View allAll Photos Tagged ventromedial
(Medical Xpress)—The human brain's exquisite complexity and power make it a unique evolutionary marvel. One of the brain's more interesting abilities is known as the placebo effect, in which no more than the expectation of relief can lead to analgesia – the relief of pain, anxiety, depression, nausea, and many other aversive states. However, scientists at University of Gothenburg and University of Oslo recently showed that the placebo effect may not be limited to pain reduction, but may also enhance pleasure, or hyperhedonia. The researchers used the placebo effect to improve both painful and pleasant touch sensations in healthy humans – and by comparing brain processing using functional magnetic resonance imaging (fMRI), found that, depending on whether the starting point was painful or pleasant, neurocircuitry associated with emotion and reward underpinned improvement of both pain and pleasant touch by dampening pain but increasing touch pleasantness.
In an interview with Medical Xpress, PhD candidate Dan-Mikael Ellingsen discussed the paper he and his colleagues published in Proceedings of the National Academy of Sciences. "In recent years, functional brain imaging studies have shown that expecting a treatment to relieve negative symptoms – like pain, anxiety or unpleasant taste – leads to not only subjective reports of relief, but also suppressed brain activity in sensory circuitry during aversive stimuli, such as noxious heat or touch, threatening images, and unpleasant taste," Ellingsen tells Medical Xpress. "However, both aversive and appetitive experiences – for example, tasty food or a pleasant touch – are affected by context and expectation." Therefore, Ellingsen explains, in forming their hypothesis for this study, the researchers asked whether improvement of good experiences is encoded entirely in higher-level valuation processing, or whether it would mirror the modulation of early stages of sensory processing that is seen for aversive stimuli. "If so, we'd expect such positive sensory signals to be up-regulated, in contrast to the down-regulation of sensory signals we see during placebo-induced reduction of aversive experiences."
In the placebo manipulation procedure, participants were shown a short video documentary convincing them that a nasal spray containing the neuropeptide oxytocin would reduce pain and enhance the pleasantness of pleasant touch. Following this video, they self-administered 10 puffs of a placebo nasal that they were told could contain oxytocin. The pleasant touch stimuli consisted of caress-like light strokes with a soft brush, or a hot/cold pack (resembling a warm hand, applied to the subject's forearm. The pain stimulus was a thermode (~47 degrees Celsius) on the hand.
Ellingsen notes that by comparing brain activation during painful or pleasant touch stimuli after placebo treatment versus no-placebo, the scientists were able to assess differences in activation that was specifically related to having received placebo treatment. "Importantly, the subjective reports showed that, after receiving placebo relative to no-placebo, touch pleasantness was increased while pain unpleasantness was decreased," he adds. "When contrasting placebo and no-placebo on brain activation, we found that sensory activation was increased during pleasant touch stimuli and decreased during painful touch stimuli. In other words, the placebo-induced change in sensory processing reflected the placebo-induced change in subjective reports."
The team also hypothesized that placebo improvement of pleasant touch would recruit the same emotion appraisal neurocircuitry that underpins placebo analgesia. "Neural systems mediating pain and pleasure interact extensively, with pain and pleasure often being mutually inhibitory," Ellingsen says. "For instance," he illustrates, "pleasant stimuli such as music, food, odors, and touch can have analgesic effects – and pain can inhibit pleasure and positive feelings. Further, opioids can induce both potent analgesia and feelings of pleasure." (An opioid is any psychoactive chemical that resembles morphine or other opiate in its pharmacological effects.) Ellingsen points out that previous findings show that relief from pain induces pleasant feelings1,2, and when a normally painful stimulus represents the best possible outcome – that is, when the alternative is even more intense pain3 – it can even become pleasant.
Ellingsen explains that a central element in all placebo effects is that there is an expectation or desire for an improvement, for example, a relief of pain or unpleasantness – and placebo effects have been theorized to arise from a generalized mechanism of reward prediction. This reasoning, he notes, is supported by evidence that placebo responses across modalities – analgesia6, anxiety relief7, and so on – rely on activation of similar neural systems involved in reward and emotion. "In line with this strong link between pleasure and the relief from negative feelings, we hypothesized that improving the pleasantness of an appetitive stimulus would rely on modulatory mechanisms similar to those involved in the improvement of aversive feelings."
A key aspect of the team's research was devising and applying an fMRI crossover study to compare neural processing of placebo hyperhedonia and analgesia. "In order to compare the brain mechanisms of placebo hyperhedonia and analgesia, we assessed the effect of placebo treatment on subjective experiences within the same sensory modality – namely, touch, both pleasant and painful."
A key aspect of the study's analytic design was based on the researchers' knowledge that all dermal information is processed in the same neural pathways – specifically, the sensory thalamus, primary and secondary somatosensory areas, and the posterior insula. "As a result," Ellingsen points out, "we were able to perform two important measurements: we directly compared how expectation of improvement affected the processing of positive and negative somatosensory signals in these pathways, and investigated the effect of higher-level modulatory circuitry on sensory processing of pleasant or painful touch."
Proposed mechanism of placebo analgesia and hyperhedonia. During expectation of hyperhedonia and analgesia, a shared modulatory network up-regulates pleasant touch processing and down-regulates painful touch processing in somatosensory areas, …more
Another factor the scientists had to consider was that the use of subjective rating scales varies widely between individuals (as opposed to a single individual's typical consistency). As a result, these scales are significantly better at detecting changes between placebo and no-placebo within individuals rather than between one group who received placebo and another that received no placebo. "Consequently," Ellingsen explains, "such a design has superior statistical power – that is, a greater ability to detect a true effect."
Further, the potential benefit of a crossover design can be found when the order of treatment – specifically, placebo or no-placebo first – is considered, since it may potentially affect responses. "To control for this potential confounder," notes Ellingsen, "we used a crossover design, that is, half of the subjects got placebo in the first session, and the other half got placebo in the last session." However, he adds, in the analyses they performed, they found that the treatment order had no effect on either subjective placebo improvement or brain activation.
"To our knowledge," Ellingsen continues, "our study is the first to investigate placebo improvement of pleasurable feelings. By directly comparing this effect with the more well-known placebo analgesia effect, we were able to identify both the differences and a potential shared mechanism of these two types of improvement: People with stronger placebo-induced increases in functional coupling between ventromedial prefrontal cortex (vmPFC) and subcortical structures (PAG) reported greater placebo hyperhedonia and analgesia, and had greater analgesic decreases and hyperhedonic increases in somatosensory processing."
Ellingsen says that this finding suggests that endogenous improvement of positive and negative feelings are tightly coupled. "Interestingly, we saw that people with the greatest placebo hyperhedonia responses also had the greatest placebo analgesia responses. Overall, the results provide a piece of the puzzle of how positive expectations affect both positive and negative feelings."
Expanding on the team's findings, Ellingsen describes how the researchers first observed that placebo hyperhedonia was associated with increased activation of a number of cortical and subcortical areas important for placebo analgesia – namely, the ventromedial prefrontal cortex, accumbens, amygdala, and the midbrain structures periaqueductal grey and the ventral tegmental area. Not only was there increased activation in these areas after placebo administration compared to no-placebo, Ellingsen adds, but the amount of increase was positively correlated to the magnitude of the reported improvement: Those with largest placebo-induced hyperhedonia and analgesia had the highest placebo-induced activation in these areas. Moreover, those with largest placebo hyperhedonia and analgesia also had the strongest placebo-induced increase in functional connectivity within this circuitry, a measure of how much these areas communicate with each other. "Although our findings show similar patterns of activation between placebo hyperhedonia and analgesia, it's important to point out that they weren't identical. There are likely to be fine-grained differences between these processes within this circuitry that were not identified by this study."
Ellingsen stresses that an important mechanism in placebo analgesia – one that has been replicated several times – is the engagement of the opioid descending modulatory system, which consists of vmPFC, amygdala, and PAG. "When treated with a placebo that is expected to have analgesic effects," Ellingsen explains, "activation of this system suppresses nociceptive" (the neural processes of encoding and processing noxious or painful stimuli) "signaling both in the brain and – since the PAG has descending connections through the rostroventral medulla, RVM, to the spinal dorsal horn, where it can modulate incoming nociceptive signals – at the spinal cord level." Importantly, he notes, placebo analgesia and the activation of this system are reversed when the individual is given the opioid receptor antagonist naloxone, indicating that this mechanism is dependent on opioid signaling.
To ask whether this system is involved also in placebo improvement of pleasantness, we assessed the relationship between 1) the placebo-induced change in functional connectivity between the vmPFC and PAG, and 2) placebo-induced change in sensory processing. Strikingly, we found that the co-activation of vmPFC and PAG was related to opposite effects during placebo hyperhedonia and analgesia: During pain, those with strongest increases in functional coupling had the largest decreases in sensory processing, while during pleasant touch, those with strongest functional coupling had the largest sensory increases. We are now planning to investigate whether placebo hyperhedonia, like (most) placebo analgesia, depends on opioid signaling.
Moving forward, Ellingsen says, their study opens up several important questions for future studies:
Does placebo hyperhedonia, similar to analgesia, rely on opioid or dopamine signaling?
Could expectation of hyperhedonia alone have analgesic effects – and vice versa?
Could including information about potential hyperhedonic effects actually boost treatment effects of analgesic drugs?
What is the exact mechanism of the up-regulation of sensory processing in placebo hyperhedonia? Is it entirely central in its action, or could it involve descending facilitation of touch processing at the spinal cord level, which is a component in placebo analgesia4 and nocebo hyperalgesia5?
(A nocebo – the opposite of a placebo – is a harmless substance that creates detrimental effects in a patient who takes it. Likewise, the nocebo effect is the negative expectation-based reaction experienced by a patient who receives a nocebo.)
Regarding other areas of research that might benefit from their study, Ellingsen cites a growing recognition that health care systems need to be remodeled to target placebo mechanisms – and to do so by altering expectations, motivation, treatment context, and the therapist-patient relationship. "In most medical settings, however, the focus is to ease negative symptoms – to relieve pain, nausea, or discomfort – but to attain positive feelings, people have to seek elsewhere, despite our knowledge that positive experiences, like captivating music, pleasant odors, beautiful pictures, pleasant touch, and support from people we care about, can have potent analgesic effects."
If the tightly-coupling expectations of improvement in pleasurable and painful feelings suggested by their results interact in the clinical setting, Ellingsen believes it to be very likely that increasing the focus on positive appetitive effects of medical care (increased life quality, regained ability to enjoy pleasures, and the like) may have potent effects on the relief of negative symptoms. "In general," he concludes, "our findings shed some light on the complex relationship between positive feelings, negative feelings and expectation in the context of medical treatment. We believe our findings are relevant to the field of medical research in general, and promote widening the scope of medical research to improvement of positive experiences and pleasure."
