSOC), U.S. Army Special Forces and U.S. Navy SEALs, Air Force Special Tactics personnel were typically the first to enter combat and often found themselves deep behind enemy lines in demanding, austere conditions, usually with little or no support.

 

The MV-10Hs are expected to provide support for these ground units in the form of all-weather reconnaissance and observation, close air support and also forward air control duties for supporting ground units. Precision ground strikes and protection from enemy helicopters and low-flying aircraft were other, secondary missions for the modernized Broncos, which are expected to serve well into the 2040s. Exports or conversions of foreign OV-10s to the Black Pony standard are not planned, though.

  

General characteristics:

Crew: 2

Length: 42 ft 2½ in (12,88 m) incl. pitot

Wingspan: 45 ft 10½ in(14 m) incl. tip sails

Height: 15 ft 2 in (4.62 m)

Wing area: 290.95 sq ft (27.03 m²)

Airfoil: NACA 64A315

Empty weight: 9,090 lb (4,127 kg)

Gross weight: 13,068 lb (5,931 kg)

Max. takeoff weight: 17,318 lb (7,862 kg)

 

Powerplant:

2× General Electric CT7-9D turboprop engines, 1,305 kW (1,750 hp) each,

driving 8-bladed Hamilton Standard 8 ft 6 in (2.59 m) diameter constant-speed,

fully feathering, reversible contra-rotating propellers with metal hub and composite blades

 

Performance:

Maximum speed: 390 mph (340 kn, 625 km/h)

Combat range: 198 nmi (228 mi, 367 km)

Ferry range: 1,200 nmi (1,400 mi, 2,200 km) with auxiliary fuel

Maximum loiter time: 5.5 h with auxiliary fuel

Service ceiling: 32.750 ft (10,000 m)

13,500 ft (4.210 m) on one engine

Rate of climb: 17.400 ft/min (48 m/s) at sea level

Take-off run: 480 ft (150 m)

740 ft (227 m) to 50 ft (15 m)

1,870 ft (570 m) to 50 ft (15 m) at MTOW

Landing run: 490 ft (150 m)

785 ft (240 m) at MTOW

1,015 ft (310 m) from 50 ft (15 m)

 

Armament:

1x M197 3-barreled 20 mm Gatling cannon in a chin turret with 750 rounds ammo capacity

7x hardpoints for a total load of 5.000 lb (2,270 kg)

2x wingtip launch rails for AIM-9 Sidewinder AAMs

  

The kit and its assembly:

This fictional Bronco update/conversion was simply spawned by the idea: could it be possible to replace the original cockpit section with one from an AH-1 Cobra, for a kind of gunship version?

 

The basis is the Academy OV-10D kit, mated with the cockpit section from a Fujimi AH-1S TOW Cobra (Revell re-boxing, though), chosen because of its “boxy” cockpit section with flat glass panels – I think that it conveys the idea of an armored cockpit section best. Combining these parts was not easy, though, even though the plan sound simple. Initially, the Bronco’s twin booms, wings and stabilizer were built separately, because this made PSR on these sections easier than trying the same on a completed airframe. One of the initial challenges: the different engines. I wanted something uprated, and a different look, and I had a pair of (excellent!) 1:144 resin engines from the Russian company Kompakt Zip for a Tu-95 bomber at hand, which come together with movable(!) eight-blade contraprops that were an almost perfect size match for the original three-blade props. Biggest problem: the Tu-95 nacelles have a perfectly circular diameter, while the OV-10’s booms are square and rectangular. Combining these parts and shapes was already a messy PST affair, but it worked out quite well – even though the result rather reminds of some Chinese upgrade measure (anyone know the Tu-4 copies with turboprops? This here looks similar!). But while not pretty, I think that the beafier look works well and adds to the idea of a “revived” aircraft. And you can hardly beat the menacing look of contraprops on anything...

The exotic, so-called “tip sails” on the wings, mounted on short booms, are a detail borrowed from the Shijiazhuang Y-5B-100, an updated Chinese variant/copy of the Antonov An-2 biplane transporter. The booms are simple pieces of sprue from the Bronco kit, the winglets were cut from 0.5mm styrene sheet.

 

For the cockpit donor, the AH-1’s front section was roughly built, including the engine section (which is a separate module, so that the basic kit can be sold with different engine sections), and then the helicopter hull was cut and trimmed down to match the original Bronco pod and to fit under the wing. This became more complicated than expected, because a) the AH-1 cockpit and the nose are considerably shorter than the OV-10s, b) the AH-1 fuselage is markedly taller than the Bronco’s and c) the engine section, which would end up in the area of the wing, features major recesses, making the surface very uneven – calling for massive PSR to even this out. PSR was also necessary to hide the openings for the Fujimi AH-1’s stub wings. Other issues: the front landing gear (and its well) had to be added, as well as the OV-10 wing stubs. Furthermore, the new cockpit pod’s rear section needed an aerodynamical end/fairing, but I found a leftover Academy OV-10 section from a build/kitbashing many moons ago. Perfect match!

All these challenges could be tackled, even though the AH-1 cockpit looks surprisingly stout and massive on the Bronco’s airframe - the result looks stockier than expected, but it works well for the "Gunship" theme. Lots of PSR went into the new central fuselage section, though, even before it was mated with the OV-10 wing and the rest of the model.

Once cockpit and wing were finally mated, the seams had to disappear under even more PSR and a spinal extension of the canopy had to be sculpted across the upper wing surface, which would meld with the pod’s tail in a (more or less) harmonious shape. Not an easy task, and the fairing was eventually sculpted with 2C putty, plus even more PSR… Looks quite homogenous, though.

 

After this massive body work, other hardware challenges appeared like small distractions. The landing gear was another major issue because the deeper AH-1 section lowered the ground clearance, also because of the chin turret. To counter this, I raised the OV-10’s main landing gear by ~2mm – not much, but it was enough to create a credible stance, together with the front landing gear transplant under the cockpit, which received an internal console to match the main landing gear’s length. Due to the chin turret and the shorter nose, the front wheel retracts backwards now. But this looks quite plausible, thanks to the additional space under the cockpit tub, which also made a belt feed for the gun’s ammunition supply believable.

To enhance the menacing look I gave the model a fixed refueling boom, made from 1mm steel wire and a receptor adapter sculpted with white glue. The latter stuff was also used add some antenna fairings around the hull. Some antennae, chaff dispensers and an IR decoy were taken from the Academy kit.

 

The ordnance came from various sources. The Sidewinders under the wing tips were taken from an Italeri F-16C/D kit, they look better than the missiles from the Academy Bronco kit. Their launch rails came from an Italeri Bae Hawk 200. The quadruple Hellfire launchers on the underwing hardpoints were left over from an Italeri AH-1W, and they are a perfect load for this aircraft and its role. The LAU-10 and -19 missile pods on the stub wings were taken from the OV-10 kit.

  

Painting and markings:

Finding a suitable and somewhat interesting – but still plausible – paint scheme was not easy. Taking the A-10 as benchmark, an overall light grey livery (with focus on low contrast against the sky as protection against ground fire) would have been a likely choice – and in fact the last operational American OV-10s were painted in this fashion. But in order to provide a different look I used the contemporary USAF V-22Bs and Special Operations MC-130s as benchmark, which typically carry a darker paint scheme consisting of FS 36118 (suitably “Gunship Gray” :D) from above, FS 36375 underneath, with a low, wavy waterline, plus low-viz markings. Not spectacular, but plausible – and very similar to the late r/w Colombian OV-10s.

The cockpit tub became Dark Gull Grey (FS 36231, Humbrol 140) and the landing gear white (Revell 301).

 

The model received an overall black ink washing and some post-panel-shading, to liven up the dull all-grey livery. The decals were gathered from various sources, and I settled for black USAF low-viz markings. The “stars and bars” come from a late USAF F-4, the “IP” tail code was tailored from F-16 markings and the shark mouth was taken from an Academy AH-64. Most stencils came from another Academy OV-10 sheet and some other sources.

Decals were also used to create the trim on the propeller blades and markings on the ordnance.

 

Finally, the model was sealed with a coat of matt acrylic varnish (Italeri) and some exhaust soot stains were added with graphite along the tail boom flanks.

  

A successful transplantation – but is this still a modified Bronco or already a kitbashing? The result looks quite plausible and menacing, even though the TOW Cobra front section appears relatively massive. But thanks to the bigger engines and extended wing tips the proportions still work. The large low-pressure tires look a bit goofy under the aircraft, but they are original. The grey livery works IMHO well, too – a more colorful or garish scheme would certainly have distracted from the modified technical basis.

Marine Raiders navigate a Combat Rubber Raid Craft during a nighttime Visit, Board, Search and Seizure preparation near Mobile, Alabama. The VBSS was part of a 10-day exercise in the Gulf Coast region to maintain unit readiness.

 

(U. S. Marine Corps photo by Gunnery Sgt. Joshua S. Higgins/Released)

My loadout.Just bought a CB fast helmet for $45 on FB. So can't wait!

 

Where can I get some relatively low priced woodland MARPAT?

Redid my PJ guy since based on what he had been wearing he looked more like a MARSOC guy that an air force PJ, so I decided to redo him completely, not sure if the jacket is something PJs use but it makes sense if you're gonna be flying around in a helicopter all day, I also wanted to make him look slightly different than my army rangers since in reality they look very similar

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!

  

Some background:

The OV-10 Bronco was initially conceived in the early 1960s through an informal collaboration between W. H. Beckett and Colonel K. P. Rice, U.S. Marine Corps, who met at Naval Air Weapons Station China Lake, California, and who also happened to live near each other. The original concept was for a rugged, simple, close air support aircraft integrated with forward ground operations. At the time, the U.S. Army was still experimenting with armed helicopters, and the U.S. Air Force was not interested in close air support.

The concept aircraft was to operate from expedient forward air bases using roads as runways. Speed was to be from very slow to medium subsonic, with much longer loiter times than a pure jet. Efficient turboprop engines would give better performance than piston engines. Weapons were to be mounted on the centerline to get efficient aiming. The inventors favored strafing weapons such as self-loading recoilless rifles, which could deliver aimed explosive shells with less recoil than cannons, and a lower per-round weight than rockets. The airframe was to be designed to avoid the back blast.

 

Beckett and Rice developed a basic platform meeting these requirements, then attempted to build a fiberglass prototype in a garage. The effort produced enthusiastic supporters and an informal pamphlet describing the concept. W. H. Beckett, who had retired from the Marine Corps, went to work at North American Aviation to sell the aircraft.

The aircraft's design supported effective operations from forward bases. The OV-10 had a central nacelle containing a crew of two in tandem and space for cargo, and twin booms containing twin turboprop engines. The visually distinctive feature of the aircraft is the combination of the twin booms, with the horizontal stabilizer that connected them at the fin tips. The OV-10 could perform short takeoffs and landings, including on aircraft carriers and large-deck amphibious assault ships without using catapults or arresting wires. Further, the OV-10 was designed to take off and land on unimproved sites. Repairs could be made with ordinary tools. No ground equipment was required to start the engines. And, if necessary, the engines would operate on high-octane automobile fuel with only a slight loss of power.

 

The aircraft had responsive handling and could fly for up to 5½ hours with external fuel tanks. The cockpit had extremely good visibility for both pilot and co-pilot, provided by a wrap-around "greenhouse" that was wider than the fuselage. North American Rockwell custom ejection seats were standard, with many successful ejections during service. With the second seat removed, the OV-10 could carry 3,200 pounds (1,500 kg) of cargo, five paratroopers, or two litter patients and an attendant. Empty weight was 6,969 pounds (3,161 kg). Normal operating fueled weight with two crew was 9,908 pounds (4,494 kg). Maximum takeoff weight was 14,446 pounds (6,553 kg).

The bottom of the fuselage bore sponsons or "stub wings" that improved flight performance by decreasing aerodynamic drag underneath the fuselage. Normally, four 7.62 mm (.308 in) M60C machine guns were carried on the sponsons, accessed through large forward-opening hatches. The sponsons also had four racks to carry bombs, pods, or fuel. The wings outboard of the engines contained two additional hardpoints, one per side. Racked armament in the Vietnam War was usually seven-shot 2.75 in (70 mm) rocket pods with white phosphorus marker rounds or high-explosive rockets, or 5" (127 mm) four-shot Zuni rocket pods. Bombs, ADSIDS air-delivered/para-dropped unattended seismic sensors, Mk-6 battlefield illumination flares, and other stores were also carried.

Operational experience showed some weaknesses in the OV-10's design. It was significantly underpowered, which contributed to crashes in Vietnam in sloping terrain because the pilots could not climb fast enough. While specifications stated that the aircraft could reach 26,000 feet (7,900 m), in Vietnam the aircraft could reach only 18,000 feet (5,500 m). Also, no OV-10 pilot survived ditching the aircraft.

 

The OV-10 served in the U.S. Air Force, U.S. Marine Corps, and U.S. Navy, as well as in the service of a number of other countries. In U.S. military service, the Bronco was operated until the early Nineties, and obsoleted USAF OV-10s were passed on to the Bureau of Alcohol, Tobacco, and Firearms for anti-drug operations. A number of OV-10As furthermore ended up in the hands of the California Department of Forestry (CDF) and were used for spotting fires and directing fire bombers onto hot spots.

 

This was not the end of the OV-10 in American military service, though: In 2012, the type gained new attention because of its unique qualities. A $20 million budget was allocated to activate an experimental USAF unit of two airworthy OV-10Gs, acquired from NASA and the State Department. These machines were retrofitted with military equipment and were, starting in May 2015, deployed overseas to support Operation “Inherent Resolve”, flying more than 120 combat sorties over 82 days over Iraq and Syria. Their concrete missions remained unclear, and it is speculated they provided close air support for Special Forces missions, esp. in confined urban environments where the Broncos’ loitering time and high agility at low speed and altitude made them highly effective and less vulnerable than helicopters.

Furthermore, these Broncos reputedly performed strikes with the experimental AGR-20A “Advanced Precision Kill Weapons System (APKWS)”, a Hydra 70-millimeter rocket with a laser-seeking head as guidance - developed for precision strikes against small urban targets with little collateral damage. The experiment ended satisfactorily, but the machines were retired again, and the small unit was dissolved.

 

However, the machines had shown their worth in asymmetric warfare, and the U.S. Air Force decided to invest in reactivating the OV-10 on a regular basis, despite the overhead cost of operating an additional aircraft type in relatively small numbers – but development and production of a similar new type would have caused much higher costs, with an uncertain time until an operational aircraft would be ready for service. Re-activating a proven design and updating an existing airframe appeared more efficient.

The result became the MV-10H, suitably christened “Super Bronco” but also known as “Black Pony”, after the program's internal name. This aircraft was derived from the official OV-10X proposal by Boeing from 2009 for the USAF's Light Attack/Armed Reconnaissance requirement. Initially, Boeing proposed to re-start OV-10 manufacture, but this was deemed uneconomical, due to the expected small production number of new serial aircraft, so the “Black Pony” program became a modernization project. In consequence, all airframes for the "new" MV-10Hs were recovered OV-10s of various types from the "boneyard" at Davis-Monthan Air Force Base in Arizona.

 

While the revamped aircraft would maintain much of its 1960s-vintage rugged external design, modernizations included a completely new, armored central fuselage with a highly modified cockpit section, ejection seats and a computerized glass cockpit. The “Black Pony” OV-10 had full dual controls, so that either crewmen could steer the aircraft while the other operated sensors and/or weapons. This feature would also improve survivability in case of incapacitation of a crew member as the result from a hit.

The cockpit armor protected the crew and many vital systems from 23mm shells and shrapnel (e. g. from MANPADS). The crew still sat in tandem under a common, generously glazed canopy with flat, bulletproof panels for reduced sun reflections, with the pilot in the front seat and an observer/WSO behind. The Bronco’s original cargo capacity and the rear door were retained, even though the extra armor and defensive measures like chaff/flare dispensers as well as an additional fuel cell in the central fuselage limited the capacity. However, it was still possible to carry and deploy personnel, e. g. small special ops teams of up to four when the aircraft flew in clean configuration.

Additional updates for the MV-10H included structural reinforcements for a higher AUW and higher g load maneuvers, similar to OV-10D+ standards. The landing gear was also reinforced, and the aircraft kept its ability to operate from short, improvised airstrips. A fixed refueling probe was added to improve range and loiter time.

 

Intelligence sensors and smart weapon capabilities included a FLIR sensor and a laser range finder/target designator, both mounted in a small turret on the aircraft’s nose. The MV-10H was also outfitted with a data link and the ability to carry an integrated targeting pod such as the Northrop Grumman LITENING or the Lockheed Martin Sniper Advanced Targeting Pod (ATP). Also included was the Remotely Operated Video Enhanced Receiver (ROVER) to provide live sensor data and video recordings to personnel on the ground.

 

To improve overall performance and to better cope with the higher empty weight of the modified aircraft as well as with operations under hot-and-high conditions, the engines were beefed up. The new General Electric CT7-9D turboprop engines improved the Bronco's performance considerably: top speed increased by 100 mph (160 km/h), the climb rate was tripled (a weak point of early OV-10s despite the type’s good STOL capability) and both take-off as well as landing run were almost halved. The new engines called for longer nacelles, and their circular diameter markedly differed from the former Garrett T76-G-420/421 turboprop engines. To better exploit the additional power and reduce the aircraft’s audio signature, reversible contraprops, each with eight fiberglass blades, were fitted. These allowed a reduced number of revolutions per minute, resulting in less noise from the blades and their tips, while the engine responsiveness was greatly improved. The CT7-9Ds’ exhausts were fitted with muzzlers/air mixers to further reduce the aircraft's noise and heat signature.

Another novel and striking feature was the addition of so-called “tip sails” to the wings: each wingtip was elongated with a small, cigar-shaped fairing, each carrying three staggered, small “feather blade” winglets. Reputedly, this installation contributed ~10% to the higher climb rate and improved lift/drag ratio by ~6%, improving range and loiter time, too.

Drawing from the Iraq experience as well as from the USMC’s NOGS test program with a converted OV-10D as a night/all-weather gunship/reconnaissance platform, the MV-10H received a heavier gun armament: the original four light machine guns that were only good for strafing unarmored targets were deleted and their space in the sponsons replaced by avionics. Instead, the aircraft was outfitted with a lightweight M197 three-barrel 20mm gatling gun in a chin turret. This could be fixed in a forward position at high speed or when carrying forward-firing ordnance under the stub wings, or it could be deployed to cover a wide field of fire under the aircraft when it was flying slower, being either slaved to the FLIR or to a helmet sighting auto targeting system.

The original seven hardpoints were retained (1x ventral, 2x under each sponson, and another pair under the outer wings), but the total ordnance load was slightly increased and an additional pair of launch rails for AIM-9 Sidewinders or other light AAMs under the wing tips were added – not only as a defensive measure, but also with an anti-helicopter role in mind; four more Sidewinders could be carried on twin launchers under the outer wings against aerial targets. Other guided weapons cleared for the MV-10H were the light laser-guided AGR-20A and AGM-119 Hellfire missiles, the Advanced Precision Kill Weapon System upgrade to the light Hydra 70 rockets, the new Laser Guided Zuni Rocket which had been cleared for service in 2010, TV-/IR-/laser-guided AGM-65 Maverick AGMs and AGM-122 Sidearm anti-radar missiles, plus a wide range of gun and missile pods, iron and cluster bombs, as well as ECM and flare/chaff pods, which were not only carried defensively, but also in order to disrupt enemy ground communication.

 

In this configuration, a contract for the conversion of twelve mothballed American Broncos to the new MV-10H standard was signed with Boeing in 2016, and the first MV-10H was handed over to the USAF in early 2018, with further deliveries lasting into early 2020. All machines were allocated to the newly founded 919th Special Operations Support Squadron at Duke Field (Florida). This unit was part of the 919th Special Operations Wing, an Air Reserve Component (ARC) of the United States Air Force. It was assigned to the Tenth Air Force of Air Force Reserve Command and an associate unit of the 1st Special Operations Wing, Air Force Special Operations Command (AFSOC). If mobilized the wing was gained by AFSOC (Air Force Special Operations Command) to support Special Tactics, the U.S. Air Force's special operations ground force. Similar in ability and employment to Marine Special Operations Command (MARSOC), U.S. Army Special Forces and U.S. Navy SEALs, Air Force Special Tactics personnel were typically the first to enter combat and often found themselves deep behind enemy lines in demanding, austere conditions, usually with little or no support.

 

The MV-10Hs are expected to provide support for these ground units in the form of all-weather reconnaissance and observation, close air support and also forward air control duties for supporting ground units. Precision ground strikes and protection from enemy helicopters and low-flying aircraft were other, secondary missions for the modernized Broncos, which are expected to serve well into the 2040s. Exports or conversions of foreign OV-10s to the Black Pony standard are not planned, though.

  

General characteristics:

Crew: 2

Length: 42 ft 2½ in (12,88 m) incl. pitot

Wingspan: 45 ft 10½ in(14 m) incl. tip sails

Height: 15 ft 2 in (4.62 m)

Wing area: 290.95 sq ft (27.03 m²)

Airfoil: NACA 64A315

Empty weight: 9,090 lb (4,127 kg)

Gross weight: 13,068 lb (5,931 kg)

Max. takeoff weight: 17,318 lb (7,862 kg)

 

Powerplant:

2× General Electric CT7-9D turboprop engines, 1,305 kW (1,750 hp) each,

driving 8-bladed Hamilton Standard 8 ft 6 in (2.59 m) diameter constant-speed,

fully feathering, reversible contra-rotating propellers with metal hub and composite blades

 

Performance:

Maximum speed: 390 mph (340 kn, 625 km/h)

Combat range: 198 nmi (228 mi, 367 km)

Ferry range: 1,200 nmi (1,400 mi, 2,200 km) with auxiliary fuel

Maximum loiter time: 5.5 h with auxiliary fuel

Service ceiling: 32.750 ft (10,000 m)

13,500 ft (4.210 m) on one engine

Rate of climb: 17.400 ft/min (48 m/s) at sea level

Take-off run: 480 ft (150 m)

740 ft (227 m) to 50 ft (15 m)

1,870 ft (570 m) to 50 ft (15 m) at MTOW

Landing run: 490 ft (150 m)

785 ft (240 m) at MTOW

1,015 ft (310 m) from 50 ft (15 m)

 

Armament:

1x M197 3-barreled 20 mm Gatling cannon in a chin turret with 750 rounds ammo capacity

7x hardpoints for a total load of 5.000 lb (2,270 kg)

2x wingtip launch rails for AIM-9 Sidewinder AAMs

  

The kit and its assembly:

This fictional Bronco update/conversion was simply spawned by the idea: could it be possible to replace the original cockpit section with one from an AH-1 Cobra, for a kind of gunship version?

 

The basis is the Academy OV-10D kit, mated with the cockpit section from a Fujimi AH-1S TOW Cobra (Revell re-boxing, though), chosen because of its “boxy” cockpit section with flat glass panels – I think that it conveys the idea of an armored cockpit section best. Combining these parts was not easy, though, even though the plan sound simple. Initially, the Bronco’s twin booms, wings and stabilizer were built separately, because this made PSR on these sections easier than trying the same on a completed airframe. One of the initial challenges: the different engines. I wanted something uprated, and a different look, and I had a pair of (excellent!) 1:144 resin engines from the Russian company Kompakt Zip for a Tu-95 bomber at hand, which come together with movable(!) eight-blade contraprops that were an almost perfect size match for the original three-blade props. Biggest problem: the Tu-95 nacelles have a perfectly circular diameter, while the OV-10’s booms are square and rectangular. Combining these parts and shapes was already a messy PST affair, but it worked out quite well – even though the result rather reminds of some Chinese upgrade measure (anyone know the Tu-4 copies with turboprops? This here looks similar!). But while not pretty, I think that the beafier look works well and adds to the idea of a “revived” aircraft. And you can hardly beat the menacing look of contraprops on anything...

The exotic, so-called “tip sails” on the wings, mounted on short booms, are a detail borrowed from the Shijiazhuang Y-5B-100, an updated Chinese variant/copy of the Antonov An-2 biplane transporter. The booms are simple pieces of sprue from the Bronco kit, the winglets were cut from 0.5mm styrene sheet.

