View allAll Photos Tagged reactionengines

New iteration for Raven SSTO, Single Stage to Orbit. This isn't the heavy, Discovery. But the smaller one. For example, SpaceX's dragon capsule is 378 Cu Ft, Payload bay of Raven is 1078 Cu Ft. www.ioaircraft.com/hypersonic/raven.php

 

Iteration 10, almost clean sheet. U-TBCC propulsion, 6000F thermal resistance, 3D printed graphene airframe, Note the elimination of "blunt nose". Turn around time under 24 hours total from landing to ready for next flight. No external boosters.

 

Forward Thruster Bay, other then conventional orbital thrusters, also includes a reverse thruster which decelerates the aircraft pre re-entry into atmosphere from 16,500+ mph ground speed to apx 12,000 mph ground speed. Engines re-ignite once in atmosphere so it can fly to it's landing destination, ie not glide.

 

#ssto #singlestagetorobit #space #newspace #afrl #afwerx #usaf #darpa #onr #arl #boeing #lockheedmartin #raytheon #northropgrumman #aerojet #dynetics #esa #bae #afosr #hypersonics #hypersonic #scramjet #reactionengines #sabre #starship #falcon9 #dragoncapsule #innovation #graphene #hydrogen #spacex #ula #virginorbit #rocketlab #artemis #orion #sls #nasa #snc #sierranevadecorporation #dreamchaser #astra #sdo #sda #spaceforce #dod #icao #dassault #bombardier #gulfstream #cessna #bigalow

Hyperion, Hypersonic Mach 15 Scramjet Missile - IO Aircraft - ARRW, HAWC, Air Launched Rapid Response Weapon

Length: 120" / Span 25"

www.ioaircraft.com

 

Scramjet, Hypersonic, ARRW, HAWC, Air Launched Rapid Response Weapon, Scramjet Physics, Scramjet Engineering, Hypersonic Missile, hypersonic weapon, hypersonic fighter, hypersonic fighter plane, tgv, tactical glide vehicle, hypersonic commercial aircraft, hypersonic commercial plane, hypersonic aircraft, hypersonic plane, hypersonic airline, tbcc, glide breaker, fighter plane, hypersonic fighter, boeing phantom express, phantom works, boeing phantom works, lockheed skunk works, boost glide, tactical glide vehicle, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, defense science, missile defense agency, aerospike, hydrogen aircraft, airlines, military, physics, airline, aerion supersonic, aerion, spike aerospace, boom supersonic, , darpa, onr, navair, afrl, air force research lab, office of naval research, defense advanced research project agency, afosr, socom, arl, army future command, mda, missile defense agenci, dia, defense intelligence agency, Air Force Office of Scientific Research,

 

Iteration V8, Hyperion Mach 15 #hypersonic #scramjet (50% faster then the X-43 #nasa), 300% faster than #Lockheed, #NorthropGrumman, #Raytheon, and Boeing. Much is sanitized as the technology advances are dramatic and not public.

DOD's funding of #AGM-183A / Air Launched Rapid Response Weapon, the poeple developing it barely comprehend student level capabilities and 50/50 it will disintegrate even at Mach 5. China and Russia, already much faster and higher tech making it obsolete already, India's recent test, apx 700 mph faster.

 

Summarized details are accurate

#hypersonic #hypersonics #scramjet #hypersonicplane #hypersonicaircraft #skunkworks #spaceplane #boeing #lockheed #raytheon #bae #bombardier #airbus #northopgrumman #generaldynamics #utc #ge #afrl #onr #afosr #ReactionEngines #spacex #virginorbit #usaf #darpa #mda #rollsroyce #nasa #tesla #safran #embraer #AirLaunchedRapidResponseWeapon #additivemanufacturing #military #physics #3dprinting #supersonic #ramjet #tbcc #collinsaerospace #rockwell #phantomworks #hypersonicmissile #alrrw #boeingphantomworks #generalatomics #cessna #dassault #arl #unitedlaunchalliance #spaceshipcompany #navair #diu #dia #usaf #unitedtechnologies #defenseadvancedresearchprojectagency #graphene #additivemanufacturing

 

-----------------------------

 

Unified Turbine Based Combined Cycle. Current technologies and what Lockheed is trying to force on the Dept of Defense, for that low speed Mach 5 plane DOD gave them $1 billion to build and would disintegrate above Mach 5, is TBCC. 2 separate propulsion systems in the same airframe, which requires TWICE the airframe space to use.

 

Unified Turbine Based Combined Cycle is 1 propulsion system cutting that airframe deficit in half, and also able to operate above Mach 10 up to Mach 15 in atmosphere, and a simple nozzle modification allows for outside atmosphere rocket mode, ie orbital capable.

 

Additionally, Reaction Engines maximum air breather mode is Mach 4.5, above that it will explode in flight from internal pressures are too high to operate. Thus, must switch to non air breather rocket mode to operate in atmosphere in hypersonic velocities. Which as a result, makes it not feasible for anything practical. It also takes an immense amount of fuel to function.

 

-------------

 

Advanced Additive Manufacturing for Hypersonic Aircraft

 

Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.

 

Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.

 

*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.

 

What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.

 

Unified Turbine Based Combined Cycle (U-TBCC)

 

To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5

 

However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.

 

Enhanced Dynamic Cavitation

 

Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.

 

Dynamic Scramjet Ignition Processes

 

For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.

 

Hydrogen vs Kerosene Fuel Sources

 

Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.

 

Conforming High Pressure Tank Technology for CNG and H2.

 

As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.

 

As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).

 

Enhanced Fuel Mixture During Shock Train Interaction

 

Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.

 

Improved Bow Shock Interaction

 

Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.

 

6,000+ Fahrenheit Thermal Resistance

 

To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.

  

*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope

 

Scramjet Propulsion Side Wall Cooling

 

With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.

 

Lower Threshold for Hypersonic Ignition

 

Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.

 

Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities

 

Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.

 

Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)

 

To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.

 

A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.

 

Raven - Mach 8-10 Hypersonic Plane - Single Stage to Orbit (STO) - Iteration 7

 

IO Aircraft www.ioaircraft.com

Drew Blair www.linkedin.com/in/drew-b-25485312/

 

Raven - B Model (Iteration 7)

 

Single Stage To Orbit Fixed Wing Aircraft

Length: 100'

Span: 45' 8"

 

Thermals: 6,000+ Fahrenheit

Turn Around Time: 3-6 Hours (No Ablative/Ceramic Tiles)

 

Airframe: 90% Advanced Composites, 10X Stronger then if it were Titatanium

 

Propulsion: U-TBCC (Unified Turbine Based Combined Cycle + Zero Atmosphere Mod)

 

Empty Weight: Apx 40,000 LBS

Fuel: 8,000-12,000 PSI Compressed Hydrogen and Oxygen

Fuel Weight Total: 5,000 LBS

 

Capability: Max Load, 170 Mile Parking Orbit

(W/O Assist) Half Load, Geo Stationary Orbit (Or Moon Orbit)

 

Payload Bay: 15' X 7' X 7'

Payload Max: 15,000 LBS

 

Costs Per Launch: Apx $2.5 Million

 

space plane, single stage to orbit, sto, hypersonic plane, hypersonic aircraft, tbcc, unified turbine based combined cycle, scramjet, dual mode ramjet, scramjet physics, scramjet engineering, darpa, mda, afrl, diu, supersonic business jet, hypersonic business jet, boeing phantom express, lockheed skunk works, hypersonic fighter, hypersonic weapon, hypersonic missile, scramjet missile, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air Launched Rapid Response Weapon, ARRW, hypersonic tactical vehicle, turbine based combined cycle, ramjet, onr, navair, air force research lab, office of naval research, defense advanced research project agency, defense science, missile defense agency, aerospike, hydrogen, hydrogen storage, hydrogen fueled, hydrogen aircraft, virgin airlines, united airlines, sas, finnair ,emirates airlines, ANA, JAL, airlines, military, physics, airline, british airways, air france, phantom works, skunk works, united launch alliance, spaceship company, virgin galactic, bigalow space, reaction engines, skylon, aerion supersonic, spike aerospace, boom supersonic, boeing phantom works, 3d printing, additive manufacturing, titatanium 3d printing, graphene 3d printing,

 

spaceplane #singlestagetoorbit #sto #hypersonicplane #hypersonicaircraft #tbcc #unifiedturbinebasedcombinedcycle #scramjet #dualmoderamjet #scramjetphysics #scramjetengineering #darpa #mda #afrl #diu #supersonicbusinessjet #hypersonicbusinessjet #boeingphantomexpress #lockheedskunkworks #hypersonicfighter #hypersonicweapon #hypersonicmissile #scramjetmissile #boostglide #tacticalglidevehicle #BoeingXS-1 #htv #AirLaunchedRapidResponseWeapon #ARRW #hypersonictacticalvehicle #turbinebasedcombinedcycle #ramjet #onr #navair #airforceresearchlab #officeofnavalresearch #defenseadvancedresearchprojectagency #defensescience #missiledefenseagency #aerospike #hydrogen #hydrogenstorage #hydrogenfueled #hydrogenaircraft #virginairlines #unitedairlines #sas #finnair #emiratesairlines #ANA #JAL #airlines #military #physics #airline #britishairways #airfrance #phantomworks #skunkworks #unitedlaunchalliance #spaceshipcompany #virgingalactic #bigalowspace #reactionengines #skylon #aerionsupersonic #spikeaerospace #boomsupersonic #boeingphantomworks

  

Advanced Additive Manufacturing for Hypersonic Aircraft

 

Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.

 

Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.

 

*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.

 

What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.

 

Unified Turbine Based Combined Cycle (U-TBCC)

 

To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5

 

However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.

 

Enhanced Dynamic Cavitation

 

Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.

 

Dynamic Scramjet Ignition Processes

 

For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.

 

Hydrogen vs Kerosene Fuel Sources

 

Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.

 

Conforming High Pressure Tank Technology for CNG and H2.

 

As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.

 

As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).

 

Enhanced Fuel Mixture During Shock Train Interaction

 

Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.

 

Improved Bow Shock Interaction

 

Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.

 

6,000+ Fahrenheit Thermal Resistance

 

To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.

  

*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope

 

Scramjet Propulsion Side Wall Cooling

 

With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.

 

Lower Threshold for Hypersonic Ignition

 

Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.

 

Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities

 

Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.

 

Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)

 

To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.

 

A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.

Iteration 10 - Raven B Model - Mach 8-10, 22 Passenger hypersonic business jet. New iteration reflects design changes from Raven A Model, which is an SSTO, a real one. ALL technologies associated "are" developed. It is also ZERO CARBON.

 

More Info: www.ioaircraft.com/hypersonic/raven-business.php

 

Not a graphics design or graphics rendering, but sanitized cad screenshots. This is not a concept, but ready for serial production. Not really looking for investors and such. Everything DOD is funding for hypersonic fixed aircraft is OLD and rehashed perpetually for 40+ years at 10X the price. Others, pushing supersonics and hypersonics, also very old technologies at very expensive prices and operating costs. This, about the same as a G650 or Global Express costs and operating costs and normalized Mach 10 dynamics in all regards in atmosphere.

 

#afrl #afwerx #defensewerx #usaf #darpa #onr #arl #boeing #lockheedmartin #airbus #raytheon #northropgrumman #aerojet #dynetics #easa #bae #afosr #hypersonic #supersonic #scramjet #reactionengines #innovation #graphene #hydrogen #spacex #ula #virgingalactic #rocketlab #nasa #snc #sierranevadecorporation #dreamchaser #sdo #sda #spaceforce #dod #icao #dassault #bombardier #gulfstream #cessna #bigalow #boomsuprsonic #aerion #esa #airplane

New iteration for Raven SSTO, Single Stage to Orbit. This isn't the heavy, Discovery. But the smaller one. For example, SpaceX's dragon capsule is 378 Cu Ft, Payload bay of Raven is 1078 Cu Ft. www.ioaircraft.com/hypersonic/raven.php

 

Iteration 10, almost clean sheet. U-TBCC propulsion, 6000F thermal resistance, 3D printed graphene airframe, Note the elimination of "blunt nose". Turn around time under 24 hours total from landing to ready for next flight. No external boosters.

 

Forward Thruster Bay, other then conventional orbital thrusters, also includes a reverse thruster which decelerates the aircraft pre re-entry into atmosphere from 16,500+ mph ground speed to apx 12,000 mph ground speed. Engines re-ignite once in atmosphere so it can fly to it's landing destination, ie not glide.

 

#ssto #singlestagetorobit #space #newspace #afrl #afwerx #usaf #darpa #onr #arl #boeing #lockheedmartin #raytheon #northropgrumman #aerojet #dynetics #esa #bae #afosr #hypersonics #hypersonic #scramjet #reactionengines #sabre #starship #falcon9 #dragoncapsule #innovation #graphene #hydrogen #spacex #ula #virginorbit #rocketlab #artemis #orion #sls #nasa #snc #sierranevadecorporation #dreamchaser #astra #sdo #sda #spaceforce #dod #icao #dassault #bombardier #gulfstream #cessna #bigalow

FCH-150 Hydrogen Fuel Cell Commercial Aircraft - IO Aircraft - Iteration 2

 

www.ioaircraft.com

Iteration 2, Some refinements. Similar size as a 737 Max 10 apx 1/2 the operating costs - Wings and Canard fold to 100' Span, Fuselage Length 150', Configuration (Current) 184 Econ and 1st class, 5,000+ NM Range, Does not use liquid hydrogen. Uses 8,000 PSI Compressed H2 or CNG for 95% fuel weight reduction. Airframe, 3D Printed Graphene (technology already developed), kevlar and carbon fiber. Almost no metal used in the airframe 50%+ airframe weight reduction & 10+ X the strength.

 

I focus on Hypersonics and vtol, not this one. This applied many of those technologies to create the foundation of a true zero carbon commercial aircraft.

 

LengthL 150ft | Span 120.6ft | Cruise M.88-.92

Cruise: 35,000-38,000ft | Ceiling 41,000-45,000ft

Range: 5,000+ NM

Estimated Empty Weight: 65,000 LBS

Estimated T/O Weight (Full Fuel and Passengers/Baggage) 134,000 LBS

Estimated MTOW: 195,000

Fuel: 30,000 Gallons 8,000+ Max PSI Compressed Hydrogen or Natural Gas Using High Pressure Conforming Tank Technology, 500,000PSIA Integrity

Fuel Weight: Apx 9,000 LBS (Compared to 180,300 LBS if Liquid Fueled)

Current Passenger Configuration: 184 / 12 1st Class & 172 Main Cabin

Operating Costs: $2,500 - $3,500 hr

Estimated Maintenance Costs, Apx 1/2 Compared to 737's, A320's, etc

Estimated Unit Price in Production: Apx $105 Million

 

Reduction in Operating/Maintenance Costs Over the Life Cycle of the Aircraft, $20-$50 Million or greater.

 

Motors, zero maintenance required for greater then 5,000 operating hours.

-----------------------------------

100% viable Electric Commercial aircraft, in a 737 MAX class. Compressed Hydrogen Fueled (Not liquid [obsolete]), 100% electric. NO carbon foot print. Even the hydrogen can be generated on the ground via water electrolysis on top of terminals. Also saving operators $20-$50 million or more, over an aircraft's life cycle.

 

Non, zero carbon, could use CNG, then reformation to extract the Hydrogen.

 

Ready to build today, all tech is already developed. Makes ALL commercial aircraft in existence obsolete. PLUS all hybrid aicraft on the drawing board right now with Boeing, Airbus, etc.

 

Airframe is 3D printed Graphene wafering, 33X stronger then titatnium; and carbon fiber/kevlar.

 

Specs:

Length: 150 ft | Span: 120.6 ft | Cruise M.9-.92)

Ceiling: Estimate 45,000 ft. Cruise: 38,000 ft

Range: 5,000+ NM

Estimated Empty Weight: 65,000 LBS

Estimate T/O Weight (Full fuel and passengers): 134,000 LBS

MTOW Estimate: 195,000 LBS

Fuel: 30,000 Gallon 8,000 PSI Max Compressed Hydrogen or Natural Gas Using High Pressure Conforming Tank Technology

Fuel Weight: Apx 9,000 LBS (Compared to 180,300 LBS if Jet A liquid)

Current Passenger Configuration: 184 passengers; 172 Main Cabin & 12 1st Class

Operating Costs, apx $2,500-$3,500 hr.