Explore further: Intranasal application of hormone appears to enhance placebo response
More information: Placebo improves pleasure and pain through opposite modulation of sensory processing, PNAS Published online before print October 14, 2013, doi:10.1073/pnas.1305050110
Related:
1Relief as a Reward: Hedonic and Neural Responses to Safety from Pain, PLoS ONE 6(4): e17870. doi:10.1371/journal.pone.0017870
2Opponent appetitive-aversive neural processes underlie predictive learning of pain relief, Nature Neuroscience 8, 1234-1240 (2005),
doi:10.1038/nn1527
3The importance of context: When relative relief renders pain
Pleasant, Pain 2013 Mar;154(3):402-10, doi:10.1016/j.pain.2012.11.018
4Direct Evidence for Spinal Cord Involvement in Placebo Analgesia, Science 16 October 2009: Vol. 326 no. 5951 p. 404, doi:10.1126/science.1180142
5Facilitation of Pain in the Human Spinal Cord by Nocebo Treatment, The Journal of Neuroscience, 21 August 2013, 33(34): 13784-13790; doi:10.1523/JNEUROSCI.2191-13.2013
6Placebo-induced changes in FMRI in the anticipation and experience of pain, Science, 303(5661): 1162-1167 (2004), doi:10.1126/science.1093065
7Placebo in emotional processing—induced expectations of anxiety relief activate a generalized modulatory network, Neuron, 46(6), 957-969 (2005), doi:10.1016/j.neuron.2005.05.023
Journal reference: Proceedings of the National Academy of Sciences PLoS ONE Nature Neuroscience Pain Science Journal of Neuroscience Neuron
view popular
Human evolution is the evolutionary process leading up to the appearance of modern humans. While it began with the last common ancestor of all life, the topic usually covers only the evolutionary history of primates, in particular the genus Homo, and the emergence of Homo sapiens as a distinct species of hominids (or "great apes"). The study of human evolution involves many scientific disciplines, including physical anthropology, primatology, archaeology, ethology, linguistics, evolutionary psychology, embryology and genetics.
Genetic studies show that primates diverged from other mammals about 85 million years ago in the Late Cretaceous period, and the earliest fossils appear in the Paleocene, around 55 million years ago. The family Hominidae diverged from the Hylobatidae (Gibbon) family 15-20 million years ago, and around 14 million years ago, the Ponginae (orangutans) diverged from the Hominidae family. Bipedalism is the basic adaption of the Hominin line, and the earliest bipedal Hominin is considered to be either Sahelanthropus or Orrorin, with Ardipithecus, a full bipedal, coming somewhat later. The gorilla and chimpanzee diverged around the same time, about 4-6 million years ago, and either Sahelanthropus or Orrorin may be our last shared ancestor with them. The early bipedals eventually evolved into the australopithecines and later the genus Homo.
In Hauser’s view, the moral faculty is triggered by the perception of an action or the omission of an action and automatically produces a judgment that is sensitive to the action’s (or omission’s) causes and consequences and to whether the consequences
were intended or foreseen. Actions are perceived to have more moral weight than omissions, and intended harms are seen to be morally worse than foreseen harms. Using his ongoing Web-based surveys, Hauser has amassed an enormous amount of evidence demonstrating that these distinctions are made in the same way in all cultures, across all educational levels, and by both sexes.
But subjects are typically unable to articulate adequate justifications for their judgments. Hauser takes this inability to be evidence for his view that we have a moral faculty that operates below
the level of conscious awareness. Once again he points out the parallels to linguistic competence. Just as it is easy for us to judge whether a sentence is grammatical but difficult for us to justify or explain that judgment, so we are able to judge the permissibility of an action easily but find ourselves unable to explain that judgment. Since our ability to make moral judgments outpaces our ability to justify them, moral judgment does not seem to be the product of rational reflection. Might it be the product of an emotional system instead? Hauser grants that moral judgments are typically accompanied by emotions, but
he suggests that these emotions are the result of the moral judgment rather than the cause. Part of his evidence for this claim comes from studies of patients with damage to the ventromedial prefrontal cortex. These patients appear to have reduced
emotional responses to moral harms, yet their judgments appear to be identical to those of
normal subjects when confronted with most moral dilemmas. Hauser nonetheless believes that emotions powerfully influence moral performance — by influencing our motivation to act morally — but that the moral faculty itself is independent of the emotional system. Moral competence is the product of an innate moral faculty whose optional parameters and exceptions are determined by the culture into which each of us is born. There is little doubt that this book, written for a general audience, is the most important attempt to date to explain the psychological mechanisms of moral judgments. However, Hauser has made
the unusual decision to publish it well before all the experimental data are in. For this reason, the book is sometimes frustratingly vague on key questions. Is the moral faculty cognitively penetrable — that is, can a person gradually alter its parameters througreflection — or is it more like the visual system, which remains subject to visual illusions even when we know full well that they are illusions? What accounts for the differences in moral judgments among people who grow up in the same culture, a difference that has no obvious parallel in the linguistic sphere? It would be churlish to criticize Hauser for the lack
of clarity and detail on such matters. Moral Minds
Copyright ©By Marc D. Hauser
Mudskipper
Mudskippers are amphibious fish, presently included in the subfamily Oxudercinae, within the family Gobiidae (gobies). Recent molecular studies do not support this classification, as oxudercine gobies appear to be paraphyletic relative to amblyopine gobies (Gobiidae: Amblyopinae), thus being included in a distinct "Periophthalmus lineage", together with amblyopines. Mudskippers can be defined as oxudercine gobies that are "fully terrestrial for some portion of the daily cycle" (character 24 in Murdy, 1989). This would define the species of the genera Boleophthalmus, Periophthalmodon, Periophthalmus, and Scartelaos as "mudskippers". However, field observations of Zappa confluentus suggest that this monotypic genus should be included in the definition. These genera presently include 32 species. Mudskippers use their pectoral fins and pelvic fins to walk on land. They typically live in intertidal habitats, and exhibit unique adaptations to this environment that are not found in most intertidal fishes, which typically survive the retreat of the tide by hiding under wet seaweed or in tide pools.
Mudskippers are quite active when out of water, feeding and interacting with one another, for example, to defend their territories and court potential partners. They are found in tropical, subtropical, and temperate regions, including the Indo-Pacific and the Atlantic coast of Africa.
Compared with fully aquatic gobies, these specialized fish present a range of peculiar anatomical and behavioural adaptations that allow them to move effectively on land as well as in the water. As their name implies, these fish use their fins to move around in a series of skips.
Mudskippers have the ability to breathe through their skin and the lining of their mouth (the mucosa) and throat (the pharynx): This is only possible when the mudskippers are wet, limiting them to humid habitats and requiring they keep themselves moist. This mode of breathing, similar to that employed by amphibians, is known as cutaneous air breathing. Another important adaptation that aids breathing while out of water is their enlarged gill chambers, where they retain a bubble of air. These chambers close tightly when the fish is above water, due to a ventromedial valve of the gill slit, keeping the gills moist, and allowing them to function while exposed to air. Gill filaments are stiff and do not coalesce when out of water.
Digging deep burrows in soft sediments allows the fish to thermoregulate, avoid marine predators during the high tide when the fish and burrow are submerged, and lay their eggs. When the burrow is submerged, several mudskipper species maintain an air pocket inside it, which allows them to breathe in conditions of very low oxygen concentration.
The genus Periophthalmus is by far the most diverse and widespread genus of mudskipper. Eighteen species have been described. Periophthalmus argentilineatus is one of the most widespread and well-known species. It can be found in mangrove ecosystems and mudflats of East Africa and Madagascar east through the Sundarbans of Bengal, Southeast Asia to Northern Australia, southeast China, and southern Japan, to Samoa and Tonga Islands. It grows to a length of about 9.5 cm and is a carnivorous opportunist feeder. It feeds on small prey such as small crabs and other arthropods. However, a recent molecular study suggests that P. argentilineatus is in fact a complex of species, with at least three separate lineages, one in East Africa, and two in the Indo-Malayan region. Another species, Periophthalmus barbarus, is the only oxudercine goby that inhabits the coastal areas of western Africa.
Mudskippers are amphibious fish, presently included in the subfamily Oxudercinae, within the family Gobiidae (gobies). Recent molecular studies do not support this classification, as oxudercine gobies appear to be paraphyletic relative to amblyopine gobies (Gobiidae: Amblyopinae), thus being included in a distinct "Periophthalmus lineage", together with amblyopines. Mudskippers can be defined as oxudercine gobies that are "fully terrestrial for some portion of the daily cycle" (character 24 in Murdy, 1989). This would define the species of the genera Boleophthalmus, Periophthalmodon, Periophthalmus, and Scartelaos as "mudskippers". However, field observations of Zappa confluentus suggest that this monotypic genus should be included in the definition. These genera presently include 32 species. Mudskippers use their pectoral fins and pelvic fins to walk on land. They typically live in intertidal habitats, and exhibit unique adaptations to this environment that are not found in most intertidal fishes, which typically survive the retreat of the tide by hiding under wet seaweed or in tide pools.
Mudskippers are quite active when out of water, feeding and interacting with one another, for example, to defend their territories and court potential partners. They are found in tropical, subtropical, and temperate regions, including the Indo-Pacific and the Atlantic coast of Africa.
Compared with fully aquatic gobies, these specialized fish present a range of peculiar anatomical and behavioural adaptations that allow them to move effectively on land as well as in the water. As their name implies, these fish use their fins to move around in a series of skips.
Mudskippers have the ability to breathe through their skin and the lining of their mouth (the mucosa) and throat (the pharynx): This is only possible when the mudskippers are wet, limiting them to humid habitats and requiring they keep themselves moist. This mode of breathing, similar to that employed by amphibians, is known as cutaneous air breathing. Another important adaptation that aids breathing while out of water is their enlarged gill chambers, where they retain a bubble of air. These chambers close tightly when the fish is above water, due to a ventromedial valve of the gill slit, keeping the gills moist, and allowing them to function while exposed to air. Gill filaments are stiff and do not coalesce when out of water.
Digging deep burrows in soft sediments allows the fish to thermoregulate, avoid marine predators during the high tide when the fish and burrow are submerged, and lay their eggs. When the burrow is submerged, several mudskipper species maintain an air pocket inside it, which allows them to breathe in conditions of very low oxygen concentration.