 

For the cockpit donor, the AH-1’s front section was roughly built, including the engine section (which is a separate module, so that the basic kit can be sold with different engine sections), and then the helicopter hull was cut and trimmed down to match the original Bronco pod and to fit under the wing. This became more complicated than expected, because a) the AH-1 cockpit and the nose are considerably shorter than the OV-10s, b) the AH-1 fuselage is markedly taller than the Bronco’s and c) the engine section, which would end up in the area of the wing, features major recesses, making the surface very uneven – calling for massive PSR to even this out. PSR was also necessary to hide the openings for the Fujimi AH-1’s stub wings. Other issues: the front landing gear (and its well) had to be added, as well as the OV-10 wing stubs. Furthermore, the new cockpit pod’s rear section needed an aerodynamical end/fairing, but I found a leftover Academy OV-10 section from a build/kitbashing many moons ago. Perfect match!

All these challenges could be tackled, even though the AH-1 cockpit looks surprisingly stout and massive on the Bronco’s airframe - the result looks stockier than expected, but it works well for the "Gunship" theme. Lots of PSR went into the new central fuselage section, though, even before it was mated with the OV-10 wing and the rest of the model.

Once cockpit and wing were finally mated, the seams had to disappear under even more PSR and a spinal extension of the canopy had to be sculpted across the upper wing surface, which would meld with the pod’s tail in a (more or less) harmonious shape. Not an easy task, and the fairing was eventually sculpted with 2C putty, plus even more PSR… Looks quite homogenous, though.

 

After this massive body work, other hardware challenges appeared like small distractions. The landing gear was another major issue because the deeper AH-1 section lowered the ground clearance, also because of the chin turret. To counter this, I raised the OV-10’s main landing gear by ~2mm – not much, but it was enough to create a credible stance, together with the front landing gear transplant under the cockpit, which received an internal console to match the main landing gear’s length. Due to the chin turret and the shorter nose, the front wheel retracts backwards now. But this looks quite plausible, thanks to the additional space under the cockpit tub, which also made a belt feed for the gun’s ammunition supply believable.

To enhance the menacing look I gave the model a fixed refueling boom, made from 1mm steel wire and a receptor adapter sculpted with white glue. The latter stuff was also used add some antenna fairings around the hull. Some antennae, chaff dispensers and an IR decoy were taken from the Academy kit.

 

The ordnance came from various sources. The Sidewinders under the wing tips were taken from an Italeri F-16C/D kit, they look better than the missiles from the Academy Bronco kit. Their launch rails came from an Italeri Bae Hawk 200. The quadruple Hellfire launchers on the underwing hardpoints were left over from an Italeri AH-1W, and they are a perfect load for this aircraft and its role. The LAU-10 and -19 missile pods on the stub wings were taken from the OV-10 kit.

  

Painting and markings:

Finding a suitable and somewhat interesting – but still plausible – paint scheme was not easy. Taking the A-10 as benchmark, an overall light grey livery (with focus on low contrast against the sky as protection against ground fire) would have been a likely choice – and in fact the last operational American OV-10s were painted in this fashion. But in order to provide a different look I used the contemporary USAF V-22Bs and Special Operations MC-130s as benchmark, which typically carry a darker paint scheme consisting of FS 36118 (suitably “Gunship Gray” :D) from above, FS 36375 underneath, with a low, wavy waterline, plus low-viz markings. Not spectacular, but plausible – and very similar to the late r/w Colombian OV-10s.

The cockpit tub became Dark Gull Grey (FS 36231, Humbrol 140) and the landing gear white (Revell 301).

 

The model received an overall black ink washing and some post-panel-shading, to liven up the dull all-grey livery. The decals were gathered from various sources, and I settled for black USAF low-viz markings. The “stars and bars” come from a late USAF F-4, the “IP” tail code was tailored from F-16 markings and the shark mouth was taken from an Academy AH-64. Most stencils came from another Academy OV-10 sheet and some other sources.

Decals were also used to create the trim on the propeller blades and markings on the ordnance.

 

Finally, the model was sealed with a coat of matt acrylic varnish (Italeri) and some exhaust soot stains were added with graphite along the tail boom flanks.

  

A successful transplantation – but is this still a modified Bronco or already a kitbashing? The result looks quite plausible and menacing, even though the TOW Cobra front section appears relatively massive. But thanks to the bigger engines and extended wing tips the proportions still work. The large low-pressure tires look a bit goofy under the aircraft, but they are original. The grey livery works IMHO well, too – a more colorful or garish scheme would certainly have distracted from the modified technical basis.

A Marine Special Operations Team assists with security while Afghan Local Police receive their first payments in Helmand province, Afghanistan, April 9, 2013. Afghan Local Police complement counterinsurgency efforts by assisting and supporting rural areas with limited Afghan National Security Forces presence, in order to enable conditions for improved security, governance and development. (U.S. Marine Corps photo by Sgt. Pete Thibodeau/Released)

Dedicated to all of the brave, selfless and courageous individuals who do their job to try and make the best of the worst. Heading full speed toward what everyone else is running from. To all of our First Response / Search and Rescue personnel, both paid and volunteer, front lines and behind the scenes. Thank-You!

 

www.limebluphotography.com

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!

  

Some background:

The OV-10 Bronco was initially conceived in the early 1960s through an informal collaboration between W. H. Beckett and Colonel K. P. Rice, U.S. Marine Corps, who met at Naval Air Weapons Station China Lake, California, and who also happened to live near each other. The original concept was for a rugged, simple, close air support aircraft integrated with forward ground operations. At the time, the U.S. Army was still experimenting with armed helicopters, and the U.S. Air Force was not interested in close air support.

The concept aircraft was to operate from expedient forward air bases using roads as runways. Speed was to be from very slow to medium subsonic, with much longer loiter times than a pure jet. Efficient turboprop engines would give better performance than piston engines. Weapons were to be mounted on the centerline to get efficient aiming. The inventors favored strafing weapons such as self-loading recoilless rifles, which could deliver aimed explosive shells with less recoil than cannons, and a lower per-round weight than rockets. The airframe was to be designed to avoid the back blast.

 

Beckett and Rice developed a basic platform meeting these requirements, then attempted to build a fiberglass prototype in a garage. The effort produced enthusiastic supporters and an informal pamphlet describing the concept. W. H. Beckett, who had retired from the Marine Corps, went to work at North American Aviation to sell the aircraft.

The aircraft's design supported effective operations from forward bases. The OV-10 had a central nacelle containing a crew of two in tandem and space for cargo, and twin booms containing twin turboprop engines. The visually distinctive feature of the aircraft is the combination of the twin booms, with the horizontal stabilizer that connected them at the fin tips. The OV-10 could perform short takeoffs and landings, including on aircraft carriers and large-deck amphibious assault ships without using catapults or arresting wires. Further, the OV-10 was designed to take off and land on unimproved sites. Repairs could be made with ordinary tools. No ground equipment was required to start the engines. And, if necessary, the engines would operate on high-octane automobile fuel with only a slight loss of power.

 

The aircraft had responsive handling and could fly for up to 5½ hours with external fuel tanks. The cockpit had extremely good visibility for both pilot and co-pilot, provided by a wrap-around "greenhouse" that was wider than the fuselage. North American Rockwell custom ejection seats were standard, with many successful ejections during service. With the second seat removed, the OV-10 could carry 3,200 pounds (1,500 kg) of cargo, five paratroopers, or two litter patients and an attendant. Empty weight was 6,969 pounds (3,161 kg). Normal operating fueled weight with two crew was 9,908 pounds (4,494 kg). Maximum takeoff weight was 14,446 pounds (6,553 kg).

The bottom of the fuselage bore sponsons or "stub wings" that improved flight performance by decreasing aerodynamic drag underneath the fuselage. Normally, four 7.62 mm (.308 in) M60C machine guns were carried on the sponsons, accessed through large forward-opening hatches. The sponsons also had four racks to carry bombs, pods, or fuel. The wings outboard of the engines contained two additional hardpoints, one per side. Racked armament in the Vietnam War was usually seven-shot 2.75 in (70 mm) rocket pods with white phosphorus marker rounds or high-explosive rockets, or 5" (127 mm) four-shot Zuni rocket pods. Bombs, ADSIDS air-delivered/para-dropped unattended seismic sensors, Mk-6 battlefield illumination flares, and other stores were also carried.

Operational experience showed some weaknesses in the OV-10's design. It was significantly underpowered, which contributed to crashes in Vietnam in sloping terrain because the pilots could not climb fast enough. While specifications stated that the aircraft could reach 26,000 feet (7,900 m), in Vietnam the aircraft could reach only 18,000 feet (5,500 m). Also, no OV-10 pilot survived ditching the aircraft.

 

The OV-10 served in the U.S. Air Force, U.S. Marine Corps, and U.S. Navy, as well as in the service of a number of other countries. In U.S. military service, the Bronco was operated until the early Nineties, and obsoleted USAF OV-10s were passed on to the Bureau of Alcohol, Tobacco, and Firearms for anti-drug operations. A number of OV-10As furthermore ended up in the hands of the California Department of Forestry (CDF) and were used for spotting fires and directing fire bombers onto hot spots.

 

This was not the end of the OV-10 in American military service, though: In 2012, the type gained new attention because of its unique qualities. A $20 million budget was allocated to activate an experimental USAF unit of two airworthy OV-10Gs, acquired from NASA and the State Department. These machines were retrofitted with military equipment and were, starting in May 2015, deployed overseas to support Operation “Inherent Resolve”, flying more than 120 combat sorties over 82 days over Iraq and Syria. Their concrete missions remained unclear, and it is speculated they provided close air support for Special Forces missions, esp. in confined urban environments where the Broncos’ loitering time and high agility at low speed and altitude made them highly effective and less vulnerable than helicopters.

Furthermore, these Broncos reputedly performed strikes with the experimental AGR-20A “Advanced Precision Kill Weapons System (APKWS)”, a Hydra 70-millimeter rocket with a laser-seeking head as guidance - developed for precision strikes against small urban targets with little collateral damage. The experiment ended satisfactorily, but the machines were retired again, and the small unit was dissolved.

 

However, the machines had shown their worth in asymmetric warfare, and the U.S. Air Force decided to invest in reactivating the OV-10 on a regular basis, despite the overhead cost of operating an additional aircraft type in relatively small numbers – but development and production of a similar new type would have caused much higher costs, with an uncertain time until an operational aircraft would be ready for service. Re-activating a proven design and updating an existing airframe appeared more efficient.

The result became the MV-10H, suitably christened “Super Bronco” but also known as “Black Pony”, after the program's internal name. This aircraft was derived from the official OV-10X proposal by Boeing from 2009 for the USAF's Light Attack/Armed Reconnaissance requirement. Initially, Boeing proposed to re-start OV-10 manufacture, but this was deemed uneconomical, due to the expected small production number of new serial aircraft, so the “Black Pony” program became a modernization project. In consequence, all airframes for the "new" MV-10Hs were recovered OV-10s of various types from the "boneyard" at Davis-Monthan Air Force Base in Arizona.

 

While the revamped aircraft would maintain much of its 1960s-vintage rugged external design, modernizations included a completely new, armored central fuselage with a highly modified cockpit section, ejection seats and a computerized glass cockpit. The “Black Pony” OV-10 had full dual controls, so that either crewmen could steer the aircraft while the other operated sensors and/or weapons. This feature would also improve survivability in case of incapacitation of a crew member as the result from a hit.

The cockpit armor protected the crew and many vital systems from 23mm shells and shrapnel (e. g. from MANPADS). The crew still sat in tandem under a common, generously glazed canopy with flat, bulletproof panels for reduced sun reflections, with the pilot in the front seat and an observer/WSO behind. The Bronco’s original cargo capacity and the rear door were retained, even though the extra armor and defensive measures like chaff/flare dispensers as well as an additional fuel cell in the central fuselage limited the capacity. However, it was still possible to carry and deploy personnel, e. g. small special ops teams of up to four when the aircraft flew in clean configuration.

Additional updates for the MV-10H included structural reinforcements for a higher AUW and higher g load maneuvers, similar to OV-10D+ standards. The landing gear was also reinforced, and the aircraft kept its ability to operate from short, improvised airstrips. A fixed refueling probe was added to improve range and loiter time.

 

Intelligence sensors and smart weapon capabilities included a FLIR sensor and a laser range finder/target designator, both mounted in a small turret on the aircraft’s nose. The MV-10H was also outfitted with a data link and the ability to carry an integrated targeting pod such as the Northrop Grumman LITENING or the Lockheed Martin Sniper Advanced Targeting Pod (ATP). Also included was the Remotely Operated Video Enhanced Receiver (ROVER) to provide live sensor data and video recordings to personnel on the ground.

 

To improve overall performance and to better cope with the higher empty weight of the modified aircraft as well as with operations under hot-and-high conditions, the engines were beefed up. The new General Electric CT7-9D turboprop engines improved the Bronco's performance considerably: top speed increased by 100 mph (160 km/h), the climb rate was tripled (a weak point of early OV-10s despite the type’s good STOL capability) and both take-off as well as landing run were almost halved. The new engines called for longer nacelles, and their circular diameter markedly differed from the former Garrett T76-G-420/421 turboprop engines. To better exploit the additional power and reduce the aircraft’s audio signature, reversible contraprops, each with eight fiberglass blades, were fitted. These allowed a reduced number of revolutions per minute, resulting in less noise from the blades and their tips, while the engine responsiveness was greatly improved. The CT7-9Ds’ exhausts were fitted with muzzlers/air mixers to further reduce the aircraft's noise and heat signature.

Another novel and striking feature was the addition of so-called “tip sails” to the wings: each wingtip was elongated with a small, cigar-shaped fairing, each carrying three staggered, small “feather blade” winglets. Reputedly, this installation contributed ~10% to the higher climb rate and improved lift/drag ratio by ~6%, improving range and loiter time, too.

Drawing from the Iraq experience as well as from the USMC’s NOGS test program with a converted OV-10D as a night/all-weather gunship/reconnaissance platform, the MV-10H received a heavier gun armament: the original four light machine guns that were only good for strafing unarmored targets were deleted and their space in the sponsons replaced by avionics. Instead, the aircraft was outfitted with a lightweight M197 three-barrel 20mm gatling gun in a chin turret. This could be fixed in a forward position at high speed or when carrying forward-firing ordnance under the stub wings, or it could be deployed to cover a wide field of fire under the aircraft when it was flying slower, being either slaved to the FLIR or to a helmet sighting auto targeting system.

The original seven hardpoints were retained (1x ventral, 2x under each sponson, and another pair under the outer wings), but the total ordnance load was slightly increased and an additional pair of launch rails for AIM-9 Sidewinders or other light AAMs under the wing tips were added – not only as a defensive measure, but also with an anti-helicopter role in mind; four more Sidewinders could be carried on twin launchers under the outer wings against aerial targets. Other guided weapons cleared for the MV-10H were the light laser-guided AGR-20A and AGM-119 Hellfire missiles, the Advanced Precision Kill Weapon System upgrade to the light Hydra 70 rockets, the new Laser Guided Zuni Rocket which had been cleared for service in 2010, TV-/IR-/laser-guided AGM-65 Maverick AGMs and AGM-122 Sidearm anti-radar missiles, plus a wide range of gun and missile pods, iron and cluster bombs, as well as ECM and flare/chaff pods, which were not only carried defensively, but also in order to disrupt enemy ground communication.

 

In this configuration, a contract for the conversion of twelve mothballed American Broncos to the new MV-10H standard was signed with Boeing in 2016, and the first MV-10H was handed over to the USAF in early 2018, with further deliveries lasting into early 2020. All machines were allocated to the newly founded 919th Special Operations Support Squadron at Duke Field (Florida). This unit was part of the 919th Special Operations Wing, an Air Reserve Component (ARC) of the United States Air Force. It was assigned to the Tenth Air Force of Air Force Reserve Command and an associate unit of the 1st Special Operations Wing, Air Force Special Operations Command (AFSOC). If mobilized the wing was gained by AFSOC (Air Force Special Operations Command) to support Special Tactics, the U.S. Air Force's special operations ground force. Similar in ability and employment to Marine Special Operations Command (MARSOC), U.S. Army Special Forces and U.S. Navy SEALs, Air Force Special Tactics personnel were typically the first to enter combat and often found themselves deep behind enemy lines in demanding, austere conditions, usually with little or no support.

 

The MV-10Hs are expected to provide support for these ground units in the form of all-weather reconnaissance and observation, close air support and also forward air control duties for supporting ground units. Precision ground strikes and protection from enemy helicopters and low-flying aircraft were other, secondary missions for the modernized Broncos, which are expected to serve well into the 2040s. Exports or conversions of foreign OV-10s to the Black Pony standard are not planned, though.

  

General characteristics:

Crew: 2

Length: 42 ft 2½ in (12,88 m) incl. pitot

Wingspan: 45 ft 10½ in(14 m) incl. tip sails

Height: 15 ft 2 in (4.62 m)

Wing area: 290.95 sq ft (27.03 m²)

Airfoil: NACA 64A315

Empty weight: 9,090 lb (4,127 kg)

Gross weight: 13,068 lb (5,931 kg)

Max. takeoff weight: 17,318 lb (7,862 kg)

 

Powerplant:

2× General Electric CT7-9D turboprop engines, 1,305 kW (1,750 hp) each,

driving 8-bladed Hamilton Standard 8 ft 6 in (2.59 m) diameter constant-speed,

fully feathering, reversible contra-rotating propellers with metal hub and composite blades

 

Performance:

Maximum speed: 390 mph (340 kn, 625 km/h)

Combat range: 198 nmi (228 mi, 367 km)

Ferry range: 1,200 nmi (1,400 mi, 2,200 km) with auxiliary fuel

Maximum loiter time: 5.5 h with auxiliary fuel

Service ceiling: 32.750 ft (10,000 m)

13,500 ft (4.210 m) on one engine

Rate of climb: 17.400 ft/min (48 m/s) at sea level

Take-off run: 480 ft (150 m)

740 ft (227 m) to 50 ft (15 m)

1,870 ft (570 m) to 50 ft (15 m) at MTOW

Landing run: 490 ft (150 m)

785 ft (240 m) at MTOW

1,015 ft (310 m) from 50 ft (15 m)

 

Armament:

1x M197 3-barreled 20 mm Gatling cannon in a chin turret with 750 rounds ammo capacity

7x hardpoints for a total load of 5.000 lb (2,270 kg)

2x wingtip launch rails for AIM-9 Sidewinder AAMs

  

The kit and its assembly:

This fictional Bronco update/conversion was simply spawned by the idea: could it be possible to replace the original cockpit section with one from an AH-1 Cobra, for a kind of gunship version?

 

The basis is the Academy OV-10D kit, mated with the cockpit section from a Fujimi AH-1S TOW Cobra (Revell re-boxing, though), chosen because of its “boxy” cockpit section with flat glass panels – I think that it conveys the idea of an armored cockpit section best. Combining these parts was not easy, though, even though the plan sound simple. Initially, the Bronco’s twin booms, wings and stabilizer were built separately, because this made PSR on these sections easier than trying the same on a completed airframe. One of the initial challenges: the different engines. I wanted something uprated, and a different look, and I had a pair of (excellent!) 1:144 resin engines from the Russian company Kompakt Zip for a Tu-95 bomber at hand, which come together with movable(!) eight-blade contraprops that were an almost perfect size match for the original three-blade props. Biggest problem: the Tu-95 nacelles have a perfectly circular diameter, while the OV-10’s booms are square and rectangular. Combining these parts and shapes was already a messy PST affair, but it worked out quite well – even though the result rather reminds of some Chinese upgrade measure (anyone know the Tu-4 copies with turboprops? This here looks similar!). But while not pretty, I think that the beafier look works well and adds to the idea of a “revived” aircraft. And you can hardly beat the menacing look of contraprops on anything...

The exotic, so-called “tip sails” on the wings, mounted on short booms, are a detail borrowed from the Shijiazhuang Y-5B-100, an updated Chinese variant/copy of the Antonov An-2 biplane transporter. The booms are simple pieces of sprue from the Bronco kit, the winglets were cut from 0.5mm styrene sheet.

 

For the cockpit donor, the AH-1’s front section was roughly built, including the engine section (which is a separate module, so that the basic kit can be sold with different engine sections), and then the helicopter hull was cut and trimmed down to match the original Bronco pod and to fit under the wing. This became more complicated than expected, because a) the AH-1 cockpit and the nose are considerably shorter than the OV-10s, b) the AH-1 fuselage is markedly taller than the Bronco’s and c) the engine section, which would end up in the area of the wing, features major recesses, making the surface very uneven – calling for massive PSR to even this out. PSR was also necessary to hide the openings for the Fujimi AH-1’s stub wings. Other issues: the front landing gear (and its well) had to be added, as well as the OV-10 wing stubs. Furthermore, the new cockpit pod’s rear section needed an aerodynamical end/fairing, but I found a leftover Academy OV-10 section from a build/kitbashing many moons ago. Perfect match!

All these challenges could be tackled, even though the AH-1 cockpit looks surprisingly stout and massive on the Bronco’s airframe - the result looks stockier than expected, but it works well for the "Gunship" theme. Lots of PSR went into the new central fuselage section, though, even before it was mated with the OV-10 wing and the rest of the model.

Once cockpit and wing were finally mated, the seams had to disappear under even more PSR and a spinal extension of the canopy had to be sculpted across the upper wing surface, which would meld with the pod’s tail in a (more or less) harmonious shape. Not an easy task, and the fairing was eventually sculpted with 2C putty, plus even more PSR… Looks quite homogenous, though.

 

After this massive body work, other hardware challenges appeared like small distractions. The landing gear was another major issue because the deeper AH-1 section lowered the ground clearance, also because of the chin turret. To counter this, I raised the OV-10’s main landing gear by ~2mm – not much, but it was enough to create a credible stance, together with the front landing gear transplant under the cockpit, which received an internal console to match the main landing gear’s length. Due to the chin turret and the shorter nose, the front wheel retracts backwards now. But this looks quite plausible, thanks to the additional space under the cockpit tub, which also made a belt feed for the gun’s ammunition supply believable.

To enhance the menacing look I gave the model a fixed refueling boom, made from 1mm steel wire and a receptor adapter sculpted with white glue. The latter stuff was also used add some antenna fairings around the hull. Some antennae, chaff dispensers and an IR decoy were taken from the Academy kit.

 

The ordnance came from various sources. The Sidewinders under the wing tips were taken from an Italeri F-16C/D kit, they look better than the missiles from the Academy Bronco kit. Their launch rails came from an Italeri Bae Hawk 200. The quadruple Hellfire launchers on the underwing hardpoints were left over from an Italeri AH-1W, and they are a perfect load for this aircraft and its role. The LAU-10 and -19 missile pods on the stub wings were taken from the OV-10 kit.

  

Painting and markings:

Finding a suitable and somewhat interesting – but still plausible – paint scheme was not easy. Taking the A-10 as benchmark, an overall light grey livery (with focus on low contrast against the sky as protection against ground fire) would have been a likely choice – and in fact the last operational American OV-10s were painted in this fashion. But in order to provide a different look I used the contemporary USAF V-22Bs and Special Operations MC-130s as benchmark, which typically carry a darker paint scheme consisting of FS 36118 (suitably “Gunship Gray” :D) from above, FS 36375 underneath, with a low, wavy waterline, plus low-viz markings. Not spectacular, but plausible – and very similar to the late r/w Colombian OV-10s.

The cockpit tub became Dark Gull Grey (FS 36231, Humbrol 140) and the landing gear white (Revell 301).

 

The model received an overall black ink washing and some post-panel-shading, to liven up the dull all-grey livery. The decals were gathered from various sources, and I settled for black USAF low-viz markings. The “stars and bars” come from a late USAF F-4, the “IP” tail code was tailored from F-16 markings and the shark mouth was taken from an Academy AH-64. Most stencils came from another Academy OV-10 sheet and some other sources.

Decals were also used to create the trim on the propeller blades and markings on the ordnance.

 

Finally, the model was sealed with a coat of matt acrylic varnish (Italeri) and some exhaust soot stains were added with graphite along the tail boom flanks.

  

A successful transplantation – but is this still a modified Bronco or already a kitbashing? The result looks quite plausible and menacing, even though the TOW Cobra front section appears relatively massive. But thanks to the bigger engines and extended wing tips the proportions still work. The large low-pressure tires look a bit goofy under the aircraft, but they are original. The grey livery works IMHO well, too – a more colorful or garish scheme would certainly have distracted from the modified technical basis.

To all my brothers down range

be safe be strong and get home

 

Model Action Figure 1/6 Male doll

Lance Cpl. Homero Campos, left, and Lance Cpl. Chara J. Savoey, set up a hasty communications tower at Bombing Target Range 11, Piney Island, N.C., Dec. 18, 2014. Campos is an unmanned aerial vehicle maintainer with Marine Unmanned Aerial Vehicle Squadron 2, Savoey is a field radio operator.

