View allAll Photos Tagged Computerized
Ford Escort Mk.III XR3i (1983-86) Engine 1597cc S4 Fi
Registration Number DJX 749 Y (Huddersfield)
FORD (UK) SET
www.flickr.com/photos/45676495@N05/sets/72157623665118181...
The Mark III Escort was launched in 1980, unlike the Mark II the new car was more than a reskin of the previous generation Escort. The Mark III was a departure from the two previous models, the biggest changes being the adoption of front-wheel drive, and the new hatchback body. The car used Ford's contemporary design language of the period with the black louvred radiator grille and straked rear lamp clusters, as well as introducing the aerodynamic "bustle-back" bootlid stump.
To compete with Volkswagen's Golf GTI, a hot hatch version of the Mark III was developed – the XR3. Initially this featured a tuned version of the 1.6 L CVH engine of 96bhp
fitted with a twin-choke Weber carburettor, uprated suspension and numerous cosmetic alterations.
The car lacked the five speed transmission and fuel injection of its Volkswagen rival a situation addressed in October 1982 for the 1983 model year with the arrival of the XR3i with 105bhp eight months behind the limited edition (8,659 examples), racetrack-influenced RS 1600i. The Cologne-developed RS received a more powerful engine with 115 PS (85 kW), thanks to computerized ignition and a modified head as well as the fuel injection.
Diolch am olygfa anhygoel, 65,146,926
oblogaeth y Lloegr honno dros y Mynyddoedd
Thanks for a stonking 65,146,926 views
Shot 06.05.2018 at Catton Hall Car Show, Catton Hall, Walton on Trent, Derbyshire Ref 133-471
In the nave of a 16th-century basilica in Venice, Italy, visitors saw a beautiful apparition this weekend. Conjured up by renowned Catalan artist Jaume Plensa for this year’s Venice Biennale, the installation, with a duo of colossal heads made of stainless steel mesh at the centerpiece, is now at the Basilica di San Giorgio Maggiore.
The award-winning sculptor and teacher is a humanist and a master of scale. For the Crown Fountain in Chicago, Illinois, he toyed with the city’s towering skyscrapers by installing larger-than-life totems that project a video loop of 1,000 faces of its residents. In Bordeaux, France, he installed a large seated figure that vied for attention with the palaces that surrounded it.
The concept for Plensa’s dreamy installations in San Giorgio is not exactly new. Versions of his “perforated” sculptures, which look like colossal computerized 3D renderings, have appeared in a field in Yorkshire, England; in an outdoor plaza in Calgary, Canada; and even at hotel lobbies in New York City, not to mention at numerous museums and galleries around the world.
And though these “portraits” (more like truncated busts) are different for each site-specific installation, the sculptures tend to look similar, with idealized facial features, closed eyes, and serene expressions. Plensa actually models the heads from real people—mostly girls aged 8 to 14, a period that he describes as “that moment when beauty is in motion, changing every second.”
(Jonty Wilde)
“It’s like a collaboration between me, here and Palladio, in heaven.” But to encounter Plensa’s sculptures in one of Venice’s venerated landmarks makes his work seem somehow new again. The Benedictine monastery, established in the year 952, and later overhauled by the influential Italian architect Andrea Palladio, has never been such a prominent venue for secular art. A sanctuary for reflection (or from the Biennale’s crowds), the church, which stands on its own island, offers a more tranquil context for Plensa’s giant heads than some of the outdoor spaces where they’ve been displayed. In it, the heads seem to have found a strange communion with the Palladian architecture and the Renaissance paintings by Tintoretto, Vittore Carpaccio, and Jacopo.
“It’s like a collaboration between me, here and Palladio, in heaven.”
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The OV-10 Bronco was initially conceived in the early 1960s through an informal collaboration between W. H. Beckett and Colonel K. P. Rice, U.S. Marine Corps, who met at Naval Air Weapons Station China Lake, California, and who also happened to live near each other. The original concept was for a rugged, simple, close air support aircraft integrated with forward ground operations. At the time, the U.S. Army was still experimenting with armed helicopters, and the U.S. Air Force was not interested in close air support.
The concept aircraft was to operate from expedient forward air bases using roads as runways. Speed was to be from very slow to medium subsonic, with much longer loiter times than a pure jet. Efficient turboprop engines would give better performance than piston engines. Weapons were to be mounted on the centerline to get efficient aiming. The inventors favored strafing weapons such as self-loading recoilless rifles, which could deliver aimed explosive shells with less recoil than cannons, and a lower per-round weight than rockets. The airframe was to be designed to avoid the back blast.
Beckett and Rice developed a basic platform meeting these requirements, then attempted to build a fiberglass prototype in a garage. The effort produced enthusiastic supporters and an informal pamphlet describing the concept. W. H. Beckett, who had retired from the Marine Corps, went to work at North American Aviation to sell the aircraft.
The aircraft's design supported effective operations from forward bases. The OV-10 had a central nacelle containing a crew of two in tandem and space for cargo, and twin booms containing twin turboprop engines. The visually distinctive feature of the aircraft is the combination of the twin booms, with the horizontal stabilizer that connected them at the fin tips. The OV-10 could perform short takeoffs and landings, including on aircraft carriers and large-deck amphibious assault ships without using catapults or arresting wires. Further, the OV-10 was designed to take off and land on unimproved sites. Repairs could be made with ordinary tools. No ground equipment was required to start the engines. And, if necessary, the engines would operate on high-octane automobile fuel with only a slight loss of power.
The aircraft had responsive handling and could fly for up to 5½ hours with external fuel tanks. The cockpit had extremely good visibility for both pilot and co-pilot, provided by a wrap-around "greenhouse" that was wider than the fuselage. North American Rockwell custom ejection seats were standard, with many successful ejections during service. With the second seat removed, the OV-10 could carry 3,200 pounds (1,500 kg) of cargo, five paratroopers, or two litter patients and an attendant. Empty weight was 6,969 pounds (3,161 kg). Normal operating fueled weight with two crew was 9,908 pounds (4,494 kg). Maximum takeoff weight was 14,446 pounds (6,553 kg).
The bottom of the fuselage bore sponsons or "stub wings" that improved flight performance by decreasing aerodynamic drag underneath the fuselage. Normally, four 7.62 mm (.308 in) M60C machine guns were carried on the sponsons, accessed through large forward-opening hatches. The sponsons also had four racks to carry bombs, pods, or fuel. The wings outboard of the engines contained two additional hardpoints, one per side. Racked armament in the Vietnam War was usually seven-shot 2.75 in (70 mm) rocket pods with white phosphorus marker rounds or high-explosive rockets, or 5" (127 mm) four-shot Zuni rocket pods. Bombs, ADSIDS air-delivered/para-dropped unattended seismic sensors, Mk-6 battlefield illumination flares, and other stores were also carried.
Operational experience showed some weaknesses in the OV-10's design. It was significantly underpowered, which contributed to crashes in Vietnam in sloping terrain because the pilots could not climb fast enough. While specifications stated that the aircraft could reach 26,000 feet (7,900 m), in Vietnam the aircraft could reach only 18,000 feet (5,500 m). Also, no OV-10 pilot survived ditching the aircraft.
The OV-10 served in the U.S. Air Force, U.S. Marine Corps, and U.S. Navy, as well as in the service of a number of other countries. In U.S. military service, the Bronco was operated until the early Nineties, and obsoleted USAF OV-10s were passed on to the Bureau of Alcohol, Tobacco, and Firearms for anti-drug operations. A number of OV-10As furthermore ended up in the hands of the California Department of Forestry (CDF) and were used for spotting fires and directing fire bombers onto hot spots.
This was not the end of the OV-10 in American military service, though: In 2012, the type gained new attention because of its unique qualities. A $20 million budget was allocated to activate an experimental USAF unit of two airworthy OV-10Gs, acquired from NASA and the State Department. These machines were retrofitted with military equipment and were, starting in May 2015, deployed overseas to support Operation “Inherent Resolve”, flying more than 120 combat sorties over 82 days over Iraq and Syria. Their concrete missions remained unclear, and it is speculated they provided close air support for Special Forces missions, esp. in confined urban environments where the Broncos’ loitering time and high agility at low speed and altitude made them highly effective and less vulnerable than helicopters.
Furthermore, these Broncos reputedly performed strikes with the experimental AGR-20A “Advanced Precision Kill Weapons System (APKWS)”, a Hydra 70-millimeter rocket with a laser-seeking head as guidance - developed for precision strikes against small urban targets with little collateral damage. The experiment ended satisfactorily, but the machines were retired again, and the small unit was dissolved.
However, the machines had shown their worth in asymmetric warfare, and the U.S. Air Force decided to invest in reactivating the OV-10 on a regular basis, despite the overhead cost of operating an additional aircraft type in relatively small numbers – but development and production of a similar new type would have caused much higher costs, with an uncertain time until an operational aircraft would be ready for service. Re-activating a proven design and updating an existing airframe appeared more efficient.
The result became the MV-10H, suitably christened “Super Bronco” but also known as “Black Pony”, after the program's internal name. This aircraft was derived from the official OV-10X proposal by Boeing from 2009 for the USAF's Light Attack/Armed Reconnaissance requirement. Initially, Boeing proposed to re-start OV-10 manufacture, but this was deemed uneconomical, due to the expected small production number of new serial aircraft, so the “Black Pony” program became a modernization project. In consequence, all airframes for the "new" MV-10Hs were recovered OV-10s of various types from the "boneyard" at Davis-Monthan Air Force Base in Arizona.
While the revamped aircraft would maintain much of its 1960s-vintage rugged external design, modernizations included a completely new, armored central fuselage with a highly modified cockpit section, ejection seats and a computerized glass cockpit. The “Black Pony” OV-10 had full dual controls, so that either crewmen could steer the aircraft while the other operated sensors and/or weapons. This feature would also improve survivability in case of incapacitation of a crew member as the result from a hit.
The cockpit armor protected the crew and many vital systems from 23mm shells and shrapnel (e. g. from MANPADS). The crew still sat in tandem under a common, generously glazed canopy with flat, bulletproof panels for reduced sun reflections, with the pilot in the front seat and an observer/WSO behind. The Bronco’s original cargo capacity and the rear door were retained, even though the extra armor and defensive measures like chaff/flare dispensers as well as an additional fuel cell in the central fuselage limited the capacity. However, it was still possible to carry and deploy personnel, e. g. small special ops teams of up to four when the aircraft flew in clean configuration.
Additional updates for the MV-10H included structural reinforcements for a higher AUW and higher g load maneuvers, similar to OV-10D+ standards. The landing gear was also reinforced, and the aircraft kept its ability to operate from short, improvised airstrips. A fixed refueling probe was added to improve range and loiter time.
Intelligence sensors and smart weapon capabilities included a FLIR sensor and a laser range finder/target designator, both mounted in a small turret on the aircraft’s nose. The MV-10H was also outfitted with a data link and the ability to carry an integrated targeting pod such as the Northrop Grumman LITENING or the Lockheed Martin Sniper Advanced Targeting Pod (ATP). Also included was the Remotely Operated Video Enhanced Receiver (ROVER) to provide live sensor data and video recordings to personnel on the ground.
To improve overall performance and to better cope with the higher empty weight of the modified aircraft as well as with operations under hot-and-high conditions, the engines were beefed up. The new General Electric CT7-9D turboprop engines improved the Bronco's performance considerably: top speed increased by 100 mph (160 km/h), the climb rate was tripled (a weak point of early OV-10s despite the type’s good STOL capability) and both take-off as well as landing run were almost halved. The new engines called for longer nacelles, and their circular diameter markedly differed from the former Garrett T76-G-420/421 turboprop engines. To better exploit the additional power and reduce the aircraft’s audio signature, reversible contraprops, each with eight fiberglass blades, were fitted. These allowed a reduced number of revolutions per minute, resulting in less noise from the blades and their tips, while the engine responsiveness was greatly improved. The CT7-9Ds’ exhausts were fitted with muzzlers/air mixers to further reduce the aircraft's noise and heat signature.
Another novel and striking feature was the addition of so-called “tip sails” to the wings: each wingtip was elongated with a small, cigar-shaped fairing, each carrying three staggered, small “feather blade” winglets. Reputedly, this installation contributed ~10% to the higher climb rate and improved lift/drag ratio by ~6%, improving range and loiter time, too.
Drawing from the Iraq experience as well as from the USMC’s NOGS test program with a converted OV-10D as a night/all-weather gunship/reconnaissance platform, the MV-10H received a heavier gun armament: the original four light machine guns that were only good for strafing unarmored targets were deleted and their space in the sponsons replaced by avionics. Instead, the aircraft was outfitted with a lightweight M197 three-barrel 20mm gatling gun in a chin turret. This could be fixed in a forward position at high speed or when carrying forward-firing ordnance under the stub wings, or it could be deployed to cover a wide field of fire under the aircraft when it was flying slower, being either slaved to the FLIR or to a helmet sighting auto targeting system.
The original seven hardpoints were retained (1x ventral, 2x under each sponson, and another pair under the outer wings), but the total ordnance load was slightly increased and an additional pair of launch rails for AIM-9 Sidewinders or other light AAMs under the wing tips were added – not only as a defensive measure, but also with an anti-helicopter role in mind; four more Sidewinders could be carried on twin launchers under the outer wings against aerial targets. Other guided weapons cleared for the MV-10H were the light laser-guided AGR-20A and AGM-119 Hellfire missiles, the Advanced Precision Kill Weapon System upgrade to the light Hydra 70 rockets, the new Laser Guided Zuni Rocket which had been cleared for service in 2010, TV-/IR-/laser-guided AGM-65 Maverick AGMs and AGM-122 Sidearm anti-radar missiles, plus a wide range of gun and missile pods, iron and cluster bombs, as well as ECM and flare/chaff pods, which were not only carried defensively, but also in order to disrupt enemy ground communication.
In this configuration, a contract for the conversion of twelve mothballed American Broncos to the new MV-10H standard was signed with Boeing in 2016, and the first MV-10H was handed over to the USAF in early 2018, with further deliveries lasting into early 2020. All machines were allocated to the newly founded 919th Special Operations Support Squadron at Duke Field (Florida). This unit was part of the 919th Special Operations Wing, an Air Reserve Component (ARC) of the United States Air Force. It was assigned to the Tenth Air Force of Air Force Reserve Command and an associate unit of the 1st Special Operations Wing, Air Force Special Operations Command (AFSOC). If mobilized the wing was gained by AFSOC (Air Force Special Operations Command) to support Special Tactics, the U.S. Air Force's special operations ground force. Similar in ability and employment to Marine Special Operations Command (MARSOC), U.S. Army Special Forces and U.S. Navy SEALs, Air Force Special Tactics personnel were typically the first to enter combat and often found themselves deep behind enemy lines in demanding, austere conditions, usually with little or no support.
The MV-10Hs are expected to provide support for these ground units in the form of all-weather reconnaissance and observation, close air support and also forward air control duties for supporting ground units. Precision ground strikes and protection from enemy helicopters and low-flying aircraft were other, secondary missions for the modernized Broncos, which are expected to serve well into the 2040s. Exports or conversions of foreign OV-10s to the Black Pony standard are not planned, though.
General characteristics:
Crew: 2
Length: 42 ft 2½ in (12,88 m) incl. pitot
Wingspan: 45 ft 10½ in(14 m) incl. tip sails
Height: 15 ft 2 in (4.62 m)
Wing area: 290.95 sq ft (27.03 m²)
Airfoil: NACA 64A315
Empty weight: 9,090 lb (4,127 kg)
Gross weight: 13,068 lb (5,931 kg)
Max. takeoff weight: 17,318 lb (7,862 kg)
Powerplant:
2× General Electric CT7-9D turboprop engines, 1,305 kW (1,750 hp) each,
driving 8-bladed Hamilton Standard 8 ft 6 in (2.59 m) diameter constant-speed,
fully feathering, reversible contra-rotating propellers with metal hub and composite blades
Performance:
Maximum speed: 390 mph (340 kn, 625 km/h)
Combat range: 198 nmi (228 mi, 367 km)
Ferry range: 1,200 nmi (1,400 mi, 2,200 km) with auxiliary fuel
Maximum loiter time: 5.5 h with auxiliary fuel
Service ceiling: 32.750 ft (10,000 m)
13,500 ft (4.210 m) on one engine
Rate of climb: 17.400 ft/min (48 m/s) at sea level
Take-off run: 480 ft (150 m)
740 ft (227 m) to 50 ft (15 m)
1,870 ft (570 m) to 50 ft (15 m) at MTOW
Landing run: 490 ft (150 m)
785 ft (240 m) at MTOW
1,015 ft (310 m) from 50 ft (15 m)
Armament:
1x M197 3-barreled 20 mm Gatling cannon in a chin turret with 750 rounds ammo capacity
7x hardpoints for a total load of 5.000 lb (2,270 kg)
2x wingtip launch rails for AIM-9 Sidewinder AAMs
The kit and its assembly:
This fictional Bronco update/conversion was simply spawned by the idea: could it be possible to replace the original cockpit section with one from an AH-1 Cobra, for a kind of gunship version?
The basis is the Academy OV-10D kit, mated with the cockpit section from a Fujimi AH-1S TOW Cobra (Revell re-boxing, though), chosen because of its “boxy” cockpit section with flat glass panels – I think that it conveys the idea of an armored cockpit section best. Combining these parts was not easy, though, even though the plan sound simple. Initially, the Bronco’s twin booms, wings and stabilizer were built separately, because this made PSR on these sections easier than trying the same on a completed airframe. One of the initial challenges: the different engines. I wanted something uprated, and a different look, and I had a pair of (excellent!) 1:144 resin engines from the Russian company Kompakt Zip for a Tu-95 bomber at hand, which come together with movable(!) eight-blade contraprops that were an almost perfect size match for the original three-blade props. Biggest problem: the Tu-95 nacelles have a perfectly circular diameter, while the OV-10’s booms are square and rectangular. Combining these parts and shapes was already a messy PST affair, but it worked out quite well – even though the result rather reminds of some Chinese upgrade measure (anyone know the Tu-4 copies with turboprops? This here looks similar!). But while not pretty, I think that the beafier look works well and adds to the idea of a “revived” aircraft. And you can hardly beat the menacing look of contraprops on anything...
The exotic, so-called “tip sails” on the wings, mounted on short booms, are a detail borrowed from the Shijiazhuang Y-5B-100, an updated Chinese variant/copy of the Antonov An-2 biplane transporter. The booms are simple pieces of sprue from the Bronco kit, the winglets were cut from 0.5mm styrene sheet.
For the cockpit donor, the AH-1’s front section was roughly built, including the engine section (which is a separate module, so that the basic kit can be sold with different engine sections), and then the helicopter hull was cut and trimmed down to match the original Bronco pod and to fit under the wing. This became more complicated than expected, because a) the AH-1 cockpit and the nose are considerably shorter than the OV-10s, b) the AH-1 fuselage is markedly taller than the Bronco’s and c) the engine section, which would end up in the area of the wing, features major recesses, making the surface very uneven – calling for massive PSR to even this out. PSR was also necessary to hide the openings for the Fujimi AH-1’s stub wings. Other issues: the front landing gear (and its well) had to be added, as well as the OV-10 wing stubs. Furthermore, the new cockpit pod’s rear section needed an aerodynamical end/fairing, but I found a leftover Academy OV-10 section from a build/kitbashing many moons ago. Perfect match!
All these challenges could be tackled, even though the AH-1 cockpit looks surprisingly stout and massive on the Bronco’s airframe - the result looks stockier than expected, but it works well for the "Gunship" theme. Lots of PSR went into the new central fuselage section, though, even before it was mated with the OV-10 wing and the rest of the model.