The genus Periophthalmus is by far the most diverse and widespread genus of mudskipper. Eighteen species have been described. Periophthalmus argentilineatus is one of the most widespread and well-known species. It can be found in mangrove ecosystems and mudflats of East Africa and Madagascar east through the Sundarbans of Bengal, Southeast Asia to Northern Australia, southeast China, and southern Japan, to Samoa and Tonga Islands. It grows to a length of about 9.5 cm and is a carnivorous opportunist feeder. It feeds on small prey such as small crabs and other arthropods. However, a recent molecular study suggests that P. argentilineatus is in fact a complex of species, with at least three separate lineages, one in East Africa, and two in the Indo-Malayan region. Another species, Periophthalmus barbarus, is the only oxudercine goby that inhabits the coastal areas of western Africa.
臺北榮總暨國立陽明大學聯合記者會新聞稿
原發性痛經之基因學及腦造影研究於醫學與腦科學上的最新發現:
原發性痛經是腦疾病嗎?
主講人:謝仁俊 主治醫師/教授
北榮醫研部臨床研究科/陽大腦科學研究所
原發性痛經(Primary Dysmenorrhea;以下簡稱PDM)是指沒有器官性骨盆腔問題的經痛,為女性最常見的婦科問題,約影響全球3/4比例的女性,卻也是最常被忽視的一項疼痛醫學的問題,在疼痛醫學與疼痛科學的領域中被歸類為慢性疼痛。PDM的真正機轉仍然未詳,但普遍被接受的理論是子宮內的發炎因子、子宮肌攣縮與血管收縮的共同作用所致。
在全球不同國家或地區所做的研究調查發現,少女四到九成有過PDM的經驗,其中有10%到20%的女性因為嚴重經痛而無法工作或上學,研究指出長期原發性痛經與焦慮、憂鬱等情緒失調有顯著關係。此外,臨床上中年以後才進入高峰期的諸多功能性疼痛疾病(functional pain disorder;指無明確的器官結構性異常致病原因):如纖維肌痛症、腸燥症、偏頭痛、原因不明之下背痛、顳顎障礙症等,女性的罹病比例皆遠高於男性,若追蹤其病史,則女性患者有非常高的比例曾有過長期的原發性痛經。 因此PDM極可能是女性中年以後發生慢性功能性疼痛疾病的重要前因之一。目前越來越多的腦科學的證據顯示慢性疼痛疾病伴隨有腦部的疼痛處理網路之顯著異常,因此了解PDM之中樞神經系統變化及經痛對身心的影響,對婦女健康實則意義重大 。
榮陽疼痛研究團隊由陽明大學腦科學研究所特聘教授暨台北榮總醫學研究部主治醫師謝仁俊領導,主要由陽明大學腦科學研究所、台北榮總醫學研究部整合性腦功能研究小組(Integrated Brain Research Unit,簡稱IBRU)及台北榮總婦產部組成,並結合陽明大學公衛研究所及陽明大學腦科學研究中心一起進行研究。經由科技部、台北榮總及陽明大學腦科學研究中心的計畫與經費的支持,多年來針對此項常被忽略的年輕PDM女性進行為期數年的整合型多形式腦造影(multimodal brain imaging)研究,內容涵蓋基因學、行為、心理、荷爾蒙、疼痛知覺反應、臨床表徵、腦部正子斷層造影(Positron Emission Tomography,簡稱PET; 用來探討人腦的新陳代謝及神經元活性)、功能性與結構性腦磁振造影(functional- and structural-MRI; 用來研究人腦的神經網路及灰白質的結構)及腦磁圖(Magnetoencephalography,簡稱MEG ; 用來研究腦波)之研究。
以下為謝教授團隊針對年輕PDM女性國際首發研究結果系列報告:
1.PDM 女性的腦部有正常變異(normal variants)的比例數倍於同年齡無PDM的女性,目前原因與影響不明,有待腦神經科學及公共衛生醫學更深入的研究。
2.PDM女性腦部疼痛網路呈現灰白質結構性變化,並且隨著月經而有每個月的週期性改變。每月經痛所引起的短期性大腦灰質體積的變化,在長年累積下,就造成不隨週期性月經而改變的長期性大腦灰質體積的變化,灰質的變化意涵該腦區的功能有所改變。
3.PDM女性腦部疼痛調控系統(pain modulatory systems)呈現神經功能性連結(functional connectivity)的異常降低,尤其是以大腦導水管旁灰質(periaqueductal grey matter;簡稱PAG)為主的疼痛調控之神經連結。大腦導水管旁灰質PAG跟預設網路(Default Mode Network,簡稱DMN)相關腦區的功能連結降低,表示他們的對疼痛刺激的調控功能不足;而大腦導水管旁灰質與運動輔助區(supplementary motor area)內之內臟運動區(visceromotor area)的功能連結增加,是許多骨盆腔慢性疼痛疾病的異常表現。 預設網路DMN主要由腹內側前額區(ventromedial prefrontal cortex)及後扣帶迴(posterior cingulate cortex)所組成,是人類心智功能的大腦神經樞紐,重度憂鬱症、思覺失調症(舊名為精神分裂症)、慢性疼痛疾病均伴隨著預設網路的異常。我們發現在年輕PDM女性中其預設網路已呈現不良的神經可塑性(maladaptive neuroplasticity),正是諸多慢性疼痛疾病的共同腦部表徵。而慢性疼痛疾病經常伴隨著諸多腦部的異常以及多項心智功能的障礙,如專注力、記憶、憂鬱等,造成整體生活品質的下降。
4.腦源性神經滋養因子(Brain Derived Neurotrophic Factor, BDNF)基因管控BDNF蛋白質的製造及分泌,此蛋白質與壓力及疼痛相關的情緒反應處理有關。腦源性神經滋養因子單核苷酸多態性(BDNF Val66Met Polymorphism)的基因亞型若帶有Met allele等位基因(尤其Met/Met 基因型) ,則會導致BDNF的分泌不足而功能低下。本研究發現台灣PDM女性族群帶有更多的Met 等位基因且有較高的焦慮情緒,換言之帶有Met等位基因(尤其Met/Met 基因型) 者發生痛經的風險較高。
5.基因腦造影學(imaging genetics或genetic neuroimaging)的研究顯示帶有BDNF Val66Met 單核苷酸多態性之Met/Met 基因型的PDM女性,其腦部疼痛調控神經網路具有較顯著的易感性(vulnerability),未來出現對疼痛產生不良神經可塑性的機率較高,這對日後引發慢性疼痛將有機轉性的重要影響。
以上都是榮陽疼痛研究團隊領先國際的首要發現,我們認為PDM所引起的腦部變化是女性中年以後發生慢性功能性疼痛疾病的重要前因,而這些腦部變異則是諸多慢性功能性疼痛疾病其中樞神經功能失調之共同的前導性機轉。我們的研究更呈現一項重要的新觀念:慢性疼痛是一個腦中樞的疾病,我們必須積極的發展無痛(Pain Free)的臨床醫學與對疼痛的積極有效的治療。
本項研究之早期成果,於數年前曾由國際疼痛學會(International Association for the Study of Pain,IASP)之期刊PAIN®舉行正式國際記者會,向國際報導我們的研究發現而轟動國際,成果見諸國際性主要報紙與電視媒體醫療健康版之頭條。最新的研究成果則發表於2016年1月的PAIN®,並有專文評論(Editorial Commentary)報導我們的研究成果在疼痛醫學的重要貢獻與意義。我們的系列研究有部分成果已多篇發表在Pain®、Neuroimage、European Journal of Pain及PLOS ONE等重要國際醫學及腦科學學術期刊,而針對嚴重型疼痛之新的非侵襲性疼痛治療技術亦在發展進行中。我們希望透過本次記者會向國內社會大眾報告榮陽疼痛研究團隊在PDM最近的研究成果及相關醫療意義,更呼籲大家重視女性的痛經問題與對嚴重經痛的及時有效治療之必要性。
臺北榮總暨國立陽明大學聯合記者會新聞稿
原發性痛經之基因學及腦造影研究於醫學與腦科學上的最新發現:
原發性痛經是腦疾病嗎?