 

(U.S. Marine Corps photo by Cpl. J.R. Heins)

"Yeah, we're still around. So kiss my ass."

 

Marine Corps Forces Special Operations Command have been one of the top special forces group after navy seals since 2006. They've done several missions even during our countries isolation going behind gang lines in the everglades of Miami to the docks of New York. They bring fear into the enemy just like any typical Marine. They have no boundaries, especially when looking for answers.

  

"We're gonna need them. They'll be useful for the upcoming conflicts."

 

__________________________________________________

 

So basically these are what my guy will look like for my story for Rise to Power, it'll be through the perspective a 5 operator MARSOC team during the conflicts that arise.

 

Marines bitch.

 

Sorta quick fig based off a pic in a book I have... Woodland MARPAT

From Left to Right:

 

Moderator: M. Lyla Kohistany

President and Co-Founder, PROMOTE

 

MAJ Nicole Alexander

Operations Officer, U.S. Army

 

LTC Kevin Trujillo

National Security Fellow, Harvard Kennedy School

 

Col Meghan M. Ripple

Air Warfare Deputy, Directorate of Operational Test and Evaluation, Office of Secretary of Defense

 

MSgt Michael W. MacKay

Enlisted Leader, U.S. Marine Corps Forces Special Operations Command (MARSOC)

 

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!

  

Some background:

The OV-10 Bronco was initially conceived in the early 1960s through an informal collaboration between W. H. Beckett and Colonel K. P. Rice, U.S. Marine Corps, who met at Naval Air Weapons Station China Lake, California, and who also happened to live near each other. The original concept was for a rugged, simple, close air support aircraft integrated with forward ground operations. At the time, the U.S. Army was still experimenting with armed helicopters, and the U.S. Air Force was not interested in close air support.

The concept aircraft was to operate from expedient forward air bases using roads as runways. Speed was to be from very slow to medium subsonic, with much longer loiter times than a pure jet. Efficient turboprop engines would give better performance than piston engines. Weapons were to be mounted on the centerline to get efficient aiming. The inventors favored strafing weapons such as self-loading recoilless rifles, which could deliver aimed explosive shells with less recoil than cannons, and a lower per-round weight than rockets. The airframe was to be designed to avoid the back blast.

 

Beckett and Rice developed a basic platform meeting these requirements, then attempted to build a fiberglass prototype in a garage. The effort produced enthusiastic supporters and an informal pamphlet describing the concept. W. H. Beckett, who had retired from the Marine Corps, went to work at North American Aviation to sell the aircraft.

The aircraft's design supported effective operations from forward bases. The OV-10 had a central nacelle containing a crew of two in tandem and space for cargo, and twin booms containing twin turboprop engines. The visually distinctive feature of the aircraft is the combination of the twin booms, with the horizontal stabilizer that connected them at the fin tips. The OV-10 could perform short takeoffs and landings, including on aircraft carriers and large-deck amphibious assault ships without using catapults or arresting wires. Further, the OV-10 was designed to take off and land on unimproved sites. Repairs could be made with ordinary tools. No ground equipment was required to start the engines. And, if necessary, the engines would operate on high-octane automobile fuel with only a slight loss of power.

 

The aircraft had responsive handling and could fly for up to 5½ hours with external fuel tanks. The cockpit had extremely good visibility for both pilot and co-pilot, provided by a wrap-around "greenhouse" that was wider than the fuselage. North American Rockwell custom ejection seats were standard, with many successful ejections during service. With the second seat removed, the OV-10 could carry 3,200 pounds (1,500 kg) of cargo, five paratroopers, or two litter patients and an attendant. Empty weight was 6,969 pounds (3,161 kg). Normal operating fueled weight with two crew was 9,908 pounds (4,494 kg). Maximum takeoff weight was 14,446 pounds (6,553 kg).

The bottom of the fuselage bore sponsons or "stub wings" that improved flight performance by decreasing aerodynamic drag underneath the fuselage. Normally, four 7.62 mm (.308 in) M60C machine guns were carried on the sponsons, accessed through large forward-opening hatches. The sponsons also had four racks to carry bombs, pods, or fuel. The wings outboard of the engines contained two additional hardpoints, one per side. Racked armament in the Vietnam War was usually seven-shot 2.75 in (70 mm) rocket pods with white phosphorus marker rounds or high-explosive rockets, or 5" (127 mm) four-shot Zuni rocket pods. Bombs, ADSIDS air-delivered/para-dropped unattended seismic sensors, Mk-6 battlefield illumination flares, and other stores were also carried.

Operational experience showed some weaknesses in the OV-10's design. It was significantly underpowered, which contributed to crashes in Vietnam in sloping terrain because the pilots could not climb fast enough. While specifications stated that the aircraft could reach 26,000 feet (7,900 m), in Vietnam the aircraft could reach only 18,000 feet (5,500 m). Also, no OV-10 pilot survived ditching the aircraft.

 

The OV-10 served in the U.S. Air Force, U.S. Marine Corps, and U.S. Navy, as well as in the service of a number of other countries. In U.S. military service, the Bronco was operated until the early Nineties, and obsoleted USAF OV-10s were passed on to the Bureau of Alcohol, Tobacco, and Firearms for anti-drug operations. A number of OV-10As furthermore ended up in the hands of the California Department of Forestry (CDF) and were used for spotting fires and directing fire bombers onto hot spots.

 

This was not the end of the OV-10 in American military service, though: In 2012, the type gained new attention because of its unique qualities. A $20 million budget was allocated to activate an experimental USAF unit of two airworthy OV-10Gs, acquired from NASA and the State Department. These machines were retrofitted with military equipment and were, starting in May 2015, deployed overseas to support Operation “Inherent Resolve”, flying more than 120 combat sorties over 82 days over Iraq and Syria. Their concrete missions remained unclear, and it is speculated they provided close air support for Special Forces missions, esp. in confined urban environments where the Broncos’ loitering time and high agility at low speed and altitude made them highly effective and less vulnerable than helicopters.

Furthermore, these Broncos reputedly performed strikes with the experimental AGR-20A “Advanced Precision Kill Weapons System (APKWS)”, a Hydra 70-millimeter rocket with a laser-seeking head as guidance - developed for precision strikes against small urban targets with little collateral damage. The experiment ended satisfactorily, but the machines were retired again, and the small unit was dissolved.

 

However, the machines had shown their worth in asymmetric warfare, and the U.S. Air Force decided to invest in reactivating the OV-10 on a regular basis, despite the overhead cost of operating an additional aircraft type in relatively small numbers – but development and production of a similar new type would have caused much higher costs, with an uncertain time until an operational aircraft would be ready for service. Re-activating a proven design and updating an existing airframe appeared more efficient.

The result became the MV-10H, suitably christened “Super Bronco” but also known as “Black Pony”, after the program's internal name. This aircraft was derived from the official OV-10X proposal by Boeing from 2009 for the USAF's Light Attack/Armed Reconnaissance requirement. Initially, Boeing proposed to re-start OV-10 manufacture, but this was deemed uneconomical, due to the expected small production number of new serial aircraft, so the “Black Pony” program became a modernization project. In consequence, all airframes for the "new" MV-10Hs were recovered OV-10s of various types from the "boneyard" at Davis-Monthan Air Force Base in Arizona.

 

While the revamped aircraft would maintain much of its 1960s-vintage rugged external design, modernizations included a completely new, armored central fuselage with a highly modified cockpit section, ejection seats and a computerized glass cockpit. The “Black Pony” OV-10 had full dual controls, so that either crewmen could steer the aircraft while the other operated sensors and/or weapons. This feature would also improve survivability in case of incapacitation of a crew member as the result from a hit.

The cockpit armor protected the crew and many vital systems from 23mm shells and shrapnel (e. g. from MANPADS). The crew still sat in tandem under a common, generously glazed canopy with flat, bulletproof panels for reduced sun reflections, with the pilot in the front seat and an observer/WSO behind. The Bronco’s original cargo capacity and the rear door were retained, even though the extra armor and defensive measures like chaff/flare dispensers as well as an additional fuel cell in the central fuselage limited the capacity. However, it was still possible to carry and deploy personnel, e. g. small special ops teams of up to four when the aircraft flew in clean configuration.

Additional updates for the MV-10H included structural reinforcements for a higher AUW and higher g load maneuvers, similar to OV-10D+ standards. The landing gear was also reinforced, and the aircraft kept its ability to operate from short, improvised airstrips. A fixed refueling probe was added to improve range and loiter time.

 

Intelligence sensors and smart weapon capabilities included a FLIR sensor and a laser range finder/target designator, both mounted in a small turret on the aircraft’s nose. The MV-10H was also outfitted with a data link and the ability to carry an integrated targeting pod such as the Northrop Grumman LITENING or the Lockheed Martin Sniper Advanced Targeting Pod (ATP). Also included was the Remotely Operated Video Enhanced Receiver (ROVER) to provide live sensor data and video recordings to personnel on the ground.

 

To improve overall performance and to better cope with the higher empty weight of the modified aircraft as well as with operations under hot-and-high conditions, the engines were beefed up. The new General Electric CT7-9D turboprop engines improved the Bronco's performance considerably: top speed increased by 100 mph (160 km/h), the climb rate was tripled (a weak point of early OV-10s despite the type’s good STOL capability) and both take-off as well as landing run were almost halved. The new engines called for longer nacelles, and their circular diameter markedly differed from the former Garrett T76-G-420/421 turboprop engines. To better exploit the additional power and reduce the aircraft’s audio signature, reversible contraprops, each with eight fiberglass blades, were fitted. These allowed a reduced number of revolutions per minute, resulting in less noise from the blades and their tips, while the engine responsiveness was greatly improved. The CT7-9Ds’ exhausts were fitted with muzzlers/air mixers to further reduce the aircraft's noise and heat signature.

Another novel and striking feature was the addition of so-called “tip sails” to the wings: each wingtip was elongated with a small, cigar-shaped fairing, each carrying three staggered, small “feather blade” winglets. Reputedly, this installation contributed ~10% to the higher climb rate and improved lift/drag ratio by ~6%, improving range and loiter time, too.

Drawing from the Iraq experience as well as from the USMC’s NOGS test program with a converted OV-10D as a night/all-weather gunship/reconnaissance platform, the MV-10H received a heavier gun armament: the original four light machine guns that were only good for strafing unarmored targets were deleted and their space in the sponsons replaced by avionics. Instead, the aircraft was outfitted with a lightweight M197 three-barrel 20mm gatling gun in a chin turret. This could be fixed in a forward position at high speed or when carrying forward-firing ordnance under the stub wings, or it could be deployed to cover a wide field of fire under the aircraft when it was flying slower, being either slaved to the FLIR or to a helmet sighting auto targeting system.

The original seven hardpoints were retained (1x ventral, 2x under each sponson, and another pair under the outer wings), but the total ordnance load was slightly increased and an additional pair of launch rails for AIM-9 Sidewinders or other light AAMs under the wing tips were added – not only as a defensive measure, but also with an anti-helicopter role in mind; four more Sidewinders could be carried on twin launchers under the outer wings against aerial targets. Other guided weapons cleared for the MV-10H were the light laser-guided AGR-20A and AGM-119 Hellfire missiles, the Advanced Precision Kill Weapon System upgrade to the light Hydra 70 rockets, the new Laser Guided Zuni Rocket which had been cleared for service in 2010, TV-/IR-/laser-guided AGM-65 Maverick AGMs and AGM-122 Sidearm anti-radar missiles, plus a wide range of gun and missile pods, iron and cluster bombs, as well as ECM and flare/chaff pods, which were not only carried defensively, but also in order to disrupt enemy ground communication.

 

In this configuration, a contract for the conversion of twelve mothballed American Broncos to the new MV-10H standard was signed with Boeing in 2016, and the first MV-10H was handed over to the USAF in early 2018, with further deliveries lasting into early 2020. All machines were allocated to the newly founded 919th Special Operations Support Squadron at Duke Field (Florida). This unit was part of the 919th Special Operations Wing, an Air Reserve Component (ARC) of the United States Air Force. It was assigned to the Tenth Air Force of Air Force Reserve Command and an associate unit of the 1st Special Operations Wing, Air Force Special Operations Command (AFSOC). If mobilized the wing was gained by AFSOC (Air Force Special Operations Command) to support Special Tactics, the U.S. Air Force's special operations ground force. Similar in ability and employment to Marine Special Operations Command (MARSOC), U.S. Army Special Forces and U.S. Navy SEALs, Air Force Special Tactics personnel were typically the first to enter combat and often found themselves deep behind enemy lines in demanding, austere conditions, usually with little or no support.

 

The MV-10Hs are expected to provide support for these ground units in the form of all-weather reconnaissance and observation, close air support and also forward air control duties for supporting ground units. Precision ground strikes and protection from enemy helicopters and low-flying aircraft were other, secondary missions for the modernized Broncos, which are expected to serve well into the 2040s. Exports or conversions of foreign OV-10s to the Black Pony standard are not planned, though.

  

General characteristics:

Crew: 2

Length: 42 ft 2½ in (12,88 m) incl. pitot

Wingspan: 45 ft 10½ in(14 m) incl. tip sails

Height: 15 ft 2 in (4.62 m)

Wing area: 290.95 sq ft (27.03 m²)

Airfoil: NACA 64A315

Empty weight: 9,090 lb (4,127 kg)

Gross weight: 13,068 lb (5,931 kg)

Max. takeoff weight: 17,318 lb (7,862 kg)

 

Powerplant:

2× General Electric CT7-9D turboprop engines, 1,305 kW (1,750 hp) each,

driving 8-bladed Hamilton Standard 8 ft 6 in (2.59 m) diameter constant-speed,

fully feathering, reversible contra-rotating propellers with metal hub and composite blades

 

Performance:

Maximum speed: 390 mph (340 kn, 625 km/h)

Combat range: 198 nmi (228 mi, 367 km)

Ferry range: 1,200 nmi (1,400 mi, 2,200 km) with auxiliary fuel

Maximum loiter time: 5.5 h with auxiliary fuel

Service ceiling: 32.750 ft (10,000 m)

13,500 ft (4.210 m) on one engine

Rate of climb: 17.400 ft/min (48 m/s) at sea level

Take-off run: 480 ft (150 m)

740 ft (227 m) to 50 ft (15 m)

1,870 ft (570 m) to 50 ft (15 m) at MTOW

Landing run: 490 ft (150 m)

785 ft (240 m) at MTOW

1,015 ft (310 m) from 50 ft (15 m)

 

Armament:

1x M197 3-barreled 20 mm Gatling cannon in a chin turret with 750 rounds ammo capacity

7x hardpoints for a total load of 5.000 lb (2,270 kg)

2x wingtip launch rails for AIM-9 Sidewinder AAMs

  

The kit and its assembly:

This fictional Bronco update/conversion was simply spawned by the idea: could it be possible to replace the original cockpit section with one from an AH-1 Cobra, for a kind of gunship version?

 

The basis is the Academy OV-10D kit, mated with the cockpit section from a Fujimi AH-1S TOW Cobra (Revell re-boxing, though), chosen because of its “boxy” cockpit section with flat glass panels – I think that it conveys the idea of an armored cockpit section best. Combining these parts was not easy, though, even though the plan sound simple. Initially, the Bronco’s twin booms, wings and stabilizer were built separately, because this made PSR on these sections easier than trying the same on a completed airframe. One of the initial challenges: the different engines. I wanted something uprated, and a different look, and I had a pair of (excellent!) 1:144 resin engines from the Russian company Kompakt Zip for a Tu-95 bomber at hand, which come together with movable(!) eight-blade contraprops that were an almost perfect size match for the original three-blade props. Biggest problem: the Tu-95 nacelles have a perfectly circular diameter, while the OV-10’s booms are square and rectangular. Combining these parts and shapes was already a messy PST affair, but it worked out quite well – even though the result rather reminds of some Chinese upgrade measure (anyone know the Tu-4 copies with turboprops? This here looks similar!). But while not pretty, I think that the beafier look works well and adds to the idea of a “revived” aircraft. And you can hardly beat the menacing look of contraprops on anything...

The exotic, so-called “tip sails” on the wings, mounted on short booms, are a detail borrowed from the Shijiazhuang Y-5B-100, an updated Chinese variant/copy of the Antonov An-2 biplane transporter. The booms are simple pieces of sprue from the Bronco kit, the winglets were cut from 0.5mm styrene sheet.

 

For the cockpit donor, the AH-1’s front section was roughly built, including the engine section (which is a separate module, so that the basic kit can be sold with different engine sections), and then the helicopter hull was cut and trimmed down to match the original Bronco pod and to fit under the wing. This became more complicated than expected, because a) the AH-1 cockpit and the nose are considerably shorter than the OV-10s, b) the AH-1 fuselage is markedly taller than the Bronco’s and c) the engine section, which would end up in the area of the wing, features major recesses, making the surface very uneven – calling for massive PSR to even this out. PSR was also necessary to hide the openings for the Fujimi AH-1’s stub wings. Other issues: the front landing gear (and its well) had to be added, as well as the OV-10 wing stubs. Furthermore, the new cockpit pod’s rear section needed an aerodynamical end/fairing, but I found a leftover Academy OV-10 section from a build/kitbashing many moons ago. Perfect match!

All these challenges could be tackled, even though the AH-1 cockpit looks surprisingly stout and massive on the Bronco’s airframe - the result looks stockier than expected, but it works well for the "Gunship" theme. Lots of PSR went into the new central fuselage section, though, even before it was mated with the OV-10 wing and the rest of the model.

Once cockpit and wing were finally mated, the seams had to disappear under even more PSR and a spinal extension of the canopy had to be sculpted across the upper wing surface, which would meld with the pod’s tail in a (more or less) harmonious shape. Not an easy task, and the fairing was eventually sculpted with 2C putty, plus even more PSR… Looks quite homogenous, though.

 

After this massive body work, other hardware challenges appeared like small distractions. The landing gear was another major issue because the deeper AH-1 section lowered the ground clearance, also because of the chin turret. To counter this, I raised the OV-10’s main landing gear by ~2mm – not much, but it was enough to create a credible stance, together with the front landing gear transplant under the cockpit, which received an internal console to match the main landing gear’s length. Due to the chin turret and the shorter nose, the front wheel retracts backwards now. But this looks quite plausible, thanks to the additional space under the cockpit tub, which also made a belt feed for the gun’s ammunition supply believable.

To enhance the menacing look I gave the model a fixed refueling boom, made from 1mm steel wire and a receptor adapter sculpted with white glue. The latter stuff was also used add some antenna fairings around the hull. Some antennae, chaff dispensers and an IR decoy were taken from the Academy kit.

 

The ordnance came from various sources. The Sidewinders under the wing tips were taken from an Italeri F-16C/D kit, they look better than the missiles from the Academy Bronco kit. Their launch rails came from an Italeri Bae Hawk 200. The quadruple Hellfire launchers on the underwing hardpoints were left over from an Italeri AH-1W, and they are a perfect load for this aircraft and its role. The LAU-10 and -19 missile pods on the stub wings were taken from the OV-10 kit.

  

Painting and markings:

Finding a suitable and somewhat interesting – but still plausible – paint scheme was not easy. Taking the A-10 as benchmark, an overall light grey livery (with focus on low contrast against the sky as protection against ground fire) would have been a likely choice – and in fact the last operational American OV-10s were painted in this fashion. But in order to provide a different look I used the contemporary USAF V-22Bs and Special Operations MC-130s as benchmark, which typically carry a darker paint scheme consisting of FS 36118 (suitably “Gunship Gray” :D) from above, FS 36375 underneath, with a low, wavy waterline, plus low-viz markings. Not spectacular, but plausible – and very similar to the late r/w Colombian OV-10s.

The cockpit tub became Dark Gull Grey (FS 36231, Humbrol 140) and the landing gear white (Revell 301).

 

The model received an overall black ink washing and some post-panel-shading, to liven up the dull all-grey livery. The decals were gathered from various sources, and I settled for black USAF low-viz markings. The “stars and bars” come from a late USAF F-4, the “IP” tail code was tailored from F-16 markings and the shark mouth was taken from an Academy AH-64. Most stencils came from another Academy OV-10 sheet and some other sources.

Decals were also used to create the trim on the propeller blades and markings on the ordnance.

 

Finally, the model was sealed with a coat of matt acrylic varnish (Italeri) and some exhaust soot stains were added with graphite along the tail boom flanks.

  

A successful transplantation – but is this still a modified Bronco or already a kitbashing? The result looks quite plausible and menacing, even though the TOW Cobra front section appears relatively massive. But thanks to the bigger engines and extended wing tips the proportions still work. The large low-pressure tires look a bit goofy under the aircraft, but they are original. The grey livery works IMHO well, too – a more colorful or garish scheme would certainly have distracted from the modified technical basis.

A Marine Special Operations Team assists with security during the construction of an Afghan Local Police checkpoint in Helmand province, Afghanistan, March 30, 2013. Afghan Local Police complement counterinsurgency efforts by assisting and supporting rural areas with limited Afghan National Security Forces presence, in order to enable conditions for improved security, governance and development. (U.S. Marine Corps photo by Sgt. Pete Thibodeau/Released)

Marines with U.S. Marine Corps Forces, Special Operations Command prepare to board CH-47 Chinook helicopters as part of a two-day presence patrol with Afghan Commandos in Farah province Feb. 27. Marines with MARSOC's 1st Marine Special Operations Battalion recently returned from a nine-month deployment to Afghanistan, where they commanded the Special Operations Task Force - West and oversaw one of Afghanistan's bloodiest regions. (U.S. Marine Corps photo by Cpl. Kyle McNally/Not Released)

A soldier exits a UH-60 Black Hawk helicopter in the village of Darrah-I-Bum, Badghis province, Afghanistan, Jan. 5. The soldier was part of a cadre of personnel accompanying the International Security Assistance Force command sergeant major, Command Sgt. Maj. Marvin L. Hill on a visit to the Marines, sailors, and soldiers of Special Operations Task Force-West living and working in Darrah-I-Bum.

Combined Joint Special Operations Task Force – Afghanistan Media Operations Center

Photo by Sgt. Brian Kester

Date Taken:12.05.2010

Location:DARRAH-I-BUM, AF

Related Photos: dvidshub.net/r/sorl5w

 

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!

  

Some background:

The OV-10 Bronco was initially conceived in the early 1960s through an informal collaboration between W. H. Beckett and Colonel K. P. Rice, U.S. Marine Corps, who met at Naval Air Weapons Station China Lake, California, and who also happened to live near each other. The original concept was for a rugged, simple, close air support aircraft integrated with forward ground operations. At the time, the U.S. Army was still experimenting with armed helicopters, and the U.S. Air Force was not interested in close air support.

The concept aircraft was to operate from expedient forward air bases using roads as runways. Speed was to be from very slow to medium subsonic, with much longer loiter times than a pure jet. Efficient turboprop engines would give better performance than piston engines. Weapons were to be mounted on the centerline to get efficient aiming. The inventors favored strafing weapons such as self-loading recoilless rifles, which could deliver aimed explosive shells with less recoil than cannons, and a lower per-round weight than rockets. The airframe was to be designed to avoid the back blast.

 

Beckett and Rice developed a basic platform meeting these requirements, then attempted to build a fiberglass prototype in a garage. The effort produced enthusiastic supporters and an informal pamphlet describing the concept. W. H. Beckett, who had retired from the Marine Corps, went to work at North American Aviation to sell the aircraft.

The aircraft's design supported effective operations from forward bases. The OV-10 had a central nacelle containing a crew of two in tandem and space for cargo, and twin booms containing twin turboprop engines. The visually distinctive feature of the aircraft is the combination of the twin booms, with the horizontal stabilizer that connected them at the fin tips. The OV-10 could perform short takeoffs and landings, including on aircraft carriers and large-deck amphibious assault ships without using catapults or arresting wires. Further, the OV-10 was designed to take off and land on unimproved sites. Repairs could be made with ordinary tools. No ground equipment was required to start the engines. And, if necessary, the engines would operate on high-octane automobile fuel with only a slight loss of power.

 

The aircraft had responsive handling and could fly for up to 5½ hours with external fuel tanks. The cockpit had extremely good visibility for both pilot and co-pilot, provided by a wrap-around "greenhouse" that was wider than the fuselage. North American Rockwell custom ejection seats were standard, with many successful ejections during service. With the second seat removed, the OV-10 could carry 3,200 pounds (1,500 kg) of cargo, five paratroopers, or two litter patients and an attendant. Empty weight was 6,969 pounds (3,161 kg). Normal operating fueled weight with two crew was 9,908 pounds (4,494 kg). Maximum takeoff weight was 14,446 pounds (6,553 kg).

