View allAll Photos Tagged Capable
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
The English Electric Lightning was a supersonic jet fighter aircraft of the Cold War era, noted for its great speed. It was the only all-British Mach 2 fighter aircraft and the first aircraft in the world capable of supercruise. The Lightning was renowned for its capabilities as an interceptor; pilots commonly described it as "being saddled to a skyrocket". Following English Electric's integration into the unified British Aircraft Corporation, the aircraft was marketed as the BAC Lightning.
The Lightning was prominently used by the Royal Air Force, but also by Saudi Arabia, Kuwait and Singapore. The first aircraft to enter service with the RAF, three pre-production P.1Bs, arrived at RAF Coltishall in Norfolk on 23 December 1959, and from there the aircraft was permanently developed further.
The F.6 was the ultimate Lightning version to see British service. Originally, it was nearly identical to the former F.3A (which introduced a large ventral tank and new cambered wings), with the exception that it had provisions to carry 260 gal (1,180 l) ferry tanks on pylons over the wings. These tanks were jettisonable in an emergency, and gave the F.6 a substantially improved deployment capability. The Ferranti A.I.23B radar supported autonomous search, automatic target tracking, and ranging for all weapons, while the pilot attack sight provided gyroscopically derived lead angle and backup stadiametric ranging for gun firing. The radar and gunsight were collectively designated the AIRPASS: Airborne Interception Radar and Pilot Attack Sight System. Combined with the Red Top missile, the system offered a limited forward hemisphere attack capability.
There remained one glaring shortcoming of the late Lightning versions, though: the lack of cannon. This was finally rectified in the form of a modified ventral tank with two ADEN cannon mounted in the front. The addition of the cannon and their ammunition decreased the tank's fuel capacity from 610 gal to 535 gal (2,430 l), but the cannon made the F.6 a 'real fighter' again.
Singapore's Lightnings came as a bargain, as they had been taken over directly from RAF stocks. In 1967 No. 74 'Tiger' Squadron was moved to RAF Tengah in Singapore to take over the air defense role from the Gloster Javelin equipped 64 Squadron. When 74 Squadron was disbanded in September 1971, following the withdrawal of British forces from Singapore (in the course of the "East of Suez" campaign, which already started in 1968), Tengah Air Base and many other RAF sites like Seletar, Sembawang and Changi as well as the RAF air defense radar station and Bloodhound II surface-to-air missiles were handed over to the SADC, Singapore’s Air Defense Command, which was suddenly entrusted with a huge responsibility and resources.
Anyway, in order to fulfill its aerial defense role, Singapore's air force lacked a potent interceptor, and so it was agreed with the RAF that 74 Squadron would leave fourteen Lightnings (twelve F.6 fighters and two T.5 trainers behind, while the rest was transferred to Akrotiri, Cyprus, where the RAF aircraft were integrated into 56 Squadron.
The ex-RAF Lightnings, however, immediately formed the small country's quick alert interceptor backbone and were grouped into the newly established 139th Squadron, “Swifts”. The small squadron kept its base at Tengah, as a sister unit to 140th Squadron which operated the Hawker Hunter FGA.74 in the fighter role since 1971.
Singapore's Lightnings differed slightly from the RAF F.6: In order to minimize the maintenance costs of this specialized aircraft, the SADC decided to drop the Red Top missile armament. The Red Top gave all-weather capability, but operating this standalone system for just a dozen of aircraft was deemed cost-inefficient. Keeping the high-performance Lightnings airworthy was already costly and demanding enough.
As a cost-effective measure, all SADC Lightnings were modified to carry four AIM-9B and later E Sidewinder AAMs on special, Y-shaped pylons, not unlike those used on the US Navy's F-8 Crusader. In order to enhance all-weather capability, an AAS-15 IRST sensor was added, located in a fairing in front of the wind shield. Its electronics used the space of the omitted, fuselage-mounted cannons of the F.6 variant.
Long range and loitering time were only of secondary relevance, so that the Singaporean Lightnings typically carried two 30 mm ADEN cannons with 120 RPG in the lower fuselage, which reduced the internal fuel capacity slightly but made the Lightning a true close combat fighter with high agility, speed and rate of climb. Since the RSAF interceptors would only engage in combat after direct visual contact and target identification, the Sidewinders' short range was no operational problem - and because that missile type was also in use with RSAF's Hawker Hunters, this solution was very cost-efficient.
The F.6's ability to carry the overwing ferry tanks (the so-called 'Overburgers') was retained, though, as well as the refueling probe and, and with its modified/updated avionics the RSAF Lightnings received the local designations of F.6S and T.5S. They were exclusively used in the interceptor role and retained their natural metal finish all though their service career.
In 1975, the SADC was eventually renamed into ‘Republic of Singapore Air Force’ (RSAF), and the aircraft received appropriate markings.
The RSAF Lightnings saw an uneventful career. One aircraft was lost due to hydraulic failure in August 1979 (the pilot ejected safely), and when in 1983 RSAF's F-5S fighters took over the duties of airborne interception from the Royal Australian Air Force's Mirage IIIOs detachment stationed at Tengah, all remaining RSAF Lightnings were retired and phased out of service in March 1984 and scrapped. The type's global career did not last much longer: the last RAF Lightnings were retired in 1988 and replaced by the Panavia Tornado ADV.
BAE Lightning F.6S general characteristics
Crew: 1
Length: 55 ft 3 in (16.8 m)
Wingspan: 34 ft 10 in (10.6 m)
Height: 19 ft 7 in (5.97 m)
Wing area: 474.5 ft² (44.08 m²)
Empty weight: 31,068 lb (14.092 kg)
Max. take-off weight: 45,750 lb (20.752 kg)
Powerplant:
2× Rolls-Royce Avon 301R afterburning turbojets with 12,530 lbf (55.74 kN) dry thrust each and 16,000 lbf (71.17 kN) with afterburner
Performance:
Maximum speed: Mach 2.0 (1.300 mph/2.100 km/h) at 36.000 ft.
Range: 850 mi (1.370 km) Supersonic intercept radius: 155 mi (250 km)
Ferry range: 920 mi (800 NM/ 1.660 km) 1,270 mi (1.100 NM/ 2.040 km) with ferry tanks
Service ceiling: 54.000 ft (16.000 m); zoom ceiling >70.000 ft
Rate of climb: 20.000 ft/min (100 m/s)
Wing loading: 76 lb/ft² (370 kg/m²)
Thrust/weight: 0.78
Armament:
2× under-fuselage hardpoints for mounting air-to-air missiles (2 or 4 AIM-9 Sidewinder)
Optional, but typically fitted: 2× 30 mm (1.18 in) ADEN cannons with 120 RPG in the lower fuselage, reducing the ventral tank's fuel capacity from 610 gal to 535 gal (2,430 l)
2× overwing pylon stations for 260 gal ferry tanks
The kit and its assembly
The inspiration to this whiffy Lightning came through fellow user Nick at whatifmodelers.com (credits go to him), who brought up the idea of EE/BAC Lightnings in Singapore use: such a small country would be the ideal user of this fast interceptor with its limited range. I found the idea very convincing and plausible, and since I like the Lightning and its unique design very much, I (too) had to make one for the 2013 group build "Asiarama" - even if a respective model would potentially be built twice. But it's always fun to see how the same theme is interpreted by different modelers, I am looking forward to my creation's sister ship.
The kit is the Matchbox Lightning F.2A/F.6 (PK-114) from 1976, and only little was changed. Fit is O.K., building the model poses no real problems. But the kit needs some putty work at the fuselage seams, and the many raised panel lines (esp. at the belly tank) and other relatively fine and many details for a Matchbox kit make sanding rather hazardous. Nevertheless, it's a solid kit. A bit toy-like, yes, but good value for the relatively little money. What's saved might be well invested into an extra decal sheet (see below).
Internal mods include some added details inside of the cockpit and the landing gear wells, but these were just enhancements to the original parts. The Avons' afterburners were simulated with implanted sprocket wheels from a 1:72 Panzer IV - not intended to be realistic at all, but IMO better than the kit's original, plain end caps!
Externally…
· the flaps were lowered
· some antennae and a finer pitot added
· about a dozen small air intakes/outlets were added (cut from styrene) or drilled open
· the IRST sensor fairing added, sculpted from a simple piece of sprue
· a pair of 30mm barrels mounted in the lower fuselage (hollow steel needles)
· the scratch-built quadruple Sidewinder rails are worth mentioning
The AIM-9E missiles come from the scrap heap, I was lucky to find a matching set of four. The optional overwing fuel tanks were not fitted, as this was supposed to become a "standard RSAF aircraft". I also did not opt for (popular) weapons mounted above the wings, since this would have called for modifications of the F.6 which did not appear worthwhile to me in context with the envisaged RSAF use. Switching to four Sidewinders on the fuselage hardpoints was IMHO enough.
Painting and markings
More effort went into this project part. The end of RAF's 74 Squadron at Tengah and the return of the Lightnings to Europe opened a nice historical window for my whif. Since the Tiger Squadron's aircraft sported a natural metal finish, partly with black fins (accidentally, the Matchbox kit offers just the correct decal/painting option), I decided that the RSAF would keep their aircraft this way: without camouflage, just RSAF markings, with some bold and highly visible colors added.
A SEA scheme (as on the RSAF Hunters, Strikemasters of Skyhawks) would have been another serious option and certainly look weird on a Lightning, as well as a three-tone gray wraparound low-viz scheme as used on the F-5E/S fighters, plausible in the 80ies onwards.
Testors Aluminum Metallizer was used as basic color, but several other shades including Steel and Titanium Metallizer, Testors normal Aluminum enamel paint, Humbrol 11 and 56 as well as Revell Aqua Color Aluminum were used for selected surface portions or panels all around the hull.
The spine including the cockpit frame was painted black. Using RSAF's 140 Squadron's colors as a benchmark, the fin received a checkered decoration in black and red, reminiscent of RAF 56 Squadron Lightnings. This was created through a black, painted base, onto which decals - every red field was cut from a red surface sheet from TL Modellbau - were transferred. Sounds horrible, but it was easier and more exact than expected. A very convenient solution with sharp edges and good contrast. A red trim line, 1mm wide, was added as a decal along the spine in a similar fashion.
The squadron emblem on the Lightning's nose was created through the same scratch method: from colored 1.5mm wide stripes, 3mm pieces were cut and applied one by one to form the checkered bar. The swift emblem comes from a 1:48 sheet for French WWI aircraft, made by Peddinghaus Decals from Germany. The overall look was supposed to be similar to the (real) 140 Squadron badge.
As a consequence, this created a logical problem: where to put the national roundel? Lightnings usually wore them on the nose, but unlike RAF style (where a bar was added around the roundel), I used RSAF Hunters as benchmark.
The RSAF roundels were a challenge. In order not to cramp the nose section too much I decided to place the roundels behind the wings. Not the must prominent position, but plausible. I originally wanted to use decals from the current 1:72 Airfix BAC Strikemaster kit, but they turned out to be too small.
After long search I was happy to find a 1:48 aftermarket decal sheet from Morgan Decals for an A-4S, with full color yin-yang roundels - in Canada! It took three weeks to wait for these parts, though, even though work had to wait for this final but vital detail !
As a side not, AFAIK any RSAF aircraft only carried and carries these roundels on the fuselage sides, not on the wings' upper or lower surfaces? It leaves the model a bit naked, so I decided to add 'RSAF' letters and the tactical code '237' to the wings' upper and lower sides. But the fin is surely bold enough to compensate ;)
The cockpit interior was painted in Medium Sea Gray (Humbrol 27), the landing gear and the wells in a mix of Humbrol 56 and 34, for a light gray with a metallic shimmer.
Other details include the white area behind the cockpit, which contained an AVPIN/isopropyl nitrate tank for the Lightning's start engine. Hazardous stuff - the light color was to prevent excessive heating in the sun, a common detail for Lightnings used in Cyprus. Another piece that took some effort was the shaggy nose cone, which was painted in a mix of Humbrol 56 and 86 and received some serious dry painting in light gray and ochre.
Stencils etc. were taken from an extensive aftermarket sheet for Lightnings from Xtradecal (X72096). The Matchbox decal sheet of PK-114 just offers the ejection seat warning triangles - that's all! The later T.55 kit is much better in this regard, but still far from being complete.
After decal application and to enhance the metallic look, the kit received a careful rubbing with finely grinded graphite, which, as a side effect, also emphasized the raised panel lines. A little dry painting was done around some exhaust openings, but nothing to make the aircraft look really old. This is supposed to be a bright and well-maintained interceptor!
Finally, the kit received a thin coat with glossy acrylic varnish, the spine and fin received a semi-matt coat and the black glare shield in front of the cockpit became matt.
A pretty straightforward build for the Asiarama group build, and with best regards and credits to Nick who came up with the original idea. Most work went into the decals and the NMF finish. I like the bold colors, and despite being flamboyant, they do not make the Lightning look too far out of place?
As a final note: XR773 never ended up in Singapore service, just like any BAC Lightning. In real life, the aircraft (first flight was in February 1966 with Roly Beamont at the controls) was transferred from 74 Squadron at RAF Tengah to Akrotiri in late 1971 and had a pretty long life, further serving with 56, 5 and 11 Squadrons as well as the Lightning Training Flight. And even then it’s life was far from over: XR773 is one of the Lightning survivors; in South Africa it flew in private hands as ZU-BEW until 2010, when it was grounded and the airframe put up to sale.
C.S. SOVEREIGN
C.S. Sovereign is a multi-role DPS-2 vessel capable of undertaking both cable maintenance and installation projects. Her open deck enables her to deploy a variety of subsea vehicles and her powered turntables make her the ideal solution for a diverse range of offshore engineering activities. C.S. Sovereign is primarily committed to serving ACMA, the Atlantic Cable Maintenance Agreement, and is based in Portland, UK.
C.S. Sovereign has been involved in many projects as well as being used as a charter vessel. Her accomplishments include: installation and burial of 30km of inter platform cable on the Fibre to Judy project in 2010 and completing the main lay installation operation, utilising the Atlas ROV and Cable Plough on the ValHall Clyde project.
Vessel
BuildersVan Der Giessen, Netherlands
Date built1991
FlagUK
ClassABS, A1, Ice Class 1C, AMS, ACCU DPS-2
Length overall130.70m
Breadth moulded21.00m
Designed draft7.014m
Gross tonnage11,242t
Maximum speed13.5kts
Main engines3
Bow thruster2
Stern thruster2
DP systemDPS-2 Duplex C-Series
Berths78
Bollard pull80t
Fuel
Fuel capacity1,108t MGO
Communications
1 x VSAT SEATEL 4006, MTN Service Contract on KU Band
2 x Satcom B
Cable Tanks
Main cable tanks2 x 2,300t powered turntables installed in C/Tks 1 & 3. Basket height 5.50m
Outer diameter15.20m
Cone external diameter6.00m
Maximum load per tank2,200t
Wing tanks2
Internal diameter6.60m
Cone outer diameter2.45m
Maximum load per tank432t
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The Mikoyan-Gurevich MiG-19 (Russian: Микоян и Гуревич МиГ-19) (NATO reporting name: "Farmer") was a Soviet second-generation, single-seat, twin jet-engined fighter aircraft. It was the first Soviet production aircraft capable of supersonic speeds in level flight. It was, more oe less, the counterpart of the North American F-100 Super Sabre, although the MiG-19 would primarily oppose the more modern McDonnell Douglas F-4 Phantom II and Republic F-105 Thunderchief over North Vietnam.
On 20 April 1951, OKB-155 was given the order to develop the MiG-17 into a new fighter called "I-340", which was to be powered by two Mikulin AM-5 non-afterburning jet engines (a scaled-down version of the Mikulin AM-3) with 19.6 kN (4,410 lbf) of thrust. The I-340 was supposed to attain 1,160 km/h (725 mph, Mach 1) at 2,000 m (6,562 ft), 1,080 km/h (675 mph, Mach 0.97) at 10,000 m (32,808 ft), climb to 10,000 m (32,808 ft) in 2.9 minutes, and have a service ceiling of no less than 17,500 m (57,415 ft).
The new fighter, internally designated "SM-1", was designed around the "SI-02" airframe (a MiG-17 prototype) modified to accept two engines in a side-by-side arrangement and was completed in March 1952.
Initial enthusiasm for the aircraft was dampened by several problems. The most alarming of these was the danger of a midair explosion due to overheating of the fuselage fuel tanks located between the engines. Deployment of airbrakes at high speeds caused a high-g pitch-up. Elevators lacked authority at supersonic speeds. The high landing speed of 230 km/h (145 mph) (compared to 160 km/h (100 mph) in the MiG-15), combined with absence of a two-seat trainer version, slowed pilot transition to the type. Handling problems were addressed with the second prototype, "SM-9/2", which added a third ventral airbrake and introduced all-moving tailplanes with a damper to prevent pilot-induced oscillations at subsonic speeds. It flew on 16 September 1954, and entered production as the MiG-19S.
Approximately 5.500 MiG-19s were produced, first in the USSR and in Czechoslovakia as the Avia S-105, but mainly in the People's Republic of China as the Shenyang J-6. The aircraft saw service with a number of other national air forces, including those of Cuba, North Vietnam, Egypt, Pakistan, and North Korea. The aircraft saw combat during the Vietnam War, the 1967 Six Day War, and the 1971 Bangladesh War.
All Soviet-built MiG-19 variants were single-seaters only, although the Chinese later developed the JJ-6 trainer version of the Shenyang J-6. Among the original "Farmer" variants were also several radar-equipped all-weather fighters and the MiG-19R, a reconnaissance version of the MiG-19S with cameras replacing the nose cannon in a canoe-shaped fairing under the forward fuselage and powered by uprated RD-9BF-1 engines with about 10% more dry thrust and an improved afterburner system.
The MiG19R was intended for low/medium altitude photo reconnaissance. Four AFA-39 daylight cameras (one facing forward, one vertical and two obliquely mounted) were carried. Nighttime operations were only enabled through flare bombs, up to four could be carried on four hardpoints under the wings, even though the outer "wet" pylons were frequently occupied by a pair of 800l drop tanks.
The MiG-19R was not produced in large numbers and only a few were operated outside of the Soviet Union. The NATO reporting name remained unchanged (Farmer C). A recon variant of the MiG-19 stayed on many air forces' agendas, even though only the original, Soviet type was actually produced. Czechoslovakia developed an indigenous reconnaissance variant, but it did not enter series production, as well as Chinese J-6 variants, which only reached the prototype stage.
One of the MiG-19R's few foreign operators was the Polish Navy. The Polish Air Force had received a total of 22 MiG-19P and 14 MiG-19PM interceptors in 1957 (locally dubbed Lim-7), and at that time photo reconnaissance for both Air Force and Navy was covered by a version of the MiG-17 (Lim-5R). Especially the Polish Navy was interested in a faster aircraft for quick identification missions over the Baltic Sea, and so six MiG-19R from Soviet stock were bought in 1960 for the Polish Navy air arm.
Anyway, Poland generally regarded the MiG-19 family only as an interim solution until more potent types like the MiG-21 became available. Therefore, most of the fighters were already sold to Bulgaria in 1965/66, and any remaining Farmer fighters in Polish Air Force Service were phased out by 1974.
The Polish Navy MiG-19R were kept in service until 1982 through the 3rd Group of the 7th Polish Naval Squadron (PLS), even though only a quartet remained since two Lim-7R, how the type was called in Poland, had been lost through accidents during the early 70ies. Ironically, the older Lim6R (a domestic photo reconnaissance variant of the license-built MiG-17 fighter bomber) was even kept in service until the late 80ies, but eventually all these aircraft were replaced by MiG-21R and Su-22M4R.
General characteristics:
Crew: One
Length: 12.54 m (41 ft)
Wingspan: 9.0 m (29 ft 6 in)
Height: 3.9 m (12 ft 10 in)
Wing area: 25.0 m² (270 ft²)
Empty weight: 5,447 kg (11,983 lb)
Max. take-off weight: 7,560 kg (16,632 lb)
Powerplant:
2× Tumansky RD-9BF-1 afterburning turbojets, 31.9 kN (7,178 lbf) each
Performance:
Maximum speed: 1.500 km/h (930 mph)
Range: 1,390 km (860 mi) 2,200 km with external tanks
Service ceiling: 17,500 m (57,400 ft)
Rate of climb: 180 m/s (35,425 ft/min)
Wing loading: 302.4 kg/m² (61.6 lb/ft²)
Thrust/weight: 0.86
Armament:
2x 30 mm NR-30 cannons in the wing roots with 75 RPG
4x underwing pylons, with a maximum load of 1.000 kg (2.205 lb);
typically only 2 drop tanks were carried, or pods with flare missiles
The kit and its assembly:
Again, a rather subtle whif. The MiG-19R existed, but was only produced in small numbers and AFAIK only operated by the Soviet Union. Conversions of license-built machines in Czechoslovakia and China never went it beyond prototype stage.
Beyond that, there’s no kit of the recon variant, even pictures of real aircraft are hard to find for refefence – so I decided to convert a vintage Kovozavody/KP Models MiG-19S fighter from the pile into this exotic Farmer variant.
Overall, the old KP kit is not bad at all, even though you get raised details, lots of flash and mediocre fit, the pilot's seat is rather funny. Yes, today’s standards are different, but anything you could ask for is there. The kit is more complete than a lot of more modern offerings and the resulting representation of a MiG-19 is IMHO good.
Mods I made are minimal. Most prominent feature is the camera fairing in place of the fuselage cannon, scratched from a massive weapon pylon (Academy F-104G). Probably turned out a bit too large and pronounced, but it’s whifworld, after all!
Other detail changes include new main wheels (from a Revell G.91), some added/scratched details in the cockpit with an opened canopy, and extra air scoops on the fuselage for the uprated engines. The drop tanks are OOB, I just added the small stabilizer pylons from styrene sheet.
Other pimp additions are scratched cannons (made from Q-Tips!), and inside of the exhausts the rear wall was drilled up and afterburner dummies (wheels from a Panzer IV) inserted - even though you can hardly see that at all...
Painting and markings:
This is where the fun actually begins. ANY of the few MiG-19 in Polish service I have ever seen was left in a bare metal finish, and the Polish Navy actually never operated the type.
Anyway, the naval forces make a good excuse for a camouflaged machine – and the fact that the naval service used rather complex patterns with weird colors on its machines (e. g. on MiG-17, MiG-15 UTI or PZL Iskras and An-2) made this topic even more interesting, and colorful.
My paint scheme is a mix of various real world aircraft “designs”. Four(!) upper colors were typical. I ended up with:
• Dark Grey (FS 36118, Modelmaster)
• Dark Green (RAF Dark Green, Modelmaster)
• Blue-Green-Grey (Fulcrum Green-Grey, Modelmaster)
• Greenish Ochre (a mix of Humbrol 84 and Zinc Chromate Green, Modelmaster)
Plus…
• Light Blue undersides (FS 35414, Modelmaster, also taken into the air intake)
The pattern was basically lent from an Iskra trainer and translated onto the swept wing MiG. The scheme is in so far noteworthy because the stabilizers carry the upper camo scheme on the undersides, too!?
I only did light shading and weathering, since all Polish Navy service aircraft I found had a arther clean and pristine look. A light black ink wash helped to emphasize the many fine raised panel lines, as well as some final overall dry painting with light grey.
The cockpit interior was painted in the notorious “Russian Cockpit Blue-Green” (Modelmaster), dashboard and are behind the seat were painted medium grey (FS 36231). The landing gear wells were kept in Aluminum (Humbrol 56), while the struts received a lighter acrylic Aluminum from Revell.
The wheel discs were painted bright green (Humbrol 131), but with the other shocking colors around that does not stand out at all…! The engine nozzles were treated with Modelmaster Metallizer, including Steel, Gun Metal and Titanium, plus some grinded graphite which adds an extra metallic shine.
The national “checkerboard” markings were puzzled together from various old decal sheets; the red tactical code was made with single digit decals (from a Begemot MiG-29 sheet); the squadron marking on the fin is fictional, the bird scaring eyes are a strange but als typical addition and I added some few stencils.
Finally, all was sealed under a coat of matt acrylic varnish (Revell).
In the end, not a simple whif with only little conversion surgery. But the paint scheme is rather original, if not psychedelic – this MiG looks as if a six-year-old had painted it, but it’s pretty true to reality and I can imagine that it is even very effective in an environment like the Baltic Sea.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The Saab JAS 39 Gripen (griffin) is a light single-engine multirole fighter aircraft manufactured by the Swedish aerospace company Saab. In 1979, the Swedish government began development studies for an aircraft capable of fighter, attack and reconnaissance missions to replace the Saab 35 Draken and 37 Viggen. The preferred aircraft was a single-engine, lightweight single-seater, embracing fly-by-wire technology, canards, and an aerodynamically unstable design. The powerplant selected was the Volvo-Flygmotor RM12, a license-built derivative of the General Electric F404−400; engine development priorities were weight reduction and lowering component count. A new design from Saab was selected and developed as the JAS 39, first flying in 1988.
The Gripen is a multirole fighter aircraft, intended as a lightweight and agile aerial platform with advanced, highly adaptable avionics. It has canard control surfaces that contribute a positive lift force at all speeds, while the generous lift from the delta wing compensates for the rear stabilizer producing negative lift at high speeds, increasing induced drag. It is capable of flying at a 70–80 degrees angle of attack.
Being intentionally unstable and employing digital fly-by-wire flight controls to maintain stability removes many flight restrictions, improves manoeuvrability and reduces drag. The Gripen also has good short takeoff performance, being able to maintain a high sink rate and strengthened to withstand the stresses of short landings. A pair of air brakes are located on the sides of the rear fuselage; the canards also angle downward to act as air brakes and decrease landing distance
To enable the Gripen to have a long service life, roughly 50 years, Saab designed it to have low maintenance requirements. Major systems such as the RM12 engine and PS-05/A radar are modular to reduce operating cost and increase reliability. The Gripen’s systems were designed to be flexible, so that newly developed sensors, computers and armaments could be easily integrated as technology advances. The aircraft was estimated to be roughly 67% sourced from Swedish or European suppliers and 33% from the US.
To market the aircraft internationally, Saab formed partnerships and collaborative efforts with overseas aerospace companies. One example of such efforts was Gripen International, a joint partnership between Saab and BAE Systems formed in 2001. Gripen International was responsible for marketing the aircraft, and was heavily involved in the successful export of the type to South Africa; the organisation was later dissolved amidst allegations of bribery being employed to secure foreign interest and sales. On the export market, the Gripen has achieved moderate success in sales to nations in Central Europe, South Africa and Southeast Asia.
The Swedish Air Force placed a total order for 204 Gripens in three batches. The first delivery of the JAS 39A/B (single seat and two seat variants) occurred on 8 June 1993, when aircraft “39102” was handed over to the Flygvapnet during a ceremony at Linköping. The final Batch three 1st generation aircraft was delivered to FMV on 26 November 2008, but in the meantime an upgraded Gripen variant, the JAS 39C/D already rolled off of the production lines and made the initial versions obsolete. The JAS C/D gradually replaced the A/B versions in the frontline units until 2012, which were then offered for export, mothballed or used for spares for the updated Swedish Gripen fleet.
A late European export customer became the nascent Republic of Scotland. According to a White Paper published by the Scottish National Party (SNP) in 2013, an independent Scotland would have an air force equipped with up to 16 air defense aircraft, six tactical transports, utility rotorcraft and maritime patrol aircraft, and be capable of “contributing excellent conventional capabilities” to NATO. Outlining its ambition to establish an air force with an eventual 2,000 uniformed personnel and 300 reservists, the SNP stated that the organization would initially be equipped with “a minimum of 12 interceptors in the Eurofighter/Typhoon class, based at Lossiemouth, a tactical air transport squadron, including around six Lockheed Martin C-130J Hercules, and a helicopter squadron for transport and SAR duties”.
According to the document, “Key elements of air forces in place at independence, equipped initially from a negotiated share of current UK assets, will secure core tasks, principally the ability to police Scotland’s airspace, within NATO.” An in-country air command and control capability would be established within five years of a decision in favor of independence, it continued, with staff also to be “embedded within NATO structures”.
This plan was immediately set into action with the foundation of the Poblachd na h-Alba Adhair an Airm (Republic of Scotland Air Corps/RoScAC) after the country's independence from Great Britain in late 2017. For the fighter role, Scotland was offered refurbished F-16C and Ds from the USA, but this was declined, as the type was considered too costly and complex. An offer from Austria to buy the country’s small Eurofighter fleet (even at a symbolic price) was rejected for the same reason.
Eventually, and in order to build a certain aura of neutrality, Scotland’s young and small air arm initially received twelve refurbished, NATO-compatible Saab JAS 39 Gripen (ten single-seater and two two-seaters) as well as Sk 90 trainers from Swedish overstock. These second hand machines were just the initial step in the mid-term procurement plan, though.
Even though all Scottish Gripens (locally called “Grìbhean”, designated F.1 for the JAS 39A single seaters and F.2 for the fully combat-capable JAS 39B two-seaters, respectively) were multi-role aircraft and capable of strike missions, its primary roles were interception/air defense and, to a lesser degree, reconnaissance. Due to severe budget restrictions and time pressure, these aircraft were almost identical to the Flygvapnet’s JAS 39A/B aircraft. They used the PS-05/A pulse-Doppler X band multi-mode radar, developed by Ericsson and GEC-Marconi, which was based on the latter's advanced Blue Vixen radar for the Sea Harrier that also served as the basis for the Eurofighter's CAPTOR radar. This all-weather radar is capable of locating and identifying targets 120 km (74 mi) away and automatically tracking multiple targets in the upper and lower spheres, on the ground and sea or in the air. It can guide several beyond visual range air-to-air missiles to multiple targets simultaneously. Therefore, RoScAC also procured AIM-9 Sidewinder and AIM-120 AMRAAM as primary armament for its Grìbhean fleet, plus AGM-65 Maverick air-to-ground missiles.
The twelve Grìbhean F.1 and F.2s formed the RoScAC’s 1st fighter (Sabaid) squadron, based at former RAF base Lossiemouth. Upon delivery and during their first months of service, the machines retained the former Swedish grey paint scheme, just with new tactical markings. In 2018, the RoScAC fighter fleet was supplemented with brand new KAI/Lockheed Martin TA-50 ‘Golden Eagle’ armed trainers from South Korea, which could also take over interceptor and air patrol duties. This expansion of resources allowed the RoScAC to initiate an update program for the JAS 39 fleet. It started in 2019 and included in-flight refueling through a fixed but detachable probe, a EuroFIRST PIRATE IRST, enhanced avionics with elements from the Swedish JAS 39C/D, and a tactical datalink.
With these updates, the machines could now also be externally fitted with Rafael's Sky Shield or LIG Nex1's ALQ-200K ECM pods, Sniper or LITENING targeting pods, and Condor 2 reconnaissance pods to further improve the machine’s electronic warfare, reconnaissance, and targeting capabilities.
The aircraft’s designations did not change, though, the only visible external change were the additional IRST fairing under the nose, and the machines received a new tactical camouflage with dark green and dark grey upper surfaces, originally introduced with the RoScAC’s TA-50s. However, all Grìbhean F.1 single seaters received individual fin designs instead of the grey camouflage, comprising simple red and yellow fins, the Scottish flag (instead of the standard fin flash) and even a large pink thistle on a white background and a white unicorn on a black background.
Despite being 2nd hand aircraft, the Scottish JAS 39A and Bs are expected to remain in service until at least 2035.
General characteristics:
Crew: one
Length: 14.1 m (46 ft 3 in)
Wingspan: 8.4 m (27 ft 7 in)
Height: 4.5 m (14 ft 9 in)
Wing area: 30 m2 (320 sq ft)
Empty weight: 6,800 kg (14,991 lb)
Max takeoff weight: 14,000 kg (30,865 lb)
Powerplant:
1× Volvo RM12 afterburning turbofan engine,
54 kN (12,000 lbf) dry thrust, 80.5 kN (18,100 lbf) with afterburner
Performance:
Maximum speed: 2,460 km/h (1,530 mph, 1,330 kn)/Mach 2
Combat range: 800 km (500 mi, 430 nmi)
Ferry range: 3,200 km (2,000 mi, 1,700 nmi)
Service ceiling: 15,240 m (50,000 ft)
g limits: +9/-3
Wing loading: 283 kg/m2 (58 lb/sq ft)
Thrust/weight: 0.97
Takeoff distance: 500 m (1,640 ft)
Landing distance: 600 m (1,969 ft)
Armament:
1× 27 mm Mauser BK-27 revolver cannon with 120 rounds
8 hardpoints (Two under the fuselage, one of them dedicated to FLIR / ECM / LD / Recon pods plus
two under and one on the tip of each wing) with a capacity of 5 300 kg (11 700 lb)
The kit and its assembly:
Nothing spectacular – actually, this build is almost OOB and rather a livery what-if model. However, I had the plan to build a (fictional) Scottish Gripen on my agenda for some years now, since I started to build RoScAC models, and the “Back into service” group build at whatifmodlers.com in late 2019 was a good motivation to tackle this project.
The starting point was the Italeri JAS 39A kit, a rather simple affair that goes together well but needs some PSR on almost every seam. Not much was changed, since the model would depict a slightly updated Gripen A – the only changes I made were the additional IRST fairing under the nose, the ejection handle on the seat and a modified ordnance which consists of a pair of AIM-9L and AIM-120 (the latter including appropriate launch rails) from a Hasegawa air-to-air weapons set. The ventral drop tank is OOB.
Painting and markings:
The motivation a behind was actually the desire to build a Gripen in a different livery than the usual and rather dull grey-in-grey scheme. Therefore I invented a tactical paint scheme for “my” RoScAC, which is a modified RAF scheme from the Seventies with uppers surfaces in Dark Green (Humbrol 163) and Dark Sea Grey (164), medium grey flanks, pylons, drop tank and a (theoretically) grey fin (167 Barley Grey, today better known as Camouflage Grey) plus undersides in Light Aircraft Grey (166), with a relatively high and wavy waterline, so that a side or lower view would rather blend with the sky than the ground below. The scheme was designed as a compromise between air superiority and landscape camouflage and somewhat inspired by the many experimental schemes tested by the German Luftwaffe in the early Eighties. The Scottish TA-50 I built some years ago was the overall benchmark, but due to the Gripen’s highly blended fuselage/wing intersections, I just painted the flanks under the cockpit and the air intakes as well as a short portion of the tail section in Barley Grey. That’s overall darker than intended (esp. in combination with the fin decoration, see below), but anything grey above the wings would have looked awkward.
As a reminiscence of the late British F-4 Phantoms, which carried a grey low-viz scheme with bright fins as quick ID markings, I added such a detail to the Gripen, too – in this case in the form of a stylized Scottish flag on the fin, with some mild 3D effect. The shadow and light effects were created through wet-in-wet painting of lighter and darker shades into the basic blue (using Humbrol 25, 104 and ModelMaster French Blue). Later, the white cross was added with simple decal stripes, onto which similar light effects were added with white and light grey, too.
Even though this one looks similar to my Scottish TA-50, which was the first model to carry this paint scheme, I like the very different look of this Gripen through its non-all-grey paint scheme. It’s also my final build of my initial RoScAC ideas, even though I am now considering a helicopter model (an SAR SA 365 Dauphin, maybe?) in fictional Scottish markings, too.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
The English Electric Lightning was a supersonic jet fighter aircraft of the Cold War era, noted for its great speed. It was the only all-British Mach 2 fighter aircraft and the first aircraft in the world capable of supercruise. The Lightning was renowned for its capabilities as an interceptor; pilots commonly described it as "being saddled to a skyrocket". Following English Electric's integration into the unified British Aircraft Corporation, the aircraft was marketed as the BAC Lightning.
The Lightning was prominently used by the Royal Air Force, but also by Saudi Arabia, Kuwait and Singapore. The first aircraft to enter service with the RAF, three pre-production P.1Bs, arrived at RAF Coltishall in Norfolk on 23 December 1959, and from there the aircraft was permanently developed further.
The F.6 was the ultimate Lightning version to see British service. Originally, it was nearly identical to the former F.3A (which introduced a large ventral tank and new cambered wings), with the exception that it had provisions to carry 260 gal (1,180 l) ferry tanks on pylons over the wings. These tanks were jettisonable in an emergency, and gave the F.6 a substantially improved deployment capability. The Ferranti A.I.23B radar supported autonomous search, automatic target tracking, and ranging for all weapons, while the pilot attack sight provided gyroscopically derived lead angle and backup stadiametric ranging for gun firing. The radar and gunsight were collectively designated the AIRPASS: Airborne Interception Radar and Pilot Attack Sight System. Combined with the Red Top missile, the system offered a limited forward hemisphere attack capability.
There remained one glaring shortcoming of the late Lightning versions, though: the lack of cannon. This was finally rectified in the form of a modified ventral tank with two ADEN cannon mounted in the front. The addition of the cannon and their ammunition decreased the tank's fuel capacity from 610 gal to 535 gal (2,430 l), but the cannon made the F.6 a 'real fighter' again.
Singapore's Lightnings came as a bargain, as they had been taken over directly from RAF stocks. In 1967 No. 74 'Tiger' Squadron was moved to RAF Tengah in Singapore to take over the air defense role from the Gloster Javelin equipped 64 Squadron. When 74 Squadron was disbanded in September 1971, following the withdrawal of British forces from Singapore (in the course of the "East of Suez" campaign, which already started in 1968), Tengah Air Base and many other RAF sites like Seletar, Sembawang and Changi as well as the RAF air defense radar station and Bloodhound II surface-to-air missiles were handed over to the SADC, Singapore’s Air Defense Command, which was suddenly entrusted with a huge responsibility and resources.
Anyway, in order to fulfill its aerial defense role, Singapore's air force lacked a potent interceptor, and so it was agreed with the RAF that 74 Squadron would leave fourteen Lightnings (twelve F.6 fighters and two T.5 trainers behind, while the rest was transferred to Akrotiri, Cyprus, where the RAF aircraft were integrated into 56 Squadron.
The ex-RAF Lightnings, however, immediately formed the small country's quick alert interceptor backbone and were grouped into the newly established 139th Squadron, “Swifts”. The small squadron kept its base at Tengah, as a sister unit to 140th Squadron which operated the Hawker Hunter FGA.74 in the fighter role since 1971.
Singapore's Lightnings differed slightly from the RAF F.6: In order to minimize the maintenance costs of this specialized aircraft, the SADC decided to drop the Red Top missile armament. The Red Top gave all-weather capability, but operating this standalone system for just a dozen of aircraft was deemed cost-inefficient. Keeping the high-performance Lightnings airworthy was already costly and demanding enough.
As a cost-effective measure, all SADC Lightnings were modified to carry four AIM-9B and later E Sidewinder AAMs on special, Y-shaped pylons, not unlike those used on the US Navy's F-8 Crusader. In order to enhance all-weather capability, an AAS-15 IRST sensor was added, located in a fairing in front of the wind shield. Its electronics used the space of the omitted, fuselage-mounted cannons of the F.6 variant.
Long range and loitering time were only of secondary relevance, so that the Singaporean Lightnings typically carried two 30 mm ADEN cannons with 120 RPG in the lower fuselage, which reduced the internal fuel capacity slightly but made the Lightning a true close combat fighter with high agility, speed and rate of climb. Since the RSAF interceptors would only engage in combat after direct visual contact and target identification, the Sidewinders' short range was no operational problem - and because that missile type was also in use with RSAF's Hawker Hunters, this solution was very cost-efficient.
The F.6's ability to carry the overwing ferry tanks (the so-called 'Overburgers') was retained, though, as well as the refueling probe and, and with its modified/updated avionics the RSAF Lightnings received the local designations of F.6S and T.5S. They were exclusively used in the interceptor role and retained their natural metal finish all though their service career.
In 1975, the SADC was eventually renamed into ‘Republic of Singapore Air Force’ (RSAF), and the aircraft received appropriate markings.
The RSAF Lightnings saw an uneventful career. One aircraft was lost due to hydraulic failure in August 1979 (the pilot ejected safely), and when in 1983 RSAF's F-5S fighters took over the duties of airborne interception from the Royal Australian Air Force's Mirage IIIOs detachment stationed at Tengah, all remaining RSAF Lightnings were retired and phased out of service in March 1984 and scrapped. The type's global career did not last much longer: the last RAF Lightnings were retired in 1988 and replaced by the Panavia Tornado ADV.
BAE Lightning F.6S general characteristics
Crew: 1
Length: 55 ft 3 in (16.8 m)
Wingspan: 34 ft 10 in (10.6 m)
Height: 19 ft 7 in (5.97 m)
Wing area: 474.5 ft² (44.08 m²)
Empty weight: 31,068 lb (14.092 kg)
Max. take-off weight: 45,750 lb (20.752 kg)
Powerplant:
2× Rolls-Royce Avon 301R afterburning turbojets with 12,530 lbf (55.74 kN) dry thrust each and 16,000 lbf (71.17 kN) with afterburner
Performance:
Maximum speed: Mach 2.0 (1.300 mph/2.100 km/h) at 36.000 ft.
Range: 850 mi (1.370 km) Supersonic intercept radius: 155 mi (250 km)
Ferry range: 920 mi (800 NM/ 1.660 km) 1,270 mi (1.100 NM/ 2.040 km) with ferry tanks
Service ceiling: 54.000 ft (16.000 m); zoom ceiling >70.000 ft
Rate of climb: 20.000 ft/min (100 m/s)
Wing loading: 76 lb/ft² (370 kg/m²)
Thrust/weight: 0.78
Armament:
2× under-fuselage hardpoints for mounting air-to-air missiles (2 or 4 AIM-9 Sidewinder)
Optional, but typically fitted: 2× 30 mm (1.18 in) ADEN cannons with 120 RPG in the lower fuselage, reducing the ventral tank's fuel capacity from 610 gal to 535 gal (2,430 l)
2× overwing pylon stations for 260 gal ferry tanks
The kit and its assembly
The inspiration to this whiffy Lightning came through fellow user Nick at whatifmodelers.com (credits go to him), who brought up the idea of EE/BAC Lightnings in Singapore use: such a small country would be the ideal user of this fast interceptor with its limited range. I found the idea very convincing and plausible, and since I like the Lightning and its unique design very much, I (too) had to make one for the 2013 group build "Asiarama" - even if a respective model would potentially be built twice. But it's always fun to see how the same theme is interpreted by different modelers, I am looking forward to my creation's sister ship.
The kit is the Matchbox Lightning F.2A/F.6 (PK-114) from 1976, and only little was changed. Fit is O.K., building the model poses no real problems. But the kit needs some putty work at the fuselage seams, and the many raised panel lines (esp. at the belly tank) and other relatively fine and many details for a Matchbox kit make sanding rather hazardous. Nevertheless, it's a solid kit. A bit toy-like, yes, but good value for the relatively little money. What's saved might be well invested into an extra decal sheet (see below).
Internal mods include some added details inside of the cockpit and the landing gear wells, but these were just enhancements to the original parts. The Avons' afterburners were simulated with implanted sprocket wheels from a 1:72 Panzer IV - not intended to be realistic at all, but IMO better than the kit's original, plain end caps!
Externally…
· the flaps were lowered
· some antennae and a finer pitot added
· about a dozen small air intakes/outlets were added (cut from styrene) or drilled open
· the IRST sensor fairing added, sculpted from a simple piece of sprue
· a pair of 30mm barrels mounted in the lower fuselage (hollow steel needles)
· the scratch-built quadruple Sidewinder rails are worth mentioning
The AIM-9E missiles come from the scrap heap, I was lucky to find a matching set of four. The optional overwing fuel tanks were not fitted, as this was supposed to become a "standard RSAF aircraft". I also did not opt for (popular) weapons mounted above the wings, since this would have called for modifications of the F.6 which did not appear worthwhile to me in context with the envisaged RSAF use. Switching to four Sidewinders on the fuselage hardpoints was IMHO enough.
Painting and markings
More effort went into this project part. The end of RAF's 74 Squadron at Tengah and the return of the Lightnings to Europe opened a nice historical window for my whif. Since the Tiger Squadron's aircraft sported a natural metal finish, partly with black fins (accidentally, the Matchbox kit offers just the correct decal/painting option), I decided that the RSAF would keep their aircraft this way: without camouflage, just RSAF markings, with some bold and highly visible colors added.
A SEA scheme (as on the RSAF Hunters, Strikemasters of Skyhawks) would have been another serious option and certainly look weird on a Lightning, as well as a three-tone gray wraparound low-viz scheme as used on the F-5E/S fighters, plausible in the 80ies onwards.
Testors Aluminum Metallizer was used as basic color, but several other shades including Steel and Titanium Metallizer, Testors normal Aluminum enamel paint, Humbrol 11 and 56 as well as Revell Aqua Color Aluminum were used for selected surface portions or panels all around the hull.
