View allAll Photos Tagged Aggregation
Reporter Diary the news aggregation platform is created to cater towards regional news in India. Giving due weightage to English, This platform provides the latest news in Hindi, Tamil, Malayalam, Kannada, Telugu, Marathi, Bangla, Gujarati, Odia, Asamiya, Punjabi, Urdu, Bhojpuri and Nepali from leading news papers of these languages. In first phase 15 languages are included in this site. 'Reporter diary' prioritizes live news updates, trending news articles and videos across the globe. We also focus the update news of India, World, business, sports, Education, top news, entertainment, lifestyle, health, technology, Automobiles, cities, Art culture, Travel, Books, Politics, Astrology, Food, science, religion, bollywood, LIVE cricket score etc for above Indian language users. www.reporterdiary.in/
Sean Effel from Drupal Therapy just put up a wonderful screencast on how to pull blip.tv videos from RSS feeds into Drupal. Check it out, www.drupaltherapy.com/node/34.
Activists hold an underwater banner on a Fish Aggregation Device (FAD) reading 'Ban the Fad' against their use to intensify the overfishing of tuna. The fishing industry has mimicked natural phenomena by creating fake floats fixed with satellite of radio transmitters-fish aggregation devices (FAD) - that tell them when they have found the tuna so they can catch them all and any other marine life present. Greenpeace is campaigning for the pockets of international waters between Pacific nations to become the first marine reserves in international waters.
Graves Light, Boston Harbor.
The Graves is an aggregation of rock outcroppings in Massachusetts Bay, Massachusetts, United States. Situated some 11 miles (18 km) offshore of downtown Boston, it is the outermost island in the Boston Harbor Islands National Recreation Area.
It is the location of The Graves Light, at 113 feet (34 m) tall the tallest lighthouse in Boston Harbor, and an important navigation aid for traffic to and from the port. The island has a permanent size of 1.8 acres, and rises to a height of 15 feet (4.6 m) above sea level; there is only aquatic vegetation on the island. The island is managed by the Coast Guard, and is not open to the public.
The Graves are named after Thomas Graves, a prominent early trader of colonial Massachusetts.
The Graves are northeast of the Roaring Bulls and far northwest of Three and One-half Fathom Ledge. Despite their offshore location, the Graves are within the city limits of Boston.
A new major shipping channel into Boston Harbor, the Broad Sound Channel, opened in the early 1900s, necessitating a lighthouse at the Graves.
In 1902, Congress appropriated $75,000 for a lighthouse and fog signal, and Governor Crane of Massachusetts signed a deed conveying 435,400 square feet at the ledges to the federal government.
The project ultimately cost $188,000, meaning a second appropriation of $113,000 was required in April 1904.
Construction took place from 1903 to 1905, and Royal Luther of Malden, Massachusetts, was in charge. The style of Graves Light is very similar to Maine's Ram Island Ledge Light, built at about the same time.
The granite for the tower was cut at Rockport on Cape Ann. Rock on the ledges was blasted, and the foundation was laid just four feet above the low tide mark. The first 42 feet were completed in the summer of 1903.
A schooner transported materials from Lovell's Island, 3 1/2 miles away, to the Graves, and a 75-foot steamer transported workers to the site. A shanty was constructed on the highest ledge of the Graves, connected to the wharf by a 90-foot elevated walkway. The shanty had living quarters, a storeroom, a blacksmith shop, and a kitchen, and up to 30 men lived there in the summers of 1903 and 1904.
While the granite was being put in place, the ironwork was being manufactured in Boston and a huge first-order Fresnel lens was being created in Paris.
The summer of 1904 saw the lighthouse reach a height of 88 feet. Construction was completed during the following year. A granite oil house was built 90 feet south of the tower, reachable by a footbridge.
On the night of September 1, 1905, Graves Light's first keeper, Elliot C. Hadley, lighted the most powerful light in Massachusetts history for the first time. The gigantic lens floated on 400 pounds of mercury. After the completion of Graves Light, a Lighthouse Establishment report stated:
At so exposed a site the height necessary for the lantern above the heavier masses of spray, the consequent geographic range, its location so far seaward, the service of the light to the large commerce of Boston and modern ships of deep draft, make it perhaps the most important light north of Cape Cod.
The giraffe (Giraffa) is a genus of African even-toed ungulate mammals, the tallest living terrestrial animals and the largest ruminants. The genus currently consists of one species, Giraffa camelopardalis, the type species. Seven other species are extinct, prehistoric species known from fossils. Taxonomic classifications of one to eight extant giraffe species have been described, based upon research into the mitochondrial and nuclear DNA, as well as morphological measurements of Giraffa, but the IUCN currently recognises only one species with nine subspecies.
The giraffe's chief distinguishing characteristics are its extremely long neck and legs, its horn-like ossicones, and its distinctive coat patterns. It is classified under the family Giraffidae, along with its closest extant relative, the okapi. Its scattered range extends from Chad in the north to South Africa in the south, and from Niger in the west to Somalia in the east. Giraffes usually inhabit savannahs and woodlands. Their food source is leaves, fruits and flowers of woody plants, primarily acacia species, which they browse at heights most other herbivores cannot reach. They may be preyed on by lions, leopards, spotted hyenas and African wild dogs. Giraffes live in herds of related females and their offspring, or bachelor herds of unrelated adult males, but are gregarious and may gather in large aggregations. Males establish social hierarchies through "necking", which are combat bouts where the neck is used as a weapon. Dominant males gain mating access to females, which bear the sole responsibility for raising the young.
The giraffe has intrigued various cultures, both ancient and modern, for its peculiar appearance, and has often been featured in paintings, books, and cartoons. It is classified by the International Union for Conservation of Nature as Vulnerable to extinction, and has been extirpated from many parts of its former range. Giraffes are still found in numerous national parks and game reserves but estimations as of 2016 indicate that there are approximately 97,500 members of Giraffa in the wild, with around 1,144 in captivity.
ETYMOLOGY
The name "giraffe" has its earliest known origins in the Arabic word zarāfah (زرافة), perhaps borrowed from the animal's Somali name geri. The Arab name is translated as "fast-walker". There were several Middle English spellings, such as jarraf, ziraph, and gerfauntz. The Italian form giraffa arose in the 1590s. The modern English form developed around 1600 from the French girafe. "Camelopard" is an archaic English name for the giraffe deriving from the Ancient Greek for camel and leopard, referring to its camel-like shape and its leopard-like colouring.
TAXONOMY
Living giraffes were originally classified as one species by Carl Linnaeus in 1758. He gave it the binomial name Cervus camelopardalis. Morten Thrane Brünnich classified the genus Giraffa in 1772. The species name camelopardalis is from Latin.
EVOLUTION
The giraffe is one of only two living genera of the family Giraffidae in the order Artiodactyla, the other being the okapi. The family was once much more extensive, with over 10 fossil genera described. Their closest known relatives are the extinct deer-like climacocerids. They, together with the family Antilocapridae (whose only extant species is the pronghorn), belong to the superfamily Giraffoidea. These animals may have evolved from the extinct family Palaeomerycidae which might also have been the ancestor of deer.
The elongation of the neck appears to have started early in the giraffe lineage. Comparisons between giraffes and their ancient relatives suggest that vertebrae close to the skull lengthened earlier, followed by lengthening of vertebrae further down. One early giraffid ancestor was Canthumeryx which has been dated variously to have lived 25–20 million years ago (mya), 17–15 mya or 18–14.3 mya and whose deposits have been found in Libya. This animal was medium-sized, slender and antelope-like. Giraffokeryx appeared 15 mya in the Indian subcontinent and resembled an okapi or a small giraffe, and had a longer neck and similar ossicones. Giraffokeryx may have shared a clade with more massively built giraffids like Sivatherium and Bramatherium.
Giraffids like Palaeotragus, Shansitherium and Samotherium appeared 14 mya and lived throughout Africa and Eurasia. These animals had bare ossicones and small cranial sinuses and were longer with broader skulls. Paleotragus resembled the okapi and may have been its ancestor. Others find that the okapi lineage diverged earlier, before Giraffokeryx. Samotherium was a particularly important transitional fossil in the giraffe lineage as its cervical vertebrae was intermediate in length and structure between a modern giraffe and an okapi, and was more vertical than the okapi's. Bohlinia, which first appeared in southeastern Europe and lived 9–7 mya was likely a direct ancestor of the giraffe. Bohlinia closely resembled modern giraffes, having a long neck and legs and similar ossicones and dentition.
Bohlinia entered China and northern India in response to climate change. From there, the genus Giraffa evolved and, around 7 mya, entered Africa. Further climate changes caused the extinction of the Asian giraffes, while the African giraffes survived and radiated into several new species. Living giraffes appear to have arisen around 1 mya in eastern Africa during the Pleistocene. Some biologists suggest the modern giraffes descended from G. jumae; others find G. gracilis a more likely candidate. G. jumae was larger and more heavily built while G. gracilis was smaller and more lightly built. The main driver for the evolution of the giraffes is believed to have been the changes from extensive forests to more open habitats, which began 8 mya. During this time, tropical plants disappeared and were replaced by arid C4 plants, and a dry savannah emerged across eastern and northern Africa and western India. Some researchers have hypothesised that this new habitat coupled with a different diet, including acacia species, may have exposed giraffe ancestors to toxins that caused higher mutation rates and a higher rate of evolution. The coat patterns of modern giraffes may also have coincided with these habitat changes. Asian giraffes are hypothesised to have had more okapi-like colourations.
In the early 19th century, Jean-Baptiste Lamarck believed the giraffe's long neck was an "acquired characteristic", developed as generations of ancestral giraffes strove to reach the leaves of tall trees. This theory was eventually rejected, and scientists now believe the giraffe's neck arose through Darwinian natural selection - that ancestral giraffes with long necks thereby had a competitive feeding advantage (competing browsers hypothesis) that better enabled them to survive and reproduce to pass on their genes.
The giraffe genome is around 2.9 billion base pairs in length compared to the 3.3 billion base pairs of the okapi. Of the proteins in giraffe and okapi genes, 19.4% are identical. The two species are equally distantly related to cattle, suggesting the giraffe's unique characteristics are not because of faster evolution. The divergence of giraffe and okapi lineages dates to around 11.5 mya. A small group of regulatory genes in the giraffe appear to be responsible for the animal's stature and associated circulatory adaptations.
SPECIES AND SUBSPECIES
The IUCN currently recognises only one species of giraffe with nine subspecies. In 2001, a two-species taxonomy was proposed. A 2007 study on the genetics of Giraffa, suggested they were six species: the West African, Rothschild's, reticulated, Masai, Angolan, and South African giraffe. The study deduced from genetic differences in nuclear and mitochondrial DNA (mtDNA) that giraffes from these populations are reproductively isolated and rarely interbreed, though no natural obstacles block their mutual access. This includes adjacent populations of Rothschild's, reticulated, and Masai giraffes. The Masai giraffe was also suggested to consist of possibly two species separated by the Rift Valley.
Reticulated and Masai giraffes have the highest mtDNA diversity, which is consistent with giraffes originating in eastern Africa. Populations further north are more closely related to the former, while those to the south are more related to the latter. Giraffes appear to select mates of the same coat type, which are imprinted on them as calves. The implications of these findings for the conservation of giraffes were summarised by David Brown, lead author of the study, who told BBC News: "Lumping all giraffes into one species obscures the reality that some kinds of giraffe are on the brink. Some of these populations number only a few hundred individuals and need immediate protection."
A 2011 study using detailed analyses of the morphology of giraffes, and application of the phylogenetic species concept, described eight species of living giraffes. The eight species are: G. angolensis, G.antiquorum, G. camelopardalis, G. giraffa, G. peralta, G. reticulata, G. thornicrofti, and G. tippelskirchi.
A 2016 study also concluded that living giraffes consist of multiple species. The researchers suggested the existence of four species, which have not exchanged genetic information between each other for 1 million to 2 million years. Those four species are the northern giraffe (G. camelopardalis), southern giraffe (G. giraffa), reticulated giraffe (G. reticulata), and Masai giraffe (G. tippelskirchi). Since then, a response to this publication has been published, highlighting seven problems in data interpretation, and concludes "the conclusions should not be accepted unconditionally".
There are an estimated 90,000 individuals of Giraffa in the wild, with 1,144 currently in captivity.
There are also seven extinct species of giraffe, listed as the following:
†Giraffa gracilis
†Giraffa jumae
†Giraffa priscilla
†Giraffa punjabiensis
†Giraffa pygmaea
†Giraffa sivalensis
†Giraffa stillei
G. attica, also extinct, was formerly considered part of Giraffa but was reclassified as Bohlinia attica in 1929.
APPEARANCE AND ANATOMY
Fully grown giraffes stand 4.3–5.7 m tall, with males taller than females. The tallest recorded male was 5.88 m and the tallest recorded female was 5.17 m tall. The average weight is 1,192 kg for an adult male and 828 kg for an adult female with maximum weights of 1,930 kg and 1,180 kg having been recorded for males and females, respectively. Despite its long neck and legs, the giraffe's body is relatively short. Located at both sides of the head, the giraffe's large, bulging eyes give it good all-round vision from its great height. Giraffes see in colour and their senses of hearing and smell are also sharp. The animal can close its muscular nostrils to protect against sandstorms and ants.
The giraffe's prehensile tongue is about 45 cm long. It is purplish-black in colour, perhaps to protect against sunburn, and is useful for grasping foliage, as well as for grooming and cleaning the animal's nose. The upper lip of the giraffe is also prehensile and useful when foraging and is covered in hair to protect against thorns. The tongue, and inside of the mouth are covered in papillae.
The coat has dark blotches or patches (which can be orange, chestnut, brown, or nearly black in colour separated by light hair (usually white or cream in colour. Male giraffes become darker as they age. The coat pattern has been claimed to serve as camouflage in the light and shade patterns of savannah woodlands. While adult giraffes standing among trees and bushes are hard to see at even a few metres' distance, they actively move into the open to gain the best view of an approaching predator, obviating any benefit that camouflage might bring. Instead, the adults rely on their size and ability to defend themselves. However, camouflage appears to be important for calves, which spend a large part of the day in hiding, away from their mothers; further, over half of all calves die within a year, so predation is certainly important. It appears, therefore, that the spotted coat of the giraffe functions as camouflage for the young, while adults simply inherit this coloration as a by-product. The skin underneath the dark areas may serve as windows for thermoregulation, being sites for complex blood vessel systems and large sweat glands. Each individual giraffe has a unique coat pattern.
The skin of a giraffe is mostly gray. Its thickness allows the animal to run through thorn bush without being punctured. The fur may serve as a chemical defence, as its parasite repellents give the animal a characteristic scent. At least 11 main aromatic chemicals are in the fur, although indole and 3-methylindole are responsible for most of the smell. Because the males have a stronger odour than the females, the odour may also have sexual function. Along the animal's neck is a mane made of short, erect hairs. The one-metre tail ends in a long, dark tuft of hair and is used as a defense against insects.
SKULL AND OSSICONES
Both sexes have prominent horn-like structures called ossicones, which are formed from ossified cartilage, covered in skin and fused to the skull at the parietal bones. Being vascularized, the ossicones may have a role in thermoregulation, and are also used in combat between males. Appearance is a reliable guide to the sex or age of a giraffe: the ossicones of females and young are thin and display tufts of hair on top, whereas those of adult males end in knobs and tend to be bald on top. Also, a median lump, which is more prominent in males, emerges at the front of the skull. Males develop calcium deposits that form bumps on their skulls as they age. A giraffe's skull is lightened by multiple sinuses. However, as males age, their skulls become heavier and more club-like, helping them become more dominant in combat. The upper jaw has a grooved palate and lacks front teeth. The giraffe's molars have a rough surface.
LEGS, LOCOMOTION AND POSTURE
The front and back legs of a giraffe are about the same length. The radius and ulna of the front legs are articulated by the carpus, which, while structurally equivalent to the human wrist, functions as a knee. It appears that a suspensory ligament allows the lanky legs to support the animal's great weight. The foot of the giraffe reaches a diameter of 30 cm, and the hoof is 15 cm high in males and 10 cm in females. The rear of each hoof is low and the fetlock is close to the ground, allowing the foot to provide additional support to the animal's weight. Giraffes lack dewclaws and interdigital glands. The giraffe's pelvis, though relatively short, has an ilium that is outspread at the upper ends.
A giraffe has only two gaits: walking and galloping. Walking is done by moving the legs on one side of the body at the same time, then doing the same on the other side. When galloping, the hind legs move around the front legs before the latter move forward, and the tail will curl up. The animal relies on the forward and backward motions of its head and neck to maintain balance and the counter momentum while galloping. The giraffe can reach a sprint speed of up to 60 km/h, and can sustain 50 km/h for several kilometres.
A giraffe rests by lying with its body on top of its folded legs. To lie down, the animal kneels on its front legs and then lowers the rest of its body. To get back up, it first gets on its knees and spreads its hind legs to raise its hindquarters. It then straightens its front legs. With each step, the animal swings its head. In captivity, the giraffe sleeps intermittently around 4.6 hours per day, mostly at night. It usually sleeps lying down, however, standing sleeps have been recorded, particularly in older individuals. Intermittent short "deep sleep" phases while lying are characterised by the giraffe bending its neck backwards and resting its head on the hip or thigh, a position believed to indicate paradoxical sleep. If the giraffe wants to bend down to drink, it either spreads its front legs or bends its knees. Giraffes would probably not be competent swimmers as their long legs would be highly cumbersome in the water, although they could possibly float. When swimming, the thorax would be weighed down by the front legs, making it difficult for the animal to move its neck and legs in harmony or keep its head above the surface.
NECK
The giraffe has an extremely elongated neck, which can be up to 2–2.4 m in length, accounting for much of the animal's vertical height. The long neck results from a disproportionate lengthening of the cervical vertebrae, not from the addition of more vertebrae. Each cervical vertebra is over 28 cm long. They comprise 52–54 per cent of the length of the giraffe's vertebral column, compared with the 27–33 percent typical of similar large ungulates, including the giraffe’s closest living relative, the okapi. This elongation largely takes place after birth, perhaps because giraffe mothers would have a difficult time giving birth to young with the same neck proportions as adults. The giraffe's head and neck are held up by large muscles and a strengthened nuchal ligament, which are anchored by long dorsal spines on the anterior thoracic vertebrae, giving the animal a hump. The giraffe's neck vertebrae have ball and socket joints. In particular, the atlas–axis joint (C1 and C2) allows the animal to tilt its head vertically and reach more branches with the tongue. The point of articulation between the cervical and thoracic vertebrae of giraffes is shifted to lie between the first and second thoracic vertebrae (T1 and T2), unlike most other ruminants where the articulation is between the seventh cervical vertebra (C7) and T1. This allows C7 to contribute directly to increased neck length and has given rise to the suggestion that T1 is actually C8, and that giraffes have added an extra cervical vertebra. However, this proposition is not generally accepted, as T1 has other morphological features, such as an articulating rib, deemed diagnostic of thoracic vertebrae, and because exceptions to the mammalian limit of seven cervical vertebrae are generally characterised by increased neurological anomalies and maladies.There are several hypotheses regarding the evolutionary origin and maintenance of elongation in giraffe necks. The "competing browsers hypothesis" was originally suggested by Charles Darwin and challenged only recently. It suggests that competitive pressure from smaller browsers, such as kudu, steenbok and impala, encouraged the elongation of the neck, as it enabled giraffes to reach food that competitors could not. This advantage is real, as giraffes can and do feed up to 4.5 m high, while even quite large competitors, such as kudu, can feed up to only about 2 m high. There is also research suggesting that browsing competition is intense at lower levels, and giraffes feed more efficiently (gaining more leaf biomass with each mouthful) high in the canopy. However, scientists disagree about just how much time giraffes spend feeding at levels beyond the reach of other browsers, and a 2010 study found that adult giraffes with longer necks actually suffered higher mortality rates under drought conditions than their shorter-necked counterparts. This study suggests that maintaining a longer neck requires more nutrients, which puts longer-necked giraffes at risk during a food shortage.
Another theory, the sexual selection hypothesis, proposes that the long necks evolved as a secondary sexual characteristic, giving males an advantage in "necking" contests (see below) to establish dominance and obtain access to sexually receptive females. In support of this theory, necks are longer and heavier for males than females of the same age, and the former do not employ other forms of combat. However, one objection is that it fails to explain why female giraffes also have long necks. It has also been proposed that the neck serves to give the animal greater vigilance.
INTERNAL SYSTEMS
In mammals, the left recurrent laryngeal nerve is longer than the right; in the giraffe it is over 30 cm longer. These nerves are longer in the giraffe than in any other living animal; the left nerve is over 2 m long. Each nerve cell in this path begins in the brainstem and passes down the neck along the vagus nerve, then branches off into the recurrent laryngeal nerve which passes back up the neck to the larynx. Thus, these nerve cells have a length of nearly 5 m in the largest giraffes. The structure of a giraffe's brain resembles that of domestic cattle. It is kept cool by evaporative heat loss in the nasal passages. The shape of the skeleton gives the giraffe a small lung volume relative to its mass. Its long neck gives it a large amount of dead space, in spite of its narrow windpipe. These factors increase the resistance to airflow. Nevertheless, the animal can still supply enough oxygen to its tissues and it can increase its respiratory rate and oxygen diffusion when running.
The circulatory system of the giraffe has several adaptations for its great height. Its heart, which can weigh more than 11 kg and measures about 60 cm long, must generate approximately double the blood pressure required for a human to maintain blood flow to the brain. As such, the wall of the heart can be as thick as 7.5 cm. Giraffes have unusually high heart rates for their size, at 150 beats per minute. When the animal lowers its head the blood rushes down fairly unopposed and a rete mirabile in the upper neck, with its large cross sectional area, prevents excess blood flow to the brain. When it raises again, the blood vessels constrict and direct blood into the brain so the animal does not faint. The jugular veins contain several (most commonly seven) valves to prevent blood flowing back into the head from the inferior vena cava and right atrium while the head is lowered. Conversely, the blood vessels in the lower legs are under great pressure because of the weight of fluid pressing down on them. To solve this problem, the skin of the lower legs is thick and tight; preventing too much blood from pouring into them.
Giraffes have oesophageal muscles that are unusually strong to allow regurgitation of food from the stomach up the neck and into the mouth for rumination. They have four chambered stomachs, as in all ruminants, and the first chamber has adapted to their specialised diet. The intestines of an adult giraffe measure more than 70 m in length and have a relatively small ratio of small to large intestine. The liver of the giraffe is small and compact. A gallbladder is generally present during fetal life, but it may disappear before birth.
BEHAVIOUR AND ECOLOGY
HABITAT AND FEEDING
Giraffes usually inhabit savannahs and open woodlands. They prefer Acacieae, Commiphora, Combretum and open Terminalia woodlands over denser environments like Brachystegia woodlands. The Angolan giraffe can be found in desert environments. Giraffes browse on the twigs of trees, preferring trees of the subfamily Acacieae and the genera Commiphora and Terminalia, which are important sources of calcium and protein to sustain the giraffe's growth rate. They also feed on shrubs, grass and fruit. A giraffe eats around 34 kg of foliage daily. When stressed, giraffes may chew the bark off branches. Although herbivorous, the giraffe has been known to visit carcasses and lick dried meat off bones.
During the wet season, food is abundant and giraffes are more spread out, while during the dry season, they gather around the remaining evergreen trees and bushes. Mothers tend to feed in open areas, presumably to make it easier to detect predators, although this may reduce their feeding efficiency. As a ruminant, the giraffe first chews its food, then swallows it for processing and then visibly passes the half-digested cud up the neck and back into the mouth to chew again. It is common for a giraffe to salivate while feeding. The giraffe requires less food than many other herbivores because the foliage it eats has more concentrated nutrients and it has a more efficient digestive system. The animal's faeces come in the form of small pellets. When it has access to water, a giraffe drinks at intervals no longer than three days.
Giraffes have a great effect on the trees that they feed on, delaying the growth of young trees for some years and giving "waistlines" to trees that are too tall. Feeding is at its highest during the first and last hours of daytime. Between these hours, giraffes mostly stand and ruminate. Rumination is the dominant activity during the night, when it is mostly done lying down.
SOCIAL LIFE
Giraffes are usually found in groups. Traditionally, the composition of these groups has been described as open and ever-changing. Giraffes were thought to have few social bonds and for research purposes, a "group" has been defined as "a collection of individuals that are less than a kilometre apart and moving in the same general direction." More recent studies have found that giraffes do have long-term social associations and may form groups or pairs based on kinship, sex or other factors. These groups may regularly associate with one another in larger communities or sub-communities within a fission–fusion society. The number of giraffes in a group can range up to 44 individuals.
Giraffe groups tend to be sex-segregated although mixed-sex groups made of adult females and young males are known to occur. Particularity stable giraffe groups are those made of mothers and their young, which can last weeks or months. Social cohesion in these groups is maintained by the bonds formed between calves. Female association appears to be based on space-use and individuals may be matrilineally related. In general, females are more selective than males in who they associate with in regards to individuals of the same sex. Young males also form groups and will engage in playfights. However, as they get older males become more solitary but may also associate in pairs or with female groups. Giraffes are not territorial, but they have home ranges. Male giraffes occasionally wander far from areas that they normally frequent.
Although generally quiet and non-vocal, giraffes have been heard to communicate using various sounds. During courtship, males emit loud coughs. Females call their young by bellowing. Calves will emit snorts, bleats, mooing and mewing sounds. Giraffes also snore, hiss, moan, grunt and make flute-like sounds, and possibly communicate over long distances using infrasound - though this is disputed. During nighttime, giraffes appear to hum to each other above the infrasound range for purposes which are unclear.
REPRODUCTION AND PARENTAL CARE
Reproduction in giraffes is broadly polygamous: a few older males mate with the fertile females. Male giraffes assess female fertility by tasting the female's urine to detect oestrus, in a multi-step process known as the flehmen response. Males prefer young adult females over juveniles and older adults. Once an oestrous female is detected, the male will attempt to court her. When courting, dominant males will keep subordinate ones at bay. A courting male may lick a female's tail, rest his head and neck on her body or nudge her with his horns. During copulation, the male stands on his hind legs with his head held up and his front legs resting on the female's sides. Giraffe gestation lasts 400–460 days, after which a single calf is normally born, although twins occur on rare occasions. The mother gives birth standing up. The calf emerges head and front legs first, having broken through the fetal membranes, and falls to the ground, severing the umbilical cord. The mother then grooms the newborn and helps it stand up. A newborn giraffe is 1.7–2 m tall. Within a few hours of birth, the calf can run around and is almost indistinguishable from a one-week-old. However, for the first 1–3 weeks, it spends most of its time hiding; its coat pattern providing camouflage. The ossicones, which have lain flat while it was in the womb, become erect within a few days.
Mothers with calves will gather in nursery herds, moving or browsing together. Mothers in such a group may sometimes leave their calves with one female while they forage and drink elsewhere. This is known as a "calving pool". Adult males play almost no role in raising the young, although they appear to have friendly interactions. Calves are at risk of predation, and a mother giraffe will stand over her calf and kick at an approaching predator. Females watching calving pools will only alert their own young if they detect a disturbance, although the others will take notice and follow.
The length time in which offspring stay with their mother varies, though it can last until the female's next calving. Likewise, calves may suckle for only a month or as long as a year.] Females become sexually mature when they are four years old, while males become mature at four or five years. Spermatogenesis in male giraffes begins at three to four years of age. Males must wait until they are at least seven years old to gain the opportunity to mate.
NECKING
Male giraffes use their necks as weapons in combat, a behaviour known as "necking". Necking is used to establish dominance and males that win necking bouts have greater reproductive success. This behaviour occurs at low or high intensity. In low intensity necking, the combatants rub and lean against each other. The male that can hold itself more erect wins the bout. In high intensity necking, the combatants will spread their front legs and swing their necks at each other, attempting to land blows with their ossicones. The contestants will try to dodge each other's blows and then get ready to counter. The power of a blow depends on the weight of the skull and the arc of the swing. A necking duel can last more than half an hour, depending on how well matched the combatants are. Although most fights do not lead to serious injury, there have been records of broken jaws, broken necks, and even deaths.
After a duel, it is common for two male giraffes to caress and court each other. Such interactions between males have been found to be more frequent than heterosexual coupling. In one study, up to 94 percent of observed mounting incidents took place between males. The proportion of same-sex activities varied from 30–75 percent. Only one percent of same-sex mounting incidents occurred between females.
MORTALITY AND HEALTH
Giraffes have high adult survival probability, and an unusually long lifespan compared to other ruminants, up to 25 years in the wild. Because of their size, eyesight and powerful kicks, adult giraffes are usually not subject to predation, aside from lions. Giraffes are the most common prey for the big cats in Kruger National Park. Nile crocodiles can also be a threat to giraffes when they bend down to drink. Calves are much more vulnerable than adults, and are additionally preyed on by leopards, spotted hyenas and wild dogs. A quarter to a half of giraffe calves reach adulthood. Calf survival varies according to the season of birth, with calves born during the dry season having higher survival rates. The local, seasonal presence of large herds of migratory wildebeests and zebras reduces predation pressure on giraffe calves and increases their survival probability.
