View allAll Photos Tagged Disconnection

“Stress is basically a disconnection from the earth, a forgetting of the breath. Stress is an ignorant state. It believes that everything is an emergency. Nothing is that important. Just lie down.”~Natalie Goldberg

 

“Stress: The confusion created when one's mind overrides the body's basic desire to choke the living daylights out of some jerk who desperately deserves it”

 

Went to the beach with a friend after work...it was cold and windy...yet invigorating and the sunset was warm...I found my favorite rock jetty....planted my ass on it...watched the sky...let the waves crash around me...hung with Peter Gabriel on my iPod for an eternity....and let go of this fucking day....if even for an hour.....lifelines!

I was feeling part of the scenery <---go here

In Nishat Bagh in Srinagar.

 

Nishat Bagh is a terraced Mughal garden built on the eastern side of the Dal Lake, close to Srinagar in the union territory of Jammu and Kashmir, India. ‘Nishat Bagh’ is Urdu, and means the "Garden of Joy," "Garden of Gladness" and "Garden of Delight."

 

Located on the bank of the Dal Lake, with the Zabarwan Mountains as its backdrop, Nishat Bagh is a garden with views of the lake beneath the Pir Panjal mountain range. The Bagh was designed and built in 1633 by Asif Khan, elder brother of Nur Jehan.

 

When Shah Jahan saw the garden, after its completion in 1633, he expressed great appreciation of its grandeur and beauty. He is believed to have expressed his delight three times to Asif Khan, his father-in-law, in the hope that he would make a gift of it to him. As no such offer was forthcoming from Asif Khan, however, Shah Jahan was piqued and ordered that the water supply to the garden should be cut off. Then, for some time, the garden was deserted. Asif Khan was desolate and heartbroken. When he was resting under the shade of a tree, in one of the terraces, his servant was bold enough to turn on the water supply source from the Shalimar Bagh. When Asif Khan heard the sound of water and the fountains in action he was startled and immediately ordered the disconnection of the water supply as he feared the worst reaction from the Emperor for this wanton act of disobedience. Fortunately Shah Jahan, who heard about this incident at the garden, was not annoyed by the disobedience of his orders. Instead, he approved of the servant’s loyal service to his master and then ordered the full restoration rights for the supply of water to the garden to Asif Khan, his Prime Minister and father-in-law.

 

The Mughal Princess Zuhra Begum, the daughter of the Mughal Emperor Alamgir II, and granddaughter of the Emperor Jahandar Shah, was buried in the garden.

The High Level Bridge is a road and railway bridge spanning the River Tyne between Newcastle upon Tyne and Gateshead in North East England. It is considered the most notable historical engineering work in the city. It was built by the Hawks family from 5,050 tons of iron. George Hawks, Mayor of Gateshead, drove in the last key of the structure on 7 June 1849, and the bridge was officially opened by Queen Victoria later that year.

 

It was designed by Robert Stephenson to form a rail link towards Scotland for the developing English railway network; a carriageway for road vehicles and pedestrians was incorporated to generate additional revenue. The main structural elements are tied cast-iron arches.

 

Notwithstanding the considerable increase in the weight of railway vehicles since it was designed, it continues to carry rail traffic, although the King Edward bridge nearby was opened in 1906 to ease congestion. The roadway is also still in use, although with a weight restriction. It is a Grade I listed structure.

 

In 1835, the Newcastle and Carlisle Railway (N&CR) Act authorised the line to approach Newcastle to a terminus at Redheugh, on the south bank of the River Tyne, close to the end of the present-day New Redheugh Bridge. The Act also authorised a crossing of the Tyne there, giving rail access to the north shore quays. The river was shallow at this point, and the bridge would have been at a low level, only 20 ft (6.1 m) above high water. The line would then have climbed to a terminus at the Spital, near Neville Street and the east end of the present-day Newcastle Central station. The climb was to be at a gradient of 1 in 22 and would have been operated by a stationary steam engine with rope haulage.

 

Hitherto railways in the region had had a local focus, but now the Great North of England Railway (GNER) obtained authorising Acts to build from Newcastle to York, forming part of a continuous trunk railway network to connect to London; the project was controlled by George Hudson, the so-called Railway King. At first the GNER was content to get access to the N&CR Newcastle terminus, by connecting with the N&CR at Redheugh and running over its line across the Tyne and up to the Spital. This had the advantage of avoiding a separate, and expensive, crossing of the river, but would have meant a steep descent to Redheugh as the GNER line approached on high ground from the Team Valley, only to climb once again to the Spital. Moreover, William Brandling had made known his intention to reach Newcastle from his line by running at a high level through Gateshead. On 25 April 1837, the N&CR decided to build to their south side, low-level terminus at Redheugh, but to leave the issue of the Tyne crossing open.

 

Richard Grainger was a developer in Newcastle, and had acquired lands at Elswick (on the north bank of the Tyne west of the proposed Redheugh crossing). In 1836, he published a pamphlet recommending a crossing of the Tyne there, and the formation of spacious railway terminal accommodation there. Drawing attention to the limited scope for extending eastwards from the Spital, and "in the event of an Edinburgh Railway also terminating in this situation, the interchange of passengers, goods, and cattle would be greatly increased".

 

Grainger's plan was not adopted, and the Brandling Junction Railway reached Gateshead in 1839. The GNER ran out of money and it was superseded in Hudson's railway empire by the Newcastle and Darlington Junction Railway, which opened its line using the Brandling Junction Railway from the south east instead of through the Team Valley. The Brandling Junction line had a terminus in Gateshead at Greenesfield at a high level, and the N&CR line was built climbing on an inclined plane at a gradient of 1 in 23 from Redheugh to reach that. The Newcastle and Darlington Junction Railway opened its line from the south to Pelaw, allowing its trains to reach Gateshead over the Brandling Junction line, in 1844. The tables had been turned, and indeed for a while Greenesfield was the de facto main station for the conurbation of Newcastle and Gateshead.

 

John and Benjamin Green were a father and son architectural practice active in Newcastle. In 1841 Benjamin Green had proposed a high level bridge for road traffic, substantially on the alignment of the actual High Level Bridge; and sensing the commercial climate he explained how it could be adapted for railway use. He failed to get any financial support, but in 1843 George Hudson was looking for ways to extend his railway network northwards, and the Greens' scheme fitted with his takeover of the Newcastle and Darlington Junction Railway; the line got its authorising Act on 22 May 1844, and the Act included the road bridge.

 

The Newcastle and North Shields Railway had opened in 1839 from its own terminus at Carliol Square, on the north-east edge of Newcastle. As a purely local concern, the disconnection was not important, but interest gathered in a railway to central Scotland; the "Edinburgh Railway" foreseen by Grainger. A Scottish concern, the North British Railway, had got its Act of Parliament the previous year to build as far south as Berwick (later known as Berwick-upon-Tweed.

 

Now Hudson was intent on capturing the line to Edinburgh for his empire, and he encouraged the development of railway plans to get there; the route such a line might take continued to generate considerable controversy. There was still ambiguity about Hudson's intentions for the bridge—an easier crossing point at Bill Quay, two miles downstream had been considered—and Newcastle Town Council sought undertakings from him. In addition, he promised a footway crossing; this was apparently not a sweetener to the Town Council, but a commercial decision, expected to bring in £250 a week. The footway crossing was later extended to include horse-drawn vehicles.

 

Finally, the Newcastle and Berwick Railway was authorised by Act of Parliament of 31 July 1845. The line would cross the Greens' high level bridge, starting from the Gateshead Greenesfield station, and commitments made to the building of a bridge by the Newcastle and Darlington Junction Railway were transferred to the Newcastle and Berwick Railway.

 

The bridge was to be designed by Robert Stephenson; T E Harrison did the detailed design work.

 

The height of the railway, at about 120 ft (37 m) above high water, was determined by the level of the Brandling Junction line in Gateshead. A double-deck configuration was selected because of road levels on the approaches, and to avoid the excess width of foundations which a side-by-side arrangement would require. The deck width was determined by the useful roadway width plus the width of structural members, which gave the railway deck the width for three tracks.

 

The foundations were to be difficult because of the poor ground conditions in the river, and this ruled out an all-masonry structure, so cast iron or wrought iron was inevitable for the superstructure. A tied arch (or bow-string) design was favoured because the outward thrust imposed by an arch is contained by the tie; no abutments capable of resisting the thrust could be provided here.

 

Stephenson had used this configuration before; he recorded that, "The earliest railway bridge on the bowstring principle is that over the Regent's Canal, near Chalk Farm, on the London and Birmingham Railway".

 

The arch would consist of iron ribs. Fawcett says, "The reasons for not using wrought iron was due to some engineers' distrust of rivetting, the relatively small size of wrought iron plates then available, and the higher cost… On 1 October 1845 when the Newcastle and Berwick Board instructed T E Harrison for their bridges, none of the uses of wrought iron had been developed far enough to be considered as an alternative to cast iron for the High Level Bridge. A tubular bridge might have been considered by Robert Stephenson but the distance between solid and reasonably shallow foundations would have given a span much larger than the Britannia Bridge."

 

The depth of rock in the riverbed resulted in a height of 140 ft (43 m) from there to the superstructure. Three river piers were permitted by the Tyne Improvement Commissioners, and therefore four river spans of 125 ft (38 m) were decided on; there were additional subsidiary spans on the shore.

 

The cast iron arch ribs are 3 ft 6 in (1.07 m) deep at the crown, increasing to 3 ft 9 in (1.14 m) at the springing, with 12-inch (30 cm) flanges; the flanges and webs were three inches thick; in the case of the inner ribs, and two inches for the outer ribs. The rise was 17 ft 6 in (5.33 m), determined by the desired geometry to confine the horizontal thrust within bounds. Each arch was cast in five sections, bolted together.

 

Stephenson described the tie bars:

 

The ties consist of flat wrought-iron bars, 7 inches by 1 inch of best scrap iron, with eyes of 3½ inches diameter, bored out of the solid, and pins turned and fitted closely. Each external rib is tied by four of these bars, and each internal rib by eight. The sectional area of each external tie is 28 [square] inches, and of each internal tie 56 [square] inches, giving a total area of 168 square inches. These bars were all tested to 9 tons on the square inch.

 

The rail deck is supported above the arches by twelve 14-inch (360 mm) square columns at 9 feet 11 inches (3.02 m) centres. Suspension rods supported the road deck, and both decks had two layers of diagonally laid three-inch deck timbers on suitable wrought iron cross girders (and rail-bearers in the case of the rail deck).

 

The main contractors for the ironwork were Hawks, Crawshay, and Sons, who were assisted by John Abbot and Co., of Gateshead Park Works, and Losh Wilson and Bell, of Walker Ironworks, in the production of the castings. The tender was accepted at £112,000. The contract for the bridge piers and land arches and for the Newcastle Viaduct were won by John Rush and Benjamin Lawton of York for £94,000 and £82,500 respectively. The total cost of the contracts at 1999 prices would be over £30 million.

 

The first masonry was laid on 12 January 1847. A temporary timber viaduct on the east side was ready on 20 August 1848.

 

Timber coffer dams were constructed; they were 76 ft 6 in (23.32 m) by 29 ft (8.8 m) with two skins, the space between being filled with puddle clay. James Nasmyth had a novel design of steam pile driver; it had first been used in Devonport Docks in 1845; it could deliver 60 to 70 blows a minute; the cycle time with the hand-operated pile drivers formerly in use was four minutes. The drop weight was 1½ tons and its stroke was 2 ft 9 in (0.84 m); one was purchased from Nasmyth.

 

The ground gave considerable trouble during construction; Stephenson recorded:

 

Many difficulties occurred in driving the piles which considerably retarded the progress of the work, and, among others, the peculiar effect of ebb and flow during this operation is worthy of note. At flood-tide, the sand became so hard as almost totally to resist the utmost efforts of driving, while at ebb the sand was quite loose, and allowed of doing so with facility. It was therefore found necessary to abandon the driving on many occasions during high water. The difference between high and low water is 11 feet 6 inches. Another difficulty arose from the quicksands beneath the foundations. Although the piles were driven to the rock bottom, the water forced its way up, baffling the attempts to fill in between them; this, however, was remedied by using a concrete made of broken stone and Roman cement, which was continually thrown in until the bottom was found to be secure.

 

The arch ribs were erected in section by travelling crane; each arch was temporarily erected at the contractor’s works. The first was placed on 10 July 1848, and the erection of the ironwork was quick.

 

Already on 29 August 1848, it was possible to pass a special train over the first arch, and over a temporary structure for the rest of the crossing:

 

The High Level Bridge Over the Tyne: This important junction between the York and Newcastle and the Newcastle and Berwick Railway has been completed, and the event was celebrated on Tuesday last. In the afternoon of that day, a train of [specially invited] passengers passed along the temporary timber viaduct from the station at Gateshead to the station at Newcastle. Mr Hudson and several other Directors of the York, Newcastle, and Berwick line, who had been visiting Sunderland ... proceeded in a special train from that town to Gateshead... Several carriages were then added to the special train, and an open truck placed at each end, in which bands of music were stationed. The shrill sound of the whistle gave the signal for a royal salute, under the booming of which the train passed along the line, the band playing, and the thousands assembled to witness the event, rending the air with joyous acclamation Upon reaching the bridge, the bands struck up the well-known local air of "The Keel Row" which they continued till the train had reached the solid ground on the northern side of the river... The train proceeded to the Newcastle and Berwick station, where the company alighted and walked in procession to the Queen’s Head Inn, where a magnificent entertainment had been provided for the Directors and their friends, by the Mayor of Newcastle.

 

[From the south abutment of the High Level Bridge] and the river pier on the south side, the cast iron arch and road-way are nearly completed, and the second arch will be in progress in the course of a few weeks. From the middle of the first arch, the line curves to a temporary timber viaduct erected along the west side of the intended bridge. The height of this viaduct is one hundred and twenty feet to the level of the rails; it is built upon piles, which are driven between thirty and forty feet into the bed of the river. Its stability was sufficiently tested on Monday, when Captain Leffan (sic), the Government Inspector of Railways, examined it preparatory to the opening. On that day, two powerful engines weighing upwards of seventy tons, traversed it at different degrees of speed for between two and three hours; the weight would be about one ton to a foot, being four or five times greater than the temporary structure will ever be required to bear, and the result was, in the highest degree, satisfactory.

 

Among the company in the train were four ladies, who are deserving of honourable mention, from the courage they displayed in accompanying it, namely, Mrs Nichs. Wood, and Miss F. Wood, Mrs I. L. Bell, and her sister, Miss Pattinson of Washington. As the train passed steadily over the bridge the anxiety of the immense multitude seemed intense, and the scene was truly exciting, yet fearful—not only from the lofty eminence occupied by the train but, from the apparent narrowness and nakedness of the platform on which it rolled along. It seemed from its noiselessness, rather an aerial flight, than the rattling sweep of the iron horse.

 

Ordinary traffic appears to have used the temporary single line structure after this date.

 

The eastern track was ready for an inspection by Captain Laffan, Inspecting Office for the Board of Trade, when he visited on 11 August 1849; a load test with four tender locomotives and eighteen wagons loaded with ballast, a total weight of 200 tons. Laffan approved the bridge:

 

I believe all the works of the bridge are completed, and that I believe it to be perfectly secure and safe. The Company have as yet only laid one line of rails over this structure, and I beg to recommend that permission be given to open that one line.

 

The first passenger train crossed the completed structure on the morning of 15 August 1849.

 

Queen Victoria formally inaugurated the bridge on passing through by train on 28 September 1849.

 

The Queen at Newcastle: Her Majesty yesterday honoured this ancient borough with her presence. The event was one of universal and all-engrossing interest... The morning, unfortunately, was dull and the weather unsettled, giving forebodings of a wet and uncomfortable day... Notwithstanding, however, the unfavourable weather dense crowds assembled at every spot in this locality, where a view of the royal carriage could be obtained, and many remained for hours exposed to the weather in order that they might retain the places which at an earlier period of the morning they had secured. The bridge was densely lined with people, and the platform was well covered, though not inconveniently crowded. A profusion of banners were displayed on this elegant and substantial structure, and from nearly all the public and many of the private buildings both in Newcastle and Gateshead. The vessels in the river hoisted their flags mast-high on the occasion, and the church bells of the two towns rung many a merry peal in honour of the royal visit... Pursuant to a request issued by the Mayor, most of the shops were closed about 11 o’clock, and the manufacturers were desired by our worthy chief magistrate "not to produce smoke between that hour and one," with which we believe, they generally complied... At precisely twenty minutes past twelve, the royal carriage appeared in sight, and when it reached the Spital, a splendid locomotive, built by the celebrated house of Stephenson and Co., gaily decorated and bearing on its front "God save the Queen" surmounted by a crown, and a suitable inscription encircling the boiler, was attached to the train. It then slowly proceeded to the centre of the colossal fabric, amidst bursts of loud and rapturous cheering from the assembled thousands, her Majesty repeatedly acknowledging these marked demonstrations of loyalty and affection from her faithful and attached subjects.

 

The Mayors of Newcastle and Gateshead presented a formal address. The queen travelled in the royal carriage belonging to the London and North Western Railway.

 

In other carriages were members of her Majesty’s suite and the directors of the York, Newcastle, and Berwick Railway. The engine drawing the royal train was under the direction of Mr T. E. Harrison, the resident engineer, and driven by Mr Thos. Carr... After staying altogether from five to ten minutes, the train was again put in motion, and amidst firing of artillery and rapturous plaudits from the dense throng, proceeded en route to Darlington.

 

The bridge and its immediate approaches had cost £243,000.

 

The road deck was re-opened only in a southbound (towards Gateshead) direction and carries only buses and taxis; the one-way operation is required because of width considerations after protection to the structural members was inserted. Pedestrians and cyclists use the bridge freely. Railway traffic continues in full use of the bridge, although the majority of mainline trains use the King Edward VII bridge for reasons of convenience

 

Gateshead is a town in the Gateshead Metropolitan Borough of Tyne and Wear, England. It is on the River Tyne's southern bank. The town's attractions include the twenty metre tall Angel of the North sculpture on the town's southern outskirts, The Glasshouse International Centre for Music and the Baltic Centre for Contemporary Art. The town shares the Millennium Bridge, Tyne Bridge and multiple other bridges with Newcastle upon Tyne.

 

Historically part of County Durham, under the Local Government Act 1888 the town was made a county borough, meaning it was administered independently of the county council.

 

In the 2011 Census, the town had a population of 120,046 while the wider borough had 200,214.

 

History

Gateshead is first mentioned in Latin translation in Bede's Ecclesiastical History of the English People as ad caput caprae ("at the goat's head"). This interpretation is consistent with the later English attestations of the name, among them Gatesheued (c. 1190), literally "goat's head" but in the context of a place-name meaning 'headland or hill frequented by (wild) goats'. Although other derivations have been mooted, it is this that is given by the standard authorities.

 

A Brittonic predecessor, named with the element *gabro-, 'goat' (c.f. Welsh gafr), may underlie the name. Gateshead might have been the Roman-British fort of Gabrosentum.

 

Early

There has been a settlement on the Gateshead side of the River Tyne, around the old river crossing where the Swing Bridge now stands, since Roman times.

 

The first recorded mention of Gateshead is in the writings of the Venerable Bede who referred to an Abbot of Gateshead called Utta in 623. In 1068 William the Conqueror defeated the forces of Edgar the Ætheling and Malcolm king of Scotland (Shakespeare's Malcolm) on Gateshead Fell (now Low Fell and Sheriff Hill).

 

During medieval times Gateshead was under the jurisdiction of the Bishop of Durham. At this time the area was largely forest with some agricultural land. The forest was the subject of Gateshead's first charter, granted in the 12th century by Hugh du Puiset, Bishop of Durham. An alternative spelling may be "Gatishevede", as seen in a legal record, dated 1430.

 

Industrial revolution

Throughout the Industrial Revolution the population of Gateshead expanded rapidly; between 1801 and 1901 the increase was over 100,000. This expansion resulted in the spread southwards of the town.

 

In 1854, a catastrophic explosion on the quayside destroyed most of Gateshead's medieval heritage, and caused widespread damage on the Newcastle side of the river.

 

Sir Joseph Swan lived at Underhill, Low Fell, Gateshead from 1869 to 1883, where his experiments led to the invention of the electric light bulb. The house was the first in the world to be wired for domestic electric light.

 

In the 1889 one of the largest employers (Hawks, Crawshay and Company) closed down and unemployment has since been a burden. Up to the Second World War there were repeated newspaper reports of the unemployed sending deputations to the council to provide work. The depression years of the 1920s and 1930s created even more joblessness and the Team Valley Trading Estate was built in the mid-1930s to alleviate the situation.

 

Regeneration

In the late noughties, Gateshead Council started to regenerate the town, with the long-term aim of making Gateshead a city. The most extensive transformation occurred in the Quayside, with almost all the structures there being constructed or refurbished in this time.

 

In the early 2010s, regeneration refocused on the town centre. The £150 million Trinity Square development opened in May 2013, it incorporates student accommodation, a cinema, health centre and shops. It was nominated for the Carbuncle Cup in September 2014. The cup was however awarded to another development which involved Tesco, Woolwich Central.

 

Governance

In 1835, Gateshead was established as a municipal borough and in 1889 it was made a county borough, independent from Durham County Council.

 

In 1870, the Old Town Hall was built, designed by John Johnstone who also designed the previously built Newcastle Town Hall. The ornamental clock in front of the old town hall was presented to Gateshead in 1892 by the mayor, Walter de Lancey Willson, on the occasion of him being elected for a third time. He was also one of the founders of Walter Willson's, a chain of grocers in the North East and Cumbria. The old town hall also served as a magistrate's court and one of Gateshead's police stations.

 

Current

In 1974, following the Local Government Act 1972, the County Borough of Gateshead was merged with the urban districts of Felling, Whickham, Blaydon and Ryton and part of the rural district of Chester-le-Street to create the much larger Metropolitan Borough of Gateshead.

 

Geography

The town of Gateshead is in the North East of England in the ceremonial county of Tyne and Wear, and within the historic boundaries of County Durham. It is located on the southern bank of the River Tyne at a latitude of 54.57° N and a longitude of 1.35° W. Gateshead experiences a temperate climate which is considerably warmer than some other locations at similar latitudes as a result of the warming influence of the Gulf Stream (via the North Atlantic drift). It is located in the rain shadow of the North Pennines and is therefore in one of the driest regions of the United Kingdom.

 

One of the most distinguishing features of Gateshead is its topography. The land rises 230 feet from Gateshead Quays to the town centre and continues rising to a height of 525 feet at Queen Elizabeth Hospital in Sheriff Hill. This is in contrast to the flat and low lying Team Valley located on the western edges of town. The high elevations allow for impressive views over the Tyne valley into Newcastle and across Tyneside to Sunderland and the North Sea from lookouts in Windmill Hills and Windy Nook respectively.

 

The Office for National Statistics defines the town as an urban sub-division. The latest (2011) ONS urban sub-division of Gateshead contains the historical County Borough together with areas that the town has absorbed, including Dunston, Felling, Heworth, Pelaw and Bill Quay.

 

Given the proximity of Gateshead to Newcastle, just south of the River Tyne from the city centre, it is sometimes incorrectly referred to as being a part of Newcastle. Gateshead Council and Newcastle City Council teamed up in 2000 to create a unified marketing brand name, NewcastleGateshead, to better promote the whole of the Tyneside conurbation.

 

Economy

Gateshead is home to the MetroCentre, the largest shopping mall in the UK until 2008; and the Team Valley Trading Estate, once the largest and still one of the larger purpose-built commercial estates in the UK.

 

Arts

The Baltic Centre for Contemporary Art has been established in a converted flour mill. The Glasshouse International Centre for Music, previously The Sage, a Norman Foster-designed venue for music and the performing arts opened on 17 December 2004. Gateshead also hosted the Gateshead Garden Festival in 1990, rejuvenating 200 acres (0.81 km2) of derelict land (now mostly replaced with housing). The Angel of the North, a famous sculpture in nearby Lamesley, is visible from the A1 to the south of Gateshead, as well as from the East Coast Main Line. Other public art include works by Richard Deacon, Colin Rose, Sally Matthews, Andy Goldsworthy, Gordon Young and Michael Winstone.

 

Traditional and former

The earliest recorded coal mining in the Gateshead area is dated to 1344. As trade on the Tyne prospered there were several attempts by the burghers of Newcastle to annex Gateshead. In 1576 a small group of Newcastle merchants acquired the 'Grand Lease' of the manors of Gateshead and Whickham. In the hundred years from 1574 coal shipments from Newcastle increased elevenfold while the population of Gateshead doubled to approximately 5,500. However, the lease and the abundant coal supplies ended in 1680. The pits were shallow as problems of ventilation and flooding defeated attempts to mine coal from the deeper seams.

 

'William Cotesworth (1668-1726) was a prominent merchant based in Gateshead, where he was a leader in coal and international trade. Cotesworth began as the son of a yeoman and apprentice to a tallow - candler. He ended as an esquire, having been mayor, Justice of the Peace and sheriff of Northumberland. He collected tallow from all over England and sold it across the globe. He imported dyes from the Indies, as well as flax, wine, and grain. He sold tea, sugar, chocolate, and tobacco. He operated the largest coal mines in the area, and was a leading salt producer. As the government's principal agent in the North country, he was in contact with leading ministers.

 

William Hawks originally a blacksmith, started business in Gateshead in 1747, working with the iron brought to the Tyne as ballast by the Tyne colliers. Hawks and Co. eventually became one of the biggest iron businesses in the North, producing anchors, chains and so on to meet a growing demand. There was keen contemporary rivalry between 'Hawks' Blacks' and 'Crowley's Crew'. The famous 'Hawks' men' including Ned White, went on to be celebrated in Geordie song and story.

 

In 1831 a locomotive works was established by the Newcastle and Darlington Railway, later part of the York, Newcastle and Berwick Railway. In 1854 the works moved to the Greenesfield site and became the manufacturing headquarters of North Eastern Railway. In 1909, locomotive construction was moved to Darlington and the rest of the works were closed in 1932.

 

Robert Stirling Newall took out a patent on the manufacture of wire ropes in 1840 and in partnership with Messrs. Liddell and Gordon, set up his headquarters at Gateshead. A worldwide industry of wire-drawing resulted. The submarine telegraph cable received its definitive form through Newall's initiative, involving the use of gutta-percha surrounded by strong wires. The first successful Dover–Calais cable on 25 September 1851, was made in Newall's works. In 1853, he invented the brake-drum and cone for laying cable in deep seas. Half of the first Atlantic cable was manufactured in Gateshead. Newall was interested in astronomy, and his giant 25-inch (640 mm) telescope was set up in the garden at Ferndene, his Gateshead residence, in 1871.

 

Architecture

JB Priestley, writing of Gateshead in his 1934 travelogue English Journey, said that "no true civilisation could have produced such a town", adding that it appeared to have been designed "by an enemy of the human race".

 

Victorian

William Wailes the celebrated stained-glass maker, lived at South Dene from 1853 to 1860. In 1860, he designed Saltwell Towers as a fairy-tale palace for himself. It is an imposing Victorian mansion in its own park with a romantic skyline of turrets and battlements. It was originally furnished sumptuously by Gerrard Robinson. Some of the panelling installed by Robinson was later moved to the Shipley Art gallery. Wailes sold Saltwell Towers to the corporation in 1876 for use as a public park, provided he could use the house for the rest of his life. For many years the structure was essentially an empty shell but following a restoration programme it was reopened to the public in 2004.

 

Post millennium

The council sponsored the development of a Gateshead Quays cultural quarter. The development includes the Gateshead Millennium Bridge, erected in 2001, which won the prestigious Stirling Prize for Architecture in 2002.

 

Former brutalism

The brutalist Trinity Centre Car Park, which was designed by Owen Luder, dominated the town centre for many years until its demolition in 2010. A product of attempts to regenerate the area in the 1960s, the car park gained an iconic status due to its appearance in the 1971 film Get Carter, starring Michael Caine. An unsuccessful campaign to have the structure listed was backed by Sylvester Stallone, who played the main role in the 2000 remake of the film. The car park was scheduled for demolition in 2009, but this was delayed as a result of a disagreement between Tesco, who re-developed the site, and Gateshead Council. The council had not been given firm assurances that Tesco would build the previously envisioned town centre development which was to include a Tesco mega-store as well as shops, restaurants, cafes, bars, offices and student accommodation. The council effectively used the car park as a bargaining tool to ensure that the company adhered to the original proposals and blocked its demolition until they submitted a suitable planning application. Demolition finally took place in July–August 2010.

 

The Derwent Tower, another well known example of brutalist architecture, was also designed by Owen Luder and stood in the neighbourhood of Dunston. Like the Trinity Car Park it also failed in its bid to become a listed building and was demolished in 2012. Also located in this area are the Grade II listed Dunston Staithes which were built in 1890. Following the award of a Heritage Lottery Fund grant of almost £420,000 restoration of the structure is expected to begin in April 2014.

 

Sport

Gateshead International Stadium regularly holds international athletics meetings over the summer months, and is home of the Gateshead Harriers athletics club. It is also host to rugby league fixtures, and the home ground of Gateshead Football Club. Gateshead Thunder Rugby League Football Club played at Gateshead International Stadium until its purchase by Newcastle Rugby Limited and the subsequent rebranding as Newcastle Thunder. Both clubs have had their problems: Gateshead A.F.C. were controversially voted out of the Football League in 1960 in favour of Peterborough United, whilst Gateshead Thunder lost their place in Super League as a result of a takeover (officially termed a merger) by Hull F.C. Both Gateshead clubs continue to ply their trade at lower levels in their respective sports, thanks mainly to the efforts of their supporters. The Gateshead Senators American Football team also use the International Stadium, as well as this it was used in the 2006 Northern Conference champions in the British American Football League.

 

Gateshead Leisure Centre is home to the Gateshead Phoenix Basketball Team. The team currently plays in EBL League Division 4. Home games are usually on a Sunday afternoon during the season, which runs from September to March. The team was formed in 2013 and ended their initial season well placed to progress after defeating local rivals Newcastle Eagles II and promotion chasing Kingston Panthers.

 

In Low Fell there is a cricket club and a rugby club adjacent to each other on Eastwood Gardens. These are Gateshead Fell Cricket Club and Gateshead Rugby Club. Gateshead Rugby Club was formed in 1998 following the merger of Gateshead Fell Rugby Club and North Durham Rugby Club.

 

Transport

Gateshead is served by the following rail transport stations with some being operated by National Rail and some being Tyne & Wear Metro stations: Dunston, Felling, Gateshead Interchange, Gateshead Stadium, Heworth Interchange, MetroCentre and Pelaw.

 

Tyne & Wear Metro stations at Gateshead Interchange and Gateshead Stadium provide direct light-rail access to Newcastle Central, Newcastle Airport , Sunderland, Tynemouth and South Shields Interchange.

 

National Rail services are provided by Northern at Dunston and MetroCentre stations. The East Coast Main Line, which runs from London Kings Cross to Edinburgh Waverley, cuts directly through the town on its way between Newcastle Central and Chester-le-Street stations. There are presently no stations on this line within Gateshead, as Low Fell, Bensham and Gateshead West stations were closed in 1952, 1954 and 1965 respectively.

 

Road

Several major road links pass through Gateshead, including the A1 which links London to Edinburgh and the A184 which connects the town to Sunderland.

 

Gateshead Interchange is the busiest bus station in Tyne & Wear and was used by 3.9 million bus passengers in 2008.

 

Cycle routes

Various bicycle trails traverse the town; most notably is the recreational Keelmans Way (National Cycle Route 14), which is located on the south bank of the Tyne and takes riders along the entire Gateshead foreshore. Other prominent routes include the East Gateshead Cycleway, which connects to Felling, the West Gateshead Cycleway, which links the town centre to Dunston and the MetroCentre, and routes along both the old and new Durham roads, which take cyclists to Birtley, Wrekenton and the Angel of the North.

 

Religion

Christianity has been present in the town since at least the 7th century, when Bede mentioned a monastery in Gateshead. A church in the town was burned down in 1080 with the Bishop of Durham inside.[citation needed] St Mary's Church was built near to the site of that building, and was the only church in the town until the 1820s. Undoubtedly the oldest building on the Quayside, St Mary's has now re-opened to the public as the town's first heritage centre.

 

Many of the Anglican churches in the town date from the 19th century, when the population of the town grew dramatically and expanded into new areas. The town presently has a number of notable and large churches of many denominations.

 

Judaism

The Bensham district is home to a community of hundreds of Jewish families and used to be known as "Little Jerusalem". Within the community is the Gateshead Yeshiva, founded in 1929, and other Jewish educational institutions with international enrolments. These include two seminaries: Beis Medrash L'Morot and Beis Chaya Rochel seminary, colloquially known together as Gateshead "old" and "new" seminaries.

 

Many yeshivot and kollels also are active. Yeshivat Beer Hatorah, Sunderland Yeshiva, Nesivos Hatorah, Nezer Hatorah and Yeshiva Ketana make up some of the list.

 

Islam

Islam is practised by a large community of people in Gateshead and there are 2 mosques located in the Bensham area (in Ely Street and Villa Place).

 

Twinning

Gateshead is twinned with the town of Saint-Étienne-du-Rouvray near Rouen in France, and the city of Komatsu in Japan.

 

Notable people

Eliezer Adler – founder of Jewish Community

Marcus Bentley – narrator of Big Brother

Catherine Booth – wife of William Booth, known as the Mother of The Salvation Army

William Booth – founder of the Salvation Army

Mary Bowes – the Unhappy Countess, author and celebrity

Ian Branfoot – footballer and manager (Sheffield Wednesday and Southampton)

Andy Carroll – footballer (Newcastle United, Liverpool and West Ham United)

Frank Clark – footballer and manager (Newcastle United and Nottingham Forest)

David Clelland – Labour politician and MP

Derek Conway – former Conservative politician and MP

Joseph Cowen – Radical politician

Steve Cram – athlete (middle-distance runner)

Emily Davies – educational reformer and feminist, founder of Girton College, Cambridge

Daniel Defoe – writer and government agent

Ruth Dodds – politician, writer and co-founder of the Little Theatre

Jonathan Edwards – athlete (triple jumper) and television presenter

Sammy Johnson – actor (Spender)

George Elliot – industrialist and MP

Paul Gascoigne – footballer (Newcastle United, Tottenham Hotspur, Lazio, Rangers and Middlesbrough)

Alex Glasgow – singer/songwriter

Avrohom Gurwicz – rabbi, Dean of Gateshead Yeshiva

Leib Gurwicz – rabbi, Dean of Gateshead Yeshiva

Jill Halfpenny – actress (Coronation Street and EastEnders)

Chelsea Halfpenny – actress (Emmerdale)

David Hodgson – footballer and manager (Middlesbrough, Liverpool and Sunderland)

Sharon Hodgson – Labour politician and MP

Norman Hunter – footballer (Leeds United and member of 1966 World Cup-winning England squad)

Don Hutchison – footballer (Liverpool, West Ham United, Everton and Sunderland)

Brian Johnson – AC/DC frontman

Tommy Johnson – footballer (Aston Villa and Celtic)

Riley Jones - actor

Howard Kendall – footballer and manager (Preston North End and Everton)

J. Thomas Looney – Shakespeare scholar

Gary Madine – footballer (Sheffield Wednesday)

Justin McDonald – actor (Distant Shores)

Lawrie McMenemy – football manager (Southampton and Northern Ireland) and pundit

Thomas Mein – professional cyclist (Canyon DHB p/b Soreen)

Robert Stirling Newall – industrialist

Bezalel Rakow – communal rabbi

John William Rayner – flying ace and war hero

James Renforth – oarsman

Mariam Rezaei – musician and artist

Sir Tom Shakespeare - baronet, sociologist and disability rights campaigner

William Shield – Master of the King's Musick

Christina Stead – Australian novelist

John Steel – drummer (The Animals)

Henry Spencer Stephenson – chaplain to King George VI and Queen Elizabeth II

Steve Stone – footballer (Nottingham Forest, Aston Villa and Portsmouth)

Chris Swailes – footballer (Ipswich Town)

Sir Joseph Swan – inventor of the incandescent light bulb

Nicholas Trainor – cricketer (Gloucestershire)

Chris Waddle – footballer (Newcastle United, Tottenham Hotspur and Sheffield Wednesday)

William Wailes – stained glass maker

Taylor Wane – adult entertainer

Robert Spence Watson – public benefactor

Sylvia Waugh – author of The Mennyms series for children

Chris Wilkie – guitarist (Dubstar)

John Wilson - orchestral conductor

Peter Wilson – footballer (Gateshead, captain of Australia)

Thomas Wilson – poet/school founder

Robert Wood – Australian politician

The High Level Bridge is a road and railway bridge spanning the River Tyne between Newcastle upon Tyne and Gateshead in North East England. It is considered the most notable historical engineering work in the city. It was built by the Hawks family from 5,050 tons of iron. George Hawks, Mayor of Gateshead, drove in the last key of the structure on 7 June 1849, and the bridge was officially opened by Queen Victoria later that year.

 

It was designed by Robert Stephenson to form a rail link towards Scotland for the developing English railway network; a carriageway for road vehicles and pedestrians was incorporated to generate additional revenue. The main structural elements are tied cast-iron arches.

 

Notwithstanding the considerable increase in the weight of railway vehicles since it was designed, it continues to carry rail traffic, although the King Edward bridge nearby was opened in 1906 to ease congestion. The roadway is also still in use, although with a weight restriction. It is a Grade I listed structure.

 

In 1835, the Newcastle and Carlisle Railway (N&CR) Act authorised the line to approach Newcastle to a terminus at Redheugh, on the south bank of the River Tyne, close to the end of the present-day New Redheugh Bridge. The Act also authorised a crossing of the Tyne there, giving rail access to the north shore quays. The river was shallow at this point, and the bridge would have been at a low level, only 20 ft (6.1 m) above high water. The line would then have climbed to a terminus at the Spital, near Neville Street and the east end of the present-day Newcastle Central station. The climb was to be at a gradient of 1 in 22 and would have been operated by a stationary steam engine with rope haulage.

 

Hitherto railways in the region had had a local focus, but now the Great North of England Railway (GNER) obtained authorising Acts to build from Newcastle to York, forming part of a continuous trunk railway network to connect to London; the project was controlled by George Hudson, the so-called Railway King. At first the GNER was content to get access to the N&CR Newcastle terminus, by connecting with the N&CR at Redheugh and running over its line across the Tyne and up to the Spital. This had the advantage of avoiding a separate, and expensive, crossing of the river, but would have meant a steep descent to Redheugh as the GNER line approached on high ground from the Team Valley, only to climb once again to the Spital. Moreover, William Brandling had made known his intention to reach Newcastle from his line by running at a high level through Gateshead. On 25 April 1837, the N&CR decided to build to their south side, low-level terminus at Redheugh, but to leave the issue of the Tyne crossing open.

 

Richard Grainger was a developer in Newcastle, and had acquired lands at Elswick (on the north bank of the Tyne west of the proposed Redheugh crossing). In 1836, he published a pamphlet recommending a crossing of the Tyne there, and the formation of spacious railway terminal accommodation there. Drawing attention to the limited scope for extending eastwards from the Spital, and "in the event of an Edinburgh Railway also terminating in this situation, the interchange of passengers, goods, and cattle would be greatly increased".

 

Grainger's plan was not adopted, and the Brandling Junction Railway reached Gateshead in 1839. The GNER ran out of money and it was superseded in Hudson's railway empire by the Newcastle and Darlington Junction Railway, which opened its line using the Brandling Junction Railway from the south east instead of through the Team Valley. The Brandling Junction line had a terminus in Gateshead at Greenesfield at a high level, and the N&CR line was built climbing on an inclined plane at a gradient of 1 in 23 from Redheugh to reach that. The Newcastle and Darlington Junction Railway opened its line from the south to Pelaw, allowing its trains to reach Gateshead over the Brandling Junction line, in 1844. The tables had been turned, and indeed for a while Greenesfield was the de facto main station for the conurbation of Newcastle and Gateshead.

 

John and Benjamin Green were a father and son architectural practice active in Newcastle. In 1841 Benjamin Green had proposed a high level bridge for road traffic, substantially on the alignment of the actual High Level Bridge; and sensing the commercial climate he explained how it could be adapted for railway use. He failed to get any financial support, but in 1843 George Hudson was looking for ways to extend his railway network northwards, and the Greens' scheme fitted with his takeover of the Newcastle and Darlington Junction Railway; the line got its authorising Act on 22 May 1844, and the Act included the road bridge.

 

The Newcastle and North Shields Railway had opened in 1839 from its own terminus at Carliol Square, on the north-east edge of Newcastle. As a purely local concern, the disconnection was not important, but interest gathered in a railway to central Scotland; the "Edinburgh Railway" foreseen by Grainger. A Scottish concern, the North British Railway, had got its Act of Parliament the previous year to build as far south as Berwick (later known as Berwick-upon-Tweed.

 

Now Hudson was intent on capturing the line to Edinburgh for his empire, and he encouraged the development of railway plans to get there; the route such a line might take continued to generate considerable controversy. There was still ambiguity about Hudson's intentions for the bridge—an easier crossing point at Bill Quay, two miles downstream had been considered—and Newcastle Town Council sought undertakings from him. In addition, he promised a footway crossing; this was apparently not a sweetener to the Town Council, but a commercial decision, expected to bring in £250 a week. The footway crossing was later extended to include horse-drawn vehicles.

 

Finally, the Newcastle and Berwick Railway was authorised by Act of Parliament of 31 July 1845. The line would cross the Greens' high level bridge, starting from the Gateshead Greenesfield station, and commitments made to the building of a bridge by the Newcastle and Darlington Junction Railway were transferred to the Newcastle and Berwick Railway.

 

The bridge was to be designed by Robert Stephenson; T E Harrison did the detailed design work.

 

The height of the railway, at about 120 ft (37 m) above high water, was determined by the level of the Brandling Junction line in Gateshead. A double-deck configuration was selected because of road levels on the approaches, and to avoid the excess width of foundations which a side-by-side arrangement would require. The deck width was determined by the useful roadway width plus the width of structural members, which gave the railway deck the width for three tracks.

 

The foundations were to be difficult because of the poor ground conditions in the river, and this ruled out an all-masonry structure, so cast iron or wrought iron was inevitable for the superstructure. A tied arch (or bow-string) design was favoured because the outward thrust imposed by an arch is contained by the tie; no abutments capable of resisting the thrust could be provided here.