主講人:謝仁俊 主治醫師/教授
北榮醫研部臨床研究科/陽大腦科學研究所
原發性痛經(Primary Dysmenorrhea;以下簡稱PDM)是指沒有器官性骨盆腔問題的經痛,為女性最常見的婦科問題,約影響全球3/4比例的女性,卻也是最常被忽視的一項疼痛醫學的問題,在疼痛醫學與疼痛科學的領域中被歸類為慢性疼痛。PDM的真正機轉仍然未詳,但普遍被接受的理論是子宮內的發炎因子、子宮肌攣縮與血管收縮的共同作用所致。
在全球不同國家或地區所做的研究調查發現,少女四到九成有過PDM的經驗,其中有10%到20%的女性因為嚴重經痛而無法工作或上學,研究指出長期原發性痛經與焦慮、憂鬱等情緒失調有顯著關係。此外,臨床上中年以後才進入高峰期的諸多功能性疼痛疾病(functional pain disorder;指無明確的器官結構性異常致病原因):如纖維肌痛症、腸燥症、偏頭痛、原因不明之下背痛、顳顎障礙症等,女性的罹病比例皆遠高於男性,若追蹤其病史,則女性患者有非常高的比例曾有過長期的原發性痛經。 因此PDM極可能是女性中年以後發生慢性功能性疼痛疾病的重要前因之一。目前越來越多的腦科學的證據顯示慢性疼痛疾病伴隨有腦部的疼痛處理網路之顯著異常,因此了解PDM之中樞神經系統變化及經痛對身心的影響,對婦女健康實則意義重大 。
榮陽疼痛研究團隊由陽明大學腦科學研究所特聘教授暨台北榮總醫學研究部主治醫師謝仁俊領導,主要由陽明大學腦科學研究所、台北榮總醫學研究部整合性腦功能研究小組(Integrated Brain Research Unit,簡稱IBRU)及台北榮總婦產部組成,並結合陽明大學公衛研究所及陽明大學腦科學研究中心一起進行研究。經由科技部、台北榮總及陽明大學腦科學研究中心的計畫與經費的支持,多年來針對此項常被忽略的年輕PDM女性進行為期數年的整合型多形式腦造影(multimodal brain imaging)研究,內容涵蓋基因學、行為、心理、荷爾蒙、疼痛知覺反應、臨床表徵、腦部正子斷層造影(Positron Emission Tomography,簡稱PET; 用來探討人腦的新陳代謝及神經元活性)、功能性與結構性腦磁振造影(functional- and structural-MRI; 用來研究人腦的神經網路及灰白質的結構)及腦磁圖(Magnetoencephalography,簡稱MEG ; 用來研究腦波)之研究。
以下為謝教授團隊針對年輕PDM女性國際首發研究結果系列報告:
1.PDM 女性的腦部有正常變異(normal variants)的比例數倍於同年齡無PDM的女性,目前原因與影響不明,有待腦神經科學及公共衛生醫學更深入的研究。
2.PDM女性腦部疼痛網路呈現灰白質結構性變化,並且隨著月經而有每個月的週期性改變。每月經痛所引起的短期性大腦灰質體積的變化,在長年累積下,就造成不隨週期性月經而改變的長期性大腦灰質體積的變化,灰質的變化意涵該腦區的功能有所改變。
3.PDM女性腦部疼痛調控系統(pain modulatory systems)呈現神經功能性連結(functional connectivity)的異常降低,尤其是以大腦導水管旁灰質(periaqueductal grey matter;簡稱PAG)為主的疼痛調控之神經連結。大腦導水管旁灰質PAG跟預設網路(Default Mode Network,簡稱DMN)相關腦區的功能連結降低,表示他們的對疼痛刺激的調控功能不足;而大腦導水管旁灰質與運動輔助區(supplementary motor area)內之內臟運動區(visceromotor area)的功能連結增加,是許多骨盆腔慢性疼痛疾病的異常表現。 預設網路DMN主要由腹內側前額區(ventromedial prefrontal cortex)及後扣帶迴(posterior cingulate cortex)所組成,是人類心智功能的大腦神經樞紐,重度憂鬱症、思覺失調症(舊名為精神分裂症)、慢性疼痛疾病均伴隨著預設網路的異常。我們發現在年輕PDM女性中其預設網路已呈現不良的神經可塑性(maladaptive neuroplasticity),正是諸多慢性疼痛疾病的共同腦部表徵。而慢性疼痛疾病經常伴隨著諸多腦部的異常以及多項心智功能的障礙,如專注力、記憶、憂鬱等,造成整體生活品質的下降。
4.腦源性神經滋養因子(Brain Derived Neurotrophic Factor, BDNF)基因管控BDNF蛋白質的製造及分泌,此蛋白質與壓力及疼痛相關的情緒反應處理有關。腦源性神經滋養因子單核苷酸多態性(BDNF Val66Met Polymorphism)的基因亞型若帶有Met allele等位基因(尤其Met/Met 基因型) ,則會導致BDNF的分泌不足而功能低下。本研究發現台灣PDM女性族群帶有更多的Met 等位基因且有較高的焦慮情緒,換言之帶有Met等位基因(尤其Met/Met 基因型) 者發生痛經的風險較高。
5.基因腦造影學(imaging genetics或genetic neuroimaging)的研究顯示帶有BDNF Val66Met 單核苷酸多態性之Met/Met 基因型的PDM女性,其腦部疼痛調控神經網路具有較顯著的易感性(vulnerability),未來出現對疼痛產生不良神經可塑性的機率較高,這對日後引發慢性疼痛將有機轉性的重要影響。
以上都是榮陽疼痛研究團隊領先國際的首要發現,我們認為PDM所引起的腦部變化是女性中年以後發生慢性功能性疼痛疾病的重要前因,而這些腦部變異則是諸多慢性功能性疼痛疾病其中樞神經功能失調之共同的前導性機轉。我們的研究更呈現一項重要的新觀念:慢性疼痛是一個腦中樞的疾病,我們必須積極的發展無痛(Pain Free)的臨床醫學與對疼痛的積極有效的治療。
本項研究之早期成果,於數年前曾由國際疼痛學會(International Association for the Study of Pain,IASP)之期刊PAIN®舉行正式國際記者會,向國際報導我們的研究發現而轟動國際,成果見諸國際性主要報紙與電視媒體醫療健康版之頭條。最新的研究成果則發表於2016年1月的PAIN®,並有專文評論(Editorial Commentary)報導我們的研究成果在疼痛醫學的重要貢獻與意義。我們的系列研究有部分成果已多篇發表在Pain®、Neuroimage、European Journal of Pain及PLOS ONE等重要國際醫學及腦科學學術期刊,而針對嚴重型疼痛之新的非侵襲性疼痛治療技術亦在發展進行中。我們希望透過本次記者會向國內社會大眾報告榮陽疼痛研究團隊在PDM最近的研究成果及相關醫療意義,更呼籲大家重視女性的痛經問題與對嚴重經痛的及時有效治療之必要性。
臺北榮總暨國立陽明大學聯合記者會新聞稿
原發性痛經之基因學及腦造影研究於醫學與腦科學上的最新發現:
原發性痛經是腦疾病嗎?
主講人:謝仁俊 主治醫師/教授
北榮醫研部臨床研究科/陽大腦科學研究所
原發性痛經(Primary Dysmenorrhea;以下簡稱PDM)是指沒有器官性骨盆腔問題的經痛,為女性最常見的婦科問題,約影響全球3/4比例的女性,卻也是最常被忽視的一項疼痛醫學的問題,在疼痛醫學與疼痛科學的領域中被歸類為慢性疼痛。PDM的真正機轉仍然未詳,但普遍被接受的理論是子宮內的發炎因子、子宮肌攣縮與血管收縮的共同作用所致。
在全球不同國家或地區所做的研究調查發現,少女四到九成有過PDM的經驗,其中有10%到20%的女性因為嚴重經痛而無法工作或上學,研究指出長期原發性痛經與焦慮、憂鬱等情緒失調有顯著關係。此外,臨床上中年以後才進入高峰期的諸多功能性疼痛疾病(functional pain disorder;指無明確的器官結構性異常致病原因):如纖維肌痛症、腸燥症、偏頭痛、原因不明之下背痛、顳顎障礙症等,女性的罹病比例皆遠高於男性,若追蹤其病史,則女性患者有非常高的比例曾有過長期的原發性痛經。 因此PDM極可能是女性中年以後發生慢性功能性疼痛疾病的重要前因之一。目前越來越多的腦科學的證據顯示慢性疼痛疾病伴隨有腦部的疼痛處理網路之顯著異常,因此了解PDM之中樞神經系統變化及經痛對身心的影響,對婦女健康實則意義重大 。
榮陽疼痛研究團隊由陽明大學腦科學研究所特聘教授暨台北榮總醫學研究部主治醫師謝仁俊領導,主要由陽明大學腦科學研究所、台北榮總醫學研究部整合性腦功能研究小組(Integrated Brain Research Unit,簡稱IBRU)及台北榮總婦產部組成,並結合陽明大學公衛研究所及陽明大學腦科學研究中心一起進行研究。經由科技部、台北榮總及陽明大學腦科學研究中心的計畫與經費的支持,多年來針對此項常被忽略的年輕PDM女性進行為期數年的整合型多形式腦造影(multimodal brain imaging)研究,內容涵蓋基因學、行為、心理、荷爾蒙、疼痛知覺反應、臨床表徵、腦部正子斷層造影(Positron Emission Tomography,簡稱PET; 用來探討人腦的新陳代謝及神經元活性)、功能性與結構性腦磁振造影(functional- and structural-MRI; 用來研究人腦的神經網路及灰白質的結構)及腦磁圖(Magnetoencephalography,簡稱MEG ; 用來研究腦波)之研究。
以下為謝教授團隊針對年輕PDM女性國際首發研究結果系列報告:
1.PDM 女性的腦部有正常變異(normal variants)的比例數倍於同年齡無PDM的女性,目前原因與影響不明,有待腦神經科學及公共衛生醫學更深入的研究。
2.PDM女性腦部疼痛網路呈現灰白質結構性變化,並且隨著月經而有每個月的週期性改變。每月經痛所引起的短期性大腦灰質體積的變化,在長年累積下,就造成不隨週期性月經而改變的長期性大腦灰質體積的變化,灰質的變化意涵該腦區的功能有所改變。
3.PDM女性腦部疼痛調控系統(pain modulatory systems)呈現神經功能性連結(functional connectivity)的異常降低,尤其是以大腦導水管旁灰質(periaqueductal grey matter;簡稱PAG)為主的疼痛調控之神經連結。大腦導水管旁灰質PAG跟預設網路(Default Mode Network,簡稱DMN)相關腦區的功能連結降低,表示他們的對疼痛刺激的調控功能不足;而大腦導水管旁灰質與運動輔助區(supplementary motor area)內之內臟運動區(visceromotor area)的功能連結增加,是許多骨盆腔慢性疼痛疾病的異常表現。 預設網路DMN主要由腹內側前額區(ventromedial prefrontal cortex)及後扣帶迴(posterior cingulate cortex)所組成,是人類心智功能的大腦神經樞紐,重度憂鬱症、思覺失調症(舊名為精神分裂症)、慢性疼痛疾病均伴隨著預設網路的異常。我們發現在年輕PDM女性中其預設網路已呈現不良的神經可塑性(maladaptive neuroplasticity),正是諸多慢性疼痛疾病的共同腦部表徵。而慢性疼痛疾病經常伴隨著諸多腦部的異常以及多項心智功能的障礙,如專注力、記憶、憂鬱等,造成整體生活品質的下降。
4.腦源性神經滋養因子(Brain Derived Neurotrophic Factor, BDNF)基因管控BDNF蛋白質的製造及分泌,此蛋白質與壓力及疼痛相關的情緒反應處理有關。腦源性神經滋養因子單核苷酸多態性(BDNF Val66Met Polymorphism)的基因亞型若帶有Met allele等位基因(尤其Met/Met 基因型) ,則會導致BDNF的分泌不足而功能低下。本研究發現台灣PDM女性族群帶有更多的Met 等位基因且有較高的焦慮情緒,換言之帶有Met等位基因(尤其Met/Met 基因型) 者發生痛經的風險較高。
5.基因腦造影學(imaging genetics或genetic neuroimaging)的研究顯示帶有BDNF Val66Met 單核苷酸多態性之Met/Met 基因型的PDM女性,其腦部疼痛調控神經網路具有較顯著的易感性(vulnerability),未來出現對疼痛產生不良神經可塑性的機率較高,這對日後引發慢性疼痛將有機轉性的重要影響。
以上都是榮陽疼痛研究團隊領先國際的首要發現,我們認為PDM所引起的腦部變化是女性中年以後發生慢性功能性疼痛疾病的重要前因,而這些腦部變異則是諸多慢性功能性疼痛疾病其中樞神經功能失調之共同的前導性機轉。我們的研究更呈現一項重要的新觀念:慢性疼痛是一個腦中樞的疾病,我們必須積極的發展無痛(Pain Free)的臨床醫學與對疼痛的積極有效的治療。
本項研究之早期成果,於數年前曾由國際疼痛學會(International Association for the Study of Pain,IASP)之期刊PAIN®舉行正式國際記者會,向國際報導我們的研究發現而轟動國際,成果見諸國際性主要報紙與電視媒體醫療健康版之頭條。最新的研究成果則發表於2016年1月的PAIN®,並有專文評論(Editorial Commentary)報導我們的研究成果在疼痛醫學的重要貢獻與意義。我們的系列研究有部分成果已多篇發表在Pain®、Neuroimage、European Journal of Pain及PLOS ONE等重要國際醫學及腦科學學術期刊,而針對嚴重型疼痛之新的非侵襲性疼痛治療技術亦在發展進行中。我們希望透過本次記者會向國內社會大眾報告榮陽疼痛研究團隊在PDM最近的研究成果及相關醫療意義,更呼籲大家重視女性的痛經問題與對嚴重經痛的及時有效治療之必要性。
臺北榮總暨國立陽明大學聯合記者會新聞稿
原發性痛經之基因學及腦造影研究於醫學與腦科學上的最新發現:
原發性痛經是腦疾病嗎?