Some parasites feed on giraffes. They are often hosts for ticks, especially in the area around the genitals, which has thinner skin than other areas. Tick species that commonly feed on giraffes are those of genera Hyalomma, Amblyomma and Rhipicephalus. Giraffes may rely on red-billed and yellow-billed oxpeckers to clean them of ticks and alert them to danger. Giraffes host numerous species of internal parasite and are susceptible to various diseases. They were victims of the (now eradicated) viral illness rinderpest. Giraffes can also suffer from a skin disorder, which comes in the form of wrinkles, lesions or raw fissures. It appears to be caused by a nematode and may be further effected by fungal infections. As much as 79% of giraffes show signs of the disease in Ruaha National Park.
RELATIONSHIP WITH HUMANS
Humans have interacted with giraffes for millennia. The San people of southern Africa have medicine dances named after some animals; the giraffe dance is performed to treat head ailments. How the giraffe got its height has been the subject of various African folktales, including one from eastern Africa which explains that the giraffe grew tall from eating too many magic herbs. Giraffes were depicted in art throughout the African continent, including that of the Kiffians, Egyptians and Meroë Nubians. The Kiffians were responsible for a life-size rock engraving of two giraffes that has been called the "world's largest rock art petroglyph". The Egyptians gave the giraffe its own hieroglyph, named 'sr' in Old Egyptian and 'mmy' in later periods. They also kept giraffes as pets and shipped them around the Mediterranean.
The giraffe was also known to the Greeks and Romans, who believed that it was an unnatural hybrid of a camel and a leopard and called it camelopardalis. The giraffe was among the many animals collected and displayed by the Romans. The first one in Rome was brought in by Julius Caesar in 46 BC and exhibited to the public. With the fall of the Western Roman Empire, the housing of giraffes in Europe declined. During the Middle Ages, giraffes were known to Europeans through contact with the Arabs, who revered the giraffe for its peculiar appearance.
Individual captive giraffes were given celebrity status throughout history. In 1414, a giraffe was shipped from Malindi to Bengal. It was then taken to China by explorer Zheng He and placed in a Ming dynasty zoo. The animal was a source of fascination for the Chinese people, who associated it with the mythical Qilin. The Medici giraffe was a giraffe presented to Lorenzo de' Medici in 1486. It caused a great stir on its arrival in Florence. Zarafa, another famous giraffe, was brought from Egypt to Paris in the early 19th century as a gift from Muhammad Ali of Egypt to Charles X of France. A sensation, the giraffe was the subject of numerous memorabilia or "giraffanalia".
Giraffes continue to have a presence in modern culture. Salvador Dalí depicted them with burning manes in some of his surrealist paintings. Dali considered the giraffe to be a symbol of masculinity, and a flaming giraffe was meant to be a "masculine cosmic apocalyptic monster". Several children's books feature the giraffe, including David A. Ufer's The Giraffe Who Was Afraid of Heights, Giles Andreae's Giraffes Can't Dance and Roald Dahl's The Giraffe and the Pelly and Me. Giraffes have appeared in animated films, as minor characters in Disney's The Lion King and Dumbo, and in more prominent roles in The Wild and in the Madagascar films. Sophie the Giraffe has been a popular teether since 1961. Another famous fictional giraffe is the Toys "R" Us mascot Geoffrey the Giraffe.
The giraffe has also been used for some scientific experiments and discoveries. Scientists have looked at the properties of giraffe skin when developing suits for astronauts and fighter pilots because the people in these professions are in danger of passing out if blood rushes to their legs. Computer scientists have modeled the coat patterns of several subspecies using reaction–diffusion mechanisms.
The constellation of Camelopardalis, introduced in the seventeenth century, depicts a giraffe. The Tswana people of Botswana traditionally see the constellation Crux as two giraffes – Acrux and Mimosa forming a male, and Gacrux and Delta Crucis forming the female.
EXPLOITATION AND CONSERVATION STATUS
Giraffes were probably common targets for hunters throughout Africa. Different parts of their bodies were used for different purposes. Their meat was used for food. The tail hairs served as flyswatters, bracelets, necklaces and thread. Shields, sandals and drums were made using the skin, and the strings of musical instruments were from the tendons. The smoke from burning giraffe skins was used by the medicine men of Buganda to treat nose bleeds. The Humr people of Sudan consume the drink Umm Nyolokh; which is created from the liver and marrow of giraffes. Umm Nyolokh often contains DMT and other psychoactive substances from plants the giraffes eat such as Acacia; and is known to cause hallucinations of giraffes, believed to be the giraffes' ghosts by the Humr. In the 19th century, European explorers began to hunt them for sport. Habitat destruction has hurt the giraffe, too: in the Sahel, the need for firewood and grazing room for livestock has led to deforestation. Normally, giraffes can coexist with livestock, since they do not directly compete with them. In 2017, severe droughts in northern Kenya have led to increased tensions over land and the killing of wildlife by herders, with giraffe populations being particularly hit.
Aerial survey is the most common method of monitoring giraffe population trends in the vast roadless tracts of African landscapes, but aerial methods are known to undercount giraffes. Ground-based survey methods are more accurate and should be used in conjunction with aerial surveys to make accurate estimates of population sizes and trends. In 2010, giraffes were assessed as Least Concern from a conservation perspective by the International Union for Conservation of Nature (IUCN), but the 2016 assessment categorized giraffes as Vulnerable. Giraffes have been extirpated from much of their historic range including Eritrea, Guinea, Mauritania and Senegal. They may also have disappeared from Angola, Mali, and Nigeria, but have been introduced to Rwanda and Swaziland. Two subspecies, the West African giraffe and the Rothschild giraffe, have been classified as endangered, as wild populations of each of them number in the hundreds.
In 1997, Jonathan Kingdon suggested that the Nubian giraffe was the most threatened of all giraffes; as of 2010, it may number fewer than 250, although this estimate is uncertain. Private game reserves have contributed to the preservation of giraffe populations in southern Africa. Giraffe Manor is a popular hotel in Nairobi that also serves as sanctuary for Rothschild's giraffes. The giraffe is a protected species in most of its range. It is the national animal of Tanzania, and is protected by law. Unauthorised killing can result in imprisonment. The UN backed Convention of Migratory Species selected giraffes for protection in 2017. In 1999, it was estimated that over 140,000 giraffes existed in the wild, estimations as of 2016 indicate that there are approximately 97,500 members of Giraffa in the wild, down from 155,000 in 1985, with around 1,144 in captivity.
WIKIPEDIA
Spider crabs, Leptomithrax gaimardii, gather in their hundreds, sometimes thousands in Port Phillip Bay. This was a fairly small aggregation of about 50-60.
Media Convention,
Station, Berlin, 6. - 7. Mai 2014
------------------------------------------------
[ © (c) Uwe Völkner / FOX
F o t o a g e n t u r F O X
info@fotoagentur-fox.de Tel: 02266 - 9019 210
Vanitiy: 0800-FotoFoto Mobil: 0171 - 5483 127
Kölner Strasse 60 D-51789 Lindlar / Köln
B a n k v e r b i n d u n g Kto 7004 78 102
P o s t b a n k B e r l i n BLZ 100 100 10
IBAN DE86 1001 0010 0700 4781 02
BIC PBNKDEFF
Steuernummer: 221/5125/0967
Finanzamt: Wipperfürth
USt-IdNr. : DE182602653
Nutzung honorarpflichtig gem. gültiger MFM-Liste]
The giraffe (Giraffa) is a genus of African even-toed ungulate mammals, the tallest living terrestrial animals and the largest ruminants. The genus currently consists of one species, Giraffa camelopardalis, the type species. Seven other species are extinct, prehistoric species known from fossils. Taxonomic classifications of one to eight extant giraffe species have been described, based upon research into the mitochondrial and nuclear DNA, as well as morphological measurements of Giraffa, but the IUCN currently recognises only one species with nine subspecies.
The giraffe's chief distinguishing characteristics are its extremely long neck and legs, its horn-like ossicones, and its distinctive coat patterns. It is classified under the family Giraffidae, along with its closest extant relative, the okapi. Its scattered range extends from Chad in the north to South Africa in the south, and from Niger in the west to Somalia in the east. Giraffes usually inhabit savannahs and woodlands. Their food source is leaves, fruits and flowers of woody plants, primarily acacia species, which they browse at heights most other herbivores cannot reach. They may be preyed on by lions, leopards, spotted hyenas and African wild dogs. Giraffes live in herds of related females and their offspring, or bachelor herds of unrelated adult males, but are gregarious and may gather in large aggregations. Males establish social hierarchies through "necking", which are combat bouts where the neck is used as a weapon. Dominant males gain mating access to females, which bear the sole responsibility for raising the young.
The giraffe has intrigued various cultures, both ancient and modern, for its peculiar appearance, and has often been featured in paintings, books, and cartoons. It is classified by the International Union for Conservation of Nature as Vulnerable to extinction, and has been extirpated from many parts of its former range. Giraffes are still found in numerous national parks and game reserves but estimations as of 2016 indicate that there are approximately 97,500 members of Giraffa in the wild, with around 1,144 in captivity.
ETYMOLOGY
The name "giraffe" has its earliest known origins in the Arabic word zarāfah (زرافة), perhaps borrowed from the animal's Somali name geri. The Arab name is translated as "fast-walker". There were several Middle English spellings, such as jarraf, ziraph, and gerfauntz. The Italian form giraffa arose in the 1590s. The modern English form developed around 1600 from the French girafe. "Camelopard" is an archaic English name for the giraffe deriving from the Ancient Greek for camel and leopard, referring to its camel-like shape and its leopard-like colouring.
TAXONOMY
Living giraffes were originally classified as one species by Carl Linnaeus in 1758. He gave it the binomial name Cervus camelopardalis. Morten Thrane Brünnich classified the genus Giraffa in 1772. The species name camelopardalis is from Latin.
EVOLUTION
The giraffe is one of only two living genera of the family Giraffidae in the order Artiodactyla, the other being the okapi. The family was once much more extensive, with over 10 fossil genera described. Their closest known relatives are the extinct deer-like climacocerids. They, together with the family Antilocapridae (whose only extant species is the pronghorn), belong to the superfamily Giraffoidea. These animals may have evolved from the extinct family Palaeomerycidae which might also have been the ancestor of deer.
The elongation of the neck appears to have started early in the giraffe lineage. Comparisons between giraffes and their ancient relatives suggest that vertebrae close to the skull lengthened earlier, followed by lengthening of vertebrae further down. One early giraffid ancestor was Canthumeryx which has been dated variously to have lived 25–20 million years ago (mya), 17–15 mya or 18–14.3 mya and whose deposits have been found in Libya. This animal was medium-sized, slender and antelope-like. Giraffokeryx appeared 15 mya in the Indian subcontinent and resembled an okapi or a small giraffe, and had a longer neck and similar ossicones. Giraffokeryx may have shared a clade with more massively built giraffids like Sivatherium and Bramatherium.
Giraffids like Palaeotragus, Shansitherium and Samotherium appeared 14 mya and lived throughout Africa and Eurasia. These animals had bare ossicones and small cranial sinuses and were longer with broader skulls. Paleotragus resembled the okapi and may have been its ancestor. Others find that the okapi lineage diverged earlier, before Giraffokeryx. Samotherium was a particularly important transitional fossil in the giraffe lineage as its cervical vertebrae was intermediate in length and structure between a modern giraffe and an okapi, and was more vertical than the okapi's. Bohlinia, which first appeared in southeastern Europe and lived 9–7 mya was likely a direct ancestor of the giraffe. Bohlinia closely resembled modern giraffes, having a long neck and legs and similar ossicones and dentition.
Bohlinia entered China and northern India in response to climate change. From there, the genus Giraffa evolved and, around 7 mya, entered Africa. Further climate changes caused the extinction of the Asian giraffes, while the African giraffes survived and radiated into several new species. Living giraffes appear to have arisen around 1 mya in eastern Africa during the Pleistocene. Some biologists suggest the modern giraffes descended from G. jumae; others find G. gracilis a more likely candidate. G. jumae was larger and more heavily built while G. gracilis was smaller and more lightly built. The main driver for the evolution of the giraffes is believed to have been the changes from extensive forests to more open habitats, which began 8 mya. During this time, tropical plants disappeared and were replaced by arid C4 plants, and a dry savannah emerged across eastern and northern Africa and western India. Some researchers have hypothesised that this new habitat coupled with a different diet, including acacia species, may have exposed giraffe ancestors to toxins that caused higher mutation rates and a higher rate of evolution. The coat patterns of modern giraffes may also have coincided with these habitat changes. Asian giraffes are hypothesised to have had more okapi-like colourations.
In the early 19th century, Jean-Baptiste Lamarck believed the giraffe's long neck was an "acquired characteristic", developed as generations of ancestral giraffes strove to reach the leaves of tall trees. This theory was eventually rejected, and scientists now believe the giraffe's neck arose through Darwinian natural selection - that ancestral giraffes with long necks thereby had a competitive feeding advantage (competing browsers hypothesis) that better enabled them to survive and reproduce to pass on their genes.
The giraffe genome is around 2.9 billion base pairs in length compared to the 3.3 billion base pairs of the okapi. Of the proteins in giraffe and okapi genes, 19.4% are identical. The two species are equally distantly related to cattle, suggesting the giraffe's unique characteristics are not because of faster evolution. The divergence of giraffe and okapi lineages dates to around 11.5 mya. A small group of regulatory genes in the giraffe appear to be responsible for the animal's stature and associated circulatory adaptations.
SPECIES AND SUBSPECIES
The IUCN currently recognises only one species of giraffe with nine subspecies. In 2001, a two-species taxonomy was proposed. A 2007 study on the genetics of Giraffa, suggested they were six species: the West African, Rothschild's, reticulated, Masai, Angolan, and South African giraffe. The study deduced from genetic differences in nuclear and mitochondrial DNA (mtDNA) that giraffes from these populations are reproductively isolated and rarely interbreed, though no natural obstacles block their mutual access. This includes adjacent populations of Rothschild's, reticulated, and Masai giraffes. The Masai giraffe was also suggested to consist of possibly two species separated by the Rift Valley.
Reticulated and Masai giraffes have the highest mtDNA diversity, which is consistent with giraffes originating in eastern Africa. Populations further north are more closely related to the former, while those to the south are more related to the latter. Giraffes appear to select mates of the same coat type, which are imprinted on them as calves. The implications of these findings for the conservation of giraffes were summarised by David Brown, lead author of the study, who told BBC News: "Lumping all giraffes into one species obscures the reality that some kinds of giraffe are on the brink. Some of these populations number only a few hundred individuals and need immediate protection."
A 2011 study using detailed analyses of the morphology of giraffes, and application of the phylogenetic species concept, described eight species of living giraffes. The eight species are: G. angolensis, G.antiquorum, G. camelopardalis, G. giraffa, G. peralta, G. reticulata, G. thornicrofti, and G. tippelskirchi.
A 2016 study also concluded that living giraffes consist of multiple species. The researchers suggested the existence of four species, which have not exchanged genetic information between each other for 1 million to 2 million years. Those four species are the northern giraffe (G. camelopardalis), southern giraffe (G. giraffa), reticulated giraffe (G. reticulata), and Masai giraffe (G. tippelskirchi). Since then, a response to this publication has been published, highlighting seven problems in data interpretation, and concludes "the conclusions should not be accepted unconditionally".
There are an estimated 90,000 individuals of Giraffa in the wild, with 1,144 currently in captivity.
There are also seven extinct species of giraffe, listed as the following:
†Giraffa gracilis
†Giraffa jumae
†Giraffa priscilla
†Giraffa punjabiensis
†Giraffa pygmaea
†Giraffa sivalensis
†Giraffa stillei
G. attica, also extinct, was formerly considered part of Giraffa but was reclassified as Bohlinia attica in 1929.
APPEARANCE AND ANATOMY
Fully grown giraffes stand 4.3–5.7 m tall, with males taller than females. The tallest recorded male was 5.88 m and the tallest recorded female was 5.17 m tall. The average weight is 1,192 kg for an adult male and 828 kg for an adult female with maximum weights of 1,930 kg and 1,180 kg having been recorded for males and females, respectively. Despite its long neck and legs, the giraffe's body is relatively short. Located at both sides of the head, the giraffe's large, bulging eyes give it good all-round vision from its great height. Giraffes see in colour and their senses of hearing and smell are also sharp. The animal can close its muscular nostrils to protect against sandstorms and ants.
The giraffe's prehensile tongue is about 45 cm long. It is purplish-black in colour, perhaps to protect against sunburn, and is useful for grasping foliage, as well as for grooming and cleaning the animal's nose. The upper lip of the giraffe is also prehensile and useful when foraging and is covered in hair to protect against thorns. The tongue, and inside of the mouth are covered in papillae.
The coat has dark blotches or patches (which can be orange, chestnut, brown, or nearly black in colour separated by light hair (usually white or cream in colour. Male giraffes become darker as they age. The coat pattern has been claimed to serve as camouflage in the light and shade patterns of savannah woodlands. While adult giraffes standing among trees and bushes are hard to see at even a few metres' distance, they actively move into the open to gain the best view of an approaching predator, obviating any benefit that camouflage might bring. Instead, the adults rely on their size and ability to defend themselves. However, camouflage appears to be important for calves, which spend a large part of the day in hiding, away from their mothers; further, over half of all calves die within a year, so predation is certainly important. It appears, therefore, that the spotted coat of the giraffe functions as camouflage for the young, while adults simply inherit this coloration as a by-product. The skin underneath the dark areas may serve as windows for thermoregulation, being sites for complex blood vessel systems and large sweat glands. Each individual giraffe has a unique coat pattern.
The skin of a giraffe is mostly gray. Its thickness allows the animal to run through thorn bush without being punctured. The fur may serve as a chemical defence, as its parasite repellents give the animal a characteristic scent. At least 11 main aromatic chemicals are in the fur, although indole and 3-methylindole are responsible for most of the smell. Because the males have a stronger odour than the females, the odour may also have sexual function. Along the animal's neck is a mane made of short, erect hairs. The one-metre tail ends in a long, dark tuft of hair and is used as a defense against insects.
SKULL AND OSSICONES
Both sexes have prominent horn-like structures called ossicones, which are formed from ossified cartilage, covered in skin and fused to the skull at the parietal bones. Being vascularized, the ossicones may have a role in thermoregulation, and are also used in combat between males. Appearance is a reliable guide to the sex or age of a giraffe: the ossicones of females and young are thin and display tufts of hair on top, whereas those of adult males end in knobs and tend to be bald on top. Also, a median lump, which is more prominent in males, emerges at the front of the skull. Males develop calcium deposits that form bumps on their skulls as they age. A giraffe's skull is lightened by multiple sinuses. However, as males age, their skulls become heavier and more club-like, helping them become more dominant in combat. The upper jaw has a grooved palate and lacks front teeth. The giraffe's molars have a rough surface.
LEGS, LOCOMOTION AND POSTURE
The front and back legs of a giraffe are about the same length. The radius and ulna of the front legs are articulated by the carpus, which, while structurally equivalent to the human wrist, functions as a knee. It appears that a suspensory ligament allows the lanky legs to support the animal's great weight. The foot of the giraffe reaches a diameter of 30 cm, and the hoof is 15 cm high in males and 10 cm in females. The rear of each hoof is low and the fetlock is close to the ground, allowing the foot to provide additional support to the animal's weight. Giraffes lack dewclaws and interdigital glands. The giraffe's pelvis, though relatively short, has an ilium that is outspread at the upper ends.
A giraffe has only two gaits: walking and galloping. Walking is done by moving the legs on one side of the body at the same time, then doing the same on the other side. When galloping, the hind legs move around the front legs before the latter move forward, and the tail will curl up. The animal relies on the forward and backward motions of its head and neck to maintain balance and the counter momentum while galloping. The giraffe can reach a sprint speed of up to 60 km/h, and can sustain 50 km/h for several kilometres.
A giraffe rests by lying with its body on top of its folded legs. To lie down, the animal kneels on its front legs and then lowers the rest of its body. To get back up, it first gets on its knees and spreads its hind legs to raise its hindquarters. It then straightens its front legs. With each step, the animal swings its head. In captivity, the giraffe sleeps intermittently around 4.6 hours per day, mostly at night. It usually sleeps lying down, however, standing sleeps have been recorded, particularly in older individuals. Intermittent short "deep sleep" phases while lying are characterised by the giraffe bending its neck backwards and resting its head on the hip or thigh, a position believed to indicate paradoxical sleep. If the giraffe wants to bend down to drink, it either spreads its front legs or bends its knees. Giraffes would probably not be competent swimmers as their long legs would be highly cumbersome in the water, although they could possibly float. When swimming, the thorax would be weighed down by the front legs, making it difficult for the animal to move its neck and legs in harmony or keep its head above the surface.
NECK
The giraffe has an extremely elongated neck, which can be up to 2–2.4 m in length, accounting for much of the animal's vertical height. The long neck results from a disproportionate lengthening of the cervical vertebrae, not from the addition of more vertebrae. Each cervical vertebra is over 28 cm long. They comprise 52–54 per cent of the length of the giraffe's vertebral column, compared with the 27–33 percent typical of similar large ungulates, including the giraffe’s closest living relative, the okapi. This elongation largely takes place after birth, perhaps because giraffe mothers would have a difficult time giving birth to young with the same neck proportions as adults. The giraffe's head and neck are held up by large muscles and a strengthened nuchal ligament, which are anchored by long dorsal spines on the anterior thoracic vertebrae, giving the animal a hump. The giraffe's neck vertebrae have ball and socket joints. In particular, the atlas–axis joint (C1 and C2) allows the animal to tilt its head vertically and reach more branches with the tongue. The point of articulation between the cervical and thoracic vertebrae of giraffes is shifted to lie between the first and second thoracic vertebrae (T1 and T2), unlike most other ruminants where the articulation is between the seventh cervical vertebra (C7) and T1. This allows C7 to contribute directly to increased neck length and has given rise to the suggestion that T1 is actually C8, and that giraffes have added an extra cervical vertebra. However, this proposition is not generally accepted, as T1 has other morphological features, such as an articulating rib, deemed diagnostic of thoracic vertebrae, and because exceptions to the mammalian limit of seven cervical vertebrae are generally characterised by increased neurological anomalies and maladies.There are several hypotheses regarding the evolutionary origin and maintenance of elongation in giraffe necks. The "competing browsers hypothesis" was originally suggested by Charles Darwin and challenged only recently. It suggests that competitive pressure from smaller browsers, such as kudu, steenbok and impala, encouraged the elongation of the neck, as it enabled giraffes to reach food that competitors could not. This advantage is real, as giraffes can and do feed up to 4.5 m high, while even quite large competitors, such as kudu, can feed up to only about 2 m high. There is also research suggesting that browsing competition is intense at lower levels, and giraffes feed more efficiently (gaining more leaf biomass with each mouthful) high in the canopy. However, scientists disagree about just how much time giraffes spend feeding at levels beyond the reach of other browsers, and a 2010 study found that adult giraffes with longer necks actually suffered higher mortality rates under drought conditions than their shorter-necked counterparts. This study suggests that maintaining a longer neck requires more nutrients, which puts longer-necked giraffes at risk during a food shortage.
Another theory, the sexual selection hypothesis, proposes that the long necks evolved as a secondary sexual characteristic, giving males an advantage in "necking" contests (see below) to establish dominance and obtain access to sexually receptive females. In support of this theory, necks are longer and heavier for males than females of the same age, and the former do not employ other forms of combat. However, one objection is that it fails to explain why female giraffes also have long necks. It has also been proposed that the neck serves to give the animal greater vigilance.
INTERNAL SYSTEMS
In mammals, the left recurrent laryngeal nerve is longer than the right; in the giraffe it is over 30 cm longer. These nerves are longer in the giraffe than in any other living animal; the left nerve is over 2 m long. Each nerve cell in this path begins in the brainstem and passes down the neck along the vagus nerve, then branches off into the recurrent laryngeal nerve which passes back up the neck to the larynx. Thus, these nerve cells have a length of nearly 5 m in the largest giraffes. The structure of a giraffe's brain resembles that of domestic cattle. It is kept cool by evaporative heat loss in the nasal passages. The shape of the skeleton gives the giraffe a small lung volume relative to its mass. Its long neck gives it a large amount of dead space, in spite of its narrow windpipe. These factors increase the resistance to airflow. Nevertheless, the animal can still supply enough oxygen to its tissues and it can increase its respiratory rate and oxygen diffusion when running.
The circulatory system of the giraffe has several adaptations for its great height. Its heart, which can weigh more than 11 kg and measures about 60 cm long, must generate approximately double the blood pressure required for a human to maintain blood flow to the brain. As such, the wall of the heart can be as thick as 7.5 cm. Giraffes have unusually high heart rates for their size, at 150 beats per minute. When the animal lowers its head the blood rushes down fairly unopposed and a rete mirabile in the upper neck, with its large cross sectional area, prevents excess blood flow to the brain. When it raises again, the blood vessels constrict and direct blood into the brain so the animal does not faint. The jugular veins contain several (most commonly seven) valves to prevent blood flowing back into the head from the inferior vena cava and right atrium while the head is lowered. Conversely, the blood vessels in the lower legs are under great pressure because of the weight of fluid pressing down on them. To solve this problem, the skin of the lower legs is thick and tight; preventing too much blood from pouring into them.
Giraffes have oesophageal muscles that are unusually strong to allow regurgitation of food from the stomach up the neck and into the mouth for rumination. They have four chambered stomachs, as in all ruminants, and the first chamber has adapted to their specialised diet. The intestines of an adult giraffe measure more than 70 m in length and have a relatively small ratio of small to large intestine. The liver of the giraffe is small and compact. A gallbladder is generally present during fetal life, but it may disappear before birth.
BEHAVIOUR AND ECOLOGY
HABITAT AND FEEDING
Giraffes usually inhabit savannahs and open woodlands. They prefer Acacieae, Commiphora, Combretum and open Terminalia woodlands over denser environments like Brachystegia woodlands. The Angolan giraffe can be found in desert environments. Giraffes browse on the twigs of trees, preferring trees of the subfamily Acacieae and the genera Commiphora and Terminalia, which are important sources of calcium and protein to sustain the giraffe's growth rate. They also feed on shrubs, grass and fruit. A giraffe eats around 34 kg of foliage daily. When stressed, giraffes may chew the bark off branches. Although herbivorous, the giraffe has been known to visit carcasses and lick dried meat off bones.
During the wet season, food is abundant and giraffes are more spread out, while during the dry season, they gather around the remaining evergreen trees and bushes. Mothers tend to feed in open areas, presumably to make it easier to detect predators, although this may reduce their feeding efficiency. As a ruminant, the giraffe first chews its food, then swallows it for processing and then visibly passes the half-digested cud up the neck and back into the mouth to chew again. It is common for a giraffe to salivate while feeding. The giraffe requires less food than many other herbivores because the foliage it eats has more concentrated nutrients and it has a more efficient digestive system. The animal's faeces come in the form of small pellets. When it has access to water, a giraffe drinks at intervals no longer than three days.
Giraffes have a great effect on the trees that they feed on, delaying the growth of young trees for some years and giving "waistlines" to trees that are too tall. Feeding is at its highest during the first and last hours of daytime. Between these hours, giraffes mostly stand and ruminate. Rumination is the dominant activity during the night, when it is mostly done lying down.
SOCIAL LIFE
Giraffes are usually found in groups. Traditionally, the composition of these groups has been described as open and ever-changing. Giraffes were thought to have few social bonds and for research purposes, a "group" has been defined as "a collection of individuals that are less than a kilometre apart and moving in the same general direction." More recent studies have found that giraffes do have long-term social associations and may form groups or pairs based on kinship, sex or other factors. These groups may regularly associate with one another in larger communities or sub-communities within a fission–fusion society. The number of giraffes in a group can range up to 44 individuals.
Giraffe groups tend to be sex-segregated although mixed-sex groups made of adult females and young males are known to occur. Particularity stable giraffe groups are those made of mothers and their young, which can last weeks or months. Social cohesion in these groups is maintained by the bonds formed between calves. Female association appears to be based on space-use and individuals may be matrilineally related. In general, females are more selective than males in who they associate with in regards to individuals of the same sex. Young males also form groups and will engage in playfights. However, as they get older males become more solitary but may also associate in pairs or with female groups. Giraffes are not territorial, but they have home ranges. Male giraffes occasionally wander far from areas that they normally frequent.
Although generally quiet and non-vocal, giraffes have been heard to communicate using various sounds. During courtship, males emit loud coughs. Females call their young by bellowing. Calves will emit snorts, bleats, mooing and mewing sounds. Giraffes also snore, hiss, moan, grunt and make flute-like sounds, and possibly communicate over long distances using infrasound - though this is disputed. During nighttime, giraffes appear to hum to each other above the infrasound range for purposes which are unclear.