 

Stephenson had used this configuration before; he recorded that, "The earliest railway bridge on the bowstring principle is that over the Regent's Canal, near Chalk Farm, on the London and Birmingham Railway".

 

The arch would consist of iron ribs. Fawcett says, "The reasons for not using wrought iron was due to some engineers' distrust of rivetting, the relatively small size of wrought iron plates then available, and the higher cost… On 1 October 1845 when the Newcastle and Berwick Board instructed T E Harrison for their bridges, none of the uses of wrought iron had been developed far enough to be considered as an alternative to cast iron for the High Level Bridge. A tubular bridge might have been considered by Robert Stephenson but the distance between solid and reasonably shallow foundations would have given a span much larger than the Britannia Bridge."

 

The depth of rock in the riverbed resulted in a height of 140 ft (43 m) from there to the superstructure. Three river piers were permitted by the Tyne Improvement Commissioners, and therefore four river spans of 125 ft (38 m) were decided on; there were additional subsidiary spans on the shore.

 

The cast iron arch ribs are 3 ft 6 in (1.07 m) deep at the crown, increasing to 3 ft 9 in (1.14 m) at the springing, with 12-inch (30 cm) flanges; the flanges and webs were three inches thick; in the case of the inner ribs, and two inches for the outer ribs. The rise was 17 ft 6 in (5.33 m), determined by the desired geometry to confine the horizontal thrust within bounds. Each arch was cast in five sections, bolted together.

 

Stephenson described the tie bars:

 

The ties consist of flat wrought-iron bars, 7 inches by 1 inch of best scrap iron, with eyes of 3½ inches diameter, bored out of the solid, and pins turned and fitted closely. Each external rib is tied by four of these bars, and each internal rib by eight. The sectional area of each external tie is 28 [square] inches, and of each internal tie 56 [square] inches, giving a total area of 168 square inches. These bars were all tested to 9 tons on the square inch.

 

The rail deck is supported above the arches by twelve 14-inch (360 mm) square columns at 9 feet 11 inches (3.02 m) centres. Suspension rods supported the road deck, and both decks had two layers of diagonally laid three-inch deck timbers on suitable wrought iron cross girders (and rail-bearers in the case of the rail deck).

 

The main contractors for the ironwork were Hawks, Crawshay, and Sons, who were assisted by John Abbot and Co., of Gateshead Park Works, and Losh Wilson and Bell, of Walker Ironworks, in the production of the castings. The tender was accepted at £112,000. The contract for the bridge piers and land arches and for the Newcastle Viaduct were won by John Rush and Benjamin Lawton of York for £94,000 and £82,500 respectively. The total cost of the contracts at 1999 prices would be over £30 million.

 

The first masonry was laid on 12 January 1847. A temporary timber viaduct on the east side was ready on 20 August 1848.

 

Timber coffer dams were constructed; they were 76 ft 6 in (23.32 m) by 29 ft (8.8 m) with two skins, the space between being filled with puddle clay. James Nasmyth had a novel design of steam pile driver; it had first been used in Devonport Docks in 1845; it could deliver 60 to 70 blows a minute; the cycle time with the hand-operated pile drivers formerly in use was four minutes. The drop weight was 1½ tons and its stroke was 2 ft 9 in (0.84 m); one was purchased from Nasmyth.

 

The ground gave considerable trouble during construction; Stephenson recorded:

 

Many difficulties occurred in driving the piles which considerably retarded the progress of the work, and, among others, the peculiar effect of ebb and flow during this operation is worthy of note. At flood-tide, the sand became so hard as almost totally to resist the utmost efforts of driving, while at ebb the sand was quite loose, and allowed of doing so with facility. It was therefore found necessary to abandon the driving on many occasions during high water. The difference between high and low water is 11 feet 6 inches. Another difficulty arose from the quicksands beneath the foundations. Although the piles were driven to the rock bottom, the water forced its way up, baffling the attempts to fill in between them; this, however, was remedied by using a concrete made of broken stone and Roman cement, which was continually thrown in until the bottom was found to be secure.

 

The arch ribs were erected in section by travelling crane; each arch was temporarily erected at the contractor’s works. The first was placed on 10 July 1848, and the erection of the ironwork was quick.

 

Already on 29 August 1848, it was possible to pass a special train over the first arch, and over a temporary structure for the rest of the crossing:

 

The High Level Bridge Over the Tyne: This important junction between the York and Newcastle and the Newcastle and Berwick Railway has been completed, and the event was celebrated on Tuesday last. In the afternoon of that day, a train of [specially invited] passengers passed along the temporary timber viaduct from the station at Gateshead to the station at Newcastle. Mr Hudson and several other Directors of the York, Newcastle, and Berwick line, who had been visiting Sunderland ... proceeded in a special train from that town to Gateshead... Several carriages were then added to the special train, and an open truck placed at each end, in which bands of music were stationed. The shrill sound of the whistle gave the signal for a royal salute, under the booming of which the train passed along the line, the band playing, and the thousands assembled to witness the event, rending the air with joyous acclamation Upon reaching the bridge, the bands struck up the well-known local air of "The Keel Row" which they continued till the train had reached the solid ground on the northern side of the river... The train proceeded to the Newcastle and Berwick station, where the company alighted and walked in procession to the Queen’s Head Inn, where a magnificent entertainment had been provided for the Directors and their friends, by the Mayor of Newcastle.

 

[From the south abutment of the High Level Bridge] and the river pier on the south side, the cast iron arch and road-way are nearly completed, and the second arch will be in progress in the course of a few weeks. From the middle of the first arch, the line curves to a temporary timber viaduct erected along the west side of the intended bridge. The height of this viaduct is one hundred and twenty feet to the level of the rails; it is built upon piles, which are driven between thirty and forty feet into the bed of the river. Its stability was sufficiently tested on Monday, when Captain Leffan (sic), the Government Inspector of Railways, examined it preparatory to the opening. On that day, two powerful engines weighing upwards of seventy tons, traversed it at different degrees of speed for between two and three hours; the weight would be about one ton to a foot, being four or five times greater than the temporary structure will ever be required to bear, and the result was, in the highest degree, satisfactory.

 

Among the company in the train were four ladies, who are deserving of honourable mention, from the courage they displayed in accompanying it, namely, Mrs Nichs. Wood, and Miss F. Wood, Mrs I. L. Bell, and her sister, Miss Pattinson of Washington. As the train passed steadily over the bridge the anxiety of the immense multitude seemed intense, and the scene was truly exciting, yet fearful—not only from the lofty eminence occupied by the train but, from the apparent narrowness and nakedness of the platform on which it rolled along. It seemed from its noiselessness, rather an aerial flight, than the rattling sweep of the iron horse.

 

Ordinary traffic appears to have used the temporary single line structure after this date.

 

The eastern track was ready for an inspection by Captain Laffan, Inspecting Office for the Board of Trade, when he visited on 11 August 1849; a load test with four tender locomotives and eighteen wagons loaded with ballast, a total weight of 200 tons. Laffan approved the bridge:

 

I believe all the works of the bridge are completed, and that I believe it to be perfectly secure and safe. The Company have as yet only laid one line of rails over this structure, and I beg to recommend that permission be given to open that one line.

 

The first passenger train crossed the completed structure on the morning of 15 August 1849.

 

Queen Victoria formally inaugurated the bridge on passing through by train on 28 September 1849.

 

The Queen at Newcastle: Her Majesty yesterday honoured this ancient borough with her presence. The event was one of universal and all-engrossing interest... The morning, unfortunately, was dull and the weather unsettled, giving forebodings of a wet and uncomfortable day... Notwithstanding, however, the unfavourable weather dense crowds assembled at every spot in this locality, where a view of the royal carriage could be obtained, and many remained for hours exposed to the weather in order that they might retain the places which at an earlier period of the morning they had secured. The bridge was densely lined with people, and the platform was well covered, though not inconveniently crowded. A profusion of banners were displayed on this elegant and substantial structure, and from nearly all the public and many of the private buildings both in Newcastle and Gateshead. The vessels in the river hoisted their flags mast-high on the occasion, and the church bells of the two towns rung many a merry peal in honour of the royal visit... Pursuant to a request issued by the Mayor, most of the shops were closed about 11 o’clock, and the manufacturers were desired by our worthy chief magistrate "not to produce smoke between that hour and one," with which we believe, they generally complied... At precisely twenty minutes past twelve, the royal carriage appeared in sight, and when it reached the Spital, a splendid locomotive, built by the celebrated house of Stephenson and Co., gaily decorated and bearing on its front "God save the Queen" surmounted by a crown, and a suitable inscription encircling the boiler, was attached to the train. It then slowly proceeded to the centre of the colossal fabric, amidst bursts of loud and rapturous cheering from the assembled thousands, her Majesty repeatedly acknowledging these marked demonstrations of loyalty and affection from her faithful and attached subjects.

 

The Mayors of Newcastle and Gateshead presented a formal address. The queen travelled in the royal carriage belonging to the London and North Western Railway.

 

In other carriages were members of her Majesty’s suite and the directors of the York, Newcastle, and Berwick Railway. The engine drawing the royal train was under the direction of Mr T. E. Harrison, the resident engineer, and driven by Mr Thos. Carr... After staying altogether from five to ten minutes, the train was again put in motion, and amidst firing of artillery and rapturous plaudits from the dense throng, proceeded en route to Darlington.

 

The bridge and its immediate approaches had cost £243,000.

 

The road deck was re-opened only in a southbound (towards Gateshead) direction and carries only buses and taxis; the one-way operation is required because of width considerations after protection to the structural members was inserted. Pedestrians and cyclists use the bridge freely. Railway traffic continues in full use of the bridge, although the majority of mainline trains use the King Edward VII bridge for reasons of convenience.

 

Newcastle upon Tyne, or simply Newcastle is a cathedral city and metropolitan borough in Tyne and Wear, England. It is located on the River Tyne's northern bank, opposite Gateshead to the south. It is the most populous settlement in the Tyneside conurbation and North East England.

 

Newcastle developed around a Roman settlement called Pons Aelius, the settlement became known as Monkchester before taking on the name of a castle built in 1080 by William the Conqueror's eldest son, Robert Curthose. It was one of the world's largest ship building and repair centres during the industrial revolution. Newcastle was part of the county of Northumberland until 1400, when it separated and formed a county of itself. In 1974, Newcastle became part of Tyne and Wear. Since 2018, the city council has been part of the North of Tyne Combined Authority.

 

The history of Newcastle upon Tyne dates back almost 2,000 years, during which it has been controlled by the Romans, the Angles and the Norsemen amongst others. Newcastle upon Tyne was originally known by its Roman name Pons Aelius. The name "Newcastle" has been used since the Norman conquest of England. Due to its prime location on the River Tyne, the town developed greatly during the Middle Ages and it was to play a major role in the Industrial Revolution, being granted city status in 1882. Today, the city is a major retail, commercial and cultural centre.

 

Roman settlement

The history of Newcastle dates from AD 122, when the Romans built the first bridge to cross the River Tyne at that point. The bridge was called Pons Aelius or 'Bridge of Aelius', Aelius being the family name of Roman Emperor Hadrian, who was responsible for the Roman wall built across northern England along the Tyne–Solway gap. Hadrian's Wall ran through present-day Newcastle, with stretches of wall and turrets visible along the West Road, and at a temple in Benwell. Traces of a milecastle were found on Westgate Road, midway between Clayton Street and Grainger Street, and it is likely that the course of the wall corresponded to present-day Westgate Road. The course of the wall can be traced eastwards to the Segedunum Roman fort at Wallsend, with the fort of Arbeia down-river at the mouth of the Tyne, on the south bank in what is now South Shields. The Tyne was then a wider, shallower river at this point and it is thought that the bridge was probably about 700 feet (210 m) long, made of wood and supported on stone piers. It is probable that it was sited near the current Swing Bridge, due to the fact that Roman artefacts were found there during the building of the latter bridge. Hadrian himself probably visited the site in 122. A shrine was set up on the completed bridge in 123 by the 6th Legion, with two altars to Neptune and Oceanus respectively. The two altars were subsequently found in the river and are on display in the Great North Museum in Newcastle.

 

The Romans built a stone-walled fort in 150 to protect the river crossing which was at the foot of the Tyne Gorge, and this took the name of the bridge so that the whole settlement was known as Pons Aelius. The fort was situated on a rocky outcrop overlooking the new bridge, on the site of the present Castle Keep. Pons Aelius is last mentioned in 400, in a Roman document listing all of the Roman military outposts. It is likely that nestling in the shadow of the fort would have been a small vicus, or village. Unfortunately, no buildings have been detected; only a few pieces of flagging. It is clear that there was a Roman cemetery near Clavering Place, behind the Central station, as a number of Roman coffins and sarcophagi have been unearthed there.

 

Despite the presence of the bridge, the settlement of Pons Aelius was not particularly important among the northern Roman settlements. The most important stations were those on the highway of Dere Street running from Eboracum (York) through Corstopitum (Corbridge) and to the lands north of the Wall. Corstopitum, being a major arsenal and supply centre, was much larger and more populous than Pons Aelius.

 

Anglo-Saxon development

The Angles arrived in the North-East of England in about 500 and may have landed on the Tyne. There is no evidence of an Anglo-Saxon settlement on or near the site of Pons Aelius during the Anglo-Saxon age. The bridge probably survived and there may well have been a small village at the northern end, but no evidence survives. At that time the region was dominated by two kingdoms, Bernicia, north of the Tees and ruled from Bamburgh, and Deira, south of the Tees and ruled from York. Bernicia and Deira combined to form the kingdom of Northanhymbra (Northumbria) early in the 7th century. There were three local kings who held the title of Bretwalda – 'Lord of Britain', Edwin of Deira (627–632), Oswald of Bernicia (633–641) and Oswy of Northumbria (641–658). The 7th century became known as the 'Golden Age of Northumbria', when the area was a beacon of culture and learning in Europe. The greatness of this period was based on its generally Christian culture and resulted in the Lindisfarne Gospels amongst other treasures. The Tyne valley was dotted with monasteries, with those at Monkwearmouth, Hexham and Jarrow being the most famous. Bede, who was based at Jarrow, wrote of a royal estate, known as Ad Murum, 'at the Wall', 12 miles (19 km) from the sea. It is thought that this estate may have been in what is now Newcastle. At some unknown time, the site of Newcastle came to be known as Monkchester. The reason for this title is unknown, as we are unaware of any specific monasteries at the site, and Bede made no reference to it. In 875 Halfdan Ragnarsson, the Danish Viking conqueror of York, led an army that attacked and pillaged various monasteries in the area, and it is thought that Monkchester was also pillaged at this time. Little more was heard of it until the coming of the Normans.

 

Norman period

After the arrival of William the Conqueror in England in 1066, the whole of England was quickly subjected to Norman rule. However, in Northumbria there was great resistance to the Normans, and in 1069 the newly appointed Norman Earl of Northumbria, Robert de Comines and 700 of his men were killed by the local population at Durham. The Northumbrians then marched on York, but William was able to suppress the uprising. That same year, a second uprising occurred when a Danish fleet landed in the Humber. The Northumbrians again attacked York and destroyed the garrison there. William was again able to suppress the uprising, but this time he took revenge. He laid waste to the whole of the Midlands and the land from York to the Tees. In 1080, William Walcher, the Norman bishop of Durham and his followers were brutally murdered at Gateshead. This time Odo, bishop of Bayeux, William's half brother, devastated the land between the Tees and the Tweed. This was known as the 'Harrying of the North'. This devastation is reflected in the Domesday Book. The destruction had such an effect that the North remained poor and backward at least until Tudor times and perhaps until the Industrial Revolution. Newcastle suffered in this respect with the rest of the North.

 

In 1080 William sent his eldest son, Robert Curthose, north to defend the kingdom against the Scots. After his campaign, he moved to Monkchester and began the building of a 'New Castle'. This was of the "motte-and-bailey" type of construction, a wooden tower on top of an earthen mound (motte), surrounded by a moat and wooden stockade (bailey). It was this castle that gave Newcastle its name. In 1095 the Earl of Northumbria, Robert de Mowbray, rose up against the king, William Rufus, and Rufus sent an army north to recapture the castle. From then on the castle became crown property and was an important base from which the king could control the northern barons. The Northumbrian earldom was abolished and a Sheriff of Northumberland was appointed to administer the region. In 1091 the parish church of St Nicholas was consecrated on the site of the present Anglican cathedral, close by the bailey of the new castle. The church is believed to have been a wooden building on stone footings.

 

Not a trace of the tower or mound of the motte and bailey castle remains now. Henry II replaced it with a rectangular stone keep, which was built between 1172 and 1177 at a cost of £1,444. A stone bailey, in the form of a triangle, replaced the previous wooden one. The great outer gateway to the castle, called 'the Black Gate', was built later, between 1247 and 1250, in the reign of Henry III. There were at that time no town walls and when attacked by the Scots, the townspeople had to crowd into the bailey for safety. It is probable that the new castle acted as a magnet for local merchants because of the safety it provided. This in turn would help to expand trade in the town. At this time wool, skins and lead were being exported, whilst alum, pepper and ginger were being imported from France and Flanders.

 

Middle Ages

Throughout the Middle Ages, Newcastle was England's northern fortress, the centre for assembled armies. The Border war against Scotland lasted intermittently for several centuries – possibly the longest border war ever waged. During the civil war between Stephen and Matilda, David 1st of Scotland and his son were granted Cumbria and Northumberland respectively, so that for a period from 1139 to 1157, Newcastle was effectively in Scottish hands. It is believed that during this period, King David may have built the church of St Andrew and the Benedictine nunnery in Newcastle. However, King Stephen's successor, Henry II was strong enough to take back the Earldom of Northumbria from Malcolm IV.

 

The Scots king William the Lion was imprisoned in Newcastle, in 1174, after being captured at the Battle of Alnwick. Edward I brought the Stone of Scone and William Wallace south through the town and Newcastle was successfully defended against the Scots three times during the 14th century.

 

Around 1200, stone-faced, clay-filled jetties were starting to project into the river, an indication that trade was increasing in Newcastle. As the Roman roads continued to deteriorate, sea travel was gaining in importance. By 1275 Newcastle was the sixth largest wool exporting port in England. The principal exports at this time were wool, timber, coal, millstones, dairy produce, fish, salt and hides. Much of the developing trade was with the Baltic countries and Germany. Most of the Newcastle merchants were situated near the river, below the Castle. The earliest known charter was dated 1175 in the reign of Henry II, giving the townspeople some control over their town. In 1216 King John granted Newcastle a mayor[8] and also allowed the formation of guilds (known as Mysteries). These were cartels formed within different trades, which restricted trade to guild members. There were initially twelve guilds. Coal was being exported from Newcastle by 1250, and by 1350 the burgesses received a royal licence to export coal. This licence to export coal was jealously guarded by the Newcastle burgesses, and they tried to prevent any one else on the Tyne from exporting coal except through Newcastle. The burgesses similarly tried to prevent fish from being sold anywhere else on the Tyne except Newcastle. This led to conflicts with Gateshead and South Shields.

 

In 1265, the town was granted permission to impose a 'Wall Tax' or Murage, to pay for the construction of a fortified wall to enclose the town and protect it from Scottish invaders. The town walls were not completed until early in the 14th century. They were two miles (3 km) long, 9 feet (2.7 m) thick and 25 feet (7.6 m) high. They had six main gates, as well as some smaller gates, and had 17 towers. The land within the walls was divided almost equally by the Lort Burn, which flowed southwards and joined the Tyne to the east of the Castle. The town began to expand north of the Castle and west of the Lort Burn with various markets being set up within the walls.

 

In 1400 Henry IV granted a new charter, creating a County corporate which separated the town, but not the Castle, from the county of Northumberland and recognised it as a "county of itself" with a right to have a sheriff of its own. The burgesses were now allowed to choose six aldermen who, with the mayor would be justices of the peace. The mayor and sheriff were allowed to hold borough courts in the Guildhall.

 

Religious houses

During the Middle Ages a number of religious houses were established within the walls: the first of these was the Benedictine nunnery of St Bartholomew founded in 1086 near the present-day Nun Street. Both David I of Scotland and Henry I of England were benefactors of the religious house. Nothing of the nunnery remains now.

 

The friary of Blackfriars, Newcastle (Dominican) was established in 1239. These were also known as the Preaching Friars or Shod Friars, because they wore sandals, as opposed to other orders. The friary was situated in the present-day Friars Street. In 1280 the order was granted royal permission to make a postern in the town walls to communicate with their gardens outside the walls. On 19 June 1334, Edward Balliol, claimant to be King of Scotland, did homage to King Edward III, on behalf of the kingdom of Scotland, in the church of the friary. Much of the original buildings of the friary still exist, mainly because, after the Dissolution of the Monasteries the friary of Blackfriars was rented out by the corporation to nine of the local trade guilds.

 

The friary of Whitefriars (Carmelite) was established in 1262. The order was originally housed on the Wall Knoll in Pandon, but in 1307 it took over the buildings of another order, which went out of existence, the Friars of the Sac. The land, which had originally been given by Robert the Bruce, was situated in the present-day Hanover Square, behind the Central station. Nothing of the friary remains now.

 

The friary of Austinfriars (Augustinian) was established in 1290. The friary was on the site where the Holy Jesus Hospital was built in 1682. The friary was traditionally the lodging place of English kings whenever they visited or passed through Newcastle. In 1503 Princess Margaret, eldest daughter of Henry VII of England, stayed two days at the friary on her way to join her new husband James IV of Scotland.

 

The friary of Greyfriars (Franciscans) was established in 1274. The friary was in the present-day area between Pilgrim Street, Grey Street, Market Street and High Chare. Nothing of the original buildings remains.

 

The friary of the Order of the Holy Trinity, also known as the Trinitarians, was established in 1360. The order devoted a third of its income to buying back captives of the Saracens, during the Crusades. Their house was on the Wall Knoll, in Pandon, to the east of the city, but within the walls. Wall Knoll had previously been occupied by the White Friars until they moved to new premises in 1307.

 

All of the above religious houses were closed in about 1540, when Henry VIII dissolved the monasteries.

 

An important street running through Newcastle at the time was Pilgrim Street, running northwards inside the walls and leading to the Pilgrim Gate on the north wall. The street still exists today as arguably Newcastle's main shopping street.

 

Tudor period

The Scottish border wars continued for much of the 16th century, so that during that time, Newcastle was often threatened with invasion by the Scots, but also remained important as a border stronghold against them.

 

During the Reformation begun by Henry VIII in 1536, the five Newcastle friaries and the single nunnery were dissolved and the land was sold to the Corporation and to rich merchants. At this time there were fewer than 60 inmates of the religious houses in Newcastle. The convent of Blackfriars was leased to nine craft guilds to be used as their headquarters. This probably explains why it is the only one of the religious houses whose building survives to the present day. The priories at Tynemouth and Durham were also dissolved, thus ending the long-running rivalry between Newcastle and the church for control of trade on the Tyne. A little later, the property of the nunnery of St Bartholomew and of Grey Friars were bought by Robert Anderson, who had the buildings demolished to build his grand Newe House (also known as Anderson Place).

 

With the gradual decline of the Scottish border wars the town walls were allowed to decline as well as the castle. By 1547, about 10,000 people were living in Newcastle. At the beginning of the 16th century exports of wool from Newcastle were more than twice the value of exports of coal, but during the century coal exports continued to increase.

 

Under Edward VI, John Dudley, Duke of Northumberland, sponsored an act allowing Newcastle to annexe Gateshead as its suburb. The main reason for this was to allow the Newcastle Hostmen, who controlled the export of Tyne coal, to get their hands on the Gateshead coal mines, previously controlled by the Bishop of Durham. However, when Mary I came to power, Dudley met his downfall and the decision was reversed. The Reformation allowed private access to coal mines previously owned by Tynemouth and Durham priories and as a result coal exports increase dramatically, from 15,000 tons in 1500 to 35,000 tons in 1565, and to 400,000 tons in 1625.

 

The plague visited Newcastle four times during the 16th century, in 1579 when 2,000 people died, in 1589 when 1700 died, in 1595 and finally in 1597.

 

In 1600 Elizabeth I granted Newcastle a charter for an exclusive body of electors, the right to elect the mayor and burgesses. The charter also gave the Hostmen exclusive rights to load coal at any point on the Tyne. The Hostmen developed as an exclusive group within the Merchant Adventurers who had been incorporated by a charter in 1547.

 

Stuart period

In 1636 there was a serious outbreak of bubonic plague in Newcastle. There had been several previous outbreaks of the disease over the years, but this was the most serious. It is thought to have arrived from the Netherlands via ships that were trading between the Tyne and that country. It first appeared in the lower part of the town near the docks but gradually spread to all parts of the town. As the disease gained hold the authorities took measures to control it by boarding up any properties that contained infected persons, meaning that whole families were locked up together with the infected family members. Other infected persons were put in huts outside the town walls and left to die. Plague pits were dug next to the town's four churches and outside the town walls to receive the bodies in mass burials. Over the course of the outbreak 5,631 deaths were recorded out of an estimated population of 12,000, a death rate of 47%.

 

In 1637 Charles I tried to raise money by doubling the 'voluntary' tax on coal in return for allowing the Newcastle Hostmen to regulate production and fix prices. This caused outrage amongst the London importers and the East Anglian shippers. Both groups decided to boycott Tyne coal and as a result forced Charles to reverse his decision in 1638.

 

In 1640 during the Second Bishops' War, the Scots successfully invaded Newcastle. The occupying army demanded £850 per day from the Corporation to billet the Scottish troops. Trade from the Tyne ground to a halt during the occupation. The Scots left in 1641 after receiving a Parliamentary pardon and a £4,000,000 loan from the town.

 

In 1642 the English Civil War began. King Charles realised the value of the Tyne coal trade and therefore garrisoned Newcastle. A Royalist was appointed as governor. At that time, Newcastle and King's Lynn were the only important seaports to support the crown. In 1644 Parliament blockaded the Tyne to prevent the king from receiving revenue from the Tyne coal trade. Coal exports fell from 450,000 to 3,000 tons and London suffered a hard winter without fuel. Parliament encouraged the coal trade from the Wear to try to replace that lost from Newcastle but that was not enough to make up for the lost Tyneside tonnage.

 

In 1644 the Scots crossed the border. Newcastle strengthened its defences in preparation. The Scottish army, with 40,000 troops, besieged Newcastle for three months until the garrison of 1,500 surrendered. During the siege, the Scots bombarded the walls with their artillery, situated in Gateshead and Castle Leazes. The Scottish commander threatened to destroy the steeple of St Nicholas's Church by gunfire if the mayor, Sir John Marley, did not surrender the town. The mayor responded by placing Scottish prisoners that they had captured in the steeple, so saving it from destruction. The town walls were finally breached by a combination of artillery and sapping. In gratitude for this defence, Charles gave Newcastle the motto 'Fortiter Defendit Triumphans' to be added to its coat of arms. The Scottish army occupied Northumberland and Durham for two years. The coal taxes had to pay for the Scottish occupation. In 1645 Charles surrendered to the Scots and was imprisoned in Newcastle for nine months. After the Civil War the coal trade on the Tyne soon picked up and exceeded its pre-war levels.

 

A new Guildhall was completed on the Sandhill next to the river in 1655, replacing an earlier facility damaged by fire in 1639, and became the meeting place of Newcastle Town Council. In 1681 the Hospital of the Holy Jesus was built partly on the site of the Austin Friars. The Guildhall and Holy Jesus Hospital still exist.

 

Charles II tried to impose a charter on Newcastle to give the king the right to appoint the mayor, sheriff, recorder and town clerk. Charles died before the charter came into effect. In 1685, James II tried to replace Corporation members with named Catholics. However, James' mandate was suspended in 1689 after the Glorious Revolution welcoming William of Orange. In 1689, after the fall of James II, the people of Newcastle tore down his bronze equestrian statue in Sandhill and tossed it into the Tyne. The bronze was later used to make bells for All Saints Church.

 

In 1689 the Lort Burn was covered over. At this time it was an open sewer. The channel followed by the Lort Burn became the present day Dean Street. At that time, the centre of Newcastle was still the Sandhill area, with many merchants living along the Close or on the Side. The path of the main road through Newcastle ran from the single Tyne bridge, through Sandhill to the Side, a narrow street which climbed steeply on the north-east side of the castle hill until it reached the higher ground alongside St Nicholas' Church. As Newcastle developed, the Side became lined with buildings with projecting upper stories, so that the main street through Newcastle was a narrow, congested, steep thoroughfare.

 

In 1701 the Keelmen's Hospital was built in the Sandgate area of the city, using funds provided by the keelmen. The building still stands today.

 

Eighteenth century

In the 18th century, Newcastle was the country's largest print centre after London, Oxford and Cambridge, and the Literary and Philosophical Society of 1793, with its erudite debates and large stock of books in several languages predated the London Library by half a century.

 

In 1715, during the Jacobite rising in favour of the Old Pretender, an army of Jacobite supporters marched on Newcastle. Many of the Northumbrian gentry joined the rebels. The citizens prepared for its arrival by arresting Jacobite supporters and accepting 700 extra recruits into the local militia. The gates of the city were closed against the rebels. This proved enough to delay an attack until reinforcements arrived forcing the rebel army to move across to the west coast. The rebels finally surrendered at Preston.

 

In 1745, during a second Jacobite rising in favour of the Young Pretender, a Scottish army crossed the border led by Bonnie Prince Charlie. Once again Newcastle prepared by arresting Jacobite supporters and inducting 800 volunteers into the local militia. The town walls were strengthened, most of the gates were blocked up and some 200 cannon were deployed. 20,000 regulars were billeted on the Town Moor. These preparations were enough to force the rebel army to travel south via the west coast. They were eventually defeated at Culloden in 1746.

 

Newcastle's actions during the 1715 rising in resisting the rebels and declaring for George I, in contrast to the rest of the region, is the most likely source of the nickname 'Geordie', applied to people from Tyneside, or more accurately Newcastle. Another theory, however, is that the name 'Geordie' came from the inventor of the Geordie lamp, George Stephenson. It was a type of safety lamp used in mining, but was not invented until 1815. Apparently the term 'German Geordie' was in common use during the 18th century.

 

The city's first hospital, Newcastle Infirmary opened in 1753; it was funded by public subscription. A lying-in hospital was established in Newcastle in 1760. The city's first public hospital for mentally ill patients, Wardens Close Lunatic Hospital was opened in October 1767.

 

In 1771 a flood swept away much of the bridge at Newcastle. The bridge had been built in 1250 and repaired after a flood in 1339. The bridge supported various houses and three towers and an old chapel. A blue stone was placed in the middle of the bridge to mark the boundary between Newcastle and the Palatinate of Durham. A temporary wooden bridge had to be built, and this remained in use until 1781, when a new stone bridge was completed. The new bridge consisted of nine arches. In 1801, because of the pressure of traffic, the bridge had to be widened.

 

A permanent military presence was established in the city with the completion of Fenham Barracks in 1806. The facilities at the Castle for holding assizes, which had been condemned for their inconvenience and unhealthiness, were replaced when the Moot Hall opened in August 1812.

 

Victorian period

Present-day Newcastle owes much of its architecture to the work of the builder Richard Grainger, aided by architects John Dobson, Thomas Oliver, John and Benjamin Green and others. In 1834 Grainger won a competition to produce a new plan for central Newcastle. He put this plan into effect using the above architects as well as architects employed in his own office. Grainger and Oliver had already built Leazes Terrace, Leazes Crescent and Leazes Place between 1829 and 1834. Grainger and Dobson had also built the Royal Arcade at the foot of Pilgrim Street between 1830 and 1832. The most ambitious project covered 12 acres 12 acres (49,000 m2) in central Newcastle, on the site of Newe House (also called Anderson Place). Grainger built three new thoroughfares, Grey Street, Grainger Street and Clayton Street with many connecting streets, as well as the Central Exchange and the Grainger Market. John Wardle and George Walker, working in Grainger's office, designed Clayton Street, Grainger Street and most of Grey Street. Dobson designed the Grainger Market and much of the east side of Grey Street. John and Benjamin Green designed the Theatre Royal at the top of Grey Street, where Grainger placed the column of Grey's Monument as a focus for the whole scheme. Grey Street is considered to be one of the finest streets in the country, with its elegant curve. Unfortunately most of old Eldon Square was demolished in the 1960s in the name of progress. The Royal Arcade met a similar fate.

 

In 1849 a new bridge was built across the river at Newcastle. This was the High Level Bridge, designed by Robert Stephenson, and slightly up river from the existing bridge. The bridge was designed to carry road and rail traffic across the Tyne Gorge on two decks with rail traffic on the upper deck and road traffic on the lower. The new bridge meant that traffic could pass through Newcastle without having to negotiate the steep, narrow Side, as had been necessary for centuries. The bridge was opened by Queen Victoria, who one year later opened the new Central Station, designed by John Dobson. Trains were now able to cross the river, directly into the centre of Newcastle and carry on up to Scotland. The Army Riding School was also completed in 1849.

 

In 1854 a large fire started on the Gateshead quayside and an explosion caused it to spread across the river to the Newcastle quayside. A huge conflagration amongst the narrow alleys, or 'chares', destroyed the homes of 800 families as well as many business premises. The narrow alleys that had been destroyed were replaced by streets containing blocks of modern offices.

 

In 1863 the Town Hall in St Nicholas Square replaced the Guildhall as the meeting place of Newcastle Town Council.

 

In 1876 the low level bridge was replaced by a new bridge known as the Swing Bridge, so called because the bridge was able to swing horizontally on a central axis and allow ships to pass on either side. This meant that for the first time sizeable ships could pass up-river beyond Newcastle. The bridge was built and paid for by William Armstrong, a local arms manufacturer, who needed to have warships access his Elswick arms factory to fit armaments to them. The Swing Bridge's rotating mechanism is adapted from the cannon mounts developed in Armstrong's arms works. In 1882 the Elswick works began to build ships as well as to arm them. The Barrack Road drill hall was completed in 1890.

 

Industrialisation

In the 19th century, shipbuilding and heavy engineering were central to the city's prosperity; and the city was a powerhouse of the Industrial Revolution. Newcastle's development as a major city owed most to its central role in the production and export of coal. The phrase "taking coals to Newcastle" was first recorded in 1538; it proverbially denotes bringing a particular commodity to a place that has more than enough of it already.

 

Innovation in Newcastle and surrounding areas included the following:

 

George Stephenson developed a miner's safety lamp at the same time that Humphry Davy developed a rival design. The lamp made possible the opening up of ever deeper mines to provide the coal that powered the industrial revolution.

George and his son Robert Stephenson were hugely influential figures in the development of the early railways. George developed Blücher, a locomotive working at Killingworth colliery in 1814, whilst Robert was instrumental in the design of Rocket, a revolutionary design that was the forerunner of modern locomotives. Both men were involved in planning and building railway lines, all over this country and abroad.

 

Joseph Swan demonstrated a working electric light bulb about a year before Thomas Edison did the same in the USA. This led to a dispute as to who had actually invented the light bulb. Eventually the two rivals agreed to form a mutual company between them, the Edison and Swan Electric Light Company, known as Ediswan.

 

Charles Algernon Parsons invented the steam turbine, for marine use and for power generation. He used Turbinia, a small, turbine-powered ship, to demonstrate the speed that a steam turbine could generate. Turbinia literally ran rings around the British Fleet at a review at Spithead in 1897.

 

William Armstrong invented a hydraulic crane that was installed in dockyards up and down the country. He then began to design light, accurate field guns for the British army. These were a vast improvement on the existing guns that were then in use.

 

The following major industries developed in Newcastle or its surrounding area:

 

Glassmaking

A small glass industry existed in Newcastle from the mid-15th century. In 1615 restrictions were put on the use of wood for manufacturing glass. It was found that glass could be manufactured using the local coal, and so a glassmaking industry grew up on Tyneside. Huguenot glassmakers came over from France as refugees from persecution and set up glasshouses in the Skinnerburn area of Newcastle. Eventually, glass production moved to the Ouseburn area of Newcastle. In 1684 the Dagnia family, Sephardic Jewish emigrants from Altare, arrived in Newcastle from Stourbridge and established glasshouses along the Close, to manufacture high quality flint glass. The glass manufacturers used sand ballast from the boats arriving in the river as the main raw material. The glassware was then exported in collier brigs. The period from 1730 to 1785 was the highpoint of Newcastle glass manufacture, when the local glassmakers produced the 'Newcastle Light Baluster'. The glassmaking industry still exists in the west end of the city with local Artist and Glassmaker Jane Charles carrying on over four hundred years of hot glass blowing in Newcastle upon Tyne.

 

Locomotive manufacture

In 1823 George Stephenson and his son Robert established the world's first locomotive factory near Forth Street in Newcastle. Here they built locomotives for the Stockton and Darlington Railway and the Liverpool and Manchester Railway, as well as many others. It was here that the famous locomotive Rocket was designed and manufactured in preparation for the Rainhill Trials. Apart from building locomotives for the British market, the Newcastle works also produced locomotives for Europe and America. The Forth Street works continued to build locomotives until 1960.

 

Shipbuilding

In 1296 a wooden, 135 ft (41 m) long galley was constructed at the mouth of the Lort Burn in Newcastle, as part of a twenty-ship order from the king. The ship cost £205, and is the earliest record of shipbuilding in Newcastle. However the rise of the Tyne as a shipbuilding area was due to the need for collier brigs for the coal export trade. These wooden sailing ships were usually built locally, establishing local expertise in building ships. As ships changed from wood to steel, and from sail to steam, the local shipbuilding industry changed to build the new ships. Although shipbuilding was carried out up and down both sides of the river, the two main areas for building ships in Newcastle were Elswick, to the west, and Walker, to the east. By 1800 Tyneside was the third largest producer of ships in Britain. Unfortunately, after the Second World War, lack of modernisation and competition from abroad gradually caused the local industry to decline and die.

 

Armaments

In 1847 William Armstrong established a huge factory in Elswick, west of Newcastle. This was initially used to produce hydraulic cranes but subsequently began also to produce guns for both the army and the navy. After the Swing Bridge was built in 1876 allowing ships to pass up river, warships could have their armaments fitted alongside the Elswick works. Armstrong's company took over its industrial rival, Joseph Whitworth of Manchester in 1897.

 

Steam turbines

Charles Algernon Parsons invented the steam turbine and, in 1889, founded his own company C. A. Parsons and Company in Heaton, Newcastle to make steam turbines. Shortly after this, he realised that steam turbines could be used to propel ships and, in 1897, he founded a second company, Parsons Marine Steam Turbine Company in Wallsend. It is there that he designed and manufactured Turbinia. Parsons turbines were initially used in warships but soon came to be used in merchant and passenger vessels, including the liner Mauretania which held the blue riband for the Atlantic crossing until 1929. Parsons' company in Heaton began to make turbo-generators for power stations and supplied power stations all over the world. The Heaton works, reduced in size, remains as part of the Siemens AG industrial giant.

 

Pottery

In 1762 the Maling pottery was founded in Sunderland by French Huguenots, but transferred to Newcastle in 1817. A factory was built in the Ouseburn area of the city. The factory was rebuilt twice, finally occupying a 14-acre (57,000 m2) site that was claimed to be the biggest pottery in the world and which had its own railway station. The pottery pioneered use of machines in making potteries as opposed to hand production. In the 1890s the company went up-market and employed in-house designers. The period up to the Second World War was the most profitable with a constant stream of new designs being introduced. However, after the war, production gradually declined and the company closed in 1963.

 

Expansion of the city

Newcastle was one of the boroughs reformed by the Municipal Corporations Act 1835: the reformed municipal borough included the parishes of Byker, Elswick, Heaton, Jesmond, Newcastle All Saints, Newcastle St Andrew, Newcastle St John, Newcastle St Nicholas, and Westgate. The urban districts of Benwell and Fenham and Walker were added in 1904. In 1935, Newcastle gained Kenton and parts of the parishes of West Brunton, East Denton, Fawdon, Longbenton. The most recent expansion in Newcastle's boundaries took place under the Local Government Act 1972 on 1 April 1974, when Newcastle became a metropolitan borough, also including the urban districts of Gosforth and Newburn, and the parishes of Brunswick, Dinnington, Hazlerigg, North Gosforth and Woolsington from the Castle Ward Rural District, and the village of Westerhope.

 

Meanwhile Northumberland County Council was formed under the Local Government Act 1888 and benefited from a dedicated meeting place when County Hall was completed in the Castle Garth area of Newcastle in 1910. Following the Local Government Act 1972 County Hall relocated to Morpeth in April 1981.

 

Twentieth century

In 1925 work began on a new high-level road bridge to span the Tyne Gorge between Newcastle and Gateshead. The capacity of the existing High-Level Bridge and Swing Bridge were being strained to the limit, and an additional bridge had been discussed for a long time. The contract was awarded to the Dorman Long Company and the bridge was finally opened by King George V in 1928. The road deck was 84 feet (26 m) above the river and was supported by a 531 feet (162 m) steel arch. The new Tyne Bridge quickly became a symbol for Newcastle and Tyneside, and remains so today.

 

During the Second World War, Newcastle was largely spared the horrors inflicted upon other British cities bombed during the Blitz. Although the armaments factories and shipyards along the River Tyne were targeted by the Luftwaffe, they largely escaped unscathed. Manors goods yard and railway terminal, to the east of the city centre, and the suburbs of Jesmond and Heaton suffered bombing during 1941. There were 141 deaths and 587 injuries, a relatively small figure compared to the casualties in other industrial centres of Britain.

 

In 1963 the city gained its own university, the University of Newcastle upon Tyne, by act of parliament. A School of Medicine and Surgery had been established in Newcastle in 1834. This eventually developed into a college of medicine attached to Durham University. A college of physical science was also founded and became Armstrong College in 1904. In 1934 the two colleges merged to become King's College, Durham. This remained as part of Durham University until the new university was created in 1963. In 1992 the city gained its second university when Newcastle Polytechnic was granted university status as Northumbria University.

 

Newcastle City Council moved to the new Newcastle Civic Centre in 1968.