The spine including the cockpit frame was painted black. Using RSAF's 140 Squadron's colors as a benchmark, the fin received a checkered decoration in black and red, reminiscent of RAF 56 Squadron Lightnings. This was created through a black, painted base, onto which decals - every red field was cut from a red surface sheet from TL Modellbau - were transferred. Sounds horrible, but it was easier and more exact than expected. A very convenient solution with sharp edges and good contrast. A red trim line, 1mm wide, was added as a decal along the spine in a similar fashion.
The squadron emblem on the Lightning's nose was created through the same scratch method: from colored 1.5mm wide stripes, 3mm pieces were cut and applied one by one to form the checkered bar. The swift emblem comes from a 1:48 sheet for French WWI aircraft, made by Peddinghaus Decals from Germany. The overall look was supposed to be similar to the (real) 140 Squadron badge.
As a consequence, this created a logical problem: where to put the national roundel? Lightnings usually wore them on the nose, but unlike RAF style (where a bar was added around the roundel), I used RSAF Hunters as benchmark.
The RSAF roundels were a challenge. In order not to cramp the nose section too much I decided to place the roundels behind the wings. Not the must prominent position, but plausible. I originally wanted to use decals from the current 1:72 Airfix BAC Strikemaster kit, but they turned out to be too small.
After long search I was happy to find a 1:48 aftermarket decal sheet from Morgan Decals for an A-4S, with full color yin-yang roundels - in Canada! It took three weeks to wait for these parts, though, even though work had to wait for this final but vital detail !
As a side not, AFAIK any RSAF aircraft only carried and carries these roundels on the fuselage sides, not on the wings' upper or lower surfaces? It leaves the model a bit naked, so I decided to add 'RSAF' letters and the tactical code '237' to the wings' upper and lower sides. But the fin is surely bold enough to compensate ;)
The cockpit interior was painted in Medium Sea Gray (Humbrol 27), the landing gear and the wells in a mix of Humbrol 56 and 34, for a light gray with a metallic shimmer.
Other details include the white area behind the cockpit, which contained an AVPIN/isopropyl nitrate tank for the Lightning's start engine. Hazardous stuff - the light color was to prevent excessive heating in the sun, a common detail for Lightnings used in Cyprus. Another piece that took some effort was the shaggy nose cone, which was painted in a mix of Humbrol 56 and 86 and received some serious dry painting in light gray and ochre.
Stencils etc. were taken from an extensive aftermarket sheet for Lightnings from Xtradecal (X72096). The Matchbox decal sheet of PK-114 just offers the ejection seat warning triangles - that's all! The later T.55 kit is much better in this regard, but still far from being complete.
After decal application and to enhance the metallic look, the kit received a careful rubbing with finely grinded graphite, which, as a side effect, also emphasized the raised panel lines. A little dry painting was done around some exhaust openings, but nothing to make the aircraft look really old. This is supposed to be a bright and well-maintained interceptor!
Finally, the kit received a thin coat with glossy acrylic varnish, the spine and fin received a semi-matt coat and the black glare shield in front of the cockpit became matt.
A pretty straightforward build for the Asiarama group build, and with best regards and credits to Nick who came up with the original idea. Most work went into the decals and the NMF finish. I like the bold colors, and despite being flamboyant, they do not make the Lightning look too far out of place?
As a final note: XR773 never ended up in Singapore service, just like any BAC Lightning. In real life, the aircraft (first flight was in February 1966 with Roly Beamont at the controls) was transferred from 74 Squadron at RAF Tengah to Akrotiri in late 1971 and had a pretty long life, further serving with 56, 5 and 11 Squadrons as well as the Lightning Training Flight. And even then it’s life was far from over: XR773 is one of the Lightning survivors; in South Africa it flew in private hands as ZU-BEW until 2010, when it was grounded and the airframe put up to sale.
I am capable of bugging myself to ugly extremes and its time I got what I asked for - blood, gore and a demented smile.
Thanks Sum for being a good sport and taking these pictures, of course after I got a lecture on how much time I waste per day working on my Flickr shots and how I could be doing something more worthwhile *rolls eyes*
Thanks Nemo for stepping in and acting as action packed as your retarded mum. You know you go girl!
My personal favorite is the retard lying dead. I think she totally deserved to die with a smile like that on her face :| No walls and marble were stained with blood in the making of this picture.
“Believe in yourself, for you are capable of amazing things.”
♦️♦️♦️
♦️ [Starries] Sweet Treats Activity Gym // Features cute animations for sitting, playing, or sleeping. //Plays sounds when toys are clicked. // Supports Upsies API – allows parents to sit their baby and access the pose menu.
♦️ [Starries] Pencil Bedroom Set Pastel // Set includes a toddler bed, round table, pencil shelf, toy box, pencil chair, and little desk.
♦️ [Starries] Toddlers Montessori Car Bed // erfectly sized for up to two toddlers with animations for sleep and play. // Six book cover themes to choose from with the option to hide books. // Eight blanket themes + bonus UV/AO maps so you can make your own canopy. // supports Upsies API that allows parents to sit their baby and access the pose menu.
Marines with Marine Attack Squadron (VMA) 311 perform post-flight maintenance checks on McDonnell Douglas (now Boeing) AV-8B "Harrier II's" during Exercise Northern Lightning at Volk Field Counterland Training Center, Camp Douglas, Wis., Aug. 13. Exercise Northern Lightning 2018 allows the Air Force, Marine Corps and Navy to strengthen interoperability between services and gives the different branches a greater understanding of aviation capabilities within a joint fighting force.
From Wikipedia, the free encyclopedia
The McDonnell Douglas (now Boeing) AV-8B Harrier II is a single-engine ground-attack aircraft that constitutes the second generation of the Harrier Jump Jet family. Capable of vertical or short takeoff and landing (V/STOL), the aircraft was designed in the late 1970s as an Anglo-American development of the British Hawker Siddeley Harrier, the first operational V/STOL aircraft. The aircraft is primarily employed on light attack or multi-role missions, ranging from close air support of ground troops to armed reconnaissance. The AV-8B is used by the United States Marine Corps (USMC), the Spanish Navy, and the Italian Navy. A variant of the AV-8B, the British Aerospace Harrier II, was developed for the British military, while another, the TAV-8B, is a dedicated two-seat trainer.
The project that eventually led to the AV-8Bs creation started in the early 1970s as a cooperative effort between the United States and United Kingdom (UK), aimed at addressing the operational inadequacies of the first-generation Harrier. Early efforts centered on a larger, more powerful Pegasus engine to dramatically improve the capabilities of the Harrier. Due to budgetary constraints, the UK abandoned the project in 1975.
Following the withdrawal of the UK, McDonnell Douglas extensively redesigned the earlier AV-8A Harrier to create the AV-8B. While retaining the general layout of its predecessor, the aircraft incorporates a new wing, an elevated cockpit, a redesigned fuselage, one extra hardpoint per wing, and other structural and aerodynamic refinements. The aircraft is powered by an upgraded version of the Pegasus, which gives the aircraft its V/STOL ability. The AV-8B made its maiden flight in November 1981 and entered service with the USMC in January 1985. Later upgrades added a night-attack capability and radar, resulting in the AV-8B(NA) and AV-8B Harrier II Plus, respectively. An enlarged version named Harrier III was also studied, but not pursued. The UK, through British Aerospace, re-joined the improved Harrier project as a partner in 1981, giving it a significant work-share in the project. After corporate mergers in the 1990s, Boeing and BAE Systems have jointly supported the program. Approximately 340 aircraft were produced in a 22-year production program that ended in 2003.
Typically operated from small aircraft carriers, large amphibious assault ships and simple forward operating bases, AV-8Bs have participated in numerous military and humanitarian operations, proving themselves versatile assets. U.S. Army General Norman Schwarzkopf named the USMC Harrier II as one of several important weapons in the Gulf War. The aircraft took part in combat during the Iraq War beginning in 2003. The Harrier II has served in Operation Enduring Freedom in Afghanistan since 2001, and was used in Operation Odyssey Dawn in Libya in 2011. Italian and Spanish Harrier IIs have taken part in overseas conflicts in conjunction with NATO coalitions. During its service history, the AV-8B has had a high accident rate, related to the percentage of time spent in critical take-off and landing phases. USMC and Italian Navy AV-8Bs are to be replaced by the Lockheed Martin F-35B Lightning II, with the former expected to operate its Harriers until 2025.
Development
Origins
In the late 1960s and early 1970s, the first-generation Harriers entered service with the Royal Air Force (RAF) and United States Marine Corps (USMC), but were handicapped in range and payload. In short takeoff and landing configuration, the AV-8A (American designation for the Harrier) carried less than half the 4,000 lb (1,800 kg) payload of the smaller Douglas A-4 Skyhawk, over a more limited radius. To address this issue, Hawker Siddeley and McDonnell Douglas began joint development of a more capable version of the Harrier in 1973. Early efforts concentrated on an improved Pegasus engine, designated the Pegasus 15, which was being tested by Bristol Siddeley. Although more powerful, the engine's diameter was too large by 2.75 in (70 mm) to fit into the Harrier easily.
In December 1973, a joint American and British team completed a project document defining an Advanced Harrier powered by the Pegasus 15 engine. The Advanced Harrier was intended to replace the original RAF and USMC Harriers, as well as the USMC's A-4. The aim of the Advanced Harrier was to double the AV-8's payload and range, and was therefore unofficially named AV-16. The British government pulled out of the project in March 1975 owing to decreased defense funding, rising costs, and the RAF's insufficient 60-aircraft requirement. With development costs estimated to be around £180–200 million (1974 British pounds), the United States was unwilling to fund development by itself, and ended the project later that year.
Despite the project's termination, the two companies continued to take different paths toward an enhanced Harrier. Hawker Siddeley focused on a new larger wing that could be retrofitted to existing operational aircraft, while McDonnell Douglas independently pursued a less ambitious, though still expensive, project catering to the needs of the US military. Using knowledge gleaned from the AV-16 effort, though dropping some items—such as the larger Pegasus engine—McDonnell Douglas kept the basic structure and engine for an aircraft tailored for the USMC.
Designing and testing
As the USMC wanted a substantially improved Harrier without the development of a new engine, the plan for Harrier II development was authorized by the United States Department of Defense (DoD) in 1976. The United States Navy (USN), which had traditionally procured military aircraft for the USMC, insisted that the new design be verified with flight testing. McDonnell Douglas modified two AV-8As with new wings, revised intakes, redesigned exhaust nozzles, and other aerodynamic changes; the modified forward fuselage and cockpit found on all subsequent aircraft were not incorporated on these prototypes. Designated YAV-8B, the first converted aircraft flew on 9 November 1978, at the hands of Charles Plummer. The aircraft performed three vertical take-offs and hovered for seven minutes at Lambert–St. Louis International Airport. The second aircraft followed on 19 February 1979, but crashed that November due to engine flameout; the pilot ejected safely. Flight testing of these modified AV-8s continued into 1979. The results showed greater than expected drag, hampering the aircraft's maximum speed. Further refinements to the aerodynamic profile yielded little improvement. Positive test results in other areas, including payload, range, and V/STOL performance, led to the award of a development contract in 1979. The contract stipulated a procurement of 12 aircraft initially, followed by a further 324.
Between 1978 and 1980, the DoD and USN repeatedly attempted to terminate the AV-8B program. There had previously been conflict between the USMC and USN over budgetary issues. At the time, the USN wanted to procure A-18s for its ground attack force and, to cut costs, pressured the USMC to adopt the similarly-designed F-18 fighter instead of the AV-8B to fulfill the role of close air support (both designs were eventually amalgamated to create the multirole F/A-18 Hornet). Despite these bureaucratic obstacles, in 1981, the DoD included the Harrier II in its annual budget and five-year defense plan. The USN declined to participate in the procurement, citing the limited range and payload compared with conventional aircraft.
In August 1981 the program received a boost when British Aerospace (BAe) and McDonnell Douglas signed a memorandum of understanding (MoU), marking the UK's re-entry into the program. The British government was enticed by the lower cost of acquiring Harriers promised by a large production run, and the fact that the US was shouldering the expense of development. Under the agreement BAe was relegated to the position of a subcontractor, instead of the full partner status that would have been the case had the UK not left the program. Consequently, the company received, in man-hours, 40 percent of the airframe work-share. Aircraft production took place at McDonnell Douglas' facilities in suburban St. Louis, Missouri, and manufacturing by BAe at its Kingston and Dunsfold facilities in Surrey, England. Meanwhile, 75 percent work-share for the engine went to Rolls-Royce, which had previously absorbed Bristol Siddeley, with the remaining 25 percent assigned to Pratt & Whitney. The two companies planned to manufacture 400 Harrier IIs, with the USMC expected to procure 336 aircraft and the RAF, 60.
Four full-scale development (FSD) aircraft were constructed. The first of these (BuNo 161396), used mainly for testing performance and handling qualities, made its maiden flight on 5 November 1981, piloted by Plummer. The second and third FSD aircraft, which introduced wing leading-edge root extensions and revised engine intakes, first flew in April the following year; the fourth followed in January 1984. The first production AV-8B was delivered to the Marine Attack Training Squadron 203 (VMAT-203) at Marine Corps Air Station Cherry Point (MCAS Cherry Point) on 12 December 1983, and officially handed over one month later. The last of the initial batch of 12 was delivered in January 1985 to the front-line Marine Attack Squadron 331 (VMA-331). The engine used for these aircraft was the F402-RR-404A, with 21,450 lb (95.4 kN) of thrust; aircraft from 1990 onwards received upgraded engines.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The North American FJ-4 Fury was a swept-wing carrier-capable fighter-bomber, originally developed for the United States Navy and Marine Corps. It was the final development in a lineage that included the Air Force's F-86 Sabre. The FJ-4 shared its general layout and engine with the earlier FJ-3, but featured an entirely new wing design. And it was, as a kind of final embodiment with the FJ-4B, a very different aircraft from the F-86 .
The first FJ-4 flew on 28 October 1954 and delivery began in February 1955. Of the original order for 221 FJ-4 fighters, the last 71 were modified into the FJ-4B fighter-bomber version, of which the Netherlands received 16 aircraft under the designation FJ-4B from the USA in the course of NATO support. Even though the main roles of the MLD were maritime patrol, anti-submarine warfare and search and rescue, the FJ-4B was a dedicated fighter-bomber, and these aircraft were to be used with the Dutch Navy’s Colossus-Class carrier HNLMS Karel Doorman (R81).
Compared to the lighter FJ-4 interceptor, the FJ-4B had a stronger wing with six instead of four underwing stations, a stronger landing gear and additional aerodynamic brakes under the aft fuselage. The latter made landing safer by allowing pilots to use higher thrust settings, and were also useful for dive attacks. Compared to the FJ-4, external load was doubled, and the US FJ-4Bs were capable of carrying a nuclear weapon on the inboard port station, a feature the MLD Furies lacked. The MLD aircraft were still equipped with the corresponding LABS or Low-Altitude Bombing System for accurate delivery of ordnance.
The Dutch Furies were primarily intended for anti-ship missions (toting up to five of the newly developed ASM-N-7 missiles - renamed in AGM-12B Bullpup after 1962 - plus a guidance pod) and CAS duties against coastal targets, as well as for precision strikes. In a secondary role, the FJ-4B could carry Sidewinder AAMs for interception purposes.
The MLD's FJ-4B became operational in 1956, just in time to enhance the firepower of the Karel Doorman, which just had its 24 WW-II era propeller driven Fairey Firefly strike fighters and Hawker Sea Fury fighter/anti-ship aircraft backed up with 14 TBF Avenger ASW/torpedo bombers and 10 Hawker Sea Hawk fighters (the MLD owned 22 of these) for an ASW/Strike profile. The Furies joined the carrier in late 1957 and replaced the piston-engined attack aircraft.
In 1960, during the Dutch decolonization and planned independence of Western New Guinea, a territory which was also claimed by Indonesia, the Karel Doorman set sail along with two destroyers and a modified oil tanker to 'show the flag'. In order to avoid possible problems with Indonesia's ally Egypt at the Suez Canal, the carrier instead sailed around the horn of Africa. She arrived in Fremantle, Australia, where the local seamen's union struck in sympathy with Indonesia; the crew used the propeller thrust of aircraft chained down on deck to nudge the carrier into dock without tugs! In addition to her air wing, she was ferrying twelve Hawker Hunter fighters to bolster the local Dutch defense forces, which the Karel Doorman delivered when she arrived at Hollandia, New Guinea.
During the 1960 crisis, Indonesia prepared for a military action named Operation Trikora (in the Indonesian language, "Tri Komando Rakyat" means "The Three Commands of the People"). In addition to planning for an invasion, the TNI-AU (Indonesian Air Forces) hoped to sink the Karel Doorman with Soviet-supplied Tupolev Tu-16KS-1 Badger naval bombers using AS-1 Kennel/KS-1 Kometa anti-ship missiles. This bomber-launched missile strike mission was cancelled on short notice, though, because of the implementation of the cease-fire between Indonesia and the Netherlands. This led to a Dutch withdrawal and temporary UN peacekeeping administration, followed by occupation and annexation through Indonesia. While the Dutch aircraft served actively during this conflict, flying patrols and demonstrating presence, visibly armed and in alert condition, no 'hot' sortie or casualty occured, even though one aircraft, 10-18, was lost in a start accident. The pilot ejected safely.
The MLD FJ-4Bs only served on the carrier until its overhaul in 1964, after which the carrier-borne attack role was eliminated and all aircraft were transferred to land bases (Valkenburg) or in reserve storage. The Seahawks were retired from service by the end of the 1960s after the sale of the Karel Doorman to Argentina, and the FJ-4Bs were returned to the United States, where they were re-integrated into the USMC until the end of the 1960ies, when all FJ-4 aircraft were phased out.
General characteristics:
Crew: 1
Length: 36 ft 4 in (11.1 m)
Wingspan: 39 ft 1 in (11.9 m)
Height: 13 ft 11 in (4.2 m)
Wing area: 338.66 ft² (31.46 m²)
Empty weight: 13,210 lb (6,000 kg)
Loaded weight: 20,130 lb (9,200 kg)
Max. take-off weight: 23,700 lb (10,750 kg)
Powerplant: 1 × Wright J65-W-16A turbojet, 7,700 lbf (34 kN)
Performance:
Maximum speed: 680 mph (1,090 km/h) at 35,000 ft (10,670 m)
Range: 2,020 mi (3,250 km) with 2× 200 gal (760 l) drop tanks and 2× AIM-9 missiles
Service ceiling: 46,800 ft (14,300 m)
Rate of climb: 7,660 ft/min (38.9 m/s)
Wing loading: 69.9 lb/ft² (341.7 kg/m²)
Thrust/weight: .325
Armament:
4× 20 mm (0.787 in) cannon
6× pylons under the wings for 3,000 lb (1,400 kg) external ordnance, including up to 6× AIM-9 Sidewinder AAMs, bombs and guided/unguided ASM, e .g. ASM-N-7 (AGM-12B Bullpup) missiles.
The kit and its assembly
Originally, this model project was inspired by a (whiffy) Dutch F3H Demon profile, designed by fellow user Darth Panda at whatifmodelers.com. I found the idea of a foreign/NATO user of one of these early carrier-borne jet fighters very inspiring – not only because of the strange design of many of these aircraft, but also since the USN and USMC had been the only real world users of many of these types.
Initially, I planned to convert a F3H accordingly. But with limited storage/display space at home I decided to apply the MLD idea to another smaller, but maybe even more exotic, type: the North American FJ-4B Fury, which was in 1962 recoded into AF-1E.
I like the beefy Sabre cousin very much. It’s one of those aircraft that received little attention, even from model kit manufacturers. In fact, in 1:72 scale there are only vintage vacu kits or the very basic Emhar kit available. Th Emhar kit, which I used here and which is a kind donation of a fellow modeler (Thanks a lot, André!), a rather rough thing with raised panel lines and much room for improvements. As a side note, there's also a FJ-4B from Revell, but it's just a 1996 re-issue with no improvements, whatsoever.
Another facet of the model: When I did legwork concerning a possible background story, I was surprised to find out that the Netherlands actually operated aircraft carriers in the 1950s, including carrier-borne, fixed-wing aircraft, even jets in the form of Hawker Sea Hawks. The real life FJ-4Bs service introduction, the naissance of NATO and the Indonesian conflict as well as the corresponding intervention of the Karel Doorman carrier all fell into a very plausible time frame – and so there’s a very good and plausible story why the MLD could actually have used the Fury fighter bomber!
The Emhar kit was not modified structurally, but saw some changes in detail. These include a scratch-built cockpit with side walls, side consoles and a new ejection seat, plus a Matchbox pilot figure, a new front wheel (from a Kangnam Yak-38, I believe), plus a lot of added blade aerials and a finer pitot.
The flaps were lowered, for a more lively look- Another new feature is the opened air intake, which features a central splitter - in fact a vertically placed piece of a Vicker Wellesley bomb container from Matchbox. At the rear end, the exhaust pipe was opened and lengthened internally.
The six weapon hardpoints were taken from the original kit, but I did not use the four Sidewinder AAMs and the rather bulky drop tanks. So, all ordnance is new: the Bullpups come from the Hasegawa air-to-ground missile set, the drop tanks are leftover pieces from a Hobby Boss F-86. They are much more 'delicate', and make the Fury look less stout and cumbersome. The guidance pod for the Bullpups (a typical FJ-4B feature with these weapons) is a WWII drop tank, shaped with the help of benchmark pictures. Certainly not perfect, but, hey - it's just a MODEL!
Painting and markings
I used mid-1950ies MLD Sea Furys and Sea Hawks as a design benchmark, but this Fury is placed just into the time frame around 1960 when the MLD introduced a new 3-digit code system. Before that, a code "6-XX" with the XX somewhere in the 70 region would have been appropriate, and I actually painted the fuselage sides a bit darker so as if the old code had recently been painted over.
Dutch MLD aircraft tended to keep their former users’ liveries, but in the FJ-4B’s case I thought that a light grey and white aircraft (USN style) with Dutch roundels would look a bit odd. So I settled for early NATO style with Extra Dark Sea Grey upper sides (Humbrol 123) and Sky from below (Testors 2049 from their Authentic Line).
I also went for an early design style with a low waterline - early Hawker Sea Furies were painted this way, and a high waterline would probably be more typical. But in the face of potential seriosu action, who knows...? Things tend to be toned down quickly, just remember the RN Harriers during the Falkland conflict. I'll admit that the aircraft looks a bit simple and dull now, but this IMHO just adds to the plausible look of this whif. I prefer such subtleties to garish designs.
The surfaces were weathered with dry-brushed lighter shades of the basic tones (mostly Humbrol 79, but also some 140 and 67, and Humbrol 90 and 166 below), including overpainted old codes in a slightly darker tone of EDSG, done with Revell 77. A light wash with black ink emphasizes edges and some details - the machine was not to look worn.
The interior was painted in medium grey (Humbrol 140), the landing gear is white (Humbrol 130), and some details like the air intake rim, the edges of the landing gear covers, the flaps or the tips of the wing fences were painted in bright red (Humbrol 174), for some contrast to the overall grey upper sides.
The MLD markings were puzzled together. The roundels come from an Xtradecal sheet for various Hawker Sea Furies, the '202' code comes, among others, from a Grumman Bearcat aftermarket sheet. The 'KON. MARINE' line is hand-made, letter by letter, from a TL Modellbau aftremarket sheet.
Most stencils and warning sign decals come from the original decal sheet, as well as from a FJ-4 Xtradecal aftermarket sheet, from F-86 kits and the scrap box. I wanted these details to provide the color to the aircraft, so that it would not look too uniform, but still without flashy decorations and like a rather utilarian military item.
finally, the model received a coat of semi-matt varnish (Tamiya Acryllic), since MLD aircraft had a pretty glossy finish. No dirt or soot stains were added - the Dutch kept their (few) shipborne aircraft very clean and tidy!
So, all in all, a simple looking aircraft, but this Dutch Fury has IMHO a certain, subtle charm - probably also because it is a rather rare and unpopular aircraft, which in itself has a certain whiffy aura.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The Saab JAS 39 Gripen (griffin) is a light single-engine multirole fighter aircraft manufactured by the Swedish aerospace company Saab. In 1979, the Swedish government began development studies for an aircraft capable of fighter, attack and reconnaissance missions to replace the Saab 35 Draken and 37 Viggen. The preferred aircraft was a single-engine, lightweight single-seater, embracing fly-by-wire technology, canards, and an aerodynamically unstable design. The powerplant selected was the Volvo-Flygmotor RM12, a license-built derivative of the General Electric F404−400; engine development priorities were weight reduction and lowering component count. A new design from Saab was selected and developed as the JAS 39, first flying in 1988.
The Gripen is a multirole fighter aircraft, intended as a lightweight and agile aerial platform with advanced, highly adaptable avionics. It has canard control surfaces that contribute a positive lift force at all speeds, while the generous lift from the delta wing compensates for the rear stabilizer producing negative lift at high speeds, increasing induced drag. It is capable of flying at a 70–80 degrees angle of attack.
Being intentionally unstable and employing digital fly-by-wire flight controls to maintain stability removes many flight restrictions, improves manoeuvrability and reduces drag. The Gripen also has good short takeoff performance, being able to maintain a high sink rate and strengthened to withstand the stresses of short landings. A pair of air brakes are located on the sides of the rear fuselage; the canards also angle downward to act as air brakes and decrease landing distance
To enable the Gripen to have a long service life, roughly 50 years, Saab designed it to have low maintenance requirements. Major systems such as the RM12 engine and PS-05/A radar are modular to reduce operating cost and increase reliability. The Gripen’s systems were designed to be flexible, so that newly developed sensors, computers and armaments could be easily integrated as technology advances. The aircraft was estimated to be roughly 67% sourced from Swedish or European suppliers and 33% from the US.
To market the aircraft internationally, Saab formed partnerships and collaborative efforts with overseas aerospace companies. One example of such efforts was Gripen International, a joint partnership between Saab and BAE Systems formed in 2001. Gripen International was responsible for marketing the aircraft, and was heavily involved in the successful export of the type to South Africa; the organisation was later dissolved amidst allegations of bribery being employed to secure foreign interest and sales. On the export market, the Gripen has achieved moderate success in sales to nations in Central Europe, South Africa and Southeast Asia.
The Swedish Air Force placed a total order for 204 Gripens in three batches. The first delivery of the JAS 39A/B (single seat and two seat variants) occurred on 8 June 1993, when aircraft “39102” was handed over to the Flygvapnet during a ceremony at Linköping. The final Batch three 1st generation aircraft was delivered to FMV on 26 November 2008, but in the meantime an upgraded Gripen variant, the JAS 39C/D already rolled off of the production lines and made the initial versions obsolete. The JAS C/D gradually replaced the A/B versions in the frontline units until 2012, which were then offered for export, mothballed or used for spares for the updated Swedish Gripen fleet.
A late European export customer became the nascent Republic of Scotland. According to a White Paper published by the Scottish National Party (SNP) in 2013, an independent Scotland would have an air force equipped with up to 16 air defense aircraft, six tactical transports, utility rotorcraft and maritime patrol aircraft, and be capable of “contributing excellent conventional capabilities” to NATO. Outlining its ambition to establish an air force with an eventual 2,000 uniformed personnel and 300 reservists, the SNP stated that the organization would initially be equipped with “a minimum of 12 interceptors in the Eurofighter/Typhoon class, based at Lossiemouth, a tactical air transport squadron, including around six Lockheed Martin C-130J Hercules, and a helicopter squadron for transport and SAR duties”.
According to the document, “Key elements of air forces in place at independence, equipped initially from a negotiated share of current UK assets, will secure core tasks, principally the ability to police Scotland’s airspace, within NATO.” An in-country air command and control capability would be established within five years of a decision in favor of independence, it continued, with staff also to be “embedded within NATO structures”.
This plan was immediately set into action with the foundation of the Poblachd na h-Alba Adhair an Airm (Republic of Scotland Air Corps/RoScAC) after the country's independence from Great Britain in late 2017. For the fighter role, Scotland was offered refurbished F-16C and Ds from the USA, but this was declined, as the type was considered too costly and complex. An offer from Austria to buy the country’s small Eurofighter fleet (even at a symbolic price) was rejected for the same reason.
Eventually, and in order to build a certain aura of neutrality, Scotland’s young and small air arm initially received twelve refurbished, NATO-compatible Saab JAS 39 Gripen (ten single-seater and two two-seaters) as well as Sk 90 trainers from Swedish overstock. These second hand machines were just the initial step in the mid-term procurement plan, though.
Even though all Scottish Gripens (locally called “Grìbhean”, designated F.1 for the JAS 39A single seaters and F.2 for the fully combat-capable JAS 39B two-seaters, respectively) were multi-role aircraft and capable of strike missions, its primary roles were interception/air defense and, to a lesser degree, reconnaissance. Due to severe budget restrictions and time pressure, these aircraft were almost identical to the Flygvapnet’s JAS 39A/B aircraft. They used the PS-05/A pulse-Doppler X band multi-mode radar, developed by Ericsson and GEC-Marconi, which was based on the latter's advanced Blue Vixen radar for the Sea Harrier that also served as the basis for the Eurofighter's CAPTOR radar. This all-weather radar is capable of locating and identifying targets 120 km (74 mi) away and automatically tracking multiple targets in the upper and lower spheres, on the ground and sea or in the air. It can guide several beyond visual range air-to-air missiles to multiple targets simultaneously. Therefore, RoScAC also procured AIM-9 Sidewinder and AIM-120 AMRAAM as primary armament for its Grìbhean fleet, plus AGM-65 Maverick air-to-ground missiles.
The twelve Grìbhean F.1 and F.2s formed the RoScAC’s 1st fighter (Sabaid) squadron, based at former RAF base Lossiemouth. Upon delivery and during their first months of service, the machines retained the former Swedish grey paint scheme, just with new tactical markings. In 2018, the RoScAC fighter fleet was supplemented with brand new KAI/Lockheed Martin TA-50 ‘Golden Eagle’ armed trainers from South Korea, which could also take over interceptor and air patrol duties. This expansion of resources allowed the RoScAC to initiate an update program for the JAS 39 fleet. It started in 2019 and included in-flight refueling through a fixed but detachable probe, a EuroFIRST PIRATE IRST, enhanced avionics with elements from the Swedish JAS 39C/D, and a tactical datalink.
With these updates, the machines could now also be externally fitted with Rafael's Sky Shield or LIG Nex1's ALQ-200K ECM pods, Sniper or LITENING targeting pods, and Condor 2 reconnaissance pods to further improve the machine’s electronic warfare, reconnaissance, and targeting capabilities.
The aircraft’s designations did not change, though, the only visible external change were the additional IRST fairing under the nose, and the machines received a new tactical camouflage with dark green and dark grey upper surfaces, originally introduced with the RoScAC’s TA-50s. However, all Grìbhean F.1 single seaters received individual fin designs instead of the grey camouflage, comprising simple red and yellow fins, the Scottish flag (instead of the standard fin flash) and even a large pink thistle on a white background and a white unicorn on a black background.
Despite being 2nd hand aircraft, the Scottish JAS 39A and Bs are expected to remain in service until at least 2035.
General characteristics:
Crew: one
Length: 14.1 m (46 ft 3 in)
Wingspan: 8.4 m (27 ft 7 in)
Height: 4.5 m (14 ft 9 in)
Wing area: 30 m2 (320 sq ft)
Empty weight: 6,800 kg (14,991 lb)
Max takeoff weight: 14,000 kg (30,865 lb)
Powerplant:
1× Volvo RM12 afterburning turbofan engine,
54 kN (12,000 lbf) dry thrust, 80.5 kN (18,100 lbf) with afterburner
Performance:
Maximum speed: 2,460 km/h (1,530 mph, 1,330 kn)/Mach 2
Combat range: 800 km (500 mi, 430 nmi)
Ferry range: 3,200 km (2,000 mi, 1,700 nmi)
Service ceiling: 15,240 m (50,000 ft)
g limits: +9/-3
Wing loading: 283 kg/m2 (58 lb/sq ft)
Thrust/weight: 0.97
Takeoff distance: 500 m (1,640 ft)
Landing distance: 600 m (1,969 ft)
Armament:
1× 27 mm Mauser BK-27 revolver cannon with 120 rounds
8 hardpoints (Two under the fuselage, one of them dedicated to FLIR / ECM / LD / Recon pods plus
two under and one on the tip of each wing) with a capacity of 5 300 kg (11 700 lb)
The kit and its assembly:
Nothing spectacular – actually, this build is almost OOB and rather a livery what-if model. However, I had the plan to build a (fictional) Scottish Gripen on my agenda for some years now, since I started to build RoScAC models, and the “Back into service” group build at whatifmodlers.com in late 2019 was a good motivation to tackle this project.
The starting point was the Italeri JAS 39A kit, a rather simple affair that goes together well but needs some PSR on almost every seam. Not much was changed, since the model would depict a slightly updated Gripen A – the only changes I made were the additional IRST fairing under the nose, the ejection handle on the seat and a modified ordnance which consists of a pair of AIM-9L and AIM-120 (the latter including appropriate launch rails) from a Hasegawa air-to-air weapons set. The ventral drop tank is OOB.
Painting and markings:
The motivation a behind was actually the desire to build a Gripen in a different livery than the usual and rather dull grey-in-grey scheme. Therefore I invented a tactical paint scheme for “my” RoScAC, which is a modified RAF scheme from the Seventies with uppers surfaces in Dark Green (Humbrol 163) and Dark Sea Grey (164), medium grey flanks, pylons, drop tank and a (theoretically) grey fin (167 Barley Grey, today better known as Camouflage Grey) plus undersides in Light Aircraft Grey (166), with a relatively high and wavy waterline, so that a side or lower view would rather blend with the sky than the ground below. The scheme was designed as a compromise between air superiority and landscape camouflage and somewhat inspired by the many experimental schemes tested by the German Luftwaffe in the early Eighties. The Scottish TA-50 I built some years ago was the overall benchmark, but due to the Gripen’s highly blended fuselage/wing intersections, I just painted the flanks under the cockpit and the air intakes as well as a short portion of the tail section in Barley Grey. That’s overall darker than intended (esp. in combination with the fin decoration, see below), but anything grey above the wings would have looked awkward.
As a reminiscence of the late British F-4 Phantoms, which carried a grey low-viz scheme with bright fins as quick ID markings, I added such a detail to the Gripen, too – in this case in the form of a stylized Scottish flag on the fin, with some mild 3D effect. The shadow and light effects were created through wet-in-wet painting of lighter and darker shades into the basic blue (using Humbrol 25, 104 and ModelMaster French Blue). Later, the white cross was added with simple decal stripes, onto which similar light effects were added with white and light grey, too.
Even though this one looks similar to my Scottish TA-50, which was the first model to carry this paint scheme, I like the very different look of this Gripen through its non-all-grey paint scheme. It’s also my final build of my initial RoScAC ideas, even though I am now considering a helicopter model (an SAR SA 365 Dauphin, maybe?) in fictional Scottish markings, too.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The McDonnell Douglas (now Boeing) T-45 Goshawk was a highly modified version of the BAe Hawk land-based training jet aircraft. Manufactured by McDonnell Douglas (now Boeing) and British Aerospace (now BAe Systems), the T-45 was used by the United States Navy and the United States Marine Corps (USMC) as an aircraft carrier-capable trainer.
The Goshawk's origins began in the mid-1970s, when the US Navy began looking for a single aircraft replacement for both its T-2 and TA-4 jet trainers. The US Navy started the VTXTS advanced trainer program in 1978. Several companies made submissions, e. g. North American or Northrop/Vought. Due to the size of the potential contract, European companies made submissions, too, including a navalized Alpha Jet from Dassault/Dornier and a fully carrier-capable version of the BAe Hawk Mk.60, mutually proposed by British Aerospace (BAe) and McDonnell Douglas (MDC). The latter eventually won the competition and BAe and MDC were awarded the T-45 contract in 1981.
The Hawk had not been designed for carrier operations and numerous modifications were required to make it suitable for use on carriers. These included improvements to the low-speed handling characteristics and a reduction in the approach speed. It was found that the aircraft was apt to stall at the low approach speed required. Modifications were designed by BAe in England; most notably a simple slat system was devised, operated by an actuator and linkage mechanism to fit into the small space available. Strakes were also added on the fuselage to improve airflow. Other changes were a strengthened airframe, a more robust and wider landing gear with a two-wheel nose landing gear, a catapult tow bar attachment and an arresting hook. The modified aircraft was christened “Goshawk”, flew in 1988 for the first time and became operational in 1991.
Beyond being a naval trainer the T-45 was also adapted for first-line duty with strike capabilities, in the form of the OA-45 for the USMC. The role of this aircraft dated back to the Vietnam War when twenty-three A-4 two-seaters were converted into OA-4Ms for “FastFAC” (Fast Forward Air Controller) missions, in order to control interdiction sorties dedicated to shaping the battlefield for future operations. Basically, the OA-4M was a TA-4F equipped with A-4M electronics. The most visible and characteristic change was the fitting of the A-4M’s dorsal electronics hump, neatly faired into the rear of the two-seat canopy. The nose sensor group of the OA-4M was basically the same as that of the A-4M, but the Angle/Rate Bombing system was not installed as it would not be needed.
When the T-45 was introduced in the early Nineties, the USMCs OA-4Ms had reached the end of their service life and the USMC started looking for a replacement, wanting a comparable, light and fast fixed-wing aircraft. The USMC did not accept the LTV A-7 as an A-4 replacement (even though a two-seater version was available), because it was already dated, too, and not part of the USMC inventory. The USMC's A-4Ms were supposed to be replaced by the VTOL AV-8 by the mid-nineties, but the AV-8, even as a two-seater, was deemed unsuitable for FFAC duties. The new T-45 looked like a good and economical alternative with future potential, since the airframe was brand new and the type's infrastructure was fully established, so that a small number of specialized aircraft could easily be supported without much extra cost.
With fresh experience from the 1st Gulf War in 1990-91 the decision was made to buy 25 extra T-45A airframes and convert them to OA-45A standard. Most important change were modified wings, using structures and systems from the BAe Hawk 100 series. While the T-45 only had two underwing and a single ventral hardpoint, the OA-45A featured a total of seven: four underwing and one ventral hardpoints, plus wingtip stations for defensive air-to-air missiles. Upgraded avionics allowed the deployment of a wide range of external stores, including air-to-ground missiles and rocket launchers, a reconnaissance pod, retarded and free-fall bombs of up to 1,000 pounds (450 kg) caliber, runway cratering, anti-personnel and light armor bombs, cluster bombs, practice bombs as well as external fuel tanks and ECM pods. This was a vital asset, since Desert Storm had proved that FFAC aircraft had to have an offensive capability to handle targets of opportunity on their own, when no air assets to control were available. A total ordnance load of up to 6,800 lb (3,085 kg) was possible, even though the aircraft was not supposed to play an offensive role and rather act from a distance, relying on its small size and agility.
Communication modifications for the FastFAC role included a KY-28 secure voice system, an ARC-159 radio and an ARC-114 VHF radio. Similar to the Skyhawk, a hump behind the cockpit had to be added to make room for the additional electronic equipment and a heat exchanger. Other additions were a continuous-wave Doppler navigation radar under a shallow ventral radome underneath the cockpit, a ground control bombing system, an APN-194 altimeter, an ALR-45 radar warning suite, a retrofitted, fixed midair refueling probe and cockpit armor plating that included Kevlar linings on the floor and the lower side walls as well as externally mounted armor plates for the upper areas.
VMA-131 of Marine Aircraft Group 49 (the Diamondbacks) retired its last four OA-4Ms on 22 June 1994, and the new OA-45A arrived just in time to replace the venerable Skyhawk two-seaters in the FastFAC role. Trainer versions of the Skyhawk remained in Navy service, however, finding a new lease on life with the advent of "adversary training". OA-45A deliveries were finished in 1996 and the 25 aircraft were distributed among the newly established Marine Aviation Logistics Squadron (MALS, formerly Headquarters & Maintenance Squadron/H&MS) 12 & 13. The USMC crews soon nicknamed their new mounts "GosHog", to underlöine ist offensive capabilities and to set themselves apart from the USN's "tame" trainers. Even though thos name was never officially approved it caught on quickly.
After initial experience with the new aircraft and in the wake of technological advances, the USMC decided to upgrade the OA-45As in 2000 to improve its effectiveness and interaction capabilities with ground troops. This primarily resulted in the addition of a forward-looking infrared camera laser in the aircraft’s nose section, which enabled the aircraft to execute all-weather/night reconnaissance and to illuminate targets for laser-guided infantry shells or ordnance launched by the OA-45 itself or by other aircraft. Through this measure the OA-45 became capable of carrying and independently deploying light laser-guided smart weapons like the GBU-12 and -16 “Paveway II” glide bombs or the laser-guided AGM-65E “Maverick” variant. The update was gradually executed during regular overhauls in the course of 2001 and 2002 (no new airframes were built/converted), the modified machines received the new designation OA-45B.
After this update phase, the OA-45Bs were deployed in several global conflicts and saw frequent use in the following years. For instance, MALS 13 used its OA-45Bs operationally for the first time in October 2002 when the squadron was tasked with providing support to six AV-8B Harrier aircraft in combat operations in Afghanistan during Operation Enduring Freedom. This mission lasted until October 2003, four aircraft were allocated and one OA-45B was lost during a landing accident.
On 15 January 2003, MALS 13 embarked 205 Marines and equipment aboard the USS Bonhomme Richard in support of combat operations in Southwest Asia during Operation Southern Watch. Four OA-45Bs successfully supported these troops from land bases, marking targets and flying reconnaissance missions.
Furthermore, six MALS 13 OA-45Bs took actively part in Operation Iraqi Freedom from Al Jaber Air Base, Kuwait, and An Numiniyah Expeditionary Air Field, Iraq, where the aircraft worked closely together with the advancing ground troops of the USMC’s 15th Marine Expeditionary Unit. They successfully illuminated targets for US Navy fighter bombers, which were launched from USS Abraham Lincoln (CVN-72) in the Persian Gulf, and effectively guided these aircraft to their targets. Two OA-45Bs were lost during this conflict, one through enemy MANPADS, the other through friendly AA fire. In late May 2003 the surviving machines and their crews returned to MCAS Yuma.
On 16 March 2007, the 200th T-45 airframe was delivered to the US Navy. From this final batch, six airframes were set aside and modified into OA-45Bs in order to fill the losses over the past years.
Later T-45 production aircraft were built with enhanced avionics systems for a heads-up display (HUD) and glass cockpit standard, while all extant T-45A aircraft were eventually converted to a T-45C configuration under the T-45 Required Avionics Modernization Program (T-45 RAMP), bringing all aircraft to same HUD plus glass cockpit standard. These updates, esp. concerning the cockpit, were introduced to the OA-45Bs, too, and they were re-designated again, now becoming OA-45Cs, to reflect the commonality with the Navy’s Goshawk trainers. Again, these modifications were gradually introduced in the course of the OA-45s’ normal maintenance program.
In 2007, an engine update of the whole T-45 fleet, including the OA-45s, with the Adour F405-RR-402 was considered. This new engine was based on the British Adour Mk 951, designed for the latest versions of the BAe Hawk and powering the BAe Taranis and Dassault nEUROn UCAV technology demonstrators. The Adour Mk 951 offered 6,500 lbf (29 kN) thrust and up to twice the service life of the F405-RR-401. It featured an all-new fan and combustor, revised HP and LP turbines, and introduced Full Authority Digital Engine Control (FADEC). The Mk 951 was certified in 2005, the F405-RR-402 derived from it was certified in 2008, but it did not enter service due to funding issues, so that this upgrade was not carried out.
The final delivery of the 246th T-45 airframe took place in November 2009, and both T-45 and the OA-45 "GosHog" are supposed to remain in service until 2035.
General characteristics:
Crew: 2 (pilot, observer)
Length: 39 ft 4 in (11.99 m)
Wingspan: 30 ft 10 in (9.39 m)
Height: 13 ft 5 in (4.08 m)
Wing area: 190.1 ft² (17.7 m²)
Empty weight: 10,403 lb (4,460 kg)
Max. takeoff weight: 14,081 lb (6,387 kg)
Powerplant:
1× Rolls-Royce Turbomeca F405-RR-401 (Adour) non-afterburning turbofan with 5,527 lbf (26 kN)
Performance:
Maximum speed: Mach 2 (2,204 km/h (1,190 kn; 1,370 mph) at high altitude
Combat radius: 800 km (497 mi, 432 nmi)
Ferry range: 3,200 km (1,983 mi) with drop tanks
Service ceiling: 15,240 m (50,000 ft)
Wing loading: 283 kg/m² (58 lb/ft²)
Thrust/weight: 0.97
Maximum g-load: +9 g
Armament:
No internal gun; seven external hardpoints (three on each wing and one under fuselage)
for a wide range of ordnance of up to 6,800 lb (3,085 kg), including up to six AIM-9 Sidewinder for
self-defense, pods with unguided rockets for target marking or ECM pods, but also offensive weapons
of up to 1.000 lb (454 kg) weight, including iron/cluster bombs and guided AGM-65, GBU-12 and -16.