Once cockpit and wing were finally mated, the seams had to disappear under even more PSR and a spinal extension of the canopy had to be sculpted across the upper wing surface, which would meld with the pod’s tail in a (more or less) harmonious shape. Not an easy task, and the fairing was eventually sculpted with 2C putty, plus even more PSR… Looks quite homogenous, though.
After this massive body work, other hardware challenges appeared like small distractions. The landing gear was another major issue because the deeper AH-1 section lowered the ground clearance, also because of the chin turret. To counter this, I raised the OV-10’s main landing gear by ~2mm – not much, but it was enough to create a credible stance, together with the front landing gear transplant under the cockpit, which received an internal console to match the main landing gear’s length. Due to the chin turret and the shorter nose, the front wheel retracts backwards now. But this looks quite plausible, thanks to the additional space under the cockpit tub, which also made a belt feed for the gun’s ammunition supply believable.
To enhance the menacing look I gave the model a fixed refueling boom, made from 1mm steel wire and a receptor adapter sculpted with white glue. The latter stuff was also used add some antenna fairings around the hull. Some antennae, chaff dispensers and an IR decoy were taken from the Academy kit.
The ordnance came from various sources. The Sidewinders under the wing tips were taken from an Italeri F-16C/D kit, they look better than the missiles from the Academy Bronco kit. Their launch rails came from an Italeri Bae Hawk 200. The quadruple Hellfire launchers on the underwing hardpoints were left over from an Italeri AH-1W, and they are a perfect load for this aircraft and its role. The LAU-10 and -19 missile pods on the stub wings were taken from the OV-10 kit.
Painting and markings:
Finding a suitable and somewhat interesting – but still plausible – paint scheme was not easy. Taking the A-10 as benchmark, an overall light grey livery (with focus on low contrast against the sky as protection against ground fire) would have been a likely choice – and in fact the last operational American OV-10s were painted in this fashion. But in order to provide a different look I used the contemporary USAF V-22Bs and Special Operations MC-130s as benchmark, which typically carry a darker paint scheme consisting of FS 36118 (suitably “Gunship Gray” :D) from above, FS 36375 underneath, with a low, wavy waterline, plus low-viz markings. Not spectacular, but plausible – and very similar to the late r/w Colombian OV-10s.
The cockpit tub became Dark Gull Grey (FS 36231, Humbrol 140) and the landing gear white (Revell 301).
The model received an overall black ink washing and some post-panel-shading, to liven up the dull all-grey livery. The decals were gathered from various sources, and I settled for black USAF low-viz markings. The “stars and bars” come from a late USAF F-4, the “IP” tail code was tailored from F-16 markings and the shark mouth was taken from an Academy AH-64. Most stencils came from another Academy OV-10 sheet and some other sources.
Decals were also used to create the trim on the propeller blades and markings on the ordnance.
Finally, the model was sealed with a coat of matt acrylic varnish (Italeri) and some exhaust soot stains were added with graphite along the tail boom flanks.
A successful transplantation – but is this still a modified Bronco or already a kitbashing? The result looks quite plausible and menacing, even though the TOW Cobra front section appears relatively massive. But thanks to the bigger engines and extended wing tips the proportions still work. The large low-pressure tires look a bit goofy under the aircraft, but they are original. The grey livery works IMHO well, too – a more colorful or garish scheme would certainly have distracted from the modified technical basis.
I didn't even know there were Goldeneyes on the river. I was looking for Great Blue Herons. Half a dozen Goldeneyes suddenly launched, and raced past me. Little ducks, VERY fast in the air, I couldn't even get the camera up before they were past.
But a flying pair of Goldeneyes...wanted that one a lot. Fired away, hoping. Too far away, moving like little winged missles, I needed computerized camera guidance; didn't have any in my pockets.
So the photo is a major (did I say major) crop. Enlarged more than is reasonable, and worked on like crazy to make an almost-presentable image.
But it is, after all, a pair of flying Goldeneyes.
Ford Escort (MkIII) RS1600i (1984-90) Engine 1597 cc S4 OC 115PS
Registration Number DFV 221 Y (Preston)
FORD EUROPE
www.flickr.com/photos/45676495@N05/sets/72157623665118181...
The Mark III Escort was developed under the code name Erika, and launched in 1980, unlike the Mark II the new car was more than a reskin of the previous generation Escort. The Mark III was a departure from the two previous models, the biggest changes being the adoption of front-wheel drive, and the new hatchback body. The car used Ford's contemporary design language of the period with the black louvred radiator grille and straked rear lamp clusters, as well as introducing the aerodynamic "bustle-back" bootlid stump. Sales in the United Kingdom increased, and by 1982 it had overtaken the ageing Cortina as the nation's best-selling car, beginning an eight-year run as Britain's best selling car.
New were the overhead camshaft CVH engines in 1.3 L and 1.6 L formats, with the older Ford Kent-based "Valencia" engine from the Fiesta powering the 1.1 L. From launch, the car was available in base (Popular), L, GL, Ghia and XR3 trim.
A convertible version, made by coachbuilder Karmann, appeared the same year as the five-door estate (1983). It was the first drop-top car produced by Ford Europe since the Corsair of the 1960s. The Escort Cabriolet was initially available in both XR3i and Ghia specification, but the Ghia variant was later dropped.
To compete with Volkswagen's Golf GTI, a hot hatch version of the Mark III was developed – the XR3. Initially this featured a tuned version of the 1.6 L CVH engine of 96bhp
fitted with a twin-choke Weber carburettor, uprated suspension and numerous cosmetic alterations.
The car lacked the five speed transmission and fuel injection of its Volkswagen rival a situation addressed in October 1982 for the 1983 model year with the arrival of the XR3i with 105bhp eight months behind the limited edition (8,659 examples), racetrack-influenced RS 1600i. The Cologne-developed RS received a more powerful engine with 115 PS (85 kW), thanks to computerized ignition and a modified head as well as the fuel injection
Diolch yn fawr am 72,317,139 o olygfeydd anhygoel, mwynhewch ac arhoswch yn ddiogel
Thank you 72,317,139 amazing views, enjoy and stay safe
Shot 05.05.2019 at Catton Park Classic Car Show Ref 141-065
Southeast Financial Center is a two-acre development in Miami, Florida, United States. It consists of a 764 feet (233 m) tall office skyscraper and its 15-story parking garage. It was previously known as the Southeast Financial Center (1984–1992), the First Union Financial Center (1992–2003), and the Wachovia Financial Center (2003-2011). In 2011, it retook its old name of Southeast Financial Center as Wachovia merged with Wells Fargo and moved to the nearby Wells Fargo Center.
When topped-off in August 1983, it was the tallest building south of New York City and east of the Mississippi River, taking away the same title from the Westin Peachtree Plaza Hotel, in Atlanta, Georgia. It remained the tallest building in the southeastern U.S. until 1987, when it was surpassed by One Atlantic Center in Atlanta and the tallest in Florida until October 1, 2003, when it was surpassed by the Four Seasons Hotel and Tower, also in Miami. It remains the tallest office tower in Florida and the third tallest building in Miami.
Southeast Financial Center was constructed in three years with more than 500 construction workers. Approximately 6,650 tons of structural steel, 80,000 cubic yards of concrete and 7000 cubic tons of reinforcing steel bars went into its construction. The complex sits on a series of reinforced concrete grade beams tied to 150 concrete caissons as much as ten feet in diameter and to a depth of 80 feet. A steel space-frame canopy with glass skylights covers the outdoor plaza between the tower and low-rise building.
The tower has a composite structure. The exterior columns and beams are concrete encased steel wide flanges surrounded by reinforcing bars. The composite exterior frame was formed using hydraulic steel forms, or "flying forms," jacked into place with a "kangaroo" crane, that was located in the core and manually clamped into place. Wide flange beams topped by a metal deck and concrete form the interior floor framing. The core is A braced steel frame, designed to laterally resist wind loads. The construction of one typical floor was completed every five days.
The low-rise banking hall and parking building is a concrete-framed structure. Each floor consists of nearly an acre of continuously poured concrete. When the concrete had sufficiently hardened, compressed air was used to blow the forms fiberglass forms from under the completed floor. It was then rolled out to the exterior where it was raised by crane into position for the next floor.
The building was recognized as Miami's first and only office building to be certified for the LEED Gold award in January 2010.
The center was developed by a partnership consisting of Gerald D. Hines Interests, Southeast Bank and Corporate Property Investors for $180 million. It was originally built as the headquarters for Southeast Bank, which originally occupied 50 percent of the complex's space. It remained Southeast Bank's headquarters there until it was liquidated in 1991.
The Southeast Financial Center comprises two buildings: the 55-story office tower and the 15-story parking annex. The tower has 53 stories of office space. The first floor is dedicated for retail, the second floor is the lobby and the 55th floor was home to the luxurious Miami City Club. The parking annex has 12 floors of parking space for 1,150 cars. The first floor is dedicated for retail, the second floor is a banking hall and the 15th floor has the Downtown Athletic Club. A landscaped plaza lies between the office tower and the parking annex. An enclosed walkway connects the second story of the tower with the second story of the annex. The courtyard is partially protected from the elements by a steel and glass space frame canopy spanning the plaza and attached to the tower and annex. Southeast Bank's executive offices were located on the 38th floor. Ground was broken on the complex on December 12, 1981 and the official dedication and opening for the complex was held on October 23, 1984.
The Southeast Financial Center was designed by Edward Charles Bassett of Skidmore, Owings and Merrill. The Associate Architect was Spillis Candela & Partners. It has 1,145,311 ft² (106,000 m²) of office space. A typical floor has about 22,000 ft² (2,043.87 m²) of office space. Each floor has 9 ft x 9 ft (2.7 m x 2.7 m) floor to ceiling windows. (All of the building's windows are tinted except for the top floor, resulting in strikingly bright and clear views from there.) The total complex has over 2.2 million ft² (204,000 m²). The distinctive setbacks begin at the 43rd floor. Each typical floor plate has 9 corner offices and the top twelve floors have as many as 16. There are 43 elevators in the office tower. An emergency control station provides computerized monitoring for the entire complex, and four generators for backup power.
The Southeast Financial Center can be seen as far away as Ft. Lauderdale and halfway toward Bimini. Night space shuttle launches from Cape Canaveral 200 miles to the north were plainly visible from the higher floors. The roof of the building was featured in the Wesley Snipes motion picture Drop Zone, where an eccentric base jumper named Swoop parachutes down to the street from a suspended window cleaning trolley. The building also appeared in several episodes of the 1980s TV show Miami Vice and at the end of each episode's opening credits.
Zara founder Amancio Ortega purchased the building from J.P. Morgan Asset Management in December 2016. The purchase price was reportedly over $500 million, making it one of the largest real estate transactions in South Florida history.
Credit for the data above is given to the following websites:
en.wikipedia.org/wiki/Southeast_Financial_Center
www.emporis.com/buildings/122292/wachovia-financial-cente...
© All Rights Reserved - you may not use this image in any form without my prior permission.
Boyce Thompson Arboretum is a desert arboretum. Water is critical. Ayer lake is actually a reservoir. It is being renovated. The Dam and plumbing are being repaired. Invasive species are being eradicated. 2024 is the Centennial Anniversary for BTA and they are facing the future with important improvements.
Not often you see a big cat roaming BTA. This looks to me like a Caterpillar CAT D2 Track-Type Tractor Dozer.
btarboretum.org/wp-content/uploads/2022/08/Water-Wise-Arb...
What are we planning to do? • Install a computerized and automated irrigation system. • Develop interpretive signage and programs that emphasize water-wise gardening. • Restore the Queen Creek riparian corridor at Boyce Thompson Arboretum. • Establish Ayer Lake as a riparian conservation and education area, complete with boardwalk. • Harvest grey water for irrigation. • Utilize gutters and rain water catchment from structures
en.wikipedia.org/wiki/Boyce_Thompson_Arboretum
Boyce Thompson Arboretum is the oldest and largest botanical garden in the state of Arizona. It is one of the oldest botanical institutions west of the Mississippi River. Founded in 1924 as a desert plant research facility and “living museum”, the arboretum is located in the Sonoran Desert on 392 acres (159 ha) along Queen Creek and beneath the towering volcanic remnant, Picketpost Mountain. Boyce Thompson Arboretum is on U.S. Highway 60, an hour's drive east from Phoenix and 3 miles (4.8 km) west of Superior, Arizona.
The arboretum was founded by William Boyce Thompson (1869-1930), a mining engineer who made his fortune in the copper mining industry. He was the founder and first president of Inspiration Consolidated Copper Company at Globe-Miami, Arizona and Magma Copper Company in Superior, Arizona. In the early 1920s, Thompson, enamored with the landscape around Superior, built a winter home overlooking Queen Creek. Also in the 1920s, as his fortunes grew, he created and financed the Boyce Thompson Institute for Plant Research in Yonkers, New York (now at Cornell University), and the Boyce Thompson Arboretum on the property of the Picket Post House, west of Superior.
Boyce Thompson wrote: “I have in mind far more than mere botanical propagation. I hope to benefit the State and the Southwest by the addition of new products. A plant collection will be assembled which will be of interest not only to the nature lover and the plant student, but which will stress the practical side, as well to see if we cannot make these mesas, hillsides, and canyons far more productive and of more benefit to mankind. We will bring together and study the plants of the desert countries, find out their uses, and make them available to the people. It is a big job, but we will build here the most beautiful, and at the same time the most useful garden of its kind in the world.”[3]
DSC03528-HDR-DeNoiseAI-standard
The work of Leo Villareal at the National Gallery of Art, Washington, DC -- see the link below. This moving walkway between the West and East Galleries of the NGA was always cool -- then the artist Leo Villareal made it utterly spectacular with this computerized 41000 LED bulb display.
La Sals and Kane Creek Canyon from Canyon Rims Recreation Area, Anticline Overlook.
I apologize for the photographic excess, the views from this place frankly blew me away. I'd need a gigapixel camera (or one of those expensive computerized panorama builders) to capture the view from up there.
A wrecking yard (Australian, New Zealand, and Canadian English), scrapyard (Irish and British English) or junkyard (American English) is the location of a business in dismantling where wrecked or decommissioned vehicles are brought, their usable parts are sold for use in operating vehicles, while the unusable metal parts, known as scrap metal parts, are sold to metal-recycling companies.
Other terms include wreck yard, wrecker's yard, salvage yard, breakers yard, dismantler and scrapheap. In the United Kingdom, car salvage yards are known as car breakers, while motorcycle salvage yards are known as bike breakers. In Australia, they are often referred to as 'Wreckers'.
The most common type of wreck yards are automobile wreck yards, but junkyards for motorcycles, bicycles, small airplanes and boats exist too.
Many salvage yards operate on a local level—when an automobile is severely damaged, has malfunctioned beyond repair, or not worth the repair, the owner may sell it to a junkyard; in some cases—as when the car has become disabled in a place where derelict cars are not allowed to be left—the car owner will pay the wrecker to haul the car away.
Salvage yards also buy most of the wrecked, derelict and abandoned vehicles that are sold at auction from police impound storage lots,and often buy vehicles from insurance tow yards as well.
The salvage yard will usually tow the vehicle from the location of its purchase to the yard, but occasionally vehicles are driven in. At the salvage yard the automobiles are typically arranged in rows, often stacked on top of one another.
Some yards keep inventories in their offices, as to the usable parts in each car, as well as the car's location in the yard. Many yards have computerized inventory systems. About 75% of any given vehicle can be recycled and used for other goods.
In recent years it is becoming increasingly common to use satellite part finder services to contact multiple salvage yards from a single source.
In the 20th century these were call centres that charged a premium rate for calls and compiled a facsimile that was sent to various salvage yards so they could respond directly if the part was in stock. Many of these are now Web-based with requests for parts being e-mailed instantly.
Between the switchboard and the cash register, this is one of my favorite rooms in Bodie. My grandmother started a telephone answering service over 50 years ago, and up until about 5 years ago, they were using switchboards that look very similar to the one here. They have since updated to a state-of-the-art computerized system, but it was not long ago that switchboards like this were in everyday use.
+++ DISCLAIMER +++
Nothing you see here is real, even though the model, the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The Georgian Air Force and Air Defense Division (თავდაცვის ძალების ავიაციისა და საჰაერო თავდაცვის სარდლობა; tavdatsvis dzalebis aviatsiisa da sahaero tavdatsvis sardloba) was established on January 1, 1992, and in September the Georgian Air Force conducted its first combat flight during the separatist war in Abkhazia. On August 18, 1998, the two divisions were unified in a joint command structure and renamed the Georgian Air Force.
In 2010, the Georgian Air Force was abolished as a separate branch and incorporated into the Georgian Land Forces as Air and Air Defense sections. By that time, the equipment – primarily consisting of Eastern Bloc aircraft inherited from the Soviet Union after the country’s dissolution – was totally outdated, the most potent aircraft were a dozen Suchoj Su-25 attack aircraft and a handful of MiG-21U trainers.
In order to rejuvenate the air arm, Tbilisi Aircraft Manufacturing (TAM), also known as JSC Tbilaviamsheni and formerly known as 31st aviation factory, started a modernization program for the Su-25, for the domestic forces but also for export customers. TAM had a long tradition of aircraft production within the Soviet Union. In the 1950s the factory started the production of Mikoyan's MiG-15 and later, the MiG-17 fighter aircraft. In 1957 Tbilisi Aircraft State Association built the MiG-21 two-seater fighter-trainer aircraft and its various derivative aircraft, continuing the MiG-21 production for about 25 years. At the same time the company was manufacturing the K-10 air-to-surface guided missile. Furthermore, the first Sukhoi Su-25 (known in the West as the "Frogfoot") close support aircraft took its maiden voyage from the runway of 31st aviation factory. Since then, more than 800 SU-25s had been delivered to customers worldwide. From the first SU-25 to the 1990s, JSC Tbilaviamsheni was the only manufacturer of this aircraft, and even after the fall of the Soviet Union the production lines were still intact and spares for more than fifty complete aircraft available. Along with the SU-25 aircraft 31st aviation factory also launched large-scale production of air-to-air R-60 and R-73 IR guided missiles, a production effort that built over 6,000 missiles a year and that lasted until the early 1990s. From 1996 to 1998 the factory also produced Su-25U two-seaters.
In 2001 the factory started, in partnership with Elbit Systems of Israel, upgrading basic Su-25 airframes to the Su-25KM “Scorpion” variant. This was just a technical update, however, intended for former Su-25 export customers who would upgrade their less potent Su-25K export aircraft with modern avionics. The prototype aircraft made its maiden flight on 18 April 2001 at Tbilisi in full Georgian Air Force markings. The aircraft used a standard Su-25 airframe, enhanced with advanced avionics including a glass cockpit, digital map generator, helmet-mounted display, computerized weapons system, complete mission pre-plan capability, and fully redundant backup modes. Performance enhancements included a highly accurate navigation system, pinpoint weapon delivery systems, all-weather and day/night performance, NATO compatibility, state-of-the art safety and survivability features, and advanced onboard debriefing capabilities complying with international requirements. The Su-25KM had the ability to use NATO-standard Mark 82 and Mark 83 laser-guided bombs and new air-to-air missiles, the short-range Vympel R-73. This upgrade extended service life of the Su-25 airframes for another decade.
There were, however, not many customers. Manufacturing was eventually stopped at the end of 2010, after Georgian air forces have been permanently dismissed and abolished. By that time, approximately 12 Scorpions had been produced, but the Georgian Air Force still used the basic models of Su-25 because of high cost of Su-25KM and because it was destined mainly for export. According to unofficial sources several Scorpions had been transferred to Turkmenistan as part of a trade deal.