 

As heavy industries declined in the second half of the 20th century, large sections of the city centre were demolished along with many areas of slum housing. The leading political figure in the city during the 1960s was T. Dan Smith who oversaw a massive building programme of highrise housing estates and authorised the demolition of a quarter of the Georgian Grainger Town to make way for Eldon Square Shopping Centre. Smith's control in Newcastle collapsed when it was exposed that he had used public contracts to advantage himself and his business associates and for a time Newcastle became a byword for civic corruption as depicted in the films Get Carter and Stormy Monday and in the television series Our Friends in the North. However, much of the historic Grainger Town area survived and was, for the most part, fully restored in the late 1990s. Northumberland Street, initially the A1, was gradually closed to traffic from the 1970s and completely pedestrianised by 1998.

 

In 1978 a new rapid transport system, the Metro, was built, linking the Tyneside area. The system opened in August 1980. A new bridge was built to carry the Metro across the river between Gateshead and Newcastle. This was the Queen Elizabeth II Bridge, commonly known as the Metro Bridge. Eventually the Metro system was extended to reach Newcastle Airport in 1991, and in 2002 the Metro system was extended to the nearby city of Sunderland.

 

As the 20th century progressed, trade on the Newcastle and Gateshead quaysides gradually declined, until by the 1980s both sides of the river were looking rather derelict. Shipping company offices had closed along with offices of firms related to shipping. There were also derelict warehouses lining the riverbank. Local government produced a master plan to re-develop the Newcastle quayside and this was begun in the 1990s. New offices, restaurants, bars and residential accommodation were built and the area has changed in the space of a few years into a vibrant area, partially returning the focus of Newcastle to the riverside, where it was in medieval times.

 

The Gateshead Millennium Bridge, a foot and cycle bridge, 26 feet (7.9 m) wide and 413 feet (126 m) long, was completed in 2001. The road deck is in the form of a curve and is supported by a steel arch. To allow ships to pass, the whole structure, both arch and road-deck, rotates on huge bearings at either end so that the road deck is lifted. The bridge can be said to open and shut like a human eye. It is an important addition to the re-developed quayside area, providing a vital link between the Newcastle and Gateshead quaysides.

 

Recent developments

Today the city is a vibrant centre for office and retail employment, but just a short distance away there are impoverished inner-city housing estates, in areas originally built to provide affordable housing for employees of the shipyards and other heavy industries that lined the River Tyne. In the 2010s Newcastle City Council began implementing plans to regenerate these depressed areas, such as those along the Ouseburn Valley.

Comet Neowise on 14 July 2020, Burke, Virginia; Canon 60D camera and 75-200mm lens; single frame.

 

From Wikipedia

A comet is an icy, small Solar System body that, when passing close to the Sun, warms and begins to release gases, a process that is called outgassing. This produces a visible atmosphere or coma, and sometimes also a tail. These phenomena are due to the effects of solar radiation and the solar wind acting upon the nucleus of the comet. Comet nuclei range from a few hundred meters to tens of kilometers across and are composed of loose collections of ice, dust, and small rocky particles. The coma may be up to 15 times Earth's diameter, while the tail may stretch beyond one astronomical unit. If sufficiently bright, a comet may be seen from Earth without the aid of a telescope and may subtend an arc of 30° (60 Moons) across the sky. Comets have been observed and recorded since ancient times by many cultures and religions.

 

Comets usually have highly eccentric elliptical orbits, and they have a wide range of orbital periods, ranging from several years to potentially several millions of years. Short-period comets originate in the Kuiper belt or its associated scattered disc, which lie beyond the orbit of Neptune. Long-period comets are thought to originate in the Oort cloud, a spherical cloud of icy bodies extending from outside the Kuiper belt to halfway to the nearest star. Long-period comets are set in motion towards the Sun from the Oort cloud by gravitational perturbations caused by passing stars and the galactic tide. Hyperbolic comets may pass once through the inner Solar System before being flung to interstellar space. The appearance of a comet is called an apparition.

 

Comets are distinguished from asteroids by the presence of an extended, gravitationally unbound atmosphere surrounding their central nucleus. This atmosphere has parts termed the coma (the central part immediately surrounding the nucleus) and the tail (a typically linear section consisting of dust or gas blown out from the coma by the Sun's light pressure or outstreaming solar wind plasma). However, extinct comets that have passed close to the Sun many times have lost nearly all of their volatile ices and dust and may come to resemble small asteroids. Asteroids are thought to have a different origin from comets, having formed inside the orbit of Jupiter rather than in the outer Solar System. The discovery of main-belt comets and active centaur minor planets has blurred the distinction between asteroids and comets. In the early 21st century, the discovery of some minor bodies with long-period comet orbits, but characteristics of inner solar system asteroids, were called Manx comets. They are still classified as comets, such as C/2014 S3 (PANSTARRS). 27 Manx comets were found from 2013 to 2017.

 

As of November 2021 there are 4584 known comets. However, this represents only a tiny fraction of the total potential comet population, as the reservoir of comet-like bodies in the outer Solar System (in the Oort cloud) is estimated to be one trillion. Roughly one comet per year is visible to the naked eye, though many of those are faint and unspectacular. Particularly bright examples are called "great comets". Comets have been visited by unmanned probes such as the European Space Agency's Rosetta, which became the first to land a robotic spacecraft on a comet, and NASA's Deep Impact, which blasted a crater on Comet Tempel 1 to study its interior.

 

A comet was mentioned in the Anglo-Saxon Chronicle that allegedly made an appearance in 729 AD.

 

The word comet derives from the Old English cometa from the Latin comēta or comētēs. That, in turn, is a romanization of the Greek κομήτης 'wearing long hair', and the Oxford English Dictionary notes that the term (ἀστὴρ) κομήτης already meant 'long-haired star, comet' in Greek. Κομήτης was derived from κομᾶν (koman) 'to wear the hair long', which was itself derived from κόμη (komē) 'the hair of the head' and was used to mean 'the tail of a comet'.

 

The astronomical symbol for comets (represented in Unicode) is U+2604 ☄ COMET, consisting of a small disc with three hairlike extensions.

 

The core structure of a comet is known as the nucleus. Cometary nuclei are composed of an amalgam of rock, dust, water ice, and frozen carbon dioxide, carbon monoxide, methane, and ammonia. As such, they are popularly described as "dirty snowballs" after Fred Whipple's model. Comets with a higher dust content have been called "icy dirtballs". The term "icy dirtballs" arose after observation of Comet 9P/Tempel 1 collision with an "impactor" probe sent by NASA Deep Impact mission in July 2005. Research conducted in 2014 suggests that comets are like "deep fried ice cream", in that their surfaces are formed of dense crystalline ice mixed with organic compounds, while the interior ice is colder and less dense.

 

The surface of the nucleus is generally dry, dusty or rocky, suggesting that the ices are hidden beneath a surface crust several metres thick. In addition to the gases already mentioned, the nuclei contain a variety of organic compounds, which may include methanol, hydrogen cyanide, formaldehyde, ethanol, ethane, and perhaps more complex molecules such as long-chain hydrocarbons and amino acids. In 2009, it was confirmed that the amino acid glycine had been found in the comet dust recovered by NASA's Stardust mission. In August 2011, a report, based on NASA studies of meteorites found on Earth, was published suggesting DNA and RNA components (adenine, guanine, and related organic molecules) may have been formed on asteroids and comets.

 

The outer surfaces of cometary nuclei have a very low albedo, making them among the least reflective objects found in the Solar System. The Giotto space probe found that the nucleus of Halley's Comet (1P/Halley) reflects about four percent of the light that falls on it, and Deep Space 1 discovered that Comet Borrelly's surface reflects less than 3%; by comparison, asphalt reflects seven percent. The dark surface material of the nucleus may consist of complex organic compounds. Solar heating drives off lighter volatile compounds, leaving behind larger organic compounds that tend to be very dark, like tar or crude oil. The low reflectivity of cometary surfaces causes them to absorb the heat that drives their outgassing processes.

 

Comet nuclei with radii of up to 30 kilometers (19 mi) have been observed, but ascertaining their exact size is difficult. The nucleus of 322P/SOHO is probably only 100–200 meters (330–660 ft) in diameter. A lack of smaller comets being detected despite the increased sensitivity of instruments has led some to suggest that there is a real lack of comets smaller than 100 meters (330 ft) across. Known comets have been estimated to have an average density of 0.6 g/cm3 (0.35 oz/cu in). Because of their low mass, comet nuclei do not become spherical under their own gravity and therefore have irregular shapes.

 

Roughly six percent of the near-Earth asteroids are thought to be the extinct nuclei of comets that no longer experience outgassing, including 14827 Hypnos and 3552 Don Quixote.

 

Results from the Rosetta and Philae spacecraft show that the nucleus of 67P/Churyumov–Gerasimenko has no magnetic field, which suggests that magnetism may not have played a role in the early formation of planetesimals.[33][34] Further, the ALICE spectrograph on Rosetta determined that electrons (within 1 km (0.62 mi) above the comet nucleus) produced from photoionization of water molecules by solar radiation, and not photons from the Sun as thought earlier, are responsible for the degradation of water and carbon dioxide molecules released from the comet nucleus into its coma.[35][36] Instruments on the Philae lander found at least sixteen organic compounds at the comet's surface, four of which (acetamide, acetone, methyl isocyanate and propionaldehyde) have been detected for the first time on a comet.[37][38][39]

 

The streams of dust and gas thus released form a huge and extremely thin atmosphere around the comet called the "coma". The force exerted on the coma by the Sun's radiation pressure and solar wind cause an enormous "tail" to form pointing away from the Sun.[48]

 

The coma is generally made of water and dust, with water making up to 90% of the volatiles that outflow from the nucleus when the comet is within 3 to 4 astronomical units (450,000,000 to 600,000,000 km; 280,000,000 to 370,000,000 mi) of the Sun.[49] The H2O parent molecule is destroyed primarily through photodissociation and to a much smaller extent photoionization, with the solar wind playing a minor role in the destruction of water compared to photochemistry.[49] Larger dust particles are left along the comet's orbital path whereas smaller particles are pushed away from the Sun into the comet's tail by light pressure.[50]

 

Although the solid nucleus of comets is generally less than 60 kilometers (37 mi) across, the coma may be thousands or millions of kilometers across, sometimes becoming larger than the Sun.[51] For example, about a month after an outburst in October 2007, comet 17P/Holmes briefly had a tenuous dust atmosphere larger than the Sun.[52] The Great Comet of 1811 also had a coma roughly the diameter of the Sun.[53] Even though the coma can become quite large, its size can decrease about the time it crosses the orbit of Mars around 1.5 astronomical units (220,000,000 km; 140,000,000 mi) from the Sun.[53] At this distance the solar wind becomes strong enough to blow the gas and dust away from the coma, and in doing so enlarging the tail.[53] Ion tails have been observed to extend one astronomical unit (150 million km) or more.[52]

  

Both the coma and tail are illuminated by the Sun and may become visible when a comet passes through the inner Solar System, the dust reflects sunlight directly while the gases glow from ionisation.[54] Most comets are too faint to be visible without the aid of a telescope, but a few each decade become bright enough to be visible to the naked eye.[55] Occasionally a comet may experience a huge and sudden outburst of gas and dust, during which the size of the coma greatly increases for a period of time. This happened in 2007 to Comet Holmes.[56]

 

In 1996, comets were found to emit X-rays.[57] This greatly surprised astronomers because X-ray emission is usually associated with very high-temperature bodies. The X-rays are generated by the interaction between comets and the solar wind: when highly charged solar wind ions fly through a cometary atmosphere, they collide with cometary atoms and molecules, "stealing" one or more electrons from the atom in a process called "charge exchange". This exchange or transfer of an electron to the solar wind ion is followed by its de-excitation into the ground state of the ion by the emission of X-rays and far ultraviolet photons.[58]

 

Bow shocks form as a result of the interaction between the solar wind and the cometary ionosphere, which is created by the ionization of gases in the coma. As the comet approaches the Sun, increasing outgassing rates cause the coma to expand, and the sunlight ionizes gases in the coma. When the solar wind passes through this ion coma, the bow shock appears.

 

The first observations were made in the 1980s and 1990s as several spacecraft flew by comets 21P/Giacobini–Zinner,[59] 1P/Halley,[60] and 26P/Grigg–Skjellerup.[61] It was then found that the bow shocks at comets are wider and more gradual than the sharp planetary bow shocks seen at, for example, Earth. These observations were all made near perihelion when the bow shocks already were fully developed.

 

The Rosetta spacecraft observed the bow shock at comet 67P/Churyumov–Gerasimenko at an early stage of bow shock development when the outgassing increased during the comet's journey toward the Sun. This young bow shock was called the "infant bow shock". The infant bow shock is asymmetric and, relative to the distance to the nucleus, wider than fully developed bow shocks.[62]

 

Typical direction of tails during a comet's orbit near the Sun

In the outer Solar System, comets remain frozen and inactive and are extremely difficult or impossible to detect from Earth due to their small size. Statistical detections of inactive comet nuclei in the Kuiper belt have been reported from observations by the Hubble Space Telescope[63][64] but these detections have been questioned.[65][66] As a comet approaches the inner Solar System, solar radiation causes the volatile materials within the comet to vaporize and stream out of the nucleus, carrying dust away with them.

 

The streams of dust and gas each form their own distinct tail, pointing in slightly different directions. The tail of dust is left behind in the comet's orbit in such a manner that it often forms a curved tail called the type II or dust tail.[54] At the same time, the ion or type I tail, made of gases, always points directly away from the Sun because this gas is more strongly affected by the solar wind than is dust, following magnetic field lines rather than an orbital trajectory.[67] On occasions—such as when Earth passes through a comet's orbital plane, the antitail, pointing in the opposite direction to the ion and dust tails, may be seen.[68]

 

The observation of antitails contributed significantly to the discovery of solar wind.[69] The ion tail is formed as a result of the ionization by solar ultra-violet radiation of particles in the coma. Once the particles have been ionized, they attain a net positive electrical charge, which in turn gives rise to an "induced magnetosphere" around the comet. The comet and its induced magnetic field form an obstacle to outward flowing solar wind particles. Because the relative orbital speed of the comet and the solar wind is supersonic, a bow shock is formed upstream of the comet in the flow direction of the solar wind. In this bow shock, large concentrations of cometary ions (called "pick-up ions") congregate and act to "load" the solar magnetic field with plasma, such that the field lines "drape" around the comet forming the ion tail.[70]

 

If the ion tail loading is sufficient, the magnetic field lines are squeezed together to the point where, at some distance along the ion tail, magnetic reconnection occurs. This leads to a "tail disconnection event".[70] This has been observed on a number of occasions, one notable event being recorded on 20 April 2007, when the ion tail of Encke's Comet was completely severed while the comet passed through a coronal mass ejection. This event was observed by the STEREO space probe.[71]

 

In 2013, ESA scientists reported that the ionosphere of the planet Venus streams outwards in a manner similar to the ion tail seen streaming from a comet under similar conditions."[72]

 

Uneven heating can cause newly generated gases to break out of a weak spot on the surface of comet's nucleus, like a geyser.[74] These streams of gas and dust can cause the nucleus to spin, and even split apart.[74] In 2010 it was revealed dry ice (frozen carbon dioxide) can power jets of material flowing out of a comet nucleus.[75] Infrared imaging of Hartley 2 shows such jets exiting and carrying with it dust grains into the coma.[76]

 

Most comets are small Solar System bodies with elongated elliptical orbits that take them close to the Sun for a part of their orbit and then out into the further reaches of the Solar System for the remainder.[77] Comets are often classified according to the length of their orbital periods: The longer the period the more elongated the ellipse.

 

Periodic comets or short-period comets are generally defined as those having orbital periods of less than 200 years.[78] They usually orbit more-or-less in the ecliptic plane in the same direction as the planets.[79] Their orbits typically take them out to the region of the outer planets (Jupiter and beyond) at aphelion; for example, the aphelion of Halley's Comet is a little beyond the orbit of Neptune. Comets whose aphelia are near a major planet's orbit are called its "family".[80] Such families are thought to arise from the planet capturing formerly long-period comets into shorter orbits.[81]

 

At the shorter orbital period extreme, Encke's Comet has an orbit that does not reach the orbit of Jupiter, and is known as an Encke-type comet. Short-period comets with orbital periods less than 20 years and low inclinations (up to 30 degrees) to the ecliptic are called traditional Jupiter-family comets (JFCs).[82][83] Those like Halley, with orbital periods of between 20 and 200 years and inclinations extending from zero to more than 90 degrees, are called Halley-type comets (HTCs).[84][85] As of 2022, 94 HTCs have been observed,[86] compared with 744 identified JFCs.[87]

 

Recently discovered main-belt comets form a distinct class, orbiting in more circular orbits within the asteroid belt.[88]

 

Because their elliptical orbits frequently take them close to the giant planets, comets are subject to further gravitational perturbations.[89] Short-period comets have a tendency for their aphelia to coincide with a giant planet's semi-major axis, with the JFCs being the largest group.[83] It is clear that comets coming in from the Oort cloud often have their orbits strongly influenced by the gravity of giant planets as a result of a close encounter. Jupiter is the source of the greatest perturbations, being more than twice as massive as all the other planets combined. These perturbations can deflect long-period comets into shorter orbital periods.[90][91]

 

Based on their orbital characteristics, short-period comets are thought to originate from the centaurs and the Kuiper belt/scattered disc[92] —a disk of objects in the trans-Neptunian region—whereas the source of long-period comets is thought to be the far more distant spherical Oort cloud (after the Dutch astronomer Jan Hendrik Oort who hypothesized its existence).[93] Vast swarms of comet-like bodies are thought to orbit the Sun in these distant regions in roughly circular orbits. Occasionally the gravitational influence of the outer planets (in the case of Kuiper belt objects) or nearby stars (in the case of Oort cloud objects) may throw one of these bodies into an elliptical orbit that takes it inwards toward the Sun to form a visible comet. Unlike the return of periodic comets, whose orbits have been established by previous observations, the appearance of new comets by this mechanism is unpredictable.[94] When flung into the orbit of the sun, and being continuously dragged towards it, tons of matter are stripped from the comets which greatly influence their lifetime; the more stripped, the shorter they live and vice versa.[95]

 

Long-period comets have highly eccentric orbits and periods ranging from 200 years to thousands or even millions of years.[96] An eccentricity greater than 1 when near perihelion does not necessarily mean that a comet will leave the Solar System.[97] For example, Comet McNaught had a heliocentric osculating eccentricity of 1.000019 near its perihelion passage epoch in January 2007 but is bound to the Sun with roughly a 92,600-year orbit because the eccentricity drops below 1 as it moves farther from the Sun. The future orbit of a long-period comet is properly obtained when the osculating orbit is computed at an epoch after leaving the planetary region and is calculated with respect to the center of mass of the Solar System. By definition long-period comets remain gravitationally bound to the Sun; those comets that are ejected from the Solar System due to close passes by major planets are no longer properly considered as having "periods". The orbits of long-period comets take them far beyond the outer planets at aphelia, and the plane of their orbits need not lie near the ecliptic. Long-period comets such as C/1999 F1 and C/2017 T2 (PANSTARRS) can have aphelion distances of nearly 70,000 AU (0.34 pc; 1.1 ly) with orbital periods estimated around 6 million years.

 

Single-apparition or non-periodic comets are similar to long-period comets because they also have parabolic or slightly hyperbolic trajectories[96] when near perihelion in the inner Solar System. However, gravitational perturbations from giant planets cause their orbits to change. Single-apparition comets have a hyperbolic or parabolic osculating orbit which allows them to permanently exit the Solar System after a single pass of the Sun.[98] The Sun's Hill sphere has an unstable maximum boundary of 230,000 AU (1.1 pc; 3.6 ly).[99] Only a few hundred comets have been seen to reach a hyperbolic orbit (e > 1) when near perihelion[100] that using a heliocentric unperturbed two-body best-fit suggests they may escape the Solar System.

 

As of 2019, only two objects have been discovered with an eccentricity significantly greater than one: 1I/ʻOumuamua and 2I/Borisov, indicating an origin outside the Solar System. While ʻOumuamua, with an eccentricity of about 1.2, showed no optical signs of cometary activity during its passage through the inner Solar System in October 2017, changes to its trajectory—which suggests outgassing—indicate that it is probably a comet.[101] On the other hand, 2I/Borisov, with an estimated eccentricity of about 3.36, has been observed to have the coma feature of comets, and is considered the first detected interstellar comet.[102][103] Comet C/1980 E1 had an orbital period of roughly 7.1 million years before the 1982 perihelion passage, but a 1980 encounter with Jupiter accelerated the comet giving it the largest eccentricity (1.057) of any known solar comet with a reasonable observation arc.[104] Comets not expected to return to the inner Solar System include C/1980 E1, C/2000 U5, C/2001 Q4 (NEAT), C/2009 R1, C/1956 R1, and C/2007 F1 (LONEOS).

 

Some authorities use the term "periodic comet" to refer to any comet with a periodic orbit (that is, all short-period comets plus all long-period comets),[105] whereas others use it to mean exclusively short-period comets.[96] Similarly, although the literal meaning of "non-periodic comet" is the same as "single-apparition comet", some use it to mean all comets that are not "periodic" in the second sense (that is, to also include all comets with a period greater than 200 years).

 

Early observations have revealed a few genuinely hyperbolic (i.e. non-periodic) trajectories, but no more than could be accounted for by perturbations from Jupiter. Comets from interstellar space are moving with velocities of the same order as the relative velocities of stars near the Sun (a few tens of km per second). When such objects enter the Solar System, they have a positive specific orbital energy resulting in a positive velocity at infinity ({\displaystyle v_{\infty }\!}{\displaystyle v_{\infty }\!}) and have notably hyperbolic trajectories. A rough calculation shows that there might be four hyperbolic comets per century within Jupiter's orbit, give or take one and perhaps two orders of magnitude.[106]

 

The Oort cloud is thought to occupy a vast space starting from between 2,000 and 5,000 AU (0.03 and 0.08 ly)[108] to as far as 50,000 AU (0.79 ly)[84] from the Sun. This cloud encases the celestial bodies that start at the middle of our solar system—the sun, all the way to outer limits of the Kuiper Belt. The Oort cloud consists of viable materials necessary for the creation of celestial bodies. The planets we have today, exist only because of the planetesimals (chunks of leftover space that assisted in the creation of planets) that were condensed and formed by the gravity of the sun. The eccentric made from these trapped planetesimals is why the Oort Cloud even exists.[109] Some estimates place the outer edge at between 100,000 and 200,000 AU (1.58 and 3.16 ly).[108] The region can be subdivided into a spherical outer Oort cloud of 20,000–50,000 AU (0.32–0.79 ly), and a doughnut-shaped inner cloud, the Hills cloud, of 2,000–20,000 AU (0.03–0.32 ly).[110] The outer cloud is only weakly bound to the Sun and supplies the long-period (and possibly Halley-type) comets that fall to inside the orbit of Neptune.[84] The inner Oort cloud is also known as the Hills cloud, named after J. G. Hills, who proposed its existence in 1981.[111] Models predict that the inner cloud should have tens or hundreds of times as many cometary nuclei as the outer halo;[111][112][113] it is seen as a possible source of new comets that resupply the relatively tenuous outer cloud as the latter's numbers are gradually depleted. The Hills cloud explains the continued existence of the Oort cloud after billions of years.[114]

 

Exocomets beyond the Solar System have also been detected and may be common in the Milky Way.[115] The first exocomet system detected was around Beta Pictoris, a very young A-type main-sequence star, in 1987.[116][117] A total of 11 such exocomet systems have been identified as of 2013, using the absorption spectrum caused by the large clouds of gas emitted by comets when passing close to their star.[115][116] For ten years the Kepler space telescope was responsible for searching for planets and other forms outside of the solar system. The first transiting exocomets were found in February 2018 by a group consisting of professional astronomers and citizen scientists in light curves recorded by the Kepler Space Telescope.[118][119] After Kepler Space Telescope retired in October 2018, a new telescope called TESS Telescope has taken over Kepler's mission. Since the launch of TESS, astronomers have discovered the transits of comets around the star Beta Pictoris using a light curve from TESS.[120][121] Since TESS has taken over, astronomers have since been able to better distinguish exocomets with the spectroscopic method. New planets are detected by the white light curve method which is viewed as a symmetrical dip in the charts readings when a planet overshadows its parent star. However, after further evaluation of these light curves, it has been discovered that the asymmetrical patterns of the dips presented are caused by the tail of a comet or of hundreds of comets.[122]

 

...he Sun, outgassing of its icy components also releases solid debris too large to be swept away by radiation pressure and the solar wind.[123] If Earth's orbit sends it through that trail of debris, which is composed mostly of fine grains of rocky material, there is likely to be a meteor shower as Earth passes through. Denser trails of debris produce quick but intense meteor showers and less dense trails create longer but less intense showers. Typically, the density of the debris trail is related to how long ago the parent comet released the material.[124][125] The Perseid meteor shower, for example, occurs every year between 9 and 13 August, when Earth passes through the orbit of Comet Swift–Tuttle. Halley's Comet is the source of the Orionid shower in October.[126][127]

 

Many comets and asteroids collided with Earth in its early stages. Many scientists think that comets bombarding the young Earth about 4 billion years ago brought the vast quantities of water that now fill Earth's oceans, or at least a significant portion of it. Others have cast doubt on this idea.[128] The detection of organic molecules, including polycyclic aromatic hydrocarbons,[18] in significant quantities in comets has led to speculation that comets or meteorites may have brought the precursors of life—or even life itself—to Earth.[129] In 2013 it was suggested that impacts between rocky and icy surfaces, such as comets, had the potential to create the amino acids that make up proteins through shock synthesis.[130] The speed at which the comets entered the atmosphere, combined with the magnitude of energy created after initial contact, allowed smaller molecules to condense into the larger macro-molecules that served as the foundation for life.[131] In 2015, scientists found significant amounts of molecular oxygen in the outgassings of comet 67P, suggesting that the molecule may occur more often than had been thought, and thus less an indicator of life as has been supposed.[132]

 

It is suspected that comet impacts have, over long timescales, also delivered significant quantities of water to Earth's Moon, some of which may have survived as lunar ice.[133] Comet and meteoroid impacts are also thought to be responsible for the existence of tektites and australites.[134]

 

Fear of comets as acts of God and signs of impending doom was highest in Europe from AD 1200 to 1650.[135] The year after the Great Comet of 1618, for example, Gotthard Arthusius published a pamphlet stating that it was a sign that the Day of Judgment was near.[136] He listed ten pages of comet-related disasters, including "earthquakes, floods, changes in river courses, hail storms, hot and dry weather, poor harvests, epidemics, war and treason and high prices".[135]

 

By 1700 most scholars concluded that such events occurred whether a comet was seen or not. Using Edmond Halley's records of comet sightings, however, William Whiston in 1711 wrote that the Great Comet of 1680 had a periodicity of 574 years and was responsible for the worldwide flood in the Book of Genesis, by pouring water on Earth. His announcement revived for another century fear of comets, now as direct threats to the world instead of signs of disasters.[135] Spectroscopic analysis in 1910 found the toxic gas cyanogen in the tail of Halley's Comet,[137] causing panicked buying of gas masks and quack "anti-comet pills" and "anti-comet umbrellas" by the public.[138]

 

If a comet is traveling fast enough, it may leave the Solar System. Such comets follow the open path of a hyperbola, and as such, they are called hyperbolic comets. Solar comets are only known to be ejected by interacting with another object in the Solar System, such as Jupiter.[139] An example of this is Comet C/1980 E1, which was shifted from an orbit of 7.1 million years around the Sun, to a hyperbolic trajectory, after a 1980 close pass by the planet Jupiter.[140] Interstellar comets such as 1I/ʻOumuamua and 2I/Borisov never orbited the Sun and therefore do not require a 3rd-body interaction to be ejected from the Solar System.

 

Jupiter-family comets and long-period comets appear to follow very different fading laws. The JFCs are active over a lifetime of about 10,000 years or ~1,000 orbits whereas long-period comets fade much faster. Only 10% of the long-period comets survive more than 50 passages to small perihelion and only 1% of them survive more than 2,000 passages.[32] Eventually most of the volatile material contained in a comet nucleus evaporates, and the comet becomes a small, dark, inert lump of rock or rubble that can resemble an asteroid.[141] Some asteroids in elliptical orbits are now identified as extinct comets.[142][143][144][145] Roughly six percent of the near-Earth asteroids are thought to be extinct comet nuclei.[32]

 

The nucleus of some comets may be fragile, a conclusion supported by the observation of comets splitting apart.[146] A significant cometary disruption was that of Comet Shoemaker–Levy 9, which was discovered in 1993. A close encounter in July 1992 had broken it into pieces, and over a period of six days in July 1994, these pieces fell into Jupiter's atmosphere—the first time astronomers had observed a collision between two objects in the Solar System.[147][148] Other splitting comets include 3D/Biela in 1846 and 73P/Schwassmann–Wachmann from 1995 to 2006.[149] Greek historian Ephorus reported that a comet split apart as far back as the winter of 372–373 BC.[150] Comets are suspected of splitting due to thermal stress, internal gas pressure, or impact.[151]

 

Comets 42P/Neujmin and 53P/Van Biesbroeck appear to be fragments of a parent comet. Numerical integrations have shown that both comets had a rather close approach to Jupiter in January 1850, and that, before 1850, the two orbits were nearly identical.[152]

 

Some comets have been observed to break up during their perihelion passage, including great comets West and Ikeya–Seki. Biela's Comet was one significant example when it broke into two pieces during its passage through the perihelion in 1846. These two comets were seen separately in 1852, but never again afterward. Instead, spectacular meteor showers were seen in 1872 and 1885 when the comet should have been visible. A minor meteor shower, the Andromedids, occurs annually in November, and it is caused when Earth crosses the orbit of Biela's Comet.[153]

 

Some comets meet a more spectacular end – either falling into the Sun[154] or smashing into a planet or other body. Collisions between comets and planets or moons were common in the early Solar System: some of the many craters on the Moon, for example, may have been caused by comets. A recent collision of a comet with a planet occurred in July 1994 when Comet Shoemaker–Levy 9 broke up into pieces and collided with Jupiter.[155]

 

The names given to comets have followed several different conventions over the past two centuries. Prior to the early 20th century, most comets were simply referred to by the year when they appeared, sometimes with additional adjectives for particularly bright comets; thus, the "Great Comet of 1680", the "Great Comet of 1882", and the "Great January Comet of 1910".

 

After Edmond Halley demonstrated that the comets of 1531, 1607, and 1682 were the same body and successfully predicted its return in 1759 by calculating its orbit, that comet became known as Halley's Comet.[157] Similarly, the second and third known periodic comets, Encke's Comet[158] and Biela's Comet,[159] were named after the astronomers who calculated their orbits rather than their original discoverers. Later, periodic comets were usually named after their discoverers, but comets that had appeared only once continued to be referred to by the year of their appearance.[160]

 

In the early 20th century, the convention of naming comets after their discoverers became common, and this remains so today. A comet can be named after its discoverers or an instrument or program that helped to find it.[160] For example, in 2019, astronomer Gennady Borisov observed a comet that appeared to have originated outside of the solar system; the comet was named C/2019 Q4 (Borisov) after him.

 

From ancient sources, such as Chinese oracle bones, it is known that comets have been noticed by humans for millennia.[161] Until the sixteenth century, comets were usually considered bad omens of deaths of kings or noble men, or coming catastrophes, or even interpreted as attacks by heavenly beings against terrestrial inhabitants.[162][163]

 

Aristotle (384–322 BC) was the first known scientist to utilize various theories and observational facts to employ a consistent, structured cosmological theory of comets. He believed that comets were atmospheric phenomena, due to the fact that they could appear outside of the zodiac and vary in brightness over the course of a few days. Aristotle's cometary theory arose from his observations and cosmological theory that everything in the cosmos is arranged in a distinct configuration.[164] Part of this configuration was a clear separation between the celestial and terrestrial, believing comets to be strictly associated with the latter. According to Aristotle, comets must be within the sphere of the moon and clearly separated from the heavens. Also in the 4th century BC, Apollonius of Myndus supported the idea that comets moved like the planets.[165] Aristotelian theory on comets continued to be widely accepted throughout the Middle Ages, despite several discoveries from various individuals challenging aspects of it.[166]

 

In the 1st century AD, Seneca the Younger questioned Aristotle's logic concerning comets. Because of their regular movement and imperviousness to wind, they cannot be atmospheric,[167] and are more permanent than suggested by their brief flashes across the sky.[a] He pointed out that only the tails are transparent and thus cloudlike, and argued that there is no reason to confine their orbits to the zodiac.[167] In criticizing Apollonius of Myndus, Seneca argues, "A comet cuts through the upper regions of the universe and then finally becomes visible when it reaches the lowest point of its orbit."[168] While Seneca did not author a substantial theory of his own,[169] his arguments would spark much debate among Aristotle's critics in the 16th and 17th centuries.[166][b]

 

Also in the 1st century, Pliny the Elder believed that comets were connected with political unrest and death.[171] Pliny observed comets as "human like", often describing their tails with "long hair" or "long beard".[172] His system for classifying comets according to their color and shape was used for centuries.[173]

 

In India, by the 6th century astronomers believed that comets were celestial bodies that re-appeared periodically. This was the view expressed in the 6th century by the astronomers Varāhamihira and Bhadrabahu, and the 10th-century astronomer Bhaṭṭotpala listed the names and estimated periods of certain comets, but it is not known how these figures were calculated or how accurate they were.[174]

 

According to Norse mythology, comets were actually a part of the Giant Ymir's skull. According to the tale, Odin and his brothers slew Ymir and set about constructing the world (Earth) from his corpse. They fashioned the oceans from his blood, the soil from his skin and muscles, vegetation from his hair, clouds from his brains, and the sky from his skull. Four dwarves, corresponding to the four cardinal points, held Ymir's skull aloft above the earth. Following this tale, comets in the sky, as believed by the Norse, were flakes of Ymir's skull falling from the sky and then disintegrating.[176]

 

In 1301, the Italian painter Giotto was the first person to accurately and anatomically portray a comet. In his work Adoration of the Magi, Giotto's depiction of Halley's Comet in the place of the Star of Bethlehem would go unmatched in accuracy until the 19th century and be bested only with the invention of photography.[175]

 

Astrological interpretations of comets proceeded to take precedence clear into the 15th century, despite the presence of modern scientific astronomy beginning to take root. Comets continued to forewarn of disaster, as seen in the Luzerner Schilling chronicles and in the warnings of Pope Callixtus III.[175] In 1578, German Lutheran bishop Andreas Celichius defined comets as "the thick smoke of human sins ... kindled by the hot and fiery anger of the Supreme Heavenly Judge". The next year, Andreas Dudith stated that "If comets were caused by the sins of mortals, they would never be absent from the sky."[177]

 

Scientific approach

Crude attempts at a parallax measurement of Halley's Comet were made in 1456, but were erroneous.[178] Regiomontanus was the first to attempt to calculate diurnal parallax by observing the great comet of 1472. His predictions were not very accurate, but they were conducted in the hopes of estimating the distance of a comet from the Earth.[173]

 

In the 16th century, Tycho Brahe and Michael Maestlin demonstrated that comets must exist outside of Earth's atmosphere by measuring the parallax of the Great Comet of 1577.[179] Within the precision of the measurements, this implied the comet must be at least four times more distant than from Earth to the Moon.[180][181] Based on observations in 1664, Giovanni Borelli recorded the longitudes and latitudes of comets that he observed, and suggested that cometary orbits may be parabolic.[182] Galileo Galilei, one of the most renowned astronomers to date, even attempted writings on comets in The Assayer. He rejected Brahe's theories on the parallax of comets and claimed that they may be a mere optical illusion. Intrigued as early scientists were about the nature of comets, Galileo could not help but throw about his own theories despite little personal observation.[173] Maestlin's student Johannes Kepler responded to these unjust criticisms in his work Hyperaspistes. Jakob Bernoulli published another attempt to explain comets (Conamen Novi Systematis Cometarum) in 1682.

 

Also occurring in the early modern period was the study of comets and their astrological significance in medical disciplines. Many healers of this time considered medicine and astronomy to be inter-disciplinary and employed their knowledge of comets and other astrological signs for diagnosing and treating patients.[183]

 

Isaac Newton, in his Principia Mathematica of 1687, proved that an object moving under the influence of gravity by an inverse square law must trace out an orbit shaped like one of the conic sections, and he demonstrated how to fit a comet's path through the sky to a parabolic orbit, using the comet of 1680 as an example.[184] He describes comets as compact and durable solid bodies moving in oblique orbit and their tails as thin streams of vapor emitted by their nuclei, ignited or heated by the Sun. He suspected that comets were the origin of the life-supporting component of air.[185] He also pointed out that comets usually appear near the Sun, and therefore most likely orbit it.[167] On their luminosity, he stated, "The comets shine by the Sun's light, which they reflect," with their tails illuminated by "the Sun's light reflected by a smoke arising from [the coma]".[167]

 

In 1705, Edmond Halley (1656–1742) applied Newton's method to 23 cometary apparitions that had occurred between 1337 and 1698. He noted that three of these, the comets of 1531, 1607, and 1682, had very similar orbital elements, and he was further able to account for the slight differences in their orbits in terms of gravitational perturbation caused by Jupiter and Saturn. Confident that these three apparitions had been three appearances of the same comet, he predicted that it would appear again in 1758–9.[186] Halley's predicted return date was later refined by a team of three French mathematicians: Alexis Clairaut, Joseph Lalande, and Nicole-Reine Lepaute, who predicted the date of the comet's 1759 perihelion to within one month's accuracy.[187][188] When the comet returned as predicted, it became known as Halley's Comet.[189]

 

As early as the 18th century, some scientists had made correct hypotheses as to comets' physical composition. In 1755, Immanuel Kant hypothesized in his Universal Natural History that comets were condensed from "primitive matter" beyond the known planets, which is "feebly moved" by gravity, then orbit at arbitrary inclinations, and are partially vaporized by the Sun's heat as they near perihelion.[191] In 1836, the German mathematician Friedrich Wilhelm Bessel, after observing streams of vapor during the appearance of Halley's Comet in 1835, proposed that the jet forces of evaporating material could be great enough to significantly alter a comet's orbit, and he argued that the non-gravitational movements of Encke's Comet resulted from this phenomenon.[192]

 

In the 19th century, the Astronomical Observatory of Padova was an epicenter in the observational study of comets. Led by Giovanni Santini (1787–1877) and followed by Giuseppe Lorenzoni (1843–1914), this observatory was devoted to classical astronomy, mainly to the new comets and planets orbit calculation, with the goal of compiling a catalog of almost ten thousand stars. Situated in the Northern portion of Italy, observations from this observatory were key in establishing important geodetic, geographic, and astronomical calculations, such as the difference of longitude between Milan and Padua as well as Padua to Fiume.[193] In addition to these geographic observations, correspondence within the observatory, particularly between Santini and another astronomer Giuseppe Toaldo, about the importance of comet and planetary orbital observations.[194]

 

In 1950, Fred Lawrence Whipple proposed that rather than being rocky objects containing some ice, comets were icy objects containing some dust and rock.[195] This "dirty snowball" model soon became accepted and appeared to be supported by the observations of an armada of spacecraft (including the European Space Agency's Giotto probe and the Soviet Union's Vega 1 and Vega 2) that flew through the coma of Halley's Comet in 1986, photographed the nucleus, and observed jets of evaporating material.[196]

 

On 22 January 2014, ESA scientists reported the detection, for the first definitive time, of water vapor on the dwarf planet Ceres, the largest object in the asteroid belt.[197] The detection was made by using the far-infrared abilities of the Herschel Space Observatory.[198] The finding is unexpected because comets, not asteroids, are typically considered to "sprout jets and plumes". According to one of the scientists, "The lines are becoming more and more blurred between comets and asteroids."[198] On 11 August 2014, astronomers released studies, using the Atacama Large Millimeter/Submillimeter Array (ALMA) for the first time, that detailed the distribution of HCN, HNC, H2CO, and dust inside the comae of comets C/2012 F6 (Lemmon) and C/2012 S1 (ISON).[199][200]

 

Debate continues about how much ice is in a comet. In 2001, the Deep Space 1 spacecraft obtained high-resolution images of the surface of Comet Borrelly. It was found that the surface of comet Borrelly is hot and dry, with a temperature of between 26 to 71 °C (79 to 160 °F), and extremely dark, suggesting that the ice has been removed by solar heating and maturation, or is hidden by the soot-like material that covers Borrelly. In July 2005, the Deep Impact probe blasted a crater on Comet Tempel 1 to study its interior. The mission yielded results suggesting that the majority of a comet's water ice is below the surface and that these reservoirs feed the jets of vaporized water that form the coma of Tempel 1. Renamed EPOXI, it made a flyby of Comet Hartley 2 on 4 November 2010.

 

In 2007, the Ulysses probe unexpectedly passed through the tail of the comet C/2006 P1 (McNaught) which was discovered in 2006. Ulysses was launched in 1990 and the intended mission was for Ulysses to orbit around the sun for further study at all latitudes.

 

Data from the Stardust mission show that materials retrieved from the tail of Wild 2 were crystalline and could only have been "born in fire", at extremely high temperatures of over 1,000 °C (1,830 °F). Although comets formed in the outer Solar System, radial mixing of material during the early formation of the Solar System is thought to have redistributed material throughout the proto-planetary disk. As a result, comets also contain crystalline grains that formed in the early, hot inner Solar System. This is seen in comet spectra as well as in sample return missions. More recent still, the materials retrieved demonstrate that the "comet dust resembles asteroid materials". These new results have forced scientists to rethink the nature of comets and their distinction from asteroids.

 

The Rosetta probe orbited Comet Churyumov–Gerasimenko. On 12 November 2014, its lander Philae successfully landed on the comet's surface, the first time a spacecraft has ever landed on such an object.

 

Approximately once a decade, a comet becomes bright enough to be noticed by a casual observer, leading such comets to be designated as great comets. Predicting whether a comet will become a great comet is notoriously difficult, as many factors may cause a comet's brightness to depart drastically from predictions. Broadly speaking, if a comet has a large and active nucleus, will pass close to the Sun, and is not obscured by the Sun as seen from Earth when at its brightest, it has a chance of becoming a great comet. However, Comet Kohoutek in 1973 fulfilled all the criteria and was expected to become spectacular but failed to do so.[210] Comet West, which appeared three years later, had much lower expectations but became an extremely impressive comet.

 

The Great Comet of 1577 is a well-known example of a great comet. It passed near Earth as a non-periodic comet and was seen by many, including well-known astronomers Tycho Brahe and Taqi ad-Din. Observations of this comet led to several significant findings regarding cometary science, especially for Brahe.

