View allAll Photos Tagged EFFICIENT
Quick visual representation of the difference between be efficient and be effective.
Efficient: you have managed your time well, but we don't know if you have achieved your purpose. Effective: you have achieved your purpose, but we don't know how you have managed your time.
Heading down the A82 on the 926 to Glasgow is West Coast Motors 12310, one of the recent batch of Irizar i6s efficient integrals.
This coach wasn't tracking at all.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The "Entwicklung" tank series (= "development"), more commonly known as the E-Series, was a late-World War II attempt by Germany to produce a standardized series of tank designs. There were to be six standard designs in different weight classes, from which several specialized variants were to be developed. This intended to reverse the trend of extremely complex tank designs that had resulted in poor production rates and mechanical unreliability.
The E-series designs were simpler, cheaper to produce and more efficient than their predecessors; however, their design offered only modest improvements in armor and firepower over the designs they were intended to replace, such as the Jagdpanzer 38(t), Panther Ausf. G or Tiger II. However, the resulting high degree of standardization of German armored vehicles would also have made logistics and maintenance easier. Indeed, nearly all E-series vehicles — up through and including the E-75 — were intended to use what were essentially the Tiger II's 80 cm (31½ in) diameter, steel-rimmed road wheels for their suspension, meant to overlap each other (as on the later production Tiger I-E and Panther designs that also used them), even though in a highly simplified fashion. For instance, while the E-50/75’s running gear resembled outwardly the Tiger II’s, the latter’s torsion bar suspension, which necessitated a complex hull with many openings, was replaced by very compact conical spring coil packages that each held a pair of interleaved road wheels – with the benefit that all suspension elements remained outside of the hull. This considerably simplified production and saved time as well as scarce material.
Focus of initial chassis and combat vehicle development was the E-50/75 Standardpanzer, designed by Adler. These were two mostly identical vehicles and only differed in armor thickness, overall weight and running gear design to cope with the different weights. While the E-50 was the standardized replacement for the medium PzKpfw. V “Panther” and the last operational PzKpfw. VI “Tiger”, with an operational weight of around 50 tons, the E-75 was intended to become the standard heavy tank in the 70 ton class, as a replacement for the Tiger II battle tank and the Jagdtiger SPG. They were to share many components, including the same Maybach HL 234 engine with up to 900 hp output and the drivetrain, as well as running gear elements and almost all peripheral equipment. Both E-50 and E-75 were built on the same production lines for ease of manufacture.
This universal tank chassis would, beyond the primary use for battle tanks, also become the basis for a wide range of specialized support vehicles like self-propelled artillery, assault guns, tank hunters and anti-aircraft weapon carriers, which would gradually replace and standardize the great variety of former support vehicles, dramatically optimizing maintenance and logistics.
The E-50/75 SPAAG sub-family itself was quite diversified and comprised a wide range of vehicles that mainly carried different turrets with the respective weaponry as well as air space surveillance, targeting and command equipment. The range of armament included not only guns of various calibers for short, medium and long range in armored and mostly fully enclosed turrets, there were furthermore armored launch ramps for anti-aircraft missiles, including the guided “Rheintochter”, “Wasserfall” or “Enzian” SAMs as well as batteries with unguided “Taifun” anti-aircraft missiles.
Among this new vehicle family, the heaviest gun that was carried in a fully enclosed turret was the Rheinmetall 8.8 cm Flak 41. This was an improved version of the powerful pre-war 8.8 cm Flak 36/37 that was also developed into an anti-tank gun and became the main armament for Germany’s heavy battle tanks like the Tiger I: the 8.8 cm PaK 43 and KwK 43, respectively.
The 8.8 cm Flak 41 was a mobile field weapon on a new pedestal mounting that lowered its silhouette, and it used a longer barrel and a longer 88 mm cartridge with an increased propellant load. The shells had a weight of 9.4-kilogram (20 lb) and achieved a muzzle velocity of 1,000 m/s (3,280 ft/s), giving the gun an effective ceiling of 11,300 meters (37,100 ft) and a maximum of 14,700 meters (48,200 ft). The barrel initially consisted of three sections and had a length of 74 calibers but was then redesigned to a simpler dual-section barrel with a length of 72 calibers, for easier manufacture. Improvements in reloading raised the manual firing rate, with 20 to 25 rounds a minute being quoted. The Flak 41 could also be used against ground targets and was able to penetrate about 200 mm (7.9 inches) of armor at 1,000 m (3,280 feet), allowing it to defeat the armor of any contemporary tank from a relatively safe distance. Because of the high cost and complexity of this weapon, however, Rheinmetall manufactured relatively few of them, 556 in all. 399 were fielded, the rest went into SPAAG production.
The new pedestal mounting made it easy to adapt the weapon to a vehicle, so that this formidable weapon was immediately earmarked to be combined with a tank chassis to improve its mobility. Since an SPAAG would not need the massive frontal armor of a battle tank, the hull from the lighter E-50 was used (which still had a maximum armor thickness of 60mm at the front at 30°, which was effectively 120 mm vs. the E-75’s 185 mm), but instead of the E-50 MBT’s running gear with six steel wheels per side, the Flak 41 SPAAG used the heavier E-75’s running gear with eight wheels per side and wider tracks, effectively creating a hybrid E-50/75 chassis. This measure was taken to better distribute the vehicle’s overall weight and stabilize the it while moving and firing. In this form the new vehicle received the designation Sd.Kfz. 192/3, also known as “Einheits-Flakpanzer E-50 (88 mm)” or “E-50-41” for short.
The Flak 41 was integrated into Rheinmetall’s standardized SPAAG turret that could carry a wide range of automatic anti-aircraft weapons. It was a spacious, boxy design, optimized for maximum internal space than for effective armor protection, resulting in almost vertical side walls and a high silhouette. However, the level of armor was sufficient to protect the crew and the equipment inside from 20 mm gun shells – the typical armament of Allied fighter bombers of the time like the Hawker Typhoon and Tempest.
A heavy-duty hydraulic gun mount with a reinforced recoil system allowed an elevation of the Flak 41 between +83° and -3°. As a novel feature the weapon received a semi-automatic loading mechanism. This was the attempt to increase the gun’s excellent manual rate of fire even further, and it mimicked the magazine clips of the smaller 37 mm Flak 37 that contained seven rounds for short, continuous bursts of fire. A belt feed for truly continuous fire had been envisioned, but not possible with the long and heavy 88 mm rounds within the turret and chassis limits. A mechanical magazine solution, e. g. a drum with several rounds, was impossible, too. The most practical solution was a spiral-shaped magazine, driven by simple gravitation and directly attached to the Flak 41’s breech. This feeding could – beyond an initial round already in the barrel – hold up to three more rounds, and upon firing and expelling the empty case, a fresh round automatically fell into place. The rounds from the magazine could be fired in a fully automatic mode in a short burst with a rate of 50-55 RPM. The magazine itself had to be filled manually, though, and the gun could alternatively be fed directly, too, so that different types of ammunition could be prepared and the gunner could switch between them on short notice.
To accommodate the weapon’s longer ammunition (the Flak 41’s cartridge was 855 mm long) and a crew of four (commander, gunner and two loaders), the standard Rheinmetall Flak turret had to be extended at the rear. Anti-aircraft aiming was done visually, a stereoscopic rangefinder with a span of 200 cm (78¾ in) was integrated above the gun mount. A secondary ZF.20 scope for ground targets was available, too. Two more crewmen, the driver and a radio operator, sat in the hull in front of the turret, similar to the E-50/75 battle tank’s layout. The radio operator on the right side also acted as a third loader for the ammunition supply stored in the hull’s front.
Initially, no secondary defensive armament was provided since the new SPAAGs were to be operated in specialized anti-aircraft units, the so-called Fla-Züge, in which the SPAAGs’ protection would be taken over by supporting infantry and other dedicated vehicles. However, initial field experience quickly revealed this weak spot in the vehicle’s close-range defense: due to material and personnel shortages the Fla-Züge units could hardly be equipped with everything they needed to operate as planned, so that they were in most cases just an underserved mix of SPAAGs, occasionally augmented by a command vehicle and rarely with the protection these specialized vehicles needed. Most of the time the units’ vehicles had to operate independently and were therefore left to their own devices. As a solution, a commander cupola was soon added to the Sd. Kfz.192/3’s turret that not only improved the field of view around the vehicle to assess the tactical situation and detect approaching infantrymen that tried to attach mines or throw Molotov cocktails, it also featured a remote-controlled MG 42 that could be aimed and fired by the commander from the inside. However, to re-supply the ammunition, the cupola hatch had to be opened and someone had to leave the turret’s cover and manually insert a new box of rounds. Furthermore, a 100 mm grenade launcher, a so-called “Nahverteidigungswaffe”, was mounted into the opposite side of the turret roof, too. It fired SMi 35 leaping mines for close defense against approaching infantry. This made the cramped turret interior even more cluttered, but significantly improved the vehicle’s survivability, especially in a confined, urban combat environment. Updated vehicles reached the frontline units in late 1945 and were immediately thrown into service.
Despite being a powerful weapon, several operational problems with the Sd.Kfz. 192/3 became soon apparent. The complex Flak 41 and its feeding mechanism needed constant proper maintenance and service – otherwise it easily jammed. Spent shell casing also frequently jammed the gun. The high silhouette was an innate tactical problem, but this had already been accepted during the design phase of Rheinmetall’s SPAAG standard turret. However, the tall turret was the source of an additional conceptual weakness of the Sd.Kfz. 192/3: the sheer weight of the large turret with the heavy gun frequently caused imbalances that overstressed the turret bearing and its electric drive (which had been taken over from the E-50/75 battle tanks), resulting in a jammed turret — especially when either fully loaded or when the ammunition supply was depleted. Due to the large and heavy turret, the vehicle’s center of gravity was relatively high, too, so that its off-road handling was limited. Even on paved roads the early Sd.Kfz. 192/3s tended to porpoise in tight corners and upon braking. Stiffer coil springs, introduced during the running production and retrofitted through field kits to existing vehicles, countered this flaw, even though these kits were rare due to material shortages. Sometimes the harder coil springs were distributed between two vehicles, only replacing the suspension on the front and rear pair of wheels.
A different tactical problem was the limited ammunition supply for the Flak 41. While 57 rounds were sufficient for a comparable battle tank, the semi-automatic Flak 41‘s theoretical high rate of fire meant that the Sd.Kfz. 192/3 quickly depleted this supply and could only keep up fire and its position for a very limited period, or it had to save ammunition to a point that its deployment became pointless. After spending its ammunition, the vehicle had to retreat to a safe second line position to re-supply, and this was, due to the vehicle’s limited mobility, size and the heavy and bulky rounds, a risky undertaking and meant tedious manual labor with poor protection for the supply crews. The resulting supply logistics to keep the Sd.Kfz. 192/3 operational and effective were demanding.
Nevertheless, despite these shortcoming, the Sd.Kfz. 192/3 greatly improved the heavy Flak units’ mobility and firepower, and the weapon’s effectiveness was high against both air and ground targets. Until mid-1946, a total of around forty Sd.Kfz. 192/3 were built and put into service, primarily with units that defended vital production sites in Western Germany and Saxonia.
At the time of the Sd.Kfz. 192/3’s introduction, anti-aircraft aiming was already augmented by mobile radar systems like the “Würzburg” device or special command vehicles like the Sd.Kfz. 282 “Basilisk” which combined an autonomous radar system with a powerful visual rangefinder and an integrated analogue range calculator, the Kommandogerät 40. However, fire control development had continued, and at least one Sd.Kfz. 192/3 was used in late 1946 during trials to fully automatize gun aiming and firing remotely through electric drives through “slaving” a turret to an external director. This was a modified Sd.Kfz. 282/1 that successfully controlled the Sd.Kfz. 192/3 via cable from an elevated location 50 m away from the SPAAG’s firing position. The objective of these trials was to connect several anti-aircraft weapons to a single command unit with improved sensors and high accuracy under any weather condition for concentrated and more effective fire and an improved first shot hit probability.
Specifications:
Crew: Sixe (commander, gunner, two loaders, radio operator, driver)
Weight: 64 tonnes (71 short tons)
Length: 7.27 m (23 ft 10 ¾ in) (hull only)
9.57 m (31 ft 4 ½ in) with gun forward
Width: 3.88 m (12 ft 9 in)
Height 3.46 m (11 ft 4 in)
3.81 m (12 ft 6 in) with commander cupola
Ground clearance: 495 to 510 mm (1 ft 7.5 in to 1 ft 8.1 in)
Suspension: Conical spring
Fuel capacity: 720 liters (160 imp gal; 190 US gal)
Armor:
30 – 60 mm (1.2 – 2.4 in)
Performance:
Speed
- Maximum, road: 44 km/h (27.3 mph)
- Sustained, road: 38 km/h (24 mph)
- Cross country: 15 to 20 km/h (9.3 to 12.4 mph)
Operational range: 160 km (99 miles)
Power/weight: 14 PS/tonne (12.5 hp/ton)
Engine:
V-12 Maybach HL 234 gasoline engine with 900 PS (885 hp/650 kW)
Transmission:
ZF AK 7-200 with 7 forward 1 reverse gears
Armament:
1× 8,8 cm Flak 41 L/72 anti-aircraft cannon with 57 rounds in turret and hull
1× 7.92 mm Maschinengewehr 42 with 2.400 rounds, remote-controlled on the commander cupola
The kit and its assembly:
This fictional German SPAAG never existed, not even on the drawing boards. But I wondered, after ModelCollect had released an E-100 SPAAG with a twin 88mm gun some years ago, why there was no lighter vehicle with the powerful 88 mm Flak in a closed turret? There were plans to mount this weapon onto a tracked chassis in real life, but it would have been only lightly armored. Then I recently came across a whiffy aftermarket resin turret with a single 88 mm Flak, based on the Tiger II’s Porsche turret, and I liked the idea – even though the rather MBT-esque aftermarket turret looked rather dubious and too small for my taste – esp. the potential angle of the AA weapon appeared insufficient. From this basis the idea was born to create a personal interpretation of a Flak 41 in a fully enclosed turret on a tank chassis.
The basis became the Trumpeter 1:72 E-75 kit of the twin 55 mm Flak with its boxy turret. While I initially considered a totally different turret shape, I eventually settled on a generic design that would have been used for a variety of weapons. This appeared more realistic to me and so I stuck to the Rheinmetall AA turret. However, due to the heavy weapon its certainly massive mount and bulky recoil system as well as the long rounds and a crew of four, I decided to enlarge the Rheinmetall turret. The turret was cut into a front and rear half and an 8 mm wide plug, made from 1.5 mm styrene sheet, was implanted and PSRed. To keep the turret rotatable, the rear extension had to be raised, so that the “oriel” could move over the air intake fairings on the engine cover.
Due to the longer roof, some details were modified there. The most obvious addition is a commander cupola on the left, taken from an early Panzer IV, together with a MG 42 and a small shield on a swing arm, inspired by the remote-controlled installation on some Jagdpanzer 38(t) Hetzer. A stereoscopic rangefinder was added to the turret flanks and a periscope added to one of the loader’s hatches. A cover for a ventilator was added on the right side of the roof, together with a cover for a vertical grenade launcher underneath.
Using the original turret as base, the model’s movable mount for the twin 55 mm guns was retained and the rear extension would also become a good visual balance for the new main weapon. The armor at barrels’ base was cut off and a 1:72 Flak 41, taken from a Zvezda field gun kit, was glued to it, together with parts of the field gun’s recoil system and styrene bits to blend the new gun into the rest of the turret.
The E-75 chassis was taken OOB, since it would be a standardized vehicle basis. Outwardly the hull did not bear recognizable differences to the lighter E-50, which it is supposed to represent, just with more wheels to better cope with the bulky and heavy new turret.
Thankfully, this Trumpeter kit’s vinyl tracks were molded in black – sometimes they come in a sandy beige, and it’s a PITA to paint them! As another bonus, Trumpeter’s running gear on the 1:72 E-50/75 model is of a more sturdy and simpler construction than the one on the alternative ModelCollect kit(s), making the assembly and esp. the mounting of the tracks much easier. The Trumpeter kit is simpler than the comparable ModelCollect models with the E-50/75 basis, but the result is visually quite similar.
Painting and markings:
The paint scheme uses once more typical German late WWII "Hinterhalt" camouflage colors, namely Dark Yellow, Olive Green and Red Brown. This time, however, to adapt the livery to the boxy hull and the huge turret, the pattern ended up as a kind of a splinter scheme – inspired by a real Panzer V Panther from the Eastern Front in 1943.