The bottom of the fuselage bore sponsons or "stub wings" that improved flight performance by decreasing aerodynamic drag underneath the fuselage. Normally, four 7.62 mm (.308 in) M60C machine guns were carried on the sponsons, accessed through large forward-opening hatches. The sponsons also had four racks to carry bombs, pods, or fuel. The wings outboard of the engines contained two additional hardpoints, one per side. Racked armament in the Vietnam War was usually seven-shot 2.75 in (70 mm) rocket pods with white phosphorus marker rounds or high-explosive rockets, or 5" (127 mm) four-shot Zuni rocket pods. Bombs, ADSIDS air-delivered/para-dropped unattended seismic sensors, Mk-6 battlefield illumination flares, and other stores were also carried.

Operational experience showed some weaknesses in the OV-10's design. It was significantly underpowered, which contributed to crashes in Vietnam in sloping terrain because the pilots could not climb fast enough. While specifications stated that the aircraft could reach 26,000 feet (7,900 m), in Vietnam the aircraft could reach only 18,000 feet (5,500 m). Also, no OV-10 pilot survived ditching the aircraft.

 

The OV-10 served in the U.S. Air Force, U.S. Marine Corps, and U.S. Navy, as well as in the service of a number of other countries. In U.S. military service, the Bronco was operated until the early Nineties, and obsoleted USAF OV-10s were passed on to the Bureau of Alcohol, Tobacco, and Firearms for anti-drug operations. A number of OV-10As furthermore ended up in the hands of the California Department of Forestry (CDF) and were used for spotting fires and directing fire bombers onto hot spots.

 

This was not the end of the OV-10 in American military service, though: In 2012, the type gained new attention because of its unique qualities. A $20 million budget was allocated to activate an experimental USAF unit of two airworthy OV-10Gs, acquired from NASA and the State Department. These machines were retrofitted with military equipment and were, starting in May 2015, deployed overseas to support Operation “Inherent Resolve”, flying more than 120 combat sorties over 82 days over Iraq and Syria. Their concrete missions remained unclear, and it is speculated they provided close air support for Special Forces missions, esp. in confined urban environments where the Broncos’ loitering time and high agility at low speed and altitude made them highly effective and less vulnerable than helicopters.

Furthermore, these Broncos reputedly performed strikes with the experimental AGR-20A “Advanced Precision Kill Weapons System (APKWS)”, a Hydra 70-millimeter rocket with a laser-seeking head as guidance - developed for precision strikes against small urban targets with little collateral damage. The experiment ended satisfactorily, but the machines were retired again, and the small unit was dissolved.

 

However, the machines had shown their worth in asymmetric warfare, and the U.S. Air Force decided to invest in reactivating the OV-10 on a regular basis, despite the overhead cost of operating an additional aircraft type in relatively small numbers – but development and production of a similar new type would have caused much higher costs, with an uncertain time until an operational aircraft would be ready for service. Re-activating a proven design and updating an existing airframe appeared more efficient.

The result became the MV-10H, suitably christened “Super Bronco” but also known as “Black Pony”, after the program's internal name. This aircraft was derived from the official OV-10X proposal by Boeing from 2009 for the USAF's Light Attack/Armed Reconnaissance requirement. Initially, Boeing proposed to re-start OV-10 manufacture, but this was deemed uneconomical, due to the expected small production number of new serial aircraft, so the “Black Pony” program became a modernization project. In consequence, all airframes for the "new" MV-10Hs were recovered OV-10s of various types from the "boneyard" at Davis-Monthan Air Force Base in Arizona.

 

While the revamped aircraft would maintain much of its 1960s-vintage rugged external design, modernizations included a completely new, armored central fuselage with a highly modified cockpit section, ejection seats and a computerized glass cockpit. The “Black Pony” OV-10 had full dual controls, so that either crewmen could steer the aircraft while the other operated sensors and/or weapons. This feature would also improve survivability in case of incapacitation of a crew member as the result from a hit.

The cockpit armor protected the crew and many vital systems from 23mm shells and shrapnel (e. g. from MANPADS). The crew still sat in tandem under a common, generously glazed canopy with flat, bulletproof panels for reduced sun reflections, with the pilot in the front seat and an observer/WSO behind. The Bronco’s original cargo capacity and the rear door were retained, even though the extra armor and defensive measures like chaff/flare dispensers as well as an additional fuel cell in the central fuselage limited the capacity. However, it was still possible to carry and deploy personnel, e. g. small special ops teams of up to four when the aircraft flew in clean configuration.

Additional updates for the MV-10H included structural reinforcements for a higher AUW and higher g load maneuvers, similar to OV-10D+ standards. The landing gear was also reinforced, and the aircraft kept its ability to operate from short, improvised airstrips. A fixed refueling probe was added to improve range and loiter time.

 

Intelligence sensors and smart weapon capabilities included a FLIR sensor and a laser range finder/target designator, both mounted in a small turret on the aircraft’s nose. The MV-10H was also outfitted with a data link and the ability to carry an integrated targeting pod such as the Northrop Grumman LITENING or the Lockheed Martin Sniper Advanced Targeting Pod (ATP). Also included was the Remotely Operated Video Enhanced Receiver (ROVER) to provide live sensor data and video recordings to personnel on the ground.

 

To improve overall performance and to better cope with the higher empty weight of the modified aircraft as well as with operations under hot-and-high conditions, the engines were beefed up. The new General Electric CT7-9D turboprop engines improved the Bronco's performance considerably: top speed increased by 100 mph (160 km/h), the climb rate was tripled (a weak point of early OV-10s despite the type’s good STOL capability) and both take-off as well as landing run were almost halved. The new engines called for longer nacelles, and their circular diameter markedly differed from the former Garrett T76-G-420/421 turboprop engines. To better exploit the additional power and reduce the aircraft’s audio signature, reversible contraprops, each with eight fiberglass blades, were fitted. These allowed a reduced number of revolutions per minute, resulting in less noise from the blades and their tips, while the engine responsiveness was greatly improved. The CT7-9Ds’ exhausts were fitted with muzzlers/air mixers to further reduce the aircraft's noise and heat signature.

Another novel and striking feature was the addition of so-called “tip sails” to the wings: each wingtip was elongated with a small, cigar-shaped fairing, each carrying three staggered, small “feather blade” winglets. Reputedly, this installation contributed ~10% to the higher climb rate and improved lift/drag ratio by ~6%, improving range and loiter time, too.

Drawing from the Iraq experience as well as from the USMC’s NOGS test program with a converted OV-10D as a night/all-weather gunship/reconnaissance platform, the MV-10H received a heavier gun armament: the original four light machine guns that were only good for strafing unarmored targets were deleted and their space in the sponsons replaced by avionics. Instead, the aircraft was outfitted with a lightweight M197 three-barrel 20mm gatling gun in a chin turret. This could be fixed in a forward position at high speed or when carrying forward-firing ordnance under the stub wings, or it could be deployed to cover a wide field of fire under the aircraft when it was flying slower, being either slaved to the FLIR or to a helmet sighting auto targeting system.

The original seven hardpoints were retained (1x ventral, 2x under each sponson, and another pair under the outer wings), but the total ordnance load was slightly increased and an additional pair of launch rails for AIM-9 Sidewinders or other light AAMs under the wing tips were added – not only as a defensive measure, but also with an anti-helicopter role in mind; four more Sidewinders could be carried on twin launchers under the outer wings against aerial targets. Other guided weapons cleared for the MV-10H were the light laser-guided AGR-20A and AGM-119 Hellfire missiles, the Advanced Precision Kill Weapon System upgrade to the light Hydra 70 rockets, the new Laser Guided Zuni Rocket which had been cleared for service in 2010, TV-/IR-/laser-guided AGM-65 Maverick AGMs and AGM-122 Sidearm anti-radar missiles, plus a wide range of gun and missile pods, iron and cluster bombs, as well as ECM and flare/chaff pods, which were not only carried defensively, but also in order to disrupt enemy ground communication.

 

In this configuration, a contract for the conversion of twelve mothballed American Broncos to the new MV-10H standard was signed with Boeing in 2016, and the first MV-10H was handed over to the USAF in early 2018, with further deliveries lasting into early 2020. All machines were allocated to the newly founded 919th Special Operations Support Squadron at Duke Field (Florida). This unit was part of the 919th Special Operations Wing, an Air Reserve Component (ARC) of the United States Air Force. It was assigned to the Tenth Air Force of Air Force Reserve Command and an associate unit of the 1st Special Operations Wing, Air Force Special Operations Command (AFSOC). If mobilized the wing was gained by AFSOC (Air Force Special Operations Command) to support Special Tactics, the U.S. Air Force's special operations ground force. Similar in ability and employment to Marine Special Operations Command (MARSOC), U.S. Army Special Forces and U.S. Navy SEALs, Air Force Special Tactics personnel were typically the first to enter combat and often found themselves deep behind enemy lines in demanding, austere conditions, usually with little or no support.

 

The MV-10Hs are expected to provide support for these ground units in the form of all-weather reconnaissance and observation, close air support and also forward air control duties for supporting ground units. Precision ground strikes and protection from enemy helicopters and low-flying aircraft were other, secondary missions for the modernized Broncos, which are expected to serve well into the 2040s. Exports or conversions of foreign OV-10s to the Black Pony standard are not planned, though.

  

General characteristics:

Crew: 2

Length: 42 ft 2½ in (12,88 m) incl. pitot

Wingspan: 45 ft 10½ in(14 m) incl. tip sails

Height: 15 ft 2 in (4.62 m)

Wing area: 290.95 sq ft (27.03 m²)

Airfoil: NACA 64A315

Empty weight: 9,090 lb (4,127 kg)

Gross weight: 13,068 lb (5,931 kg)

Max. takeoff weight: 17,318 lb (7,862 kg)

 

Powerplant:

2× General Electric CT7-9D turboprop engines, 1,305 kW (1,750 hp) each,

driving 8-bladed Hamilton Standard 8 ft 6 in (2.59 m) diameter constant-speed,

fully feathering, reversible contra-rotating propellers with metal hub and composite blades

 

Performance:

Maximum speed: 390 mph (340 kn, 625 km/h)

Combat range: 198 nmi (228 mi, 367 km)

Ferry range: 1,200 nmi (1,400 mi, 2,200 km) with auxiliary fuel

Maximum loiter time: 5.5 h with auxiliary fuel

Service ceiling: 32.750 ft (10,000 m)

13,500 ft (4.210 m) on one engine

Rate of climb: 17.400 ft/min (48 m/s) at sea level

Take-off run: 480 ft (150 m)

740 ft (227 m) to 50 ft (15 m)

1,870 ft (570 m) to 50 ft (15 m) at MTOW

Landing run: 490 ft (150 m)

785 ft (240 m) at MTOW

1,015 ft (310 m) from 50 ft (15 m)

 

Armament:

1x M197 3-barreled 20 mm Gatling cannon in a chin turret with 750 rounds ammo capacity

7x hardpoints for a total load of 5.000 lb (2,270 kg)

2x wingtip launch rails for AIM-9 Sidewinder AAMs

  

The kit and its assembly:

This fictional Bronco update/conversion was simply spawned by the idea: could it be possible to replace the original cockpit section with one from an AH-1 Cobra, for a kind of gunship version?

 

The basis is the Academy OV-10D kit, mated with the cockpit section from a Fujimi AH-1S TOW Cobra (Revell re-boxing, though), chosen because of its “boxy” cockpit section with flat glass panels – I think that it conveys the idea of an armored cockpit section best. Combining these parts was not easy, though, even though the plan sound simple. Initially, the Bronco’s twin booms, wings and stabilizer were built separately, because this made PSR on these sections easier than trying the same on a completed airframe. One of the initial challenges: the different engines. I wanted something uprated, and a different look, and I had a pair of (excellent!) 1:144 resin engines from the Russian company Kompakt Zip for a Tu-95 bomber at hand, which come together with movable(!) eight-blade contraprops that were an almost perfect size match for the original three-blade props. Biggest problem: the Tu-95 nacelles have a perfectly circular diameter, while the OV-10’s booms are square and rectangular. Combining these parts and shapes was already a messy PST affair, but it worked out quite well – even though the result rather reminds of some Chinese upgrade measure (anyone know the Tu-4 copies with turboprops? This here looks similar!). But while not pretty, I think that the beafier look works well and adds to the idea of a “revived” aircraft. And you can hardly beat the menacing look of contraprops on anything...

The exotic, so-called “tip sails” on the wings, mounted on short booms, are a detail borrowed from the Shijiazhuang Y-5B-100, an updated Chinese variant/copy of the Antonov An-2 biplane transporter. The booms are simple pieces of sprue from the Bronco kit, the winglets were cut from 0.5mm styrene sheet.

 

For the cockpit donor, the AH-1’s front section was roughly built, including the engine section (which is a separate module, so that the basic kit can be sold with different engine sections), and then the helicopter hull was cut and trimmed down to match the original Bronco pod and to fit under the wing. This became more complicated than expected, because a) the AH-1 cockpit and the nose are considerably shorter than the OV-10s, b) the AH-1 fuselage is markedly taller than the Bronco’s and c) the engine section, which would end up in the area of the wing, features major recesses, making the surface very uneven – calling for massive PSR to even this out. PSR was also necessary to hide the openings for the Fujimi AH-1’s stub wings. Other issues: the front landing gear (and its well) had to be added, as well as the OV-10 wing stubs. Furthermore, the new cockpit pod’s rear section needed an aerodynamical end/fairing, but I found a leftover Academy OV-10 section from a build/kitbashing many moons ago. Perfect match!

All these challenges could be tackled, even though the AH-1 cockpit looks surprisingly stout and massive on the Bronco’s airframe - the result looks stockier than expected, but it works well for the "Gunship" theme. Lots of PSR went into the new central fuselage section, though, even before it was mated with the OV-10 wing and the rest of the model.

Once cockpit and wing were finally mated, the seams had to disappear under even more PSR and a spinal extension of the canopy had to be sculpted across the upper wing surface, which would meld with the pod’s tail in a (more or less) harmonious shape. Not an easy task, and the fairing was eventually sculpted with 2C putty, plus even more PSR… Looks quite homogenous, though.

 

After this massive body work, other hardware challenges appeared like small distractions. The landing gear was another major issue because the deeper AH-1 section lowered the ground clearance, also because of the chin turret. To counter this, I raised the OV-10’s main landing gear by ~2mm – not much, but it was enough to create a credible stance, together with the front landing gear transplant under the cockpit, which received an internal console to match the main landing gear’s length. Due to the chin turret and the shorter nose, the front wheel retracts backwards now. But this looks quite plausible, thanks to the additional space under the cockpit tub, which also made a belt feed for the gun’s ammunition supply believable.

To enhance the menacing look I gave the model a fixed refueling boom, made from 1mm steel wire and a receptor adapter sculpted with white glue. The latter stuff was also used add some antenna fairings around the hull. Some antennae, chaff dispensers and an IR decoy were taken from the Academy kit.

 

The ordnance came from various sources. The Sidewinders under the wing tips were taken from an Italeri F-16C/D kit, they look better than the missiles from the Academy Bronco kit. Their launch rails came from an Italeri Bae Hawk 200. The quadruple Hellfire launchers on the underwing hardpoints were left over from an Italeri AH-1W, and they are a perfect load for this aircraft and its role. The LAU-10 and -19 missile pods on the stub wings were taken from the OV-10 kit.

  

Painting and markings:

Finding a suitable and somewhat interesting – but still plausible – paint scheme was not easy. Taking the A-10 as benchmark, an overall light grey livery (with focus on low contrast against the sky as protection against ground fire) would have been a likely choice – and in fact the last operational American OV-10s were painted in this fashion. But in order to provide a different look I used the contemporary USAF V-22Bs and Special Operations MC-130s as benchmark, which typically carry a darker paint scheme consisting of FS 36118 (suitably “Gunship Gray” :D) from above, FS 36375 underneath, with a low, wavy waterline, plus low-viz markings. Not spectacular, but plausible – and very similar to the late r/w Colombian OV-10s.

The cockpit tub became Dark Gull Grey (FS 36231, Humbrol 140) and the landing gear white (Revell 301).

 

The model received an overall black ink washing and some post-panel-shading, to liven up the dull all-grey livery. The decals were gathered from various sources, and I settled for black USAF low-viz markings. The “stars and bars” come from a late USAF F-4, the “IP” tail code was tailored from F-16 markings and the shark mouth was taken from an Academy AH-64. Most stencils came from another Academy OV-10 sheet and some other sources.

Decals were also used to create the trim on the propeller blades and markings on the ordnance.

 

Finally, the model was sealed with a coat of matt acrylic varnish (Italeri) and some exhaust soot stains were added with graphite along the tail boom flanks.

  

A successful transplantation – but is this still a modified Bronco or already a kitbashing? The result looks quite plausible and menacing, even though the TOW Cobra front section appears relatively massive. But thanks to the bigger engines and extended wing tips the proportions still work. The large low-pressure tires look a bit goofy under the aircraft, but they are original. The grey livery works IMHO well, too – a more colorful or garish scheme would certainly have distracted from the modified technical basis.

A MARSOC Marine instructs ANA soldiers to set up a security perimeter around a humanitarian aide site in the Village of Ranje Bala, Farah Province Afghanistan Feb 28.

Combined Joint Special Operations Task Force – Afghanistan Media Operations Center

Photo by Staff Sgt. Nicholas Pilch

Date: 02.28.2010

Location: Farah Province, AF

Related Photos: dvidshub.net/r/hq9tg9

MARINE CORPS BASE CAMP LEJEUNE, N.C. – Individual Training Course students with Marine Special Operations School at Stone Bay, here, participate in the field training exercise Raider Spirit. Raider Spirit is an eight-day culminating event for the first phase of ITC training, where students run light infantry scenarios as a field team. Throughout the exercise, student teams face many challenges as a result of an operationally restrictive scenario and numerous long distance foot movements with little sleep.

Maritime Special Operations Forces prepares to embark helicopters for a mission during a training exercise aboard the Nimitz-class aircraft carrier USS George Washington (CVN 73). SEALs and Marine Special Operations (MARSOC) forces from Special Operations Command Pacific conducted maritime interoperability training aboard Nimitz-class aircraft carrier USS George Washington. George Washington and its embarked air wing, Carrier Air Wing (CVW) 5, provide a combat-ready force that protects and defends the collective maritime interests of the U.S. and its allies and partners in the Indo-Asia-Pacific region. (U.S. Navy photo by Mass Communication Specialist Seaman Everett Allen/Released)

1st Marine Special Operations Battalion @ The Rifle Range, Camp Pendleton, CA U.S.A. (2008)

 

Photo: Lance Cpl. Stephen C. Benson USMC

Redid my PJ guy since based on what he had been wearing he looked more like a MARSOC guy that an air force PJ, so I decided to redo him completely, not sure if the jacket is something PJs use but it makes sense if you're gonna be flying around in a helicopter all day, I also wanted to make him look slightly different than my army rangers since in reality they look very similar

A U.S. Marine Special Operations Team member maintains security during a patrol with Afghan National Army Special Forces to escort a district governor to a school in Helmand province, Afghanistan, April 15, 2013. Afghan National Security Forces have been taking the lead in security operations to bring security and stability to the people of the Islamic Republic of Afghanistan. (U.S. Marine Corps Photo by Sgt. Pete Thibodeau/Released)

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!

  

Some background:

The OV-10 Bronco was initially conceived in the early 1960s through an informal collaboration between W. H. Beckett and Colonel K. P. Rice, U.S. Marine Corps, who met at Naval Air Weapons Station China Lake, California, and who also happened to live near each other. The original concept was for a rugged, simple, close air support aircraft integrated with forward ground operations. At the time, the U.S. Army was still experimenting with armed helicopters, and the U.S. Air Force was not interested in close air support.

The concept aircraft was to operate from expedient forward air bases using roads as runways. Speed was to be from very slow to medium subsonic, with much longer loiter times than a pure jet. Efficient turboprop engines would give better performance than piston engines. Weapons were to be mounted on the centerline to get efficient aiming. The inventors favored strafing weapons such as self-loading recoilless rifles, which could deliver aimed explosive shells with less recoil than cannons, and a lower per-round weight than rockets. The airframe was to be designed to avoid the back blast.

 

Beckett and Rice developed a basic platform meeting these requirements, then attempted to build a fiberglass prototype in a garage. The effort produced enthusiastic supporters and an informal pamphlet describing the concept. W. H. Beckett, who had retired from the Marine Corps, went to work at North American Aviation to sell the aircraft.

The aircraft's design supported effective operations from forward bases. The OV-10 had a central nacelle containing a crew of two in tandem and space for cargo, and twin booms containing twin turboprop engines. The visually distinctive feature of the aircraft is the combination of the twin booms, with the horizontal stabilizer that connected them at the fin tips. The OV-10 could perform short takeoffs and landings, including on aircraft carriers and large-deck amphibious assault ships without using catapults or arresting wires. Further, the OV-10 was designed to take off and land on unimproved sites. Repairs could be made with ordinary tools. No ground equipment was required to start the engines. And, if necessary, the engines would operate on high-octane automobile fuel with only a slight loss of power.

 

The aircraft had responsive handling and could fly for up to 5½ hours with external fuel tanks. The cockpit had extremely good visibility for both pilot and co-pilot, provided by a wrap-around "greenhouse" that was wider than the fuselage. North American Rockwell custom ejection seats were standard, with many successful ejections during service. With the second seat removed, the OV-10 could carry 3,200 pounds (1,500 kg) of cargo, five paratroopers, or two litter patients and an attendant. Empty weight was 6,969 pounds (3,161 kg). Normal operating fueled weight with two crew was 9,908 pounds (4,494 kg). Maximum takeoff weight was 14,446 pounds (6,553 kg).

The bottom of the fuselage bore sponsons or "stub wings" that improved flight performance by decreasing aerodynamic drag underneath the fuselage. Normally, four 7.62 mm (.308 in) M60C machine guns were carried on the sponsons, accessed through large forward-opening hatches. The sponsons also had four racks to carry bombs, pods, or fuel. The wings outboard of the engines contained two additional hardpoints, one per side. Racked armament in the Vietnam War was usually seven-shot 2.75 in (70 mm) rocket pods with white phosphorus marker rounds or high-explosive rockets, or 5" (127 mm) four-shot Zuni rocket pods. Bombs, ADSIDS air-delivered/para-dropped unattended seismic sensors, Mk-6 battlefield illumination flares, and other stores were also carried.

Operational experience showed some weaknesses in the OV-10's design. It was significantly underpowered, which contributed to crashes in Vietnam in sloping terrain because the pilots could not climb fast enough. While specifications stated that the aircraft could reach 26,000 feet (7,900 m), in Vietnam the aircraft could reach only 18,000 feet (5,500 m). Also, no OV-10 pilot survived ditching the aircraft.

 

The OV-10 served in the U.S. Air Force, U.S. Marine Corps, and U.S. Navy, as well as in the service of a number of other countries. In U.S. military service, the Bronco was operated until the early Nineties, and obsoleted USAF OV-10s were passed on to the Bureau of Alcohol, Tobacco, and Firearms for anti-drug operations. A number of OV-10As furthermore ended up in the hands of the California Department of Forestry (CDF) and were used for spotting fires and directing fire bombers onto hot spots.

 

This was not the end of the OV-10 in American military service, though: In 2012, the type gained new attention because of its unique qualities. A $20 million budget was allocated to activate an experimental USAF unit of two airworthy OV-10Gs, acquired from NASA and the State Department. These machines were retrofitted with military equipment and were, starting in May 2015, deployed overseas to support Operation “Inherent Resolve”, flying more than 120 combat sorties over 82 days over Iraq and Syria. Their concrete missions remained unclear, and it is speculated they provided close air support for Special Forces missions, esp. in confined urban environments where the Broncos’ loitering time and high agility at low speed and altitude made them highly effective and less vulnerable than helicopters.

Furthermore, these Broncos reputedly performed strikes with the experimental AGR-20A “Advanced Precision Kill Weapons System (APKWS)”, a Hydra 70-millimeter rocket with a laser-seeking head as guidance - developed for precision strikes against small urban targets with little collateral damage. The experiment ended satisfactorily, but the machines were retired again, and the small unit was dissolved.

 

However, the machines had shown their worth in asymmetric warfare, and the U.S. Air Force decided to invest in reactivating the OV-10 on a regular basis, despite the overhead cost of operating an additional aircraft type in relatively small numbers – but development and production of a similar new type would have caused much higher costs, with an uncertain time until an operational aircraft would be ready for service. Re-activating a proven design and updating an existing airframe appeared more efficient.