 

The late 20th century saw a lengthy gap without the appearance of any great comets, followed by the arrival of two in quick succession—Comet Hyakutake in 1996, followed by Hale–Bopp, which reached maximum brightness in 1997 having been discovered two years earlier. The first great comet of the 21st century was C/2006 P1 (McNaught), which became visible to naked eye observers in January 2007. It was the brightest in over 40 years.

 

A sun-grazing comet is a comet that passes extremely close to the Sun at perihelion, generally within a few million kilometers. Although small sungrazers can be completely evaporated during such a close approach to the Sun, larger sungrazers can survive many perihelion passages. However, the strong tidal forces they experience often lead to their fragmentation.

 

About 90% of the sungrazers observed with SOHO are members of the Kreutz group, which all originate from one giant comet that broke up into many smaller comets during its first passage through the inner Solar System. The remainder contains some sporadic sungrazers, but four other related groups of comets have been identified among them: the Kracht, Kracht 2a, Marsden, and Meyer groups. The Marsden and Kracht groups both appear to be related to Comet 96P/Machholz, which is also the parent of two meteor streams, the Quadrantids and the Arietids.

 

Of the thousands of known comets, some exhibit unusual properties. Comet Encke (2P/Encke) orbits from outside the asteroid belt to just inside the orbit of the planet Mercury whereas the Comet 29P/Schwassmann–Wachmann currently travels in a nearly circular orbit entirely between the orbits of Jupiter and Saturn. 2060 Chiron, whose unstable orbit is between Saturn and Uranus, was originally classified as an asteroid until a faint coma was noticed. Similarly, Comet Shoemaker–Levy 2 was originally designated asteroid 1990 UL3.

 

The largest known periodic comet is 95P/Chiron at 200 km in diameter that comes to perihelion every 50 years just inside of Saturn's orbit at 8 AU. The largest known Oort cloud comet is suspected of being Comet Bernardinelli-Bernstein at ≈150 km that will not come to perihelion until January 2031 just outside of Saturn's orbit at 11 AU. The Comet of 1729 is estimated to have been ≈100 km in diameter and came to perihelion inside of Jupiter's orbit at 4 AU.

 

Centaurs typically behave with characteristics of both asteroids and comets.[220] Centaurs can be classified as comets such as 60558 Echeclus, and 166P/NEAT. 166P/NEAT was discovered while it exhibited a coma, and so is classified as a comet despite its orbit, and 60558 Echeclus was discovered without a coma but later became active, and was then classified as both a comet and an asteroid (174P/Echeclus). One plan for Cassini involved sending it to a centaur, but NASA decided to destroy it instead.

 

A comet may be discovered photographically using a wide-field telescope or visually with binoculars. However, even without access to optical equipment, it is still possible for the amateur astronomer to discover a sun-grazing comet online by downloading images accumulated by some satellite observatories such as SOHO. SOHO's 2000th comet was discovered by Polish amateur astronomer Michał Kusiak on 26 December 2010 and both discoverers of Hale–Bopp used amateur equipment (although Hale was not an amateur).

 

A number of periodic comets discovered in earlier decades or previous centuries are now lost comets. Their orbits were never known well enough to predict future appearances or the comets have disintegrated. However, occasionally a "new" comet is discovered, and calculation of its orbit shows it to be an old "lost" comet. An example is Comet 11P/Tempel–Swift–LINEAR, discovered in 1869 but unobservable after 1908 because of perturbations by Jupiter. It was not found again until accidentally rediscovered by LINEAR in 2001. There are at least 18 comets that fit this category.

 

The depiction of comets in popular culture is firmly rooted in the long Western tradition of seeing comets as harbingers of doom and as omens of world-altering change. Halley's Comet alone has caused a slew of sensationalist publications of all sorts at each of its reappearances. It was especially noted that the birth and death of some notable persons coincided with separate appearances of the comet, such as with writers Mark Twain (who correctly speculated that he'd "go out with the comet" in 1910) and Eudora Welty, to whose life Mary Chapin Carpenter dedicated the song "Halley Came to Jackson".

 

In times past, bright comets often inspired panic and hysteria in the general population, being thought of as bad omens. More recently, during the passage of Halley's Comet in 1910, Earth passed through the comet's tail, and erroneous newspaper reports inspired a fear that cyanogen in the tail might poison millions, whereas the appearance of Comet Hale–Bopp in 1997 triggered the mass suicide of the Heaven's Gate cult.

   

Today was the final Sunday before the major changes to the Lincoln network commences next week...

 

One of the biggest changes is the disconnection of the 44 and 66, and the removal of the 44A for most of the day, as well as the decrease in frequency of the 44 back to every 15 minutes. This, unsurprisingly, hasn't gone un-noticed.

 

What has gone un-noticed though, is that a handful of Sunday oddities are now no more... In order to retain a half hourly frequency on a Sunday without increasing the hourly 44, one 'short' 66 ran per hour, departing the bus station hourly between 0845 and 1745, plus a final journey at 1815.

 

These journeys were supposed to run the full 66 route to the Birchwood Centre, and then go up the road to Larchwood Crescent to turn around, arriving back on the opposite side of the road at the Birchwood Centre, ready to do a 66 back to town.

 

In reality, this never actually happened for more than about the first two weeks, when it was decided there was definitely not enough time in the timetable for all that (buses were provided with one minute for it, when they needed at least four in reality), and so the old 66A routine was picked up once again - that is to say, normal route as far as Woodfield Avenue, then straight down Jasmin Road to the Birchwood Centre (opp), before returning to town via the normal 66 route. (This was never registered though!)

 

It's on Jasmin Road that 36710 is seen today, working the 1145 66 from Lincoln. Now that the shorts have ended, Jasmin Road will no longer be used by any bus service.

 

Some interesting variations on the short 66 which I witnessed and travelled on over the past two years included one driver who did the full 66 route to Aldergrove Crescent, then went around Fulmar Road to turn around (adding about 5-6 minutes onto an already impossible schedule!); and another who did the reverse of what I've described above.

The High Level Bridge is a road and railway bridge spanning the River Tyne between Newcastle upon Tyne and Gateshead in North East England. It is considered the most notable historical engineering work in the city. It was built by the Hawks family from 5,050 tons of iron. George Hawks, Mayor of Gateshead, drove in the last key of the structure on 7 June 1849, and the bridge was officially opened by Queen Victoria later that year.

 

It was designed by Robert Stephenson to form a rail link towards Scotland for the developing English railway network; a carriageway for road vehicles and pedestrians was incorporated to generate additional revenue. The main structural elements are tied cast-iron arches.

 

Notwithstanding the considerable increase in the weight of railway vehicles since it was designed, it continues to carry rail traffic, although the King Edward bridge nearby was opened in 1906 to ease congestion. The roadway is also still in use, although with a weight restriction. It is a Grade I listed structure.

 

In 1835, the Newcastle and Carlisle Railway (N&CR) Act authorised the line to approach Newcastle to a terminus at Redheugh, on the south bank of the River Tyne, close to the end of the present-day New Redheugh Bridge. The Act also authorised a crossing of the Tyne there, giving rail access to the north shore quays. The river was shallow at this point, and the bridge would have been at a low level, only 20 ft (6.1 m) above high water. The line would then have climbed to a terminus at the Spital, near Neville Street and the east end of the present-day Newcastle Central station. The climb was to be at a gradient of 1 in 22 and would have been operated by a stationary steam engine with rope haulage.

 

Hitherto railways in the region had had a local focus, but now the Great North of England Railway (GNER) obtained authorising Acts to build from Newcastle to York, forming part of a continuous trunk railway network to connect to London; the project was controlled by George Hudson, the so-called Railway King. At first the GNER was content to get access to the N&CR Newcastle terminus, by connecting with the N&CR at Redheugh and running over its line across the Tyne and up to the Spital. This had the advantage of avoiding a separate, and expensive, crossing of the river, but would have meant a steep descent to Redheugh as the GNER line approached on high ground from the Team Valley, only to climb once again to the Spital. Moreover, William Brandling had made known his intention to reach Newcastle from his line by running at a high level through Gateshead. On 25 April 1837, the N&CR decided to build to their south side, low-level terminus at Redheugh, but to leave the issue of the Tyne crossing open.

 

Richard Grainger was a developer in Newcastle, and had acquired lands at Elswick (on the north bank of the Tyne west of the proposed Redheugh crossing). In 1836, he published a pamphlet recommending a crossing of the Tyne there, and the formation of spacious railway terminal accommodation there. Drawing attention to the limited scope for extending eastwards from the Spital, and "in the event of an Edinburgh Railway also terminating in this situation, the interchange of passengers, goods, and cattle would be greatly increased".

 

Grainger's plan was not adopted, and the Brandling Junction Railway reached Gateshead in 1839. The GNER ran out of money and it was superseded in Hudson's railway empire by the Newcastle and Darlington Junction Railway, which opened its line using the Brandling Junction Railway from the south east instead of through the Team Valley. The Brandling Junction line had a terminus in Gateshead at Greenesfield at a high level, and the N&CR line was built climbing on an inclined plane at a gradient of 1 in 23 from Redheugh to reach that. The Newcastle and Darlington Junction Railway opened its line from the south to Pelaw, allowing its trains to reach Gateshead over the Brandling Junction line, in 1844. The tables had been turned, and indeed for a while Greenesfield was the de facto main station for the conurbation of Newcastle and Gateshead.

 

John and Benjamin Green were a father and son architectural practice active in Newcastle. In 1841 Benjamin Green had proposed a high level bridge for road traffic, substantially on the alignment of the actual High Level Bridge; and sensing the commercial climate he explained how it could be adapted for railway use. He failed to get any financial support, but in 1843 George Hudson was looking for ways to extend his railway network northwards, and the Greens' scheme fitted with his takeover of the Newcastle and Darlington Junction Railway; the line got its authorising Act on 22 May 1844, and the Act included the road bridge.

 

The Newcastle and North Shields Railway had opened in 1839 from its own terminus at Carliol Square, on the north-east edge of Newcastle. As a purely local concern, the disconnection was not important, but interest gathered in a railway to central Scotland; the "Edinburgh Railway" foreseen by Grainger. A Scottish concern, the North British Railway, had got its Act of Parliament the previous year to build as far south as Berwick (later known as Berwick-upon-Tweed.

 

Now Hudson was intent on capturing the line to Edinburgh for his empire, and he encouraged the development of railway plans to get there; the route such a line might take continued to generate considerable controversy. There was still ambiguity about Hudson's intentions for the bridge—an easier crossing point at Bill Quay, two miles downstream had been considered—and Newcastle Town Council sought undertakings from him. In addition, he promised a footway crossing; this was apparently not a sweetener to the Town Council, but a commercial decision, expected to bring in £250 a week. The footway crossing was later extended to include horse-drawn vehicles.

 

Finally, the Newcastle and Berwick Railway was authorised by Act of Parliament of 31 July 1845. The line would cross the Greens' high level bridge, starting from the Gateshead Greenesfield station, and commitments made to the building of a bridge by the Newcastle and Darlington Junction Railway were transferred to the Newcastle and Berwick Railway.

 

The bridge was to be designed by Robert Stephenson; T E Harrison did the detailed design work.

 

The height of the railway, at about 120 ft (37 m) above high water, was determined by the level of the Brandling Junction line in Gateshead. A double-deck configuration was selected because of road levels on the approaches, and to avoid the excess width of foundations which a side-by-side arrangement would require. The deck width was determined by the useful roadway width plus the width of structural members, which gave the railway deck the width for three tracks.

 

The foundations were to be difficult because of the poor ground conditions in the river, and this ruled out an all-masonry structure, so cast iron or wrought iron was inevitable for the superstructure. A tied arch (or bow-string) design was favoured because the outward thrust imposed by an arch is contained by the tie; no abutments capable of resisting the thrust could be provided here.

 

Stephenson had used this configuration before; he recorded that, "The earliest railway bridge on the bowstring principle is that over the Regent's Canal, near Chalk Farm, on the London and Birmingham Railway".

 

The arch would consist of iron ribs. Fawcett says, "The reasons for not using wrought iron was due to some engineers' distrust of rivetting, the relatively small size of wrought iron plates then available, and the higher cost… On 1 October 1845 when the Newcastle and Berwick Board instructed T E Harrison for their bridges, none of the uses of wrought iron had been developed far enough to be considered as an alternative to cast iron for the High Level Bridge. A tubular bridge might have been considered by Robert Stephenson but the distance between solid and reasonably shallow foundations would have given a span much larger than the Britannia Bridge."

 

The depth of rock in the riverbed resulted in a height of 140 ft (43 m) from there to the superstructure. Three river piers were permitted by the Tyne Improvement Commissioners, and therefore four river spans of 125 ft (38 m) were decided on; there were additional subsidiary spans on the shore.

 

The cast iron arch ribs are 3 ft 6 in (1.07 m) deep at the crown, increasing to 3 ft 9 in (1.14 m) at the springing, with 12-inch (30 cm) flanges; the flanges and webs were three inches thick; in the case of the inner ribs, and two inches for the outer ribs. The rise was 17 ft 6 in (5.33 m), determined by the desired geometry to confine the horizontal thrust within bounds. Each arch was cast in five sections, bolted together.

 

Stephenson described the tie bars:

 

The ties consist of flat wrought-iron bars, 7 inches by 1 inch of best scrap iron, with eyes of 3½ inches diameter, bored out of the solid, and pins turned and fitted closely. Each external rib is tied by four of these bars, and each internal rib by eight. The sectional area of each external tie is 28 [square] inches, and of each internal tie 56 [square] inches, giving a total area of 168 square inches. These bars were all tested to 9 tons on the square inch.

 

The rail deck is supported above the arches by twelve 14-inch (360 mm) square columns at 9 feet 11 inches (3.02 m) centres. Suspension rods supported the road deck, and both decks had two layers of diagonally laid three-inch deck timbers on suitable wrought iron cross girders (and rail-bearers in the case of the rail deck).

 

The main contractors for the ironwork were Hawks, Crawshay, and Sons, who were assisted by John Abbot and Co., of Gateshead Park Works, and Losh Wilson and Bell, of Walker Ironworks, in the production of the castings. The tender was accepted at £112,000. The contract for the bridge piers and land arches and for the Newcastle Viaduct were won by John Rush and Benjamin Lawton of York for £94,000 and £82,500 respectively. The total cost of the contracts at 1999 prices would be over £30 million.

 

The first masonry was laid on 12 January 1847. A temporary timber viaduct on the east side was ready on 20 August 1848.

 

Timber coffer dams were constructed; they were 76 ft 6 in (23.32 m) by 29 ft (8.8 m) with two skins, the space between being filled with puddle clay. James Nasmyth had a novel design of steam pile driver; it had first been used in Devonport Docks in 1845; it could deliver 60 to 70 blows a minute; the cycle time with the hand-operated pile drivers formerly in use was four minutes. The drop weight was 1½ tons and its stroke was 2 ft 9 in (0.84 m); one was purchased from Nasmyth.

 

The ground gave considerable trouble during construction; Stephenson recorded:

 

Many difficulties occurred in driving the piles which considerably retarded the progress of the work, and, among others, the peculiar effect of ebb and flow during this operation is worthy of note. At flood-tide, the sand became so hard as almost totally to resist the utmost efforts of driving, while at ebb the sand was quite loose, and allowed of doing so with facility. It was therefore found necessary to abandon the driving on many occasions during high water. The difference between high and low water is 11 feet 6 inches. Another difficulty arose from the quicksands beneath the foundations. Although the piles were driven to the rock bottom, the water forced its way up, baffling the attempts to fill in between them; this, however, was remedied by using a concrete made of broken stone and Roman cement, which was continually thrown in until the bottom was found to be secure.

 

The arch ribs were erected in section by travelling crane; each arch was temporarily erected at the contractor’s works. The first was placed on 10 July 1848, and the erection of the ironwork was quick.

 

Already on 29 August 1848, it was possible to pass a special train over the first arch, and over a temporary structure for the rest of the crossing:

 

The High Level Bridge Over the Tyne: This important junction between the York and Newcastle and the Newcastle and Berwick Railway has been completed, and the event was celebrated on Tuesday last. In the afternoon of that day, a train of [specially invited] passengers passed along the temporary timber viaduct from the station at Gateshead to the station at Newcastle. Mr Hudson and several other Directors of the York, Newcastle, and Berwick line, who had been visiting Sunderland ... proceeded in a special train from that town to Gateshead... Several carriages were then added to the special train, and an open truck placed at each end, in which bands of music were stationed. The shrill sound of the whistle gave the signal for a royal salute, under the booming of which the train passed along the line, the band playing, and the thousands assembled to witness the event, rending the air with joyous acclamation Upon reaching the bridge, the bands struck up the well-known local air of "The Keel Row" which they continued till the train had reached the solid ground on the northern side of the river... The train proceeded to the Newcastle and Berwick station, where the company alighted and walked in procession to the Queen’s Head Inn, where a magnificent entertainment had been provided for the Directors and their friends, by the Mayor of Newcastle.

 

[From the south abutment of the High Level Bridge] and the river pier on the south side, the cast iron arch and road-way are nearly completed, and the second arch will be in progress in the course of a few weeks. From the middle of the first arch, the line curves to a temporary timber viaduct erected along the west side of the intended bridge. The height of this viaduct is one hundred and twenty feet to the level of the rails; it is built upon piles, which are driven between thirty and forty feet into the bed of the river. Its stability was sufficiently tested on Monday, when Captain Leffan (sic), the Government Inspector of Railways, examined it preparatory to the opening. On that day, two powerful engines weighing upwards of seventy tons, traversed it at different degrees of speed for between two and three hours; the weight would be about one ton to a foot, being four or five times greater than the temporary structure will ever be required to bear, and the result was, in the highest degree, satisfactory.

 

Among the company in the train were four ladies, who are deserving of honourable mention, from the courage they displayed in accompanying it, namely, Mrs Nichs. Wood, and Miss F. Wood, Mrs I. L. Bell, and her sister, Miss Pattinson of Washington. As the train passed steadily over the bridge the anxiety of the immense multitude seemed intense, and the scene was truly exciting, yet fearful—not only from the lofty eminence occupied by the train but, from the apparent narrowness and nakedness of the platform on which it rolled along. It seemed from its noiselessness, rather an aerial flight, than the rattling sweep of the iron horse.

 

Ordinary traffic appears to have used the temporary single line structure after this date.

 

The eastern track was ready for an inspection by Captain Laffan, Inspecting Office for the Board of Trade, when he visited on 11 August 1849; a load test with four tender locomotives and eighteen wagons loaded with ballast, a total weight of 200 tons. Laffan approved the bridge:

 

I believe all the works of the bridge are completed, and that I believe it to be perfectly secure and safe. The Company have as yet only laid one line of rails over this structure, and I beg to recommend that permission be given to open that one line.

 

The first passenger train crossed the completed structure on the morning of 15 August 1849.

 

Queen Victoria formally inaugurated the bridge on passing through by train on 28 September 1849.

 

The Queen at Newcastle: Her Majesty yesterday honoured this ancient borough with her presence. The event was one of universal and all-engrossing interest... The morning, unfortunately, was dull and the weather unsettled, giving forebodings of a wet and uncomfortable day... Notwithstanding, however, the unfavourable weather dense crowds assembled at every spot in this locality, where a view of the royal carriage could be obtained, and many remained for hours exposed to the weather in order that they might retain the places which at an earlier period of the morning they had secured. The bridge was densely lined with people, and the platform was well covered, though not inconveniently crowded. A profusion of banners were displayed on this elegant and substantial structure, and from nearly all the public and many of the private buildings both in Newcastle and Gateshead. The vessels in the river hoisted their flags mast-high on the occasion, and the church bells of the two towns rung many a merry peal in honour of the royal visit... Pursuant to a request issued by the Mayor, most of the shops were closed about 11 o’clock, and the manufacturers were desired by our worthy chief magistrate "not to produce smoke between that hour and one," with which we believe, they generally complied... At precisely twenty minutes past twelve, the royal carriage appeared in sight, and when it reached the Spital, a splendid locomotive, built by the celebrated house of Stephenson and Co., gaily decorated and bearing on its front "God save the Queen" surmounted by a crown, and a suitable inscription encircling the boiler, was attached to the train. It then slowly proceeded to the centre of the colossal fabric, amidst bursts of loud and rapturous cheering from the assembled thousands, her Majesty repeatedly acknowledging these marked demonstrations of loyalty and affection from her faithful and attached subjects.

 

The Mayors of Newcastle and Gateshead presented a formal address. The queen travelled in the royal carriage belonging to the London and North Western Railway.

 

In other carriages were members of her Majesty’s suite and the directors of the York, Newcastle, and Berwick Railway. The engine drawing the royal train was under the direction of Mr T. E. Harrison, the resident engineer, and driven by Mr Thos. Carr... After staying altogether from five to ten minutes, the train was again put in motion, and amidst firing of artillery and rapturous plaudits from the dense throng, proceeded en route to Darlington.

 

The bridge and its immediate approaches had cost £243,000.

 

The road deck was re-opened only in a southbound (towards Gateshead) direction and carries only buses and taxis; the one-way operation is required because of width considerations after protection to the structural members was inserted. Pedestrians and cyclists use the bridge freely. Railway traffic continues in full use of the bridge, although the majority of mainline trains use the King Edward VII bridge for reasons of convenience.

 

Newcastle upon Tyne, or simply Newcastle is a cathedral city and metropolitan borough in Tyne and Wear, England. It is located on the River Tyne's northern bank, opposite Gateshead to the south. It is the most populous settlement in the Tyneside conurbation and North East England.

 

Newcastle developed around a Roman settlement called Pons Aelius, the settlement became known as Monkchester before taking on the name of a castle built in 1080 by William the Conqueror's eldest son, Robert Curthose. It was one of the world's largest ship building and repair centres during the industrial revolution. Newcastle was part of the county of Northumberland until 1400, when it separated and formed a county of itself. In 1974, Newcastle became part of Tyne and Wear. Since 2018, the city council has been part of the North of Tyne Combined Authority.

 

The history of Newcastle upon Tyne dates back almost 2,000 years, during which it has been controlled by the Romans, the Angles and the Norsemen amongst others. Newcastle upon Tyne was originally known by its Roman name Pons Aelius. The name "Newcastle" has been used since the Norman conquest of England. Due to its prime location on the River Tyne, the town developed greatly during the Middle Ages and it was to play a major role in the Industrial Revolution, being granted city status in 1882. Today, the city is a major retail, commercial and cultural centre.

 

Roman settlement

The history of Newcastle dates from AD 122, when the Romans built the first bridge to cross the River Tyne at that point. The bridge was called Pons Aelius or 'Bridge of Aelius', Aelius being the family name of Roman Emperor Hadrian, who was responsible for the Roman wall built across northern England along the Tyne–Solway gap. Hadrian's Wall ran through present-day Newcastle, with stretches of wall and turrets visible along the West Road, and at a temple in Benwell. Traces of a milecastle were found on Westgate Road, midway between Clayton Street and Grainger Street, and it is likely that the course of the wall corresponded to present-day Westgate Road. The course of the wall can be traced eastwards to the Segedunum Roman fort at Wallsend, with the fort of Arbeia down-river at the mouth of the Tyne, on the south bank in what is now South Shields. The Tyne was then a wider, shallower river at this point and it is thought that the bridge was probably about 700 feet (210 m) long, made of wood and supported on stone piers. It is probable that it was sited near the current Swing Bridge, due to the fact that Roman artefacts were found there during the building of the latter bridge. Hadrian himself probably visited the site in 122. A shrine was set up on the completed bridge in 123 by the 6th Legion, with two altars to Neptune and Oceanus respectively. The two altars were subsequently found in the river and are on display in the Great North Museum in Newcastle.

 

The Romans built a stone-walled fort in 150 to protect the river crossing which was at the foot of the Tyne Gorge, and this took the name of the bridge so that the whole settlement was known as Pons Aelius. The fort was situated on a rocky outcrop overlooking the new bridge, on the site of the present Castle Keep. Pons Aelius is last mentioned in 400, in a Roman document listing all of the Roman military outposts. It is likely that nestling in the shadow of the fort would have been a small vicus, or village. Unfortunately, no buildings have been detected; only a few pieces of flagging. It is clear that there was a Roman cemetery near Clavering Place, behind the Central station, as a number of Roman coffins and sarcophagi have been unearthed there.

 

Despite the presence of the bridge, the settlement of Pons Aelius was not particularly important among the northern Roman settlements. The most important stations were those on the highway of Dere Street running from Eboracum (York) through Corstopitum (Corbridge) and to the lands north of the Wall. Corstopitum, being a major arsenal and supply centre, was much larger and more populous than Pons Aelius.

 

Anglo-Saxon development

The Angles arrived in the North-East of England in about 500 and may have landed on the Tyne. There is no evidence of an Anglo-Saxon settlement on or near the site of Pons Aelius during the Anglo-Saxon age. The bridge probably survived and there may well have been a small village at the northern end, but no evidence survives. At that time the region was dominated by two kingdoms, Bernicia, north of the Tees and ruled from Bamburgh, and Deira, south of the Tees and ruled from York. Bernicia and Deira combined to form the kingdom of Northanhymbra (Northumbria) early in the 7th century. There were three local kings who held the title of Bretwalda – 'Lord of Britain', Edwin of Deira (627–632), Oswald of Bernicia (633–641) and Oswy of Northumbria (641–658). The 7th century became known as the 'Golden Age of Northumbria', when the area was a beacon of culture and learning in Europe. The greatness of this period was based on its generally Christian culture and resulted in the Lindisfarne Gospels amongst other treasures. The Tyne valley was dotted with monasteries, with those at Monkwearmouth, Hexham and Jarrow being the most famous. Bede, who was based at Jarrow, wrote of a royal estate, known as Ad Murum, 'at the Wall', 12 miles (19 km) from the sea. It is thought that this estate may have been in what is now Newcastle. At some unknown time, the site of Newcastle came to be known as Monkchester. The reason for this title is unknown, as we are unaware of any specific monasteries at the site, and Bede made no reference to it. In 875 Halfdan Ragnarsson, the Danish Viking conqueror of York, led an army that attacked and pillaged various monasteries in the area, and it is thought that Monkchester was also pillaged at this time. Little more was heard of it until the coming of the Normans.

 

Norman period

After the arrival of William the Conqueror in England in 1066, the whole of England was quickly subjected to Norman rule. However, in Northumbria there was great resistance to the Normans, and in 1069 the newly appointed Norman Earl of Northumbria, Robert de Comines and 700 of his men were killed by the local population at Durham. The Northumbrians then marched on York, but William was able to suppress the uprising. That same year, a second uprising occurred when a Danish fleet landed in the Humber. The Northumbrians again attacked York and destroyed the garrison there. William was again able to suppress the uprising, but this time he took revenge. He laid waste to the whole of the Midlands and the land from York to the Tees. In 1080, William Walcher, the Norman bishop of Durham and his followers were brutally murdered at Gateshead. This time Odo, bishop of Bayeux, William's half brother, devastated the land between the Tees and the Tweed. This was known as the 'Harrying of the North'. This devastation is reflected in the Domesday Book. The destruction had such an effect that the North remained poor and backward at least until Tudor times and perhaps until the Industrial Revolution. Newcastle suffered in this respect with the rest of the North.

 

In 1080 William sent his eldest son, Robert Curthose, north to defend the kingdom against the Scots. After his campaign, he moved to Monkchester and began the building of a 'New Castle'. This was of the "motte-and-bailey" type of construction, a wooden tower on top of an earthen mound (motte), surrounded by a moat and wooden stockade (bailey). It was this castle that gave Newcastle its name. In 1095 the Earl of Northumbria, Robert de Mowbray, rose up against the king, William Rufus, and Rufus sent an army north to recapture the castle. From then on the castle became crown property and was an important base from which the king could control the northern barons. The Northumbrian earldom was abolished and a Sheriff of Northumberland was appointed to administer the region. In 1091 the parish church of St Nicholas was consecrated on the site of the present Anglican cathedral, close by the bailey of the new castle. The church is believed to have been a wooden building on stone footings.

 

Not a trace of the tower or mound of the motte and bailey castle remains now. Henry II replaced it with a rectangular stone keep, which was built between 1172 and 1177 at a cost of £1,444. A stone bailey, in the form of a triangle, replaced the previous wooden one. The great outer gateway to the castle, called 'the Black Gate', was built later, between 1247 and 1250, in the reign of Henry III. There were at that time no town walls and when attacked by the Scots, the townspeople had to crowd into the bailey for safety. It is probable that the new castle acted as a magnet for local merchants because of the safety it provided. This in turn would help to expand trade in the town. At this time wool, skins and lead were being exported, whilst alum, pepper and ginger were being imported from France and Flanders.

 

Middle Ages

Throughout the Middle Ages, Newcastle was England's northern fortress, the centre for assembled armies. The Border war against Scotland lasted intermittently for several centuries – possibly the longest border war ever waged. During the civil war between Stephen and Matilda, David 1st of Scotland and his son were granted Cumbria and Northumberland respectively, so that for a period from 1139 to 1157, Newcastle was effectively in Scottish hands. It is believed that during this period, King David may have built the church of St Andrew and the Benedictine nunnery in Newcastle. However, King Stephen's successor, Henry II was strong enough to take back the Earldom of Northumbria from Malcolm IV.

 

The Scots king William the Lion was imprisoned in Newcastle, in 1174, after being captured at the Battle of Alnwick. Edward I brought the Stone of Scone and William Wallace south through the town and Newcastle was successfully defended against the Scots three times during the 14th century.

 

Around 1200, stone-faced, clay-filled jetties were starting to project into the river, an indication that trade was increasing in Newcastle. As the Roman roads continued to deteriorate, sea travel was gaining in importance. By 1275 Newcastle was the sixth largest wool exporting port in England. The principal exports at this time were wool, timber, coal, millstones, dairy produce, fish, salt and hides. Much of the developing trade was with the Baltic countries and Germany. Most of the Newcastle merchants were situated near the river, below the Castle. The earliest known charter was dated 1175 in the reign of Henry II, giving the townspeople some control over their town. In 1216 King John granted Newcastle a mayor[8] and also allowed the formation of guilds (known as Mysteries). These were cartels formed within different trades, which restricted trade to guild members. There were initially twelve guilds. Coal was being exported from Newcastle by 1250, and by 1350 the burgesses received a royal licence to export coal. This licence to export coal was jealously guarded by the Newcastle burgesses, and they tried to prevent any one else on the Tyne from exporting coal except through Newcastle. The burgesses similarly tried to prevent fish from being sold anywhere else on the Tyne except Newcastle. This led to conflicts with Gateshead and South Shields.

 

In 1265, the town was granted permission to impose a 'Wall Tax' or Murage, to pay for the construction of a fortified wall to enclose the town and protect it from Scottish invaders. The town walls were not completed until early in the 14th century. They were two miles (3 km) long, 9 feet (2.7 m) thick and 25 feet (7.6 m) high. They had six main gates, as well as some smaller gates, and had 17 towers. The land within the walls was divided almost equally by the Lort Burn, which flowed southwards and joined the Tyne to the east of the Castle. The town began to expand north of the Castle and west of the Lort Burn with various markets being set up within the walls.

 

In 1400 Henry IV granted a new charter, creating a County corporate which separated the town, but not the Castle, from the county of Northumberland and recognised it as a "county of itself" with a right to have a sheriff of its own. The burgesses were now allowed to choose six aldermen who, with the mayor would be justices of the peace. The mayor and sheriff were allowed to hold borough courts in the Guildhall.

 

Religious houses

During the Middle Ages a number of religious houses were established within the walls: the first of these was the Benedictine nunnery of St Bartholomew founded in 1086 near the present-day Nun Street. Both David I of Scotland and Henry I of England were benefactors of the religious house. Nothing of the nunnery remains now.

 

The friary of Blackfriars, Newcastle (Dominican) was established in 1239. These were also known as the Preaching Friars or Shod Friars, because they wore sandals, as opposed to other orders. The friary was situated in the present-day Friars Street. In 1280 the order was granted royal permission to make a postern in the town walls to communicate with their gardens outside the walls. On 19 June 1334, Edward Balliol, claimant to be King of Scotland, did homage to King Edward III, on behalf of the kingdom of Scotland, in the church of the friary. Much of the original buildings of the friary still exist, mainly because, after the Dissolution of the Monasteries the friary of Blackfriars was rented out by the corporation to nine of the local trade guilds.

 

The friary of Whitefriars (Carmelite) was established in 1262. The order was originally housed on the Wall Knoll in Pandon, but in 1307 it took over the buildings of another order, which went out of existence, the Friars of the Sac. The land, which had originally been given by Robert the Bruce, was situated in the present-day Hanover Square, behind the Central station. Nothing of the friary remains now.

 

The friary of Austinfriars (Augustinian) was established in 1290. The friary was on the site where the Holy Jesus Hospital was built in 1682. The friary was traditionally the lodging place of English kings whenever they visited or passed through Newcastle. In 1503 Princess Margaret, eldest daughter of Henry VII of England, stayed two days at the friary on her way to join her new husband James IV of Scotland.

 

The friary of Greyfriars (Franciscans) was established in 1274. The friary was in the present-day area between Pilgrim Street, Grey Street, Market Street and High Chare. Nothing of the original buildings remains.

 

The friary of the Order of the Holy Trinity, also known as the Trinitarians, was established in 1360. The order devoted a third of its income to buying back captives of the Saracens, during the Crusades. Their house was on the Wall Knoll, in Pandon, to the east of the city, but within the walls. Wall Knoll had previously been occupied by the White Friars until they moved to new premises in 1307.

 

All of the above religious houses were closed in about 1540, when Henry VIII dissolved the monasteries.

 

An important street running through Newcastle at the time was Pilgrim Street, running northwards inside the walls and leading to the Pilgrim Gate on the north wall. The street still exists today as arguably Newcastle's main shopping street.

 

Tudor period

The Scottish border wars continued for much of the 16th century, so that during that time, Newcastle was often threatened with invasion by the Scots, but also remained important as a border stronghold against them.

 

During the Reformation begun by Henry VIII in 1536, the five Newcastle friaries and the single nunnery were dissolved and the land was sold to the Corporation and to rich merchants. At this time there were fewer than 60 inmates of the religious houses in Newcastle. The convent of Blackfriars was leased to nine craft guilds to be used as their headquarters. This probably explains why it is the only one of the religious houses whose building survives to the present day. The priories at Tynemouth and Durham were also dissolved, thus ending the long-running rivalry between Newcastle and the church for control of trade on the Tyne. A little later, the property of the nunnery of St Bartholomew and of Grey Friars were bought by Robert Anderson, who had the buildings demolished to build his grand Newe House (also known as Anderson Place).

 

With the gradual decline of the Scottish border wars the town walls were allowed to decline as well as the castle. By 1547, about 10,000 people were living in Newcastle. At the beginning of the 16th century exports of wool from Newcastle were more than twice the value of exports of coal, but during the century coal exports continued to increase.

 

Under Edward VI, John Dudley, Duke of Northumberland, sponsored an act allowing Newcastle to annexe Gateshead as its suburb. The main reason for this was to allow the Newcastle Hostmen, who controlled the export of Tyne coal, to get their hands on the Gateshead coal mines, previously controlled by the Bishop of Durham. However, when Mary I came to power, Dudley met his downfall and the decision was reversed. The Reformation allowed private access to coal mines previously owned by Tynemouth and Durham priories and as a result coal exports increase dramatically, from 15,000 tons in 1500 to 35,000 tons in 1565, and to 400,000 tons in 1625.

 

The plague visited Newcastle four times during the 16th century, in 1579 when 2,000 people died, in 1589 when 1700 died, in 1595 and finally in 1597.

 

In 1600 Elizabeth I granted Newcastle a charter for an exclusive body of electors, the right to elect the mayor and burgesses. The charter also gave the Hostmen exclusive rights to load coal at any point on the Tyne. The Hostmen developed as an exclusive group within the Merchant Adventurers who had been incorporated by a charter in 1547.

 

Stuart period

In 1636 there was a serious outbreak of bubonic plague in Newcastle. There had been several previous outbreaks of the disease over the years, but this was the most serious. It is thought to have arrived from the Netherlands via ships that were trading between the Tyne and that country. It first appeared in the lower part of the town near the docks but gradually spread to all parts of the town. As the disease gained hold the authorities took measures to control it by boarding up any properties that contained infected persons, meaning that whole families were locked up together with the infected family members. Other infected persons were put in huts outside the town walls and left to die. Plague pits were dug next to the town's four churches and outside the town walls to receive the bodies in mass burials. Over the course of the outbreak 5,631 deaths were recorded out of an estimated population of 12,000, a death rate of 47%.

 

In 1637 Charles I tried to raise money by doubling the 'voluntary' tax on coal in return for allowing the Newcastle Hostmen to regulate production and fix prices. This caused outrage amongst the London importers and the East Anglian shippers. Both groups decided to boycott Tyne coal and as a result forced Charles to reverse his decision in 1638.

 

In 1640 during the Second Bishops' War, the Scots successfully invaded Newcastle. The occupying army demanded £850 per day from the Corporation to billet the Scottish troops. Trade from the Tyne ground to a halt during the occupation. The Scots left in 1641 after receiving a Parliamentary pardon and a £4,000,000 loan from the town.

 

In 1642 the English Civil War began. King Charles realised the value of the Tyne coal trade and therefore garrisoned Newcastle. A Royalist was appointed as governor. At that time, Newcastle and King's Lynn were the only important seaports to support the crown. In 1644 Parliament blockaded the Tyne to prevent the king from receiving revenue from the Tyne coal trade. Coal exports fell from 450,000 to 3,000 tons and London suffered a hard winter without fuel. Parliament encouraged the coal trade from the Wear to try to replace that lost from Newcastle but that was not enough to make up for the lost Tyneside tonnage.

 

In 1644 the Scots crossed the border. Newcastle strengthened its defences in preparation. The Scottish army, with 40,000 troops, besieged Newcastle for three months until the garrison of 1,500 surrendered. During the siege, the Scots bombarded the walls with their artillery, situated in Gateshead and Castle Leazes. The Scottish commander threatened to destroy the steeple of St Nicholas's Church by gunfire if the mayor, Sir John Marley, did not surrender the town. The mayor responded by placing Scottish prisoners that they had captured in the steeple, so saving it from destruction. The town walls were finally breached by a combination of artillery and sapping. In gratitude for this defence, Charles gave Newcastle the motto 'Fortiter Defendit Triumphans' to be added to its coat of arms. The Scottish army occupied Northumberland and Durham for two years. The coal taxes had to pay for the Scottish occupation. In 1645 Charles surrendered to the Scots and was imprisoned in Newcastle for nine months. After the Civil War the coal trade on the Tyne soon picked up and exceeded its pre-war levels.

 

A new Guildhall was completed on the Sandhill next to the river in 1655, replacing an earlier facility damaged by fire in 1639, and became the meeting place of Newcastle Town Council. In 1681 the Hospital of the Holy Jesus was built partly on the site of the Austin Friars. The Guildhall and Holy Jesus Hospital still exist.

 

Charles II tried to impose a charter on Newcastle to give the king the right to appoint the mayor, sheriff, recorder and town clerk. Charles died before the charter came into effect. In 1685, James II tried to replace Corporation members with named Catholics. However, James' mandate was suspended in 1689 after the Glorious Revolution welcoming William of Orange. In 1689, after the fall of James II, the people of Newcastle tore down his bronze equestrian statue in Sandhill and tossed it into the Tyne. The bronze was later used to make bells for All Saints Church.

 

In 1689 the Lort Burn was covered over. At this time it was an open sewer. The channel followed by the Lort Burn became the present day Dean Street. At that time, the centre of Newcastle was still the Sandhill area, with many merchants living along the Close or on the Side. The path of the main road through Newcastle ran from the single Tyne bridge, through Sandhill to the Side, a narrow street which climbed steeply on the north-east side of the castle hill until it reached the higher ground alongside St Nicholas' Church. As Newcastle developed, the Side became lined with buildings with projecting upper stories, so that the main street through Newcastle was a narrow, congested, steep thoroughfare.

 

In 1701 the Keelmen's Hospital was built in the Sandgate area of the city, using funds provided by the keelmen. The building still stands today.

 

Eighteenth century

In the 18th century, Newcastle was the country's largest print centre after London, Oxford and Cambridge, and the Literary and Philosophical Society of 1793, with its erudite debates and large stock of books in several languages predated the London Library by half a century.

 

In 1715, during the Jacobite rising in favour of the Old Pretender, an army of Jacobite supporters marched on Newcastle. Many of the Northumbrian gentry joined the rebels. The citizens prepared for its arrival by arresting Jacobite supporters and accepting 700 extra recruits into the local militia. The gates of the city were closed against the rebels. This proved enough to delay an attack until reinforcements arrived forcing the rebel army to move across to the west coast. The rebels finally surrendered at Preston.

 

In 1745, during a second Jacobite rising in favour of the Young Pretender, a Scottish army crossed the border led by Bonnie Prince Charlie. Once again Newcastle prepared by arresting Jacobite supporters and inducting 800 volunteers into the local militia. The town walls were strengthened, most of the gates were blocked up and some 200 cannon were deployed. 20,000 regulars were billeted on the Town Moor. These preparations were enough to force the rebel army to travel south via the west coast. They were eventually defeated at Culloden in 1746.

 

Newcastle's actions during the 1715 rising in resisting the rebels and declaring for George I, in contrast to the rest of the region, is the most likely source of the nickname 'Geordie', applied to people from Tyneside, or more accurately Newcastle. Another theory, however, is that the name 'Geordie' came from the inventor of the Geordie lamp, George Stephenson. It was a type of safety lamp used in mining, but was not invented until 1815. Apparently the term 'German Geordie' was in common use during the 18th century.

 

The city's first hospital, Newcastle Infirmary opened in 1753; it was funded by public subscription. A lying-in hospital was established in Newcastle in 1760. The city's first public hospital for mentally ill patients, Wardens Close Lunatic Hospital was opened in October 1767.

 

In 1771 a flood swept away much of the bridge at Newcastle. The bridge had been built in 1250 and repaired after a flood in 1339. The bridge supported various houses and three towers and an old chapel. A blue stone was placed in the middle of the bridge to mark the boundary between Newcastle and the Palatinate of Durham. A temporary wooden bridge had to be built, and this remained in use until 1781, when a new stone bridge was completed. The new bridge consisted of nine arches. In 1801, because of the pressure of traffic, the bridge had to be widened.