The basic colors became Humbrol 57 (Buff) for the RAL 7028 Dunkelgelb, in this case as a rather pale (stretched?) shade, plus large areas of brown (RAL 8017, I used this time Humbrol 98 for a darker and less reddish shade) and Humbrol 86 for the green (RAL 6003), which appears quite pale in contrast to the dark brown. The camouflage was applied over an overall coat of sand brown as a primer coat, with the intention of letting this uniform basis shine through here and there. The distribution of the darker colors is quite unique, concentrating the brown on the vehicle’s edges and the green only to the flanks of hull and turret. However, the pattern works well on the huge E-50/75, and I can imagine that it might have worked well in an urban environment, breaking up the tank’s outlines.
As a match for the upper hull the wheels were painted uniformly in the same standard colors –without any pattern, because this would be very eye-catching while on the move. The many delicate tools on the tank’s hull are molded, and instead of trying to paint them I tried something else: I rubbed over them with graphite, and this worked very well, leaving them with a dark metallic shine. Just some wooden handles were then painted with a reddish brown.
Decals/marking came next, everything was procured from the scrap box. The Balkenkreuze came from a Hasegawa Sd.Kfz. 234/2 “Puma”, the tactical code from a TL-Modellbau sheet and the small unit badges on front and back from an UM Models Bergehetzer. A dry brushing treatment with light grey followed, highlighting surface details and edges, and after painting some details and adding some rust marks with watercolors followed a coat of matt varnish.
The tracks were painted with a cloudy mix of dark grey, red brown and iron acrylic paints, and mounted after hull and running gear had been assembled. The antennae, made from heated spure material, were mounted to the turret and, finally, the tank’s lower areas were dusted with a greyish-brown mineral pigment mix, simulating dust and mud residue.
This project was realized in just two days, made easy through the Trumpeter kit’s simple construction. Most work went into the extended turret and the different main weapon, but all parts mostly fell into place – and the result looks IMHO quite believable. In fact, the E-50/75 with a Flak 41 reminds a bit of the Italian Otomatic 76 mm SPAAG from the late Eighties?
Energy efficient ('off the grid') Southern Vermont home features:
Electricity generation
2 turbine windmills
2 kinds of solar panels (rigid and amorphous/strips)
Heating/Water
Russian stove (closed chamber wood stove, thermal mass heating system)
solar water heating panels
gas powered radiant heating in the floor.
Low Energy Lighting & Appliances
Because of careful selection of lighting and appliances, the house is able to run within its energy budget almost all of the time.
After 2 years of running completely off-grid (with backup gasoline generator), we installed electricity (a "grid tie"), mostly used to feed excess capacity back into the grid.
Hints and Links on home energy consumption:
There are 2 ways to decrease home energy use.
1. Reduce power consumption.
2. Install a renewable energy system
The first can be as simple as replacing high usage incandescent bulbs with new compact flourescent bulbs and lighting fixtures. Around here, you can buy these products at a discount thru programs sponsored by the electric company (NStar).
Another good idea is replacing old appliances with newer energy efficient models.
There is a lot of information about energy saving here :
www1.eere.energy.gov/consumer/tips/
If you are interested in solar energy or other sustainable energy generation technologies, I suggest taking a look at www.homepower.com/ a magazine dedicated to "home-scale renewable energy and sustainable living".
This site has an overview article on Renewable Energy which is relatively short and clear. www.homepower.com/files/featured/HP116_pp46-50_Casale.pdf
Contact: For more information about energy efficient living you can write Paul at myerspe@starband.net
File: DSC_5825_ACR
A Caribbean flamingo (_Phoenicopterus ruber_), feeding at Whipsnade Zoo on Friday. The word “flamingo” comes from the Portuguese flamengo, meaning “flame-coloured”.
Flamingos have a unique jaw structure; the top mandible isn’t rigidly fixed to the skull, which means the beak can work normally when the bird’s head is upside down. Indeed, while feeding, flamingos crane their necks and push water through their top mandible, sifting out phytoplankton (algae and cyanobacteria) and zooplankton (e.g. brine shrimp).
The beak is lined with hair-like structures called lamellae and these, coupled with a large, rough tongue, make these birds very efficient at extracting food from the water. The head is swept to and fro in the water, bringing the food into contact with the lamellae, while the tongue can also be used, piston-like, to pump water into the bill and out through the lamellae. One downside to this feeding adaptation is that the birds must hold their breath while filter-feeding. Fortunately, they’re able to hold their breath for several minutes at a time and as carbon dioxide builds up in their blood, its oxygen affinity increases.
Watch the video here: youtu.be/KE18c9pA3pk
Here is a video I made to explain how to wash ands rub your hands efficiently with a hand sanitizer, step by step visual tutorial. I filmed it at CHU UCL Namur Hospital in Belgium.
------------
------------
Hand sanitizer is a liquid or gel generally used to decrease infectious agents on the hands. Formulations of the alcohol-based type are preferable to hand washing with soap and water in most situations in the healthcare setting. It is generally more effective at killing microorganisms and better tolerated than soap and water. Hand washing should still be carried out if contamination can be seen or following the use of the toilet. The general use of non-alcohol based versions has no recommendations. Outside the health care setting, evidence to support the use of hand sanitizer over hand washing is poor. They are available as liquids, gels, and foams.
Hand sanitizer that contains at least 60 % alcohol or contains a "persistent antiseptic" should be used. Alcohol rubs kill many different kinds of bacteria, including antibiotic resistant bacteria and TB bacteria. 90% alcohol rubs are highly flammable, but kill many kinds of viruses, including enveloped viruses such as the flu virus, the common cold virus, coronaviruses, and HIV, though is notably ineffective against the rabies virus.
------------
------------
Join me! Subscribe to my pages!
Instagram: www.instagram.com/benheine
Facebook: www.facebook.com/benheineart
Youtube: www.youtube.com/user/BenHeineChannel
Site web: benheine.com
© Ben Heine
The morning sunrise in Condobolin in far western NSW starts to warm up the town as VL362, VL353 and GL109 shunt 8890 back onto the mainline, having stabled the previous night in the yard after traveling from Broken Hill. The train consisted of CQMY wagons being transferred from Bowmans in South Australia to Bathurst and was operated by Sydney Rail Services.
The engines would travel light engine to Goulburn as D890 after dropping the wagons off the following day.
In 1982 Mercedes-Benz released the production version of more than a decade's research into developing a compact format, efficient and safe luxury car. The name '190' referred back to the 1950 and 60s versions of 'reduced power output' models of their mainstream saloon car range. The 190E specified a fuel-injected 2.0 litre, four cylinder engine, whilst a 190 model, without the 'E' (for einspritz' appellation, referred to the same engine, but using a carburetor.
This is the version most commonly seen in taxis, along with a 2.0 litre 4-cylinder diesel, with even less power......
Then something strange happened within the halls of Mercedes-Benz....
190E 2.3-16 & 2.5-16 "Cosworth":
In the late 1970s, Mercedes competed in rallying with the big V8-powered Coupés of the R107 Series, mainly the light-weight Mercedes 450 SLC 5.0. Mercedes wished to take the 190 E rallying, and asked British engineering company Cosworth to develop an engine with 320 bhp (239 kW) for the rally car. This project was known as project "WAA' by Cosworth". During this time, the Audi Quattro with its all-wheel drive and turbocharger was launched, making the 2.3-16v appear outclassed. With a continued desire to compete in high-profile motor sport with the 190, and also now an engine to do it with, Mercedes turned to the Deutsche Tourenwagen Meisterschaft (DTM) (German Touring Car Championship) motor sport series instead. Cars racing in this championship, however, had to be based on a roadgoing model. Mercedes therefore had to put into series production a 190 fitted with a detuned version of the Cosworth engine. This high-performance model was known as the 190 E 2.3-16, and debuted at the Frankfurt Auto Show in September 1983, after its reputation had already been established. Three cars, only slightly cosmetically altered, had set three world records in August at the Nardo testing facility in Italy, recording a combined average speed of 154.06 mph (247.94 km/h) over the 50,000 km endurance test, and establishing twelve international endurance records. The Mercedes 190-E Cosworth was also featured on the second episode in series fifteen of the popular car show Top Gear.
Engin:
2.5-16 Cosworth
The Cosworth engine was based on the M102 four cylinder 2.3-litre 8-valve 136 hp (101 kW) unit already fitted to the 190- and E-Class series. Cosworth developed the cylinder head, "applying knowledge we've learnt from the DFV and BDA." It was made from light alloy using Coscast's unique casting process and brought with it dual overhead camshafts and four valves per cylinder, meaning 16 valves total which were developed to be the "largest that could practically be fitted into the combustion chamber".
In roadgoing trim,the 2.3 L 16-valve engine made "185 hp (138 kW) at 6,200 rpm and 174 lb·ft (236 N·m) at 4,500 rpm. The oversquare 95.50 x 80.25 mm bore and stroke dimensions ensuring that it revs easily up to the 7000 rpm redline". Acceleration from 0–100 km/h (62 mph) was less than eight seconds, and the top speed was 230 km/h (143 mph).
US-Specification cars had a slightly reduced compression ratio (9.7:1 instead of 10.5:1), and were rated at 167 hp (125 kW) @ 5800 rpm and 162 lb·ft (220 N·m) @ 4750.
The roadgoing version of the engine was reconfigured with reduced inlet and exhaust port sizes, different camshaft profiles, no dry sump configuration and Bosch K-jetronic replacing the specialised Kugelfischer fuel injection. These changes helped bring power down to the required 185 bhp (138 kW) specification, but still resulted in a "remarkably flexible engine, with a very flat torque curve and a wide power band". The heads for the engines were cast at Cosworth's Coscast foundry in Worcester and sent to Germany to be fitted to the rest of the engine, parts of which were different from the standard 2.3 including light pressed alloy pistons, and rings designed to withstand higher engine speeds, whilst con-rods, bearings and bearing caps were found to be strong enough as standard and left unaltered.
16v differences:
Due to their performance, the 16-valve cars were different from the other 190 models. The body kit on the 2.3-16 and 2.5-16 reduced the drag coefficient to 0.32, one of the lowest CD values on a four-door saloon of the time, whilst also reducing lift at speed. The steering ratio was quicker and the steering wheel smaller than that on other 190s, whilst the fuel tank was enlarged from 55 to 70 L. The Getrag 5-speed manual gearbox was unique to the 16-valve and featured a 'racing' gear pattern with 'dog-leg' first gear, left and down from neutral. This meant that the remaining 2nd, 3rd, 4th and 5th gears were in a simple H pattern allowing fast and easy selection. The gearchange quality was, however, noted as "notchy, baulky", criticisms which weren't levelled at the BMW M3 (E30) which shared the same gearbox. The pattern is also unusual in that the driver engages reverse by shifting left and up from neutral, as for first gear in a conventional pattern. This was demonstrated in a Top Gear episode (S15E02) where James May took a 190E 2.3-16 Cosworth and repeatedly confused reverse and first gear. An oil cooler was fitted to ensure sufficient oil cooling for the inevitable track use many of these cars were destined for.
The strictly four-seater interior had Recaro sports seats with strong side bolsters for front and rear passengers. 3 extra dials - an oil temperature gauge, stopwatch and voltmeter - were included in the centre console. The 190 E 2.3-16 was available in only two colours, Blue-Black metallic (Pearl Black in the US), and Smoke Silver. The 2.5-16 added Almandine Red and Astral Silver.
All 2.3-16-valve 190 models are fitted with a Limited Slip Differential (LSD) as standard. They were also available with Mercedes' ASD system which was standard equipment on the 2.5-16v. The ASD is an electronically controlled, hydraulically locking differential which activates automatically when required. The electronic control allows varied amounts of differential lock from the standard 15% right up to 100%. It is not a traction control system however, and can only maximize traction rather than prevent wheel spin. Activation of the ASD system is indicated by an illuminating amber triangle in the speedometer.
The suspension on 16-valve models is very different from the standard 190 (W201). As well as being lower and stiffer, it has quicker dampers, larger anti-roll bars, harder bushings and hydraulic Self-levelling suspension (SLS) on the rear. This allows the rear ride height to remain constant even when the car is fully loaded.
At the inauguration of the new, shorter Nürburgring in 1984, a race with identical cars was held, with former and current F1 pilots at the wheel. A then unknown Ayrton Senna took first place.
Private Teams such as AMG later entered the 2.3-16 in touring cars races, especially the DTM. In the late 1980s, the 2.5-16 (never released in the United States) raced many times, against the similar BMW M3 and even the turbocharged Ford Sierra RS Cosworth.
Evolution models:
2.5-16 Evolution II
With the debut of the BMW M3 Sport Evolution, Mercedes' direct competitor, it became obvious that the 2.5-16 needed a boost for the circuit. In March 1989, the 190 E 2.5-16 Evolution debuted at the Geneva Auto Show. The Evo I, as it came to be called, had a new spoiler and wider wheel arches. Many changes were made to under-the-skin components such as brakes and suspension. There was a full SLS suspension allowing vehicle ride height to be adjusted from an interior switch. All were intended to allow the Evolution cars to be even more effective round a track.
The Evo I's output is similar to the 202 bhp (151 kW) of the "regular" 2.5-16. However this car had a redesigned engine of similar capacity but, most importantly, a shorter stroke and bigger bore which would allow for a higher rev limit and improved top-end power capabilities. Additional changes stretch to "rotating masses lightened, lubrication improved and cam timing altered". Cosworth also list a project code "WAC" for the development of the short-stroke Evolution engine.
Only 502 units of the Evolution model were produced for homologation in compliance with DTM rules. For those customers desiring even more performance, a PowerPack option engineered by AMG was available for DM 18,000. The PowerPack option included hotter camshafts, a larger diameter throttle body, more aggressive ignition and fuel management as well as optimization of the intake and exhaust systems. The net result was an additional 30 bhp (22 kW).
In March 1990, at the Geneva Auto Show, the 190 E 2.5-16 Evolution II was shown. With the success of the first Evolution model, this model's 502-unit production was already sold before it was unveiled.
The "Evo II" included the AMG PowerPack fitted to the same short-stroke 2.5 engine as the Evolution, as well as a full SLS suspension allowing vehicle ride height to be adjusted from an interior switch. An obvious modification to the Evolution II is a radical body kit (designed by Prof. Richard Eppler from the University of Stuttgart) with a large adjustable rear wing, rear window spoiler, and Evolution II 17-inch wheels. The kit served an aerodynamic purpose — it was wind tunnel tested to reduce drag to 0.29, while at the same time increasing downforce. Period anecdotes tell of a BMW executive who was quoted as saying "if that rear wing works, we'll have to redesign our wind tunnel." The anecdote claims that BMW did.
As mentioned 500 were made in "blauschwarz" blue/black metallic. But the last two, numbers 501 and 502 were made in astral silver.
[Test taken from Wikipedia]
This Lego miniland-scale 190E 2.5-16 Evolution II sedan has been created for Flickr LUGNuts' 84th Build Challenge, our 7th birthday, - "LUGNuts Turns 7…or 49 in Dog Years", - where all the previous challenges are available to build to. In this case Challenge 57, - "From Mild to Wild", for vehicles that have been turned into something special out of the ordinary. And also challenge 33, - "Size Matters", - as a buddy challenge with Sirmanperson, who has produced the same 190E 2.5-16 Evolution II in 1:17 scale.
The future of construction vehicles is here ! This multipurpose mech can work on all terrains thanks to its six legs, and can be twice as efficient as your usual machine with its two independent and fully articulated arms ! Attach the tool of your choosing, and you're ready to work ! You can grab, drill, cut, or dig, with a single machine ! And if you need help on the construction site, the remote controlled crab drone is here !
• With the claws on, the mech measures 39.4 x 33.3 x 18.5 studs / 12.4 x 10.5 x 5.8in / 31.5 x 26.6 x 14.8cm (L x W x H)
• The steel beam measures 36 studs / 11.3in / 28.8cm long and can be split in three sections.
• The drone crab measures 9.7 x 9.1 x 5 studs / 3 x 2.9 x 1.6in / 7.7 x 7.3 x 4cm (L x W x H)
• The model comes with three minifigs : a pilot, a copilot, and a drone operator.
• The mech can use five functional tools : two claws, a bucket, a drill, and a circular saw blade.
• Open the windscreen to access the cockpit, with seats and coffee for the pilot and the copilot.
• The front and back legs can move back and forth, and the arms are fully articulated.
Instructions available on Rebrickable : rebrickable.com/mocs/MOC-216982/Leewan/construction-crab-...
Baselland Transport [BLT] Route 10 combination Class Be 4/8 245 and Class Be 4/6 224 were recorded at Münchenstein Dorf. The branding on the leading tram unit is for IWB, a leading provider of renwable energy and energy efficiency.