The result became the MV-10H, suitably christened “Super Bronco” but also known as “Black Pony”, after the program's internal name. This aircraft was derived from the official OV-10X proposal by Boeing from 2009 for the USAF's Light Attack/Armed Reconnaissance requirement. Initially, Boeing proposed to re-start OV-10 manufacture, but this was deemed uneconomical, due to the expected small production number of new serial aircraft, so the “Black Pony” program became a modernization project. In consequence, all airframes for the "new" MV-10Hs were recovered OV-10s of various types from the "boneyard" at Davis-Monthan Air Force Base in Arizona.

 

While the revamped aircraft would maintain much of its 1960s-vintage rugged external design, modernizations included a completely new, armored central fuselage with a highly modified cockpit section, ejection seats and a computerized glass cockpit. The “Black Pony” OV-10 had full dual controls, so that either crewmen could steer the aircraft while the other operated sensors and/or weapons. This feature would also improve survivability in case of incapacitation of a crew member as the result from a hit.

The cockpit armor protected the crew and many vital systems from 23mm shells and shrapnel (e. g. from MANPADS). The crew still sat in tandem under a common, generously glazed canopy with flat, bulletproof panels for reduced sun reflections, with the pilot in the front seat and an observer/WSO behind. The Bronco’s original cargo capacity and the rear door were retained, even though the extra armor and defensive measures like chaff/flare dispensers as well as an additional fuel cell in the central fuselage limited the capacity. However, it was still possible to carry and deploy personnel, e. g. small special ops teams of up to four when the aircraft flew in clean configuration.

Additional updates for the MV-10H included structural reinforcements for a higher AUW and higher g load maneuvers, similar to OV-10D+ standards. The landing gear was also reinforced, and the aircraft kept its ability to operate from short, improvised airstrips. A fixed refueling probe was added to improve range and loiter time.

 

Intelligence sensors and smart weapon capabilities included a FLIR sensor and a laser range finder/target designator, both mounted in a small turret on the aircraft’s nose. The MV-10H was also outfitted with a data link and the ability to carry an integrated targeting pod such as the Northrop Grumman LITENING or the Lockheed Martin Sniper Advanced Targeting Pod (ATP). Also included was the Remotely Operated Video Enhanced Receiver (ROVER) to provide live sensor data and video recordings to personnel on the ground.

 

To improve overall performance and to better cope with the higher empty weight of the modified aircraft as well as with operations under hot-and-high conditions, the engines were beefed up. The new General Electric CT7-9D turboprop engines improved the Bronco's performance considerably: top speed increased by 100 mph (160 km/h), the climb rate was tripled (a weak point of early OV-10s despite the type’s good STOL capability) and both take-off as well as landing run were almost halved. The new engines called for longer nacelles, and their circular diameter markedly differed from the former Garrett T76-G-420/421 turboprop engines. To better exploit the additional power and reduce the aircraft’s audio signature, reversible contraprops, each with eight fiberglass blades, were fitted. These allowed a reduced number of revolutions per minute, resulting in less noise from the blades and their tips, while the engine responsiveness was greatly improved. The CT7-9Ds’ exhausts were fitted with muzzlers/air mixers to further reduce the aircraft's noise and heat signature.

Another novel and striking feature was the addition of so-called “tip sails” to the wings: each wingtip was elongated with a small, cigar-shaped fairing, each carrying three staggered, small “feather blade” winglets. Reputedly, this installation contributed ~10% to the higher climb rate and improved lift/drag ratio by ~6%, improving range and loiter time, too.

Drawing from the Iraq experience as well as from the USMC’s NOGS test program with a converted OV-10D as a night/all-weather gunship/reconnaissance platform, the MV-10H received a heavier gun armament: the original four light machine guns that were only good for strafing unarmored targets were deleted and their space in the sponsons replaced by avionics. Instead, the aircraft was outfitted with a lightweight M197 three-barrel 20mm gatling gun in a chin turret. This could be fixed in a forward position at high speed or when carrying forward-firing ordnance under the stub wings, or it could be deployed to cover a wide field of fire under the aircraft when it was flying slower, being either slaved to the FLIR or to a helmet sighting auto targeting system.

The original seven hardpoints were retained (1x ventral, 2x under each sponson, and another pair under the outer wings), but the total ordnance load was slightly increased and an additional pair of launch rails for AIM-9 Sidewinders or other light AAMs under the wing tips were added – not only as a defensive measure, but also with an anti-helicopter role in mind; four more Sidewinders could be carried on twin launchers under the outer wings against aerial targets. Other guided weapons cleared for the MV-10H were the light laser-guided AGR-20A and AGM-119 Hellfire missiles, the Advanced Precision Kill Weapon System upgrade to the light Hydra 70 rockets, the new Laser Guided Zuni Rocket which had been cleared for service in 2010, TV-/IR-/laser-guided AGM-65 Maverick AGMs and AGM-122 Sidearm anti-radar missiles, plus a wide range of gun and missile pods, iron and cluster bombs, as well as ECM and flare/chaff pods, which were not only carried defensively, but also in order to disrupt enemy ground communication.

 

In this configuration, a contract for the conversion of twelve mothballed American Broncos to the new MV-10H standard was signed with Boeing in 2016, and the first MV-10H was handed over to the USAF in early 2018, with further deliveries lasting into early 2020. All machines were allocated to the newly founded 919th Special Operations Support Squadron at Duke Field (Florida). This unit was part of the 919th Special Operations Wing, an Air Reserve Component (ARC) of the United States Air Force. It was assigned to the Tenth Air Force of Air Force Reserve Command and an associate unit of the 1st Special Operations Wing, Air Force Special Operations Command (AFSOC). If mobilized the wing was gained by AFSOC (Air Force Special Operations Command) to support Special Tactics, the U.S. Air Force's special operations ground force. Similar in ability and employment to Marine Special Operations Command (MARSOC), U.S. Army Special Forces and U.S. Navy SEALs, Air Force Special Tactics personnel were typically the first to enter combat and often found themselves deep behind enemy lines in demanding, austere conditions, usually with little or no support.

 

The MV-10Hs are expected to provide support for these ground units in the form of all-weather reconnaissance and observation, close air support and also forward air control duties for supporting ground units. Precision ground strikes and protection from enemy helicopters and low-flying aircraft were other, secondary missions for the modernized Broncos, which are expected to serve well into the 2040s. Exports or conversions of foreign OV-10s to the Black Pony standard are not planned, though.

  

General characteristics:

Crew: 2

Length: 42 ft 2½ in (12,88 m) incl. pitot

Wingspan: 45 ft 10½ in(14 m) incl. tip sails

Height: 15 ft 2 in (4.62 m)

Wing area: 290.95 sq ft (27.03 m²)

Airfoil: NACA 64A315

Empty weight: 9,090 lb (4,127 kg)

Gross weight: 13,068 lb (5,931 kg)

Max. takeoff weight: 17,318 lb (7,862 kg)

 

Powerplant:

2× General Electric CT7-9D turboprop engines, 1,305 kW (1,750 hp) each,

driving 8-bladed Hamilton Standard 8 ft 6 in (2.59 m) diameter constant-speed,

fully feathering, reversible contra-rotating propellers with metal hub and composite blades

 

Performance:

Maximum speed: 390 mph (340 kn, 625 km/h)

Combat range: 198 nmi (228 mi, 367 km)

Ferry range: 1,200 nmi (1,400 mi, 2,200 km) with auxiliary fuel

Maximum loiter time: 5.5 h with auxiliary fuel

Service ceiling: 32.750 ft (10,000 m)

13,500 ft (4.210 m) on one engine

Rate of climb: 17.400 ft/min (48 m/s) at sea level

Take-off run: 480 ft (150 m)

740 ft (227 m) to 50 ft (15 m)

1,870 ft (570 m) to 50 ft (15 m) at MTOW

Landing run: 490 ft (150 m)

785 ft (240 m) at MTOW

1,015 ft (310 m) from 50 ft (15 m)

 

Armament:

1x M197 3-barreled 20 mm Gatling cannon in a chin turret with 750 rounds ammo capacity

7x hardpoints for a total load of 5.000 lb (2,270 kg)

2x wingtip launch rails for AIM-9 Sidewinder AAMs

  

The kit and its assembly:

This fictional Bronco update/conversion was simply spawned by the idea: could it be possible to replace the original cockpit section with one from an AH-1 Cobra, for a kind of gunship version?

 

The basis is the Academy OV-10D kit, mated with the cockpit section from a Fujimi AH-1S TOW Cobra (Revell re-boxing, though), chosen because of its “boxy” cockpit section with flat glass panels – I think that it conveys the idea of an armored cockpit section best. Combining these parts was not easy, though, even though the plan sound simple. Initially, the Bronco’s twin booms, wings and stabilizer were built separately, because this made PSR on these sections easier than trying the same on a completed airframe. One of the initial challenges: the different engines. I wanted something uprated, and a different look, and I had a pair of (excellent!) 1:144 resin engines from the Russian company Kompakt Zip for a Tu-95 bomber at hand, which come together with movable(!) eight-blade contraprops that were an almost perfect size match for the original three-blade props. Biggest problem: the Tu-95 nacelles have a perfectly circular diameter, while the OV-10’s booms are square and rectangular. Combining these parts and shapes was already a messy PST affair, but it worked out quite well – even though the result rather reminds of some Chinese upgrade measure (anyone know the Tu-4 copies with turboprops? This here looks similar!). But while not pretty, I think that the beafier look works well and adds to the idea of a “revived” aircraft. And you can hardly beat the menacing look of contraprops on anything...

The exotic, so-called “tip sails” on the wings, mounted on short booms, are a detail borrowed from the Shijiazhuang Y-5B-100, an updated Chinese variant/copy of the Antonov An-2 biplane transporter. The booms are simple pieces of sprue from the Bronco kit, the winglets were cut from 0.5mm styrene sheet.

 

For the cockpit donor, the AH-1’s front section was roughly built, including the engine section (which is a separate module, so that the basic kit can be sold with different engine sections), and then the helicopter hull was cut and trimmed down to match the original Bronco pod and to fit under the wing. This became more complicated than expected, because a) the AH-1 cockpit and the nose are considerably shorter than the OV-10s, b) the AH-1 fuselage is markedly taller than the Bronco’s and c) the engine section, which would end up in the area of the wing, features major recesses, making the surface very uneven – calling for massive PSR to even this out. PSR was also necessary to hide the openings for the Fujimi AH-1’s stub wings. Other issues: the front landing gear (and its well) had to be added, as well as the OV-10 wing stubs. Furthermore, the new cockpit pod’s rear section needed an aerodynamical end/fairing, but I found a leftover Academy OV-10 section from a build/kitbashing many moons ago. Perfect match!

All these challenges could be tackled, even though the AH-1 cockpit looks surprisingly stout and massive on the Bronco’s airframe - the result looks stockier than expected, but it works well for the "Gunship" theme. Lots of PSR went into the new central fuselage section, though, even before it was mated with the OV-10 wing and the rest of the model.

Once cockpit and wing were finally mated, the seams had to disappear under even more PSR and a spinal extension of the canopy had to be sculpted across the upper wing surface, which would meld with the pod’s tail in a (more or less) harmonious shape. Not an easy task, and the fairing was eventually sculpted with 2C putty, plus even more PSR… Looks quite homogenous, though.

 

After this massive body work, other hardware challenges appeared like small distractions. The landing gear was another major issue because the deeper AH-1 section lowered the ground clearance, also because of the chin turret. To counter this, I raised the OV-10’s main landing gear by ~2mm – not much, but it was enough to create a credible stance, together with the front landing gear transplant under the cockpit, which received an internal console to match the main landing gear’s length. Due to the chin turret and the shorter nose, the front wheel retracts backwards now. But this looks quite plausible, thanks to the additional space under the cockpit tub, which also made a belt feed for the gun’s ammunition supply believable.

To enhance the menacing look I gave the model a fixed refueling boom, made from 1mm steel wire and a receptor adapter sculpted with white glue. The latter stuff was also used add some antenna fairings around the hull. Some antennae, chaff dispensers and an IR decoy were taken from the Academy kit.

 

The ordnance came from various sources. The Sidewinders under the wing tips were taken from an Italeri F-16C/D kit, they look better than the missiles from the Academy Bronco kit. Their launch rails came from an Italeri Bae Hawk 200. The quadruple Hellfire launchers on the underwing hardpoints were left over from an Italeri AH-1W, and they are a perfect load for this aircraft and its role. The LAU-10 and -19 missile pods on the stub wings were taken from the OV-10 kit.

  

Painting and markings:

Finding a suitable and somewhat interesting – but still plausible – paint scheme was not easy. Taking the A-10 as benchmark, an overall light grey livery (with focus on low contrast against the sky as protection against ground fire) would have been a likely choice – and in fact the last operational American OV-10s were painted in this fashion. But in order to provide a different look I used the contemporary USAF V-22Bs and Special Operations MC-130s as benchmark, which typically carry a darker paint scheme consisting of FS 36118 (suitably “Gunship Gray” :D) from above, FS 36375 underneath, with a low, wavy waterline, plus low-viz markings. Not spectacular, but plausible – and very similar to the late r/w Colombian OV-10s.

The cockpit tub became Dark Gull Grey (FS 36231, Humbrol 140) and the landing gear white (Revell 301).

 

The model received an overall black ink washing and some post-panel-shading, to liven up the dull all-grey livery. The decals were gathered from various sources, and I settled for black USAF low-viz markings. The “stars and bars” come from a late USAF F-4, the “IP” tail code was tailored from F-16 markings and the shark mouth was taken from an Academy AH-64. Most stencils came from another Academy OV-10 sheet and some other sources.

Decals were also used to create the trim on the propeller blades and markings on the ordnance.

 

Finally, the model was sealed with a coat of matt acrylic varnish (Italeri) and some exhaust soot stains were added with graphite along the tail boom flanks.

  

A successful transplantation – but is this still a modified Bronco or already a kitbashing? The result looks quite plausible and menacing, even though the TOW Cobra front section appears relatively massive. But thanks to the bigger engines and extended wing tips the proportions still work. The large low-pressure tires look a bit goofy under the aircraft, but they are original. The grey livery works IMHO well, too – a more colorful or garish scheme would certainly have distracted from the modified technical basis.

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!

  

Some background:

The OV-10 Bronco was initially conceived in the early 1960s through an informal collaboration between W. H. Beckett and Colonel K. P. Rice, U.S. Marine Corps, who met at Naval Air Weapons Station China Lake, California, and who also happened to live near each other. The original concept was for a rugged, simple, close air support aircraft integrated with forward ground operations. At the time, the U.S. Army was still experimenting with armed helicopters, and the U.S. Air Force was not interested in close air support.

The concept aircraft was to operate from expedient forward air bases using roads as runways. Speed was to be from very slow to medium subsonic, with much longer loiter times than a pure jet. Efficient turboprop engines would give better performance than piston engines. Weapons were to be mounted on the centerline to get efficient aiming. The inventors favored strafing weapons such as self-loading recoilless rifles, which could deliver aimed explosive shells with less recoil than cannons, and a lower per-round weight than rockets. The airframe was to be designed to avoid the back blast.

 

Beckett and Rice developed a basic platform meeting these requirements, then attempted to build a fiberglass prototype in a garage. The effort produced enthusiastic supporters and an informal pamphlet describing the concept. W. H. Beckett, who had retired from the Marine Corps, went to work at North American Aviation to sell the aircraft.

The aircraft's design supported effective operations from forward bases. The OV-10 had a central nacelle containing a crew of two in tandem and space for cargo, and twin booms containing twin turboprop engines. The visually distinctive feature of the aircraft is the combination of the twin booms, with the horizontal stabilizer that connected them at the fin tips. The OV-10 could perform short takeoffs and landings, including on aircraft carriers and large-deck amphibious assault ships without using catapults or arresting wires. Further, the OV-10 was designed to take off and land on unimproved sites. Repairs could be made with ordinary tools. No ground equipment was required to start the engines. And, if necessary, the engines would operate on high-octane automobile fuel with only a slight loss of power.

 

The aircraft had responsive handling and could fly for up to 5½ hours with external fuel tanks. The cockpit had extremely good visibility for both pilot and co-pilot, provided by a wrap-around "greenhouse" that was wider than the fuselage. North American Rockwell custom ejection seats were standard, with many successful ejections during service. With the second seat removed, the OV-10 could carry 3,200 pounds (1,500 kg) of cargo, five paratroopers, or two litter patients and an attendant. Empty weight was 6,969 pounds (3,161 kg). Normal operating fueled weight with two crew was 9,908 pounds (4,494 kg). Maximum takeoff weight was 14,446 pounds (6,553 kg).

The bottom of the fuselage bore sponsons or "stub wings" that improved flight performance by decreasing aerodynamic drag underneath the fuselage. Normally, four 7.62 mm (.308 in) M60C machine guns were carried on the sponsons, accessed through large forward-opening hatches. The sponsons also had four racks to carry bombs, pods, or fuel. The wings outboard of the engines contained two additional hardpoints, one per side. Racked armament in the Vietnam War was usually seven-shot 2.75 in (70 mm) rocket pods with white phosphorus marker rounds or high-explosive rockets, or 5" (127 mm) four-shot Zuni rocket pods. Bombs, ADSIDS air-delivered/para-dropped unattended seismic sensors, Mk-6 battlefield illumination flares, and other stores were also carried.

Operational experience showed some weaknesses in the OV-10's design. It was significantly underpowered, which contributed to crashes in Vietnam in sloping terrain because the pilots could not climb fast enough. While specifications stated that the aircraft could reach 26,000 feet (7,900 m), in Vietnam the aircraft could reach only 18,000 feet (5,500 m). Also, no OV-10 pilot survived ditching the aircraft.

 

The OV-10 served in the U.S. Air Force, U.S. Marine Corps, and U.S. Navy, as well as in the service of a number of other countries. In U.S. military service, the Bronco was operated until the early Nineties, and obsoleted USAF OV-10s were passed on to the Bureau of Alcohol, Tobacco, and Firearms for anti-drug operations. A number of OV-10As furthermore ended up in the hands of the California Department of Forestry (CDF) and were used for spotting fires and directing fire bombers onto hot spots.

 

This was not the end of the OV-10 in American military service, though: In 2012, the type gained new attention because of its unique qualities. A $20 million budget was allocated to activate an experimental USAF unit of two airworthy OV-10Gs, acquired from NASA and the State Department. These machines were retrofitted with military equipment and were, starting in May 2015, deployed overseas to support Operation “Inherent Resolve”, flying more than 120 combat sorties over 82 days over Iraq and Syria. Their concrete missions remained unclear, and it is speculated they provided close air support for Special Forces missions, esp. in confined urban environments where the Broncos’ loitering time and high agility at low speed and altitude made them highly effective and less vulnerable than helicopters.

Furthermore, these Broncos reputedly performed strikes with the experimental AGR-20A “Advanced Precision Kill Weapons System (APKWS)”, a Hydra 70-millimeter rocket with a laser-seeking head as guidance - developed for precision strikes against small urban targets with little collateral damage. The experiment ended satisfactorily, but the machines were retired again, and the small unit was dissolved.

 

However, the machines had shown their worth in asymmetric warfare, and the U.S. Air Force decided to invest in reactivating the OV-10 on a regular basis, despite the overhead cost of operating an additional aircraft type in relatively small numbers – but development and production of a similar new type would have caused much higher costs, with an uncertain time until an operational aircraft would be ready for service. Re-activating a proven design and updating an existing airframe appeared more efficient.

The result became the MV-10H, suitably christened “Super Bronco” but also known as “Black Pony”, after the program's internal name. This aircraft was derived from the official OV-10X proposal by Boeing from 2009 for the USAF's Light Attack/Armed Reconnaissance requirement. Initially, Boeing proposed to re-start OV-10 manufacture, but this was deemed uneconomical, due to the expected small production number of new serial aircraft, so the “Black Pony” program became a modernization project. In consequence, all airframes for the "new" MV-10Hs were recovered OV-10s of various types from the "boneyard" at Davis-Monthan Air Force Base in Arizona.

 

While the revamped aircraft would maintain much of its 1960s-vintage rugged external design, modernizations included a completely new, armored central fuselage with a highly modified cockpit section, ejection seats and a computerized glass cockpit. The “Black Pony” OV-10 had full dual controls, so that either crewmen could steer the aircraft while the other operated sensors and/or weapons. This feature would also improve survivability in case of incapacitation of a crew member as the result from a hit.

The cockpit armor protected the crew and many vital systems from 23mm shells and shrapnel (e. g. from MANPADS). The crew still sat in tandem under a common, generously glazed canopy with flat, bulletproof panels for reduced sun reflections, with the pilot in the front seat and an observer/WSO behind. The Bronco’s original cargo capacity and the rear door were retained, even though the extra armor and defensive measures like chaff/flare dispensers as well as an additional fuel cell in the central fuselage limited the capacity. However, it was still possible to carry and deploy personnel, e. g. small special ops teams of up to four when the aircraft flew in clean configuration.

Additional updates for the MV-10H included structural reinforcements for a higher AUW and higher g load maneuvers, similar to OV-10D+ standards. The landing gear was also reinforced, and the aircraft kept its ability to operate from short, improvised airstrips. A fixed refueling probe was added to improve range and loiter time.

 

Intelligence sensors and smart weapon capabilities included a FLIR sensor and a laser range finder/target designator, both mounted in a small turret on the aircraft’s nose. The MV-10H was also outfitted with a data link and the ability to carry an integrated targeting pod such as the Northrop Grumman LITENING or the Lockheed Martin Sniper Advanced Targeting Pod (ATP). Also included was the Remotely Operated Video Enhanced Receiver (ROVER) to provide live sensor data and video recordings to personnel on the ground.

 

To improve overall performance and to better cope with the higher empty weight of the modified aircraft as well as with operations under hot-and-high conditions, the engines were beefed up. The new General Electric CT7-9D turboprop engines improved the Bronco's performance considerably: top speed increased by 100 mph (160 km/h), the climb rate was tripled (a weak point of early OV-10s despite the type’s good STOL capability) and both take-off as well as landing run were almost halved. The new engines called for longer nacelles, and their circular diameter markedly differed from the former Garrett T76-G-420/421 turboprop engines. To better exploit the additional power and reduce the aircraft’s audio signature, reversible contraprops, each with eight fiberglass blades, were fitted. These allowed a reduced number of revolutions per minute, resulting in less noise from the blades and their tips, while the engine responsiveness was greatly improved. The CT7-9Ds’ exhausts were fitted with muzzlers/air mixers to further reduce the aircraft's noise and heat signature.

Another novel and striking feature was the addition of so-called “tip sails” to the wings: each wingtip was elongated with a small, cigar-shaped fairing, each carrying three staggered, small “feather blade” winglets. Reputedly, this installation contributed ~10% to the higher climb rate and improved lift/drag ratio by ~6%, improving range and loiter time, too.

Drawing from the Iraq experience as well as from the USMC’s NOGS test program with a converted OV-10D as a night/all-weather gunship/reconnaissance platform, the MV-10H received a heavier gun armament: the original four light machine guns that were only good for strafing unarmored targets were deleted and their space in the sponsons replaced by avionics. Instead, the aircraft was outfitted with a lightweight M197 three-barrel 20mm gatling gun in a chin turret. This could be fixed in a forward position at high speed or when carrying forward-firing ordnance under the stub wings, or it could be deployed to cover a wide field of fire under the aircraft when it was flying slower, being either slaved to the FLIR or to a helmet sighting auto targeting system.

The original seven hardpoints were retained (1x ventral, 2x under each sponson, and another pair under the outer wings), but the total ordnance load was slightly increased and an additional pair of launch rails for AIM-9 Sidewinders or other light AAMs under the wing tips were added – not only as a defensive measure, but also with an anti-helicopter role in mind; four more Sidewinders could be carried on twin launchers under the outer wings against aerial targets. Other guided weapons cleared for the MV-10H were the light laser-guided AGR-20A and AGM-119 Hellfire missiles, the Advanced Precision Kill Weapon System upgrade to the light Hydra 70 rockets, the new Laser Guided Zuni Rocket which had been cleared for service in 2010, TV-/IR-/laser-guided AGM-65 Maverick AGMs and AGM-122 Sidearm anti-radar missiles, plus a wide range of gun and missile pods, iron and cluster bombs, as well as ECM and flare/chaff pods, which were not only carried defensively, but also in order to disrupt enemy ground communication.