The kit and its assembly:
This fictional T-45 variant is actually the result of a long idea evolution, and simply rooted in the idea of a dedicated OA-4M replacement for the USMC; in real life, the FFAC role has been transferred to F-18 two-seaters, though, but the T-45 appeared like a sound alternative to me.
There's only one T-45 kit available, a dubious T-45A from Italeri with poor wings and stabilizers. Wolfpack also offers a T-45, but it’s just a re-boxing of the Italeri kit with some PE parts and a price tag twice as big – but it does not mend the original kit’s issues… After reading the A-4 Skyhawk book from the French "Planes & Pilots" series, I was reminded of the USMC's special OA-4M FAC two-seaters (and the fact that it is available in kit form from Italeri and Hasegawa), and, cross-checking the real-world timeline of the T-45, I found that it could have been a suitable successor. The ide of the USMC’s OA-45 was born! :D
Building-wise the Italeri T-45 remained close to OOB, even though I transplanted several parts from an Italeri BAe Hawk Mk. 100 to create a different look. I modified the nose with the Mk. 100’s laser fairing and added some radar warning sensor bumps. This transplantation was not as easy as it might seem because the T-45’s nose is, due to the different and more massive front landing gear quite different from the Hawk’s. Took some major PSR to integrate the laser nose.
An ALR-45 “hot dog” fairing from a late A-4M (Italeri kit) was added to the fin, together with a small styrene wedge extending the fin’s leading edge. This small detail markedly changes the aircraft’s look. I furthermore added a refueling probe, scratched from coated wire and some white glue, as well as a low “camel back” fairing behind the cockpit, created from a streamlined bomb half with air outlets for an integrated heat exchanger. Blade antennae were relocated and added. A shallow bump for the Doppler radar was added under the fuselage behind the landing gear well – left over from an Airfix A-4B (from an Argentinian A-4P, to be correct, actually a dorsal fairing).
On the wings, a tailored pair of pylons and wing tip launch rails from the Italeri BAe Hawk Mk. 100 kit were added, too, as well as the donor kit’s pair of Sidewinders. The rest of the ordnance consists of drop tanks and LAU-19 pods for target marking missiles. The tanks were taken from the Hawk Mk. 100 kit, too, the rocket launchers came from an Italeri NATO aircraft weapons set. The centerline position carries an ALQ-131 ECM pod from a Hasegawa US aircraft weapons set on a pylon from the scrap box.
Painting and markings:
The low-viz idea prevailed, since I had some leftover OA-4M decals from Italeri kits in store, as well as some other suitable low-viz decals from a Revell A-4F kit. However, an all-grey livery was IMHO not enough, and when I came across a picture of a USN low-viz A-7E with an improvised desert camouflage in sand and reddish brown applied over the grey (even partly extending over its markings) from Operation Iraqi Freedom, I had that extra twist that would set the OA-45 apart. MALS-13 was chosen as operator because I had matching codes, and, as another benefit, the unit had actually been deployed overseas during the 2003 Iraq War, so that the whif’’s time frame was easily settled, adding to its credibility.
The livery was built up just like on the real aircraft: on top of a basic scheme in FS 36320 and 36375 (Humbrol 128 and 127) with a slightly darker anti-glare panel in front of the cockpit (FS 35237, I used Revell 57 as a slightly paler alternative) I applied the low-viz marking decals, which were protected with a coat of acrylic varnish. Next, additional desert camouflage was added with dry-brushed sand and millitary brown (supposedly FS 33711 and 30400 in real life, I used, after consulting pictures of aircraft from both Gulf Wars, Humbrol 103 (Cream) and 234 (Dark Flesh). They were applied with a kind of a dry-brushing technique, for a streaky and worn look, leaving out the codes and other markings. The pattern itself was inspired by an USMC OV-10 Bronco in desert camouflage from the 1st Gulf War.
On top of that a black ink washing was applied. Once things had thoroughly dried over night, I wet-sanded the additional desert camouflage away, carefully from front to back, so that the edges became blurred and the underlying grey became visible again.
The cockpit interior was painted in standard Dark Gull Grey (Humbrol 140), while the air intakes and the landing gear became white, the latter with red trim on the covers’ edges – just standard. Finally, the model was sealed with a coat of matt acrylic varnish (Italeri).
The upgraded T-45 is an interesting result. The add-ons suit the aircraft, which already looks sturdier than its land-based ancestor, well. The improvised desert paint scheme with the additional two-tone camouflage over the pale grey base really makes the aircraft an unusual sight, adding to its credibility.
Hardware-wise I am really happy how the added dorsal hump blends into the overall lines – in a profile view it extends the canopy’s curve and blends into the fin, much like the A-4F/M’s arrangement. And the modified fin yields a very different look, even though not much was changed. The T-45 looks much beefier now, and from certain angles really reminds of the OA-4M and sometimes even of a diminutive Su-25?
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some Background:
The Lockheed F-94 Starfire was a first-generation jet aircraft of the United States Air Force. It was developed from the twin-seat Lockheed T-33 Shooting Star in the late 1940s as an all-weather, day/night interceptor, replacing the propeller-driven North American F-82 Twin Mustang in this role. The system was designed to overtake the F-80 in terms of performance, but more so to intercept the new high-level Soviet bombers capable of nuclear attacks on America and her Allies - in particular, the new Tupelov Tu-4. The F-94 was furthermore the first operational USAF fighter equipped with an afterburner and was the first jet-powered all-weather fighter to enter combat during the Korean War in January 1953.
The initial production model was the F-94A, which entered operational service in May 1950. Its armament consisted of four 0.50 in (12.7 mm) M3 Browning machine guns mounted in the fuselage with the muzzles exiting under the radome for the APG-33 rader, a derivative from the AN/APG-3, which directed the Convair B-36's tail guns and had a range of up to 20 miles (32 km). Two 165 US Gallon (1,204 litre) drop tanks, as carried by the F-80 and T-33, were carried on the wingtips. Alternatively, these could be replaced by a pair of 1,000 lb (454 kg) bombs under the wings, giving the aircraft a secondary fighter bomber capability. 109 were produced.
The subsequent F-94B, which entered service in January 1951, was outwardly virtually identical to the F-94A. The Allison J33 turbojet had a number of modifications made, though, which made it a very reliable engine. The pilot was provided with a more roomy cockpit and the canopy was replaced by a canopy with a bow frame in the center between the two crew members, as well as a new Instrument Landing System (ILS). However, this new variant’s punch with just four machine guns remained weak, and, in order to improve the load of fire, wing-mounted pods with two additional pairs with machine guns were introduced – but these hardly improved the interceptor’s effectiveness. 356 of the F-94B were built.
The following F-94C was extensively modified and initially designated F-97, but it was ultimately decided just to treat it as a new version of the F-94. USAF interest was lukewarm, since aircraft technology developed at a fast pace in the Fifties. Lockheed funded development themselves, converting two F-94B airframes to YF-94C prototypes for evaluation with a completely new, much thinner wing, a swept tail surface and a more powerful Pratt & Whitney J48, a license-built version of the afterburning Rolls-Royce Tay, which produced a dry thrust of 6,350 pounds-force (28.2 kN) and approximately 8,750 pounds-force (38.9 kN) with afterburning. Instead of machine guns, the new variant was exclusively armed with more effective unguided air-to-air missiles.
Eventually, the type was adopted for USAF service, since it was the best interim solution for an all-weather fighter at that time, but it still had to rely on Ground Control Interception Radar (GCI) sites to vector the interceptor to intruding aircraft.
Anyway, The F-94C's introduction and the availability of more effective Northrop F-89C/D Scorpion and the North American F-86D Sabre interceptors led to a quick relegation of the earlier F-94 variants from mid-1954 onwards to second line units and Air National Guards. By 1955 most of them had been phased out of USAF service. However, some of these relatively young surplus machines were subsequently exported to friendly nations, esp. to NATO countries in dire need for all-weather interceptors at the organization’s outer frontiers where Soviet bomber attacks had to be expected.
One of these foreign operators was Greece. In 1952, Greece was admitted to NATO and the country’s Air Force was, with US assistance, rebuilt and organized according to NATO standards. New aircraft were introduced, namely jet fighters which meant a thorough modernization. The first types flown by the Hellenic Air Force were the Republic F-84G Thunderjet (about 100 examples) and the Lockheed F-94B Starfire (about thirty aircraft).
The Hellenic F-94Bs represented the USAF’s standard, but for their second life they were modified to carry, as an alternative to the type’s standard machine gun pods under the wings, a pair of pods with unguided air-to-air missiles, similar to the F-94C. Their designation remained unchanged, though.
This first generation of jets in Hellenic service became operational in 1955 and played an important role within NATO's defense strategy in the south-eastern Europe in the following years. They also took part in Operation Deep Water, a 1957 NATO naval exercise held in the Mediterranean Sea that simulated protecting the Dardanelles from a Soviet invasion and featured a simulated nuclear air strike in the Gallipoli area, reflecting NATO's nuclear umbrella policy to offset the Soviet Union's numerical superiority of ground forces in Europe.
In the late 1960s, the F-84 fighters were replaced by the Canadair Sabre 2 from British and Canadian surplus stocks and the Hellenic Air Force acquired new jet aircraft. These included the Lockheed F-104G Starfighter, the Northrop F-5 Freedom Fighter and the Convair F-102 Delta Dagger. The latter entered service in service 1969 and gradually replaced the F-94Bs in the all-weather interceptor role until 1971.
In the mid-1970s the Hellenic Air Force was further modernized with deliveries of the Dassault Mirage F1CG fleet, Vought A-7Hs (including a number of TA-7Hs) and the first batch of McDonnell-Douglas F-4E Phantom IIs, upgraded versions of which still serve today.
After their replacement through the F-102 the Hellenic F-94Bs were still used as advanced trainers, primarily for aspiring WSOs but also for weapon training against ground targets. But by the mid Seventies, all Hellenic F-94Bs had been phased out.
General characteristics:
Crew: 2
Length: 40 ft 1 in (12.24 m)
Wingspan: 38 ft 9 in (12.16 m)
Height: 12 ft. 2 (3.73 m)
Wing area: 234' 8" sq ft (29.11 m²)
Empty weight: 10,064 lb (4,570 kg)
Loaded weight: 15,330 lb (6,960 kg)
Max. takeoff weight: 24,184 lb (10,970 kg)
Powerplant:
1× Allison J33-A-33 turbojet, rated at 4,600 lbf (20.4 kN) continuous thrust
and 6,000 lbf (26.6 kN) thrust with afterburner
Performance:
Maximum speed: 630 mph (1,014 km/h) at height and in level flight
Range: 930 mi (813 nmi, 1,500 km) in combat configuration with two drop tanks
Ferry range: 1,457 mi (1,275 nmi, 2,345 km)
Service ceiling: 42,750 ft (14,000 m)
Rate of climb: 6,858 ft/min (34.9 m/s)
Wing loading: 57.4 lb/ft² (384 kg/m²)
Thrust/weight: 0.48
Armament:
4x 0.5"0 (12.7 mm) machine guns in the lower nose section
2x 165 US Gallon (1,204 litre) drop tanks on the wing tips
2x underwing hardpoints for
- two pods with a pair of 0.5" (12.7 mm) machine guns each, or
- two pods with a total of 24× 2.75” (70 mm) Mk 4/Mk 40 Folding-Fin Aerial Rockets, or
- two 1.000 lb (454 kg) bombs (instead of the wing tip drop tanks)
The kit and its assembly:
This is a rather simple entry for the 2018 "Cold War" GB at whatifmodelers.com, in the form of a more or less OOB-built Heller F-94B in a fictional guise. The original inspiration was the idea of a camouflaged F-94, since all USAF machines had been left in bare metal finish with more or less colorful additions and markings.
That said, the kit was built almost completely OOB and did – except for some sinkholes and standard PSR work – not pose any problem. In fact, the old Heller Starfire model is IMHO a pretty good representation of the aircraft. O.K., its age might show, but almost anything you could ask for at 1:72 scale is there, including a decent, detailed cockpit. I just added a wire pitot under the nose and opened the gun ports, plus some machine gun barrels inside made from hollow steel needles. The main wheels had to be replaced due to sinkholes, and they appeared to be rather narrow for this massive aircraft, too. I found decent replacements from a Tamiya 1:100 F-105D.
Painting and markings:
Even though the F-94 never wore camouflage in real life, I chose to add some (more) color to this Hellenic Starfire. In fact, the RHAF adopted several schemes for its early jet types, including grey undersides to otherwise NMF machines grey/green NATO colors, all-around ADC Grey, the so-called Aegean Grey or the USAF's South East Asia scheme. I chose the latter, since I expected an unusual look, and the colors would be a good match for the Hellenic landscape, too.
The basic colors (FS 30219, 34227, 34279 and 36622) all come from Humbrol (118, 117, 116 and 28, respectively), and for the pattern I adapted the USAF’s recommendation for the C-123 Provider transport aircraft. Beyond a black ink wash and some post-shading for weathering effects the whole surface of the kit received a wet-sanding treatment for additional wear-and-tear effects, exploiting the fact that the kit is molded in silver plastic which, in the end, shines through here and there. The result is a shaggy look, but it’s not rotten and neglected.
The machine gun pods received black front ends (against glare), which was also added to the tip tanks’ front end inside surfaces. The radome and the fin tip were painted with a mix of Humbrol 168 (RAF Hemp) and 28, and the gun ports as well as the afterburner section were painted with Steel Metallizer.
Using a 340th Mira’s early F-84G for further inspiration, I decided to add some bright squadron markings to the aircraft in the form of yellow-black-checkered tip tanks. These were created with black decal squares (cut from TL Modellbau generic material) over a painted, yellow base (Humbrol 69). I considered even more markings, e.g. a checkered fin rudder or an ornamental decoration, but eventually rejected this idea in favor of the aircraft’s camouflage theme.
Other decals come primarily from a HiScale F-84G sheet. Some elements were taken from the Heller OOB sheet and some additional stencils were gathered from various sources, including an Xtradecal T-33 and a PrintScale F-102 sheet.
After some soot stains around the exhaust were added with graphite, the kit was sealed under a coat of matt acrylic varnish (Italeri).
An interesting result, since a camouflaged F-94 is literally unusual. I am positively surprised how good the aircraft looks in the USAF SEA livery.
+++ DISCLAIMER +++
Nothing you see here is real, even though the model, the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
After the country's independence from the United Kingdom, after its departure from the European Union in 2017, the young Republic of Scotland Air Corps (locally known as Poblachd na h-Alba Adhair an Airm) started a major procurement program to take over most basic duties the Royal Air Force formerly had taken over in Northern Britain. This procurement was preceded by a White Paper published by the Scottish National Party (SNP) in 2013, which had stated that an independent Scotland would have an air force equipped with up to 16 air defense aircraft, six tactical transports, utility rotorcraft and maritime patrol aircraft, and be capable of “contributing excellent conventional capabilities” to NATO. According to the document, “Key elements of air forces in place at independence, equipped initially from a negotiated share of current UK assets, will secure core tasks, principally the ability to police Scotland’s airspace, within NATO.” An in-country air command and control capability would be established within five years of a decision in favor of independence, it continues, with staff also to be “embedded within NATO structures”.
Outlining its ambition to establish an air force with an eventual 2,000 uniformed personnel and 300 reservists, the SNP stated the organization would initially be equipped with “a minimum of 12 interceptors in the Eurofighter/Typhoon class, based at Lossiemouth, a tactical air transport squadron, including around six Lockheed Martin C-130J Hercules, and a helicopter squadron”. The latter would not only have to take over transport duties for the army, there was also a dire need to quickly replace the former Royal Air Force’s Search and Rescue (SAR) capabilities and duties in the North with domestic resources, after this role was handed over to civilian contractor Bristow Helicopters and the RAF’s SAR units had been disbanded.
This led to the procurement of six AS365 Dauphin helicopters as an initial measure to keep up basic SAR capabilities, with the prospects of procuring more to become independent from the Bristow Helicopters contract. These aircraft were similar to the Eurocopter SA 366 MH-65 “Dolphin” for the United States Coast Guard but differed in many ways from them and also from any other navalized SA365 variant.
For the RoScAC’s SAR squadron, the SA 365 was taken as a starting point, but the helicopter was heavily modified and locally re-christened “Leumadair” (= Dolphin).
The most obvious new feature of the unique Scottish rescue variant was a fixed landing gear with the main wheels on short “stub wings” for a wider stance, stabilizing the helicopter during shipboard landings and in case of an emergency water landing - the helicopter was not able to perform water landings, even though inflatable emergency landing floats were typically fitted. Another obvious difference to other military Dauphin versions was the thimble radome on the nose for an RDR-1600 search and weather radar which is capable of detecting small targets at sea as far as 25 nautical miles away. This layout was chosen to provide the pilots with a better field of view directrly ahead of the helicopter. Additionally, an electro-optical sensor turret with an integrated FLIR sensor was mounted in a fully rotatable turret under the nose, giving the helicopter full all-weather capabilities. Less obvious were a digital glass cockpit and a computerized flight management system, which integrated state-of-the-art communications and navigation equipment. This system provided automatic flight control, and at the pilot's direction, the system would bring the aircraft to a stable hover 50 feet (15 m) above a selected object, an important safety feature in darkness or inclement weather. Selected search patterns could be flown automatically, freeing the pilot and copilot to concentrate on sighting & searching the object.
To improve performance and safety margin, more powerful Turbomeca Arriel 2C2-CG engines were used. Seventy-five percent of the structure—including rotor head, rotor blades and fuselage—consisted of corrosion-resistant composite materials. The rotor blades themselves were new, too, with BERP “paddles”at their tips, a new aerofoil and increased blade twist for increased lifting-capability and maximum speed, to compensate for the fixed landing gear and other external equipment that increased drag. To prevent leading edge erosion the blade used a rubber-based tape rather than the polyurethane used on earlier helicopters.
The “Leumadair HR.1”, so its official designation, became operational in mid-2019. Despite being owned by the government, the helicopters received civil registrations (SC-LEA - -LEF) and were dispersed along the Scottish coastline. They normally carried a crew of four: Pilot, Copilot, Flight Mechanic and Rescue Swimmer, even though regular flight patrols were only excuted with a crew of three. The Leumadair HR.1 was used by the RoScAC primarily for search and rescue missions, but also for homeland security patrols, cargo, drug interdiction, ice breaking, and pollution control. While the helicopters operated unarmed, they could be outfitted with manually operated light or medium machine guns in their doors.
However, the small fleet of only six helicopters was far from being enough to cover the Scottish coast and the many islands up north, so that the government prolonged the contract with Bristow Helicopters in late 2019 for two more years, and the procurement of further Leumadair HR.1 helicopters was decided in early 2020. Twelve more helicopters were ordered en suite and were expected to arrive in late 2021.
General characteristics:
Crew: 2 pilots and 2 crew
Length: 12,06 m (39 ft 2 1/2 in)
Height: 4 m (13 ft 1 in)
Main rotor diameter: 12,10 m (39 ft 7 1/2 in)
Main rotor area: 38.54 m² (414.8 sq ft)
Empty weight: 3,128 kg (6,896 lb)
Max takeoff weight: 4,300 kg (9,480 lb)
Powerplant:
2× Turbomeca Arriel 2C2-CG turboshaft engines, 636 kW (853 hp) each
Performance:
Maximum speed: 330 km/h (210 mph, 180 kn)
Cruise speed: 240 km/h (150 mph, 130 kn)
Range: 658 km (409 mi, 355 nmi)
Service ceiling: 5,486 m (17,999 ft)
Armament:
None installed, but provisions for a 7.62 mm M240 machine gun or a Barrett M107 0.50 in (12.7
mm) caliber precision rifle in each side door
The kit and its assembly:
Another chapter in my fictional alternative reality in which Scotland became an independent Republic and separated from the UK in 2017. Beyond basic aircraft for the RoScAC’s aerial defense duties I felt that maritime rescue would be another vital task for the nascent air force – and the situation that Great Britain had outsourced the SAR job to a private company called for a new solution for the independent Scotland. This led to the consideration of a relatively cheap maritime helicopter, and my choice fell on the SA365 ‘Daupin’, which has been adapted to such duties in various variants.
As a starting point there’s the Matchbox SA365 kit from 1983, which is a typical offer from the company: a solid kit, with mixed weak spots and nice details (e. g. the cockpit with a decent dashboard and steering columns/pedals for the crew). Revell has re-boxed this kit in 2002 as an USCG HH-65A ‘Dolphin’, but it’s technically only a painting option and the kit lacks any optional parts to actually build this type of helicopter in an authentic fashion - there are some subtle differences, and creating a convincing HH-65 from it would take a LOT of effort. Actually, it's a real scam from Revell to market the Matchbox Dauphin as a HH-65!
However, it was my starting basis, and for a modernized/navalized/military version of the SA365 I made some changes. For instance, I gave the helicopter a fixed landing gear, with main wheels stub wings taken from a Pavla resin upgrade/conversion set for a Lynx HAS.2, which also comes with better wheels than the Matchbox kit. The Dauphin’s landing gear wells were filled with 2C putty and in the same process took the stub wings. The front landing gear well was filled with putty, too, and a adapter to hold the front twin wheel strut was embedded. Lots of lead were hidden under the cockpit floor to ensure that this model would not becaome a tail sitter.
A thimble radome was integrated into the nose with some PSR – I opted for this layout because the fixed landing gear would block 360° radar coverage under the fuselage, and there’s not too much ground clearance or space above then cabin for a radome. Putting it on top of the rotor would have been the only other option, but I found this rather awkward. As a side benefit, the new nose changes the helicopter’s silhouette well and adds to a purposeful look.
The rotor blades were replaced with resin BERP blades, taken from another Pavla Lynx conversion set (for the Hobby Boss kit). Because their attachment points were very different from the Matchbox Dauphin rotor’s construction, I had to improvise a little. A rather subtle change, but the result looks very plausible and works well. Other external extras are two inflatable floating devices along the lower fuselage from a Mistercraft ASW AB 212 (UH-1) kit, the winch at port side was scratched with a piece from the aforementioned BK 117 and styrene bits. Some blade antennae were added and a sensor turret was scratched and placed in front of the front wheels. Additional air scoops for the gearbox were added, too. Inside, I added two (Matchbox) pilot figures to the cockpit, plus a third seat for a medic/observer, a storage/equipment box and a stretcher from a Revell BK 117 rescue helicopter kit. This kit also donated some small details like the rear-view mirror for the pilot and the wire-cutters - not a typical detail for a helicopter operating over the open sea, but you never know...
The only other adition is a technical one: I integrated a vertical styrene pipe behind the cabin as a display holder adapter for the traditional hoto shooting's in-flight scenes.
Painting and markings:
It took some time to settle upon a design. I wanted something bright – initially I thought about Scottish colors (white and blue), but that was not garish enough, even with some dayglo additions. The typical all-yellow RAF SAR livery was also ruled out. In the end I decided to apply a more or less uniform livery in a very bright red: Humbrol 238, which is, probably due to trademark issues, marketed as “Arrow Red (= Red Arrows)” and effectively an almost fluorescent pinkish orange-red! Only the black anti-glare panel in front of the windscreen, the radome and the white interior of the fenestron tail rotor were painted, too, the rest was created with white decal stripes and evolved gradually. Things started with a white 2mm cheatline, then came the horizontal stripes on the tail, and taking this "theme" further I added something similar to the flanks as a high contrast base for the national markings. These were improvised, too, with a 6mm blue disc and single 1.5 mm bars to create a Scottish flag. The stancils were taken from the OOB decal sheet. The interior became medium grey, the crew received bright orange jumpsuits and white "bone domes".
No black ink washing or post-panel-shading was done, since the Dauphin has almost no surface details to emphasize, and I wanted a new and clean look. Besides, with wll the white trim, there was already a lot going on on the hull, so that I kept things "as they were". Finally, the model was sealed with a coat of semi-gloss acrylic varnish for a light shine, except for the rotor blades and the anti-glare panel, which became matt.
Quite a tricky project. While the Matchbox Dauphin is not a complex kit you need patience and have to stick to the assembly order to put the hull together. PSR is needed, esp. around the engine section and for the underside. On the other side, despite being a simple model, you get a nice Dauphin from the kit - but NOT a HH-65, sorry. My fictional conversion is certainly not better, but the bright result with its modifications looks good and quite convincing, though.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The Saab JAS 39 Gripen (griffin) is a light single-engine multirole fighter aircraft manufactured by the Swedish aerospace company Saab. In 1979, the Swedish government began development studies for an aircraft capable of fighter, attack and reconnaissance missions to replace the Saab 35 Draken and 37 Viggen. The preferred aircraft was a single-engine, lightweight single-seater, embracing fly-by-wire technology, canards, and an aerodynamically unstable design. The powerplant selected was the Volvo-Flygmotor RM12, a license-built derivative of the General Electric F404−400; engine development priorities were weight reduction and lowering component count. A new design from Saab was selected and developed as the JAS 39, first flying in 1988.
The Gripen is a multirole fighter aircraft, intended as a lightweight and agile aerial platform with advanced, highly adaptable avionics. It has canard control surfaces that contribute a positive lift force at all speeds, while the generous lift from the delta wing compensates for the rear stabilizer producing negative lift at high speeds, increasing induced drag. It is capable of flying at a 70–80 degrees angle of attack.
Being intentionally unstable and employing digital fly-by-wire flight controls to maintain stability removes many flight restrictions, improves manoeuvrability and reduces drag. The Gripen also has good short takeoff performance, being able to maintain a high sink rate and strengthened to withstand the stresses of short landings. A pair of air brakes are located on the sides of the rear fuselage; the canards also angle downward to act as air brakes and decrease landing distance
To enable the Gripen to have a long service life, roughly 50 years, Saab designed it to have low maintenance requirements. Major systems such as the RM12 engine and PS-05/A radar are modular to reduce operating cost and increase reliability. The Gripen’s systems were designed to be flexible, so that newly developed sensors, computers and armaments could be easily integrated as technology advances. The aircraft was estimated to be roughly 67% sourced from Swedish or European suppliers and 33% from the US.
To market the aircraft internationally, Saab formed partnerships and collaborative efforts with overseas aerospace companies. One example of such efforts was Gripen International, a joint partnership between Saab and BAE Systems formed in 2001. Gripen International was responsible for marketing the aircraft, and was heavily involved in the successful export of the type to South Africa; the organisation was later dissolved amidst allegations of bribery being employed to secure foreign interest and sales. On the export market, the Gripen has achieved moderate success in sales to nations in Central Europe, South Africa and Southeast Asia.
The Swedish Air Force placed a total order for 204 Gripens in three batches. The first delivery of the JAS 39A/B (single seat and two seat variants) occurred on 8 June 1993, when aircraft “39102” was handed over to the Flygvapnet during a ceremony at Linköping. The final Batch three 1st generation aircraft was delivered to FMV on 26 November 2008, but in the meantime an upgraded Gripen variant, the JAS 39C/D already rolled off of the production lines and made the initial versions obsolete. The JAS C/D gradually replaced the A/B versions in the frontline units until 2012, which were then offered for export, mothballed or used for spares for the updated Swedish Gripen fleet.
A late European export customer became the nascent Republic of Scotland. According to a White Paper published by the Scottish National Party (SNP) in 2013, an independent Scotland would have an air force equipped with up to 16 air defense aircraft, six tactical transports, utility rotorcraft and maritime patrol aircraft, and be capable of “contributing excellent conventional capabilities” to NATO. Outlining its ambition to establish an air force with an eventual 2,000 uniformed personnel and 300 reservists, the SNP stated that the organization would initially be equipped with “a minimum of 12 interceptors in the Eurofighter/Typhoon class, based at Lossiemouth, a tactical air transport squadron, including around six Lockheed Martin C-130J Hercules, and a helicopter squadron for transport and SAR duties”.
According to the document, “Key elements of air forces in place at independence, equipped initially from a negotiated share of current UK assets, will secure core tasks, principally the ability to police Scotland’s airspace, within NATO.” An in-country air command and control capability would be established within five years of a decision in favor of independence, it continued, with staff also to be “embedded within NATO structures”.
This plan was immediately set into action with the foundation of the Poblachd na h-Alba Adhair an Airm (Republic of Scotland Air Corps/RoScAC) after the country's independence from Great Britain in late 2017. For the fighter role, Scotland was offered refurbished F-16C and Ds from the USA, but this was declined, as the type was considered too costly and complex. An offer from Austria to buy the country’s small Eurofighter fleet (even at a symbolic price) was rejected for the same reason.
Eventually, and in order to build a certain aura of neutrality, Scotland’s young and small air arm initially received twelve refurbished, NATO-compatible Saab JAS 39 Gripen (ten single-seater and two two-seaters) as well as Sk 90 trainers from Swedish overstock. These second hand machines were just the initial step in the mid-term procurement plan, though.
Even though all Scottish Gripens (locally called “Grìbhean”, designated F.1 for the JAS 39A single seaters and F.2 for the fully combat-capable JAS 39B two-seaters, respectively) were multi-role aircraft and capable of strike missions, its primary roles were interception/air defense and, to a lesser degree, reconnaissance. Due to severe budget restrictions and time pressure, these aircraft were almost identical to the Flygvapnet’s JAS 39A/B aircraft. They used the PS-05/A pulse-Doppler X band multi-mode radar, developed by Ericsson and GEC-Marconi, which was based on the latter's advanced Blue Vixen radar for the Sea Harrier that also served as the basis for the Eurofighter's CAPTOR radar. This all-weather radar is capable of locating and identifying targets 120 km (74 mi) away and automatically tracking multiple targets in the upper and lower spheres, on the ground and sea or in the air. It can guide several beyond visual range air-to-air missiles to multiple targets simultaneously. Therefore, RoScAC also procured AIM-9 Sidewinder and AIM-120 AMRAAM as primary armament for its Grìbhean fleet, plus AGM-65 Maverick air-to-ground missiles.
The twelve Grìbhean F.1 and F.2s formed the RoScAC’s 1st fighter (Sabaid) squadron, based at former RAF base Lossiemouth. Upon delivery and during their first months of service, the machines retained the former Swedish grey paint scheme, just with new tactical markings. In 2018, the RoScAC fighter fleet was supplemented with brand new KAI/Lockheed Martin TA-50 ‘Golden Eagle’ armed trainers from South Korea, which could also take over interceptor and air patrol duties. This expansion of resources allowed the RoScAC to initiate an update program for the JAS 39 fleet. It started in 2019 and included in-flight refueling through a fixed but detachable probe, a EuroFIRST PIRATE IRST, enhanced avionics with elements from the Swedish JAS 39C/D, and a tactical datalink.
With these updates, the machines could now also be externally fitted with Rafael's Sky Shield or LIG Nex1's ALQ-200K ECM pods, Sniper or LITENING targeting pods, and Condor 2 reconnaissance pods to further improve the machine’s electronic warfare, reconnaissance, and targeting capabilities.
The aircraft’s designations did not change, though, the only visible external change were the additional IRST fairing under the nose, and the machines received a new tactical camouflage with dark green and dark grey upper surfaces, originally introduced with the RoScAC’s TA-50s. However, all Grìbhean F.1 single seaters received individual fin designs instead of the grey camouflage, comprising simple red and yellow fins, the Scottish flag (instead of the standard fin flash) and even a large pink thistle on a white background and a white unicorn on a black background.
Despite being 2nd hand aircraft, the Scottish JAS 39A and Bs are expected to remain in service until at least 2035.
General characteristics:
Crew: one
Length: 14.1 m (46 ft 3 in)
Wingspan: 8.4 m (27 ft 7 in)
Height: 4.5 m (14 ft 9 in)
Wing area: 30 m2 (320 sq ft)
Empty weight: 6,800 kg (14,991 lb)
Max takeoff weight: 14,000 kg (30,865 lb)
Powerplant:
1× Volvo RM12 afterburning turbofan engine,
54 kN (12,000 lbf) dry thrust, 80.5 kN (18,100 lbf) with afterburner
Performance:
Maximum speed: 2,460 km/h (1,530 mph, 1,330 kn)/Mach 2
Combat range: 800 km (500 mi, 430 nmi)
Ferry range: 3,200 km (2,000 mi, 1,700 nmi)
Service ceiling: 15,240 m (50,000 ft)
g limits: +9/-3
Wing loading: 283 kg/m2 (58 lb/sq ft)
Thrust/weight: 0.97
Takeoff distance: 500 m (1,640 ft)
Landing distance: 600 m (1,969 ft)
Armament:
1× 27 mm Mauser BK-27 revolver cannon with 120 rounds
8 hardpoints (Two under the fuselage, one of them dedicated to FLIR / ECM / LD / Recon pods plus
two under and one on the tip of each wing) with a capacity of 5 300 kg (11 700 lb)
The kit and its assembly:
Nothing spectacular – actually, this build is almost OOB and rather a livery what-if model. However, I had the plan to build a (fictional) Scottish Gripen on my agenda for some years now, since I started to build RoScAC models, and the “Back into service” group build at whatifmodlers.com in late 2019 was a good motivation to tackle this project.
The starting point was the Italeri JAS 39A kit, a rather simple affair that goes together well but needs some PSR on almost every seam. Not much was changed, since the model would depict a slightly updated Gripen A – the only changes I made were the additional IRST fairing under the nose, the ejection handle on the seat and a modified ordnance which consists of a pair of AIM-9L and AIM-120 (the latter including appropriate launch rails) from a Hasegawa air-to-air weapons set. The ventral drop tank is OOB.
Painting and markings:
The motivation a behind was actually the desire to build a Gripen in a different livery than the usual and rather dull grey-in-grey scheme. Therefore I invented a tactical paint scheme for “my” RoScAC, which is a modified RAF scheme from the Seventies with uppers surfaces in Dark Green (Humbrol 163) and Dark Sea Grey (164), medium grey flanks, pylons, drop tank and a (theoretically) grey fin (167 Barley Grey, today better known as Camouflage Grey) plus undersides in Light Aircraft Grey (166), with a relatively high and wavy waterline, so that a side or lower view would rather blend with the sky than the ground below. The scheme was designed as a compromise between air superiority and landscape camouflage and somewhat inspired by the many experimental schemes tested by the German Luftwaffe in the early Eighties. The Scottish TA-50 I built some years ago was the overall benchmark, but due to the Gripen’s highly blended fuselage/wing intersections, I just painted the flanks under the cockpit and the air intakes as well as a short portion of the tail section in Barley Grey. That’s overall darker than intended (esp. in combination with the fin decoration, see below), but anything grey above the wings would have looked awkward.
As a reminiscence of the late British F-4 Phantoms, which carried a grey low-viz scheme with bright fins as quick ID markings, I added such a detail to the Gripen, too – in this case in the form of a stylized Scottish flag on the fin, with some mild 3D effect. The shadow and light effects were created through wet-in-wet painting of lighter and darker shades into the basic blue (using Humbrol 25, 104 and ModelMaster French Blue). Later, the white cross was added with simple decal stripes, onto which similar light effects were added with white and light grey, too.
Even though this one looks similar to my Scottish TA-50, which was the first model to carry this paint scheme, I like the very different look of this Gripen through its non-all-grey paint scheme. It’s also my final build of my initial RoScAC ideas, even though I am now considering a helicopter model (an SAR SA 365 Dauphin, maybe?) in fictional Scottish markings, too.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The Wasp was a transonic British jet-powered fighter aircraft that was developed by Folland for the Royal Air Force (RAF) during the late 1940s and early 1950s. The Wasp’s origins could be traced back to a privately funded 1952 concept for a bigger and more capable day fighter aircraft than Folland’s very light Midget/Gnat. The Wasp’s development had been continued until the Gnat’s service introduction, and by then it had evolved under the handle “Fo-145” into a supersonic aircraft that took advantage of the new Armstrong Siddeley Sapphire turbojet engine, swept wings and area rule. The aircraft was built with the minimum airframe size to take the reheated Saphire and a radar system that would allow it to deploy the new de Havilland Blue Jay (later Firestreak) guided air-to-air missile. In this form the aircraft was expected to surpass the Royal Air Force’s contemporary day fighter, the only gun-armed Hawker Hunter, which had been in service since 1954, while using basically the same engine as its F.2 variant, in both performance and armament aspects. The missile-armed Wasp was also expected to replace the disappointing Supermarine Swift and the Fairey Fireflash AAMs that had been developed for it.
The Wasp strongly resembled the smaller Gnat, with a similar but much thinner shoulder mounted wing, with a sweep of 35° at quarter chord, but the new aircraft featured some innovations. Beyond the area-ruled fuselage, the aircraft had full-span leading edge slats and trailing edge flaps with roll control achieved using spoilers rather than traditional ailerons. Anticipating supersonic performance, the tailplane was all-moving. The cockpit had been raised and offered the pilot a much better all-round field of view.
The Wasp was armed with four 30 mm (1.18 in) ADEN cannon, located under the air intakes. Each gun had a provision of 125 rounds, from form a mutual ventral ammunition bay that could be quickly replaced. Four underwing hardpoints could carry an ordnance load of up to 4.000 lb, and the Wasp’s main armament consisted of up to four IR-guided “Firestreak” AAMs. To effectively deploy them, however, a radar system was necessary. For launch, the missile seeker was slaved to the Wasp’s AI.Mk.20 X-band radar until lock was achieved and the weapon was launched, leaving the interceptor free to acquire another target. The AI.Mk.20 had been developed by EKCO since 1953 under the development label “Green Willow” for the upcoming EE Lightning interceptor, should the latter’s more complex and powerful Ferranti AIRPASS system fail. A major advantage of the AI.Mk.20 was that it had been designed as a single unit so it could be fit into the nose of smaller single-seat fighters, despite its total weight of roughly 400 lb (200 kg). For the Firestreak AAM, EKCO had developed a spiral-scan radar with a compact 18 in (460 mm) antenna that offered an effective range of about 10 miles (16 km), although only against targets very close to the centerline of the radar. The radar’s maximum detection range was 25 mi (40 km) and the system also acted as a ranging radar, providing range input to the gyro gunsight for air-to-air gunnery.
Beyond Firestreaks, the Wasp could also carry drop tanks (which were area-ruled and coulc only be carried on the inner pair of pylons), SNEB Pods with eighteen 68 mm (2.68 in) unguided rocket projectiles against air and ground targets, or iron bombs of up to 1.000 lb caliber. Other equipment included a nose-mounted, and a forward-facing gun camera.
The Royal Air Force was sufficiently impressed to order two prototypes. Since the afterburning version of the Sapphire was not ready yet, the first prototype flew on 30 July 1954 with a non-afterburning engine, an Armstrong Siddeley Sapphire Sa.6 with 8,000 lbf (35.59 kN). In spite of this lack of power the aircraft nevertheless nearly reached Mach 1 in its maiden flight. The second prototype, equipped with the intended Sapphire Sa.7 afterburning engine with 11,000 lbf (48.9 kN) thrust engine, showed the aircraft’s full potential. The Wasp turned out to have very good handling, and the RAF officially ordered sixty Folland Fo-145 day-fighters under the designation “Wasp F.Mk.1”. The only changes from the prototypes were small leading-edge extensions at the wing roots, improving low speed handling, esp. during landings and at high angles of incidence in flight.
Most Wasps were delivered to RAF Germany frontline units, including No. 20 and 92 Squadrons based in Northern Germany. However, the Wasp’s active service did not last long, because technological advancements quickly rendered the aircraft obsolete in its original interceptor role. The Wasp’s performance had not turned out as significantly superior to the Hunter as expected. Range was rather limited, and the aircraft turned out to be underpowered, since the reheated Sapphire Sa6 did not develop as much power as expected. The AI.Mk.20 radar was rather weak and capricious, too, and the Firestreak was an operational nightmare. The missile was, due to its solid Magpie rocket motor and the ammonia coolant for the IR seeker head, highly toxic and RAF armorers had to wear some form of CRBN protection to safely mount the missile onto an aircraft. Furthermore, unlike modern missiles, Firestreak’s effectiveness was very limited since it could only be fired outside cloud - and over Europe or in winter, skies were rarely clear.
Plans for a second production run of the Folland Wasp with a more powerful Sapphire Sa7R engine with a raised thrust of 12,300 lbf (54.7 kN) and updated avionics were not carried out. During the 1960s, following the successful introduction of the supersonic English Electric Lightning in the interceptor role, the Wasp, as well as the older but more prosperous and versatile Hunter, transitioned to being operated as a fighter-bomber, advanced trainer and for tactical photo reconnaissance missions.
This led to a limited MLU program for the F.Mk.1s and conversions of the remaining airframes into two new variants: the new main version was the GR.Mk.2, a dedicated CAS/ground attack variant, which had its radar removed and replaced with ballast, outwardly recognizable through a solid metal nose which replaced the original fiberglass radome. Many of these machines also had two of the 30mm guns removed to save weight. Furthermore, a handful Wasps were converted into PR.Mk.3s. These had as set of five cameras in a new nose section with various windows, and all the guns and the ammunition bay were replaced with an additional fuel tank, operating as pure, unarmed reconnaissance aircraft. When Folland was integrated into the Hawker Siddeley Group in 1963 the aircraft’s official name was changed accordingly, even though the Folland name heritage persisted.
Most of these aircraft remained allocated to RAF Germany units and retired towards the late Sixties, but four GR.Mk.2s were operated by RAF No. 57 (Reserve) Squadron and based at No. 3 Flying Training School at Cranwell, where they were flown as adversaries in dissimilar aerial combat training. The last of the type was withdrawn from service in 1969, but one aircraft remained flying with the Aeroplane and Armament Experimental Establishment at Boscombe Down until 24 January 1975.
General characteristics:
Crew: 1
Length: 45 ft 10.5 in (13.983 m)
Wingspan: 31 ft 7.5 in (9.639 m)
Height: 13 ft 2.75 in (4.0323 m)
Wing area: 250 sq ft (23 m2)
Empty weight: 13,810 lb (6,264 kg)
Gross weight: 21,035 lb (9,541 kg)
Max takeoff weight: 23,459 lb (10,641 kg)
Powerplant:
1× Armstrong Siddeley Sapphire Sa.6, producing 7,450 lbf (33.1 kN) thrust at 8,300 rpm,
military power dry, and 11,000 lbf (48.9 kN) with afterburner
Performance:
Maximum speed: 631 kn (726 mph, 1,169 km/h) / M1.1 at 35,000 ft (10,668 m)
654 kn (753 mph; 1,211 km/h) at sea level
Cruise speed: 501 kn (577 mph, 928 km/h)
Range: 1,110 nmi (1,280 mi, 2,060 km)
Service ceiling: 49,000 ft (15,000 m)
Rate of climb: 16,300 ft/min (83 m/s)
Wing loading: 84 lb/sq ft (410 kg/m2)
Thrust/weight: 0.5
Armament:
4× 30 mm (1.18 in) ADEN cannon, 125 rounds per gun
4× underwing hardpoints for a total external ordnance of 4.000 lb, including Firestreak AAMs,
SNEB pods, bombs of up to 1.000 lb caliber or two 125 imp gal (570 l) drop tanks
The kit and its assembly
This kit travesty is a remake of a simple but brilliant idea of fellow modeler chrisonord at whatifmodellers’com (www.whatifmodellers.com/index.php?topic=48434.msg899420#m...), who posted his own build in late 2020: a Grumman Tiger in standard contemporary RAF colors as Folland Wasp GR.Mk.2. The result looked like a highly credible “big brother” or maybe successor of Folland’s diminutive Midge/Gnat fighter, something in the Hawker Hunter’s class. I really like the idea a lot and decided that it was, one and a half years later, to build my personal interpretation of the subject – also because I had a Hasegawa F11F kit in The Stash™ without a proper plan.
The Tiger was built basically OOB – a simple and straightforward affair that goes together well, just the fine, raised panel lines show the mould’s age. The only changes I made: the arrester hook disappeared under PSR, small stabilizer fins (from an Italeri BAe Hawk) were added under the tail section, and I replaced the Tiger’s rugged twin wheel front landing gear with a single wheel alternative, left over from a Matchbox T-2 Buckeye. On the main landing gear, the rearward-facing stabilizing struts were deleted (for a lighter look of a land-based aircraft) and their wells filled with putty. A late modification were additional swing arms for the main landing gear, though: once the kit could sit on its own three feet, the stance was odd and low, esp. under the tail – probably due to the new front wheel. As a remedy I glued additional swing arm elements, made from 1mm steel wire, under the original struts, what moved the main wheel a little backwards and raised the main landing gear my 1mm. Does not sound like much, but it was enough to lift the tail and give the aircraft a more convincing stance and ground clearance.