REPRODUCTION AND PARENTAL CARE
Reproduction in giraffes is broadly polygamous: a few older males mate with the fertile females. Male giraffes assess female fertility by tasting the female's urine to detect oestrus, in a multi-step process known as the flehmen response. Males prefer young adult females over juveniles and older adults. Once an oestrous female is detected, the male will attempt to court her. When courting, dominant males will keep subordinate ones at bay. A courting male may lick a female's tail, rest his head and neck on her body or nudge her with his horns. During copulation, the male stands on his hind legs with his head held up and his front legs resting on the female's sides. Giraffe gestation lasts 400–460 days, after which a single calf is normally born, although twins occur on rare occasions. The mother gives birth standing up. The calf emerges head and front legs first, having broken through the fetal membranes, and falls to the ground, severing the umbilical cord. The mother then grooms the newborn and helps it stand up. A newborn giraffe is 1.7–2 m tall. Within a few hours of birth, the calf can run around and is almost indistinguishable from a one-week-old. However, for the first 1–3 weeks, it spends most of its time hiding; its coat pattern providing camouflage. The ossicones, which have lain flat while it was in the womb, become erect within a few days.
Mothers with calves will gather in nursery herds, moving or browsing together. Mothers in such a group may sometimes leave their calves with one female while they forage and drink elsewhere. This is known as a "calving pool". Adult males play almost no role in raising the young, although they appear to have friendly interactions. Calves are at risk of predation, and a mother giraffe will stand over her calf and kick at an approaching predator. Females watching calving pools will only alert their own young if they detect a disturbance, although the others will take notice and follow.
The length time in which offspring stay with their mother varies, though it can last until the female's next calving. Likewise, calves may suckle for only a month or as long as a year.] Females become sexually mature when they are four years old, while males become mature at four or five years. Spermatogenesis in male giraffes begins at three to four years of age. Males must wait until they are at least seven years old to gain the opportunity to mate.
NECKING
Male giraffes use their necks as weapons in combat, a behaviour known as "necking". Necking is used to establish dominance and males that win necking bouts have greater reproductive success. This behaviour occurs at low or high intensity. In low intensity necking, the combatants rub and lean against each other. The male that can hold itself more erect wins the bout. In high intensity necking, the combatants will spread their front legs and swing their necks at each other, attempting to land blows with their ossicones. The contestants will try to dodge each other's blows and then get ready to counter. The power of a blow depends on the weight of the skull and the arc of the swing. A necking duel can last more than half an hour, depending on how well matched the combatants are. Although most fights do not lead to serious injury, there have been records of broken jaws, broken necks, and even deaths.
After a duel, it is common for two male giraffes to caress and court each other. Such interactions between males have been found to be more frequent than heterosexual coupling. In one study, up to 94 percent of observed mounting incidents took place between males. The proportion of same-sex activities varied from 30–75 percent. Only one percent of same-sex mounting incidents occurred between females.
MORTALITY AND HEALTH
Giraffes have high adult survival probability, and an unusually long lifespan compared to other ruminants, up to 25 years in the wild. Because of their size, eyesight and powerful kicks, adult giraffes are usually not subject to predation, aside from lions. Giraffes are the most common prey for the big cats in Kruger National Park. Nile crocodiles can also be a threat to giraffes when they bend down to drink. Calves are much more vulnerable than adults, and are additionally preyed on by leopards, spotted hyenas and wild dogs. A quarter to a half of giraffe calves reach adulthood. Calf survival varies according to the season of birth, with calves born during the dry season having higher survival rates. The local, seasonal presence of large herds of migratory wildebeests and zebras reduces predation pressure on giraffe calves and increases their survival probability.
Some parasites feed on giraffes. They are often hosts for ticks, especially in the area around the genitals, which has thinner skin than other areas. Tick species that commonly feed on giraffes are those of genera Hyalomma, Amblyomma and Rhipicephalus. Giraffes may rely on red-billed and yellow-billed oxpeckers to clean them of ticks and alert them to danger. Giraffes host numerous species of internal parasite and are susceptible to various diseases. They were victims of the (now eradicated) viral illness rinderpest. Giraffes can also suffer from a skin disorder, which comes in the form of wrinkles, lesions or raw fissures. It appears to be caused by a nematode and may be further effected by fungal infections. As much as 79% of giraffes show signs of the disease in Ruaha National Park.
RELATIONSHIP WITH HUMANS
Humans have interacted with giraffes for millennia. The San people of southern Africa have medicine dances named after some animals; the giraffe dance is performed to treat head ailments. How the giraffe got its height has been the subject of various African folktales, including one from eastern Africa which explains that the giraffe grew tall from eating too many magic herbs. Giraffes were depicted in art throughout the African continent, including that of the Kiffians, Egyptians and Meroë Nubians. The Kiffians were responsible for a life-size rock engraving of two giraffes that has been called the "world's largest rock art petroglyph". The Egyptians gave the giraffe its own hieroglyph, named 'sr' in Old Egyptian and 'mmy' in later periods. They also kept giraffes as pets and shipped them around the Mediterranean.
The giraffe was also known to the Greeks and Romans, who believed that it was an unnatural hybrid of a camel and a leopard and called it camelopardalis. The giraffe was among the many animals collected and displayed by the Romans. The first one in Rome was brought in by Julius Caesar in 46 BC and exhibited to the public. With the fall of the Western Roman Empire, the housing of giraffes in Europe declined. During the Middle Ages, giraffes were known to Europeans through contact with the Arabs, who revered the giraffe for its peculiar appearance.
Individual captive giraffes were given celebrity status throughout history. In 1414, a giraffe was shipped from Malindi to Bengal. It was then taken to China by explorer Zheng He and placed in a Ming dynasty zoo. The animal was a source of fascination for the Chinese people, who associated it with the mythical Qilin. The Medici giraffe was a giraffe presented to Lorenzo de' Medici in 1486. It caused a great stir on its arrival in Florence. Zarafa, another famous giraffe, was brought from Egypt to Paris in the early 19th century as a gift from Muhammad Ali of Egypt to Charles X of France. A sensation, the giraffe was the subject of numerous memorabilia or "giraffanalia".
Giraffes continue to have a presence in modern culture. Salvador Dalí depicted them with burning manes in some of his surrealist paintings. Dali considered the giraffe to be a symbol of masculinity, and a flaming giraffe was meant to be a "masculine cosmic apocalyptic monster". Several children's books feature the giraffe, including David A. Ufer's The Giraffe Who Was Afraid of Heights, Giles Andreae's Giraffes Can't Dance and Roald Dahl's The Giraffe and the Pelly and Me. Giraffes have appeared in animated films, as minor characters in Disney's The Lion King and Dumbo, and in more prominent roles in The Wild and in the Madagascar films. Sophie the Giraffe has been a popular teether since 1961. Another famous fictional giraffe is the Toys "R" Us mascot Geoffrey the Giraffe.
The giraffe has also been used for some scientific experiments and discoveries. Scientists have looked at the properties of giraffe skin when developing suits for astronauts and fighter pilots because the people in these professions are in danger of passing out if blood rushes to their legs. Computer scientists have modeled the coat patterns of several subspecies using reaction–diffusion mechanisms.
The constellation of Camelopardalis, introduced in the seventeenth century, depicts a giraffe. The Tswana people of Botswana traditionally see the constellation Crux as two giraffes – Acrux and Mimosa forming a male, and Gacrux and Delta Crucis forming the female.
EXPLOITATION AND CONSERVATION STATUS
Giraffes were probably common targets for hunters throughout Africa. Different parts of their bodies were used for different purposes. Their meat was used for food. The tail hairs served as flyswatters, bracelets, necklaces and thread. Shields, sandals and drums were made using the skin, and the strings of musical instruments were from the tendons. The smoke from burning giraffe skins was used by the medicine men of Buganda to treat nose bleeds. The Humr people of Sudan consume the drink Umm Nyolokh; which is created from the liver and marrow of giraffes. Umm Nyolokh often contains DMT and other psychoactive substances from plants the giraffes eat such as Acacia; and is known to cause hallucinations of giraffes, believed to be the giraffes' ghosts by the Humr. In the 19th century, European explorers began to hunt them for sport. Habitat destruction has hurt the giraffe, too: in the Sahel, the need for firewood and grazing room for livestock has led to deforestation. Normally, giraffes can coexist with livestock, since they do not directly compete with them. In 2017, severe droughts in northern Kenya have led to increased tensions over land and the killing of wildlife by herders, with giraffe populations being particularly hit.
Aerial survey is the most common method of monitoring giraffe population trends in the vast roadless tracts of African landscapes, but aerial methods are known to undercount giraffes. Ground-based survey methods are more accurate and should be used in conjunction with aerial surveys to make accurate estimates of population sizes and trends. In 2010, giraffes were assessed as Least Concern from a conservation perspective by the International Union for Conservation of Nature (IUCN), but the 2016 assessment categorized giraffes as Vulnerable. Giraffes have been extirpated from much of their historic range including Eritrea, Guinea, Mauritania and Senegal. They may also have disappeared from Angola, Mali, and Nigeria, but have been introduced to Rwanda and Swaziland. Two subspecies, the West African giraffe and the Rothschild giraffe, have been classified as endangered, as wild populations of each of them number in the hundreds.
In 1997, Jonathan Kingdon suggested that the Nubian giraffe was the most threatened of all giraffes; as of 2010, it may number fewer than 250, although this estimate is uncertain. Private game reserves have contributed to the preservation of giraffe populations in southern Africa. Giraffe Manor is a popular hotel in Nairobi that also serves as sanctuary for Rothschild's giraffes. The giraffe is a protected species in most of its range. It is the national animal of Tanzania, and is protected by law. Unauthorised killing can result in imprisonment. The UN backed Convention of Migratory Species selected giraffes for protection in 2017. In 1999, it was estimated that over 140,000 giraffes existed in the wild, estimations as of 2016 indicate that there are approximately 97,500 members of Giraffa in the wild, down from 155,000 in 1985, with around 1,144 in captivity.
WIKIPEDIA
The giraffe (Giraffa) is a genus of African even-toed ungulate mammals, the tallest living terrestrial animals and the largest ruminants. The genus currently consists of one species, Giraffa camelopardalis, the type species. Seven other species are extinct, prehistoric species known from fossils. Taxonomic classifications of one to eight extant giraffe species have been described, based upon research into the mitochondrial and nuclear DNA, as well as morphological measurements of Giraffa, but the IUCN currently recognises only one species with nine subspecies.
The giraffe's chief distinguishing characteristics are its extremely long neck and legs, its horn-like ossicones, and its distinctive coat patterns. It is classified under the family Giraffidae, along with its closest extant relative, the okapi. Its scattered range extends from Chad in the north to South Africa in the south, and from Niger in the west to Somalia in the east. Giraffes usually inhabit savannahs and woodlands. Their food source is leaves, fruits and flowers of woody plants, primarily acacia species, which they browse at heights most other herbivores cannot reach. They may be preyed on by lions, leopards, spotted hyenas and African wild dogs. Giraffes live in herds of related females and their offspring, or bachelor herds of unrelated adult males, but are gregarious and may gather in large aggregations. Males establish social hierarchies through "necking", which are combat bouts where the neck is used as a weapon. Dominant males gain mating access to females, which bear the sole responsibility for raising the young.
The giraffe has intrigued various cultures, both ancient and modern, for its peculiar appearance, and has often been featured in paintings, books, and cartoons. It is classified by the International Union for Conservation of Nature as Vulnerable to extinction, and has been extirpated from many parts of its former range. Giraffes are still found in numerous national parks and game reserves but estimations as of 2016 indicate that there are approximately 97,500 members of Giraffa in the wild, with around 1,144 in captivity.
ETYMOLOGY
The name "giraffe" has its earliest known origins in the Arabic word zarāfah (زرافة), perhaps borrowed from the animal's Somali name geri. The Arab name is translated as "fast-walker". There were several Middle English spellings, such as jarraf, ziraph, and gerfauntz. The Italian form giraffa arose in the 1590s. The modern English form developed around 1600 from the French girafe. "Camelopard" is an archaic English name for the giraffe deriving from the Ancient Greek for camel and leopard, referring to its camel-like shape and its leopard-like colouring.
TAXONOMY
Living giraffes were originally classified as one species by Carl Linnaeus in 1758. He gave it the binomial name Cervus camelopardalis. Morten Thrane Brünnich classified the genus Giraffa in 1772. The species name camelopardalis is from Latin.
EVOLUTION
The giraffe is one of only two living genera of the family Giraffidae in the order Artiodactyla, the other being the okapi. The family was once much more extensive, with over 10 fossil genera described. Their closest known relatives are the extinct deer-like climacocerids. They, together with the family Antilocapridae (whose only extant species is the pronghorn), belong to the superfamily Giraffoidea. These animals may have evolved from the extinct family Palaeomerycidae which might also have been the ancestor of deer.
The elongation of the neck appears to have started early in the giraffe lineage. Comparisons between giraffes and their ancient relatives suggest that vertebrae close to the skull lengthened earlier, followed by lengthening of vertebrae further down. One early giraffid ancestor was Canthumeryx which has been dated variously to have lived 25–20 million years ago (mya), 17–15 mya or 18–14.3 mya and whose deposits have been found in Libya. This animal was medium-sized, slender and antelope-like. Giraffokeryx appeared 15 mya in the Indian subcontinent and resembled an okapi or a small giraffe, and had a longer neck and similar ossicones. Giraffokeryx may have shared a clade with more massively built giraffids like Sivatherium and Bramatherium.
Giraffids like Palaeotragus, Shansitherium and Samotherium appeared 14 mya and lived throughout Africa and Eurasia. These animals had bare ossicones and small cranial sinuses and were longer with broader skulls. Paleotragus resembled the okapi and may have been its ancestor. Others find that the okapi lineage diverged earlier, before Giraffokeryx. Samotherium was a particularly important transitional fossil in the giraffe lineage as its cervical vertebrae was intermediate in length and structure between a modern giraffe and an okapi, and was more vertical than the okapi's. Bohlinia, which first appeared in southeastern Europe and lived 9–7 mya was likely a direct ancestor of the giraffe. Bohlinia closely resembled modern giraffes, having a long neck and legs and similar ossicones and dentition.
Bohlinia entered China and northern India in response to climate change. From there, the genus Giraffa evolved and, around 7 mya, entered Africa. Further climate changes caused the extinction of the Asian giraffes, while the African giraffes survived and radiated into several new species. Living giraffes appear to have arisen around 1 mya in eastern Africa during the Pleistocene. Some biologists suggest the modern giraffes descended from G. jumae; others find G. gracilis a more likely candidate. G. jumae was larger and more heavily built while G. gracilis was smaller and more lightly built. The main driver for the evolution of the giraffes is believed to have been the changes from extensive forests to more open habitats, which began 8 mya. During this time, tropical plants disappeared and were replaced by arid C4 plants, and a dry savannah emerged across eastern and northern Africa and western India. Some researchers have hypothesised that this new habitat coupled with a different diet, including acacia species, may have exposed giraffe ancestors to toxins that caused higher mutation rates and a higher rate of evolution. The coat patterns of modern giraffes may also have coincided with these habitat changes. Asian giraffes are hypothesised to have had more okapi-like colourations.
In the early 19th century, Jean-Baptiste Lamarck believed the giraffe's long neck was an "acquired characteristic", developed as generations of ancestral giraffes strove to reach the leaves of tall trees. This theory was eventually rejected, and scientists now believe the giraffe's neck arose through Darwinian natural selection - that ancestral giraffes with long necks thereby had a competitive feeding advantage (competing browsers hypothesis) that better enabled them to survive and reproduce to pass on their genes.
The giraffe genome is around 2.9 billion base pairs in length compared to the 3.3 billion base pairs of the okapi. Of the proteins in giraffe and okapi genes, 19.4% are identical. The two species are equally distantly related to cattle, suggesting the giraffe's unique characteristics are not because of faster evolution. The divergence of giraffe and okapi lineages dates to around 11.5 mya. A small group of regulatory genes in the giraffe appear to be responsible for the animal's stature and associated circulatory adaptations.
SPECIES AND SUBSPECIES
The IUCN currently recognises only one species of giraffe with nine subspecies. In 2001, a two-species taxonomy was proposed. A 2007 study on the genetics of Giraffa, suggested they were six species: the West African, Rothschild's, reticulated, Masai, Angolan, and South African giraffe. The study deduced from genetic differences in nuclear and mitochondrial DNA (mtDNA) that giraffes from these populations are reproductively isolated and rarely interbreed, though no natural obstacles block their mutual access. This includes adjacent populations of Rothschild's, reticulated, and Masai giraffes. The Masai giraffe was also suggested to consist of possibly two species separated by the Rift Valley.
Reticulated and Masai giraffes have the highest mtDNA diversity, which is consistent with giraffes originating in eastern Africa. Populations further north are more closely related to the former, while those to the south are more related to the latter. Giraffes appear to select mates of the same coat type, which are imprinted on them as calves. The implications of these findings for the conservation of giraffes were summarised by David Brown, lead author of the study, who told BBC News: "Lumping all giraffes into one species obscures the reality that some kinds of giraffe are on the brink. Some of these populations number only a few hundred individuals and need immediate protection."
A 2011 study using detailed analyses of the morphology of giraffes, and application of the phylogenetic species concept, described eight species of living giraffes. The eight species are: G. angolensis, G.antiquorum, G. camelopardalis, G. giraffa, G. peralta, G. reticulata, G. thornicrofti, and G. tippelskirchi.
A 2016 study also concluded that living giraffes consist of multiple species. The researchers suggested the existence of four species, which have not exchanged genetic information between each other for 1 million to 2 million years. Those four species are the northern giraffe (G. camelopardalis), southern giraffe (G. giraffa), reticulated giraffe (G. reticulata), and Masai giraffe (G. tippelskirchi). Since then, a response to this publication has been published, highlighting seven problems in data interpretation, and concludes "the conclusions should not be accepted unconditionally".
There are an estimated 90,000 individuals of Giraffa in the wild, with 1,144 currently in captivity.
There are also seven extinct species of giraffe, listed as the following:
†Giraffa gracilis
†Giraffa jumae
†Giraffa priscilla
†Giraffa punjabiensis
†Giraffa pygmaea
†Giraffa sivalensis
†Giraffa stillei
G. attica, also extinct, was formerly considered part of Giraffa but was reclassified as Bohlinia attica in 1929.
APPEARANCE AND ANATOMY
Fully grown giraffes stand 4.3–5.7 m tall, with males taller than females. The tallest recorded male was 5.88 m and the tallest recorded female was 5.17 m tall. The average weight is 1,192 kg for an adult male and 828 kg for an adult female with maximum weights of 1,930 kg and 1,180 kg having been recorded for males and females, respectively. Despite its long neck and legs, the giraffe's body is relatively short. Located at both sides of the head, the giraffe's large, bulging eyes give it good all-round vision from its great height. Giraffes see in colour and their senses of hearing and smell are also sharp. The animal can close its muscular nostrils to protect against sandstorms and ants.
The giraffe's prehensile tongue is about 45 cm long. It is purplish-black in colour, perhaps to protect against sunburn, and is useful for grasping foliage, as well as for grooming and cleaning the animal's nose. The upper lip of the giraffe is also prehensile and useful when foraging and is covered in hair to protect against thorns. The tongue, and inside of the mouth are covered in papillae.
The coat has dark blotches or patches (which can be orange, chestnut, brown, or nearly black in colour separated by light hair (usually white or cream in colour. Male giraffes become darker as they age. The coat pattern has been claimed to serve as camouflage in the light and shade patterns of savannah woodlands. While adult giraffes standing among trees and bushes are hard to see at even a few metres' distance, they actively move into the open to gain the best view of an approaching predator, obviating any benefit that camouflage might bring. Instead, the adults rely on their size and ability to defend themselves. However, camouflage appears to be important for calves, which spend a large part of the day in hiding, away from their mothers; further, over half of all calves die within a year, so predation is certainly important. It appears, therefore, that the spotted coat of the giraffe functions as camouflage for the young, while adults simply inherit this coloration as a by-product. The skin underneath the dark areas may serve as windows for thermoregulation, being sites for complex blood vessel systems and large sweat glands. Each individual giraffe has a unique coat pattern.
The skin of a giraffe is mostly gray. Its thickness allows the animal to run through thorn bush without being punctured. The fur may serve as a chemical defence, as its parasite repellents give the animal a characteristic scent. At least 11 main aromatic chemicals are in the fur, although indole and 3-methylindole are responsible for most of the smell. Because the males have a stronger odour than the females, the odour may also have sexual function. Along the animal's neck is a mane made of short, erect hairs. The one-metre tail ends in a long, dark tuft of hair and is used as a defense against insects.
SKULL AND OSSICONES
Both sexes have prominent horn-like structures called ossicones, which are formed from ossified cartilage, covered in skin and fused to the skull at the parietal bones. Being vascularized, the ossicones may have a role in thermoregulation, and are also used in combat between males. Appearance is a reliable guide to the sex or age of a giraffe: the ossicones of females and young are thin and display tufts of hair on top, whereas those of adult males end in knobs and tend to be bald on top. Also, a median lump, which is more prominent in males, emerges at the front of the skull. Males develop calcium deposits that form bumps on their skulls as they age. A giraffe's skull is lightened by multiple sinuses. However, as males age, their skulls become heavier and more club-like, helping them become more dominant in combat. The upper jaw has a grooved palate and lacks front teeth. The giraffe's molars have a rough surface.
LEGS, LOCOMOTION AND POSTURE
The front and back legs of a giraffe are about the same length. The radius and ulna of the front legs are articulated by the carpus, which, while structurally equivalent to the human wrist, functions as a knee. It appears that a suspensory ligament allows the lanky legs to support the animal's great weight. The foot of the giraffe reaches a diameter of 30 cm, and the hoof is 15 cm high in males and 10 cm in females. The rear of each hoof is low and the fetlock is close to the ground, allowing the foot to provide additional support to the animal's weight. Giraffes lack dewclaws and interdigital glands. The giraffe's pelvis, though relatively short, has an ilium that is outspread at the upper ends.
A giraffe has only two gaits: walking and galloping. Walking is done by moving the legs on one side of the body at the same time, then doing the same on the other side. When galloping, the hind legs move around the front legs before the latter move forward, and the tail will curl up. The animal relies on the forward and backward motions of its head and neck to maintain balance and the counter momentum while galloping. The giraffe can reach a sprint speed of up to 60 km/h, and can sustain 50 km/h for several kilometres.
A giraffe rests by lying with its body on top of its folded legs. To lie down, the animal kneels on its front legs and then lowers the rest of its body. To get back up, it first gets on its knees and spreads its hind legs to raise its hindquarters. It then straightens its front legs. With each step, the animal swings its head. In captivity, the giraffe sleeps intermittently around 4.6 hours per day, mostly at night. It usually sleeps lying down, however, standing sleeps have been recorded, particularly in older individuals. Intermittent short "deep sleep" phases while lying are characterised by the giraffe bending its neck backwards and resting its head on the hip or thigh, a position believed to indicate paradoxical sleep. If the giraffe wants to bend down to drink, it either spreads its front legs or bends its knees. Giraffes would probably not be competent swimmers as their long legs would be highly cumbersome in the water, although they could possibly float. When swimming, the thorax would be weighed down by the front legs, making it difficult for the animal to move its neck and legs in harmony or keep its head above the surface.
NECK
The giraffe has an extremely elongated neck, which can be up to 2–2.4 m in length, accounting for much of the animal's vertical height. The long neck results from a disproportionate lengthening of the cervical vertebrae, not from the addition of more vertebrae. Each cervical vertebra is over 28 cm long. They comprise 52–54 per cent of the length of the giraffe's vertebral column, compared with the 27–33 percent typical of similar large ungulates, including the giraffe’s closest living relative, the okapi. This elongation largely takes place after birth, perhaps because giraffe mothers would have a difficult time giving birth to young with the same neck proportions as adults. The giraffe's head and neck are held up by large muscles and a strengthened nuchal ligament, which are anchored by long dorsal spines on the anterior thoracic vertebrae, giving the animal a hump. The giraffe's neck vertebrae have ball and socket joints. In particular, the atlas–axis joint (C1 and C2) allows the animal to tilt its head vertically and reach more branches with the tongue. The point of articulation between the cervical and thoracic vertebrae of giraffes is shifted to lie between the first and second thoracic vertebrae (T1 and T2), unlike most other ruminants where the articulation is between the seventh cervical vertebra (C7) and T1. This allows C7 to contribute directly to increased neck length and has given rise to the suggestion that T1 is actually C8, and that giraffes have added an extra cervical vertebra. However, this proposition is not generally accepted, as T1 has other morphological features, such as an articulating rib, deemed diagnostic of thoracic vertebrae, and because exceptions to the mammalian limit of seven cervical vertebrae are generally characterised by increased neurological anomalies and maladies.There are several hypotheses regarding the evolutionary origin and maintenance of elongation in giraffe necks. The "competing browsers hypothesis" was originally suggested by Charles Darwin and challenged only recently. It suggests that competitive pressure from smaller browsers, such as kudu, steenbok and impala, encouraged the elongation of the neck, as it enabled giraffes to reach food that competitors could not. This advantage is real, as giraffes can and do feed up to 4.5 m high, while even quite large competitors, such as kudu, can feed up to only about 2 m high. There is also research suggesting that browsing competition is intense at lower levels, and giraffes feed more efficiently (gaining more leaf biomass with each mouthful) high in the canopy. However, scientists disagree about just how much time giraffes spend feeding at levels beyond the reach of other browsers, and a 2010 study found that adult giraffes with longer necks actually suffered higher mortality rates under drought conditions than their shorter-necked counterparts. This study suggests that maintaining a longer neck requires more nutrients, which puts longer-necked giraffes at risk during a food shortage.
Another theory, the sexual selection hypothesis, proposes that the long necks evolved as a secondary sexual characteristic, giving males an advantage in "necking" contests (see below) to establish dominance and obtain access to sexually receptive females. In support of this theory, necks are longer and heavier for males than females of the same age, and the former do not employ other forms of combat. However, one objection is that it fails to explain why female giraffes also have long necks. It has also been proposed that the neck serves to give the animal greater vigilance.
INTERNAL SYSTEMS
In mammals, the left recurrent laryngeal nerve is longer than the right; in the giraffe it is over 30 cm longer. These nerves are longer in the giraffe than in any other living animal; the left nerve is over 2 m long. Each nerve cell in this path begins in the brainstem and passes down the neck along the vagus nerve, then branches off into the recurrent laryngeal nerve which passes back up the neck to the larynx. Thus, these nerve cells have a length of nearly 5 m in the largest giraffes. The structure of a giraffe's brain resembles that of domestic cattle. It is kept cool by evaporative heat loss in the nasal passages. The shape of the skeleton gives the giraffe a small lung volume relative to its mass. Its long neck gives it a large amount of dead space, in spite of its narrow windpipe. These factors increase the resistance to airflow. Nevertheless, the animal can still supply enough oxygen to its tissues and it can increase its respiratory rate and oxygen diffusion when running.
The circulatory system of the giraffe has several adaptations for its great height. Its heart, which can weigh more than 11 kg and measures about 60 cm long, must generate approximately double the blood pressure required for a human to maintain blood flow to the brain. As such, the wall of the heart can be as thick as 7.5 cm. Giraffes have unusually high heart rates for their size, at 150 beats per minute. When the animal lowers its head the blood rushes down fairly unopposed and a rete mirabile in the upper neck, with its large cross sectional area, prevents excess blood flow to the brain. When it raises again, the blood vessels constrict and direct blood into the brain so the animal does not faint. The jugular veins contain several (most commonly seven) valves to prevent blood flowing back into the head from the inferior vena cava and right atrium while the head is lowered. Conversely, the blood vessels in the lower legs are under great pressure because of the weight of fluid pressing down on them. To solve this problem, the skin of the lower legs is thick and tight; preventing too much blood from pouring into them.
Giraffes have oesophageal muscles that are unusually strong to allow regurgitation of food from the stomach up the neck and into the mouth for rumination. They have four chambered stomachs, as in all ruminants, and the first chamber has adapted to their specialised diet. The intestines of an adult giraffe measure more than 70 m in length and have a relatively small ratio of small to large intestine. The liver of the giraffe is small and compact. A gallbladder is generally present during fetal life, but it may disappear before birth.
BEHAVIOUR AND ECOLOGY
HABITAT AND FEEDING
Giraffes usually inhabit savannahs and open woodlands. They prefer Acacieae, Commiphora, Combretum and open Terminalia woodlands over denser environments like Brachystegia woodlands. The Angolan giraffe can be found in desert environments. Giraffes browse on the twigs of trees, preferring trees of the subfamily Acacieae and the genera Commiphora and Terminalia, which are important sources of calcium and protein to sustain the giraffe's growth rate. They also feed on shrubs, grass and fruit. A giraffe eats around 34 kg of foliage daily. When stressed, giraffes may chew the bark off branches. Although herbivorous, the giraffe has been known to visit carcasses and lick dried meat off bones.