All images on this site are exclusive property and may not be copied, downloaded, reproduced, transmitted, manipulated or used in any way without expressed written permission of the photographer. All rights reserved – Copyright Don Gatehouse
Some background:
Simple, efficient and reliable, the Regult (リガード, Rigādo) was the standard mass production mecha of the Zentraedi forces. Produced by Esbeliben at the 4.432.369th Zentraedi Fully Automated Weaponry Development and Production Factory Satellite in staggering numbers to fill the need for an all-purpose mecha, this battle pod accommodated a single Zentraedi soldier in a compact cockpit and was capable of operating in space or on a planet's surface. The Regult saw much use during Space War I in repeated engagements against the forces of the SDF-1 Macross and the U.N. Spacy, but its lack of versatility against superior mecha often resulted in average effectiveness and heavy losses. The vehicle was regarded as expendable and was therefore cheap, simple, but also very effective when fielded in large numbers. Possessing minimal defensive features, the Regult was a simple weapon that performed best in large numbers and when supported by other mecha such as Gnerl Fighter Pods. Total production is said to have exceeded 300 million in total.
The cockpit could be accesses through a hatch on the back of the Regult’s body, which was, however, extremely cramped, with poor habitability and means of survival. The giant Zentraedi that operated it often found themselves crouching, with some complaining that "It would have been easier had they just walked on their own feet". Many parts of the craft relied on being operated on manually, which increased the fatigue of the pilot. On the other hand, the overall structure was extremely simple, with relatively few failures, making operational rate high.
In space, the Regult made use of two booster engines and numerous vernier thrusters to propel itself at very high speeds, capable of engaging and maintaining pace with the U.N. Spacy's VF-1 Valkyrie variable fighter. Within an atmosphere, the Regult was largely limited to ground combat but retained high speed and maneuverability. On land, the Regult was surprisingly fast and agile, too, capable of closing with the VF-1 variable fighter in GERWALK flight (though likely unable to maintain pace at full GERWALK velocity). The Regult was not confined to land operations, though, it was also capable of operating underwater for extended periods of time. Thanks to its boosters, the Regult was capable of high leaping that allowed the pod to cover long distances, surprise enemies and even engage low-flying aircraft.
Armed with a variety of direct-fire energy weapons and anti-personnel/anti-aircraft guns, the Regult offered considerable firepower and was capable of engaging both air and ground units. It was also able to deliver powerful kicks. The armor of the body shell wasn't very strong, though, and could easily be penetrated by a Valkyrie's 55 mm Gatling gun pod. Even bare fist attacks of a VF-1 could crack the Regult’s cockpit or immobilize it. The U.N. Spacy’s MBR-07 Destroid Spartan was, after initial battel experience with the Regult, specifically designed to engage the Zentraedi forces’ primary infantry weapon in close-combat.
The Regult was, despite general shortcomings, a highly successful design and it became the basis for a wide range of specialized versions, including advanced battle pods for commanders, heavy infantry weapon carriers and reconnaissance/command vehicles. The latter included the Regult Tactical Scout (リガード偵察型). manufactured by electronics specialist Ectromelia. The Tactical Scout variant was a deadly addition to the Zentraedi Regult mecha troops. Removing all weaponry, the Tactical Scout was equipped with many additional sensor clusters and long-range detection equipment. Always found operating among other Regult mecha or supporting Glaug command pods, the Scout was capable of early warning enemy detection as well as ECM/ECCM roles (Electronic Countermeasures/Electronic Counter-Countermeasures). In Space War I, the Tactical Scout was utilized to devastating effect, often providing radar jamming, communication relay and superior tactical positioning for the many Zentraedi mecha forces.
At the end of Space War I in January 2012, production of the Regult for potential Earth defensive combat continued when the seizure operation of the Factory Satellite was executed. After the war, Regults were used by both U.N. Spacy and Zentraedi insurgents. Many surviving units were incorporated into the New U.N. Forces and given new model numbers. The normal Regult became the “Zentraedi Battle Pod” ZBP-104 (often just called “Type 104”) and was, for example, used by Al-Shahal's New U.N. Army's Zentraedi garrison. The related ZBP-106 was a modernized version for Zentraedi commanders, with built-in boosters, additional Queadluun-Rhea arms and extra armaments. These primarily replaced the Glaug battle pod, of which only a handful had survived. By 2067, Regult pods of all variants were still in operation among mixed human/Zentraedi units.
General characteristics:
Accommodation: pilot only, in standard cockpit in main body
Overall Height: 18.2 meters
Overall Length: 7.6 meters
Overall Width: 12.6 meters
Max Weight: 39.8 metric tons
Powerplant & propulsion:
1x 1.3 GGV class Ectromelia thermonuclear reaction furnace,
driving 2x main booster Thrusters and 12x vernier thrusters
Performance:
unknown
Armament:
None
Special Equipment and Features:
Standard all-frequency radar antenna
Standard laser long-range sensor
Ectromelia infrared, visible light and ultraviolet frequency sensor cluster
ECM/ECCM suite
The kit and its assembly:
I had this kit stashed away for a couple of years, together with a bunch of other 1:100 Zentraedi pods of all kinds and the plan to build a full platoon one day – but this has naturally not happened so far and the kits were and are still waiting. The “Reconnaissance & Surveillance” group build at whatifmodellers.com in August 2021 was a good occasion and motivation to tackle the Tactical Scout model from the pile, though, as it perfectly fits the GB’s theme and also adds an exotic science fiction/anime twist to the submissions.
The kit is an original ARII boxing from 1983, AFAIK the only edition of this model. One might expect this kit to be a variation of the 1982 standard Regult (sometimes spelled “Reguld”) kit with extra parts, but that’s not the case – it is a new mold with different parts and technical solutions, and it offers optional parts for the standard Regult pod as well as the two missile carrier versions that were published at the same time, too. The Tactical Scout uses the same basis, but it comes with parts exclusive for this variant (hull and a sprue with the many antennae and sensors).
I remembered from a former ARII Regult build in the late Eighties that the legs were a wobbly affair. Careful sprue inspection revealed, however, that this second generation comes with some sensible detail changes, e. g. the feet, which originally consisted of separate toe and heel sections (and these were hollow from behind/below!). To my biggest surprise the knees – a notorious weak spot of the 1st generation Regult kit – were not only held by small and flimsy vinyl caps anymore: These were replaced with much bigger vinyl rings, fitted into sturdy single-piece enclosures made from a tough styrene which can even be tuned with small metal screws(!), which are included in the kit. Interesting!
But the joy is still limited: even though the mold is newer, fit is mediocre at best, PSR is necessary on every seam. However, the good news is that the kit does not fight with you. The whole thing was mostly built OOB, because at 1:100 there's little that makes sense to add to the surface, and the kit comes with anything you'd expect on a Regult Scout pod. I just added some lenses and small stuff behind the large "eye", which is (also to my surprise) a clear part. The stuff might only appear in schemes on the finished model, but that's better than leaving the area blank.
Otherwise, the model was built in sub-sections for easier painting and handling, to be assembled in a final step – made possible by the kit’s design which avoids the early mecha kit’s “onion layer” construction, except for the feet. This is the only area that requires some extra effort, and which is also a bit tricky to assemble.
However, while the knees appear to be a robust construction, the kit showed some material weakness: while handling the leg assembly, one leg suddenly came off under the knees - turned out that the locator that holds the knee joint above (which I expected to be the weak point) completely broke off of the lower leg! Weird damage. I tried to glue the leg into place, but this did not work, and so I inserted a replacement for the broken. This eventually worked.
Painting and markings:
Colorful, but pretty standard and with the attempt to be authentic. However, information concerning the Regults’ paint scheme is somewhat inconsistent. I decided to use a more complex interpretation of the standard blue/grey Regult scheme, with a lighter “face shield” and some other details that make the mecha look more interesting. I used the box art and some screenshots from the Macross TV series as reference; the Tactical Scout pod already appears in episode #2 for the first time, and there are some good views at it, even though the anime version is highly simplified.
Humbrol enamels were used, including 48 (Mediterranean Blue), 196 (RAL 7035, instead of pure white), 40 (Pale Grey) and 27 (Sea Grey). The many optics were created with clear acrylics over a silver base, and the large frontal “eye” is a piece of clear plastic with a coat of clear turquoise paint, too.
The model received a black ink washing to emphasize details, engraved panel lines and recesses, as well as some light post-shading through dry-brushing. Some surface details were created with decal stripes, e. g. on the upper legs, or with a black fineliner, and some color highlights were distributed all over the hull, e. g. the yellowish-beige tips of the wide antenna or the bright blue panels on the upper legs.
The decals were taken OOB, and thanks to a translation chart I was able to decipher some of the markings which I’d interpret as a serial number and a unit code – but who knows?
Finally, the kit received an overall coat of matt acrylic varnish and some weathering/dust traces around the feet with simple watercolors – more would IMHO look out of place, due to the mecha’s sheer size in real life and the fact that the Regult has to be considered a disposable item. Either it’s brand new and shiny, or busted, there’s probably little in between that justifies serious weathering which better suits the tank-like Destroids.
A “normal” build, even though the model and the topic are exotic enough. This 2nd generation Regult kit went together easier than expected, even though it has its weak points, too. However, material ageing turned out to be the biggest challenge (after all, the kit is almost 40 years old!), but all problems could be overcome and the resulting model looks decent – and it has this certain Eighties flavor! :D
'Efficient', an Andrew Barclay 0-4-0 saddle tank (W/No.1598 built in 1918) shunting loaded bogie flat wagons at Shelton Steelworks during a photographic charter on 8th April 2000.
© Gordon Edgar - All rights reserved. Please do not use my images without my explicit permission
The loco is now at the Ribble Steam Railway, Preston and their website shows the following information:
'Efficient' was built at the Caledonia works of Andrew Barclay & Sons in Kilmarnock. It is a standard Barclay saddle tank with 14" x 22" cylinders and 3' 5" driving wheels. Painted in the Kilmarnock firms usual green lined livery and lettering, it spent it's entire working life at McKechnie Brothers' copper smelting works at Widnes. It shared the duties here with a smaller Barclay engine named 'Economic', which failed to live up to it's name and was scrapped in 1955. There were also two 100h.p. Sentinels as well.
When no longer required at the copper works 'Efficient' was purchased by the Liverpool Locomotive Preservation Group and moved to Seacombe in July 1969. From here, it worked the two Docker railtours in 1971 and 1972, double-headed with 'Lucy'. 'Efficient' moved to Southport in July 1973, where she had the distinction of being the first steam locomotive to enter the newly formed museum. She was fitted with a new inner firebox in 1981, and was a regular performer at Southport until the late 1990s when the site closed, eventually arriving at Preston on 27th July 1999. Efficient's last public steaming was in April 2000 as she took part in the closing celebrations at Shelton Steelworks in Stoke. A firm favourite amongst the crews at the museum, investigation was carried out during the summer of 2005 to bring the loco back into service.
Unfortunately, due to the extent of the work required on the boiler, she will have to wait her turn. She is on view in the museum in a 'as in industrial use' condition.
I6s Efficient de la carrocera Irizar de tres ejes de la empresa de autocares Bilman - Bús, realizando un servicio en la línea regular "Cartagena > País Vasco".
This brand new i6s Efficient integral is seen here on display at the North West Vehicle Restoration Trust's open & running day, Kirkby, Liverpool, on 04/06/2023. The i6s Efficient is new to the market and has several lightweight features, mirrorcams and a more raked back front. © Peter Steel 2023.
This brand new i6s Efficient integral is seen here on display at the North West Vehicle Restoration Trust's open & running day, Kirkby, Liverpool, on 04/06/2023. The i6s Efficient is new to the market and has several lightweight features, mirrorcams and a more raked back front. © Peter Steel 2023.
The BMW i8, first introduced as the BMW Concept Vision Efficient Dynamics, is a plug-in hybrid sports car developed by BMW. The 2015 model year BMW i8 has a 7.1 kWh lithium-ion battery pack that delivers an all-electric range of 37 km (23 mi) under the New European Driving Cycle (NEDC).[5] Under the United States Environmental Protection Agency (EPA) cycle, the range in EV mode is 24 km (15 mi) with a small amount of gasoline consumption.
The BMW i8 can go from 0–100 km/h (0 to 60 mph) in 4.4 seconds and has a top speed of 250 km/h (155 mph). The BMW i8 has a fuel efficiency of 2.1 L/100 km (134.5 mpg-imp; 112.0 mpg-US) under the NEDC test with carbon emissions of 49 g/km. EPA rated the i8 combined fuel economy at 76 equivalent (MPG-equivalent) (3.1 L gasoline equivalent/100 km; 91 mpg-imp gasoline equivalent).
The initial turbodiesel concept car was unveiled at the 2009 International Motor Show Germany. The production version of the BMW i8 was unveiled at the 2013 Frankfurt Motor Show. The i8 was released in Germany in June 2014. Deliveries to retail customers in the U.S. began in August 2014. Global cumulative sales totaled almost 4,500 units through June 2015.
History
The i8 is part of BMW's "Project i" and it is being marketed as a new brand, BMW i, sold separately from BMW or Mini. The BMW i3, launched for retail customers in Europe in the fourth quarter of 2013, was the first model of the i brand available in the market, and it was followed by the i8, released in Germany in June 2014 as a 2015 model year. Other i models are expected to follow.
The initial turbodiesel concept car was unveiled at the 2009 International Motor Show Germany, In 2010, BMW announced the mass production of the Concept Vision Efficient Dynamics in Leipzig beginning in 2013 as the BMW i8. The BMW i8 gasoline-powered concept car destined for production was unveiled at the 2011 Frankfurt Motor Show. The production version of the BMW i8 was unveiled at the 2013 International Motor Show Germany. The following are the concept and pre-production models developed by BMW that precedeed the production version.
BMW Vision EfficientDynamics (2009)
BMW Vision EfficientDynamics concept car is a plug-in hybrid with a three cylinder turbodiesel engine. Additionally, there are two electric motors with 139 horsepower. It allows an acceleration to 100 km/h (62 mph) in 4.8 seconds and an electronically limited top speed of 250 km/h (160 mph).
According to BMW, the average fuel consumption in the EU test cycle (KV01) is 3.76 liters/100 kilometers, (75.1 mpg imp), and has a carbon dioxide emission rating of 99 grams per kilometer (1,3 l/100 km and 33g CO2/km ; EU-PHEV ECE-R101). The estimated all-electric range is 50 km (31 mi), and the 24-liter petrol tank extends the total vehicle range to up to 700 km (430 mi). The lightweight chassis is made mainly from aluminum. The windshield, top, doors and fenders are made from polycarbonate glass, with the body having a drag coefficient of 0.26.
The designers in charge of the BMW Vision EfficientDynamics Concept were Mario Majdandzic, Exterior Design and Jochen Paesen, Interior Design.
The vehicle was unveiled in 2009 International Motor Show Germany, followed by Auto China 2010.
BMW i8 Concept (2011)
BMW i8 Concept plug-in hybrid electric vehicle includes an electric motor located in the front axle powering the front wheels rated 96 kW (131 PS; 129 hp) and 250 N·m (184 lb·ft), a turbocharged 1.5-liter 3-cylinder gasoline engine driving rear wheels rated 164 kW (223 PS; 220 hp) and 300 N·m (221 lb·ft) of torque, with combined output of 260 kW (354 PS; 349 hp) and 550 N·m (406 lb·ft), a 7.2 kWh (26 MJ) lithium-ion battery pack that allows an all-electric range of 35 km (22 mi). All four wheels provide regenerative braking. The location of the battery pack in the energy tunnel gives the vehicle a low centre of gravity, enhancing its dynamics. Its top speed is electronically limited to 250 km/h (160 mph) and is expected to go from 0 to 100 km/h (0 to 60 mph) in 4.6 seconds. Under normal driving conditions the i8 is expected to deliver 80 mpg-US (2.9 L/100 km; 96 mpg-imp) under the European cycle. A full charge of the battery will take less than 2 hours using 220V. The positioning of the motor and engine over the axles results in optimum 50/50 weight distribution.
The vehicle was unveiled at the 2011 International Motor Show Germany, followed by CENTER 548 in New York City, 42nd Tokyo Motor Show 2011, 82nd Geneva Motor Show 2012, BMW i Born Electric Tour at the Palazzo delle Esposizioni at Via Nazionale 194 in Rome, Auto Shanghai 2013.
This concept car was featured in the film Mission: Impossible – Ghost Protocol.
BMW i8 Concept Spyder (2012)
The BMW i8 Concept Spyder included a slightly shorter wheelbase and overall length over the BMW i8 Concept, carbon-fibre-reinforced plastic (CFRP) Life module, drive modules made primarily from aluminium components, interlocking of surfaces and lines, 8.8-inch (22.4 cm) screen display, off-white outer layer, orange tone naturally tanned leather upholstery.