The area-ruled drop tanks and their respective pylons were taken from the Hasegawa kit. For a special “British” touch – because the Tiger had a radome (into which no radar was ever fitted, though) – I added a pair of Firestreak AAMs on the outer underwing stations, procured from a Gomix Gloster Javelin (which comes with four of these, plus pylons).
Painting and markings:
Since the RAF theme was more or less settled, paintwork revolved around more or less authentical colors and markings. The Wasp received a standard RAF day fighter scheme from the late Fifties, with upper camouflage in RAF Dark Green/Dark Sea Grey and Light Aircraft Grey undersides with a low waterline. I used Humbrol 163, 106 and 166, respectively – Ocean Grey was used because I did not have the proper 164 at hand, but 106 also offered the benefit of a slightly better contrast to the murky Dark Green. A black ink washing was applied plus some panel post-shading. The silver leading edges on wings, stabilizers and fin were created with decal sheet material, avoiding the inconvenience of masking.
The cockpit interior was painted in a very dark grey (Revell 09, Anthracite) while the landing gear, wheels and wells received a greyish-metallic finish (Humbrol 56, Aluminum Dope). The air intakes’ interior became bright aluminum (Revell 99), the area around the jet nozzle was painted with Revell 91 (Iron metallic) and later treated with graphite for a dark metallic shine. The drop tanks were camouflaged, the Firestreaks became white so that they would stand out well and add to a certain vintage look.
The decals were a mix from various sources. The No. 20 Squadron badges and the Type D high-viz roundels on the wings were left over from an Airfix Hawker Hunter. The fuselage roundels came from an Italeri BAe Hawk sheet, IIRC. The bent fin flash, all the stencils as well as the serial code (which was puzzled together from two real serials and was AFAIK not allocated to any real RAF aircraft) came from an Xtradecal Supermarine Swift sheet. The individual red “B” letter came from a Matchbox A.W. Meteor night fighter.
Finally, the kit was sealed with matt acrylic varnish – I considered a glossy finish, since this was typical for RAF aircraft in the Fifties, but eventually just gave the radome a light shine.
Basically a simple project, and quickly done in just a couple of days. However, chrisonord’s great eye for similarities makes this “Tiger in disguise” a great fictional aircraft model with only little effort, it’s IMHO very convincing. And the RAF colors and markings suit the F11F very well.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The Wasp was a transonic British jet-powered fighter aircraft that was developed by Folland for the Royal Air Force (RAF) during the late 1940s and early 1950s. The Wasp’s origins could be traced back to a privately funded 1952 concept for a bigger and more capable day fighter aircraft than Folland’s very light Midget/Gnat. The Wasp’s development had been continued until the Gnat’s service introduction, and by then it had evolved under the handle “Fo-145” into a supersonic aircraft that took advantage of the new Armstrong Siddeley Sapphire turbojet engine, swept wings and area rule. The aircraft was built with the minimum airframe size to take the reheated Saphire and a radar system that would allow it to deploy the new de Havilland Blue Jay (later Firestreak) guided air-to-air missile. In this form the aircraft was expected to surpass the Royal Air Force’s contemporary day fighter, the only gun-armed Hawker Hunter, which had been in service since 1954, while using basically the same engine as its F.2 variant, in both performance and armament aspects. The missile-armed Wasp was also expected to replace the disappointing Supermarine Swift and the Fairey Fireflash AAMs that had been developed for it.
The Wasp strongly resembled the smaller Gnat, with a similar but much thinner shoulder mounted wing, with a sweep of 35° at quarter chord, but the new aircraft featured some innovations. Beyond the area-ruled fuselage, the aircraft had full-span leading edge slats and trailing edge flaps with roll control achieved using spoilers rather than traditional ailerons. Anticipating supersonic performance, the tailplane was all-moving. The cockpit had been raised and offered the pilot a much better all-round field of view.
The Wasp was armed with four 30 mm (1.18 in) ADEN cannon, located under the air intakes. Each gun had a provision of 125 rounds, from form a mutual ventral ammunition bay that could be quickly replaced. Four underwing hardpoints could carry an ordnance load of up to 4.000 lb, and the Wasp’s main armament consisted of up to four IR-guided “Firestreak” AAMs. To effectively deploy them, however, a radar system was necessary. For launch, the missile seeker was slaved to the Wasp’s AI.Mk.20 X-band radar until lock was achieved and the weapon was launched, leaving the interceptor free to acquire another target. The AI.Mk.20 had been developed by EKCO since 1953 under the development label “Green Willow” for the upcoming EE Lightning interceptor, should the latter’s more complex and powerful Ferranti AIRPASS system fail. A major advantage of the AI.Mk.20 was that it had been designed as a single unit so it could be fit into the nose of smaller single-seat fighters, despite its total weight of roughly 400 lb (200 kg). For the Firestreak AAM, EKCO had developed a spiral-scan radar with a compact 18 in (460 mm) antenna that offered an effective range of about 10 miles (16 km), although only against targets very close to the centerline of the radar. The radar’s maximum detection range was 25 mi (40 km) and the system also acted as a ranging radar, providing range input to the gyro gunsight for air-to-air gunnery.
Beyond Firestreaks, the Wasp could also carry drop tanks (which were area-ruled and coulc only be carried on the inner pair of pylons), SNEB Pods with eighteen 68 mm (2.68 in) unguided rocket projectiles against air and ground targets, or iron bombs of up to 1.000 lb caliber. Other equipment included a nose-mounted, and a forward-facing gun camera.
The Royal Air Force was sufficiently impressed to order two prototypes. Since the afterburning version of the Sapphire was not ready yet, the first prototype flew on 30 July 1954 with a non-afterburning engine, an Armstrong Siddeley Sapphire Sa.6 with 8,000 lbf (35.59 kN). In spite of this lack of power the aircraft nevertheless nearly reached Mach 1 in its maiden flight. The second prototype, equipped with the intended Sapphire Sa.7 afterburning engine with 11,000 lbf (48.9 kN) thrust engine, showed the aircraft’s full potential. The Wasp turned out to have very good handling, and the RAF officially ordered sixty Folland Fo-145 day-fighters under the designation “Wasp F.Mk.1”. The only changes from the prototypes were small leading-edge extensions at the wing roots, improving low speed handling, esp. during landings and at high angles of incidence in flight.
Most Wasps were delivered to RAF Germany frontline units, including No. 20 and 92 Squadrons based in Northern Germany. However, the Wasp’s active service did not last long, because technological advancements quickly rendered the aircraft obsolete in its original interceptor role. The Wasp’s performance had not turned out as significantly superior to the Hunter as expected. Range was rather limited, and the aircraft turned out to be underpowered, since the reheated Sapphire Sa6 did not develop as much power as expected. The AI.Mk.20 radar was rather weak and capricious, too, and the Firestreak was an operational nightmare. The missile was, due to its solid Magpie rocket motor and the ammonia coolant for the IR seeker head, highly toxic and RAF armorers had to wear some form of CRBN protection to safely mount the missile onto an aircraft. Furthermore, unlike modern missiles, Firestreak’s effectiveness was very limited since it could only be fired outside cloud - and over Europe or in winter, skies were rarely clear.
Plans for a second production run of the Folland Wasp with a more powerful Sapphire Sa7R engine with a raised thrust of 12,300 lbf (54.7 kN) and updated avionics were not carried out. During the 1960s, following the successful introduction of the supersonic English Electric Lightning in the interceptor role, the Wasp, as well as the older but more prosperous and versatile Hunter, transitioned to being operated as a fighter-bomber, advanced trainer and for tactical photo reconnaissance missions.
This led to a limited MLU program for the F.Mk.1s and conversions of the remaining airframes into two new variants: the new main version was the GR.Mk.2, a dedicated CAS/ground attack variant, which had its radar removed and replaced with ballast, outwardly recognizable through a solid metal nose which replaced the original fiberglass radome. Many of these machines also had two of the 30mm guns removed to save weight. Furthermore, a handful Wasps were converted into PR.Mk.3s. These had as set of five cameras in a new nose section with various windows, and all the guns and the ammunition bay were replaced with an additional fuel tank, operating as pure, unarmed reconnaissance aircraft. When Folland was integrated into the Hawker Siddeley Group in 1963 the aircraft’s official name was changed accordingly, even though the Folland name heritage persisted.
Most of these aircraft remained allocated to RAF Germany units and retired towards the late Sixties, but four GR.Mk.2s were operated by RAF No. 57 (Reserve) Squadron and based at No. 3 Flying Training School at Cranwell, where they were flown as adversaries in dissimilar aerial combat training. The last of the type was withdrawn from service in 1969, but one aircraft remained flying with the Aeroplane and Armament Experimental Establishment at Boscombe Down until 24 January 1975.
General characteristics:
Crew: 1
Length: 45 ft 10.5 in (13.983 m)
Wingspan: 31 ft 7.5 in (9.639 m)
Height: 13 ft 2.75 in (4.0323 m)
Wing area: 250 sq ft (23 m2)
Empty weight: 13,810 lb (6,264 kg)
Gross weight: 21,035 lb (9,541 kg)
Max takeoff weight: 23,459 lb (10,641 kg)
Powerplant:
1× Armstrong Siddeley Sapphire Sa.6, producing 7,450 lbf (33.1 kN) thrust at 8,300 rpm,
military power dry, and 11,000 lbf (48.9 kN) with afterburner
Performance:
Maximum speed: 631 kn (726 mph, 1,169 km/h) / M1.1 at 35,000 ft (10,668 m)
654 kn (753 mph; 1,211 km/h) at sea level
Cruise speed: 501 kn (577 mph, 928 km/h)
Range: 1,110 nmi (1,280 mi, 2,060 km)
Service ceiling: 49,000 ft (15,000 m)
Rate of climb: 16,300 ft/min (83 m/s)
Wing loading: 84 lb/sq ft (410 kg/m2)
Thrust/weight: 0.5
Armament:
4× 30 mm (1.18 in) ADEN cannon, 125 rounds per gun
4× underwing hardpoints for a total external ordnance of 4.000 lb, including Firestreak AAMs,
SNEB pods, bombs of up to 1.000 lb caliber or two 125 imp gal (570 l) drop tanks
The kit and its assembly
This kit travesty is a remake of a simple but brilliant idea of fellow modeler chrisonord at whatifmodellers’com (www.whatifmodellers.com/index.php?topic=48434.msg899420#m...), who posted his own build in late 2020: a Grumman Tiger in standard contemporary RAF colors as Folland Wasp GR.Mk.2. The result looked like a highly credible “big brother” or maybe successor of Folland’s diminutive Midge/Gnat fighter, something in the Hawker Hunter’s class. I really like the idea a lot and decided that it was, one and a half years later, to build my personal interpretation of the subject – also because I had a Hasegawa F11F kit in The Stash™ without a proper plan.
The Tiger was built basically OOB – a simple and straightforward affair that goes together well, just the fine, raised panel lines show the mould’s age. The only changes I made: the arrester hook disappeared under PSR, small stabilizer fins (from an Italeri BAe Hawk) were added under the tail section, and I replaced the Tiger’s rugged twin wheel front landing gear with a single wheel alternative, left over from a Matchbox T-2 Buckeye. On the main landing gear, the rearward-facing stabilizing struts were deleted (for a lighter look of a land-based aircraft) and their wells filled with putty. A late modification were additional swing arms for the main landing gear, though: once the kit could sit on its own three feet, the stance was odd and low, esp. under the tail – probably due to the new front wheel. As a remedy I glued additional swing arm elements, made from 1mm steel wire, under the original struts, what moved the main wheel a little backwards and raised the main landing gear my 1mm. Does not sound like much, but it was enough to lift the tail and give the aircraft a more convincing stance and ground clearance.
The area-ruled drop tanks and their respective pylons were taken from the Hasegawa kit. For a special “British” touch – because the Tiger had a radome (into which no radar was ever fitted, though) – I added a pair of Firestreak AAMs on the outer underwing stations, procured from a Gomix Gloster Javelin (which comes with four of these, plus pylons).
Painting and markings:
Since the RAF theme was more or less settled, paintwork revolved around more or less authentical colors and markings. The Wasp received a standard RAF day fighter scheme from the late Fifties, with upper camouflage in RAF Dark Green/Dark Sea Grey and Light Aircraft Grey undersides with a low waterline. I used Humbrol 163, 106 and 166, respectively – Ocean Grey was used because I did not have the proper 164 at hand, but 106 also offered the benefit of a slightly better contrast to the murky Dark Green. A black ink washing was applied plus some panel post-shading. The silver leading edges on wings, stabilizers and fin were created with decal sheet material, avoiding the inconvenience of masking.
The cockpit interior was painted in a very dark grey (Revell 09, Anthracite) while the landing gear, wheels and wells received a greyish-metallic finish (Humbrol 56, Aluminum Dope). The air intakes’ interior became bright aluminum (Revell 99), the area around the jet nozzle was painted with Revell 91 (Iron metallic) and later treated with graphite for a dark metallic shine. The drop tanks were camouflaged, the Firestreaks became white so that they would stand out well and add to a certain vintage look.
The decals were a mix from various sources. The No. 20 Squadron badges and the Type D high-viz roundels on the wings were left over from an Airfix Hawker Hunter. The fuselage roundels came from an Italeri BAe Hawk sheet, IIRC. The bent fin flash, all the stencils as well as the serial code (which was puzzled together from two real serials and was AFAIK not allocated to any real RAF aircraft) came from an Xtradecal Supermarine Swift sheet. The individual red “B” letter came from a Matchbox A.W. Meteor night fighter.
Finally, the kit was sealed with matt acrylic varnish – I considered a glossy finish, since this was typical for RAF aircraft in the Fifties, but eventually just gave the radome a light shine.
Basically a simple project, and quickly done in just a couple of days. However, chrisonord’s great eye for similarities makes this “Tiger in disguise” a great fictional aircraft model with only little effort, it’s IMHO very convincing. And the RAF colors and markings suit the F11F very well.
Built for destruction, the Ares features a primary cannon capable of obliterating a target from orbit. Heavily armored, the Ares is also equipped with four drone fighters, two trooper shuttles, two drone tanks, one 6-wheeled weapon platform, nearly 100 short range missiles, more than a dozen long range nuclear missiles, and a squad of commandos. (Sorry I'm still working on my photography skills.)
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The Wasp was a transonic British jet-powered fighter aircraft that was developed by Folland for the Royal Air Force (RAF) during the late 1940s and early 1950s. The Wasp’s origins could be traced back to a privately funded 1952 concept for a bigger and more capable day fighter aircraft than Folland’s very light Midget/Gnat. The Wasp’s development had been continued until the Gnat’s service introduction, and by then it had evolved under the handle “Fo-145” into a supersonic aircraft that took advantage of the new Armstrong Siddeley Sapphire turbojet engine, swept wings and area rule. The aircraft was built with the minimum airframe size to take the reheated Saphire and a radar system that would allow it to deploy the new de Havilland Blue Jay (later Firestreak) guided air-to-air missile. In this form the aircraft was expected to surpass the Royal Air Force’s contemporary day fighter, the only gun-armed Hawker Hunter, which had been in service since 1954, while using basically the same engine as its F.2 variant, in both performance and armament aspects. The missile-armed Wasp was also expected to replace the disappointing Supermarine Swift and the Fairey Fireflash AAMs that had been developed for it.
The Wasp strongly resembled the smaller Gnat, with a similar but much thinner shoulder mounted wing, with a sweep of 35° at quarter chord, but the new aircraft featured some innovations. Beyond the area-ruled fuselage, the aircraft had full-span leading edge slats and trailing edge flaps with roll control achieved using spoilers rather than traditional ailerons. Anticipating supersonic performance, the tailplane was all-moving. The cockpit had been raised and offered the pilot a much better all-round field of view.
The Wasp was armed with four 30 mm (1.18 in) ADEN cannon, located under the air intakes. Each gun had a provision of 125 rounds, from form a mutual ventral ammunition bay that could be quickly replaced. Four underwing hardpoints could carry an ordnance load of up to 4.000 lb, and the Wasp’s main armament consisted of up to four IR-guided “Firestreak” AAMs. To effectively deploy them, however, a radar system was necessary. For launch, the missile seeker was slaved to the Wasp’s AI.Mk.20 X-band radar until lock was achieved and the weapon was launched, leaving the interceptor free to acquire another target. The AI.Mk.20 had been developed by EKCO since 1953 under the development label “Green Willow” for the upcoming EE Lightning interceptor, should the latter’s more complex and powerful Ferranti AIRPASS system fail. A major advantage of the AI.Mk.20 was that it had been designed as a single unit so it could be fit into the nose of smaller single-seat fighters, despite its total weight of roughly 400 lb (200 kg). For the Firestreak AAM, EKCO had developed a spiral-scan radar with a compact 18 in (460 mm) antenna that offered an effective range of about 10 miles (16 km), although only against targets very close to the centerline of the radar. The radar’s maximum detection range was 25 mi (40 km) and the system also acted as a ranging radar, providing range input to the gyro gunsight for air-to-air gunnery.
Beyond Firestreaks, the Wasp could also carry drop tanks (which were area-ruled and coulc only be carried on the inner pair of pylons), SNEB Pods with eighteen 68 mm (2.68 in) unguided rocket projectiles against air and ground targets, or iron bombs of up to 1.000 lb caliber. Other equipment included a nose-mounted, and a forward-facing gun camera.
The Royal Air Force was sufficiently impressed to order two prototypes. Since the afterburning version of the Sapphire was not ready yet, the first prototype flew on 30 July 1954 with a non-afterburning engine, an Armstrong Siddeley Sapphire Sa.6 with 8,000 lbf (35.59 kN). In spite of this lack of power the aircraft nevertheless nearly reached Mach 1 in its maiden flight. The second prototype, equipped with the intended Sapphire Sa.7 afterburning engine with 11,000 lbf (48.9 kN) thrust engine, showed the aircraft’s full potential. The Wasp turned out to have very good handling, and the RAF officially ordered sixty Folland Fo-145 day-fighters under the designation “Wasp F.Mk.1”. The only changes from the prototypes were small leading-edge extensions at the wing roots, improving low speed handling, esp. during landings and at high angles of incidence in flight.
Most Wasps were delivered to RAF Germany frontline units, including No. 20 and 92 Squadrons based in Northern Germany. However, the Wasp’s active service did not last long, because technological advancements quickly rendered the aircraft obsolete in its original interceptor role. The Wasp’s performance had not turned out as significantly superior to the Hunter as expected. Range was rather limited, and the aircraft turned out to be underpowered, since the reheated Sapphire Sa6 did not develop as much power as expected. The AI.Mk.20 radar was rather weak and capricious, too, and the Firestreak was an operational nightmare. The missile was, due to its solid Magpie rocket motor and the ammonia coolant for the IR seeker head, highly toxic and RAF armorers had to wear some form of CRBN protection to safely mount the missile onto an aircraft. Furthermore, unlike modern missiles, Firestreak’s effectiveness was very limited since it could only be fired outside cloud - and over Europe or in winter, skies were rarely clear.
Plans for a second production run of the Folland Wasp with a more powerful Sapphire Sa7R engine with a raised thrust of 12,300 lbf (54.7 kN) and updated avionics were not carried out. During the 1960s, following the successful introduction of the supersonic English Electric Lightning in the interceptor role, the Wasp, as well as the older but more prosperous and versatile Hunter, transitioned to being operated as a fighter-bomber, advanced trainer and for tactical photo reconnaissance missions.
This led to a limited MLU program for the F.Mk.1s and conversions of the remaining airframes into two new variants: the new main version was the GR.Mk.2, a dedicated CAS/ground attack variant, which had its radar removed and replaced with ballast, outwardly recognizable through a solid metal nose which replaced the original fiberglass radome. Many of these machines also had two of the 30mm guns removed to save weight. Furthermore, a handful Wasps were converted into PR.Mk.3s. These had as set of five cameras in a new nose section with various windows, and all the guns and the ammunition bay were replaced with an additional fuel tank, operating as pure, unarmed reconnaissance aircraft. When Folland was integrated into the Hawker Siddeley Group in 1963 the aircraft’s official name was changed accordingly, even though the Folland name heritage persisted.
Most of these aircraft remained allocated to RAF Germany units and retired towards the late Sixties, but four GR.Mk.2s were operated by RAF No. 57 (Reserve) Squadron and based at No. 3 Flying Training School at Cranwell, where they were flown as adversaries in dissimilar aerial combat training. The last of the type was withdrawn from service in 1969, but one aircraft remained flying with the Aeroplane and Armament Experimental Establishment at Boscombe Down until 24 January 1975.
General characteristics:
Crew: 1
Length: 45 ft 10.5 in (13.983 m)
Wingspan: 31 ft 7.5 in (9.639 m)
Height: 13 ft 2.75 in (4.0323 m)
Wing area: 250 sq ft (23 m2)
Empty weight: 13,810 lb (6,264 kg)
Gross weight: 21,035 lb (9,541 kg)
Max takeoff weight: 23,459 lb (10,641 kg)
Powerplant:
1× Armstrong Siddeley Sapphire Sa.6, producing 7,450 lbf (33.1 kN) thrust at 8,300 rpm,
military power dry, and 11,000 lbf (48.9 kN) with afterburner
Performance:
Maximum speed: 631 kn (726 mph, 1,169 km/h) / M1.1 at 35,000 ft (10,668 m)
654 kn (753 mph; 1,211 km/h) at sea level
Cruise speed: 501 kn (577 mph, 928 km/h)
Range: 1,110 nmi (1,280 mi, 2,060 km)
Service ceiling: 49,000 ft (15,000 m)
Rate of climb: 16,300 ft/min (83 m/s)
Wing loading: 84 lb/sq ft (410 kg/m2)
Thrust/weight: 0.5
Armament:
4× 30 mm (1.18 in) ADEN cannon, 125 rounds per gun
4× underwing hardpoints for a total external ordnance of 4.000 lb, including Firestreak AAMs,
SNEB pods, bombs of up to 1.000 lb caliber or two 125 imp gal (570 l) drop tanks
The kit and its assembly
This kit travesty is a remake of a simple but brilliant idea of fellow modeler chrisonord at whatifmodellers’com (www.whatifmodellers.com/index.php?topic=48434.msg899420#m...), who posted his own build in late 2020: a Grumman Tiger in standard contemporary RAF colors as Folland Wasp GR.Mk.2. The result looked like a highly credible “big brother” or maybe successor of Folland’s diminutive Midge/Gnat fighter, something in the Hawker Hunter’s class. I really like the idea a lot and decided that it was, one and a half years later, to build my personal interpretation of the subject – also because I had a Hasegawa F11F kit in The Stash™ without a proper plan.
The Tiger was built basically OOB – a simple and straightforward affair that goes together well, just the fine, raised panel lines show the mould’s age. The only changes I made: the arrester hook disappeared under PSR, small stabilizer fins (from an Italeri BAe Hawk) were added under the tail section, and I replaced the Tiger’s rugged twin wheel front landing gear with a single wheel alternative, left over from a Matchbox T-2 Buckeye. On the main landing gear, the rearward-facing stabilizing struts were deleted (for a lighter look of a land-based aircraft) and their wells filled with putty. A late modification were additional swing arms for the main landing gear, though: once the kit could sit on its own three feet, the stance was odd and low, esp. under the tail – probably due to the new front wheel. As a remedy I glued additional swing arm elements, made from 1mm steel wire, under the original struts, what moved the main wheel a little backwards and raised the main landing gear my 1mm. Does not sound like much, but it was enough to lift the tail and give the aircraft a more convincing stance and ground clearance.
The area-ruled drop tanks and their respective pylons were taken from the Hasegawa kit. For a special “British” touch – because the Tiger had a radome (into which no radar was ever fitted, though) – I added a pair of Firestreak AAMs on the outer underwing stations, procured from a Gomix Gloster Javelin (which comes with four of these, plus pylons).
Painting and markings:
Since the RAF theme was more or less settled, paintwork revolved around more or less authentical colors and markings. The Wasp received a standard RAF day fighter scheme from the late Fifties, with upper camouflage in RAF Dark Green/Dark Sea Grey and Light Aircraft Grey undersides with a low waterline. I used Humbrol 163, 106 and 166, respectively – Ocean Grey was used because I did not have the proper 164 at hand, but 106 also offered the benefit of a slightly better contrast to the murky Dark Green. A black ink washing was applied plus some panel post-shading. The silver leading edges on wings, stabilizers and fin were created with decal sheet material, avoiding the inconvenience of masking.
The cockpit interior was painted in a very dark grey (Revell 09, Anthracite) while the landing gear, wheels and wells received a greyish-metallic finish (Humbrol 56, Aluminum Dope). The air intakes’ interior became bright aluminum (Revell 99), the area around the jet nozzle was painted with Revell 91 (Iron metallic) and later treated with graphite for a dark metallic shine. The drop tanks were camouflaged, the Firestreaks became white so that they would stand out well and add to a certain vintage look.
The decals were a mix from various sources. The No. 20 Squadron badges and the Type D high-viz roundels on the wings were left over from an Airfix Hawker Hunter. The fuselage roundels came from an Italeri BAe Hawk sheet, IIRC. The bent fin flash, all the stencils as well as the serial code (which was puzzled together from two real serials and was AFAIK not allocated to any real RAF aircraft) came from an Xtradecal Supermarine Swift sheet. The individual red “B” letter came from a Matchbox A.W. Meteor night fighter.
Finally, the kit was sealed with matt acrylic varnish – I considered a glossy finish, since this was typical for RAF aircraft in the Fifties, but eventually just gave the radome a light shine.
Basically a simple project, and quickly done in just a couple of days. However, chrisonord’s great eye for similarities makes this “Tiger in disguise” a great fictional aircraft model with only little effort, it’s IMHO very convincing. And the RAF colors and markings suit the F11F very well.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The McDonnell Douglas (now Boeing) T-45 Goshawk was a highly modified version of the BAe Hawk land-based training jet aircraft. Manufactured by McDonnell Douglas (now Boeing) and British Aerospace (now BAe Systems), the T-45 was used by the United States Navy and the United States Marine Corps (USMC) as an aircraft carrier-capable trainer.
The Goshawk's origins began in the mid-1970s, when the US Navy began looking for a single aircraft replacement for both its T-2 and TA-4 jet trainers. The US Navy started the VTXTS advanced trainer program in 1978. Several companies made submissions, e. g. North American or Northrop/Vought. Due to the size of the potential contract, European companies made submissions, too, including a navalized Alpha Jet from Dassault/Dornier and a fully carrier-capable version of the BAe Hawk Mk.60, mutually proposed by British Aerospace (BAe) and McDonnell Douglas (MDC). The latter eventually won the competition and BAe and MDC were awarded the T-45 contract in 1981.
The Hawk had not been designed for carrier operations and numerous modifications were required to make it suitable for use on carriers. These included improvements to the low-speed handling characteristics and a reduction in the approach speed. It was found that the aircraft was apt to stall at the low approach speed required. Modifications were designed by BAe in England; most notably a simple slat system was devised, operated by an actuator and linkage mechanism to fit into the small space available. Strakes were also added on the fuselage to improve airflow. Other changes were a strengthened airframe, a more robust and wider landing gear with a two-wheel nose landing gear, a catapult tow bar attachment and an arresting hook. The modified aircraft was christened “Goshawk”, flew in 1988 for the first time and became operational in 1991.
Beyond being a naval trainer the T-45 was also adapted for first-line duty with strike capabilities, in the form of the OA-45 for the USMC. The role of this aircraft dated back to the Vietnam War when twenty-three A-4 two-seaters were converted into OA-4Ms for “FastFAC” (Fast Forward Air Controller) missions, in order to control interdiction sorties dedicated to shaping the battlefield for future operations. Basically, the OA-4M was a TA-4F equipped with A-4M electronics. The most visible and characteristic change was the fitting of the A-4M’s dorsal electronics hump, neatly faired into the rear of the two-seat canopy. The nose sensor group of the OA-4M was basically the same as that of the A-4M, but the Angle/Rate Bombing system was not installed as it would not be needed.
When the T-45 was introduced in the early Nineties, the USMCs OA-4Ms had reached the end of their service life and the USMC started looking for a replacement, wanting a comparable, light and fast fixed-wing aircraft. The USMC did not accept the LTV A-7 as an A-4 replacement (even though a two-seater version was available), because it was already dated, too, and not part of the USMC inventory. The USMC's A-4Ms were supposed to be replaced by the VTOL AV-8 by the mid-nineties, but the AV-8, even as a two-seater, was deemed unsuitable for FFAC duties. The new T-45 looked like a good and economical alternative with future potential, since the airframe was brand new and the type's infrastructure was fully established, so that a small number of specialized aircraft could easily be supported without much extra cost.
With fresh experience from the 1st Gulf War in 1990-91 the decision was made to buy 25 extra T-45A airframes and convert them to OA-45A standard. Most important change were modified wings, using structures and systems from the BAe Hawk 100 series. While the T-45 only had two underwing and a single ventral hardpoint, the OA-45A featured a total of seven: four underwing and one ventral hardpoints, plus wingtip stations for defensive air-to-air missiles. Upgraded avionics allowed the deployment of a wide range of external stores, including air-to-ground missiles and rocket launchers, a reconnaissance pod, retarded and free-fall bombs of up to 1,000 pounds (450 kg) caliber, runway cratering, anti-personnel and light armor bombs, cluster bombs, practice bombs as well as external fuel tanks and ECM pods. This was a vital asset, since Desert Storm had proved that FFAC aircraft had to have an offensive capability to handle targets of opportunity on their own, when no air assets to control were available. A total ordnance load of up to 6,800 lb (3,085 kg) was possible, even though the aircraft was not supposed to play an offensive role and rather act from a distance, relying on its small size and agility.
Communication modifications for the FastFAC role included a KY-28 secure voice system, an ARC-159 radio and an ARC-114 VHF radio. Similar to the Skyhawk, a hump behind the cockpit had to be added to make room for the additional electronic equipment and a heat exchanger. Other additions were a continuous-wave Doppler navigation radar under a shallow ventral radome underneath the cockpit, a ground control bombing system, an APN-194 altimeter, an ALR-45 radar warning suite, a retrofitted, fixed midair refueling probe and cockpit armor plating that included Kevlar linings on the floor and the lower side walls as well as externally mounted armor plates for the upper areas.
VMA-131 of Marine Aircraft Group 49 (the Diamondbacks) retired its last four OA-4Ms on 22 June 1994, and the new OA-45A arrived just in time to replace the venerable Skyhawk two-seaters in the FastFAC role. Trainer versions of the Skyhawk remained in Navy service, however, finding a new lease on life with the advent of "adversary training". OA-45A deliveries were finished in 1996 and the 25 aircraft were distributed among the newly established Marine Aviation Logistics Squadron (MALS, formerly Headquarters & Maintenance Squadron/H&MS) 12 & 13. The USMC crews soon nicknamed their new mounts "GosHog", to underlöine ist offensive capabilities and to set themselves apart from the USN's "tame" trainers. Even though thos name was never officially approved it caught on quickly.
After initial experience with the new aircraft and in the wake of technological advances, the USMC decided to upgrade the OA-45As in 2000 to improve its effectiveness and interaction capabilities with ground troops. This primarily resulted in the addition of a forward-looking infrared camera laser in the aircraft’s nose section, which enabled the aircraft to execute all-weather/night reconnaissance and to illuminate targets for laser-guided infantry shells or ordnance launched by the OA-45 itself or by other aircraft. Through this measure the OA-45 became capable of carrying and independently deploying light laser-guided smart weapons like the GBU-12 and -16 “Paveway II” glide bombs or the laser-guided AGM-65E “Maverick” variant. The update was gradually executed during regular overhauls in the course of 2001 and 2002 (no new airframes were built/converted), the modified machines received the new designation OA-45B.
After this update phase, the OA-45Bs were deployed in several global conflicts and saw frequent use in the following years. For instance, MALS 13 used its OA-45Bs operationally for the first time in October 2002 when the squadron was tasked with providing support to six AV-8B Harrier aircraft in combat operations in Afghanistan during Operation Enduring Freedom. This mission lasted until October 2003, four aircraft were allocated and one OA-45B was lost during a landing accident.
On 15 January 2003, MALS 13 embarked 205 Marines and equipment aboard the USS Bonhomme Richard in support of combat operations in Southwest Asia during Operation Southern Watch. Four OA-45Bs successfully supported these troops from land bases, marking targets and flying reconnaissance missions.
Furthermore, six MALS 13 OA-45Bs took actively part in Operation Iraqi Freedom from Al Jaber Air Base, Kuwait, and An Numiniyah Expeditionary Air Field, Iraq, where the aircraft worked closely together with the advancing ground troops of the USMC’s 15th Marine Expeditionary Unit. They successfully illuminated targets for US Navy fighter bombers, which were launched from USS Abraham Lincoln (CVN-72) in the Persian Gulf, and effectively guided these aircraft to their targets. Two OA-45Bs were lost during this conflict, one through enemy MANPADS, the other through friendly AA fire. In late May 2003 the surviving machines and their crews returned to MCAS Yuma.
On 16 March 2007, the 200th T-45 airframe was delivered to the US Navy. From this final batch, six airframes were set aside and modified into OA-45Bs in order to fill the losses over the past years.
Later T-45 production aircraft were built with enhanced avionics systems for a heads-up display (HUD) and glass cockpit standard, while all extant T-45A aircraft were eventually converted to a T-45C configuration under the T-45 Required Avionics Modernization Program (T-45 RAMP), bringing all aircraft to same HUD plus glass cockpit standard. These updates, esp. concerning the cockpit, were introduced to the OA-45Bs, too, and they were re-designated again, now becoming OA-45Cs, to reflect the commonality with the Navy’s Goshawk trainers. Again, these modifications were gradually introduced in the course of the OA-45s’ normal maintenance program.
In 2007, an engine update of the whole T-45 fleet, including the OA-45s, with the Adour F405-RR-402 was considered. This new engine was based on the British Adour Mk 951, designed for the latest versions of the BAe Hawk and powering the BAe Taranis and Dassault nEUROn UCAV technology demonstrators. The Adour Mk 951 offered 6,500 lbf (29 kN) thrust and up to twice the service life of the F405-RR-401. It featured an all-new fan and combustor, revised HP and LP turbines, and introduced Full Authority Digital Engine Control (FADEC). The Mk 951 was certified in 2005, the F405-RR-402 derived from it was certified in 2008, but it did not enter service due to funding issues, so that this upgrade was not carried out.
The final delivery of the 246th T-45 airframe took place in November 2009, and both T-45 and the OA-45 "GosHog" are supposed to remain in service until 2035.
General characteristics:
Crew: 2 (pilot, observer)
Length: 39 ft 4 in (11.99 m)
Wingspan: 30 ft 10 in (9.39 m)
Height: 13 ft 5 in (4.08 m)
Wing area: 190.1 ft² (17.7 m²)
Empty weight: 10,403 lb (4,460 kg)
Max. takeoff weight: 14,081 lb (6,387 kg)
Powerplant:
1× Rolls-Royce Turbomeca F405-RR-401 (Adour) non-afterburning turbofan with 5,527 lbf (26 kN)
Performance:
Maximum speed: Mach 2 (2,204 km/h (1,190 kn; 1,370 mph) at high altitude
Combat radius: 800 km (497 mi, 432 nmi)
Ferry range: 3,200 km (1,983 mi) with drop tanks
Service ceiling: 15,240 m (50,000 ft)
Wing loading: 283 kg/m² (58 lb/ft²)
Thrust/weight: 0.97
Maximum g-load: +9 g
Armament:
No internal gun; seven external hardpoints (three on each wing and one under fuselage)
for a wide range of ordnance of up to 6,800 lb (3,085 kg), including up to six AIM-9 Sidewinder for
self-defense, pods with unguided rockets for target marking or ECM pods, but also offensive weapons
of up to 1.000 lb (454 kg) weight, including iron/cluster bombs and guided AGM-65, GBU-12 and -16.
The kit and its assembly:
This fictional T-45 variant is actually the result of a long idea evolution, and simply rooted in the idea of a dedicated OA-4M replacement for the USMC; in real life, the FFAC role has been transferred to F-18 two-seaters, though, but the T-45 appeared like a sound alternative to me.
There's only one T-45 kit available, a dubious T-45A from Italeri with poor wings and stabilizers. Wolfpack also offers a T-45, but it’s just a re-boxing of the Italeri kit with some PE parts and a price tag twice as big – but it does not mend the original kit’s issues… After reading the A-4 Skyhawk book from the French "Planes & Pilots" series, I was reminded of the USMC's special OA-4M FAC two-seaters (and the fact that it is available in kit form from Italeri and Hasegawa), and, cross-checking the real-world timeline of the T-45, I found that it could have been a suitable successor. The ide of the USMC’s OA-45 was born! :D
Building-wise the Italeri T-45 remained close to OOB, even though I transplanted several parts from an Italeri BAe Hawk Mk. 100 to create a different look. I modified the nose with the Mk. 100’s laser fairing and added some radar warning sensor bumps. This transplantation was not as easy as it might seem because the T-45’s nose is, due to the different and more massive front landing gear quite different from the Hawk’s. Took some major PSR to integrate the laser nose.
An ALR-45 “hot dog” fairing from a late A-4M (Italeri kit) was added to the fin, together with a small styrene wedge extending the fin’s leading edge. This small detail markedly changes the aircraft’s look. I furthermore added a refueling probe, scratched from coated wire and some white glue, as well as a low “camel back” fairing behind the cockpit, created from a streamlined bomb half with air outlets for an integrated heat exchanger. Blade antennae were relocated and added. A shallow bump for the Doppler radar was added under the fuselage behind the landing gear well – left over from an Airfix A-4B (from an Argentinian A-4P, to be correct, actually a dorsal fairing).
On the wings, a tailored pair of pylons and wing tip launch rails from the Italeri BAe Hawk Mk. 100 kit were added, too, as well as the donor kit’s pair of Sidewinders. The rest of the ordnance consists of drop tanks and LAU-19 pods for target marking missiles. The tanks were taken from the Hawk Mk. 100 kit, too, the rocket launchers came from an Italeri NATO aircraft weapons set. The centerline position carries an ALQ-131 ECM pod from a Hasegawa US aircraft weapons set on a pylon from the scrap box.
Painting and markings:
The low-viz idea prevailed, since I had some leftover OA-4M decals from Italeri kits in store, as well as some other suitable low-viz decals from a Revell A-4F kit. However, an all-grey livery was IMHO not enough, and when I came across a picture of a USN low-viz A-7E with an improvised desert camouflage in sand and reddish brown applied over the grey (even partly extending over its markings) from Operation Iraqi Freedom, I had that extra twist that would set the OA-45 apart. MALS-13 was chosen as operator because I had matching codes, and, as another benefit, the unit had actually been deployed overseas during the 2003 Iraq War, so that the whif’’s time frame was easily settled, adding to its credibility.
The livery was built up just like on the real aircraft: on top of a basic scheme in FS 36320 and 36375 (Humbrol 128 and 127) with a slightly darker anti-glare panel in front of the cockpit (FS 35237, I used Revell 57 as a slightly paler alternative) I applied the low-viz marking decals, which were protected with a coat of acrylic varnish. Next, additional desert camouflage was added with dry-brushed sand and millitary brown (supposedly FS 33711 and 30400 in real life, I used, after consulting pictures of aircraft from both Gulf Wars, Humbrol 103 (Cream) and 234 (Dark Flesh). They were applied with a kind of a dry-brushing technique, for a streaky and worn look, leaving out the codes and other markings. The pattern itself was inspired by an USMC OV-10 Bronco in desert camouflage from the 1st Gulf War.
On top of that a black ink washing was applied. Once things had thoroughly dried over night, I wet-sanded the additional desert camouflage away, carefully from front to back, so that the edges became blurred and the underlying grey became visible again.
The cockpit interior was painted in standard Dark Gull Grey (Humbrol 140), while the air intakes and the landing gear became white, the latter with red trim on the covers’ edges – just standard. Finally, the model was sealed with a coat of matt acrylic varnish (Italeri).
The upgraded T-45 is an interesting result. The add-ons suit the aircraft, which already looks sturdier than its land-based ancestor, well. The improvised desert paint scheme with the additional two-tone camouflage over the pale grey base really makes the aircraft an unusual sight, adding to its credibility.
Hardware-wise I am really happy how the added dorsal hump blends into the overall lines – in a profile view it extends the canopy’s curve and blends into the fin, much like the A-4F/M’s arrangement. And the modified fin yields a very different look, even though not much was changed. The T-45 looks much beefier now, and from certain angles really reminds of the OA-4M and sometimes even of a diminutive Su-25?
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The Mikoyan-Gurevich MiG-19 (Russian: Микоян и Гуревич МиГ-19) (NATO reporting name: "Farmer") was a Soviet second-generation, single-seat, twin jet-engined fighter aircraft. It was the first Soviet production aircraft capable of supersonic speeds in level flight. It was, more oe less, the counterpart of the North American F-100 Super Sabre, although the MiG-19 would primarily oppose the more modern McDonnell Douglas F-4 Phantom II and Republic F-105 Thunderchief over North Vietnam.
On 20 April 1951, OKB-155 was given the order to develop the MiG-17 into a new fighter called "I-340", which was to be powered by two Mikulin AM-5 non-afterburning jet engines (a scaled-down version of the Mikulin AM-3) with 19.6 kN (4,410 lbf) of thrust. The I-340 was supposed to attain 1,160 km/h (725 mph, Mach 1) at 2,000 m (6,562 ft), 1,080 km/h (675 mph, Mach 0.97) at 10,000 m (32,808 ft), climb to 10,000 m (32,808 ft) in 2.9 minutes, and have a service ceiling of no less than 17,500 m (57,415 ft).
The new fighter, internally designated "SM-1", was designed around the "SI-02" airframe (a MiG-17 prototype) modified to accept two engines in a side-by-side arrangement and was completed in March 1952.
Initial enthusiasm for the aircraft was dampened by several problems. The most alarming of these was the danger of a midair explosion due to overheating of the fuselage fuel tanks located between the engines. Deployment of airbrakes at high speeds caused a high-g pitch-up. Elevators lacked authority at supersonic speeds. The high landing speed of 230 km/h (145 mph) (compared to 160 km/h (100 mph) in the MiG-15), combined with absence of a two-seat trainer version, slowed pilot transition to the type. Handling problems were addressed with the second prototype, "SM-9/2", which added a third ventral airbrake and introduced all-moving tailplanes with a damper to prevent pilot-induced oscillations at subsonic speeds. It flew on 16 September 1954, and entered production as the MiG-19S.
Approximately 5.500 MiG-19s were produced, first in the USSR and in Czechoslovakia as the Avia S-105, but mainly in the People's Republic of China as the Shenyang J-6. The aircraft saw service with a number of other national air forces, including those of Cuba, North Vietnam, Egypt, Pakistan, and North Korea. The aircraft saw combat during the Vietnam War, the 1967 Six Day War, and the 1971 Bangladesh War.
All Soviet-built MiG-19 variants were single-seaters only, although the Chinese later developed the JJ-6 trainer version of the Shenyang J-6. Among the original "Farmer" variants were also several radar-equipped all-weather fighters and the MiG-19R, a reconnaissance version of the MiG-19S with cameras replacing the nose cannon in a canoe-shaped fairing under the forward fuselage and powered by uprated RD-9BF-1 engines with about 10% more dry thrust and an improved afterburner system.
The MiG19R was intended for low/medium altitude photo reconnaissance. Four AFA-39 daylight cameras (one facing forward, one vertical and two obliquely mounted) were carried. Nighttime operations were only enabled through flare bombs, up to four could be carried on four hardpoints under the wings, even though the outer "wet" pylons were frequently occupied by a pair of 800l drop tanks.
The MiG-19R was not produced in large numbers and only a few were operated outside of the Soviet Union. The NATO reporting name remained unchanged (Farmer C). A recon variant of the MiG-19 stayed on many air forces' agendas, even though only the original, Soviet type was actually produced. Czechoslovakia developed an indigenous reconnaissance variant, but it did not enter series production, as well as Chinese J-6 variants, which only reached the prototype stage.
One of the MiG-19R's few foreign operators was the Polish Navy. The Polish Air Force had received a total of 22 MiG-19P and 14 MiG-19PM interceptors in 1957 (locally dubbed Lim-7), and at that time photo reconnaissance for both Air Force and Navy was covered by a version of the MiG-17 (Lim-5R). Especially the Polish Navy was interested in a faster aircraft for quick identification missions over the Baltic Sea, and so six MiG-19R from Soviet stock were bought in 1960 for the Polish Navy air arm.
Anyway, Poland generally regarded the MiG-19 family only as an interim solution until more potent types like the MiG-21 became available. Therefore, most of the fighters were already sold to Bulgaria in 1965/66, and any remaining Farmer fighters in Polish Air Force Service were phased out by 1974.