During the wet season, food is abundant and giraffes are more spread out, while during the dry season, they gather around the remaining evergreen trees and bushes. Mothers tend to feed in open areas, presumably to make it easier to detect predators, although this may reduce their feeding efficiency. As a ruminant, the giraffe first chews its food, then swallows it for processing and then visibly passes the half-digested cud up the neck and back into the mouth to chew again. It is common for a giraffe to salivate while feeding. The giraffe requires less food than many other herbivores because the foliage it eats has more concentrated nutrients and it has a more efficient digestive system. The animal's faeces come in the form of small pellets. When it has access to water, a giraffe drinks at intervals no longer than three days.
Giraffes have a great effect on the trees that they feed on, delaying the growth of young trees for some years and giving "waistlines" to trees that are too tall. Feeding is at its highest during the first and last hours of daytime. Between these hours, giraffes mostly stand and ruminate. Rumination is the dominant activity during the night, when it is mostly done lying down.
SOCIAL LIFE
Giraffes are usually found in groups. Traditionally, the composition of these groups has been described as open and ever-changing. Giraffes were thought to have few social bonds and for research purposes, a "group" has been defined as "a collection of individuals that are less than a kilometre apart and moving in the same general direction." More recent studies have found that giraffes do have long-term social associations and may form groups or pairs based on kinship, sex or other factors. These groups may regularly associate with one another in larger communities or sub-communities within a fission–fusion society. The number of giraffes in a group can range up to 44 individuals.
Giraffe groups tend to be sex-segregated although mixed-sex groups made of adult females and young males are known to occur. Particularity stable giraffe groups are those made of mothers and their young, which can last weeks or months. Social cohesion in these groups is maintained by the bonds formed between calves. Female association appears to be based on space-use and individuals may be matrilineally related. In general, females are more selective than males in who they associate with in regards to individuals of the same sex. Young males also form groups and will engage in playfights. However, as they get older males become more solitary but may also associate in pairs or with female groups. Giraffes are not territorial, but they have home ranges. Male giraffes occasionally wander far from areas that they normally frequent.
Although generally quiet and non-vocal, giraffes have been heard to communicate using various sounds. During courtship, males emit loud coughs. Females call their young by bellowing. Calves will emit snorts, bleats, mooing and mewing sounds. Giraffes also snore, hiss, moan, grunt and make flute-like sounds, and possibly communicate over long distances using infrasound - though this is disputed. During nighttime, giraffes appear to hum to each other above the infrasound range for purposes which are unclear.
REPRODUCTION AND PARENTAL CARE
Reproduction in giraffes is broadly polygamous: a few older males mate with the fertile females. Male giraffes assess female fertility by tasting the female's urine to detect oestrus, in a multi-step process known as the flehmen response. Males prefer young adult females over juveniles and older adults. Once an oestrous female is detected, the male will attempt to court her. When courting, dominant males will keep subordinate ones at bay. A courting male may lick a female's tail, rest his head and neck on her body or nudge her with his horns. During copulation, the male stands on his hind legs with his head held up and his front legs resting on the female's sides. Giraffe gestation lasts 400–460 days, after which a single calf is normally born, although twins occur on rare occasions. The mother gives birth standing up. The calf emerges head and front legs first, having broken through the fetal membranes, and falls to the ground, severing the umbilical cord. The mother then grooms the newborn and helps it stand up. A newborn giraffe is 1.7–2 m tall. Within a few hours of birth, the calf can run around and is almost indistinguishable from a one-week-old. However, for the first 1–3 weeks, it spends most of its time hiding; its coat pattern providing camouflage. The ossicones, which have lain flat while it was in the womb, become erect within a few days.
Mothers with calves will gather in nursery herds, moving or browsing together. Mothers in such a group may sometimes leave their calves with one female while they forage and drink elsewhere. This is known as a "calving pool". Adult males play almost no role in raising the young, although they appear to have friendly interactions. Calves are at risk of predation, and a mother giraffe will stand over her calf and kick at an approaching predator. Females watching calving pools will only alert their own young if they detect a disturbance, although the others will take notice and follow.
The length time in which offspring stay with their mother varies, though it can last until the female's next calving. Likewise, calves may suckle for only a month or as long as a year.] Females become sexually mature when they are four years old, while males become mature at four or five years. Spermatogenesis in male giraffes begins at three to four years of age. Males must wait until they are at least seven years old to gain the opportunity to mate.
NECKING
Male giraffes use their necks as weapons in combat, a behaviour known as "necking". Necking is used to establish dominance and males that win necking bouts have greater reproductive success. This behaviour occurs at low or high intensity. In low intensity necking, the combatants rub and lean against each other. The male that can hold itself more erect wins the bout. In high intensity necking, the combatants will spread their front legs and swing their necks at each other, attempting to land blows with their ossicones. The contestants will try to dodge each other's blows and then get ready to counter. The power of a blow depends on the weight of the skull and the arc of the swing. A necking duel can last more than half an hour, depending on how well matched the combatants are. Although most fights do not lead to serious injury, there have been records of broken jaws, broken necks, and even deaths.
After a duel, it is common for two male giraffes to caress and court each other. Such interactions between males have been found to be more frequent than heterosexual coupling. In one study, up to 94 percent of observed mounting incidents took place between males. The proportion of same-sex activities varied from 30–75 percent. Only one percent of same-sex mounting incidents occurred between females.
MORTALITY AND HEALTH
Giraffes have high adult survival probability, and an unusually long lifespan compared to other ruminants, up to 25 years in the wild. Because of their size, eyesight and powerful kicks, adult giraffes are usually not subject to predation, aside from lions. Giraffes are the most common prey for the big cats in Kruger National Park. Nile crocodiles can also be a threat to giraffes when they bend down to drink. Calves are much more vulnerable than adults, and are additionally preyed on by leopards, spotted hyenas and wild dogs. A quarter to a half of giraffe calves reach adulthood. Calf survival varies according to the season of birth, with calves born during the dry season having higher survival rates. The local, seasonal presence of large herds of migratory wildebeests and zebras reduces predation pressure on giraffe calves and increases their survival probability.
Some parasites feed on giraffes. They are often hosts for ticks, especially in the area around the genitals, which has thinner skin than other areas. Tick species that commonly feed on giraffes are those of genera Hyalomma, Amblyomma and Rhipicephalus. Giraffes may rely on red-billed and yellow-billed oxpeckers to clean them of ticks and alert them to danger. Giraffes host numerous species of internal parasite and are susceptible to various diseases. They were victims of the (now eradicated) viral illness rinderpest. Giraffes can also suffer from a skin disorder, which comes in the form of wrinkles, lesions or raw fissures. It appears to be caused by a nematode and may be further effected by fungal infections. As much as 79% of giraffes show signs of the disease in Ruaha National Park.
RELATIONSHIP WITH HUMANS
Humans have interacted with giraffes for millennia. The San people of southern Africa have medicine dances named after some animals; the giraffe dance is performed to treat head ailments. How the giraffe got its height has been the subject of various African folktales, including one from eastern Africa which explains that the giraffe grew tall from eating too many magic herbs. Giraffes were depicted in art throughout the African continent, including that of the Kiffians, Egyptians and Meroë Nubians. The Kiffians were responsible for a life-size rock engraving of two giraffes that has been called the "world's largest rock art petroglyph". The Egyptians gave the giraffe its own hieroglyph, named 'sr' in Old Egyptian and 'mmy' in later periods. They also kept giraffes as pets and shipped them around the Mediterranean.
The giraffe was also known to the Greeks and Romans, who believed that it was an unnatural hybrid of a camel and a leopard and called it camelopardalis. The giraffe was among the many animals collected and displayed by the Romans. The first one in Rome was brought in by Julius Caesar in 46 BC and exhibited to the public. With the fall of the Western Roman Empire, the housing of giraffes in Europe declined. During the Middle Ages, giraffes were known to Europeans through contact with the Arabs, who revered the giraffe for its peculiar appearance.
Individual captive giraffes were given celebrity status throughout history. In 1414, a giraffe was shipped from Malindi to Bengal. It was then taken to China by explorer Zheng He and placed in a Ming dynasty zoo. The animal was a source of fascination for the Chinese people, who associated it with the mythical Qilin. The Medici giraffe was a giraffe presented to Lorenzo de' Medici in 1486. It caused a great stir on its arrival in Florence. Zarafa, another famous giraffe, was brought from Egypt to Paris in the early 19th century as a gift from Muhammad Ali of Egypt to Charles X of France. A sensation, the giraffe was the subject of numerous memorabilia or "giraffanalia".
Giraffes continue to have a presence in modern culture. Salvador Dalí depicted them with burning manes in some of his surrealist paintings. Dali considered the giraffe to be a symbol of masculinity, and a flaming giraffe was meant to be a "masculine cosmic apocalyptic monster". Several children's books feature the giraffe, including David A. Ufer's The Giraffe Who Was Afraid of Heights, Giles Andreae's Giraffes Can't Dance and Roald Dahl's The Giraffe and the Pelly and Me. Giraffes have appeared in animated films, as minor characters in Disney's The Lion King and Dumbo, and in more prominent roles in The Wild and in the Madagascar films. Sophie the Giraffe has been a popular teether since 1961. Another famous fictional giraffe is the Toys "R" Us mascot Geoffrey the Giraffe.
The giraffe has also been used for some scientific experiments and discoveries. Scientists have looked at the properties of giraffe skin when developing suits for astronauts and fighter pilots because the people in these professions are in danger of passing out if blood rushes to their legs. Computer scientists have modeled the coat patterns of several subspecies using reaction–diffusion mechanisms.
The constellation of Camelopardalis, introduced in the seventeenth century, depicts a giraffe. The Tswana people of Botswana traditionally see the constellation Crux as two giraffes – Acrux and Mimosa forming a male, and Gacrux and Delta Crucis forming the female.
EXPLOITATION AND CONSERVATION STATUS
Giraffes were probably common targets for hunters throughout Africa. Different parts of their bodies were used for different purposes. Their meat was used for food. The tail hairs served as flyswatters, bracelets, necklaces and thread. Shields, sandals and drums were made using the skin, and the strings of musical instruments were from the tendons. The smoke from burning giraffe skins was used by the medicine men of Buganda to treat nose bleeds. The Humr people of Sudan consume the drink Umm Nyolokh; which is created from the liver and marrow of giraffes. Umm Nyolokh often contains DMT and other psychoactive substances from plants the giraffes eat such as Acacia; and is known to cause hallucinations of giraffes, believed to be the giraffes' ghosts by the Humr. In the 19th century, European explorers began to hunt them for sport. Habitat destruction has hurt the giraffe, too: in the Sahel, the need for firewood and grazing room for livestock has led to deforestation. Normally, giraffes can coexist with livestock, since they do not directly compete with them. In 2017, severe droughts in northern Kenya have led to increased tensions over land and the killing of wildlife by herders, with giraffe populations being particularly hit.
Aerial survey is the most common method of monitoring giraffe population trends in the vast roadless tracts of African landscapes, but aerial methods are known to undercount giraffes. Ground-based survey methods are more accurate and should be used in conjunction with aerial surveys to make accurate estimates of population sizes and trends. In 2010, giraffes were assessed as Least Concern from a conservation perspective by the International Union for Conservation of Nature (IUCN), but the 2016 assessment categorized giraffes as Vulnerable. Giraffes have been extirpated from much of their historic range including Eritrea, Guinea, Mauritania and Senegal. They may also have disappeared from Angola, Mali, and Nigeria, but have been introduced to Rwanda and Swaziland. Two subspecies, the West African giraffe and the Rothschild giraffe, have been classified as endangered, as wild populations of each of them number in the hundreds.
In 1997, Jonathan Kingdon suggested that the Nubian giraffe was the most threatened of all giraffes; as of 2010, it may number fewer than 250, although this estimate is uncertain. Private game reserves have contributed to the preservation of giraffe populations in southern Africa. Giraffe Manor is a popular hotel in Nairobi that also serves as sanctuary for Rothschild's giraffes. The giraffe is a protected species in most of its range. It is the national animal of Tanzania, and is protected by law. Unauthorised killing can result in imprisonment. The UN backed Convention of Migratory Species selected giraffes for protection in 2017. In 1999, it was estimated that over 140,000 giraffes existed in the wild, estimations as of 2016 indicate that there are approximately 97,500 members of Giraffa in the wild, down from 155,000 in 1985, with around 1,144 in captivity.
WIKIPEDIA
The church of San Siro is a baroque religious building built on the site of a pre-existing oratory in Novaggio .
The church was mentioned in 1294 , in the form of an oratory , and again in 1352 . Its current appearance, however, is clearly due, given its baroque forms, to the reconstruction carried out in the 17th century : the new building was erected on the remains of the previous one between 1600 and 1625 and in 1632 it became the seat of the parish. The bell tower dates back to 1864 .
Novaggio is a Swiss municipality of 843 inhabitants in the Canton of Ticino , in the district of Lugano .
Novaggio is located in Malcantone , on the southern slope of the Perose (Bavoggio).
On 17 August 2004 the merger project for the new municipality of Medio Malcantone was rejected in order to unite Astano , Bedigliora , Curio , Miglieglia and Novaggio. The aggregation was abandoned due to the negative result of the vote of the population of the municipalities concerned on 8 February 2004.
Monuments and places of interest
The bell tower of the parish church of San Siro
Parish church of San Siro , built in 1625;
Oratory of Santa Maria del Carmelo (or Carate), built in the 16th century.
Each family originating from the area is part of the so-called patrician municipality and is responsible for the maintenance of every property within the boundaries of the municipality. The patrician office re-elected on 26 April 2009 is presided over by Claudio Delmenico
Switzerland, officially the Swiss Confederation, is a landlocked country located in west-central Europe It is bordered by Italy to the south, France to the west, Germany to the north and Austria and Liechtenstein to the east. Switzerland is geographically divided among the Swiss Plateau, the Alps and the Jura; the Alps occupy the greater part of the territory, whereas most of the country's population of 9 million are concentrated on the plateau, which hosts its largest cities and economic centres, including Zürich, Geneva and Basel.
Switzerland originates from the Old Swiss Confederacy established in the Late Middle Ages, following a series of military successes against Austria and Burgundy; the Federal Charter of 1291 is considered the country's founding document. Swiss independence from the Holy Roman Empire was formally recognised in the Peace of Westphalia in 1648. Switzerland has maintained a policy of armed neutrality since the 16th century and has not fought an international war since 1815. It joined the United Nations only in 2002 but pursues an active foreign policy that includes frequent involvement in peace building.
Switzerland is the birthplace of the Red Cross and hosts the headquarters or offices of most major international institutions, including the WTO, the WHO, the ILO, FIFA, and the United Nations. It is a founding member of the European Free Trade Association (EFTA), but not part of the European Union (EU), the European Economic Area, or the eurozone; however, it participates in the European single market and the Schengen Area. Switzerland is a federal republic composed of 26 cantons, with federal authorities based in Bern.
Switzerland is one of the world's most developed countries, with the highest nominal wealth per adult and the eighth-highest gross domestic product (GDP) per capita. Switzerland ranks first in the Human Development Index since 2021 and performs highly also on several international metrics, including economic competitiveness and democratic governance. Cities such as Zürich, Geneva and Basel rank among the highest in terms of quality of life, albeit with some of the highest costs of living.
It has four main linguistic and cultural regions: German, French, Italian and Romansh. Although most Swiss are German-speaking, national identity is fairly cohesive, being rooted in a common historical background, shared values such as federalism and direct democracy, and Alpine symbolism. Swiss identity transcends language, ethnicity, and religion, leading to Switzerland being described as a Willensnation ("nation of volition") rather than a nation state.
Since 1848 the Swiss Confederation has been a federal republic of relatively autonomous cantons, some of which have a history of federation that goes back more than 700 years, putting them among the world's oldest surviving republics.
The early history of the region is tied to that of Alpine culture. Switzerland was inhabited by the Helvetii, and it came under Roman rule in the 1st century BC. The Gallo-Roman culture was amalgamated with Germanic influence during Late Antiquity, with the eastern part of Switzerland becoming Alemannic territory. The area of Switzerland was incorporated into the Frankish Empire in the 6th century. In the High Middle Ages, the eastern part became part of the Duchy of Swabia within the Holy Roman Empire, while the western part was part of Burgundy.
The Old Swiss Confederacy in the Late Middle Ages (the Eight Cantons) established its independence from the House of Habsburg and the Duchy of Burgundy, and in the Italian Wars gained territory south of the Alps from the Duchy of Milan. The Swiss Reformation divided the Confederacy and resulted in a drawn-out history of internal strife between the Thirteen Cantons in the Early Modern period. In the wake of the French Revolution, Switzerland fell to a French invasion in 1798 and was reformed into the Helvetic Republic, a French client state. Napoleon's Act of Mediation in 1803 restored the status of Switzerland as a Confederation, and after the end of the Napoleonic period, the Swiss Confederation underwent a period of turmoil culminating in a brief civil war in 1847 and the creation of a federal constitution in 1848.
The history of Switzerland since 1848 has been largely one of success and prosperity. Industrialisation transformed the traditional agricultural economy, and Swiss neutrality during the World Wars and the success of the banking industry furthered the ascent of Switzerland to its status as one of the world's most stable economies.
Switzerland signed a free-trade agreement with the European Economic Community in 1972 and has participated in the process of European integration by way of bilateral treaties, but it has notably resisted full accession to the European Union (EU) even though its territory almost completely (except for the microstate Liechtenstein) has been surrounded by EU member states since 1995. In 2002, Switzerland joined the United Nations.
Archeological evidence suggests that hunter-gatherers were already settled in the lowlands north of the Alps in the Middle Paleolithic period 150,000 years ago. Agriculture in Switzerland began around 5500 BC. By the Neolithic period, the area was relatively densely populated. Remains of Bronze Age pile dwellings from as early as 3800 BC have been found in the shallow areas of many lakes. Around 1500 BC, Celtic tribes settled in the area. The Raetians lived in the eastern regions, while the west was occupied by the Helvetii.
A female who died in about 200 B.C. was found buried in a carved tree trunk during a construction project at the Kern school complex in March 2017 in Aussersihl. Archaeologists revealed that she was approximately 40 years old when she died and likely carried out little physical labor when she was alive. A sheepskin coat, a belt chain, a fancy wool dress, a scarf and a pendant made of glass, and amber beads were also discovered with the woman.
In 58 BC, the Helvetii tried to evade migratory pressure from Germanic tribes by moving into Gaul, but were defeated by Julius Caesar's armies and then sent back. The alpine region became integrated into the Roman Empire and was extensively romanized in the course of the following centuries. The center of Roman administration was at Aventicum (Avenches). In 259, Alamanni tribes overran the Limes, putting the settlements on Swiss territory on the frontier of the Roman Empire.
With the fall of the Western Roman Empire, Germanic tribes entered the area. Burgundians settled in the west; while in the north, Alamanni settlers slowly forced the earlier Celto-Roman population to retreat into the mountains. Burgundy became a part of the kingdom of the Franks in 534; two years later, the dukedom of the Alamans followed suit. In the Alaman-controlled region, only isolated Christian communities continued to exist and Irish monks re-introduced the Christian faith in the early 7th century.
Under the Carolingian kings, the feudal system proliferated, and monasteries and bishoprics were important bases for maintaining the rule. The Treaty of Verdun of 843 assigned Upper Burgundy (the western part of what is today Switzerland) to Lotharingia, and Alemannia (the eastern part) to the eastern kingdom of Louis the German which would become part of the Holy Roman Empire.
In the 10th century, as the rule of the Carolingians waned, Magyars destroyed Basel in 917 and St. Gallen in 926. Only after the victory of King Otto I over the Magyars in 955 in the Battle of Lechfeld, were the Swiss territories reintegrated into the empire.
In the 12th century, the dukes of Zähringen were given authority over part of the Burgundy territories which covered the western part of modern Switzerland. They founded many cities, including Fribourg in 1157, and Bern in 1191. The Zähringer dynasty ended with the death of Berchtold V in 1218, and their cities subsequently became reichsfrei (essentially a city-state within the Holy Roman Empire), while the dukes of Kyburg competed with the house of Habsburg over control of the rural regions of the former Zähringer territory.
Under the Hohenstaufen rule, the alpine passes in Raetia and the St Gotthard Pass gained importance. The latter especially became an important direct route through the mountains. Uri (in 1231) and Schwyz (in 1240) were accorded the Reichsfreiheit to grant the empire direct control over the mountain pass. Most of the territory of Unterwalden at this time belonged to monasteries that had previously become reichsfrei.
The extinction of the Kyburg dynasty paved the way for the Habsburg dynasty to bring much of the territory south of the Rhine under their control, aiding their rise to power. Rudolph of Habsburg, who became King of Germany in 1273, effectively revoked the status of Reichsfreiheit granted to the "Forest Cantons" of Uri, Schwyz, and Unterwalden. The Forest Cantons thus lost their independent status and were governed by reeves.
By 1353, the three original cantons had been joined by the cantons of Glarus and Zug and the city-states of Lucerne, Zürich, and Bern, forming the "Old Federation" of eight states that persisted during much of the 15th century. The Holy Roman Empire built roads and bridges to connect the industrial region of north Italy with the Rhine (linked with the other industrial area of Middle Age Europe, the Burgundian Netherlands), making the peasants and bankers on the road rich, allowing them to buy specialized Italian armor and to stop paying the road collecting taxes to the Empire who built the road. At the Battle of Sempach in 1386, the Swiss defeated the Habsburgs, gaining increased autonomy within the Holy Roman Empire.
Zürich was expelled from the Confederation from 1440 to 1450 due to a conflict over the territory of Toggenburg (the Old Zürich War). The Confederation's power and wealth increased significantly, with victories over Charles the Bold of Burgundy during the Burgundian Wars (1474–1477), greatly due to the success of the Swiss mercenaries, a powerful infantry force constituted by professional soldiers originally from the cantons of the Old Swiss Confederacy. They were notable for their service in foreign armies, especially among the military forces of the Kings of France, throughout the Early Modern period of European history, from the Late Middle Ages to the Renaissance. Their service as mercenaries was at its peak during the Renaissance when their proven battlefield capabilities made them sought-after mercenary troops. The traditional listing order of the cantons of Switzerland reflects this state, listing the eight "Old Cantons" first, with the city-states preceding the founding cantons, followed by cantons that joined the Confederation after 1481, in historical order.
The Swiss defeated the Swabian League in 1499 and gained greater collective autonomy within the Holy Roman Empire, including exemption from the Imperial reforms of 1495 and immunity from most Imperial courts. In 1506, Pope Julius II engaged the Swiss Guard, which continues to serve the papacy to the present day. The expansion of the Confederation and the reputation of invincibility acquired during the earlier wars suffered its first setback in 1515 with the Swiss defeat in the Battle of Marignano and Battle of Bicocca.
The Reformation in Switzerland began in 1523, led by Huldrych Zwingli, priest of the Great Minster church in Zürich since 1518. Zürich adopted the Protestant religion, joined by Berne, Basel, and Schaffhausen, while Lucerne, Uri, Schwyz, Nidwalden, Zug, Fribourg, and Solothurn remained Catholic. Glarus and Appenzell were split. This led to multiple inter-cantonal religious wars (Kappeler Kriege) in 1529 and 1531, as each canton usually made the opposing religion illegal, and to the formation of two diets, the Protestant one meeting in Aarau and the Catholic one in Lucerne (as well as the formal full diet still meeting usually in Baden), despite this the Confederation survived.
During the Thirty Years' War, Switzerland was a relative "oasis of peace and prosperity" (Grimmelshausen) in war-torn Europe, mostly because all major powers in Europe depended on Swiss mercenaries, and would not let Switzerland fall into the hands of one of their rivals. Politically, they all tried to take influence, by way of mercenary commanders such as Jörg Jenatsch or Johann Rudolf Wettstein. The Drei Bünde of Grisons, at that point not yet a member of the Confederacy, were involved in the war from 1620, which led to their loss of the Valtellina in 1623.
At the Treaty of Westphalia in 1648, Switzerland attained legal independence from the Holy Roman Empire. The Valtellina became a dependency of the Drei Bünde again after the Treaty and remained so until the founding of the Cisalpine Republic by Napoleon Bonaparte in 1797.
In 1653, peasants of territories subject to Lucerne, Bern, Solothurn, and Basel revolted because of currency devaluation. Although the authorities prevailed in this Swiss peasant war, they did pass some tax reforms and the incident in the long term prevented an absolutist development as would occur at some other courts of Europe. The confessional tensions remained, however, and erupted again in the First War of Villmergen, in 1656, and the Toggenburg War (or Second War of Villmergen), in 1712.
During the French Revolutionary Wars, the French army invaded Switzerland and turned it into an ally known as the "Helvetic Republic" (1798–1803). It had a central government with little role for cantons. The interference with localism and traditional liberties was deeply resented, although some modernizing reforms took place.
Resistance was strongest in the more traditional Catholic bastions, with armed uprisings breaking out in spring 1798 in the central part of Switzerland. The French Army suppressed the uprisings but support for revolutionary ideas steadily declined. The reform element was weak, and most Swiss resented their loss of local democracy, centralization, new taxes, warfare, and hostility to religion.
Major steps taken to emancipate the Jews included the repeal of special taxes and oaths in 1798. However, many such reforms were turned back in 1815, and not until 1879 were the Jews granted equal rights with the Christians.
In 1803, Napoleon's Act of Mediation partially restored the sovereignty of the cantons, and the former tributary and allied territories of Aargau, Thurgau, Grisons, St. Gallen, Vaud, and Ticino became cantons with equal rights. Napoleon and his enemies fought numerous campaigns in Switzerland that ruined many localities.
The Congress of Vienna of 1814–15 fully re-established Swiss independence and the European powers agreed to recognize permanent Swiss neutrality. At this time, Valais, Neuchâtel, and Geneva also joined Switzerland as new cantons, thereby extending Swiss territory to its current boundaries.
The long-term impact of the French Revolution has been assessed (by William Martin):
It proclaimed the equality of citizens before the law, equality of languages, and freedom of thought and faith; it created Swiss citizenship, the basis of our modern nationality, and the separation of powers, of which the old regime had no conception; it suppressed internal tariffs and other economic restraints; it unified weights and measures, reformed civil and penal law, authorized mixed marriages (between Catholics and Protestants), suppressed torture and improved justice; it developed education and public works.
On 6 April 1814, the so-called "Long Diet" (delegates from all the nineteen cantons) met at Zürich to replace the constitution.
Cantonal constitutions were worked out independently from 1814, in general restoring the late feudal conditions of the 17th and 18th centuries. The Tagsatzung was reorganized by the Federal Treaty (Bundesvertrag) of 7 August 1815.
The liberal Free Democratic Party of Switzerland was strong in the largely Protestant cantons and obtained the majority in the Federal Diet in the early 1840s. It proposed a new Constitution for the Swiss Confederation which would draw the several cantons into a closer relationship. In addition to the centralization of the Swiss government, the new Constitution also included protections for trade and other progressive reform measures. The Federal Diet, with the approval of a majority of cantons, had taken measures against the Catholic Church such as the closure of monasteries and convents in Aargau in 1841, and the seizure of their properties. Catholic Lucerne, in retaliation,1844 recalled the Jesuits to head its education. That succeeded and seven Catholic cantons formed the "Sonderbund." This caused a liberal-radical move in the Protestant cantons to take control of the national Diet in 1847. The Diet ordered the Sonderbund dissolved, igniting a small-scale civil war against rural cantons that were strongholds of pro-Catholic ultramontanism.
The Radical-liberal-Protestant element charged that the Sonderbund violated the Federal Treaty of 1815, § 6 of which expressly forbade such separate alliances. Forming a majority in the Tagsatzung they decided to dissolve the Sonderbund on October 21, 1847. The odds were against the Catholics, who were heavily outnumbered in population; they were outnumbered in soldiers by 79,000 to 99,000 and lacked enough well-trained soldiers, officers, and generals. When the Sonderbund refused to disband, the national army attacked in a brief civil war between the Catholic and the Protestant cantons, known as the Sonderbundskrieg ("Sonderbund War".) The national army was composed of soldiers from all the other cantons except Neuchâtel and Appenzell Innerrhoden (which remained neutral). The Sonderbund was easily defeated in less than a month; there were about 130 killed. Apart from small riots, this was the last armed conflict on Swiss territory. Many Sonderbund leaders fled to Italy, but the victors were generous. They invited the defeated cantons to join them in a program of federal reform, and a new constitution was drafted along American lines. National issues were to be under the control of the national parliament, and the Jesuits were expelled. The Swiss voted heavily in favor of the new constitution by 2 million against 300,000. Switzerland became calm. However, conservatives around Europe became frightened and prepared their forces to meet possible challenges, which indeed soon exploded the Revolutions of 1848. In those violent revolutions, outside Switzerland, the conservatives were always successful.