主講人:謝仁俊 主治醫師/教授
北榮醫研部臨床研究科/陽大腦科學研究所
原發性痛經(Primary Dysmenorrhea;以下簡稱PDM)是指沒有器官性骨盆腔問題的經痛,為女性最常見的婦科問題,約影響全球3/4比例的女性,卻也是最常被忽視的一項疼痛醫學的問題,在疼痛醫學與疼痛科學的領域中被歸類為慢性疼痛。PDM的真正機轉仍然未詳,但普遍被接受的理論是子宮內的發炎因子、子宮肌攣縮與血管收縮的共同作用所致。
在全球不同國家或地區所做的研究調查發現,少女四到九成有過PDM的經驗,其中有10%到20%的女性因為嚴重經痛而無法工作或上學,研究指出長期原發性痛經與焦慮、憂鬱等情緒失調有顯著關係。此外,臨床上中年以後才進入高峰期的諸多功能性疼痛疾病(functional pain disorder;指無明確的器官結構性異常致病原因):如纖維肌痛症、腸燥症、偏頭痛、原因不明之下背痛、顳顎障礙症等,女性的罹病比例皆遠高於男性,若追蹤其病史,則女性患者有非常高的比例曾有過長期的原發性痛經。 因此PDM極可能是女性中年以後發生慢性功能性疼痛疾病的重要前因之一。目前越來越多的腦科學的證據顯示慢性疼痛疾病伴隨有腦部的疼痛處理網路之顯著異常,因此了解PDM之中樞神經系統變化及經痛對身心的影響,對婦女健康實則意義重大 。
榮陽疼痛研究團隊由陽明大學腦科學研究所特聘教授暨台北榮總醫學研究部主治醫師謝仁俊領導,主要由陽明大學腦科學研究所、台北榮總醫學研究部整合性腦功能研究小組(Integrated Brain Research Unit,簡稱IBRU)及台北榮總婦產部組成,並結合陽明大學公衛研究所及陽明大學腦科學研究中心一起進行研究。經由科技部、台北榮總及陽明大學腦科學研究中心的計畫與經費的支持,多年來針對此項常被忽略的年輕PDM女性進行為期數年的整合型多形式腦造影(multimodal brain imaging)研究,內容涵蓋基因學、行為、心理、荷爾蒙、疼痛知覺反應、臨床表徵、腦部正子斷層造影(Positron Emission Tomography,簡稱PET; 用來探討人腦的新陳代謝及神經元活性)、功能性與結構性腦磁振造影(functional- and structural-MRI; 用來研究人腦的神經網路及灰白質的結構)及腦磁圖(Magnetoencephalography,簡稱MEG ; 用來研究腦波)之研究。
以下為謝教授團隊針對年輕PDM女性國際首發研究結果系列報告:
1.PDM 女性的腦部有正常變異(normal variants)的比例數倍於同年齡無PDM的女性,目前原因與影響不明,有待腦神經科學及公共衛生醫學更深入的研究。
2.PDM女性腦部疼痛網路呈現灰白質結構性變化,並且隨著月經而有每個月的週期性改變。每月經痛所引起的短期性大腦灰質體積的變化,在長年累積下,就造成不隨週期性月經而改變的長期性大腦灰質體積的變化,灰質的變化意涵該腦區的功能有所改變。
3.PDM女性腦部疼痛調控系統(pain modulatory systems)呈現神經功能性連結(functional connectivity)的異常降低,尤其是以大腦導水管旁灰質(periaqueductal grey matter;簡稱PAG)為主的疼痛調控之神經連結。大腦導水管旁灰質PAG跟預設網路(Default Mode Network,簡稱DMN)相關腦區的功能連結降低,表示他們的對疼痛刺激的調控功能不足;而大腦導水管旁灰質與運動輔助區(supplementary motor area)內之內臟運動區(visceromotor area)的功能連結增加,是許多骨盆腔慢性疼痛疾病的異常表現。 預設網路DMN主要由腹內側前額區(ventromedial prefrontal cortex)及後扣帶迴(posterior cingulate cortex)所組成,是人類心智功能的大腦神經樞紐,重度憂鬱症、思覺失調症(舊名為精神分裂症)、慢性疼痛疾病均伴隨著預設網路的異常。我們發現在年輕PDM女性中其預設網路已呈現不良的神經可塑性(maladaptive neuroplasticity),正是諸多慢性疼痛疾病的共同腦部表徵。而慢性疼痛疾病經常伴隨著諸多腦部的異常以及多項心智功能的障礙,如專注力、記憶、憂鬱等,造成整體生活品質的下降。
4.腦源性神經滋養因子(Brain Derived Neurotrophic Factor, BDNF)基因管控BDNF蛋白質的製造及分泌,此蛋白質與壓力及疼痛相關的情緒反應處理有關。腦源性神經滋養因子單核苷酸多態性(BDNF Val66Met Polymorphism)的基因亞型若帶有Met allele等位基因(尤其Met/Met 基因型) ,則會導致BDNF的分泌不足而功能低下。本研究發現台灣PDM女性族群帶有更多的Met 等位基因且有較高的焦慮情緒,換言之帶有Met等位基因(尤其Met/Met 基因型) 者發生痛經的風險較高。
5.基因腦造影學(imaging genetics或genetic neuroimaging)的研究顯示帶有BDNF Val66Met 單核苷酸多態性之Met/Met 基因型的PDM女性,其腦部疼痛調控神經網路具有較顯著的易感性(vulnerability),未來出現對疼痛產生不良神經可塑性的機率較高,這對日後引發慢性疼痛將有機轉性的重要影響。
以上都是榮陽疼痛研究團隊領先國際的首要發現,我們認為PDM所引起的腦部變化是女性中年以後發生慢性功能性疼痛疾病的重要前因,而這些腦部變異則是諸多慢性功能性疼痛疾病其中樞神經功能失調之共同的前導性機轉。我們的研究更呈現一項重要的新觀念:慢性疼痛是一個腦中樞的疾病,我們必須積極的發展無痛(Pain Free)的臨床醫學與對疼痛的積極有效的治療。
本項研究之早期成果,於數年前曾由國際疼痛學會(International Association for the Study of Pain,IASP)之期刊PAIN®舉行正式國際記者會,向國際報導我們的研究發現而轟動國際,成果見諸國際性主要報紙與電視媒體醫療健康版之頭條。最新的研究成果則發表於2016年1月的PAIN®,並有專文評論(Editorial Commentary)報導我們的研究成果在疼痛醫學的重要貢獻與意義。我們的系列研究有部分成果已多篇發表在Pain®、Neuroimage、European Journal of Pain及PLOS ONE等重要國際醫學及腦科學學術期刊,而針對嚴重型疼痛之新的非侵襲性疼痛治療技術亦在發展進行中。我們希望透過本次記者會向國內社會大眾報告榮陽疼痛研究團隊在PDM最近的研究成果及相關醫療意義,更呼籲大家重視女性的痛經問題與對嚴重經痛的及時有效治療之必要性。
臺北榮總暨國立陽明大學聯合記者會新聞稿
原發性痛經之基因學及腦造影研究於醫學與腦科學上的最新發現:
原發性痛經是腦疾病嗎?