 

In this configuration, a contract for the conversion of twelve mothballed American Broncos to the new MV-10H standard was signed with Boeing in 2016, and the first MV-10H was handed over to the USAF in early 2018, with further deliveries lasting into early 2020. All machines were allocated to the newly founded 919th Special Operations Support Squadron at Duke Field (Florida). This unit was part of the 919th Special Operations Wing, an Air Reserve Component (ARC) of the United States Air Force. It was assigned to the Tenth Air Force of Air Force Reserve Command and an associate unit of the 1st Special Operations Wing, Air Force Special Operations Command (AFSOC). If mobilized the wing was gained by AFSOC (Air Force Special Operations Command) to support Special Tactics, the U.S. Air Force's special operations ground force. Similar in ability and employment to Marine Special Operations Command (MARSOC), U.S. Army Special Forces and U.S. Navy SEALs, Air Force Special Tactics personnel were typically the first to enter combat and often found themselves deep behind enemy lines in demanding, austere conditions, usually with little or no support.

 

The MV-10Hs are expected to provide support for these ground units in the form of all-weather reconnaissance and observation, close air support and also forward air control duties for supporting ground units. Precision ground strikes and protection from enemy helicopters and low-flying aircraft were other, secondary missions for the modernized Broncos, which are expected to serve well into the 2040s. Exports or conversions of foreign OV-10s to the Black Pony standard are not planned, though.

  

General characteristics:

Crew: 2

Length: 42 ft 2½ in (12,88 m) incl. pitot

Wingspan: 45 ft 10½ in(14 m) incl. tip sails

Height: 15 ft 2 in (4.62 m)

Wing area: 290.95 sq ft (27.03 m²)

Airfoil: NACA 64A315

Empty weight: 9,090 lb (4,127 kg)

Gross weight: 13,068 lb (5,931 kg)

Max. takeoff weight: 17,318 lb (7,862 kg)

 

Powerplant:

2× General Electric CT7-9D turboprop engines, 1,305 kW (1,750 hp) each,

driving 8-bladed Hamilton Standard 8 ft 6 in (2.59 m) diameter constant-speed,

fully feathering, reversible contra-rotating propellers with metal hub and composite blades

 

Performance:

Maximum speed: 390 mph (340 kn, 625 km/h)

Combat range: 198 nmi (228 mi, 367 km)

Ferry range: 1,200 nmi (1,400 mi, 2,200 km) with auxiliary fuel

Maximum loiter time: 5.5 h with auxiliary fuel

Service ceiling: 32.750 ft (10,000 m)

13,500 ft (4.210 m) on one engine

Rate of climb: 17.400 ft/min (48 m/s) at sea level

Take-off run: 480 ft (150 m)

740 ft (227 m) to 50 ft (15 m)

1,870 ft (570 m) to 50 ft (15 m) at MTOW

Landing run: 490 ft (150 m)

785 ft (240 m) at MTOW

1,015 ft (310 m) from 50 ft (15 m)

 

Armament:

1x M197 3-barreled 20 mm Gatling cannon in a chin turret with 750 rounds ammo capacity

7x hardpoints for a total load of 5.000 lb (2,270 kg)

2x wingtip launch rails for AIM-9 Sidewinder AAMs

  

The kit and its assembly:

This fictional Bronco update/conversion was simply spawned by the idea: could it be possible to replace the original cockpit section with one from an AH-1 Cobra, for a kind of gunship version?

 

The basis is the Academy OV-10D kit, mated with the cockpit section from a Fujimi AH-1S TOW Cobra (Revell re-boxing, though), chosen because of its “boxy” cockpit section with flat glass panels – I think that it conveys the idea of an armored cockpit section best. Combining these parts was not easy, though, even though the plan sound simple. Initially, the Bronco’s twin booms, wings and stabilizer were built separately, because this made PSR on these sections easier than trying the same on a completed airframe. One of the initial challenges: the different engines. I wanted something uprated, and a different look, and I had a pair of (excellent!) 1:144 resin engines from the Russian company Kompakt Zip for a Tu-95 bomber at hand, which come together with movable(!) eight-blade contraprops that were an almost perfect size match for the original three-blade props. Biggest problem: the Tu-95 nacelles have a perfectly circular diameter, while the OV-10’s booms are square and rectangular. Combining these parts and shapes was already a messy PST affair, but it worked out quite well – even though the result rather reminds of some Chinese upgrade measure (anyone know the Tu-4 copies with turboprops? This here looks similar!). But while not pretty, I think that the beafier look works well and adds to the idea of a “revived” aircraft. And you can hardly beat the menacing look of contraprops on anything...

The exotic, so-called “tip sails” on the wings, mounted on short booms, are a detail borrowed from the Shijiazhuang Y-5B-100, an updated Chinese variant/copy of the Antonov An-2 biplane transporter. The booms are simple pieces of sprue from the Bronco kit, the winglets were cut from 0.5mm styrene sheet.

 

For the cockpit donor, the AH-1’s front section was roughly built, including the engine section (which is a separate module, so that the basic kit can be sold with different engine sections), and then the helicopter hull was cut and trimmed down to match the original Bronco pod and to fit under the wing. This became more complicated than expected, because a) the AH-1 cockpit and the nose are considerably shorter than the OV-10s, b) the AH-1 fuselage is markedly taller than the Bronco’s and c) the engine section, which would end up in the area of the wing, features major recesses, making the surface very uneven – calling for massive PSR to even this out. PSR was also necessary to hide the openings for the Fujimi AH-1’s stub wings. Other issues: the front landing gear (and its well) had to be added, as well as the OV-10 wing stubs. Furthermore, the new cockpit pod’s rear section needed an aerodynamical end/fairing, but I found a leftover Academy OV-10 section from a build/kitbashing many moons ago. Perfect match!

All these challenges could be tackled, even though the AH-1 cockpit looks surprisingly stout and massive on the Bronco’s airframe - the result looks stockier than expected, but it works well for the "Gunship" theme. Lots of PSR went into the new central fuselage section, though, even before it was mated with the OV-10 wing and the rest of the model.

Once cockpit and wing were finally mated, the seams had to disappear under even more PSR and a spinal extension of the canopy had to be sculpted across the upper wing surface, which would meld with the pod’s tail in a (more or less) harmonious shape. Not an easy task, and the fairing was eventually sculpted with 2C putty, plus even more PSR… Looks quite homogenous, though.

 

After this massive body work, other hardware challenges appeared like small distractions. The landing gear was another major issue because the deeper AH-1 section lowered the ground clearance, also because of the chin turret. To counter this, I raised the OV-10’s main landing gear by ~2mm – not much, but it was enough to create a credible stance, together with the front landing gear transplant under the cockpit, which received an internal console to match the main landing gear’s length. Due to the chin turret and the shorter nose, the front wheel retracts backwards now. But this looks quite plausible, thanks to the additional space under the cockpit tub, which also made a belt feed for the gun’s ammunition supply believable.

To enhance the menacing look I gave the model a fixed refueling boom, made from 1mm steel wire and a receptor adapter sculpted with white glue. The latter stuff was also used add some antenna fairings around the hull. Some antennae, chaff dispensers and an IR decoy were taken from the Academy kit.

 

The ordnance came from various sources. The Sidewinders under the wing tips were taken from an Italeri F-16C/D kit, they look better than the missiles from the Academy Bronco kit. Their launch rails came from an Italeri Bae Hawk 200. The quadruple Hellfire launchers on the underwing hardpoints were left over from an Italeri AH-1W, and they are a perfect load for this aircraft and its role. The LAU-10 and -19 missile pods on the stub wings were taken from the OV-10 kit.

  

Painting and markings:

Finding a suitable and somewhat interesting – but still plausible – paint scheme was not easy. Taking the A-10 as benchmark, an overall light grey livery (with focus on low contrast against the sky as protection against ground fire) would have been a likely choice – and in fact the last operational American OV-10s were painted in this fashion. But in order to provide a different look I used the contemporary USAF V-22Bs and Special Operations MC-130s as benchmark, which typically carry a darker paint scheme consisting of FS 36118 (suitably “Gunship Gray” :D) from above, FS 36375 underneath, with a low, wavy waterline, plus low-viz markings. Not spectacular, but plausible – and very similar to the late r/w Colombian OV-10s.

The cockpit tub became Dark Gull Grey (FS 36231, Humbrol 140) and the landing gear white (Revell 301).

 

The model received an overall black ink washing and some post-panel-shading, to liven up the dull all-grey livery. The decals were gathered from various sources, and I settled for black USAF low-viz markings. The “stars and bars” come from a late USAF F-4, the “IP” tail code was tailored from F-16 markings and the shark mouth was taken from an Academy AH-64. Most stencils came from another Academy OV-10 sheet and some other sources.

Decals were also used to create the trim on the propeller blades and markings on the ordnance.

 

Finally, the model was sealed with a coat of matt acrylic varnish (Italeri) and some exhaust soot stains were added with graphite along the tail boom flanks.

  

A successful transplantation – but is this still a modified Bronco or already a kitbashing? The result looks quite plausible and menacing, even though the TOW Cobra front section appears relatively massive. But thanks to the bigger engines and extended wing tips the proportions still work. The large low-pressure tires look a bit goofy under the aircraft, but they are original. The grey livery works IMHO well, too – a more colorful or garish scheme would certainly have distracted from the modified technical basis.

USMC GySgt Patrick O'Doyle

Formerly serving in a scout-sniper platoon, GySgt Doyle now serves in MARSOC, under the command of Capt. Jack Nguyen

 

My 1st post in a while; I've been kinda busy but I'll try to post some stuff this week that I've built lately :P.

Reconnaissance Operators from 1st Marine Special Operations Battalion out of Camp Pendleton, California conduct Visit, Board, Search & Seizure (VBSS) training in conjunction with Navy SEALs and the USS Cleveland (LPD-7) from Naval Base San Diego, in support of the special operations qualification exercise (CERTEX) for the 11th Marine Expeditionary Unit.

 

The blue upper receivers the MARSOC Marines are carrying allow them to shoot paintball rounds, vice lethal ammunition.

Marine Raiders from Company F, 2d Marine Raider Battalion, honed their skills shooting 60 mm mortars during a Company Collective Exercise in Fort Bragg, S.C., Feb. 25, 2016.

A Marine Special Operations Command member fires a Carl Gustav Recoilless rifle system on a range during training in Washer district, Helmand province, Afghanistan, May 16, 2013. Coalition force members review their weapons handling and firing techniques to increase safety, accuracy, and familiarity with the weapon system. (U.S. Army photo by Sgt. Benjamin Tuck/Released)

Marines Raiders from Company F, 2d Marine Raider Battalion, led a simulated partner nation force on ground combat patrolling tactics, techniques and procedures during a Company Collective Exercise in Fort Bragg, S.C., Feb. 28, 2016.

The Transformers Combat Operational Group, aka Task Force 071, is an elite Tier 1 Special Operations Unit detached from TRF (Transformers Response Force), after TRF was refined and merged into the officially established TSOC (Transformers Special Operations Command) of the USSOCOM of the US Military. The group primarily selects from Tier 1 Special Operations Elements from other branches of the US Military such as DEVGRU, 24th STS, CAG, and occasionally MARSOC (if attached to tier 1) and international Tier 1 units like the 22nd SAS for attachment. Other than human elements, the group also consists of Autobots with elite combat expertise assigned to small teams of 6-8 operators to conduct top-secret unconventional tasks all around the world. The picture involves a member of Task Force Zulu / Task Force 091 (middle left), members of CAG (middle right & far left), a member of CAT (Cultural Support Team, second left) attached to DEVGRU, possible CIA SAD member (second from far right), a DEVGRU Gold Squadron member (far right), and a High-Mobility Autobot with Close Quarter Combat expertise assigned to the team.

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!

  

Some background:

The OV-10 Bronco was initially conceived in the early 1960s through an informal collaboration between W. H. Beckett and Colonel K. P. Rice, U.S. Marine Corps, who met at Naval Air Weapons Station China Lake, California, and who also happened to live near each other. The original concept was for a rugged, simple, close air support aircraft integrated with forward ground operations. At the time, the U.S. Army was still experimenting with armed helicopters, and the U.S. Air Force was not interested in close air support.

The concept aircraft was to operate from expedient forward air bases using roads as runways. Speed was to be from very slow to medium subsonic, with much longer loiter times than a pure jet. Efficient turboprop engines would give better performance than piston engines. Weapons were to be mounted on the centerline to get efficient aiming. The inventors favored strafing weapons such as self-loading recoilless rifles, which could deliver aimed explosive shells with less recoil than cannons, and a lower per-round weight than rockets. The airframe was to be designed to avoid the back blast.

 

Beckett and Rice developed a basic platform meeting these requirements, then attempted to build a fiberglass prototype in a garage. The effort produced enthusiastic supporters and an informal pamphlet describing the concept. W. H. Beckett, who had retired from the Marine Corps, went to work at North American Aviation to sell the aircraft.

The aircraft's design supported effective operations from forward bases. The OV-10 had a central nacelle containing a crew of two in tandem and space for cargo, and twin booms containing twin turboprop engines. The visually distinctive feature of the aircraft is the combination of the twin booms, with the horizontal stabilizer that connected them at the fin tips. The OV-10 could perform short takeoffs and landings, including on aircraft carriers and large-deck amphibious assault ships without using catapults or arresting wires. Further, the OV-10 was designed to take off and land on unimproved sites. Repairs could be made with ordinary tools. No ground equipment was required to start the engines. And, if necessary, the engines would operate on high-octane automobile fuel with only a slight loss of power.

 

The aircraft had responsive handling and could fly for up to 5½ hours with external fuel tanks. The cockpit had extremely good visibility for both pilot and co-pilot, provided by a wrap-around "greenhouse" that was wider than the fuselage. North American Rockwell custom ejection seats were standard, with many successful ejections during service. With the second seat removed, the OV-10 could carry 3,200 pounds (1,500 kg) of cargo, five paratroopers, or two litter patients and an attendant. Empty weight was 6,969 pounds (3,161 kg). Normal operating fueled weight with two crew was 9,908 pounds (4,494 kg). Maximum takeoff weight was 14,446 pounds (6,553 kg).

The bottom of the fuselage bore sponsons or "stub wings" that improved flight performance by decreasing aerodynamic drag underneath the fuselage. Normally, four 7.62 mm (.308 in) M60C machine guns were carried on the sponsons, accessed through large forward-opening hatches. The sponsons also had four racks to carry bombs, pods, or fuel. The wings outboard of the engines contained two additional hardpoints, one per side. Racked armament in the Vietnam War was usually seven-shot 2.75 in (70 mm) rocket pods with white phosphorus marker rounds or high-explosive rockets, or 5" (127 mm) four-shot Zuni rocket pods. Bombs, ADSIDS air-delivered/para-dropped unattended seismic sensors, Mk-6 battlefield illumination flares, and other stores were also carried.

Operational experience showed some weaknesses in the OV-10's design. It was significantly underpowered, which contributed to crashes in Vietnam in sloping terrain because the pilots could not climb fast enough. While specifications stated that the aircraft could reach 26,000 feet (7,900 m), in Vietnam the aircraft could reach only 18,000 feet (5,500 m). Also, no OV-10 pilot survived ditching the aircraft.

 

The OV-10 served in the U.S. Air Force, U.S. Marine Corps, and U.S. Navy, as well as in the service of a number of other countries. In U.S. military service, the Bronco was operated until the early Nineties, and obsoleted USAF OV-10s were passed on to the Bureau of Alcohol, Tobacco, and Firearms for anti-drug operations. A number of OV-10As furthermore ended up in the hands of the California Department of Forestry (CDF) and were used for spotting fires and directing fire bombers onto hot spots.

 

This was not the end of the OV-10 in American military service, though: In 2012, the type gained new attention because of its unique qualities. A $20 million budget was allocated to activate an experimental USAF unit of two airworthy OV-10Gs, acquired from NASA and the State Department. These machines were retrofitted with military equipment and were, starting in May 2015, deployed overseas to support Operation “Inherent Resolve”, flying more than 120 combat sorties over 82 days over Iraq and Syria. Their concrete missions remained unclear, and it is speculated they provided close air support for Special Forces missions, esp. in confined urban environments where the Broncos’ loitering time and high agility at low speed and altitude made them highly effective and less vulnerable than helicopters.

Furthermore, these Broncos reputedly performed strikes with the experimental AGR-20A “Advanced Precision Kill Weapons System (APKWS)”, a Hydra 70-millimeter rocket with a laser-seeking head as guidance - developed for precision strikes against small urban targets with little collateral damage. The experiment ended satisfactorily, but the machines were retired again, and the small unit was dissolved.

 

However, the machines had shown their worth in asymmetric warfare, and the U.S. Air Force decided to invest in reactivating the OV-10 on a regular basis, despite the overhead cost of operating an additional aircraft type in relatively small numbers – but development and production of a similar new type would have caused much higher costs, with an uncertain time until an operational aircraft would be ready for service. Re-activating a proven design and updating an existing airframe appeared more efficient.

The result became the MV-10H, suitably christened “Super Bronco” but also known as “Black Pony”, after the program's internal name. This aircraft was derived from the official OV-10X proposal by Boeing from 2009 for the USAF's Light Attack/Armed Reconnaissance requirement. Initially, Boeing proposed to re-start OV-10 manufacture, but this was deemed uneconomical, due to the expected small production number of new serial aircraft, so the “Black Pony” program became a modernization project. In consequence, all airframes for the "new" MV-10Hs were recovered OV-10s of various types from the "boneyard" at Davis-Monthan Air Force Base in Arizona.

 

While the revamped aircraft would maintain much of its 1960s-vintage rugged external design, modernizations included a completely new, armored central fuselage with a highly modified cockpit section, ejection seats and a computerized glass cockpit. The “Black Pony” OV-10 had full dual controls, so that either crewmen could steer the aircraft while the other operated sensors and/or weapons. This feature would also improve survivability in case of incapacitation of a crew member as the result from a hit.

The cockpit armor protected the crew and many vital systems from 23mm shells and shrapnel (e. g. from MANPADS). The crew still sat in tandem under a common, generously glazed canopy with flat, bulletproof panels for reduced sun reflections, with the pilot in the front seat and an observer/WSO behind. The Bronco’s original cargo capacity and the rear door were retained, even though the extra armor and defensive measures like chaff/flare dispensers as well as an additional fuel cell in the central fuselage limited the capacity. However, it was still possible to carry and deploy personnel, e. g. small special ops teams of up to four when the aircraft flew in clean configuration.

Additional updates for the MV-10H included structural reinforcements for a higher AUW and higher g load maneuvers, similar to OV-10D+ standards. The landing gear was also reinforced, and the aircraft kept its ability to operate from short, improvised airstrips. A fixed refueling probe was added to improve range and loiter time.

 

Intelligence sensors and smart weapon capabilities included a FLIR sensor and a laser range finder/target designator, both mounted in a small turret on the aircraft’s nose. The MV-10H was also outfitted with a data link and the ability to carry an integrated targeting pod such as the Northrop Grumman LITENING or the Lockheed Martin Sniper Advanced Targeting Pod (ATP). Also included was the Remotely Operated Video Enhanced Receiver (ROVER) to provide live sensor data and video recordings to personnel on the ground.

 

To improve overall performance and to better cope with the higher empty weight of the modified aircraft as well as with operations under hot-and-high conditions, the engines were beefed up. The new General Electric CT7-9D turboprop engines improved the Bronco's performance considerably: top speed increased by 100 mph (160 km/h), the climb rate was tripled (a weak point of early OV-10s despite the type’s good STOL capability) and both take-off as well as landing run were almost halved. The new engines called for longer nacelles, and their circular diameter markedly differed from the former Garrett T76-G-420/421 turboprop engines. To better exploit the additional power and reduce the aircraft’s audio signature, reversible contraprops, each with eight fiberglass blades, were fitted. These allowed a reduced number of revolutions per minute, resulting in less noise from the blades and their tips, while the engine responsiveness was greatly improved. The CT7-9Ds’ exhausts were fitted with muzzlers/air mixers to further reduce the aircraft's noise and heat signature.

Another novel and striking feature was the addition of so-called “tip sails” to the wings: each wingtip was elongated with a small, cigar-shaped fairing, each carrying three staggered, small “feather blade” winglets. Reputedly, this installation contributed ~10% to the higher climb rate and improved lift/drag ratio by ~6%, improving range and loiter time, too.

Drawing from the Iraq experience as well as from the USMC’s NOGS test program with a converted OV-10D as a night/all-weather gunship/reconnaissance platform, the MV-10H received a heavier gun armament: the original four light machine guns that were only good for strafing unarmored targets were deleted and their space in the sponsons replaced by avionics. Instead, the aircraft was outfitted with a lightweight M197 three-barrel 20mm gatling gun in a chin turret. This could be fixed in a forward position at high speed or when carrying forward-firing ordnance under the stub wings, or it could be deployed to cover a wide field of fire under the aircraft when it was flying slower, being either slaved to the FLIR or to a helmet sighting auto targeting system.

The original seven hardpoints were retained (1x ventral, 2x under each sponson, and another pair under the outer wings), but the total ordnance load was slightly increased and an additional pair of launch rails for AIM-9 Sidewinders or other light AAMs under the wing tips were added – not only as a defensive measure, but also with an anti-helicopter role in mind; four more Sidewinders could be carried on twin launchers under the outer wings against aerial targets. Other guided weapons cleared for the MV-10H were the light laser-guided AGR-20A and AGM-119 Hellfire missiles, the Advanced Precision Kill Weapon System upgrade to the light Hydra 70 rockets, the new Laser Guided Zuni Rocket which had been cleared for service in 2010, TV-/IR-/laser-guided AGM-65 Maverick AGMs and AGM-122 Sidearm anti-radar missiles, plus a wide range of gun and missile pods, iron and cluster bombs, as well as ECM and flare/chaff pods, which were not only carried defensively, but also in order to disrupt enemy ground communication.

 

In this configuration, a contract for the conversion of twelve mothballed American Broncos to the new MV-10H standard was signed with Boeing in 2016, and the first MV-10H was handed over to the USAF in early 2018, with further deliveries lasting into early 2020. All machines were allocated to the newly founded 919th Special Operations Support Squadron at Duke Field (Florida). This unit was part of the 919th Special Operations Wing, an Air Reserve Component (ARC) of the United States Air Force. It was assigned to the Tenth Air Force of Air Force Reserve Command and an associate unit of the 1st Special Operations Wing, Air Force Special Operations Command (AFSOC). If mobilized the wing was gained by AFSOC (Air Force Special Operations Command) to support Special Tactics, the U.S. Air Force's special operations ground force. Similar in ability and employment to Marine Special Operations Command (MARSOC), U.S. Army Special Forces and U.S. Navy SEALs, Air Force Special Tactics personnel were typically the first to enter combat and often found themselves deep behind enemy lines in demanding, austere conditions, usually with little or no support.

 

The MV-10Hs are expected to provide support for these ground units in the form of all-weather reconnaissance and observation, close air support and also forward air control duties for supporting ground units. Precision ground strikes and protection from enemy helicopters and low-flying aircraft were other, secondary missions for the modernized Broncos, which are expected to serve well into the 2040s. Exports or conversions of foreign OV-10s to the Black Pony standard are not planned, though.

  

General characteristics:

Crew: 2

Length: 42 ft 2½ in (12,88 m) incl. pitot

Wingspan: 45 ft 10½ in(14 m) incl. tip sails

Height: 15 ft 2 in (4.62 m)

Wing area: 290.95 sq ft (27.03 m²)

Airfoil: NACA 64A315

Empty weight: 9,090 lb (4,127 kg)

Gross weight: 13,068 lb (5,931 kg)

Max. takeoff weight: 17,318 lb (7,862 kg)

 

Powerplant:

2× General Electric CT7-9D turboprop engines, 1,305 kW (1,750 hp) each,

driving 8-bladed Hamilton Standard 8 ft 6 in (2.59 m) diameter constant-speed,

fully feathering, reversible contra-rotating propellers with metal hub and composite blades

 

Performance:

Maximum speed: 390 mph (340 kn, 625 km/h)

Combat range: 198 nmi (228 mi, 367 km)

Ferry range: 1,200 nmi (1,400 mi, 2,200 km) with auxiliary fuel

Maximum loiter time: 5.5 h with auxiliary fuel

Service ceiling: 32.750 ft (10,000 m)

13,500 ft (4.210 m) on one engine

Rate of climb: 17.400 ft/min (48 m/s) at sea level

Take-off run: 480 ft (150 m)

740 ft (227 m) to 50 ft (15 m)

1,870 ft (570 m) to 50 ft (15 m) at MTOW

Landing run: 490 ft (150 m)

785 ft (240 m) at MTOW

1,015 ft (310 m) from 50 ft (15 m)

 

Armament:

1x M197 3-barreled 20 mm Gatling cannon in a chin turret with 750 rounds ammo capacity

7x hardpoints for a total load of 5.000 lb (2,270 kg)

2x wingtip launch rails for AIM-9 Sidewinder AAMs

  

The kit and its assembly:

This fictional Bronco update/conversion was simply spawned by the idea: could it be possible to replace the original cockpit section with one from an AH-1 Cobra, for a kind of gunship version?