In the meantime, another, more ambitious project took shape at Tbilisi Aircraft Manufacturing, too: With the help of Israel Aircraft Industries (IAI) the company started the development of a completely new attack aircraft, the TAM-1 “Gvelgeslas” (გველგესლას, Viper). It heavily relied on the year-long experience gathered with Su-25 production at Tblisi and on the tools at hand, but it was eventually a completely new aircraft – looking like a crossbreed between the Su-25 and the American A-10 with a T-tail.
This new layout had become necessary because the aircraft was to be powered by more modern, less noisy and more fuel-efficient Rolls Royce AE 3012 turbofan engines - which were originally intended to power the stillborn Yakovlev Yak-77 twin-engine business jet for up to 32 passengers, a slightly derated variant of the GMA 3012 with a 44 in diameter (112 cm) fan and procured via IAI from the United States through the company’s connection with Gulfstream Aerospace. Their larger diameter (the Su-25’s original Soyuz/Tumansky R-195 turbojets had a diameter of 109,5 cm/43.1 in) precluded the use of the former integral engine nacelles along the fuselage. To keep good ground clearance against FOD and to protect them from small arms fire, the engine layout was completely re-arranged. The fuselage was streamlined, and its internal structure was totally changed. The wings moved into a low position. The wings’ planform was almost identical to the Su-25’s, together with the characteristic tip-mounted “crocodile” air brakes. Just the leading edge inside of the “dogteeth” and the wing roots were re-designed, the latter because of the missing former engine nacelles. This resulted in a slightly increased net area, the original wingspan was retained. The bigger turbofans were then mounted in separate pods on short pylons along the rear fuselage, partly protected from below by the wings. Due to the jet efflux and the engines’ proximity to the stabilizers, these were re-located to the top of a deeper, reinforced fin for a T-tail arrangement.
Since the Su-25’s engine bays were now gone, the main landing gear had to be completely re-designed. Retracting them into the fuselage or into the relatively thin wings was not possible, TAM engineers settled upon a design that was very similar to the A-10: the aircraft received streamlined fairings, attached to the wings’ main spar, and positioned under the wings’ leading edges. The main legs were only semi-retractable; in flight, the wheels partly protruded from the fairings, but that hardly mattered from an aerodynamic point of view at the TAM-1’s subsonic operational speed. As a bonus they could still be used while retracted during emergency landings, improving the aircraft’s crash survivability.
Most flight and weapon avionics were procured from or via Elbit, including the Su-25KT’s modernized “glass cockpit”, and the TAM-1’s NATO compatibility was enhanced to appeal to a wider international export market. Beyond a total of eleven hardpoints under the wings and the fuselage for an external ordnance of up to 4.500 kg (9.900 lb), the TAM-1 was furthermore armed with an internal gun. Due to procurement issues, however, the Su-25’s original twin-barrel GSh-30-2 was replaced with an Oerlikon KDA 35mm cannon – a modern variant of the same cannon used in the German Gepard anti-aircraft tank, adapted to the use in an aircraft with a light-weight gun carriage. The KDA gun fired with a muzzle velocity of 1,440 m/s (4,700 ft/s) and a range of 5.500m, its rate of fire was typically 550 RPM. For the TAM-1, a unique feature from the SPAAG installation was adopted: the gun had two magazines, one with space for 200 rounds and another, smaller one for 50. The magazines could be filled with different types of ammunition, and the pilot was able select between them with a simple switch, adapting to the combat situation. Typical ammunition types were armor-piercing FAPDS rounds against hardened ground targets like tanks, and high explosive shells against soft ground targets and aircraft or helicopters, in a 3:1 ratio. Other ammunition types were available, too, and only 200 rounds were typically carried for balance reasons.
The TAM-1’s avionics included a SAGEM ULISS 81 INS, a Thomson-CSF VE-110 HUD, a TMV630 laser rangefinder in a modified nose and a TRT AHV 9 radio altimeter, with all avionics linked through a digital MIL-STD-1553B data bus and a modern “glass cockpit”. A HUD was standard, but an Elbit Systems DASH III HMD could be used by the pilot, too. The DASH GEN III was a wholly embedded design, closely integrated with the aircraft's weapon system, where the complete optical and position sensing coil package was built within the helmet (either the USAF standard HGU-55/P or the Israeli standard HGU-22/P), using a spherical visor to provide a collimated image to the pilot. A quick-disconnect wire powered the display and carried video drive signals to the helmet's Cathode Ray Tube (CRT).
The TAM-1’s development was long and protracted, though, primarily due to lack of resources and the fact that the Georgian air force was in an almost comatose state for several years, so that the potential prime customer for the TAM-1 was not officially available. However, the first TAM-1 prototype eventually made its maiden flight in September 2017. This was just in time, because the Georgian Air Force had formally been re-established in 2016, with plans for a major modernization and procurement program. Under the leadership of Georgian Minister of Defense Irakli Garibashvili the Air Force was re-prioritized and aircraft owned by the Georgian Air Force were being modernized and re-serviced after they were left abandoned for 4 years. This program lasted until 2020. In order to become more independent from foreign sources and support its domestic aircraft industry, the Georgian Air Force eventually ordered eight TAM-1s as Su-25K replacements, which would operate alongside a handful of modernized Su-25KMs from national stock. In the meantime, the new type also attained interest from abroad, e. g. from Bulgaria, the Congo and Cyprus. The IDF thoroughly tested two early production TAM-1s of the Georgian Air Force in 2018, too.
General characteristics:
Crew: 1
Length: 15.53 m (50 ft 11 in), including pitot
Wingspan: 14.36 m (47 ft 1 in)
Height: 4.8 m (15 ft 9 in)
Wing area: 35.2 m² (378 sq ft)
Empty weight: 9,800 kg (21,605 lb)
Gross weight: 14,440 kg (31,835 lb)
Max takeoff weight: 19,300 kg (42,549 lb)
Powerplant:
2× Rolls-Royce AE 3012 turbofans with 44.1 kN (9,920 lbf) thrust each
Performance:
Maximum speed: 975 km/h (606 mph, 526 kn, Mach 0.79)
Range: 1.000 km (620 mi, 540 nmi) with internal fuel, clean
Combat range: 750 km (470 mi, 400 nmi) at sea level with 4.500 kg (9,911 lb) of ordnance,
incl. two external fuel tanks
Service ceiling: 7.800 m (25,550 ft)
g limits: +6.5
Rate of climb: 58 m/s (11,400 ft/min)
Armament:
1× 35 mm (1.38 in) Oerlikon KDA cannon with 200 rds in two magazines
under the lower forward fuselage, offset to port side.
11× hardpoints with a capacity of up to 4.500 kg (9,911 lb) of external stores
The kit and its assembly:
This rather rigorous conversion had been on my project list for many years, and with the “Gunships” group build at whatifmodellers.com in late 2021 I eventually gathered my mojo to tackle it. The ingredients had already been procured long ago, but there are ideas that make you think twice before you take action…
This build was somewhat inspired by a CG rendition of a modified Su-25 that I came across while doing online search for potential ideas, running under the moniker “Su-125”, apparently created by someone called “Bispro” and published at DeviantArt in 2010; check this: (www.deviantart.com/bispro/art/Sukhoi-Su-125-Foghorn-15043...). The rendition shows a Su-25 with its engines re-located to the rear fuselage in separate nacelles, much like an A-10, plus a T-tail. However, as many photoshopped aircraft, the shown concept had IMHO some flaws. Where would a landing gear go, as the Su-125 still had shoulder wings? The engines’ position and size also looked fishy to me, quite small/narrow and very far high and back – I had doubts concerning the center of gravity. Nevertheless, I liked the idea, and the idea of an “A-10-esque remix” of the classic Frogfoot was born.
This idea was fueled even further when I found out that the Hobbycraft kit lends itself to such a conversion. The kit itself is not a brilliant Su-25 rendition, there are certainly better models of the aircraft in 1:72. However, what spoke for the kit as whiffing fodder was/is the fact that it is quite cheap (righteously so!) and AFAIK the only offering that comes with separate engine nacelles. These are attached to a completely independent central fuselage, and this avoids massive bodywork that would be necessary (if possible at all) with more conventional kits of this aircraft.
Another beneficial design feature is that the wing roots are an integral part of the original engine nacelles, forming their top side up to the fuselage spine. Through this, the original wingspan could be retained even without the nacelles, no wing extension would be necessary to retain the original proportions.
Work started with the central fuselage and the cockpit tub, which received a different (better) armored ejection seat and a pilot figure; the canopy remained unmodified and closed, because representing the model with an open cockpit would have required additional major body work on the spinal area behind the canopy. Inside, a new dashboard (from an Italeri BAe Hawk) was added, too – the original instrument panel is just a flat front bulkhead, there’s no space for the pilot to place the legs underneath the dashboard!
In parallel, the fin underwent major surgery. I initially considered an A-10-ish twin tail, but the Su-25’s high “tail stinger” prevented its implementation: the jet efflux would come very close to the tail surfaces. So, I went for something similar to the “Su-125” layout.
Mounting the OOB stabilizers to the fin was challenging, though. The fin lost its di-electric tip fairing, and it was cut into two sections, so that the tip would become long enough to match the stabilizers. A lucky find in the scrap box was a leftover tail tip from a Matchbox Blackburn Buccaneer, already shortened from a former, stillborn project: it had now the perfect length to take the Su-25 stabilizers! To make it fit on the fin, an 8mm deep section was inserted, in the form of a simple 1.5mm styrene sheet strip. Once dry, the surface was re-built with several PSR layers. Since it would sit further back on the new aircraft’s tail, the stinger with a RHAWS sensor was shortened.
On the fuselage, the attachment points for the wings and the engine nacelles were PSRed away and the front section filled with lots of lead beads, hoping that it would be enough to keep the model’s nose down.
Even though the wings had a proper span for a re-location into a low position, they still needed some attention: at the roots, there’s a ~1cm wide section without sweep (the area which would normally cover the original engine nacelles’ tops). This was mended through triangular 1.5 mm styrene wedges that extended the leading-edge sweep, roughly cut into shape once attached and later PSRed into the wings’ surfaces
The next construction site were the new landing gear attachment points. This had caused some serious headaches – where do you place and stow it? With new, low wings settled, the wings were the only logical place. But the wings were too thin to suitably take the retracted wheels, and, following the idea of a retrofitted existing design, I decided to adopt the A-10’s solution of nacelles into which the landing gear retracts forward, with the wheels still partly showing. This layout option appears quite plausible, since it would be a “graft-on” solution, and it also has the benefit of leaving lots of space for underwing stores, since the hardpoints’ position had to be modified now, too.
I was lucky to have a pair of A-10 landing gear nacelles at hand, left over from a wrecked Matchbox model from childhood time (the parts are probably 35 years old!). They were simply cut out, glued to the Su-25 wings and PSRed into shape. The result looked really good!
At this point I had to decide the model’s overall layout – where to place the wings, the tail and the new engine nacelles. The latter were not 1:72 A-10 transplants. I had some spare engine pods from the aforementioned Matchbox wreck, but these looked too rough and toylike for my taste. They were furthermore too bulky for the Su-25, which is markedly smaller than an A-10, so I had to look elsewhere. As a neat alternative for this project, I had already procured many moons ago a set of 1:144 resin PS-90A engines from a Russian company called “A.M.U.R. Reaver”, originally intended for a Tu-204 airliner or an Il-76 transport aircraft. These turbofan nacelles not only look very much like A-10 nacelles, just a bit smaller and more elegant, they are among the best resin aftermarket parts I have ever encountered: almost no flash, crisp molding, no bubbles, and perfect fit of the parts – WOW!
With these three elements at hand I was able to define the wings’ position, based on the tail, and from that the nacelles’ location, relative to the wings and the fin.
The next challenge: how to attach the new engines to the fuselage? The PS-90A engines came without pylons, so I had to improvise. I eventually found suitable pylons in the form of parts from F-14A underwing missile pylons, left over from an Italeri kit. Some major tailoring was necessary to find a proper position on the nacelles and on the fuselage, and PSRing these parts turned out to be quite difficult because of the tight and labyrinthine space.
When the engines were in place, work shifted towards the model’s underside. The landing gear was fully replaced. I initially wanted to retain the front wheel leg and the main wheels but found that the low wings would not allow a good ground clearance for underwing stores and re-arming the aircraft, a slightly taller solution was necessary. I eventually found a complete landing gear set in the scrap box, even though I am not certain to which aircraft it once belonged? I guess that the front wheel came from a Hasegawa RA-5C Vigilante, while the main gear and the wheels once belonged to an Italeri F-14A, alle struts were slightly shortened. The resulting stance is still a bit stalky, but an A-10 is also quite tall – this is just not so obvious because of the aircraft’s sheer size.
Due to the low wings and the landing gear pods, the Su-25’s hardpoints had to be re-arranged, and this eventually led to a layout very similar to the A-10. I gave the aircraft a pair of pylons inside of the pods, plus three hardpoints under the fuselage, even though all of these would only be used when slim ordnance was carried. I just fitted the outer pair. Outside of the landing gear fairings there would have been enough space for the Frogfoot’s original four outer for pylons, but I found this to be a little too much. So I gave it “just” three, with more space between them.
The respective ordnance is a mix for a CAS mission with dedicated and occasional targets. It consists of:
- Drop tanks under the inner wings (left over from a Bilek Su-17/22 kit)
- A pair of B-8M1 FFAR pods under the fuselage (from a vintage Mastercraft USSR weapon set)
- Two MERs with four 200 kg bombs each, mounted on the pylons outside of the landing gear (the odd MERs came from a Special Hobby IDF SMB-2 Super Mystère kit, the bombs are actually 1:100 USAF 750 lb bombs from a Tamiya F-105 Thunderchief in that scale)
- Four CBU-100 Rockeye Mk. II cluster bombs on the outer stations (from two Italeri USA/NATO weapon sets, each only offers a pair of these)
Yes, it’s a mix of Russian and NATO ordnance – but, like the real Georgian Su-25KM “Scorpion” upgrade, the TAM-1 would certainly be able to carry the same or even a wider mix, thanks to modified bomb racks and wirings. Esp. “dumb” weapons, which do not call for special targeting and guidance avionics, are qualified.
The gun under the nose was replaced with a piece from a hollow steel needle.
Painting and markings:
Nothing unusual here. I considered some more “exotic” options, but eventually settled for a “conservative” Soviet/Russian-style four-tone tactical camouflage, something that “normal” Su-25s would carry, too.
The disruptive pattern was adapted from a Macedonian Frogfoot but underwent some changes due to the T-tail and the engine nacelles. The basic tones were Humbrol 119 (RAF Light Earth), 150 (Forest Green), 195 (Chrome Oxide Green, RAL 6020) and 98 (Chocolate) on the upper surfaces and RLM78 from (Modelmaster #2087) from below, with a relatively low waterline, due to the low-set wings.
As usual, the model received a light black ink washing and some post-shading – especially on the hull and on the fin, where many details had either disappeared under PSR or were simply not there at all.
The landing gear and the lower areas of the cockpit were painted in light grey (Humbrol 64), while the upper cockpit sections were painted with bright turquoise (Modelmaster #2135). The wheel hubs were painted in bright green (Humbrol 101), while some di-electric fairings received a slightly less intense tone (Humbrol 2). A few of these flat fairings on the hull were furthermore created with green decal sheet material (from TL Modellbau) to avoid masking and corrections with paint.
The tactical markings became minimal, matching the look of late Georgian Su-25s. The roundels came from a Balkan Models Frogfoot sheet. The “07” was taken from a Blue Rider decal sheet, it actually belongs to a Lithuanian An-2. Some white stencils from generic MiG-21 and Mi-8 Begemot sheets were added, too, and some small markings were just painted onto the hull with yellow.
Some soot stains around the jet nozzles and the gun were added with graphite, and finally the kit was sealed with a coat of matt acrylic varnish.
A major bodywork project – and it’s weird that this is basically just a conversion of a stock kit and no kitbashing. A true Frogfoot remix! The new engines were the biggest “outsourced” addition, the A-10 landing gear fairings were a lucky find in the scrap box, and the rest is quite generic and could have looked differently. The result is impressive and balanced, though, the fictional TAM-1 looks quite plausible. The landing gear turned out to be a bit tall and stalky, though, making the aircraft look smaller on the ground than it actually is – but I left it that way.
Feel free to use the image in whatever way you want! I would be very grateful for a credit link to www.planetofsuccess.com/blog/ IF you publish this image on a reputable website (such as about.com) or in a reputable newspaper. Thank you!
__________
The depicted calendar is a simple week and weekday calendar-system (ISO8601 standard). Two levels of cycles: year, month and day. A system that is used by the Gregorian, Hebrew, Islamic and Julian calendar.
__________
A calendar is a system of organizing days for social, religious, commercial, or administrative purposes. This is done by giving names to periods of time, typically days, weeks, months, and years. The name given to each day is known as a date. Periods in a calendar (such as years and months) are usually, though not necessarily, synchronized with the cycle of the sun or the moon. Many civilizations and societies have devised a calendar, usually derived from other calendars on which they model their systems, suited to their particular needs.
A calendar is also a physical device (often paper). This is the most common usage of the word. Other similar types of calendars can include computerized systems, which can be set to remind the user of upcoming events and appointments.
The English word calendar is derived from the Latin word kalendae, which was the Latin name of the first day of every month.
Hong Kong
The Peak Tram's route from Central district to Victoria Peak covers a distance of about 1.4 kilometres (0.87 mi) and an elevation of just under 400 metres (1,312 ft).
In 1881 Alexander Findlay Smith first put the project of a Peak Railway into shape and presented a petition for a concession to the governor of Hong Kong. The necessary legislation was passed two years later.
After its opening to 1926, the Peak Tram divided into three classes:
First Class: British colonial officials and residents of Victoria Peak
Second Class: British military and the Hong Kong Police Force personnel
Third Class: Other people and animals
Round trip charges were HKD 45 cents (First Class), 30 cents (Second Class) and 15 cents (Third Class).
In the 1908-1949 period, first row seats are reserved for the governor of Hong Kong, behind displaying "This seat reservation to His Excellency the Governor" (reserved for the governor of Hong Kong) in bronze plaque.
Mr. Findlay Smith did not approach the project rashly. Travelling extensively in Europe and America, he made himself conversant with nearly every existing method of railway employed for mountain ascent — San Francisco, Scarborough, Rigi, Monterey, Lucerne, the Rhine, Mount Vesuvius — and returned to Hong Kong thoroughly convinced of the feasibility of his idea. The actual construction was begun in September 1885 and in May 1888 the line was officially opened.
Smith's business partner, N. J. Ede, owned and lived in the house next to the Upper Terminus, originally named Dunheved, which they converted into the original Peak Hotel.
It took three years to build the Peak Tram. Most of the heavy equipment and rails needed for the construction was hauled uphill by the workers, who had no mechanical support. As a revolutionary new form of transport to Asia at the time, the tramway was considered a marvel in engineering upon its completion.[4] A wooden structure was built for the terminal. According to photographs, the Garden Road terminus was originally an unadorned building, a large clock face was added to the edifice probably between the 1910s and 1920s.
The Peak Tram was opened for public service on 28 May 1888 by the then governor Sir George William des Voeux. As built, the line used a static steam engine to power the haulage cable. It was at first used only for residents of Victoria Peak, although despite this it carried 800 passengers on its first day of operation, and about 150,000 in its first year.[These passengers were carried in the line's wooden bodied cars. Its existence accelerated the residential development of Victoria Peak and the Mid Levels.
In the course of its history, the tram has been victim of two natural disasters, caused by floods from heavy rainfall, which washed away steep sections of the track between Bowen Road and Kennedy Road. The first was in 1899, and the second occurred on 12 June 1966.