The Polish Navy MiG-19R were kept in service until 1982 through the 3rd Group of the 7th Polish Naval Squadron (PLS), even though only a quartet remained since two Lim-7R, how the type was called in Poland, had been lost through accidents during the early 70ies. Ironically, the older Lim6R (a domestic photo reconnaissance variant of the license-built MiG-17 fighter bomber) was even kept in service until the late 80ies, but eventually all these aircraft were replaced by MiG-21R and Su-22M4R.
General characteristics:
Crew: One
Length: 12.54 m (41 ft)
Wingspan: 9.0 m (29 ft 6 in)
Height: 3.9 m (12 ft 10 in)
Wing area: 25.0 m² (270 ft²)
Empty weight: 5,447 kg (11,983 lb)
Max. take-off weight: 7,560 kg (16,632 lb)
Powerplant:
2× Tumansky RD-9BF-1 afterburning turbojets, 31.9 kN (7,178 lbf) each
Performance:
Maximum speed: 1.500 km/h (930 mph)
Range: 1,390 km (860 mi) 2,200 km with external tanks
Service ceiling: 17,500 m (57,400 ft)
Rate of climb: 180 m/s (35,425 ft/min)
Wing loading: 302.4 kg/m² (61.6 lb/ft²)
Thrust/weight: 0.86
Armament:
2x 30 mm NR-30 cannons in the wing roots with 75 RPG
4x underwing pylons, with a maximum load of 1.000 kg (2.205 lb);
typically only 2 drop tanks were carried, or pods with flare missiles
The kit and its assembly:
Again, a rather subtle whif. The MiG-19R existed, but was only produced in small numbers and AFAIK only operated by the Soviet Union. Conversions of license-built machines in Czechoslovakia and China never went it beyond prototype stage.
Beyond that, there’s no kit of the recon variant, even pictures of real aircraft are hard to find for refefence – so I decided to convert a vintage Kovozavody/KP Models MiG-19S fighter from the pile into this exotic Farmer variant.
Overall, the old KP kit is not bad at all, even though you get raised details, lots of flash and mediocre fit, the pilot's seat is rather funny. Yes, today’s standards are different, but anything you could ask for is there. The kit is more complete than a lot of more modern offerings and the resulting representation of a MiG-19 is IMHO good.
Mods I made are minimal. Most prominent feature is the camera fairing in place of the fuselage cannon, scratched from a massive weapon pylon (Academy F-104G). Probably turned out a bit too large and pronounced, but it’s whifworld, after all!
Other detail changes include new main wheels (from a Revell G.91), some added/scratched details in the cockpit with an opened canopy, and extra air scoops on the fuselage for the uprated engines. The drop tanks are OOB, I just added the small stabilizer pylons from styrene sheet.
Other pimp additions are scratched cannons (made from Q-Tips!), and inside of the exhausts the rear wall was drilled up and afterburner dummies (wheels from a Panzer IV) inserted - even though you can hardly see that at all...
Painting and markings:
This is where the fun actually begins. ANY of the few MiG-19 in Polish service I have ever seen was left in a bare metal finish, and the Polish Navy actually never operated the type.
Anyway, the naval forces make a good excuse for a camouflaged machine – and the fact that the naval service used rather complex patterns with weird colors on its machines (e. g. on MiG-17, MiG-15 UTI or PZL Iskras and An-2) made this topic even more interesting, and colorful.
My paint scheme is a mix of various real world aircraft “designs”. Four(!) upper colors were typical. I ended up with:
• Dark Grey (FS 36118, Modelmaster)
• Dark Green (RAF Dark Green, Modelmaster)
• Blue-Green-Grey (Fulcrum Green-Grey, Modelmaster)
• Greenish Ochre (a mix of Humbrol 84 and Zinc Chromate Green, Modelmaster)
Plus…
• Light Blue undersides (FS 35414, Modelmaster, also taken into the air intake)
The pattern was basically lent from an Iskra trainer and translated onto the swept wing MiG. The scheme is in so far noteworthy because the stabilizers carry the upper camo scheme on the undersides, too!?
I only did light shading and weathering, since all Polish Navy service aircraft I found had a arther clean and pristine look. A light black ink wash helped to emphasize the many fine raised panel lines, as well as some final overall dry painting with light grey.
The cockpit interior was painted in the notorious “Russian Cockpit Blue-Green” (Modelmaster), dashboard and are behind the seat were painted medium grey (FS 36231). The landing gear wells were kept in Aluminum (Humbrol 56), while the struts received a lighter acrylic Aluminum from Revell.
The wheel discs were painted bright green (Humbrol 131), but with the other shocking colors around that does not stand out at all…! The engine nozzles were treated with Modelmaster Metallizer, including Steel, Gun Metal and Titanium, plus some grinded graphite which adds an extra metallic shine.
The national “checkerboard” markings were puzzled together from various old decal sheets; the red tactical code was made with single digit decals (from a Begemot MiG-29 sheet); the squadron marking on the fin is fictional, the bird scaring eyes are a strange but als typical addition and I added some few stencils.
Finally, all was sealed under a coat of matt acrylic varnish (Revell).
In the end, not a simple whif with only little conversion surgery. But the paint scheme is rather original, if not psychedelic – this MiG looks as if a six-year-old had painted it, but it’s pretty true to reality and I can imagine that it is even very effective in an environment like the Baltic Sea.
Some background:
The VF-1 was developed by Stonewell/Bellcom/Shinnakasu for the U.N. Spacy by using alien Overtechnology obtained from the SDF-1 Macross alien spaceship. It was preceded into production by an aerodynamic proving version of its airframe, the VF-X. Unlike all later VF vehicles, the VF-X was strictly a jet aircraft, built to demonstrate that a jet fighter with the features necessary to convert to Battroid mode was aerodynamically feasible.
After the VF-X's testing was finished, an advanced concept atmospheric-only prototype, the VF-0 Phoenix, was flight-tested from 2005 to 2007 and briefly served as an active-duty fighter from 2007 to the VF-1's rollout in late 2008, while the bugs were being worked out of the full-up VF-1 prototype (VF-X-1).
The space-capable VF-1's combat debut was on February 7, 2009, during the Battle of South Ataria Island - the first battle of Space War I, and was the mainstay fighter of the U.N. Spacy for the entire conflict. Introduced in 2008, the VF-1 would be out of frontline service just five years later.
The VF-1 proved to be an extremely capable craft, successfully combating a variety of Zentraedi mecha even in most sorties, which saw UN Spacy forces significantly outnumbered. The versatility of the Valkyrie design enabled the variable fighter to act as both large-scale infantry and as air/space superiority fighter. The signature skills of U.N. Spacy ace pilot Maximilian Jenius exemplified the effectiveness of the variable systems as he near-constantly transformed the Valkyrie in battle to seize advantages of each mode as combat conditions changed from moment to moment.
The basic VF-1 was deployed in four minor variants (designated A, D, J, and S) with constant updates and several sub-variants during its long and successful career. Its success was increased by the GBP-1S "Armored" Valkyrie and FAST Pack "Super" Valkyrie weapon systems, the latter enabling the fighter to operate in space.
After the end of Space War I, the VF-1A continued to be manufactured both in the Sol system (notably on the Lunar facility Apollo Base) and throughout the UNG space colonies. Although the VF-1 would eventually be replaced as the primary VF of the UN Spacy by the more capable, but also much bigger, VF-4 Lightning III in 2020, a long service record and continued production after the war proved the lasting worth of the design.
One notable operator of the VF-1 was the U.N. Spacy's Zentraedi Fleet, namely SVF-789, which was founded in 2012 as a cultural integration and training squadron with two flights of VF-1 at Tefé in Brazil. This mixed all-Zentraedi/Meltraedi unit was the first in the UN Spacy’s Zentraedi Fleet to be completely equipped with the 1st generation Valkyrie (other units, like SVF-122, which was made up exclusively from Zentraedi loyalists, kept a mixed lot of vehicles).
SVF-789’s flight leaders and some of its instructors were all former Quadrono Battalion aces (under the command of the famous Milia Fallyna, later married with aforementioned Maximilian Jenius), e. g. the Meltraedi pilot Taqisha T’saqeel who commanded SVF-789’s 3rd Flight.
Almost all future Zentraedi and Meltradi pilots for the U.N. Spacy received their training at Tefé, and the squadron was soon expanded to a total of five flights. During this early phase of the squadron's long career the VF-1s carried a characteristic dark-green wrap-around scheme, frequently decorated with colorful trim, reflecting the unit’s Zentraedi/Meltraedi heritage (the squadron’s motto and title “Dar es Carrack” meant “Victory is everywhere”) and boldly representing the individual flights.
In late 2013 the unit embarked upon Breetai Kridanik’s Nupetiet-Vergnitzs-Class Fleet Command Battleship, and the machines received a standard all-grey livery, even though some typical decoration (e. g. the squadron code in Zentraedi symbols) remained.
When the UN Spacy eventually mothballed the majority of its legacy Zentraedi ships, the unit was re-assigned to the Tokugawa-class Super Dimensional Carrier UES Xerxes. In 2022, SVF-789 left the Sol System as part of the Pioneer Mission. By this time it had been made part of the Expeditionary Marine Corps and re-equipped with VAF-6 Alphas.
The VF-1 was without doubt the most recognizable variable fighter of Space War I and was seen as a vibrant symbol of the U.N. Spacy even into the first year of the New Era 0001 in 2013. At the end of 2015 the final rollout of the VF-1 was celebrated at a special ceremony, commemorating this most famous of variable fighters.
The VF-1 Valkryie was built from 2006 to 2013 with a total production of 5,459 VF-1 variable fighters with several variants (VF-1A = 5,093, VF-1D = 85, VF-1J = 49, VF-1S = 30, VF-1G = 12, VE-1 = 122, VT-1 = 68) and ongoing modernization programs like the “Plus” MLU update that incorporated stronger engines and avionics from the VF-1’s successor, the VF-4 (including the more powerful radar, IRST sensor and a laser designator/range finder). These updates later led to the VF-1N, P an X variants.
However, the fighter remained active in many second line units and continued to show its worthiness years later, e. g. through Milia Jenius who would use her old VF-1 fighter in defense of the colonization fleet - 35 years after the type's service introduction!
General characteristics:
Equipment Type: all-environment variable fighter and tactical combat battroid
Government: U.N. Spacy, U.N. Navy, U.N. Space Air Force
Accommodation: pilot only in Marty & Beck Mk-7 zero/zero ejection seat
Dimensions:
Fighter Mode:
Length 14.23 meters
Wingspan 14.78 meters (fully extended)
Height 3.84 meters
Battroid Mode:
Height 12.68 meters
Width 7.3 meters
Length 4.0 meters
Empty weight: 13.25 metric tons;
Standard T-O mass: 18.5 metric tons;
MTOW: 37.0 metric tons
Powerplant:
2x Shinnakasu Heavy Industry/P&W/Roice FF-2008 thermonuclear reaction turbine engines, output 650 MW each, rated at 11,500 kg in standard or in overboost (225.63 kN x 2)
4 x Shinnakasu Heavy Industry NBS-1 high-thrust vernier thrusters (1 x counter reverse vernier thruster nozzle mounted on the side of each leg nacelle/air intake, 1 x wing thruster roll control system on each wingtip);
18 x P&W LHP04 low-thrust vernier thrusters beneath multipurpose hook/handles
Performance:
Battroid Mode: maximum walking speed 160 km/h
Fighter Mode: at 10,000 m Mach 2.71; at 30,000+ m Mach 3.87
g limit: in space +7
Thrust-to-weight ratio: empty 3.47; standard T-O 2.49; maximum T-O 1.24
Design features:
3-mode variable transformation; variable geometry wing; vertical take-off and landing; control-configurable vehicle; single-axis thrust vectoring; three "magic hand" manipulators for maintenance use; retractable canopy shield for Battroid mode and atmospheric reentry; option of GBP-1S system, atmospheric-escape booster, or FAST Pack system
Transformation:
Standard time from Fighter to Battroid (automated): under 5 sec.
Minimum time from Fighter to Battroid (manual): 0.9 sec.
Armament:
2x internal Mauler RÖV-20 anti-aircraft laser cannon, firing 6,000 pulses per minute
1x Howard GU-11 55 mm three-barrel Gatling gun pod with 200 rds fired at 1,200 rds/min
4 x underwing hard points for a wide variety of ordnance, including
- 12x AMM-1 hybrid guided multipurpose missiles (3/point), or
- 12x MK-82 LDGB conventional bombs (3/point), or
- 6x RMS-1 large anti-ship reaction missiles (2/outboard point, 1/inboard point), or
- 4x UUM-7 micro-missile pods (1/point), each carrying 15x Bifors HMM-01 micro-missiles,
or a combination of above load-outs
Optional Armament:
Shinnakasu Heavy Industry GBP-1S ground-combat protector weapon system, or
Shinnakasu Heavy Industry FAST Pack augmentative space weapon system
The kit and its assembly:
The second vintage 1:100 ARII VF-1 as a part of a Zentraedi squadron series, the canonical SVF-789. This one was inspired by a profile of such a machine in the “Macross Variable Fighter Master File: VF-1 Valkyrie Part 1” Art Book – true robot porn and full of valuable detail and background material for anyone who’d consider building a VF-1.
The SVF-789 machine shown in the book is a simple VF-1A, but with Zentraedi language markings and in a rather unusual livery in all dark green, yellow and black trim and grey low-viz roundels. While this does IMHO not really look sexy, I found the idea of a squadron, manned by former (alien) enemies very interesting. And so I took up the idea and started fleshing it out – including the idea of SVF-789’s initial base deep in the Amazonian jungle (justifying somehow the all-green livery!?).
This second build was to represent a flight leader’s aircraft, and consequently the basis is a VF-1J kit (which only differs outwardly through the head). In order to set the machine a little more apart I decided to incorporate some “Plus” program updates, including a different nose tip for the updated radar and two small fairings for IRST and laser designator sensors above and below the nose section, respectively. The fins’ tips were also modified – they were elongated a little through styrene sheet replacements.
This update is a bit early for the official Macross timeline, but I just wanted more than a standard J Valkyrie in a more exotic paint scheme.
Otherwise, this VF-1J fighter kit was built OOB, with the landing gear tucked up and the usual additions of some blade antennae, a pilot figure and a custom display stand in/under the ventral cannon pod.
The ordnance is non-standard, though; in this case the aircraft received two pairs of air-to-ground missiles (actually some misshapen Soviet AAMs from the Academy MiG-23 kit – either very fat R-60 ‘Aphid’ AAMs or very poor renditions of vintage K-6 ‘Alkali’ missiles?) inboards and four AMM-1 missiles on the outer pylons, with the lowest missile replaced by scratched ECM and chaff dispenser pods. The gun pod was also modified with a new nozzle, with parts from a surplus AMM-1 missile – also inspired by a source book entry.
Painting and markings:
This was planned to be a more exotic or extravagant interpretation of the profile from the book, which was already used as a guideline for the VF-1A build. The overall design of an all-green livery with a white nose tip as basis was kept, together with yellow trim on wings, fins and the stabilizer fins on the Valkyrie’s legs. The VF-1A already deviated from this slightly, but now I wanted something more outstanding – a bold flight leader’s mount.
Zentraedi vehicles tend to be rather colorful, so the tones I chose for painting were rather bright. For instance, the initial idea for the green was FS 34079, a tone which also comes close to the printed profile in the book. But it looked IMHO too militaristic, or too little anime-esque, so I eventually settled for something brighter and used Humbrol 195 (called Dark Satin Green, but it’s actually RAL 6020, Chromoxyd Grün, a color used on German railway wagons during and after WWII), later shaded with black ink for the engravings and Humbrol 76 (Uniform Green) for highlights.
The nose became pure white, the leading edge trim was painted with Revell 310 (Lufthansa Gelb, RAL 1028), a deep and rich tone that stands out well from the murky green.
In order to set this J Valkyrie apart from the all-dark green basic VF-1As, I added two bright green tones and a light purple as flight color: Humbrol 36 (called Pastel Green, but it’s actually very yellow-ish), 38 (Lime) and Napoleonic Violet from ModelMaster’s Authentic Line, respectively. 36 was applied to the lower legs and around the cockpit section, including the spinal fairing with the air brake. The slightly darker 38 was used on the wings and fins as well as for the fuselage’s and wings’ underside. On top of the wings and the inner and outer fins, the surfaces were segmented, with the dark green as basic color.
As an additional contrast, the head, shoulder guards and additional trim highlights on the legs as well as for a double chevron on the breast plate were painted in the pale purple tone. A sick color combination, but very Zentraedi/Meltraedi-esque!
The cockpit interior was, according to Macross references, painted in Dark Gull Grey. The seat received brown cushions and the pilot figure was turned into a micronized Meltraedi (yes, the fictional pilot Taqisha T’saqeel is to be female) with a colorful jumpsuit in violet and white, plus a white and red helmet – and bright green skin! The gun pod became dark blue (Humbrol 112, Field Blue), the AMM-1 missiles received a pale grey livery while the air-to-ground missiles and the chaff dispenser became olive drab. As an additional contrast, the ECM pod became white. A wild mix of colors!
This was even enhanced through U.N. Spacy roundels in standard full color – their red really stands out. The squadron emblem/symbol on the fin was painted with a brush, but in this case in a smaller variant and with two USN/USAF style code letters for the home basis added.
Since I can not print white letters onto clear decal sheet at home, the aircraft’s tactical code ‘300’ was created with letters from the human alphabet. A simplification and deviation from the original concept, but I found the only alternative of painting tiny and delicate Zentraedi codes by brush and hand just to be too risky.
Finally, the kit was sealed with a sheen acrylic varnish – with the many, contrasting colors a pure matt finish somehow did not appear right.
Building was relatively simple, just the rhinoplasty was a little tricky – a very subtle modification, though, but the pointed and slightly deeper nose changed the VF-1’s look. The standard Zentraedi-style VF-1 of SVF-789 already looked …different, but this one is … bright, if not challenging to the naked eye. Anyway, there’s more in the creative pipeline from the Zentraedi unit – this aircraft’s pilot in the form of a modified resin garage kit.
Beta Three is the second generation of robots capable of AHE or Artificial Human Emotion. The Alpha Two was the first to use it but the hardware was flawed. As AHE evolved into a more advanced pieces of software, the robot needed to be upgraded to be able to run it. This new robot has a head that has artificial muscles integrated into it for more complex emotions. If the muscles dry out they become very brittle and must be replaced. To keep the muscles wet, the entire head is surrounded by a jar-like helmet filled with a special chemical solution. The body of the robot has also been upgraded to be lighter and easier to repair.
Colosseum
Following, a text, in english, from the Wikipedia the Free Encyclopedia:
The Colosseum, or the Coliseum, originally the Flavian Amphitheatre (Latin: Amphitheatrum Flavium, Italian Anfiteatro Flavio or Colosseo), is an elliptical amphitheatre in the centre of the city of Rome, Italy, the largest ever built in the Roman Empire. It is considered one of the greatest works of Roman architecture and Roman engineering.
Occupying a site just east of the Roman Forum, its construction started between 70 and 72 AD[1] under the emperor Vespasian and was completed in 80 AD under Titus,[2] with further modifications being made during Domitian's reign (81–96).[3] The name "Amphitheatrum Flavium" derives from both Vespasian's and Titus's family name (Flavius, from the gens Flavia).
Capable of seating 50,000 spectators,[1][4][5] the Colosseum was used for gladiatorial contests and public spectacles such as mock sea battles, animal hunts, executions, re-enactments of famous battles, and dramas based on Classical mythology. The building ceased to be used for entertainment in the early medieval era. It was later reused for such purposes as housing, workshops, quarters for a religious order, a fortress, a quarry, and a Christian shrine.
Although in the 21st century it stays partially ruined because of damage caused by devastating earthquakes and stone-robbers, the Colosseum is an iconic symbol of Imperial Rome. It is one of Rome's most popular tourist attractions and still has close connections with the Roman Catholic Church, as each Good Friday the Pope leads a torchlit "Way of the Cross" procession that starts in the area around the Colosseum.[6]
The Colosseum is also depicted on the Italian version of the five-cent euro coin.
The Colosseum's original Latin name was Amphitheatrum Flavium, often anglicized as Flavian Amphitheater. The building was constructed by emperors of the Flavian dynasty, hence its original name, after the reign of Emperor Nero.[7] This name is still used in modern English, but generally the structure is better known as the Colosseum. In antiquity, Romans may have referred to the Colosseum by the unofficial name Amphitheatrum Caesareum; this name could have been strictly poetic.[8][9] This name was not exclusive to the Colosseum; Vespasian and Titus, builders of the Colosseum, also constructed an amphitheater of the same name in Puteoli (modern Pozzuoli).[10]
The name Colosseum has long been believed to be derived from a colossal statue of Nero nearby.[3] (the statue of Nero itself being named after one of the original ancient wonders, the Colossus of Rhodes[citation needed]. This statue was later remodeled by Nero's successors into the likeness of Helios (Sol) or Apollo, the sun god, by adding the appropriate solar crown. Nero's head was also replaced several times with the heads of succeeding emperors. Despite its pagan links, the statue remained standing well into the medieval era and was credited with magical powers. It came to be seen as an iconic symbol of the permanence of Rome.
In the 8th century, a famous epigram attributed to the Venerable Bede celebrated the symbolic significance of the statue in a prophecy that is variously quoted: Quamdiu stat Colisæus, stat et Roma; quando cadet colisæus, cadet et Roma; quando cadet Roma, cadet et mundus ("as long as the Colossus stands, so shall Rome; when the Colossus falls, Rome shall fall; when Rome falls, so falls the world").[11] This is often mistranslated to refer to the Colosseum rather than the Colossus (as in, for instance, Byron's poem Childe Harold's Pilgrimage). However, at the time that the Pseudo-Bede wrote, the masculine noun coliseus was applied to the statue rather than to what was still known as the Flavian amphitheatre.
The Colossus did eventually fall, possibly being pulled down to reuse its bronze. By the year 1000 the name "Colosseum" had been coined to refer to the amphitheatre. The statue itself was largely forgotten and only its base survives, situated between the Colosseum and the nearby Temple of Venus and Roma.[12]
The name further evolved to Coliseum during the Middle Ages. In Italy, the amphitheatre is still known as il Colosseo, and other Romance languages have come to use similar forms such as le Colisée (French), el Coliseo (Spanish) and o Coliseu (Portuguese).
Construction of the Colosseum began under the rule of the Emperor Vespasian[3] in around 70–72AD. The site chosen was a flat area on the floor of a low valley between the Caelian, Esquiline and Palatine Hills, through which a canalised stream ran. By the 2nd century BC the area was densely inhabited. It was devastated by the Great Fire of Rome in AD 64, following which Nero seized much of the area to add to his personal domain. He built the grandiose Domus Aurea on the site, in front of which he created an artificial lake surrounded by pavilions, gardens and porticoes. The existing Aqua Claudia aqueduct was extended to supply water to the area and the gigantic bronze Colossus of Nero was set up nearby at the entrance to the Domus Aurea.[12]
Although the Colossus was preserved, much of the Domus Aurea was torn down. The lake was filled in and the land reused as the location for the new Flavian Amphitheatre. Gladiatorial schools and other support buildings were constructed nearby within the former grounds of the Domus Aurea. According to a reconstructed inscription found on the site, "the emperor Vespasian ordered this new amphitheatre to be erected from his general's share of the booty." This is thought to refer to the vast quantity of treasure seized by the Romans following their victory in the Great Jewish Revolt in 70AD. The Colosseum can be thus interpreted as a great triumphal monument built in the Roman tradition of celebrating great victories[12], placating the Roman people instead of returning soldiers. Vespasian's decision to build the Colosseum on the site of Nero's lake can also be seen as a populist gesture of returning to the people an area of the city which Nero had appropriated for his own use. In contrast to many other amphitheatres, which were located on the outskirts of a city, the Colosseum was constructed in the city centre; in effect, placing it both literally and symbolically at the heart of Rome.
The Colosseum had been completed up to the third story by the time of Vespasian's death in 79. The top level was finished and the building inaugurated by his son, Titus, in 80.[3] Dio Cassius recounts that over 9,000 wild animals were killed during the inaugural games of the amphitheatre. The building was remodelled further under Vespasian's younger son, the newly designated Emperor Domitian, who constructed the hypogeum, a series of underground tunnels used to house animals and slaves. He also added a gallery to the top of the Colosseum to increase its seating capacity.
In 217, the Colosseum was badly damaged by a major fire (caused by lightning, according to Dio Cassius[13]) which destroyed the wooden upper levels of the amphitheatre's interior. It was not fully repaired until about 240 and underwent further repairs in 250 or 252 and again in 320. An inscription records the restoration of various parts of the Colosseum under Theodosius II and Valentinian III (reigned 425–455), possibly to repair damage caused by a major earthquake in 443; more work followed in 484[14] and 508. The arena continued to be used for contests well into the 6th century, with gladiatorial fights last mentioned around 435. Animal hunts continued until at least 523, when Anicius Maximus celebrated his consulship with some venationes, criticised by King Theodoric the Great for their high cost.
The Colosseum underwent several radical changes of use during the medieval period. By the late 6th century a small church had been built into the structure of the amphitheatre, though this apparently did not confer any particular religious significance on the building as a whole. The arena was converted into a cemetery. The numerous vaulted spaces in the arcades under the seating were converted into housing and workshops, and are recorded as still being rented out as late as the 12th century. Around 1200 the Frangipani family took over the Colosseum and fortified it, apparently using it as a castle.
Severe damage was inflicted on the Colosseum by the great earthquake in 1349, causing the outer south side, lying on a less stable alluvional terrain, to collapse. Much of the tumbled stone was reused to build palaces, churches, hospitals and other buildings elsewhere in Rome. A religious order moved into the northern third of the Colosseum in the mid-14th century and continued to inhabit it until as late as the early 19th century. The interior of the amphitheatre was extensively stripped of stone, which was reused elsewhere, or (in the case of the marble façade) was burned to make quicklime.[12] The bronze clamps which held the stonework together were pried or hacked out of the walls, leaving numerous pockmarks which still scar the building today.
During the 16th and 17th century, Church officials sought a productive role for the vast derelict hulk of the Colosseum. Pope Sixtus V (1585–1590) planned to turn the building into a wool factory to provide employment for Rome's prostitutes, though this proposal fell through with his premature death.[15] In 1671 Cardinal Altieri authorized its use for bullfights; a public outcry caused the idea to be hastily abandoned.
In 1749, Pope Benedict XIV endorsed as official Church policy the view that the Colosseum was a sacred site where early Christians had been martyred. He forbade the use of the Colosseum as a quarry and consecrated the building to the Passion of Christ and installed Stations of the Cross, declaring it sanctified by the blood of the Christian martyrs who perished there (see Christians and the Colosseum). However there is no historical evidence to support Benedict's claim, nor is there even any evidence that anyone prior to the 16th century suggested this might be the case; the Catholic Encyclopedia concludes that there are no historical grounds for the supposition. Later popes initiated various stabilization and restoration projects, removing the extensive vegetation which had overgrown the structure and threatened to damage it further. The façade was reinforced with triangular brick wedges in 1807 and 1827, and the interior was repaired in 1831, 1846 and in the 1930s. The arena substructure was partly excavated in 1810–1814 and 1874 and was fully exposed under Benito Mussolini in the 1930s.
The Colosseum is today one of Rome's most popular tourist attractions, receiving millions of visitors annually. The effects of pollution and general deterioration over time prompted a major restoration programme carried out between 1993 and 2000, at a cost of 40 billion Italian lire ($19.3m / €20.6m at 2000 prices). In recent years it has become a symbol of the international campaign against capital punishment, which was abolished in Italy in 1948. Several anti–death penalty demonstrations took place in front of the Colosseum in 2000. Since that time, as a gesture against the death penalty, the local authorities of Rome change the color of the Colosseum's night time illumination from white to gold whenever a person condemned to the death penalty anywhere in the world gets their sentence commuted or is released,[16] or if a jurisdiction abolishes the death penalty. Most recently, the Colosseum was illuminated in gold when capital punishment was abolished in the American state of New Mexico in April 2009.
Because of the ruined state of the interior, it is impractical to use the Colosseum to host large events; only a few hundred spectators can be accommodated in temporary seating. However, much larger concerts have been held just outside, using the Colosseum as a backdrop. Performers who have played at the Colosseum in recent years have included Ray Charles (May 2002),[18] Paul McCartney (May 2003),[19] Elton John (September 2005),[20] and Billy Joel (July 2006).
Exterior
Unlike earlier Greek theatres that were built into hillsides, the Colosseum is an entirely free-standing structure. It derives its basic exterior and interior architecture from that of two Roman theatres back to back. It is elliptical in plan and is 189 meters (615 ft / 640 Roman feet) long, and 156 meters (510 ft / 528 Roman feet) wide, with a base area of 6 acres (24,000 m2). The height of the outer wall is 48 meters (157 ft / 165 Roman feet). The perimeter originally measured 545 meters (1,788 ft / 1,835 Roman feet). The central arena is an oval 87 m (287 ft) long and 55 m (180 ft) wide, surrounded by a wall 5 m (15 ft) high, above which rose tiers of seating.
The outer wall is estimated to have required over 100,000 cubic meters (131,000 cu yd) of travertine stone which were set without mortar held together by 300 tons of iron clamps.[12] However, it has suffered extensive damage over the centuries, with large segments having collapsed following earthquakes. The north side of the perimeter wall is still standing; the distinctive triangular brick wedges at each end are modern additions, having been constructed in the early 19th century to shore up the wall. The remainder of the present-day exterior of the Colosseum is in fact the original interior wall.
The surviving part of the outer wall's monumental façade comprises three stories of superimposed arcades surmounted by a podium on which stands a tall attic, both of which are pierced by windows interspersed at regular intervals. The arcades are framed by half-columns of the Tuscan, Ionic, and Corinthian orders, while the attic is decorated with Corinthian pilasters.[21] Each of the arches in the second- and third-floor arcades framed statues, probably honoring divinities and other figures from Classical mythology.
Two hundred and forty mast corbels were positioned around the top of the attic. They originally supported a retractable awning, known as the velarium, that kept the sun and rain off spectators. This consisted of a canvas-covered, net-like structure made of ropes, with a hole in the center.[3] It covered two-thirds of the arena, and sloped down towards the center to catch the wind and provide a breeze for the audience. Sailors, specially enlisted from the Roman naval headquarters at Misenum and housed in the nearby Castra Misenatium, were used to work the velarium.[22]
The Colosseum's huge crowd capacity made it essential that the venue could be filled or evacuated quickly. Its architects adopted solutions very similar to those used in modern stadiums to deal with the same problem. The amphitheatre was ringed by eighty entrances at ground level, 76 of which were used by ordinary spectators.[3] Each entrance and exit was numbered, as was each staircase. The northern main entrance was reserved for the Roman Emperor and his aides, whilst the other three axial entrances were most likely used by the elite. All four axial entrances were richly decorated with painted stucco reliefs, of which fragments survive. Many of the original outer entrances have disappeared with the collapse of the perimeter wall, but entrances XXIII (23) to LIV (54) still survive.[12]
Spectators were given tickets in the form of numbered pottery shards, which directed them to the appropriate section and row. They accessed their seats via vomitoria (singular vomitorium), passageways that opened into a tier of seats from below or behind. These quickly dispersed people into their seats and, upon conclusion of the event or in an emergency evacuation, could permit their exit within only a few minutes. The name vomitoria derived from the Latin word for a rapid discharge, from which English derives the word vomit.
Interior
According to the Codex-Calendar of 354, the Colosseum could accommodate 87,000 people, although modern estimates put the figure at around 50,000. They were seated in a tiered arrangement that reflected the rigidly stratified nature of Roman society. Special boxes were provided at the north and south ends respectively for the Emperor and the Vestal Virgins, providing the best views of the arena. Flanking them at the same level was a broad platform or podium for the senatorial class, who were allowed to bring their own chairs. The names of some 5th century senators can still be seen carved into the stonework, presumably reserving areas for their use.
The tier above the senators, known as the maenianum primum, was occupied by the non-senatorial noble class or knights (equites). The next level up, the maenianum secundum, was originally reserved for ordinary Roman citizens (plebians) and was divided into two sections. The lower part (the immum) was for wealthy citizens, while the upper part (the summum) was for poor citizens. Specific sectors were provided for other social groups: for instance, boys with their tutors, soldiers on leave, foreign dignitaries, scribes, heralds, priests and so on. Stone (and later marble) seating was provided for the citizens and nobles, who presumably would have brought their own cushions with them. Inscriptions identified the areas reserved for specific groups.
Another level, the maenianum secundum in legneis, was added at the very top of the building during the reign of Domitian. This comprised a gallery for the common poor, slaves and women. It would have been either standing room only, or would have had very steep wooden benches. Some groups were banned altogether from the Colosseum, notably gravediggers, actors and former gladiators.
Each tier was divided into sections (maeniana) by curved passages and low walls (praecinctiones or baltei), and were subdivided into cunei, or wedges, by the steps and aisles from the vomitoria. Each row (gradus) of seats was numbered, permitting each individual seat to be exactly designated by its gradus, cuneus, and number.
The arena itself was 83 meters by 48 meters (272 ft by 157 ft / 280 by 163 Roman feet).[12] It comprised a wooden floor covered by sand (the Latin word for sand is harena or arena), covering an elaborate underground structure called the hypogeum (literally meaning "underground"). Little now remains of the original arena floor, but the hypogeum is still clearly visible. It consisted of a two-level subterranean network of tunnels and cages beneath the arena where gladiators and animals were held before contests began. Eighty vertical shafts provided instant access to the arena for caged animals and scenery pieces concealed underneath; larger hinged platforms, called hegmata, provided access for elephants and the like. It was restructured on numerous occasions; at least twelve different phases of construction can be seen.[12]
The hypogeum was connected by underground tunnels to a number of points outside the Colosseum. Animals and performers were brought through the tunnel from nearby stables, with the gladiators' barracks at the Ludus Magnus to the east also being connected by tunnels. Separate tunnels were provided for the Emperor and the Vestal Virgins to permit them to enter and exit the Colosseum without needing to pass through the crowds.[12]
Substantial quantities of machinery also existed in the hypogeum. Elevators and pulleys raised and lowered scenery and props, as well as lifting caged animals to the surface for release. There is evidence for the existence of major hydraulic mechanisms[12] and according to ancient accounts, it was possible to flood the arena rapidly, presumably via a connection to a nearby aqueduct.
The Colosseum and its activities supported a substantial industry in the area. In addition to the amphitheatre itself, many other buildings nearby were linked to the games. Immediately to the east is the remains of the Ludus Magnus, a training school for gladiators. This was connected to the Colosseum by an underground passage, to allow easy access for the gladiators. The Ludus Magnus had its own miniature training arena, which was itself a popular attraction for Roman spectators. Other training schools were in the same area, including the Ludus Matutinus (Morning School), where fighters of animals were trained, plus the Dacian and Gallic Schools.
Also nearby were the Armamentarium, comprising an armory to store weapons; the Summum Choragium, where machinery was stored; the Sanitarium, which had facilities to treat wounded gladiators; and the Spoliarium, where bodies of dead gladiators were stripped of their armor and disposed of.
Around the perimeter of the Colosseum, at a distance of 18 m (59 ft) from the perimeter, was a series of tall stone posts, with five remaining on the eastern side. Various explanations have been advanced for their presence; they may have been a religious boundary, or an outer boundary for ticket checks, or an anchor for the velarium or awning.
Right next to the Colosseum is also the Arch of Constantine.
he Colosseum was used to host gladiatorial shows as well as a variety of other events. The shows, called munera, were always given by private individuals rather than the state. They had a strong religious element but were also demonstrations of power and family prestige, and were immensely popular with the population. Another popular type of show was the animal hunt, or venatio. This utilized a great variety of wild beasts, mainly imported from Africa and the Middle East, and included creatures such as rhinoceros, hippopotamuses, elephants, giraffes, aurochs, wisents, barbary lions, panthers, leopards, bears, caspian tigers, crocodiles and ostriches. Battles and hunts were often staged amid elaborate sets with movable trees and buildings. Such events were occasionally on a huge scale; Trajan is said to have celebrated his victories in Dacia in 107 with contests involving 11,000 animals and 10,000 gladiators over the course of 123 days.
During the early days of the Colosseum, ancient writers recorded that the building was used for naumachiae (more properly known as navalia proelia) or simulated sea battles. Accounts of the inaugural games held by Titus in AD 80 describe it being filled with water for a display of specially trained swimming horses and bulls. There is also an account of a re-enactment of a famous sea battle between the Corcyrean (Corfiot) Greeks and the Corinthians. This has been the subject of some debate among historians; although providing the water would not have been a problem, it is unclear how the arena could have been waterproofed, nor would there have been enough space in the arena for the warships to move around. It has been suggested that the reports either have the location wrong, or that the Colosseum originally featured a wide floodable channel down its central axis (which would later have been replaced by the hypogeum).[12]
Sylvae or recreations of natural scenes were also held in the arena. Painters, technicians and architects would construct a simulation of a forest with real trees and bushes planted in the arena's floor. Animals would be introduced to populate the scene for the delight of the crowd. Such scenes might be used simply to display a natural environment for the urban population, or could otherwise be used as the backdrop for hunts or dramas depicting episodes from mythology. They were also occasionally used for executions in which the hero of the story — played by a condemned person — was killed in one of various gruesome but mythologically authentic ways, such as being mauled by beasts or burned to death.
The Colosseum today is now a major tourist attraction in Rome with thousands of tourists each year paying to view the interior arena, though entrance for EU citizens is partially subsidised, and under-18 and over-65 EU citizens' entrances are free.[24] There is now a museum dedicated to Eros located in the upper floor of the outer wall of the building. Part of the arena floor has been re-floored. Beneath the Colosseum, a network of subterranean passageways once used to transport wild animals and gladiators to the arena opened to the public in summer 2010.[25]
The Colosseum is also the site of Roman Catholic ceremonies in the 20th and 21st centuries. For instance, Pope Benedict XVI leads the Stations of the Cross called the Scriptural Way of the Cross (which calls for more meditation) at the Colosseum[26][27] on Good Fridays.
In the Middle Ages, the Colosseum was clearly not regarded as a sacred site. Its use as a fortress and then a quarry demonstrates how little spiritual importance was attached to it, at a time when sites associated with martyrs were highly venerated. It was not included in the itineraries compiled for the use of pilgrims nor in works such as the 12th century Mirabilia Urbis Romae ("Marvels of the City of Rome"), which claims the Circus Flaminius — but not the Colosseum — as the site of martyrdoms. Part of the structure was inhabited by a Christian order, but apparently not for any particular religious reason.
It appears to have been only in the 16th and 17th centuries that the Colosseum came to be regarded as a Christian site. Pope Pius V (1566–1572) is said to have recommended that pilgrims gather sand from the arena of the Colosseum to serve as a relic, on the grounds that it was impregnated with the blood of martyrs. This seems to have been a minority view until it was popularised nearly a century later by Fioravante Martinelli, who listed the Colosseum at the head of a list of places sacred to the martyrs in his 1653 book Roma ex ethnica sacra.
Martinelli's book evidently had an effect on public opinion; in response to Cardinal Altieri's proposal some years later to turn the Colosseum into a bullring, Carlo Tomassi published a pamphlet in protest against what he regarded as an act of desecration. The ensuing controversy persuaded Pope Clement X to close the Colosseum's external arcades and declare it a sanctuary, though quarrying continued for some time.
At the instance of St. Leonard of Port Maurice, Pope Benedict XIV (1740–1758) forbade the quarrying of the Colosseum and erected Stations of the Cross around the arena, which remained until February 1874. St. Benedict Joseph Labre spent the later years of his life within the walls of the Colosseum, living on alms, prior to his death in 1783. Several 19th century popes funded repair and restoration work on the Colosseum, and it still retains a Christian connection today. Crosses stand in several points around the arena and every Good Friday the Pope leads a Via Crucis procession to the amphitheatre.
Coliseu (Colosseo)
A seguir, um texto, em português, da Wikipédia, a enciclopédia livre:
O Coliseu, também conhecido como Anfiteatro Flaviano, deve seu nome à expressão latina Colosseum (ou Coliseus, no latim tardio), devido à estátua colossal de Nero, que ficava perto a edificação. Localizado no centro de Roma, é uma excepção de entre os anfiteatros pelo seu volume e relevo arquitectónico. Originalmente capaz de albergar perto de 50 000 pessoas, e com 48 metros de altura, era usado para variados espetáculos. Foi construído a leste do fórum romano e demorou entre 8 a 10 anos a ser construído.
O Coliseu foi utilizado durante aproximadamente 500 anos, tendo sido o último registro efetuado no século VI da nossa era, bastante depois da queda de Roma em 476. O edifício deixou de ser usado para entretenimento no começo da era medieval, mas foi mais tarde usado como habitação, oficina, forte, pedreira, sede de ordens religiosas e templo cristão.
Embora esteja agora em ruínas devido a terremotos e pilhagens, o Coliseu sempre foi visto como símbolo do Império Romano, sendo um dos melhores exemplos da sua arquitectura. Actualmente é uma das maiores atrações turísticas em Roma e em 7 de julho de 2007 foi eleita umas das "Sete maravilhas do mundo moderno". Além disso, o Coliseu ainda tem ligações à igreja, com o Papa a liderar a procissão da Via Sacra até ao Coliseu todas as Sextas-feiras Santas.
O coliseu era um local onde seriam exibidos toda uma série de espectáculos, inseridos nos vários tipos de jogos realizados na urbe. Os combates entre gladiadores, chamados muneras, eram sempre pagos por pessoas individuais em busca de prestígio e poder em vez do estado. A arena (87,5 m por 55 m) possuía um piso de madeira, normalmente coberto de areia para absorver o sangue dos combates (certa vez foi colocada água na representação de uma batalha naval), sob o qual existia um nível subterrâneo com celas e jaulas que tinham acessos diretos para a arena; Alguns detalhes dessa construção, como a cobertura removível que poupava os espectadores do sol, são bastante interessantes, e mostram o refinamento atingido pelos construtores romanos. Formado por cinco anéis concêntricos de arcos e abóbadas, o Coliseu representa bem o avanço introduzido pelos romanos à engenharia de estruturas. Esses arcos são de concreto (de cimento natural) revestidos por alvenaria. Na verdade, a alvenaria era construída simultaneamente e já servia de forma para a concretagem. Outro tipo de espetáculos era a caça de animais, ou venatio, onde eram utilizados animais selvagens importados de África. Os animais mais utilizados eram os grandes felinos como leões, leopardos e panteras, mas animais como rinocerontes, hipopótamos, elefantes, girafas, crocodilos e avestruzes eram também utilizados. As caçadas, tal como as representações de batalhas famosas, eram efetuadas em elaborados cenários onde constavam árvores e edifícios amovíveis.
Estas últimas eram por vezes representadas numa escala gigante; Trajano celebrou a sua vitória em Dácia no ano 107 com concursos envolvendo 11 000 animais e 10 000 gladiadores no decorrer de 123 dias.
Segundo o documentário produzido pelo canal televisivo fechado, History Channel, o Coliseu também era utilizado para a realização de naumaquias, ou batalhas navais. O coliseu era inundado por dutos subterrâneos alimentados pelos aquedutos que traziam água de longe. Passada esta fase, foi construída uma estrutura, que é a que podemos ver hoje nas ruínas do Coliseu, com altura de um prédio de dois andares, onde no passado se concentravam os gladiadores, feras e todo o pessoal que organizava os duelos que ocorreriam na arena. A arena era como um grande palco, feito de madeira, e se chama arena, que em italiano significa areia, porque era jogada areia sob a estrutura de madeira para esconder as imperfeições. Os animais podiam ser inseridos nos duelos a qualquer momento por um esquema de elevadores que surgiam em alguns pontos da arena; o filme "Gladiador" retrata muito bem esta questão dos elevadores. Os estudiosos, há pouco tempo, descobriram uma rede de dutos inundados por baixo da arena do Coliseu. Acredita-se que o Coliseu foi construído onde, outrora, foi o lago do Palácio Dourado de Nero; O imperador Vespasiano escolheu o local da construção para que o mal causado por Nero fosse esquecido por uma construção gloriosa.
Sylvae, ou recreações de cenas naturais eram também realizadas no Coliseu. Pintores, técnicos e arquitectos construiriam simulações de florestas com árvores e arbustos reais plantados no chão da arena. Animais seriam então introduzidos para dar vida à simulação. Esses cenários podiam servir só para agrado do público ou como pano de fundo para caçadas ou dramas representando episódios da mitologia romana, tão autênticos quanto possível, ao ponto de pessoas condenadas fazerem o papel de heróis onde eram mortos de maneiras horríveis mas mitologicamente autênticas, como mutilados por animais ou queimados vivos.