 

A permanent military presence was established in the city with the completion of Fenham Barracks in 1806. The facilities at the Castle for holding assizes, which had been condemned for their inconvenience and unhealthiness, were replaced when the Moot Hall opened in August 1812.

 

Victorian period

Present-day Newcastle owes much of its architecture to the work of the builder Richard Grainger, aided by architects John Dobson, Thomas Oliver, John and Benjamin Green and others. In 1834 Grainger won a competition to produce a new plan for central Newcastle. He put this plan into effect using the above architects as well as architects employed in his own office. Grainger and Oliver had already built Leazes Terrace, Leazes Crescent and Leazes Place between 1829 and 1834. Grainger and Dobson had also built the Royal Arcade at the foot of Pilgrim Street between 1830 and 1832. The most ambitious project covered 12 acres 12 acres (49,000 m2) in central Newcastle, on the site of Newe House (also called Anderson Place). Grainger built three new thoroughfares, Grey Street, Grainger Street and Clayton Street with many connecting streets, as well as the Central Exchange and the Grainger Market. John Wardle and George Walker, working in Grainger's office, designed Clayton Street, Grainger Street and most of Grey Street. Dobson designed the Grainger Market and much of the east side of Grey Street. John and Benjamin Green designed the Theatre Royal at the top of Grey Street, where Grainger placed the column of Grey's Monument as a focus for the whole scheme. Grey Street is considered to be one of the finest streets in the country, with its elegant curve. Unfortunately most of old Eldon Square was demolished in the 1960s in the name of progress. The Royal Arcade met a similar fate.

 

In 1849 a new bridge was built across the river at Newcastle. This was the High Level Bridge, designed by Robert Stephenson, and slightly up river from the existing bridge. The bridge was designed to carry road and rail traffic across the Tyne Gorge on two decks with rail traffic on the upper deck and road traffic on the lower. The new bridge meant that traffic could pass through Newcastle without having to negotiate the steep, narrow Side, as had been necessary for centuries. The bridge was opened by Queen Victoria, who one year later opened the new Central Station, designed by John Dobson. Trains were now able to cross the river, directly into the centre of Newcastle and carry on up to Scotland. The Army Riding School was also completed in 1849.

 

In 1854 a large fire started on the Gateshead quayside and an explosion caused it to spread across the river to the Newcastle quayside. A huge conflagration amongst the narrow alleys, or 'chares', destroyed the homes of 800 families as well as many business premises. The narrow alleys that had been destroyed were replaced by streets containing blocks of modern offices.

 

In 1863 the Town Hall in St Nicholas Square replaced the Guildhall as the meeting place of Newcastle Town Council.

 

In 1876 the low level bridge was replaced by a new bridge known as the Swing Bridge, so called because the bridge was able to swing horizontally on a central axis and allow ships to pass on either side. This meant that for the first time sizeable ships could pass up-river beyond Newcastle. The bridge was built and paid for by William Armstrong, a local arms manufacturer, who needed to have warships access his Elswick arms factory to fit armaments to them. The Swing Bridge's rotating mechanism is adapted from the cannon mounts developed in Armstrong's arms works. In 1882 the Elswick works began to build ships as well as to arm them. The Barrack Road drill hall was completed in 1890.

 

Industrialisation

In the 19th century, shipbuilding and heavy engineering were central to the city's prosperity; and the city was a powerhouse of the Industrial Revolution. Newcastle's development as a major city owed most to its central role in the production and export of coal. The phrase "taking coals to Newcastle" was first recorded in 1538; it proverbially denotes bringing a particular commodity to a place that has more than enough of it already.

 

Innovation in Newcastle and surrounding areas included the following:

 

George Stephenson developed a miner's safety lamp at the same time that Humphry Davy developed a rival design. The lamp made possible the opening up of ever deeper mines to provide the coal that powered the industrial revolution.

George and his son Robert Stephenson were hugely influential figures in the development of the early railways. George developed Blücher, a locomotive working at Killingworth colliery in 1814, whilst Robert was instrumental in the design of Rocket, a revolutionary design that was the forerunner of modern locomotives. Both men were involved in planning and building railway lines, all over this country and abroad.

 

Joseph Swan demonstrated a working electric light bulb about a year before Thomas Edison did the same in the USA. This led to a dispute as to who had actually invented the light bulb. Eventually the two rivals agreed to form a mutual company between them, the Edison and Swan Electric Light Company, known as Ediswan.

 

Charles Algernon Parsons invented the steam turbine, for marine use and for power generation. He used Turbinia, a small, turbine-powered ship, to demonstrate the speed that a steam turbine could generate. Turbinia literally ran rings around the British Fleet at a review at Spithead in 1897.

 

William Armstrong invented a hydraulic crane that was installed in dockyards up and down the country. He then began to design light, accurate field guns for the British army. These were a vast improvement on the existing guns that were then in use.

 

The following major industries developed in Newcastle or its surrounding area:

 

Glassmaking

A small glass industry existed in Newcastle from the mid-15th century. In 1615 restrictions were put on the use of wood for manufacturing glass. It was found that glass could be manufactured using the local coal, and so a glassmaking industry grew up on Tyneside. Huguenot glassmakers came over from France as refugees from persecution and set up glasshouses in the Skinnerburn area of Newcastle. Eventually, glass production moved to the Ouseburn area of Newcastle. In 1684 the Dagnia family, Sephardic Jewish emigrants from Altare, arrived in Newcastle from Stourbridge and established glasshouses along the Close, to manufacture high quality flint glass. The glass manufacturers used sand ballast from the boats arriving in the river as the main raw material. The glassware was then exported in collier brigs. The period from 1730 to 1785 was the highpoint of Newcastle glass manufacture, when the local glassmakers produced the 'Newcastle Light Baluster'. The glassmaking industry still exists in the west end of the city with local Artist and Glassmaker Jane Charles carrying on over four hundred years of hot glass blowing in Newcastle upon Tyne.

 

Locomotive manufacture

In 1823 George Stephenson and his son Robert established the world's first locomotive factory near Forth Street in Newcastle. Here they built locomotives for the Stockton and Darlington Railway and the Liverpool and Manchester Railway, as well as many others. It was here that the famous locomotive Rocket was designed and manufactured in preparation for the Rainhill Trials. Apart from building locomotives for the British market, the Newcastle works also produced locomotives for Europe and America. The Forth Street works continued to build locomotives until 1960.

 

Shipbuilding

In 1296 a wooden, 135 ft (41 m) long galley was constructed at the mouth of the Lort Burn in Newcastle, as part of a twenty-ship order from the king. The ship cost £205, and is the earliest record of shipbuilding in Newcastle. However the rise of the Tyne as a shipbuilding area was due to the need for collier brigs for the coal export trade. These wooden sailing ships were usually built locally, establishing local expertise in building ships. As ships changed from wood to steel, and from sail to steam, the local shipbuilding industry changed to build the new ships. Although shipbuilding was carried out up and down both sides of the river, the two main areas for building ships in Newcastle were Elswick, to the west, and Walker, to the east. By 1800 Tyneside was the third largest producer of ships in Britain. Unfortunately, after the Second World War, lack of modernisation and competition from abroad gradually caused the local industry to decline and die.

 

Armaments

In 1847 William Armstrong established a huge factory in Elswick, west of Newcastle. This was initially used to produce hydraulic cranes but subsequently began also to produce guns for both the army and the navy. After the Swing Bridge was built in 1876 allowing ships to pass up river, warships could have their armaments fitted alongside the Elswick works. Armstrong's company took over its industrial rival, Joseph Whitworth of Manchester in 1897.

 

Steam turbines

Charles Algernon Parsons invented the steam turbine and, in 1889, founded his own company C. A. Parsons and Company in Heaton, Newcastle to make steam turbines. Shortly after this, he realised that steam turbines could be used to propel ships and, in 1897, he founded a second company, Parsons Marine Steam Turbine Company in Wallsend. It is there that he designed and manufactured Turbinia. Parsons turbines were initially used in warships but soon came to be used in merchant and passenger vessels, including the liner Mauretania which held the blue riband for the Atlantic crossing until 1929. Parsons' company in Heaton began to make turbo-generators for power stations and supplied power stations all over the world. The Heaton works, reduced in size, remains as part of the Siemens AG industrial giant.

 

Pottery

In 1762 the Maling pottery was founded in Sunderland by French Huguenots, but transferred to Newcastle in 1817. A factory was built in the Ouseburn area of the city. The factory was rebuilt twice, finally occupying a 14-acre (57,000 m2) site that was claimed to be the biggest pottery in the world and which had its own railway station. The pottery pioneered use of machines in making potteries as opposed to hand production. In the 1890s the company went up-market and employed in-house designers. The period up to the Second World War was the most profitable with a constant stream of new designs being introduced. However, after the war, production gradually declined and the company closed in 1963.

 

Expansion of the city

Newcastle was one of the boroughs reformed by the Municipal Corporations Act 1835: the reformed municipal borough included the parishes of Byker, Elswick, Heaton, Jesmond, Newcastle All Saints, Newcastle St Andrew, Newcastle St John, Newcastle St Nicholas, and Westgate. The urban districts of Benwell and Fenham and Walker were added in 1904. In 1935, Newcastle gained Kenton and parts of the parishes of West Brunton, East Denton, Fawdon, Longbenton. The most recent expansion in Newcastle's boundaries took place under the Local Government Act 1972 on 1 April 1974, when Newcastle became a metropolitan borough, also including the urban districts of Gosforth and Newburn, and the parishes of Brunswick, Dinnington, Hazlerigg, North Gosforth and Woolsington from the Castle Ward Rural District, and the village of Westerhope.

 

Meanwhile Northumberland County Council was formed under the Local Government Act 1888 and benefited from a dedicated meeting place when County Hall was completed in the Castle Garth area of Newcastle in 1910. Following the Local Government Act 1972 County Hall relocated to Morpeth in April 1981.

 

Twentieth century

In 1925 work began on a new high-level road bridge to span the Tyne Gorge between Newcastle and Gateshead. The capacity of the existing High-Level Bridge and Swing Bridge were being strained to the limit, and an additional bridge had been discussed for a long time. The contract was awarded to the Dorman Long Company and the bridge was finally opened by King George V in 1928. The road deck was 84 feet (26 m) above the river and was supported by a 531 feet (162 m) steel arch. The new Tyne Bridge quickly became a symbol for Newcastle and Tyneside, and remains so today.

 

During the Second World War, Newcastle was largely spared the horrors inflicted upon other British cities bombed during the Blitz. Although the armaments factories and shipyards along the River Tyne were targeted by the Luftwaffe, they largely escaped unscathed. Manors goods yard and railway terminal, to the east of the city centre, and the suburbs of Jesmond and Heaton suffered bombing during 1941. There were 141 deaths and 587 injuries, a relatively small figure compared to the casualties in other industrial centres of Britain.

 

In 1963 the city gained its own university, the University of Newcastle upon Tyne, by act of parliament. A School of Medicine and Surgery had been established in Newcastle in 1834. This eventually developed into a college of medicine attached to Durham University. A college of physical science was also founded and became Armstrong College in 1904. In 1934 the two colleges merged to become King's College, Durham. This remained as part of Durham University until the new university was created in 1963. In 1992 the city gained its second university when Newcastle Polytechnic was granted university status as Northumbria University.

 

Newcastle City Council moved to the new Newcastle Civic Centre in 1968.

 

As heavy industries declined in the second half of the 20th century, large sections of the city centre were demolished along with many areas of slum housing. The leading political figure in the city during the 1960s was T. Dan Smith who oversaw a massive building programme of highrise housing estates and authorised the demolition of a quarter of the Georgian Grainger Town to make way for Eldon Square Shopping Centre. Smith's control in Newcastle collapsed when it was exposed that he had used public contracts to advantage himself and his business associates and for a time Newcastle became a byword for civic corruption as depicted in the films Get Carter and Stormy Monday and in the television series Our Friends in the North. However, much of the historic Grainger Town area survived and was, for the most part, fully restored in the late 1990s. Northumberland Street, initially the A1, was gradually closed to traffic from the 1970s and completely pedestrianised by 1998.

 

In 1978 a new rapid transport system, the Metro, was built, linking the Tyneside area. The system opened in August 1980. A new bridge was built to carry the Metro across the river between Gateshead and Newcastle. This was the Queen Elizabeth II Bridge, commonly known as the Metro Bridge. Eventually the Metro system was extended to reach Newcastle Airport in 1991, and in 2002 the Metro system was extended to the nearby city of Sunderland.

 

As the 20th century progressed, trade on the Newcastle and Gateshead quaysides gradually declined, until by the 1980s both sides of the river were looking rather derelict. Shipping company offices had closed along with offices of firms related to shipping. There were also derelict warehouses lining the riverbank. Local government produced a master plan to re-develop the Newcastle quayside and this was begun in the 1990s. New offices, restaurants, bars and residential accommodation were built and the area has changed in the space of a few years into a vibrant area, partially returning the focus of Newcastle to the riverside, where it was in medieval times.

 

The Gateshead Millennium Bridge, a foot and cycle bridge, 26 feet (7.9 m) wide and 413 feet (126 m) long, was completed in 2001. The road deck is in the form of a curve and is supported by a steel arch. To allow ships to pass, the whole structure, both arch and road-deck, rotates on huge bearings at either end so that the road deck is lifted. The bridge can be said to open and shut like a human eye. It is an important addition to the re-developed quayside area, providing a vital link between the Newcastle and Gateshead quaysides.

 

Recent developments

Today the city is a vibrant centre for office and retail employment, but just a short distance away there are impoverished inner-city housing estates, in areas originally built to provide affordable housing for employees of the shipyards and other heavy industries that lined the River Tyne. In the 2010s Newcastle City Council began implementing plans to regenerate these depressed areas, such as those along the Ouseburn Valley.

The comet came to the closest location to the Earth at the date.

 

The ion tail showed multiple disconnection, and a part was visible faint and vast in the right half of the frame. The two bright stars near the right upper corner were Mizar and Alcor in Ursa Major.

 

An enhanced inverted frame is here showing the detail and movement of the ion tail.

www.flickr.com/photos/hiroc/24533868715/

 

Earth Distance: 0.725 AU

Sun Distance: 1.382 AU

 

equipment: Takahashi FSQ-106ED, Reducer QE 0.73x, and Canon EOS 5Dmk3-sp4, modified by Seo-san on Takahashi EM-200 Temma 2 Jr, autoguided at the center of the condensation of the halo of the comet with Takahashi FS-60C f/5.9, SX Lodestar X2, and PHD Guiding

 

It was easy to detect the comet with the setup, exposure for 4 seconds this time.

 

exposure: 6 times x 15 minutes, 3 x 4 min, 2 x 1 minute at ISO 1,600 and f/3.6

The first exposure started at 18:14:24 January 16, 2016UTC.

 

site: 1,498m above sea level at lat. 36 32 19 North and long. 139 11 06 East in Volcano Akagiyama in Gunma, Japan

SQM-L read as 21.13, and Dark Sky Meter pro on iPhone 6 Plus read as 21.17 at the night.

www.darkskymeter.com/

Marc is an american expat who has made his life in Baja California for the past three decades. He's the owner of Café El Triunfo where we had delicious pizza for lunch.

 

I had a long conversation with him after which I asked him to sit for a portrait.

Marc was very friendly and shared some stories of his life. I was deeply touched when he told me that he had lost his 25 y/o son some nine years ago.

"It's the worst thing that can happen to any parent," I said with empathy. "I can't even begin to imagine such a tragedy."

"I am grateful that I've had him in my life for 25 years, gratitude rather than sorrow. That's what survivors do, be grateful," he said and I hugged him to show my sympathy.

 

Marc lives with his Mexican wife and loves his life in Baja.

(He has a daughter whose email address I got from Nora, a worker in the café.)

 

"After the US elections, I am totally flabbergasted," Marc said. It reminds me of the rallies they had in Germany. I am so happy I had moved to Mexico long ago."

 

Marc also invited me to have a look at his two motorcycles, one of them a beautiful antique.

 

"I would not tell my younger self a single thing as it might change something about my life and who I am today. Who I am now is who I am and I'm satisfied with that imperfect flawed and curious man. I am blessed in more ways than I deserve and I am very grateful for every second of my existence in this universe."

 

"There is a documentary film project that I am involved in called the Era of Disconnection. It is about twelve different people and their struggles with drug addiction and their recovery from that disease. The premiere will be in Guadalajara Mexico in April. I am one of the twelve. If you get a chance to see it sometime it will answer many of the those questions about me."

 

This is my 413th submission to The Human Family group.

Visit the group here to see more portraits and stories: www.flickr.com/groups/thehumanfamily.

The Ariane 6 launch pad at Europe’s Spaceport in French Guiana now hosts the first example of ESA’s new heavy-lift rocket. This Ariane 6 combined tests model will be used to validate the entire launch system during its ground phase in readiness for the inaugural launch of Ariane 6.

 

The combined tests include filling tanks, and draining them in case of launch abort, count-down automated sequence, and cryogenic arms disconnection and retraction at a simulated liftoff.

 

These tests will be carried out under ESA’s authority by an integrated team from ESA, ArianeGroup and French space agency CNES.

 

The Ariane 6 combined tests model is highly representative of the flight model. It consists of the core stage and the upper stage, which make up the central core, as well as three pylons shaped like the rocket’s solid boosters and a fully representative but inert mockup of the fourth booster.

 

The Ariane 6 combined tests model central core was precisely mated in the purpose-built launcher assembly building, where this task is carried out horizontally. Automated guidance vehicles then brought the assembled core to the launch and, working with the crane at the mobile gantry, raised it to its vertical position.

 

Ariane 6 is a modular launch vehicle using either two or four P120C strap-on boosters, depending on mission requirements. The P120C engine does double duty, also serving as the first stage of ESA’s new Vega-C rocket.

 

The reignitable Vinci engine which powers the upper stage allows Ariane 6 to deliver multiple payloads to different orbits on a single launch. After payload separation a final engine burn deorbits the upper stage so that it does not become a debris threat in space. 

 

Ariane 6 development is project-managed and funded by ESA, which also acts as launch system architect. ArianeGroup is design authority and industrial prime contractor for the launcher system and CNES is prime contractor for the Ariane 6 launch base at Europe’s Spaceport. Arianespace is the launch service provider of Ariane 6. 

 

Credits: ESA - S. Corvaja

The Ariane 6 launch pad at Europe’s Spaceport in French Guiana now hosts the first example of ESA’s new heavy-lift rocket. This Ariane 6 combined tests model will be used to validate the entire launch system during its ground phase in readiness for the inaugural launch of Ariane 6.

 

The combined tests include filling tanks, and draining them in case of launch abort, count-down automated sequence, and cryogenic arms disconnection and retraction at a simulated liftoff.

 

These tests will be carried out under ESA’s authority by an integrated team from ESA, ArianeGroup and French space agency CNES.

 

The Ariane 6 combined tests model is highly representative of the flight model. It consists of the core stage and the upper stage, which make up the central core, as well as three pylons shaped like the rocket’s solid boosters and a fully representative but inert mockup of the fourth booster.

 

The Ariane 6 combined tests model central core was precisely mated in the purpose-built launcher assembly building, where this task is carried out horizontally. Automated guidance vehicles then brought the assembled core to the launch and, working with the crane at the mobile gantry, raised it to its vertical position.

 

Ariane 6 is a modular launch vehicle using either two or four P120C strap-on boosters, depending on mission requirements. The P120C engine does double duty, also serving as the first stage of ESA’s new Vega-C rocket.

 

The reignitable Vinci engine which powers the upper stage allows Ariane 6 to deliver multiple payloads to different orbits on a single launch. After payload separation a final engine burn deorbits the upper stage so that it does not become a debris threat in space. 

 

Ariane 6 development is project-managed and funded by ESA, which also acts as launch system architect. ArianeGroup is design authority and industrial prime contractor for the launcher system and CNES is prime contractor for the Ariane 6 launch base at Europe’s Spaceport. Arianespace is the launch service provider of Ariane 6. 

 

Credits: ESA - S. Corvaja

Several Years ago, I would follow the CSX Local Freight from Safety Harbor, FL to the Southernmost Point in Clearwater, FL. Sometimes the Train would proceed all the way to Downtown Saint Petersburg, FL. On other occasions, I would drive South on Fort Harrison Ave. to the Southernmost Point in Clearwater to see which CSX Locomotives were Parked on a Siding new the Morton Plant Hospital. This siding was located in the same general area as the the Mt. Olive Methodist Baptist Church and the Clearwater Water Tower. On the other side of the Water Tower is he Ross Norton Recreation & Aquatic Center.

 

The Ross Norton Recreation Center is located at 1426 South Martin Luther King Junior Avenue, Clearwater Florida 33756.

 

The Mount Olive Methodist Baptist Church is located at 1124 Hardy's Lane, Clearwater, Florida 33756.

New York, Manhattan

Bowen Park Totems Before Disconnection (1991) - 1 (of 5) - Epson V500 scan of 35mm Negative - Photographer Russell McNeil PhD (Physics) lives on Vancouver Island, British Columbia, where he works as a writer.

   

Lightning, 2018.07.23, 8119.

 

Thoughts?

A routine moment captured: the ground crew disconnects the towbar from the nosegear of an Avianca Airbus A320, bound for San Salvador as TACA 565. All routine, except for the man sitting in the left seat in the cockpit -- it was his retirement flight, and this, along with everything else that happened on this flight, would be the last time for him. The Captain of this flight had spent the last thirty-three years of his life with the airline, and spent a total of fourty-four years in aviation.

Powerlessness

 

Alienation in the sense of a lack of power has been technically defined by Seeman as “the expectancy or probability held by the individual that his own behaviour cannot determine the occurrence of the outcomes, or reinforcements, he seeks." Seeman argues that this is “the notion of alienation as it originated in the Marxian view of the worker’s condition in capitalist society: the worker is alienated to the extent that the prerogative and means of decision are expropriated by the ruling entrepreneurs".[20] Put more succinctly, Kalekin-Fishman (1996: 97) says, “A person suffers from alienation in the form of 'powerlessness' when she is conscious of the gap between what she would like to do and what she feels capable of doing”.

In discussing powerlessness, Seeman also incorporated the insights of the psychologist Julian Rotter. Rotter distinguishes between internal control and external locus of control, which means "differences (among persons or situations) in the degree to which success or failure is attributable to external factors (e.g. luck, chance, or powerful others), as against success or failure that is seen as the outcome of one’s personal skills or characteristics".[21] Powerlessness, therefore, is the perception that the individual does not have the means to achieve his goals.

More recently, Geyer remarks that “a new type of powerlessness has emerged, where the core problem is no longer being unfree but rather being unable to select from among an overchoice of alternatives for action, whose consequences one often cannot even fathom”. Geyer adapts cybernetics to alienation theory, and writes (1996: xxiv) that powerlessness is the result of delayed feedback: “The more complex one’s environment, the later one is confronted with the latent, and often unintended, consequences of one’s actions. Consequently, in view of this causality-obscuring time lag, both the ‘rewards’ and ‘punishments’ for one’s actions increasingly tend to be viewed as random, often with apathy and alienation as a result”.

 

Meaninglessness

 

A sense of meaning has been defined by Seeman as “the individual’s sense of understanding events in which he is engaged”.[23] Seeman (1959: 786) writes that meaninglessness “is characterized by a low expectancy that satisfactory predictions about the future outcomes of behaviour can be made." Where as powerlessness refers to the sensed ability to control outcomes, this refers to the sensed ability to predict outcomes. In this respect, meaninglessness is closely tied to powerlessness; Seeman (Ibid.) argues, “the view that one lives in an intelligible world might be a prerequisite to expectancies for control; and the unintelligibility of complex affairs is presumably conducive to the development of high expectancies for external control (that is, high powerlessness)”.

Geyer (1996: xxiii) believes meaninglessness should be reinterpreted for postmodern times: "With the accelerating throughput of information [...] meaningless is not a matter anymore of whether one can assign meaning to incoming information, but of whether one can develop adequate new scanning mechanisms to gather the goal-relevant information one needs, as well as more efficient selection procedures to prevent being overburdened by the information one does not need, but is bombarded with on a regular basis." "Information overload" or the so-called "data tsunami" are well-known information problems confronting contemporary man, and Geyer thus argues that meaninglessness is turned on its head.

Normlessness[edit]

 

Normlessness (or what Durkheim referred to as anomie) “denotes the situation in which the social norms regulating individual conduct have broken down or are no longer effective as rules for behaviour”.This aspect refers to the inability to identify with the dominant values of society or rather, with what are perceived to be the dominant values of society. Seeman (1959: 788) adds that this aspect can manifest in a particularly negative manner, “The anomic situation [...] may be defined as one in which there is a high expectancy that socially unapproved behaviours are required to achieve given goals”. This negative manifestation is dealt with in detail by Catherine Ross and John Mirowski in a series of publications on mistrust, powerlessness, normlessness and crime.

Neal & Collas (2000: 122) write, “Normlessness derives partly from conditions of complexity and conflict in which individuals become unclear about the composition and enforcement of social norms. Sudden and abrupt changes occur in life conditions, and the norms that usually operate may no longer seem adequate as guidelines for conduct”. This is a particular issue after the fall of the Soviet Union, mass migrations from developing to developed countries, and the general sense of disillusionment that characterized the 1990s (Senekal, 2011). Traditional values that had already been questioned (especially during the 1960s) were met with further scepticism in the 1990s, resulting in a situation where individuals rely more often on their own judgement than on institutions of authority: "The individual not only has become more independent of the churches, but from other social institutions as well. The individual can make more personal choices in far more life situations than before” (Halman, 1998: 100). These choices are not necessarily "negative": Halman's study found that Europeans remain relatively conservative morally, even though the authority of the Church and other institutions has eroded.

 

Political alienation

 

One manifestation of the above dimensions of alienation can be a feeling of estrangement from, and a lack of engagement in, the political system. Such political alienation could result from not identifying with any particular political party or message, and could result in revolution, reforming behavior, or abstention from the political process, possibly due to voter apathy.

A similar concept is policy alienation, where workers experience a state of psychological disconnection from a policy programme being implemented.

 

Social isolation

 

Social isolation refers to “The feeling of being segregated from one’s community”. Neal and Collas (2000: 114) emphasize the centrality of social isolation in the modern world: “While social isolation is typically experienced as a form of personal stress, its sources are deeply embedded in the social organization of the modern world. With increased isolation and atomization, much of our daily interactions are with those who are strangers to us and with whom we lack any ongoing social relationships.”

Since the fall of the Soviet Union and the end of the Cold War, migrants from Eastern Europe and the developing countries have flocked to developed countries in search of a better living standard. This has led to entire communities becoming uprooted: no longer fully part of their homelands, but neither integrated into their adopted communities. Diaspora literature depicts the plights of these migrants, such as Hafid Bouazza in Paravion. Senekal (2010b: 41) argues, "Low-income communities or religious minorities may feel separated from mainstream society, leading to backlashes such as the civil unrest that occurred in French cities in October 2005. The fact that the riots subsequently spread to Belgium, Denmark, Germany, the Netherlands, Spain, Greece, and Switzerland, illustrates that not only did these communities feel segregated from mainstream society, but also that they found a community in their isolation; they regarded themselves as kindred spirits".

 

Relationships

 

One concept used in regard to specific relationships is that of parental alienation, where a child is distanced from and expresses a general dislike for one of their parents (who may have divorced or separated). The term is not applied where there is child abuse. The parental alienation might be due to specific influences from either parent or could result from the social dynamics of the family as a whole. It can also be understood in terms of attachment, the social and emotional process of bonding between child and caregiver. Adoptees can feel alienated from both adoptive parents and birth parents.

Attachment relationships in adults can also involve feelings of alienation. Indeed, emotional alienation is said to be a common way of life for many, whether it is experienced as overwhelming, or is not admitted to in the midst of a socioeconomic race, or contributes to seemingly unrelated problems.

 

Self-estrangement

 

Self-estrangement is an elusive concept in sociology, as recognized by Seeman (1959), although he included it as an aspect in his model of alienation. Some, with Marx, consider self-estrangement to be the end result and thus the heart of social alienation. Self-estrangement can be defined as “the psychological state of denying one’s own interests – of seeking out extrinsically satisfying, rather than intrinsically satisfying, activities...”. It could be characterized as a feeling of having become a stranger to oneself, or to some parts of oneself, or alternatively as a problem of self-knowledge, or authenticity.

Seeman (1959) recognized the problems inherent in defining the "self", while post-modernism in particular has questioned the very possibility of pin-pointing what precisely "self" constitutes. Gergen (1996: 125) argues that: “the traditional view of self versus society is deeply problematic and should be replaced by a conception of the self as always already immersed in relatedness. On this account, the individual’s lament of ‘not belonging’ is partially a by-product of traditional discourses themselves”. If the self is relationally constituted, does it make sense to speak of "self-estrangement" rather than "social isolation"? Costas and Fleming (2009: 354) suggest that although the concept of self-estrangement “has not weathered postmodern criticisms of essentialism and economic determinism well”, the concept still has value if a Lacanian reading of the self is adopted. This can be seen as part of a wider debate on the concept of self between humanism and antihumanism, structuralism and post-structuralism, or nature and nurture.

Mental disturbance

 

Until early in the 20th century, psychological problems were referred to in psychiatry as states of mental alienation, implying that a person had become separated from themselves, their reason or the world. From the 1960s alienation was again considered in regard to clinical states of disturbance, typically using a broad concept of a 'schizoid' ('splitting') process taken from psychoanalytic theory. The splitting was said to occur within regular child development and in everyday life, as well as in more extreme or dysfunctional form in conditions such as schizoid personality and schizophrenia. Varied concepts of alienation and self-estrangement were used to link internal schizoid states with observable symptoms and with external socioeconomic divisions, without necessarily explaining or evidencing underlying causation. R.D. Laing was particularly influential in arguing that dysfunctional families and socioeconomic oppression caused states of alienation and ontological insecurity in people, which could be considered adaptations but which were diagnosed as disorders by mainstream psychiatry and society.(Laing,[1967] 1959). The specific theories associated with Laing and others at that time are not widely accepted, but work from other theoretical perspectives sometimes addresses the same theme.

In a related vein, for Ian Parker, psychology normalizes conditions of social alienation. While it could help groups of individuals emancipate themselves, it serves the role of reproducing existing conditions.(Parker,2007). This view can be see as part of a broader tradition sometimes referred to as Critical psychology or Liberation psychology, which emphasizes that an individual is enmeshed within a social-political framework, and so therefore are psychological problems. Similarly, some psychoanalysts suggest that while psychoanalysis emphasizes environmental causes and reactions, it also attributes the problems of individuals to internal conflicts stemming from early psychosocial development, effectively divorcing them from the wider ongoing context. Slavoj Zizek (drawing on Herbert Marcuse, Michel Foucault, and Jacques Lacan's psychoanalysis) argues that in today's capitalist society, the individual is estranged from their self through the repressive injunction to "enjoy!" Such an injunction does not allow room for the recognition of alienation and, indeed, could itself be seen as an expression of alienation.(Zizek, 1994).

Frantz Fanon, an early writer on postcolonialism, studied the conditions of objectification and violent oppression (lack of autonomy) believed to have led to mental disorders among the colonized in the Third World (in particular Africans) (Fanon, ([2004] 1961).

A process of 'malignant alienation' has been observed in regard to some psychiatric patients, especially in forensic units and for individuals labeled 'difficult' or who aren't liked by at least some staff, which involves a breakdown of the therapeutic relationship between staff and patients, and which may end in the suicide of the patient. Individuals with long-term mental disorders, which may have originally stemmed from social alienation, can experience particular social and existential alienation within their communities due to other people's and potentially their own negative attitudes towards themselves and 'odd' behavior.

Disability

 

Differences between persons with disabilities and individuals in relative abilities, or perceived abilities, can be a cause of alienation. One study, "Social Alienation and Peer Identification: A Study of the Social Construction of Deafness",found that among deaf adults one theme emerged consistently across all categories of life experience: social rejection by, and alienation from, the larger hearing community. Only when the respondents described interactions with deaf people did the theme of isolation give way to comments about participation and meaningful interaction. This appeared to be related to specific needs, for example for "real" conversation, for information, the opportunity to develop close friendships and a sense of "family". It was suggested that the social meaning of deafness is established by interaction between deaf and hearing people, sometimes resulting in marginalization of the deaf, which is sometimes challenged. It has also led to the creation of alternatives and the deaf community is described as one such alternative.

Physicians and nurses often deal with people who are temporarily or permanently alienated from communities, which could be a result or a cause of medical conditions and suffering, and it has been suggested that therefore attention should be paid to learning from experiences of the special pain that alienation can bring.

 

Curator’s Statement

 

Yong Sook Kim-Lambert’s large-scale color-field paintings are interspersed with shadowy figures that seem to suggest a foreboding and loneliness, while at the same time incorporating power and prophesy. Her work is a visual tapestry, with layers of both watercolor and acrylic used to emphasize her emotional expressionism. The artist freely uses Korean and Chinese calligraphy, as well as cutting from newspapers and magazines to strengthen her design qualities. While our Western culture does not allow us to interpret the text literally, the presence of these enigmatic characters speaks to us of our cultural differences and the alienation and disconnection that minorities encounter daily. These works are Kim-Lambert’s bold statements to society and civilization.

 

I have been in awe and an admirer of Yong Sook’s work for many years. The Southern Alleghenies Museum of Art is honored to present Yong Sook Kim-Lambert: East Meets West, an exhibition that gives southern Pennsylvania an opportunity to see and enjoy the work of this prominent 21st century artist.

 

Barbara Hollander, Southern Alleghenies Museum of Art

  

Now is the time for deep compassionate listening. Knee jerk reactions rooted in fear are harming us all.

 

We are all interconnected, we are all one.

 

The craziness is rooted in disconnection. From each other, from ourselves, from nature.

 

Walk away from the fear or all is lost.

From my 2014 series, 'Sanctuary', created for my final year of studies.

 

"I think that my love for photography was first kindled during long stints in hospital, photographing flowers that my mother had brought me. Throughout my adolescence I struggled with my mental and physical health, and nature was a sanctuary and escape for me. I lament the disconnection between our everyday lives and the natural world. The vulnerability, hope and suffering that I experienced, combined with the beauty and majesty of nature, inspired this body of work."

 

– instagram

 

– facebook

 

– website

Curator’s Statement

 

Yong Sook Kim-Lambert’s large-scale color-field paintings are interspersed with shadowy figures that seem to suggest a foreboding and loneliness, while at the same time incorporating power and prophesy. Her work is a visual tapestry, with layers of both watercolor and acrylic used to emphasize her emotional expressionism. The artist freely uses Korean and Chinese calligraphy, as well as cutting from newspapers and magazines to strengthen her design qualities. While our Western culture does not allow us to interpret the text literally, the presence of these enigmatic characters speaks to us of our cultural differences and the alienation and disconnection that minorities encounter daily. These works are Kim-Lambert’s bold statements to society and civilization.

 

I have been in awe and an admirer of Yong Sook’s work for many years. The Southern Alleghenies Museum of Art is honored to present Yong Sook Kim-Lambert: East Meets West, an exhibition that gives southern Pennsylvania an opportunity to see and enjoy the work of this prominent 21st century artist.

 

Barbara Hollander, Southern Alleghenies Museum of Art

  

Desconexión. Cuando te desconectas de la realidad, ese momento se vuelve mágico.

···

Disconnection. When you disconnect from reality, that moment becomes magical.

"Assembly of large payload in space."

 

Large indeed. Whatever it is, it apparently requires not one, but TWO RMS...damn. Sort of looks like a LDEF (on serious steroids) hooked up with a Transformer. Note also the Apollo-era docking target (mounted on the lunar modules), visible to the left of the unlabeled “6” hash mark on the RMS arm. Also, it’s a three-person EVA, thus far only performed once in real life.

 

A beautiful work, with a "textured" and almost abstract geometrical thing going on.

 

Contained within the following:

 

history.nasa.gov/SP-407/part3.htm

 

Specifically:

 

history.nasa.gov/SP-407/p59.jpg

 

With what I guess is the loosely pertinent/associated text:

 

"EXTRAVEHICULAR ACTIVITIES

 

"...A versatile extravehicular capability is provided by an airlock, two extravehicular mobility units (spacesuits), and mobility aids, such as handrails A variety of tasks can be performed during extravehicular activity (EVA) to support either the Orbiter or its payloads. Typical tasks are as follows:

 

- Inspection, photography, and possible manual override of vehicle and payload systems, mechanisms, and components

- Installation, removal, and transfer of film cassettes, material samples, protective covers, and instrumentation

- Operation of equipment, including assembly tools, cameras, and cleaning devices

- Connection, disconnection, and storage of fluid and electrical umbilicals

- Repair, replacement, calibration, repositioning, and inspection of modular equipment, antennas, and instrumentation on the spacecraft or payload

 

The airlock can be located in several places: inside the Orbiter middle deck on the aft bulkhead, outside the cabin on the aft bulkhead, or on top of a tunnel adapter which connects the Spacelab pressurized module With the Orbiter cabin. When docking is planned, the docking module serves as the EVA airlock

 

The airlock hatches are located to allow passage straight through to facilitate transfer of equipment The hatches are D-shaped. The flat side of the D makes the minimum clearance 91 centimeters (36 inches). The inside diameter of the airlock is 160 centimeters (63 inches) and it is 211 centimeters (83 inches) long. This volume allows two EVA crewmen to transport a package 45 by 45 by 127 centimeters ( 18 by 18 by 50 inches) through the airlock.

 

Life support expendables are carried for two 6-hour payload EVA's and one contingency o emergency EVA.

 

Restraints for planned EVA will normally consist of the Skylab foot restraint. Unplanned EVA in support of a payload may often be accomplished with no impact to a payload because attachment to available structures will often provide sufficient restraint. Translator aids are provided for moving about in the payload bay. Handrails extend from the airlock hatch, down the hinge line of the door, and into the payload bay, are located at intermediate points if required, and at the aft bulkhead."

 

Frankly, I just think someone walked by a copy of this, or saw it in a wastebasket, and thought "Oh man...cool...can we squeeze this in somewhere?"

 

Based on the clever name tab/plate on the helmet of the Astronaut on the right, the artwork is possibly by "D. Watt".

If so, then maybe, just maybe, another “WIN” - Denise Watt?:

 

www.denisewatt.com/Denise_Watt/Portfolio_Page.html

 

Who, btw, created some really really nice works for NASA, but is otherwise, basically a ghost. Hopefully, not in actuality...at least not yet.

the one, the only, mojave phone booth.

  

The Loneliest Phone Booth Makes its Final Disconnection

 

By Lara Hartley, Desert Dispatch (Barstow, CA) May 2000

 

Reprinted by permission

 

E.T. can't phone home from the middle of the Mojave National Preserve and neither can anyone else who wants to use the loneliest phone booth in the world.

 

The famous telephone booth in the center of the Mojave National Preserve was unceremoniously hauled away Wednesday morning.

 

Mary Martin, superintendent of the preserve, declined comment on the phone's disappearance and referred inquiries to Pacific Bell.

 

Pacific Bell spokesman Steve Getzug said the phone was removed "as a result of a mutual agreement with the National Park Service," but would not say who started the talks to remove the telephone which had been maintained by the company for years.

 

In 1998 Pacific Bell spokesman Steve Allen said, "Though the initial installation date is not known, the Pacific Bell pay phone on Aiken Mine Road has been there for several decades. It was put there originally as a policy station, a California program that mandates phone installation for the safety, health and welfare of residents in remote locations."

 

But Friday, a joint press release from the National Park Service and Pacific Bell stated, "After weighing the environmental concerns and public need, Pacific Bell and the National Park Service agreed to remove a pay phone located in a remote pocket of the Mojave National Preserve.

 

"While the phone and its location proved to be a novelty for some in recent months, the increased public traffic had a negative impact on the desert environment in the nation's newest national park.”

 

The owners of the nearby Cima Cinder Mine, Lorene Caffee and her husband Terry, were outspoken about the removal.

 

"It stinks. There is absolutely no reason for it. Isn't that what a park is for - for people to visit?" Lorene Caffee said.

 

"They don't want people out here unless they can control them," Terry Caffee said.

 

Lorene said, "The park service should not be allowed to do this - it's not right."

 

Preserve visitors Gerald Zettel and James Wielenga were disappointed when they arrived Friday afternoon and found nothing but a cement pad.

 

"They've already shut down half the desert out here and now they are taking down the landmarks," Zettel said.

 

In recent months, the booth attained cult status through Internet sites and media attention, including a television piece by Tom Brokaw.

 

Phone calls to the booth Friday night went unanswered. <<<<<

  

the link below takes you the the awesome deuce of clubs site with the whole history of the booth and its demise and an editorial by my editor about the park service destroying the icon.

 

the editorial is towards the bottom of the page.

 

deuceofclubs.com/moj/mojave.htm

  

originally shot on film

 

The High Level Bridge is a road and railway bridge spanning the River Tyne between Newcastle upon Tyne and Gateshead in North East England. It is considered the most notable historical engineering work in the city. It was built by the Hawks family from 5,050 tons of iron. George Hawks, Mayor of Gateshead, drove in the last key of the structure on 7 June 1849, and the bridge was officially opened by Queen Victoria later that year.

 

It was designed by Robert Stephenson to form a rail link towards Scotland for the developing English railway network; a carriageway for road vehicles and pedestrians was incorporated to generate additional revenue. The main structural elements are tied cast-iron arches.

 

Notwithstanding the considerable increase in the weight of railway vehicles since it was designed, it continues to carry rail traffic, although the King Edward bridge nearby was opened in 1906 to ease congestion. The roadway is also still in use, although with a weight restriction. It is a Grade I listed structure.

 

In 1835, the Newcastle and Carlisle Railway (N&CR) Act authorised the line to approach Newcastle to a terminus at Redheugh, on the south bank of the River Tyne, close to the end of the present-day New Redheugh Bridge. The Act also authorised a crossing of the Tyne there, giving rail access to the north shore quays. The river was shallow at this point, and the bridge would have been at a low level, only 20 ft (6.1 m) above high water. The line would then have climbed to a terminus at the Spital, near Neville Street and the east end of the present-day Newcastle Central station. The climb was to be at a gradient of 1 in 22 and would have been operated by a stationary steam engine with rope haulage.