 

Estiumated Maintenance Costs: Apx 1/2 current commercial aircraft.

 

Estimate Unit Price in Production: Apx $105 million

Reduction in Operating Costs Over the Aircrafts Life Cycle: $20-$50 Million (Or More) in Savings.

 

#hybrid #sustainability #hydrogen #hydrogenfuelcell #commercialaircraft #airbus #boeing #comac #innovation #lockheed #raytheon #bae #bombardier #northopgrumman #generaldynamics #utc #ge #afrl #onr #afosr #ReactionEngines #spacex #virginorbit #usaf #darpa #mda #rollsroyce #nasa #tesla #safran #embraer #3dprinting #supersonic #collinsaerospace #rockwell #generalatomics #cessna #dassault #arl #navair #diu #dia #usaf #unitedtechnologies #bae #cessana #piper #saab #defenseadvancedresearchprojectagency #graphene #additivemanufacturing #gkn #eaa #aopa #icao #tesla #nikolamotors #zerocarbon #embraer #electricaircraft

 

hybrid, sustainability, hydrogen, hydrogen fuel cell, hybrid commercial aircraft, hybrid commercial plane, commercial aircraft, airbus, boeing, comac, innovation, lockheed, raytheon, bae, bombardier, northop grumman, general dynamics, utc, ge, afrl, onr, afosr, usaf, darpa, mda, rolls royce, nasa, tesla, safran, embraer, 3d printing, supersonic, collins aerospace, rockwell, general atomics, cessna, dassault aviation, arl, navair, diu, dia, usaf, united technologies, bae, cessana, piper, saab, defense advanced research project agency, graphene, additive manufacturing, gkn, eaa, aopa, icao, tesla, nikola motors, zero carbon, embraer, electricaircraft, Composite Aircraft, Composite Commercial Aircraft,

 

boeing, airbus, embraer, ge aviation, rolls-royce, dassault aviation, bae raytheon, collins aerospace, lockheed martin, bombardier, Gulfstream Aerospace, safran, ge aviation, united technologies, united airlines, virgin airlines, All Nippon Airways, Delta Air Lines, british airways, southwest airlines, ryanair, virgin atlantic, qatar airways, emirates, lufthansa, etihad airways, KLM, Guillaume Faury, Greg Hyslop, Lynne Hopper, Paul Perera, Bruno Clermont, Tim Deaver, Paul Eremenko, Jean-Brice Dumont, Dirk Hoke, Marillyn Hewson, Richard Ambrose, Charles Woodburn, Philippe PETITCOLIN, Stéphane CUEILLE

 

FCH-150 Hydrogen Fuel Cell Commercial Aircraft - IO Aircraft - Iteration 2

 

www.ioaircraft.com

Iteration 2, Some refinements. Similar size as a 737 Max 10 apx 1/2 the operating costs - Wings and Canard fold to 100' Span, Fuselage Length 150', Configuration (Current) 184 Econ and 1st class, 5,000+ NM Range, Does not use liquid hydrogen. Uses 8,000 PSI Compressed H2 or CNG for 95% fuel weight reduction. Airframe, 3D Printed Graphene (technology already developed), kevlar and carbon fiber. Almost no metal used in the airframe 50%+ airframe weight reduction & 10+ X the strength.

 

I focus on Hypersonics and vtol, not this one. This applied many of those technologies to create the foundation of a true zero carbon commercial aircraft.

 

LengthL 150ft | Span 120.6ft | Cruise M.88-.92

Cruise: 35,000-38,000ft | Ceiling 41,000-45,000ft

Range: 5,000+ NM

Estimated Empty Weight: 65,000 LBS

Estimated T/O Weight (Full Fuel and Passengers/Baggage) 134,000 LBS

Estimated MTOW: 195,000

Fuel: 30,000 Gallons 8,000+ Max PSI Compressed Hydrogen or Natural Gas Using High Pressure Conforming Tank Technology, 500,000PSIA Integrity

Fuel Weight: Apx 9,000 LBS (Compared to 180,300 LBS if Liquid Fueled)

Current Passenger Configuration: 184 / 12 1st Class & 172 Main Cabin

Operating Costs: $2,500 - $3,500 hr

Estimated Maintenance Costs, Apx 1/2 Compared to 737's, A320's, etc

Estimated Unit Price in Production: Apx $105 Million

 

Reduction in Operating/Maintenance Costs Over the Life Cycle of the Aircraft, $20-$50 Million or greater.

 

Motors, zero maintenance required for greater then 5,000 operating hours.

-----------------------------------

100% viable Electric Commercial aircraft, in a 737 MAX class. Compressed Hydrogen Fueled (Not liquid [obsolete]), 100% electric. NO carbon foot print. Even the hydrogen can be generated on the ground via water electrolysis on top of terminals. Also saving operators $20-$50 million or more, over an aircraft's life cycle.

 

Non, zero carbon, could use CNG, then reformation to extract the Hydrogen.

 

Ready to build today, all tech is already developed. Makes ALL commercial aircraft in existence obsolete. PLUS all hybrid aicraft on the drawing board right now with Boeing, Airbus, etc.

 

Airframe is 3D printed Graphene wafering, 33X stronger then titatnium; and carbon fiber/kevlar.

 

Specs:

Length: 150 ft | Span: 120.6 ft | Cruise M.9-.92)

Ceiling: Estimate 45,000 ft. Cruise: 38,000 ft

Range: 5,000+ NM

Estimated Empty Weight: 65,000 LBS

Estimate T/O Weight (Full fuel and passengers): 134,000 LBS

MTOW Estimate: 195,000 LBS

Fuel: 30,000 Gallon 8,000 PSI Max Compressed Hydrogen or Natural Gas Using High Pressure Conforming Tank Technology

Fuel Weight: Apx 9,000 LBS (Compared to 180,300 LBS if Jet A liquid)

Current Passenger Configuration: 184 passengers; 172 Main Cabin & 12 1st Class

Operating Costs, apx $2,500-$3,500 hr.

 

Estiumated Maintenance Costs: Apx 1/2 current commercial aircraft.

 

Estimate Unit Price in Production: Apx $105 million

Reduction in Operating Costs Over the Aircrafts Life Cycle: $20-$50 Million (Or More) in Savings.

 

#hybrid #sustainability #hydrogen #hydrogenfuelcell #commercialaircraft #airbus #boeing #comac #innovation #lockheed #raytheon #bae #bombardier #northopgrumman #generaldynamics #utc #ge #afrl #onr #afosr #ReactionEngines #spacex #virginorbit #usaf #darpa #mda #rollsroyce #nasa #tesla #safran #embraer #3dprinting #supersonic #collinsaerospace #rockwell #generalatomics #cessna #dassault #arl #navair #diu #dia #usaf #unitedtechnologies #bae #cessana #piper #saab #defenseadvancedresearchprojectagency #graphene #additivemanufacturing #gkn #eaa #aopa #icao #tesla #nikolamotors #zerocarbon #embraer #electricaircraft

 

hybrid, sustainability, hydrogen, hydrogen fuel cell, hybrid commercial aircraft, hybrid commercial plane, commercial aircraft, airbus, boeing, comac, innovation, lockheed, raytheon, bae, bombardier, northop grumman, general dynamics, utc, ge, afrl, onr, afosr, usaf, darpa, mda, rolls royce, nasa, tesla, safran, embraer, 3d printing, supersonic, collins aerospace, rockwell, general atomics, cessna, dassault aviation, arl, navair, diu, dia, usaf, united technologies, bae, cessana, piper, saab, defense advanced research project agency, graphene, additive manufacturing, gkn, eaa, aopa, icao, tesla, nikola motors, zero carbon, embraer, electricaircraft, Composite Aircraft, Composite Commercial Aircraft,

 

boeing, airbus, embraer, ge aviation, rolls-royce, dassault aviation, bae raytheon, collins aerospace, lockheed martin, bombardier, Gulfstream Aerospace, safran, ge aviation, united technologies, united airlines, virgin airlines, All Nippon Airways, Delta Air Lines, british airways, southwest airlines, ryanair, virgin atlantic, qatar airways, emirates, lufthansa, etihad airways, KLM, Guillaume Faury, Greg Hyslop, Lynne Hopper, Paul Perera, Bruno Clermont, Tim Deaver, Paul Eremenko, Jean-Brice Dumont, Dirk Hoke, Marillyn Hewson, Richard Ambrose, Charles Woodburn, Philippe PETITCOLIN, Stéphane CUEILLE

 

FCH-150 Hydrogen Fuel Cell Commercial Aircraft - IO Aircraft - Iteration 2

 

www.ioaircraft.com

Iteration 2, Some refinements. Similar size as a 737 Max 10 apx 1/2 the operating costs - Wings and Canard fold to 100' Span, Fuselage Length 150', Configuration (Current) 184 Econ and 1st class, 5,000+ NM Range, Does not use liquid hydrogen. Uses 8,000 PSI Compressed H2 or CNG for 95% fuel weight reduction. Airframe, 3D Printed Graphene (technology already developed), kevlar and carbon fiber. Almost no metal used in the airframe 50%+ airframe weight reduction & 10+ X the strength.

 

I focus on Hypersonics and vtol, not this one. This applied many of those technologies to create the foundation of a true zero carbon commercial aircraft.

 

LengthL 150ft | Span 120.6ft | Cruise M.88-.92

Cruise: 35,000-38,000ft | Ceiling 41,000-45,000ft

Range: 5,000+ NM

Estimated Empty Weight: 65,000 LBS

Estimated T/O Weight (Full Fuel and Passengers/Baggage) 134,000 LBS

Estimated MTOW: 195,000

Fuel: 30,000 Gallons 8,000+ Max PSI Compressed Hydrogen or Natural Gas Using High Pressure Conforming Tank Technology, 500,000PSIA Integrity

Fuel Weight: Apx 9,000 LBS (Compared to 180,300 LBS if Liquid Fueled)

Current Passenger Configuration: 184 / 12 1st Class & 172 Main Cabin

Operating Costs: $2,500 - $3,500 hr

Estimated Maintenance Costs, Apx 1/2 Compared to 737's, A320's, etc

Estimated Unit Price in Production: Apx $105 Million

 

Reduction in Operating/Maintenance Costs Over the Life Cycle of the Aircraft, $20-$50 Million or greater.

 

Motors, zero maintenance required for greater then 5,000 operating hours.

-----------------------------------

100% viable Electric Commercial aircraft, in a 737 MAX class. Compressed Hydrogen Fueled (Not liquid [obsolete]), 100% electric. NO carbon foot print. Even the hydrogen can be generated on the ground via water electrolysis on top of terminals. Also saving operators $20-$50 million or more, over an aircraft's life cycle.

 

Non, zero carbon, could use CNG, then reformation to extract the Hydrogen.

 

Ready to build today, all tech is already developed. Makes ALL commercial aircraft in existence obsolete. PLUS all hybrid aicraft on the drawing board right now with Boeing, Airbus, etc.

 

Airframe is 3D printed Graphene wafering, 33X stronger then titatnium; and carbon fiber/kevlar.

 

Specs:

Length: 150 ft | Span: 120.6 ft | Cruise M.9-.92)

Ceiling: Estimate 45,000 ft. Cruise: 38,000 ft

Range: 5,000+ NM

Estimated Empty Weight: 65,000 LBS

Estimate T/O Weight (Full fuel and passengers): 134,000 LBS

MTOW Estimate: 195,000 LBS

Fuel: 30,000 Gallon 8,000 PSI Max Compressed Hydrogen or Natural Gas Using High Pressure Conforming Tank Technology

Fuel Weight: Apx 9,000 LBS (Compared to 180,300 LBS if Jet A liquid)

Current Passenger Configuration: 184 passengers; 172 Main Cabin & 12 1st Class

Operating Costs, apx $2,500-$3,500 hr.

 

Estiumated Maintenance Costs: Apx 1/2 current commercial aircraft.

 

Estimate Unit Price in Production: Apx $105 million

Reduction in Operating Costs Over the Aircrafts Life Cycle: $20-$50 Million (Or More) in Savings.

 

#hybrid #sustainability #hydrogen #hydrogenfuelcell #commercialaircraft #airbus #boeing #comac #innovation #lockheed #raytheon #bae #bombardier #northopgrumman #generaldynamics #utc #ge #afrl #onr #afosr #ReactionEngines #spacex #virginorbit #usaf #darpa #mda #rollsroyce #nasa #tesla #safran #embraer #3dprinting #supersonic #collinsaerospace #rockwell #generalatomics #cessna #dassault #arl #navair #diu #dia #usaf #unitedtechnologies #bae #cessana #piper #saab #defenseadvancedresearchprojectagency #graphene #additivemanufacturing #gkn #eaa #aopa #icao #tesla #nikolamotors #zerocarbon #embraer #electricaircraft

 

hybrid, sustainability, hydrogen, hydrogen fuel cell, hybrid commercial aircraft, hybrid commercial plane, commercial aircraft, airbus, boeing, comac, innovation, lockheed, raytheon, bae, bombardier, northop grumman, general dynamics, utc, ge, afrl, onr, afosr, usaf, darpa, mda, rolls royce, nasa, tesla, safran, embraer, 3d printing, supersonic, collins aerospace, rockwell, general atomics, cessna, dassault aviation, arl, navair, diu, dia, usaf, united technologies, bae, cessana, piper, saab, defense advanced research project agency, graphene, additive manufacturing, gkn, eaa, aopa, icao, tesla, nikola motors, zero carbon, embraer, electricaircraft, Composite Aircraft, Composite Commercial Aircraft,

 

boeing, airbus, embraer, ge aviation, rolls-royce, dassault aviation, bae raytheon, collins aerospace, lockheed martin, bombardier, Gulfstream Aerospace, safran, ge aviation, united technologies, united airlines, virgin airlines, All Nippon Airways, Delta Air Lines, british airways, southwest airlines, ryanair, virgin atlantic, qatar airways, emirates, lufthansa, etihad airways, KLM, Guillaume Faury, Greg Hyslop, Lynne Hopper, Paul Perera, Bruno Clermont, Tim Deaver, Paul Eremenko, Jean-Brice Dumont, Dirk Hoke, Marillyn Hewson, Richard Ambrose, Charles Woodburn, Philippe PETITCOLIN, Stéphane CUEILLE

 

New iteration for Raven SSTO, Single Stage to Orbit. This isn't the heavy, Discovery. But the smaller one. For example, SpaceX's dragon capsule is 378 Cu Ft, Payload bay of Raven is 1078 Cu Ft. www.ioaircraft.com/hypersonic/raven.php

 

Iteration 10, almost clean sheet. U-TBCC propulsion, 6000F thermal resistance, 3D printed graphene airframe, Note the elimination of "blunt nose". Turn around time under 24 hours total from landing to ready for next flight. No external boosters.

 

Forward Thruster Bay, other then conventional orbital thrusters, also includes a reverse thruster which decelerates the aircraft pre re-entry into atmosphere from 16,500+ mph ground speed to apx 12,000 mph ground speed. Engines re-ignite once in atmosphere so it can fly to it's landing destination, ie not glide.

 

#ssto #singlestagetorobit #space #newspace #afrl #afwerx #usaf #darpa #onr #arl #boeing #lockheedmartin #raytheon #northropgrumman #aerojet #dynetics #esa #bae #afosr #hypersonics #hypersonic #scramjet #reactionengines #sabre #starship #falcon9 #dragoncapsule #innovation #graphene #hydrogen #spacex #ula #virginorbit #rocketlab #artemis #orion #sls #nasa #snc #sierranevadecorporation #dreamchaser #astra #sdo #sda #spaceforce #dod #icao #dassault #bombardier #gulfstream #cessna #bigalow

Iteration 10 - Raven B Model - Mach 8-10, 22 Passenger hypersonic business jet. New iteration reflects design changes from Raven A Model, which is an SSTO, a real one. ALL technologies associated "are" developed. It is also ZERO CARBON.

 

More Info: www.ioaircraft.com/hypersonic/raven-business.php

 

Not a graphics design or graphics rendering, but sanitized cad screenshots. This is not a concept, but ready for serial production. Not really looking for investors and such. Everything DOD is funding for hypersonic fixed aircraft is OLD and rehashed perpetually for 40+ years at 10X the price. Others, pushing supersonics and hypersonics, also very old technologies at very expensive prices and operating costs. This, about the same as a G650 or Global Express costs and operating costs and normalized Mach 10 dynamics in all regards in atmosphere.