The vehicle was unveiled in Auto China 2012 in Beijing and won Concept Car of the Year, followed by 83rd Geneva International Motor Show 2013.
The designer of the BMW i8 Concept Spyder was Richard Kim.
BMW i8 coupe prototype (2013)
The design of the BMW i8 coupe prototype was based on the BMW i8 Concept. The BMW i8 prototype has an average fuel efficiency of less than 2.5 L/100 km (113.0 mpg-imp; 94.1 mpg-US) under the New European Driving Cycle with carbon emissions of less than 59 g/km. The i8 with its carbon-fiber-reinforced plastic (CFRP) passenger cell lightweight, aerodynamically optimized body, and BMW eDrive technology offers the dynamic performance of a sports car, with an expected 0–100 km (0–60 mi) sprint time of less than 4.5 seconds using both power sources. The plug-in hybrid system of the BMW i8 comprises a three-cylinder, 1.5-liter BMW TwinPower turbo gasoline engine combined with BMW eDrive technology used in the BMW i3 and develops maximum power of 170 kW (230 hp). The BMW i8 is the first BMW production model to be powered by a three-cylinder gasoline engine and the resulting specific output of 115 kW (154 hp) per liter of displacement is on a par with high-performance sports car engines and is the highest of any engine produced by the BMW Group.
The BMW i8's second power source is a hybrid synchronous electric motor specially developed and produced by the BMW Group for BMW i. The electric motor develops maximum power of 131 hp (96 kW) and produces its maximum torque of around 320 N·m (240 lbf·ft) from standstill. Typical of an electric motor, responsive power is instantly available when starting and this continues into the higher load ranges. As well as providing a power boost to assist the gasoline engine during acceleration, the electric motor can also power the vehicle by itself. Top speed in electric mode is approximately 120 km/h (75 mph), with a maximum driving range of up to 35 km (22 mi). Linear acceleration is maintained even at higher speeds since the interplay between the two power sources efficiently absorbs any power flow interruptions when shifting gears. The BMW i8 has an electronically controlled top speed of 250 km (160 mi), which can be reached and maintained when the vehicle operates solely on the gasoline engine. The model-specific version of the high-voltage 7.2 lithium-ion battery has a liquid cooling system and can be recharged at a conventional household power socket, at a BMW i Wallbox or at a public charging station. In the US a full recharge takes approximately 3.5 hours from a conventional 120V, 12 amp household circuit or approximately 1.5 hours from a 220V Level 2 charger.
The driver can also select several driving modes: SPORT, COMFORT and ECO PRO. Using the gear selector, the driver can either select position D for automated gear selection or can switch to SPORT mode. SPORT mode offers manual gear selection and at the same time switches to very sporty drive and suspension settings. In SPORT mode, the engine and electric motor deliver extra performance, accelerator response is faster and the power boost from the electric motor is maximized. And to keep the battery topped up, SPORT mode also activates maximum energy recuperation during overrun and braking as the electric motor’s generator function, which recharges the battery using kinetic energy, switches to a more powerful setting. The Driving Experience Control switch on the center console offers a choice of two settings. On starting, COMFORT mode is activated, which offers a balance between sporty performance and fuel efficiency, with unrestricted access to all convenience functions. Alternatively, the ECO PRO mode can be engaged, which, on the BMW i8 as on other models, supports an efficiency-optimized driving style. On this mode the powertrain controller coordinates the cooperation between the gasoline engine and the electric motor for maximum fuel economy. On deceleration, the intelligent energy management system automatically decides, in line with the driving situation and vehicle status, whether to recuperate braking energy or to coast with the powertrain disengaged. At the same time, ECO PRO mode also programs electrical convenience functions such as the air conditioning, seat heating and heated mirrors to operate at minimum power consumption, but without compromising safety. The maximum driving range of the BMW i8 on a full fuel tank and with a fully charged battery is more than 500 km (310 mi) in COMFORT mode, which can be increased by up to 20% in ECO PRO mode. The BMW i8’s ECO PRO mode can also be used during all-electric operation. The vehicle is then powered solely by the electric motor. Only if the battery charge drops below a given level, or under sudden intense throttle application such as kickdown, is the internal combustion engine automatically activated.
The vehicle was unveiled in BMW Group's Miramas test track in France.
Production version
The production BMW i8 was designed by Benoit Jacob. The production version was unveiled at the 2013 International Motor Show Germany, followed by 2013 Les Voiles de Saint-Tropez. It features butterfly doors, head-up display, rear-view cameras and partially false engine noise. Series production of customer vehicles began in April 2014. It is the first production car with laser headlights, reaching further than LED lights.
The i8 has a low vehicle weight of 1,485 kg (3,274 lb) (DIN kerb weight) and a low drag coefficient (Cd) of 0.26. In all-electric mode the BMW i8 has a top speed of 120 km/h (75 mph). In Sport mode the i8 delivers a mid-range acceleration from 80 to 120 km/h (50 to 75 mph) in 2.6 seconds. The electronically controlled top speed is 250 km/h (160 mph).
Range and fuel economy[edit]
The production i8 has a 7.1 kWh lithium-ion battery pack with a usable capacity of 5.2 kWh and intelligent energy management that delivers an all-electric range of 37 km (23 mi) under the NEDC cycle. Under the EPA cycle, the range in EV mode is 15 mi (24 km), with a gasoline consumption of 0.1 gallons per 100 mi, and as a result, EPA's all-electric range is zero. The total range is 330 mi (530 km).
The production version has a fuel efficiency of 2.1 L/100 km (134.5 mpg-imp; 112.0 mpg-US) under the NEDC test with carbon emissions of 49 g/km.[5] Under EPA cycle, the i8 combined fuel economy in EV mode was rated 76 equivalent (MPG-equivalent) (3.1 L gasoline equivalent/100 km; 91 mpg-imp gasoline equivalent), with an energy consumption of 43 kW-hrs/100 mi and gasoline consumption of 0.1 gal-US/100 mi. The combined fuel economy when running only with gasoline is 28 mpg-US (8.4 L/100 km; 34 mpg-imp), 28 mpg-US (8.4 L/100 km; 34 mpg-imp) for city driving, and 29 mpg-US (8.1 L/100 km; 35 mpg-imp) in highway.
The U.S. Environmental Protection Agency's 2014 edition of the "Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends" introduced utility factors for plug-in hybrids to represent the percentage of miles that will be driven using electricity by an average driver, in electric only or blended modes. The BMW i8 has a utility factor in EV mode of 37%, compared with 83% for the BMW i3 REx, 66% for the Chevrolet Volt, 65% for the Cadillac ELR, 45% for the Ford Energi models, 43% for the McLaren P1, 39% for the Porsche Panamera S E-Hybrid, and 29% for the Toyota Prius PHV.
[Text from Wikipedia]
This Lego miniland-scale BMW i8 has been created for Flickr LUGNuts' 94th Build Challenge, - "Appease the Elves Summer Automobile Build-off (Part 2)", - a design challenge combining the resources of LUGNuts, TheLegoCarBlog (TLCB) and Head Turnerz.
Four new, more energy-efficient cooling towers replaced five old ones atop Grand Central Terminal. In phase one, which occurred March 22-23, 2014, the rigging operation took 18 hours. Full installation was completed over the weekend of March 18, 2014.
Energy-efficient Towers Installed to Cool Grand Central
Photo: Metropolitan Transportation Authority / Patrick Cashin
Measurements 50 inches wide x 28 inches deep x 29 inches tall. Fully loaded we are at 65 inches long.
In 1982 Mercedes-Benz released the production version of more than a decade's research into developing a compact format, efficient and safe luxury car. The name '190' referred back to the 1950 and 60s versions of 'reduced power output' models of their mainstream saloon car range. The 190E specified a fuel-injected 2.0 litre, four cylinder engine, whilst a 190 model, without the 'E' (for einspritz' appellation, referred to the same engine, but using a carburetor.
This is the version most commonly seen in taxis, along with a 2.0 litre 4-cylinder diesel, with even less power......
Then something strange happened within the halls of Mercedes-Benz....
190E 2.3-16 "Cosworth":
In the late 1970s, Mercedes competed in rallying with the big V8-powered Coupés of the R107 Series, mainly the light-weight Mercedes 450 SLC 5.0. Mercedes wished to take the 190 E rallying, and asked British engineering company Cosworth to develop an engine with 320 bhp (239 kW) for the rally car. This project was known as project "WAA' by Cosworth". During this time, the Audi Quattro with its all-wheel drive and turbocharger was launched, making the 2.3-16v appear outclassed. With a continued desire to compete in high-profile motor sport with the 190, and also now an engine to do it with, Mercedes turned to the Deutsche Tourenwagen Meisterschaft (DTM) (German Touring Car Championship) motor sport series instead. Cars racing in this championship, however, had to be based on a roadgoing model. Mercedes therefore had to put into series production a 190 fitted with a detuned version of the Cosworth engine. This high-performance model was known as the 190 E 2.3-16, and debuted at the Frankfurt Auto Show in September 1983, after its reputation had already been established. Three cars, only slightly cosmetically altered, had set three world records in August at the Nardo testing facility in Italy, recording a combined average speed of 154.06 mph (247.94 km/h) over the 50,000 km endurance test, and establishing twelve international endurance records. The Mercedes 190-E Cosworth was also featured on the second episode in series fifteen of the popular car show Top Gear.
Engine:
2.5-16 Cosworth
The Cosworth engine was based on the M102 four cylinder 2.3-litre 8-valve 136 hp (101 kW) unit already fitted to the 190- and E-Class series. Cosworth developed the cylinder head, "applying knowledge we've learnt from the DFV and BDA." It was made from light alloy using Coscast's unique casting process and brought with it dual overhead camshafts and four valves per cylinder, meaning 16 valves total which were developed to be the "largest that could practically be fitted into the combustion chamber".
In roadgoing trim,the 2.3 L 16-valve engine made "185 hp (138 kW) at 6,200 rpm and 174 lb·ft (236 N·m) at 4,500 rpm. The oversquare 95.50 x 80.25 mm bore and stroke dimensions ensuring that it revs easily up to the 7000 rpm redline". Acceleration from 0–100 km/h (62 mph) was less than eight seconds, and the top speed was 230 km/h (143 mph).
US-Specification cars had a slightly reduced compression ratio (9.7:1 instead of 10.5:1), and were rated at 167 hp (125 kW) @ 5800 rpm and 162 lb·ft (220 N·m) @ 4750.
The roadgoing version of the engine was reconfigured with reduced inlet and exhaust port sizes, different camshaft profiles, no dry sump configuration and Bosch K-jetronic replacing the specialised Kugelfischer fuel injection. These changes helped bring power down to the required 185 bhp (138 kW) specification, but still resulted in a "remarkably flexible engine, with a very flat torque curve and a wide power band". The heads for the engines were cast at Cosworth's Coscast foundry in Worcester and sent to Germany to be fitted to the rest of the engine, parts of which were different from the standard 2.3 including light pressed alloy pistons, and rings designed to withstand higher engine speeds, whilst con-rods, bearings and bearing caps were found to be strong enough as standard and left unaltered.
16v differences:
Due to their performance, the 16-valve cars were different from the other 190 models. The body kit on the 2.3-16 and 2.5-16 reduced the drag coefficient to 0.32, one of the lowest CD values on a four-door saloon of the time, whilst also reducing lift at speed. The steering ratio was quicker and the steering wheel smaller than that on other 190s, whilst the fuel tank was enlarged from 55 to 70 L. The Getrag 5-speed manual gearbox was unique to the 16-valve and featured a 'racing' gear pattern with 'dog-leg' first gear, left and down from neutral. This meant that the remaining 2nd, 3rd, 4th and 5th gears were in a simple H pattern allowing fast and easy selection. The gearchange quality was, however, noted as "notchy, baulky", criticisms which weren't levelled at the BMW M3 (E30) which shared the same gearbox. The pattern is also unusual in that the driver engages reverse by shifting left and up from neutral, as for first gear in a conventional pattern. This was demonstrated in a Top Gear episode (S15E02) where James May took a 190E 2.3-16 Cosworth and repeatedly confused reverse and first gear. An oil cooler was fitted to ensure sufficient oil cooling for the inevitable track use many of these cars were destined for.
The strictly four-seater interior had Recaro sports seats with strong side bolsters for front and rear passengers. 3 extra dials - an oil temperature gauge, stopwatch and voltmeter - were included in the centre console. The 190 E 2.3-16 was available in only two colours, Blue-Black metallic (Pearl Black in the US), and Smoke Silver. The 2.5-16 added Almandine Red and Astral Silver.
All 2.3-16-valve 190 models are fitted with a Limited Slip Differential (LSD) as standard. They were also available with Mercedes' ASD system which was standard equipment on the 2.5-16v. The ASD is an electronically controlled, hydraulically locking differential which activates automatically when required. The electronic control allows varied amounts of differential lock from the standard 15% right up to 100%. It is not a traction control system however, and can only maximize traction rather than prevent wheel spin. Activation of the ASD system is indicated by an illuminating amber triangle in the speedometer.
The suspension on 16-valve models is very different from the standard 190 (W201). As well as being lower and stiffer, it has quicker dampers, larger anti-roll bars, harder bushings and hydraulic Self-levelling suspension (SLS) on the rear. This allows the rear ride height to remain constant even when the car is fully loaded.
At the inauguration of the new, shorter Nürburgring in 1984, a race with identical cars was held, with former and current F1 pilots at the wheel. A then unknown Ayrton Senna took first place.
Private Teams such as AMG later entered the 2.3-16 in touring cars races, especially the DTM. In the late 1980s, the 2.5-16 (never released in the United States) raced many times, against the similar BMW M3 and even the turbocharged Ford Sierra RS Cosworth.
[Test taken from Wikipedia]
This Lego miniland-scale 190E 2.3-16 sedan has been created for Flickr LUGNuts' 85th Build Challenge, - "Like, Totally 80's", - for vehicles created during the decade of the 1980s.
The BMW i8, first introduced as the BMW Concept Vision Efficient Dynamics, is a plug-in hybrid sports car developed by BMW. The 2015 model year BMW i8 has a 7.1 kWh lithium-ion battery pack that delivers an all-electric range of 37 km (23 mi) under the New European Driving Cycle (NEDC).[5] Under the United States Environmental Protection Agency (EPA) cycle, the range in EV mode is 24 km (15 mi) with a small amount of gasoline consumption.
The BMW i8 can go from 0–100 km/h (0 to 60 mph) in 4.4 seconds and has a top speed of 250 km/h (155 mph). The BMW i8 has a fuel efficiency of 2.1 L/100 km (134.5 mpg-imp; 112.0 mpg-US) under the NEDC test with carbon emissions of 49 g/km. EPA rated the i8 combined fuel economy at 76 equivalent (MPG-equivalent) (3.1 L gasoline equivalent/100 km; 91 mpg-imp gasoline equivalent).
The initial turbodiesel concept car was unveiled at the 2009 International Motor Show Germany. The production version of the BMW i8 was unveiled at the 2013 Frankfurt Motor Show. The i8 was released in Germany in June 2014. Deliveries to retail customers in the U.S. began in August 2014. Global cumulative sales totaled almost 4,500 units through June 2015.
History
The i8 is part of BMW's "Project i" and it is being marketed as a new brand, BMW i, sold separately from BMW or Mini. The BMW i3, launched for retail customers in Europe in the fourth quarter of 2013, was the first model of the i brand available in the market, and it was followed by the i8, released in Germany in June 2014 as a 2015 model year. Other i models are expected to follow.
The initial turbodiesel concept car was unveiled at the 2009 International Motor Show Germany, In 2010, BMW announced the mass production of the Concept Vision Efficient Dynamics in Leipzig beginning in 2013 as the BMW i8. The BMW i8 gasoline-powered concept car destined for production was unveiled at the 2011 Frankfurt Motor Show. The production version of the BMW i8 was unveiled at the 2013 International Motor Show Germany. The following are the concept and pre-production models developed by BMW that precedeed the production version.
BMW Vision EfficientDynamics (2009)
BMW Vision EfficientDynamics concept car is a plug-in hybrid with a three cylinder turbodiesel engine. Additionally, there are two electric motors with 139 horsepower. It allows an acceleration to 100 km/h (62 mph) in 4.8 seconds and an electronically limited top speed of 250 km/h (160 mph).
According to BMW, the average fuel consumption in the EU test cycle (KV01) is 3.76 liters/100 kilometers, (75.1 mpg imp), and has a carbon dioxide emission rating of 99 grams per kilometer (1,3 l/100 km and 33g CO2/km ; EU-PHEV ECE-R101). The estimated all-electric range is 50 km (31 mi), and the 24-liter petrol tank extends the total vehicle range to up to 700 km (430 mi). The lightweight chassis is made mainly from aluminum. The windshield, top, doors and fenders are made from polycarbonate glass, with the body having a drag coefficient of 0.26.