As a consequence of the civil war, Switzerland adopted a federal constitution in 1848, amending it extensively in 1874 and establishing federal responsibility for defense, trade, and legal matters, leaving all other matters to the cantonal governments. From then, and over much of the 20th century, continuous political, economic, and social improvement has characterized Swiss history.
While Switzerland was primarily rural, the cities experienced an industrial revolution in the late 19th century, focused especially on textiles. In Basel, for example, textiles, including silk, were the leading industry. In 1888 women made up 44% of the wage earners. Nearly half the women worked in the textile mills, with household servants as the second largest job category. The share of women in the workforce was higher between 1890 and 1910 than it was in the late 1960s and 1970s.
Swiss Universities in the late 19th century are notable for the number of female students receiving medical education.
The major powers respected Switzerland's neutrality during World War I. In the Grimm–Hoffmann Affair, the Allies denounced a proposal by one politician to negotiate peace on the Eastern Front; they wanted the war there to continue to tie Germany down.
While the industrial sector began to grow in the mid-19th century, Switzerland's emergence as one of the most prosperous nations in Europe—the "Swiss miracle"—was a development of the short 20th century, among other things tied to the role of Switzerland during the World Wars.
Germany considered invading Switzerland during World War II but never attacked. Under General Henri Guisan, the Swiss army prepared for the mass mobilization of militia forces against invasion and prepared strong, well-stockpiled positions high in the Alps known as the Réduit. Switzerland remained independent and neutral through a combination of military deterrence, economic concessions to Germany, and good fortune as larger events during the war delayed an invasion.
Attempts by Switzerland's small Nazi party to cause an Anschluss with Germany failed miserably, largely due to Switzerland's multicultural heritage, a strong sense of national identity, and long tradition of direct democracy and civil liberties. The Swiss press vigorously criticized the Third Reich, often infuriating German leaders. Switzerland was an important base for espionage by both sides in the conflict and often mediated communications between the Axis and Allied powers.
Switzerland's trade was blockaded by both the Allies and the Axis. Both sides openly exerted pressure on Switzerland not to trade with the other. Economic cooperation and extension of credit to the Third Reich varied according to the perceived likelihood of invasion, and the availability of other trading partners. Concessions reached their zenith after a crucial rail link through Vichy France was severed in 1942, leaving Switzerland surrounded by the Axis. Switzerland relied on trade for half of its food and essentially all of its fuel, but controlled vital trans-alpine rail tunnels between Germany and Italy.
Switzerland's most important exports during the war were precision machine tools, watches, jewel bearings (used in bombsights), electricity, and dairy products. During World War Two, the Swiss franc was the only remaining major freely convertible currency in the world, and both the Allies and the Germans sold large amounts of gold to the Swiss National Bank. Between 1940 and 1945, the German Reichsbank sold 1.3 billion francs worth of gold to Swiss Banks in exchange for Swiss francs and other foreign currency.
Hundreds of millions of francs worth of this gold was monetary gold plundered from the central banks of occupied countries. 581,000 francs of "Melmer" gold taken from Holocaust victims in eastern Europe was sold to Swiss banks. In total, trade between Germany and Switzerland contributed about 0.5% to the German war effort but did not significantly lengthen the war.
Over the course of the war, Switzerland interned 300,000 refugees. 104,000 of these were foreign troops interned according to the Rights and Duties of Neutral Powers outlined in the Hague Conventions. The rest were foreign civilians and were either interned or granted tolerance or residence permits by the cantonal authorities. Refugees were not allowed to hold jobs. 60,000 of the refugees were civilians escaping persecution by the Nazis. Of these, 26,000 to 27,000 were Jews. Between 10,000 and 25,000 civilian refugees were refused entry. At the beginning of the war, Switzerland had a Jewish population of between 18,000 and 28,000 and a total population of about 4 million.
Within Switzerland at the time of the conflict, there was moderate polarization. Some were pacifists. Some took sides according to international capitalism or international communism. Others leaned more towards their language group, with some in French-speaking areas more pro-Allied, and some in Swiss-German areas more pro-Axis. The government attempted to thwart the activities of any individual, party, or faction in Switzerland that acted with extremism or attempted to break the unity of the nation. The Swiss-German speaking areas moved linguistically further away from the standard (high) German spoken in Germany, with more emphasis on local Swiss dialects.
In the 1960s, significant controversy arose among historians regarding the nation's relations with Nazi Germany.
By the 1990s the controversies included a class-action lawsuit brought in New York over Jewish assets in Holocaust-era bank accounts. The government commissioned an authoritative study of Switzerland's interaction with the Nazi regime. The final report by this independent panel of international scholars, known as the Bergier Commission, was issued in 2002.
During the Cold War, Swiss authorities considered the construction of a Swiss nuclear bomb. Leading nuclear physicists at the Federal Institute of Technology Zurich such as Paul Scherrer made this a realistic possibility. However, financial problems with the defense budget prevented substantial funds from being allocated, and the Nuclear Non-Proliferation Treaty of 1968 was seen as a valid alternative. All remaining plans for building nuclear weapons were dropped by 1988.
From 1959, the Federal Council, elected by the parliament, is composed of members of the four major parties, the Protestant Free Democrats, the Catholic Christian Democrats, the left-wing Social Democrats, and the right-wing People's Party, essentially creating a system without a sizeable parliamentary opposition (see concordance system), reflecting the powerful position of an opposition in a direct democracy.
In 1963, Switzerland joined the Council of Europe. In 1979, parts of the canton of Bern attained independence, forming the new canton of Jura.
Switzerland's role in many United Nations and international organizations helped to mitigate the country's concern for neutrality. In 2002, Switzerland voters gave 55% of their vote in favour of the UN and joined the United Nations. This followed decades of debate and its previous rejection of membership in 1986 by a 3-1 popular vote.
Swiss women gained the right to vote in national-level elections in 1971, and an equal rights amendment was ratified in 1981, however it was not until 1990 that the courts established full nationwide voting rights for women in all elections.
Switzerland is not a member state of the EU but has been (together with Liechtenstein) surrounded by EU territory since the joining of Austria in 1995. In 2005, Switzerland agreed to join the Schengen treaty and Dublin Convention by popular vote. In February 2014, Swiss voters approved a referendum to reinstitute quotas on immigration to Switzerland, setting off a period of finding an implementation that would not violate the EU's freedom of movement accords that Switzerland adopted.
Following the 2022 Russian invasion of Ukraine, Switzerland decided to adopt all EU sanctions against Russia. According to the Swiss President Ignazio Cassis, the measures were "unprecedented but consistent with Swiss neutrality". The administration also confirmed that Switzerland would continue to offer its services to find a peaceful solution to the conflict. Switzerland only participates in humanitarian missions and provides relief supplies to the Ukrainian population and neighbouring countries.
CardioLog Analytics Key Benefits:
* A full web analytics package accommodated with a unique JavaScript tracking mechanism
* A single reporting interface for multiple and time-zone distributed farms, site collections and external applications with robust scalability supporting large traffic volumes
* Advanced visitor segmentation, including integration with Active Directory, SharePoint user groups, profiles, action types and others
* An open API-based platform for report customization, and tracking of different applications
* Optional audit trail for information leak, user tracking and monitoring of portal activity
For further information, please contact us at info@intlock.com or visit us at www.intlock.com
These images, which include an encounter with a huge whaleshark were taken far offshore off Costa Rica close to an illegal fishing device (FAD). This Fish Aggregation Device was a raftlike structure manufactured to attract as much sealife as possible, but mainly spawning tuna.
Purse sein fisheries scoop up all life that has accumulated around the raft with their massive nets. Any bycatch from small fish to this huge whaleshark, dolphins and even seaturtles are killed in the process. That is why these FAD's are illegal.
They are however used widely in the pacific to feed our tuna riddled dishes..
Aggregation of Andrena agilissima nests with several females sharing same nest entrance.
A small east-facing slope in a shady spot.
Thanks to Michel to show me the place .
Found associating with a large aggregation of Bufflehead, Common Goldeneye, Lesser Scaup, and an assortment of Gulls.
It was slightly larger than Buffleheads, which it most closely associated with.
Hilton Ruiz - Live At Birdland (CD)
SEE/VEAN VIDEO youtu.be/WrX-6MDGx6k
Product Details
Released Mar 2007
ArtistHilton Ruiz
FormatAudio CD
Genre, Jazz
Label, Candid
March 20, 2007
RecordsTracks
,Something Grand
,,New Arrival
,Blues For Two Tenors
,Mr. Kenyatta
,Liza
,A Night In Tunisia
,I'll Call You Later
,On Green Dolphin Street
,Footprints
Description
Hilton Ruiz, whose life ended in tragic circumstances in New Orleans in 2006 was a hugely talented and popular artist. From his solo work to the now legendary duets with the late Major Holley, Rahsaan Roland Kirk, Tito Puente, Symphony orchestras, and the various aggregations of his own, Hilton was a master of many styles. When it came to caressing the ivories, Ruiz had the class of Erroll Garner and Noro Morales with the sophistication of Duke Ellington and Ernesto Lecuona all wrapped up into one. You'll hear these elements and more when listening to this album including the explosive rhythm section of Andy Gonzalez on bass, Steve Berrios on drums, Giovanni Hidalgo on congas and percussion, and tenor saxophonists David Sanchez and Peter Brainin.
Product Description:
Personnel: Hilton Ruiz (piano), David Sanchez, Peter Brainin (tenor saxophone), Andy Gonzalez (bass), Steve Berrios (drums), Giovanni Hidalgo (percussion).
Recorded live at Birdland, New York.
Personnel: Hilton Ruiz (piano); Peter Brianin, David Sanchez , Peter Brainin (tenor saxophone); Andy Gonzales (bass instrument); Steve Berrios (drums, drum); Giovanni Hidalgo (percussion).
Liner Note Authors: Alfredo Cruz; Jack Hooke.
Recording information: Birdland, New York, NY (06/24/1992-06/25/1992).
Photographer: Mitchell Seidel.
Casares - many of these along one stretch of road, where the lavatera had been completely defoliated
The giraffe (Giraffa) is a genus of African even-toed ungulate mammals, the tallest living terrestrial animals and the largest ruminants. The genus currently consists of one species, Giraffa camelopardalis, the type species. Seven other species are extinct, prehistoric species known from fossils. Taxonomic classifications of one to eight extant giraffe species have been described, based upon research into the mitochondrial and nuclear DNA, as well as morphological measurements of Giraffa, but the IUCN currently recognises only one species with nine subspecies.
The giraffe's chief distinguishing characteristics are its extremely long neck and legs, its horn-like ossicones, and its distinctive coat patterns. It is classified under the family Giraffidae, along with its closest extant relative, the okapi. Its scattered range extends from Chad in the north to South Africa in the south, and from Niger in the west to Somalia in the east. Giraffes usually inhabit savannahs and woodlands. Their food source is leaves, fruits and flowers of woody plants, primarily acacia species, which they browse at heights most other herbivores cannot reach. They may be preyed on by lions, leopards, spotted hyenas and African wild dogs. Giraffes live in herds of related females and their offspring, or bachelor herds of unrelated adult males, but are gregarious and may gather in large aggregations. Males establish social hierarchies through "necking", which are combat bouts where the neck is used as a weapon. Dominant males gain mating access to females, which bear the sole responsibility for raising the young.
The giraffe has intrigued various cultures, both ancient and modern, for its peculiar appearance, and has often been featured in paintings, books, and cartoons. It is classified by the International Union for Conservation of Nature as Vulnerable to extinction, and has been extirpated from many parts of its former range. Giraffes are still found in numerous national parks and game reserves but estimations as of 2016 indicate that there are approximately 97,500 members of Giraffa in the wild, with around 1,144 in captivity.
ETYMOLOGY
The name "giraffe" has its earliest known origins in the Arabic word zarāfah (زرافة), perhaps borrowed from the animal's Somali name geri. The Arab name is translated as "fast-walker". There were several Middle English spellings, such as jarraf, ziraph, and gerfauntz. The Italian form giraffa arose in the 1590s. The modern English form developed around 1600 from the French girafe. "Camelopard" is an archaic English name for the giraffe deriving from the Ancient Greek for camel and leopard, referring to its camel-like shape and its leopard-like colouring.
TAXONOMY
Living giraffes were originally classified as one species by Carl Linnaeus in 1758. He gave it the binomial name Cervus camelopardalis. Morten Thrane Brünnich classified the genus Giraffa in 1772. The species name camelopardalis is from Latin.
EVOLUTION
The giraffe is one of only two living genera of the family Giraffidae in the order Artiodactyla, the other being the okapi. The family was once much more extensive, with over 10 fossil genera described. Their closest known relatives are the extinct deer-like climacocerids. They, together with the family Antilocapridae (whose only extant species is the pronghorn), belong to the superfamily Giraffoidea. These animals may have evolved from the extinct family Palaeomerycidae which might also have been the ancestor of deer.
The elongation of the neck appears to have started early in the giraffe lineage. Comparisons between giraffes and their ancient relatives suggest that vertebrae close to the skull lengthened earlier, followed by lengthening of vertebrae further down. One early giraffid ancestor was Canthumeryx which has been dated variously to have lived 25–20 million years ago (mya), 17–15 mya or 18–14.3 mya and whose deposits have been found in Libya. This animal was medium-sized, slender and antelope-like. Giraffokeryx appeared 15 mya in the Indian subcontinent and resembled an okapi or a small giraffe, and had a longer neck and similar ossicones. Giraffokeryx may have shared a clade with more massively built giraffids like Sivatherium and Bramatherium.
Giraffids like Palaeotragus, Shansitherium and Samotherium appeared 14 mya and lived throughout Africa and Eurasia. These animals had bare ossicones and small cranial sinuses and were longer with broader skulls. Paleotragus resembled the okapi and may have been its ancestor. Others find that the okapi lineage diverged earlier, before Giraffokeryx. Samotherium was a particularly important transitional fossil in the giraffe lineage as its cervical vertebrae was intermediate in length and structure between a modern giraffe and an okapi, and was more vertical than the okapi's. Bohlinia, which first appeared in southeastern Europe and lived 9–7 mya was likely a direct ancestor of the giraffe. Bohlinia closely resembled modern giraffes, having a long neck and legs and similar ossicones and dentition.
Bohlinia entered China and northern India in response to climate change. From there, the genus Giraffa evolved and, around 7 mya, entered Africa. Further climate changes caused the extinction of the Asian giraffes, while the African giraffes survived and radiated into several new species. Living giraffes appear to have arisen around 1 mya in eastern Africa during the Pleistocene. Some biologists suggest the modern giraffes descended from G. jumae; others find G. gracilis a more likely candidate. G. jumae was larger and more heavily built while G. gracilis was smaller and more lightly built. The main driver for the evolution of the giraffes is believed to have been the changes from extensive forests to more open habitats, which began 8 mya. During this time, tropical plants disappeared and were replaced by arid C4 plants, and a dry savannah emerged across eastern and northern Africa and western India. Some researchers have hypothesised that this new habitat coupled with a different diet, including acacia species, may have exposed giraffe ancestors to toxins that caused higher mutation rates and a higher rate of evolution. The coat patterns of modern giraffes may also have coincided with these habitat changes. Asian giraffes are hypothesised to have had more okapi-like colourations.
In the early 19th century, Jean-Baptiste Lamarck believed the giraffe's long neck was an "acquired characteristic", developed as generations of ancestral giraffes strove to reach the leaves of tall trees. This theory was eventually rejected, and scientists now believe the giraffe's neck arose through Darwinian natural selection - that ancestral giraffes with long necks thereby had a competitive feeding advantage (competing browsers hypothesis) that better enabled them to survive and reproduce to pass on their genes.
The giraffe genome is around 2.9 billion base pairs in length compared to the 3.3 billion base pairs of the okapi. Of the proteins in giraffe and okapi genes, 19.4% are identical. The two species are equally distantly related to cattle, suggesting the giraffe's unique characteristics are not because of faster evolution. The divergence of giraffe and okapi lineages dates to around 11.5 mya. A small group of regulatory genes in the giraffe appear to be responsible for the animal's stature and associated circulatory adaptations.
SPECIES AND SUBSPECIES
The IUCN currently recognises only one species of giraffe with nine subspecies. In 2001, a two-species taxonomy was proposed. A 2007 study on the genetics of Giraffa, suggested they were six species: the West African, Rothschild's, reticulated, Masai, Angolan, and South African giraffe. The study deduced from genetic differences in nuclear and mitochondrial DNA (mtDNA) that giraffes from these populations are reproductively isolated and rarely interbreed, though no natural obstacles block their mutual access. This includes adjacent populations of Rothschild's, reticulated, and Masai giraffes. The Masai giraffe was also suggested to consist of possibly two species separated by the Rift Valley.
Reticulated and Masai giraffes have the highest mtDNA diversity, which is consistent with giraffes originating in eastern Africa. Populations further north are more closely related to the former, while those to the south are more related to the latter. Giraffes appear to select mates of the same coat type, which are imprinted on them as calves. The implications of these findings for the conservation of giraffes were summarised by David Brown, lead author of the study, who told BBC News: "Lumping all giraffes into one species obscures the reality that some kinds of giraffe are on the brink. Some of these populations number only a few hundred individuals and need immediate protection."
A 2011 study using detailed analyses of the morphology of giraffes, and application of the phylogenetic species concept, described eight species of living giraffes. The eight species are: G. angolensis, G.antiquorum, G. camelopardalis, G. giraffa, G. peralta, G. reticulata, G. thornicrofti, and G. tippelskirchi.
A 2016 study also concluded that living giraffes consist of multiple species. The researchers suggested the existence of four species, which have not exchanged genetic information between each other for 1 million to 2 million years. Those four species are the northern giraffe (G. camelopardalis), southern giraffe (G. giraffa), reticulated giraffe (G. reticulata), and Masai giraffe (G. tippelskirchi). Since then, a response to this publication has been published, highlighting seven problems in data interpretation, and concludes "the conclusions should not be accepted unconditionally".
There are an estimated 90,000 individuals of Giraffa in the wild, with 1,144 currently in captivity.
There are also seven extinct species of giraffe, listed as the following:
†Giraffa gracilis
†Giraffa jumae
†Giraffa priscilla
†Giraffa punjabiensis
†Giraffa pygmaea
†Giraffa sivalensis
†Giraffa stillei
G. attica, also extinct, was formerly considered part of Giraffa but was reclassified as Bohlinia attica in 1929.
APPEARANCE AND ANATOMY
Fully grown giraffes stand 4.3–5.7 m tall, with males taller than females. The tallest recorded male was 5.88 m and the tallest recorded female was 5.17 m tall. The average weight is 1,192 kg for an adult male and 828 kg for an adult female with maximum weights of 1,930 kg and 1,180 kg having been recorded for males and females, respectively. Despite its long neck and legs, the giraffe's body is relatively short. Located at both sides of the head, the giraffe's large, bulging eyes give it good all-round vision from its great height. Giraffes see in colour and their senses of hearing and smell are also sharp. The animal can close its muscular nostrils to protect against sandstorms and ants.
The giraffe's prehensile tongue is about 45 cm long. It is purplish-black in colour, perhaps to protect against sunburn, and is useful for grasping foliage, as well as for grooming and cleaning the animal's nose. The upper lip of the giraffe is also prehensile and useful when foraging and is covered in hair to protect against thorns. The tongue, and inside of the mouth are covered in papillae.
The coat has dark blotches or patches (which can be orange, chestnut, brown, or nearly black in colour separated by light hair (usually white or cream in colour. Male giraffes become darker as they age. The coat pattern has been claimed to serve as camouflage in the light and shade patterns of savannah woodlands. While adult giraffes standing among trees and bushes are hard to see at even a few metres' distance, they actively move into the open to gain the best view of an approaching predator, obviating any benefit that camouflage might bring. Instead, the adults rely on their size and ability to defend themselves. However, camouflage appears to be important for calves, which spend a large part of the day in hiding, away from their mothers; further, over half of all calves die within a year, so predation is certainly important. It appears, therefore, that the spotted coat of the giraffe functions as camouflage for the young, while adults simply inherit this coloration as a by-product. The skin underneath the dark areas may serve as windows for thermoregulation, being sites for complex blood vessel systems and large sweat glands. Each individual giraffe has a unique coat pattern.
The skin of a giraffe is mostly gray. Its thickness allows the animal to run through thorn bush without being punctured. The fur may serve as a chemical defence, as its parasite repellents give the animal a characteristic scent. At least 11 main aromatic chemicals are in the fur, although indole and 3-methylindole are responsible for most of the smell. Because the males have a stronger odour than the females, the odour may also have sexual function. Along the animal's neck is a mane made of short, erect hairs. The one-metre tail ends in a long, dark tuft of hair and is used as a defense against insects.
SKULL AND OSSICONES
Both sexes have prominent horn-like structures called ossicones, which are formed from ossified cartilage, covered in skin and fused to the skull at the parietal bones. Being vascularized, the ossicones may have a role in thermoregulation, and are also used in combat between males. Appearance is a reliable guide to the sex or age of a giraffe: the ossicones of females and young are thin and display tufts of hair on top, whereas those of adult males end in knobs and tend to be bald on top. Also, a median lump, which is more prominent in males, emerges at the front of the skull. Males develop calcium deposits that form bumps on their skulls as they age. A giraffe's skull is lightened by multiple sinuses. However, as males age, their skulls become heavier and more club-like, helping them become more dominant in combat. The upper jaw has a grooved palate and lacks front teeth. The giraffe's molars have a rough surface.
LEGS, LOCOMOTION AND POSTURE
The front and back legs of a giraffe are about the same length. The radius and ulna of the front legs are articulated by the carpus, which, while structurally equivalent to the human wrist, functions as a knee. It appears that a suspensory ligament allows the lanky legs to support the animal's great weight. The foot of the giraffe reaches a diameter of 30 cm, and the hoof is 15 cm high in males and 10 cm in females. The rear of each hoof is low and the fetlock is close to the ground, allowing the foot to provide additional support to the animal's weight. Giraffes lack dewclaws and interdigital glands. The giraffe's pelvis, though relatively short, has an ilium that is outspread at the upper ends.
A giraffe has only two gaits: walking and galloping. Walking is done by moving the legs on one side of the body at the same time, then doing the same on the other side. When galloping, the hind legs move around the front legs before the latter move forward, and the tail will curl up. The animal relies on the forward and backward motions of its head and neck to maintain balance and the counter momentum while galloping. The giraffe can reach a sprint speed of up to 60 km/h, and can sustain 50 km/h for several kilometres.
A giraffe rests by lying with its body on top of its folded legs. To lie down, the animal kneels on its front legs and then lowers the rest of its body. To get back up, it first gets on its knees and spreads its hind legs to raise its hindquarters. It then straightens its front legs. With each step, the animal swings its head. In captivity, the giraffe sleeps intermittently around 4.6 hours per day, mostly at night. It usually sleeps lying down, however, standing sleeps have been recorded, particularly in older individuals. Intermittent short "deep sleep" phases while lying are characterised by the giraffe bending its neck backwards and resting its head on the hip or thigh, a position believed to indicate paradoxical sleep. If the giraffe wants to bend down to drink, it either spreads its front legs or bends its knees. Giraffes would probably not be competent swimmers as their long legs would be highly cumbersome in the water, although they could possibly float. When swimming, the thorax would be weighed down by the front legs, making it difficult for the animal to move its neck and legs in harmony or keep its head above the surface.
NECK
The giraffe has an extremely elongated neck, which can be up to 2–2.4 m in length, accounting for much of the animal's vertical height. The long neck results from a disproportionate lengthening of the cervical vertebrae, not from the addition of more vertebrae. Each cervical vertebra is over 28 cm long. They comprise 52–54 per cent of the length of the giraffe's vertebral column, compared with the 27–33 percent typical of similar large ungulates, including the giraffe’s closest living relative, the okapi. This elongation largely takes place after birth, perhaps because giraffe mothers would have a difficult time giving birth to young with the same neck proportions as adults. The giraffe's head and neck are held up by large muscles and a strengthened nuchal ligament, which are anchored by long dorsal spines on the anterior thoracic vertebrae, giving the animal a hump. The giraffe's neck vertebrae have ball and socket joints. In particular, the atlas–axis joint (C1 and C2) allows the animal to tilt its head vertically and reach more branches with the tongue. The point of articulation between the cervical and thoracic vertebrae of giraffes is shifted to lie between the first and second thoracic vertebrae (T1 and T2), unlike most other ruminants where the articulation is between the seventh cervical vertebra (C7) and T1. This allows C7 to contribute directly to increased neck length and has given rise to the suggestion that T1 is actually C8, and that giraffes have added an extra cervical vertebra. However, this proposition is not generally accepted, as T1 has other morphological features, such as an articulating rib, deemed diagnostic of thoracic vertebrae, and because exceptions to the mammalian limit of seven cervical vertebrae are generally characterised by increased neurological anomalies and maladies.There are several hypotheses regarding the evolutionary origin and maintenance of elongation in giraffe necks. The "competing browsers hypothesis" was originally suggested by Charles Darwin and challenged only recently. It suggests that competitive pressure from smaller browsers, such as kudu, steenbok and impala, encouraged the elongation of the neck, as it enabled giraffes to reach food that competitors could not. This advantage is real, as giraffes can and do feed up to 4.5 m high, while even quite large competitors, such as kudu, can feed up to only about 2 m high. There is also research suggesting that browsing competition is intense at lower levels, and giraffes feed more efficiently (gaining more leaf biomass with each mouthful) high in the canopy. However, scientists disagree about just how much time giraffes spend feeding at levels beyond the reach of other browsers, and a 2010 study found that adult giraffes with longer necks actually suffered higher mortality rates under drought conditions than their shorter-necked counterparts. This study suggests that maintaining a longer neck requires more nutrients, which puts longer-necked giraffes at risk during a food shortage.
Another theory, the sexual selection hypothesis, proposes that the long necks evolved as a secondary sexual characteristic, giving males an advantage in "necking" contests (see below) to establish dominance and obtain access to sexually receptive females. In support of this theory, necks are longer and heavier for males than females of the same age, and the former do not employ other forms of combat. However, one objection is that it fails to explain why female giraffes also have long necks. It has also been proposed that the neck serves to give the animal greater vigilance.
INTERNAL SYSTEMS
In mammals, the left recurrent laryngeal nerve is longer than the right; in the giraffe it is over 30 cm longer. These nerves are longer in the giraffe than in any other living animal; the left nerve is over 2 m long. Each nerve cell in this path begins in the brainstem and passes down the neck along the vagus nerve, then branches off into the recurrent laryngeal nerve which passes back up the neck to the larynx. Thus, these nerve cells have a length of nearly 5 m in the largest giraffes. The structure of a giraffe's brain resembles that of domestic cattle. It is kept cool by evaporative heat loss in the nasal passages. The shape of the skeleton gives the giraffe a small lung volume relative to its mass. Its long neck gives it a large amount of dead space, in spite of its narrow windpipe. These factors increase the resistance to airflow. Nevertheless, the animal can still supply enough oxygen to its tissues and it can increase its respiratory rate and oxygen diffusion when running.
The circulatory system of the giraffe has several adaptations for its great height. Its heart, which can weigh more than 11 kg and measures about 60 cm long, must generate approximately double the blood pressure required for a human to maintain blood flow to the brain. As such, the wall of the heart can be as thick as 7.5 cm. Giraffes have unusually high heart rates for their size, at 150 beats per minute. When the animal lowers its head the blood rushes down fairly unopposed and a rete mirabile in the upper neck, with its large cross sectional area, prevents excess blood flow to the brain. When it raises again, the blood vessels constrict and direct blood into the brain so the animal does not faint. The jugular veins contain several (most commonly seven) valves to prevent blood flowing back into the head from the inferior vena cava and right atrium while the head is lowered. Conversely, the blood vessels in the lower legs are under great pressure because of the weight of fluid pressing down on them. To solve this problem, the skin of the lower legs is thick and tight; preventing too much blood from pouring into them.
Giraffes have oesophageal muscles that are unusually strong to allow regurgitation of food from the stomach up the neck and into the mouth for rumination. They have four chambered stomachs, as in all ruminants, and the first chamber has adapted to their specialised diet. The intestines of an adult giraffe measure more than 70 m in length and have a relatively small ratio of small to large intestine. The liver of the giraffe is small and compact. A gallbladder is generally present during fetal life, but it may disappear before birth.
BEHAVIOUR AND ECOLOGY
HABITAT AND FEEDING
Giraffes usually inhabit savannahs and open woodlands. They prefer Acacieae, Commiphora, Combretum and open Terminalia woodlands over denser environments like Brachystegia woodlands. The Angolan giraffe can be found in desert environments. Giraffes browse on the twigs of trees, preferring trees of the subfamily Acacieae and the genera Commiphora and Terminalia, which are important sources of calcium and protein to sustain the giraffe's growth rate. They also feed on shrubs, grass and fruit. A giraffe eats around 34 kg of foliage daily. When stressed, giraffes may chew the bark off branches. Although herbivorous, the giraffe has been known to visit carcasses and lick dried meat off bones.