In 1926, the steam engine was replaced by an electric motor. On 11 December 1941, during the Battle of Hong Kong, the engine room was damaged in an attack. Service was not resumed until 25 December 1945, after the end of the Japanese occupation of Hong Kong.
In 1956, the Peak Tram was equipped with a new generation of lightweight metal bodied cars, each of which seated 62-seat passengers. Unusually for a funicular line, three such cars were provided, only two of which were in use at any one time. The third spare car was kept in a car shed near Kennedy Road station.
The system was comprehensively rebuilt in 1989 by the Swiss company, Von Roll, with new track, a computerized control system and two new two-car trams with a capacity of 120 passengers per tram. By the time of the handover in 1997, it carried some 2 million passengers annually. Today, more than 4 million people ride the Peak Tram annually, or an average of over 11,000 every day. (Wikipedia)
Members of the 2d AVS Cyber Maintenance and Support Flight prepare over 20 computers to suport the filming of the AFSPC production "Space Superiority". A Lockheed Martin F-35A "Lightning II" is shown in this photo.
From Wikipedia, the free encyclopedia
The Lockheed Martin F-35 "Lightning II" is a family of single-seat, single-engine, all-weather, stealth, fifth-generation, multirole combat aircraft, designed for ground-attack and air-superiority missions. It is built by Lockheed Martin and many subcontractors, including Northrop Grumman, Pratt & Whitney, and BAE Systems.
The F-35 has three main models: the conventional takeoff and landing F-35A (CTOL), the short take-off and vertical-landing F-35B (STOVL), and the catapult-assisted take-off but arrested recovery, carrier-based F-35C (CATOBAR). The F-35 descends from the Lockheed Martin X-35, the design that was awarded the Joint Strike Fighter (JSF) program over the competing Boeing X-32. The official "Lightning II" name has proven deeply unpopular and USAF pilots have nicknamed it Panther, instead.
The United States principally funds F-35 development, with additional funding from other NATO members and close U.S. allies, including the United Kingdom, Italy, Australia, Canada, Norway, Denmark, the Netherlands, and formerly Turkey. These funders generally receive subcontracts to manufacture components for the aircraft; for example, Turkey was the sole supplier of several F-35 parts until its removal from the program in July 2019. Several other countries have ordered, or are considering ordering, the aircraft.
As the largest and most expensive military program ever, the F-35 became the subject of much scrutiny and criticism in the U.S. and in other countries. In 2013 and 2014, critics argued that the plane was "plagued with design flaws", with many blaming the procurement process in which Lockheed was allowed "to design, test, and produce the F-35 all at the same time," instead of identifying and fixing "defects before firing up its production line". By 2014, the program was "$163 billion over budget [and] seven years behind schedule". Critics also contend that the program's high sunk costs and political momentum make it "too big to kill".
The F-35 first flew on 15 December 2006. In July 2015, the United States Marines declared its first squadron of F-35B fighters ready for deployment. However, the DOD-based durability testing indicated the service life of early-production F-35B aircraft is well under the expected 8,000 flight hours, and may be as low as 2,100 flight hours. Lot 9 and later aircraft include design changes but service life testing has yet to occur. The U.S. Air Force declared its first squadron of F-35As ready for deployment in August 2016. The U.S. Navy declared its first F-35Cs ready in February 2019. In 2018, the F-35 made its combat debut with the Israeli Air Force.
The U.S. stated plan is to buy 2,663 F-35s, which will provide the bulk of the crewed tactical airpower of the U.S. Air Force, Navy, and Marine Corps in coming decades. Deliveries of the F-35 for the U.S. military are scheduled until 2037 with a projected service life up to 2070.
Development
F-35 development started in 1992 with the origins of the Joint Strike Fighter (JSF) program and was to culminate in full production by 2018. The X-35 first flew on 24 October 2000 and the F-35A on 15 December 2006.
The F-35 was developed to replace most US fighter jets with the variants of a single design that would be common to all branches of the military. It was developed in co-operation with a number of foreign partners, and, unlike the F-22 "Raptor", intended to be available for export. Three variants were designed: the F-35A (CTOL), the F-35B (STOVL), and the F-35C (CATOBAR). Despite being intended to share most of their parts to reduce costs and improve maintenance logistics, by 2017, the effective commonality was only 20%. The program received considerable criticism for cost overruns during development and for the total projected cost of the program over the lifetime of the jets.
By 2017, the program was expected to cost $406.5 billion over its lifetime (i.e. until 2070) for acquisition of the jets, and an additional $1.1 trillion for operations and maintenance. A number of design deficiencies were alleged, such as: carrying a small internal payload; performance inferior to the aircraft being replaced, particularly the F-16; lack of safety in relying on a single engine; and flaws such as the vulnerability of the fuel tank to fire and the propensity for transonic roll-off (wing drop). The possible obsolescence of stealth technology was also criticized.
Design
Overview
Although several experimental designs have been developed since the 1960s, such as the unsuccessful Rockwell XFV-12, the F-35B is to be the first operational supersonic STOVL stealth fighter. The single-engine F-35 resembles the larger twin-engined Lockheed Martin F-22 "Raptor", drawing design elements from it. The exhaust duct design was inspired by the General Dynamics Model 200, proposed for a 1972 supersonic VTOL fighter requirement for the Sea Control Ship.
Lockheed Martin has suggested that the F-35 could replace the USAF's F-15C/D fighters in the air-superiority role and the F-15E "Strike Eagle" in the ground-attack role. It has also stated the F-35 is intended to have close- and long-range air-to-air capability second only to that of the F-22 "Raptor", and that the F-35 has an advantage over the F-22 in basing flexibility and possesses "advanced sensors and information fusion".
Testifying before the House Appropriations Committee on 25 March 2009, acquisition deputy to the assistant secretary of the Air Force, Lt. Gen. Mark D. "Shack" Shackelford, stated that the F-35 is designed to be America's "premier surface-to-air missile killer, and is uniquely equipped for this mission with cutting-edge processing power, synthetic aperture radar integration techniques, and advanced target recognition".
Improvements
Ostensible improvements over past-generation fighter aircraft include:
Durable, low-maintenance stealth technology, using structural fiber mat instead of the high-maintenance coatings of legacy stealth platforms
Integrated avionics and sensor fusion that combine information from off- and on-board sensors to increase the pilot's situational awareness and improve target identification and weapon delivery, and to relay information quickly to other command and control (C2) nodes
High-speed data networking including IEEE 1394b and Fibre Channel (Fibre Channel is also used on Boeing's "Super Hornet".
The Autonomic Logistics Global Sustainment, Autonomic Logistics Information System (ALIS), and Computerized maintenance management system to help ensure the aircraft can remain operational with minimal maintenance manpower The Pentagon has moved to open up the competitive bidding by other companies. This was after Lockheed Martin stated that instead of costing 20% less than the F-16 per flight hour, the F-35 would actually cost 12% more. Though the ALGS is intended to reduce maintenance costs, the company disagrees with including the cost of this system in the aircraft ownership calculations. The USMC has implemented a workaround for a cyber vulnerability in the system. The ALIS system currently requires a shipping-container load of servers to run, but Lockheed is working on a more portable version to support the Marines' expeditionary operations.
Electro-hydrostatic actuators run by a power-by-wire flight-control system
A modern and updated flight simulator, which may be used for a greater fraction of pilot training to reduce the costly flight hours of the actual aircraft
Lightweight, powerful lithium-ion batteries to provide power to run the control surfaces in an emergency
Structural composites in the F-35 are 35% of the airframe weight (up from 25% in the F-22). The majority of these are bismaleimide and composite epoxy materials. The F-35 will be the first mass-produced aircraft to include structural nanocomposites, namely carbon nanotube-reinforced epoxy. Experience of the F-22's problems with corrosion led to the F-35 using a gap filler that causes less galvanic corrosion to the airframe's skin, designed with fewer gaps requiring filler and implementing better drainage. The relatively short 35-foot wingspan of the A and B variants is set by the F-35B's requirement to fit inside the Navy's current amphibious assault ship parking area and elevators; the F-35C's longer wing is considered to be more fuel efficient.
Costs
A U.S. Navy study found that the F-35 will cost 30 to 40% more to maintain than current jet fighters, not accounting for inflation over the F-35's operational lifetime. A Pentagon study concluded a $1 trillion maintenance cost for the entire fleet over its lifespan, not accounting for inflation. The F-35 program office found that as of January 2014, costs for the F-35 fleet over a 53-year lifecycle was $857 billion. Costs for the fighter have been dropping and accounted for the 22 percent life cycle drop since 2010. Lockheed stated that by 2019, pricing for the fifth-generation aircraft will be less than fourth-generation fighters. An F-35A in 2019 is expected to cost $85 million per unit complete with engines and full mission systems, inflation adjusted from $75 million in December 2013.
.................................................................................................
Before getting into A, B, and C differences for the F-35, a short primer on how to tell an F-35 from an F-22 may help avoid an even larger fighter faux pas. After all, the F-22 and F-35 look similar as well, especially from certain angles and at a distance. Both the F-22 and F-35 have two intakes, two tails, and similar planforms.
If the two aircraft happen to be parked together, the F-22, however, is noticeably larger. The Raptor is about ten feet longer than a Lightning II. Its wingspan is about ten feet wider than an F-35A’s and F-35B’s, and roughly the same as an F-35C’s.
From behind, the twin, rectangular thrust-vectoring exhaust nozzles on the F-22 are an obvious difference. The F-35 has one round exhaust nozzle for its single engine. The geometry of the engine intakes distinguishes the two aircraft from the top and side. The Raptor’s intakes angle back. On the Lightning II, they point forward. Intake differences are visible from the front view as well. Opposing sides of the F-22’s intakes are parallel. The corners are slightly rounded. The F-35’s intake angles are sharper. A space between the intake and the fuselage, called a diverter, is found only on the Raptor as well. The F-35’s diverterless intake sits flush to the fuselage.
The single- vs. twin-engine difference plays out on the top sides of the two aircraft as well. The F-22 has two humps between the tails. The F-35 has just one. On the underside, the F-22 is much flatter with one main (though split) weapon bay with two doors. The F-35 is more rounded and has two distinct main weapon bays each with two doors. Taxiing, the F-22 sits about a foot lower than an F-35.
Context also matters. If the airplane in question is operating from an aircraft carrier, landing vertically, taking off in a very short distance, or displaying non-USAF markings, it’s not an F-22.
Context And The F-35 Variants
When it comes to distinguishing among F-35 variants, context can provide some tips as well. If the F-35 in question is being catapulted from a carrier, it’s an F-35C. If it’s landing vertically, it’s an F-35B. If it has Royal Air Force markings, it’s an F-35B. If it has international markings that aren’t associated with the RAF, it’s an F-35A (at least until another international air force procures B or C models).
Basic A, B, & C Differences
The A model is most easily distinguished from other F-35 models by the blister on the upper left side for its internal GAU-22/A Gatling-type gun. (B and C models do not have internal guns.) Like the B model, the F-35A has a smaller wing. The A model is the only F-35 variant with a refueling receptacle on its dorsal spine. The receptacle markings are clearly visible from the top view.
The B model is most easily distinguished from other F-35 models by its vertical lift system. The system comes into play at almost every viewing angle of the aircraft. Even in up-and-away (non vertical) flight, the F-35B has visual clues for the vertical lift system. The lift fan door flattens the upper surface of the F-35 just behind the cockpit, giving this model a distinctive hump. The hump is especially noticeable from front and side perspectives. The lift fan itself abbreviates the aft end of the canopy line as well.
Panel lines and markings are associated with the lift system are visible on the top and bottom sides of the F-35B. From above, panel lines for the lift fan door and the auxiliary air inlet are visible. From below, the doors for lift fan exhaust appear just behind the front landing gear doors. The aft end of the lower fuselage also has a seam for the doors that open when the three-bearing swivel duct goes into action in STOVL mode. (The A and C models have a hump in this location where their arresting/barricade tailhooks are stored.) The B model also has a diamond-shaped roll duct on the underside of each wing.
The C model is most easily distinguished from other F-35 models by its larger wing, which provides almost fifty percent more wing area than the A and B models. The hinge line for the wing fold is visible from top and bottom views. The F-35C wing has an additional control surfaces, called ailerons, on the trailing edge as well (two control surfaces on each wing instead of one). The inner control surfaces on the F-35C wing and the ones on the A and B are called flaperons. The landing gear on the F-35C is noticeable beefier. The nose gear has two tires and a launch bar that extends forward and upward from the wheels.
Another Trick: Markings
Markings can also be used to distinguish F-35 variants. US Air Force markings equate to the A model. US Marines to the B or C model. (The Marine Corps is purchasing eighty C models.) And US Navy to the C model only. The Air Force puts the aircraft identification number, or serial number, on the tail (F-35A). The US Marines and Navy put their identification numbers, called Bureau numbers, on the empennage just below the horizontal tails. To make identification somewhat easier, the F-35 variant designation appears just above the bureau number for the US Marine Corps and Navy. Unfortunately, because of their location these markings are not apparent in most photos. International operators have their own specific requirements for markings.
Other Notes
As noted in a previous Code One article, Norwegian F-35s will be distinguishable by a small, aerodynamically clean bump on the upper fuselage between the two vertical tails. The bump contains a dragchute.
Nosebooms are peculiar to flight test F-35s dedicated to flight sciences testing.
The major differences between the X-35 demonstrator aircraft, which are no longer flying, and F-35 were covered in another previous Code One article.
Basic Cheat Sheet
The F-35A has a small wing, full canopy, gun blister on the left upper side, and aerial refueling receptacle markings on its dorsal. It has no panel lines or markings associated with a STOVL lift system.
The F-35B has a small wing, distinctive fuselage hump and abbreviated canopy (thanks to the lift fan), refueling probe on the right side, and numerous markings, panel lines, and actual hardware associated with its vertical lift system.
The F-35C has the big wing, wing folds, ailerons, full canopy, refueling probe on the right side, and a launch bar and two tires on the front landing gear. If the aircraft has Navy markings, it’s an F-35C.
Former Clinchfield 3020 and L&N 1239 disturb the peace of Hancock, MN with crude empties bound for Trenton, ND.
The two of these getting the call for sole power on an interchange unit train is just another feat to add to their resumés thus far. They are modern day survivors in a sea of much more powerful, fuel efficient, and computerized equipment. Between the two of them one can chalk up over 87 years of service, all with their original company and successor. Any spartan cab leader nowadays is special, but these eldest SD40 models provide a slightly different flavor than a bonafide Dash 2. A pair of them is as delicious as a slice of french silk.
For me this is heaven.
When the original Ad Art closed down in 2000, the 99 Freeway sign was headed for the scrap yard. For those who remember this sign, it was really something special. In the words of Jack Dubois, Art Director for Ad Art: "This pylon had been about the most animated sign in the Valley - letters spelling on in neon, then scintillating with bulbs with the backgrounds wiping on and off with neon (and no computerizing - all done with mechanics that could be heard at night)." The sign was designed by Bill Clarke. Well, Jack called the American Sign Museum in Ohio and they agreed to take the sign. Hats off to Mr. Jack Dubois and the good people at the American Sign Museum for preserving this important piece of American history.
Released in September 2001 for the 2002 model year, Toyota released the Camry XV30 series as a larger sedan, but without a station wagon for the first time. The wagon's demise occurred due to its sales erosion to minivans and crossover SUVs.
Toyota redesigned this series from the ground up for the first time since the V30 and XV10. Through efficiency gains such as increased computerization, and by having the XV30 ride on the K platform introduced with the Toyota Highlander (XU20) of 2000, Toyota expedited the XV30 production development stage to 26 months, down from 36 months with the XV20. As a consequence, Toyota claimed the XV30 to have cost 30 percent less to design and develop than its predecessor. XV30 also had increased parts content over the XV20, but did not cost any more to manufacture.
Until the 2003 model year, the Camry Solara remained on the XV20 series chassis, and received only minor styling upgrades to the front and rear ends. However, the Solara did receive the same 2.4-liter 2AZ-FE I4 engine that was available on the Camry sedan. The US received three engine options, a 115 kW (154 hp) 2.4-liter inline-four, a 142 kW (190 hp) 3.0-liter V6, and a 157 kW (210 hp) 3.3-liter version of the same. The 3.3-liter was only available for the Camry's sportier "SE" model.
The white Camry here is undoubtedly a better car than any of the other designed this month. Faster, safer, more efficient, quieter. These are all the hallmarks of progress. The Camry's design, however, is the very definition of cautious.
In the future, no doubt, there will be some people who get misty eyed when they see one drive down the road. As mentioned, not a bad car, but not inspired either.
Alatco, Pantranco South, Philtranco, Piltranco
1914-2011
97th Anniversary
July 6, 1914
1914: a young enterprising American serviceman Albert Louise Ammen together with another American, Max Blouse organized a small transportation company in Iriga, Camarines Sur, with an initial fleet of one (1) auto-truck. He called the company ALATCO or the A.L. Ammen Transport Co., Inc. Its first route was Iriga-Naga. Mr. Ammen's venture into the transport business had become so successful that soon he expanded his fleet to service the other towns of Camarines Sur, Camarines Norte, Albay and Sorsogon. ALATCO became the principal carrier in the Bicol region, inaugurating highway travel that was to open remote villages in the Bicolandia, to the mainstream of economic and social development.
1942: World War II aborted expansion of the transport company. When it resumed operations in 1945 with surplus US Navy trucks bought from the United States Commercial Company, the company was faced with ruinous competition and beset with problems of maintaining its efficiency and safety as a result of her expanded size and nature of operations.
1949: The Heirs of Don Nicasio Tuazon of Manila took over ownership of ALATCO, and, with infusion of new capital, embarked on an ambitious program of expansion and rehabilitation. One important development at this time was the company's "dieselization" Program that converted its gas-powered trucks to diesel.
1952: ALATCO operated four hundred (400) units in its fleet, and it centered its fleet in Iriga. It also maintained subsidiary shops in Daet and Labo, Camarines Norte; Naga City, Camarines Sur; Ligao, Tabaco, and Legaspi in Albay; and Sorsogon and Irosin in Sorsogon.
1953: ALATCO ventured to Quezon province by consolidating into local and express bus operations from three small bus companies servicing the area. It operated under the umbrella of the Eastern Tayabas Bus Co. (ETBCO) headed by Mr. Ramón Soler. EBTCO later entered into a 5-year lease contract with the Laguna Tayabas Bus Company (LTBCO).
1971: ALATCO and ETBCO were sold to the Mantrade Group that formally amalgamated the operations of the two firms into one company. It was named the Pantranco South Express, Inc. (PSEI) to differentiate it from its northern counterpart, which the group then already owned.
1973: Compounded by global crises and steep escalation of fuel costs, PSEI nearly collapsed. The new owners (the Mantrade Group of the Manuel Lopa and Jose Cojuangco families) insisted on providing the service even during floods, road interruptions and bad road conditions. Debt-strapped and traumatized by high operation costs, the company's creditors decided to take over the organization.
1974: The Creditors Syndicate of PSEI decided to develop and implement a Corporate Rehabilitation Program. The same year, the Company added Catanduanes, Samar and Masbate to its scope of operations, having formalized tie-ups with passenger ferry operators in these areas.
1978: PSEI introduced its air-conditioned coaches in its southern route.
1980: The Company expanded its freight service operations and moved its central offices and terminal at its present site in Pasay City.
1981: The Company pioneered in Eastern Visayas and by year-end had connected all of Leyte and Samar provinces to the Luzon mainstream. PSEI also entered the sea transport business with its passenger and vehicle ferry, linking the ports of Matnog, Sorsogon and Allen, Northern Samar.