Embora o Coliseu tenha funcionado até ao século VI da nossa Era, foram proibidos os jogos com mortes humanas desde 404, sendo apenas massacrados animais como elefantes, panteras ou leões.
O Coliseu era sobretudo um enorme instrumento de propaganda e difusão da filosofia de toda uma civilização, e tal como era já profetizado pelo monge e historiador inglês Beda na sua obra do século VII "De temporibus liber": "Enquanto o Coliseu se mantiver de pé, Roma permanecerá; quando o Coliseu ruir, Roma ruirá e quando Roma cair, o mundo cairá".
A construção do Coliseu foi iniciada por Vespasiano, nos anos 70 da nossa era. O edifício foi inaugurado por Tito, em 80, embora apenas tivesse sido finalizado poucos anos depois. Empresa colossal, este edifício, inicialmente, poderia sustentar no seu interior cerca de 50 000 espectadores, constando de três andares. Aquando do reinado de Alexandre Severo e Gordiano III, é ampliado com um quarto andar, podendo suster agora cerca de 90 000 espectadores. A grandiosidade deste monumento testemunha verdadeiramente o poder e esplendor de Roma na época dos Flávios.
Os jogos inaugurais do Coliseu tiveram lugar ano 80, sob o mandato de Tito, para celebrar a finalização da construção. Depois do curto reinado de Tito começar com vários meses de desastres, incluindo a erupção do Monte Vesúvio, um incêndio em Roma, e um surto de peste, o mesmo imperador inaugurou o edifício com uns jogos pródigos que duraram mais de cem dias, talvez para tentar apaziguar o público romano e os deuses. Nesses jogos de cem dias terão ocorrido combates de gladiadores, venationes (lutas de animais), execuções, batalhas navais, caçadas e outros divertimentos numa escala sem precedentes.
O Coliseu, como não se encontrava inserido numa zona de encosta, enterrado, tal como normalmente sucede com a generalidade dos teatros e anfiteatros romanos, possuía um “anel” artificial de rocha à sua volta, para garantir sustentação e, ao mesmo tempo, esta substrutura serve como ornamento ao edifício e como condicionador da entrada dos espectadores. Tal como foi referido anteriormente, possuía três pisos, sendo mais tarde adicionado um outro. É construído em mármore, pedra travertina, ladrilho e tufo (pedra calcária com grandes poros). A sua planta elíptica mede dois eixos que se estendem aproximadamente de 190 m por 155 m. A fachada compõe-se de arcadas decoradas com colunas dóricas, jónicas e coríntias, de acordo com o pavimento em que se encontravam. Esta subdivisão deve-se ao facto de ser uma construção essencialmente vertical, criando assim uma diversificação do espaço.
Os assentos eram em mármore e a cavea, escadaria ou arquibancada, dividia-se em três partes, correspondentes às diferentes classes sociais: o podium, para as classes altas; as maeniana, sector destinado à classe média; e os portici, ou pórticos, construídos em madeira, para a plebe e as mulheres. O pulvinar, a tribuna imperial, encontrava-se situada no podium e era balizada pelos assentos reservados aos senadores e magistrados. Rampas no interior do edifício facilitavam o acesso às várias zonas de onde podiam visualizar o espectáculo, sendo protegidos por uma barreira e por uma série de arqueiros posicionados numa passagem de madeira, para o caso de algum acidente. Por cima dos muros ainda são visíveis as mísulas, que sustentavam o velarium, enorme cobertura de lona destinada a proteger do sol os espectadores e, nos subterrâneos, ficavam as jaulas dos animais, bem como todas as celas e galerias necessárias aos serviços do anfiteatro.
O monumento permaneceu como sede principal dos espetáculos da urbe romana até ao período do imperador Honorius, no século V. Danificado por um terremoto no começo do mesmo século, foi alvo de uma extensiva restauração na época de Valentinianus III. Em meados do século XIII, a família Frangipani transformou-o em fortaleza e, ao longo dos séculos XV e XVI, foi por diversas vezes saqueado, perdendo grande parte dos materiais nobres com os quais tinha sido construído.
Os relatos romanos referem-se a cristãos sendo martirizados em locais de Roma descritos pouco pormenorizadamente (no anfiteatro, na arena...), quando Roma tinha numerosos anfiteatros e arenas. Apesar de muito provavelmente o Coliseu não ter sido utilizado para martírios, o Papa Bento XIV consagrou-o no século XVII à Paixão de Cristo e declarou-o lugar sagrado. Os trabalhos de consolidação e restauração parcial do monumento, já há muito em ruínas, foram feitos sobretudo pelos pontífices Gregório XVI e Pio IX, no século XIX.
Capable of carrying 60 car and even full sized coaches the vehicle deck on The Princess Anne was cavernous. At the moment it is being used to house a number of smaller exhibits and at least three wheelie bins.
Israeli Police Yamam unit during Counter Terror Training
The Yamam (Hebrew: ימ"מ, an acronym for Special Central Unit (יחידה מרכזית מיוחדת, Yehida Merkazit Meyuhedet)) is the elite civilian counter-terrorism unit in Israel. The Yamam is capable of both hostage-rescue operations and offensive take-over raids against targets in civilian areas. Besides military duties, it also performs SWAT duties and undercover police work.
Name and structure
In Israel the Yamam is also known as the "Unit for Counter-Terror Warfare" (Hebrew: היחידה ללוחמה בטרור). It is subordinate to the Ministry of Internal Security central command and is part of the civilian Israel Police force, specifically the Israel Border Police. Its operators and officers are professional policemen on payroll, usually with infantry experience from their military service within the Israel Defense Forces. Yamam recruits its members exclusively from Israeli units.
Responsibilities
The unit is primarily responsible for civilian hostage rescue within Israel's borders, but from about the mid-1990s it has also been used for tasks such as arresting police suspects who have barricaded themselves in structures and requiring specialized extraction methods, as well as in personal security for VIPs and in counter-terror operations within the West Bank and Gaza Strip. The Yamam are schooled in basic Arabic and dress to assimilate within the Arab population to avoid detection in order to carry out raids to arrest those suspected of conducting terrorist activities within Israel.
However, most of the Yamam's activity is classified, and published Yamam operations are often credited to other units.
Organisation
The Yamam has around 200 officers, and consists a headquarters element, an intelligence section and a small team responsible for the development of new operational techniques and testing new equipment. Aside from these central elements, the bulk of the unit is divided into a number of sections, each consisting of five teams, each containing operators with a particular specialization, so that the section includes within its numbers all the elements needed for a successful operation: roping team, entry team, medic team, sniping team, dog team, EOD team (demolition and bomb disposal). Thus, whereas an IDF special forces operation needs to assemble elements from different specialist units, in Yamam, they are all permanently part of the same unit, living, training and operating together.
Officers
Applicants for Yamam must be between 22 and 30 years old and must have completed their three-year infantry service in the IDF with a level 7 of IDF training or higher, although no previous police experience is required. Unlike American SWAT teams, the YAMAM is a professional unit with only combat duties and no other police type work. The selection process includes a "hell week" said to be one of the hardest in the world. This level of difficulty is achieved because all the applicants are already seasoned combat soldiers, like the US Delta force. The skills they are looking for in every candidate are: intelligence, physical fitness, motivation, trustworthiness, accountability, maturity, stability, judgment, decisiveness, teamwork, influence, and communication. Training lasts 6 months and is carried out in the unit's own training center, although some use is made of the facilities at the IDF Counter Terror Warfare School (LOTAR, Unit 707.) The course is divided into an three-month general CT training period at the end of which recruits are selected for their specialization and then concentrate for the remaining four months on that specialization. Upon graduation, individuals are posted to fill gaps in the sections. Yamam considers that it has several advantages over the IDF counter-terror units, first, because the men are more mature, most in their mid 30's and early 40's, and spend much longer in the unit than the equivalent military units, and, second, because the units contain a far broader range of ages and experience.
The Yamam is self-dependent, training its own operators in all fields, such as sniping, reconnaissance, dog operating, bomb disposal, etc. As a result, the Yamam has a rapid deployment time and high coordination between various squads (sniping squad, entry team, engagement force, etc.).
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The Wasp was a transonic British jet-powered fighter aircraft that was developed by Folland for the Royal Air Force (RAF) during the late 1940s and early 1950s. The Wasp’s origins could be traced back to a privately funded 1952 concept for a bigger and more capable day fighter aircraft than Folland’s very light Midget/Gnat. The Wasp’s development had been continued until the Gnat’s service introduction, and by then it had evolved under the handle “Fo-145” into a supersonic aircraft that took advantage of the new Armstrong Siddeley Sapphire turbojet engine, swept wings and area rule. The aircraft was built with the minimum airframe size to take the reheated Saphire and a radar system that would allow it to deploy the new de Havilland Blue Jay (later Firestreak) guided air-to-air missile. In this form the aircraft was expected to surpass the Royal Air Force’s contemporary day fighter, the only gun-armed Hawker Hunter, which had been in service since 1954, while using basically the same engine as its F.2 variant, in both performance and armament aspects. The missile-armed Wasp was also expected to replace the disappointing Supermarine Swift and the Fairey Fireflash AAMs that had been developed for it.
The Wasp strongly resembled the smaller Gnat, with a similar but much thinner shoulder mounted wing, with a sweep of 35° at quarter chord, but the new aircraft featured some innovations. Beyond the area-ruled fuselage, the aircraft had full-span leading edge slats and trailing edge flaps with roll control achieved using spoilers rather than traditional ailerons. Anticipating supersonic performance, the tailplane was all-moving. The cockpit had been raised and offered the pilot a much better all-round field of view.
The Wasp was armed with four 30 mm (1.18 in) ADEN cannon, located under the air intakes. Each gun had a provision of 125 rounds, from form a mutual ventral ammunition bay that could be quickly replaced. Four underwing hardpoints could carry an ordnance load of up to 4.000 lb, and the Wasp’s main armament consisted of up to four IR-guided “Firestreak” AAMs. To effectively deploy them, however, a radar system was necessary. For launch, the missile seeker was slaved to the Wasp’s AI.Mk.20 X-band radar until lock was achieved and the weapon was launched, leaving the interceptor free to acquire another target. The AI.Mk.20 had been developed by EKCO since 1953 under the development label “Green Willow” for the upcoming EE Lightning interceptor, should the latter’s more complex and powerful Ferranti AIRPASS system fail. A major advantage of the AI.Mk.20 was that it had been designed as a single unit so it could be fit into the nose of smaller single-seat fighters, despite its total weight of roughly 400 lb (200 kg). For the Firestreak AAM, EKCO had developed a spiral-scan radar with a compact 18 in (460 mm) antenna that offered an effective range of about 10 miles (16 km), although only against targets very close to the centerline of the radar. The radar’s maximum detection range was 25 mi (40 km) and the system also acted as a ranging radar, providing range input to the gyro gunsight for air-to-air gunnery.
Beyond Firestreaks, the Wasp could also carry drop tanks (which were area-ruled and coulc only be carried on the inner pair of pylons), SNEB Pods with eighteen 68 mm (2.68 in) unguided rocket projectiles against air and ground targets, or iron bombs of up to 1.000 lb caliber. Other equipment included a nose-mounted, and a forward-facing gun camera.
The Royal Air Force was sufficiently impressed to order two prototypes. Since the afterburning version of the Sapphire was not ready yet, the first prototype flew on 30 July 1954 with a non-afterburning engine, an Armstrong Siddeley Sapphire Sa.6 with 8,000 lbf (35.59 kN). In spite of this lack of power the aircraft nevertheless nearly reached Mach 1 in its maiden flight. The second prototype, equipped with the intended Sapphire Sa.7 afterburning engine with 11,000 lbf (48.9 kN) thrust engine, showed the aircraft’s full potential. The Wasp turned out to have very good handling, and the RAF officially ordered sixty Folland Fo-145 day-fighters under the designation “Wasp F.Mk.1”. The only changes from the prototypes were small leading-edge extensions at the wing roots, improving low speed handling, esp. during landings and at high angles of incidence in flight.
Most Wasps were delivered to RAF Germany frontline units, including No. 20 and 92 Squadrons based in Northern Germany. However, the Wasp’s active service did not last long, because technological advancements quickly rendered the aircraft obsolete in its original interceptor role. The Wasp’s performance had not turned out as significantly superior to the Hunter as expected. Range was rather limited, and the aircraft turned out to be underpowered, since the reheated Sapphire Sa6 did not develop as much power as expected. The AI.Mk.20 radar was rather weak and capricious, too, and the Firestreak was an operational nightmare. The missile was, due to its solid Magpie rocket motor and the ammonia coolant for the IR seeker head, highly toxic and RAF armorers had to wear some form of CRBN protection to safely mount the missile onto an aircraft. Furthermore, unlike modern missiles, Firestreak’s effectiveness was very limited since it could only be fired outside cloud - and over Europe or in winter, skies were rarely clear.
Plans for a second production run of the Folland Wasp with a more powerful Sapphire Sa7R engine with a raised thrust of 12,300 lbf (54.7 kN) and updated avionics were not carried out. During the 1960s, following the successful introduction of the supersonic English Electric Lightning in the interceptor role, the Wasp, as well as the older but more prosperous and versatile Hunter, transitioned to being operated as a fighter-bomber, advanced trainer and for tactical photo reconnaissance missions.
This led to a limited MLU program for the F.Mk.1s and conversions of the remaining airframes into two new variants: the new main version was the GR.Mk.2, a dedicated CAS/ground attack variant, which had its radar removed and replaced with ballast, outwardly recognizable through a solid metal nose which replaced the original fiberglass radome. Many of these machines also had two of the 30mm guns removed to save weight. Furthermore, a handful Wasps were converted into PR.Mk.3s. These had as set of five cameras in a new nose section with various windows, and all the guns and the ammunition bay were replaced with an additional fuel tank, operating as pure, unarmed reconnaissance aircraft. When Folland was integrated into the Hawker Siddeley Group in 1963 the aircraft’s official name was changed accordingly, even though the Folland name heritage persisted.
Most of these aircraft remained allocated to RAF Germany units and retired towards the late Sixties, but four GR.Mk.2s were operated by RAF No. 57 (Reserve) Squadron and based at No. 3 Flying Training School at Cranwell, where they were flown as adversaries in dissimilar aerial combat training. The last of the type was withdrawn from service in 1969, but one aircraft remained flying with the Aeroplane and Armament Experimental Establishment at Boscombe Down until 24 January 1975.
General characteristics:
Crew: 1
Length: 45 ft 10.5 in (13.983 m)
Wingspan: 31 ft 7.5 in (9.639 m)
Height: 13 ft 2.75 in (4.0323 m)
Wing area: 250 sq ft (23 m2)
Empty weight: 13,810 lb (6,264 kg)
Gross weight: 21,035 lb (9,541 kg)
Max takeoff weight: 23,459 lb (10,641 kg)
Powerplant:
1× Armstrong Siddeley Sapphire Sa.6, producing 7,450 lbf (33.1 kN) thrust at 8,300 rpm,
military power dry, and 11,000 lbf (48.9 kN) with afterburner
Performance:
Maximum speed: 631 kn (726 mph, 1,169 km/h) / M1.1 at 35,000 ft (10,668 m)
654 kn (753 mph; 1,211 km/h) at sea level
Cruise speed: 501 kn (577 mph, 928 km/h)
Range: 1,110 nmi (1,280 mi, 2,060 km)
Service ceiling: 49,000 ft (15,000 m)
Rate of climb: 16,300 ft/min (83 m/s)
Wing loading: 84 lb/sq ft (410 kg/m2)
Thrust/weight: 0.5
Armament:
4× 30 mm (1.18 in) ADEN cannon, 125 rounds per gun
4× underwing hardpoints for a total external ordnance of 4.000 lb, including Firestreak AAMs,
SNEB pods, bombs of up to 1.000 lb caliber or two 125 imp gal (570 l) drop tanks
The kit and its assembly
This kit travesty is a remake of a simple but brilliant idea of fellow modeler chrisonord at whatifmodellers’com (www.whatifmodellers.com/index.php?topic=48434.msg899420#m...), who posted his own build in late 2020: a Grumman Tiger in standard contemporary RAF colors as Folland Wasp GR.Mk.2. The result looked like a highly credible “big brother” or maybe successor of Folland’s diminutive Midge/Gnat fighter, something in the Hawker Hunter’s class. I really like the idea a lot and decided that it was, one and a half years later, to build my personal interpretation of the subject – also because I had a Hasegawa F11F kit in The Stash™ without a proper plan.
The Tiger was built basically OOB – a simple and straightforward affair that goes together well, just the fine, raised panel lines show the mould’s age. The only changes I made: the arrester hook disappeared under PSR, small stabilizer fins (from an Italeri BAe Hawk) were added under the tail section, and I replaced the Tiger’s rugged twin wheel front landing gear with a single wheel alternative, left over from a Matchbox T-2 Buckeye. On the main landing gear, the rearward-facing stabilizing struts were deleted (for a lighter look of a land-based aircraft) and their wells filled with putty. A late modification were additional swing arms for the main landing gear, though: once the kit could sit on its own three feet, the stance was odd and low, esp. under the tail – probably due to the new front wheel. As a remedy I glued additional swing arm elements, made from 1mm steel wire, under the original struts, what moved the main wheel a little backwards and raised the main landing gear my 1mm. Does not sound like much, but it was enough to lift the tail and give the aircraft a more convincing stance and ground clearance.
The area-ruled drop tanks and their respective pylons were taken from the Hasegawa kit. For a special “British” touch – because the Tiger had a radome (into which no radar was ever fitted, though) – I added a pair of Firestreak AAMs on the outer underwing stations, procured from a Gomix Gloster Javelin (which comes with four of these, plus pylons).
Painting and markings:
Since the RAF theme was more or less settled, paintwork revolved around more or less authentical colors and markings. The Wasp received a standard RAF day fighter scheme from the late Fifties, with upper camouflage in RAF Dark Green/Dark Sea Grey and Light Aircraft Grey undersides with a low waterline. I used Humbrol 163, 106 and 166, respectively – Ocean Grey was used because I did not have the proper 164 at hand, but 106 also offered the benefit of a slightly better contrast to the murky Dark Green. A black ink washing was applied plus some panel post-shading. The silver leading edges on wings, stabilizers and fin were created with decal sheet material, avoiding the inconvenience of masking.
The cockpit interior was painted in a very dark grey (Revell 09, Anthracite) while the landing gear, wheels and wells received a greyish-metallic finish (Humbrol 56, Aluminum Dope). The air intakes’ interior became bright aluminum (Revell 99), the area around the jet nozzle was painted with Revell 91 (Iron metallic) and later treated with graphite for a dark metallic shine. The drop tanks were camouflaged, the Firestreaks became white so that they would stand out well and add to a certain vintage look.
The decals were a mix from various sources. The No. 20 Squadron badges and the Type D high-viz roundels on the wings were left over from an Airfix Hawker Hunter. The fuselage roundels came from an Italeri BAe Hawk sheet, IIRC. The bent fin flash, all the stencils as well as the serial code (which was puzzled together from two real serials and was AFAIK not allocated to any real RAF aircraft) came from an Xtradecal Supermarine Swift sheet. The individual red “B” letter came from a Matchbox A.W. Meteor night fighter.
Finally, the kit was sealed with matt acrylic varnish – I considered a glossy finish, since this was typical for RAF aircraft in the Fifties, but eventually just gave the radome a light shine.
Basically a simple project, and quickly done in just a couple of days. However, chrisonord’s great eye for similarities makes this “Tiger in disguise” a great fictional aircraft model with only little effort, it’s IMHO very convincing. And the RAF colors and markings suit the F11F very well.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The McDonnell Douglas (now Boeing) T-45 Goshawk was a highly modified version of the BAe Hawk land-based training jet aircraft. Manufactured by McDonnell Douglas (now Boeing) and British Aerospace (now BAe Systems), the T-45 was used by the United States Navy and the United States Marine Corps (USMC) as an aircraft carrier-capable trainer.
The Goshawk's origins began in the mid-1970s, when the US Navy began looking for a single aircraft replacement for both its T-2 and TA-4 jet trainers. The US Navy started the VTXTS advanced trainer program in 1978. Several companies made submissions, e. g. North American or Northrop/Vought. Due to the size of the potential contract, European companies made submissions, too, including a navalized Alpha Jet from Dassault/Dornier and a fully carrier-capable version of the BAe Hawk Mk.60, mutually proposed by British Aerospace (BAe) and McDonnell Douglas (MDC). The latter eventually won the competition and BAe and MDC were awarded the T-45 contract in 1981.
The Hawk had not been designed for carrier operations and numerous modifications were required to make it suitable for use on carriers. These included improvements to the low-speed handling characteristics and a reduction in the approach speed. It was found that the aircraft was apt to stall at the low approach speed required. Modifications were designed by BAe in England; most notably a simple slat system was devised, operated by an actuator and linkage mechanism to fit into the small space available. Strakes were also added on the fuselage to improve airflow. Other changes were a strengthened airframe, a more robust and wider landing gear with a two-wheel nose landing gear, a catapult tow bar attachment and an arresting hook. The modified aircraft was christened “Goshawk”, flew in 1988 for the first time and became operational in 1991.
Beyond being a naval trainer the T-45 was also adapted for first-line duty with strike capabilities, in the form of the OA-45 for the USMC. The role of this aircraft dated back to the Vietnam War when twenty-three A-4 two-seaters were converted into OA-4Ms for “FastFAC” (Fast Forward Air Controller) missions, in order to control interdiction sorties dedicated to shaping the battlefield for future operations. Basically, the OA-4M was a TA-4F equipped with A-4M electronics. The most visible and characteristic change was the fitting of the A-4M’s dorsal electronics hump, neatly faired into the rear of the two-seat canopy. The nose sensor group of the OA-4M was basically the same as that of the A-4M, but the Angle/Rate Bombing system was not installed as it would not be needed.
When the T-45 was introduced in the early Nineties, the USMCs OA-4Ms had reached the end of their service life and the USMC started looking for a replacement, wanting a comparable, light and fast fixed-wing aircraft. The USMC did not accept the LTV A-7 as an A-4 replacement (even though a two-seater version was available), because it was already dated, too, and not part of the USMC inventory. The USMC's A-4Ms were supposed to be replaced by the VTOL AV-8 by the mid-nineties, but the AV-8, even as a two-seater, was deemed unsuitable for FFAC duties. The new T-45 looked like a good and economical alternative with future potential, since the airframe was brand new and the type's infrastructure was fully established, so that a small number of specialized aircraft could easily be supported without much extra cost.
With fresh experience from the 1st Gulf War in 1990-91 the decision was made to buy 25 extra T-45A airframes and convert them to OA-45A standard. Most important change were modified wings, using structures and systems from the BAe Hawk 100 series. While the T-45 only had two underwing and a single ventral hardpoint, the OA-45A featured a total of seven: four underwing and one ventral hardpoints, plus wingtip stations for defensive air-to-air missiles. Upgraded avionics allowed the deployment of a wide range of external stores, including air-to-ground missiles and rocket launchers, a reconnaissance pod, retarded and free-fall bombs of up to 1,000 pounds (450 kg) caliber, runway cratering, anti-personnel and light armor bombs, cluster bombs, practice bombs as well as external fuel tanks and ECM pods. This was a vital asset, since Desert Storm had proved that FFAC aircraft had to have an offensive capability to handle targets of opportunity on their own, when no air assets to control were available. A total ordnance load of up to 6,800 lb (3,085 kg) was possible, even though the aircraft was not supposed to play an offensive role and rather act from a distance, relying on its small size and agility.
Communication modifications for the FastFAC role included a KY-28 secure voice system, an ARC-159 radio and an ARC-114 VHF radio. Similar to the Skyhawk, a hump behind the cockpit had to be added to make room for the additional electronic equipment and a heat exchanger. Other additions were a continuous-wave Doppler navigation radar under a shallow ventral radome underneath the cockpit, a ground control bombing system, an APN-194 altimeter, an ALR-45 radar warning suite, a retrofitted, fixed midair refueling probe and cockpit armor plating that included Kevlar linings on the floor and the lower side walls as well as externally mounted armor plates for the upper areas.
VMA-131 of Marine Aircraft Group 49 (the Diamondbacks) retired its last four OA-4Ms on 22 June 1994, and the new OA-45A arrived just in time to replace the venerable Skyhawk two-seaters in the FastFAC role. Trainer versions of the Skyhawk remained in Navy service, however, finding a new lease on life with the advent of "adversary training". OA-45A deliveries were finished in 1996 and the 25 aircraft were distributed among the newly established Marine Aviation Logistics Squadron (MALS, formerly Headquarters & Maintenance Squadron/H&MS) 12 & 13. The USMC crews soon nicknamed their new mounts "GosHog", to underlöine ist offensive capabilities and to set themselves apart from the USN's "tame" trainers. Even though thos name was never officially approved it caught on quickly.
After initial experience with the new aircraft and in the wake of technological advances, the USMC decided to upgrade the OA-45As in 2000 to improve its effectiveness and interaction capabilities with ground troops. This primarily resulted in the addition of a forward-looking infrared camera laser in the aircraft’s nose section, which enabled the aircraft to execute all-weather/night reconnaissance and to illuminate targets for laser-guided infantry shells or ordnance launched by the OA-45 itself or by other aircraft. Through this measure the OA-45 became capable of carrying and independently deploying light laser-guided smart weapons like the GBU-12 and -16 “Paveway II” glide bombs or the laser-guided AGM-65E “Maverick” variant. The update was gradually executed during regular overhauls in the course of 2001 and 2002 (no new airframes were built/converted), the modified machines received the new designation OA-45B.
After this update phase, the OA-45Bs were deployed in several global conflicts and saw frequent use in the following years. For instance, MALS 13 used its OA-45Bs operationally for the first time in October 2002 when the squadron was tasked with providing support to six AV-8B Harrier aircraft in combat operations in Afghanistan during Operation Enduring Freedom. This mission lasted until October 2003, four aircraft were allocated and one OA-45B was lost during a landing accident.
On 15 January 2003, MALS 13 embarked 205 Marines and equipment aboard the USS Bonhomme Richard in support of combat operations in Southwest Asia during Operation Southern Watch. Four OA-45Bs successfully supported these troops from land bases, marking targets and flying reconnaissance missions.
Furthermore, six MALS 13 OA-45Bs took actively part in Operation Iraqi Freedom from Al Jaber Air Base, Kuwait, and An Numiniyah Expeditionary Air Field, Iraq, where the aircraft worked closely together with the advancing ground troops of the USMC’s 15th Marine Expeditionary Unit. They successfully illuminated targets for US Navy fighter bombers, which were launched from USS Abraham Lincoln (CVN-72) in the Persian Gulf, and effectively guided these aircraft to their targets. Two OA-45Bs were lost during this conflict, one through enemy MANPADS, the other through friendly AA fire. In late May 2003 the surviving machines and their crews returned to MCAS Yuma.
On 16 March 2007, the 200th T-45 airframe was delivered to the US Navy. From this final batch, six airframes were set aside and modified into OA-45Bs in order to fill the losses over the past years.
Later T-45 production aircraft were built with enhanced avionics systems for a heads-up display (HUD) and glass cockpit standard, while all extant T-45A aircraft were eventually converted to a T-45C configuration under the T-45 Required Avionics Modernization Program (T-45 RAMP), bringing all aircraft to same HUD plus glass cockpit standard. These updates, esp. concerning the cockpit, were introduced to the OA-45Bs, too, and they were re-designated again, now becoming OA-45Cs, to reflect the commonality with the Navy’s Goshawk trainers. Again, these modifications were gradually introduced in the course of the OA-45s’ normal maintenance program.
In 2007, an engine update of the whole T-45 fleet, including the OA-45s, with the Adour F405-RR-402 was considered. This new engine was based on the British Adour Mk 951, designed for the latest versions of the BAe Hawk and powering the BAe Taranis and Dassault nEUROn UCAV technology demonstrators. The Adour Mk 951 offered 6,500 lbf (29 kN) thrust and up to twice the service life of the F405-RR-401. It featured an all-new fan and combustor, revised HP and LP turbines, and introduced Full Authority Digital Engine Control (FADEC). The Mk 951 was certified in 2005, the F405-RR-402 derived from it was certified in 2008, but it did not enter service due to funding issues, so that this upgrade was not carried out.
The final delivery of the 246th T-45 airframe took place in November 2009, and both T-45 and the OA-45 "GosHog" are supposed to remain in service until 2035.
General characteristics:
Crew: 2 (pilot, observer)
Length: 39 ft 4 in (11.99 m)
Wingspan: 30 ft 10 in (9.39 m)
Height: 13 ft 5 in (4.08 m)
Wing area: 190.1 ft² (17.7 m²)
Empty weight: 10,403 lb (4,460 kg)
Max. takeoff weight: 14,081 lb (6,387 kg)
Powerplant:
1× Rolls-Royce Turbomeca F405-RR-401 (Adour) non-afterburning turbofan with 5,527 lbf (26 kN)
Performance:
Maximum speed: Mach 2 (2,204 km/h (1,190 kn; 1,370 mph) at high altitude
Combat radius: 800 km (497 mi, 432 nmi)
Ferry range: 3,200 km (1,983 mi) with drop tanks
Service ceiling: 15,240 m (50,000 ft)
Wing loading: 283 kg/m² (58 lb/ft²)
Thrust/weight: 0.97
Maximum g-load: +9 g
Armament:
No internal gun; seven external hardpoints (three on each wing and one under fuselage)
for a wide range of ordnance of up to 6,800 lb (3,085 kg), including up to six AIM-9 Sidewinder for
self-defense, pods with unguided rockets for target marking or ECM pods, but also offensive weapons
of up to 1.000 lb (454 kg) weight, including iron/cluster bombs and guided AGM-65, GBU-12 and -16.
The kit and its assembly:
This fictional T-45 variant is actually the result of a long idea evolution, and simply rooted in the idea of a dedicated OA-4M replacement for the USMC; in real life, the FFAC role has been transferred to F-18 two-seaters, though, but the T-45 appeared like a sound alternative to me.
There's only one T-45 kit available, a dubious T-45A from Italeri with poor wings and stabilizers. Wolfpack also offers a T-45, but it’s just a re-boxing of the Italeri kit with some PE parts and a price tag twice as big – but it does not mend the original kit’s issues… After reading the A-4 Skyhawk book from the French "Planes & Pilots" series, I was reminded of the USMC's special OA-4M FAC two-seaters (and the fact that it is available in kit form from Italeri and Hasegawa), and, cross-checking the real-world timeline of the T-45, I found that it could have been a suitable successor. The ide of the USMC’s OA-45 was born! :D
Building-wise the Italeri T-45 remained close to OOB, even though I transplanted several parts from an Italeri BAe Hawk Mk. 100 to create a different look. I modified the nose with the Mk. 100’s laser fairing and added some radar warning sensor bumps. This transplantation was not as easy as it might seem because the T-45’s nose is, due to the different and more massive front landing gear quite different from the Hawk’s. Took some major PSR to integrate the laser nose.
An ALR-45 “hot dog” fairing from a late A-4M (Italeri kit) was added to the fin, together with a small styrene wedge extending the fin’s leading edge. This small detail markedly changes the aircraft’s look. I furthermore added a refueling probe, scratched from coated wire and some white glue, as well as a low “camel back” fairing behind the cockpit, created from a streamlined bomb half with air outlets for an integrated heat exchanger. Blade antennae were relocated and added. A shallow bump for the Doppler radar was added under the fuselage behind the landing gear well – left over from an Airfix A-4B (from an Argentinian A-4P, to be correct, actually a dorsal fairing).
On the wings, a tailored pair of pylons and wing tip launch rails from the Italeri BAe Hawk Mk. 100 kit were added, too, as well as the donor kit’s pair of Sidewinders. The rest of the ordnance consists of drop tanks and LAU-19 pods for target marking missiles. The tanks were taken from the Hawk Mk. 100 kit, too, the rocket launchers came from an Italeri NATO aircraft weapons set. The centerline position carries an ALQ-131 ECM pod from a Hasegawa US aircraft weapons set on a pylon from the scrap box.
Painting and markings:
The low-viz idea prevailed, since I had some leftover OA-4M decals from Italeri kits in store, as well as some other suitable low-viz decals from a Revell A-4F kit. However, an all-grey livery was IMHO not enough, and when I came across a picture of a USN low-viz A-7E with an improvised desert camouflage in sand and reddish brown applied over the grey (even partly extending over its markings) from Operation Iraqi Freedom, I had that extra twist that would set the OA-45 apart. MALS-13 was chosen as operator because I had matching codes, and, as another benefit, the unit had actually been deployed overseas during the 2003 Iraq War, so that the whif’’s time frame was easily settled, adding to its credibility.
The livery was built up just like on the real aircraft: on top of a basic scheme in FS 36320 and 36375 (Humbrol 128 and 127) with a slightly darker anti-glare panel in front of the cockpit (FS 35237, I used Revell 57 as a slightly paler alternative) I applied the low-viz marking decals, which were protected with a coat of acrylic varnish. Next, additional desert camouflage was added with dry-brushed sand and millitary brown (supposedly FS 33711 and 30400 in real life, I used, after consulting pictures of aircraft from both Gulf Wars, Humbrol 103 (Cream) and 234 (Dark Flesh). They were applied with a kind of a dry-brushing technique, for a streaky and worn look, leaving out the codes and other markings. The pattern itself was inspired by an USMC OV-10 Bronco in desert camouflage from the 1st Gulf War.
On top of that a black ink washing was applied. Once things had thoroughly dried over night, I wet-sanded the additional desert camouflage away, carefully from front to back, so that the edges became blurred and the underlying grey became visible again.
The cockpit interior was painted in standard Dark Gull Grey (Humbrol 140), while the air intakes and the landing gear became white, the latter with red trim on the covers’ edges – just standard. Finally, the model was sealed with a coat of matt acrylic varnish (Italeri).
The upgraded T-45 is an interesting result. The add-ons suit the aircraft, which already looks sturdier than its land-based ancestor, well. The improvised desert paint scheme with the additional two-tone camouflage over the pale grey base really makes the aircraft an unusual sight, adding to its credibility.
Hardware-wise I am really happy how the added dorsal hump blends into the overall lines – in a profile view it extends the canopy’s curve and blends into the fin, much like the A-4F/M’s arrangement. And the modified fin yields a very different look, even though not much was changed. The T-45 looks much beefier now, and from certain angles really reminds of the OA-4M and sometimes even of a diminutive Su-25?
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
The KAI T-50 Golden Eagle (골든이글) is a family of South Korean supersonic advanced trainers and light combat aircraft, developed by Korea Aerospace Industries (KAI) with Lockheed Martin. The T-50 is South Korea's first indigenous supersonic aircraft and one of the world's few supersonic trainers.
The T-50 program started in the late Nineties and was originally intended to develop an indigenous trainer aircraft capable of supersonic flight, to train and prepare pilots for the KF-16 and F-15K, replacing trainers such as T-38 and A-37 that were then in service with the ROKAF. Prior South Korean aircraft programs include the turboprop KT-1 basic trainer produced by Daewoo Aerospace (now part of KAI), and license-manufactured KF-16.
The mother program, code-named KTX-2, began in 1992, but the Ministry of Finance and Economy suspended the original project in 1995 due to financial constraints. The basic design of the aircraft was set by 1999, and eventually the development of the aircraft was funded 70% by the South Korean government, 17% by KAI, and 13% by Lockheed Martin.
In general, the T-50 series of aircraft closely resembles the KF-16 in configuration, but it actually is a completely new design: the T-50 is 11% smaller and 23% lighter than an F-16, and in order to create enough space for the two-seat cockpit, the air intake was bifurcated and placed under the wing gloves, resembling the F/A-18's layout.
The aircraft was formally designated as the T-50 'Golden Eagle' in February 2000, the T-50A designation had been reserved by the U.S. military to prevent it from being inadvertently assigned to another aircraft model. Final assembly of the first T-50 took place between 15 January and 14 September 2001. The first flight of the T-50 took place in August 2002, and initial operational assessment from 28 July to 14 August 2003.
The trainer has a cockpit for two pilots in a tandem arrangement, both crew members sitting in "normal" election seats, not in the F-16's reclined position. The high-mounted canopy is applied with stretched acrylic, providing the pilots with good visibility, and has been tested to offer the canopy with ballistic protection against 4-lb objects impacting at 400 knots.
The ROKAF, as original development driver, placed an initial production contract for 25 T-50s in December 2003, with aircraft scheduled to be delivered between 2005 and 2009. Original T-50 aircraft were equipped with the AN/APG-67(v)4 radar from Lockheed Martin. The T-50 trainer is powered by a GE F404 engine built under license by Samsung Techwin. Under the terms of the T-50/F404-102 co-production agreement, GE provides engine kits directly to Samsung Techwin who produces designated parts as well as performing final engine assembly and testing.
The T-50 program quickly expanded beyond a pure trainer concept to include the TA-50 armed trainer aircraft, as well as the FA-50 light attack aircraft, which has already similar capabilities as the multirole KF-16. Reconnaissance and electronic warfare variants were also being developed, designated as RA-50 and EA-50.
The TA-50 variant is a more heavily armed version of the T-50 trainer, intended for lead-in fighter training and light attack roles. It is equipped with an Elta EL/M-2032 fire control radar and designed to operate as a full-fledged combat platform. This variant mounts a lightweight three-barrel cannon version of the M61 Vulcan internally behind the cockpit, which fires linkless 20 mm ammunition. Wingtip rails can accommodate the AIM-9 Sidewinder missile, a variety of additional weapons can be mounted to underwing hardpoints, including precision-guided weapons, air-to-air missiles, and air-to-ground missiles. The TA-50 can also mount additional utility pods for reconnaissance, targeting assistance, and electronic warfare. Compatible air-to-surface weapons include the AGM-65 Maverick missile, Hydra 70 and LOGIR rocket launchers, CBU-58 and Mk-20 cluster bombs, and Mk-82, -83, and -84 general purpose bombs.
Among the operators of the TA-50 are the Philippines, Thailand and the ROKAF, and the type has attracted a global interest, also in Europe. The young Republic of Scotland Air Corps (locally known as Poblachd na h-Alba Adhair an Airm) chose, soon after the country's independence from the United Kingdom, after its departure from the European Union in 2017, the TA-50 as a complement to its initial procurements and add more flexibility to its small and young air arm.
According to a White Paper published by the Scottish National Party (SNP) in 2013, an independent Scotland would have an air force equipped with up to 16 air defense aircraft, six tactical transports, utility rotorcraft and maritime patrol aircraft, and be capable of “contributing excellent conventional capabilities” to NATO. Outlining its ambition to establish an air force with an eventual 2,000 uniformed personnel and 300 reservists, the SNP stated the organization would initially be equipped with “a minimum of 12 interceptors in the Eurofighter/Typhoon class, based at Lossiemouth, a tactical air transport squadron, including around six [Lockheed Martin] C-130J Hercules, and a helicopter squadron”.
According to the document, “Key elements of air forces in place at independence, equipped initially from a negotiated share of current UK assets, will secure core tasks, principally the ability to police Scotland’s airspace, within NATO.” An in-country air command and control capability would be established within five years of a decision in favor of independence, it continues, with staff also to be “embedded within NATO structures”.
This plan was immediately set into action after the country's independence in late 2017 with the purchase of twelve refurbished Saab JAS 39A Gripen interceptors for Quick Reaction Alert duties and upgraded, former Swedish Air Force Sk 90 trainers for the RoScAC. But these second hand machines were just the initial step in the mid-term procurement plan.
The twelve KAI TA-50 aircraft procured as a second step were to fulfill the complex requirement for a light and cost-effective multi-purpose aircraft that could be used in a wide variety of tasks: primarily as an advanced trainer for supersonic flight and as a trainer for the fighter role (since all Scottish Gripens were single seaters and dedicated to the interceptor/air defense role), but also as a light attack and point defense aircraft.
Scotland was offered refurbished F-16C and Ds, but this was declined as the type was deemed to be too costly and complex. Beyond the KAI T-50, the Alenia Aermacchi M-346 Master and the BAe Hawk were considered, too, but, eventually, a modified TA-50 that was tailored to the RoScAC’s procurement plans was chosen by the Scottish government.
In order to fulfill the complex duty profile, the Scottish TA-50s were upgraded with elements from the FA-50 attack aircraft. They possess more internal fuel capacity, enhanced avionics, a longer radome and a tactical datalink. Its EL/M-2032 pulse-Doppler radar has been modified so that it offers now a range two-thirds greater than the TA-50's standard radar. It enables the aircraft to operate in any weather, detect surface targets and deploy AIM-120 AAMs for BVR interceptions. The machines can also be externally fitted with Rafael's Sky Shield or LIG Nex1's ALQ-200K ECM pods, Sniper or LITENING targeting pods, and Condor 2 reconnaissance pods to further improve the machine’s electronic warfare, reconnaissance, and targeting capabilities.
Another unique feature of the Scottish Golden Eagle is its powerplant: even though the machines are originally powered by a single General Electric F404 afterburning turbofan and designed around this engine, the RoScAC TF-50s are powered by a Volvo RM12 low-bypass afterburning turbofan. These are procured and serviced through Saab in Sweden, as a part of the long-term collaboration contract for the RoScAC’s Saab Gripen fleet. This decision was taken in order to decrease overall fleet costs through a unified engine.
The RM12 is a derivative of the General Electric F404-400. Changes from the standard F404 includes greater reliability for single-engine operations (including more stringent birdstrike protection) and slightly increased thrust. Several subsystems and components were also re-designed to reduce maintenance demands, and the F404's analogue Engine Control Unit was replaced with the Digital Engine Control – jointly developed by Volvo and GE – which communicates with the cockpit through the digital data buses and, as redundancy, mechanical calculators controlled by a single wire will regulate the fuel-flow into the engine.
Another modification of the RoScAC’s TA-50 is the exchange of the original General Dynamics A-50 3-barrel rotary cannon for a single barrel Mauser BK-27 27mm revolver cannon. Being slightly heavier and having a lower cadence, the BK-27 featured a much higher kinetic energy, accuracy and range. Furthermore, the BK-27 is the standard weapon of the other, Sweden-built aircraft in RoScAC service, so that further synergies and cost reductions were expected.
The Scottish Department of National Defense announced the selection of the TA-50 in August 2018, after having procured refurbished Saab Sk 90 and JAS 39 Gripen from Sweden as initial outfit of the country's small air arm with No. 1 Squadron based at Lossiemouth AB.
Funding for the twelve aircraft was approved by Congress on September 2018 and worth € 420 mio., making the Golden Eagle the young country’s first brand new military aircraft. Deliveries of the Golden Hawk TF.1, how the type was officially designated in Scottish service, began in November 2019, lasting until December 2020.
The first four Scottish Golden Hawk TF.1 aircraft were allocated to the newly established RoScAC No. 2 Squadron, based at Leuchars, where the RoScAC took control from the British Army. The latter had just taken over the former air base from the RAF in 2015, losing its “RAF air base” status and was consequentially re-designated “Leuchars Station”, primarily catering to the Royal Scots Dragoon Guards who have, in the meantime, become part of Scotland’s Army Corps. The brand new machines were publically displayed on the shared army and air corps facility in the RoScAC’s new paint scheme on 1st of December 2019 for the first time, and immediately took up service.
General characteristics:
Crew: 2
Length: 13.14 m (43.1 ft)
Wingspan (with wingtip missiles): 9.45 m (31 ft)
Height: 4.94 m (16.2 ft)
Wing area: 23.69 m² (255 ft²)
Empty weight: 6,470 kg (14,285 lb)
Max. takeoff weight: 12,300 kg (27,300 lb)
Powerplant:
1× Volvo RM12 afterburning turbofan, rated at 54 kN (12,100 lbf) dry thrust
and 80.5 kN (18,100 lbf) with afterburner
Performance:
Maximum speed: Mach 1.5 (1,640 km/h, 1,020 mph at 9,144 m or 30,000 ft)
Range: 1,851 km (1,150 mi)
Service ceiling: 14,630 m (48,000 ft)
Rate of climb: 198 m/s (39,000 ft/min)
Thrust/weight: 0.96
Max g limit: -3 g / +8 g
Armament:
1× 27mm Mauser BK-27 revolver cannon with 120 rounds
A total of 7 hardpoints (4 underwing, 2 wingtip and one under fuselage)
for up to 3,740 kg (8,250 lb) of payload
The kit and its assembly:
A rare thing concerning my builds: an alternative reality whif. A fictional air force of an independent Scotland crept into my mind after the hysterical “Brexit” events in 2016 and the former (failed) public vote concerning the independence of Scotland from the UK. What would happen to the military, if the independence would take place, nevertheless, and British forces left the country?