 

#afrl #afwerx #defensewerx #usaf #darpa #onr #arl #boeing #lockheedmartin #airbus #raytheon #northropgrumman #aerojet #dynetics #easa #bae #afosr #hypersonic #supersonic #scramjet #reactionengines #innovation #graphene #hydrogen #spacex #ula #virgingalactic #rocketlab #nasa #snc #sierranevadecorporation #dreamchaser #sdo #sda #spaceforce #dod #icao #dassault #bombardier #gulfstream #cessna #bigalow #boomsuprsonic #aerion #esa #airplane

www.ioaircraft.com

Iteration 2, Some refinements. Similar size as a 737 Max 10 apx 1/2 the operating costs - Wings and Canard fold to 100' Span, Fuselage Length 150', Configuration (Current) 184 Econ and 1st class, 5,000+ NM Range, Does not use liquid hydrogen. Uses 8,000 PSI Compressed H2 or CNG for 95% fuel weight reduction. Airframe, 3D Printed Graphene (technology already developed), kevlar and carbon fiber. Almost no metal used in the airframe 50%+ airframe weight reduction & 10+ X the strength.

 

I focus on Hypersonics and vtol, not this one. This applied many of those technologies to create the foundation of a true zero carbon commercial aircraft.

 

LengthL 150ft | Span 120.6ft | Cruise M.88-.92

Cruise: 35,000-38,000ft | Ceiling 41,000-45,000ft

Range: 5,000+ NM

Estimated Empty Weight: 65,000 LBS

Estimated T/O Weight (Full Fuel and Passengers/Baggage) 134,000 LBS

Estimated MTOW: 195,000

Fuel: 30,000 Gallons 8,000+ Max PSI Compressed Hydrogen or Natural Gas Using High Pressure Conforming Tank Technology, 500,000PSIA Integrity

Fuel Weight: Apx 9,000 LBS (Compared to 180,300 LBS if Liquid Fueled)

Current Passenger Configuration: 184 / 12 1st Class & 172 Main Cabin

Operating Costs: $2,500 - $3,500 hr

Estimated Maintenance Costs, Apx 1/2 Compared to 737's, A320's, etc

Estimated Unit Price in Production: Apx $105 Million

 

Reduction in Operating/Maintenance Costs Over the Life Cycle of the Aircraft, $20-$50 Million or greater.

 

Motors, zero maintenance required for greater then 5,000 operating hours.

-----------------------------------

100% viable Electric Commercial aircraft, in a 737 MAX class. Compressed Hydrogen Fueled (Not liquid [obsolete]), 100% electric. NO carbon foot print. Even the hydrogen can be generated on the ground via water electrolysis on top of terminals. Also saving operators $20-$50 million or more, over an aircraft's life cycle.

 

Non, zero carbon, could use CNG, then reformation to extract the Hydrogen.

 

Ready to build today, all tech is already developed. Makes ALL commercial aircraft in existence obsolete. PLUS all hybrid aicraft on the drawing board right now with Boeing, Airbus, etc.

 

Airframe is 3D printed Graphene wafering, 33X stronger then titatnium; and carbon fiber/kevlar.

 

Specs:

Length: 150 ft | Span: 120.6 ft | Cruise M.9-.92)

Ceiling: Estimate 45,000 ft. Cruise: 38,000 ft

Range: 5,000+ NM

Estimated Empty Weight: 65,000 LBS

Estimate T/O Weight (Full fuel and passengers): 134,000 LBS

MTOW Estimate: 195,000 LBS

Fuel: 30,000 Gallon 8,000 PSI Max Compressed Hydrogen or Natural Gas Using High Pressure Conforming Tank Technology

Fuel Weight: Apx 9,000 LBS (Compared to 180,300 LBS if Jet A liquid)

Current Passenger Configuration: 184 passengers; 172 Main Cabin & 12 1st Class

Operating Costs, apx $2,500-$3,500 hr.

 

Estiumated Maintenance Costs: Apx 1/2 current commercial aircraft.

 

Estimate Unit Price in Production: Apx $105 million

Reduction in Operating Costs Over the Aircrafts Life Cycle: $20-$50 Million (Or More) in Savings.

 

#hybrid #sustainability #hydrogen #hydrogenfuelcell #commercialaircraft #airbus #boeing #comac #innovation #lockheed #raytheon #bae #bombardier #northopgrumman #generaldynamics #utc #ge #afrl #onr #afosr #ReactionEngines #spacex #virginorbit #usaf #darpa #mda #rollsroyce #nasa #tesla #safran #embraer #3dprinting #supersonic #collinsaerospace #rockwell #generalatomics #cessna #dassault #arl #navair #diu #dia #usaf #unitedtechnologies #bae #cessana #piper #saab #defenseadvancedresearchprojectagency #graphene #additivemanufacturing #gkn #eaa #aopa #icao #tesla #nikolamotors #zerocarbon #embraer #electricaircraft

 

hybrid, sustainability, hydrogen, hydrogen fuel cell, hybrid commercial aircraft, hybrid commercial plane, commercial aircraft, airbus, boeing, comac, innovation, lockheed, raytheon, bae, bombardier, northop grumman, general dynamics, utc, ge, afrl, onr, afosr, usaf, darpa, mda, rolls royce, nasa, tesla, safran, embraer, 3d printing, supersonic, collins aerospace, rockwell, general atomics, cessna, dassault aviation, arl, navair, diu, dia, usaf, united technologies, bae, cessana, piper, saab, defense advanced research project agency, graphene, additive manufacturing, gkn, eaa, aopa, icao, tesla, nikola motors, zero carbon, embraer, electricaircraft, Composite Aircraft, Composite Commercial Aircraft,

 

boeing, airbus, embraer, ge aviation, rolls-royce, dassault aviation, bae raytheon, collins aerospace, lockheed martin, bombardier, Gulfstream Aerospace, safran, ge aviation, united technologies, united airlines, virgin airlines, All Nippon Airways, Delta Air Lines, british airways, southwest airlines, ryanair, virgin atlantic, qatar airways, emirates, lufthansa, etihad airways, KLM, Guillaume Faury, Greg Hyslop, Lynne Hopper, Paul Perera, Bruno Clermont, Tim Deaver, Paul Eremenko, Jean-Brice Dumont, Dirk Hoke, Marillyn Hewson, Richard Ambrose, Charles Woodburn, Philippe PETITCOLIN, Stéphane CUEILLE

 

www.ioaircraft.com

Iteration 2, Some refinements. Similar size as a 737 Max 10 apx 1/2 the operating costs - Wings and Canard fold to 100' Span, Fuselage Length 150', Configuration (Current) 184 Econ and 1st class, 5,000+ NM Range, Does not use liquid hydrogen. Uses 8,000 PSI Compressed H2 or CNG for 95% fuel weight reduction. Airframe, 3D Printed Graphene (technology already developed), kevlar and carbon fiber. Almost no metal used in the airframe 50%+ airframe weight reduction & 10+ X the strength.

 

I focus on Hypersonics and vtol, not this one. This applied many of those technologies to create the foundation of a true zero carbon commercial aircraft.

 

LengthL 150ft | Span 120.6ft | Cruise M.88-.92

Cruise: 35,000-38,000ft | Ceiling 41,000-45,000ft

Range: 5,000+ NM

Estimated Empty Weight: 65,000 LBS

Estimated T/O Weight (Full Fuel and Passengers/Baggage) 134,000 LBS

Estimated MTOW: 195,000

Fuel: 30,000 Gallons 8,000+ Max PSI Compressed Hydrogen or Natural Gas Using High Pressure Conforming Tank Technology, 500,000PSIA Integrity

Fuel Weight: Apx 9,000 LBS (Compared to 180,300 LBS if Liquid Fueled)

Current Passenger Configuration: 184 / 12 1st Class & 172 Main Cabin

Operating Costs: $2,500 - $3,500 hr

Estimated Maintenance Costs, Apx 1/2 Compared to 737's, A320's, etc

Estimated Unit Price in Production: Apx $105 Million

 

Reduction in Operating/Maintenance Costs Over the Life Cycle of the Aircraft, $20-$50 Million or greater.

 

Motors, zero maintenance required for greater then 5,000 operating hours.

-----------------------------------

100% viable Electric Commercial aircraft, in a 737 MAX class. Compressed Hydrogen Fueled (Not liquid [obsolete]), 100% electric. NO carbon foot print. Even the hydrogen can be generated on the ground via water electrolysis on top of terminals. Also saving operators $20-$50 million or more, over an aircraft's life cycle.

 

Non, zero carbon, could use CNG, then reformation to extract the Hydrogen.

 

Ready to build today, all tech is already developed. Makes ALL commercial aircraft in existence obsolete. PLUS all hybrid aicraft on the drawing board right now with Boeing, Airbus, etc.

 

Airframe is 3D printed Graphene wafering, 33X stronger then titatnium; and carbon fiber/kevlar.

 

Specs:

Length: 150 ft | Span: 120.6 ft | Cruise M.9-.92)

Ceiling: Estimate 45,000 ft. Cruise: 38,000 ft

Range: 5,000+ NM

Estimated Empty Weight: 65,000 LBS

Estimate T/O Weight (Full fuel and passengers): 134,000 LBS

MTOW Estimate: 195,000 LBS

Fuel: 30,000 Gallon 8,000 PSI Max Compressed Hydrogen or Natural Gas Using High Pressure Conforming Tank Technology

Fuel Weight: Apx 9,000 LBS (Compared to 180,300 LBS if Jet A liquid)

Current Passenger Configuration: 184 passengers; 172 Main Cabin & 12 1st Class

Operating Costs, apx $2,500-$3,500 hr.

 

Estiumated Maintenance Costs: Apx 1/2 current commercial aircraft.

 

Estimate Unit Price in Production: Apx $105 million

Reduction in Operating Costs Over the Aircrafts Life Cycle: $20-$50 Million (Or More) in Savings.

 

#hybrid #sustainability #hydrogen #hydrogenfuelcell #commercialaircraft #airbus #boeing #comac #innovation #lockheed #raytheon #bae #bombardier #northopgrumman #generaldynamics #utc #ge #afrl #onr #afosr #ReactionEngines #spacex #virginorbit #usaf #darpa #mda #rollsroyce #nasa #tesla #safran #embraer #3dprinting #supersonic #collinsaerospace #rockwell #generalatomics #cessna #dassault #arl #navair #diu #dia #usaf #unitedtechnologies #bae #cessana #piper #saab #defenseadvancedresearchprojectagency #graphene #additivemanufacturing #gkn #eaa #aopa #icao #tesla #nikolamotors #zerocarbon #embraer #electricaircraft

 

hybrid, sustainability, hydrogen, hydrogen fuel cell, hybrid commercial aircraft, hybrid commercial plane, commercial aircraft, airbus, boeing, comac, innovation, lockheed, raytheon, bae, bombardier, northop grumman, general dynamics, utc, ge, afrl, onr, afosr, usaf, darpa, mda, rolls royce, nasa, tesla, safran, embraer, 3d printing, supersonic, collins aerospace, rockwell, general atomics, cessna, dassault aviation, arl, navair, diu, dia, usaf, united technologies, bae, cessana, piper, saab, defense advanced research project agency, graphene, additive manufacturing, gkn, eaa, aopa, icao, tesla, nikola motors, zero carbon, embraer, electricaircraft, Composite Aircraft, Composite Commercial Aircraft,

 

boeing, airbus, embraer, ge aviation, rolls-royce, dassault aviation, bae raytheon, collins aerospace, lockheed martin, bombardier, Gulfstream Aerospace, safran, ge aviation, united technologies, united airlines, virgin airlines, All Nippon Airways, Delta Air Lines, british airways, southwest airlines, ryanair, virgin atlantic, qatar airways, emirates, lufthansa, etihad airways, KLM, Guillaume Faury, Greg Hyslop, Lynne Hopper, Paul Perera, Bruno Clermont, Tim Deaver, Paul Eremenko, Jean-Brice Dumont, Dirk Hoke, Marillyn Hewson, Richard Ambrose, Charles Woodburn, Philippe PETITCOLIN, Stéphane CUEILLE

 

Hyperion, Hypersonic Mach 15 Scramjet Missile - IO Aircraft - ARRW, HAWC, Air Launched Rapid Response Weapon

Length: 120" / Span 25"

www.ioaircraft.com

 

Scramjet, Hypersonic, ARRW, HAWC, Air Launched Rapid Response Weapon, Scramjet Physics, Scramjet Engineering, Hypersonic Missile, hypersonic weapon, hypersonic fighter, hypersonic fighter plane, tgv, tactical glide vehicle, hypersonic commercial aircraft, hypersonic commercial plane, hypersonic aircraft, hypersonic plane, hypersonic airline, tbcc, glide breaker, fighter plane, hypersonic fighter, boeing phantom express, phantom works, boeing phantom works, lockheed skunk works, boost glide, tactical glide vehicle, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, defense science, missile defense agency, aerospike, hydrogen aircraft, airlines, military, physics, airline, aerion supersonic, aerion, spike aerospace, boom supersonic, , darpa, onr, navair, afrl, air force research lab, office of naval research, defense advanced research project agency, afosr, socom, arl, army future command, mda, missile defense agenci, dia, defense intelligence agency, Air Force Office of Scientific Research,

 

Iteration V8, Hyperion Mach 15 #hypersonic #scramjet (50% faster then the X-43 #nasa), 300% faster than #Lockheed, #NorthropGrumman, #Raytheon, and Boeing. Much is sanitized as the technology advances are dramatic and not public.

DOD's funding of #AGM-183A / Air Launched Rapid Response Weapon, the poeple developing it barely comprehend student level capabilities and 50/50 it will disintegrate even at Mach 5. China and Russia, already much faster and higher tech making it obsolete already, India's recent test, apx 700 mph faster.

 

Summarized details are accurate

#hypersonic #hypersonics #scramjet #hypersonicplane #hypersonicaircraft #skunkworks #spaceplane #boeing #lockheed #raytheon #bae #bombardier #airbus #northopgrumman #generaldynamics #utc #ge #afrl #onr #afosr #ReactionEngines #spacex #virginorbit #usaf #darpa #mda #rollsroyce #nasa #tesla #safran #embraer #AirLaunchedRapidResponseWeapon #additivemanufacturing #military #physics #3dprinting #supersonic #ramjet #tbcc #collinsaerospace #rockwell #phantomworks #hypersonicmissile #alrrw #boeingphantomworks #generalatomics #cessna #dassault #arl #unitedlaunchalliance #spaceshipcompany #navair #diu #dia #usaf #unitedtechnologies #defenseadvancedresearchprojectagency #graphene #additivemanufacturing

 

-----------------------------

 

Unified Turbine Based Combined Cycle. Current technologies and what Lockheed is trying to force on the Dept of Defense, for that low speed Mach 5 plane DOD gave them $1 billion to build and would disintegrate above Mach 5, is TBCC. 2 separate propulsion systems in the same airframe, which requires TWICE the airframe space to use.

 

Unified Turbine Based Combined Cycle is 1 propulsion system cutting that airframe deficit in half, and also able to operate above Mach 10 up to Mach 15 in atmosphere, and a simple nozzle modification allows for outside atmosphere rocket mode, ie orbital capable.

 

Additionally, Reaction Engines maximum air breather mode is Mach 4.5, above that it will explode in flight from internal pressures are too high to operate. Thus, must switch to non air breather rocket mode to operate in atmosphere in hypersonic velocities. Which as a result, makes it not feasible for anything practical. It also takes an immense amount of fuel to function.

 

-------------

 

Advanced Additive Manufacturing for Hypersonic Aircraft

 

Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.

 

Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.

 

*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.

 

What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.

 

Unified Turbine Based Combined Cycle (U-TBCC)

 

To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5

 

However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.

 

Enhanced Dynamic Cavitation

 

Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.

 

Dynamic Scramjet Ignition Processes

 

For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.

 

Hydrogen vs Kerosene Fuel Sources

 

Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.

 

Conforming High Pressure Tank Technology for CNG and H2.

 

As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.

 

As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).

 

Enhanced Fuel Mixture During Shock Train Interaction

 

Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.

 

Improved Bow Shock Interaction

 

Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.

 

6,000+ Fahrenheit Thermal Resistance

 

To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.

  

*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope

 

Scramjet Propulsion Side Wall Cooling

 

With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.