1982: A new level of service was inaugurated with the addition of Royal Class and new air-conditioned coaches with toilets and VCR's in the company's fleet. PSEI also became the first bus company in the Philippines to computerize its operations.
1984: PSEI, together with two other ferryboat operators, formed a joint venture company, the St. Bernard Services Corporation (SBTC) that now operates in the San Bernardino Strait, with the government ferry boat, Maharlika I. In the same year, the company changed its name to Philtranco Service Enterprises, Incorporated.
1986: Commemorated the first Luzon-Visayas-Mindanao (LUZVIMINDA) run that became the first trans-Philippine bus-cum-ferry-operation. Now PSEI has seven ferryboat operations crossing Matnog and Allen, and Liloan, Southern Leyte and Surigao City, Surigao del Norte. Having opened the southern frontiers of Mindanao to Luzon and Visayas with its inter-modal transport service, Philtranco hopes to contribute its share in effecting the real unification of the nation where the economic, educational, cultural, political and social opportunities are shared by every Filipino.
April 1999: Penta Pacific Realty Corporation acquired PSEI headed by businessman Jose C.H. Alvarez. This new group immediately programmed a fleet replacement of 80 units costing PHP250 million.
June 2000: The 29-seater Gold Service Bus was introduced, initially serving key cities in the Bicol region, with a coach stewardess as additional crew to assist passengers, giving the same service as that of an airline.
June 1, 2001: PSEI implemented the Passenger Check-in and Baggage Tag System procedures for the security, convenience and comfort of our riding public. PSEI is the first bus company in the country to adopt this system patterned after the airline system. Today, Philtranco is a symbol of progress in the Philippine transport industry. The Company continues to blaze new trails with the innovations in its levels and brands of services.
2004: Philtranco, the country's lone integrated land and sea transport company, is embarking on a PHP4 billion (US$75 million) investment program over a five-year period to acquire new fleet of buses and ferry boats, and improve and expand its terminals. Philtranco CEO Jose E.B. Antonio said the expansion is in response to President Gloria Macapagal-Arroyo's push to modernize the country's land and sea transport service of goods and passengers through five major islands—Luzon, Mindoro, Panay, Negros and Mindanao.
2007: In promoting the Diosdado Macapagal International Airport (DMIA) in Clark, Pampanga, as an alternate to its counterpart in Manila, Ninoy Aquino International Airport - Philtranco offers a hassle-free daily Manila-Clark-Manila trip schedule.
The Clark civil aviation complex encompasses 2,367 hectares of the sprawling 4,400-hectare Clark Freeport Zone where the Diosdado Macapagal International Airport (DMIA) is located.
It is home to various full service and low-cost carriers seradar facilitiesrvicing travel and business routes in the Asia-Pacific region. These advantages make it an ideal departure point for leisure travelers, businessmen and Overseas Filipino Workers alike looking for value for money.
2010: Philtranco Released its new type of Deluxe Service called Piltranco Airbus 380, the newest addition of Executive Class fleet of Philtranco. 26 fully reclined seats with leg rest in 2x1 arrangement, 2 Flatscreen TVs (Front and Center) equipped with stereo surround sound and DVD, and On- Board Comfort Room. Daily non- stop trips to Naga and Legaspi from Pasay/ Cubao/ Alabang and Turbina. Feels like boarding on a first class Airbus 380. Only at Philtranco.
Southeast Financial Center is a two-acre development in Miami, Florida, United States. It consists of a 764 feet (233 m) tall office skyscraper and its 15-story parking garage. It was previously known as the Southeast Financial Center (1984–1992), the First Union Financial Center (1992–2003), and the Wachovia Financial Center (2003-2011). In 2011, it retook its old name of Southeast Financial Center as Wachovia merged with Wells Fargo and moved to the nearby Wells Fargo Center.
When topped-off in August 1983, it was the tallest building south of New York City and east of the Mississippi River, taking away the same title from the Westin Peachtree Plaza Hotel, in Atlanta, Georgia. It remained the tallest building in the southeastern U.S. until 1987, when it was surpassed by One Atlantic Center in Atlanta and the tallest in Florida until October 1, 2003, when it was surpassed by the Four Seasons Hotel and Tower, also in Miami. It remains the tallest office tower in Florida and the third tallest building in Miami.
Southeast Financial Center was constructed in three years with more than 500 construction workers. Approximately 6,650 tons of structural steel, 80,000 cubic yards of concrete and 7000 cubic tons of reinforcing steel bars went into its construction. The complex sits on a series of reinforced concrete grade beams tied to 150 concrete caissons as much as ten feet in diameter and to a depth of 80 feet. A steel space-frame canopy with glass skylights covers the outdoor plaza between the tower and low-rise building.
The tower has a composite structure. The exterior columns and beams are concrete encased steel wide flanges surrounded by reinforcing bars. The composite exterior frame was formed using hydraulic steel forms, or "flying forms," jacked into place with a "kangaroo" crane, that was located in the core and manually clamped into place. Wide flange beams topped by a metal deck and concrete form the interior floor framing. The core is A braced steel frame, designed to laterally resist wind loads. The construction of one typical floor was completed every five days.
The low-rise banking hall and parking building is a concrete-framed structure. Each floor consists of nearly an acre of continuously poured concrete. When the concrete had sufficiently hardened, compressed air was used to blow the forms fiberglass forms from under the completed floor. It was then rolled out to the exterior where it was raised by crane into position for the next floor.
The building was recognized as Miami's first and only office building to be certified for the LEED Gold award in January 2010.
The center was developed by a partnership consisting of Gerald D. Hines Interests, Southeast Bank and Corporate Property Investors for $180 million. It was originally built as the headquarters for Southeast Bank, which originally occupied 50 percent of the complex's space. It remained Southeast Bank's headquarters there until it was liquidated in 1991.
The Southeast Financial Center comprises two buildings: the 55-story office tower and the 15-story parking annex. The tower has 53 stories of office space. The first floor is dedicated for retail, the second floor is the lobby and the 55th floor was home to the luxurious Miami City Club. The parking annex has 12 floors of parking space for 1,150 cars. The first floor is dedicated for retail, the second floor is a banking hall and the 15th floor has the Downtown Athletic Club. A landscaped plaza lies between the office tower and the parking annex. An enclosed walkway connects the second story of the tower with the second story of the annex. The courtyard is partially protected from the elements by a steel and glass space frame canopy spanning the plaza and attached to the tower and annex. Southeast Bank's executive offices were located on the 38th floor. Ground was broken on the complex on December 12, 1981 and the official dedication and opening for the complex was held on October 23, 1984.
The Southeast Financial Center was designed by Edward Charles Bassett of Skidmore, Owings and Merrill. The Associate Architect was Spillis Candela & Partners. It has 1,145,311 ft² (106,000 m²) of office space. A typical floor has about 22,000 ft² (2,043.87 m²) of office space. Each floor has 9 ft x 9 ft (2.7 m x 2.7 m) floor to ceiling windows. (All of the building's windows are tinted except for the top floor, resulting in strikingly bright and clear views from there.) The total complex has over 2.2 million ft² (204,000 m²). The distinctive setbacks begin at the 43rd floor. Each typical floor plate has 9 corner offices and the top twelve floors have as many as 16. There are 43 elevators in the office tower. An emergency control station provides computerized monitoring for the entire complex, and four generators for backup power.
The Southeast Financial Center can be seen as far away as Ft. Lauderdale and halfway toward Bimini. Night space shuttle launches from Cape Canaveral 200 miles to the north were plainly visible from the higher floors. The roof of the building was featured in the Wesley Snipes motion picture Drop Zone, where an eccentric base jumper named Swoop parachutes down to the street from a suspended window cleaning trolley. The building also appeared in several episodes of the 1980s TV show Miami Vice and at the end of each episode's opening credits.
Zara founder Amancio Ortega purchased the building from J.P. Morgan Asset Management in December 2016. The purchase price was reportedly over $500 million, making it one of the largest real estate transactions in South Florida history.
Credit for the data above is given to the following websites:
en.wikipedia.org/wiki/Southeast_Financial_Center
www.emporis.com/buildings/122292/wachovia-financial-cente...
© All Rights Reserved - you may not use this image in any form without my prior permission.
Since 1931, the Port City Stockyards of Sealy, Texas has been a premiere seller of Texas cattle. By 1947 it was the fourth largest calf market in the U.S., selling 400,000 to 450,000 head a year.
The Sartwelle family ran the business for close to a century and innovated by being the second in the country to computerize and among the first to ship cattle by air.
In 2014, the Sealy auction yard was sold and closed forever. Thanks to a local friend, we photographed it just months before it disappeared, demolished in 2017. #livestock #auction #abandoned #stockyards #sealy #abandonedtx
anyone who's visited our house knows we have a lot of stuff -- things, objects, mementos we've collected in the sixteen years we've been together. but the one thing i had looked for but never found was a traditional menorah. see, technically i'm jewish. i get the red hair and fair skin from my father, who was born irish roman catholic; the russian jewish side manifests itself in guilt, mainly. i wasn't brought up religious, though. hell, my father's now an atheist and my mother found jesus. me, i opted out of organized religion, finding solace instead in trees and birds. it works for me.
but still, there's a nagging part of me that wants somehow to acknowledge this part of my history. it's real -- when i visited ellis island, i searched the museum's computerized manifest, and there they were, the mistroffs, just off the boat from russia. (i found the glennons, too, having crossed the ocean from ireland.)
so while antiquing in town with patrick and april this weekend, i stopped in my tracks when i saw this tree-of-life menorah. to find an object that unites these two icons, connecting what i believe now with what my ancestors believed -- well, it was a religious experience, is what it was.
March Meeting Car Guys of Los Gatos
1962 Oldsmbile F-85 Jetfire Hardtop Coupe
General Motors was flexing its engineering muscles in the early Sixties, especially when it came to the corporation’s new Y-body small cars. The line of 112-inch-wheelbase premium compacts included the Pontiac Tempest with independent rear suspension and curved “rope drive” driveshaft. Meanwhile, the Buick Special and Oldsmobile F-85 bowed in 1961 with an aluminum V8, followed in ’62 by a 90-degree V6 initially exclusive to Buick.
In April 1962, Olds introduced America’s first mass-market turbocharged car, the F-85 Jetfire. (Chevrolet brought out its turbocharged Corvair Monza Spyder about a month later.) A turbocharger uses the force of escaping exhaust gas to turn impellers that raise air pressure in the intake manifold, forcing the fuel mixture into the combustion chambers for more power. Working with Garrett AirResearch, Olds adapted a turbocharger to the 215-cid aluminum V-8. Where naturally aspirated versions made 155 or 185 horsepower, the Jetfire’s “Turbo Rocket” version put out 215 horsepower.
Turbo engines usually have reduced compression to avoid preignition or “pinging,” but to reach the magic one-horsepower-per-cubic-inch mark, Olds engineers used a high 10.25:1 compression. To head off detonation, an ingenious fluid-injection system added a 50/50 mix of water and alcohol (“Turbo-Rocket Fluid”) to the fuel mixture to lower the combustion-chamber temperature. A wastegate limited turbo boost.
Inside, a vacuum-boost gauge on the standard center console indicated if the turbo was doing its job. The gauge also included a warning light to remind owners to refill the Turbo-Rocket Fluid tank—a bottle in the engine bay held an emergency supply.
A Jetfire could go 0-60 mph in 8.5 seconds and had a top speed of 107. The quarter-mile run was achieved in 16.8 seconds. All Jetfires were hardtop coupes with standard front bucket seats. The Jetfire cost $3049.
Oldsmobile engineers came up with a lot of ingenious engineering to make the turbo work, but ultimately the engine was unreliable in the hands of average owners who often failed to refill the Turbo-Rocket Fluid tank. In 1965 Olds recalled the Jetfires to replace the turbocharger with a conventional four-barrel carburetor. Today, turbos benefit from computerized technology and are increasingly popular because they generate more power from small, fuel-efficient engines.
Only 3765 Jetfires were sold in 1962, with a further 5842 built in its final year of 1963. It’s estimated that only 30-35 with a functioning turbocharger remain. It is one of only about 50 ’62s with a four-speed manual transmission.
A Lockheed Martin F-35A-2B "Lightning II" "Joint Strike Fighter" (s/n 12-5056) (MSN AF067) flies alongside a General Dynamics (its aviation unit now part of Lockheed Martin) F-16C Block 42A "Fighting Falcon" (s/n 87-0360) June 25, 2015, at Luke Air Force Base. In October, F-35 and F-16 pilots began integrated training designed to improve mission cooperation and flight skills in both airframes.
From Wikipedia, the free encyclopedia
The Lockheed Martin F-35 Lightning II is a family of single-seat, single-engine, all-weather, stealth, fifth-generation, multirole combat aircraft, designed for ground-attack and air-superiority missions. It is built by Lockheed Martin and many subcontractors, including Northrop Grumman, Pratt & Whitney, and BAE Systems.
The F-35 has three main models: the conventional takeoff and landing F-35A (CTOL), the short take-off and vertical-landing F-35B (STOVL), and the catapult-assisted take-off but arrested recovery, carrier-based F-35C (CATOBAR). The F-35 descends from the Lockheed Martin X-35, the design that was awarded the Joint Strike Fighter (JSF) program over the competing Boeing X-32. The official Lightning II name has proven deeply unpopular and USAF pilots have nicknamed it Panther, instead.
The United States principally funds F-35 development, with additional funding from other NATO members and close U.S. allies, including the United Kingdom, Italy, Australia, Canada, Norway, Denmark, the Netherlands, and formerly Turkey. These funders generally receive subcontracts to manufacture components for the aircraft; for example, Turkey was the sole supplier of several F-35 parts until its removal from the program in July 2019. Several other countries have ordered, or are considering ordering, the aircraft.
As the largest and most expensive military program ever, the F-35 became the subject of much scrutiny and criticism in the U.S. and in other countries. In 2013 and 2014, critics argued that the plane was "plagued with design flaws", with many blaming the procurement process in which Lockheed was allowed "to design, test, and produce the F-35 all at the same time," instead of identifying and fixing "defects before firing up its production line". By 2014, the program was "$163 billion over budget [and] seven years behind schedule". Critics also contend that the program's high sunk costs and political momentum make it "too big to kill".
The F-35 first flew on 15 December 2006. In July 2015, the United States Marines declared its first squadron of F-35B fighters ready for deployment. However, the DOD-based durability testing indicated the service life of early-production F-35B aircraft is well under the expected 8,000 flight hours, and may be as low as 2,100 flight hours. Lot 9 and later aircraft include design changes but service life testing has yet to occur. The U.S. Air Force declared its first squadron of F-35As ready for deployment in August 2016. The U.S. Navy declared its first F-35Cs ready in February 2019. In 2018, the F-35 made its combat debut with the Israeli Air Force.
The U.S. stated plan is to buy 2,663 F-35s, which will provide the bulk of the crewed tactical airpower of the U.S. Air Force, Navy, and Marine Corps in coming decades. Deliveries of the F-35 for the U.S. military are scheduled until 2037 with a projected service life up to 2070.
Development
F-35 development started in 1992 with the origins of the "Joint Strike Fighter" (JSF) program and was to culminate in full production by 2018. The X-35 first flew on 24 October 2000 and the F-35A on 15 December 2006.
The F-35 was developed to replace most US fighter jets with the variants of a single design that would be common to all branches of the military. It was developed in co-operation with a number of foreign partners, and, unlike the F-22 Raptor, intended to be available for export. Three variants were designed: the F-35A (CTOL), the F-35B (STOVL), and the F-35C (CATOBAR). Despite being intended to share most of their parts to reduce costs and improve maintenance logistics, by 2017, the effective commonality was only 20%. The program received considerable criticism for cost overruns during development and for the total projected cost of the program over the lifetime of the jets.
By 2017, the program was expected to cost $406.5 billion over its lifetime (i.e. until 2070) for acquisition of the jets, and an additional $1.1 trillion for operations and maintenance. A number of design deficiencies were alleged, such as: carrying a small internal payload; performance inferior to the aircraft being replaced, particularly the F-16; lack of safety in relying on a single engine; and flaws such as the vulnerability of the fuel tank to fire and the propensity for transonic roll-off (wing drop). The possible obsolescence of stealth technology was also criticized.
Design
Overview
Although several experimental designs have been developed since the 1960s, such as the unsuccessful Rockwell XFV-12, the F-35B is to be the first operational supersonic STOVL stealth fighter. The single-engine F-35 resembles the larger twin-engined Lockheed Martin F-22 Raptor, drawing design elements from it. The exhaust duct design was inspired by the General Dynamics Model 200, proposed for a 1972 supersonic VTOL fighter requirement for the Sea Control Ship.
Lockheed Martin has suggested that the F-35 could replace the USAF's F-15C/D fighters in the air-superiority role and the F-15E Strike Eagle in the ground-attack role. It has also stated the F-35 is intended to have close- and long-range air-to-air capability second only to that of the F-22 Raptor, and that the F-35 has an advantage over the F-22 in basing flexibility and possesses "advanced sensors and information fusion".
Testifying before the House Appropriations Committee on 25 March 2009, acquisition deputy to the assistant secretary of the Air Force, Lt. Gen. Mark D. "Shack" Shackelford, stated that the F-35 is designed to be America's "premier surface-to-air missile killer, and is uniquely equipped for this mission with cutting-edge processing power, synthetic aperture radar integration techniques, and advanced target recognition".
Improvements
Ostensible improvements over past-generation fighter aircraft include:
Durable, low-maintenance stealth technology, using structural fiber mat instead of the high-maintenance coatings of legacy stealth platforms.
Integrated avionics and sensor fusion that combine information from off- and on-board sensors to increase the pilot's situational awareness and improve target identification and weapon delivery, and to relay information quickly to other command and control (C2) nodes.
High-speed data networking including IEEE 1394b and Fibre Channel (Fibre Channel is also used on Boeing's Super Hornet.
The Autonomic Logistics Global Sustainment, Autonomic Logistics Information System (ALIS), and Computerized maintenance management system to help ensure the aircraft can remain operational with minimal maintenance manpower The Pentagon has moved to open up the competitive bidding by other companies. This was after Lockheed Martin stated that instead of costing 20% less than the F-16 per flight hour, the F-35 would actually cost 12% more. Though the ALGS is intended to reduce maintenance costs, the company disagrees with including the cost of this system in the aircraft ownership calculations. The USMC has implemented a workaround for a cyber vulnerability in the system. The ALIS system currently requires a shipping-container load of servers to run, but Lockheed is working on a more portable version to support the Marines' expeditionary operations.
Electro-hydrostatic actuators run by a power-by-wire flight-control system.
A modern and updated flight simulator, which may be used for a greater fraction of pilot training to reduce the costly flight hours of the actual aircraft.
Lightweight, powerful lithium-ion batteries to provide power to run the control surfaces in an emergency.
Structural composites in the F-35 are 35% of the airframe weight (up from 25% in the F-22). The majority of these are bismaleimide and composite epoxy materials. The F-35 will be the first mass-produced aircraft to include structural nanocomposites, namely carbon nanotube-reinforced epoxy. Experience of the F-22's problems with corrosion led to the F-35 using a gap filler that causes less galvanic corrosion to the airframe's skin, designed with fewer gaps requiring filler and implementing better drainage. The relatively short 35-foot wingspan of the A and B variants is set by the F-35B's requirement to fit inside the Navy's current amphibious assault ship parking area and elevators; the F-35C's longer wing is considered to be more fuel efficient.