The designers in charge of the BMW Vision EfficientDynamics Concept were Mario Majdandzic, Exterior Design and Jochen Paesen, Interior Design.
The vehicle was unveiled in 2009 International Motor Show Germany, followed by Auto China 2010.
BMW i8 Concept (2011)
BMW i8 Concept plug-in hybrid electric vehicle includes an electric motor located in the front axle powering the front wheels rated 96 kW (131 PS; 129 hp) and 250 N·m (184 lb·ft), a turbocharged 1.5-liter 3-cylinder gasoline engine driving rear wheels rated 164 kW (223 PS; 220 hp) and 300 N·m (221 lb·ft) of torque, with combined output of 260 kW (354 PS; 349 hp) and 550 N·m (406 lb·ft), a 7.2 kWh (26 MJ) lithium-ion battery pack that allows an all-electric range of 35 km (22 mi). All four wheels provide regenerative braking. The location of the battery pack in the energy tunnel gives the vehicle a low centre of gravity, enhancing its dynamics. Its top speed is electronically limited to 250 km/h (160 mph) and is expected to go from 0 to 100 km/h (0 to 60 mph) in 4.6 seconds. Under normal driving conditions the i8 is expected to deliver 80 mpg-US (2.9 L/100 km; 96 mpg-imp) under the European cycle. A full charge of the battery will take less than 2 hours using 220V. The positioning of the motor and engine over the axles results in optimum 50/50 weight distribution.
The vehicle was unveiled at the 2011 International Motor Show Germany, followed by CENTER 548 in New York City, 42nd Tokyo Motor Show 2011, 82nd Geneva Motor Show 2012, BMW i Born Electric Tour at the Palazzo delle Esposizioni at Via Nazionale 194 in Rome, Auto Shanghai 2013.
This concept car was featured in the film Mission: Impossible – Ghost Protocol.
BMW i8 Concept Spyder (2012)
The BMW i8 Concept Spyder included a slightly shorter wheelbase and overall length over the BMW i8 Concept, carbon-fibre-reinforced plastic (CFRP) Life module, drive modules made primarily from aluminium components, interlocking of surfaces and lines, 8.8-inch (22.4 cm) screen display, off-white outer layer, orange tone naturally tanned leather upholstery.
The vehicle was unveiled in Auto China 2012 in Beijing and won Concept Car of the Year, followed by 83rd Geneva International Motor Show 2013.
The designer of the BMW i8 Concept Spyder was Richard Kim.
BMW i8 coupe prototype (2013)
The design of the BMW i8 coupe prototype was based on the BMW i8 Concept. The BMW i8 prototype has an average fuel efficiency of less than 2.5 L/100 km (113.0 mpg-imp; 94.1 mpg-US) under the New European Driving Cycle with carbon emissions of less than 59 g/km. The i8 with its carbon-fiber-reinforced plastic (CFRP) passenger cell lightweight, aerodynamically optimized body, and BMW eDrive technology offers the dynamic performance of a sports car, with an expected 0–100 km (0–60 mi) sprint time of less than 4.5 seconds using both power sources. The plug-in hybrid system of the BMW i8 comprises a three-cylinder, 1.5-liter BMW TwinPower turbo gasoline engine combined with BMW eDrive technology used in the BMW i3 and develops maximum power of 170 kW (230 hp). The BMW i8 is the first BMW production model to be powered by a three-cylinder gasoline engine and the resulting specific output of 115 kW (154 hp) per liter of displacement is on a par with high-performance sports car engines and is the highest of any engine produced by the BMW Group.
The BMW i8's second power source is a hybrid synchronous electric motor specially developed and produced by the BMW Group for BMW i. The electric motor develops maximum power of 131 hp (96 kW) and produces its maximum torque of around 320 N·m (240 lbf·ft) from standstill. Typical of an electric motor, responsive power is instantly available when starting and this continues into the higher load ranges. As well as providing a power boost to assist the gasoline engine during acceleration, the electric motor can also power the vehicle by itself. Top speed in electric mode is approximately 120 km/h (75 mph), with a maximum driving range of up to 35 km (22 mi). Linear acceleration is maintained even at higher speeds since the interplay between the two power sources efficiently absorbs any power flow interruptions when shifting gears. The BMW i8 has an electronically controlled top speed of 250 km (160 mi), which can be reached and maintained when the vehicle operates solely on the gasoline engine. The model-specific version of the high-voltage 7.2 lithium-ion battery has a liquid cooling system and can be recharged at a conventional household power socket, at a BMW i Wallbox or at a public charging station. In the US a full recharge takes approximately 3.5 hours from a conventional 120V, 12 amp household circuit or approximately 1.5 hours from a 220V Level 2 charger.
The driver can also select several driving modes: SPORT, COMFORT and ECO PRO. Using the gear selector, the driver can either select position D for automated gear selection or can switch to SPORT mode. SPORT mode offers manual gear selection and at the same time switches to very sporty drive and suspension settings. In SPORT mode, the engine and electric motor deliver extra performance, accelerator response is faster and the power boost from the electric motor is maximized. And to keep the battery topped up, SPORT mode also activates maximum energy recuperation during overrun and braking as the electric motor’s generator function, which recharges the battery using kinetic energy, switches to a more powerful setting. The Driving Experience Control switch on the center console offers a choice of two settings. On starting, COMFORT mode is activated, which offers a balance between sporty performance and fuel efficiency, with unrestricted access to all convenience functions. Alternatively, the ECO PRO mode can be engaged, which, on the BMW i8 as on other models, supports an efficiency-optimized driving style. On this mode the powertrain controller coordinates the cooperation between the gasoline engine and the electric motor for maximum fuel economy. On deceleration, the intelligent energy management system automatically decides, in line with the driving situation and vehicle status, whether to recuperate braking energy or to coast with the powertrain disengaged. At the same time, ECO PRO mode also programs electrical convenience functions such as the air conditioning, seat heating and heated mirrors to operate at minimum power consumption, but without compromising safety. The maximum driving range of the BMW i8 on a full fuel tank and with a fully charged battery is more than 500 km (310 mi) in COMFORT mode, which can be increased by up to 20% in ECO PRO mode. The BMW i8’s ECO PRO mode can also be used during all-electric operation. The vehicle is then powered solely by the electric motor. Only if the battery charge drops below a given level, or under sudden intense throttle application such as kickdown, is the internal combustion engine automatically activated.
The vehicle was unveiled in BMW Group's Miramas test track in France.
Production version
The production BMW i8 was designed by Benoit Jacob. The production version was unveiled at the 2013 International Motor Show Germany, followed by 2013 Les Voiles de Saint-Tropez. It features butterfly doors, head-up display, rear-view cameras and partially false engine noise. Series production of customer vehicles began in April 2014. It is the first production car with laser headlights, reaching further than LED lights.
The i8 has a low vehicle weight of 1,485 kg (3,274 lb) (DIN kerb weight) and a low drag coefficient (Cd) of 0.26. In all-electric mode the BMW i8 has a top speed of 120 km/h (75 mph). In Sport mode the i8 delivers a mid-range acceleration from 80 to 120 km/h (50 to 75 mph) in 2.6 seconds. The electronically controlled top speed is 250 km/h (160 mph).
Range and fuel economy[edit]
The production i8 has a 7.1 kWh lithium-ion battery pack with a usable capacity of 5.2 kWh and intelligent energy management that delivers an all-electric range of 37 km (23 mi) under the NEDC cycle. Under the EPA cycle, the range in EV mode is 15 mi (24 km), with a gasoline consumption of 0.1 gallons per 100 mi, and as a result, EPA's all-electric range is zero. The total range is 330 mi (530 km).
The production version has a fuel efficiency of 2.1 L/100 km (134.5 mpg-imp; 112.0 mpg-US) under the NEDC test with carbon emissions of 49 g/km.[5] Under EPA cycle, the i8 combined fuel economy in EV mode was rated 76 equivalent (MPG-equivalent) (3.1 L gasoline equivalent/100 km; 91 mpg-imp gasoline equivalent), with an energy consumption of 43 kW-hrs/100 mi and gasoline consumption of 0.1 gal-US/100 mi. The combined fuel economy when running only with gasoline is 28 mpg-US (8.4 L/100 km; 34 mpg-imp), 28 mpg-US (8.4 L/100 km; 34 mpg-imp) for city driving, and 29 mpg-US (8.1 L/100 km; 35 mpg-imp) in highway.
The U.S. Environmental Protection Agency's 2014 edition of the "Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends" introduced utility factors for plug-in hybrids to represent the percentage of miles that will be driven using electricity by an average driver, in electric only or blended modes. The BMW i8 has a utility factor in EV mode of 37%, compared with 83% for the BMW i3 REx, 66% for the Chevrolet Volt, 65% for the Cadillac ELR, 45% for the Ford Energi models, 43% for the McLaren P1, 39% for the Porsche Panamera S E-Hybrid, and 29% for the Toyota Prius PHV.
[Text from Wikipedia]
This Lego miniland-scale BMW i8 has been created for Flickr LUGNuts' 94th Build Challenge, - "Appease the Elves Summer Automobile Build-off (Part 2)", - a design challenge combining the resources of LUGNuts, TheLegoCarBlog (TLCB) and Head Turnerz.
In 1982 Mercedes-Benz released the production version of more than a decade's research into developing a compact format, efficient and safe luxury car. The name '190' referred back to the 1950 and 60s versions of 'reduced power output' models of their mainstream saloon car range. The 190E specified a fuel-injected 2.0 litre, four cylinder engine, whilst a 190 model, without the 'E' (for einspritz' appellation, referred to the same engine, but using a carburetor.
This is the version most commonly seen in taxis, along with a 2.0 litre 4-cylinder diesel, with even less power......
Then something strange happened within the halls of Mercedes-Benz....
190E 2.3-16 & 2.5-16 "Cosworth":
In the late 1970s, Mercedes competed in rallying with the big V8-powered Coupés of the R107 Series, mainly the light-weight Mercedes 450 SLC 5.0. Mercedes wished to take the 190 E rallying, and asked British engineering company Cosworth to develop an engine with 320 bhp (239 kW) for the rally car. This project was known as project "WAA' by Cosworth". During this time, the Audi Quattro with its all-wheel drive and turbocharger was launched, making the 2.3-16v appear outclassed. With a continued desire to compete in high-profile motor sport with the 190, and also now an engine to do it with, Mercedes turned to the Deutsche Tourenwagen Meisterschaft (DTM) (German Touring Car Championship) motor sport series instead. Cars racing in this championship, however, had to be based on a roadgoing model. Mercedes therefore had to put into series production a 190 fitted with a detuned version of the Cosworth engine. This high-performance model was known as the 190 E 2.3-16, and debuted at the Frankfurt Auto Show in September 1983, after its reputation had already been established. Three cars, only slightly cosmetically altered, had set three world records in August at the Nardo testing facility in Italy, recording a combined average speed of 154.06 mph (247.94 km/h) over the 50,000 km endurance test, and establishing twelve international endurance records. The Mercedes 190-E Cosworth was also featured on the second episode in series fifteen of the popular car show Top Gear.
Engin:
2.5-16 Cosworth
The Cosworth engine was based on the M102 four cylinder 2.3-litre 8-valve 136 hp (101 kW) unit already fitted to the 190- and E-Class series. Cosworth developed the cylinder head, "applying knowledge we've learnt from the DFV and BDA." It was made from light alloy using Coscast's unique casting process and brought with it dual overhead camshafts and four valves per cylinder, meaning 16 valves total which were developed to be the "largest that could practically be fitted into the combustion chamber".
In roadgoing trim,the 2.3 L 16-valve engine made "185 hp (138 kW) at 6,200 rpm and 174 lb·ft (236 N·m) at 4,500 rpm. The oversquare 95.50 x 80.25 mm bore and stroke dimensions ensuring that it revs easily up to the 7000 rpm redline". Acceleration from 0–100 km/h (62 mph) was less than eight seconds, and the top speed was 230 km/h (143 mph).
US-Specification cars had a slightly reduced compression ratio (9.7:1 instead of 10.5:1), and were rated at 167 hp (125 kW) @ 5800 rpm and 162 lb·ft (220 N·m) @ 4750.
The roadgoing version of the engine was reconfigured with reduced inlet and exhaust port sizes, different camshaft profiles, no dry sump configuration and Bosch K-jetronic replacing the specialised Kugelfischer fuel injection. These changes helped bring power down to the required 185 bhp (138 kW) specification, but still resulted in a "remarkably flexible engine, with a very flat torque curve and a wide power band". The heads for the engines were cast at Cosworth's Coscast foundry in Worcester and sent to Germany to be fitted to the rest of the engine, parts of which were different from the standard 2.3 including light pressed alloy pistons, and rings designed to withstand higher engine speeds, whilst con-rods, bearings and bearing caps were found to be strong enough as standard and left unaltered.
16v differences:
Due to their performance, the 16-valve cars were different from the other 190 models. The body kit on the 2.3-16 and 2.5-16 reduced the drag coefficient to 0.32, one of the lowest CD values on a four-door saloon of the time, whilst also reducing lift at speed. The steering ratio was quicker and the steering wheel smaller than that on other 190s, whilst the fuel tank was enlarged from 55 to 70 L. The Getrag 5-speed manual gearbox was unique to the 16-valve and featured a 'racing' gear pattern with 'dog-leg' first gear, left and down from neutral. This meant that the remaining 2nd, 3rd, 4th and 5th gears were in a simple H pattern allowing fast and easy selection. The gearchange quality was, however, noted as "notchy, baulky", criticisms which weren't levelled at the BMW M3 (E30) which shared the same gearbox. The pattern is also unusual in that the driver engages reverse by shifting left and up from neutral, as for first gear in a conventional pattern. This was demonstrated in a Top Gear episode (S15E02) where James May took a 190E 2.3-16 Cosworth and repeatedly confused reverse and first gear. An oil cooler was fitted to ensure sufficient oil cooling for the inevitable track use many of these cars were destined for.
The strictly four-seater interior had Recaro sports seats with strong side bolsters for front and rear passengers. 3 extra dials - an oil temperature gauge, stopwatch and voltmeter - were included in the centre console. The 190 E 2.3-16 was available in only two colours, Blue-Black metallic (Pearl Black in the US), and Smoke Silver. The 2.5-16 added Almandine Red and Astral Silver.
All 2.3-16-valve 190 models are fitted with a Limited Slip Differential (LSD) as standard. They were also available with Mercedes' ASD system which was standard equipment on the 2.5-16v. The ASD is an electronically controlled, hydraulically locking differential which activates automatically when required. The electronic control allows varied amounts of differential lock from the standard 15% right up to 100%. It is not a traction control system however, and can only maximize traction rather than prevent wheel spin. Activation of the ASD system is indicated by an illuminating amber triangle in the speedometer.
The suspension on 16-valve models is very different from the standard 190 (W201). As well as being lower and stiffer, it has quicker dampers, larger anti-roll bars, harder bushings and hydraulic Self-levelling suspension (SLS) on the rear. This allows the rear ride height to remain constant even when the car is fully loaded.
At the inauguration of the new, shorter Nürburgring in 1984, a race with identical cars was held, with former and current F1 pilots at the wheel. A then unknown Ayrton Senna took first place.
Private Teams such as AMG later entered the 2.3-16 in touring cars races, especially the DTM. In the late 1980s, the 2.5-16 (never released in the United States) raced many times, against the similar BMW M3 and even the turbocharged Ford Sierra RS Cosworth.
Evolution models:
2.5-16 Evolution II
With the debut of the BMW M3 Sport Evolution, Mercedes' direct competitor, it became obvious that the 2.5-16 needed a boost for the circuit. In March 1989, the 190 E 2.5-16 Evolution debuted at the Geneva Auto Show. The Evo I, as it came to be called, had a new spoiler and wider wheel arches. Many changes were made to under-the-skin components such as brakes and suspension. There was a full SLS suspension allowing vehicle ride height to be adjusted from an interior switch. All were intended to allow the Evolution cars to be even more effective round a track.
The Evo I's output is similar to the 202 bhp (151 kW) of the "regular" 2.5-16. However this car had a redesigned engine of similar capacity but, most importantly, a shorter stroke and bigger bore which would allow for a higher rev limit and improved top-end power capabilities. Additional changes stretch to "rotating masses lightened, lubrication improved and cam timing altered". Cosworth also list a project code "WAC" for the development of the short-stroke Evolution engine.