During the wet season, food is abundant and giraffes are more spread out, while during the dry season, they gather around the remaining evergreen trees and bushes. Mothers tend to feed in open areas, presumably to make it easier to detect predators, although this may reduce their feeding efficiency. As a ruminant, the giraffe first chews its food, then swallows it for processing and then visibly passes the half-digested cud up the neck and back into the mouth to chew again. It is common for a giraffe to salivate while feeding. The giraffe requires less food than many other herbivores because the foliage it eats has more concentrated nutrients and it has a more efficient digestive system. The animal's faeces come in the form of small pellets. When it has access to water, a giraffe drinks at intervals no longer than three days.
Giraffes have a great effect on the trees that they feed on, delaying the growth of young trees for some years and giving "waistlines" to trees that are too tall. Feeding is at its highest during the first and last hours of daytime. Between these hours, giraffes mostly stand and ruminate. Rumination is the dominant activity during the night, when it is mostly done lying down.
SOCIAL LIFE
Giraffes are usually found in groups. Traditionally, the composition of these groups has been described as open and ever-changing. Giraffes were thought to have few social bonds and for research purposes, a "group" has been defined as "a collection of individuals that are less than a kilometre apart and moving in the same general direction." More recent studies have found that giraffes do have long-term social associations and may form groups or pairs based on kinship, sex or other factors. These groups may regularly associate with one another in larger communities or sub-communities within a fission–fusion society. The number of giraffes in a group can range up to 44 individuals.
Giraffe groups tend to be sex-segregated although mixed-sex groups made of adult females and young males are known to occur. Particularity stable giraffe groups are those made of mothers and their young, which can last weeks or months. Social cohesion in these groups is maintained by the bonds formed between calves. Female association appears to be based on space-use and individuals may be matrilineally related. In general, females are more selective than males in who they associate with in regards to individuals of the same sex. Young males also form groups and will engage in playfights. However, as they get older males become more solitary but may also associate in pairs or with female groups. Giraffes are not territorial, but they have home ranges. Male giraffes occasionally wander far from areas that they normally frequent.
Although generally quiet and non-vocal, giraffes have been heard to communicate using various sounds. During courtship, males emit loud coughs. Females call their young by bellowing. Calves will emit snorts, bleats, mooing and mewing sounds. Giraffes also snore, hiss, moan, grunt and make flute-like sounds, and possibly communicate over long distances using infrasound - though this is disputed. During nighttime, giraffes appear to hum to each other above the infrasound range for purposes which are unclear.
REPRODUCTION AND PARENTAL CARE
Reproduction in giraffes is broadly polygamous: a few older males mate with the fertile females. Male giraffes assess female fertility by tasting the female's urine to detect oestrus, in a multi-step process known as the flehmen response. Males prefer young adult females over juveniles and older adults. Once an oestrous female is detected, the male will attempt to court her. When courting, dominant males will keep subordinate ones at bay. A courting male may lick a female's tail, rest his head and neck on her body or nudge her with his horns. During copulation, the male stands on his hind legs with his head held up and his front legs resting on the female's sides. Giraffe gestation lasts 400–460 days, after which a single calf is normally born, although twins occur on rare occasions. The mother gives birth standing up. The calf emerges head and front legs first, having broken through the fetal membranes, and falls to the ground, severing the umbilical cord. The mother then grooms the newborn and helps it stand up. A newborn giraffe is 1.7–2 m tall. Within a few hours of birth, the calf can run around and is almost indistinguishable from a one-week-old. However, for the first 1–3 weeks, it spends most of its time hiding; its coat pattern providing camouflage. The ossicones, which have lain flat while it was in the womb, become erect within a few days.
Mothers with calves will gather in nursery herds, moving or browsing together. Mothers in such a group may sometimes leave their calves with one female while they forage and drink elsewhere. This is known as a "calving pool". Adult males play almost no role in raising the young, although they appear to have friendly interactions. Calves are at risk of predation, and a mother giraffe will stand over her calf and kick at an approaching predator. Females watching calving pools will only alert their own young if they detect a disturbance, although the others will take notice and follow.
The length time in which offspring stay with their mother varies, though it can last until the female's next calving. Likewise, calves may suckle for only a month or as long as a year.] Females become sexually mature when they are four years old, while males become mature at four or five years. Spermatogenesis in male giraffes begins at three to four years of age. Males must wait until they are at least seven years old to gain the opportunity to mate.
NECKING
Male giraffes use their necks as weapons in combat, a behaviour known as "necking". Necking is used to establish dominance and males that win necking bouts have greater reproductive success. This behaviour occurs at low or high intensity. In low intensity necking, the combatants rub and lean against each other. The male that can hold itself more erect wins the bout. In high intensity necking, the combatants will spread their front legs and swing their necks at each other, attempting to land blows with their ossicones. The contestants will try to dodge each other's blows and then get ready to counter. The power of a blow depends on the weight of the skull and the arc of the swing. A necking duel can last more than half an hour, depending on how well matched the combatants are. Although most fights do not lead to serious injury, there have been records of broken jaws, broken necks, and even deaths.
After a duel, it is common for two male giraffes to caress and court each other. Such interactions between males have been found to be more frequent than heterosexual coupling. In one study, up to 94 percent of observed mounting incidents took place between males. The proportion of same-sex activities varied from 30–75 percent. Only one percent of same-sex mounting incidents occurred between females.
MORTALITY AND HEALTH
Giraffes have high adult survival probability, and an unusually long lifespan compared to other ruminants, up to 25 years in the wild. Because of their size, eyesight and powerful kicks, adult giraffes are usually not subject to predation, aside from lions. Giraffes are the most common prey for the big cats in Kruger National Park. Nile crocodiles can also be a threat to giraffes when they bend down to drink. Calves are much more vulnerable than adults, and are additionally preyed on by leopards, spotted hyenas and wild dogs. A quarter to a half of giraffe calves reach adulthood. Calf survival varies according to the season of birth, with calves born during the dry season having higher survival rates. The local, seasonal presence of large herds of migratory wildebeests and zebras reduces predation pressure on giraffe calves and increases their survival probability.
Some parasites feed on giraffes. They are often hosts for ticks, especially in the area around the genitals, which has thinner skin than other areas. Tick species that commonly feed on giraffes are those of genera Hyalomma, Amblyomma and Rhipicephalus. Giraffes may rely on red-billed and yellow-billed oxpeckers to clean them of ticks and alert them to danger. Giraffes host numerous species of internal parasite and are susceptible to various diseases. They were victims of the (now eradicated) viral illness rinderpest. Giraffes can also suffer from a skin disorder, which comes in the form of wrinkles, lesions or raw fissures. It appears to be caused by a nematode and may be further effected by fungal infections. As much as 79% of giraffes show signs of the disease in Ruaha National Park.
RELATIONSHIP WITH HUMANS
Humans have interacted with giraffes for millennia. The San people of southern Africa have medicine dances named after some animals; the giraffe dance is performed to treat head ailments. How the giraffe got its height has been the subject of various African folktales, including one from eastern Africa which explains that the giraffe grew tall from eating too many magic herbs. Giraffes were depicted in art throughout the African continent, including that of the Kiffians, Egyptians and Meroë Nubians. The Kiffians were responsible for a life-size rock engraving of two giraffes that has been called the "world's largest rock art petroglyph". The Egyptians gave the giraffe its own hieroglyph, named 'sr' in Old Egyptian and 'mmy' in later periods. They also kept giraffes as pets and shipped them around the Mediterranean.
The giraffe was also known to the Greeks and Romans, who believed that it was an unnatural hybrid of a camel and a leopard and called it camelopardalis. The giraffe was among the many animals collected and displayed by the Romans. The first one in Rome was brought in by Julius Caesar in 46 BC and exhibited to the public. With the fall of the Western Roman Empire, the housing of giraffes in Europe declined. During the Middle Ages, giraffes were known to Europeans through contact with the Arabs, who revered the giraffe for its peculiar appearance.
Individual captive giraffes were given celebrity status throughout history. In 1414, a giraffe was shipped from Malindi to Bengal. It was then taken to China by explorer Zheng He and placed in a Ming dynasty zoo. The animal was a source of fascination for the Chinese people, who associated it with the mythical Qilin. The Medici giraffe was a giraffe presented to Lorenzo de' Medici in 1486. It caused a great stir on its arrival in Florence. Zarafa, another famous giraffe, was brought from Egypt to Paris in the early 19th century as a gift from Muhammad Ali of Egypt to Charles X of France. A sensation, the giraffe was the subject of numerous memorabilia or "giraffanalia".
Giraffes continue to have a presence in modern culture. Salvador Dalí depicted them with burning manes in some of his surrealist paintings. Dali considered the giraffe to be a symbol of masculinity, and a flaming giraffe was meant to be a "masculine cosmic apocalyptic monster". Several children's books feature the giraffe, including David A. Ufer's The Giraffe Who Was Afraid of Heights, Giles Andreae's Giraffes Can't Dance and Roald Dahl's The Giraffe and the Pelly and Me. Giraffes have appeared in animated films, as minor characters in Disney's The Lion King and Dumbo, and in more prominent roles in The Wild and in the Madagascar films. Sophie the Giraffe has been a popular teether since 1961. Another famous fictional giraffe is the Toys "R" Us mascot Geoffrey the Giraffe.
The giraffe has also been used for some scientific experiments and discoveries. Scientists have looked at the properties of giraffe skin when developing suits for astronauts and fighter pilots because the people in these professions are in danger of passing out if blood rushes to their legs. Computer scientists have modeled the coat patterns of several subspecies using reaction–diffusion mechanisms.
The constellation of Camelopardalis, introduced in the seventeenth century, depicts a giraffe. The Tswana people of Botswana traditionally see the constellation Crux as two giraffes – Acrux and Mimosa forming a male, and Gacrux and Delta Crucis forming the female.
EXPLOITATION AND CONSERVATION STATUS
Giraffes were probably common targets for hunters throughout Africa. Different parts of their bodies were used for different purposes. Their meat was used for food. The tail hairs served as flyswatters, bracelets, necklaces and thread. Shields, sandals and drums were made using the skin, and the strings of musical instruments were from the tendons. The smoke from burning giraffe skins was used by the medicine men of Buganda to treat nose bleeds. The Humr people of Sudan consume the drink Umm Nyolokh; which is created from the liver and marrow of giraffes. Umm Nyolokh often contains DMT and other psychoactive substances from plants the giraffes eat such as Acacia; and is known to cause hallucinations of giraffes, believed to be the giraffes' ghosts by the Humr. In the 19th century, European explorers began to hunt them for sport. Habitat destruction has hurt the giraffe, too: in the Sahel, the need for firewood and grazing room for livestock has led to deforestation. Normally, giraffes can coexist with livestock, since they do not directly compete with them. In 2017, severe droughts in northern Kenya have led to increased tensions over land and the killing of wildlife by herders, with giraffe populations being particularly hit.
Aerial survey is the most common method of monitoring giraffe population trends in the vast roadless tracts of African landscapes, but aerial methods are known to undercount giraffes. Ground-based survey methods are more accurate and should be used in conjunction with aerial surveys to make accurate estimates of population sizes and trends. In 2010, giraffes were assessed as Least Concern from a conservation perspective by the International Union for Conservation of Nature (IUCN), but the 2016 assessment categorized giraffes as Vulnerable. Giraffes have been extirpated from much of their historic range including Eritrea, Guinea, Mauritania and Senegal. They may also have disappeared from Angola, Mali, and Nigeria, but have been introduced to Rwanda and Swaziland. Two subspecies, the West African giraffe and the Rothschild giraffe, have been classified as endangered, as wild populations of each of them number in the hundreds.
In 1997, Jonathan Kingdon suggested that the Nubian giraffe was the most threatened of all giraffes; as of 2010, it may number fewer than 250, although this estimate is uncertain. Private game reserves have contributed to the preservation of giraffe populations in southern Africa. Giraffe Manor is a popular hotel in Nairobi that also serves as sanctuary for Rothschild's giraffes. The giraffe is a protected species in most of its range. It is the national animal of Tanzania, and is protected by law. Unauthorised killing can result in imprisonment. The UN backed Convention of Migratory Species selected giraffes for protection in 2017. In 1999, it was estimated that over 140,000 giraffes existed in the wild, estimations as of 2016 indicate that there are approximately 97,500 members of Giraffa in the wild, down from 155,000 in 1985, with around 1,144 in captivity.
WIKIPEDIA
The Nutopians are an aggregation of folk-rock performers (kind of like how Crosby, Stills and Nash originally described themselves) who have done reworkings of John Lennon's songs, Beatles and solo. They take their name from John Lennon and Yoko Ono's conceptual nation of Nutopia, which was a model for how people could live more peacefully on this planet.
Led by Rex Fowler of the group Aztec Two Step and Tom Dean of the group Devonsquare, the Nutopians performed several cuts from the second and most recent CD, Lennon Re-Imagined. "Revolution" was one of the songs they re-interpreted, as I recall.
One song the Nutopians did not perform was Lennon's anthem for Nutopia, which is the sixth track on Lennon's 1973 Mind Games LP. There's a good reason for this; the track is actually three seconds of silence.
Oh yeah, with Mumford and Sons proving to be such a success, the Nutopians are probably in the right place at the right time.
Copyright 2013 by Steven Maginnis
An aggregation of golf balls in flight.
1080i HD, for projection.
First in a series of five.
31 seconds in length, looped, no audio.
Media Convention,
Station, Berlin, 6. - 7. Mai 2014
------------------------------------------------
[ © (c) Uwe Völkner / FOX
F o t o a g e n t u r F O X
info@fotoagentur-fox.de Tel: 02266 - 9019 210
Vanitiy: 0800-FotoFoto Mobil: 0171 - 5483 127
Kölner Strasse 60 D-51789 Lindlar / Köln
B a n k v e r b i n d u n g Kto 7004 78 102
P o s t b a n k B e r l i n BLZ 100 100 10
IBAN DE86 1001 0010 0700 4781 02
BIC PBNKDEFF
Steuernummer: 221/5125/0967
Finanzamt: Wipperfürth
USt-IdNr. : DE182602653
Nutzung honorarpflichtig gem. gültiger MFM-Liste]
Casares - many of these along one stretch of road, where the lavatera had been completely defoliated
The Goliath Aggregation is over for the year, but we've still got about 50 big guys hanging around! This was the last capture of a beautiful dive.
Chun Kwang Young; Aggregation 17 - DE096 (Star 33) (2017, mixed media with Korean mulberry paper; Art Central 2018 (Sundaram Tagore Gallery Hong Kong). Photo by longzijun.
I've been meaning to illustrate how superb of a photo-casting aggregator iPhoto is for a while. Now that iPhoto 6.0.5 is out Apple finally has the majority of the bugs worked out.
Part of what makes it so damn superb is it that there's a paradigm shift in the way iPhoto treats aggregated photos. It doesn't assume you're merely a passive "consumer". Once a photo is aggregated you can do absolutely everything you can do with your own photos including tag it, rate it, enhance or manipulate it, and generally organize photos until your hearts delight. All the while iPhoto retains all the meta information, including the title, description by the original poster, and above all the all important permalink to the original photo on Flickr so you can comment and favorite and be social and merry. :)
Check out the notations on the photo for more information.
For more information on photocasting check out my photocasting group.
www.flickr.com/groups/photocasting/
Photocasting rulez!
photo by langga kita
www.flickr.com/photos/betchay/183681892/in/pool-88139950@N00
I am working on noise "aggregations" (*) to form coloured shapes. But I am not ready for colour yet... So here is a black and whitish version. Black is deep and transparent, white is milky and gauze-like. (* repeatedly filtering a uniform random noise image with a median filter generates, when converging, the swirling shapes)
[ mind you, I saw this image on somebody's display which was way too dark, so you couldn't see anything going on in the dark bits ]
The red-wattled lapwing (Vanellus indicus) is an Asian lapwing or large plover, a wader in the family Charadriidae. Like other lapwings they are ground birds that are incapable of perching. Their characteristic loud alarm calls are indicators of human or animal movements and the sounds have been variously rendered as did he do it or pity to do it[ leading to the colloquial name of did-he-do-it bird. Usually seen in pairs or small groups and usually not far from water they sometimes form large aggregations in the non-breeding season (winter). They nest in a ground scrape laying three to four camouflaged eggs. Adults near the nest fly around, diving at potential predators while calling noisily. The cryptically patterned chicks hatch and immediately follow their parents to feed, hiding by lying low on the ground or in the grass when threatened.
Taxonomy:
Traditionally well-known to native hunters, the red-wattled lapwing was first described in a book by the French polymath Georges-Louis Leclerc, Comte de Buffon in his Histoire Naturelle des Oiseaux in 1781. The bird was also illustrated in a hand-coloured plate engraved by François-Nicolas Martinet in the Planches Enluminées D'Histoire Naturelle produced uinder the supervision of Edme-Louis Daubenton to accompany Buffon's text. Neither the plate nor Buffon's description included a scientific name but in 1783 the Dutch naturalist Pieter Boddaert used the binomial name Tringa indica in his catalogue of the Planche Enluminées. The type locality is Goa in western India. It was subsequently placed in various other genera such as Sarcogrammus and Lobivanellus before being merged into Vanellus which was erected by the French zoologist Mathurin Jacques Brisson in 1760. Vanellus is the Medieval Latin for a "lapwing". It is a diminutive of the Latin vanus meaning "winnowing" or "fan". The specific epithet indicus is the Latin for "India".
Across their wide range there are slight differences in the plumage and there are four recognized subspecies:
V. i. aigneri (Laubmann, 1913) – southeast Turkey to Pakistan
V. i. indicus (Boddaert, 1783) – central Pakistan to Nepal, northeast India and Bangladesh
V. i. lankae (Koelz, 1939) – Sri Lanka
V. i. atronuchalis (Jerdon, 1864) – northeast India to south China, southeast Asia, Malay Peninsula and north Sumatra.
Description:
Red-wattled lapwings are large waders, about 35 cm (14 in) long. The wings and back are light brown with a purple to green sheen, but the head, a bib on the front and back of the neck are black. Prominently white patch runs between these two colours, from belly and tail, flanking the neck to the sides of crown. Short tail is tipped black. A red fleshy wattle in front of each eye, black-tipped red bill, and the long legs are yellow. In flight, prominent white wing bars formed by the white on the secondary coverts..
Race aigneri is slightly paler and larger than the nominate race and is found in Turkey, Iran, Iraq, Afghanistan and the Indus valley. The nominate race is found all over India. The Sri Lankan race lankae is smaller and dark while atronuchalis the race in north-eastern India and eastern Bangladesh has a white cheek surrounded by black.
Males and females are similar in plumage but males have a 5% longer wing and tend to have a longer carpal spur. The length of the birds is 320-350mm, wing of 208-247mm with the nominate averaging 223mm, Sri Lanka 217mm. The Bill is 31-36mm and tarsus of 70-83mm. Tail length is 104-128mm.
It usually keeps in pairs or trios in well-watered open country, ploughed fields, grazing land, and margins and dry beds of tanks and puddles. They occasionally form large flocks, ranging from 26 to 200 birds. It is also found in forest clearings around rain-filled depressions. It runs about in short spurts and dips forward obliquely (with unflexed legs) to pick up food in a typical plover manner. They are said to feed at night being especially active around the full moon. Is uncannily and ceaselessly vigilant, day or night, and is the first to detect intrusions and raise an alarm, and was therefore considered a nuisance by hunters. Flight rather slow, with deliberate flaps, but capable of remarkable agility when defending nest or being hunted by a hawk.
Its striking appearance is supplemented by its noisy nature, with a loud and scolding did-he-do-it call, uttered both in the day and night.
Leucistic abnormal plumages have been noted.
The local names are mainly onomatopoeic in origin and include titeeri (Hindi), tittibha (Kannada), tateehar (Sindhi), titodi (Gujarati), hatatut (Kashmiri), balighora (Assamese), yennappa chitawa (Telugu), aal-kaati (Tamil, meaning "human indicator").
Distribution:
It breeds from West Asia (Iraq, SW Iran, Persian Gulf) eastwards across South Asia (Baluchistan, Afghanistan, Pakistan, the entire Indian subcontinent up to Kanyakumari and up to 1800m in Kashmir/Nepal), with another sub-species further east in Southeast Asia. May migrate altitudinally in spring and autumn (e.g. in N. Baluchistan or NW Pakistan), and spreads out widely in the monsoons[13] on creation of requisite habitats, but by and large the populations are resident.
This species is declining in its western range, but is abundant in much of South Asia, being seen at almost any wetland habitat in its range.
Behaviour and ecology:
The breeding season is mainly March to August. The courtship involves the male puffing its feathers and pointing its beak upwards. The male then shuffles around the female. Several males may display to females and they may be close together. The eggs are laid in a ground scrape or depression sometimes fringed with pebbles, goat or hare droppings.[19] About 3–4 black-blotched buff eggs shaped a bit like a peg-top (pyriform), 42x30 mm on average. Nests are difficult to find since the eggs are cryptically coloured and usually matches the ground pattern. In residential areas, they sometimes take to nesting on roof-tops. They have been recorded nesting on the stones between the rails of a railway track, the adult leaving the nest when trains passed. Nests that have been threatened by agricultural operations have been manually translocated by gradually shifting the eggs. When nesting they will attempt to dive bomb or distract potential predators. Both the male and female incubate the eggs and divert predators using distraction displays or flash their wings to deter any herbivores that threaten the nest. Males appear to relieve females incubating at the nest particularly towards the hot part of noon. The eggs hatch in 28 to 30 days. The reproductive success is about 40%. Egg mortality is high (~43%) due to predation by mongooses, crows and kites. Chicks had a lower mortality (8.3%) and their survival improved after the first week.
Like other lapwings, they soak their belly feathers to provide water to their chicks as well as to cool the eggs during hot weather.
The chick leaves the nest and follows the parents soon after hatching
They bathe in pools of water when available and will often spend time on preening when leaving the nest or after copulation. They sometimes rest on the ground with the tarsi laid flat on the ground and at other times may rest on one leg.
Healthy adult birds have few predators and are capable of rapid and agile flight when pursued by hawks or falcons.Some endoparasitic tapeworms and trematodes have been described from the species. Mortality caused by respiratory infection by Ornithobacterium rhinotracheale has been recorded in captive birds in Pakistan.
Diet:
The diet of the lapwing includes a range of insects, snails and other invertebrates, mostly picked from the ground. They may also feed on some grains. They feed mainly during the day but they may also feed at night. They may sometimes make use of the legs to disturb insect prey from soft soil.
In culture:
In parts of India, a local belief is that the bird sleeps on its back with the legs upwards and an associated Hindi metaphor Tithiri se asman thama jayega ("can the lapwing support the heavens?") is used to refer to persons undertaking tasks beyond their ability or strength.
In parts of Rajasthan it is believed that the laying of eggs by the lapwing on high ground was an indication of good rains to come. The eggs are known to be collected by practitioners of folk medicine.
The giraffe (Giraffa) is a genus of African even-toed ungulate mammals, the tallest living terrestrial animals and the largest ruminants. The genus currently consists of one species, Giraffa camelopardalis, the type species. Seven other species are extinct, prehistoric species known from fossils. Taxonomic classifications of one to eight extant giraffe species have been described, based upon research into the mitochondrial and nuclear DNA, as well as morphological measurements of Giraffa, but the IUCN currently recognises only one species with nine subspecies.
The giraffe's chief distinguishing characteristics are its extremely long neck and legs, its horn-like ossicones, and its distinctive coat patterns. It is classified under the family Giraffidae, along with its closest extant relative, the okapi. Its scattered range extends from Chad in the north to South Africa in the south, and from Niger in the west to Somalia in the east. Giraffes usually inhabit savannahs and woodlands. Their food source is leaves, fruits and flowers of woody plants, primarily acacia species, which they browse at heights most other herbivores cannot reach. They may be preyed on by lions, leopards, spotted hyenas and African wild dogs. Giraffes live in herds of related females and their offspring, or bachelor herds of unrelated adult males, but are gregarious and may gather in large aggregations. Males establish social hierarchies through "necking", which are combat bouts where the neck is used as a weapon. Dominant males gain mating access to females, which bear the sole responsibility for raising the young.
The giraffe has intrigued various cultures, both ancient and modern, for its peculiar appearance, and has often been featured in paintings, books, and cartoons. It is classified by the International Union for Conservation of Nature as Vulnerable to extinction, and has been extirpated from many parts of its former range. Giraffes are still found in numerous national parks and game reserves but estimations as of 2016 indicate that there are approximately 97,500 members of Giraffa in the wild, with around 1,144 in captivity.
ETYMOLOGY
The name "giraffe" has its earliest known origins in the Arabic word zarāfah (زرافة), perhaps borrowed from the animal's Somali name geri. The Arab name is translated as "fast-walker". There were several Middle English spellings, such as jarraf, ziraph, and gerfauntz. The Italian form giraffa arose in the 1590s. The modern English form developed around 1600 from the French girafe. "Camelopard" is an archaic English name for the giraffe deriving from the Ancient Greek for camel and leopard, referring to its camel-like shape and its leopard-like colouring.
TAXONOMY
Living giraffes were originally classified as one species by Carl Linnaeus in 1758. He gave it the binomial name Cervus camelopardalis. Morten Thrane Brünnich classified the genus Giraffa in 1772. The species name camelopardalis is from Latin.
EVOLUTION
The giraffe is one of only two living genera of the family Giraffidae in the order Artiodactyla, the other being the okapi. The family was once much more extensive, with over 10 fossil genera described. Their closest known relatives are the extinct deer-like climacocerids. They, together with the family Antilocapridae (whose only extant species is the pronghorn), belong to the superfamily Giraffoidea. These animals may have evolved from the extinct family Palaeomerycidae which might also have been the ancestor of deer.
The elongation of the neck appears to have started early in the giraffe lineage. Comparisons between giraffes and their ancient relatives suggest that vertebrae close to the skull lengthened earlier, followed by lengthening of vertebrae further down. One early giraffid ancestor was Canthumeryx which has been dated variously to have lived 25–20 million years ago (mya), 17–15 mya or 18–14.3 mya and whose deposits have been found in Libya. This animal was medium-sized, slender and antelope-like. Giraffokeryx appeared 15 mya in the Indian subcontinent and resembled an okapi or a small giraffe, and had a longer neck and similar ossicones. Giraffokeryx may have shared a clade with more massively built giraffids like Sivatherium and Bramatherium.
Giraffids like Palaeotragus, Shansitherium and Samotherium appeared 14 mya and lived throughout Africa and Eurasia. These animals had bare ossicones and small cranial sinuses and were longer with broader skulls. Paleotragus resembled the okapi and may have been its ancestor. Others find that the okapi lineage diverged earlier, before Giraffokeryx. Samotherium was a particularly important transitional fossil in the giraffe lineage as its cervical vertebrae was intermediate in length and structure between a modern giraffe and an okapi, and was more vertical than the okapi's. Bohlinia, which first appeared in southeastern Europe and lived 9–7 mya was likely a direct ancestor of the giraffe. Bohlinia closely resembled modern giraffes, having a long neck and legs and similar ossicones and dentition.
Bohlinia entered China and northern India in response to climate change. From there, the genus Giraffa evolved and, around 7 mya, entered Africa. Further climate changes caused the extinction of the Asian giraffes, while the African giraffes survived and radiated into several new species. Living giraffes appear to have arisen around 1 mya in eastern Africa during the Pleistocene. Some biologists suggest the modern giraffes descended from G. jumae; others find G. gracilis a more likely candidate. G. jumae was larger and more heavily built while G. gracilis was smaller and more lightly built. The main driver for the evolution of the giraffes is believed to have been the changes from extensive forests to more open habitats, which began 8 mya. During this time, tropical plants disappeared and were replaced by arid C4 plants, and a dry savannah emerged across eastern and northern Africa and western India. Some researchers have hypothesised that this new habitat coupled with a different diet, including acacia species, may have exposed giraffe ancestors to toxins that caused higher mutation rates and a higher rate of evolution. The coat patterns of modern giraffes may also have coincided with these habitat changes. Asian giraffes are hypothesised to have had more okapi-like colourations.
In the early 19th century, Jean-Baptiste Lamarck believed the giraffe's long neck was an "acquired characteristic", developed as generations of ancestral giraffes strove to reach the leaves of tall trees. This theory was eventually rejected, and scientists now believe the giraffe's neck arose through Darwinian natural selection - that ancestral giraffes with long necks thereby had a competitive feeding advantage (competing browsers hypothesis) that better enabled them to survive and reproduce to pass on their genes.
The giraffe genome is around 2.9 billion base pairs in length compared to the 3.3 billion base pairs of the okapi. Of the proteins in giraffe and okapi genes, 19.4% are identical. The two species are equally distantly related to cattle, suggesting the giraffe's unique characteristics are not because of faster evolution. The divergence of giraffe and okapi lineages dates to around 11.5 mya. A small group of regulatory genes in the giraffe appear to be responsible for the animal's stature and associated circulatory adaptations.