Costs
A U.S. Navy study found that the F-35 will cost 30 to 40% more to maintain than current jet fighters, not accounting for inflation over the F-35's operational lifetime. A Pentagon study concluded a $1 trillion maintenance cost for the entire fleet over its lifespan, not accounting for inflation. The F-35 program office found that as of January 2014, costs for the F-35 fleet over a 53-year lifecycle was $857 billion. Costs for the fighter have been dropping and accounted for the 22 percent life cycle drop since 2010. Lockheed stated that by 2019, pricing for the fifth-generation aircraft will be less than fourth-generation fighters. An F-35A in 2019 is expected to cost $85 million per unit complete with engines and full mission systems, inflation adjusted from $75 million in December 2013.
...................................................................................................
Before getting into A, B, and C differences for the F-35, a short primer on how to tell an F-35 from an F-22 may help avoid an even larger fighter faux pas. After all, the F-22 and F-35 look similar as well, especially from certain angles and at a distance. Both the F-22 and F-35 have two intakes, two tails, and similar planforms.
If the two aircraft happen to be parked together, the F-22, however, is noticeably larger. The Raptor is about ten feet longer than a Lightning II. Its wingspan is about ten feet wider than an F-35A’s and F-35B’s, and roughly the same as an F-35C’s.
From behind, the twin, rectangular thrust-vectoring exhaust nozzles on the F-22 are an obvious difference. The F-35 has one round exhaust nozzle for its single engine. The geometry of the engine intakes distinguishes the two aircraft from the top and side. The Raptor’s intakes angle back. On the Lightning II, they point forward. Intake differences are visible from the front view as well. Opposing sides of the F-22’s intakes are parallel. The corners are slightly rounded. The F-35’s intake angles are sharper. A space between the intake and the fuselage, called a diverter, is found only on the Raptor as well. The F-35’s diverterless intake sits flush to the fuselage.
The single- vs. twin-engine difference plays out on the top sides of the two aircraft as well. The F-22 has two humps between the tails. The F-35 has just one. On the underside, the F-22 is much flatter with one main (though split) weapon bay with two doors. The F-35 is more rounded and has two distinct main weapon bays each with two doors. Taxiing, the F-22 sits about a foot lower than an F-35.
Context also matters. If the airplane in question is operating from an aircraft carrier, landing vertically, taking off in a very short distance, or displaying non-USAF markings, it’s not an F-22.
Context And The F-35 Variants
When it comes to distinguishing among F-35 variants, context can provide some tips as well. If the F-35 in question is being catapulted from a carrier, it’s an F-35C. If it’s landing vertically, it’s an F-35B. If it has Royal Air Force markings, it’s an F-35B. If it has international markings that aren’t associated with the RAF, it’s an F-35A (at least until another international air force procures B or C models).
Basic A, B, & C Differences
The A model is most easily distinguished from other F-35 models by the blister on the upper left side for its internal GAU-22/A Gatling-type gun. (B and C models do not have internal guns.) Like the B model, the F-35A has a smaller wing. The A model is the only F-35 variant with a refueling receptacle on its dorsal spine. The receptacle markings are clearly visible from the top view.
The B model is most easily distinguished from other F-35 models by its vertical lift system. The system comes into play at almost every viewing angle of the aircraft. Even in up-and-away (non vertical) flight, the F-35B has visual clues for the vertical lift system. The lift fan door flattens the upper surface of the F-35 just behind the cockpit, giving this model a distinctive hump. The hump is especially noticeable from front and side perspectives. The lift fan itself abbreviates the aft end of the canopy line as well.
Panel lines and markings are associated with the lift system are visible on the top and bottom sides of the F-35B. From above, panel lines for the lift fan door and the auxiliary air inlet are visible. From below, the doors for lift fan exhaust appear just behind the front landing gear doors. The aft end of the lower fuselage also has a seam for the doors that open when the three-bearing swivel duct goes into action in STOVL mode. (The A and C models have a hump in this location where their arresting/barricade tailhooks are stored.) The B model also has a diamond-shaped roll duct on the underside of each wing.
The C model is most easily distinguished from other F-35 models by its larger wing, which provides almost fifty percent more wing area than the A and B models. The hinge line for the wing fold is visible from top and bottom views. The F-35C wing has an additional control surfaces, called ailerons, on the trailing edge as well (two control surfaces on each wing instead of one). The inner control surfaces on the F-35C wing and the ones on the A and B are called flaperons. The landing gear on the F-35C is noticeable beefier. The nose gear has two tires and a launch bar that extends forward and upward from the wheels.
Another Trick: Markings
Markings can also be used to distinguish F-35 variants. US Air Force markings equate to the A model. US Marines to the B or C model. (The Marine Corps is purchasing eighty C models.) And US Navy to the C model only. The Air Force puts the aircraft identification number, or serial number, on the tail (F-35A). The US Marines and Navy put their identification numbers, called Bureau numbers, on the empennage just below the horizontal tails. To make identification somewhat easier, the F-35 variant designation appears just above the bureau number for the US Marine Corps and Navy. Unfortunately, because of their location these markings are not apparent in most photos. International operators have their own specific requirements for markings.
Other Notes
As noted in a previous Code One article, Norwegian F-35s will be distinguishable by a small, aerodynamically clean bump on the upper fuselage between the two vertical tails. The bump contains a dragchute.
Nosebooms are peculiar to flight test F-35s dedicated to flight sciences testing.
The major differences between the X-35 demonstrator aircraft, which are no longer flying, and F-35 were covered in another previous Code One article.
Basic Cheat Sheet
The F-35A has a small wing, full canopy, gun blister on the left upper side, and aerial refueling receptacle markings on its dorsal. It has no panel lines or markings associated with a STOVL lift system.
The F-35B has a small wing, distinctive fuselage hump and abbreviated canopy (thanks to the lift fan), refueling probe on the right side, and numerous markings, panel lines, and actual hardware associated with its vertical lift system.
The F-35C has the big wing, wing folds, ailerons, full canopy, refueling probe on the right side, and a launch bar and two tires on the front landing gear. If the aircraft has Navy markings, it’s an F-35C.
Southeast Financial Center is a two-acre development in Miami, Florida, United States. It consists of a 764 feet (233 m) tall office skyscraper and its 15-story parking garage. It was previously known as the Southeast Financial Center (1984–1992), the First Union Financial Center (1992–2003), and the Wachovia Financial Center (2003-2011). In 2011, it retook its old name of Southeast Financial Center as Wachovia merged with Wells Fargo and moved to the nearby Wells Fargo Center.
When topped-off in August 1983, it was the tallest building south of New York City and east of the Mississippi River, taking away the same title from the Westin Peachtree Plaza Hotel, in Atlanta, Georgia. It remained the tallest building in the southeastern U.S. until 1987, when it was surpassed by One Atlantic Center in Atlanta and the tallest in Florida until October 1, 2003, when it was surpassed by the Four Seasons Hotel and Tower, also in Miami. It remains the tallest office tower in Florida and the third tallest building in Miami.
Southeast Financial Center was constructed in three years with more than 500 construction workers. Approximately 6,650 tons of structural steel, 80,000 cubic yards of concrete and 7000 cubic tons of reinforcing steel bars went into its construction. The complex sits on a series of reinforced concrete grade beams tied to 150 concrete caissons as much as ten feet in diameter and to a depth of 80 feet. A steel space-frame canopy with glass skylights covers the outdoor plaza between the tower and low-rise building.
The tower has a composite structure. The exterior columns and beams are concrete encased steel wide flanges surrounded by reinforcing bars. The composite exterior frame was formed using hydraulic steel forms, or "flying forms," jacked into place with a "kangaroo" crane, that was located in the core and manually clamped into place. Wide flange beams topped by a metal deck and concrete form the interior floor framing. The core is A braced steel frame, designed to laterally resist wind loads. The construction of one typical floor was completed every five days.
The low-rise banking hall and parking building is a concrete-framed structure. Each floor consists of nearly an acre of continuously poured concrete. When the concrete had sufficiently hardened, compressed air was used to blow the forms fiberglass forms from under the completed floor. It was then rolled out to the exterior where it was raised by crane into position for the next floor.
The building was recognized as Miami's first and only office building to be certified for the LEED Gold award in January 2010.
The center was developed by a partnership consisting of Gerald D. Hines Interests, Southeast Bank and Corporate Property Investors for $180 million. It was originally built as the headquarters for Southeast Bank, which originally occupied 50 percent of the complex's space. It remained Southeast Bank's headquarters there until it was liquidated in 1991.
The Southeast Financial Center comprises two buildings: the 55-story office tower and the 15-story parking annex. The tower has 53 stories of office space. The first floor is dedicated for retail, the second floor is the lobby and the 55th floor was home to the luxurious Miami City Club. The parking annex has 12 floors of parking space for 1,150 cars. The first floor is dedicated for retail, the second floor is a banking hall and the 15th floor has the Downtown Athletic Club. A landscaped plaza lies between the office tower and the parking annex. An enclosed walkway connects the second story of the tower with the second story of the annex. The courtyard is partially protected from the elements by a steel and glass space frame canopy spanning the plaza and attached to the tower and annex. Southeast Bank's executive offices were located on the 38th floor. Ground was broken on the complex on December 12, 1981 and the official dedication and opening for the complex was held on October 23, 1984.
The Southeast Financial Center was designed by Edward Charles Bassett of Skidmore, Owings and Merrill. The Associate Architect was Spillis Candela & Partners. It has 1,145,311 ft² (106,000 m²) of office space. A typical floor has about 22,000 ft² (2,043.87 m²) of office space. Each floor has 9 ft x 9 ft (2.7 m x 2.7 m) floor to ceiling windows. (All of the building's windows are tinted except for the top floor, resulting in strikingly bright and clear views from there.) The total complex has over 2.2 million ft² (204,000 m²). The distinctive setbacks begin at the 43rd floor. Each typical floor plate has 9 corner offices and the top twelve floors have as many as 16. There are 43 elevators in the office tower. An emergency control station provides computerized monitoring for the entire complex, and four generators for backup power.
The Southeast Financial Center can be seen as far away as Ft. Lauderdale and halfway toward Bimini. Night space shuttle launches from Cape Canaveral 200 miles to the north were plainly visible from the higher floors. The roof of the building was featured in the Wesley Snipes motion picture Drop Zone, where an eccentric base jumper named Swoop parachutes down to the street from a suspended window cleaning trolley. The building also appeared in several episodes of the 1980s TV show Miami Vice and at the end of each episode's opening credits.
Zara founder Amancio Ortega purchased the building from J.P. Morgan Asset Management in December 2016. The purchase price was reportedly over $500 million, making it one of the largest real estate transactions in South Florida history.
Credit for the data above is given to the following websites:
en.wikipedia.org/wiki/Southeast_Financial_Center
www.emporis.com/buildings/122292/wachovia-financial-cente...
© All Rights Reserved - you may not use this image in any form without my prior permission.
Pilots from the 388th and 419th Fighter Wings taxi F-35As on the runway in preparation for a combat power exercise Nov. 19, 2018, at Hill Air Force Base, Utah. During the exercise wings confirmed their ability to employ a large force of jets against air and ground targets, demonstrating the readiness and lethality of the Lockheed Martin F-35 Lightning II "Joint Strike Fighter". As the first combat-ready F-35 units in the Air Force, the 388th and 419th FWs are ready to deploy anywhere in the world at a moment’s notice.
From Wikipedia, the free encyclopedia
The Lockheed Martin F-35 Lightning II is a family of single-seat, single-engine, all-weather, stealth, fifth-generation, multirole combat aircraft, designed for ground-attack and air-superiority missions. It is built by Lockheed Martin and many subcontractors, including Northrop Grumman, Pratt & Whitney, and BAE Systems.
The F-35 has three main models: the conventional takeoff and landing F-35A (CTOL), the short take-off and vertical-landing F-35B (STOVL), and the catapult-assisted take-off but arrested recovery, carrier-based F-35C (CATOBAR). The F-35 descends from the Lockheed Martin X-35, the design that was awarded the Joint Strike Fighter (JSF) program over the competing Boeing X-32. The official Lightning II name has proven deeply unpopular and USAF pilots have nicknamed it Panther, instead.
The United States principally funds F-35 development, with additional funding from other NATO members and close U.S. allies, including the United Kingdom, Italy, Australia, Canada, Norway, Denmark, the Netherlands, and formerly Turkey. These funders generally receive subcontracts to manufacture components for the aircraft; for example, Turkey was the sole supplier of several F-35 parts until its removal from the program in July 2019. Several other countries have ordered, or are considering ordering, the aircraft.
As the largest and most expensive military program ever, the F-35 became the subject of much scrutiny and criticism in the U.S. and in other countries. In 2013 and 2014, critics argued that the plane was "plagued with design flaws", with many blaming the procurement process in which Lockheed was allowed "to design, test, and produce the F-35 all at the same time," instead of identifying and fixing "defects before firing up its production line". By 2014, the program was "$163 billion over budget [and] seven years behind schedule". Critics also contend that the program's high sunk costs and political momentum make it "too big to kill".
The F-35 first flew on 15 December 2006. In July 2015, the United States Marines declared its first squadron of F-35B fighters ready for deployment. However, the DOD-based durability testing indicated the service life of early-production F-35B aircraft is well under the expected 8,000 flight hours, and may be as low as 2,100 flight hours. Lot 9 and later aircraft include design changes but service life testing has yet to occur. The U.S. Air Force declared its first squadron of F-35As ready for deployment in August 2016. The U.S. Navy declared its first F-35Cs ready in February 2019. In 2018, the F-35 made its combat debut with the Israeli Air Force.
The U.S. stated plan is to buy 2,663 F-35s, which will provide the bulk of the crewed tactical airpower of the U.S. Air Force, Navy, and Marine Corps in coming decades. Deliveries of the F-35 for the U.S. military are scheduled until 2037 with a projected service life up to 2070.
Development
F-35 development started in 1992 with the origins of the "Joint Strike Fighter" (JSF) program and was to culminate in full production by 2018. The X-35 first flew on 24 October 2000 and the F-35A on 15 December 2006.
The F-35 was developed to replace most US fighter jets with the variants of a single design that would be common to all branches of the military. It was developed in co-operation with a number of foreign partners, and, unlike the F-22 Raptor, intended to be available for export. Three variants were designed: the F-35A (CTOL), the F-35B (STOVL), and the F-35C (CATOBAR). Despite being intended to share most of their parts to reduce costs and improve maintenance logistics, by 2017, the effective commonality was only 20%. The program received considerable criticism for cost overruns during development and for the total projected cost of the program over the lifetime of the jets.
By 2017, the program was expected to cost $406.5 billion over its lifetime (i.e. until 2070) for acquisition of the jets, and an additional $1.1 trillion for operations and maintenance. A number of design deficiencies were alleged, such as: carrying a small internal payload; performance inferior to the aircraft being replaced, particularly the F-16; lack of safety in relying on a single engine; and flaws such as the vulnerability of the fuel tank to fire and the propensity for transonic roll-off (wing drop). The possible obsolescence of stealth technology was also criticized.
Design
Overview
Although several experimental designs have been developed since the 1960s, such as the unsuccessful Rockwell XFV-12, the F-35B is to be the first operational supersonic STOVL stealth fighter. The single-engine F-35 resembles the larger twin-engined Lockheed Martin F-22 Raptor, drawing design elements from it. The exhaust duct design was inspired by the General Dynamics Model 200, proposed for a 1972 supersonic VTOL fighter requirement for the Sea Control Ship.
Lockheed Martin has suggested that the F-35 could replace the USAF's F-15C/D fighters in the air-superiority role and the F-15E Strike Eagle in the ground-attack role. It has also stated the F-35 is intended to have close- and long-range air-to-air capability second only to that of the F-22 Raptor, and that the F-35 has an advantage over the F-22 in basing flexibility and possesses "advanced sensors and information fusion".
Testifying before the House Appropriations Committee on 25 March 2009, acquisition deputy to the assistant secretary of the Air Force, Lt. Gen. Mark D. "Shack" Shackelford, stated that the F-35 is designed to be America's "premier surface-to-air missile killer, and is uniquely equipped for this mission with cutting-edge processing power, synthetic aperture radar integration techniques, and advanced target recognition".
Improvements
Ostensible improvements over past-generation fighter aircraft include:
Durable, low-maintenance stealth technology, using structural fiber mat instead of the high-maintenance coatings of legacy stealth platforms.
Integrated avionics and sensor fusion that combine information from off- and on-board sensors to increase the pilot's situational awareness and improve target identification and weapon delivery, and to relay information quickly to other command and control (C2) nodes.
High-speed data networking including IEEE 1394b and Fibre Channel (Fibre Channel is also used on Boeing's Super Hornet.
The Autonomic Logistics Global Sustainment, Autonomic Logistics Information System (ALIS), and Computerized maintenance management system to help ensure the aircraft can remain operational with minimal maintenance manpower The Pentagon has moved to open up the competitive bidding by other companies. This was after Lockheed Martin stated that instead of costing 20% less than the F-16 per flight hour, the F-35 would actually cost 12% more. Though the ALGS is intended to reduce maintenance costs, the company disagrees with including the cost of this system in the aircraft ownership calculations. The USMC has implemented a workaround for a cyber vulnerability in the system. The ALIS system currently requires a shipping-container load of servers to run, but Lockheed is working on a more portable version to support the Marines' expeditionary operations.
Electro-hydrostatic actuators run by a power-by-wire flight-control system.
A modern and updated flight simulator, which may be used for a greater fraction of pilot training to reduce the costly flight hours of the actual aircraft.
Lightweight, powerful lithium-ion batteries to provide power to run the control surfaces in an emergency.
Structural composites in the F-35 are 35% of the airframe weight (up from 25% in the F-22). The majority of these are bismaleimide and composite epoxy materials. The F-35 will be the first mass-produced aircraft to include structural nanocomposites, namely carbon nanotube-reinforced epoxy. Experience of the F-22's problems with corrosion led to the F-35 using a gap filler that causes less galvanic corrosion to the airframe's skin, designed with fewer gaps requiring filler and implementing better drainage. The relatively short 35-foot wingspan of the A and B variants is set by the F-35B's requirement to fit inside the Navy's current amphibious assault ship parking area and elevators; the F-35C's longer wing is considered to be more fuel efficient.
Costs
A U.S. Navy study found that the F-35 will cost 30 to 40% more to maintain than current jet fighters, not accounting for inflation over the F-35's operational lifetime. A Pentagon study concluded a $1 trillion maintenance cost for the entire fleet over its lifespan, not accounting for inflation. The F-35 program office found that as of January 2014, costs for the F-35 fleet over a 53-year lifecycle was $857 billion. Costs for the fighter have been dropping and accounted for the 22 percent life cycle drop since 2010. Lockheed stated that by 2019, pricing for the fifth-generation aircraft will be less than fourth-generation fighters. An F-35A in 2019 is expected to cost $85 million per unit complete with engines and full mission systems, inflation adjusted from $75 million in December 2013.
Southeast Financial Center is a two-acre development in Miami, Florida, United States. It consists of a 764 feet (233 m) tall office skyscraper and its 15-story parking garage. It was previously known as the Southeast Financial Center (1984–1992), the First Union Financial Center (1992–2003), and the Wachovia Financial Center (2003-2011). In 2011, it retook its old name of Southeast Financial Center as Wachovia merged with Wells Fargo and moved to the nearby Wells Fargo Center.
When topped-off in August 1983, it was the tallest building south of New York City and east of the Mississippi River, taking away the same title from the Westin Peachtree Plaza Hotel, in Atlanta, Georgia. It remained the tallest building in the southeastern U.S. until 1987, when it was surpassed by One Atlantic Center in Atlanta and the tallest in Florida until October 1, 2003, when it was surpassed by the Four Seasons Hotel and Tower, also in Miami. It remains the tallest office tower in Florida and the third tallest building in Miami.