 

Hitherto railways in the region had had a local focus, but now the Great North of England Railway (GNER) obtained authorising Acts to build from Newcastle to York, forming part of a continuous trunk railway network to connect to London; the project was controlled by George Hudson, the so-called Railway King. At first the GNER was content to get access to the N&CR Newcastle terminus, by connecting with the N&CR at Redheugh and running over its line across the Tyne and up to the Spital. This had the advantage of avoiding a separate, and expensive, crossing of the river, but would have meant a steep descent to Redheugh as the GNER line approached on high ground from the Team Valley, only to climb once again to the Spital. Moreover, William Brandling had made known his intention to reach Newcastle from his line by running at a high level through Gateshead. On 25 April 1837, the N&CR decided to build to their south side, low-level terminus at Redheugh, but to leave the issue of the Tyne crossing open.

 

Richard Grainger was a developer in Newcastle, and had acquired lands at Elswick (on the north bank of the Tyne west of the proposed Redheugh crossing). In 1836, he published a pamphlet recommending a crossing of the Tyne there, and the formation of spacious railway terminal accommodation there. Drawing attention to the limited scope for extending eastwards from the Spital, and "in the event of an Edinburgh Railway also terminating in this situation, the interchange of passengers, goods, and cattle would be greatly increased".

 

Grainger's plan was not adopted, and the Brandling Junction Railway reached Gateshead in 1839. The GNER ran out of money and it was superseded in Hudson's railway empire by the Newcastle and Darlington Junction Railway, which opened its line using the Brandling Junction Railway from the south east instead of through the Team Valley. The Brandling Junction line had a terminus in Gateshead at Greenesfield at a high level, and the N&CR line was built climbing on an inclined plane at a gradient of 1 in 23 from Redheugh to reach that. The Newcastle and Darlington Junction Railway opened its line from the south to Pelaw, allowing its trains to reach Gateshead over the Brandling Junction line, in 1844. The tables had been turned, and indeed for a while Greenesfield was the de facto main station for the conurbation of Newcastle and Gateshead.

 

John and Benjamin Green were a father and son architectural practice active in Newcastle. In 1841 Benjamin Green had proposed a high level bridge for road traffic, substantially on the alignment of the actual High Level Bridge; and sensing the commercial climate he explained how it could be adapted for railway use. He failed to get any financial support, but in 1843 George Hudson was looking for ways to extend his railway network northwards, and the Greens' scheme fitted with his takeover of the Newcastle and Darlington Junction Railway; the line got its authorising Act on 22 May 1844, and the Act included the road bridge.

 

The Newcastle and North Shields Railway had opened in 1839 from its own terminus at Carliol Square, on the north-east edge of Newcastle. As a purely local concern, the disconnection was not important, but interest gathered in a railway to central Scotland; the "Edinburgh Railway" foreseen by Grainger. A Scottish concern, the North British Railway, had got its Act of Parliament the previous year to build as far south as Berwick (later known as Berwick-upon-Tweed.

 

Now Hudson was intent on capturing the line to Edinburgh for his empire, and he encouraged the development of railway plans to get there; the route such a line might take continued to generate considerable controversy. There was still ambiguity about Hudson's intentions for the bridge—an easier crossing point at Bill Quay, two miles downstream had been considered—and Newcastle Town Council sought undertakings from him. In addition, he promised a footway crossing; this was apparently not a sweetener to the Town Council, but a commercial decision, expected to bring in £250 a week. The footway crossing was later extended to include horse-drawn vehicles.

 

Finally, the Newcastle and Berwick Railway was authorised by Act of Parliament of 31 July 1845. The line would cross the Greens' high level bridge, starting from the Gateshead Greenesfield station, and commitments made to the building of a bridge by the Newcastle and Darlington Junction Railway were transferred to the Newcastle and Berwick Railway.

 

The bridge was to be designed by Robert Stephenson; T E Harrison did the detailed design work.

 

The height of the railway, at about 120 ft (37 m) above high water, was determined by the level of the Brandling Junction line in Gateshead. A double-deck configuration was selected because of road levels on the approaches, and to avoid the excess width of foundations which a side-by-side arrangement would require. The deck width was determined by the useful roadway width plus the width of structural members, which gave the railway deck the width for three tracks.

 

The foundations were to be difficult because of the poor ground conditions in the river, and this ruled out an all-masonry structure, so cast iron or wrought iron was inevitable for the superstructure. A tied arch (or bow-string) design was favoured because the outward thrust imposed by an arch is contained by the tie; no abutments capable of resisting the thrust could be provided here.

 

Stephenson had used this configuration before; he recorded that, "The earliest railway bridge on the bowstring principle is that over the Regent's Canal, near Chalk Farm, on the London and Birmingham Railway".

 

The arch would consist of iron ribs. Fawcett says, "The reasons for not using wrought iron was due to some engineers' distrust of rivetting, the relatively small size of wrought iron plates then available, and the higher cost… On 1 October 1845 when the Newcastle and Berwick Board instructed T E Harrison for their bridges, none of the uses of wrought iron had been developed far enough to be considered as an alternative to cast iron for the High Level Bridge. A tubular bridge might have been considered by Robert Stephenson but the distance between solid and reasonably shallow foundations would have given a span much larger than the Britannia Bridge."

 

The depth of rock in the riverbed resulted in a height of 140 ft (43 m) from there to the superstructure. Three river piers were permitted by the Tyne Improvement Commissioners, and therefore four river spans of 125 ft (38 m) were decided on; there were additional subsidiary spans on the shore.

 

The cast iron arch ribs are 3 ft 6 in (1.07 m) deep at the crown, increasing to 3 ft 9 in (1.14 m) at the springing, with 12-inch (30 cm) flanges; the flanges and webs were three inches thick; in the case of the inner ribs, and two inches for the outer ribs. The rise was 17 ft 6 in (5.33 m), determined by the desired geometry to confine the horizontal thrust within bounds. Each arch was cast in five sections, bolted together.

 

Stephenson described the tie bars:

 

The ties consist of flat wrought-iron bars, 7 inches by 1 inch of best scrap iron, with eyes of 3½ inches diameter, bored out of the solid, and pins turned and fitted closely. Each external rib is tied by four of these bars, and each internal rib by eight. The sectional area of each external tie is 28 [square] inches, and of each internal tie 56 [square] inches, giving a total area of 168 square inches. These bars were all tested to 9 tons on the square inch.

 

The rail deck is supported above the arches by twelve 14-inch (360 mm) square columns at 9 feet 11 inches (3.02 m) centres. Suspension rods supported the road deck, and both decks had two layers of diagonally laid three-inch deck timbers on suitable wrought iron cross girders (and rail-bearers in the case of the rail deck).

 

The main contractors for the ironwork were Hawks, Crawshay, and Sons, who were assisted by John Abbot and Co., of Gateshead Park Works, and Losh Wilson and Bell, of Walker Ironworks, in the production of the castings. The tender was accepted at £112,000. The contract for the bridge piers and land arches and for the Newcastle Viaduct were won by John Rush and Benjamin Lawton of York for £94,000 and £82,500 respectively. The total cost of the contracts at 1999 prices would be over £30 million.

 

The first masonry was laid on 12 January 1847. A temporary timber viaduct on the east side was ready on 20 August 1848.

 

Timber coffer dams were constructed; they were 76 ft 6 in (23.32 m) by 29 ft (8.8 m) with two skins, the space between being filled with puddle clay. James Nasmyth had a novel design of steam pile driver; it had first been used in Devonport Docks in 1845; it could deliver 60 to 70 blows a minute; the cycle time with the hand-operated pile drivers formerly in use was four minutes. The drop weight was 1½ tons and its stroke was 2 ft 9 in (0.84 m); one was purchased from Nasmyth.

 

The ground gave considerable trouble during construction; Stephenson recorded:

 

Many difficulties occurred in driving the piles which considerably retarded the progress of the work, and, among others, the peculiar effect of ebb and flow during this operation is worthy of note. At flood-tide, the sand became so hard as almost totally to resist the utmost efforts of driving, while at ebb the sand was quite loose, and allowed of doing so with facility. It was therefore found necessary to abandon the driving on many occasions during high water. The difference between high and low water is 11 feet 6 inches. Another difficulty arose from the quicksands beneath the foundations. Although the piles were driven to the rock bottom, the water forced its way up, baffling the attempts to fill in between them; this, however, was remedied by using a concrete made of broken stone and Roman cement, which was continually thrown in until the bottom was found to be secure.

 

The arch ribs were erected in section by travelling crane; each arch was temporarily erected at the contractor’s works. The first was placed on 10 July 1848, and the erection of the ironwork was quick.

 

Already on 29 August 1848, it was possible to pass a special train over the first arch, and over a temporary structure for the rest of the crossing:

 

The High Level Bridge Over the Tyne: This important junction between the York and Newcastle and the Newcastle and Berwick Railway has been completed, and the event was celebrated on Tuesday last. In the afternoon of that day, a train of [specially invited] passengers passed along the temporary timber viaduct from the station at Gateshead to the station at Newcastle. Mr Hudson and several other Directors of the York, Newcastle, and Berwick line, who had been visiting Sunderland ... proceeded in a special train from that town to Gateshead... Several carriages were then added to the special train, and an open truck placed at each end, in which bands of music were stationed. The shrill sound of the whistle gave the signal for a royal salute, under the booming of which the train passed along the line, the band playing, and the thousands assembled to witness the event, rending the air with joyous acclamation Upon reaching the bridge, the bands struck up the well-known local air of "The Keel Row" which they continued till the train had reached the solid ground on the northern side of the river... The train proceeded to the Newcastle and Berwick station, where the company alighted and walked in procession to the Queen’s Head Inn, where a magnificent entertainment had been provided for the Directors and their friends, by the Mayor of Newcastle.

 

[From the south abutment of the High Level Bridge] and the river pier on the south side, the cast iron arch and road-way are nearly completed, and the second arch will be in progress in the course of a few weeks. From the middle of the first arch, the line curves to a temporary timber viaduct erected along the west side of the intended bridge. The height of this viaduct is one hundred and twenty feet to the level of the rails; it is built upon piles, which are driven between thirty and forty feet into the bed of the river. Its stability was sufficiently tested on Monday, when Captain Leffan (sic), the Government Inspector of Railways, examined it preparatory to the opening. On that day, two powerful engines weighing upwards of seventy tons, traversed it at different degrees of speed for between two and three hours; the weight would be about one ton to a foot, being four or five times greater than the temporary structure will ever be required to bear, and the result was, in the highest degree, satisfactory.

 

Among the company in the train were four ladies, who are deserving of honourable mention, from the courage they displayed in accompanying it, namely, Mrs Nichs. Wood, and Miss F. Wood, Mrs I. L. Bell, and her sister, Miss Pattinson of Washington. As the train passed steadily over the bridge the anxiety of the immense multitude seemed intense, and the scene was truly exciting, yet fearful—not only from the lofty eminence occupied by the train but, from the apparent narrowness and nakedness of the platform on which it rolled along. It seemed from its noiselessness, rather an aerial flight, than the rattling sweep of the iron horse.

 

Ordinary traffic appears to have used the temporary single line structure after this date.

 

The eastern track was ready for an inspection by Captain Laffan, Inspecting Office for the Board of Trade, when he visited on 11 August 1849; a load test with four tender locomotives and eighteen wagons loaded with ballast, a total weight of 200 tons. Laffan approved the bridge:

 

I believe all the works of the bridge are completed, and that I believe it to be perfectly secure and safe. The Company have as yet only laid one line of rails over this structure, and I beg to recommend that permission be given to open that one line.

 

The first passenger train crossed the completed structure on the morning of 15 August 1849.

 

Queen Victoria formally inaugurated the bridge on passing through by train on 28 September 1849.

 

The Queen at Newcastle: Her Majesty yesterday honoured this ancient borough with her presence. The event was one of universal and all-engrossing interest... The morning, unfortunately, was dull and the weather unsettled, giving forebodings of a wet and uncomfortable day... Notwithstanding, however, the unfavourable weather dense crowds assembled at every spot in this locality, where a view of the royal carriage could be obtained, and many remained for hours exposed to the weather in order that they might retain the places which at an earlier period of the morning they had secured. The bridge was densely lined with people, and the platform was well covered, though not inconveniently crowded. A profusion of banners were displayed on this elegant and substantial structure, and from nearly all the public and many of the private buildings both in Newcastle and Gateshead. The vessels in the river hoisted their flags mast-high on the occasion, and the church bells of the two towns rung many a merry peal in honour of the royal visit... Pursuant to a request issued by the Mayor, most of the shops were closed about 11 o’clock, and the manufacturers were desired by our worthy chief magistrate "not to produce smoke between that hour and one," with which we believe, they generally complied... At precisely twenty minutes past twelve, the royal carriage appeared in sight, and when it reached the Spital, a splendid locomotive, built by the celebrated house of Stephenson and Co., gaily decorated and bearing on its front "God save the Queen" surmounted by a crown, and a suitable inscription encircling the boiler, was attached to the train. It then slowly proceeded to the centre of the colossal fabric, amidst bursts of loud and rapturous cheering from the assembled thousands, her Majesty repeatedly acknowledging these marked demonstrations of loyalty and affection from her faithful and attached subjects.

 

The Mayors of Newcastle and Gateshead presented a formal address. The queen travelled in the royal carriage belonging to the London and North Western Railway.

 

In other carriages were members of her Majesty’s suite and the directors of the York, Newcastle, and Berwick Railway. The engine drawing the royal train was under the direction of Mr T. E. Harrison, the resident engineer, and driven by Mr Thos. Carr... After staying altogether from five to ten minutes, the train was again put in motion, and amidst firing of artillery and rapturous plaudits from the dense throng, proceeded en route to Darlington.

 

The bridge and its immediate approaches had cost £243,000.

 

The road deck was re-opened only in a southbound (towards Gateshead) direction and carries only buses and taxis; the one-way operation is required because of width considerations after protection to the structural members was inserted. Pedestrians and cyclists use the bridge freely. Railway traffic continues in full use of the bridge, although the majority of mainline trains use the King Edward VII bridge for reasons of convenience.

Go by, go by, with all your din,

Your dust, your greed, your guile,

Your pomp, your gold; you cannot win

From her one smile....

Outlawed? Then hills and glens and streams

Are outlawed, too.

Proud world, from our immortal dreams,

We banish you.

~Alfred Noyes

Apparently a bit of a disconnection here!

**View LARGE on t2z in proper context **

 

☣ ☣

  

..-cont. from part 2..

 

..3 of 3 .. next level..

 

**

 

..ballistic .. ..ballistic .. ..ballistic ..

  

..carve your name.. .. carve your name..

 

.. some song..

 

.. the Invader embraces the landing around him .. unlike other Invaders preceding..Spaze had managed to survive the tanks..

 

..the guns. The guns that destroyed so many of his people by the hu-mans.

  

For whatever reason.. why 'Him' ..doen't matter now.

 

The creature before curled ..turned inward.. his head twitched more and more. Like a paint can machine had nabbed the Demon's skull..

 

AND JUST "F6CKIN' SHOOK" !!

  

Panic ..most manic..

  

another twitch and a twist..

 

And what to a slithery snake to appear ..

 

The instiller of dreads & mightiest of fears.

  

.. tornado like.. but with blood.. the creature's abstract form seemed to coil in a bizarre pain. The pulsating out of the 'Neck' of the skull was an elarging phallic bump.. but it grew outward as well.

 

.. The Oni continued to switch to and shake.. as if a phoenix rising from tarpits.. but sans wings.. 2 broad shoulders topped a slender chaotic frame of the same beast but newer 'cobra'-like features.

 

The Madnezz's tongue ticked at the air so violent. Smelling the massive infinite hydrants of blood gushing from the Invader's damaged structure.

 

Slithering.. his lower .. his 'CLAW' slammed the missile-ED landing..

 

** BOOM .. the three lower claws dug deep into the land. The dirt shook mad .. knocking the Alien to right side completely rocking his arm out of it's socket.. the appendage flew in the air. He grabbed it with his right as he fell.

 

Coming back to his feet.. out of no place.. a thorned pumpkin patch arose in the landscape. The star filled sky was ever increasing red. The angels slit their wrists .. the stars could no longer see black.

  

The Maddnezz and a universe of hell spoke.. ::

  

".. rose pedal filled bath water..

  

..to walk in the footsteps of dead men ..

 

..don't open your eyes.. "

 

..no connection ..there was no clarity.. as if the Demon was picking up radio signals in his new orm and adapting them as his next tongue.

 

..Spaze jumped on a gourd.. his face lowered to the ground .. the sparkle was gone in the eyes..and they were caving in. The pale flesh that surrounded his extraterrestrial bones .. stained and he bled fast and hard .. like Monty Python.

His eyes were leaking..

 

The Maddnezz continued in his chant..

 

"..the President Butchers.. give him a chance..laser,phazer crowd control,torcher,technology,..shoot them all..

  

killed in the blast.. the bomber.. the bomber..

 

give the Butchers a chance.. an effort an effort to butcher.. chance..

 

.. give it a chancsee chanssssssssss ..channnsssssssssssssssss..-- "

  

Madnezz's drone was heavy incessant .. and the simultaneous hiss.. paralyzed the ears so that they bleed too.

..Spaze slightly wished he had a tank ..

 

.. to shoot the Maddnezz.. but the Maddnezz was so fast. As if his snake-ish body was all meth.

 

The Oni continued on.. spinning in circles licking his claw with his tongue..sliding dizzy speed. All over.. the Maddnezz was a rave.

 

The tanks would be out matched.. Spaze stood suprisingly steadfast on the gourd ..as the land around him exploded.. this wasn't the warming planetoid. This was a darker area.. of confusion..of pain..

 

Of children's slaughter.

 

Mother's screaming ..

 

and fathers disappearing.. something was amiss..dogs screeching..yelping.. guns.. bombs..

 

..but Spaze was was too numb to be connected. Bleeding..

  

This land..this other-place.. this elsewhere was too much. How did he even get here ??

 

The Maddnezz's games had gone on to disparaging degrees before.. but this was a new level .. to much ..so fast ..the thorns grew and plunged at him.

 

Statue was Spaze.. still as he could be. The darkness on his brow grew even the blood was turning to near ink..

 

the mood was sinking in the sands of 'Nil-time'

..

 

.. his mother.. and the loves ..

 

..THE love.. and the sinking..

 

his hart was truly in peril.

 

.. The soft touch of something he may have know in another world..

 

..the tanks repelled that world.. according to his research.

 

The alien felt an aire of hatred against him in his travels.

 

That same hatred dominated this preposterous moment.

 

There was atouch he missed ..some sense of support for him. Something or someone that held his heart. Something or someone that held his hand.

   

..now he was clutching his own dismembered arm ..

 

He wished he had some support right now. This game, the 'Dance' was getting ugly. This 'never-war'.

 

But there was no support for him at this moment.

It was a 'lone faceoff'.

 

Alone.

 

Perhaps someday ..love will reappear. There was no chance for 'Perhaps' right now.. just "THIS ERRATIC MOMENT".

 

The moment was growing weary.

 

The Maddnezz danced in slide.. he withdrew his entire torso and the lower appendages into the Pinkish claw. The Claw spun like the great Turtle and the U.F.O. The Claw spun like the dizzy fireworks in the hu-man's holidays. The pain was overwhelming.

 

This was how the existence would end ?? The Maddnezz had spun out of sight so quickly.. and flew faster than the war ships could keep up with him.. he was here,there,everywhere..

 

The Maddnezz was everywhere.

  

Spaze stood still as Stone Henge on the gourd. Confusion weigh too heavy at this.. he almost collapsed.

 

Maddnezz appeared from a nearby explosion.. strangely slithering while his lower claw rattled as if kettle drum silos ..he tentacles scuttled tho' like the spidery tsuchigumo beasts of old.

  

He muttered in ramifications of thunder and asteroids..::" The Butcher is the decision maker.. vote of no confidence, your mother has left you your heart is forever in ruin ..you are not real ..i am the only one who loves you.. the Butcher will destroy their minds..

the Christ will defeat their hopes.. the Butchers.. the Butcher.. the Warming sphere .. is out encompass you in it's jaws.. you see my might .. you see your death ..you can never die you can never be reborn ..you are not here.. we are. i Am .. this shall continue. disciplinary action.. 5 years in prison.

Mutilation .. mutilation .. remains .. the missiles.. Their guns,their bombs,their guns,their songs, Wallstreet.. Wallstreessssssssststsssssssssssssssssssssssssssssssssssssssssssssssssssss.. - - - "

  

..The Spaze Caze stayed silently still.. binary '1 0 11 00 1 1101..- -' drench his thoughts..

 

The Demon towered over Spaze. Unanticipatedly lowering his skull.. ticking his tongue ..eye level to the Invader..

 

- -

.. Spaze ..holding his severed arm firmly in his left ..like a loose cannon.. he struck the Skull with a back swipe. As if fending of a perverted gawker.

 

The Demon was startled but hardly phased.. pushed back about a foot. He vibrated..and twitched his head.. his spinning eyes suddenly gained a rare focus. He must have been phased a bit after all.

 

There was a short moment of understanding of the 'nil-time' ..of where "THEY" were and what was happening. The Maddnezz felt very powerful..and then his words..

 

" It has been said that when it starts it is the end ..yet is only where it starts. This is the paradox you are. I shall destroy you .. but it is too soon.

Live in forever fear. The snake has yet to bite. The venom has yet to invade your blood stream. So much comes for you.. and this planet seems to be on it's last legs.

 

..this is to my advantage.

 

You are unloved. I am always here. Upon my next homecoming..

   

..remeber this pain. Your heart is ignited. Salutation" ..

 

Sarcastic for a second..then The Oni's skull tilted back..the entire torso of the creature tilted. He smashed his horns into the ground ..the dirt parted like Moses and the red waters. The whole he created became his means of escape.. and he slithered into the hole and it gobbled up what was left of the moment.

 

Alone and beeding ..weak ..

 

..eyes were still leaking..

 

..bleak.. the darkness overcame the Invader.. the red sky drew it's curtain and the angel's stopped dripping blood.

 

No hope ..

   

..grenade..

  

..his heart exploded..

  

- - - -- -- **

   

Spaze woke in a frosty green pumpkin field.. a red saucer lowered from the sky toward his form. The alien wobbly stood up on the dead crops.

 

To look down upon them in the daylight one would see large; strange formations in the crop's patterns. But it was night..didn't matter. He sloppily attached his arm back to to the right shoulder ..he was soaked in blood. The sky was star filled and beautiful. The moon show full..and the skull in the moon seemed to smile for once.

 

Spaze looked up only briefly to enjoy the frosted breeze. But now he was just cold.. the meadow was soaking in the last of moonlight. He could see his short spurts of breath. Glowing brushes of fog. Spaze collapsed onto the saucer. The Saucer lifted him away to elsewhere.

 

..what had happened was beyond understanding. He was tho' ..getting used to this.

 

Spaze retreated into the cold. The Saucer flickered with the battle damaged body on top and in a flash was gone.

 

..

What is to become of all of 'This' .. ?? 'This-where' ..elsewhere.. 'That-where'.. the land of Paradox .. ??

 

The Maddnezz ??

 

..hope ??

 

This particular Invader shall return..

   

X .. .. .. -*

  

©2007, 2011 .. tOkKa,terrible2z.com ..all other elements © their much respected owners..please respect the copyrights..

REFORD GARDENS | LES JARDINS DE METIS

 

Visit : www.refordgardens.com/

 

---------------------------------------------------------------------------------

 

From the plaque:

 

TiiLT, 2016

Sean Radford, Chris Wiebe (SRCW)

Winnipeg, (Manitoba) Canada

  

Finding roots in the formal geometries of the labyrinth and the many informal camping traditions in the Canadian landscape, TiiLT is a transformable and inhabitable place for visitors to act or to idle, however they may be inclined.

 

Each structure may be flipped between two orientations , responding to the position of the sun, offering alternative views and shifting pathways through the site. The toggling movement conjures a school of fish, or a flock of birds, flitting in opposite directions yet connected as a whole. The straw-like tightness of the structures and the white skin recall a field of floral blooms, contrasting the surrounding green landscape and blue sky.

 

TiiLt challenges the notion of the garden in creating an interactive environment that is part sculpture and part landscape- to evoke a sense of place and beauty from modest elements. TiiLT provides simple, intimate, shaded spaces in congregation, retrieving memories of long days in short seasons, time spent alone and among neighbours, embracing the feeling of shared disconnection, together.

  

-------------------------------------------------------------------------------------

 

Beautiful flowers at Reford Gardens.

  

Visit : www.refordgardens.com/

 

From Wikipedia:

 

Elsie Stephen Meighen - born January 22, 1872, Perth, Ontario - and Robert Wilson Reford - born in 1867, Montreal - got married on June 12, 1894.

 

Elsie Reford was a pioneer of Canadian horticulture, creating one of the largest private gardens in Canada on her estate, Estevan Lodge in eastern Québec. Located in Grand-Métis on the south shore of the St. Lawrence River, her gardens have been open to the public since 1962 and operate under the name Les Jardins de Métis and Reford Gardens.

  

Born January 22, 1872 at Perth, Ontario, Elsie Reford was the eldest of three children born to Robert Meighen and Elsie Stephen. Coming from modest backgrounds themselves, Elsie’s parents ensured that their children received a good education. After being educated in Montreal, she was sent to finishing school in Dresden and Paris, returning to Montreal fluent in both German and French, and ready to take her place in society.

 

She married Robert Wilson Reford on June 12, 1894. She gave birth to two sons, Bruce in 1895 and Eric in 1900. Robert and Elsie Reford were, by many accounts, an ideal couple. In 1902, they built a house on Drummond Street in Montreal. They both loved the outdoors and they spend several weeks a year in a log cabin they built at Lac Caribou, south of Rimouski. In the autumn they hunted for caribou, deer, and ducks. They returned in winter to ski and snowshoe. Elsie Reford also liked to ride. She had learned as a girl and spent many hours riding on the slopes of Mount Royal. And of course, there was salmon-fishing – a sport at which she excelled.

 

In her day, she was known for her civic, social, and political activism. She was engaged in philanthropic activities, particularly for the Montreal Maternity Hospital and she was also the moving force behind the creation of the Women’s Canadian Club of Montreal, the first women club in Canada. She believed it important that the women become involved in debates over the great issues of the day, « something beyond the local gossip of the hour ». Her acquaintance with Lord Grey, the Governor-General of Canada from 1904 to 1911, led to her involvement in organizing, in 1908, Québec City’s tercentennial celebrations. The event was one of many to which she devoted herself in building bridges with French-Canadian community.

 

During the First World War, she joined her two sons in England and did volunteer work at the War Office, translating documents from German into English. After the war, she was active in the Victorian Order of Nurses, the Montreal Council of Social Agencies, and the National Association of Conservative Women.

 

In 1925 at the age of 53 years, Elsie Reford was operated for appendicitis and during her convalescence, her doctor counselled against fishing, fearing that she did not have the strength to return to the river.”Why not take up gardening?” he said, thinking this a more suitable pastime for a convalescent woman of a certain age. That is why she began laying out the gardens and supervising their construction. The gardens would take ten years to build, and would extend over more than twenty acres.

 

Elsie Reford had to overcome many difficulties in bringing her garden to life. First among them were the allergies that sometimes left her bedridden for days on end. The second obstacle was the property itself. Estevan was first and foremost a fishing lodge. The site was chosen because of its proximity to a salmon river and its dramatic views – not for the quality of the soil.

 

To counter-act nature’s deficiencies, she created soil for each of the plants she had selected, bringing peat and sand from nearby farms. This exchange was fortuitous to the local farmers, suffering through the Great Depression. Then, as now, the gardens provided much-needed work to an area with high unemployment. Elsie Reford’s genius as a gardener was born of the knowledge she developed of the needs of plants. Over the course of her long life, she became an expert plantsman. By the end of her life, Elsie Reford was able to counsel other gardeners, writing in the journals of the Royal Horticultural Society and the North American Lily Society. Elsie Reford was not a landscape architect and had no training of any kind as a garden designer. While she collected and appreciated art, she claimed no talents as an artist.

 

Elsie Stephen Reford died at her Drummond Street home on November 8, 1967 in her ninety-sixth year.

 

In 1995, the Reford Gardens ("Jardins de Métis") in Grand-Métis were designated a National Historic Site of Canada, as being an excellent Canadian example of the English-inspired garden.(Wikipedia)

 

Visit : en.wikipedia.org/wiki/Elsie_Reford

 

LES JARDINS DE MÉTIS

 

Créés par Elsie Reford de 1926 à 1958, ces jardins témoignent de façon remarquable de l’art paysager à l’anglaise. Disposés dans un cadre naturel, un ensemble de jardins exhibent fleurs vivaces, arbres et arbustes. Le jardin des pommetiers, les rocailles et l’Allée royale évoquent l’œuvre de cette dame passionnée d’horticulture. Agrémenté d’un ruisseau et de sentiers sinueux, ce site jouit d’un microclimat favorable à la croissance d’espèces uniques au Canada. Les pavots bleus et les lis, privilégiés par Mme Reford, y fleurissent toujours et contribuent , avec d’autres plantes exotiques et indigènes, à l’harmonie de ces lieux.

 

Created by Elsie Reford between 1926 and 1958, these gardens are an inspired example of the English art of the garden. Woven into a natural setting, a series of gardens display perennials, trees and shrubs. A crab-apple orchard, a rock garden, and the Long Walk are also the legacy of this dedicated horticulturist. A microclimate favours the growth of species found nowhere else in Canada, while the stream and winding paths add to the charm. Elsie Reford’s beloved blue poppies and lilies still bloom and contribute, with other exotic and indigenous plants, to the harmony of the site.

 

Commission des lieux et monuments historiques du Canada

Historic Sites and Monuments Board of Canada.

Gouvernement du Canada – Government of Canada

 

© Copyright

This photo and all those in my Photostream are protected by copyright. No one may reproduce, copy, transmit or manipulate them without my written permission.

The High Level Bridge is a road and railway bridge spanning the River Tyne between Newcastle upon Tyne and Gateshead in North East England. It is considered the most notable historical engineering work in the city. It was built by the Hawks family from 5,050 tons of iron. George Hawks, Mayor of Gateshead, drove in the last key of the structure on 7 June 1849, and the bridge was officially opened by Queen Victoria later that year.

 

It was designed by Robert Stephenson to form a rail link towards Scotland for the developing English railway network; a carriageway for road vehicles and pedestrians was incorporated to generate additional revenue. The main structural elements are tied cast-iron arches.

 

Notwithstanding the considerable increase in the weight of railway vehicles since it was designed, it continues to carry rail traffic, although the King Edward bridge nearby was opened in 1906 to ease congestion. The roadway is also still in use, although with a weight restriction. It is a Grade I listed structure.

 

In 1835, the Newcastle and Carlisle Railway (N&CR) Act authorised the line to approach Newcastle to a terminus at Redheugh, on the south bank of the River Tyne, close to the end of the present-day New Redheugh Bridge. The Act also authorised a crossing of the Tyne there, giving rail access to the north shore quays. The river was shallow at this point, and the bridge would have been at a low level, only 20 ft (6.1 m) above high water. The line would then have climbed to a terminus at the Spital, near Neville Street and the east end of the present-day Newcastle Central station. The climb was to be at a gradient of 1 in 22 and would have been operated by a stationary steam engine with rope haulage.

 

Hitherto railways in the region had had a local focus, but now the Great North of England Railway (GNER) obtained authorising Acts to build from Newcastle to York, forming part of a continuous trunk railway network to connect to London; the project was controlled by George Hudson, the so-called Railway King. At first the GNER was content to get access to the N&CR Newcastle terminus, by connecting with the N&CR at Redheugh and running over its line across the Tyne and up to the Spital. This had the advantage of avoiding a separate, and expensive, crossing of the river, but would have meant a steep descent to Redheugh as the GNER line approached on high ground from the Team Valley, only to climb once again to the Spital. Moreover, William Brandling had made known his intention to reach Newcastle from his line by running at a high level through Gateshead. On 25 April 1837, the N&CR decided to build to their south side, low-level terminus at Redheugh, but to leave the issue of the Tyne crossing open.

 

Richard Grainger was a developer in Newcastle, and had acquired lands at Elswick (on the north bank of the Tyne west of the proposed Redheugh crossing). In 1836, he published a pamphlet recommending a crossing of the Tyne there, and the formation of spacious railway terminal accommodation there. Drawing attention to the limited scope for extending eastwards from the Spital, and "in the event of an Edinburgh Railway also terminating in this situation, the interchange of passengers, goods, and cattle would be greatly increased".

 

Grainger's plan was not adopted, and the Brandling Junction Railway reached Gateshead in 1839. The GNER ran out of money and it was superseded in Hudson's railway empire by the Newcastle and Darlington Junction Railway, which opened its line using the Brandling Junction Railway from the south east instead of through the Team Valley. The Brandling Junction line had a terminus in Gateshead at Greenesfield at a high level, and the N&CR line was built climbing on an inclined plane at a gradient of 1 in 23 from Redheugh to reach that. The Newcastle and Darlington Junction Railway opened its line from the south to Pelaw, allowing its trains to reach Gateshead over the Brandling Junction line, in 1844. The tables had been turned, and indeed for a while Greenesfield was the de facto main station for the conurbation of Newcastle and Gateshead.

 

John and Benjamin Green were a father and son architectural practice active in Newcastle. In 1841 Benjamin Green had proposed a high level bridge for road traffic, substantially on the alignment of the actual High Level Bridge; and sensing the commercial climate he explained how it could be adapted for railway use. He failed to get any financial support, but in 1843 George Hudson was looking for ways to extend his railway network northwards, and the Greens' scheme fitted with his takeover of the Newcastle and Darlington Junction Railway; the line got its authorising Act on 22 May 1844, and the Act included the road bridge.

 

The Newcastle and North Shields Railway had opened in 1839 from its own terminus at Carliol Square, on the north-east edge of Newcastle. As a purely local concern, the disconnection was not important, but interest gathered in a railway to central Scotland; the "Edinburgh Railway" foreseen by Grainger. A Scottish concern, the North British Railway, had got its Act of Parliament the previous year to build as far south as Berwick (later known as Berwick-upon-Tweed.

 

Now Hudson was intent on capturing the line to Edinburgh for his empire, and he encouraged the development of railway plans to get there; the route such a line might take continued to generate considerable controversy. There was still ambiguity about Hudson's intentions for the bridge—an easier crossing point at Bill Quay, two miles downstream had been considered—and Newcastle Town Council sought undertakings from him. In addition, he promised a footway crossing; this was apparently not a sweetener to the Town Council, but a commercial decision, expected to bring in £250 a week. The footway crossing was later extended to include horse-drawn vehicles.

 

Finally, the Newcastle and Berwick Railway was authorised by Act of Parliament of 31 July 1845. The line would cross the Greens' high level bridge, starting from the Gateshead Greenesfield station, and commitments made to the building of a bridge by the Newcastle and Darlington Junction Railway were transferred to the Newcastle and Berwick Railway.

 

The bridge was to be designed by Robert Stephenson; T E Harrison did the detailed design work.

 

The height of the railway, at about 120 ft (37 m) above high water, was determined by the level of the Brandling Junction line in Gateshead. A double-deck configuration was selected because of road levels on the approaches, and to avoid the excess width of foundations which a side-by-side arrangement would require. The deck width was determined by the useful roadway width plus the width of structural members, which gave the railway deck the width for three tracks.

 

The foundations were to be difficult because of the poor ground conditions in the river, and this ruled out an all-masonry structure, so cast iron or wrought iron was inevitable for the superstructure. A tied arch (or bow-string) design was favoured because the outward thrust imposed by an arch is contained by the tie; no abutments capable of resisting the thrust could be provided here.

 

Stephenson had used this configuration before; he recorded that, "The earliest railway bridge on the bowstring principle is that over the Regent's Canal, near Chalk Farm, on the London and Birmingham Railway".

 

The arch would consist of iron ribs. Fawcett says, "The reasons for not using wrought iron was due to some engineers' distrust of rivetting, the relatively small size of wrought iron plates then available, and the higher cost… On 1 October 1845 when the Newcastle and Berwick Board instructed T E Harrison for their bridges, none of the uses of wrought iron had been developed far enough to be considered as an alternative to cast iron for the High Level Bridge. A tubular bridge might have been considered by Robert Stephenson but the distance between solid and reasonably shallow foundations would have given a span much larger than the Britannia Bridge."

 

The depth of rock in the riverbed resulted in a height of 140 ft (43 m) from there to the superstructure. Three river piers were permitted by the Tyne Improvement Commissioners, and therefore four river spans of 125 ft (38 m) were decided on; there were additional subsidiary spans on the shore.

 

The cast iron arch ribs are 3 ft 6 in (1.07 m) deep at the crown, increasing to 3 ft 9 in (1.14 m) at the springing, with 12-inch (30 cm) flanges; the flanges and webs were three inches thick; in the case of the inner ribs, and two inches for the outer ribs. The rise was 17 ft 6 in (5.33 m), determined by the desired geometry to confine the horizontal thrust within bounds. Each arch was cast in five sections, bolted together.

 

Stephenson described the tie bars:

 

The ties consist of flat wrought-iron bars, 7 inches by 1 inch of best scrap iron, with eyes of 3½ inches diameter, bored out of the solid, and pins turned and fitted closely. Each external rib is tied by four of these bars, and each internal rib by eight. The sectional area of each external tie is 28 [square] inches, and of each internal tie 56 [square] inches, giving a total area of 168 square inches. These bars were all tested to 9 tons on the square inch.

 

The rail deck is supported above the arches by twelve 14-inch (360 mm) square columns at 9 feet 11 inches (3.02 m) centres. Suspension rods supported the road deck, and both decks had two layers of diagonally laid three-inch deck timbers on suitable wrought iron cross girders (and rail-bearers in the case of the rail deck).

 

The main contractors for the ironwork were Hawks, Crawshay, and Sons, who were assisted by John Abbot and Co., of Gateshead Park Works, and Losh Wilson and Bell, of Walker Ironworks, in the production of the castings. The tender was accepted at £112,000. The contract for the bridge piers and land arches and for the Newcastle Viaduct were won by John Rush and Benjamin Lawton of York for £94,000 and £82,500 respectively. The total cost of the contracts at 1999 prices would be over £30 million.

 

The first masonry was laid on 12 January 1847. A temporary timber viaduct on the east side was ready on 20 August 1848.

 

Timber coffer dams were constructed; they were 76 ft 6 in (23.32 m) by 29 ft (8.8 m) with two skins, the space between being filled with puddle clay. James Nasmyth had a novel design of steam pile driver; it had first been used in Devonport Docks in 1845; it could deliver 60 to 70 blows a minute; the cycle time with the hand-operated pile drivers formerly in use was four minutes. The drop weight was 1½ tons and its stroke was 2 ft 9 in (0.84 m); one was purchased from Nasmyth.

 

The ground gave considerable trouble during construction; Stephenson recorded:

 

Many difficulties occurred in driving the piles which considerably retarded the progress of the work, and, among others, the peculiar effect of ebb and flow during this operation is worthy of note. At flood-tide, the sand became so hard as almost totally to resist the utmost efforts of driving, while at ebb the sand was quite loose, and allowed of doing so with facility. It was therefore found necessary to abandon the driving on many occasions during high water. The difference between high and low water is 11 feet 6 inches. Another difficulty arose from the quicksands beneath the foundations. Although the piles were driven to the rock bottom, the water forced its way up, baffling the attempts to fill in between them; this, however, was remedied by using a concrete made of broken stone and Roman cement, which was continually thrown in until the bottom was found to be secure.

 

The arch ribs were erected in section by travelling crane; each arch was temporarily erected at the contractor’s works. The first was placed on 10 July 1848, and the erection of the ironwork was quick.

 

Already on 29 August 1848, it was possible to pass a special train over the first arch, and over a temporary structure for the rest of the crossing:

 

The High Level Bridge Over the Tyne: This important junction between the York and Newcastle and the Newcastle and Berwick Railway has been completed, and the event was celebrated on Tuesday last. In the afternoon of that day, a train of [specially invited] passengers passed along the temporary timber viaduct from the station at Gateshead to the station at Newcastle. Mr Hudson and several other Directors of the York, Newcastle, and Berwick line, who had been visiting Sunderland ... proceeded in a special train from that town to Gateshead... Several carriages were then added to the special train, and an open truck placed at each end, in which bands of music were stationed. The shrill sound of the whistle gave the signal for a royal salute, under the booming of which the train passed along the line, the band playing, and the thousands assembled to witness the event, rending the air with joyous acclamation Upon reaching the bridge, the bands struck up the well-known local air of "The Keel Row" which they continued till the train had reached the solid ground on the northern side of the river... The train proceeded to the Newcastle and Berwick station, where the company alighted and walked in procession to the Queen’s Head Inn, where a magnificent entertainment had been provided for the Directors and their friends, by the Mayor of Newcastle.

 

[From the south abutment of the High Level Bridge] and the river pier on the south side, the cast iron arch and road-way are nearly completed, and the second arch will be in progress in the course of a few weeks. From the middle of the first arch, the line curves to a temporary timber viaduct erected along the west side of the intended bridge. The height of this viaduct is one hundred and twenty feet to the level of the rails; it is built upon piles, which are driven between thirty and forty feet into the bed of the river. Its stability was sufficiently tested on Monday, when Captain Leffan (sic), the Government Inspector of Railways, examined it preparatory to the opening. On that day, two powerful engines weighing upwards of seventy tons, traversed it at different degrees of speed for between two and three hours; the weight would be about one ton to a foot, being four or five times greater than the temporary structure will ever be required to bear, and the result was, in the highest degree, satisfactory.

 

Among the company in the train were four ladies, who are deserving of honourable mention, from the courage they displayed in accompanying it, namely, Mrs Nichs. Wood, and Miss F. Wood, Mrs I. L. Bell, and her sister, Miss Pattinson of Washington. As the train passed steadily over the bridge the anxiety of the immense multitude seemed intense, and the scene was truly exciting, yet fearful—not only from the lofty eminence occupied by the train but, from the apparent narrowness and nakedness of the platform on which it rolled along. It seemed from its noiselessness, rather an aerial flight, than the rattling sweep of the iron horse.

 

Ordinary traffic appears to have used the temporary single line structure after this date.