主講人:謝仁俊 主治醫師/教授
北榮醫研部臨床研究科/陽大腦科學研究所
原發性痛經(Primary Dysmenorrhea;以下簡稱PDM)是指沒有器官性骨盆腔問題的經痛,為女性最常見的婦科問題,約影響全球3/4比例的女性,卻也是最常被忽視的一項疼痛醫學的問題,在疼痛醫學與疼痛科學的領域中被歸類為慢性疼痛。PDM的真正機轉仍然未詳,但普遍被接受的理論是子宮內的發炎因子、子宮肌攣縮與血管收縮的共同作用所致。
在全球不同國家或地區所做的研究調查發現,少女四到九成有過PDM的經驗,其中有10%到20%的女性因為嚴重經痛而無法工作或上學,研究指出長期原發性痛經與焦慮、憂鬱等情緒失調有顯著關係。此外,臨床上中年以後才進入高峰期的諸多功能性疼痛疾病(functional pain disorder;指無明確的器官結構性異常致病原因):如纖維肌痛症、腸燥症、偏頭痛、原因不明之下背痛、顳顎障礙症等,女性的罹病比例皆遠高於男性,若追蹤其病史,則女性患者有非常高的比例曾有過長期的原發性痛經。 因此PDM極可能是女性中年以後發生慢性功能性疼痛疾病的重要前因之一。目前越來越多的腦科學的證據顯示慢性疼痛疾病伴隨有腦部的疼痛處理網路之顯著異常,因此了解PDM之中樞神經系統變化及經痛對身心的影響,對婦女健康實則意義重大 。
榮陽疼痛研究團隊由陽明大學腦科學研究所特聘教授暨台北榮總醫學研究部主治醫師謝仁俊領導,主要由陽明大學腦科學研究所、台北榮總醫學研究部整合性腦功能研究小組(Integrated Brain Research Unit,簡稱IBRU)及台北榮總婦產部組成,並結合陽明大學公衛研究所及陽明大學腦科學研究中心一起進行研究。經由科技部、台北榮總及陽明大學腦科學研究中心的計畫與經費的支持,多年來針對此項常被忽略的年輕PDM女性進行為期數年的整合型多形式腦造影(multimodal brain imaging)研究,內容涵蓋基因學、行為、心理、荷爾蒙、疼痛知覺反應、臨床表徵、腦部正子斷層造影(Positron Emission Tomography,簡稱PET; 用來探討人腦的新陳代謝及神經元活性)、功能性與結構性腦磁振造影(functional- and structural-MRI; 用來研究人腦的神經網路及灰白質的結構)及腦磁圖(Magnetoencephalography,簡稱MEG ; 用來研究腦波)之研究。
以下為謝教授團隊針對年輕PDM女性國際首發研究結果系列報告:
1.PDM 女性的腦部有正常變異(normal variants)的比例數倍於同年齡無PDM的女性,目前原因與影響不明,有待腦神經科學及公共衛生醫學更深入的研究。
2.PDM女性腦部疼痛網路呈現灰白質結構性變化,並且隨著月經而有每個月的週期性改變。每月經痛所引起的短期性大腦灰質體積的變化,在長年累積下,就造成不隨週期性月經而改變的長期性大腦灰質體積的變化,灰質的變化意涵該腦區的功能有所改變。
3.PDM女性腦部疼痛調控系統(pain modulatory systems)呈現神經功能性連結(functional connectivity)的異常降低,尤其是以大腦導水管旁灰質(periaqueductal grey matter;簡稱PAG)為主的疼痛調控之神經連結。大腦導水管旁灰質PAG跟預設網路(Default Mode Network,簡稱DMN)相關腦區的功能連結降低,表示他們的對疼痛刺激的調控功能不足;而大腦導水管旁灰質與運動輔助區(supplementary motor area)內之內臟運動區(visceromotor area)的功能連結增加,是許多骨盆腔慢性疼痛疾病的異常表現。 預設網路DMN主要由腹內側前額區(ventromedial prefrontal cortex)及後扣帶迴(posterior cingulate cortex)所組成,是人類心智功能的大腦神經樞紐,重度憂鬱症、思覺失調症(舊名為精神分裂症)、慢性疼痛疾病均伴隨著預設網路的異常。我們發現在年輕PDM女性中其預設網路已呈現不良的神經可塑性(maladaptive neuroplasticity),正是諸多慢性疼痛疾病的共同腦部表徵。而慢性疼痛疾病經常伴隨著諸多腦部的異常以及多項心智功能的障礙,如專注力、記憶、憂鬱等,造成整體生活品質的下降。
4.腦源性神經滋養因子(Brain Derived Neurotrophic Factor, BDNF)基因管控BDNF蛋白質的製造及分泌,此蛋白質與壓力及疼痛相關的情緒反應處理有關。腦源性神經滋養因子單核苷酸多態性(BDNF Val66Met Polymorphism)的基因亞型若帶有Met allele等位基因(尤其Met/Met 基因型) ,則會導致BDNF的分泌不足而功能低下。本研究發現台灣PDM女性族群帶有更多的Met 等位基因且有較高的焦慮情緒,換言之帶有Met等位基因(尤其Met/Met 基因型) 者發生痛經的風險較高。
5.基因腦造影學(imaging genetics或genetic neuroimaging)的研究顯示帶有BDNF Val66Met 單核苷酸多態性之Met/Met 基因型的PDM女性,其腦部疼痛調控神經網路具有較顯著的易感性(vulnerability),未來出現對疼痛產生不良神經可塑性的機率較高,這對日後引發慢性疼痛將有機轉性的重要影響。
以上都是榮陽疼痛研究團隊領先國際的首要發現,我們認為PDM所引起的腦部變化是女性中年以後發生慢性功能性疼痛疾病的重要前因,而這些腦部變異則是諸多慢性功能性疼痛疾病其中樞神經功能失調之共同的前導性機轉。我們的研究更呈現一項重要的新觀念:慢性疼痛是一個腦中樞的疾病,我們必須積極的發展無痛(Pain Free)的臨床醫學與對疼痛的積極有效的治療。
本項研究之早期成果,於數年前曾由國際疼痛學會(International Association for the Study of Pain,IASP)之期刊PAIN®舉行正式國際記者會,向國際報導我們的研究發現而轟動國際,成果見諸國際性主要報紙與電視媒體醫療健康版之頭條。最新的研究成果則發表於2016年1月的PAIN®,並有專文評論(Editorial Commentary)報導我們的研究成果在疼痛醫學的重要貢獻與意義。我們的系列研究有部分成果已多篇發表在Pain®、Neuroimage、European Journal of Pain及PLOS ONE等重要國際醫學及腦科學學術期刊,而針對嚴重型疼痛之新的非侵襲性疼痛治療技術亦在發展進行中。我們希望透過本次記者會向國內社會大眾報告榮陽疼痛研究團隊在PDM最近的研究成果及相關醫療意義,更呼籲大家重視女性的痛經問題與對嚴重經痛的及時有效治療之必要性。
臺北榮總暨國立陽明大學聯合記者會新聞稿
原發性痛經之基因學及腦造影研究於醫學與腦科學上的最新發現:
原發性痛經是腦疾病嗎?
主講人:謝仁俊 主治醫師/教授
北榮醫研部臨床研究科/陽大腦科學研究所
原發性痛經(Primary Dysmenorrhea;以下簡稱PDM)是指沒有器官性骨盆腔問題的經痛,為女性最常見的婦科問題,約影響全球3/4比例的女性,卻也是最常被忽視的一項疼痛醫學的問題,在疼痛醫學與疼痛科學的領域中被歸類為慢性疼痛。PDM的真正機轉仍然未詳,但普遍被接受的理論是子宮內的發炎因子、子宮肌攣縮與血管收縮的共同作用所致。
在全球不同國家或地區所做的研究調查發現,少女四到九成有過PDM的經驗,其中有10%到20%的女性因為嚴重經痛而無法工作或上學,研究指出長期原發性痛經與焦慮、憂鬱等情緒失調有顯著關係。此外,臨床上中年以後才進入高峰期的諸多功能性疼痛疾病(functional pain disorder;指無明確的器官結構性異常致病原因):如纖維肌痛症、腸燥症、偏頭痛、原因不明之下背痛、顳顎障礙症等,女性的罹病比例皆遠高於男性,若追蹤其病史,則女性患者有非常高的比例曾有過長期的原發性痛經。 因此PDM極可能是女性中年以後發生慢性功能性疼痛疾病的重要前因之一。目前越來越多的腦科學的證據顯示慢性疼痛疾病伴隨有腦部的疼痛處理網路之顯著異常,因此了解PDM之中樞神經系統變化及經痛對身心的影響,對婦女健康實則意義重大 。
榮陽疼痛研究團隊由陽明大學腦科學研究所特聘教授暨台北榮總醫學研究部主治醫師謝仁俊領導,主要由陽明大學腦科學研究所、台北榮總醫學研究部整合性腦功能研究小組(Integrated Brain Research Unit,簡稱IBRU)及台北榮總婦產部組成,並結合陽明大學公衛研究所及陽明大學腦科學研究中心一起進行研究。經由科技部、台北榮總及陽明大學腦科學研究中心的計畫與經費的支持,多年來針對此項常被忽略的年輕PDM女性進行為期數年的整合型多形式腦造影(multimodal brain imaging)研究,內容涵蓋基因學、行為、心理、荷爾蒙、疼痛知覺反應、臨床表徵、腦部正子斷層造影(Positron Emission Tomography,簡稱PET; 用來探討人腦的新陳代謝及神經元活性)、功能性與結構性腦磁振造影(functional- and structural-MRI; 用來研究人腦的神經網路及灰白質的結構)及腦磁圖(Magnetoencephalography,簡稱MEG ; 用來研究腦波)之研究。
以下為謝教授團隊針對年輕PDM女性國際首發研究結果系列報告:
1.PDM 女性的腦部有正常變異(normal variants)的比例數倍於同年齡無PDM的女性,目前原因與影響不明,有待腦神經科學及公共衛生醫學更深入的研究。
2.PDM女性腦部疼痛網路呈現灰白質結構性變化,並且隨著月經而有每個月的週期性改變。每月經痛所引起的短期性大腦灰質體積的變化,在長年累積下,就造成不隨週期性月經而改變的長期性大腦灰質體積的變化,灰質的變化意涵該腦區的功能有所改變。
3.PDM女性腦部疼痛調控系統(pain modulatory systems)呈現神經功能性連結(functional connectivity)的異常降低,尤其是以大腦導水管旁灰質(periaqueductal grey matter;簡稱PAG)為主的疼痛調控之神經連結。大腦導水管旁灰質PAG跟預設網路(Default Mode Network,簡稱DMN)相關腦區的功能連結降低,表示他們的對疼痛刺激的調控功能不足;而大腦導水管旁灰質與運動輔助區(supplementary motor area)內之內臟運動區(visceromotor area)的功能連結增加,是許多骨盆腔慢性疼痛疾病的異常表現。 預設網路DMN主要由腹內側前額區(ventromedial prefrontal cortex)及後扣帶迴(posterior cingulate cortex)所組成,是人類心智功能的大腦神經樞紐,重度憂鬱症、思覺失調症(舊名為精神分裂症)、慢性疼痛疾病均伴隨著預設網路的異常。我們發現在年輕PDM女性中其預設網路已呈現不良的神經可塑性(maladaptive neuroplasticity),正是諸多慢性疼痛疾病的共同腦部表徵。而慢性疼痛疾病經常伴隨著諸多腦部的異常以及多項心智功能的障礙,如專注力、記憶、憂鬱等,造成整體生活品質的下降。
4.腦源性神經滋養因子(Brain Derived Neurotrophic Factor, BDNF)基因管控BDNF蛋白質的製造及分泌,此蛋白質與壓力及疼痛相關的情緒反應處理有關。腦源性神經滋養因子單核苷酸多態性(BDNF Val66Met Polymorphism)的基因亞型若帶有Met allele等位基因(尤其Met/Met 基因型) ,則會導致BDNF的分泌不足而功能低下。本研究發現台灣PDM女性族群帶有更多的Met 等位基因且有較高的焦慮情緒,換言之帶有Met等位基因(尤其Met/Met 基因型) 者發生痛經的風險較高。
5.基因腦造影學(imaging genetics或genetic neuroimaging)的研究顯示帶有BDNF Val66Met 單核苷酸多態性之Met/Met 基因型的PDM女性,其腦部疼痛調控神經網路具有較顯著的易感性(vulnerability),未來出現對疼痛產生不良神經可塑性的機率較高,這對日後引發慢性疼痛將有機轉性的重要影響。
以上都是榮陽疼痛研究團隊領先國際的首要發現,我們認為PDM所引起的腦部變化是女性中年以後發生慢性功能性疼痛疾病的重要前因,而這些腦部變異則是諸多慢性功能性疼痛疾病其中樞神經功能失調之共同的前導性機轉。我們的研究更呈現一項重要的新觀念:慢性疼痛是一個腦中樞的疾病,我們必須積極的發展無痛(Pain Free)的臨床醫學與對疼痛的積極有效的治療。
本項研究之早期成果,於數年前曾由國際疼痛學會(International Association for the Study of Pain,IASP)之期刊PAIN®舉行正式國際記者會,向國際報導我們的研究發現而轟動國際,成果見諸國際性主要報紙與電視媒體醫療健康版之頭條。最新的研究成果則發表於2016年1月的PAIN®,並有專文評論(Editorial Commentary)報導我們的研究成果在疼痛醫學的重要貢獻與意義。我們的系列研究有部分成果已多篇發表在Pain®、Neuroimage、European Journal of Pain及PLOS ONE等重要國際醫學及腦科學學術期刊,而針對嚴重型疼痛之新的非侵襲性疼痛治療技術亦在發展進行中。我們希望透過本次記者會向國內社會大眾報告榮陽疼痛研究團隊在PDM最近的研究成果及相關醫療意義,更呼籲大家重視女性的痛經問題與對嚴重經痛的及時有效治療之必要性。
Mudskippers are amphibious fish, presently included in the subfamily Oxudercinae, within the family Gobiidae (gobies). Recent molecular studies do not support this classification, as oxudercine gobies appear to be paraphyletic relative to amblyopine gobies (Gobiidae: Amblyopinae), thus being included in a distinct "Periophthalmus lineage", together with amblyopines. Mudskippers can be defined as oxudercine gobies that are "fully terrestrial for some portion of the daily cycle" (character 24 in Murdy, 1989). This would define the species of the genera Boleophthalmus, Periophthalmodon, Periophthalmus, and Scartelaos as "mudskippers". However, field observations of Zappa confluentus suggest that this monotypic genus should be included in the definition. These genera presently include 32 species. Mudskippers use their pectoral fins and pelvic fins to walk on land. They typically live in intertidal habitats, and exhibit unique adaptations to this environment that are not found in most intertidal fishes, which typically survive the retreat of the tide by hiding under wet seaweed or in tide pools.