Southeast Financial Center was constructed in three years with more than 500 construction workers. Approximately 6,650 tons of structural steel, 80,000 cubic yards of concrete and 7000 cubic tons of reinforcing steel bars went into its construction. The complex sits on a series of reinforced concrete grade beams tied to 150 concrete caissons as much as ten feet in diameter and to a depth of 80 feet. A steel space-frame canopy with glass skylights covers the outdoor plaza between the tower and low-rise building.
The tower has a composite structure. The exterior columns and beams are concrete encased steel wide flanges surrounded by reinforcing bars. The composite exterior frame was formed using hydraulic steel forms, or "flying forms," jacked into place with a "kangaroo" crane, that was located in the core and manually clamped into place. Wide flange beams topped by a metal deck and concrete form the interior floor framing. The core is A braced steel frame, designed to laterally resist wind loads. The construction of one typical floor was completed every five days.
The low-rise banking hall and parking building is a concrete-framed structure. Each floor consists of nearly an acre of continuously poured concrete. When the concrete had sufficiently hardened, compressed air was used to blow the forms fiberglass forms from under the completed floor. It was then rolled out to the exterior where it was raised by crane into position for the next floor.
The building was recognized as Miami's first and only office building to be certified for the LEED Gold award in January 2010.
The center was developed by a partnership consisting of Gerald D. Hines Interests, Southeast Bank and Corporate Property Investors for $180 million. It was originally built as the headquarters for Southeast Bank, which originally occupied 50 percent of the complex's space. It remained Southeast Bank's headquarters there until it was liquidated in 1991.
The Southeast Financial Center comprises two buildings: the 55-story office tower and the 15-story parking annex. The tower has 53 stories of office space. The first floor is dedicated for retail, the second floor is the lobby and the 55th floor was home to the luxurious Miami City Club. The parking annex has 12 floors of parking space for 1,150 cars. The first floor is dedicated for retail, the second floor is a banking hall and the 15th floor has the Downtown Athletic Club. A landscaped plaza lies between the office tower and the parking annex. An enclosed walkway connects the second story of the tower with the second story of the annex. The courtyard is partially protected from the elements by a steel and glass space frame canopy spanning the plaza and attached to the tower and annex. Southeast Bank's executive offices were located on the 38th floor. Ground was broken on the complex on December 12, 1981 and the official dedication and opening for the complex was held on October 23, 1984.
The Southeast Financial Center was designed by Edward Charles Bassett of Skidmore, Owings and Merrill. The Associate Architect was Spillis Candela & Partners. It has 1,145,311 ft² (106,000 m²) of office space. A typical floor has about 22,000 ft² (2,043.87 m²) of office space. Each floor has 9 ft x 9 ft (2.7 m x 2.7 m) floor to ceiling windows. (All of the building's windows are tinted except for the top floor, resulting in strikingly bright and clear views from there.) The total complex has over 2.2 million ft² (204,000 m²). The distinctive setbacks begin at the 43rd floor. Each typical floor plate has 9 corner offices and the top twelve floors have as many as 16. There are 43 elevators in the office tower. An emergency control station provides computerized monitoring for the entire complex, and four generators for backup power.
The Southeast Financial Center can be seen as far away as Ft. Lauderdale and halfway toward Bimini. Night space shuttle launches from Cape Canaveral 200 miles to the north were plainly visible from the higher floors. The roof of the building was featured in the Wesley Snipes motion picture Drop Zone, where an eccentric base jumper named Swoop parachutes down to the street from a suspended window cleaning trolley. The building also appeared in several episodes of the 1980s TV show Miami Vice and at the end of each episode's opening credits.
Zara founder Amancio Ortega purchased the building from J.P. Morgan Asset Management in December 2016. The purchase price was reportedly over $500 million, making it one of the largest real estate transactions in South Florida history.
Credit for the data above is given to the following websites:
en.wikipedia.org/wiki/Southeast_Financial_Center
www.emporis.com/buildings/122292/wachovia-financial-cente...
© All Rights Reserved - you may not use this image in any form without my prior permission.
Southeast Financial Center is a two-acre development in Miami, Florida, United States. It consists of a 764 feet (233 m) tall office skyscraper and its 15-story parking garage. It was previously known as the Southeast Financial Center (1984–1992), the First Union Financial Center (1992–2003), and the Wachovia Financial Center (2003-2011). In 2011, it retook its old name of Southeast Financial Center as Wachovia merged with Wells Fargo and moved to the nearby Wells Fargo Center.
When topped-off in August 1983, it was the tallest building south of New York City and east of the Mississippi River, taking away the same title from the Westin Peachtree Plaza Hotel, in Atlanta, Georgia. It remained the tallest building in the southeastern U.S. until 1987, when it was surpassed by One Atlantic Center in Atlanta and the tallest in Florida until October 1, 2003, when it was surpassed by the Four Seasons Hotel and Tower, also in Miami. It remains the tallest office tower in Florida and the third tallest building in Miami.
Southeast Financial Center was constructed in three years with more than 500 construction workers. Approximately 6,650 tons of structural steel, 80,000 cubic yards of concrete and 7000 cubic tons of reinforcing steel bars went into its construction. The complex sits on a series of reinforced concrete grade beams tied to 150 concrete caissons as much as ten feet in diameter and to a depth of 80 feet. A steel space-frame canopy with glass skylights covers the outdoor plaza between the tower and low-rise building.
The tower has a composite structure. The exterior columns and beams are concrete encased steel wide flanges surrounded by reinforcing bars. The composite exterior frame was formed using hydraulic steel forms, or "flying forms," jacked into place with a "kangaroo" crane, that was located in the core and manually clamped into place. Wide flange beams topped by a metal deck and concrete form the interior floor framing. The core is A braced steel frame, designed to laterally resist wind loads. The construction of one typical floor was completed every five days.
The low-rise banking hall and parking building is a concrete-framed structure. Each floor consists of nearly an acre of continuously poured concrete. When the concrete had sufficiently hardened, compressed air was used to blow the forms fiberglass forms from under the completed floor. It was then rolled out to the exterior where it was raised by crane into position for the next floor.
The building was recognized as Miami's first and only office building to be certified for the LEED Gold award in January 2010.
The center was developed by a partnership consisting of Gerald D. Hines Interests, Southeast Bank and Corporate Property Investors for $180 million. It was originally built as the headquarters for Southeast Bank, which originally occupied 50 percent of the complex's space. It remained Southeast Bank's headquarters there until it was liquidated in 1991.
The Southeast Financial Center comprises two buildings: the 55-story office tower and the 15-story parking annex. The tower has 53 stories of office space. The first floor is dedicated for retail, the second floor is the lobby and the 55th floor was home to the luxurious Miami City Club. The parking annex has 12 floors of parking space for 1,150 cars. The first floor is dedicated for retail, the second floor is a banking hall and the 15th floor has the Downtown Athletic Club. A landscaped plaza lies between the office tower and the parking annex. An enclosed walkway connects the second story of the tower with the second story of the annex. The courtyard is partially protected from the elements by a steel and glass space frame canopy spanning the plaza and attached to the tower and annex. Southeast Bank's executive offices were located on the 38th floor. Ground was broken on the complex on December 12, 1981 and the official dedication and opening for the complex was held on October 23, 1984.
The Southeast Financial Center was designed by Edward Charles Bassett of Skidmore, Owings and Merrill. The Associate Architect was Spillis Candela & Partners. It has 1,145,311 ft² (106,000 m²) of office space. A typical floor has about 22,000 ft² (2,043.87 m²) of office space. Each floor has 9 ft x 9 ft (2.7 m x 2.7 m) floor to ceiling windows. (All of the building's windows are tinted except for the top floor, resulting in strikingly bright and clear views from there.) The total complex has over 2.2 million ft² (204,000 m²). The distinctive setbacks begin at the 43rd floor. Each typical floor plate has 9 corner offices and the top twelve floors have as many as 16. There are 43 elevators in the office tower. An emergency control station provides computerized monitoring for the entire complex, and four generators for backup power.
The Southeast Financial Center can be seen as far away as Ft. Lauderdale and halfway toward Bimini. Night space shuttle launches from Cape Canaveral 200 miles to the north were plainly visible from the higher floors. The roof of the building was featured in the Wesley Snipes motion picture Drop Zone, where an eccentric base jumper named Swoop parachutes down to the street from a suspended window cleaning trolley. The building also appeared in several episodes of the 1980s TV show Miami Vice and at the end of each episode's opening credits.
Zara founder Amancio Ortega purchased the building from J.P. Morgan Asset Management in December 2016. The purchase price was reportedly over $500 million, making it one of the largest real estate transactions in South Florida history.
Credit for the data above is given to the following websites:
en.wikipedia.org/wiki/Southeast_Financial_Center
www.emporis.com/buildings/122292/wachovia-financial-cente...
© All Rights Reserved - you may not use this image in any form without my prior permission.
1962 Oldsmbile F-85 Jetfire Hardtop Coupe
General Motors was flexing its engineering muscles in the early Sixties, especially when it came to the corporation’s new Y-body small cars. The line of 112-inch-wheelbase premium compacts included the Pontiac Tempest with independent rear suspension and curved “rope drive” driveshaft. Meanwhile, the Buick Special and Oldsmobile F-85 bowed in 1961 with an aluminum V8, followed in ’62 by a 90-degree V6 initially exclusive to Buick.
In April 1962, Olds introduced America’s first mass-market turbocharged car, the F-85 Jetfire. (Chevrolet brought out its turbocharged Corvair Monza Spyder about a month later.) A turbocharger uses the force of escaping exhaust gas to turn impellers that raise air pressure in the intake manifold, forcing the fuel mixture into the combustion chambers for more power. Working with Garrett AirResearch, Olds adapted a turbocharger to the 215-cid aluminum V-8. Where naturally aspirated versions made 155 or 185 horsepower, the Jetfire’s “Turbo Rocket” version put out 215 horsepower.
Turbo engines usually have reduced compression to avoid preignition or “pinging,” but to reach the magic one-horsepower-per-cubic-inch mark, Olds engineers used a high 10.25:1 compression. To head off detonation, an ingenious fluid-injection system added a 50/50 mix of water and alcohol (“Turbo-Rocket Fluid”) to the fuel mixture to lower the combustion-chamber temperature. A wastegate limited turbo boost.
Inside, a vacuum-boost gauge on the standard center console indicated if the turbo was doing its job. The gauge also included a warning light to remind owners to refill the Turbo-Rocket Fluid tank—a bottle in the engine bay held an emergency supply.
A Jetfire could go 0-60 mph in 8.5 seconds and had a top speed of 107. The quarter-mile run was achieved in 16.8 seconds. All Jetfires were hardtop coupes with standard front bucket seats. The Jetfire cost $3049.
Oldsmobile engineers came up with a lot of ingenious engineering to make the turbo work, but ultimately the engine was unreliable in the hands of average owners who often failed to refill the Turbo-Rocket Fluid tank. In 1965 Olds recalled the Jetfires to replace the turbocharger with a conventional four-barrel carburetor. Today, turbos benefit from computerized technology and are increasingly popular because they generate more power from small, fuel-efficient engines.
Only 3765 Jetfires were sold in 1962, with a further 5842 built in its final year of 1963. It’s estimated that only 30-35 with a functioning turbocharger remain. It is one of only about 50 ’62s with a four-speed manual transmission.
Before we had sleek server rooms with racks of computerized data, we had the library model, where everyone went to a central location for information among countless shelves of analog books.
Auckland University's library. One the first shots from my DP1.
Located on the grounds of the Cookeville, Tennessee Train Depot, this Tennessee Central Caboose #9828 was built around the same time as the Depot building (1909). It was acquired by the Friends of the Depot from the Leslie Bowman estate in Muddy Pond (near Monterey, TN). The caboose went through an extensive restoration when it was moved to the Depot grounds in 1993. It is typical of cabooses of the day in that it was not only the work center for the freight crew, but home as well. Meals were cooked on a coal stove which also provided heat in the winter. Tool lockers became crew bunks. The caboose, originally of all wood construction, later acquired a steel skin to help prolong its useful life. It is a Cupola Type caboose.
Train Cabooses became obsolete in the late 70’s to early 80’s, due to smaller crews, electronic monitoring, and computerization.
Three bracketed photos were taken with a handheld Nikon D7200 and combined with Photomatix to create this HDR image. Additional adjustments were made in Photoshop CS6.
"For I know the plans I have for you,” declares the LORD, “plans to prosper you and not to harm you, plans to give you hope and a future." ~Jeremiah 29:11
Southeast Financial Center is a two-acre development in Miami, Florida, United States. It consists of a 764 feet (233 m) tall office skyscraper and its 15-story parking garage. It was previously known as the Southeast Financial Center (1984–1992), the First Union Financial Center (1992–2003), and the Wachovia Financial Center (2003-2011). In 2011, it retook its old name of Southeast Financial Center as Wachovia merged with Wells Fargo and moved to the nearby Wells Fargo Center.
When topped-off in August 1983, it was the tallest building south of New York City and east of the Mississippi River, taking away the same title from the Westin Peachtree Plaza Hotel, in Atlanta, Georgia. It remained the tallest building in the southeastern U.S. until 1987, when it was surpassed by One Atlantic Center in Atlanta and the tallest in Florida until October 1, 2003, when it was surpassed by the Four Seasons Hotel and Tower, also in Miami. It remains the tallest office tower in Florida and the third tallest building in Miami.
Southeast Financial Center was constructed in three years with more than 500 construction workers. Approximately 6,650 tons of structural steel, 80,000 cubic yards of concrete and 7000 cubic tons of reinforcing steel bars went into its construction. The complex sits on a series of reinforced concrete grade beams tied to 150 concrete caissons as much as ten feet in diameter and to a depth of 80 feet. A steel space-frame canopy with glass skylights covers the outdoor plaza between the tower and low-rise building.
The tower has a composite structure. The exterior columns and beams are concrete encased steel wide flanges surrounded by reinforcing bars. The composite exterior frame was formed using hydraulic steel forms, or "flying forms," jacked into place with a "kangaroo" crane, that was located in the core and manually clamped into place. Wide flange beams topped by a metal deck and concrete form the interior floor framing. The core is A braced steel frame, designed to laterally resist wind loads. The construction of one typical floor was completed every five days.
The low-rise banking hall and parking building is a concrete-framed structure. Each floor consists of nearly an acre of continuously poured concrete. When the concrete had sufficiently hardened, compressed air was used to blow the forms fiberglass forms from under the completed floor. It was then rolled out to the exterior where it was raised by crane into position for the next floor.
The building was recognized as Miami's first and only office building to be certified for the LEED Gold award in January 2010.
The center was developed by a partnership consisting of Gerald D. Hines Interests, Southeast Bank and Corporate Property Investors for $180 million. It was originally built as the headquarters for Southeast Bank, which originally occupied 50 percent of the complex's space. It remained Southeast Bank's headquarters there until it was liquidated in 1991.
The Southeast Financial Center comprises two buildings: the 55-story office tower and the 15-story parking annex. The tower has 53 stories of office space. The first floor is dedicated for retail, the second floor is the lobby and the 55th floor was home to the luxurious Miami City Club. The parking annex has 12 floors of parking space for 1,150 cars. The first floor is dedicated for retail, the second floor is a banking hall and the 15th floor has the Downtown Athletic Club. A landscaped plaza lies between the office tower and the parking annex. An enclosed walkway connects the second story of the tower with the second story of the annex. The courtyard is partially protected from the elements by a steel and glass space frame canopy spanning the plaza and attached to the tower and annex. Southeast Bank's executive offices were located on the 38th floor. Ground was broken on the complex on December 12, 1981 and the official dedication and opening for the complex was held on October 23, 1984.
The Southeast Financial Center was designed by Edward Charles Bassett of Skidmore, Owings and Merrill. The Associate Architect was Spillis Candela & Partners. It has 1,145,311 ft² (106,000 m²) of office space. A typical floor has about 22,000 ft² (2,043.87 m²) of office space. Each floor has 9 ft x 9 ft (2.7 m x 2.7 m) floor to ceiling windows. (All of the building's windows are tinted except for the top floor, resulting in strikingly bright and clear views from there.) The total complex has over 2.2 million ft² (204,000 m²). The distinctive setbacks begin at the 43rd floor. Each typical floor plate has 9 corner offices and the top twelve floors have as many as 16. There are 43 elevators in the office tower. An emergency control station provides computerized monitoring for the entire complex, and four generators for backup power.
The Southeast Financial Center can be seen as far away as Ft. Lauderdale and halfway toward Bimini. Night space shuttle launches from Cape Canaveral 200 miles to the north were plainly visible from the higher floors. The roof of the building was featured in the Wesley Snipes motion picture Drop Zone, where an eccentric base jumper named Swoop parachutes down to the street from a suspended window cleaning trolley. The building also appeared in several episodes of the 1980s TV show Miami Vice and at the end of each episode's opening credits.
Zara founder Amancio Ortega purchased the building from J.P. Morgan Asset Management in December 2016. The purchase price was reportedly over $500 million, making it one of the largest real estate transactions in South Florida history.
Credit for the data above is given to the following websites:
en.wikipedia.org/wiki/Southeast_Financial_Center
www.emporis.com/buildings/122292/wachovia-financial-cente...
© All Rights Reserved - you may not use this image in any form without my prior permission.
Tundra swans in flight.
This image is dedicated to my dad, my hero, who passed away this week.
He was of that great generation that lived through the Depression and fought in WWII. My dad flew bombing missions over Germany and one time had to crash land after being hit by anti-aircraft fire. He later ran track at the University of Illinois but could never beat teammate and NCAA champion Buddy Young in the 100 yard dash. After some time as a practicing psychologist he made the leap into using computers when the industry was just beginning. While working for the state of California, he computerized the schools for grade reporting, performance tracking, and career guidance counseling. In "retirement," my dad fully pursued his hobby of showing and judging purebred dogs and had hundreds of judging assignments in the U.S. and many other countries. As if that wasn't enough, he started his own publishing company, wrote several books and produced dozens of others. He really only slowed in the last few years. Life is a gift and he showed how to live it fully.
Southeast Financial Center is a two-acre development in Miami, Florida, United States. It consists of a 764 feet (233 m) tall office skyscraper and its 15-story parking garage. It was previously known as the Southeast Financial Center (1984–1992), the First Union Financial Center (1992–2003), and the Wachovia Financial Center (2003-2011). In 2011, it retook its old name of Southeast Financial Center as Wachovia merged with Wells Fargo and moved to the nearby Wells Fargo Center.
When topped-off in August 1983, it was the tallest building south of New York City and east of the Mississippi River, taking away the same title from the Westin Peachtree Plaza Hotel, in Atlanta, Georgia. It remained the tallest building in the southeastern U.S. until 1987, when it was surpassed by One Atlantic Center in Atlanta and the tallest in Florida until October 1, 2003, when it was surpassed by the Four Seasons Hotel and Tower, also in Miami. It remains the tallest office tower in Florida and the third tallest building in Miami.
Southeast Financial Center was constructed in three years with more than 500 construction workers. Approximately 6,650 tons of structural steel, 80,000 cubic yards of concrete and 7000 cubic tons of reinforcing steel bars went into its construction. The complex sits on a series of reinforced concrete grade beams tied to 150 concrete caissons as much as ten feet in diameter and to a depth of 80 feet. A steel space-frame canopy with glass skylights covers the outdoor plaza between the tower and low-rise building.
The tower has a composite structure. The exterior columns and beams are concrete encased steel wide flanges surrounded by reinforcing bars. The composite exterior frame was formed using hydraulic steel forms, or "flying forms," jacked into place with a "kangaroo" crane, that was located in the core and manually clamped into place. Wide flange beams topped by a metal deck and concrete form the interior floor framing. The core is A braced steel frame, designed to laterally resist wind loads. The construction of one typical floor was completed every five days.