 

The eastern track was ready for an inspection by Captain Laffan, Inspecting Office for the Board of Trade, when he visited on 11 August 1849; a load test with four tender locomotives and eighteen wagons loaded with ballast, a total weight of 200 tons. Laffan approved the bridge:

 

I believe all the works of the bridge are completed, and that I believe it to be perfectly secure and safe. The Company have as yet only laid one line of rails over this structure, and I beg to recommend that permission be given to open that one line.

 

The first passenger train crossed the completed structure on the morning of 15 August 1849.

 

Queen Victoria formally inaugurated the bridge on passing through by train on 28 September 1849.

 

The Queen at Newcastle: Her Majesty yesterday honoured this ancient borough with her presence. The event was one of universal and all-engrossing interest... The morning, unfortunately, was dull and the weather unsettled, giving forebodings of a wet and uncomfortable day... Notwithstanding, however, the unfavourable weather dense crowds assembled at every spot in this locality, where a view of the royal carriage could be obtained, and many remained for hours exposed to the weather in order that they might retain the places which at an earlier period of the morning they had secured. The bridge was densely lined with people, and the platform was well covered, though not inconveniently crowded. A profusion of banners were displayed on this elegant and substantial structure, and from nearly all the public and many of the private buildings both in Newcastle and Gateshead. The vessels in the river hoisted their flags mast-high on the occasion, and the church bells of the two towns rung many a merry peal in honour of the royal visit... Pursuant to a request issued by the Mayor, most of the shops were closed about 11 o’clock, and the manufacturers were desired by our worthy chief magistrate "not to produce smoke between that hour and one," with which we believe, they generally complied... At precisely twenty minutes past twelve, the royal carriage appeared in sight, and when it reached the Spital, a splendid locomotive, built by the celebrated house of Stephenson and Co., gaily decorated and bearing on its front "God save the Queen" surmounted by a crown, and a suitable inscription encircling the boiler, was attached to the train. It then slowly proceeded to the centre of the colossal fabric, amidst bursts of loud and rapturous cheering from the assembled thousands, her Majesty repeatedly acknowledging these marked demonstrations of loyalty and affection from her faithful and attached subjects.

 

The Mayors of Newcastle and Gateshead presented a formal address. The queen travelled in the royal carriage belonging to the London and North Western Railway.

 

In other carriages were members of her Majesty’s suite and the directors of the York, Newcastle, and Berwick Railway. The engine drawing the royal train was under the direction of Mr T. E. Harrison, the resident engineer, and driven by Mr Thos. Carr... After staying altogether from five to ten minutes, the train was again put in motion, and amidst firing of artillery and rapturous plaudits from the dense throng, proceeded en route to Darlington.

 

The bridge and its immediate approaches had cost £243,000.

 

The road deck was re-opened only in a southbound (towards Gateshead) direction and carries only buses and taxis; the one-way operation is required because of width considerations after protection to the structural members was inserted. Pedestrians and cyclists use the bridge freely. Railway traffic continues in full use of the bridge, although the majority of mainline trains use the King Edward VII bridge for reasons of convenience.

From my 2014 series, 'Sanctuary', created for my final year of studies.

 

"I think that my love for photography was first kindled during long stints in hospital, photographing flowers that my mother had brought me. Throughout my adolescence I struggled with my mental and physical health, and nature was a sanctuary and escape for me. I lament the disconnection between our everyday lives and the natural world. The vulnerability, hope and suffering that I experienced, combined with the beauty and majesty of nature, inspired this body of work."

 

– instagram

 

– facebook

 

– website

This mixed media photograph explores the tension between presence and absence, using layered textures and translucent imagery to suggest themes of memory, identity, and emotional drift. Fragmented visuals hint at a narrative just out of reach, evoking a sense of disconnection — as though the subject has been removed from time or place.

From my 2014 series, 'Sanctuary', created for my final year of studies.

 

"I think that my love for photography was first kindled during long stints in hospital, photographing flowers that my mother had brought me. Throughout my adolescence I struggled with my mental and physical health, and nature was a sanctuary and escape for me. I lament the disconnection between our everyday lives and the natural world. The vulnerability, hope and suffering that I experienced, combined with the beauty and majesty of nature, inspired this body of work."

 

– instagram

 

– facebook

 

– website

Ultrafine extreme 400

nikon F4; nikor 50mm

Mamiya Sekor C 80mm f/1.9

Mamiya 645 Super

Fuji 160S 120

Scanned on Epson 1640SU

Color and editing in Lightroom

 

Nothing about the image or the title was ever intended to be "shocking". It is only meant to offer a shift in perspective for those who fail to recognize that such animals suffer for their trivial pleasures. The idea that the title is somehow "too much" can only be a result of ignorance of commercial farming/slaughtering practices or the childish and foolish notion that the suffering of animals is somehow lesser than the suffering of human animals. This notion shows that the notion holder has never given more than a moments emotional dissonance and never any serious rational thought to the question of suffering.

 

A pig is so close to humans from a biological perspective that we have used components of their bodies in our surgical procedures. Pigs are at least as smart as dogs or human toddlers, the image above is meant to humanize the animal for those who see themselves as disconnected from it. If it helps, let yourself visualize dogs and babies while you watch this: www.youtube.com/watch?v=THIODWTqx5E (Farm to Table documentary clip)

 

If you've watched that video and still think the title makes a somehow inappropriate comparison, then you're either exhibiting a sociopathic lack of empathy or still confused about why the bar for torturous, monstrous behaviors should be raised. It's also a matter of the scale of the slaughter and the way in which it goes on under our noses with our silent consent, while we are publicly horrified, we do nothing to affect change. I'll be happy to offer more evidence for my point about dehumanizing behaviors and attitudes, starting with Abu Ghraib.

 

It's also important for each of us to realize that WE are responsible for this pain and suffering, the pain and suffering of literally millions of animals each year; approximately 13,000 pigs are slaughtered per hour. That means the same figures apply to the brutal castrations and other abuses. FACE IT, we do this to the animals for our own pleasure, none require bacon as a necessity - the pleasure of bacon or a hotdog, the pleasure of a steak or a quick, cheap burger... Each of these animals faces a lifetime of torture that ends only when they've become a meal for dozens or even hundreds of 'people' who will never even consider that this cruelty is a direct result of their continued financial support and apathy. They do this to the animals because it is cheap and it is easy, the only way to shift that paradigm is for consumers to take responsibility and boycott unethically sourced products. So, next time you pass a fast food restaurant, do your health and your soul a favor, refuse to indulge in ongoing brutality.

 

I realize that since disconnection and apathy are the norm and that dismissal of "lower life forms" is our self-absorbed status quo, it means my conviction that livestock should be afforded the care and respect due all living things - even if you're going to eat them, will be perceived as an extreme point of view by some.

 

Now that I've had a chance to explain my perspective and just a few of the significant parallels of one unfathomably inhumane period in human history to the currently ongoing and ever increasing scale of another, I hope my choice of title is better understood.

From my 2014 series, 'Sanctuary', created for my final year of studies.

 

"I think that my love for photography was first kindled during long stints in hospital, photographing flowers that my mother had brought me. Throughout my adolescence I struggled with my mental and physical health, and nature was a sanctuary and escape for me. I lament the disconnection between our everyday lives and the natural world. The vulnerability, hope and suffering that I experienced, combined with the beauty and majesty of nature, inspired this body of work."

 

– instagram

 

– facebook

 

– website

Initiatory Travel, a disconnection for a better reconnection with oneself. What is meant by disconnection is above all detachment from time, to which the mind is attached. A disconnection for a better reconnection with yourself, where it is necessary to live times of silence. It is also the opportunity to nourish oneself with intense energy by encountering the sacred. Mary Magdalene would have brought with her the holy cup which had collected the blood flowing from the side of Jesus crucified. She would have settled down with her numerous suite, in a "balme", a Baume (term which means cave)

Take a step towards wisdom by meeting the legend of Mary Magdalene (Mary Magdalene is known throughout the world as the disciple who was the first person to witness the resurrection of Jesus. Her energies include frequencies of unity, of peace, and tenderness), by soaking up the positive vibes that emanate from these places recognized as sacred, will make your trip a special one. A kind of magic then happens, something that cannot be explained but can only be felt. The change will come about as much by introspection as by the radiance of what (ux) you will encounter. In the journey to the deep self, you will be invited to participate in self-knowledge improvement sessions. And accompanied by the legend of Marie-Madeleine throughout this trip, you will learn step by step, to deploy your energy and to feel that of the places.

 

This journey is an invitation to awaken the divine version that exists in everyone's heart. It is an initiation which unifies the sacred Feminine and Masculine, which removes the veils and shadows, and which makes it possible to shine. Living this trip also means taking a route that can be confusing at times but so powerful because the meeting of Christelle GAMBEE and our Shaman, combined with the practice of various teachings and ancestral rites, will enrich this exceptional trip

  

The Jesus bloodline refers to the proposition that a lineal sequence of descendants of the historical Jesus has persisted to the present time. The claims frequently depict Jesus as married, often to Mary Magdalene, and as having descendants living in Europe, especially France but also the UK. Differing and contradictory Jesus bloodline scenarios, as well as more limited claims that Jesus married and had children, have been proposed in numerous modern books. Some such claims have suggested that Jesus survived the crucifixion and went to another location such as France, India or Japan.

 

While the concept has gained a presence in the public imagination, as seen with Dan Brown's best-selling novel and movie The Da Vinci Code that used the premise for its plot, it is generally dismissed by the scholarly community. These claimed Jesus' bloodlines are distinct from the biblical genealogy of Jesus and from the documented 'brothers' and other kin of Jesus, known as the Desposyni.

 

Jesus as husband and father

Historical precursors

Ideas that Jesus Christ might have been married have a long history in Christian theology, though the historical record says nothing on the subject.[1] Bart D. Ehrman, who chairs the Department of Religious Studies at the University of North Carolina, commented that, although there are some historical scholars who claim that it is likely that Jesus was married, the vast majority of New Testament and early Christianity scholars find such a claim to be historically unreliable.[2]

 

Much of the bloodline literature has a more specific focus, on a claimed marriage between Jesus and Mary Magdalene. There are indications in Gnosticism of the belief that Jesus and Mary Magdalene shared an amorous, and not just a religious relationship. The Gnostic Gospel of Philip tells that Jesus "kissed her often" and refers to Mary as his "companion".[3] Several sources from the 13th-century claim that an aspect of Catharist theology was the belief that the earthly Jesus had a familial relationship with Mary Magdalene. An Exposure of the Albigensian and Waldensian Heresies, dated to before 1213 and usually attributed to Ermengaud of Béziers, a former Waldensian seeking reconciliation with the mainstream Catholic Church, would describe Cathar heretical beliefs including the claim that they taught "in the secret meetings that Mary Magdalen was the wife of Christ".[4] A second work, untitled and anonymous, repeats Ermengaud's claim.[4] The anti-heretic polemic Historia Albigensis written between 1212 and 1218 by Cistercian monk and chronicler Peter of Vaux de Cernay, gives the most lurid description, attributing to Cathars the belief that Mary Magdalene was the concubine of Jesus.[4][5] These sources must be viewed with caution: the two known authors were not themselves Cathars and were writing of a heresy being actively and violently suppressed. There is no evidence that these beliefs derived from the much earlier Gnostic traditions of Jesus and Mary Magdalene, but the Cathar traditions did find their way into many of the 20th-century popular writings claiming the existence of a Jesus bloodline.[4][6]

 

Modern works

The late 19th-century saw the first of several expansions on this theme of marriage between Jesus and Mary Magdalene, providing the couple with a named child. The French socialist politician, Louis Martin (pseudonym of Léon Aubry, died 1900), in his 1886 book Les Evangiles sans Dieu (The Gospels without God), republished the next year in his Essai sur la vie de Jésus (Essay on the life of Jesus), described the historical Jesus as a socialist and atheist. He related that after his crucifixion, Mary Magdalene, along with the family of Lazarus of Bethany, brought the body of Jesus to Provence, and there Mary had a child, Maximin, the fruit of her love for Jesus. The scenario was dismissed as 'certainly strange' by a contemporary reviewer.[7]

 

The late 20th century saw the genre of popular books claiming that Jesus married Mary Magdalene and had a family. Donovan Joyce's 1973 best-seller, The Jesus Scroll, a time bomb for Christianity, presented an alternative timeline for Jesus that arose from a mysterious document. He claimed that, after being denied access to the Masada archaeological site, he was met at the Tel Aviv airport by an American University professor using the pseudonym "Max Grosset", who held a large scroll he claimed to have smuggled from the site. Relating its contents to Joyce, Grosset offered to pay him to smuggle it out of the country, but then became spooked when his flight was delayed and snuck away; he was never identified and the scroll was not seen again. According to Joyce, the 'Jesus Scroll' was a personal letter by 80-year-old Yeshua ben Ya’akob ben Gennesareth, heir of the Hasmonean dynasty and hence rightful King of Israel, written on the eve of the fall of the city to the Romans after a suicide pact ended Masada's resistance. It was said to have described the man as married, and that he had a son whose crucifixion the letter's author had witnessed. Joyce identified the writer with Jesus of Nazareth, who, he claimed, had survived his own crucifixion to marry and settle at Masada, and suggested a conspiracy to hide the contents of the Dead Sea Scrolls in order to suppress this counter-narrative to Christian orthodoxy.[8][9]

 

Barbara Thiering, in her 1992 book Jesus and the Riddle of the Dead Sea Scrolls: Unlocking the Secrets of His Life Story, republished as Jesus the Man, and made into a documentary, The Riddle of the Dead Sea Scrolls, by the Australian Broadcasting Corporation, also developed a Jesus and Mary Magdalene familial scenario. Thiering based her historical conclusions on her application of the so-called Pesher technique to the New Testament.[10][11] In this work of pseudo-scholarship, Thiering would go so far as to precisely place the betrothal of Jesus and Mary Magdalene on 30 June, AD 30, at 10:00 p.m. She relocated the events in the life of Jesus from Bethlehem, Nazareth and Jerusalem to Qumran, and related that Jesus was revived after an incomplete crucifixion and married Mary Magdalene, who was already pregnant by him, that they had a daughter Tamar and a son Jesus Justus born in AD 41, and Jesus then divorced Mary to wed a Jewess named Lydia, going to Rome where he died.[12][13] The account was dismissed as fanciful by scholar Michael J. McClymond.[12]

 

In the television documentary, The Lost Tomb of Jesus, and book The Jesus Family Tomb,[14] both from 2007, fringe investigative journalist Simcha Jacobovici and Charles R. Pellegrino proposed that ossuaries in the Talpiot Tomb, discovered in Jerusalem in 1980, belonged to Jesus and his family. Jacobovici and Pellegrino argue that Aramaic inscriptions reading "Judah, son of Jesus", "Jesus, son of Joseph", and "Mariamne", a name they associate with Mary Magdalene, together preserve the record of a family group consisting of Jesus, his wife Mary Magdalene and son Judah.[15] Such theory has been rejected by the overwhelming majority of biblical scholars, archaeologists and theologians, including the archaeologist Amos Kloner, who led the archeological exavation of the tomb itself.[16]

 

The same year saw a book following the similar theme that Jesus and Mary Magdalene produced a family written by psychic medium and best-selling author Sylvia Browne, The Two Marys: The Hidden History of the Mother and Wife of Jesus.[17][non-primary source needed]

 

The Jesus Seminar, a group of scholars involved in the quest for the historical Jesus from a liberal Christian perspective, were unable to determine whether Jesus and Mary Magdalene had a matrimonial relationship due to the dearth of historical evidence. They concluded that the historical Mary Magdalene was not a repentant prostitute but a prominent disciple of Jesus and a leader in the early Christian movement.[18] The claims that Jesus and Mary Magdalene fled to France parallel other legends about the flight of disciples to distant lands, such as the one depicting Joseph of Arimathea traveling to England after the death of Jesus, taking with him a piece of thorn from the Crown of Thorns, which he later planted in Glastonbury. Historians generally regard these legends as "pious fraud" produced during the Middle Ages.[19][20][21]

 

Joseph and Aseneth

Main article: Joseph and Aseneth

In 2014, Simcha Jacobovici and fringe religious studies historian Barrie Wilson suggested in The Lost Gospel that the eponymous characters in a 6th-century tale called "Joseph and Aseneth" were in actuality representations of Jesus and Mary Magdalene.[22] The story was reported in an anthology compiled by Pseudo-Zacharias Rhetor, along with covering letters describing the discovery of the original Greek manuscript and its translation into Syriac. In one of these, translator Moses of Ingila explained the story "as an allegory of Christ's marriage to the soul".[23] Jacobovici and Wilson instead interpret it as an allegorical reference to actual marriage of Jesus, produced by a community holding that he was married and had children.

 

Israeli Biblical scholar, Rivka Nir called their work "serious-minded, thought-provoking and interesting", but described the thesis as objectionable, [24] and the book has been dismissed by mainstream Biblical scholarship, for example by Anglican theologian, Richard Bauckham.[25] The Church of England compared The Lost Gospel to a Monty Python sketch, the director of communications for the Archbishop's Council citing the book as an example of religious illiteracy and that ever since the publication of The Da Vinci Code in 2003, "an industry had been constructed in which 'conspiracy theorists, satellite channel documentaries and opportunistic publishers had identified a lucrative income stream'."[26] The Lost Gospel was described as historical nonsense by Markus Bockmuehl.[27]

 

Early Mormon Theology

Early Mormon theology posited not only that Jesus married, but that he did so multiple times. Early leaders Jedediah M. Grant, Orson Hyde, Joseph F. Smith and Orson Pratt stated it was part of their religious belief that Jesus Christ was polygamous, quoting this in their respective sermons.[28][29] The Mormons also used an apocryphal passage attributed to the 2nd-century Greek philosopher Celsus: "The grand reason why the gentiles and philosophers of his school persecuted Jesus Christ was because he had so many wives. There were Elizabeth and Mary and a host of others that followed him".[30] This appears to have been a summary of a garbled or second-hand reference to a quote from Celsus the Platonist preserved in the apologetics work Contra Celsum ("Against Celsus") by the Church Father Origen: "such was the charm of Jesus' words, that not only were men willing to follow Him to the wilderness, but women also, forgetting the weakness of their sex and a regard for outward propriety in thus following their Teacher into desert places."[31]

 

Jesus as ancestor of a bloodline

Michael Baigent, Richard Leigh, and Henry Lincoln developed and popularized the idea of a bloodline descended from Jesus and Mary Magdalene in their 1982 book The Holy Blood and the Holy Grail (published as Holy Blood, Holy Grail in the United States),[32] in which they asserted: ". . . we do not think the Incarnation truly symbolises what it is intended to symbolise unless Jesus were married and sired children."[32] Specifically, they claimed that the sangraal of medieval lore did not represent the San Graal (Holy Grail), the cup drunk from at the Last Supper, but both the vessel of Mary Magdalene's womb and the Sang Real, the royal blood of Jesus represented in a lineage descended from them. In their reconstruction, Mary Magdalene goes to France after the crucifixion, carrying a child by Jesus who would give rise to a lineage that centuries later would unite with the Merovingian rulers of the early Frankish kingdom, from whom they trace the descent into medieval dynasties that were almost exterminated by the Albigensian Crusade against the Cathars, leaving a small remnant protected by a secret society, the Priory of Sion.[33][34] The role of the Priory was inspired by earlier writings primarily by Pierre Plantard, who in the 1960s and 1970s had publicized documents from the secretive Priory that demonstrated its long history and his own descent from the lineage they had protected that traced to the Merovingian kings, and earlier, the biblical Tribe of Benjamin.[35] Plantard would dismiss Holy Blood as fiction in a 1982 radio interview,[36] as did his collaborator Philippe de Cherisey in a magazine article,[37] but a decade later Plantard admitted that, before he incorporated a group of that name in the 1950s, the very existence of the Priory had been an elaborate hoax, and that the documents on which Baigent, Leigh and Lincoln had relied for inspiration had been forgeries planted in French institutions to be later "rediscovered".[38][39][40] The actual lineage claimed for the portion of the Plantard and Holy Blood bloodline that passes through the medieval era received highly-negative reviews in the genealogical literature, being viewed as consisting of numerous inaccurate linkages that were unsupported, or even directly contradicted, by the authentic historical record.[41]

 

The Woman with the Alabaster Jar: Mary Magdalen and the Holy Grail, a 1993 book by Margaret Starbird, built on Cathar beliefs and Provencal traditions of Saint Sarah, the black servant of Mary Magdalene, to develop the hypothesis that Sarah was the daughter of Jesus and Mary Magdalene.[4] In her reconstruction, a pregnant Mary Magdalene fled first to Egypt and then France after the crucifixion.[3] She sees this as the source of the legend associated with the cult at Saintes-Maries-de-la-Mer. She also noted that the name "Sarah" means "Princess" in Hebrew, thus making her the forgotten child of the "sang réal", the blood royal of the King of the Jews.[42] Starbird also viewed Mary Magdalene as identical with Mary of Bethany, sister of Lazarus.[3] Though working with the same claimed relationship between Jesus, Mary Magdalene and Saint Sarah that would occupy a central role in many of the published bloodline scenarios, Starbird considered any question of descent from Sarah to be irrelevant to her thesis,[4] though she accepted that it existed.[43] Her view of Mary Magdalene/Mary of Bethany as wife of Jesus is also linked with the concept of the sacred feminine in feminist theology. Mary Ann Beavis would point out that unlike others in the genre, Starbird actively courted scholarly engagement over her ideas, and that "[a]lthough her methods, arguments and conclusions do not always stand up to scholarly scrutiny, some of her exegetical insights merit attention . . .," while suggesting she is more mythographer than historian.[3]

 

In his 1996 book Bloodline of the Holy Grail: The Hidden Lineage of Jesus Revealed, Laurence Gardner presented pedigree charts of Jesus and Mary Magdalene as the ancestors of all the European royal families of the Common Era.[44] His 2000 sequel Genesis of the Grail Kings: The Explosive Story of Genetic Cloning and the Ancient Bloodline of Jesus is unique in claiming that not only can the Jesus bloodline truly be traced back to Adam and Eve but that the first man and woman were primate-alien hybrids created by the Anunnaki of his ancient astronaut theory.[45] Gardner followed this book with several additional works in the bloodline genre.

 

In Rex Deus: The True Mystery of Rennes-Le-Chateau and the Dynasty of Jesus, published in 2000, Marylin Hopkins, Graham Simmans and Tim Wallace-Murphy developed a similar scenario based on 1994 testimony by the pseudonymous "Michael Monkton",[46] that a Jesus and Mary Magdalene bloodline was part of a shadow dynasty descended from twenty-four high priests of the Temple in Jerusalem known as Rex Deus – the "Kings of God".[47] The evidence on which the informant based his claim to be a Rex Deus scion, descended from Hugues de Payens, was said to be lost and therefore cannot be independently verified, because 'Michael' claimed that it was kept in his late father's bureau, which was sold by his brother unaware of its contents.[47] Some critics point out the informant's account of his family history seems to be based on the controversial work of Barbara Thiering.[48]

 

The Da Vinci Code

Main article: The Da Vinci Code

The best-known work depicting a bloodline of Jesus is the 2003 best-selling novel and global phenomenon, The Da Vinci Code, joined by its major cinematic release of the same name. In these, Dan Brown incorporated many of the earlier bloodline themes as the background underlying his work of conspiracy fiction. The author attested both in the text and public interviews to the veracity of the bloodline details that served as the novel's historical context. The work so captured the public imagination that the Catholic Church felt compelled to warn its congregates against accepting its pseudo-historical background as fact, which did not stop it from becoming the highest-selling novel in American history, with tens of millions of copies sold worldwide. Brown mixes facts easily verified by the reader and additional seemingly-authentic details that are not actually factual, with a further layer of outright conjecture that together blurs the relationship between fiction and history. An indication of the degree to which the work captured the public imagination is seen in the cottage industry of works that it inspired, replicating his style and theses or attempting to refute it.[49]

 

In Brown's novel, the protagonist discovers that the grail actually referred to Mary Magdalene, and that knowledge of this, as well as of the bloodline descended from Jesus and Mary, has been kept hidden to the present time by a secret conspiracy.[49] This is very similar to the thesis put forward by Baigent, Leigh and Lincoln in Holy Blood and the Holy Grail though not associating the hidden knowledge with the Cathars,[4] and Brown also incorporated material from Joyce, Thiering and Starbird, as well as the 1965 The Passover Plot, in which Hugh J. Schonfield claimed that Lazarus and Joseph of Arimathea had faked the resurrection after Jesus was killed by mistake when stabbed by a Roman soldier.[50] Still, Brown relied so heavily on Holy Blood that two of its authors, Baigent and Leigh, sued the book's publisher, Random House, over what they considered to be plagiarism. Brown had made no secret that the bloodline material in his work drew largely on Holy Blood, directly citing the work in his book and naming the novel's historical expert after Baigent (in anagram form) and Leigh, but Random House argued that since Baigent and Leigh had presented their ideas as non-fiction, consisting of historical facts, however speculative, then Brown was free to reproduce these concepts just as other works of historical fiction treat underlying historical events. Baigent and Leigh argued that Brown had done more, "appropriat[ing] the architecture" of their work, and thus had "hijacked" and "exploited" it.[51] Though one judge questioned whether the supposedly-factual Holy Blood truly represented fact, or instead bordered on fiction due to its highly conjectural nature,[52] courts ruled in favor of Random House and Brown.[51]

 

Bloodline documentary

Main article: Bloodline (documentary)

The 2008 documentary Bloodline[53] by Bruce Burgess, a filmmaker with an interest in paranormal claims, expands on the Jesus bloodline hypothesis and other elements of The Holy Blood and the Holy Grail.[54] Accepting as valid the testimony of an amateur archaeologist codenamed "Ben Hammott" relating to his discoveries made in the vicinity of Rennes-le-Château since 1999; Burgess claimed Ben had found the treasure of Bérenger Saunière: a mummified corpse, which they believe is Mary Magdalene, in an underground tomb they claim is connected to both the Knights Templar and the Priory of Sion. In the film, Burgess interviews several people with alleged connections to the Priory of Sion, including a Gino Sandri and Nicolas Haywood. A book by one of the documentary's researchers, Rob Howells, entitled Inside the Priory of Sion: Revelations from the World's Most Secret Society - Guardians of the Bloodline of Jesus presented the version of the Priory of Sion as given in the 2008 documentary,[55] which contained several erroneous assertions, such as the claim that Plantard believed in the Jesus bloodline hypothesis.[56] In 2012, however, Ben Hammott, using his real name of Bill Wilkinson, gave a podcast interview in which he apologised and confessed that everything to do with the tomb and related artifacts was a hoax, revealing that the 'tomb' had been part of a now-destroyed full-sized movie set located in a warehouse in England.[57][58]

 

Jesus in Japan

Claims to a Jesus bloodline are not restricted to Europe. An analogous legend claims that the place of Jesus at the crucifixion was taken by a brother, while Jesus fled through what would become Russia and Siberia to Japan, where he became a rice farmer at Aomori, at the north of the island of Honshu. It is claimed he married there and had a large family before his death at the age of 114, with descendants to the present. A Grave of Jesus (Kristo no Hakka) there attracts tourists. This legend dates from the 1930s, when a document claimed to be written in the Hebrew language and describing the marriage and later life of Jesus was discovered. The document has since disappeared.[59]

  

www.wikiwand.com/en/Jesus_bloodline

  

The sanctuary of Sainte-Baume, also known as the grotte de Sainte-Marie-Madeleine, is a sanctuary erected within a cave in the Sainte-Baume massif, in the commune of Plan-d'Aups-Sainte- Baume, in the Var, which would have served as a hermitage for Saint Mary Magdalene after she evangelized Provence.

 

According to Tradition, Mary Magdalene was expelled from Palestine with several disciples during the first persecutions against Christians after Pentecost. Embarked on a boat without a sail or a rudder, they miraculously landed on the Provençal shores, at a place which was later named Les Saintes-Maries-de-la-Mer and became the first evangelizers of Provence. "Marie Madeleine preached in Marseilles in the company of Lazarus then she established herself in this steep mountain, in the cave which has since been named after her. Like the beloved of the Song of Songs, "dove hidden in the hollow of the rock, in steep retreats", she was able to devote herself to prayer and contemplation in solitude "1.

 

Timeline for

In pre-Christian times, Sainte-Baume was the sacred mountain of the Marseillais: a high place of worship of fertility, and in particular of the Artemis of Ephesus. Around 60, Lucain, a Latin poet, mentions a certain “sacred wood” near Marseille, although nothing allows him to be associated with it.

 

Around 415, Saint John Cassien, founded a first priory on his return from Egypt and from the fifth century, the presence of monks from the Saint-Victor abbey in Marseille is attested.

 

The cave of Sainte-Marie-Madeleine becomes a famous place of Christian pilgrimage. In 816, Pope Stephen IV, then, in 878, Pope John VIII went there. As on July 22, 1254, Saint Louis visited Sainte-Baume 2 on his return from the Crusade.

  

Reliquary of the tibia of Mary Magdalene.

 

Statue of Mary Magdalene.

In 1279, Charles II of Anjou, King of Sicily and Count of Provence, carried out the excavations which led to the discovery at Saint-Maximin of the relics of Mary Magdalene, in a crypt buried under the small Benedictine priory dedicated to the saint. A marble tomb is identified there as that of Mary Magdalene. In addition, a scroll of parchment explains that the relics were buried at the beginning of the 7th century in order to protect them from the Saracen invasions which raged in the Country3. After six years of detention in Barcelona, ​​Charles II can implement in 1288 his project to build a basilica to house the relics. Finally, on June 21, 1295, he obtained from Pope Boniface VIII a papal bull, which entrusted the young order of the Dominicans with the charge of the holy places: the basilica of Saint-Maximin and the cave of Sainte-Baume.

 

In 1332, the same day Philippe VI of Valois, King of France, Alfonso IV of Aragon, Hugh of Cyprus, and John of Luxembourg, King of Bohemia, gathered in the cave.

 

Throughout the fourteenth and fifteenth centuries, popes, kings and princes made pilgrimages to the cave, one of the most famous in Christendom.

 

In 1440, we deplore the fire in the cave and the destruction of buildings. In 1456 Louis XI, King of France richly endowed the cave and designed the plan of the dome he offered for the altar. And, on January 21, 1516, François Ier accompanied by his mother Louise of Savoy and his wife Claude of France comes to give thanks for his return from Marignan. He provided funds for the restoration of the cave, had the "Francis I portal" built (visible at the hostel), and built three royal chambers in the cave. Jean Ferrier, Archbishop of Arles, had the oratories of the Chemin des Rois erected.

 

Charles IX went there during his royal tour of France in 1564 in order to satisfy the Catholics4. But, in 1586 and 1592, we deplore looting of the cave (the second time despite the drawbridge erected following the looting that took place when the relics of Saint-Maximin had been transferred to the cave during the disturbances caused by the League).

 

Esprit Blanc had the so-called “Parisians” (or “of the dead”) chapel built in 1630 and, in 1649, Monsignor de Marinis offered the statue of the Blessed Virgin, the work of the Genoese sculptor Orsolino (still visible in the cave).

 

On February 5, 1660, Louis XIV, with Anne of Austria and Mazarin, went to the sanctuary.

 

The Revolution and the Empire endanger the site. In 1791, the Marquis of Albertas redeemed the property of the Dominicans which had been sold as national property. But, in 1793, Sainte-Baume was renamed "les Thermopyles", the interior of the cave and the large adjoining guesthouse (traces of which can still be seen in the cliff) were destroyed. Fortunately, Lucien Bonaparte, husband of Christine Boyer, daughter of the innkeeper of Saint-Maximin, saves the basilica and the forest of Sainte-Baume from revolutionaries. In 1814, Marshal Brune destroyed the cave and what had just been rebuilt there.

 

It was not until 1822 that Chevalier, prefect of the Var, restored the Catholic worship. In 1824, a community of Trappists was established on the plateau, opposite the current hotel, and in 1833 gave way to Capuchins who only stayed for two years.

 

The statue of Marie Madeleine on her rock comes from the tomb of Count Joseph-Alphonse-Omer de Valbelle who was in the Charterhouse of Montrieux [ref. desired].

 

In 1848, Father Henri-Dominique Lacordaire, famous preacher and restorer of the Dominican order in France since 1840, came to the cave and, in 1859, he bought the convent of Saint-Maximin to reinstall the preaching brothers there; with the help of the work for the restoration of the holy places of Provence that he had founded, he reinstalls on July 22, the brothers in the cave; he built the hotel in the plain of Sainte-Baume.

 

In 1865, the Dominican brother Jean-Joseph Lataste founded the congregation of Dominicans known as “of Bethany” which accommodates women released from prison (converted Madeleines); he set up a community near the church of Plan d'Aups in 1884. In 1889, some relics of Mary Magdalene were placed in the reliquary made by Lyon goldsmith Armand Caillat and placed in the cave.

 

Following the laws separating the Church and the State, the cave became the property of the commune of Plan d'Aups in 1910.

 

In 1914, with the centenary celebrations of the reopening of worship at Sainte-Baume, Father Vayssière restored the stairs leading to the cave (150 steps in memory of 150 Ave du Rosaire) and inaugurated the Calvary. Then in 1928, the Nazareth retirement home was inaugurated in front of the hostel (now occupied by the ecomuseum). In 1932, Marthe Spitzer5, a Jewish convert close to the Benedictines of the rue Monsieur and the entourage of Jacques Maritain, produced the Pietà which is on the forecourt of the cave (donated by the Basilica of La Madeleine in Paris).

 

In 1948, the architect Le Corbusier planned the construction of an underground basilica at Sainte-Baume (a utopian project never realized) then, in 1966 - Oscar Niemeyer carried out a project for a modern convent at the Hôtellerie instead of the west wing. In 1970, Thomas Gleb created the Saint-Dominique oratory at the hotel, between 1976 and 1981, the companion Pierre Petit ("Tourangeau, the disciple of the Light") made the stained glass windows in the cave.

 

In 1995 was celebrated the seventh centenary of the foundation of the basilica of Saint-Maximin and the installation of the Dominican friars in Saint-Maximin and in the cave of Sainte-Baume.

 

A community of four Dominican friars was re-established in the summer of 2002 (the date of the reopening of the cave after the work of purging the cliff), which welcomes pilgrims to the cave of Sainte-Marie-Madeleine. Since the summer of 2008, the number of Dominican friars has been increased to eight, and they ensure, in addition to the reception at the cave, the management of the Sainte-Baume hotel.

 

fr.wikipedia.org/wiki/Sanctuaire_de_la_Sainte-Baume

The High Level Bridge is a road and railway bridge spanning the River Tyne between Newcastle upon Tyne and Gateshead in North East England. It is considered the most notable historical engineering work in the city. It was built by the Hawks family from 5,050 tons of iron. George Hawks, Mayor of Gateshead, drove in the last key of the structure on 7 June 1849, and the bridge was officially opened by Queen Victoria later that year.

 

It was designed by Robert Stephenson to form a rail link towards Scotland for the developing English railway network; a carriageway for road vehicles and pedestrians was incorporated to generate additional revenue. The main structural elements are tied cast-iron arches.

 

Notwithstanding the considerable increase in the weight of railway vehicles since it was designed, it continues to carry rail traffic, although the King Edward bridge nearby was opened in 1906 to ease congestion. The roadway is also still in use, although with a weight restriction. It is a Grade I listed structure.

 

In 1835, the Newcastle and Carlisle Railway (N&CR) Act authorised the line to approach Newcastle to a terminus at Redheugh, on the south bank of the River Tyne, close to the end of the present-day New Redheugh Bridge. The Act also authorised a crossing of the Tyne there, giving rail access to the north shore quays. The river was shallow at this point, and the bridge would have been at a low level, only 20 ft (6.1 m) above high water. The line would then have climbed to a terminus at the Spital, near Neville Street and the east end of the present-day Newcastle Central station. The climb was to be at a gradient of 1 in 22 and would have been operated by a stationary steam engine with rope haulage.

 

Hitherto railways in the region had had a local focus, but now the Great North of England Railway (GNER) obtained authorising Acts to build from Newcastle to York, forming part of a continuous trunk railway network to connect to London; the project was controlled by George Hudson, the so-called Railway King. At first the GNER was content to get access to the N&CR Newcastle terminus, by connecting with the N&CR at Redheugh and running over its line across the Tyne and up to the Spital. This had the advantage of avoiding a separate, and expensive, crossing of the river, but would have meant a steep descent to Redheugh as the GNER line approached on high ground from the Team Valley, only to climb once again to the Spital. Moreover, William Brandling had made known his intention to reach Newcastle from his line by running at a high level through Gateshead. On 25 April 1837, the N&CR decided to build to their south side, low-level terminus at Redheugh, but to leave the issue of the Tyne crossing open.

 

Richard Grainger was a developer in Newcastle, and had acquired lands at Elswick (on the north bank of the Tyne west of the proposed Redheugh crossing). In 1836, he published a pamphlet recommending a crossing of the Tyne there, and the formation of spacious railway terminal accommodation there. Drawing attention to the limited scope for extending eastwards from the Spital, and "in the event of an Edinburgh Railway also terminating in this situation, the interchange of passengers, goods, and cattle would be greatly increased".

 

Grainger's plan was not adopted, and the Brandling Junction Railway reached Gateshead in 1839. The GNER ran out of money and it was superseded in Hudson's railway empire by the Newcastle and Darlington Junction Railway, which opened its line using the Brandling Junction Railway from the south east instead of through the Team Valley. The Brandling Junction line had a terminus in Gateshead at Greenesfield at a high level, and the N&CR line was built climbing on an inclined plane at a gradient of 1 in 23 from Redheugh to reach that. The Newcastle and Darlington Junction Railway opened its line from the south to Pelaw, allowing its trains to reach Gateshead over the Brandling Junction line, in 1844. The tables had been turned, and indeed for a while Greenesfield was the de facto main station for the conurbation of Newcastle and Gateshead.

 

John and Benjamin Green were a father and son architectural practice active in Newcastle. In 1841 Benjamin Green had proposed a high level bridge for road traffic, substantially on the alignment of the actual High Level Bridge; and sensing the commercial climate he explained how it could be adapted for railway use. He failed to get any financial support, but in 1843 George Hudson was looking for ways to extend his railway network northwards, and the Greens' scheme fitted with his takeover of the Newcastle and Darlington Junction Railway; the line got its authorising Act on 22 May 1844, and the Act included the road bridge.

 

The Newcastle and North Shields Railway had opened in 1839 from its own terminus at Carliol Square, on the north-east edge of Newcastle. As a purely local concern, the disconnection was not important, but interest gathered in a railway to central Scotland; the "Edinburgh Railway" foreseen by Grainger. A Scottish concern, the North British Railway, had got its Act of Parliament the previous year to build as far south as Berwick (later known as Berwick-upon-Tweed.

 

Now Hudson was intent on capturing the line to Edinburgh for his empire, and he encouraged the development of railway plans to get there; the route such a line might take continued to generate considerable controversy. There was still ambiguity about Hudson's intentions for the bridge—an easier crossing point at Bill Quay, two miles downstream had been considered—and Newcastle Town Council sought undertakings from him. In addition, he promised a footway crossing; this was apparently not a sweetener to the Town Council, but a commercial decision, expected to bring in £250 a week. The footway crossing was later extended to include horse-drawn vehicles.

 

Finally, the Newcastle and Berwick Railway was authorised by Act of Parliament of 31 July 1845. The line would cross the Greens' high level bridge, starting from the Gateshead Greenesfield station, and commitments made to the building of a bridge by the Newcastle and Darlington Junction Railway were transferred to the Newcastle and Berwick Railway.

 

The bridge was to be designed by Robert Stephenson; T E Harrison did the detailed design work.

 

The height of the railway, at about 120 ft (37 m) above high water, was determined by the level of the Brandling Junction line in Gateshead. A double-deck configuration was selected because of road levels on the approaches, and to avoid the excess width of foundations which a side-by-side arrangement would require. The deck width was determined by the useful roadway width plus the width of structural members, which gave the railway deck the width for three tracks.

 

The foundations were to be difficult because of the poor ground conditions in the river, and this ruled out an all-masonry structure, so cast iron or wrought iron was inevitable for the superstructure. A tied arch (or bow-string) design was favoured because the outward thrust imposed by an arch is contained by the tie; no abutments capable of resisting the thrust could be provided here.

 

Stephenson had used this configuration before; he recorded that, "The earliest railway bridge on the bowstring principle is that over the Regent's Canal, near Chalk Farm, on the London and Birmingham Railway".

 

The arch would consist of iron ribs. Fawcett says, "The reasons for not using wrought iron was due to some engineers' distrust of rivetting, the relatively small size of wrought iron plates then available, and the higher cost… On 1 October 1845 when the Newcastle and Berwick Board instructed T E Harrison for their bridges, none of the uses of wrought iron had been developed far enough to be considered as an alternative to cast iron for the High Level Bridge. A tubular bridge might have been considered by Robert Stephenson but the distance between solid and reasonably shallow foundations would have given a span much larger than the Britannia Bridge."

 

The depth of rock in the riverbed resulted in a height of 140 ft (43 m) from there to the superstructure. Three river piers were permitted by the Tyne Improvement Commissioners, and therefore four river spans of 125 ft (38 m) were decided on; there were additional subsidiary spans on the shore.

 

The cast iron arch ribs are 3 ft 6 in (1.07 m) deep at the crown, increasing to 3 ft 9 in (1.14 m) at the springing, with 12-inch (30 cm) flanges; the flanges and webs were three inches thick; in the case of the inner ribs, and two inches for the outer ribs. The rise was 17 ft 6 in (5.33 m), determined by the desired geometry to confine the horizontal thrust within bounds. Each arch was cast in five sections, bolted together.

 

Stephenson described the tie bars:

 

The ties consist of flat wrought-iron bars, 7 inches by 1 inch of best scrap iron, with eyes of 3½ inches diameter, bored out of the solid, and pins turned and fitted closely. Each external rib is tied by four of these bars, and each internal rib by eight. The sectional area of each external tie is 28 [square] inches, and of each internal tie 56 [square] inches, giving a total area of 168 square inches. These bars were all tested to 9 tons on the square inch.

 

The rail deck is supported above the arches by twelve 14-inch (360 mm) square columns at 9 feet 11 inches (3.02 m) centres. Suspension rods supported the road deck, and both decks had two layers of diagonally laid three-inch deck timbers on suitable wrought iron cross girders (and rail-bearers in the case of the rail deck).