The aforementioned Scottish National Party (SNP) paper from 2013 is real, and I took it as a benchmark. Primary focus would certainly be set on air space defense, and the Gripen appears as a good and not too expensive choice. The Sk 90 is a personal invention, but would fulfill a good complementary role.
Nevertheless, another multi-role aircraft would make sense as an addition, and both M-346 and T-50 caught my eye (Russian options were ruled out due to the tense political relations), and I gave the TA-50 the “Go” because of its engine and its proximity to the Gripen.
The T-50 really looks like the juvenile offspring from a date between an F-16 and an F-18. There’s even a kit available, from Academy – but it’s a Snap-Fit offering without a landing gear but, as an alternative, a clear display that can be attached to the engine nozzle. It also comes with stickers instead of waterslide decals. This sounds crappy and toy-like, but, after taking a close look at kit reviews, I gave it a try.
And I am positively surprised. While the kit consists of only few parts, moulded in the colors of a ROCAF trainer as expected, the surfaces have minute, engraved detail. Fit is very good, too, and there’s even a decent cockpit that’s actually better than the offering of some “normal” model kits. The interior comes with multi-part seats, side consoles and dashboards that feature correctly shaped instrument details (no decals). The air intakes are great, too: seamless, with relatively thin walls, nice!
So far, so good. But not enough. I could have built the kit OOB with the landing gear tucked up, but I went for the more complicated route and trans-/implanted the complete landing gear from an Intech F-16, which is available for less than EUR 5,- (and not much worth, to be honest). AFAIK, there’s white metal landing gear for the T-50 available from Scale Aircraft Conversions, but it’s 1:48 and for this set’s price I could have bought three Intech F-16s…
But back to the conversion. This landing gear transplantation stunt sounds more complicated as it actually turned out to be. For the front wheel well I simply cut a long opening into the fuselage and added inside a styrene sheet as a well roof, attached under the cockpit floor.
For the main landing gear I just opened the flush covers on the T-50 fuselage, cut out the interior from the Intech F-16, tailored it a little and glued it into its new place.
This was made easy by the fact that the T-50 is a bit smaller than the F-16, so that the transplants are by tendency a little too large and offer enough “flesh” for adaptations. Once in place, the F-16 struts were mounted (also slightly tailored to fit well) and covers added. The front wheel cover was created with 0.5 mm styrene sheet, for the main covers I used the parts from the Intech F-16 kit because they were thinner than the leftover T-50 fuselage parts and feature some surface detail on the inside. They had to be adapted in size, though. But the operation worked like a charm, highly recommended!
Around the hull, some small details like missing air scoops, some pitots and antennae were added. In a bout of boredom (while waiting for ordered parts…) I also added static dischargers on the aerodynamic surfaces’ trailing edges – the kit comes with obvious attachment points, and they are a small detail that improves the modern look of the T-50 even more.
Since the Academy kit comes clean with only a ventral drop tank as ordnance, underwing pylons from a SEPECAT Jaguar (resin aftermarket parts from Pavla) and a pair of AGM-65 from the Italeri NATO Weapons set plus launch rails were added, plus a pair of Sidewinders (from a Hasegawa AAM set, painted as blue training rounds) on the wing tip launch rails.
Since the T-50 trainer comes unarmed, a gun nozzle had to be added – its position is very similar to the gun on board of the F-16, on the upper side of the port side LERX. Another addition are conformal chaff/flare dispensers at the fin’s base, adding some beef to the sleek aircraft.
Painting and markings:
I did not want a grey-in-grey livery, yet something “different” and rather typical or familiar for the British isles. My approach is actually a compromise, with classic RAF colors and design features inspired by camouflage experiments of the German Luftwaffe on F-4F Phantoms and Alpha Jets in the early Eighties.
For the upper sides I went for a classic British scheme, in Dark Green and Dark Sea Grey (Humbrol 163 and 164), colors I deem very appropriate for the Scottish landscape and for potential naval operations. These were combined with elements from late RAF interceptors: Barley Grey (Humbrol 167) for the flanks including the pylons, plus Light Aircraft Grey (Humbrol 166) for the undersides, with a relatively high waterline and a grey fin, so that a side or lower view would rather blend with the sky than the ground below.
Another creative field were the national markings: how could fictional Scottish roundels look like, and how to create them so that they are easy to make and replicate (for a full set for this kit, as well as for potential future builds…)? Designing and printing marking decals myself was an option, but I eventually settled for a composite solution which somewhat influenced the roundels’ design, too.
My Scottish roundel interpretationconsists of a blue disk with a white cross – it’s simple, different from any other contemporary national marking, esp. the UK roundel, and easy to create from single decal parts. In fact, the blue roundels were die-punched from blue decal sheet, and the cross consists of two thin white decal strips, cut into the correct length with the same stencil, using generic sheet material from TL Modellbau.
Another issue was the potential tactical code, and a small fleet only needs a simple system. Going back to a WWII system with letter codes for squadrons and individual aircraft was one option, but, IMHO, too complicated. I adopted the British single letter aircraft code, though, since this system is very traditional, but since the RoScAC would certainly not operate too many squadrons, I rather adapted a system similar to the Swedish or Spanish format with a single number representing the squadron. The result is a simple 2-digit code, and I adapted the German system of placing the tactical code on the fuselage, separated by the roundel. Keeping British traditions up I repeated the individual aircraft code letter on the fin, where a Scottish flag, a small, self-printed Fife coat-or-arms and a serial number were added, too.
The kit saw only light weathering and shading, and the kit was finally sealed with matt acrylic varnish (Italeri).
Creating this whif, based on an alternative historic timeline with a near future perspective, was fun – and it might spawn more models that circle around the story. A Scottish Sk 90 and a Gripen are certain options (and for both I have kits in the stash…), but there might also be an entry level trainer, some helicopters for the army and SAR duties, as well as a transport aircraft. The foundation has been laid out, now it’s time to fill Scotland’s history to come with detail and proof. ;-)
Besides, despite being a snap-fit kit, Academy’s T-50 is a nice basis, reminding me of some Hobby Boss kits but with less flaws (e .g. most of the interiors), except for the complete lack of a landing gear. But with the F-16 and Jaguar transplants the simple kit developed into something more convincing.
c/n 26569/15124.
Built 1943.
Allocated US Military serial ’43-49308’.
RAF serial ‘KK116’.
Airworthy and operated by the “Classic Air Force”, although for sale at time of writing.
The aeroplane is still capable of operating on pollution-control work, as is evident by the spray bars on the rear fuselage.
Seen outside at ‘Coventry - Airbase’,
Coventry Airport, UK
11-10-2015
The following info is from the Classic Air Force website:-
“One of the first things you notice on climbing aboard G-AMPY is the static parachute line running the length of the cabin. Then look back at the door and you'll notice the red and green jump lights. For a moment you're back in June 1944 and feeling that chill as you imagine standing in the door, waiting for the "go" signal.
Having seen operational service in Burma during World War Two and having played a vital part in the Berlin Airlift in the immediate post-war year Douglas DC-3 G-AMPY is one of the most historically important aeroplanes operated by Air Atlantique.
She was built in 1943 at Douglas Aircraft’s subsidiary plant at Oklahoma City. Allocated the USAAF serial 43-49308 the aeroplane didn’t actually serve with the Americans and was eventually taken on charge by the Royal Air Force on November 10, 1944. Given the RAF serial KK116 the aircraft was despatched to Burma where she flew as aircraft ‘T’ in South East Asia Command’s 435Sqn.
In late 1945 425Sqn returned home to Britain and KK116 made the long journey to its new home at RAF Down Ampney in Gloucestershire. Here, the aircraft was coded 'OFM-T' and it served with the squadron for a number of years. During its time with 435Sqn it took part in the legendary Berlin Airlift carrying much-needed food and supplies to the besieged population of the German capital.
When her useful days were deemed to be over KK116 was ferried to 1 MU at Kirkbride, Cumbria for storage and awaited an uncertain future. Saved from obscurity in March 1952 she was placed on the UK civil register as G-AMPY by Jerome Anthony Wilson of Liverpool. Operated by Starways Ltd it flew from Liverpool’s Speke Airport until December 1957 when it was ostensibly sold in Jordan and transferred to the Jordanian register as JY-ABE. However the sale to Jordan was never completed and in May 1958 the aircraft returned to the British register and to Starways at Liverpool, in whose name it was registered. Starways eventually operated G-AMPY until late 1963, and in early 1964 the ownership of the aircraft changed to Aviation Overhauls Ltd.
The aircraft was reportedly sold in Iceland in June 1964 and registered as TF-FIO, but the aircraft was back on the UK register again in August 1965, still registered to Aviation Overhauls Ltd. It is not known if it ever flew north to Iceland.
Between February and November 1966, G-AMPY was leased to Irefly, but in January 1968 it was on sale in the USA, registered to Aviation Enterprises Inc of Cedarburg, Wisconsin as N15751. It remained undelivered, however, and in November 1970 G-AMPY was back on the British register owned by The New Guarantee Trust of Jersey Ltd. Under that ownership, it was operated by Intra Airways (which was renamed Jersey European) until the end of 1980 when it was registered to Field Aviation Ltd of London-Heathrow.
A proposed sale in 1981, this time to Clyden Airways of Dublin, saw the aircraft registered as EI-BKJ, but yet again the sale fell through and the aircraft returned to the British register.
Air Atlantique Ltd purchased the aircraft in February 1982, initially using it for cargo work, then equipping it as a tanker for spraying detergent on oil spills at sea and latterly in a 36-seat passenger configuration.
In July 2007 G-AMPY performed the airline’s final passenger flying DC-3 flight (to date) and has since been relegated to airshow and film appearances. Over the winter of 2009/2010 it was re-equipped as a spray aircraft and remained on standby all winter.
The aircraft currently wears the RAF markings she carried when taking part in the Berlin Airlift. Special dispensation has been issued by the Civil Aviation Authority for her to carry her original RAF serial.”
Waiting in the rain & in vain for 60103 Flying Scotsman at Ampthill Crossing 4/11/2017 (It was 25 minutes earlier than The British Rail Class 222 is a diesel multiple unit high-speed train capable of 125 mph (200 km/h). Twenty-seven units have been built in Belgium by Bombardier Transportation.
The Class 222 is similar to the Class 220 Voyager and Class 221 Super Voyager trains used by CrossCountry and Virgin Trains, but it has a different interior. The Class 222 trains have more components fitted under the floors to free up space within the body. Since 2009 East Midlands Trains has been the only train operating company using Class 222s.
All coaches are equipped with a Cummins QSK19 diesel engine of 750 hp (560 kW) at 1800 rpm.[2] This powers a generator, which supplies current to motors driving two axles per coach. Approximately 1,350 miles (2,170 km) can be travelled between each refuelling.
Class 222 have rheostatic braking using the motors in reverse to generate electricity which is dissipated as heat through resistors situated on the roof of each coach; this saves on brake pad wear.
In common with the Class 220s, B5000 lightweight bogies are used - these are easily recognisable since the entire outer surface of the wheel is visible, with inboard axle bearings.
The Class 222 are fitted with Dellner couplers,[3] as on Class 220 Voyager and Class 221 SuperVoyager trains,[3] though these units cannot work together in service because the Class 222 electrical connections are incompatible with the Class 220 and Class 221 trains.[3][clarification needed]
All Class 222 units are maintained at the dedicated Etches Park depot in Derby, just south of Derby station.
Formation[edit]
Seven car length Class 222 No. 222003 at London St Pancras
Five car length Class 222 No. 222016 at Bedford
Class 222 units are currently running in the following formations:
East Midlands Trains: seven cars with 236 standard seats and 106 first-class seats.
Coach A - Standard Class with driving cab and reservable space for two bikes
Coach B - Standard Class
Coach C - Standard Class
Coach D - Standard Class with Buffet counter
Coach F - First Class
Coach G - First Class
Coach H - First Class, kitchen and driving cab
East Midlands Trains: five cars with 192 standard seats and 50 first-class seats
Coach A - Standard Class with driving cab and reservable space for two bikes
Coach B - Standard Class
Coach C - Standard Class with Buffet counter
Coach D - Standard Class / First Class composite
Coach G - First Class, kitchen and driving cab
East Midlands Trains: four cars with 132 standard seats and 33 first-class seats
Coach A - Standard Class with driving cab and reservable space for two bikes
Coach B - Standard Class with Buffet counter
Coach D - Standard Class / First Class composite
Coach G - First Class, kitchen and driving cab
The four- and five-car units can be coupled to form 9/10-car services at peak times. When coupled together, coaches A-G are found in the front unit and the rear coaches become labelled J, K, L, M, N, with the first-class seats in coaches J and K.
Initially, the 23 units ordered for Midland Mainline were 4-car and 9-car. Over time these have been gradually modified to the current formations. The 4-car units ordered by Hull Trains had an option when constructed to be extended to 5-cars if required.[4]
East Midlands Trains has named the following Meridians:
Unit numberNameDate namedNamed byNotes
222 001The Entrepreneur Express22 September 2011Tim Shoveller, East Midlands Trains Managing DirectorNamed to kick off the start of the 2011 entrepreneur festival MADE
222 002The Cutlers' Company18 October 2011Pamela Liversidge, Master CutlerNamed to mark the successful partnership between East Midlands Trains and Sheffield
222 003Tornado24 March 2009Tim Shoveller, East Midlands Trains Managing DirectorDriving car 60163 named as it has the same number as Tornado
222 004Children's Hospital Sheffield26 February 2013Michael Vaughan, Charity PatonTo mark the successful partnership between East Midlands Trains and the Sheffield Children's Hospital
222 006The Carbon Cutter31 May 2011Philip Hammond, Transport SecretaryTo mark the introduction of eco-mode to the fleet
222 008Derby Etches Park13 September 2014David Horne, East Midlands Trains Managing DirectorNamed as part of the open day at Derby Etches Park
222 015175 Years of Derby's Railways 1839 - 201418 July 2014Paul Atterbury, Antiques Roadshow Expert and railway authorTo mark 175 years of railways in Derby
222 022Invest In Nottingham19 September 2011Jon Collins, leader of Nottingham City CouncilNamed to launch the 2011 Invest in Nottingham day
222 011Sheffield City Battalion 1914-191811 November 2014Ron Wiltshire, Royal British Legion representativeNamed to honour Sheffield City Battalion who fought in the World War I
East Midlands Trains Class 222/0 No. 222018 at Loughborough.
In 2008 further rearrangements were made to the sets: another carriage was removed from the eight-car Meridians, except for 222 007, which has been reduced to five cars.[6] The surplus coaches were then added to the remaining four-car Meridians to make six seven-car sets (222 001-222 006) and 17 five-car sets (222 007-222 023). This took place from March to October 2008; as part of the process, two first-class coaches removed from 222 007 were converted to standard class and part first class.
The seven-car trains are almost exclusively used on the fast services between London St Pancras and Sheffield. These do not operate the London St Pancras-Leeds, although the service is via Sheffield. The five-car trains are mainly used between London St Pancras and Sheffield, Nottingham or Corby on semi-fast services. The four-car trains supplement the five-car trains on these services.
In December 2008 the Class 222 Meridians started work on the hourly London St Pancras to Sheffield services, because they have faster acceleration than the High Speed Trains and so were able to reduce the Sheffield to London journey time by 12 minutes. The hourly Nottingham service was then transferred to High Speed Train running to cover for the Meridians now working the hourly Sheffield fast service.[7]
In February 2009, 222 101 and 222 102 transferred from Hull Trains to East Midlands Trains, and were quickly repainted in the East Midlands Trains white livery. 222 104 followed from Hull Trains later in the year. 222 103 followed a few months after 222 104 after repairs had been completed (see below). 222 103 has now been reinstated for service after two years for repairs after the unit fell from jacks at Bombardier, Crofton in early 2007.
scheduled and sitting in my car it passed by heard but not seen)
The empty coal trains with a capable JS or even the odd QJ up front, working from the China Rail exchange sidings at Pingdingshan Dong and between the coke works and washery buildings at Tianzhuang was quite a spectacle at any time of day, but as nightfall set in the splendour of a hard-working 2-8-2 hammering up into the main despatch yard with empties for the vairous collieries on the system was a sight to behold. With its headlight blazing at shortly after 5.00pm on an overcast day, JS 2-8-2 No.8120 brings coal empties up into the main Tianzhung Yard. Pingdingshan Coal Railway, Henan Province, approximately 90 kilometres south of Zhengzou, on 10th January 2003.
© Copyright Gordon Edgar - No unauthorised use.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background:
The Wasp was a transonic British jet-powered fighter aircraft that was developed by Folland for the Royal Air Force (RAF) during the late 1940s and early 1950s. The Wasp’s origins could be traced back to a privately funded 1952 concept for a bigger and more capable day fighter aircraft than Folland’s very light Midget/Gnat. The Wasp’s development had been continued until the Gnat’s service introduction, and by then it had evolved under the handle “Fo-145” into a supersonic aircraft that took advantage of the new Armstrong Siddeley Sapphire turbojet engine, swept wings and area rule. The aircraft was built with the minimum airframe size to take the reheated Saphire and a radar system that would allow it to deploy the new de Havilland Blue Jay (later Firestreak) guided air-to-air missile. In this form the aircraft was expected to surpass the Royal Air Force’s contemporary day fighter, the only gun-armed Hawker Hunter, which had been in service since 1954, while using basically the same engine as its F.2 variant, in both performance and armament aspects. The missile-armed Wasp was also expected to replace the disappointing Supermarine Swift and the Fairey Fireflash AAMs that had been developed for it.
The Wasp strongly resembled the smaller Gnat, with a similar but much thinner shoulder mounted wing, with a sweep of 35° at quarter chord, but the new aircraft featured some innovations. Beyond the area-ruled fuselage, the aircraft had full-span leading edge slats and trailing edge flaps with roll control achieved using spoilers rather than traditional ailerons. Anticipating supersonic performance, the tailplane was all-moving. The cockpit had been raised and offered the pilot a much better all-round field of view.
The Wasp was armed with four 30 mm (1.18 in) ADEN cannon, located under the air intakes. Each gun had a provision of 125 rounds, from form a mutual ventral ammunition bay that could be quickly replaced. Four underwing hardpoints could carry an ordnance load of up to 4.000 lb, and the Wasp’s main armament consisted of up to four IR-guided “Firestreak” AAMs. To effectively deploy them, however, a radar system was necessary. For launch, the missile seeker was slaved to the Wasp’s AI.Mk.20 X-band radar until lock was achieved and the weapon was launched, leaving the interceptor free to acquire another target. The AI.Mk.20 had been developed by EKCO since 1953 under the development label “Green Willow” for the upcoming EE Lightning interceptor, should the latter’s more complex and powerful Ferranti AIRPASS system fail. A major advantage of the AI.Mk.20 was that it had been designed as a single unit so it could be fit into the nose of smaller single-seat fighters, despite its total weight of roughly 400 lb (200 kg). For the Firestreak AAM, EKCO had developed a spiral-scan radar with a compact 18 in (460 mm) antenna that offered an effective range of about 10 miles (16 km), although only against targets very close to the centerline of the radar. The radar’s maximum detection range was 25 mi (40 km) and the system also acted as a ranging radar, providing range input to the gyro gunsight for air-to-air gunnery.
Beyond Firestreaks, the Wasp could also carry drop tanks (which were area-ruled and coulc only be carried on the inner pair of pylons), SNEB Pods with eighteen 68 mm (2.68 in) unguided rocket projectiles against air and ground targets, or iron bombs of up to 1.000 lb caliber. Other equipment included a nose-mounted, and a forward-facing gun camera.
The Royal Air Force was sufficiently impressed to order two prototypes. Since the afterburning version of the Sapphire was not ready yet, the first prototype flew on 30 July 1954 with a non-afterburning engine, an Armstrong Siddeley Sapphire Sa.6 with 8,000 lbf (35.59 kN). In spite of this lack of power the aircraft nevertheless nearly reached Mach 1 in its maiden flight. The second prototype, equipped with the intended Sapphire Sa.7 afterburning engine with 11,000 lbf (48.9 kN) thrust engine, showed the aircraft’s full potential. The Wasp turned out to have very good handling, and the RAF officially ordered sixty Folland Fo-145 day-fighters under the designation “Wasp F.Mk.1”. The only changes from the prototypes were small leading-edge extensions at the wing roots, improving low speed handling, esp. during landings and at high angles of incidence in flight.
Most Wasps were delivered to RAF Germany frontline units, including No. 20 and 92 Squadrons based in Northern Germany. However, the Wasp’s active service did not last long, because technological advancements quickly rendered the aircraft obsolete in its original interceptor role. The Wasp’s performance had not turned out as significantly superior to the Hunter as expected. Range was rather limited, and the aircraft turned out to be underpowered, since the reheated Sapphire Sa6 did not develop as much power as expected. The AI.Mk.20 radar was rather weak and capricious, too, and the Firestreak was an operational nightmare. The missile was, due to its solid Magpie rocket motor and the ammonia coolant for the IR seeker head, highly toxic and RAF armorers had to wear some form of CRBN protection to safely mount the missile onto an aircraft. Furthermore, unlike modern missiles, Firestreak’s effectiveness was very limited since it could only be fired outside cloud - and over Europe or in winter, skies were rarely clear.
Plans for a second production run of the Folland Wasp with a more powerful Sapphire Sa7R engine with a raised thrust of 12,300 lbf (54.7 kN) and updated avionics were not carried out. During the 1960s, following the successful introduction of the supersonic English Electric Lightning in the interceptor role, the Wasp, as well as the older but more prosperous and versatile Hunter, transitioned to being operated as a fighter-bomber, advanced trainer and for tactical photo reconnaissance missions.
This led to a limited MLU program for the F.Mk.1s and conversions of the remaining airframes into two new variants: the new main version was the GR.Mk.2, a dedicated CAS/ground attack variant, which had its radar removed and replaced with ballast, outwardly recognizable through a solid metal nose which replaced the original fiberglass radome. Many of these machines also had two of the 30mm guns removed to save weight. Furthermore, a handful Wasps were converted into PR.Mk.3s. These had as set of five cameras in a new nose section with various windows, and all the guns and the ammunition bay were replaced with an additional fuel tank, operating as pure, unarmed reconnaissance aircraft. When Folland was integrated into the Hawker Siddeley Group in 1963 the aircraft’s official name was changed accordingly, even though the Folland name heritage persisted.
Most of these aircraft remained allocated to RAF Germany units and retired towards the late Sixties, but four GR.Mk.2s were operated by RAF No. 57 (Reserve) Squadron and based at No. 3 Flying Training School at Cranwell, where they were flown as adversaries in dissimilar aerial combat training. The last of the type was withdrawn from service in 1969, but one aircraft remained flying with the Aeroplane and Armament Experimental Establishment at Boscombe Down until 24 January 1975.
General characteristics:
Crew: 1
Length: 45 ft 10.5 in (13.983 m)
Wingspan: 31 ft 7.5 in (9.639 m)
Height: 13 ft 2.75 in (4.0323 m)
Wing area: 250 sq ft (23 m2)
Empty weight: 13,810 lb (6,264 kg)
Gross weight: 21,035 lb (9,541 kg)
Max takeoff weight: 23,459 lb (10,641 kg)
Powerplant:
1× Armstrong Siddeley Sapphire Sa.6, producing 7,450 lbf (33.1 kN) thrust at 8,300 rpm,
military power dry, and 11,000 lbf (48.9 kN) with afterburner
Performance:
Maximum speed: 631 kn (726 mph, 1,169 km/h) / M1.1 at 35,000 ft (10,668 m)
654 kn (753 mph; 1,211 km/h) at sea level
Cruise speed: 501 kn (577 mph, 928 km/h)
Range: 1,110 nmi (1,280 mi, 2,060 km)
Service ceiling: 49,000 ft (15,000 m)
Rate of climb: 16,300 ft/min (83 m/s)
Wing loading: 84 lb/sq ft (410 kg/m2)
Thrust/weight: 0.5
Armament:
4× 30 mm (1.18 in) ADEN cannon, 125 rounds per gun
4× underwing hardpoints for a total external ordnance of 4.000 lb, including Firestreak AAMs,
SNEB pods, bombs of up to 1.000 lb caliber or two 125 imp gal (570 l) drop tanks
The kit and its assembly
This kit travesty is a remake of a simple but brilliant idea of fellow modeler chrisonord at whatifmodellers’com (www.whatifmodellers.com/index.php?topic=48434.msg899420#m...), who posted his own build in late 2020: a Grumman Tiger in standard contemporary RAF colors as Folland Wasp GR.Mk.2. The result looked like a highly credible “big brother” or maybe successor of Folland’s diminutive Midge/Gnat fighter, something in the Hawker Hunter’s class. I really like the idea a lot and decided that it was, one and a half years later, to build my personal interpretation of the subject – also because I had a Hasegawa F11F kit in The Stash™ without a proper plan.
The Tiger was built basically OOB – a simple and straightforward affair that goes together well, just the fine, raised panel lines show the mould’s age. The only changes I made: the arrester hook disappeared under PSR, small stabilizer fins (from an Italeri BAe Hawk) were added under the tail section, and I replaced the Tiger’s rugged twin wheel front landing gear with a single wheel alternative, left over from a Matchbox T-2 Buckeye. On the main landing gear, the rearward-facing stabilizing struts were deleted (for a lighter look of a land-based aircraft) and their wells filled with putty. A late modification were additional swing arms for the main landing gear, though: once the kit could sit on its own three feet, the stance was odd and low, esp. under the tail – probably due to the new front wheel. As a remedy I glued additional swing arm elements, made from 1mm steel wire, under the original struts, what moved the main wheel a little backwards and raised the main landing gear my 1mm. Does not sound like much, but it was enough to lift the tail and give the aircraft a more convincing stance and ground clearance.
The area-ruled drop tanks and their respective pylons were taken from the Hasegawa kit. For a special “British” touch – because the Tiger had a radome (into which no radar was ever fitted, though) – I added a pair of Firestreak AAMs on the outer underwing stations, procured from a Gomix Gloster Javelin (which comes with four of these, plus pylons).
Painting and markings:
Since the RAF theme was more or less settled, paintwork revolved around more or less authentical colors and markings. The Wasp received a standard RAF day fighter scheme from the late Fifties, with upper camouflage in RAF Dark Green/Dark Sea Grey and Light Aircraft Grey undersides with a low waterline. I used Humbrol 163, 106 and 166, respectively – Ocean Grey was used because I did not have the proper 164 at hand, but 106 also offered the benefit of a slightly better contrast to the murky Dark Green. A black ink washing was applied plus some panel post-shading. The silver leading edges on wings, stabilizers and fin were created with decal sheet material, avoiding the inconvenience of masking.
The cockpit interior was painted in a very dark grey (Revell 09, Anthracite) while the landing gear, wheels and wells received a greyish-metallic finish (Humbrol 56, Aluminum Dope). The air intakes’ interior became bright aluminum (Revell 99), the area around the jet nozzle was painted with Revell 91 (Iron metallic) and later treated with graphite for a dark metallic shine. The drop tanks were camouflaged, the Firestreaks became white so that they would stand out well and add to a certain vintage look.
The decals were a mix from various sources. The No. 20 Squadron badges and the Type D high-viz roundels on the wings were left over from an Airfix Hawker Hunter. The fuselage roundels came from an Italeri BAe Hawk sheet, IIRC. The bent fin flash, all the stencils as well as the serial code (which was puzzled together from two real serials and was AFAIK not allocated to any real RAF aircraft) came from an Xtradecal Supermarine Swift sheet. The individual red “B” letter came from a Matchbox A.W. Meteor night fighter.
Finally, the kit was sealed with matt acrylic varnish – I considered a glossy finish, since this was typical for RAF aircraft in the Fifties, but eventually just gave the radome a light shine.
Basically a simple project, and quickly done in just a couple of days. However, chrisonord’s great eye for similarities makes this “Tiger in disguise” a great fictional aircraft model with only little effort, it’s IMHO very convincing. And the RAF colors and markings suit the F11F very well.
Some background:
The VF-1 was developed by Stonewell/Bellcom/Shinnakasu for the U.N. Spacy by using alien Overtechnology obtained from the SDF-1 Macross alien spaceship. It was preceded into production by an aerodynamic proving version of its airframe, the VF-X. Unlike all later VF vehicles, the VF-X was strictly a jet aircraft, built to demonstrate that a jet fighter with the features necessary to convert to Battroid mode was aerodynamically feasible.
After the VF-X's testing was finished, an advanced concept atmospheric-only prototype, the VF-0 Phoenix, was flight-tested from 2005 to 2007 and briefly served as an active-duty fighter from 2007 to the VF-1's rollout in late 2008, while the bugs were being worked out of the full-up VF-1 prototype (VF-X-1).
The space-capable VF-1's combat debut was on February 7, 2009, during the Battle of South Ataria Island - the first battle of Space War I, and was the mainstay fighter of the U.N. Spacy for the entire conflict. Introduced in 2008, the VF-1 would be out of frontline service just five years later.
The VF-1 proved to be an extremely capable craft, successfully combating a variety of Zentraedi mecha even in most sorties, which saw UN Spacy forces significantly outnumbered. The versatility of the Valkyrie design enabled the variable fighter to act as both large-scale infantry and as air/space superiority fighter. The signature skills of U.N. Spacy ace pilot Maximilian Jenius exemplified the effectiveness of the variable systems as he near-constantly transformed the Valkyrie in battle to seize advantages of each mode as combat conditions changed from moment to moment.
The basic VF-1 was deployed in four minor variants (designated A, D, J, and S) with constant updates and several sub-variants during its long and successful career. Its success was increased by the GBP-1S "Armored" Valkyrie and FAST Pack "Super" Valkyrie weapon systems, the latter enabling the fighter to operate in space.
After the end of Space War I, the VF-1A continued to be manufactured both in the Sol system (notably on the Lunar facility Apollo Base) and throughout the UNG space colonies. Although the VF-1 would eventually be replaced as the primary VF of the UN Spacy by the more capable, but also much bigger, VF-4 Lightning III in 2020, a long service record and continued production after the war proved the lasting worth of the design.
One notable operator of the VF-1 was the U.N. Spacy's Zentraedi Fleet, namely SVF-789, which was founded in 2012 as a cultural integration and training squadron with two flights of VF-1 at Tefé in Brazil. This mixed all-Zentraedi/Meltraedi unit was the first in the UN Spacy’s Zentraedi Fleet to be completely equipped with the 1st generation Valkyrie (other units, like SVF-122, which was made up exclusively from Zentraedi loyalists, kept a mixed lot of vehicles).
SVF-789’s flight leaders and some of its instructors were all former Quadrono Battalion aces (under the command of the famous Milia Fallyna, later married with aforementioned Maximilian Jenius), e. g. the Meltraedi pilot Taqisha T’saqeel who commanded SVF-789’s 3rd Flight.
Almost all future Zentraedi and Meltradi pilots for the U.N. Spacy received their training at Tefé, and the squadron was soon expanded to a total of five flights. During this early phase of the squadron's long career the VF-1s carried a characteristic dark-green wrap-around scheme, frequently decorated with colorful trim, reflecting the unit’s Zentraedi/Meltraedi heritage (the squadron’s motto and title “Dar es Carrack” meant “Victory is everywhere”) and boldly representing the individual flights.
In late 2013 the unit embarked upon Breetai Kridanik’s Nupetiet-Vergnitzs-Class Fleet Command Battleship, and the machines received a standard all-grey livery, even though some typical decoration (e. g. the squadron code in Zentraedi symbols) remained.
When the UN Spacy eventually mothballed the majority of its legacy Zentraedi ships, the unit was re-assigned to the Tokugawa-class Super Dimensional Carrier UES Xerxes. In 2022, SVF-789 left the Sol System as part of the Pioneer Mission. By this time it had been made part of the Expeditionary Marine Corps and re-equipped with VAF-6 Alphas.
The VF-1 was without doubt the most recognizable variable fighter of Space War I and was seen as a vibrant symbol of the U.N. Spacy even into the first year of the New Era 0001 in 2013. At the end of 2015 the final rollout of the VF-1 was celebrated at a special ceremony, commemorating this most famous of variable fighters.
The VF-1 Valkryie was built from 2006 to 2013 with a total production of 5,459 VF-1 variable fighters with several variants (VF-1A = 5,093, VF-1D = 85, VF-1J = 49, VF-1S = 30, VF-1G = 12, VE-1 = 122, VT-1 = 68) and ongoing modernization programs like the “Plus” MLU update that incorporated stronger engines and avionics from the VF-1’s successor, the VF-4 (including the more powerful radar, IRST sensor and a laser designator/range finder). These updates later led to the VF-1N, P an X variants.
However, the fighter remained active in many second line units and continued to show its worthiness years later, e. g. through Milia Jenius who would use her old VF-1 fighter in defense of the colonization fleet - 35 years after the type's service introduction!
General characteristics:
Equipment Type: all-environment variable fighter and tactical combat battroid
Government: U.N. Spacy, U.N. Navy, U.N. Space Air Force
Accommodation: pilot only in Marty & Beck Mk-7 zero/zero ejection seat
Dimensions:
Fighter Mode:
Length 14.23 meters
Wingspan 14.78 meters (fully extended)
Height 3.84 meters
Battroid Mode:
Height 12.68 meters
Width 7.3 meters
Length 4.0 meters
Empty weight: 13.25 metric tons;
Standard T-O mass: 18.5 metric tons;
MTOW: 37.0 metric tons
Powerplant:
2x Shinnakasu Heavy Industry/P&W/Roice FF-2008 thermonuclear reaction turbine engines, output 650 MW each, rated at 11,500 kg in standard or in overboost (225.63 kN x 2)
4 x Shinnakasu Heavy Industry NBS-1 high-thrust vernier thrusters (1 x counter reverse vernier thruster nozzle mounted on the side of each leg nacelle/air intake, 1 x wing thruster roll control system on each wingtip);
18 x P&W LHP04 low-thrust vernier thrusters beneath multipurpose hook/handles
Performance:
Battroid Mode: maximum walking speed 160 km/h
Fighter Mode: at 10,000 m Mach 2.71; at 30,000+ m Mach 3.87
g limit: in space +7
Thrust-to-weight ratio: empty 3.47; standard T-O 2.49; maximum T-O 1.24
Design features:
3-mode variable transformation; variable geometry wing; vertical take-off and landing; control-configurable vehicle; single-axis thrust vectoring; three "magic hand" manipulators for maintenance use; retractable canopy shield for Battroid mode and atmospheric reentry; option of GBP-1S system, atmospheric-escape booster, or FAST Pack system
Transformation:
Standard time from Fighter to Battroid (automated): under 5 sec.
Minimum time from Fighter to Battroid (manual): 0.9 sec.
Armament:
2x internal Mauler RÖV-20 anti-aircraft laser cannon, firing 6,000 pulses per minute
1x Howard GU-11 55 mm three-barrel Gatling gun pod with 200 rds fired at 1,200 rds/min
4 x underwing hard points for a wide variety of ordnance, including
- 12x AMM-1 hybrid guided multipurpose missiles (3/point), or
- 12x MK-82 LDGB conventional bombs (3/point), or
- 6x RMS-1 large anti-ship reaction missiles (2/outboard point, 1/inboard point), or
- 4x UUM-7 micro-missile pods (1/point), each carrying 15x Bifors HMM-01 micro-missiles,
or a combination of above load-outs
Optional Armament:
Shinnakasu Heavy Industry GBP-1S ground-combat protector weapon system, or
Shinnakasu Heavy Industry FAST Pack augmentative space weapon system
The kit and its assembly:
The second vintage 1:100 ARII VF-1 as a part of a Zentraedi squadron series, the canonical SVF-789. This one was inspired by a profile of such a machine in the “Macross Variable Fighter Master File: VF-1 Valkyrie Part 1” Art Book – true robot porn and full of valuable detail and background material for anyone who’d consider building a VF-1.
The SVF-789 machine shown in the book is a simple VF-1A, but with Zentraedi language markings and in a rather unusual livery in all dark green, yellow and black trim and grey low-viz roundels. While this does IMHO not really look sexy, I found the idea of a squadron, manned by former (alien) enemies very interesting. And so I took up the idea and started fleshing it out – including the idea of SVF-789’s initial base deep in the Amazonian jungle (justifying somehow the all-green livery!?).
This second build was to represent a flight leader’s aircraft, and consequently the basis is a VF-1J kit (which only differs outwardly through the head). In order to set the machine a little more apart I decided to incorporate some “Plus” program updates, including a different nose tip for the updated radar and two small fairings for IRST and laser designator sensors above and below the nose section, respectively. The fins’ tips were also modified – they were elongated a little through styrene sheet replacements.
This update is a bit early for the official Macross timeline, but I just wanted more than a standard J Valkyrie in a more exotic paint scheme.
Otherwise, this VF-1J fighter kit was built OOB, with the landing gear tucked up and the usual additions of some blade antennae, a pilot figure and a custom display stand in/under the ventral cannon pod.
The ordnance is non-standard, though; in this case the aircraft received two pairs of air-to-ground missiles (actually some misshapen Soviet AAMs from the Academy MiG-23 kit – either very fat R-60 ‘Aphid’ AAMs or very poor renditions of vintage K-6 ‘Alkali’ missiles?) inboards and four AMM-1 missiles on the outer pylons, with the lowest missile replaced by scratched ECM and chaff dispenser pods. The gun pod was also modified with a new nozzle, with parts from a surplus AMM-1 missile – also inspired by a source book entry.
Painting and markings:
This was planned to be a more exotic or extravagant interpretation of the profile from the book, which was already used as a guideline for the VF-1A build. The overall design of an all-green livery with a white nose tip as basis was kept, together with yellow trim on wings, fins and the stabilizer fins on the Valkyrie’s legs. The VF-1A already deviated from this slightly, but now I wanted something more outstanding – a bold flight leader’s mount.
Zentraedi vehicles tend to be rather colorful, so the tones I chose for painting were rather bright. For instance, the initial idea for the green was FS 34079, a tone which also comes close to the printed profile in the book. But it looked IMHO too militaristic, or too little anime-esque, so I eventually settled for something brighter and used Humbrol 195 (called Dark Satin Green, but it’s actually RAL 6020, Chromoxyd Grün, a color used on German railway wagons during and after WWII), later shaded with black ink for the engravings and Humbrol 76 (Uniform Green) for highlights.
The nose became pure white, the leading edge trim was painted with Revell 310 (Lufthansa Gelb, RAL 1028), a deep and rich tone that stands out well from the murky green.
In order to set this J Valkyrie apart from the all-dark green basic VF-1As, I added two bright green tones and a light purple as flight color: Humbrol 36 (called Pastel Green, but it’s actually very yellow-ish), 38 (Lime) and Napoleonic Violet from ModelMaster’s Authentic Line, respectively. 36 was applied to the lower legs and around the cockpit section, including the spinal fairing with the air brake. The slightly darker 38 was used on the wings and fins as well as for the fuselage’s and wings’ underside. On top of the wings and the inner and outer fins, the surfaces were segmented, with the dark green as basic color.
As an additional contrast, the head, shoulder guards and additional trim highlights on the legs as well as for a double chevron on the breast plate were painted in the pale purple tone. A sick color combination, but very Zentraedi/Meltraedi-esque!
The cockpit interior was, according to Macross references, painted in Dark Gull Grey. The seat received brown cushions and the pilot figure was turned into a micronized Meltraedi (yes, the fictional pilot Taqisha T’saqeel is to be female) with a colorful jumpsuit in violet and white, plus a white and red helmet – and bright green skin! The gun pod became dark blue (Humbrol 112, Field Blue), the AMM-1 missiles received a pale grey livery while the air-to-ground missiles and the chaff dispenser became olive drab. As an additional contrast, the ECM pod became white. A wild mix of colors!
This was even enhanced through U.N. Spacy roundels in standard full color – their red really stands out. The squadron emblem/symbol on the fin was painted with a brush, but in this case in a smaller variant and with two USN/USAF style code letters for the home basis added.
Since I can not print white letters onto clear decal sheet at home, the aircraft’s tactical code ‘300’ was created with letters from the human alphabet. A simplification and deviation from the original concept, but I found the only alternative of painting tiny and delicate Zentraedi codes by brush and hand just to be too risky.
Finally, the kit was sealed with a sheen acrylic varnish – with the many, contrasting colors a pure matt finish somehow did not appear right.
Building was relatively simple, just the rhinoplasty was a little tricky – a very subtle modification, though, but the pointed and slightly deeper nose changed the VF-1’s look. The standard Zentraedi-style VF-1 of SVF-789 already looked …different, but this one is … bright, if not challenging to the naked eye. Anyway, there’s more in the creative pipeline from the Zentraedi unit – this aircraft’s pilot in the form of a modified resin garage kit.
Some background:
The need for a specialized self-propelled anti-aircraft gun, capable of keeping up with the armored divisions, had become increasingly urgent for the German Armed Forces, as from 1943 on the German Air Force was less and less able to protect itself against enemy fighter bombers.
Therefore, a multitude of improvised and specially designed self-propelled anti-aircraft guns were built, many based on the Panzer IV chassis. This development started with the Flakpanzer IV “Möbelwagen”, which was only a turretless Kampfpanzer IV with the turret removed and a 20mm Flakvierling installed instead, together with foldable side walls that offered only poor protection for the gun crew. The lineage then progressed through the Wirbelwind and Ostwind models, which had their weapons and the crew protected in fully rotating turrets, but these were still open at the top. This flaw was to be eliminated in the Kugelblitz, the final development of the Flakpanzer IV.
The first proposal for the Kugelblitz envisioned mounting a modified anti-aircraft turret, which had originally been developed for U-boats, on the Panzer IV chassis. It was armed with dual 30 mm MK 303 Brunn guns. However, this was eventually abandoned, since development of this gun had not yet been completed, and, in any case, the entire production run of this weapon turret would have been reserved for Germany's Kriegsmarine. However, enough firepower that enabled the Flakpanzer to cope with armoured attack aircraft, namely the Soviet Ilyushin Il-2, which was a major threat to German tanks, was direly needed.
As the best readily available alternative, the Kugelblitz eventually used the 30 mm MK 103 cannon in a Zwillingsflak ("twin flak") 103/38 arrangement, and it combined the chassis and basic superstructure of the existing Panzer IV medium battle tank with a newly designed turret. This vehicle received the official designation SdKfz. 161/7 Leichter Flakpanzer IV 3 cm „Kugelblitz”.
The turret’s construction was unique, because its spherical body, which was protected with 20 mm steel shells in front and back, was hanging in a ring mount from the Tiger I, suspended by two spigots – it was effectively an independent capsule that only slightly protruded from the tank’s upper side and kept the vehicle’s profile very low, unlike its predecessors. Elevation of the weapons (as well as of the crew sitting inside of the turret!) was from -5° to +80°, turning speed was 60°/sec. The turret was fully enclosed, with full overhead protection, 360° traverse and (rather limited) space for the crew of three plus weapons and ammunition. Driver and radio operator were located in the front of the hull, as with all German tanks. The commander/gunner, who had a small observation cupola on top of the turret, was positioned in the middle, behind the main guns. The two gunner assistants were placed on the left and right side in front of him, in a slightly lower position. The assistant situated left of the guns was responsible for the turret’s movements, the one on the right side was responsible for loading the guns. The spare ammunition was located on the right side. Each of these three crew members had separate hatch doors, which they could use to enter or exit the vehicle. The gunner assistants’ hatch doors each had a small round shaped extra hatch, which were used for mounting sighting devices, and there were plans to outfit the turret with a stereoscopic range finder for the commander.
The tank’s MK 103 was a powerful weapon that had formerly been fitted in single mounts to such planes as the Henschel Hs 129 or Bf 1110 in a ventral gun pod against tanks, and it was also fitted to the twin-engine Dornier Do 335 heavy fighter and other interceptors against Allied bombers. When used by the army, it received the designation “3 cm Flak 38”. It had a weight of only 141 kg (311 lb) and a length of 235 cm (93 in) with muzzle brake. Barrel length was 134 cm (53 in), resulting in Kaliber L/44.7 (44.7 caliber). The weapon’s muzzle velocity was around 900 m/s (3,000 ft/s), allowing an armour penetration for APCR 42–52 mm (1.7–2.0 in)/60°/300 m (980 ft) or 75–95 mm (3.0–3.7 in)/ 90°/ 300 m (980 ft), with an effective maximum firing range of around 5.700 m (18.670 ft).
The MK 103 was gas-operated, fully automatic and belt-fed (an innovative feature at that time for AA guns). In the Kugelblitz turret the weapons could be fired singly or simultaneously and their theoretical rate of fire was 450 rounds a minute, even though 250 rpm in short bursts was more practical. The total ammunition load for both weapons was 1,200 rounds and the discharged cases fell into canvas bags placed under the guns. Due to the fact that the MK 103 cannons produced a lot of powder smoke when operated, fume extractors were added, which was another novelty.