 

The basis is the Academy OV-10D kit, mated with the cockpit section from a Fujimi AH-1S TOW Cobra (Revell re-boxing, though), chosen because of its “boxy” cockpit section with flat glass panels – I think that it conveys the idea of an armored cockpit section best. Combining these parts was not easy, though, even though the plan sound simple. Initially, the Bronco’s twin booms, wings and stabilizer were built separately, because this made PSR on these sections easier than trying the same on a completed airframe. One of the initial challenges: the different engines. I wanted something uprated, and a different look, and I had a pair of (excellent!) 1:144 resin engines from the Russian company Kompakt Zip for a Tu-95 bomber at hand, which come together with movable(!) eight-blade contraprops that were an almost perfect size match for the original three-blade props. Biggest problem: the Tu-95 nacelles have a perfectly circular diameter, while the OV-10’s booms are square and rectangular. Combining these parts and shapes was already a messy PST affair, but it worked out quite well – even though the result rather reminds of some Chinese upgrade measure (anyone know the Tu-4 copies with turboprops? This here looks similar!). But while not pretty, I think that the beafier look works well and adds to the idea of a “revived” aircraft. And you can hardly beat the menacing look of contraprops on anything...

The exotic, so-called “tip sails” on the wings, mounted on short booms, are a detail borrowed from the Shijiazhuang Y-5B-100, an updated Chinese variant/copy of the Antonov An-2 biplane transporter. The booms are simple pieces of sprue from the Bronco kit, the winglets were cut from 0.5mm styrene sheet.

 

For the cockpit donor, the AH-1’s front section was roughly built, including the engine section (which is a separate module, so that the basic kit can be sold with different engine sections), and then the helicopter hull was cut and trimmed down to match the original Bronco pod and to fit under the wing. This became more complicated than expected, because a) the AH-1 cockpit and the nose are considerably shorter than the OV-10s, b) the AH-1 fuselage is markedly taller than the Bronco’s and c) the engine section, which would end up in the area of the wing, features major recesses, making the surface very uneven – calling for massive PSR to even this out. PSR was also necessary to hide the openings for the Fujimi AH-1’s stub wings. Other issues: the front landing gear (and its well) had to be added, as well as the OV-10 wing stubs. Furthermore, the new cockpit pod’s rear section needed an aerodynamical end/fairing, but I found a leftover Academy OV-10 section from a build/kitbashing many moons ago. Perfect match!

All these challenges could be tackled, even though the AH-1 cockpit looks surprisingly stout and massive on the Bronco’s airframe - the result looks stockier than expected, but it works well for the "Gunship" theme. Lots of PSR went into the new central fuselage section, though, even before it was mated with the OV-10 wing and the rest of the model.

Once cockpit and wing were finally mated, the seams had to disappear under even more PSR and a spinal extension of the canopy had to be sculpted across the upper wing surface, which would meld with the pod’s tail in a (more or less) harmonious shape. Not an easy task, and the fairing was eventually sculpted with 2C putty, plus even more PSR… Looks quite homogenous, though.

 

After this massive body work, other hardware challenges appeared like small distractions. The landing gear was another major issue because the deeper AH-1 section lowered the ground clearance, also because of the chin turret. To counter this, I raised the OV-10’s main landing gear by ~2mm – not much, but it was enough to create a credible stance, together with the front landing gear transplant under the cockpit, which received an internal console to match the main landing gear’s length. Due to the chin turret and the shorter nose, the front wheel retracts backwards now. But this looks quite plausible, thanks to the additional space under the cockpit tub, which also made a belt feed for the gun’s ammunition supply believable.

To enhance the menacing look I gave the model a fixed refueling boom, made from 1mm steel wire and a receptor adapter sculpted with white glue. The latter stuff was also used add some antenna fairings around the hull. Some antennae, chaff dispensers and an IR decoy were taken from the Academy kit.

 

The ordnance came from various sources. The Sidewinders under the wing tips were taken from an Italeri F-16C/D kit, they look better than the missiles from the Academy Bronco kit. Their launch rails came from an Italeri Bae Hawk 200. The quadruple Hellfire launchers on the underwing hardpoints were left over from an Italeri AH-1W, and they are a perfect load for this aircraft and its role. The LAU-10 and -19 missile pods on the stub wings were taken from the OV-10 kit.

  

Painting and markings:

Finding a suitable and somewhat interesting – but still plausible – paint scheme was not easy. Taking the A-10 as benchmark, an overall light grey livery (with focus on low contrast against the sky as protection against ground fire) would have been a likely choice – and in fact the last operational American OV-10s were painted in this fashion. But in order to provide a different look I used the contemporary USAF V-22Bs and Special Operations MC-130s as benchmark, which typically carry a darker paint scheme consisting of FS 36118 (suitably “Gunship Gray” :D) from above, FS 36375 underneath, with a low, wavy waterline, plus low-viz markings. Not spectacular, but plausible – and very similar to the late r/w Colombian OV-10s.

The cockpit tub became Dark Gull Grey (FS 36231, Humbrol 140) and the landing gear white (Revell 301).

 

The model received an overall black ink washing and some post-panel-shading, to liven up the dull all-grey livery. The decals were gathered from various sources, and I settled for black USAF low-viz markings. The “stars and bars” come from a late USAF F-4, the “IP” tail code was tailored from F-16 markings and the shark mouth was taken from an Academy AH-64. Most stencils came from another Academy OV-10 sheet and some other sources.

Decals were also used to create the trim on the propeller blades and markings on the ordnance.

 

Finally, the model was sealed with a coat of matt acrylic varnish (Italeri) and some exhaust soot stains were added with graphite along the tail boom flanks.

  

A successful transplantation – but is this still a modified Bronco or already a kitbashing? The result looks quite plausible and menacing, even though the TOW Cobra front section appears relatively massive. But thanks to the bigger engines and extended wing tips the proportions still work. The large low-pressure tires look a bit goofy under the aircraft, but they are original. The grey livery works IMHO well, too – a more colorful or garish scheme would certainly have distracted from the modified technical basis.

Korps Mariniers

 

Met het uitreiken van 14 certificaten ‘MARSOC Sniper’ door de Commandant der Zeemacht in het Caribisch Gebied, brigadegeneraal der mariniers P.J. de Vin, is het opleidingstraject tot Recce-Sniper afgesloten.

 

Dit opleidingstraject is op 5 februari op het Mariniers Opleidingscentrum te Rotterdam gestart en wordt verzorgd door de opleidingseenheid Recce-Sniper/Mountain Leader. De zojuist afgeronde opleiding bestond uit een mix van mariniers vanuit de Marine Combat Groups in Doorn en de Surface Assault Training Group van Texel. Daarnaast werd ook personeel van Maritime Special Operations Forces (MARSOF) opgeleid tot Sniper.

 

Het opleidingstraject bestaat uit drie opleidingen, Recce Operator, Marksman en Sniper. In de Recce Operator opleiding worden mariniers opgeleid om verkenningstaken uit te voeren middels de procedures die operationeel bij Recce-Sniper Troop gehanteerd worden. De opleiding duurt in totaal zes weken waarvan het eerste deel in Nederland en het tweede deel in het Verenigd Koninkrijk.

 

Aansluitend op de Recce Operator opleiding wordt personeel in vijf weken tijd opgeleid op de diverse wapensystemen gedurende de Marksman opleiding. Daarna volgt de laatste opleiding in het traject, de Sniper opleiding. Aan de Sniper opleiding hebben ook twee collega’s deelgenomen van het Duitse Seebatallion. Deze deelname komt voort uit de samenwerking tussen beide landen Tijdens de Sniper opleiding wordt o.a. aangeleerd hoe men een ‘stalk’ moet uitvoeren om uiteindelijk in positie te komen om een doel uit te schakelen. In de eerste weken wordt dit getraind in Nederland om vervolgens de opleiding voort te zetten op Curaçao in een uitdagende omgeving qua klimaat en vegetatie. Daarnaast is Curaçao een goede locatie om de mariniers op te leiden op het gebied van maritiem schieten, waarbij gebruik gemaakt wordt van Zr. Ms. Pelikaan als platform.

De geslaagde mariniers zijn vanaf nu inzetbaar op hun functie bij Recce-Sniper Troop en NLMARSOF.

 

With The Award of 14 certificates "Marsoc Sniper" by the commander of the navy in the Caribbean, Brigadier General of the marines p.j. de vin, the training course to recce sniper has been closed.

 

This training course was launched at the marine training centre in Rotterdam on 5 February and is provided by the training recce-Sniper / mountain leader. The just completed training consisted of a mix of Marines from the navy combat groups in doorn and the surface assault training group of texel. In addition, staff of maritime special operations forces (Marsof) were trained as sniper.

 

The Training course consists of three training courses, recce operator, marksman and sniper. In the recce operator training, Marines are trained to carry out asmara through the procedures used in operational-Sniper troop. Training takes a total of six weeks, the first part of which is in the Netherlands and the second part in the United Kingdom.

 

In addition to the recce operator training, staff are trained in the various weapons systems during the training in five weeks. After that, the final training in the trajectory, the sniper training. The Sniper training also took two colleagues from the German seebatallion. This participation stems from cooperation between the two countries during sniper training, among other things being taught how to carry out a 'stalk' in order to finally get in position to eliminate a target. In the first few weeks this is trained in the Netherlands to continue training on curaçao in a challenging environment in terms of climate and vegetation. In addition, curaçao is a good location to train the Marines in the field of maritime shooting, using zr. Ms... Pelican as a platform.

 

The Successful Marines are now ready to operate at recce-Sniper troop and nlmarsof.

 

Photos: Korps Mariniers

 

Check out their Instagram account for more superb photos !

 

@korpsmarinier1665

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!

  

Some background:

The OV-10 Bronco was initially conceived in the early 1960s through an informal collaboration between W. H. Beckett and Colonel K. P. Rice, U.S. Marine Corps, who met at Naval Air Weapons Station China Lake, California, and who also happened to live near each other. The original concept was for a rugged, simple, close air support aircraft integrated with forward ground operations. At the time, the U.S. Army was still experimenting with armed helicopters, and the U.S. Air Force was not interested in close air support.

The concept aircraft was to operate from expedient forward air bases using roads as runways. Speed was to be from very slow to medium subsonic, with much longer loiter times than a pure jet. Efficient turboprop engines would give better performance than piston engines. Weapons were to be mounted on the centerline to get efficient aiming. The inventors favored strafing weapons such as self-loading recoilless rifles, which could deliver aimed explosive shells with less recoil than cannons, and a lower per-round weight than rockets. The airframe was to be designed to avoid the back blast.

 

Beckett and Rice developed a basic platform meeting these requirements, then attempted to build a fiberglass prototype in a garage. The effort produced enthusiastic supporters and an informal pamphlet describing the concept. W. H. Beckett, who had retired from the Marine Corps, went to work at North American Aviation to sell the aircraft.

The aircraft's design supported effective operations from forward bases. The OV-10 had a central nacelle containing a crew of two in tandem and space for cargo, and twin booms containing twin turboprop engines. The visually distinctive feature of the aircraft is the combination of the twin booms, with the horizontal stabilizer that connected them at the fin tips. The OV-10 could perform short takeoffs and landings, including on aircraft carriers and large-deck amphibious assault ships without using catapults or arresting wires. Further, the OV-10 was designed to take off and land on unimproved sites. Repairs could be made with ordinary tools. No ground equipment was required to start the engines. And, if necessary, the engines would operate on high-octane automobile fuel with only a slight loss of power.

 

The aircraft had responsive handling and could fly for up to 5½ hours with external fuel tanks. The cockpit had extremely good visibility for both pilot and co-pilot, provided by a wrap-around "greenhouse" that was wider than the fuselage. North American Rockwell custom ejection seats were standard, with many successful ejections during service. With the second seat removed, the OV-10 could carry 3,200 pounds (1,500 kg) of cargo, five paratroopers, or two litter patients and an attendant. Empty weight was 6,969 pounds (3,161 kg). Normal operating fueled weight with two crew was 9,908 pounds (4,494 kg). Maximum takeoff weight was 14,446 pounds (6,553 kg).

The bottom of the fuselage bore sponsons or "stub wings" that improved flight performance by decreasing aerodynamic drag underneath the fuselage. Normally, four 7.62 mm (.308 in) M60C machine guns were carried on the sponsons, accessed through large forward-opening hatches. The sponsons also had four racks to carry bombs, pods, or fuel. The wings outboard of the engines contained two additional hardpoints, one per side. Racked armament in the Vietnam War was usually seven-shot 2.75 in (70 mm) rocket pods with white phosphorus marker rounds or high-explosive rockets, or 5" (127 mm) four-shot Zuni rocket pods. Bombs, ADSIDS air-delivered/para-dropped unattended seismic sensors, Mk-6 battlefield illumination flares, and other stores were also carried.

Operational experience showed some weaknesses in the OV-10's design. It was significantly underpowered, which contributed to crashes in Vietnam in sloping terrain because the pilots could not climb fast enough. While specifications stated that the aircraft could reach 26,000 feet (7,900 m), in Vietnam the aircraft could reach only 18,000 feet (5,500 m). Also, no OV-10 pilot survived ditching the aircraft.

 

The OV-10 served in the U.S. Air Force, U.S. Marine Corps, and U.S. Navy, as well as in the service of a number of other countries. In U.S. military service, the Bronco was operated until the early Nineties, and obsoleted USAF OV-10s were passed on to the Bureau of Alcohol, Tobacco, and Firearms for anti-drug operations. A number of OV-10As furthermore ended up in the hands of the California Department of Forestry (CDF) and were used for spotting fires and directing fire bombers onto hot spots.

 

This was not the end of the OV-10 in American military service, though: In 2012, the type gained new attention because of its unique qualities. A $20 million budget was allocated to activate an experimental USAF unit of two airworthy OV-10Gs, acquired from NASA and the State Department. These machines were retrofitted with military equipment and were, starting in May 2015, deployed overseas to support Operation “Inherent Resolve”, flying more than 120 combat sorties over 82 days over Iraq and Syria. Their concrete missions remained unclear, and it is speculated they provided close air support for Special Forces missions, esp. in confined urban environments where the Broncos’ loitering time and high agility at low speed and altitude made them highly effective and less vulnerable than helicopters.

Furthermore, these Broncos reputedly performed strikes with the experimental AGR-20A “Advanced Precision Kill Weapons System (APKWS)”, a Hydra 70-millimeter rocket with a laser-seeking head as guidance - developed for precision strikes against small urban targets with little collateral damage. The experiment ended satisfactorily, but the machines were retired again, and the small unit was dissolved.

 

However, the machines had shown their worth in asymmetric warfare, and the U.S. Air Force decided to invest in reactivating the OV-10 on a regular basis, despite the overhead cost of operating an additional aircraft type in relatively small numbers – but development and production of a similar new type would have caused much higher costs, with an uncertain time until an operational aircraft would be ready for service. Re-activating a proven design and updating an existing airframe appeared more efficient.

The result became the MV-10H, suitably christened “Super Bronco” but also known as “Black Pony”, after the program's internal name. This aircraft was derived from the official OV-10X proposal by Boeing from 2009 for the USAF's Light Attack/Armed Reconnaissance requirement. Initially, Boeing proposed to re-start OV-10 manufacture, but this was deemed uneconomical, due to the expected small production number of new serial aircraft, so the “Black Pony” program became a modernization project. In consequence, all airframes for the "new" MV-10Hs were recovered OV-10s of various types from the "boneyard" at Davis-Monthan Air Force Base in Arizona.

 

While the revamped aircraft would maintain much of its 1960s-vintage rugged external design, modernizations included a completely new, armored central fuselage with a highly modified cockpit section, ejection seats and a computerized glass cockpit. The “Black Pony” OV-10 had full dual controls, so that either crewmen could steer the aircraft while the other operated sensors and/or weapons. This feature would also improve survivability in case of incapacitation of a crew member as the result from a hit.

The cockpit armor protected the crew and many vital systems from 23mm shells and shrapnel (e. g. from MANPADS). The crew still sat in tandem under a common, generously glazed canopy with flat, bulletproof panels for reduced sun reflections, with the pilot in the front seat and an observer/WSO behind. The Bronco’s original cargo capacity and the rear door were retained, even though the extra armor and defensive measures like chaff/flare dispensers as well as an additional fuel cell in the central fuselage limited the capacity. However, it was still possible to carry and deploy personnel, e. g. small special ops teams of up to four when the aircraft flew in clean configuration.

Additional updates for the MV-10H included structural reinforcements for a higher AUW and higher g load maneuvers, similar to OV-10D+ standards. The landing gear was also reinforced, and the aircraft kept its ability to operate from short, improvised airstrips. A fixed refueling probe was added to improve range and loiter time.

 

Intelligence sensors and smart weapon capabilities included a FLIR sensor and a laser range finder/target designator, both mounted in a small turret on the aircraft’s nose. The MV-10H was also outfitted with a data link and the ability to carry an integrated targeting pod such as the Northrop Grumman LITENING or the Lockheed Martin Sniper Advanced Targeting Pod (ATP). Also included was the Remotely Operated Video Enhanced Receiver (ROVER) to provide live sensor data and video recordings to personnel on the ground.

 

To improve overall performance and to better cope with the higher empty weight of the modified aircraft as well as with operations under hot-and-high conditions, the engines were beefed up. The new General Electric CT7-9D turboprop engines improved the Bronco's performance considerably: top speed increased by 100 mph (160 km/h), the climb rate was tripled (a weak point of early OV-10s despite the type’s good STOL capability) and both take-off as well as landing run were almost halved. The new engines called for longer nacelles, and their circular diameter markedly differed from the former Garrett T76-G-420/421 turboprop engines. To better exploit the additional power and reduce the aircraft’s audio signature, reversible contraprops, each with eight fiberglass blades, were fitted. These allowed a reduced number of revolutions per minute, resulting in less noise from the blades and their tips, while the engine responsiveness was greatly improved. The CT7-9Ds’ exhausts were fitted with muzzlers/air mixers to further reduce the aircraft's noise and heat signature.

Another novel and striking feature was the addition of so-called “tip sails” to the wings: each wingtip was elongated with a small, cigar-shaped fairing, each carrying three staggered, small “feather blade” winglets. Reputedly, this installation contributed ~10% to the higher climb rate and improved lift/drag ratio by ~6%, improving range and loiter time, too.

Drawing from the Iraq experience as well as from the USMC’s NOGS test program with a converted OV-10D as a night/all-weather gunship/reconnaissance platform, the MV-10H received a heavier gun armament: the original four light machine guns that were only good for strafing unarmored targets were deleted and their space in the sponsons replaced by avionics. Instead, the aircraft was outfitted with a lightweight M197 three-barrel 20mm gatling gun in a chin turret. This could be fixed in a forward position at high speed or when carrying forward-firing ordnance under the stub wings, or it could be deployed to cover a wide field of fire under the aircraft when it was flying slower, being either slaved to the FLIR or to a helmet sighting auto targeting system.

The original seven hardpoints were retained (1x ventral, 2x under each sponson, and another pair under the outer wings), but the total ordnance load was slightly increased and an additional pair of launch rails for AIM-9 Sidewinders or other light AAMs under the wing tips were added – not only as a defensive measure, but also with an anti-helicopter role in mind; four more Sidewinders could be carried on twin launchers under the outer wings against aerial targets. Other guided weapons cleared for the MV-10H were the light laser-guided AGR-20A and AGM-119 Hellfire missiles, the Advanced Precision Kill Weapon System upgrade to the light Hydra 70 rockets, the new Laser Guided Zuni Rocket which had been cleared for service in 2010, TV-/IR-/laser-guided AGM-65 Maverick AGMs and AGM-122 Sidearm anti-radar missiles, plus a wide range of gun and missile pods, iron and cluster bombs, as well as ECM and flare/chaff pods, which were not only carried defensively, but also in order to disrupt enemy ground communication.

 

In this configuration, a contract for the conversion of twelve mothballed American Broncos to the new MV-10H standard was signed with Boeing in 2016, and the first MV-10H was handed over to the USAF in early 2018, with further deliveries lasting into early 2020. All machines were allocated to the newly founded 919th Special Operations Support Squadron at Duke Field (Florida). This unit was part of the 919th Special Operations Wing, an Air Reserve Component (ARC) of the United States Air Force. It was assigned to the Tenth Air Force of Air Force Reserve Command and an associate unit of the 1st Special Operations Wing, Air Force Special Operations Command (AFSOC). If mobilized the wing was gained by AFSOC (Air Force Special Operations Command) to support Special Tactics, the U.S. Air Force's special operations ground force. Similar in ability and employment to Marine Special Operations Command (MARSOC), U.S. Army Special Forces and U.S. Navy SEALs, Air Force Special Tactics personnel were typically the first to enter combat and often found themselves deep behind enemy lines in demanding, austere conditions, usually with little or no support.

 

The MV-10Hs are expected to provide support for these ground units in the form of all-weather reconnaissance and observation, close air support and also forward air control duties for supporting ground units. Precision ground strikes and protection from enemy helicopters and low-flying aircraft were other, secondary missions for the modernized Broncos, which are expected to serve well into the 2040s. Exports or conversions of foreign OV-10s to the Black Pony standard are not planned, though.

  

General characteristics:

Crew: 2

Length: 42 ft 2½ in (12,88 m) incl. pitot

Wingspan: 45 ft 10½ in(14 m) incl. tip sails

Height: 15 ft 2 in (4.62 m)

Wing area: 290.95 sq ft (27.03 m²)

Airfoil: NACA 64A315

Empty weight: 9,090 lb (4,127 kg)

Gross weight: 13,068 lb (5,931 kg)

Max. takeoff weight: 17,318 lb (7,862 kg)

 

Powerplant:

2× General Electric CT7-9D turboprop engines, 1,305 kW (1,750 hp) each,

driving 8-bladed Hamilton Standard 8 ft 6 in (2.59 m) diameter constant-speed,

fully feathering, reversible contra-rotating propellers with metal hub and composite blades

 

Performance:

Maximum speed: 390 mph (340 kn, 625 km/h)

Combat range: 198 nmi (228 mi, 367 km)

Ferry range: 1,200 nmi (1,400 mi, 2,200 km) with auxiliary fuel

Maximum loiter time: 5.5 h with auxiliary fuel

Service ceiling: 32.750 ft (10,000 m)

13,500 ft (4.210 m) on one engine

Rate of climb: 17.400 ft/min (48 m/s) at sea level

Take-off run: 480 ft (150 m)

740 ft (227 m) to 50 ft (15 m)

1,870 ft (570 m) to 50 ft (15 m) at MTOW

Landing run: 490 ft (150 m)

785 ft (240 m) at MTOW

1,015 ft (310 m) from 50 ft (15 m)

 

Armament:

1x M197 3-barreled 20 mm Gatling cannon in a chin turret with 750 rounds ammo capacity

7x hardpoints for a total load of 5.000 lb (2,270 kg)

2x wingtip launch rails for AIM-9 Sidewinder AAMs

  

The kit and its assembly:

This fictional Bronco update/conversion was simply spawned by the idea: could it be possible to replace the original cockpit section with one from an AH-1 Cobra, for a kind of gunship version?

 

The basis is the Academy OV-10D kit, mated with the cockpit section from a Fujimi AH-1S TOW Cobra (Revell re-boxing, though), chosen because of its “boxy” cockpit section with flat glass panels – I think that it conveys the idea of an armored cockpit section best. Combining these parts was not easy, though, even though the plan sound simple. Initially, the Bronco’s twin booms, wings and stabilizer were built separately, because this made PSR on these sections easier than trying the same on a completed airframe. One of the initial challenges: the different engines. I wanted something uprated, and a different look, and I had a pair of (excellent!) 1:144 resin engines from the Russian company Kompakt Zip for a Tu-95 bomber at hand, which come together with movable(!) eight-blade contraprops that were an almost perfect size match for the original three-blade props. Biggest problem: the Tu-95 nacelles have a perfectly circular diameter, while the OV-10’s booms are square and rectangular. Combining these parts and shapes was already a messy PST affair, but it worked out quite well – even though the result rather reminds of some Chinese upgrade measure (anyone know the Tu-4 copies with turboprops? This here looks similar!). But while not pretty, I think that the beafier look works well and adds to the idea of a “revived” aircraft. And you can hardly beat the menacing look of contraprops on anything...