 

Lower Threshold for Hypersonic Ignition

 

Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.

 

Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities

 

Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.

 

Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)

 

To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.

 

A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.

 

Hyperion, Hypersonic Mach 15 Scramjet Missile - IO Aircraft - ARRW, HAWC, Air Launched Rapid Response Weapon

Length: 120" / Span 25"

www.ioaircraft.com

 

Scramjet, Hypersonic, ARRW, HAWC, Air Launched Rapid Response Weapon, Scramjet Physics, Scramjet Engineering, Hypersonic Missile, hypersonic weapon, hypersonic fighter, hypersonic fighter plane, tgv, tactical glide vehicle, hypersonic commercial aircraft, hypersonic commercial plane, hypersonic aircraft, hypersonic plane, hypersonic airline, tbcc, glide breaker, fighter plane, hypersonic fighter, boeing phantom express, phantom works, boeing phantom works, lockheed skunk works, boost glide, tactical glide vehicle, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, defense science, missile defense agency, aerospike, hydrogen aircraft, airlines, military, physics, airline, aerion supersonic, aerion, spike aerospace, boom supersonic, , darpa, onr, navair, afrl, air force research lab, office of naval research, defense advanced research project agency, afosr, socom, arl, army future command, mda, missile defense agenci, dia, defense intelligence agency, Air Force Office of Scientific Research,

 

Iteration V8, Hyperion Mach 15 #hypersonic #scramjet (50% faster then the X-43 #nasa), 300% faster than #Lockheed, #NorthropGrumman, #Raytheon, and Boeing. Much is sanitized as the technology advances are dramatic and not public.

DOD's funding of #AGM-183A / Air Launched Rapid Response Weapon, the poeple developing it barely comprehend student level capabilities and 50/50 it will disintegrate even at Mach 5. China and Russia, already much faster and higher tech making it obsolete already, India's recent test, apx 700 mph faster.

 

Summarized details are accurate

#hypersonic #hypersonics #scramjet #hypersonicplane #hypersonicaircraft #skunkworks #spaceplane #boeing #lockheed #raytheon #bae #bombardier #airbus #northopgrumman #generaldynamics #utc #ge #afrl #onr #afosr #ReactionEngines #spacex #virginorbit #usaf #darpa #mda #rollsroyce #nasa #tesla #safran #embraer #AirLaunchedRapidResponseWeapon #additivemanufacturing #military #physics #3dprinting #supersonic #ramjet #tbcc #collinsaerospace #rockwell #phantomworks #hypersonicmissile #alrrw #boeingphantomworks #generalatomics #cessna #dassault #arl #unitedlaunchalliance #spaceshipcompany #navair #diu #dia #usaf #unitedtechnologies #defenseadvancedresearchprojectagency #graphene #additivemanufacturing

 

-----------------------------

 

Unified Turbine Based Combined Cycle. Current technologies and what Lockheed is trying to force on the Dept of Defense, for that low speed Mach 5 plane DOD gave them $1 billion to build and would disintegrate above Mach 5, is TBCC. 2 separate propulsion systems in the same airframe, which requires TWICE the airframe space to use.

 

Unified Turbine Based Combined Cycle is 1 propulsion system cutting that airframe deficit in half, and also able to operate above Mach 10 up to Mach 15 in atmosphere, and a simple nozzle modification allows for outside atmosphere rocket mode, ie orbital capable.

 

Additionally, Reaction Engines maximum air breather mode is Mach 4.5, above that it will explode in flight from internal pressures are too high to operate. Thus, must switch to non air breather rocket mode to operate in atmosphere in hypersonic velocities. Which as a result, makes it not feasible for anything practical. It also takes an immense amount of fuel to function.

 

-------------

 

Advanced Additive Manufacturing for Hypersonic Aircraft

 

Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.

 

Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.

 

*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.

 

What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.

 

Unified Turbine Based Combined Cycle (U-TBCC)

 

To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5

 

However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.

 

Enhanced Dynamic Cavitation

 

Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.

 

Dynamic Scramjet Ignition Processes

 

For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.

 

Hydrogen vs Kerosene Fuel Sources

 

Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.

 

Conforming High Pressure Tank Technology for CNG and H2.

 

As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.

 

As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).

 

Enhanced Fuel Mixture During Shock Train Interaction

 

Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.

 

Improved Bow Shock Interaction

 

Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.

 

6,000+ Fahrenheit Thermal Resistance

 

To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.

  

*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope

 

Scramjet Propulsion Side Wall Cooling

 

With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.

 

Lower Threshold for Hypersonic Ignition

 

Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.

 

Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities

 

Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.

 

Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)

 

To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.

 

A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.

 

Hyperion, Hypersonic Mach 15 Scramjet Missile - IO Aircraft - ARRW, HAWC, Air Launched Rapid Response Weapon

Length: 120" / Span 25"

www.ioaircraft.com

 

Scramjet, Hypersonic, ARRW, HAWC, Air Launched Rapid Response Weapon, Scramjet Physics, Scramjet Engineering, Hypersonic Missile, hypersonic weapon, hypersonic fighter, hypersonic fighter plane, tgv, tactical glide vehicle, hypersonic commercial aircraft, hypersonic commercial plane, hypersonic aircraft, hypersonic plane, hypersonic airline, tbcc, glide breaker, fighter plane, hypersonic fighter, boeing phantom express, phantom works, boeing phantom works, lockheed skunk works, boost glide, tactical glide vehicle, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, defense science, missile defense agency, aerospike, hydrogen aircraft, airlines, military, physics, airline, aerion supersonic, aerion, spike aerospace, boom supersonic, , darpa, onr, navair, afrl, air force research lab, office of naval research, defense advanced research project agency, afosr, socom, arl, army future command, mda, missile defense agenci, dia, defense intelligence agency, Air Force Office of Scientific Research,

 

Iteration V8, Hyperion Mach 15 #hypersonic #scramjet (50% faster then the X-43 #nasa), 300% faster than #Lockheed, #NorthropGrumman, #Raytheon, and Boeing. Much is sanitized as the technology advances are dramatic and not public.

DOD's funding of #AGM-183A / Air Launched Rapid Response Weapon, the poeple developing it barely comprehend student level capabilities and 50/50 it will disintegrate even at Mach 5. China and Russia, already much faster and higher tech making it obsolete already, India's recent test, apx 700 mph faster.

 

Summarized details are accurate

#hypersonic #hypersonics #scramjet #hypersonicplane #hypersonicaircraft #skunkworks #spaceplane #boeing #lockheed #raytheon #bae #bombardier #airbus #northopgrumman #generaldynamics #utc #ge #afrl #onr #afosr #ReactionEngines #spacex #virginorbit #usaf #darpa #mda #rollsroyce #nasa #tesla #safran #embraer #AirLaunchedRapidResponseWeapon #additivemanufacturing #military #physics #3dprinting #supersonic #ramjet #tbcc #collinsaerospace #rockwell #phantomworks #hypersonicmissile #alrrw #boeingphantomworks #generalatomics #cessna #dassault #arl #unitedlaunchalliance #spaceshipcompany #navair #diu #dia #usaf #unitedtechnologies #defenseadvancedresearchprojectagency #graphene #additivemanufacturing

 

-----------------------------

 

Unified Turbine Based Combined Cycle. Current technologies and what Lockheed is trying to force on the Dept of Defense, for that low speed Mach 5 plane DOD gave them $1 billion to build and would disintegrate above Mach 5, is TBCC. 2 separate propulsion systems in the same airframe, which requires TWICE the airframe space to use.

 

Unified Turbine Based Combined Cycle is 1 propulsion system cutting that airframe deficit in half, and also able to operate above Mach 10 up to Mach 15 in atmosphere, and a simple nozzle modification allows for outside atmosphere rocket mode, ie orbital capable.

 

Additionally, Reaction Engines maximum air breather mode is Mach 4.5, above that it will explode in flight from internal pressures are too high to operate. Thus, must switch to non air breather rocket mode to operate in atmosphere in hypersonic velocities. Which as a result, makes it not feasible for anything practical. It also takes an immense amount of fuel to function.

 

-------------

 

Advanced Additive Manufacturing for Hypersonic Aircraft

 

Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.

 

Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.

 

*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.

 

What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.

 

Unified Turbine Based Combined Cycle (U-TBCC)

 

To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5

 

However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.

 

Enhanced Dynamic Cavitation

 

Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.

 

Dynamic Scramjet Ignition Processes

 

For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.

 

Hydrogen vs Kerosene Fuel Sources

 

Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.

 

Conforming High Pressure Tank Technology for CNG and H2.

 

As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.

 

As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).

 

Enhanced Fuel Mixture During Shock Train Interaction

 

Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.

 

Improved Bow Shock Interaction

 

Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.

 

6,000+ Fahrenheit Thermal Resistance

 

To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.

  

*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope

 

Scramjet Propulsion Side Wall Cooling

 

With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.

 

Lower Threshold for Hypersonic Ignition

 

Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.

 

Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities

 

Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.

 

Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)

 

To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.

 

A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.

 

Hyperion, Hypersonic Mach 15 Scramjet Missile - IO Aircraft - ARRW, HAWC, Air Launched Rapid Response Weapon

Length: 120" / Span 25"

www.ioaircraft.com

 

Scramjet, Hypersonic, ARRW, HAWC, Air Launched Rapid Response Weapon, Scramjet Physics, Scramjet Engineering, Hypersonic Missile, hypersonic weapon, hypersonic fighter, hypersonic fighter plane, tgv, tactical glide vehicle, hypersonic commercial aircraft, hypersonic commercial plane, hypersonic aircraft, hypersonic plane, hypersonic airline, tbcc, glide breaker, fighter plane, hypersonic fighter, boeing phantom express, phantom works, boeing phantom works, lockheed skunk works, boost glide, tactical glide vehicle, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, defense science, missile defense agency, aerospike, hydrogen aircraft, airlines, military, physics, airline, aerion supersonic, aerion, spike aerospace, boom supersonic, , darpa, onr, navair, afrl, air force research lab, office of naval research, defense advanced research project agency, afosr, socom, arl, army future command, mda, missile defense agenci, dia, defense intelligence agency, Air Force Office of Scientific Research,

 

Iteration V8, Hyperion Mach 15 #hypersonic #scramjet (50% faster then the X-43 #nasa), 300% faster than #Lockheed, #NorthropGrumman, #Raytheon, and Boeing. Much is sanitized as the technology advances are dramatic and not public.

DOD's funding of #AGM-183A / Air Launched Rapid Response Weapon, the poeple developing it barely comprehend student level capabilities and 50/50 it will disintegrate even at Mach 5. China and Russia, already much faster and higher tech making it obsolete already, India's recent test, apx 700 mph faster.

 

Summarized details are accurate

#hypersonic #hypersonics #scramjet #hypersonicplane #hypersonicaircraft #skunkworks #spaceplane #boeing #lockheed #raytheon #bae #bombardier #airbus #northopgrumman #generaldynamics #utc #ge #afrl #onr #afosr #ReactionEngines #spacex #virginorbit #usaf #darpa #mda #rollsroyce #nasa #tesla #safran #embraer #AirLaunchedRapidResponseWeapon #additivemanufacturing #military #physics #3dprinting #supersonic #ramjet #tbcc #collinsaerospace #rockwell #phantomworks #hypersonicmissile #alrrw #boeingphantomworks #generalatomics #cessna #dassault #arl #unitedlaunchalliance #spaceshipcompany #navair #diu #dia #usaf #unitedtechnologies #defenseadvancedresearchprojectagency #graphene #additivemanufacturing

 

-----------------------------

 

Unified Turbine Based Combined Cycle. Current technologies and what Lockheed is trying to force on the Dept of Defense, for that low speed Mach 5 plane DOD gave them $1 billion to build and would disintegrate above Mach 5, is TBCC. 2 separate propulsion systems in the same airframe, which requires TWICE the airframe space to use.

 

Unified Turbine Based Combined Cycle is 1 propulsion system cutting that airframe deficit in half, and also able to operate above Mach 10 up to Mach 15 in atmosphere, and a simple nozzle modification allows for outside atmosphere rocket mode, ie orbital capable.

 

Additionally, Reaction Engines maximum air breather mode is Mach 4.5, above that it will explode in flight from internal pressures are too high to operate. Thus, must switch to non air breather rocket mode to operate in atmosphere in hypersonic velocities. Which as a result, makes it not feasible for anything practical. It also takes an immense amount of fuel to function.

 

-------------

 

Advanced Additive Manufacturing for Hypersonic Aircraft

 

Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.

 

Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.

 

*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.

 

What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.

 

Unified Turbine Based Combined Cycle (U-TBCC)

 

To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5

 

However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.

 

Enhanced Dynamic Cavitation

 

Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.

 

Dynamic Scramjet Ignition Processes

 

For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.

 

Hydrogen vs Kerosene Fuel Sources

 

Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.

 

Conforming High Pressure Tank Technology for CNG and H2.

 

As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.

 

As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).

 

Enhanced Fuel Mixture During Shock Train Interaction

 

Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.

 

Improved Bow Shock Interaction

 

Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.

 

6,000+ Fahrenheit Thermal Resistance

 

To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.

  

*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope

 

Scramjet Propulsion Side Wall Cooling

 

With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.

 

Lower Threshold for Hypersonic Ignition

 

Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.

 

Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities

 

Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.

 

Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)

 

To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.

 

A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.

 

IO Aircraft - www.ioaircraft.com

 

Drew Blair

www.linkedin.com/in/drew-b-25485312

 

U-TBCC, TBCC, RBCC, Unified Turbine Based Combine Cycle, hypersonic tactical strike vehicle, hypersonic weapon, hypersonic missile, Air-Launched Rapid Response Weapon, ARRW, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle,

 

phantom works, skunk works, boeing phantom express, xs-1, htv, hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, Turbine Based Combine Cycle, Rocket Based Combined Cycle, Reaction Engines Sabre, Reaction Engines,

 

Advanced Additive Manufacturing for Hypersonic Aircraft

 

Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.

 

Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.

 

*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.

 

What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.

 

Unified Turbine Based Combined Cycle (U-TBCC)

 

To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5

 

However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.

 

Enhanced Dynamic Cavitation

 

Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.

 

Dynamic Scramjet Ignition Processes

 

For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.

 

Hydrogen vs Kerosene Fuel Sources

 

Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.

 

Conforming High Pressure Tank Technology for CNG and H2.

 

As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.

 

As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).

 

Enhanced Fuel Mixture During Shock Train Interaction

 

Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.

 

Improved Bow Shock Interaction

 

Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.

 

6,000+ Fahrenheit Thermal Resistance

 

To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.

   

*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope

 

Scramjet Propulsion Side Wall Cooling

 

With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.

 

Lower Threshold for Hypersonic Ignition

 

Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.

 

Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities

 

Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.

 

Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)

 

To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.

 

A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.

New iteration for Raven SSTO, Single Stage to Orbit. This isn't the heavy, Discovery. But the smaller one. For example, SpaceX's dragon capsule is 378 Cu Ft, Payload bay of Raven is 1078 Cu Ft. www.ioaircraft.com/hypersonic/raven.php

 

Iteration 10, almost clean sheet. U-TBCC propulsion, 6000F thermal resistance, 3D printed graphene airframe, Note the elimination of "blunt nose". Turn around time under 24 hours total from landing to ready for next flight. No external boosters.

 

Forward Thruster Bay, other then conventional orbital thrusters, also includes a reverse thruster which decelerates the aircraft pre re-entry into atmosphere from 16,500+ mph ground speed to apx 12,000 mph ground speed. Engines re-ignite once in atmosphere so it can fly to it's landing destination, ie not glide.

 

#ssto #singlestagetorobit #space #newspace #afrl #afwerx #usaf #darpa #onr #arl #boeing #lockheedmartin #raytheon #northropgrumman #aerojet #dynetics #esa #bae #afosr #hypersonics #hypersonic #scramjet #reactionengines #sabre #starship #falcon9 #dragoncapsule #innovation #graphene #hydrogen #spacex #ula #virginorbit #rocketlab #artemis #orion #sls #nasa #snc #sierranevadecorporation #dreamchaser #astra #sdo #sda #spaceforce #dod #icao #dassault #bombardier #gulfstream #cessna #bigalow

FCH-150 Hydrogen Fuel Cell Commercial Aircraft - IO Aircraft - IT1

 

www.ioaircraft.com

 

100% viable Electric Commercial aircraft, in a 737 MAX class. Compressed Hydrogen Fueled (Not liquid [obsolete]), 100% electric. NO carbon foot print. Even the hydrogen can be generated on the ground via water electrolysis on top of terminals. Also saving operators $20-$50 million or more, over an aircraft's life cycle.