A production rate of 30 per month by December 1944 was planned, but never achieved, because tank production had become seriously hampered and production of the Panzer IV was about to be terminated in favor of the new E-series tank family, anyway. Therefore, almost all Flakpanzer IV with the Kugelblitz turret were conversions of existing hulls, mostly coming from repair shops. In parallel, work was under way to adapt the Kugelblitz turret to the Jagdpanzer 38(t) Hetzer hull, which was still in production in the former Czechoslovakian Skoda works, and to the new, light E-10 and E-25 tank chassis. Due to this transitional and slightly chaotic situation, production numbers of the Panzer IV-based Kugelblitz remained limited.
By early 1945, only around 50 operational vehicles had been built and production of the SdKfz. 161/7 already ceased in May. The first five produced vehicles were given to the newly formed “Panzerflak Ersatz- und Ausbildungsabteilung” (armored Flak training and replacement battalion) located near the city of Ohrdruf (Freistaat Thüringen region in central Germany). One company was divided into three platoons equipped with a mix of different Flakpanzers vehicles. The first platoon was equipped with the Wirbelwind, the second with Ostwind, and the third platoon was equipped with experimental vehicles, such as the Kugelblitz or the “Zerstörer 45”, which was basically a Wirbelwind with a 3-cm-Flak-Vierling 103/38 (armed with four MK 103s).
During the unit’s initial trials and deployments, the 3 cm Flak 38 turned out to be a troublesome design, largely because of the strong vibration when firing, and gun smoke frequently filled the turret with hazardous effects on the crews. The vibrations made the target aiming difficult and could even cause damage on the mounting itself – but due to the dire war situation, production was kept up. However, during the running production of the Kugelblitz turret, reinforcements to the mount structure were gradually added, as well as improved sighting systems. None of the operational SdKfz. 161/7s received these upgrades, though, since it was only regarded as a transitional model that filled the most urgent defense gaps. Later production Panzer IV Kugelblitz vehicles were almost exclusively sent to units that defended Berlin, where they fought against the Soviet assault on the German capital.
Specifications:
Crew: Five (commander/gunner, 2 assistants, driver, radio operator)
Weight: 23 tons
Length: 5.92 m (19 ft 5 in)
Width: 2.88 m (9 ft 5 ¼ in)
Height: 2.3 m (7 ft 6 ½ in)
Suspension: Leaf spring
Fuel capacity: 470 l (120 US gal)
Armour:
10 – 50 mm (0.39 – 1.96 in)
Performance:
Maximum road speed: 40 km/h (25 mph)
Sustained road speed: 34 km/h (21.1 mph)
Off-road speed: 24 km/h (15 mph)
Operational range: 210 km (125 mi); 130 km (80 mi) off-road
Power/weight: 13 PS/t
Engine:
Maybach HL 120 TRM V12 petrol engine with 300 PS (296 hp, 221 kW)
Transmission:
ZF Synchromesh SSG 77 gear with 6 forward and 1 reverse ratios
Armament:
2× 30 mm 3 cm Flak 38 (MK 103/3) with a total of 1.200 rounds
1× 7.92 mm Maschinengewehr 34 with 1,250 rounds in bow mount
The kit and its assembly:
This is a model of a tank that actually existed, but only in marginal numbers – not more than five Panzer IV with the revolutionary Kugelblitz turret are known to have existed or even seen service. However, it fits well into the ranks of fictional/projected Heer ’46 tanks, and I have been wanting to build or create one for along time.
There are some 1:72 kits available, e. g. from Mako, but they are rare and/or expensive. So I rather went for an improvisation approach, and it turned out to be very successful. The complete turret comes from one of the Modelcollect “Vierfüssler” mecha kits – these carry such an installation under the belly(!), what makes absolutely NO sense to me. I especially wonder how the crew is supposed to enter and operate the turret in its upside down position? Not to mention a totally confined field of fire…
However, the Modelcollect Kugelblitz tower comes complete with its bearing and the armored collar. It was simply mated with the hull from a late Hasegawa Panzer IV – in my case even a Wirbelwind, which also came with some suitable additional details like stowing boxes for gun barrels. The attachment ring for the turret had just to be widened far enough to accept the Kugelblitz installation – and it worked well! Very simple, but highly effective.
Painting and markings:
Well, this did not work 100% as intended. I wanted to emphasize the fact that the tanks would have been built from revamped hulls, so I gave all parts an initial overall coat with RAL 3009, Oxydrot. These were then overpainted with a three-tone Hinterhalt scheme in Dunkelgelb (RAL 7028), Olivgrün (RAL 6003) and Rotbraun (RAL 8012). The pattern was adapted from a Wirbelwind, which I had found in literature, consisting of narrow stripes across the hull with additional spots of Dunkelgelb on top of the darker tones. In order to emphasize the idea of a converted tank with the turret coming from another source, I gave the latter a uniform Dunkelgelb livery.
The colors used were Humbrol enamels, this time a different selection of tones, namely 167 (RAF Hemp), 159 (Khaki Drab) and a mix of 160 and 10 (German Rotbraun and Chocolate Brown, for a darker hue). However, I wanted the Oxydrot to shine through the camouflage, but despite efforts with thinned paint and sparse use of the enamels the effect is not as visible as expected. I left it that way, though, here and there the red primer is visible, but a lot of the livery became obscured through the following wash with dark red brown, highly thinned acrylic paint and a final coat of pigment dust on the model’s lower areas.
The original black vinyl track was treated with a cloudy mix of grey, red brown and iron acrylic paint, and finally dusted with pigments, too.
The decals were gathered from several sources – the tactical code was puzzled together with Roman and Arabic numbers in red (seen on some vehicles from assault gun units), the emblem on the turret shows Berlin’s mascot, the bear, taken from a Modelcollect Heer ’46 kit’s sheet.
Some dry-brushing with light grey was done to simulate dust and worn edges, but not too much since the vehicle was to be presented in a more or less new state. And then the model was sealed with acrylic matt varnish.
A relatively simple build, since only the turret was exchanged/transplanted. The result looks better than expected, though, and the Kugelblitz turret fit into the Panzer IV hull like the hand into a tight glove. Very convincing. And I might add another Kugelblitz variant, this time either on a Hetzer hull (which was a real alternative to the Panzer IV) or on an E-25, it seems as if an 1:72 kit becomes soon available from Modelcollect.
In the capable hands of one of Metroline's compliment of lady drivers, RML 2471 is seen at Aldwych on the start of its busy journey through the West End and up the Edgware Road on route 6 to Willesden Garage early one afternoon in June 2002. This post-London Buses version of Metroline livery applied to their Routemaster fleets based at Willesden (AC) and Holloway (HT) bus garages was an attractive combination with a shallow dark blue skirt and blue grille mesh whilst still retaining the white relief band.
Some background:
The VF-1 was developed by Stonewell/Bellcom/Shinnakasu for the U.N. Spacy by using alien Overtechnology obtained from the SDF-1 Macross alien spaceship. The space-capable VF-1's combat debut was on February 7, 2009, during the Battle of South Ataria Island - the first battle of Space War I - and remained the mainstay fighter of the U.N. Spacy for the entire conflict. Introduced in 2008, the VF-1 would be out of frontline service just five years later, though.
The VF-1 proved to be an extremely capable craft, successfully combating a variety of Zentraedi mecha even in most sorties which saw UN Spacy forces significantly outnumbered. The versatility of the Valkyrie design enabled the variable fighter to act as both large-scale infantry and as air/space superiority fighter. The basic VF-1 was built and deployed in four minor variants (designated A, J, and S single-seater and the D two-seater/trainer) and its success was increased by continued development of various enhancements including the GBP-1S "Armored" Valkyrie exoskeleton with enhanced protection and integrated missile launchers, the so-called FAST (“Fuel And Sensor Tray”) packs that created the fully space-capable "Super" Valkyries and the additional RÖ-X2 heavy cannon pack weapon system for the VF-1S “Super Valkyrie”.
After the end of Space War I, the VF-1 continued to be manufactured both in the Sol system and throughout the UNG space colonies. At the end of 2015 the final rollout of the VF-1 was celebrated at a special ceremony, commemorating this most famous of variable fighters. The VF-1 Valkryie was built from 2006 to 2013 with a total production of 5,459 VF-1 variable fighters with several original variants (VF-1A = 5,093, VF-1D = 85, VF-1J = 49, VF-1S = 30, VF-1G = 12, VE-1 = 122, VT-1 = 68), even though these machines were frequently updated and modified during their career, leading to a wide range of sub-variants and different standards.
Although the VF-1 would be replaced in 2020 as the primary Variable Fighter of the U.N. Spacy, a long service record and continued production after the war proved the lasting worth of the design. One of these post-war designs became the VF-1EX, a replica variant of the VF-1J with up-to-date avionics and instrumentation. It was only built in small numbers in the late 2040s and was a dedicated variant for advanced training with dissimilar mock aerial and ground fighting.
The only operator of this type was Xaos (sometimes spelled as Chaos), a private and independent military and civilian contractor. Xaos was originally a fold navigation business that began venturing into fold wave communication and information, expanding rapidly during the 2050s and entering new business fields like flight tests and providing aggressor aircraft for military training. They were almost entirely independent from the New United Nations Spacy (NUNS) and was led by the mysterious Lady M. During the Vár Syndrome outbreak, Echo Squadron and Delta Flight and the tactical sound unit Thrones and Walküre were formed to counteract its effects in the Brísingr Globular Cluster.
The VF-1EX was restricted to its primary objective and never saw real combat. The replica unit retained the overall basic performance of the original VF-1 Valkyrie, the specifications being more than sufficient for training and mock combat. The only difference was the addition of the contemporary military EG-01M/MP EX-Gear system for the pilot as an emergency standard, an exoskeleton unit with personal inner-wear, two variable geometry wings, two hybrid jet/rocket engines, mechanical hardware for the head, torso, arms and legs. This feature gave the VF-1EX its new designation.
Furthermore, the VF-1EX was also outfitted with other electronic contingency functions like AI-assisted flight and remote override controls. Some of these features could be disabled according to necessity or pilot preferences. The gun pod unit was retained but was usually only loaded with paintball rounds for mock combat. For the same purpose, one of the original Mauler RÖV-20 anti-aircraft laser cannon in the "head unit" was replaced by a long-range laser target designator. AMM-1 missiles with dummy warheads or other training ordnance could be added to the wing hardpoints, but the VF-1EX was never seen being equipped this way - it remained an agile dogfighter.
General characteristics:
All-environment variable fighter and tactical combat Battroid. 3-mode variable transformation; variable geometry wing; vertical take-off and landing; control-configurable vehicle; single-axis thrust vectoring; three "magic hand" manipulators for maintenance use; retractable canopy shield for Battroid mode and atmospheric reentry; EG-01M/MP EX-Gear system; option of GBP-1S system, atmospheric-escape booster, or FAST Pack system.
Accommodation:
Single pilot in Marty & Beck Mk-7 zero/zero ejection seat
Dimensions:
Battroid Mode:
Height 12.68 meters
Width 7.3 meters
Length 4.0 meters
Fighter Mode:
Length 14.23 meters
Wingspan 14.78 meters (at 20° minimum sweep)
Height 3.84 meters
Empty weight: 13.25 metric tons
Standard take-off mass: 18.5 metric tons
MTOW: 37.0 metric tons
Power Plant:
2x Shinnakasu Heavy Industry/P&W/Roice FF-2001 thermonuclear reaction turbine engines, output 650 MW each, rated at 11,500 kg in standard or in overboost (225.63 kN x 2);
4x Shinnakasu Heavy Industry NBS-1 high-thrust vernier thrusters (1 x counter reverse vernier thruster nozzle mounted on the side of each leg nacelle/air intake, 1 x wing thruster roll control system on each wingtip);
18x P&W LHP04 low-thrust vernier thrusters beneath multipurpose hook/handles
Performance:
Battroid Mode: maximum walking speed 160 km/h
Fighter Mode: at 10,000 m Mach 2.71; at 30,000+ m Mach 3.87
g limit: in space +7
Thrust-to-weight ratio: empty 3.47; standard TOW 2.49; maximum TOW 1.24
Transformation:
Standard time from Fighter to Battroid (automated): under 5 sec.
Min. time from Fighter to Battroid (manual): 0.9 sec.
Armament:
1x Mauler RÖV-20 anti-aircraft laser cannon in the "head" unit, firing 6,000 pulses per minute
1x Howard GU-11 55 mm three-barrel Gatling gun pod with 200 RPG, fired at 1,200 rpm
4x underwing hardpoints for a wide variety of ordnance
The kit and its assembly:
The VF-1EX Valkyrie is a Variable Fighter introduced in the Macross Δ television series, and it's, as described above, a replica training variant that resembles outwardly the VF-1J. There's even a Hasegawa 1:72 kit from 2016 of this obscure variant.
However, what I tried to recreate is a virtual (and purely fictional/non-canonical) VF-1EX, re-skinned by someone called David L. on the basis of a virtual VF-1S 3D model with a 2 m wing span (sounds like ~1:8 scale) for the Phoenix R/C simulator software. Check this for reference: www.supermotoxl.com/projects-articles/ready-to-drive-fly-...). How bizarre can things be/become? And how sick is a hardware model of it, though...?
I found the complex livery very attractive and had the plan to build a 1:100 model for some years now. But it took this long to gather enough mojo to tackle this project, due to the tricolor paint scheme's complex nature...
The "canvas" for this stunt is a vintage Arii 1:100 VF-1 kit, built OOB except for some standard mods. The kit was actually a VF-1A, but I had a spare VF-1J head unit in store as a suitable replacement. Externally, some dorsal blade aerials and vanes on the nose were added, the attachment points under the wings for the pylons were PSRed away. A pilot figure was added to the cockpit because this model would be displayed in flight. As a consequence, the ventral gun pod received an adapter at its tail and I added one of my home-brew wire displays, created on the basis of the kit's OOB plastic base.
Painting and markings:
As mentioned above, this VF-1 is based on a re-skinned virtual R/C model, and its creator apparently took inspiration from a canonical VF fighter, namely a VF-31C "Siegfried", and specifically the "Mirage Farina Jenius Custom" version from the Macross Δ series that plays around 2051. Screenshots from the demo flight video under the link above provided various perspectives as painting reference, but the actual implementation on the tiny model caused serious headaches.
The VF-1's shapes are rather round and curvy, the model's jagged surface and small size prohibited masking. The kit is IMHO also best built and painted in single sub-assemblies, but upon closer inspection the screenshots revealed some marking inconsistencies (apparently edited from various videos?), and certain areas were left uncertain, e .g. the inside of the legs or the whole belly area. Therefore, this model is just a personal interpretation of the design, and as such I also deviated in the markings.
The paints became Humbrol 20 (Crimson) and 58 (Magenta), plus Revell 301 (Semi-gloss White), and they were applied with brushes. To replicate the edgy and rather fragmented pattern I initially laid down the two reds in a rather rough and thin fashion and painted the white dorsal and ventral areas. Once thoroughly dry, the white edges were quasi-masked with white decal material, either with stripes of various widths or tailored from sheet material, e. g. for the "wedges" on the wings and fins and the dorsal "swallow tail". This went more smoothly than expected, with a very convincing and clean result that i'd never had achieved with brushes alone, even with masking attempts, which would probably have led to chaos and too much paint on the model.
Other details like the grey leading edges or the air intakes were created with grey and black decal material, too.
No weathering was done, since the aircraft would be clean and in pristine condition, but I used a soft pencil to emphasize the engraved panel lines, esp. on white background. The gun pod became grey and the exhausts, painted in Revell 91 (Iron), were treated with graphite for a darker shade and a more metallic look.
Stencils came from the kit's OOB sheet, but only a few, since there was already a lot "going on" on the VF-1's hull. The flash-shaped Xaos insignia and the NUNS markings on legs and wings were printed at home - as well as the small black vernier thrusters all around the hull, for a uniform look. The USN style Modex and the small letter code on the fins came from an Colorado Decals F-5 sheet, for an aggressor aircraft.
Finally, the kit was sealed overall with semi-gloss acrlyic varnish (which turned out glossier than expected...) and position lights etc. added with translucent paint on top of a silver base.
Well, while the VF-1 was built OOB with no major mods and just some cosmetical upgrades, the paint scheme and its finish were more demanding - and I am happy that the "decal masking" trick worked so fine. The paint scheme surely is attractive, even though it IMHO does not really takes the VF-1's lines into account. Nevertheless, I am certain that there are not many models that are actually based on a virtual 1:8 scale 3D model of an iconic SF fighter, so that this VF-1EX might be unique.
Toa Tamaru is capable of wielding a twin set of swords and shields that offers her a balanced defense and offense.
Nova beam swords that can launch plasma projectiles when swung with perfected skill
Ignore light weight armor & walls. penetrating through easily with her blades reaching a temperature of at least 1800°C, and could be high as 25000°C.
Her shields dont heat up the same as her swords but are required to cool down to recharge
A veteran of the Hynak Wars, Yayap carries the medals of past conflicts on his breast and wields a powerful chronodermic rifle, capable of ripping apart its targets in four dimensions.
Combination of the last six of my Self-MOC Chibi Series; Raptor Talon!, Raxonax!, Buskyte!, Eruei!, Onuku!, and Kalikiki!
This guy has been far, FAR too long coming, largely due to me changing jobs multiple times, university work, and not having access to my lego parts for most of the last year or so.
Yayap was an existing character in the Cyclic Plane Storyline, and was actually a player character of my friend Gideon's back in the day.
Capable of carrying 2,000 passengers, 1,342 cars and 240 trucks, Irish Ferries MV Ulysses provides huge capacity on the Holyhead to Dublin route.
It is seen here passing The Skerries, (Ynysoedd y Moelrhoniaid).
A hoist-capable UH-60 Black Hawk helicopter and aircrew from the 1st Battalion, 207th Aviation Regiment, Alaska Army National Guard, arrives in Bethel, Alaska, April 27, 2021, as part of the State of Alaska’s effort to prepare for disaster response in the Yukon-Kuskokwim region during the spring flood season. While stationed in Bethel, the crew will continue to train on their federal mission and remain ready to respond to any requests for support from civil authorities through the State Emergency Operations Center. (U.S. Army National Guard photo by Dana Rosso)
HI Fiona,
It was a great event! Please see below the story and some photos attached, if you'd like to post this on Indigo where appropriate and on the gallery, I will leave this into your capable hands!
Thanks again for the contribution. We really had a good and inspiring time!
Sandrine
****
Encouraged by Informa`s One Planet Eating initiatives, the Hong Kong team got together at HOME to share a few healthy tapas, organic cocktails and be inspired by Christian Mongendre, our Guest Speaker, who created HOME. You can check him out: www.lifestyleasia.com/470121/tastemakers-christian-mongen...
In balancing mind and body, HOME - Eat to Live strives to use only organic produce whenever possible. Much of our ingredients are sourced locally from a network of farms and our food is made fresh daily. Our menu aims to appeal to everyone. We believe that healthy, plant-based foods should be tasty, filling, and nutritious. We offer vegan, gluten free & raw options, including healthy desserts and organic cocktails. We are committed to supporting a sustainable, plant-based lifestyle, collectively lowering our carbon footprint and preserving our earth's fresh water supply through a plant-based menu, mindful ingredient sourcing, eco-friendly packaging and practices.
During the talk, Christian raised awareness about recycling, compost, biodegradable materials like the plastic they use, from corn, LED lights which create no heat.
He also told us about the importance of eating more plant based food, and the impact on our planet. As a very demanding person, he wanted to create a vegetarian and sustainable restaurant and also bring taste and colour to our plates, with no processed food. Christian also pointed out the menu of HOME, each dish is called by animals in danger: Golden Snub Nosed Monkey Open Faced Toast, Manta Ray Salad Bowl, Siberian Tiger Earth Bowl, Northern White Rhino Sliders , Hawaiian Monk Seal Flatbread...
The team was very engaged and questioned him around the cost of eating healthy, being higher than eating meat. At HOME, they try to educate their customers about the origin of the products they use, Kale is one example, they were the first restaurant to import Kale but as demand grows, price goes down and we reach economies of scale. To make 'Healthy food' affordable, the market demand need to change and it is starting to change.
Finally, we asked him for advice around Pledges we should all make:
- Wellbeing = Food, "you are what you eat" , what you are eating to regenerate your body
- How are you breathing: Try to take time and be conscious of your breath
- Try Meditation
- Drink high quality water and not distilled
- Exercise and organise more events like 'Walk the World'
- Cut down on sweets and opt for healthier snacks
- Choose an organic range of teas
- Recycle
- Having LED lights
- And last but not least, we all agreed to at least TRY: Meat Free Monday !
Alena & Sandrine
Sandrine Declippeleir
Account Director - Professional Services, Asia Pacific
Business intelligence | informa
T: +852 3757 9703
M: +852 9222 1747
sandrine.declippeleir@informa.com<
Agribusiness intelligence | Financial intelligence | Maritime intelligence | Pharma intelligence | TMT intelligence
Informa | Nexxus Building, Level 16 | 41 Connaught Road | Central | Hong Kong
Follow me on:
hk.linkedin.com/in/sandrinedeclippeleir
This electronic message and all contents transmitted with it are confidential and may be privileged. They are intended solely for the addressee. If you are not the intended recipient, you are hereby notified that any disclosure, distribution, copying or use of this message or taking any action in reliance on the contents of it is strictly prohibited. If you have received this electronic message in error, please destroy it immediately, and notify the sender.
Informa Group plc | Registered in England & Wales No. 3099067 | 5 Howick Place | London | SW1P 1WG
HMS QUEEN ELIZABETH (R08) is the lead ship of the Queen Elizabeth class of aircraft carriers, the largest warships ever built for the Royal Navy of the United Kingdom and capable of carrying up to 60 aircraft.[18] She is named in honour of the first Queen Elizabeth, a renowned World War I era super-dreadnought, which in turn was named after Queen Elizabeth I. This latest Queen Elizabeth will carry her namesakes' honours, as well as her Tudor rose-adorned crest and motto.
The ship began sea trials in June 2017, and was commissioned on 7 December 2017. Her first Commanding Officer was Commodore Jerry Kyd, who had previously commanded the carriers Ark Royal and Illustrious.
Queen Elizabeth has no catapults or arrestor wires and is instead designed to operate V/STOL aircraft. The air wing will typically consist of F-35B Lightning II multirole fighters and Merlin helicopters for airborne early warning and anti-submarine warfare. The design emphasises flexibility, with accommodation for 250 Royal Marines and the ability to support them with attack helicopters and large troop transports such as Chinooks. She is the second Royal Navy vessel to bear the name Queen Elizabeth and is based at HMNB Portsmouth.
Seen leaving Portsmouth Harbour on Sunday 10 June 2018.
History:
Name: HMS Queen Elizabeth
Namesake: HMS Queen Elizabeth
Operator: Royal Navy
Ordered: 20 May 2008
Builder: Aircraft Carrier Alliance
Cost:
Programme cost: £6.1 billion
Unit cost: £3 billion
Laid down: 7 July 2009
Launched: 17 July 2014
Sponsored by: HM Queen Elizabeth II
Christened: 4 July 2014
Completed: 7 December 2017
Commissioned: 7 December 2017
In service: 2020 (planned)
Homeport: HMNB Portsmouth
Identification:
Pennant number: R08
Deck code: Q
IMO number: 4907892
ITU callsign: GQLZ
Motto: Semper Eadem ("Always the Same")
General characteristics:
Class and type: Queen Elizabeth-class aircraft carrier
Displacement: 65,000 tonnes (64,000 long tons; 72,000 short tons)
Length: 280 m (920 ft)
Beam:
39 m (128 ft) (waterline)
73 m (240 ft) overall
Draught: 11 m (36 ft)
Propulsion: Integrated Electric Propulsion via Two Rolls-Royce Marine 36 MW MT30 gas turbine alternators and four 10 MW diesel engines.
Speed: 25 knots (46 km/h)
Range: 10,000 nautical miles (19,000 km)
Capacity: 1,600
Troops: 250
Complement: 679
Sensors and
processing systems:
S1850M long range radar
Type 997 Artisan 3D medium range radar
Ultra Electronics Series 2500 Electro Optical System (EOS)
Armament:
3 x Phalanx CIWS
4 x 30mm calibre gun, various Miniguns and GPMGs to counter asymmetric threats.
Aircraft carried:
Planned Carrier Air Wing of 24 to 36 STOVL fighter jets & 14 helicopters.
F-35B Lightning II.
Chinook.
Apache AH MK1.
Merlin HM2 and HC4.
Wildcat AH1 and HMA2.
Merlin Crowsnest AEW.
Aviation facilities:
Hangar below deck.
Two aircraft lifts.
Ski jump.
The Lamborghini Diablo was a high-performance mid-engined sports car built by Italian automaker Lamborghini between 1990 and 2001. It was the first Lamborghini capable of attaining a top speed in excess of 200 miles per hour (320 km/h). After the end of its production run in 2001, the Diablo was replaced by the Lamborghini Murciélago.
The car became known as the Diablo, carrying on Lamborghini's tradition of naming its cars after breeds of fighting bull. The Diablo was named after a ferocious bull raised by the Duke of Veragua in the 19th century, famous for fighting an epic battle with 'El Chicorro' in Madrid on July 11, 1869.
After Audi AG took over Lamborghini from its former South East Asian owners in 1998, Mycom and VPower, they set out to modernize and refine the Diablo, while its replacement, the Murciélago, was developed. Audi tasked Luc Donckerwolcke with designing a more refined, more civilized, and more modern Diablo. The 6.0 VT was the result of that design. It featured heavy styling changes both inside and out; the front bumper now featured two large air intakes and the nose was flattened. It sat on large 18 inch monoblock alloy wheels reminiscent of the five hole dial wheels of the Countach. Significant changes were made to the interior too, the drivers seat was moved in line with the pedals, and climate control air conditioning was standard. There was a much larger use of carbon fibre too, to the point that only the doors and roof were metal. (alloy and steel respectively) Magnesium was used for the wheels, cylinder heads and inlet manifolds, and the con-rods were made from titanium. The centre console was one large piece of carbon fiber.
The 6.0 VT featured the new 6.0 litre V12, based on the motor that powered the Diablo GT (which in itself was essentially a modified version of the 5.7) The motor had updated ECU software in addition to new intake and exhaust systems and a refined variable valve timing system with slightly less aggressive camshafts than had been used in the earlier versions. With a power output of 550 BHP directly from the factory, the Diablo VT 6.0 was again to be considered a major competitor in the super car league, and Automobili Lamborghini SpA focused all their resources on this final Diablo model and the successor, all other models in the range were halted, no more Roadster or SV models were offered. The 6.0 VT had higher comfort levels, came with air conditioning as standard, the seats were much improved and the interior draped in glistening carbon fibre. The build quality was superior to any previous Diablo model. These improvements would make the 6.0 VT the most practical of all the Diablos.
It seems unbelievable that a company capable of making something like this is also capable of producing the masses of nasty generics littering U.K. retailers! HTI have a long history of importing other peoples 1/64 castings but a few years ago they brought out a nice selection of licensed models based on modern BMW and Mercedes-Benz vehicles which showed a lot of promise. They also imported unlicensed but realistic castings from an unknown Chinese manufacturer but now pretty much all of these have been swept aside by the inexorable rise of their deliberately generic offerings which our retailers have lapped up but not the buying public it seems!
This unlicensed Land-Rover Defender 110 is stuck somewhere in-between. It appears to be a HTI original yet has never been available as a single and invariably appears in farm based multi-sets. If they have the skills to make something like this so realistic and dare I say accurate why on earth can't they do the same to their other 1/64 products!
HTI do indeed make a Land-Rover approved Defender in 1/43 scale so heaven knows how they got away with producing a smaller scale version which isn't. It does without front and rear detailing but more than makes up for it in its robust construction, well proportioned body and an accurate facelifted dashboard design. Im certain selling this as a single and in a variety of Emergency liveries would create a lot of interest from collectors.
In loose but virtually mint condition on account of it being a recent charity shop gift.
The opening of the Connaught Bridge Generating Station, on the Klang River in Selangor, in March 1953 was a real milestone int he history of what was then Malaya - now Malaysia. The power station, capable of being either coal or oil fired, was at 80,000kw by far the largest generating station at the time in the country and, as importantly, the project included elements of a new proposed Malayan 'National Grid' that linked existing stations such as the hydro-electric plant at Chenderoh with stations and locations along the East Coast centred on the Bungsar station in Kuala Lumpur that hitherto had supplied the bulk of the capital's power requirements. As the booklet notes it meant an end to the long post-war years of restriction of supply to both industrial and domestic consumers.
The station was originally planned in 1944 by the Malayan Planning Unit in London in anticipation of the return to Malaya after the end of the Japanses occupation. A provisional order for the equipment was placed in 1945, with additional equipment following in 1947. Meanwhile the site at Connaught Bridge alongside the Klang River was selected in 1946 with the contract to start construction given by the Federation's Government in 1949. The first phase of the station, plant and the double circuit 66kv interconnecting lines running the 23 miles to Kuala Lumpur, was ready for opening in March 1953. Full commissioning came in 1955. Initailly the output was linked to the Bangsar (KL) station and that of Ulu Langat hydro-electric station. Construction of the former had started in 1926 and was opened in 1927 by the Government electricity department and in 1933 they purchased the Ulu Langat station from the Sungei Besi Mines Ltd. KL's earlier supplies, from 1905, had been provided from a small hydro-electric plant on the Gombak River, 12 miles from the town, what had two 400kw Pelton wheel-alternators. This had been augmented in 1919 by a mixed steam and diesel engine plant at Gombak Lane in the centre of KL.
Elsewhere, Penang's Municipal Department was the first to supply electriicty within Malaya when it started in 1904 - the station on the mainland at Prai came into use in 1926. By this date electricity was available in Ipoh, Johore Bahru (and Singapore), Seremban and Malacca/Melaka. That at Johore Bahru under the Johore adminsitraion grew to include Muar, Batu Pahat, Kluang, Kota Tinggi and Segamat. In Perak supplies were largely in the hands of the Perak River Hydro-Electric Power Company who operated stations at Malim Nawar (1928) and Chenderoh (1929). In North Perak the Government supplied Taiping and in Province Wellesley Messrs. Huttenbach's bought bulk supply from Penang and supplied power to various towns, supplemented by diesel generating stations in Kedah, Perak and Negri Sembilan. Power came to Kota Bharu (Kelantan), Ruab, Bentong, Kuala Lipis and Kuantan between 1928 and 1931, and in 1938 and 1939 to Mentakab, Fraser's Hill and Kuala Kubu.
In 1946 the Malayan Union Government acquired most electriicty undertakings except those of private companies and Penang Corporation whilst it also fully acquired the undertkaing operated by the Malacca Electric Light Company in 1948 that it has previously run on a rental basis. On the 1 September 1949 the new Central Electricity Board of the Federation fo Malaya came into existance and took over all functions of the old Electricity Department.
The booklet is marvellously detailed and illustrated describing the site, the power station, ancilliary equipment and other works, such as staff accomodaton and housing, with photographs and plans. The latter include a map of the proposed Malayan Grid and the plans show the works designed by both the staff of the Central Electricity Board and the consulting engineers, Preece, Cardew and Rider, and civil engineers Coode and Partners. The station took cooling water from the Klang River and could be powered by either fuel oil (via a pipeline from Port Swettenham) and coal via connections with the Malayan Railways and the colliery at Batu Arang.
Needless to say much of the equipment was supplied from the UK - Parsons generators and transformers and switchgear from various manufacturers including British Thomson Houston.
The photos are great as they show named members of the operating staff at work which is unusual but that now provided a real social history to the economic history of electricity supply in Malaysia.
See more photos of this, and the Wikipedia article.
Details, quoting from Smithsonian National Air and Space Museum | Lockheed SR-71 Blackbird:
No reconnaissance aircraft in history has operated globally in more hostile airspace or with such complete impunity than the SR-71, the world's fastest jet-propelled aircraft. The Blackbird's performance and operational achievements placed it at the pinnacle of aviation technology developments during the Cold War.
This Blackbird accrued about 2,800 hours of flight time during 24 years of active service with the U.S. Air Force. On its last flight, March 6, 1990, Lt. Col. Ed Yielding and Lt. Col. Joseph Vida set a speed record by flying from Los Angeles to Washington, D.C., in 1 hour, 4 minutes, and 20 seconds, averaging 3,418 kilometers (2,124 miles) per hour. At the flight's conclusion, they landed at Washington-Dulles International Airport and turned the airplane over to the Smithsonian.
Transferred from the United States Air Force.
Manufacturer:
Designer:
Date:
1964
Country of Origin:
United States of America
Dimensions:
Overall: 18ft 5 15/16in. x 55ft 7in. x 107ft 5in., 169998.5lb. (5.638m x 16.942m x 32.741m, 77110.8kg)
Other: 18ft 5 15/16in. x 107ft 5in. x 55ft 7in. (5.638m x 32.741m x 16.942m)
Materials:
Titanium
Physical Description:
Twin-engine, two-seat, supersonic strategic reconnaissance aircraft; airframe constructed largley of titanium and its alloys; vertical tail fins are constructed of a composite (laminated plastic-type material) to reduce radar cross-section; Pratt and Whitney J58 (JT11D-20B) turbojet engines feature large inlet shock cones.
Long Description:
No reconnaissance aircraft in history has operated in more hostile airspace or with such complete impunity than the SR-71 Blackbird. It is the fastest aircraft propelled by air-breathing engines. The Blackbird's performance and operational achievements placed it at the pinnacle of aviation technology developments during the Cold War. The airplane was conceived when tensions with communist Eastern Europe reached levels approaching a full-blown crisis in the mid-1950s. U.S. military commanders desperately needed accurate assessments of Soviet worldwide military deployments, particularly near the Iron Curtain. Lockheed Aircraft Corporation's subsonic U-2 (see NASM collection) reconnaissance aircraft was an able platform but the U. S. Air Force recognized that this relatively slow aircraft was already vulnerable to Soviet interceptors. They also understood that the rapid development of surface-to-air missile systems could put U-2 pilots at grave risk. The danger proved reality when a U-2 was shot down by a surface to air missile over the Soviet Union in 1960.
Lockheed's first proposal for a new high speed, high altitude, reconnaissance aircraft, to be capable of avoiding interceptors and missiles, centered on a design propelled by liquid hydrogen. This proved to be impracticable because of considerable fuel consumption. Lockheed then reconfigured the design for conventional fuels. This was feasible and the Central Intelligence Agency (CIA), already flying the Lockheed U-2, issued a production contract for an aircraft designated the A-12. Lockheed's clandestine 'Skunk Works' division (headed by the gifted design engineer Clarence L. "Kelly" Johnson) designed the A-12 to cruise at Mach 3.2 and fly well above 18,288 m (60,000 feet). To meet these challenging requirements, Lockheed engineers overcame many daunting technical challenges. Flying more than three times the speed of sound generates 316° C (600° F) temperatures on external aircraft surfaces, which are enough to melt conventional aluminum airframes. The design team chose to make the jet's external skin of titanium alloy to which shielded the internal aluminum airframe. Two conventional, but very powerful, afterburning turbine engines propelled this remarkable aircraft. These power plants had to operate across a huge speed envelope in flight, from a takeoff speed of 334 kph (207 mph) to more than 3,540 kph (2,200 mph). To prevent supersonic shock waves from moving inside the engine intake causing flameouts, Johnson's team had to design a complex air intake and bypass system for the engines.
Skunk Works engineers also optimized the A-12 cross-section design to exhibit a low radar profile. Lockheed hoped to achieve this by carefully shaping the airframe to reflect as little transmitted radar energy (radio waves) as possible, and by application of special paint designed to absorb, rather than reflect, those waves. This treatment became one of the first applications of stealth technology, but it never completely met the design goals.
Test pilot Lou Schalk flew the single-seat A-12 on April 24, 1962, after he became airborne accidentally during high-speed taxi trials. The airplane showed great promise but it needed considerable technical refinement before the CIA could fly the first operational sortie on May 31, 1967 - a surveillance flight over North Vietnam. A-12s, flown by CIA pilots, operated as part of the Air Force's 1129th Special Activities Squadron under the "Oxcart" program. While Lockheed continued to refine the A-12, the U. S. Air Force ordered an interceptor version of the aircraft designated the YF-12A. The Skunk Works, however, proposed a "specific mission" version configured to conduct post-nuclear strike reconnaissance. This system evolved into the USAF's familiar SR-71.
Lockheed built fifteen A-12s, including a special two-seat trainer version. Two A-12s were modified to carry a special reconnaissance drone, designated D-21. The modified A-12s were redesignated M-21s. These were designed to take off with the D-21 drone, powered by a Marquart ramjet engine mounted on a pylon between the rudders. The M-21 then hauled the drone aloft and launched it at speeds high enough to ignite the drone's ramjet motor. Lockheed also built three YF-12As but this type never went into production. Two of the YF-12As crashed during testing. Only one survives and is on display at the USAF Museum in Dayton, Ohio. The aft section of one of the "written off" YF-12As which was later used along with an SR-71A static test airframe to manufacture the sole SR-71C trainer. One SR-71 was lent to NASA and designated YF-12C. Including the SR-71C and two SR-71B pilot trainers, Lockheed constructed thirty-two Blackbirds. The first SR-71 flew on December 22, 1964. Because of extreme operational costs, military strategists decided that the more capable USAF SR-71s should replace the CIA's A-12s. These were retired in 1968 after only one year of operational missions, mostly over southeast Asia. The Air Force's 1st Strategic Reconnaissance Squadron (part of the 9th Strategic Reconnaissance Wing) took over the missions, flying the SR-71 beginning in the spring of 1968.
After the Air Force began to operate the SR-71, it acquired the official name Blackbird-- for the special black paint that covered the airplane. This paint was formulated to absorb radar signals, to radiate some of the tremendous airframe heat generated by air friction, and to camouflage the aircraft against the dark sky at high altitudes.
Experience gained from the A-12 program convinced the Air Force that flying the SR-71 safely required two crew members, a pilot and a Reconnaissance Systems Officer (RSO). The RSO operated with the wide array of monitoring and defensive systems installed on the airplane. This equipment included a sophisticated Electronic Counter Measures (ECM) system that could jam most acquisition and targeting radar. In addition to an array of advanced, high-resolution cameras, the aircraft could also carry equipment designed to record the strength, frequency, and wavelength of signals emitted by communications and sensor devices such as radar. The SR-71 was designed to fly deep into hostile territory, avoiding interception with its tremendous speed and high altitude. It could operate safely at a maximum speed of Mach 3.3 at an altitude more than sixteen miles, or 25,908 m (85,000 ft), above the earth. The crew had to wear pressure suits similar to those worn by astronauts. These suits were required to protect the crew in the event of sudden cabin pressure loss while at operating altitudes.
To climb and cruise at supersonic speeds, the Blackbird's Pratt & Whitney J-58 engines were designed to operate continuously in afterburner. While this would appear to dictate high fuel flows, the Blackbird actually achieved its best "gas mileage," in terms of air nautical miles per pound of fuel burned, during the Mach 3+ cruise. A typical Blackbird reconnaissance flight might require several aerial refueling operations from an airborne tanker. Each time the SR-71 refueled, the crew had to descend to the tanker's altitude, usually about 6,000 m to 9,000 m (20,000 to 30,000 ft), and slow the airplane to subsonic speeds. As velocity decreased, so did frictional heat. This cooling effect caused the aircraft's skin panels to shrink considerably, and those covering the fuel tanks contracted so much that fuel leaked, forming a distinctive vapor trail as the tanker topped off the Blackbird. As soon as the tanks were filled, the jet's crew disconnected from the tanker, relit the afterburners, and again climbed to high altitude.
Air Force pilots flew the SR-71 from Kadena AB, Japan, throughout its operational career but other bases hosted Blackbird operations, too. The 9th SRW occasionally deployed from Beale AFB, California, to other locations to carryout operational missions. Cuban missions were flown directly from Beale. The SR-71 did not begin to operate in Europe until 1974, and then only temporarily. In 1982, when the U.S. Air Force based two aircraft at Royal Air Force Base Mildenhall to fly monitoring mission in Eastern Europe.
When the SR-71 became operational, orbiting reconnaissance satellites had already replaced manned aircraft to gather intelligence from sites deep within Soviet territory. Satellites could not cover every geopolitical hotspot so the Blackbird remained a vital tool for global intelligence gathering. On many occasions, pilots and RSOs flying the SR-71 provided information that proved vital in formulating successful U. S. foreign policy. Blackbird crews provided important intelligence about the 1973 Yom Kippur War, the Israeli invasion of Lebanon and its aftermath, and pre- and post-strike imagery of the 1986 raid conducted by American air forces on Libya. In 1987, Kadena-based SR-71 crews flew a number of missions over the Persian Gulf, revealing Iranian Silkworm missile batteries that threatened commercial shipping and American escort vessels.
As the performance of space-based surveillance systems grew, along with the effectiveness of ground-based air defense networks, the Air Force started to lose enthusiasm for the expensive program and the 9th SRW ceased SR-71 operations in January 1990. Despite protests by military leaders, Congress revived the program in 1995. Continued wrangling over operating budgets, however, soon led to final termination. The National Aeronautics and Space Administration retained two SR-71As and the one SR-71B for high-speed research projects and flew these airplanes until 1999.
On March 6, 1990, the service career of one Lockheed SR-71A Blackbird ended with a record-setting flight. This special airplane bore Air Force serial number 64-17972. Lt. Col. Ed Yeilding and his RSO, Lieutenant Colonel Joseph Vida, flew this aircraft from Los Angeles to Washington D.C. in 1 hour, 4 minutes, and 20 seconds, averaging a speed of 3,418 kph (2,124 mph). At the conclusion of the flight, '972 landed at Dulles International Airport and taxied into the custody of the Smithsonian's National Air and Space Museum. At that time, Lt. Col. Vida had logged 1,392.7 hours of flight time in Blackbirds, more than that of any other crewman.
This particular SR-71 was also flown by Tom Alison, a former National Air and Space Museum's Chief of Collections Management. Flying with Detachment 1 at Kadena Air Force Base, Okinawa, Alison logged more than a dozen '972 operational sorties. The aircraft spent twenty-four years in active Air Force service and accrued a total of 2,801.1 hours of flight time.
Wingspan: 55'7"
Length: 107'5"
Height: 18'6"
Weight: 170,000 Lbs
Reference and Further Reading:
Crickmore, Paul F. Lockheed SR-71: The Secret Missions Exposed. Oxford: Osprey Publishing, 1996.
Francillon, Rene J. Lockheed Aircraft Since 1913. Annapolis, Md.: Naval Institute Press, 1987.
Johnson, Clarence L. Kelly: More Than My Share of It All. Washington D.C.: Smithsonian Institution Press, 1985.
Miller, Jay. Lockheed Martin's Skunk Works. Leicester, U.K.: Midland Counties Publishing Ltd., 1995.
Lockheed SR-71 Blackbird curatorial file, Aeronautics Division, National Air and Space Museum.
DAD, 11-11-01
The only ship capable of transporting the large and heavy TerraMax 5 Phase 1 Terraformer. Powerful, efficient, and equipped for extended space missions, the HLT-1000 can get your terraforming project to your planet of choice in the safest and most successful manner ever. With interchangeable grapple arms and a myriad of cargo options, the HLT-1000 can continue to support operations as a Heavy lift cargo transport well after delivering your terraformer. With the ability to loiter on station for 3 months if needed, the HLT-1000 gives you peace of mind as you land on an unknown world because you know extraction is just a radio call away should you need it.
Door Time: 8:00 PM
They are a rainbow of talent, known to many as the best damn band in New York City. Capable of showcasing a variety of music, the Cafe Wha? House Band entertains any judging ear. Song to song, musician, the power of melody is underlined and highlighted by individual passions. Every band member possesses an allure that stands on its own and compliments another. Forget about in one night, but in the matter of one set, The Wha? Band takes you through generations of music and the emotions they evoke. Reggae and rock, R&B and soul, these guys can cover any Bob Marley, Doors, Radiohead or Beatles tune; brilliantly they own it like their own. Playing outside the formulated charts, this fervent band is complete with climatic guitar solos, intoxicating bass lines, and vocals that will take you places.
Wednesday through Sunday the aisles of the Cafe Wha? are absolutely jammed packed with a party, there's a thick chemistry between the band and the audience. More often than not, the band calls guest musicians to the stage. These sometimes soul and sometimes Latin entertainers are sure to get the chair dancers off their booty. If you're one of those who like that spot right in front of the stage, don't be surprised if you're brought up to shake it! ~ cafewha.com/event.cfm?id=170988
Olympus E-P2
SMC Pentax K-Mount
f/1.2 50mm 1/6 160
FaceBook | Blogger | Twitter | Tumblr | Pinterest | Getty | Instagram | Lens Wide-Open