Mudskippers are quite active when out of water, feeding and interacting with one another, for example, to defend their territories and court potential partners. They are found in tropical, subtropical, and temperate regions, including the Indo-Pacific and the Atlantic coast of Africa.
Compared with fully aquatic gobies, these specialized fish present a range of peculiar anatomical and behavioural adaptations that allow them to move effectively on land as well as in the water. As their name implies, these fish use their fins to move around in a series of skips.
Mudskippers have the ability to breathe through their skin and the lining of their mouth (the mucosa) and throat (the pharynx): This is only possible when the mudskippers are wet, limiting them to humid habitats and requiring they keep themselves moist. This mode of breathing, similar to that employed by amphibians, is known as cutaneous air breathing. Another important adaptation that aids breathing while out of water is their enlarged gill chambers, where they retain a bubble of air. These chambers close tightly when the fish is above water, due to a ventromedial valve of the gill slit, keeping the gills moist, and allowing them to function while exposed to air. Gill filaments are stiff and do not coalesce when out of water.
Digging deep burrows in soft sediments allows the fish to thermoregulate, avoid marine predators during the high tide when the fish and burrow are submerged, and lay their eggs. When the burrow is submerged, several mudskipper species maintain an air pocket inside it, which allows them to breathe in conditions of very low oxygen concentration.
The genus Periophthalmus is by far the most diverse and widespread genus of mudskipper. Eighteen species have been described. Periophthalmus argentilineatus is one of the most widespread and well-known species. It can be found in mangrove ecosystems and mudflats of East Africa and Madagascar east through the Sundarbans of Bengal, Southeast Asia to Northern Australia, southeast China, and southern Japan, to Samoa and Tonga Islands. It grows to a length of about 9.5 cm and is a carnivorous opportunist feeder. It feeds on small prey such as small crabs and other arthropods. However, a recent molecular study suggests that P. argentilineatus is in fact a complex of species, with at least three separate lineages, one in East Africa, and two in the Indo-Malayan region. Another species, Periophthalmus barbarus, is the only oxudercine goby that inhabits the coastal areas of western Africa.
An unusual visitor at the buglight. Total length 50 mm, body length 33 mm, male. This shot shows the black ventromedial stripe and the bowed wing costa. I posted one of these to BugGuide in 2011, but they've still only got 1 other from NJ, & that's from Cape May (2.5 hours south). So is this a very local population?? Or is it just undersampled?
Mudskippers are amphibious fish, presently included in the subfamily Oxudercinae, within the family Gobiidae (gobies). Recent molecular studies do not support this classification, as oxudercine gobies appear to be paraphyletic relative to amblyopine gobies (Gobiidae: Amblyopinae), thus being included in a distinct "Periophthalmus lineage", together with amblyopines. Mudskippers can be defined as oxudercine gobies that are "fully terrestrial for some portion of the daily cycle" (character 24 in Murdy, 1989). This would define the species of the genera Boleophthalmus, Periophthalmodon, Periophthalmus, and Scartelaos as "mudskippers". However, field observations of Zappa confluentus suggest that this monotypic genus should be included in the definition. These genera presently include 32 species. Mudskippers use their pectoral fins and pelvic fins to walk on land. They typically live in intertidal habitats, and exhibit unique adaptations to this environment that are not found in most intertidal fishes, which typically survive the retreat of the tide by hiding under wet seaweed or in tide pools.
Mudskippers are quite active when out of water, feeding and interacting with one another, for example, to defend their territories and court potential partners. They are found in tropical, subtropical, and temperate regions, including the Indo-Pacific and the Atlantic coast of Africa.
Compared with fully aquatic gobies, these specialized fish present a range of peculiar anatomical and behavioural adaptations that allow them to move effectively on land as well as in the water. As their name implies, these fish use their fins to move around in a series of skips.
Mudskippers have the ability to breathe through their skin and the lining of their mouth (the mucosa) and throat (the pharynx): This is only possible when the mudskippers are wet, limiting them to humid habitats and requiring they keep themselves moist. This mode of breathing, similar to that employed by amphibians, is known as cutaneous air breathing. Another important adaptation that aids breathing while out of water is their enlarged gill chambers, where they retain a bubble of air. These chambers close tightly when the fish is above water, due to a ventromedial valve of the gill slit, keeping the gills moist, and allowing them to function while exposed to air. Gill filaments are stiff and do not coalesce when out of water.
Digging deep burrows in soft sediments allows the fish to thermoregulate, avoid marine predators during the high tide when the fish and burrow are submerged, and lay their eggs. When the burrow is submerged, several mudskipper species maintain an air pocket inside it, which allows them to breathe in conditions of very low oxygen concentration.
The genus Periophthalmus is by far the most diverse and widespread genus of mudskipper. Eighteen species have been described. Periophthalmus argentilineatus is one of the most widespread and well-known species. It can be found in mangrove ecosystems and mudflats of East Africa and Madagascar east through the Sundarbans of Bengal, Southeast Asia to Northern Australia, southeast China, and southern Japan, to Samoa and Tonga Islands. It grows to a length of about 9.5 cm and is a carnivorous opportunist feeder. It feeds on small prey such as small crabs and other arthropods. However, a recent molecular study suggests that P. argentilineatus is in fact a complex of species, with at least three separate lineages, one in East Africa, and two in the Indo-Malayan region. Another species, Periophthalmus barbarus, is the only oxudercine goby that inhabits the coastal areas of western Africa.
Immunomarquage de neurones à protéine parvalbumine (en vert) entourés par des filets périneuronaux (en rouge) dans le cortex préfrontal humain.
©Arnaud Tanti/Inserm.licence CC-BY-NC 4.0 international
En savoir plus :
En collaboration avec une équipe canadienne, des scientifiques de l’Inserm et de l’Université de Tours @univtours au sein de l’unité 1253 Imagerie & Cerveau, ont montré que les victimes de maltraitance infantile présenteraient des caractéristiques cérébrales particulières.
Les équipes ont mis en évidence pour la première fois chez l’Homme, une augmentation du nombre et une maturation plus importante des filets perineuronaux, des structures protéiques denses entourant les neurones, en particuliers ceux à parvalbumine (une protéine impliquée dans la signalisation du calcium). Ce travail suggère que la maltraitance pourrait modifier durablement les trajectoires développementales de certaines régions cérébrales avec des effets potentiels sur la santé psychologique. L’étude est parue en janvier 2022 dans le journal Molecular Psychiatry.
Sources : Child abuse associates with increased recruitment of perineuronal nets in the ventromedial prefrontal cortex: a possible implication of oligodendrocyte progenitor cells, Molecular Psychiatry
Mudskippers are amphibious fish, presently included in the subfamily Oxudercinae, within the family Gobiidae (gobies). Recent molecular studies do not support this classification, as oxudercine gobies appear to be paraphyletic relative to amblyopine gobies (Gobiidae: Amblyopinae), thus being included in a distinct "Periophthalmus lineage", together with amblyopines. Mudskippers can be defined as oxudercine gobies that are "fully terrestrial for some portion of the daily cycle" (character 24 in Murdy, 1989). This would define the species of the genera Boleophthalmus, Periophthalmodon, Periophthalmus, and Scartelaos as "mudskippers". However, field observations of Zappa confluentus suggest that this monotypic genus should be included in the definition. These genera presently include 32 species. Mudskippers use their pectoral fins and pelvic fins to walk on land. They typically live in intertidal habitats, and exhibit unique adaptations to this environment that are not found in most intertidal fishes, which typically survive the retreat of the tide by hiding under wet seaweed or in tide pools.
Mudskippers are quite active when out of water, feeding and interacting with one another, for example, to defend their territories and court potential partners. They are found in tropical, subtropical, and temperate regions, including the Indo-Pacific and the Atlantic coast of Africa.
Compared with fully aquatic gobies, these specialized fish present a range of peculiar anatomical and behavioural adaptations that allow them to move effectively on land as well as in the water. As their name implies, these fish use their fins to move around in a series of skips.
Mudskippers have the ability to breathe through their skin and the lining of their mouth (the mucosa) and throat (the pharynx): This is only possible when the mudskippers are wet, limiting them to humid habitats and requiring they keep themselves moist. This mode of breathing, similar to that employed by amphibians, is known as cutaneous air breathing. Another important adaptation that aids breathing while out of water is their enlarged gill chambers, where they retain a bubble of air. These chambers close tightly when the fish is above water, due to a ventromedial valve of the gill slit, keeping the gills moist, and allowing them to function while exposed to air. Gill filaments are stiff and do not coalesce when out of water.
Digging deep burrows in soft sediments allows the fish to thermoregulate, avoid marine predators during the high tide when the fish and burrow are submerged, and lay their eggs. When the burrow is submerged, several mudskipper species maintain an air pocket inside it, which allows them to breathe in conditions of very low oxygen concentration.
The genus Periophthalmus is by far the most diverse and widespread genus of mudskipper. Eighteen species have been described. Periophthalmus argentilineatus is one of the most widespread and well-known species. It can be found in mangrove ecosystems and mudflats of East Africa and Madagascar east through the Sundarbans of Bengal, Southeast Asia to Northern Australia, southeast China, and southern Japan, to Samoa and Tonga Islands. It grows to a length of about 9.5 cm and is a carnivorous opportunist feeder. It feeds on small prey such as small crabs and other arthropods. However, a recent molecular study suggests that P. argentilineatus is in fact a complex of species, with at least three separate lineages, one in East Africa, and two in the Indo-Malayan region. Another species, Periophthalmus barbarus, is the only oxudercine goby that inhabits the coastal areas of western Africa.