The low-rise banking hall and parking building is a concrete-framed structure. Each floor consists of nearly an acre of continuously poured concrete. When the concrete had sufficiently hardened, compressed air was used to blow the forms fiberglass forms from under the completed floor. It was then rolled out to the exterior where it was raised by crane into position for the next floor.
The building was recognized as Miami's first and only office building to be certified for the LEED Gold award in January 2010.
The center was developed by a partnership consisting of Gerald D. Hines Interests, Southeast Bank and Corporate Property Investors for $180 million. It was originally built as the headquarters for Southeast Bank, which originally occupied 50 percent of the complex's space. It remained Southeast Bank's headquarters there until it was liquidated in 1991.
The Southeast Financial Center comprises two buildings: the 55-story office tower and the 15-story parking annex. The tower has 53 stories of office space. The first floor is dedicated for retail, the second floor is the lobby and the 55th floor was home to the luxurious Miami City Club. The parking annex has 12 floors of parking space for 1,150 cars. The first floor is dedicated for retail, the second floor is a banking hall and the 15th floor has the Downtown Athletic Club. A landscaped plaza lies between the office tower and the parking annex. An enclosed walkway connects the second story of the tower with the second story of the annex. The courtyard is partially protected from the elements by a steel and glass space frame canopy spanning the plaza and attached to the tower and annex. Southeast Bank's executive offices were located on the 38th floor. Ground was broken on the complex on December 12, 1981 and the official dedication and opening for the complex was held on October 23, 1984.
The Southeast Financial Center was designed by Edward Charles Bassett of Skidmore, Owings and Merrill. The Associate Architect was Spillis Candela & Partners. It has 1,145,311 ft² (106,000 m²) of office space. A typical floor has about 22,000 ft² (2,043.87 m²) of office space. Each floor has 9 ft x 9 ft (2.7 m x 2.7 m) floor to ceiling windows. (All of the building's windows are tinted except for the top floor, resulting in strikingly bright and clear views from there.) The total complex has over 2.2 million ft² (204,000 m²). The distinctive setbacks begin at the 43rd floor. Each typical floor plate has 9 corner offices and the top twelve floors have as many as 16. There are 43 elevators in the office tower. An emergency control station provides computerized monitoring for the entire complex, and four generators for backup power.
The Southeast Financial Center can be seen as far away as Ft. Lauderdale and halfway toward Bimini. Night space shuttle launches from Cape Canaveral 200 miles to the north were plainly visible from the higher floors. The roof of the building was featured in the Wesley Snipes motion picture Drop Zone, where an eccentric base jumper named Swoop parachutes down to the street from a suspended window cleaning trolley. The building also appeared in several episodes of the 1980s TV show Miami Vice and at the end of each episode's opening credits.
Zara founder Amancio Ortega purchased the building from J.P. Morgan Asset Management in December 2016. The purchase price was reportedly over $500 million, making it one of the largest real estate transactions in South Florida history.
Credit for the data above is given to the following websites:
en.wikipedia.org/wiki/Southeast_Financial_Center
www.emporis.com/buildings/122292/wachovia-financial-cente...
© All Rights Reserved - you may not use this image in any form without my prior permission.
WEEK 41 – Southaven Malco (Feature Presentation)
I mentioned on Tuesday – and that old letterboard we just saw in the previous image also told you – that there are additional restrooms located down each auditorium wing. In this shot, we’re looking at one of those two additional restroom corridors, this one located down the left-hand wing. Since the main restrooms are located on the left side of the concession stand, this set of restrooms is actually quite close to those; it’s the right-hand wing moviegoers who would have to make a farther walk, if not for the auxiliary restrooms.
More generally, this shot gives you a good idea of what it’s like walking down each auditorium wing. The ceiling is waaaaaay lower than in the lobby, and the floor is carpeted as opposed to concrete. The carpet, by the way, had been upgraded to a newer style sometime before this photo was taken. The restrooms signage is similarly new; and even though they aren’t pictured, so, too, are the auditorium numbers above each doorway (which are now computerized just like the lobby signs we discussed).
It’s probably clear at this point in the album that this theater has seen a lot of renovations over the years, but one thing that *hasn’t* changed is these auxiliary restrooms. I’m pretty certain that that glass block wall separating the men’s and women’s sides is original, as is the tile floor beneath it. And I already told y’all here that the tile inside the restrooms – unless it has been replaced since my last visit, which has admittedly been a while – dates back to Malco’s late 90s construction.
(c) 2020 Retail Retell
These places are public so these photos are too, but just as I tell where they came from, I'd appreciate if you'd say who :)
Capt. Andrew “Dojo” Olson, Lockheed Martin F-35 "Lightning II" 'Heritage Flight Team' pilot and commander, performs a high-speed pass during the Canadian International Air Show in Toronto, Sept. 1, 2018.
From Wikipedia, the free encyclopedia
The Lockheed Martin F-35 Lightning II is a family of single-seat, single-engine, all-weather, stealth, fifth-generation, multirole combat aircraft, designed for ground-attack and air-superiority missions. It is built by Lockheed Martin and many subcontractors, including Northrop Grumman, Pratt & Whitney, and BAE Systems.
The F-35 has three main models: the conventional takeoff and landing F-35A (CTOL), the short take-off and vertical-landing F-35B (STOVL), and the catapult-assisted take-off but arrested recovery, carrier-based F-35C (CATOBAR). The F-35 descends from the Lockheed Martin X-35, the design that was awarded the Joint Strike Fighter (JSF) program over the competing Boeing X-32. The official Lightning II name has proven deeply unpopular and USAF pilots have nicknamed it Panther, instead.
The United States principally funds F-35 development, with additional funding from other NATO members and close U.S. allies, including the United Kingdom, Italy, Australia, Canada, Norway, Denmark, the Netherlands, and formerly Turkey. These funders generally receive subcontracts to manufacture components for the aircraft; for example, Turkey was the sole supplier of several F-35 parts until its removal from the program in July 2019. Several other countries have ordered, or are considering ordering, the aircraft.
As the largest and most expensive military program ever, the F-35 became the subject of much scrutiny and criticism in the U.S. and in other countries. In 2013 and 2014, critics argued that the plane was "plagued with design flaws", with many blaming the procurement process in which Lockheed was allowed "to design, test, and produce the F-35 all at the same time," instead of identifying and fixing "defects before firing up its production line". By 2014, the program was "$163 billion over budget [and] seven years behind schedule". Critics also contend that the program's high sunk costs and political momentum make it "too big to kill".
The F-35 first flew on 15 December 2006. In July 2015, the United States Marines declared its first squadron of F-35B fighters ready for deployment. However, the DOD-based durability testing indicated the service life of early-production F-35B aircraft is well under the expected 8,000 flight hours, and may be as low as 2,100 flight hours. Lot 9 and later aircraft include design changes but service life testing has yet to occur. The U.S. Air Force declared its first squadron of F-35As ready for deployment in August 2016. The U.S. Navy declared its first F-35Cs ready in February 2019. In 2018, the F-35 made its combat debut with the Israeli Air Force.
The U.S. stated plan is to buy 2,663 F-35s, which will provide the bulk of the crewed tactical airpower of the U.S. Air Force, Navy, and Marine Corps in coming decades. Deliveries of the F-35 for the U.S. military are scheduled until 2037 with a projected service life up to 2070.
Development
F-35 development started in 1992 with the origins of the Joint Strike Fighter (JSF) program and was to culminate in full production by 2018. The X-35 first flew on 24 October 2000 and the F-35A on 15 December 2006.
The F-35 was developed to replace most US fighter jets with the variants of a single design that would be common to all branches of the military. It was developed in co-operation with a number of foreign partners, and, unlike the F-22 Raptor, intended to be available for export. Three variants were designed: the F-35A (CTOL), the F-35B (STOVL), and the F-35C (CATOBAR). Despite being intended to share most of their parts to reduce costs and improve maintenance logistics, by 2017, the effective commonality was only 20%. The program received considerable criticism for cost overruns during development and for the total projected cost of the program over the lifetime of the jets.
By 2017, the program was expected to cost $406.5 billion over its lifetime (i.e. until 2070) for acquisition of the jets, and an additional $1.1 trillion for operations and maintenance. A number of design deficiencies were alleged, such as: carrying a small internal payload; performance inferior to the aircraft being replaced, particularly the F-16; lack of safety in relying on a single engine; and flaws such as the vulnerability of the fuel tank to fire and the propensity for transonic roll-off (wing drop). The possible obsolescence of stealth technology was also criticized.
Design
Overview
Although several experimental designs have been developed since the 1960s, such as the unsuccessful Rockwell XFV-12, the F-35B is to be the first operational supersonic STOVL stealth fighter. The single-engine F-35 resembles the larger twin-engined Lockheed Martin F-22 Raptor, drawing design elements from it. The exhaust duct design was inspired by the General Dynamics Model 200, proposed for a 1972 supersonic VTOL fighter requirement for the Sea Control Ship.
Lockheed Martin has suggested that the F-35 could replace the USAF's F-15C/D fighters in the air-superiority role and the F-15E Strike Eagle in the ground-attack role. It has also stated the F-35 is intended to have close- and long-range air-to-air capability second only to that of the F-22 Raptor, and that the F-35 has an advantage over the F-22 in basing flexibility and possesses "advanced sensors and information fusion".
Testifying before the House Appropriations Committee on 25 March 2009, acquisition deputy to the assistant secretary of the Air Force, Lt. Gen. Mark D. "Shack" Shackelford, stated that the F-35 is designed to be America's "premier surface-to-air missile killer, and is uniquely equipped for this mission with cutting-edge processing power, synthetic aperture radar integration techniques, and advanced target recognition".
Improvements
Ostensible improvements over past-generation fighter aircraft include:
Durable, low-maintenance stealth technology, using structural fiber mat instead of the high-maintenance coatings of legacy stealth platforms
Integrated avionics and sensor fusion that combine information from off- and on-board sensors to increase the pilot's situational awareness and improve target identification and weapon delivery, and to relay information quickly to other command and control (C2) nodes
High-speed data networking including IEEE 1394b and Fibre Channel (Fibre Channel is also used on Boeing's Super Hornet.
The Autonomic Logistics Global Sustainment, Autonomic Logistics Information System (ALIS), and Computerized maintenance management system to help ensure the aircraft can remain operational with minimal maintenance manpower The Pentagon has moved to open up the competitive bidding by other companies. This was after Lockheed Martin stated that instead of costing 20% less than the F-16 per flight hour, the F-35 would actually cost 12% more. Though the ALGS is intended to reduce maintenance costs, the company disagrees with including the cost of this system in the aircraft ownership calculations. The USMC has implemented a workaround for a cyber vulnerability in the system. The ALIS system currently requires a shipping-container load of servers to run, but Lockheed is working on a more portable version to support the Marines' expeditionary operations.
Electro-hydrostatic actuators run by a power-by-wire flight-control system
A modern and updated flight simulator, which may be used for a greater fraction of pilot training to reduce the costly flight hours of the actual aircraft
Lightweight, powerful lithium-ion batteries to provide power to run the control surfaces in an emergency
Structural composites in the F-35 are 35% of the airframe weight (up from 25% in the F-22). The majority of these are bismaleimide and composite epoxy materials. The F-35 will be the first mass-produced aircraft to include structural nanocomposites, namely carbon nanotube-reinforced epoxy. Experience of the F-22's problems with corrosion led to the F-35 using a gap filler that causes less galvanic corrosion to the airframe's skin, designed with fewer gaps requiring filler and implementing better drainage. The relatively short 35-foot wingspan of the A and B variants is set by the F-35B's requirement to fit inside the Navy's current amphibious assault ship parking area and elevators; the F-35C's longer wing is considered to be more fuel efficient.
Costs
A U.S. Navy study found that the F-35 will cost 30 to 40% more to maintain than current jet fighters, not accounting for inflation over the F-35's operational lifetime. A Pentagon study concluded a $1 trillion maintenance cost for the entire fleet over its lifespan, not accounting for inflation. The F-35 program office found that as of January 2014, costs for the F-35 fleet over a 53-year lifecycle was $857 billion. Costs for the fighter have been dropping and accounted for the 22 percent life cycle drop since 2010. Lockheed stated that by 2019, pricing for the fifth-generation aircraft will be less than fourth-generation fighters. An F-35A in 2019 is expected to cost $85 million per unit complete with engines and full mission systems, inflation adjusted from $75 million in December 2013.
A wrecking yard (Australian, New Zealand, and Canadian English), scrapyard (Irish and British English) or junkyard (American English) is the location of a business in dismantling where wrecked or decommissioned vehicles are brought, their usable parts are sold for use in operating vehicles, while the unusable metal parts, known as scrap metal parts, are sold to metal-recycling companies.
Other terms include wreck yard, wrecker's yard, salvage yard, breakers yard, dismantler and scrapheap. In the United Kingdom, car salvage yards are known as car breakers, while motorcycle salvage yards are known as bike breakers. In Australia, they are often referred to as 'Wreckers'.
The most common type of wreck yards are automobile wreck yards, but junkyards for motorcycles, bicycles, small airplanes and boats exist too.
Many salvage yards operate on a local level—when an automobile is severely damaged, has malfunctioned beyond repair, or not worth the repair, the owner may sell it to a junkyard; in some cases—as when the car has become disabled in a place where derelict cars are not allowed to be left—the car owner will pay the wrecker to haul the car away.
Salvage yards also buy most of the wrecked, derelict and abandoned vehicles that are sold at auction from police impound storage lots,and often buy vehicles from insurance tow yards as well.
The salvage yard will usually tow the vehicle from the location of its purchase to the yard, but occasionally vehicles are driven in. At the salvage yard the automobiles are typically arranged in rows, often stacked on top of one another.
Some yards keep inventories in their offices, as to the usable parts in each car, as well as the car's location in the yard. Many yards have computerized inventory systems. About 75% of any given vehicle can be recycled and used for other goods.
In recent years it is becoming increasingly common to use satellite part finder services to contact multiple salvage yards from a single source.
In the 20th century these were call centres that charged a premium rate for calls and compiled a facsimile that was sent to various salvage yards so they could respond directly if the part was in stock. Many of these are now Web-based with requests for parts being e-mailed instantly.
“LUNAR POGO STICK for astronauts being designed at Stanford University will take advantage of the moon’s weak gravity to hop across the rugged moonscape in 50-foot jumps. Gyroscopes will keep the astronaut upright. Compressed gas in globes will fuel the piston bouncing mechanism at about 10 miles to the gallon. Other globes contain rocket fuel for jet steering to landings. (Drawing by Jim M’Guinness, Stanford Publications Service.”
The above is per the original, verso-affixed Stanford University description. The following is from the subsequently affixed newspaper clipping:
“A pogo stick complete with gyroscopes and rocket jets, is being developed at Stanford University for hopping across the surface of the moon.
Even its guidance may be computerized for astronauts as it takes 50 foot jumps. The leaping will not be accomplished by the jets with their excessive fuel consumption, but by against the moon’s surface with a foot, after the manner of a kangaroo, rabbit or frog.
“The moon has no air to fly in, no water to float on, no road to roll over.” Said project leader Dr. Howard S. Seifert, professor of aeronautical engineering, at a recent seminar on the Stanford campus.”
This is terrible, both the concept AND the artwork! But it’s what makes it endearing. I actually remember seeing this as a child, and even then, thinking “WTH ([H=Heck], I didn’t yet know the f-word)? NO way” & “I hope not.”
Apparently, Dr. Seifert is to ‘blame’ for not only this, but the other even more elaborate, dangerous & preposterous pogo stick means of lunar locomotion. Take a look…exotic…but YIKES:
cyberneticzoo.com/walking-machines/1967-lunar-leaper-dr-h...
Credit: Reuben Hoggett at his delightful “Cybernetic Zoo” website
The works within the following help to explain the look of Mr. M’Guinness’s lunar pogo stick rendering:
law.stanford.edu/wp-content/uploads/2015/07/Stanford_Lawy...
Credit: Stanford Law School website
#311 - The Tree, The Shadow, The Lake, The Soul ! - Tystrup sø - Tystrup Lake graphic. 2008 © All rights reserved.
The photo here is 1 of 4 graphic deviations from a row of graphics.
2004-05-27M1-2972 Saph6-22
Original photo:The Tree, The Shadow, The Lake ! (2004-05-27M1-2972)
Port of Itajai
Vessel entering the harbor (entrando no porto)
Vessel's Details (Detalhes do Navio)
Ship Type (tipo): Cargo - Hazard A (Major) - Full Container
Year Built (ano de construção): 2001
Length x Breadth (Comprimento x Largura): 257.4 m X 32.2 m
DeadWeight (Tonelagem Bruta): 50200 t
Speed recorded (Max / Average) (Velocidade - máx /média): 15.2 / 15.2 knots
Call Sign: ELZU6
IMO: 9227273, MMSI: 636090521
Shipbuilder Name (Construtor): Samsung Heavy Industries Ulsan / South Korea
Owner/Agent (Proprietário/Agente): Hamburg Sud, Hamburg/Germany
Flag (Bandeira): Liberia
A.T.B. (Atracação): Jan 11,2010
.
The Port of Itajai is a Brazilian port located in the City of Itajai, in the State of Santa Catarina, south Brazil.
This is the second largest port of Brazil in handling containers. It acts as export port and most of the Santa Catarina´s production passes through it.
The port of Itajai has over 15,000 m2 of covered area to warehouse products and 38,000 m2 of open area to warehouse containers. The users of the Itajai Port have at their disposal over 70 equipments to assist loadings and unloadings of 1 to 37 tons.
The port follows international safety standards. The operational units are fully computerized.
In 2010, the Port of Itajai handled a total of 954.38 thousand TEUs (Twenty-foot Equivalent Unit – international unit equivalent to a 20-foot container). Over 1.25 thousand vessels called at the Port of Itajai, including cargo and passenger vessels.
WEEK 41 – Southaven Malco (Feature Presentation)
For this next portion of our album, we’ll be exploring the auditorium wings. Not either the left one or the right one specifically, I should say, but simply “the rest of the theater” in general; which is a good thing, actually, as I have absolutely no idea which wing I was walking down when I took this picture anyway XD
Regardless, my intention here was to show you the old changeable letterboards that Malco used to use to manually put up the movie names, show times, and auditorium locations, prior to replacing them with computerized versions. In the wake of the new automated signboards being installed, these old ones were downgraded merely to advertising a permanent “welcome” message; later, they were removed entirely.
As for the new movie screen signage, you can see the first iteration in this pic, which also shows you the spatial relationship between the new and the old (not to mention a very nice overview of the entire lobby). Since then, the signs have been replaced yet again; we saw those newest versions above both auditorium wings during Tuesday’s upload set.
(c) 2020 Retail Retell
These places are public so these photos are too, but just as I tell where they came from, I'd appreciate if you'd say who :)
Pinwheel Galaxy (M101)
Located in the Ursa Major Constellation, this galaxy is about 21 million light years away from us. If you look closely you will see about 1/2 dozen other galaxies in this photo. The galaxy to the lower right of the Pinwheel, is NGC 5474. It is distorted because of gravitational pull from the Pinwheel.
Last night the wind finally settled down a bit and the skies cleared. This photo is a compilation of 96, three minute exposures for a total of 5 hours of integration.
Still using my Nikon 600mm f4e wildlife lens with a dedicated CMOS astro camera and a computerized equatorial mount. Waiting for my new scope being built in Auburn, Ca. Hopefully will be ready next month.
Photographed 21 million years later from the Alexander Valley, Sonoma County, Calif.
March 23, 2021