 

Non, zero carbon, could use CNG, then reformation to extract the Hydrogen.

 

Ready to build today, all tech is already developed. Makes ALL commercial aircraft in existence obsolete. PLUS all hybrid aicraft on the drawing board right now with Boeing, Airbus, etc.

 

Airframe is 3D printed Graphene wafering, 33X stronger then titatnium; and carbon fiber/kevlar.

 

Specs:

Length: 150 ft | Span: 120.6 ft | Cruise M.9-.92)

Ceiling: Estimate 45,000 ft. Cruise: 38,000 ft

Range: 5,000+ NM

Estimated Empty Weight: 65,000 LBS

Estimate T/O Weight (Full fuel and passengers): 134,000 LBS

MTOW Estimate: 195,000 LBS

Fuel: 30,000 Gallon 8,000 PSI Max Compressed Hydrogen or Natural Gas Using High Pressure Conforming Tank Technology

Fuel Weight: Apx 9,000 LBS (Compared to 180,300 LBS if Jet A liquid)

Current Passenger Configuration: 184 passengers; 172 Main Cabin & 12 1st Class

Operating Costs, apx $2,500-$3,500 hr.

 

Estiumated Maintenance Costs: Apx 1/2 current commercial aircraft.

 

Estimate Unit Price in Production: Apx $105 million

Reduction in Operating Costs Over the Aircrafts Life Cycle: $20-$50 Million (Or More) in Savings.

 

#hybrid #sustainability #hydrogen #hydrogenfuelcell #commercialaircraft #airbus #boeing #comac #innovation #lockheed #raytheon #bae #bombardier #northopgrumman #generaldynamics #utc #ge #afrl #onr #afosr #ReactionEngines #spacex #virginorbit #usaf #darpa #mda #rollsroyce #nasa #tesla #safran #embraer #3dprinting #supersonic #collinsaerospace #rockwell #generalatomics #cessna #dassault #arl #navair #diu #dia #usaf #unitedtechnologies #bae #cessana #piper #saab #defenseadvancedresearchprojectagency #graphene #additivemanufacturing #gkn #eaa #aopa #icao #tesla #nikolamotors #zerocarbon #embraer #electricaircraft

 

hybrid, sustainability, hydrogen, hydrogen fuel cell, hybrid commercial aircraft, hybrid commercial plane, commercial aircraft, airbus, boeing, comac, innovation, lockheed, raytheon, bae, bombardier, northop grumman, general dynamics, utc, ge, afrl, onr, afosr, usaf, darpa, mda, rolls royce, nasa, tesla, safran, embraer, 3d printing, supersonic, collins aerospace, rockwell, general atomics, cessna, dassault, arl, navair, diu, dia, usaf, united technologies, bae, cessana, piper, saab, defense advanced research project agency, graphene, additive manufacturing, gkn, eaa, aopa, icao, tesla, nikola motors, zero carbon, embraer, electricaircraft, Composite Aircraft, Composite Commercial Aircraft,

 

Hyperion, Hypersonic Mach 15 Scramjet Missile - IO Aircraft - ARRW, HAWC, Air Launched Rapid Response Weapon

Length: 120" / Span 25"

www.ioaircraft.com

 

Scramjet, Hypersonic, ARRW, HAWC, Air Launched Rapid Response Weapon, Scramjet Physics, Scramjet Engineering, Hypersonic Missile, hypersonic weapon, hypersonic fighter, hypersonic fighter plane, tgv, tactical glide vehicle, hypersonic commercial aircraft, hypersonic commercial plane, hypersonic aircraft, hypersonic plane, hypersonic airline, tbcc, glide breaker, fighter plane, phantom works, boeing phantom works, lockheed skunk works, boost glide, tactical glide vehicle, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, defense science, missile defense agency, aerospike, hydrogen aircraft, airlines, military, physics, airline, aerion supersonic, aerion, spike aerospace, boom supersonic, , darpa, onr, navair, afrl, air force research lab, office of naval research, defense advanced research project agency, afosr, socom, arl, army future command, mda, missile defense agenci, dia, defense intelligence agency, Air Force Office of Scientific Research,

 

Iteration V8, Hyperion Mach 15 #hypersonic #scramjet (50% faster then the X-43 #nasa), 300% faster than #Lockheed, #NorthropGrumman, #Raytheon, and Boeing. Much is sanitized as the technology advances are dramatic and not public.

DOD's funding of #AGM-183A / Air Launched Rapid Response Weapon, the poeple developing it barely comprehend student level capabilities and 50/50 it will disintegrate even at Mach 5. China and Russia, already much faster and higher tech making it obsolete already, India's recent test, apx 700 mph faster.

 

Summarized details are accurate

#hypersonic #hypersonics #scramjet #hypersonicplane #hypersonicaircraft #skunkworks #spaceplane #boeing #lockheed #raytheon #bae #bombardier #airbus #northopgrumman #generaldynamics #utc #ge #afrl #onr #afosr #ReactionEngines #spacex #virginorbit #usaf #darpa #mda #rollsroyce #nasa #tesla #safran #embraer #AirLaunchedRapidResponseWeapon #additivemanufacturing #military #physics #3dprinting #supersonic #ramjet #tbcc #collinsaerospace #rockwell #phantomworks #hypersonicmissile #alrrw #boeingphantomworks #generalatomics #cessna #dassault #arl #unitedlaunchalliance #spaceshipcompany #navair #diu #dia #usaf #unitedtechnologies #defenseadvancedresearchprojectagency #graphene #additivemanufacturing

 

-----------------------------

 

Unified Turbine Based Combined Cycle. Current technologies and what Lockheed is trying to force on the Dept of Defense, for that low speed Mach 5 plane DOD gave them $1 billion to build and would disintegrate above Mach 5, is TBCC. 2 separate propulsion systems in the same airframe, which requires TWICE the airframe space to use.

 

Unified Turbine Based Combined Cycle is 1 propulsion system cutting that airframe deficit in half, and also able to operate above Mach 10 up to Mach 15 in atmosphere, and a simple nozzle modification allows for outside atmosphere rocket mode, ie orbital capable.

 

Additionally, Reaction Engines maximum air breather mode is Mach 4.5, above that it will explode in flight from internal pressures are too high to operate. Thus, must switch to non air breather rocket mode to operate in atmosphere in hypersonic velocities. Which as a result, makes it not feasible for anything practical. It also takes an immense amount of fuel to function.

 

-------------

 

Advanced Additive Manufacturing for Hypersonic Aircraft

 

Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.

 

Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.

 

*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.

 

What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.

 

Unified Turbine Based Combined Cycle (U-TBCC)

 

To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5

 

However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.

 

Enhanced Dynamic Cavitation

 

Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.

 

Dynamic Scramjet Ignition Processes

 

For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.

 

Hydrogen vs Kerosene Fuel Sources

 

Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.

 

Conforming High Pressure Tank Technology for CNG and H2.

 

As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.

 

As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).

 

Enhanced Fuel Mixture During Shock Train Interaction

 

Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.

 

Improved Bow Shock Interaction

 

Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.

 

6,000+ Fahrenheit Thermal Resistance

 

To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.

  

*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope

 

Scramjet Propulsion Side Wall Cooling

 

With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.

 

Lower Threshold for Hypersonic Ignition

 

Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.

 

Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities

 

Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.

 

Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)

 

To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.

 

A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.

HVL130 Condor, VTOL Hypersonic Transport, global point to point capable. www.ioaircraft.com/hypersonic/condor.php

 

130' length, 22-25 TON cargo bay capacity, H2 fueled, with onboard oxidizer as needed for Mach 15 velocity at 70 mile altitude (above the karman line). Website link: www.ioaircraft.com/hypersonic/condor.php

  

At apx 100,000-120,000ft, cruise velocity is Mach 8-10, with a 10,000nm range. Cargo bay and cockpit are hemetically sealed, with onboard oxygen supply and environmentals.

  

The entire cargo bay opens instead of a cargo bay door, while the nose gear retracts on the ground providing 8 1/2 ft of clearance into the bay.

 

*This same engineering principle that applies to Condor, can be scaled up further, with a 50-100 ton cargo capacity.

 

Propulsion for this aircraft is extensive:

2 U-TBCC (Unified Turbine Based Combine Cycle / Dual Mode Scramjet (300,000 LBS Thrust)

5 H2/O2 Compressed Fueled Bell Nozzle Rockets. No turbo pumps.

3 U-GTG / Thrust Producing Gas Turbine Generators (60-70K LBS vertical thrust by themselves)

24 Graphene Based Super Conducting Lift Fans, 70-90K+ LBS vertically lift)

 

In the last image, for sizing comparison are

Discovery SSTO Heavy Lift: www.ioaircraft.com/hypersonic/discovery-218.php

 

Raven B Model, 22 Person Hypersonic Business Jet www.ioaircraft.com/hypersonic/raven-business.php

 

Grey Hawk, Mach 8-10 7th Gen Hypersonic Super Fighter www.ioaircraft.com/hypersonic/greyhawk.php

 

All are serial production ready.

 

vtol, hypersonics, evtol, hydrogen, hsvtol, hypersonic, hypersonic plane, hypersonic aircraft, hypersonic jet, business jet, arrw, hsv, hawc, scramjet, tbcc, reaction engines, hermeus, hypersonix, hydrogen aviation, hydrogen aerospace, space plane, hypersonic weapons, icao, son of blackbird, scramjet physics, cfd, ramjet, supersonic, supersonic jet, aviation, aerospace, usaf, boeing, lockheed martin, northrop grumman, raytheon, turbine, dynetics, afrl, nrl, onr, defcon, darpa, graphene, physics, computational fluid dynamics, aircraft, nasa, engineering, energy, nsic AIAA, innovation, renewables, aerospace, green aerospace, AFWERX, Air Force Research Laboratory, United States Air Force, Defense Advanced Research Projects Agency, DARPA, NASA, National Aeronautics and Space Administration, Army Futures Command, USMC Special Operations, DLR, NATO

Hyperion, Hypersonic Mach 15 Scramjet Missile - IO Aircraft - ARRW, HAWC, Air Launched Rapid Response Weapon

Length: 120" / Span 25"

www.ioaircraft.com

 

Scramjet, Hypersonic, ARRW, HAWC, Air Launched Rapid Response Weapon, Scramjet Physics, Scramjet Engineering, Hypersonic Missile, hypersonic weapon, hypersonic fighter, hypersonic fighter plane, tgv, tactical glide vehicle, hypersonic commercial aircraft, hypersonic commercial plane, hypersonic aircraft, hypersonic plane, hypersonic airline, tbcc, glide breaker, fighter plane, phantom works, boeing phantom works, lockheed skunk works, boost glide, tactical glide vehicle, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, defense science, missile defense agency, aerospike, hydrogen aircraft, airlines, military, physics, airline, aerion supersonic, aerion, spike aerospace, boom supersonic, , darpa, onr, navair, afrl, air force research lab, office of naval research, defense advanced research project agency, afosr, socom, arl, army future command, mda, missile defense agenci, dia, defense intelligence agency, Air Force Office of Scientific Research,

 

Iteration V8, Hyperion Mach 15 #hypersonic #scramjet (50% faster then the X-43 #nasa), 300% faster than #Lockheed, #NorthropGrumman, #Raytheon, and Boeing. Much is sanitized as the technology advances are dramatic and not public.

DOD's funding of #AGM-183A / Air Launched Rapid Response Weapon, the poeple developing it barely comprehend student level capabilities and 50/50 it will disintegrate even at Mach 5. China and Russia, already much faster and higher tech making it obsolete already, India's recent test, apx 700 mph faster.

 

Summarized details are accurate

#hypersonic #hypersonics #scramjet #hypersonicplane #hypersonicaircraft #skunkworks #spaceplane #boeing #lockheed #raytheon #bae #bombardier #airbus #northopgrumman #generaldynamics #utc #ge #afrl #onr #afosr #ReactionEngines #spacex #virginorbit #usaf #darpa #mda #rollsroyce #nasa #tesla #safran #embraer #AirLaunchedRapidResponseWeapon #additivemanufacturing #military #physics #3dprinting #supersonic #ramjet #tbcc #collinsaerospace #rockwell #phantomworks #hypersonicmissile #alrrw #boeingphantomworks #generalatomics #cessna #dassault #arl #unitedlaunchalliance #spaceshipcompany #navair #diu #dia #usaf #unitedtechnologies #defenseadvancedresearchprojectagency #graphene #additivemanufacturing

 

-----------------------------

 

Unified Turbine Based Combined Cycle. Current technologies and what Lockheed is trying to force on the Dept of Defense, for that low speed Mach 5 plane DOD gave them $1 billion to build and would disintegrate above Mach 5, is TBCC. 2 separate propulsion systems in the same airframe, which requires TWICE the airframe space to use.

 

Unified Turbine Based Combined Cycle is 1 propulsion system cutting that airframe deficit in half, and also able to operate above Mach 10 up to Mach 15 in atmosphere, and a simple nozzle modification allows for outside atmosphere rocket mode, ie orbital capable.

 

Additionally, Reaction Engines maximum air breather mode is Mach 4.5, above that it will explode in flight from internal pressures are too high to operate. Thus, must switch to non air breather rocket mode to operate in atmosphere in hypersonic velocities. Which as a result, makes it not feasible for anything practical. It also takes an immense amount of fuel to function.

 

-------------

 

Advanced Additive Manufacturing for Hypersonic Aircraft

 

Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.

 

Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.

 

*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.

 

What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.

 

Unified Turbine Based Combined Cycle (U-TBCC)

 

To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5

 

However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.

 

Enhanced Dynamic Cavitation

 

Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.

 

Dynamic Scramjet Ignition Processes

 

For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.

 

Hydrogen vs Kerosene Fuel Sources

 

Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.

 

Conforming High Pressure Tank Technology for CNG and H2.

 

As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.

 

As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).

 

Enhanced Fuel Mixture During Shock Train Interaction

 

Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.

 

Improved Bow Shock Interaction

 

Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.

 

6,000+ Fahrenheit Thermal Resistance

 

To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.

  

*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope

 

Scramjet Propulsion Side Wall Cooling

 

With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.

 

Lower Threshold for Hypersonic Ignition

 

Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.

 

Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities

 

Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.

 

Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)

 

To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.

 

A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.

Hyperion, Hypersonic Mach 15 Scramjet Missile - IO Aircraft - ARRW, HAWC, Air Launched Rapid Response Weapon

Length: 120" / Span 25"

www.ioaircraft.com

 

Scramjet, Hypersonic, ARRW, HAWC, Air Launched Rapid Response Weapon, Scramjet Physics, Scramjet Engineering, Hypersonic Missile, hypersonic weapon, hypersonic fighter, hypersonic fighter plane, tgv, tactical glide vehicle, hypersonic commercial aircraft, hypersonic commercial plane, hypersonic aircraft, hypersonic plane, hypersonic airline, tbcc, glide breaker, fighter plane, phantom works, boeing phantom works, lockheed skunk works, boost glide, tactical glide vehicle, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, defense science, missile defense agency, aerospike, hydrogen aircraft, airlines, military, physics, airline, aerion supersonic, aerion, spike aerospace, boom supersonic, , darpa, onr, navair, afrl, air force research lab, office of naval research, defense advanced research project agency, afosr, socom, arl, army future command, mda, missile defense agenci, dia, defense intelligence agency, Air Force Office of Scientific Research,

 

Iteration V8, Hyperion Mach 15 #hypersonic #scramjet (50% faster then the X-43 #nasa), 300% faster than #Lockheed, #NorthropGrumman, #Raytheon, and Boeing. Much is sanitized as the technology advances are dramatic and not public.

DOD's funding of #AGM-183A / Air Launched Rapid Response Weapon, the poeple developing it barely comprehend student level capabilities and 50/50 it will disintegrate even at Mach 5. China and Russia, already much faster and higher tech making it obsolete already, India's recent test, apx 700 mph faster.