Only 502 units of the Evolution model were produced for homologation in compliance with DTM rules. For those customers desiring even more performance, a PowerPack option engineered by AMG was available for DM 18,000. The PowerPack option included hotter camshafts, a larger diameter throttle body, more aggressive ignition and fuel management as well as optimization of the intake and exhaust systems. The net result was an additional 30 bhp (22 kW).
In March 1990, at the Geneva Auto Show, the 190 E 2.5-16 Evolution II was shown. With the success of the first Evolution model, this model's 502-unit production was already sold before it was unveiled.
The "Evo II" included the AMG PowerPack fitted to the same short-stroke 2.5 engine as the Evolution, as well as a full SLS suspension allowing vehicle ride height to be adjusted from an interior switch. An obvious modification to the Evolution II is a radical body kit (designed by Prof. Richard Eppler from the University of Stuttgart) with a large adjustable rear wing, rear window spoiler, and Evolution II 17-inch wheels. The kit served an aerodynamic purpose — it was wind tunnel tested to reduce drag to 0.29, while at the same time increasing downforce. Period anecdotes tell of a BMW executive who was quoted as saying "if that rear wing works, we'll have to redesign our wind tunnel." The anecdote claims that BMW did.
As mentioned 500 were made in "blauschwarz" blue/black metallic. But the last two, numbers 501 and 502 were made in astral silver.
[Test taken from Wikipedia]
This Lego miniland-scale 190E 2.5-16 Evolution II sedan has been created for Flickr LUGNuts' 84th Build Challenge, our 7th birthday, - "LUGNuts Turns 7…or 49 in Dog Years", - where all the previous challenges are available to build to. In this case Challenge 57, - "From Mild to Wild", for vehicles that have been turned into something special out of the ordinary. And also challenge 33, - "Size Matters", - as a buddy challenge with Sirmanperson, who has produced the same 190E 2.5-16 Evolution II in 1:17 scale.
Just flowering
oh, oh
on my Smartphone the colors weren't so rich!
If we weren't so efficient at catching them, because they grow their entire life.
-----
Mittelenglisch nennt man die Form der englischen Sprache, die etwa zwischen dem 12. und der Mitte des 15. Jahrhunderts gesprochen wurde.
-
Sie teilen dieselbe bio-georaphische Klimaregion: Atlanisch.
Biogeographic Region: Atlantic
-
Das Altenglische entstand, als die Angeln, Jüten, Friesen und Sachsen sich ab ca. 450 in Britannien ansiedelten.
Altenglisch wurde ursprünglich mit Runen geschrieben, übernahm nach der Bekehrung zum Christentum jedoch das lateinische Alphabet, dem man einige Zeichen hinzufügte. So etwa wurde der Buchstabe Yogh aus dem Irischen übernommen, der Buchstabe ð (eth) war eine Abwandlung des lateinischen d, und die Buchstaben þ (thorn) und ƿ (wynn) stammen aus dem Fuþorc (der anglo-friesischen Variante der gemeingermanischen Runenreihe, dem älteren Fuþark).
Für Sprecher des modernen Englisch ist diese Sprachstufe ohne gezieltes Erlernen nicht mehr verständlich. Sie ist eine eng mit dem Friesischen und Niederdeutschen verwandte westgermanische Sprache und gehört der Gruppe der germanischen Sprachen an, einem Hauptzweig der indoeuropäischen Sprachfamilie.
Die angelsächsische Sprache spaltete sich ab dem 5. Jahrhundert vom kontinentalen Westgermanisch ab, als die Angeln, Sachsen, Friesen und Jüten sich in Britannien ansiedelten (Schlacht von Mons Badonicus). Vom 8. Jahrhundert an ist sie schriftlich belegt und erreicht um 1000 ein hohes Maß an Standardisierung (Spätwestsächsisch der „Schule von Winchester“).
Aus den vorher auf der Insel gesprochenen keltischen Sprachen übernahm das Angelsächsische nur sehr wenige Lehnwörter.
...
Durch die dänische und norwegische Einwanderung ab dem 8. Jahrhundert hat die englische Sprache gegenüber der altsächsischen Sprache auch zahlreiche nordgermanische Elemente integriert, die allerdings erst in den mittelenglischen Texten in größerer Zahl auftauchen, darunter neben einigen hundert anderen Wörtern so zentrale Begriffe wie sky, leg und das moderne Pronomen they.
Stärker noch als in der niedersächsischen Sprache wurden auch Elemente der lateinischen Sprache aufgenommen, insbesondere im Bereich des religiösen Wortschatzes.
Die Dialektsprecher auf dem Festland und der Insel konnten sich miteinander verständigen.
Einschnitt:
Mit der Eroberung Englands durch die französischen Normannen 1066
wurde die Sprache durch den französischen Einfluss aus der Normandie so sehr verändert, dass man sie ab diesem Zeitpunkt als mittelenglische Sprache bezeichnet.
...
Thema - you - they.
Um mehr zu sagen, ist die etymologische Seite dieses "Problems" sehr erhellend: Früher im Altenglischen war das ursprüngliche Wort für "Du" - "thou" - man findet es noch in alten sakralen Texten und Liedern. Und Ihr hieß ye- ye bezog sich also auf mehr als einen Anzuredenden.
Dann nach der normannischen Eroberung fand ein Einzug französischer Sprachelemente ins Englische statt, dies nennt sich Mittelenglische Zeit. "Thou" wurde langsam ersetzt durch "ye" da die französisch-höfische Sitte den Plural vorschrieb, um eine höherstehende Person anzusprechen, dies übertrug sich später auf gleichgestellte Personen.
Jedoch verblieb "thou" noch lange Zeit im Sprachgebrauch. Die Unterscheidung zwischen formaler und nicht-formaler Anrede kam von der üblich Anrede von Königen und anderen höfischen Adelspersonen im Plural. Das wurde schließlich weiter ausgedehnt, um jedwede höhergestellte Person oder Unbekannte mit dem Pluralwort "ye" anzureden. Denn dies wurde als höf-licher ! empfunden.
Das französische "tu" wurde als ein sehr intimes oder herablassendes Anredewort empfunden, einem Fremden gegenüber insbesondere als beleidigend. Im 18. Jahrhundert schrieb Samuel Johnson (ein sehr einflußreicher Gelehrter seiner Zeit, Autor, Essayist, Kritiker, Verfasser des ersten maßgeblichen Lexikons der Englischen Sprache) in seinem Werk: A Grammar of the English Tongue: "im zeremoniellen Sprachgebrauch..wird die zweite Person Plural für die zweite Person Singular verwendet..". Vergleichsweise schreibt The Merriam Webster Dictionary of English Usage, dass um 1650 herum bei den meisten Sprechern des südbritannischen Englisch "thou" unüblich geworden war, sogar im informalen Sprachgebrauch unter Freunden nicht mehr verwendet wurde.
Also wir erkennen: Das Wörtchen "thou" war veraltet, und das "ye" hat sich einfach als das gebräuchlichere Wort für "du", also die 2. Person Singular, eingeschlichen gehabt, weil man wohl zum einen sich dem Adel dadurch näher fühlte, also sich sozial aufgewertet sah, und die Gefahr, unhöflich zu sein, verringert wurde. Interessantes
Nebendetail:
auch heute gibt es in England noch einen Ort , wo das "thou" noch lebt im Sprachgebrauch:Lichfield, Staffordshire, wo Dr. Samuel Johnson geboren wurde. Und natürlich richtet sich das Verb nach dem Mehrzahlpronomen "ye", das "ye" das zum heutigen "you" verschmolzen ist!
de.wikipedia.org/wiki/Altenglisch
-
The BMW i8, first introduced as the BMW Concept Vision Efficient Dynamics, is a plug-in hybrid sports car developed by BMW. The 2015 model year BMW i8 has a 7.1 kWh lithium-ion battery pack that delivers an all-electric range of 37 km (23 mi) under the New European Driving Cycle (NEDC).[5] Under the United States Environmental Protection Agency (EPA) cycle, the range in EV mode is 24 km (15 mi) with a small amount of gasoline consumption.
The BMW i8 can go from 0–100 km/h (0 to 60 mph) in 4.4 seconds and has a top speed of 250 km/h (155 mph). The BMW i8 has a fuel efficiency of 2.1 L/100 km (134.5 mpg-imp; 112.0 mpg-US) under the NEDC test with carbon emissions of 49 g/km. EPA rated the i8 combined fuel economy at 76 equivalent (MPG-equivalent) (3.1 L gasoline equivalent/100 km; 91 mpg-imp gasoline equivalent).
The initial turbodiesel concept car was unveiled at the 2009 International Motor Show Germany. The production version of the BMW i8 was unveiled at the 2013 Frankfurt Motor Show. The i8 was released in Germany in June 2014. Deliveries to retail customers in the U.S. began in August 2014. Global cumulative sales totaled almost 4,500 units through June 2015.
History
The i8 is part of BMW's "Project i" and it is being marketed as a new brand, BMW i, sold separately from BMW or Mini. The BMW i3, launched for retail customers in Europe in the fourth quarter of 2013, was the first model of the i brand available in the market, and it was followed by the i8, released in Germany in June 2014 as a 2015 model year. Other i models are expected to follow.
The initial turbodiesel concept car was unveiled at the 2009 International Motor Show Germany, In 2010, BMW announced the mass production of the Concept Vision Efficient Dynamics in Leipzig beginning in 2013 as the BMW i8. The BMW i8 gasoline-powered concept car destined for production was unveiled at the 2011 Frankfurt Motor Show. The production version of the BMW i8 was unveiled at the 2013 International Motor Show Germany. The following are the concept and pre-production models developed by BMW that precedeed the production version.
BMW Vision EfficientDynamics (2009)
BMW Vision EfficientDynamics concept car is a plug-in hybrid with a three cylinder turbodiesel engine. Additionally, there are two electric motors with 139 horsepower. It allows an acceleration to 100 km/h (62 mph) in 4.8 seconds and an electronically limited top speed of 250 km/h (160 mph).
According to BMW, the average fuel consumption in the EU test cycle (KV01) is 3.76 liters/100 kilometers, (75.1 mpg imp), and has a carbon dioxide emission rating of 99 grams per kilometer (1,3 l/100 km and 33g CO2/km ; EU-PHEV ECE-R101). The estimated all-electric range is 50 km (31 mi), and the 24-liter petrol tank extends the total vehicle range to up to 700 km (430 mi). The lightweight chassis is made mainly from aluminum. The windshield, top, doors and fenders are made from polycarbonate glass, with the body having a drag coefficient of 0.26.
The designers in charge of the BMW Vision EfficientDynamics Concept were Mario Majdandzic, Exterior Design and Jochen Paesen, Interior Design.
The vehicle was unveiled in 2009 International Motor Show Germany, followed by Auto China 2010.
BMW i8 Concept (2011)
BMW i8 Concept plug-in hybrid electric vehicle includes an electric motor located in the front axle powering the front wheels rated 96 kW (131 PS; 129 hp) and 250 N·m (184 lb·ft), a turbocharged 1.5-liter 3-cylinder gasoline engine driving rear wheels rated 164 kW (223 PS; 220 hp) and 300 N·m (221 lb·ft) of torque, with combined output of 260 kW (354 PS; 349 hp) and 550 N·m (406 lb·ft), a 7.2 kWh (26 MJ) lithium-ion battery pack that allows an all-electric range of 35 km (22 mi). All four wheels provide regenerative braking. The location of the battery pack in the energy tunnel gives the vehicle a low centre of gravity, enhancing its dynamics. Its top speed is electronically limited to 250 km/h (160 mph) and is expected to go from 0 to 100 km/h (0 to 60 mph) in 4.6 seconds. Under normal driving conditions the i8 is expected to deliver 80 mpg-US (2.9 L/100 km; 96 mpg-imp) under the European cycle. A full charge of the battery will take less than 2 hours using 220V. The positioning of the motor and engine over the axles results in optimum 50/50 weight distribution.
The vehicle was unveiled at the 2011 International Motor Show Germany, followed by CENTER 548 in New York City, 42nd Tokyo Motor Show 2011, 82nd Geneva Motor Show 2012, BMW i Born Electric Tour at the Palazzo delle Esposizioni at Via Nazionale 194 in Rome, Auto Shanghai 2013.
This concept car was featured in the film Mission: Impossible – Ghost Protocol.
BMW i8 Concept Spyder (2012)
The BMW i8 Concept Spyder included a slightly shorter wheelbase and overall length over the BMW i8 Concept, carbon-fibre-reinforced plastic (CFRP) Life module, drive modules made primarily from aluminium components, interlocking of surfaces and lines, 8.8-inch (22.4 cm) screen display, off-white outer layer, orange tone naturally tanned leather upholstery.
The vehicle was unveiled in Auto China 2012 in Beijing and won Concept Car of the Year, followed by 83rd Geneva International Motor Show 2013.
The designer of the BMW i8 Concept Spyder was Richard Kim.
BMW i8 coupe prototype (2013)
The design of the BMW i8 coupe prototype was based on the BMW i8 Concept. The BMW i8 prototype has an average fuel efficiency of less than 2.5 L/100 km (113.0 mpg-imp; 94.1 mpg-US) under the New European Driving Cycle with carbon emissions of less than 59 g/km. The i8 with its carbon-fiber-reinforced plastic (CFRP) passenger cell lightweight, aerodynamically optimized body, and BMW eDrive technology offers the dynamic performance of a sports car, with an expected 0–100 km (0–60 mi) sprint time of less than 4.5 seconds using both power sources. The plug-in hybrid system of the BMW i8 comprises a three-cylinder, 1.5-liter BMW TwinPower turbo gasoline engine combined with BMW eDrive technology used in the BMW i3 and develops maximum power of 170 kW (230 hp). The BMW i8 is the first BMW production model to be powered by a three-cylinder gasoline engine and the resulting specific output of 115 kW (154 hp) per liter of displacement is on a par with high-performance sports car engines and is the highest of any engine produced by the BMW Group.
The BMW i8's second power source is a hybrid synchronous electric motor specially developed and produced by the BMW Group for BMW i. The electric motor develops maximum power of 131 hp (96 kW) and produces its maximum torque of around 320 N·m (240 lbf·ft) from standstill. Typical of an electric motor, responsive power is instantly available when starting and this continues into the higher load ranges. As well as providing a power boost to assist the gasoline engine during acceleration, the electric motor can also power the vehicle by itself. Top speed in electric mode is approximately 120 km/h (75 mph), with a maximum driving range of up to 35 km (22 mi). Linear acceleration is maintained even at higher speeds since the interplay between the two power sources efficiently absorbs any power flow interruptions when shifting gears. The BMW i8 has an electronically controlled top speed of 250 km (160 mi), which can be reached and maintained when the vehicle operates solely on the gasoline engine. The model-specific version of the high-voltage 7.2 lithium-ion battery has a liquid cooling system and can be recharged at a conventional household power socket, at a BMW i Wallbox or at a public charging station. In the US a full recharge takes approximately 3.5 hours from a conventional 120V, 12 amp household circuit or approximately 1.5 hours from a 220V Level 2 charger.
The driver can also select several driving modes: SPORT, COMFORT and ECO PRO. Using the gear selector, the driver can either select position D for automated gear selection or can switch to SPORT mode. SPORT mode offers manual gear selection and at the same time switches to very sporty drive and suspension settings. In SPORT mode, the engine and electric motor deliver extra performance, accelerator response is faster and the power boost from the electric motor is maximized. And to keep the battery topped up, SPORT mode also activates maximum energy recuperation during overrun and braking as the electric motor’s generator function, which recharges the battery using kinetic energy, switches to a more powerful setting. The Driving Experience Control switch on the center console offers a choice of two settings. On starting, COMFORT mode is activated, which offers a balance between sporty performance and fuel efficiency, with unrestricted access to all convenience functions. Alternatively, the ECO PRO mode can be engaged, which, on the BMW i8 as on other models, supports an efficiency-optimized driving style. On this mode the powertrain controller coordinates the cooperation between the gasoline engine and the electric motor for maximum fuel economy. On deceleration, the intelligent energy management system automatically decides, in line with the driving situation and vehicle status, whether to recuperate braking energy or to coast with the powertrain disengaged. At the same time, ECO PRO mode also programs electrical convenience functions such as the air conditioning, seat heating and heated mirrors to operate at minimum power consumption, but without compromising safety. The maximum driving range of the BMW i8 on a full fuel tank and with a fully charged battery is more than 500 km (310 mi) in COMFORT mode, which can be increased by up to 20% in ECO PRO mode. The BMW i8’s ECO PRO mode can also be used during all-electric operation. The vehicle is then powered solely by the electric motor. Only if the battery charge drops below a given level, or under sudden intense throttle application such as kickdown, is the internal combustion engine automatically activated.
The vehicle was unveiled in BMW Group's Miramas test track in France.