 

The main contractors for the ironwork were Hawks, Crawshay, and Sons, who were assisted by John Abbot and Co., of Gateshead Park Works, and Losh Wilson and Bell, of Walker Ironworks, in the production of the castings. The tender was accepted at £112,000. The contract for the bridge piers and land arches and for the Newcastle Viaduct were won by John Rush and Benjamin Lawton of York for £94,000 and £82,500 respectively. The total cost of the contracts at 1999 prices would be over £30 million.

 

The first masonry was laid on 12 January 1847. A temporary timber viaduct on the east side was ready on 20 August 1848.

 

Timber coffer dams were constructed; they were 76 ft 6 in (23.32 m) by 29 ft (8.8 m) with two skins, the space between being filled with puddle clay. James Nasmyth had a novel design of steam pile driver; it had first been used in Devonport Docks in 1845; it could deliver 60 to 70 blows a minute; the cycle time with the hand-operated pile drivers formerly in use was four minutes. The drop weight was 1½ tons and its stroke was 2 ft 9 in (0.84 m); one was purchased from Nasmyth.

 

The ground gave considerable trouble during construction; Stephenson recorded:

 

Many difficulties occurred in driving the piles which considerably retarded the progress of the work, and, among others, the peculiar effect of ebb and flow during this operation is worthy of note. At flood-tide, the sand became so hard as almost totally to resist the utmost efforts of driving, while at ebb the sand was quite loose, and allowed of doing so with facility. It was therefore found necessary to abandon the driving on many occasions during high water. The difference between high and low water is 11 feet 6 inches. Another difficulty arose from the quicksands beneath the foundations. Although the piles were driven to the rock bottom, the water forced its way up, baffling the attempts to fill in between them; this, however, was remedied by using a concrete made of broken stone and Roman cement, which was continually thrown in until the bottom was found to be secure.

 

The arch ribs were erected in section by travelling crane; each arch was temporarily erected at the contractor’s works. The first was placed on 10 July 1848, and the erection of the ironwork was quick.

 

Already on 29 August 1848, it was possible to pass a special train over the first arch, and over a temporary structure for the rest of the crossing:

 

The High Level Bridge Over the Tyne: This important junction between the York and Newcastle and the Newcastle and Berwick Railway has been completed, and the event was celebrated on Tuesday last. In the afternoon of that day, a train of [specially invited] passengers passed along the temporary timber viaduct from the station at Gateshead to the station at Newcastle. Mr Hudson and several other Directors of the York, Newcastle, and Berwick line, who had been visiting Sunderland ... proceeded in a special train from that town to Gateshead... Several carriages were then added to the special train, and an open truck placed at each end, in which bands of music were stationed. The shrill sound of the whistle gave the signal for a royal salute, under the booming of which the train passed along the line, the band playing, and the thousands assembled to witness the event, rending the air with joyous acclamation Upon reaching the bridge, the bands struck up the well-known local air of "The Keel Row" which they continued till the train had reached the solid ground on the northern side of the river... The train proceeded to the Newcastle and Berwick station, where the company alighted and walked in procession to the Queen’s Head Inn, where a magnificent entertainment had been provided for the Directors and their friends, by the Mayor of Newcastle.

 

[From the south abutment of the High Level Bridge] and the river pier on the south side, the cast iron arch and road-way are nearly completed, and the second arch will be in progress in the course of a few weeks. From the middle of the first arch, the line curves to a temporary timber viaduct erected along the west side of the intended bridge. The height of this viaduct is one hundred and twenty feet to the level of the rails; it is built upon piles, which are driven between thirty and forty feet into the bed of the river. Its stability was sufficiently tested on Monday, when Captain Leffan (sic), the Government Inspector of Railways, examined it preparatory to the opening. On that day, two powerful engines weighing upwards of seventy tons, traversed it at different degrees of speed for between two and three hours; the weight would be about one ton to a foot, being four or five times greater than the temporary structure will ever be required to bear, and the result was, in the highest degree, satisfactory.

 

Among the company in the train were four ladies, who are deserving of honourable mention, from the courage they displayed in accompanying it, namely, Mrs Nichs. Wood, and Miss F. Wood, Mrs I. L. Bell, and her sister, Miss Pattinson of Washington. As the train passed steadily over the bridge the anxiety of the immense multitude seemed intense, and the scene was truly exciting, yet fearful—not only from the lofty eminence occupied by the train but, from the apparent narrowness and nakedness of the platform on which it rolled along. It seemed from its noiselessness, rather an aerial flight, than the rattling sweep of the iron horse.

 

Ordinary traffic appears to have used the temporary single line structure after this date.

 

The eastern track was ready for an inspection by Captain Laffan, Inspecting Office for the Board of Trade, when he visited on 11 August 1849; a load test with four tender locomotives and eighteen wagons loaded with ballast, a total weight of 200 tons. Laffan approved the bridge:

 

I believe all the works of the bridge are completed, and that I believe it to be perfectly secure and safe. The Company have as yet only laid one line of rails over this structure, and I beg to recommend that permission be given to open that one line.

 

The first passenger train crossed the completed structure on the morning of 15 August 1849.

 

Queen Victoria formally inaugurated the bridge on passing through by train on 28 September 1849.

 

The Queen at Newcastle: Her Majesty yesterday honoured this ancient borough with her presence. The event was one of universal and all-engrossing interest... The morning, unfortunately, was dull and the weather unsettled, giving forebodings of a wet and uncomfortable day... Notwithstanding, however, the unfavourable weather dense crowds assembled at every spot in this locality, where a view of the royal carriage could be obtained, and many remained for hours exposed to the weather in order that they might retain the places which at an earlier period of the morning they had secured. The bridge was densely lined with people, and the platform was well covered, though not inconveniently crowded. A profusion of banners were displayed on this elegant and substantial structure, and from nearly all the public and many of the private buildings both in Newcastle and Gateshead. The vessels in the river hoisted their flags mast-high on the occasion, and the church bells of the two towns rung many a merry peal in honour of the royal visit... Pursuant to a request issued by the Mayor, most of the shops were closed about 11 o’clock, and the manufacturers were desired by our worthy chief magistrate "not to produce smoke between that hour and one," with which we believe, they generally complied... At precisely twenty minutes past twelve, the royal carriage appeared in sight, and when it reached the Spital, a splendid locomotive, built by the celebrated house of Stephenson and Co., gaily decorated and bearing on its front "God save the Queen" surmounted by a crown, and a suitable inscription encircling the boiler, was attached to the train. It then slowly proceeded to the centre of the colossal fabric, amidst bursts of loud and rapturous cheering from the assembled thousands, her Majesty repeatedly acknowledging these marked demonstrations of loyalty and affection from her faithful and attached subjects.

 

The Mayors of Newcastle and Gateshead presented a formal address. The queen travelled in the royal carriage belonging to the London and North Western Railway.

 

In other carriages were members of her Majesty’s suite and the directors of the York, Newcastle, and Berwick Railway. The engine drawing the royal train was under the direction of Mr T. E. Harrison, the resident engineer, and driven by Mr Thos. Carr... After staying altogether from five to ten minutes, the train was again put in motion, and amidst firing of artillery and rapturous plaudits from the dense throng, proceeded en route to Darlington.

 

The bridge and its immediate approaches had cost £243,000.

 

The road deck was re-opened only in a southbound (towards Gateshead) direction and carries only buses and taxis; the one-way operation is required because of width considerations after protection to the structural members was inserted. Pedestrians and cyclists use the bridge freely. Railway traffic continues in full use of the bridge, although the majority of mainline trains use the King Edward VII bridge for reasons of convenience.

 

Newcastle upon Tyne, or simply Newcastle is a cathedral city and metropolitan borough in Tyne and Wear, England. It is located on the River Tyne's northern bank, opposite Gateshead to the south. It is the most populous settlement in the Tyneside conurbation and North East England.

 

Newcastle developed around a Roman settlement called Pons Aelius, the settlement became known as Monkchester before taking on the name of a castle built in 1080 by William the Conqueror's eldest son, Robert Curthose. It was one of the world's largest ship building and repair centres during the industrial revolution. Newcastle was part of the county of Northumberland until 1400, when it separated and formed a county of itself. In 1974, Newcastle became part of Tyne and Wear. Since 2018, the city council has been part of the North of Tyne Combined Authority.

 

The history of Newcastle upon Tyne dates back almost 2,000 years, during which it has been controlled by the Romans, the Angles and the Norsemen amongst others. Newcastle upon Tyne was originally known by its Roman name Pons Aelius. The name "Newcastle" has been used since the Norman conquest of England. Due to its prime location on the River Tyne, the town developed greatly during the Middle Ages and it was to play a major role in the Industrial Revolution, being granted city status in 1882. Today, the city is a major retail, commercial and cultural centre.

 

Roman settlement

The history of Newcastle dates from AD 122, when the Romans built the first bridge to cross the River Tyne at that point. The bridge was called Pons Aelius or 'Bridge of Aelius', Aelius being the family name of Roman Emperor Hadrian, who was responsible for the Roman wall built across northern England along the Tyne–Solway gap. Hadrian's Wall ran through present-day Newcastle, with stretches of wall and turrets visible along the West Road, and at a temple in Benwell. Traces of a milecastle were found on Westgate Road, midway between Clayton Street and Grainger Street, and it is likely that the course of the wall corresponded to present-day Westgate Road. The course of the wall can be traced eastwards to the Segedunum Roman fort at Wallsend, with the fort of Arbeia down-river at the mouth of the Tyne, on the south bank in what is now South Shields. The Tyne was then a wider, shallower river at this point and it is thought that the bridge was probably about 700 feet (210 m) long, made of wood and supported on stone piers. It is probable that it was sited near the current Swing Bridge, due to the fact that Roman artefacts were found there during the building of the latter bridge. Hadrian himself probably visited the site in 122. A shrine was set up on the completed bridge in 123 by the 6th Legion, with two altars to Neptune and Oceanus respectively. The two altars were subsequently found in the river and are on display in the Great North Museum in Newcastle.

 

The Romans built a stone-walled fort in 150 to protect the river crossing which was at the foot of the Tyne Gorge, and this took the name of the bridge so that the whole settlement was known as Pons Aelius. The fort was situated on a rocky outcrop overlooking the new bridge, on the site of the present Castle Keep. Pons Aelius is last mentioned in 400, in a Roman document listing all of the Roman military outposts. It is likely that nestling in the shadow of the fort would have been a small vicus, or village. Unfortunately, no buildings have been detected; only a few pieces of flagging. It is clear that there was a Roman cemetery near Clavering Place, behind the Central station, as a number of Roman coffins and sarcophagi have been unearthed there.

 

Despite the presence of the bridge, the settlement of Pons Aelius was not particularly important among the northern Roman settlements. The most important stations were those on the highway of Dere Street running from Eboracum (York) through Corstopitum (Corbridge) and to the lands north of the Wall. Corstopitum, being a major arsenal and supply centre, was much larger and more populous than Pons Aelius.

 

Anglo-Saxon development

The Angles arrived in the North-East of England in about 500 and may have landed on the Tyne. There is no evidence of an Anglo-Saxon settlement on or near the site of Pons Aelius during the Anglo-Saxon age. The bridge probably survived and there may well have been a small village at the northern end, but no evidence survives. At that time the region was dominated by two kingdoms, Bernicia, north of the Tees and ruled from Bamburgh, and Deira, south of the Tees and ruled from York. Bernicia and Deira combined to form the kingdom of Northanhymbra (Northumbria) early in the 7th century. There were three local kings who held the title of Bretwalda – 'Lord of Britain', Edwin of Deira (627–632), Oswald of Bernicia (633–641) and Oswy of Northumbria (641–658). The 7th century became known as the 'Golden Age of Northumbria', when the area was a beacon of culture and learning in Europe. The greatness of this period was based on its generally Christian culture and resulted in the Lindisfarne Gospels amongst other treasures. The Tyne valley was dotted with monasteries, with those at Monkwearmouth, Hexham and Jarrow being the most famous. Bede, who was based at Jarrow, wrote of a royal estate, known as Ad Murum, 'at the Wall', 12 miles (19 km) from the sea. It is thought that this estate may have been in what is now Newcastle. At some unknown time, the site of Newcastle came to be known as Monkchester. The reason for this title is unknown, as we are unaware of any specific monasteries at the site, and Bede made no reference to it. In 875 Halfdan Ragnarsson, the Danish Viking conqueror of York, led an army that attacked and pillaged various monasteries in the area, and it is thought that Monkchester was also pillaged at this time. Little more was heard of it until the coming of the Normans.

 

Norman period

After the arrival of William the Conqueror in England in 1066, the whole of England was quickly subjected to Norman rule. However, in Northumbria there was great resistance to the Normans, and in 1069 the newly appointed Norman Earl of Northumbria, Robert de Comines and 700 of his men were killed by the local population at Durham. The Northumbrians then marched on York, but William was able to suppress the uprising. That same year, a second uprising occurred when a Danish fleet landed in the Humber. The Northumbrians again attacked York and destroyed the garrison there. William was again able to suppress the uprising, but this time he took revenge. He laid waste to the whole of the Midlands and the land from York to the Tees. In 1080, William Walcher, the Norman bishop of Durham and his followers were brutally murdered at Gateshead. This time Odo, bishop of Bayeux, William's half brother, devastated the land between the Tees and the Tweed. This was known as the 'Harrying of the North'. This devastation is reflected in the Domesday Book. The destruction had such an effect that the North remained poor and backward at least until Tudor times and perhaps until the Industrial Revolution. Newcastle suffered in this respect with the rest of the North.

 

In 1080 William sent his eldest son, Robert Curthose, north to defend the kingdom against the Scots. After his campaign, he moved to Monkchester and began the building of a 'New Castle'. This was of the "motte-and-bailey" type of construction, a wooden tower on top of an earthen mound (motte), surrounded by a moat and wooden stockade (bailey). It was this castle that gave Newcastle its name. In 1095 the Earl of Northumbria, Robert de Mowbray, rose up against the king, William Rufus, and Rufus sent an army north to recapture the castle. From then on the castle became crown property and was an important base from which the king could control the northern barons. The Northumbrian earldom was abolished and a Sheriff of Northumberland was appointed to administer the region. In 1091 the parish church of St Nicholas was consecrated on the site of the present Anglican cathedral, close by the bailey of the new castle. The church is believed to have been a wooden building on stone footings.

 

Not a trace of the tower or mound of the motte and bailey castle remains now. Henry II replaced it with a rectangular stone keep, which was built between 1172 and 1177 at a cost of £1,444. A stone bailey, in the form of a triangle, replaced the previous wooden one. The great outer gateway to the castle, called 'the Black Gate', was built later, between 1247 and 1250, in the reign of Henry III. There were at that time no town walls and when attacked by the Scots, the townspeople had to crowd into the bailey for safety. It is probable that the new castle acted as a magnet for local merchants because of the safety it provided. This in turn would help to expand trade in the town. At this time wool, skins and lead were being exported, whilst alum, pepper and ginger were being imported from France and Flanders.

 

Middle Ages

Throughout the Middle Ages, Newcastle was England's northern fortress, the centre for assembled armies. The Border war against Scotland lasted intermittently for several centuries – possibly the longest border war ever waged. During the civil war between Stephen and Matilda, David 1st of Scotland and his son were granted Cumbria and Northumberland respectively, so that for a period from 1139 to 1157, Newcastle was effectively in Scottish hands. It is believed that during this period, King David may have built the church of St Andrew and the Benedictine nunnery in Newcastle. However, King Stephen's successor, Henry II was strong enough to take back the Earldom of Northumbria from Malcolm IV.

 

The Scots king William the Lion was imprisoned in Newcastle, in 1174, after being captured at the Battle of Alnwick. Edward I brought the Stone of Scone and William Wallace south through the town and Newcastle was successfully defended against the Scots three times during the 14th century.

 

Around 1200, stone-faced, clay-filled jetties were starting to project into the river, an indication that trade was increasing in Newcastle. As the Roman roads continued to deteriorate, sea travel was gaining in importance. By 1275 Newcastle was the sixth largest wool exporting port in England. The principal exports at this time were wool, timber, coal, millstones, dairy produce, fish, salt and hides. Much of the developing trade was with the Baltic countries and Germany. Most of the Newcastle merchants were situated near the river, below the Castle. The earliest known charter was dated 1175 in the reign of Henry II, giving the townspeople some control over their town. In 1216 King John granted Newcastle a mayor[8] and also allowed the formation of guilds (known as Mysteries). These were cartels formed within different trades, which restricted trade to guild members. There were initially twelve guilds. Coal was being exported from Newcastle by 1250, and by 1350 the burgesses received a royal licence to export coal. This licence to export coal was jealously guarded by the Newcastle burgesses, and they tried to prevent any one else on the Tyne from exporting coal except through Newcastle. The burgesses similarly tried to prevent fish from being sold anywhere else on the Tyne except Newcastle. This led to conflicts with Gateshead and South Shields.

 

In 1265, the town was granted permission to impose a 'Wall Tax' or Murage, to pay for the construction of a fortified wall to enclose the town and protect it from Scottish invaders. The town walls were not completed until early in the 14th century. They were two miles (3 km) long, 9 feet (2.7 m) thick and 25 feet (7.6 m) high. They had six main gates, as well as some smaller gates, and had 17 towers. The land within the walls was divided almost equally by the Lort Burn, which flowed southwards and joined the Tyne to the east of the Castle. The town began to expand north of the Castle and west of the Lort Burn with various markets being set up within the walls.

 

In 1400 Henry IV granted a new charter, creating a County corporate which separated the town, but not the Castle, from the county of Northumberland and recognised it as a "county of itself" with a right to have a sheriff of its own. The burgesses were now allowed to choose six aldermen who, with the mayor would be justices of the peace. The mayor and sheriff were allowed to hold borough courts in the Guildhall.

 

Religious houses

During the Middle Ages a number of religious houses were established within the walls: the first of these was the Benedictine nunnery of St Bartholomew founded in 1086 near the present-day Nun Street. Both David I of Scotland and Henry I of England were benefactors of the religious house. Nothing of the nunnery remains now.

 

The friary of Blackfriars, Newcastle (Dominican) was established in 1239. These were also known as the Preaching Friars or Shod Friars, because they wore sandals, as opposed to other orders. The friary was situated in the present-day Friars Street. In 1280 the order was granted royal permission to make a postern in the town walls to communicate with their gardens outside the walls. On 19 June 1334, Edward Balliol, claimant to be King of Scotland, did homage to King Edward III, on behalf of the kingdom of Scotland, in the church of the friary. Much of the original buildings of the friary still exist, mainly because, after the Dissolution of the Monasteries the friary of Blackfriars was rented out by the corporation to nine of the local trade guilds.

 

The friary of Whitefriars (Carmelite) was established in 1262. The order was originally housed on the Wall Knoll in Pandon, but in 1307 it took over the buildings of another order, which went out of existence, the Friars of the Sac. The land, which had originally been given by Robert the Bruce, was situated in the present-day Hanover Square, behind the Central station. Nothing of the friary remains now.

 

The friary of Austinfriars (Augustinian) was established in 1290. The friary was on the site where the Holy Jesus Hospital was built in 1682. The friary was traditionally the lodging place of English kings whenever they visited or passed through Newcastle. In 1503 Princess Margaret, eldest daughter of Henry VII of England, stayed two days at the friary on her way to join her new husband James IV of Scotland.

 

The friary of Greyfriars (Franciscans) was established in 1274. The friary was in the present-day area between Pilgrim Street, Grey Street, Market Street and High Chare. Nothing of the original buildings remains.

 

The friary of the Order of the Holy Trinity, also known as the Trinitarians, was established in 1360. The order devoted a third of its income to buying back captives of the Saracens, during the Crusades. Their house was on the Wall Knoll, in Pandon, to the east of the city, but within the walls. Wall Knoll had previously been occupied by the White Friars until they moved to new premises in 1307.

 

All of the above religious houses were closed in about 1540, when Henry VIII dissolved the monasteries.

 

An important street running through Newcastle at the time was Pilgrim Street, running northwards inside the walls and leading to the Pilgrim Gate on the north wall. The street still exists today as arguably Newcastle's main shopping street.

 

Tudor period

The Scottish border wars continued for much of the 16th century, so that during that time, Newcastle was often threatened with invasion by the Scots, but also remained important as a border stronghold against them.

 

During the Reformation begun by Henry VIII in 1536, the five Newcastle friaries and the single nunnery were dissolved and the land was sold to the Corporation and to rich merchants. At this time there were fewer than 60 inmates of the religious houses in Newcastle. The convent of Blackfriars was leased to nine craft guilds to be used as their headquarters. This probably explains why it is the only one of the religious houses whose building survives to the present day. The priories at Tynemouth and Durham were also dissolved, thus ending the long-running rivalry between Newcastle and the church for control of trade on the Tyne. A little later, the property of the nunnery of St Bartholomew and of Grey Friars were bought by Robert Anderson, who had the buildings demolished to build his grand Newe House (also known as Anderson Place).

 

With the gradual decline of the Scottish border wars the town walls were allowed to decline as well as the castle. By 1547, about 10,000 people were living in Newcastle. At the beginning of the 16th century exports of wool from Newcastle were more than twice the value of exports of coal, but during the century coal exports continued to increase.

 

Under Edward VI, John Dudley, Duke of Northumberland, sponsored an act allowing Newcastle to annexe Gateshead as its suburb. The main reason for this was to allow the Newcastle Hostmen, who controlled the export of Tyne coal, to get their hands on the Gateshead coal mines, previously controlled by the Bishop of Durham. However, when Mary I came to power, Dudley met his downfall and the decision was reversed. The Reformation allowed private access to coal mines previously owned by Tynemouth and Durham priories and as a result coal exports increase dramatically, from 15,000 tons in 1500 to 35,000 tons in 1565, and to 400,000 tons in 1625.

 

The plague visited Newcastle four times during the 16th century, in 1579 when 2,000 people died, in 1589 when 1700 died, in 1595 and finally in 1597.

 

In 1600 Elizabeth I granted Newcastle a charter for an exclusive body of electors, the right to elect the mayor and burgesses. The charter also gave the Hostmen exclusive rights to load coal at any point on the Tyne. The Hostmen developed as an exclusive group within the Merchant Adventurers who had been incorporated by a charter in 1547.

 

Stuart period

In 1636 there was a serious outbreak of bubonic plague in Newcastle. There had been several previous outbreaks of the disease over the years, but this was the most serious. It is thought to have arrived from the Netherlands via ships that were trading between the Tyne and that country. It first appeared in the lower part of the town near the docks but gradually spread to all parts of the town. As the disease gained hold the authorities took measures to control it by boarding up any properties that contained infected persons, meaning that whole families were locked up together with the infected family members. Other infected persons were put in huts outside the town walls and left to die. Plague pits were dug next to the town's four churches and outside the town walls to receive the bodies in mass burials. Over the course of the outbreak 5,631 deaths were recorded out of an estimated population of 12,000, a death rate of 47%.

 

In 1637 Charles I tried to raise money by doubling the 'voluntary' tax on coal in return for allowing the Newcastle Hostmen to regulate production and fix prices. This caused outrage amongst the London importers and the East Anglian shippers. Both groups decided to boycott Tyne coal and as a result forced Charles to reverse his decision in 1638.

 

In 1640 during the Second Bishops' War, the Scots successfully invaded Newcastle. The occupying army demanded £850 per day from the Corporation to billet the Scottish troops. Trade from the Tyne ground to a halt during the occupation. The Scots left in 1641 after receiving a Parliamentary pardon and a £4,000,000 loan from the town.

 

In 1642 the English Civil War began. King Charles realised the value of the Tyne coal trade and therefore garrisoned Newcastle. A Royalist was appointed as governor. At that time, Newcastle and King's Lynn were the only important seaports to support the crown. In 1644 Parliament blockaded the Tyne to prevent the king from receiving revenue from the Tyne coal trade. Coal exports fell from 450,000 to 3,000 tons and London suffered a hard winter without fuel. Parliament encouraged the coal trade from the Wear to try to replace that lost from Newcastle but that was not enough to make up for the lost Tyneside tonnage.

 

In 1644 the Scots crossed the border. Newcastle strengthened its defences in preparation. The Scottish army, with 40,000 troops, besieged Newcastle for three months until the garrison of 1,500 surrendered. During the siege, the Scots bombarded the walls with their artillery, situated in Gateshead and Castle Leazes. The Scottish commander threatened to destroy the steeple of St Nicholas's Church by gunfire if the mayor, Sir John Marley, did not surrender the town. The mayor responded by placing Scottish prisoners that they had captured in the steeple, so saving it from destruction. The town walls were finally breached by a combination of artillery and sapping. In gratitude for this defence, Charles gave Newcastle the motto 'Fortiter Defendit Triumphans' to be added to its coat of arms. The Scottish army occupied Northumberland and Durham for two years. The coal taxes had to pay for the Scottish occupation. In 1645 Charles surrendered to the Scots and was imprisoned in Newcastle for nine months. After the Civil War the coal trade on the Tyne soon picked up and exceeded its pre-war levels.

 

A new Guildhall was completed on the Sandhill next to the river in 1655, replacing an earlier facility damaged by fire in 1639, and became the meeting place of Newcastle Town Council. In 1681 the Hospital of the Holy Jesus was built partly on the site of the Austin Friars. The Guildhall and Holy Jesus Hospital still exist.

 

Charles II tried to impose a charter on Newcastle to give the king the right to appoint the mayor, sheriff, recorder and town clerk. Charles died before the charter came into effect. In 1685, James II tried to replace Corporation members with named Catholics. However, James' mandate was suspended in 1689 after the Glorious Revolution welcoming William of Orange. In 1689, after the fall of James II, the people of Newcastle tore down his bronze equestrian statue in Sandhill and tossed it into the Tyne. The bronze was later used to make bells for All Saints Church.

 

In 1689 the Lort Burn was covered over. At this time it was an open sewer. The channel followed by the Lort Burn became the present day Dean Street. At that time, the centre of Newcastle was still the Sandhill area, with many merchants living along the Close or on the Side. The path of the main road through Newcastle ran from the single Tyne bridge, through Sandhill to the Side, a narrow street which climbed steeply on the north-east side of the castle hill until it reached the higher ground alongside St Nicholas' Church. As Newcastle developed, the Side became lined with buildings with projecting upper stories, so that the main street through Newcastle was a narrow, congested, steep thoroughfare.

 

In 1701 the Keelmen's Hospital was built in the Sandgate area of the city, using funds provided by the keelmen. The building still stands today.

 

Eighteenth century

In the 18th century, Newcastle was the country's largest print centre after London, Oxford and Cambridge, and the Literary and Philosophical Society of 1793, with its erudite debates and large stock of books in several languages predated the London Library by half a century.

 

In 1715, during the Jacobite rising in favour of the Old Pretender, an army of Jacobite supporters marched on Newcastle. Many of the Northumbrian gentry joined the rebels. The citizens prepared for its arrival by arresting Jacobite supporters and accepting 700 extra recruits into the local militia. The gates of the city were closed against the rebels. This proved enough to delay an attack until reinforcements arrived forcing the rebel army to move across to the west coast. The rebels finally surrendered at Preston.

 

In 1745, during a second Jacobite rising in favour of the Young Pretender, a Scottish army crossed the border led by Bonnie Prince Charlie. Once again Newcastle prepared by arresting Jacobite supporters and inducting 800 volunteers into the local militia. The town walls were strengthened, most of the gates were blocked up and some 200 cannon were deployed. 20,000 regulars were billeted on the Town Moor. These preparations were enough to force the rebel army to travel south via the west coast. They were eventually defeated at Culloden in 1746.

 

Newcastle's actions during the 1715 rising in resisting the rebels and declaring for George I, in contrast to the rest of the region, is the most likely source of the nickname 'Geordie', applied to people from Tyneside, or more accurately Newcastle. Another theory, however, is that the name 'Geordie' came from the inventor of the Geordie lamp, George Stephenson. It was a type of safety lamp used in mining, but was not invented until 1815. Apparently the term 'German Geordie' was in common use during the 18th century.

 

The city's first hospital, Newcastle Infirmary opened in 1753; it was funded by public subscription. A lying-in hospital was established in Newcastle in 1760. The city's first public hospital for mentally ill patients, Wardens Close Lunatic Hospital was opened in October 1767.

 

In 1771 a flood swept away much of the bridge at Newcastle. The bridge had been built in 1250 and repaired after a flood in 1339. The bridge supported various houses and three towers and an old chapel. A blue stone was placed in the middle of the bridge to mark the boundary between Newcastle and the Palatinate of Durham. A temporary wooden bridge had to be built, and this remained in use until 1781, when a new stone bridge was completed. The new bridge consisted of nine arches. In 1801, because of the pressure of traffic, the bridge had to be widened.

 

A permanent military presence was established in the city with the completion of Fenham Barracks in 1806. The facilities at the Castle for holding assizes, which had been condemned for their inconvenience and unhealthiness, were replaced when the Moot Hall opened in August 1812.

 

Victorian period

Present-day Newcastle owes much of its architecture to the work of the builder Richard Grainger, aided by architects John Dobson, Thomas Oliver, John and Benjamin Green and others. In 1834 Grainger won a competition to produce a new plan for central Newcastle. He put this plan into effect using the above architects as well as architects employed in his own office. Grainger and Oliver had already built Leazes Terrace, Leazes Crescent and Leazes Place between 1829 and 1834. Grainger and Dobson had also built the Royal Arcade at the foot of Pilgrim Street between 1830 and 1832. The most ambitious project covered 12 acres 12 acres (49,000 m2) in central Newcastle, on the site of Newe House (also called Anderson Place). Grainger built three new thoroughfares, Grey Street, Grainger Street and Clayton Street with many connecting streets, as well as the Central Exchange and the Grainger Market. John Wardle and George Walker, working in Grainger's office, designed Clayton Street, Grainger Street and most of Grey Street. Dobson designed the Grainger Market and much of the east side of Grey Street. John and Benjamin Green designed the Theatre Royal at the top of Grey Street, where Grainger placed the column of Grey's Monument as a focus for the whole scheme. Grey Street is considered to be one of the finest streets in the country, with its elegant curve. Unfortunately most of old Eldon Square was demolished in the 1960s in the name of progress. The Royal Arcade met a similar fate.

 

In 1849 a new bridge was built across the river at Newcastle. This was the High Level Bridge, designed by Robert Stephenson, and slightly up river from the existing bridge. The bridge was designed to carry road and rail traffic across the Tyne Gorge on two decks with rail traffic on the upper deck and road traffic on the lower. The new bridge meant that traffic could pass through Newcastle without having to negotiate the steep, narrow Side, as had been necessary for centuries. The bridge was opened by Queen Victoria, who one year later opened the new Central Station, designed by John Dobson. Trains were now able to cross the river, directly into the centre of Newcastle and carry on up to Scotland. The Army Riding School was also completed in 1849.

 

In 1854 a large fire started on the Gateshead quayside and an explosion caused it to spread across the river to the Newcastle quayside. A huge conflagration amongst the narrow alleys, or 'chares', destroyed the homes of 800 families as well as many business premises. The narrow alleys that had been destroyed were replaced by streets containing blocks of modern offices.

 

In 1863 the Town Hall in St Nicholas Square replaced the Guildhall as the meeting place of Newcastle Town Council.

 

In 1876 the low level bridge was replaced by a new bridge known as the Swing Bridge, so called because the bridge was able to swing horizontally on a central axis and allow ships to pass on either side. This meant that for the first time sizeable ships could pass up-river beyond Newcastle. The bridge was built and paid for by William Armstrong, a local arms manufacturer, who needed to have warships access his Elswick arms factory to fit armaments to them. The Swing Bridge's rotating mechanism is adapted from the cannon mounts developed in Armstrong's arms works. In 1882 the Elswick works began to build ships as well as to arm them. The Barrack Road drill hall was completed in 1890.

 

Industrialisation

In the 19th century, shipbuilding and heavy engineering were central to the city's prosperity; and the city was a powerhouse of the Industrial Revolution. Newcastle's development as a major city owed most to its central role in the production and export of coal. The phrase "taking coals to Newcastle" was first recorded in 1538; it proverbially denotes bringing a particular commodity to a place that has more than enough of it already.

 

Innovation in Newcastle and surrounding areas included the following:

 

George Stephenson developed a miner's safety lamp at the same time that Humphry Davy developed a rival design. The lamp made possible the opening up of ever deeper mines to provide the coal that powered the industrial revolution.

George and his son Robert Stephenson were hugely influential figures in the development of the early railways. George developed Blücher, a locomotive working at Killingworth colliery in 1814, whilst Robert was instrumental in the design of Rocket, a revolutionary design that was the forerunner of modern locomotives. Both men were involved in planning and building railway lines, all over this country and abroad.

 

Joseph Swan demonstrated a working electric light bulb about a year before Thomas Edison did the same in the USA. This led to a dispute as to who had actually invented the light bulb. Eventually the two rivals agreed to form a mutual company between them, the Edison and Swan Electric Light Company, known as Ediswan.

 

Charles Algernon Parsons invented the steam turbine, for marine use and for power generation. He used Turbinia, a small, turbine-powered ship, to demonstrate the speed that a steam turbine could generate. Turbinia literally ran rings around the British Fleet at a review at Spithead in 1897.

 

William Armstrong invented a hydraulic crane that was installed in dockyards up and down the country. He then began to design light, accurate field guns for the British army. These were a vast improvement on the existing guns that were then in use.

 

The following major industries developed in Newcastle or its surrounding area:

 

Glassmaking

A small glass industry existed in Newcastle from the mid-15th century. In 1615 restrictions were put on the use of wood for manufacturing glass. It was found that glass could be manufactured using the local coal, and so a glassmaking industry grew up on Tyneside. Huguenot glassmakers came over from France as refugees from persecution and set up glasshouses in the Skinnerburn area of Newcastle. Eventually, glass production moved to the Ouseburn area of Newcastle. In 1684 the Dagnia family, Sephardic Jewish emigrants from Altare, arrived in Newcastle from Stourbridge and established glasshouses along the Close, to manufacture high quality flint glass. The glass manufacturers used sand ballast from the boats arriving in the river as the main raw material. The glassware was then exported in collier brigs. The period from 1730 to 1785 was the highpoint of Newcastle glass manufacture, when the local glassmakers produced the 'Newcastle Light Baluster'. The glassmaking industry still exists in the west end of the city with local Artist and Glassmaker Jane Charles carrying on over four hundred years of hot glass blowing in Newcastle upon Tyne.

 

Locomotive manufacture

In 1823 George Stephenson and his son Robert established the world's first locomotive factory near Forth Street in Newcastle. Here they built locomotives for the Stockton and Darlington Railway and the Liverpool and Manchester Railway, as well as many others. It was here that the famous locomotive Rocket was designed and manufactured in preparation for the Rainhill Trials. Apart from building locomotives for the British market, the Newcastle works also produced locomotives for Europe and America. The Forth Street works continued to build locomotives until 1960.

 

Shipbuilding

In 1296 a wooden, 135 ft (41 m) long galley was constructed at the mouth of the Lort Burn in Newcastle, as part of a twenty-ship order from the king. The ship cost £205, and is the earliest record of shipbuilding in Newcastle. However the rise of the Tyne as a shipbuilding area was due to the need for collier brigs for the coal export trade. These wooden sailing ships were usually built locally, establishing local expertise in building ships. As ships changed from wood to steel, and from sail to steam, the local shipbuilding industry changed to build the new ships. Although shipbuilding was carried out up and down both sides of the river, the two main areas for building ships in Newcastle were Elswick, to the west, and Walker, to the east. By 1800 Tyneside was the third largest producer of ships in Britain. Unfortunately, after the Second World War, lack of modernisation and competition from abroad gradually caused the local industry to decline and die.

 

Armaments

In 1847 William Armstrong established a huge factory in Elswick, west of Newcastle. This was initially used to produce hydraulic cranes but subsequently began also to produce guns for both the army and the navy. After the Swing Bridge was built in 1876 allowing ships to pass up river, warships could have their armaments fitted alongside the Elswick works. Armstrong's company took over its industrial rival, Joseph Whitworth of Manchester in 1897.

 

Steam turbines

Charles Algernon Parsons invented the steam turbine and, in 1889, founded his own company C. A. Parsons and Company in Heaton, Newcastle to make steam turbines. Shortly after this, he realised that steam turbines could be used to propel ships and, in 1897, he founded a second company, Parsons Marine Steam Turbine Company in Wallsend. It is there that he designed and manufactured Turbinia. Parsons turbines were initially used in warships but soon came to be used in merchant and passenger vessels, including the liner Mauretania which held the blue riband for the Atlantic crossing until 1929. Parsons' company in Heaton began to make turbo-generators for power stations and supplied power stations all over the world. The Heaton works, reduced in size, remains as part of the Siemens AG industrial giant.

 

Pottery

In 1762 the Maling pottery was founded in Sunderland by French Huguenots, but transferred to Newcastle in 1817. A factory was built in the Ouseburn area of the city. The factory was rebuilt twice, finally occupying a 14-acre (57,000 m2) site that was claimed to be the biggest pottery in the world and which had its own railway station. The pottery pioneered use of machines in making potteries as opposed to hand production. In the 1890s the company went up-market and employed in-house designers. The period up to the Second World War was the most profitable with a constant stream of new designs being introduced. However, after the war, production gradually declined and the company closed in 1963.

 

Expansion of the city

Newcastle was one of the boroughs reformed by the Municipal Corporations Act 1835: the reformed municipal borough included the parishes of Byker, Elswick, Heaton, Jesmond, Newcastle All Saints, Newcastle St Andrew, Newcastle St John, Newcastle St Nicholas, and Westgate. The urban districts of Benwell and Fenham and Walker were added in 1904. In 1935, Newcastle gained Kenton and parts of the parishes of West Brunton, East Denton, Fawdon, Longbenton. The most recent expansion in Newcastle's boundaries took place under the Local Government Act 1972 on 1 April 1974, when Newcastle became a metropolitan borough, also including the urban districts of Gosforth and Newburn, and the parishes of Brunswick, Dinnington, Hazlerigg, North Gosforth and Woolsington from the Castle Ward Rural District, and the village of Westerhope.

 

Meanwhile Northumberland County Council was formed under the Local Government Act 1888 and benefited from a dedicated meeting place when County Hall was completed in the Castle Garth area of Newcastle in 1910. Following the Local Government Act 1972 County Hall relocated to Morpeth in April 1981.

 

Twentieth century

In 1925 work began on a new high-level road bridge to span the Tyne Gorge between Newcastle and Gateshead. The capacity of the existing High-Level Bridge and Swing Bridge were being strained to the limit, and an additional bridge had been discussed for a long time. The contract was awarded to the Dorman Long Company and the bridge was finally opened by King George V in 1928. The road deck was 84 feet (26 m) above the river and was supported by a 531 feet (162 m) steel arch. The new Tyne Bridge quickly became a symbol for Newcastle and Tyneside, and remains so today.

 

During the Second World War, Newcastle was largely spared the horrors inflicted upon other British cities bombed during the Blitz. Although the armaments factories and shipyards along the River Tyne were targeted by the Luftwaffe, they largely escaped unscathed. Manors goods yard and railway terminal, to the east of the city centre, and the suburbs of Jesmond and Heaton suffered bombing during 1941. There were 141 deaths and 587 injuries, a relatively small figure compared to the casualties in other industrial centres of Britain.

 

In 1963 the city gained its own university, the University of Newcastle upon Tyne, by act of parliament. A School of Medicine and Surgery had been established in Newcastle in 1834. This eventually developed into a college of medicine attached to Durham University. A college of physical science was also founded and became Armstrong College in 1904. In 1934 the two colleges merged to become King's College, Durham. This remained as part of Durham University until the new university was created in 1963. In 1992 the city gained its second university when Newcastle Polytechnic was granted university status as Northumbria University.

 

Newcastle City Council moved to the new Newcastle Civic Centre in 1968.

 

As heavy industries declined in the second half of the 20th century, large sections of the city centre were demolished along with many areas of slum housing. The leading political figure in the city during the 1960s was T. Dan Smith who oversaw a massive building programme of highrise housing estates and authorised the demolition of a quarter of the Georgian Grainger Town to make way for Eldon Square Shopping Centre. Smith's control in Newcastle collapsed when it was exposed that he had used public contracts to advantage himself and his business associates and for a time Newcastle became a byword for civic corruption as depicted in the films Get Carter and Stormy Monday and in the television series Our Friends in the North. However, much of the historic Grainger Town area survived and was, for the most part, fully restored in the late 1990s. Northumberland Street, initially the A1, was gradually closed to traffic from the 1970s and completely pedestrianised by 1998.

 

In 1978 a new rapid transport system, the Metro, was built, linking the Tyneside area. The system opened in August 1980. A new bridge was built to carry the Metro across the river between Gateshead and Newcastle. This was the Queen Elizabeth II Bridge, commonly known as the Metro Bridge. Eventually the Metro system was extended to reach Newcastle Airport in 1991, and in 2002 the Metro system was extended to the nearby city of Sunderland.

 

As the 20th century progressed, trade on the Newcastle and Gateshead quaysides gradually declined, until by the 1980s both sides of the river were looking rather derelict. Shipping company offices had closed along with offices of firms related to shipping. There were also derelict warehouses lining the riverbank. Local government produced a master plan to re-develop the Newcastle quayside and this was begun in the 1990s. New offices, restaurants, bars and residential accommodation were built and the area has changed in the space of a few years into a vibrant area, partially returning the focus of Newcastle to the riverside, where it was in medieval times.

 

The Gateshead Millennium Bridge, a foot and cycle bridge, 26 feet (7.9 m) wide and 413 feet (126 m) long, was completed in 2001. The road deck is in the form of a curve and is supported by a steel arch. To allow ships to pass, the whole structure, both arch and road-deck, rotates on huge bearings at either end so that the road deck is lifted. The bridge can be said to open and shut like a human eye. It is an important addition to the re-developed quayside area, providing a vital link between the Newcastle and Gateshead quaysides.

 

Recent developments

Today the city is a vibrant centre for office and retail employment, but just a short distance away there are impoverished inner-city housing estates, in areas originally built to provide affordable housing for employees of the shipyards and other heavy industries that lined the River Tyne. In the 2010s Newcastle City Council began implementing plans to regenerate these depressed areas, such as those along the Ouseburn Valley.

1 2 ••• 4 5 7 9 10 ••• 79 80