 

Summarized details are accurate

#hypersonic #hypersonics #scramjet #hypersonicplane #hypersonicaircraft #skunkworks #spaceplane #boeing #lockheed #raytheon #bae #bombardier #airbus #northopgrumman #generaldynamics #utc #ge #afrl #onr #afosr #ReactionEngines #spacex #virginorbit #usaf #darpa #mda #rollsroyce #nasa #tesla #safran #embraer #AirLaunchedRapidResponseWeapon #additivemanufacturing #military #physics #3dprinting #supersonic #ramjet #tbcc #collinsaerospace #rockwell #phantomworks #hypersonicmissile #alrrw #boeingphantomworks #generalatomics #cessna #dassault #arl #unitedlaunchalliance #spaceshipcompany #navair #diu #dia #usaf #unitedtechnologies #defenseadvancedresearchprojectagency #graphene #additivemanufacturing

 

-----------------------------

 

Unified Turbine Based Combined Cycle. Current technologies and what Lockheed is trying to force on the Dept of Defense, for that low speed Mach 5 plane DOD gave them $1 billion to build and would disintegrate above Mach 5, is TBCC. 2 separate propulsion systems in the same airframe, which requires TWICE the airframe space to use.

 

Unified Turbine Based Combined Cycle is 1 propulsion system cutting that airframe deficit in half, and also able to operate above Mach 10 up to Mach 15 in atmosphere, and a simple nozzle modification allows for outside atmosphere rocket mode, ie orbital capable.

 

Additionally, Reaction Engines maximum air breather mode is Mach 4.5, above that it will explode in flight from internal pressures are too high to operate. Thus, must switch to non air breather rocket mode to operate in atmosphere in hypersonic velocities. Which as a result, makes it not feasible for anything practical. It also takes an immense amount of fuel to function.

 

-------------

 

Advanced Additive Manufacturing for Hypersonic Aircraft

 

Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.

 

Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.

 

*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.

 

What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.

 

Unified Turbine Based Combined Cycle (U-TBCC)

 

To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5

 

However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.

 

Enhanced Dynamic Cavitation

 

Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.

 

Dynamic Scramjet Ignition Processes

 

For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.

 

Hydrogen vs Kerosene Fuel Sources

 

Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.

 

Conforming High Pressure Tank Technology for CNG and H2.

 

As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.

 

As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).

 

Enhanced Fuel Mixture During Shock Train Interaction

 

Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.

 

Improved Bow Shock Interaction

 

Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.

 

6,000+ Fahrenheit Thermal Resistance

 

To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.

  

*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope

 

Scramjet Propulsion Side Wall Cooling

 

With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.

 

Lower Threshold for Hypersonic Ignition

 

Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.

 

Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities

 

Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.

 

Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)

 

To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.

 

A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.

Iteration 10 - Raven B Model - Mach 8-10, 22 Passenger hypersonic business jet. New iteration reflects design changes from Raven A Model, which is an SSTO, a real one. ALL technologies associated "are" developed. It is also ZERO CARBON.

 

More Info: www.ioaircraft.com/hypersonic/raven-business.php

 

Not a graphics design or graphics rendering, but sanitized cad screenshots. This is not a concept, but ready for serial production. Not really looking for investors and such. Everything DOD is funding for hypersonic fixed aircraft is OLD and rehashed perpetually for 40+ years at 10X the price. Others, pushing supersonics and hypersonics, also very old technologies at very expensive prices and operating costs. This, about the same as a G650 or Global Express costs and operating costs and normalized Mach 10 dynamics in all regards in atmosphere.

 

#afrl #afwerx #defensewerx #usaf #darpa #onr #arl #boeing #lockheedmartin #airbus #raytheon #northropgrumman #aerojet #dynetics #easa #bae #afosr #hypersonic #supersonic #scramjet #reactionengines #innovation #graphene #hydrogen #spacex #ula #virgingalactic #rocketlab #nasa #snc #sierranevadecorporation #dreamchaser #sdo #sda #spaceforce #dod #icao #dassault #bombardier #gulfstream #cessna #bigalow #boomsuprsonic #aerion #esa #airplane

www.ioaircraft.com

 

Drew Blair

www.linkedin.com/in/drew-b-25485312

 

U-TBCC, TBCC, RBCC, Unified Turbine Based Combine Cycle, hypersonic tactical strike vehicle, hypersonic weapon, hypersonic missile, Air-Launched Rapid Response Weapon, ARRW, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle,

 

phantom works, skunk works, boeing phantom express, xs-1, htv, hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, Turbine Based Combine Cycle, Rocket Based Combined Cycle, Reaction Engines Sabre, Reaction Engines,

 

Advanced Additive Manufacturing for Hypersonic Aircraft

 

Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.

 

Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.

 

*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.

 

What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.

 

Unified Turbine Based Combined Cycle (U-TBCC)

 

To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5

 

However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.

 

Enhanced Dynamic Cavitation

 

Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.

 

Dynamic Scramjet Ignition Processes

 

For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.

 

Hydrogen vs Kerosene Fuel Sources

 

Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.

 

Conforming High Pressure Tank Technology for CNG and H2.

 

As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.

 

As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).

 

Enhanced Fuel Mixture During Shock Train Interaction

 

Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.

 

Improved Bow Shock Interaction

 

Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.

 

6,000+ Fahrenheit Thermal Resistance

 

To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.

   

*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope

 

Scramjet Propulsion Side Wall Cooling

 

With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.

 

Lower Threshold for Hypersonic Ignition

 

Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.

 

Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities

 

Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.

 

Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)

 

To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.

 

A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.

FCH-150 Hydrogen Fuel Cell Commercial Aircraft - IO Aircraft - IT1

 

www.ioaircraft.com

 

100% viable Electric Commercial aircraft, in a 737 MAX class. Compressed Hydrogen Fueled (Not liquid [obsolete]), 100% electric. NO carbon foot print. Even the hydrogen can be generated on the ground via water electrolysis on top of terminals. Also saving operators $20-$50 million or more, over an aircraft's life cycle.

 

Non, zero carbon, could use CNG, then reformation to extract the Hydrogen.

 

Ready to build today, all tech is already developed. Makes ALL commercial aircraft in existence obsolete. PLUS all hybrid aicraft on the drawing board right now with Boeing, Airbus, etc.

 

Airframe is 3D printed Graphene wafering, 33X stronger then titatnium; and carbon fiber/kevlar.

 

Specs:

Length: 150 ft | Span: 120.6 ft | Cruise M.9-.92)

Ceiling: Estimate 45,000 ft. Cruise: 38,000 ft

Range: 5,000+ NM

Estimated Empty Weight: 65,000 LBS

Estimate T/O Weight (Full fuel and passengers): 134,000 LBS

MTOW Estimate: 195,000 LBS

Fuel: 30,000 Gallon 8,000 PSI Max Compressed Hydrogen or Natural Gas Using High Pressure Conforming Tank Technology

Fuel Weight: Apx 9,000 LBS (Compared to 180,300 LBS if Jet A liquid)

Current Passenger Configuration: 184 passengers; 172 Main Cabin & 12 1st Class

Operating Costs, apx $2,500-$3,500 hr.

 

Estiumated Maintenance Costs: Apx 1/2 current commercial aircraft.

 

Estimate Unit Price in Production: Apx $105 million

Reduction in Operating Costs Over the Aircrafts Life Cycle: $20-$50 Million (Or More) in Savings.

 

#hybrid #sustainability #hydrogen #hydrogenfuelcell #commercialaircraft #airbus #boeing #comac #innovation #lockheed #raytheon #bae #bombardier #northopgrumman #generaldynamics #utc #ge #afrl #onr #afosr #ReactionEngines #spacex #virginorbit #usaf #darpa #mda #rollsroyce #nasa #tesla #safran #embraer #3dprinting #supersonic #collinsaerospace #rockwell #generalatomics #cessna #dassault #arl #navair #diu #dia #usaf #unitedtechnologies #bae #cessana #piper #saab #defenseadvancedresearchprojectagency #graphene #additivemanufacturing #gkn #eaa #aopa #icao #tesla #nikolamotors #zerocarbon #embraer #electricaircraft

 

hybrid, sustainability, hydrogen, hydrogen fuel cell, hybrid commercial aircraft, hybrid commercial plane, commercial aircraft, airbus, boeing, comac, innovation, lockheed, raytheon, bae, bombardier, northop grumman, general dynamics, utc, ge, afrl, onr, afosr, usaf, darpa, mda, rolls royce, nasa, tesla, safran, embraer, 3d printing, supersonic, collins aerospace, rockwell, general atomics, cessna, dassault, arl, navair, diu, dia, usaf, united technologies, bae, cessana, piper, saab, defense advanced research project agency, graphene, additive manufacturing, gkn, eaa, aopa, icao, tesla, nikola motors, zero carbon, embraer, electricaircraft, Composite Aircraft, Composite Commercial Aircraft,

 

Iteration 10 - Raven B Model - Mach 8-10, 22 Passenger hypersonic business jet. New iteration reflects design changes from Raven A Model, which is an SSTO, a real one. ALL technologies associated "are" developed. It is also ZERO CARBON.

 

More Info: www.ioaircraft.com/hypersonic/raven-business.php

 

Not a graphics design or graphics rendering, but sanitized cad screenshots. This is not a concept, but ready for serial production. Not really looking for investors and such. Everything DOD is funding for hypersonic fixed aircraft is OLD and rehashed perpetually for 40+ years at 10X the price. Others, pushing supersonics and hypersonics, also very old technologies at very expensive prices and operating costs. This, about the same as a G650 or Global Express costs and operating costs and normalized Mach 10 dynamics in all regards in atmosphere.

 

#afrl #afwerx #defensewerx #usaf #darpa #onr #arl #boeing #lockheedmartin #airbus #raytheon #northropgrumman #aerojet #dynetics #easa #bae #afosr #hypersonic #supersonic #scramjet #reactionengines #innovation #graphene #hydrogen #spacex #ula #virgingalactic #rocketlab #nasa #snc #sierranevadecorporation #dreamchaser #sdo #sda #spaceforce #dod #icao #dassault #bombardier #gulfstream #cessna #bigalow #boomsuprsonic #aerion #esa #airplane

Hyperion, Hypersonic Mach 15 Scramjet Missile - IO Aircraft - ARRW, HAWC, Air Launched Rapid Response Weapon

Length: 120" / Span 25"

www.ioaircraft.com

 

Scramjet, Hypersonic, ARRW, HAWC, Air Launched Rapid Response Weapon, Scramjet Physics, Scramjet Engineering, Hypersonic Missile, hypersonic weapon, hypersonic fighter, hypersonic fighter plane, tgv, tactical glide vehicle, hypersonic commercial aircraft, hypersonic commercial plane, hypersonic aircraft, hypersonic plane, hypersonic airline, tbcc, glide breaker, fighter plane, phantom works, boeing phantom works, lockheed skunk works, boost glide, tactical glide vehicle, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, defense science, missile defense agency, aerospike, hydrogen aircraft, airlines, military, physics, airline, aerion supersonic, aerion, spike aerospace, boom supersonic, , darpa, onr, navair, afrl, air force research lab, office of naval research, defense advanced research project agency, afosr, socom, arl, army future command, mda, missile defense agenci, dia, defense intelligence agency, Air Force Office of Scientific Research,

 

Iteration V8, Hyperion Mach 15 #hypersonic #scramjet (50% faster then the X-43 #nasa), 300% faster than #Lockheed, #NorthropGrumman, #Raytheon, and Boeing. Much is sanitized as the technology advances are dramatic and not public.

DOD's funding of #AGM-183A / Air Launched Rapid Response Weapon, the poeple developing it barely comprehend student level capabilities and 50/50 it will disintegrate even at Mach 5. China and Russia, already much faster and higher tech making it obsolete already, India's recent test, apx 700 mph faster.

 

Summarized details are accurate

#hypersonic #hypersonics #scramjet #hypersonicplane #hypersonicaircraft #skunkworks #spaceplane #boeing #lockheed #raytheon #bae #bombardier #airbus #northopgrumman #generaldynamics #utc #ge #afrl #onr #afosr #ReactionEngines #spacex #virginorbit #usaf #darpa #mda #rollsroyce #nasa #tesla #safran #embraer #AirLaunchedRapidResponseWeapon #additivemanufacturing #military #physics #3dprinting #supersonic #ramjet #tbcc #collinsaerospace #rockwell #phantomworks #hypersonicmissile #alrrw #boeingphantomworks #generalatomics #cessna #dassault #arl #unitedlaunchalliance #spaceshipcompany #navair #diu #dia #usaf #unitedtechnologies #defenseadvancedresearchprojectagency #graphene #additivemanufacturing

 

-----------------------------

 

Unified Turbine Based Combined Cycle. Current technologies and what Lockheed is trying to force on the Dept of Defense, for that low speed Mach 5 plane DOD gave them $1 billion to build and would disintegrate above Mach 5, is TBCC. 2 separate propulsion systems in the same airframe, which requires TWICE the airframe space to use.

 

Unified Turbine Based Combined Cycle is 1 propulsion system cutting that airframe deficit in half, and also able to operate above Mach 10 up to Mach 15 in atmosphere, and a simple nozzle modification allows for outside atmosphere rocket mode, ie orbital capable.

 

Additionally, Reaction Engines maximum air breather mode is Mach 4.5, above that it will explode in flight from internal pressures are too high to operate. Thus, must switch to non air breather rocket mode to operate in atmosphere in hypersonic velocities. Which as a result, makes it not feasible for anything practical. It also takes an immense amount of fuel to function.

 

-------------

 

Advanced Additive Manufacturing for Hypersonic Aircraft

 

Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.

 

Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.

 

*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.

 

What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.

 

Unified Turbine Based Combined Cycle (U-TBCC)

 

To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5

 

However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.

 

Enhanced Dynamic Cavitation

 

Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.

 

Dynamic Scramjet Ignition Processes

 

For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.

 

Hydrogen vs Kerosene Fuel Sources

 

Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.

 

Conforming High Pressure Tank Technology for CNG and H2.

 

As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.

 

As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).

 

Enhanced Fuel Mixture During Shock Train Interaction

 

Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.

 

Improved Bow Shock Interaction

 

Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.

 

6,000+ Fahrenheit Thermal Resistance

 

To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.

  

*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope

 

Scramjet Propulsion Side Wall Cooling

 

With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.

 

Lower Threshold for Hypersonic Ignition

 

Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.

 

Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities

 

Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.

 

Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)

 

To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.

 

A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.

FCH-150 Hydrogen Fuel Cell Commercial Aircraft - IO Aircraft - IT1

 

www.ioaircraft.com

 

100% viable Electric Commercial aircraft, in a 737 MAX class. Compressed Hydrogen Fueled (Not liquid [obsolete]), 100% electric. NO carbon foot print. Even the hydrogen can be generated on the ground via water electrolysis on top of terminals. Also saving operators $20-$50 million or more, over an aircraft's life cycle.

 

Non, zero carbon, could use CNG, then reformation to extract the Hydrogen.

 

Ready to build today, all tech is already developed. Makes ALL commercial aircraft in existence obsolete. PLUS all hybrid aicraft on the drawing board right now with Boeing, Airbus, etc.

 

Airframe is 3D printed Graphene wafering, 33X stronger then titatnium; and carbon fiber/kevlar.

 

Specs:

Length: 150 ft | Span: 120.6 ft | Cruise M.9-.92)

Ceiling: Estimate 45,000 ft. Cruise: 38,000 ft

Range: 5,000+ NM

Estimated Empty Weight: 65,000 LBS

Estimate T/O Weight (Full fuel and passengers): 134,000 LBS

MTOW Estimate: 195,000 LBS

Fuel: 30,000 Gallon 8,000 PSI Max Compressed Hydrogen or Natural Gas Using High Pressure Conforming Tank Technology

Fuel Weight: Apx 9,000 LBS (Compared to 180,300 LBS if Jet A liquid)

Current Passenger Configuration: 184 passengers; 172 Main Cabin & 12 1st Class

Operating Costs, apx $2,500-$3,500 hr.

 

Estiumated Maintenance Costs: Apx 1/2 current commercial aircraft.

 

Estimate Unit Price in Production: Apx $105 million

Reduction in Operating Costs Over the Aircrafts Life Cycle: $20-$50 Million (Or More) in Savings.