Production version
The production BMW i8 was designed by Benoit Jacob. The production version was unveiled at the 2013 International Motor Show Germany, followed by 2013 Les Voiles de Saint-Tropez. It features butterfly doors, head-up display, rear-view cameras and partially false engine noise. Series production of customer vehicles began in April 2014. It is the first production car with laser headlights, reaching further than LED lights.
The i8 has a low vehicle weight of 1,485 kg (3,274 lb) (DIN kerb weight) and a low drag coefficient (Cd) of 0.26. In all-electric mode the BMW i8 has a top speed of 120 km/h (75 mph). In Sport mode the i8 delivers a mid-range acceleration from 80 to 120 km/h (50 to 75 mph) in 2.6 seconds. The electronically controlled top speed is 250 km/h (160 mph).
Range and fuel economy[edit]
The production i8 has a 7.1 kWh lithium-ion battery pack with a usable capacity of 5.2 kWh and intelligent energy management that delivers an all-electric range of 37 km (23 mi) under the NEDC cycle. Under the EPA cycle, the range in EV mode is 15 mi (24 km), with a gasoline consumption of 0.1 gallons per 100 mi, and as a result, EPA's all-electric range is zero. The total range is 330 mi (530 km).
The production version has a fuel efficiency of 2.1 L/100 km (134.5 mpg-imp; 112.0 mpg-US) under the NEDC test with carbon emissions of 49 g/km.[5] Under EPA cycle, the i8 combined fuel economy in EV mode was rated 76 equivalent (MPG-equivalent) (3.1 L gasoline equivalent/100 km; 91 mpg-imp gasoline equivalent), with an energy consumption of 43 kW-hrs/100 mi and gasoline consumption of 0.1 gal-US/100 mi. The combined fuel economy when running only with gasoline is 28 mpg-US (8.4 L/100 km; 34 mpg-imp), 28 mpg-US (8.4 L/100 km; 34 mpg-imp) for city driving, and 29 mpg-US (8.1 L/100 km; 35 mpg-imp) in highway.
The U.S. Environmental Protection Agency's 2014 edition of the "Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends" introduced utility factors for plug-in hybrids to represent the percentage of miles that will be driven using electricity by an average driver, in electric only or blended modes. The BMW i8 has a utility factor in EV mode of 37%, compared with 83% for the BMW i3 REx, 66% for the Chevrolet Volt, 65% for the Cadillac ELR, 45% for the Ford Energi models, 43% for the McLaren P1, 39% for the Porsche Panamera S E-Hybrid, and 29% for the Toyota Prius PHV.
[Text from Wikipedia]
This Lego miniland-scale BMW i8 has been created for Flickr LUGNuts' 94th Build Challenge, - "Appease the Elves Summer Automobile Build-off (Part 2)", - a design challenge combining the resources of LUGNuts, TheLegoCarBlog (TLCB) and Head Turnerz.
"Black bears are efficient berry-eaters, consuming up to 30,000 berries a day in a good year. They gather berries quickly, using their sensitive, mobile lips and swallowing them whole. The berries enter a two-part stomach, which grinds the pulp off the seeds. The seeds pass through the digestive tract unbroken and able to germinate, making black bears important seed dispersers. Each summer, they spread the seeds of their favorite berries all over their home ranges."
www.bear.org/website/bear-pages/black-bear/foraging-a-foo...
"Black bears are omnivorous animals, but mostly eat vegetation and fruits. Despite their tough appearance and long teeth and claws, 85% of a black bear's diet comes from plants. They also like to eat honey and can rip open a whole tree to get into a beehive. Black bears' thick coats protect them from stinging bees, meaning they can eat the honeycombs as fast or as slowly as they like. At night, black bears in the Pacific Northwest fish for salmon in rivers. A few enterprising bears also venture into human-populated areas to steal from trashcans or campsites. In the fall, when they are preparing for hibernation, black bears eat lots of bugs like ants and bees for their protein. Black bears also sometimes catch baby deer, cows and moose, but they are more likely to try to steal carcasses from more active predators like wolves, coyotes and cougars. The extra proteins help them gain fat for their long, annual hibernation." From www.whatdobearseat
Yesterday, 5 September 2019, friend Pam and I had a great day out in Kananaskis. It had been just over two months since I drove myself out there, but Pam had been only two days ago. There were a few different places that she wanted to stop yesterday, and she was hoping to see a bear - preferably a Grizzly, but we were out of luck for that. However, we were lucky enough to see two Black Bears, which was such a treat.
Our day started off really well, leaving the city at 7:00 am. Driving along a backroad SW of the city, a small, rather cute, old barn was our first find. It was set back from the road and easily missed, so I'm glad I spotted it.
Further on, we came across a White-tailed Deer feeding in a field, and it looked so beautiful in the early morning sun. Normally, I don't get out this early and I know I miss that special light.
Going to have to finish description, etc. later ....
Researchers at Berkeley Lab helped develop the first energy-efficient dual-paned windows, now used in buildings and homes world-wide for billions of dollars in energy savings. Current windows research in the Environmental Energy Technologies Division at Berkeley Lab is aimed at developing new glazing materials, windows simulation software, and other advanced high-performance window systems. The building shown here, located at Berkeley Lab, is a windows testing facility.
credit: Lawrence Berkeley Nat'l Lab - Roy Kaltschmidt, photographer
XBD200705-00146-02.TIF
Since 2008, Regiobus of Gossau SG has bought all of its new autobuses from MAN. Thus it was no surprise that also the "New Lion's City" generation is being delivered to Gossau and Herisau now, with Nr. 16 being one of three vehicles delivered by end of 2020.
---------------------------------
Operator: Regiobus, Gossau
Vehicle: 16/SG 258'921, MAN NL330/12C New Lion's City Efficient Hybrid
Route: 80.152 Gossau - Herisau
Joanne manages with a 20 sq ft kitchen just fine. She's got awesome tips on how
www.makingthishome.com/2009/01/06/joannes-small-kitchen-t...
The BMW i8, first introduced as the BMW Concept Vision Efficient Dynamics, is a plug-in hybrid sports car developed by BMW. The 2015 model year BMW i8 has a 7.1 kWh lithium-ion battery pack that delivers an all-electric range of 37 km (23 mi) under the New European Driving Cycle (NEDC).[5] Under the United States Environmental Protection Agency (EPA) cycle, the range in EV mode is 24 km (15 mi) with a small amount of gasoline consumption.
The BMW i8 can go from 0–100 km/h (0 to 60 mph) in 4.4 seconds and has a top speed of 250 km/h (155 mph). The BMW i8 has a fuel efficiency of 2.1 L/100 km (134.5 mpg-imp; 112.0 mpg-US) under the NEDC test with carbon emissions of 49 g/km. EPA rated the i8 combined fuel economy at 76 equivalent (MPG-equivalent) (3.1 L gasoline equivalent/100 km; 91 mpg-imp gasoline equivalent).
The initial turbodiesel concept car was unveiled at the 2009 International Motor Show Germany. The production version of the BMW i8 was unveiled at the 2013 Frankfurt Motor Show. The i8 was released in Germany in June 2014. Deliveries to retail customers in the U.S. began in August 2014. Global cumulative sales totaled almost 4,500 units through June 2015.
History
The i8 is part of BMW's "Project i" and it is being marketed as a new brand, BMW i, sold separately from BMW or Mini. The BMW i3, launched for retail customers in Europe in the fourth quarter of 2013, was the first model of the i brand available in the market, and it was followed by the i8, released in Germany in June 2014 as a 2015 model year. Other i models are expected to follow.
The initial turbodiesel concept car was unveiled at the 2009 International Motor Show Germany, In 2010, BMW announced the mass production of the Concept Vision Efficient Dynamics in Leipzig beginning in 2013 as the BMW i8. The BMW i8 gasoline-powered concept car destined for production was unveiled at the 2011 Frankfurt Motor Show. The production version of the BMW i8 was unveiled at the 2013 International Motor Show Germany. The following are the concept and pre-production models developed by BMW that precedeed the production version.
BMW Vision EfficientDynamics (2009)
BMW Vision EfficientDynamics concept car is a plug-in hybrid with a three cylinder turbodiesel engine. Additionally, there are two electric motors with 139 horsepower. It allows an acceleration to 100 km/h (62 mph) in 4.8 seconds and an electronically limited top speed of 250 km/h (160 mph).
According to BMW, the average fuel consumption in the EU test cycle (KV01) is 3.76 liters/100 kilometers, (75.1 mpg imp), and has a carbon dioxide emission rating of 99 grams per kilometer (1,3 l/100 km and 33g CO2/km ; EU-PHEV ECE-R101). The estimated all-electric range is 50 km (31 mi), and the 24-liter petrol tank extends the total vehicle range to up to 700 km (430 mi). The lightweight chassis is made mainly from aluminum. The windshield, top, doors and fenders are made from polycarbonate glass, with the body having a drag coefficient of 0.26.
The designers in charge of the BMW Vision EfficientDynamics Concept were Mario Majdandzic, Exterior Design and Jochen Paesen, Interior Design.
The vehicle was unveiled in 2009 International Motor Show Germany, followed by Auto China 2010.
BMW i8 Concept (2011)
BMW i8 Concept plug-in hybrid electric vehicle includes an electric motor located in the front axle powering the front wheels rated 96 kW (131 PS; 129 hp) and 250 N·m (184 lb·ft), a turbocharged 1.5-liter 3-cylinder gasoline engine driving rear wheels rated 164 kW (223 PS; 220 hp) and 300 N·m (221 lb·ft) of torque, with combined output of 260 kW (354 PS; 349 hp) and 550 N·m (406 lb·ft), a 7.2 kWh (26 MJ) lithium-ion battery pack that allows an all-electric range of 35 km (22 mi). All four wheels provide regenerative braking. The location of the battery pack in the energy tunnel gives the vehicle a low centre of gravity, enhancing its dynamics. Its top speed is electronically limited to 250 km/h (160 mph) and is expected to go from 0 to 100 km/h (0 to 60 mph) in 4.6 seconds. Under normal driving conditions the i8 is expected to deliver 80 mpg-US (2.9 L/100 km; 96 mpg-imp) under the European cycle. A full charge of the battery will take less than 2 hours using 220V. The positioning of the motor and engine over the axles results in optimum 50/50 weight distribution.
The vehicle was unveiled at the 2011 International Motor Show Germany, followed by CENTER 548 in New York City, 42nd Tokyo Motor Show 2011, 82nd Geneva Motor Show 2012, BMW i Born Electric Tour at the Palazzo delle Esposizioni at Via Nazionale 194 in Rome, Auto Shanghai 2013.
This concept car was featured in the film Mission: Impossible – Ghost Protocol.
BMW i8 Concept Spyder (2012)
The BMW i8 Concept Spyder included a slightly shorter wheelbase and overall length over the BMW i8 Concept, carbon-fibre-reinforced plastic (CFRP) Life module, drive modules made primarily from aluminium components, interlocking of surfaces and lines, 8.8-inch (22.4 cm) screen display, off-white outer layer, orange tone naturally tanned leather upholstery.
The vehicle was unveiled in Auto China 2012 in Beijing and won Concept Car of the Year, followed by 83rd Geneva International Motor Show 2013.
The designer of the BMW i8 Concept Spyder was Richard Kim.
BMW i8 coupe prototype (2013)
The design of the BMW i8 coupe prototype was based on the BMW i8 Concept. The BMW i8 prototype has an average fuel efficiency of less than 2.5 L/100 km (113.0 mpg-imp; 94.1 mpg-US) under the New European Driving Cycle with carbon emissions of less than 59 g/km. The i8 with its carbon-fiber-reinforced plastic (CFRP) passenger cell lightweight, aerodynamically optimized body, and BMW eDrive technology offers the dynamic performance of a sports car, with an expected 0–100 km (0–60 mi) sprint time of less than 4.5 seconds using both power sources. The plug-in hybrid system of the BMW i8 comprises a three-cylinder, 1.5-liter BMW TwinPower turbo gasoline engine combined with BMW eDrive technology used in the BMW i3 and develops maximum power of 170 kW (230 hp). The BMW i8 is the first BMW production model to be powered by a three-cylinder gasoline engine and the resulting specific output of 115 kW (154 hp) per liter of displacement is on a par with high-performance sports car engines and is the highest of any engine produced by the BMW Group.
The BMW i8's second power source is a hybrid synchronous electric motor specially developed and produced by the BMW Group for BMW i. The electric motor develops maximum power of 131 hp (96 kW) and produces its maximum torque of around 320 N·m (240 lbf·ft) from standstill. Typical of an electric motor, responsive power is instantly available when starting and this continues into the higher load ranges. As well as providing a power boost to assist the gasoline engine during acceleration, the electric motor can also power the vehicle by itself. Top speed in electric mode is approximately 120 km/h (75 mph), with a maximum driving range of up to 35 km (22 mi). Linear acceleration is maintained even at higher speeds since the interplay between the two power sources efficiently absorbs any power flow interruptions when shifting gears. The BMW i8 has an electronically controlled top speed of 250 km (160 mi), which can be reached and maintained when the vehicle operates solely on the gasoline engine. The model-specific version of the high-voltage 7.2 lithium-ion battery has a liquid cooling system and can be recharged at a conventional household power socket, at a BMW i Wallbox or at a public charging station. In the US a full recharge takes approximately 3.5 hours from a conventional 120V, 12 amp household circuit or approximately 1.5 hours from a 220V Level 2 charger.
The driver can also select several driving modes: SPORT, COMFORT and ECO PRO. Using the gear selector, the driver can either select position D for automated gear selection or can switch to SPORT mode. SPORT mode offers manual gear selection and at the same time switches to very sporty drive and suspension settings. In SPORT mode, the engine and electric motor deliver extra performance, accelerator response is faster and the power boost from the electric motor is maximized. And to keep the battery topped up, SPORT mode also activates maximum energy recuperation during overrun and braking as the electric motor’s generator function, which recharges the battery using kinetic energy, switches to a more powerful setting. The Driving Experience Control switch on the center console offers a choice of two settings. On starting, COMFORT mode is activated, which offers a balance between sporty performance and fuel efficiency, with unrestricted access to all convenience functions. Alternatively, the ECO PRO mode can be engaged, which, on the BMW i8 as on other models, supports an efficiency-optimized driving style. On this mode the powertrain controller coordinates the cooperation between the gasoline engine and the electric motor for maximum fuel economy. On deceleration, the intelligent energy management system automatically decides, in line with the driving situation and vehicle status, whether to recuperate braking energy or to coast with the powertrain disengaged. At the same time, ECO PRO mode also programs electrical convenience functions such as the air conditioning, seat heating and heated mirrors to operate at minimum power consumption, but without compromising safety. The maximum driving range of the BMW i8 on a full fuel tank and with a fully charged battery is more than 500 km (310 mi) in COMFORT mode, which can be increased by up to 20% in ECO PRO mode. The BMW i8’s ECO PRO mode can also be used during all-electric operation. The vehicle is then powered solely by the electric motor. Only if the battery charge drops below a given level, or under sudden intense throttle application such as kickdown, is the internal combustion engine automatically activated.
The vehicle was unveiled in BMW Group's Miramas test track in France.
Production version
The production BMW i8 was designed by Benoit Jacob. The production version was unveiled at the 2013 International Motor Show Germany, followed by 2013 Les Voiles de Saint-Tropez. It features butterfly doors, head-up display, rear-view cameras and partially false engine noise. Series production of customer vehicles began in April 2014. It is the first production car with laser headlights, reaching further than LED lights.
The i8 has a low vehicle weight of 1,485 kg (3,274 lb) (DIN kerb weight) and a low drag coefficient (Cd) of 0.26. In all-electric mode the BMW i8 has a top speed of 120 km/h (75 mph). In Sport mode the i8 delivers a mid-range acceleration from 80 to 120 km/h (50 to 75 mph) in 2.6 seconds. The electronically controlled top speed is 250 km/h (160 mph).
Range and fuel economy[edit]
The production i8 has a 7.1 kWh lithium-ion battery pack with a usable capacity of 5.2 kWh and intelligent energy management that delivers an all-electric range of 37 km (23 mi) under the NEDC cycle. Under the EPA cycle, the range in EV mode is 15 mi (24 km), with a gasoline consumption of 0.1 gallons per 100 mi, and as a result, EPA's all-electric range is zero. The total range is 330 mi (530 km).