The exotic, so-called “tip sails” on the wings, mounted on short booms, are a detail borrowed from the Shijiazhuang Y-5B-100, an updated Chinese variant/copy of the Antonov An-2 biplane transporter. The booms are simple pieces of sprue from the Bronco kit, the winglets were cut from 0.5mm styrene sheet.

 

For the cockpit donor, the AH-1’s front section was roughly built, including the engine section (which is a separate module, so that the basic kit can be sold with different engine sections), and then the helicopter hull was cut and trimmed down to match the original Bronco pod and to fit under the wing. This became more complicated than expected, because a) the AH-1 cockpit and the nose are considerably shorter than the OV-10s, b) the AH-1 fuselage is markedly taller than the Bronco’s and c) the engine section, which would end up in the area of the wing, features major recesses, making the surface very uneven – calling for massive PSR to even this out. PSR was also necessary to hide the openings for the Fujimi AH-1’s stub wings. Other issues: the front landing gear (and its well) had to be added, as well as the OV-10 wing stubs. Furthermore, the new cockpit pod’s rear section needed an aerodynamical end/fairing, but I found a leftover Academy OV-10 section from a build/kitbashing many moons ago. Perfect match!

All these challenges could be tackled, even though the AH-1 cockpit looks surprisingly stout and massive on the Bronco’s airframe - the result looks stockier than expected, but it works well for the "Gunship" theme. Lots of PSR went into the new central fuselage section, though, even before it was mated with the OV-10 wing and the rest of the model.

Once cockpit and wing were finally mated, the seams had to disappear under even more PSR and a spinal extension of the canopy had to be sculpted across the upper wing surface, which would meld with the pod’s tail in a (more or less) harmonious shape. Not an easy task, and the fairing was eventually sculpted with 2C putty, plus even more PSR… Looks quite homogenous, though.

 

After this massive body work, other hardware challenges appeared like small distractions. The landing gear was another major issue because the deeper AH-1 section lowered the ground clearance, also because of the chin turret. To counter this, I raised the OV-10’s main landing gear by ~2mm – not much, but it was enough to create a credible stance, together with the front landing gear transplant under the cockpit, which received an internal console to match the main landing gear’s length. Due to the chin turret and the shorter nose, the front wheel retracts backwards now. But this looks quite plausible, thanks to the additional space under the cockpit tub, which also made a belt feed for the gun’s ammunition supply believable.

To enhance the menacing look I gave the model a fixed refueling boom, made from 1mm steel wire and a receptor adapter sculpted with white glue. The latter stuff was also used add some antenna fairings around the hull. Some antennae, chaff dispensers and an IR decoy were taken from the Academy kit.

 

The ordnance came from various sources. The Sidewinders under the wing tips were taken from an Italeri F-16C/D kit, they look better than the missiles from the Academy Bronco kit. Their launch rails came from an Italeri Bae Hawk 200. The quadruple Hellfire launchers on the underwing hardpoints were left over from an Italeri AH-1W, and they are a perfect load for this aircraft and its role. The LAU-10 and -19 missile pods on the stub wings were taken from the OV-10 kit.

  

Painting and markings:

Finding a suitable and somewhat interesting – but still plausible – paint scheme was not easy. Taking the A-10 as benchmark, an overall light grey livery (with focus on low contrast against the sky as protection against ground fire) would have been a likely choice – and in fact the last operational American OV-10s were painted in this fashion. But in order to provide a different look I used the contemporary USAF V-22Bs and Special Operations MC-130s as benchmark, which typically carry a darker paint scheme consisting of FS 36118 (suitably “Gunship Gray” :D) from above, FS 36375 underneath, with a low, wavy waterline, plus low-viz markings. Not spectacular, but plausible – and very similar to the late r/w Colombian OV-10s.

The cockpit tub became Dark Gull Grey (FS 36231, Humbrol 140) and the landing gear white (Revell 301).

 

The model received an overall black ink washing and some post-panel-shading, to liven up the dull all-grey livery. The decals were gathered from various sources, and I settled for black USAF low-viz markings. The “stars and bars” come from a late USAF F-4, the “IP” tail code was tailored from F-16 markings and the shark mouth was taken from an Academy AH-64. Most stencils came from another Academy OV-10 sheet and some other sources.

Decals were also used to create the trim on the propeller blades and markings on the ordnance.

 

Finally, the model was sealed with a coat of matt acrylic varnish (Italeri) and some exhaust soot stains were added with graphite along the tail boom flanks.

  

A successful transplantation – but is this still a modified Bronco or already a kitbashing? The result looks quite plausible and menacing, even though the TOW Cobra front section appears relatively massive. But thanks to the bigger engines and extended wing tips the proportions still work. The large low-pressure tires look a bit goofy under the aircraft, but they are original. The grey livery works IMHO well, too – a more colorful or garish scheme would certainly have distracted from the modified technical basis.

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!

  

Some background:

The OV-10 Bronco was initially conceived in the early 1960s through an informal collaboration between W. H. Beckett and Colonel K. P. Rice, U.S. Marine Corps, who met at Naval Air Weapons Station China Lake, California, and who also happened to live near each other. The original concept was for a rugged, simple, close air support aircraft integrated with forward ground operations. At the time, the U.S. Army was still experimenting with armed helicopters, and the U.S. Air Force was not interested in close air support.

The concept aircraft was to operate from expedient forward air bases using roads as runways. Speed was to be from very slow to medium subsonic, with much longer loiter times than a pure jet. Efficient turboprop engines would give better performance than piston engines. Weapons were to be mounted on the centerline to get efficient aiming. The inventors favored strafing weapons such as self-loading recoilless rifles, which could deliver aimed explosive shells with less recoil than cannons, and a lower per-round weight than rockets. The airframe was to be designed to avoid the back blast.

 

Beckett and Rice developed a basic platform meeting these requirements, then attempted to build a fiberglass prototype in a garage. The effort produced enthusiastic supporters and an informal pamphlet describing the concept. W. H. Beckett, who had retired from the Marine Corps, went to work at North American Aviation to sell the aircraft.

The aircraft's design supported effective operations from forward bases. The OV-10 had a central nacelle containing a crew of two in tandem and space for cargo, and twin booms containing twin turboprop engines. The visually distinctive feature of the aircraft is the combination of the twin booms, with the horizontal stabilizer that connected them at the fin tips. The OV-10 could perform short takeoffs and landings, including on aircraft carriers and large-deck amphibious assault ships without using catapults or arresting wires. Further, the OV-10 was designed to take off and land on unimproved sites. Repairs could be made with ordinary tools. No ground equipment was required to start the engines. And, if necessary, the engines would operate on high-octane automobile fuel with only a slight loss of power.

 

The aircraft had responsive handling and could fly for up to 5½ hours with external fuel tanks. The cockpit had extremely good visibility for both pilot and co-pilot, provided by a wrap-around "greenhouse" that was wider than the fuselage. North American Rockwell custom ejection seats were standard, with many successful ejections during service. With the second seat removed, the OV-10 could carry 3,200 pounds (1,500 kg) of cargo, five paratroopers, or two litter patients and an attendant. Empty weight was 6,969 pounds (3,161 kg). Normal operating fueled weight with two crew was 9,908 pounds (4,494 kg). Maximum takeoff weight was 14,446 pounds (6,553 kg).

The bottom of the fuselage bore sponsons or "stub wings" that improved flight performance by decreasing aerodynamic drag underneath the fuselage. Normally, four 7.62 mm (.308 in) M60C machine guns were carried on the sponsons, accessed through large forward-opening hatches. The sponsons also had four racks to carry bombs, pods, or fuel. The wings outboard of the engines contained two additional hardpoints, one per side. Racked armament in the Vietnam War was usually seven-shot 2.75 in (70 mm) rocket pods with white phosphorus marker rounds or high-explosive rockets, or 5" (127 mm) four-shot Zuni rocket pods. Bombs, ADSIDS air-delivered/para-dropped unattended seismic sensors, Mk-6 battlefield illumination flares, and other stores were also carried.

Operational experience showed some weaknesses in the OV-10's design. It was significantly underpowered, which contributed to crashes in Vietnam in sloping terrain because the pilots could not climb fast enough. While specifications stated that the aircraft could reach 26,000 feet (7,900 m), in Vietnam the aircraft could reach only 18,000 feet (5,500 m). Also, no OV-10 pilot survived ditching the aircraft.

 

The OV-10 served in the U.S. Air Force, U.S. Marine Corps, and U.S. Navy, as well as in the service of a number of other countries. In U.S. military service, the Bronco was operated until the early Nineties, and obsoleted USAF OV-10s were passed on to the Bureau of Alcohol, Tobacco, and Firearms for anti-drug operations. A number of OV-10As furthermore ended up in the hands of the California Department of Forestry (CDF) and were used for spotting fires and directing fire bombers onto hot spots.

 

This was not the end of the OV-10 in American military service, though: In 2012, the type gained new attention because of its unique qualities. A $20 million budget was allocated to activate an experimental USAF unit of two airworthy OV-10Gs, acquired from NASA and the State Department. These machines were retrofitted with military equipment and were, starting in May 2015, deployed overseas to support Operation “Inherent Resolve”, flying more than 120 combat sorties over 82 days over Iraq and Syria. Their concrete missions remained unclear, and it is speculated they provided close air support for Special Forces missions, esp. in confined urban environments where the Broncos’ loitering time and high agility at low speed and altitude made them highly effective and less vulnerable than helicopters.

Furthermore, these Broncos reputedly performed strikes with the experimental AGR-20A “Advanced Precision Kill Weapons System (APKWS)”, a Hydra 70-millimeter rocket with a laser-seeking head as guidance - developed for precision strikes against small urban targets with little collateral damage. The experiment ended satisfactorily, but the machines were retired again, and the small unit was dissolved.

 

However, the machines had shown their worth in asymmetric warfare, and the U.S. Air Force decided to invest in reactivating the OV-10 on a regular basis, despite the overhead cost of operating an additional aircraft type in relatively small numbers – but development and production of a similar new type would have caused much higher costs, with an uncertain time until an operational aircraft would be ready for service. Re-activating a proven design and updating an existing airframe appeared more efficient.

The result became the MV-10H, suitably christened “Super Bronco” but also known as “Black Pony”, after the program's internal name. This aircraft was derived from the official OV-10X proposal by Boeing from 2009 for the USAF's Light Attack/Armed Reconnaissance requirement. Initially, Boeing proposed to re-start OV-10 manufacture, but this was deemed uneconomical, due to the expected small production number of new serial aircraft, so the “Black Pony” program became a modernization project. In consequence, all airframes for the "new" MV-10Hs were recovered OV-10s of various types from the "boneyard" at Davis-Monthan Air Force Base in Arizona.

 

While the revamped aircraft would maintain much of its 1960s-vintage rugged external design, modernizations included a completely new, armored central fuselage with a highly modified cockpit section, ejection seats and a computerized glass cockpit. The “Black Pony” OV-10 had full dual controls, so that either crewmen could steer the aircraft while the other operated sensors and/or weapons. This feature would also improve survivability in case of incapacitation of a crew member as the result from a hit.

The cockpit armor protected the crew and many vital systems from 23mm shells and shrapnel (e. g. from MANPADS). The crew still sat in tandem under a common, generously glazed canopy with flat, bulletproof panels for reduced sun reflections, with the pilot in the front seat and an observer/WSO behind. The Bronco’s original cargo capacity and the rear door were retained, even though the extra armor and defensive measures like chaff/flare dispensers as well as an additional fuel cell in the central fuselage limited the capacity. However, it was still possible to carry and deploy personnel, e. g. small special ops teams of up to four when the aircraft flew in clean configuration.

Additional updates for the MV-10H included structural reinforcements for a higher AUW and higher g load maneuvers, similar to OV-10D+ standards. The landing gear was also reinforced, and the aircraft kept its ability to operate from short, improvised airstrips. A fixed refueling probe was added to improve range and loiter time.

 

Intelligence sensors and smart weapon capabilities included a FLIR sensor and a laser range finder/target designator, both mounted in a small turret on the aircraft’s nose. The MV-10H was also outfitted with a data link and the ability to carry an integrated targeting pod such as the Northrop Grumman LITENING or the Lockheed Martin Sniper Advanced Targeting Pod (ATP). Also included was the Remotely Operated Video Enhanced Receiver (ROVER) to provide live sensor data and video recordings to personnel on the ground.

 

To improve overall performance and to better cope with the higher empty weight of the modified aircraft as well as with operations under hot-and-high conditions, the engines were beefed up. The new General Electric CT7-9D turboprop engines improved the Bronco's performance considerably: top speed increased by 100 mph (160 km/h), the climb rate was tripled (a weak point of early OV-10s despite the type’s good STOL capability) and both take-off as well as landing run were almost halved. The new engines called for longer nacelles, and their circular diameter markedly differed from the former Garrett T76-G-420/421 turboprop engines. To better exploit the additional power and reduce the aircraft’s audio signature, reversible contraprops, each with eight fiberglass blades, were fitted. These allowed a reduced number of revolutions per minute, resulting in less noise from the blades and their tips, while the engine responsiveness was greatly improved. The CT7-9Ds’ exhausts were fitted with muzzlers/air mixers to further reduce the aircraft's noise and heat signature.

Another novel and striking feature was the addition of so-called “tip sails” to the wings: each wingtip was elongated with a small, cigar-shaped fairing, each carrying three staggered, small “feather blade” winglets. Reputedly, this installation contributed ~10% to the higher climb rate and improved lift/drag ratio by ~6%, improving range and loiter time, too.

Drawing from the Iraq experience as well as from the USMC’s NOGS test program with a converted OV-10D as a night/all-weather gunship/reconnaissance platform, the MV-10H received a heavier gun armament: the original four light machine guns that were only good for strafing unarmored targets were deleted and their space in the sponsons replaced by avionics. Instead, the aircraft was outfitted with a lightweight M197 three-barrel 20mm gatling gun in a chin turret. This could be fixed in a forward position at high speed or when carrying forward-firing ordnance under the stub wings, or it could be deployed to cover a wide field of fire under the aircraft when it was flying slower, being either slaved to the FLIR or to a helmet sighting auto targeting system.

The original seven hardpoints were retained (1x ventral, 2x under each sponson, and another pair under the outer wings), but the total ordnance load was slightly increased and an additional pair of launch rails for AIM-9 Sidewinders or other light AAMs under the wing tips were added – not only as a defensive measure, but also with an anti-helicopter role in mind; four more Sidewinders could be carried on twin launchers under the outer wings against aerial targets. Other guided weapons cleared for the MV-10H were the light laser-guided AGR-20A and AGM-119 Hellfire missiles, the Advanced Precision Kill Weapon System upgrade to the light Hydra 70 rockets, the new Laser Guided Zuni Rocket which had been cleared for service in 2010, TV-/IR-/laser-guided AGM-65 Maverick AGMs and AGM-122 Sidearm anti-radar missiles, plus a wide range of gun and missile pods, iron and cluster bombs, as well as ECM and flare/chaff pods, which were not only carried defensively, but also in order to disrupt enemy ground communication.

 

In this configuration, a contract for the conversion of twelve mothballed American Broncos to the new MV-10H standard was signed with Boeing in 2016, and the first MV-10H was handed over to the USAF in early 2018, with further deliveries lasting into early 2020. All machines were allocated to the newly founded 919th Special Operations Support Squadron at Duke Field (Florida). This unit was part of the 919th Special Operations Wing, an Air Reserve Component (ARC) of the United States Air Force. It was assigned to the Tenth Air Force of Air Force Reserve Command and an associate unit of the 1st Special Operations Wing, Air Force Special Operations Command (AFSOC). If mobilized the wing was gained by AFSOC (Air Force Special Operations Command) to support Special Tactics, the U.S. Air Force's special operations ground force. Similar in ability and employment to Marine Special Operations Command (MARSOC), U.S. Army Special Forces and U.S. Navy SEALs, Air Force Special Tactics personnel were typically the first to enter combat and often found themselves deep behind enemy lines in demanding, austere conditions, usually with little or no support.

 

The MV-10Hs are expected to provide support for these ground units in the form of all-weather reconnaissance and observation, close air support and also forward air control duties for supporting ground units. Precision ground strikes and protection from enemy helicopters and low-flying aircraft were other, secondary missions for the modernized Broncos, which are expected to serve well into the 2040s. Exports or conversions of foreign OV-10s to the Black Pony standard are not planned, though.

  

General characteristics:

Crew: 2

Length: 42 ft 2½ in (12,88 m) incl. pitot

Wingspan: 45 ft 10½ in(14 m) incl. tip sails

Height: 15 ft 2 in (4.62 m)

Wing area: 290.95 sq ft (27.03 m²)

Airfoil: NACA 64A315

Empty weight: 9,090 lb (4,127 kg)

Gross weight: 13,068 lb (5,931 kg)

Max. takeoff weight: 17,318 lb (7,862 kg)

 

Powerplant:

2× General Electric CT7-9D turboprop engines, 1,305 kW (1,750 hp) each,

driving 8-bladed Hamilton Standard 8 ft 6 in (2.59 m) diameter constant-speed,

fully feathering, reversible contra-rotating propellers with metal hub and composite blades

 

Performance:

Maximum speed: 390 mph (340 kn, 625 km/h)

Combat range: 198 nmi (228 mi, 367 km)

Ferry range: 1,200 nmi (1,400 mi, 2,200 km) with auxiliary fuel

Maximum loiter time: 5.5 h with auxiliary fuel

Service ceiling: 32.750 ft (10,000 m)

13,500 ft (4.210 m) on one engine

Rate of climb: 17.400 ft/min (48 m/s) at sea level

Take-off run: 480 ft (150 m)

740 ft (227 m) to 50 ft (15 m)

1,870 ft (570 m) to 50 ft (15 m) at MTOW

Landing run: 490 ft (150 m)

785 ft (240 m) at MTOW

1,015 ft (310 m) from 50 ft (15 m)

 

Armament:

1x M197 3-barreled 20 mm Gatling cannon in a chin turret with 750 rounds ammo capacity

7x hardpoints for a total load of 5.000 lb (2,270 kg)

2x wingtip launch rails for AIM-9 Sidewinder AAMs

  

The kit and its assembly:

This fictional Bronco update/conversion was simply spawned by the idea: could it be possible to replace the original cockpit section with one from an AH-1 Cobra, for a kind of gunship version?

 

The basis is the Academy OV-10D kit, mated with the cockpit section from a Fujimi AH-1S TOW Cobra (Revell re-boxing, though), chosen because of its “boxy” cockpit section with flat glass panels – I think that it conveys the idea of an armored cockpit section best. Combining these parts was not easy, though, even though the plan sound simple. Initially, the Bronco’s twin booms, wings and stabilizer were built separately, because this made PSR on these sections easier than trying the same on a completed airframe. One of the initial challenges: the different engines. I wanted something uprated, and a different look, and I had a pair of (excellent!) 1:144 resin engines from the Russian company Kompakt Zip for a Tu-95 bomber at hand, which come together with movable(!) eight-blade contraprops that were an almost perfect size match for the original three-blade props. Biggest problem: the Tu-95 nacelles have a perfectly circular diameter, while the OV-10’s booms are square and rectangular. Combining these parts and shapes was already a messy PST affair, but it worked out quite well – even though the result rather reminds of some Chinese upgrade measure (anyone know the Tu-4 copies with turboprops? This here looks similar!). But while not pretty, I think that the beafier look works well and adds to the idea of a “revived” aircraft. And you can hardly beat the menacing look of contraprops on anything...

The exotic, so-called “tip sails” on the wings, mounted on short booms, are a detail borrowed from the Shijiazhuang Y-5B-100, an updated Chinese variant/copy of the Antonov An-2 biplane transporter. The booms are simple pieces of sprue from the Bronco kit, the winglets were cut from 0.5mm styrene sheet.

 

For the cockpit donor, the AH-1’s front section was roughly built, including the engine section (which is a separate module, so that the basic kit can be sold with different engine sections), and then the helicopter hull was cut and trimmed down to match the original Bronco pod and to fit under the wing. This became more complicated than expected, because a) the AH-1 cockpit and the nose are considerably shorter than the OV-10s, b) the AH-1 fuselage is markedly taller than the Bronco’s and c) the engine section, which would end up in the area of the wing, features major recesses, making the surface very uneven – calling for massive PSR to even this out. PSR was also necessary to hide the openings for the Fujimi AH-1’s stub wings. Other issues: the front landing gear (and its well) had to be added, as well as the OV-10 wing stubs. Furthermore, the new cockpit pod’s rear section needed an aerodynamical end/fairing, but I found a leftover Academy OV-10 section from a build/kitbashing many moons ago. Perfect match!

All these challenges could be tackled, even though the AH-1 cockpit looks surprisingly stout and massive on the Bronco’s airframe - the result looks stockier than expected, but it works well for the "Gunship" theme. Lots of PSR went into the new central fuselage section, though, even before it was mated with the OV-10 wing and the rest of the model.

Once cockpit and wing were finally mated, the seams had to disappear under even more PSR and a spinal extension of the canopy had to be sculpted across the upper wing surface, which would meld with the pod’s tail in a (more or less) harmonious shape. Not an easy task, and the fairing was eventually sculpted with 2C putty, plus even more PSR… Looks quite homogenous, though.

 

After this massive body work, other hardware challenges appeared like small distractions. The landing gear was another major issue because the deeper AH-1 section lowered the ground clearance, also because of the chin turret. To counter this, I raised the OV-10’s main landing gear by ~2mm – not much, but it was enough to create a credible stance, together with the front landing gear transplant under the cockpit, which received an internal console to match the main landing gear’s length. Due to the chin turret and the shorter nose, the front wheel retracts backwards now. But this looks quite plausible, thanks to the additional space under the cockpit tub, which also made a belt feed for the gun’s ammunition supply believable.

To enhance the menacing look I gave the model a fixed refueling boom, made from 1mm steel wire and a receptor adapter sculpted with white glue. The latter stuff was also used add some antenna fairings around the hull. Some antennae, chaff dispensers and an IR decoy were taken from the Academy kit.

 

The ordnance came from various sources. The Sidewinders under the wing tips were taken from an Italeri F-16C/D kit, they look better than the missiles from the Academy Bronco kit. Their launch rails came from an Italeri Bae Hawk 200. The quadruple Hellfire launchers on the underwing hardpoints were left over from an Italeri AH-1W, and they are a perfect load for this aircraft and its role. The LAU-10 and -19 missile pods on the stub wings were taken from the OV-10 kit.

  

Painting and markings:

Finding a suitable and somewhat interesting – but still plausible – paint scheme was not easy. Taking the A-10 as benchmark, an overall light grey livery (with focus on low contrast against the sky as protection against ground fire) would have been a likely choice – and in fact the last operational American OV-10s were painted in this fashion. But in order to provide a different look I used the contemporary USAF V-22Bs and Special Operations MC-130s as benchmark, which typically carry a darker paint scheme consisting of FS 36118 (suitably “Gunship Gray” :D) from above, FS 36375 underneath, with a low, wavy waterline, plus low-viz markings. Not spectacular, but plausible – and very similar to the late r/w Colombian OV-10s.

The cockpit tub became Dark Gull Grey (FS 36231, Humbrol 140) and the landing gear white (Revell 301).

 

The model received an overall black ink washing and some post-panel-shading, to liven up the dull all-grey livery. The decals were gathered from various sources, and I settled for black USAF low-viz markings. The “stars and bars” come from a late USAF F-4, the “IP” tail code was tailored from F-16 markings and the shark mouth was taken from an Academy AH-64. Most stencils came from another Academy OV-10 sheet and some other sources.

Decals were also used to create the trim on the propeller blades and markings on the ordnance.

 

Finally, the model was sealed with a coat of matt acrylic varnish (Italeri) and some exhaust soot stains were added with graphite along the tail boom flanks.

  

A successful transplantation – but is this still a modified Bronco or already a kitbashing? The result looks quite plausible and menacing, even though the TOW Cobra front section appears relatively massive. But thanks to the bigger engines and extended wing tips the proportions still work. The large low-pressure tires look a bit goofy under the aircraft, but they are original. The grey livery works IMHO well, too – a more colorful or garish scheme would certainly have distracted from the modified technical basis.

2 4 5 6 7 ••• 59 60