 

#hybrid #sustainability #hydrogen #hydrogenfuelcell #commercialaircraft #airbus #boeing #comac #innovation #lockheed #raytheon #bae #bombardier #northopgrumman #generaldynamics #utc #ge #afrl #onr #afosr #ReactionEngines #spacex #virginorbit #usaf #darpa #mda #rollsroyce #nasa #tesla #safran #embraer #3dprinting #supersonic #collinsaerospace #rockwell #generalatomics #cessna #dassault #arl #navair #diu #dia #usaf #unitedtechnologies #bae #cessana #piper #saab #defenseadvancedresearchprojectagency #graphene #additivemanufacturing #gkn #eaa #aopa #icao #tesla #nikolamotors #zerocarbon #embraer #electricaircraft

 

hybrid, sustainability, hydrogen, hydrogen fuel cell, hybrid commercial aircraft, hybrid commercial plane, commercial aircraft, airbus, boeing, comac, innovation, lockheed, raytheon, bae, bombardier, northop grumman, general dynamics, utc, ge, afrl, onr, afosr, usaf, darpa, mda, rolls royce, nasa, tesla, safran, embraer, 3d printing, supersonic, collins aerospace, rockwell, general atomics, cessna, dassault, arl, navair, diu, dia, usaf, united technologies, bae, cessana, piper, saab, defense advanced research project agency, graphene, additive manufacturing, gkn, eaa, aopa, icao, tesla, nikola motors, zero carbon, embraer, electricaircraft, Composite Aircraft, Composite Commercial Aircraft,

 

FCH-150 Hydrogen Fuel Cell Commercial Aircraft - IO Aircraft - IT1

 

www.ioaircraft.com

 

100% viable Electric Commercial aircraft, in a 737 MAX class. Compressed Hydrogen Fueled (Not liquid [obsolete]), 100% electric. NO carbon foot print. Even the hydrogen can be generated on the ground via water electrolysis on top of terminals. Also saving operators $20-$50 million or more, over an aircraft's life cycle.

 

Non, zero carbon, could use CNG, then reformation to extract the Hydrogen.

 

Ready to build today, all tech is already developed. Makes ALL commercial aircraft in existence obsolete. PLUS all hybrid aicraft on the drawing board right now with Boeing, Airbus, etc.

 

Airframe is 3D printed Graphene wafering, 33X stronger then titatnium; and carbon fiber/kevlar.

 

Specs:

Length: 150 ft | Span: 120.6 ft | Cruise M.9-.92)

Ceiling: Estimate 45,000 ft. Cruise: 38,000 ft

Range: 5,000+ NM

Estimated Empty Weight: 65,000 LBS

Estimate T/O Weight (Full fuel and passengers): 134,000 LBS

MTOW Estimate: 195,000 LBS

Fuel: 30,000 Gallon 8,000 PSI Max Compressed Hydrogen or Natural Gas Using High Pressure Conforming Tank Technology

Fuel Weight: Apx 9,000 LBS (Compared to 180,300 LBS if Jet A liquid)

Current Passenger Configuration: 184 passengers; 172 Main Cabin & 12 1st Class

Operating Costs, apx $2,500-$3,500 hr.

 

Estiumated Maintenance Costs: Apx 1/2 current commercial aircraft.

 

Estimate Unit Price in Production: Apx $105 million

Reduction in Operating Costs Over the Aircrafts Life Cycle: $20-$50 Million (Or More) in Savings.

 

#hybrid #sustainability #hydrogen #hydrogenfuelcell #commercialaircraft #airbus #boeing #comac #innovation #lockheed #raytheon #bae #bombardier #northopgrumman #generaldynamics #utc #ge #afrl #onr #afosr #ReactionEngines #spacex #virginorbit #usaf #darpa #mda #rollsroyce #nasa #tesla #safran #embraer #3dprinting #supersonic #collinsaerospace #rockwell #generalatomics #cessna #dassault #arl #navair #diu #dia #usaf #unitedtechnologies #bae #cessana #piper #saab #defenseadvancedresearchprojectagency #graphene #additivemanufacturing #gkn #eaa #aopa #icao #tesla #nikolamotors #zerocarbon #embraer #electricaircraft

 

hybrid, sustainability, hydrogen, hydrogen fuel cell, hybrid commercial aircraft, hybrid commercial plane, commercial aircraft, airbus, boeing, comac, innovation, lockheed, raytheon, bae, bombardier, northop grumman, general dynamics, utc, ge, afrl, onr, afosr, usaf, darpa, mda, rolls royce, nasa, tesla, safran, embraer, 3d printing, supersonic, collins aerospace, rockwell, general atomics, cessna, dassault, arl, navair, diu, dia, usaf, united technologies, bae, cessana, piper, saab, defense advanced research project agency, graphene, additive manufacturing, gkn, eaa, aopa, icao, tesla, nikola motors, zero carbon, embraer, electricaircraft, Composite Aircraft, Composite Commercial Aircraft,

 

New iteration for Raven SSTO, Single Stage to Orbit. This isn't the heavy, Discovery. But the smaller one. For example, SpaceX's dragon capsule is 378 Cu Ft, Payload bay of Raven is 1078 Cu Ft. www.ioaircraft.com/hypersonic/raven.php

 

Iteration 10, almost clean sheet. U-TBCC propulsion, 6000F thermal resistance, 3D printed graphene airframe, Note the elimination of "blunt nose". Turn around time under 24 hours total from landing to ready for next flight. No external boosters.

 

Forward Thruster Bay, other then conventional orbital thrusters, also includes a reverse thruster which decelerates the aircraft pre re-entry into atmosphere from 16,500+ mph ground speed to apx 12,000 mph ground speed. Engines re-ignite once in atmosphere so it can fly to it's landing destination, ie not glide.

 

#ssto #singlestagetorobit #space #newspace #afrl #afwerx #usaf #darpa #onr #arl #boeing #lockheedmartin #raytheon #northropgrumman #aerojet #dynetics #esa #bae #afosr #hypersonics #hypersonic #scramjet #reactionengines #sabre #starship #falcon9 #dragoncapsule #innovation #graphene #hydrogen #spacex #ula #virginorbit #rocketlab #artemis #orion #sls #nasa #snc #sierranevadecorporation #dreamchaser #astra #sdo #sda #spaceforce #dod #icao #dassault #bombardier #gulfstream #cessna #bigalow

HVL130 Condor, VTOL Hypersonic Transport, global point to point capable. www.ioaircraft.com/hypersonic/condor.php

 

130' length, 22-25 TON cargo bay capacity, H2 fueled, with onboard oxidizer as needed for Mach 15 velocity at 70 mile altitude (above the karman line). Website link: www.ioaircraft.com/hypersonic/condor.php

  

At apx 100,000-120,000ft, cruise velocity is Mach 8-10, with a 10,000nm range. Cargo bay and cockpit are hemetically sealed, with onboard oxygen supply and environmentals.

  

The entire cargo bay opens instead of a cargo bay door, while the nose gear retracts on the ground providing 8 1/2 ft of clearance into the bay.

 

*This same engineering principle that applies to Condor, can be scaled up further, with a 50-100 ton cargo capacity.

 

Propulsion for this aircraft is extensive:

2 U-TBCC (Unified Turbine Based Combine Cycle / Dual Mode Scramjet (300,000 LBS Thrust)

5 H2/O2 Compressed Fueled Bell Nozzle Rockets. No turbo pumps.

3 U-GTG / Thrust Producing Gas Turbine Generators (60-70K LBS vertical thrust by themselves)

24 Graphene Based Super Conducting Lift Fans, 70-90K+ LBS vertically lift)

 

In the last image, for sizing comparison are

Discovery SSTO Heavy Lift: www.ioaircraft.com/hypersonic/discovery-218.php

 

Raven B Model, 22 Person Hypersonic Business Jet www.ioaircraft.com/hypersonic/raven-business.php

 

Grey Hawk, Mach 8-10 7th Gen Hypersonic Super Fighter www.ioaircraft.com/hypersonic/greyhawk.php

 

All are serial production ready.

 

vtol, hypersonics, evtol, hydrogen, hsvtol, hypersonic, hypersonic plane, hypersonic aircraft, hypersonic jet, business jet, arrw, hsv, hawc, scramjet, tbcc, reaction engines, hermeus, hypersonix, hydrogen aviation, hydrogen aerospace, space plane, hypersonic weapons, icao, son of blackbird, scramjet physics, cfd, ramjet, supersonic, supersonic jet, aviation, aerospace, usaf, boeing, lockheed martin, northrop grumman, raytheon, turbine, dynetics, afrl, nrl, onr, defcon, darpa, graphene, physics, computational fluid dynamics, aircraft, nasa, engineering, energy, nsic AIAA, innovation, renewables, aerospace, green aerospace, AFWERX, Air Force Research Laboratory, United States Air Force, Defense Advanced Research Projects Agency, DARPA, NASA, National Aeronautics and Space Administration, Army Futures Command, USMC Special Operations, DLR, NATO

New iteration for Raven SSTO, Single Stage to Orbit. This isn't the heavy, Discovery. But the smaller one. For example, SpaceX's dragon capsule is 378 Cu Ft, Payload bay of Raven is 1078 Cu Ft. www.ioaircraft.com/hypersonic/raven.php

 

Iteration 10, almost clean sheet. U-TBCC propulsion, 6000F thermal resistance, 3D printed graphene airframe, Note the elimination of "blunt nose". Turn around time under 24 hours total from landing to ready for next flight. No external boosters.

 

Forward Thruster Bay, other then conventional orbital thrusters, also includes a reverse thruster which decelerates the aircraft pre re-entry into atmosphere from 16,500+ mph ground speed to apx 12,000 mph ground speed. Engines re-ignite once in atmosphere so it can fly to it's landing destination, ie not glide.

 

#ssto #singlestagetorobit #space #newspace #afrl #afwerx #usaf #darpa #onr #arl #boeing #lockheedmartin #raytheon #northropgrumman #aerojet #dynetics #esa #bae #afosr #hypersonics #hypersonic #scramjet #reactionengines #sabre #starship #falcon9 #dragoncapsule #innovation #graphene #hydrogen #spacex #ula #virginorbit #rocketlab #artemis #orion #sls #nasa #snc #sierranevadecorporation #dreamchaser #astra #sdo #sda #spaceforce #dod #icao #dassault #bombardier #gulfstream #cessna #bigalow

Iteration 10 - Raven B Model - Mach 8-10, 22 Passenger hypersonic business jet. New iteration reflects design changes from Raven A Model, which is an SSTO, a real one. ALL technologies associated "are" developed. It is also ZERO CARBON.

 

More Info: www.ioaircraft.com/hypersonic/raven-business.php

 

Not a graphics design or graphics rendering, but sanitized cad screenshots. This is not a concept, but ready for serial production. Not really looking for investors and such. Everything DOD is funding for hypersonic fixed aircraft is OLD and rehashed perpetually for 40+ years at 10X the price. Others, pushing supersonics and hypersonics, also very old technologies at very expensive prices and operating costs. This, about the same as a G650 or Global Express costs and operating costs and normalized Mach 10 dynamics in all regards in atmosphere.

 

#afrl #afwerx #defensewerx #usaf #darpa #onr #arl #boeing #lockheedmartin #airbus #raytheon #northropgrumman #aerojet #dynetics #easa #bae #afosr #hypersonic #supersonic #scramjet #reactionengines #innovation #graphene #hydrogen #spacex #ula #virgingalactic #rocketlab #nasa #snc #sierranevadecorporation #dreamchaser #sdo #sda #spaceforce #dod #icao #dassault #bombardier #gulfstream #cessna #bigalow #boomsuprsonic #aerion #esa #airplane

More info from Raven B Model - Iteration 10. Mach 8-10 Hypersonic Business Jet. Previous post lnkd.in/enxwifA was a new iteration update. Cleaning some things up, as I am not a graphics designer. Engineering, physics, etc yes. This post covers some technical aspects while still sanitizing everything.

 

For full size images, click thumbnail images on the website: www.ioaircraft.com/hypersonic/raven-business.php

 

Overall, this single aircraft design that is ready for building and going into serial production absolutely obliterates Lockheed's SR-72 (Mach 5) by DOUBLE the margins and a fraction of the costs, and BOOM, Virgin Galactic, etc.

 

Sure it can economically cruise at Mach 3-4.5 supersonically at under 50% throttle as well, but 7,000-8,000 NM Range at Mach 10 at over 100,000ft altitude and normalized hypersonic flight along with 6,000F thermal resistence.

 

A - Model is the SSTO (Single Stage to Orbit) version here: lnkd.in/efbmk_W

 

#afrl #afwerx #defensewerx #usaf #darpa #onr #arl #boeing #lockheedmartin #airbus #raytheon #northropgrumman #aerojet #dynetics #easa #bae #afosr #hypersonic #supersonic #scramjet #reactionengines #innovation #graphene #hydrogen #spacex #ula #virgingalactic #rocketlab #nasa #snc #sierranevadecorporation #dreamchaser #sdo #sda #spaceforce #dod #icao #dassault #bombardier #gulfstream #cessna #bigalow #boomsuprsonic #aerion #esa #easa #airplane

  

*Note, I use colors in my cad blocks and layer. I could easily tint/grey them out. I could care less how others do it. ALL dynamics are highly refined for normalized sustained Mach 10 flight. Extensive CFD refinement over many years, along with material science, and several upcoming patent filings for individual technology advancements, along with 2nd gen high pressure conforming tanks that utilize graphene inner shells at 2,000,000 PSI tensile strength normalizing 16,000 PSI high pressure storage vessels. Everything else is already developed as well.

 

hypersonic plane, supersonic plane, supersonic private jet, hypersonic private jet, afrl, afwerx, defensewerx, usaf, darpa, onr, arl, boeing, lockheed martin, airbus, raytheon, northrop grumman, aerojet, dynetics, easa, bae, afosr, hypersonic, supersonic, scramjet, reaction engines, innovation, graphene, hydrogen, spacex, ula, virgin galactic, rocketlab, nasa, snc, sierra nevade corporation, dream chaser, sdo, sda, space force, dod, icao, dassault, bombardier, gulfstream, cessna, bigalow, boom suprsonic, aerion, tbcc, mayhem

More info from Raven B Model - Iteration 10. Mach 8-10 Hypersonic Business Jet. Previous post lnkd.in/enxwifA was a new iteration update. Cleaning some things up, as I am not a graphics designer. Engineering, physics, etc yes. This post covers some technical aspects while still sanitizing everything.

 

For full size images, click thumbnail images on the website: www.ioaircraft.com/hypersonic/raven-business.php

 

Overall, this single aircraft design that is ready for building and going into serial production absolutely obliterates Lockheed's SR-72 (Mach 5) by DOUBLE the margins and a fraction of the costs, and BOOM, Virgin Galactic, etc.

 

Sure it can economically cruise at Mach 3-4.5 supersonically at under 50% throttle as well, but 7,000-8,000 NM Range at Mach 10 at over 100,000ft altitude and normalized hypersonic flight along with 6,000F thermal resistence.

 

A - Model is the SSTO (Single Stage to Orbit) version here: lnkd.in/efbmk_W

 

#afrl #afwerx #defensewerx #usaf #darpa #onr #arl #boeing #lockheedmartin #airbus #raytheon #northropgrumman #aerojet #dynetics #easa #bae #afosr #hypersonic #supersonic #scramjet #reactionengines #innovation #graphene #hydrogen #spacex #ula #virgingalactic #rocketlab #nasa #snc #sierranevadecorporation #dreamchaser #sdo #sda #spaceforce #dod #icao #dassault #bombardier #gulfstream #cessna #bigalow #boomsuprsonic #aerion #esa #easa #airplane

  

*Note, I use colors in my cad blocks and layer. I could easily tint/grey them out. I could care less how others do it. ALL dynamics are highly refined for normalized sustained Mach 10 flight. Extensive CFD refinement over many years, along with material science, and several upcoming patent filings for individual technology advancements, along with 2nd gen high pressure conforming tanks that utilize graphene inner shells at 2,000,000 PSI tensile strength normalizing 16,000 PSI high pressure storage vessels. Everything else is already developed as well.

 

hypersonic plane, supersonic plane, supersonic private jet, hypersonic private jet, afrl, afwerx, defensewerx, usaf, darpa, onr, arl, boeing, lockheed martin, airbus, raytheon, northrop grumman, aerojet, dynetics, easa, bae, afosr, hypersonic, supersonic, scramjet, reaction engines, innovation, graphene, hydrogen, spacex, ula, virgin galactic, rocketlab, nasa, snc, sierra nevade corporation, dream chaser, sdo, sda, space force, dod, icao, dassault, bombardier, gulfstream, cessna, bigalow, boom suprsonic, aerion, tbcc, mayhem

More info from Raven B Model - Iteration 10. Mach 8-10 Hypersonic Business Jet. Previous post lnkd.in/enxwifA was a new iteration update. Cleaning some things up, as I am not a graphics designer. Engineering, physics, etc yes. This post covers some technical aspects while still sanitizing everything.