The production version has a fuel efficiency of 2.1 L/100 km (134.5 mpg-imp; 112.0 mpg-US) under the NEDC test with carbon emissions of 49 g/km.[5] Under EPA cycle, the i8 combined fuel economy in EV mode was rated 76 equivalent (MPG-equivalent) (3.1 L gasoline equivalent/100 km; 91 mpg-imp gasoline equivalent), with an energy consumption of 43 kW-hrs/100 mi and gasoline consumption of 0.1 gal-US/100 mi. The combined fuel economy when running only with gasoline is 28 mpg-US (8.4 L/100 km; 34 mpg-imp), 28 mpg-US (8.4 L/100 km; 34 mpg-imp) for city driving, and 29 mpg-US (8.1 L/100 km; 35 mpg-imp) in highway.
The U.S. Environmental Protection Agency's 2014 edition of the "Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends" introduced utility factors for plug-in hybrids to represent the percentage of miles that will be driven using electricity by an average driver, in electric only or blended modes. The BMW i8 has a utility factor in EV mode of 37%, compared with 83% for the BMW i3 REx, 66% for the Chevrolet Volt, 65% for the Cadillac ELR, 45% for the Ford Energi models, 43% for the McLaren P1, 39% for the Porsche Panamera S E-Hybrid, and 29% for the Toyota Prius PHV.
[Text from Wikipedia]
This Lego miniland-scale BMW i8 has been created for Flickr LUGNuts' 94th Build Challenge, - "Appease the Elves Summer Automobile Build-off (Part 2)", - a design challenge combining the resources of LUGNuts, TheLegoCarBlog (TLCB) and Head Turnerz.
Kenworth’s new, fuel-efficient T680 52-inch mid-roof sleeper Advantage Package, for regional haul and less-than truckload operations, is now available for order as of December 2016. The T680 Advantage with 52-inch sleeper features an optimized powertrain with either the PACCAR MX-13 or PACCAR MX-11 engine, Eaton Fuller Advantage(TM) series 10-speed automated transmission, and the new PACCAR Axle, the industry’s most efficient and lightest weight tandem drive axle. The 52-inch mid-roof sleeper configuration also offers new aerodynamic elements including a front air dam, flared-out fairings, lower sleeper fairing extenders and FlowBelow(TM) wheel covers that enhance fuel economy by effectively redirecting airflow around the chassis, sleeper and trailer. Other notable fuel-efficiency features are Kenworth’s Predictive Cruise Control, Neutral Coast, and Driver Performance Assistant.
In 1982 Mercedes-Benz released the production version of more than a decade's research into developing a compact format, efficient and safe luxury car. The name '190' referred back to the 1950 and 60s versions of 'reduced power output' models of their mainstream saloon car range. The 190E specified a fuel-injected 2.0 litre, four cylinder engine, whilst a 190 model, without the 'E' (for einspritz' appellation, referred to the same engine, but using a carburetor.
This is the version most commonly seen in taxis, along with a 2.0 litre 4-cylinder diesel, with even less power......
Then something strange happened within the halls of Mercedes-Benz....
190E 2.3-16 & 2.5-16 "Cosworth":
In the late 1970s, Mercedes competed in rallying with the big V8-powered Coupés of the R107 Series, mainly the light-weight Mercedes 450 SLC 5.0. Mercedes wished to take the 190 E rallying, and asked British engineering company Cosworth to develop an engine with 320 bhp (239 kW) for the rally car. This project was known as project "WAA' by Cosworth". During this time, the Audi Quattro with its all-wheel drive and turbocharger was launched, making the 2.3-16v appear outclassed. With a continued desire to compete in high-profile motor sport with the 190, and also now an engine to do it with, Mercedes turned to the Deutsche Tourenwagen Meisterschaft (DTM) (German Touring Car Championship) motor sport series instead. Cars racing in this championship, however, had to be based on a roadgoing model. Mercedes therefore had to put into series production a 190 fitted with a detuned version of the Cosworth engine. This high-performance model was known as the 190 E 2.3-16, and debuted at the Frankfurt Auto Show in September 1983, after its reputation had already been established. Three cars, only slightly cosmetically altered, had set three world records in August at the Nardo testing facility in Italy, recording a combined average speed of 154.06 mph (247.94 km/h) over the 50,000 km endurance test, and establishing twelve international endurance records. The Mercedes 190-E Cosworth was also featured on the second episode in series fifteen of the popular car show Top Gear.
Engin:
2.5-16 Cosworth
The Cosworth engine was based on the M102 four cylinder 2.3-litre 8-valve 136 hp (101 kW) unit already fitted to the 190- and E-Class series. Cosworth developed the cylinder head, "applying knowledge we've learnt from the DFV and BDA." It was made from light alloy using Coscast's unique casting process and brought with it dual overhead camshafts and four valves per cylinder, meaning 16 valves total which were developed to be the "largest that could practically be fitted into the combustion chamber".
In roadgoing trim,the 2.3 L 16-valve engine made "185 hp (138 kW) at 6,200 rpm and 174 lb·ft (236 N·m) at 4,500 rpm. The oversquare 95.50 x 80.25 mm bore and stroke dimensions ensuring that it revs easily up to the 7000 rpm redline". Acceleration from 0–100 km/h (62 mph) was less than eight seconds, and the top speed was 230 km/h (143 mph).
US-Specification cars had a slightly reduced compression ratio (9.7:1 instead of 10.5:1), and were rated at 167 hp (125 kW) @ 5800 rpm and 162 lb·ft (220 N·m) @ 4750.
The roadgoing version of the engine was reconfigured with reduced inlet and exhaust port sizes, different camshaft profiles, no dry sump configuration and Bosch K-jetronic replacing the specialised Kugelfischer fuel injection. These changes helped bring power down to the required 185 bhp (138 kW) specification, but still resulted in a "remarkably flexible engine, with a very flat torque curve and a wide power band". The heads for the engines were cast at Cosworth's Coscast foundry in Worcester and sent to Germany to be fitted to the rest of the engine, parts of which were different from the standard 2.3 including light pressed alloy pistons, and rings designed to withstand higher engine speeds, whilst con-rods, bearings and bearing caps were found to be strong enough as standard and left unaltered.
16v differences:
Due to their performance, the 16-valve cars were different from the other 190 models. The body kit on the 2.3-16 and 2.5-16 reduced the drag coefficient to 0.32, one of the lowest CD values on a four-door saloon of the time, whilst also reducing lift at speed. The steering ratio was quicker and the steering wheel smaller than that on other 190s, whilst the fuel tank was enlarged from 55 to 70 L. The Getrag 5-speed manual gearbox was unique to the 16-valve and featured a 'racing' gear pattern with 'dog-leg' first gear, left and down from neutral. This meant that the remaining 2nd, 3rd, 4th and 5th gears were in a simple H pattern allowing fast and easy selection. The gearchange quality was, however, noted as "notchy, baulky", criticisms which weren't levelled at the BMW M3 (E30) which shared the same gearbox. The pattern is also unusual in that the driver engages reverse by shifting left and up from neutral, as for first gear in a conventional pattern. This was demonstrated in a Top Gear episode (S15E02) where James May took a 190E 2.3-16 Cosworth and repeatedly confused reverse and first gear. An oil cooler was fitted to ensure sufficient oil cooling for the inevitable track use many of these cars were destined for.
The strictly four-seater interior had Recaro sports seats with strong side bolsters for front and rear passengers. 3 extra dials - an oil temperature gauge, stopwatch and voltmeter - were included in the centre console. The 190 E 2.3-16 was available in only two colours, Blue-Black metallic (Pearl Black in the US), and Smoke Silver. The 2.5-16 added Almandine Red and Astral Silver.
All 2.3-16-valve 190 models are fitted with a Limited Slip Differential (LSD) as standard. They were also available with Mercedes' ASD system which was standard equipment on the 2.5-16v. The ASD is an electronically controlled, hydraulically locking differential which activates automatically when required. The electronic control allows varied amounts of differential lock from the standard 15% right up to 100%. It is not a traction control system however, and can only maximize traction rather than prevent wheel spin. Activation of the ASD system is indicated by an illuminating amber triangle in the speedometer.
The suspension on 16-valve models is very different from the standard 190 (W201). As well as being lower and stiffer, it has quicker dampers, larger anti-roll bars, harder bushings and hydraulic Self-levelling suspension (SLS) on the rear. This allows the rear ride height to remain constant even when the car is fully loaded.
At the inauguration of the new, shorter Nürburgring in 1984, a race with identical cars was held, with former and current F1 pilots at the wheel. A then unknown Ayrton Senna took first place.
Private Teams such as AMG later entered the 2.3-16 in touring cars races, especially the DTM. In the late 1980s, the 2.5-16 (never released in the United States) raced many times, against the similar BMW M3 and even the turbocharged Ford Sierra RS Cosworth.
Evolution models:
2.5-16 Evolution II
With the debut of the BMW M3 Sport Evolution, Mercedes' direct competitor, it became obvious that the 2.5-16 needed a boost for the circuit. In March 1989, the 190 E 2.5-16 Evolution debuted at the Geneva Auto Show. The Evo I, as it came to be called, had a new spoiler and wider wheel arches. Many changes were made to under-the-skin components such as brakes and suspension. There was a full SLS suspension allowing vehicle ride height to be adjusted from an interior switch. All were intended to allow the Evolution cars to be even more effective round a track.
The Evo I's output is similar to the 202 bhp (151 kW) of the "regular" 2.5-16. However this car had a redesigned engine of similar capacity but, most importantly, a shorter stroke and bigger bore which would allow for a higher rev limit and improved top-end power capabilities. Additional changes stretch to "rotating masses lightened, lubrication improved and cam timing altered". Cosworth also list a project code "WAC" for the development of the short-stroke Evolution engine.
Only 502 units of the Evolution model were produced for homologation in compliance with DTM rules. For those customers desiring even more performance, a PowerPack option engineered by AMG was available for DM 18,000. The PowerPack option included hotter camshafts, a larger diameter throttle body, more aggressive ignition and fuel management as well as optimization of the intake and exhaust systems. The net result was an additional 30 bhp (22 kW).
In March 1990, at the Geneva Auto Show, the 190 E 2.5-16 Evolution II was shown. With the success of the first Evolution model, this model's 502-unit production was already sold before it was unveiled.
The "Evo II" included the AMG PowerPack fitted to the same short-stroke 2.5 engine as the Evolution, as well as a full SLS suspension allowing vehicle ride height to be adjusted from an interior switch. An obvious modification to the Evolution II is a radical body kit (designed by Prof. Richard Eppler from the University of Stuttgart) with a large adjustable rear wing, rear window spoiler, and Evolution II 17-inch wheels. The kit served an aerodynamic purpose — it was wind tunnel tested to reduce drag to 0.29, while at the same time increasing downforce. Period anecdotes tell of a BMW executive who was quoted as saying "if that rear wing works, we'll have to redesign our wind tunnel." The anecdote claims that BMW did.
As mentioned 500 were made in "blauschwarz" blue/black metallic. But the last two, numbers 501 and 502 were made in astral silver.
[Test taken from Wikipedia]
This Lego miniland-scale 190E 2.5-16 Evolution II sedan has been created for Flickr LUGNuts' 84th Build Challenge, our 7th birthday, - "LUGNuts Turns 7…or 49 in Dog Years", - where all the previous challenges are available to build to. In this case Challenge 57, - "From Mild to Wild", for vehicles that have been turned into something special out of the ordinary. And also challenge 33, - "Size Matters", - as a buddy challenge with Sirmanperson, who has produced the same 190E 2.5-16 Evolution II in 1:17 scale.
A fine wee booklet issued by Fry's Metal Foundries of Tandem Works, Meron Abbey, London SW19. It is beautifully produced for them by the Curwen Press of Plaistow, an example of a company involved in the printing and typographical businesses going to one of the best presses around to produce their work for them!
Fry's has a long, complicated and interesting history. The booklet details the equipment available and the skills required to correctly melt and re-use foundry metal used for typesetting.
Eleven supremely fit and ruthlessly efficient cricketers, on top of their game, had their dreams of a first-ever world title ended by one audacious man. That cricket is a team game is an oft repeated cliché but South Africa were eliminated from the World Twenty20 at Trent Bridge solely because of Shahid Afridi's intensity and all-round skill.
Pakistan were yet to win a game against significant opposition in the tournament because of a team performance. They lost to England and Sri Lanka, beat minnows Netherlands and Ireland, and relied on Umar Gul to rout New Zealand. Their players hadn't contributed collectively and so it was unlikely all 11 players would maximise potential against opponents as able as South Africa. To have a hope of playing at Lord's on Sunday, Pakistan needed individual brilliance from one of their matchwinners: probably Gul, possibly Younis Khan, or perhaps Misbah-ul-Haq.
Instead, it came from Afridi. Pakistan and Afridi supporters always hope that it will come from him. They roar him to the crease, brimming with optimism, hoping he will destroy the opposition with his recklessly cavalier approach. Thousands of fans celebrated his arrival at the crease at Trent Bridge after Pakistan had lost Shahzaib Hasan in the second over.
Did they know that Afridi's last half-century, in any format of the game, came 28 innings ago, against Zimbabwe at Multan in 2008? And the one before that was 19 innings earlier, against Sri Lanka in Abu Dhabi in 2007? It didn't matter, for when it comes to Afridi, there's always reason to hope. He'll disappoint more often than not, but his successes are so spectacular that it's worth the heartbreaks.
Afridi batted at No. 6 during the initial stages of the World Twenty20 and having to necessarily find the boundary immediately didn't work for him. He made 5 against England, holing out to mid-on, was bowled for 13 by Dirk Nannes against Netherlands, and was dismissed for a first-ball duck against Sri Lanka. Pakistan decided to push him up to No. 5 against New Zealand and he made 29 low-pressure runs off 18 balls, and 24 off 13 balls at No 3 against Ireland. Afridi said Younis supported him fully, put no pressure on him, and asked him to bat higher in the order, only requesting that he take his time and not attempt impractical risks like trying to pull Muttiah Muralitharan into orbit off his first delivery.
On first evidence at Trent Bridge, Afridi appeared not to heed that request, whacking his first ball, from Wayne Parnell, over mid-on for four. He was bristling with aggression when Jacques Kallis tested his skill against the short ball. Afridi was beaten by the first couple but pulled two out of the following three to the midwicket boundary. Kallis walked up to him and stared and Afridi's response was an attempt to get under the skin of the bowler. "He [Kallis] came close to me, I gave him a kiss," Afridi said. "A flying kiss."
Afridi's posture had betrayed disappointment when Kamran Akmal fell off his 12th ball, having scored 23 off the first 11, by top-edging a pull to mid-on. Afridi had also started quickly, scoring 15 off nine, but wasn't about to go the Akmal way. No risks were taken immediately after the fielding restrictions were lifted, Afridi being content with working the ball cleverly into gaps to score at a run a ball.
Not until the 11th over did he cut loose, against Johan Botha, and his execution was precise. Three times in a row Afridi made room by moving towards leg, and all three times he placed the ball into the gap on the extra cover boundary. And when Graeme Smith reinforced his field, Afridi played the deftest of late cuts to take 18 off the over. His first moment of indiscretion was also his last for an ill-timed swipe across the line against JP Duminy's first ball went straight in the air. Trent Bridge reverberated with applause as Afridi returned to the dugout, having scored 51 off 34 balls. And he was only half done.
While Afridi's batting deteriorated over the last couple of years, his bowling has been vital to Pakistan's limited-over success. He even said on Cricinfo that he rates himself as a bowler first. So unlike his batting, Afridi's legspin was in top form during the World Twenty20 with eight wickets and an economy of less than six an over, going into the game against South Africa.
Bouyed by his batting, Afridi's high intensity levels kept him in the thick of the action. He appeared stunned after Gul dropped Smith and hit his head on the ground, standing motionless for a few moments before realising the ball needed to be collected, and then attended to his injured team-mate. He was given the ball in the seventh over and found rhythm immediately, getting one to turn, bounce and rip past Kallis' bat. Gibbs watched that from the non-striker's end and so pushed forward, playing away from his body for the legbreak, a ball later. It didn't turn. Instead it fizzed off the pitch and skidded straight through, knocking back off stump.
Afridi had an edge put down by Kamran Akmal off AB de Villiers in his next over. Unfazed, he forced the batsmen to play on the next ball, and celebrated in trademark style: running to the side of the pitch, standing upright with his chest proudly out, a knowing grin in his face and his left hand raised in triumph while his team-mates rushed in from all corners of the outfield. As they mobbed him, the DJ got the crowd going by playing Dil Dil Pakistan.
Afridi finished with 2 for 16 to go with his half-century. After he was done, Saeed Ajmal dismissed Kallis, Gul bowled a succession of yorkers, and Mohammad Aamer kept his cool when entrusted with the final over. There was no doubt, though, why Pakistan had won. It was obvious from the number of times Smith mentioned Afridi's name during the post-match press conference without even being specifically asked.
George Binoy is a senior sub-editor at Cricinfo
Feeds: George Binoy