Fisiológicamente, el hambre está producido por los grandes estímulos que ejercen ciertas sustancias sobre nuestro cerebro. Así, por ejemplo, la hipoglucemia, estimula al hipotálamo lateral y produce estímulos vagales que nos obligan a comer, mientras que los ácidos grasos, la colecistoquinina y la serotonina estimulan al hipotálamo ventromedial y nos producen la sensación contraria del hambre: la saciedad.
The #ventromedial hypothalamic nucleus (VMN) #glucoregulatory neurotransmitters γ-aminobutyric acid (GABA) and #nitric oxide (NO) signal adjustments in #glycogen mobilization. #Glucocorticoids control #astrocyte #glycogen metabolism in vitro. The classical (type II) #glucocorticoid receptor (GR) is expressed in key brain structures that govern #glucostasis, including the VMN.
View more here: symbiosisonlinepublishing.com/endocrinology-diabetes/endo...
#scientificresearch #SymbiosisOnlinePublishing #InternationalJournal #Journals #Journal #ScientificJournal #openaccess #endocrinology #diabeteslife #diabetic #diabetologist #diabetescare #diabetessupport #Endocrine #diabeticlifestyle #sciencenews #scientificpublication #ScientificDiscovery #plasma #DiabeticPatients #Benfotiamine #immunesupport #ImmuneSystem #immuneboost #immunehealth #immunebooster
via WordPress ift.tt/BcVWx9M
El hipotálamo es una estructura muy importante situada en el cerebro y rige las principales funciones del cuerpo.
¿Qué es el hipotálamo?
Qué es el hipotálamo, al responder a la pregunta, sería apropiado mencionar las funciones del hipotálamo.
Esta estructura secretora de hormonas es una parte del cerebro que desempeña tareas vitales, como regular la temperatura corporal, la frecuencia cardíaca y el hambre. El hipotálamo, que pesa una media de 4 gramos, se divide en 3 partes: anterior, posterior y central.
En cuanto a lo que es el hipotálamo, es necesario mencionar las hormonas que segrega.
La secreción de hormonas tan valiosas como la dopamina, la vasopresina y la oxitocina se produce gracias al hipotálamo.
La vitalidad del cuerpo depende en cierto modo del hipotálamo, ya que la sensación de hambre, el cuerpo tiene un calor óptimo, el progreso saludable del ciclo del sueño, los impulsos sexuales los controla el hipotálamo.
Por eso la salud del hipotálamo es muy importante. El daño al hipotálamo puede provocar problemas graves en las funciones básicas del
cuerpo.
Según investigaciones científicas, los diferentes grupos de células del hipotálamo tienen diferentes funciones. Se sabe que hay más de 20 núcleos en el hipotálamo.
Por ejemplo, un núcleo especial en la parte frontal regula los ciclos de fertilidad y actividad sexual en las mujeres.
Al mismo tiempo, las células de este departamento provocan la secreción de tirotropina. En el compartimento posterior, un grupo de células regulan el ritmo circadiano, es decir, el ciclo natural del sueño y
la vigilia.
La extensión de esta sección es otra parte que funciona con la responsabilidad de regular el metabolismo. Otra parte, llamada núcleo ventromedial, está relacionada con las necesidades de comer, beber y energía.
Se están
realizando estudios sobre cómo el funcionamiento del hipotálamo cambia con la edad. Los estudios en ratones han demostrado una disminución de la hormona del crecimiento en el hipotálamo a medida
que envejecen.
Cuando se hizo una intervención adicional para mantener la actividad de las hormonas del crecimiento, esta vez el sistema inmunitario debilitó las reacciones.
¿Dónde está el hipotálamo en el cerebro? ¿Cuáles son los efectos?
Situado bajo el tálamo, que rige los sentidos de la vista, el oído, el tacto y el gusto, el hipotálamo también se encuentra por encima de la glándula pituitaria, lo que ayuda a unir el sistema nervioso y el sistema endocrino.
Efectivamente integral del hipotálamo. Es un maestro en mantener el equilibrio cuando se producen cambios en el cuerpo, tanto físicos como emocionales.
Los sujetos que afectan al hipotálamo se pueden enumerar de la siguiente manera:
Mantener la temperatura corporal de formas como la sudoración, la absorción de agua, la orina
Mantener el equilibrio hídrico y electrolítico del cuerpo
Desencadenar actividades sexuales con una intensidad saludable
Controlar los sentimientos de miedo y odio
Regular la sensación de sed y hambre
Mantener el ciclo del sueño en su máxima eficiencia
Ajustar la presión arterial
Mantener el equilibrio de carbohidratos, grasas y proteínas
Optimizar la sensación de felicidad
¿Cuáles son las funciones del hipotálamo y para qué sirve?
Entre las tareas del hipotálamo está principalmente regular la homeostasis, es decir, garantizar la sana adaptación del cuerpo a las condiciones cambiantes.
Los diferentes mecanismos del hipotálamo se especializan en diferentes problemas de equilibrio interno.
Estas incluyen garantizar la utilización adecuada de la glucosa, mantener el equilibrio entre sal y agua, controlar la presión arterial, regular el ciclo del sueño y optimizar la temperatura corporal.
Entre el sistema nervioso central, el sistema nervioso autónomo y el sistema hormonal, este extenso miniórgano es como un superorganizador.
El análisis se lleva a cabo en el hipotálamo según las cantidades de sustancias que pasan por el metabolismo corporal, como las hormonas, los nutrientes y las sales, así como las señales de los órganos correspondientes.
En función de
Los resultados de la evaluación, se definen nuevas tareas. Por ejemplo, después de sudar mucho, los riñones dan la orden de absorber agua y, para ello, se activan todas las unidades pertinentes.
Como el hipotálamo está en el cerebro, entre las tareas del hipotálamo, por supuesto, también están las actividades cerebrales.
En el cerebro, el tronco encefálico se comunica con diferentes áreas, como la amígdala, la corteza cerebral, el prosencéfalo límbico y el departamento de Broca.
Gracias a esta gran red, las hormonas como la leptina, la insulina, la girelina y los productos metabólicos como la glucosa y las cadenas de ácidos grasos fluyen hacia el hipotálamo.
¿Qué son las hormonas hipotalámicas?
Las hormonas son secreciones corporales que son responsables tanto de provocar cambios físicos para la salud anatómica como de regular las emociones en términos de salud psicológica.
En el hipotálamo, está garantizada la producción de las hormonas que figuran a continuación.
Dopamina: La dopamina, conocida como la hormona de la felicidad, está relacionada con la sensación de satisfacción y motivación. El hipotálamo produce dopamina y la dopamina
fluye con la sangre a la hipófisis.
Somatostatina: También suprime la secreción de la enzima pancreática somatostatina, que regula el flujo de las tareas relacionadas con el tracto gastrointestinal, es decir, la ruta de la boca al ano, donde comienza la digestión.
Oxitocina: Entre las hormonas del hipotálamo, la más romántica es la oxitocina. La oxitocina, también conocida como la hormona del amor, es una hormona que desencadena la sexualidad y controla muchos procesos fisiológicos y psicológicos diferentes desde el nacimiento hasta
la lactancia.
Vasopresina (ADH): La hormona vasopresina, que es un antidiurético, controla la presión arterial junto con la progresión saludable del ciclo del agua y la orina del cuerpo.
GHRH (hormona liberadora de la hormona del crecimiento): La hormona que desencadena la secreción de la hormona del crecimiento es la GHRH.
¿Qué son las enfermedades hipotalámicas?
El hipotálamo puede dañarse por diferentes motivos y puede haber alteraciones en su funcionamiento.
Los problemas en el hipotálamo a veces también pueden afectar a diferentes estructuras, como la glándula pituitaria, con la que trabaja.
Las causas del deterioro del hipotálamo pueden enumerarse de la siguiente manera: lesiones en la cabeza, infección cerebral, tumor cerebral, cirugía cerebral, pérdida de peso debido a la bulimia o la anorexia, problemas nutricionales, radioterapia, quimioterapia y trastornos genéticos.
Enfermedades causadas por problemas en el hipotálamo; trastornos de la hipófisis, hipopituitarismo (producción insuficiente de la hormona hipofisaria), diabetes insípida (falsa diabetes caracterizada por una micción excesiva), síndrome de Kallmann (deficiencia de la hormona ovárica), síndrome de la hormona antidiurética inapropiada, hiperprolactinemia (exceso anormal de prolactina), hipotiroidismo central (un tipo de deficiencia de la hormona tiroidea), acromegalia (exceso anormal de la hormona del crecimiento)) y el gigantismo hipofisario.
Cuando Las funciones del hipotálamo se alteran, aparecen ciertos síntomas. Los síntomas incluyen presión arterial alta o baja, pérdida o aumento de peso, deshidratación, disminución de la libido, infertilidad, problemas óseos, pérdida o debilidad muscular, problemas de temperatura corporal, insomnio, náuseas, mareos y entrada tardía en la pubertad.
Preguntas frecuentes
¿Qué significa hipotálamo?
La palabra hipotálamo
, que se encuentra en todos los mamíferos, se deriva de la combinación de las palabras hipo y tálamo. El significado holístico de la palabra hipotálamo se puede definir como «por debajo del tálamo». El hipotálamo ha pasado a nuestro idioma como hipotálamo. Este miniórgano no tiene un nombre que describa sus propias tareas. La identificación se realiza según la ubicación del hipotálamo.
¿Qué pasa si el hipotálamo no funciona?
Si El hipotálamo no funciona completamente, significa que las funciones corporales se detienen. Los problemas que se producen si el hipotálamo no funciona hasta cierto punto provocan algunos problemas físicos y psicológicos. La variedad y el contenido de los problemas que se presentan varían según la zona del hipotálamo en la que haya angustia. Por ejemplo, el problema en la parte del hipotálamo responsable del hambre puede crear problemas relacionados con
el peso.
¿Qué es la hormona hipotalámica?
El hipotálamo también se define como la glándula endocrina, es decir, la glándula hormonal, porque una de sus principales tareas es regular la secreción de hormonas, lo cual es de vital importancia. Pero no se puede hablar de una sola hormona como la hormona del hipotálamo. El hipotálamo es un departamento del cerebro responsable de muchas hormonas diferentes. Estas incluyen la dopamina, la vasopresina, la hormona del crecimiento, la hormona TRH y la oxitocina
en particular.