SPECIES AND SUBSPECIES
The IUCN currently recognises only one species of giraffe with nine subspecies. In 2001, a two-species taxonomy was proposed. A 2007 study on the genetics of Giraffa, suggested they were six species: the West African, Rothschild's, reticulated, Masai, Angolan, and South African giraffe. The study deduced from genetic differences in nuclear and mitochondrial DNA (mtDNA) that giraffes from these populations are reproductively isolated and rarely interbreed, though no natural obstacles block their mutual access. This includes adjacent populations of Rothschild's, reticulated, and Masai giraffes. The Masai giraffe was also suggested to consist of possibly two species separated by the Rift Valley.
Reticulated and Masai giraffes have the highest mtDNA diversity, which is consistent with giraffes originating in eastern Africa. Populations further north are more closely related to the former, while those to the south are more related to the latter. Giraffes appear to select mates of the same coat type, which are imprinted on them as calves. The implications of these findings for the conservation of giraffes were summarised by David Brown, lead author of the study, who told BBC News: "Lumping all giraffes into one species obscures the reality that some kinds of giraffe are on the brink. Some of these populations number only a few hundred individuals and need immediate protection."
A 2011 study using detailed analyses of the morphology of giraffes, and application of the phylogenetic species concept, described eight species of living giraffes. The eight species are: G. angolensis, G.antiquorum, G. camelopardalis, G. giraffa, G. peralta, G. reticulata, G. thornicrofti, and G. tippelskirchi.
A 2016 study also concluded that living giraffes consist of multiple species. The researchers suggested the existence of four species, which have not exchanged genetic information between each other for 1 million to 2 million years. Those four species are the northern giraffe (G. camelopardalis), southern giraffe (G. giraffa), reticulated giraffe (G. reticulata), and Masai giraffe (G. tippelskirchi). Since then, a response to this publication has been published, highlighting seven problems in data interpretation, and concludes "the conclusions should not be accepted unconditionally".
There are an estimated 90,000 individuals of Giraffa in the wild, with 1,144 currently in captivity.
There are also seven extinct species of giraffe, listed as the following:
†Giraffa gracilis
†Giraffa jumae
†Giraffa priscilla
†Giraffa punjabiensis
†Giraffa pygmaea
†Giraffa sivalensis
†Giraffa stillei
G. attica, also extinct, was formerly considered part of Giraffa but was reclassified as Bohlinia attica in 1929.
APPEARANCE AND ANATOMY
Fully grown giraffes stand 4.3–5.7 m tall, with males taller than females. The tallest recorded male was 5.88 m and the tallest recorded female was 5.17 m tall. The average weight is 1,192 kg for an adult male and 828 kg for an adult female with maximum weights of 1,930 kg and 1,180 kg having been recorded for males and females, respectively. Despite its long neck and legs, the giraffe's body is relatively short. Located at both sides of the head, the giraffe's large, bulging eyes give it good all-round vision from its great height. Giraffes see in colour and their senses of hearing and smell are also sharp. The animal can close its muscular nostrils to protect against sandstorms and ants.
The giraffe's prehensile tongue is about 45 cm long. It is purplish-black in colour, perhaps to protect against sunburn, and is useful for grasping foliage, as well as for grooming and cleaning the animal's nose. The upper lip of the giraffe is also prehensile and useful when foraging and is covered in hair to protect against thorns. The tongue, and inside of the mouth are covered in papillae.
The coat has dark blotches or patches (which can be orange, chestnut, brown, or nearly black in colour separated by light hair (usually white or cream in colour. Male giraffes become darker as they age. The coat pattern has been claimed to serve as camouflage in the light and shade patterns of savannah woodlands. While adult giraffes standing among trees and bushes are hard to see at even a few metres' distance, they actively move into the open to gain the best view of an approaching predator, obviating any benefit that camouflage might bring. Instead, the adults rely on their size and ability to defend themselves. However, camouflage appears to be important for calves, which spend a large part of the day in hiding, away from their mothers; further, over half of all calves die within a year, so predation is certainly important. It appears, therefore, that the spotted coat of the giraffe functions as camouflage for the young, while adults simply inherit this coloration as a by-product. The skin underneath the dark areas may serve as windows for thermoregulation, being sites for complex blood vessel systems and large sweat glands. Each individual giraffe has a unique coat pattern.
The skin of a giraffe is mostly gray. Its thickness allows the animal to run through thorn bush without being punctured. The fur may serve as a chemical defence, as its parasite repellents give the animal a characteristic scent. At least 11 main aromatic chemicals are in the fur, although indole and 3-methylindole are responsible for most of the smell. Because the males have a stronger odour than the females, the odour may also have sexual function. Along the animal's neck is a mane made of short, erect hairs. The one-metre tail ends in a long, dark tuft of hair and is used as a defense against insects.
SKULL AND OSSICONES
Both sexes have prominent horn-like structures called ossicones, which are formed from ossified cartilage, covered in skin and fused to the skull at the parietal bones. Being vascularized, the ossicones may have a role in thermoregulation, and are also used in combat between males. Appearance is a reliable guide to the sex or age of a giraffe: the ossicones of females and young are thin and display tufts of hair on top, whereas those of adult males end in knobs and tend to be bald on top. Also, a median lump, which is more prominent in males, emerges at the front of the skull. Males develop calcium deposits that form bumps on their skulls as they age. A giraffe's skull is lightened by multiple sinuses. However, as males age, their skulls become heavier and more club-like, helping them become more dominant in combat. The upper jaw has a grooved palate and lacks front teeth. The giraffe's molars have a rough surface.
LEGS, LOCOMOTION AND POSTURE
The front and back legs of a giraffe are about the same length. The radius and ulna of the front legs are articulated by the carpus, which, while structurally equivalent to the human wrist, functions as a knee. It appears that a suspensory ligament allows the lanky legs to support the animal's great weight. The foot of the giraffe reaches a diameter of 30 cm, and the hoof is 15 cm high in males and 10 cm in females. The rear of each hoof is low and the fetlock is close to the ground, allowing the foot to provide additional support to the animal's weight. Giraffes lack dewclaws and interdigital glands. The giraffe's pelvis, though relatively short, has an ilium that is outspread at the upper ends.
A giraffe has only two gaits: walking and galloping. Walking is done by moving the legs on one side of the body at the same time, then doing the same on the other side. When galloping, the hind legs move around the front legs before the latter move forward, and the tail will curl up. The animal relies on the forward and backward motions of its head and neck to maintain balance and the counter momentum while galloping. The giraffe can reach a sprint speed of up to 60 km/h, and can sustain 50 km/h for several kilometres.
A giraffe rests by lying with its body on top of its folded legs. To lie down, the animal kneels on its front legs and then lowers the rest of its body. To get back up, it first gets on its knees and spreads its hind legs to raise its hindquarters. It then straightens its front legs. With each step, the animal swings its head. In captivity, the giraffe sleeps intermittently around 4.6 hours per day, mostly at night. It usually sleeps lying down, however, standing sleeps have been recorded, particularly in older individuals. Intermittent short "deep sleep" phases while lying are characterised by the giraffe bending its neck backwards and resting its head on the hip or thigh, a position believed to indicate paradoxical sleep. If the giraffe wants to bend down to drink, it either spreads its front legs or bends its knees. Giraffes would probably not be competent swimmers as their long legs would be highly cumbersome in the water, although they could possibly float. When swimming, the thorax would be weighed down by the front legs, making it difficult for the animal to move its neck and legs in harmony or keep its head above the surface.
NECK
The giraffe has an extremely elongated neck, which can be up to 2–2.4 m in length, accounting for much of the animal's vertical height. The long neck results from a disproportionate lengthening of the cervical vertebrae, not from the addition of more vertebrae. Each cervical vertebra is over 28 cm long. They comprise 52–54 per cent of the length of the giraffe's vertebral column, compared with the 27–33 percent typical of similar large ungulates, including the giraffe’s closest living relative, the okapi. This elongation largely takes place after birth, perhaps because giraffe mothers would have a difficult time giving birth to young with the same neck proportions as adults. The giraffe's head and neck are held up by large muscles and a strengthened nuchal ligament, which are anchored by long dorsal spines on the anterior thoracic vertebrae, giving the animal a hump. The giraffe's neck vertebrae have ball and socket joints. In particular, the atlas–axis joint (C1 and C2) allows the animal to tilt its head vertically and reach more branches with the tongue. The point of articulation between the cervical and thoracic vertebrae of giraffes is shifted to lie between the first and second thoracic vertebrae (T1 and T2), unlike most other ruminants where the articulation is between the seventh cervical vertebra (C7) and T1. This allows C7 to contribute directly to increased neck length and has given rise to the suggestion that T1 is actually C8, and that giraffes have added an extra cervical vertebra. However, this proposition is not generally accepted, as T1 has other morphological features, such as an articulating rib, deemed diagnostic of thoracic vertebrae, and because exceptions to the mammalian limit of seven cervical vertebrae are generally characterised by increased neurological anomalies and maladies.There are several hypotheses regarding the evolutionary origin and maintenance of elongation in giraffe necks. The "competing browsers hypothesis" was originally suggested by Charles Darwin and challenged only recently. It suggests that competitive pressure from smaller browsers, such as kudu, steenbok and impala, encouraged the elongation of the neck, as it enabled giraffes to reach food that competitors could not. This advantage is real, as giraffes can and do feed up to 4.5 m high, while even quite large competitors, such as kudu, can feed up to only about 2 m high. There is also research suggesting that browsing competition is intense at lower levels, and giraffes feed more efficiently (gaining more leaf biomass with each mouthful) high in the canopy. However, scientists disagree about just how much time giraffes spend feeding at levels beyond the reach of other browsers, and a 2010 study found that adult giraffes with longer necks actually suffered higher mortality rates under drought conditions than their shorter-necked counterparts. This study suggests that maintaining a longer neck requires more nutrients, which puts longer-necked giraffes at risk during a food shortage.
Another theory, the sexual selection hypothesis, proposes that the long necks evolved as a secondary sexual characteristic, giving males an advantage in "necking" contests (see below) to establish dominance and obtain access to sexually receptive females. In support of this theory, necks are longer and heavier for males than females of the same age, and the former do not employ other forms of combat. However, one objection is that it fails to explain why female giraffes also have long necks. It has also been proposed that the neck serves to give the animal greater vigilance.
INTERNAL SYSTEMS
In mammals, the left recurrent laryngeal nerve is longer than the right; in the giraffe it is over 30 cm longer. These nerves are longer in the giraffe than in any other living animal; the left nerve is over 2 m long. Each nerve cell in this path begins in the brainstem and passes down the neck along the vagus nerve, then branches off into the recurrent laryngeal nerve which passes back up the neck to the larynx. Thus, these nerve cells have a length of nearly 5 m in the largest giraffes. The structure of a giraffe's brain resembles that of domestic cattle. It is kept cool by evaporative heat loss in the nasal passages. The shape of the skeleton gives the giraffe a small lung volume relative to its mass. Its long neck gives it a large amount of dead space, in spite of its narrow windpipe. These factors increase the resistance to airflow. Nevertheless, the animal can still supply enough oxygen to its tissues and it can increase its respiratory rate and oxygen diffusion when running.
The circulatory system of the giraffe has several adaptations for its great height. Its heart, which can weigh more than 11 kg and measures about 60 cm long, must generate approximately double the blood pressure required for a human to maintain blood flow to the brain. As such, the wall of the heart can be as thick as 7.5 cm. Giraffes have unusually high heart rates for their size, at 150 beats per minute. When the animal lowers its head the blood rushes down fairly unopposed and a rete mirabile in the upper neck, with its large cross sectional area, prevents excess blood flow to the brain. When it raises again, the blood vessels constrict and direct blood into the brain so the animal does not faint. The jugular veins contain several (most commonly seven) valves to prevent blood flowing back into the head from the inferior vena cava and right atrium while the head is lowered. Conversely, the blood vessels in the lower legs are under great pressure because of the weight of fluid pressing down on them. To solve this problem, the skin of the lower legs is thick and tight; preventing too much blood from pouring into them.
Giraffes have oesophageal muscles that are unusually strong to allow regurgitation of food from the stomach up the neck and into the mouth for rumination. They have four chambered stomachs, as in all ruminants, and the first chamber has adapted to their specialised diet. The intestines of an adult giraffe measure more than 70 m in length and have a relatively small ratio of small to large intestine. The liver of the giraffe is small and compact. A gallbladder is generally present during fetal life, but it may disappear before birth.
BEHAVIOUR AND ECOLOGY
HABITAT AND FEEDING
Giraffes usually inhabit savannahs and open woodlands. They prefer Acacieae, Commiphora, Combretum and open Terminalia woodlands over denser environments like Brachystegia woodlands. The Angolan giraffe can be found in desert environments. Giraffes browse on the twigs of trees, preferring trees of the subfamily Acacieae and the genera Commiphora and Terminalia, which are important sources of calcium and protein to sustain the giraffe's growth rate. They also feed on shrubs, grass and fruit. A giraffe eats around 34 kg of foliage daily. When stressed, giraffes may chew the bark off branches. Although herbivorous, the giraffe has been known to visit carcasses and lick dried meat off bones.
During the wet season, food is abundant and giraffes are more spread out, while during the dry season, they gather around the remaining evergreen trees and bushes. Mothers tend to feed in open areas, presumably to make it easier to detect predators, although this may reduce their feeding efficiency. As a ruminant, the giraffe first chews its food, then swallows it for processing and then visibly passes the half-digested cud up the neck and back into the mouth to chew again. It is common for a giraffe to salivate while feeding. The giraffe requires less food than many other herbivores because the foliage it eats has more concentrated nutrients and it has a more efficient digestive system. The animal's faeces come in the form of small pellets. When it has access to water, a giraffe drinks at intervals no longer than three days.
Giraffes have a great effect on the trees that they feed on, delaying the growth of young trees for some years and giving "waistlines" to trees that are too tall. Feeding is at its highest during the first and last hours of daytime. Between these hours, giraffes mostly stand and ruminate. Rumination is the dominant activity during the night, when it is mostly done lying down.
SOCIAL LIFE
Giraffes are usually found in groups. Traditionally, the composition of these groups has been described as open and ever-changing. Giraffes were thought to have few social bonds and for research purposes, a "group" has been defined as "a collection of individuals that are less than a kilometre apart and moving in the same general direction." More recent studies have found that giraffes do have long-term social associations and may form groups or pairs based on kinship, sex or other factors. These groups may regularly associate with one another in larger communities or sub-communities within a fission–fusion society. The number of giraffes in a group can range up to 44 individuals.
Giraffe groups tend to be sex-segregated although mixed-sex groups made of adult females and young males are known to occur. Particularity stable giraffe groups are those made of mothers and their young, which can last weeks or months. Social cohesion in these groups is maintained by the bonds formed between calves. Female association appears to be based on space-use and individuals may be matrilineally related. In general, females are more selective than males in who they associate with in regards to individuals of the same sex. Young males also form groups and will engage in playfights. However, as they get older males become more solitary but may also associate in pairs or with female groups. Giraffes are not territorial, but they have home ranges. Male giraffes occasionally wander far from areas that they normally frequent.
Although generally quiet and non-vocal, giraffes have been heard to communicate using various sounds. During courtship, males emit loud coughs. Females call their young by bellowing. Calves will emit snorts, bleats, mooing and mewing sounds. Giraffes also snore, hiss, moan, grunt and make flute-like sounds, and possibly communicate over long distances using infrasound - though this is disputed. During nighttime, giraffes appear to hum to each other above the infrasound range for purposes which are unclear.
REPRODUCTION AND PARENTAL CARE
Reproduction in giraffes is broadly polygamous: a few older males mate with the fertile females. Male giraffes assess female fertility by tasting the female's urine to detect oestrus, in a multi-step process known as the flehmen response. Males prefer young adult females over juveniles and older adults. Once an oestrous female is detected, the male will attempt to court her. When courting, dominant males will keep subordinate ones at bay. A courting male may lick a female's tail, rest his head and neck on her body or nudge her with his horns. During copulation, the male stands on his hind legs with his head held up and his front legs resting on the female's sides. Giraffe gestation lasts 400–460 days, after which a single calf is normally born, although twins occur on rare occasions. The mother gives birth standing up. The calf emerges head and front legs first, having broken through the fetal membranes, and falls to the ground, severing the umbilical cord. The mother then grooms the newborn and helps it stand up. A newborn giraffe is 1.7–2 m tall. Within a few hours of birth, the calf can run around and is almost indistinguishable from a one-week-old. However, for the first 1–3 weeks, it spends most of its time hiding; its coat pattern providing camouflage. The ossicones, which have lain flat while it was in the womb, become erect within a few days.
Mothers with calves will gather in nursery herds, moving or browsing together. Mothers in such a group may sometimes leave their calves with one female while they forage and drink elsewhere. This is known as a "calving pool". Adult males play almost no role in raising the young, although they appear to have friendly interactions. Calves are at risk of predation, and a mother giraffe will stand over her calf and kick at an approaching predator. Females watching calving pools will only alert their own young if they detect a disturbance, although the others will take notice and follow.
The length time in which offspring stay with their mother varies, though it can last until the female's next calving. Likewise, calves may suckle for only a month or as long as a year.] Females become sexually mature when they are four years old, while males become mature at four or five years. Spermatogenesis in male giraffes begins at three to four years of age. Males must wait until they are at least seven years old to gain the opportunity to mate.
NECKING
Male giraffes use their necks as weapons in combat, a behaviour known as "necking". Necking is used to establish dominance and males that win necking bouts have greater reproductive success. This behaviour occurs at low or high intensity. In low intensity necking, the combatants rub and lean against each other. The male that can hold itself more erect wins the bout. In high intensity necking, the combatants will spread their front legs and swing their necks at each other, attempting to land blows with their ossicones. The contestants will try to dodge each other's blows and then get ready to counter. The power of a blow depends on the weight of the skull and the arc of the swing. A necking duel can last more than half an hour, depending on how well matched the combatants are. Although most fights do not lead to serious injury, there have been records of broken jaws, broken necks, and even deaths.
After a duel, it is common for two male giraffes to caress and court each other. Such interactions between males have been found to be more frequent than heterosexual coupling. In one study, up to 94 percent of observed mounting incidents took place between males. The proportion of same-sex activities varied from 30–75 percent. Only one percent of same-sex mounting incidents occurred between females.
MORTALITY AND HEALTH
Giraffes have high adult survival probability, and an unusually long lifespan compared to other ruminants, up to 25 years in the wild. Because of their size, eyesight and powerful kicks, adult giraffes are usually not subject to predation, aside from lions. Giraffes are the most common prey for the big cats in Kruger National Park. Nile crocodiles can also be a threat to giraffes when they bend down to drink. Calves are much more vulnerable than adults, and are additionally preyed on by leopards, spotted hyenas and wild dogs. A quarter to a half of giraffe calves reach adulthood. Calf survival varies according to the season of birth, with calves born during the dry season having higher survival rates. The local, seasonal presence of large herds of migratory wildebeests and zebras reduces predation pressure on giraffe calves and increases their survival probability.
Some parasites feed on giraffes. They are often hosts for ticks, especially in the area around the genitals, which has thinner skin than other areas. Tick species that commonly feed on giraffes are those of genera Hyalomma, Amblyomma and Rhipicephalus. Giraffes may rely on red-billed and yellow-billed oxpeckers to clean them of ticks and alert them to danger. Giraffes host numerous species of internal parasite and are susceptible to various diseases. They were victims of the (now eradicated) viral illness rinderpest. Giraffes can also suffer from a skin disorder, which comes in the form of wrinkles, lesions or raw fissures. It appears to be caused by a nematode and may be further effected by fungal infections. As much as 79% of giraffes show signs of the disease in Ruaha National Park.
RELATIONSHIP WITH HUMANS
Humans have interacted with giraffes for millennia. The San people of southern Africa have medicine dances named after some animals; the giraffe dance is performed to treat head ailments. How the giraffe got its height has been the subject of various African folktales, including one from eastern Africa which explains that the giraffe grew tall from eating too many magic herbs. Giraffes were depicted in art throughout the African continent, including that of the Kiffians, Egyptians and Meroë Nubians. The Kiffians were responsible for a life-size rock engraving of two giraffes that has been called the "world's largest rock art petroglyph". The Egyptians gave the giraffe its own hieroglyph, named 'sr' in Old Egyptian and 'mmy' in later periods. They also kept giraffes as pets and shipped them around the Mediterranean.
The giraffe was also known to the Greeks and Romans, who believed that it was an unnatural hybrid of a camel and a leopard and called it camelopardalis. The giraffe was among the many animals collected and displayed by the Romans. The first one in Rome was brought in by Julius Caesar in 46 BC and exhibited to the public. With the fall of the Western Roman Empire, the housing of giraffes in Europe declined. During the Middle Ages, giraffes were known to Europeans through contact with the Arabs, who revered the giraffe for its peculiar appearance.
Individual captive giraffes were given celebrity status throughout history. In 1414, a giraffe was shipped from Malindi to Bengal. It was then taken to China by explorer Zheng He and placed in a Ming dynasty zoo. The animal was a source of fascination for the Chinese people, who associated it with the mythical Qilin. The Medici giraffe was a giraffe presented to Lorenzo de' Medici in 1486. It caused a great stir on its arrival in Florence. Zarafa, another famous giraffe, was brought from Egypt to Paris in the early 19th century as a gift from Muhammad Ali of Egypt to Charles X of France. A sensation, the giraffe was the subject of numerous memorabilia or "giraffanalia".
Giraffes continue to have a presence in modern culture. Salvador Dalí depicted them with burning manes in some of his surrealist paintings. Dali considered the giraffe to be a symbol of masculinity, and a flaming giraffe was meant to be a "masculine cosmic apocalyptic monster". Several children's books feature the giraffe, including David A. Ufer's The Giraffe Who Was Afraid of Heights, Giles Andreae's Giraffes Can't Dance and Roald Dahl's The Giraffe and the Pelly and Me. Giraffes have appeared in animated films, as minor characters in Disney's The Lion King and Dumbo, and in more prominent roles in The Wild and in the Madagascar films. Sophie the Giraffe has been a popular teether since 1961. Another famous fictional giraffe is the Toys "R" Us mascot Geoffrey the Giraffe.
The giraffe has also been used for some scientific experiments and discoveries. Scientists have looked at the properties of giraffe skin when developing suits for astronauts and fighter pilots because the people in these professions are in danger of passing out if blood rushes to their legs. Computer scientists have modeled the coat patterns of several subspecies using reaction–diffusion mechanisms.
The constellation of Camelopardalis, introduced in the seventeenth century, depicts a giraffe. The Tswana people of Botswana traditionally see the constellation Crux as two giraffes – Acrux and Mimosa forming a male, and Gacrux and Delta Crucis forming the female.
EXPLOITATION AND CONSERVATION STATUS
Giraffes were probably common targets for hunters throughout Africa. Different parts of their bodies were used for different purposes. Their meat was used for food. The tail hairs served as flyswatters, bracelets, necklaces and thread. Shields, sandals and drums were made using the skin, and the strings of musical instruments were from the tendons. The smoke from burning giraffe skins was used by the medicine men of Buganda to treat nose bleeds. The Humr people of Sudan consume the drink Umm Nyolokh; which is created from the liver and marrow of giraffes. Umm Nyolokh often contains DMT and other psychoactive substances from plants the giraffes eat such as Acacia; and is known to cause hallucinations of giraffes, believed to be the giraffes' ghosts by the Humr. In the 19th century, European explorers began to hunt them for sport. Habitat destruction has hurt the giraffe, too: in the Sahel, the need for firewood and grazing room for livestock has led to deforestation. Normally, giraffes can coexist with livestock, since they do not directly compete with them. In 2017, severe droughts in northern Kenya have led to increased tensions over land and the killing of wildlife by herders, with giraffe populations being particularly hit.
Aerial survey is the most common method of monitoring giraffe population trends in the vast roadless tracts of African landscapes, but aerial methods are known to undercount giraffes. Ground-based survey methods are more accurate and should be used in conjunction with aerial surveys to make accurate estimates of population sizes and trends. In 2010, giraffes were assessed as Least Concern from a conservation perspective by the International Union for Conservation of Nature (IUCN), but the 2016 assessment categorized giraffes as Vulnerable. Giraffes have been extirpated from much of their historic range including Eritrea, Guinea, Mauritania and Senegal. They may also have disappeared from Angola, Mali, and Nigeria, but have been introduced to Rwanda and Swaziland. Two subspecies, the West African giraffe and the Rothschild giraffe, have been classified as endangered, as wild populations of each of them number in the hundreds.
In 1997, Jonathan Kingdon suggested that the Nubian giraffe was the most threatened of all giraffes; as of 2010, it may number fewer than 250, although this estimate is uncertain. Private game reserves have contributed to the preservation of giraffe populations in southern Africa. Giraffe Manor is a popular hotel in Nairobi that also serves as sanctuary for Rothschild's giraffes. The giraffe is a protected species in most of its range. It is the national animal of Tanzania, and is protected by law. Unauthorised killing can result in imprisonment. The UN backed Convention of Migratory Species selected giraffes for protection in 2017. In 1999, it was estimated that over 140,000 giraffes existed in the wild, estimations as of 2016 indicate that there are approximately 97,500 members of Giraffa in the wild, down from 155,000 in 1985, with around 1,144 in captivity.
WIKIPEDIA
The giraffe (Giraffa) is a genus of African even-toed ungulate mammals, the tallest living terrestrial animals and the largest ruminants. The genus currently consists of one species, Giraffa camelopardalis, the type species. Seven other species are extinct, prehistoric species known from fossils. Taxonomic classifications of one to eight extant giraffe species have been described, based upon research into the mitochondrial and nuclear DNA, as well as morphological measurements of Giraffa, but the IUCN currently recognises only one species with nine subspecies.
The giraffe's chief distinguishing characteristics are its extremely long neck and legs, its horn-like ossicones, and its distinctive coat patterns. It is classified under the family Giraffidae, along with its closest extant relative, the okapi. Its scattered range extends from Chad in the north to South Africa in the south, and from Niger in the west to Somalia in the east. Giraffes usually inhabit savannahs and woodlands. Their food source is leaves, fruits and flowers of woody plants, primarily acacia species, which they browse at heights most other herbivores cannot reach. They may be preyed on by lions, leopards, spotted hyenas and African wild dogs. Giraffes live in herds of related females and their offspring, or bachelor herds of unrelated adult males, but are gregarious and may gather in large aggregations. Males establish social hierarchies through "necking", which are combat bouts where the neck is used as a weapon. Dominant males gain mating access to females, which bear the sole responsibility for raising the young.
The giraffe has intrigued various cultures, both ancient and modern, for its peculiar appearance, and has often been featured in paintings, books, and cartoons. It is classified by the International Union for Conservation of Nature as Vulnerable to extinction, and has been extirpated from many parts of its former range. Giraffes are still found in numerous national parks and game reserves but estimations as of 2016 indicate that there are approximately 97,500 members of Giraffa in the wild, with around 1,144 in captivity.
ETYMOLOGY
The name "giraffe" has its earliest known origins in the Arabic word zarāfah (زرافة), perhaps borrowed from the animal's Somali name geri. The Arab name is translated as "fast-walker". There were several Middle English spellings, such as jarraf, ziraph, and gerfauntz. The Italian form giraffa arose in the 1590s. The modern English form developed around 1600 from the French girafe. "Camelopard" is an archaic English name for the giraffe deriving from the Ancient Greek for camel and leopard, referring to its camel-like shape and its leopard-like colouring.
TAXONOMY
Living giraffes were originally classified as one species by Carl Linnaeus in 1758. He gave it the binomial name Cervus camelopardalis. Morten Thrane Brünnich classified the genus Giraffa in 1772. The species name camelopardalis is from Latin.
EVOLUTION
The giraffe is one of only two living genera of the family Giraffidae in the order Artiodactyla, the other being the okapi. The family was once much more extensive, with over 10 fossil genera described. Their closest known relatives are the extinct deer-like climacocerids. They, together with the family Antilocapridae (whose only extant species is the pronghorn), belong to the superfamily Giraffoidea. These animals may have evolved from the extinct family Palaeomerycidae which might also have been the ancestor of deer.
The elongation of the neck appears to have started early in the giraffe lineage. Comparisons between giraffes and their ancient relatives suggest that vertebrae close to the skull lengthened earlier, followed by lengthening of vertebrae further down. One early giraffid ancestor was Canthumeryx which has been dated variously to have lived 25–20 million years ago (mya), 17–15 mya or 18–14.3 mya and whose deposits have been found in Libya. This animal was medium-sized, slender and antelope-like. Giraffokeryx appeared 15 mya in the Indian subcontinent and resembled an okapi or a small giraffe, and had a longer neck and similar ossicones. Giraffokeryx may have shared a clade with more massively built giraffids like Sivatherium and Bramatherium.
Giraffids like Palaeotragus, Shansitherium and Samotherium appeared 14 mya and lived throughout Africa and Eurasia. These animals had bare ossicones and small cranial sinuses and were longer with broader skulls. Paleotragus resembled the okapi and may have been its ancestor. Others find that the okapi lineage diverged earlier, before Giraffokeryx. Samotherium was a particularly important transitional fossil in the giraffe lineage as its cervical vertebrae was intermediate in length and structure between a modern giraffe and an okapi, and was more vertical than the okapi's. Bohlinia, which first appeared in southeastern Europe and lived 9–7 mya was likely a direct ancestor of the giraffe. Bohlinia closely resembled modern giraffes, having a long neck and legs and similar ossicones and dentition.
Bohlinia entered China and northern India in response to climate change. From there, the genus Giraffa evolved and, around 7 mya, entered Africa. Further climate changes caused the extinction of the Asian giraffes, while the African giraffes survived and radiated into several new species. Living giraffes appear to have arisen around 1 mya in eastern Africa during the Pleistocene. Some biologists suggest the modern giraffes descended from G. jumae; others find G. gracilis a more likely candidate. G. jumae was larger and more heavily built while G. gracilis was smaller and more lightly built. The main driver for the evolution of the giraffes is believed to have been the changes from extensive forests to more open habitats, which began 8 mya. During this time, tropical plants disappeared and were replaced by arid C4 plants, and a dry savannah emerged across eastern and northern Africa and western India. Some researchers have hypothesised that this new habitat coupled with a different diet, including acacia species, may have exposed giraffe ancestors to toxins that caused higher mutation rates and a higher rate of evolution. The coat patterns of modern giraffes may also have coincided with these habitat changes. Asian giraffes are hypothesised to have had more okapi-like colourations.
In the early 19th century, Jean-Baptiste Lamarck believed the giraffe's long neck was an "acquired characteristic", developed as generations of ancestral giraffes strove to reach the leaves of tall trees. This theory was eventually rejected, and scientists now believe the giraffe's neck arose through Darwinian natural selection - that ancestral giraffes with long necks thereby had a competitive feeding advantage (competing browsers hypothesis) that better enabled them to survive and reproduce to pass on their genes.
The giraffe genome is around 2.9 billion base pairs in length compared to the 3.3 billion base pairs of the okapi. Of the proteins in giraffe and okapi genes, 19.4% are identical. The two species are equally distantly related to cattle, suggesting the giraffe's unique characteristics are not because of faster evolution. The divergence of giraffe and okapi lineages dates to around 11.5 mya. A small group of regulatory genes in the giraffe appear to be responsible for the animal's stature and associated circulatory adaptations.
SPECIES AND SUBSPECIES
The IUCN currently recognises only one species of giraffe with nine subspecies. In 2001, a two-species taxonomy was proposed. A 2007 study on the genetics of Giraffa, suggested they were six species: the West African, Rothschild's, reticulated, Masai, Angolan, and South African giraffe. The study deduced from genetic differences in nuclear and mitochondrial DNA (mtDNA) that giraffes from these populations are reproductively isolated and rarely interbreed, though no natural obstacles block their mutual access. This includes adjacent populations of Rothschild's, reticulated, and Masai giraffes. The Masai giraffe was also suggested to consist of possibly two species separated by the Rift Valley.
Reticulated and Masai giraffes have the highest mtDNA diversity, which is consistent with giraffes originating in eastern Africa. Populations further north are more closely related to the former, while those to the south are more related to the latter. Giraffes appear to select mates of the same coat type, which are imprinted on them as calves. The implications of these findings for the conservation of giraffes were summarised by David Brown, lead author of the study, who told BBC News: "Lumping all giraffes into one species obscures the reality that some kinds of giraffe are on the brink. Some of these populations number only a few hundred individuals and need immediate protection."
A 2011 study using detailed analyses of the morphology of giraffes, and application of the phylogenetic species concept, described eight species of living giraffes. The eight species are: G. angolensis, G.antiquorum, G. camelopardalis, G. giraffa, G. peralta, G. reticulata, G. thornicrofti, and G. tippelskirchi.
A 2016 study also concluded that living giraffes consist of multiple species. The researchers suggested the existence of four species, which have not exchanged genetic information between each other for 1 million to 2 million years. Those four species are the northern giraffe (G. camelopardalis), southern giraffe (G. giraffa), reticulated giraffe (G. reticulata), and Masai giraffe (G. tippelskirchi). Since then, a response to this publication has been published, highlighting seven problems in data interpretation, and concludes "the conclusions should not be accepted unconditionally".
There are an estimated 90,000 individuals of Giraffa in the wild, with 1,144 currently in captivity.
There are also seven extinct species of giraffe, listed as the following:
†Giraffa gracilis
†Giraffa jumae
†Giraffa priscilla
†Giraffa punjabiensis
†Giraffa pygmaea
†Giraffa sivalensis
†Giraffa stillei
G. attica, also extinct, was formerly considered part of Giraffa but was reclassified as Bohlinia attica in 1929.
APPEARANCE AND ANATOMY
Fully grown giraffes stand 4.3–5.7 m tall, with males taller than females. The tallest recorded male was 5.88 m and the tallest recorded female was 5.17 m tall. The average weight is 1,192 kg for an adult male and 828 kg for an adult female with maximum weights of 1,930 kg and 1,180 kg having been recorded for males and females, respectively. Despite its long neck and legs, the giraffe's body is relatively short. Located at both sides of the head, the giraffe's large, bulging eyes give it good all-round vision from its great height. Giraffes see in colour and their senses of hearing and smell are also sharp. The animal can close its muscular nostrils to protect against sandstorms and ants.
The giraffe's prehensile tongue is about 45 cm long. It is purplish-black in colour, perhaps to protect against sunburn, and is useful for grasping foliage, as well as for grooming and cleaning the animal's nose. The upper lip of the giraffe is also prehensile and useful when foraging and is covered in hair to protect against thorns. The tongue, and inside of the mouth are covered in papillae.
The coat has dark blotches or patches (which can be orange, chestnut, brown, or nearly black in colour separated by light hair (usually white or cream in colour. Male giraffes become darker as they age. The coat pattern has been claimed to serve as camouflage in the light and shade patterns of savannah woodlands. While adult giraffes standing among trees and bushes are hard to see at even a few metres' distance, they actively move into the open to gain the best view of an approaching predator, obviating any benefit that camouflage might bring. Instead, the adults rely on their size and ability to defend themselves. However, camouflage appears to be important for calves, which spend a large part of the day in hiding, away from their mothers; further, over half of all calves die within a year, so predation is certainly important. It appears, therefore, that the spotted coat of the giraffe functions as camouflage for the young, while adults simply inherit this coloration as a by-product. The skin underneath the dark areas may serve as windows for thermoregulation, being sites for complex blood vessel systems and large sweat glands. Each individual giraffe has a unique coat pattern.
The skin of a giraffe is mostly gray. Its thickness allows the animal to run through thorn bush without being punctured. The fur may serve as a chemical defence, as its parasite repellents give the animal a characteristic scent. At least 11 main aromatic chemicals are in the fur, although indole and 3-methylindole are responsible for most of the smell. Because the males have a stronger odour than the females, the odour may also have sexual function. Along the animal's neck is a mane made of short, erect hairs. The one-metre tail ends in a long, dark tuft of hair and is used as a defense against insects.
SKULL AND OSSICONES
Both sexes have prominent horn-like structures called ossicones, which are formed from ossified cartilage, covered in skin and fused to the skull at the parietal bones. Being vascularized, the ossicones may have a role in thermoregulation, and are also used in combat between males. Appearance is a reliable guide to the sex or age of a giraffe: the ossicones of females and young are thin and display tufts of hair on top, whereas those of adult males end in knobs and tend to be bald on top. Also, a median lump, which is more prominent in males, emerges at the front of the skull. Males develop calcium deposits that form bumps on their skulls as they age. A giraffe's skull is lightened by multiple sinuses. However, as males age, their skulls become heavier and more club-like, helping them become more dominant in combat. The upper jaw has a grooved palate and lacks front teeth. The giraffe's molars have a rough surface.
LEGS, LOCOMOTION AND POSTURE
The front and back legs of a giraffe are about the same length. The radius and ulna of the front legs are articulated by the carpus, which, while structurally equivalent to the human wrist, functions as a knee. It appears that a suspensory ligament allows the lanky legs to support the animal's great weight. The foot of the giraffe reaches a diameter of 30 cm, and the hoof is 15 cm high in males and 10 cm in females. The rear of each hoof is low and the fetlock is close to the ground, allowing the foot to provide additional support to the animal's weight. Giraffes lack dewclaws and interdigital glands. The giraffe's pelvis, though relatively short, has an ilium that is outspread at the upper ends.
A giraffe has only two gaits: walking and galloping. Walking is done by moving the legs on one side of the body at the same time, then doing the same on the other side. When galloping, the hind legs move around the front legs before the latter move forward, and the tail will curl up. The animal relies on the forward and backward motions of its head and neck to maintain balance and the counter momentum while galloping. The giraffe can reach a sprint speed of up to 60 km/h, and can sustain 50 km/h for several kilometres.
A giraffe rests by lying with its body on top of its folded legs. To lie down, the animal kneels on its front legs and then lowers the rest of its body. To get back up, it first gets on its knees and spreads its hind legs to raise its hindquarters. It then straightens its front legs. With each step, the animal swings its head. In captivity, the giraffe sleeps intermittently around 4.6 hours per day, mostly at night. It usually sleeps lying down, however, standing sleeps have been recorded, particularly in older individuals. Intermittent short "deep sleep" phases while lying are characterised by the giraffe bending its neck backwards and resting its head on the hip or thigh, a position believed to indicate paradoxical sleep. If the giraffe wants to bend down to drink, it either spreads its front legs or bends its knees. Giraffes would probably not be competent swimmers as their long legs would be highly cumbersome in the water, although they could possibly float. When swimming, the thorax would be weighed down by the front legs, making it difficult for the animal to move its neck and legs in harmony or keep its head above the surface.
NECK
The giraffe has an extremely elongated neck, which can be up to 2–2.4 m in length, accounting for much of the animal's vertical height. The long neck results from a disproportionate lengthening of the cervical vertebrae, not from the addition of more vertebrae. Each cervical vertebra is over 28 cm long. They comprise 52–54 per cent of the length of the giraffe's vertebral column, compared with the 27–33 percent typical of similar large ungulates, including the giraffe’s closest living relative, the okapi. This elongation largely takes place after birth, perhaps because giraffe mothers would have a difficult time giving birth to young with the same neck proportions as adults. The giraffe's head and neck are held up by large muscles and a strengthened nuchal ligament, which are anchored by long dorsal spines on the anterior thoracic vertebrae, giving the animal a hump. The giraffe's neck vertebrae have ball and socket joints. In particular, the atlas–axis joint (C1 and C2) allows the animal to tilt its head vertically and reach more branches with the tongue. The point of articulation between the cervical and thoracic vertebrae of giraffes is shifted to lie between the first and second thoracic vertebrae (T1 and T2), unlike most other ruminants where the articulation is between the seventh cervical vertebra (C7) and T1. This allows C7 to contribute directly to increased neck length and has given rise to the suggestion that T1 is actually C8, and that giraffes have added an extra cervical vertebra. However, this proposition is not generally accepted, as T1 has other morphological features, such as an articulating rib, deemed diagnostic of thoracic vertebrae, and because exceptions to the mammalian limit of seven cervical vertebrae are generally characterised by increased neurological anomalies and maladies.There are several hypotheses regarding the evolutionary origin and maintenance of elongation in giraffe necks. The "competing browsers hypothesis" was originally suggested by Charles Darwin and challenged only recently. It suggests that competitive pressure from smaller browsers, such as kudu, steenbok and impala, encouraged the elongation of the neck, as it enabled giraffes to reach food that competitors could not. This advantage is real, as giraffes can and do feed up to 4.5 m high, while even quite large competitors, such as kudu, can feed up to only about 2 m high. There is also research suggesting that browsing competition is intense at lower levels, and giraffes feed more efficiently (gaining more leaf biomass with each mouthful) high in the canopy. However, scientists disagree about just how much time giraffes spend feeding at levels beyond the reach of other browsers, and a 2010 study found that adult giraffes with longer necks actually suffered higher mortality rates under drought conditions than their shorter-necked counterparts. This study suggests that maintaining a longer neck requires more nutrients, which puts longer-necked giraffes at risk during a food shortage.
Another theory, the sexual selection hypothesis, proposes that the long necks evolved as a secondary sexual characteristic, giving males an advantage in "necking" contests (see below) to establish dominance and obtain access to sexually receptive females. In support of this theory, necks are longer and heavier for males than females of the same age, and the former do not employ other forms of combat. However, one objection is that it fails to explain why female giraffes also have long necks. It has also been proposed that the neck serves to give the animal greater vigilance.
INTERNAL SYSTEMS
In mammals, the left recurrent laryngeal nerve is longer than the right; in the giraffe it is over 30 cm longer. These nerves are longer in the giraffe than in any other living animal; the left nerve is over 2 m long. Each nerve cell in this path begins in the brainstem and passes down the neck along the vagus nerve, then branches off into the recurrent laryngeal nerve which passes back up the neck to the larynx. Thus, these nerve cells have a length of nearly 5 m in the largest giraffes. The structure of a giraffe's brain resembles that of domestic cattle. It is kept cool by evaporative heat loss in the nasal passages. The shape of the skeleton gives the giraffe a small lung volume relative to its mass. Its long neck gives it a large amount of dead space, in spite of its narrow windpipe. These factors increase the resistance to airflow. Nevertheless, the animal can still supply enough oxygen to its tissues and it can increase its respiratory rate and oxygen diffusion when running.
The circulatory system of the giraffe has several adaptations for its great height. Its heart, which can weigh more than 11 kg and measures about 60 cm long, must generate approximately double the blood pressure required for a human to maintain blood flow to the brain. As such, the wall of the heart can be as thick as 7.5 cm. Giraffes have unusually high heart rates for their size, at 150 beats per minute. When the animal lowers its head the blood rushes down fairly unopposed and a rete mirabile in the upper neck, with its large cross sectional area, prevents excess blood flow to the brain. When it raises again, the blood vessels constrict and direct blood into the brain so the animal does not faint. The jugular veins contain several (most commonly seven) valves to prevent blood flowing back into the head from the inferior vena cava and right atrium while the head is lowered. Conversely, the blood vessels in the lower legs are under great pressure because of the weight of fluid pressing down on them. To solve this problem, the skin of the lower legs is thick and tight; preventing too much blood from pouring into them.
Giraffes have oesophageal muscles that are unusually strong to allow regurgitation of food from the stomach up the neck and into the mouth for rumination. They have four chambered stomachs, as in all ruminants, and the first chamber has adapted to their specialised diet. The intestines of an adult giraffe measure more than 70 m in length and have a relatively small ratio of small to large intestine. The liver of the giraffe is small and compact. A gallbladder is generally present during fetal life, but it may disappear before birth.
BEHAVIOUR AND ECOLOGY
HABITAT AND FEEDING
Giraffes usually inhabit savannahs and open woodlands. They prefer Acacieae, Commiphora, Combretum and open Terminalia woodlands over denser environments like Brachystegia woodlands. The Angolan giraffe can be found in desert environments. Giraffes browse on the twigs of trees, preferring trees of the subfamily Acacieae and the genera Commiphora and Terminalia, which are important sources of calcium and protein to sustain the giraffe's growth rate. They also feed on shrubs, grass and fruit. A giraffe eats around 34 kg of foliage daily. When stressed, giraffes may chew the bark off branches. Although herbivorous, the giraffe has been known to visit carcasses and lick dried meat off bones.
During the wet season, food is abundant and giraffes are more spread out, while during the dry season, they gather around the remaining evergreen trees and bushes. Mothers tend to feed in open areas, presumably to make it easier to detect predators, although this may reduce their feeding efficiency. As a ruminant, the giraffe first chews its food, then swallows it for processing and then visibly passes the half-digested cud up the neck and back into the mouth to chew again. It is common for a giraffe to salivate while feeding. The giraffe requires less food than many other herbivores because the foliage it eats has more concentrated nutrients and it has a more efficient digestive system. The animal's faeces come in the form of small pellets. When it has access to water, a giraffe drinks at intervals no longer than three days.
Giraffes have a great effect on the trees that they feed on, delaying the growth of young trees for some years and giving "waistlines" to trees that are too tall. Feeding is at its highest during the first and last hours of daytime. Between these hours, giraffes mostly stand and ruminate. Rumination is the dominant activity during the night, when it is mostly done lying down.
SOCIAL LIFE
Giraffes are usually found in groups. Traditionally, the composition of these groups has been described as open and ever-changing. Giraffes were thought to have few social bonds and for research purposes, a "group" has been defined as "a collection of individuals that are less than a kilometre apart and moving in the same general direction." More recent studies have found that giraffes do have long-term social associations and may form groups or pairs based on kinship, sex or other factors. These groups may regularly associate with one another in larger communities or sub-communities within a fission–fusion society. The number of giraffes in a group can range up to 44 individuals.
Giraffe groups tend to be sex-segregated although mixed-sex groups made of adult females and young males are known to occur. Particularity stable giraffe groups are those made of mothers and their young, which can last weeks or months. Social cohesion in these groups is maintained by the bonds formed between calves. Female association appears to be based on space-use and individuals may be matrilineally related. In general, females are more selective than males in who they associate with in regards to individuals of the same sex. Young males also form groups and will engage in playfights. However, as they get older males become more solitary but may also associate in pairs or with female groups. Giraffes are not territorial, but they have home ranges. Male giraffes occasionally wander far from areas that they normally frequent.
Although generally quiet and non-vocal, giraffes have been heard to communicate using various sounds. During courtship, males emit loud coughs. Females call their young by bellowing. Calves will emit snorts, bleats, mooing and mewing sounds. Giraffes also snore, hiss, moan, grunt and make flute-like sounds, and possibly communicate over long distances using infrasound - though this is disputed. During nighttime, giraffes appear to hum to each other above the infrasound range for purposes which are unclear.
REPRODUCTION AND PARENTAL CARE
Reproduction in giraffes is broadly polygamous: a few older males mate with the fertile females. Male giraffes assess female fertility by tasting the female's urine to detect oestrus, in a multi-step process known as the flehmen response. Males prefer young adult females over juveniles and older adults. Once an oestrous female is detected, the male will attempt to court her. When courting, dominant males will keep subordinate ones at bay. A courting male may lick a female's tail, rest his head and neck on her body or nudge her with his horns. During copulation, the male stands on his hind legs with his head held up and his front legs resting on the female's sides. Giraffe gestation lasts 400–460 days, after which a single calf is normally born, although twins occur on rare occasions. The mother gives birth standing up. The calf emerges head and front legs first, having broken through the fetal membranes, and falls to the ground, severing the umbilical cord. The mother then grooms the newborn and helps it stand up. A newborn giraffe is 1.7–2 m tall. Within a few hours of birth, the calf can run around and is almost indistinguishable from a one-week-old. However, for the first 1–3 weeks, it spends most of its time hiding; its coat pattern providing camouflage. The ossicones, which have lain flat while it was in the womb, become erect within a few days.
Mothers with calves will gather in nursery herds, moving or browsing together. Mothers in such a group may sometimes leave their calves with one female while they forage and drink elsewhere. This is known as a "calving pool". Adult males play almost no role in raising the young, although they appear to have friendly interactions. Calves are at risk of predation, and a mother giraffe will stand over her calf and kick at an approaching predator. Females watching calving pools will only alert their own young if they detect a disturbance, although the others will take notice and follow.
The length time in which offspring stay with their mother varies, though it can last until the female's next calving. Likewise, calves may suckle for only a month or as long as a year.] Females become sexually mature when they are four years old, while males become mature at four or five years. Spermatogenesis in male giraffes begins at three to four years of age. Males must wait until they are at least seven years old to gain the opportunity to mate.
NECKING
Male giraffes use their necks as weapons in combat, a behaviour known as "necking". Necking is used to establish dominance and males that win necking bouts have greater reproductive success. This behaviour occurs at low or high intensity. In low intensity necking, the combatants rub and lean against each other. The male that can hold itself more erect wins the bout. In high intensity necking, the combatants will spread their front legs and swing their necks at each other, attempting to land blows with their ossicones. The contestants will try to dodge each other's blows and then get ready to counter. The power of a blow depends on the weight of the skull and the arc of the swing. A necking duel can last more than half an hour, depending on how well matched the combatants are. Although most fights do not lead to serious injury, there have been records of broken jaws, broken necks, and even deaths.
After a duel, it is common for two male giraffes to caress and court each other. Such interactions between males have been found to be more frequent than heterosexual coupling. In one study, up to 94 percent of observed mounting incidents took place between males. The proportion of same-sex activities varied from 30–75 percent. Only one percent of same-sex mounting incidents occurred between females.
MORTALITY AND HEALTH
Giraffes have high adult survival probability, and an unusually long lifespan compared to other ruminants, up to 25 years in the wild. Because of their size, eyesight and powerful kicks, adult giraffes are usually not subject to predation, aside from lions. Giraffes are the most common prey for the big cats in Kruger National Park. Nile crocodiles can also be a threat to giraffes when they bend down to drink. Calves are much more vulnerable than adults, and are additionally preyed on by leopards, spotted hyenas and wild dogs. A quarter to a half of giraffe calves reach adulthood. Calf survival varies according to the season of birth, with calves born during the dry season having higher survival rates. The local, seasonal presence of large herds of migratory wildebeests and zebras reduces predation pressure on giraffe calves and increases their survival probability.
Some parasites feed on giraffes. They are often hosts for ticks, especially in the area around the genitals, which has thinner skin than other areas. Tick species that commonly feed on giraffes are those of genera Hyalomma, Amblyomma and Rhipicephalus. Giraffes may rely on red-billed and yellow-billed oxpeckers to clean them of ticks and alert them to danger. Giraffes host numerous species of internal parasite and are susceptible to various diseases. They were victims of the (now eradicated) viral illness rinderpest. Giraffes can also suffer from a skin disorder, which comes in the form of wrinkles, lesions or raw fissures. It appears to be caused by a nematode and may be further effected by fungal infections. As much as 79% of giraffes show signs of the disease in Ruaha National Park.
RELATIONSHIP WITH HUMANS
Humans have interacted with giraffes for millennia. The San people of southern Africa have medicine dances named after some animals; the giraffe dance is performed to treat head ailments. How the giraffe got its height has been the subject of various African folktales, including one from eastern Africa which explains that the giraffe grew tall from eating too many magic herbs. Giraffes were depicted in art throughout the African continent, including that of the Kiffians, Egyptians and Meroë Nubians. The Kiffians were responsible for a life-size rock engraving of two giraffes that has been called the "world's largest rock art petroglyph". The Egyptians gave the giraffe its own hieroglyph, named 'sr' in Old Egyptian and 'mmy' in later periods. They also kept giraffes as pets and shipped them around the Mediterranean.
The giraffe was also known to the Greeks and Romans, who believed that it was an unnatural hybrid of a camel and a leopard and called it camelopardalis. The giraffe was among the many animals collected and displayed by the Romans. The first one in Rome was brought in by Julius Caesar in 46 BC and exhibited to the public. With the fall of the Western Roman Empire, the housing of giraffes in Europe declined. During the Middle Ages, giraffes were known to Europeans through contact with the Arabs, who revered the giraffe for its peculiar appearance.
Individual captive giraffes were given celebrity status throughout history. In 1414, a giraffe was shipped from Malindi to Bengal. It was then taken to China by explorer Zheng He and placed in a Ming dynasty zoo. The animal was a source of fascination for the Chinese people, who associated it with the mythical Qilin. The Medici giraffe was a giraffe presented to Lorenzo de' Medici in 1486. It caused a great stir on its arrival in Florence. Zarafa, another famous giraffe, was brought from Egypt to Paris in the early 19th century as a gift from Muhammad Ali of Egypt to Charles X of France. A sensation, the giraffe was the subject of numerous memorabilia or "giraffanalia".
Giraffes continue to have a presence in modern culture. Salvador Dalí depicted them with burning manes in some of his surrealist paintings. Dali considered the giraffe to be a symbol of masculinity, and a flaming giraffe was meant to be a "masculine cosmic apocalyptic monster". Several children's books feature the giraffe, including David A. Ufer's The Giraffe Who Was Afraid of Heights, Giles Andreae's Giraffes Can't Dance and Roald Dahl's The Giraffe and the Pelly and Me. Giraffes have appeared in animated films, as minor characters in Disney's The Lion King and Dumbo, and in more prominent roles in The Wild and in the Madagascar films. Sophie the Giraffe has been a popular teether since 1961. Another famous fictional giraffe is the Toys "R" Us mascot Geoffrey the Giraffe.
The giraffe has also been used for some scientific experiments and discoveries. Scientists have looked at the properties of giraffe skin when developing suits for astronauts and fighter pilots because the people in these professions are in danger of passing out if blood rushes to their legs. Computer scientists have modeled the coat patterns of several subspecies using reaction–diffusion mechanisms.
The constellation of Camelopardalis, introduced in the seventeenth century, depicts a giraffe. The Tswana people of Botswana traditionally see the constellation Crux as two giraffes – Acrux and Mimosa forming a male, and Gacrux and Delta Crucis forming the female.
EXPLOITATION AND CONSERVATION STATUS
Giraffes were probably common targets for hunters throughout Africa. Different parts of their bodies were used for different purposes. Their meat was used for food. The tail hairs served as flyswatters, bracelets, necklaces and thread. Shields, sandals and drums were made using the skin, and the strings of musical instruments were from the tendons. The smoke from burning giraffe skins was used by the medicine men of Buganda to treat nose bleeds. The Humr people of Sudan consume the drink Umm Nyolokh; which is created from the liver and marrow of giraffes. Umm Nyolokh often contains DMT and other psychoactive substances from plants the giraffes eat such as Acacia; and is known to cause hallucinations of giraffes, believed to be the giraffes' ghosts by the Humr. In the 19th century, European explorers began to hunt them for sport. Habitat destruction has hurt the giraffe, too: in the Sahel, the need for firewood and grazing room for livestock has led to deforestation. Normally, giraffes can coexist with livestock, since they do not directly compete with them. In 2017, severe droughts in northern Kenya have led to increased tensions over land and the killing of wildlife by herders, with giraffe populations being particularly hit.
Aerial survey is the most common method of monitoring giraffe population trends in the vast roadless tracts of African landscapes, but aerial methods are known to undercount giraffes. Ground-based survey methods are more accurate and should be used in conjunction with aerial surveys to make accurate estimates of population sizes and trends. In 2010, giraffes were assessed as Least Concern from a conservation perspective by the International Union for Conservation of Nature (IUCN), but the 2016 assessment categorized giraffes as Vulnerable. Giraffes have been extirpated from much of their historic range including Eritrea, Guinea, Mauritania and Senegal. They may also have disappeared from Angola, Mali, and Nigeria, but have been introduced to Rwanda and Swaziland. Two subspecies, the West African giraffe and the Rothschild giraffe, have been classified as endangered, as wild populations of each of them number in the hundreds.
In 1997, Jonathan Kingdon suggested that the Nubian giraffe was the most threatened of all giraffes; as of 2010, it may number fewer than 250, although this estimate is uncertain. Private game reserves have contributed to the preservation of giraffe populations in southern Africa. Giraffe Manor is a popular hotel in Nairobi that also serves as sanctuary for Rothschild's giraffes. The giraffe is a protected species in most of its range. It is the national animal of Tanzania, and is protected by law. Unauthorised killing can result in imprisonment. The UN backed Convention of Migratory Species selected giraffes for protection in 2017. In 1999, it was estimated that over 140,000 giraffes existed in the wild, estimations as of 2016 indicate that there are approximately 97,500 members of Giraffa in the wild, down from 155,000 in 1985, with around 1,144 in captivity.
WIKIPEDIA
EuropeanaTech 2018 placed tech firmly at the centre of the European Year of Cultural Heritage and brought together an international network of technical and R&D specialists from memory organisations, research institutions and creative industries to share innovative progress and forecast the technical future of Europeana and digital cultural heritage. For more information: pro.europeana.eu/event/europeanatech-conference-2018
This aggregation of tiny ants was one of many at the moth lights at one of our Nantucket Moth Blitzes. There had to have been hundreds of ants on the sheet that night!
Turns out these are acorn ants, Temnothorax curvispinosus. They must have come in from the many scrub oaks surrounding the Nantucket Field Station. The aggregation is apparently part of their nuptial flight, when mating occurs.
Thanks to James C. Trager for providing the id.
Nick Roshon, NSO strategist at iCrossing, spoke at Search Marketing Expo (SMX) West this week in San Jose, CA. A copy of his presentation, “Duplication, Aggregation, Syndication, Affiliates, Scraping and Information Architecture” is available on SlideShare: icrsng.com/ztUomY