 

For full size images, click thumbnail images on the website: www.ioaircraft.com/hypersonic/raven-business.php

 

Overall, this single aircraft design that is ready for building and going into serial production absolutely obliterates Lockheed's SR-72 (Mach 5) by DOUBLE the margins and a fraction of the costs, and BOOM, Virgin Galactic, etc.

 

Sure it can economically cruise at Mach 3-4.5 supersonically at under 50% throttle as well, but 7,000-8,000 NM Range at Mach 10 at over 100,000ft altitude and normalized hypersonic flight along with 6,000F thermal resistence.

 

A - Model is the SSTO (Single Stage to Orbit) version here: lnkd.in/efbmk_W

 

#afrl #afwerx #defensewerx #usaf #darpa #onr #arl #boeing #lockheedmartin #airbus #raytheon #northropgrumman #aerojet #dynetics #easa #bae #afosr #hypersonic #supersonic #scramjet #reactionengines #innovation #graphene #hydrogen #spacex #ula #virgingalactic #rocketlab #nasa #snc #sierranevadecorporation #dreamchaser #sdo #sda #spaceforce #dod #icao #dassault #bombardier #gulfstream #cessna #bigalow #boomsuprsonic #aerion #esa #easa #airplane

  

*Note, I use colors in my cad blocks and layer. I could easily tint/grey them out. I could care less how others do it. ALL dynamics are highly refined for normalized sustained Mach 10 flight. Extensive CFD refinement over many years, along with material science, and several upcoming patent filings for individual technology advancements, along with 2nd gen high pressure conforming tanks that utilize graphene inner shells at 2,000,000 PSI tensile strength normalizing 16,000 PSI high pressure storage vessels. Everything else is already developed as well.

 

hypersonic plane, supersonic plane, supersonic private jet, hypersonic private jet, afrl, afwerx, defensewerx, usaf, darpa, onr, arl, boeing, lockheed martin, airbus, raytheon, northrop grumman, aerojet, dynetics, easa, bae, afosr, hypersonic, supersonic, scramjet, reaction engines, innovation, graphene, hydrogen, spacex, ula, virgin galactic, rocketlab, nasa, snc, sierra nevade corporation, dream chaser, sdo, sda, space force, dod, icao, dassault, bombardier, gulfstream, cessna, bigalow, boom suprsonic, aerion, tbcc, mayhem

More info from Raven B Model - Iteration 10. Mach 8-10 Hypersonic Business Jet. Previous post lnkd.in/enxwifA was a new iteration update. Cleaning some things up, as I am not a graphics designer. Engineering, physics, etc yes. This post covers some technical aspects while still sanitizing everything.

 

For full size images, click thumbnail images on the website: www.ioaircraft.com/hypersonic/raven-business.php

 

Overall, this single aircraft design that is ready for building and going into serial production absolutely obliterates Lockheed's SR-72 (Mach 5) by DOUBLE the margins and a fraction of the costs, and BOOM, Virgin Galactic, etc.

 

Sure it can economically cruise at Mach 3-4.5 supersonically at under 50% throttle as well, but 7,000-8,000 NM Range at Mach 10 at over 100,000ft altitude and normalized hypersonic flight along with 6,000F thermal resistence.

 

A - Model is the SSTO (Single Stage to Orbit) version here: lnkd.in/efbmk_W

 

#afrl #afwerx #defensewerx #usaf #darpa #onr #arl #boeing #lockheedmartin #airbus #raytheon #northropgrumman #aerojet #dynetics #easa #bae #afosr #hypersonic #supersonic #scramjet #reactionengines #innovation #graphene #hydrogen #spacex #ula #virgingalactic #rocketlab #nasa #snc #sierranevadecorporation #dreamchaser #sdo #sda #spaceforce #dod #icao #dassault #bombardier #gulfstream #cessna #bigalow #boomsuprsonic #aerion #esa #easa #airplane

  

*Note, I use colors in my cad blocks and layer. I could easily tint/grey them out. I could care less how others do it. ALL dynamics are highly refined for normalized sustained Mach 10 flight. Extensive CFD refinement over many years, along with material science, and several upcoming patent filings for individual technology advancements, along with 2nd gen high pressure conforming tanks that utilize graphene inner shells at 2,000,000 PSI tensile strength normalizing 16,000 PSI high pressure storage vessels. Everything else is already developed as well.

 

hypersonic plane, supersonic plane, supersonic private jet, hypersonic private jet, afrl, afwerx, defensewerx, usaf, darpa, onr, arl, boeing, lockheed martin, airbus, raytheon, northrop grumman, aerojet, dynetics, easa, bae, afosr, hypersonic, supersonic, scramjet, reaction engines, innovation, graphene, hydrogen, spacex, ula, virgin galactic, rocketlab, nasa, snc, sierra nevade corporation, dream chaser, sdo, sda, space force, dod, icao, dassault, bombardier, gulfstream, cessna, bigalow, boom suprsonic, aerion, tbcc, mayhem

More info from Raven B Model - Iteration 10. Mach 8-10 Hypersonic Business Jet. Previous post lnkd.in/enxwifA was a new iteration update. Cleaning some things up, as I am not a graphics designer. Engineering, physics, etc yes. This post covers some technical aspects while still sanitizing everything.

 

For full size images, click thumbnail images on the website: www.ioaircraft.com/hypersonic/raven-business.php

 

Overall, this single aircraft design that is ready for building and going into serial production absolutely obliterates Lockheed's SR-72 (Mach 5) by DOUBLE the margins and a fraction of the costs, and BOOM, Virgin Galactic, etc.

 

Sure it can economically cruise at Mach 3-4.5 supersonically at under 50% throttle as well, but 7,000-8,000 NM Range at Mach 10 at over 100,000ft altitude and normalized hypersonic flight along with 6,000F thermal resistence.

 

A - Model is the SSTO (Single Stage to Orbit) version here: lnkd.in/efbmk_W

 

#afrl #afwerx #defensewerx #usaf #darpa #onr #arl #boeing #lockheedmartin #airbus #raytheon #northropgrumman #aerojet #dynetics #easa #bae #afosr #hypersonic #supersonic #scramjet #reactionengines #innovation #graphene #hydrogen #spacex #ula #virgingalactic #rocketlab #nasa #snc #sierranevadecorporation #dreamchaser #sdo #sda #spaceforce #dod #icao #dassault #bombardier #gulfstream #cessna #bigalow #boomsuprsonic #aerion #esa #easa #airplane

  

*Note, I use colors in my cad blocks and layer. I could easily tint/grey them out. I could care less how others do it. ALL dynamics are highly refined for normalized sustained Mach 10 flight. Extensive CFD refinement over many years, along with material science, and several upcoming patent filings for individual technology advancements, along with 2nd gen high pressure conforming tanks that utilize graphene inner shells at 2,000,000 PSI tensile strength normalizing 16,000 PSI high pressure storage vessels. Everything else is already developed as well.

 

hypersonic plane, supersonic plane, supersonic private jet, hypersonic private jet, afrl, afwerx, defensewerx, usaf, darpa, onr, arl, boeing, lockheed martin, airbus, raytheon, northrop grumman, aerojet, dynetics, easa, bae, afosr, hypersonic, supersonic, scramjet, reaction engines, innovation, graphene, hydrogen, spacex, ula, virgin galactic, rocketlab, nasa, snc, sierra nevade corporation, dream chaser, sdo, sda, space force, dod, icao, dassault, bombardier, gulfstream, cessna, bigalow, boom suprsonic, aerion, tbcc, mayhem

Iteration 10 - Raven B Model - Mach 8-10, 22 Passenger hypersonic business jet. New iteration reflects design changes from Raven A Model, which is an SSTO, a real one. ALL technologies associated "are" developed. It is also ZERO CARBON.

 

More Info: www.ioaircraft.com/hypersonic/raven-business.php

 

Not a graphics design or graphics rendering, but sanitized cad screenshots. This is not a concept, but ready for serial production. Not really looking for investors and such. Everything DOD is funding for hypersonic fixed aircraft is OLD and rehashed perpetually for 40+ years at 10X the price. Others, pushing supersonics and hypersonics, also very old technologies at very expensive prices and operating costs. This, about the same as a G650 or Global Express costs and operating costs and normalized Mach 10 dynamics in all regards in atmosphere.

 

#afrl #afwerx #defensewerx #usaf #darpa #onr #arl #boeing #lockheedmartin #airbus #raytheon #northropgrumman #aerojet #dynetics #easa #bae #afosr #hypersonic #supersonic #scramjet #reactionengines #innovation #graphene #hydrogen #spacex #ula #virgingalactic #rocketlab #nasa #snc #sierranevadecorporation #dreamchaser #sdo #sda #spaceforce #dod #icao #dassault #bombardier #gulfstream #cessna #bigalow #boomsuprsonic #aerion #esa #airplane

HVL130 Condor, VTOL Hypersonic Transport, global point to point capable. www.ioaircraft.com/hypersonic/condor.php

 

130' length, 22-25 TON cargo bay capacity, H2 fueled, with onboard oxidizer as needed for Mach 15 velocity at 70 mile altitude (above the karman line). Website link: www.ioaircraft.com/hypersonic/condor.php

  

At apx 100,000-120,000ft, cruise velocity is Mach 8-10, with a 10,000nm range. Cargo bay and cockpit are hemetically sealed, with onboard oxygen supply and environmentals.

  

The entire cargo bay opens instead of a cargo bay door, while the nose gear retracts on the ground providing 8 1/2 ft of clearance into the bay.

 

*This same engineering principle that applies to Condor, can be scaled up further, with a 50-100 ton cargo capacity.

 

Propulsion for this aircraft is extensive:

2 U-TBCC (Unified Turbine Based Combine Cycle / Dual Mode Scramjet (300,000 LBS Thrust)

5 H2/O2 Compressed Fueled Bell Nozzle Rockets. No turbo pumps.

3 U-GTG / Thrust Producing Gas Turbine Generators (60-70K LBS vertical thrust by themselves)

24 Graphene Based Super Conducting Lift Fans, 70-90K+ LBS vertically lift)

 

In the last image, for sizing comparison are

Discovery SSTO Heavy Lift: www.ioaircraft.com/hypersonic/discovery-218.php

 

Raven B Model, 22 Person Hypersonic Business Jet www.ioaircraft.com/hypersonic/raven-business.php

 

Grey Hawk, Mach 8-10 7th Gen Hypersonic Super Fighter www.ioaircraft.com/hypersonic/greyhawk.php

 

All are serial production ready.

 

vtol, hypersonics, evtol, hydrogen, hsvtol, hypersonic, hypersonic plane, hypersonic aircraft, hypersonic jet, business jet, arrw, hsv, hawc, scramjet, tbcc, reaction engines, hermeus, hypersonix, hydrogen aviation, hydrogen aerospace, space plane, hypersonic weapons, icao, son of blackbird, scramjet physics, cfd, ramjet, supersonic, supersonic jet, aviation, aerospace, usaf, boeing, lockheed martin, northrop grumman, raytheon, turbine, dynetics, afrl, nrl, onr, defcon, darpa, graphene, physics, computational fluid dynamics, aircraft, nasa, engineering, energy, nsic AIAA, innovation, renewables, aerospace, green aerospace, AFWERX, Air Force Research Laboratory, United States Air Force, Defense Advanced Research Projects Agency, DARPA, NASA, National Aeronautics and Space Administration, Army Futures Command, USMC Special Operations, DLR, NATO

HVL130 Condor, VTOL Hypersonic Transport, global point to point capable. www.ioaircraft.com/hypersonic/condor.php

 

130' length, 22-25 TON cargo bay capacity, H2 fueled, with onboard oxidizer as needed for Mach 15 velocity at 70 mile altitude (above the karman line). Website link: www.ioaircraft.com/hypersonic/condor.php

  

At apx 100,000-120,000ft, cruise velocity is Mach 8-10, with a 10,000nm range. Cargo bay and cockpit are hemetically sealed, with onboard oxygen supply and environmentals.

  

The entire cargo bay opens instead of a cargo bay door, while the nose gear retracts on the ground providing 8 1/2 ft of clearance into the bay.

 

*This same engineering principle that applies to Condor, can be scaled up further, with a 50-100 ton cargo capacity.

 

Propulsion for this aircraft is extensive:

2 U-TBCC (Unified Turbine Based Combine Cycle / Dual Mode Scramjet (300,000 LBS Thrust)

5 H2/O2 Compressed Fueled Bell Nozzle Rockets. No turbo pumps.

3 U-GTG / Thrust Producing Gas Turbine Generators (60-70K LBS vertical thrust by themselves)

24 Graphene Based Super Conducting Lift Fans, 70-90K+ LBS vertically lift)

 

In the last image, for sizing comparison are

Discovery SSTO Heavy Lift: www.ioaircraft.com/hypersonic/discovery-218.php

 

Raven B Model, 22 Person Hypersonic Business Jet www.ioaircraft.com/hypersonic/raven-business.php

 

Grey Hawk, Mach 8-10 7th Gen Hypersonic Super Fighter www.ioaircraft.com/hypersonic/greyhawk.php

 

All are serial production ready.

 

vtol, hypersonics, evtol, hydrogen, hsvtol, hypersonic, hypersonic plane, hypersonic aircraft, hypersonic jet, business jet, arrw, hsv, hawc, scramjet, tbcc, reaction engines, hermeus, hypersonix, hydrogen aviation, hydrogen aerospace, space plane, hypersonic weapons, icao, son of blackbird, scramjet physics, cfd, ramjet, supersonic, supersonic jet, aviation, aerospace, usaf, boeing, lockheed martin, northrop grumman, raytheon, turbine, dynetics, afrl, nrl, onr, defcon, darpa, graphene, physics, computational fluid dynamics, aircraft, nasa, engineering, energy, nsic AIAA, innovation, renewables, aerospace, green aerospace, AFWERX, Air Force Research Laboratory, United States Air Force, Defense Advanced Research Projects Agency, DARPA, NASA, National Aeronautics and Space Administration, Army Futures Command, USMC Special Operations, DLR, NATO

HVL130 Condor, VTOL Hypersonic Transport, global point to point capable. www.ioaircraft.com/hypersonic/condor.php

 

130' length, 22-25 TON cargo bay capacity, H2 fueled, with onboard oxidizer as needed for Mach 15 velocity at 70 mile altitude (above the karman line). Website link: www.ioaircraft.com/hypersonic/condor.php

  

At apx 100,000-120,000ft, cruise velocity is Mach 8-10, with a 10,000nm range. Cargo bay and cockpit are hemetically sealed, with onboard oxygen supply and environmentals.

  

The entire cargo bay opens instead of a cargo bay door, while the nose gear retracts on the ground providing 8 1/2 ft of clearance into the bay.

 

*This same engineering principle that applies to Condor, can be scaled up further, with a 50-100 ton cargo capacity.

 

Propulsion for this aircraft is extensive:

2 U-TBCC (Unified Turbine Based Combine Cycle / Dual Mode Scramjet (300,000 LBS Thrust)

5 H2/O2 Compressed Fueled Bell Nozzle Rockets. No turbo pumps.

3 U-GTG / Thrust Producing Gas Turbine Generators (60-70K LBS vertical thrust by themselves)

24 Graphene Based Super Conducting Lift Fans, 70-90K+ LBS vertically lift)

 

In the last image, for sizing comparison are

Discovery SSTO Heavy Lift: www.ioaircraft.com/hypersonic/discovery-218.php

 

Raven B Model, 22 Person Hypersonic Business Jet www.ioaircraft.com/hypersonic/raven-business.php

 

Grey Hawk, Mach 8-10 7th Gen Hypersonic Super Fighter www.ioaircraft.com/hypersonic/greyhawk.php

 

All are serial production ready.

 

vtol, hypersonics, evtol, hydrogen, hsvtol, hypersonic, hypersonic plane, hypersonic aircraft, hypersonic jet, business jet, arrw, hsv, hawc, scramjet, tbcc, reaction engines, hermeus, hypersonix, hydrogen aviation, hydrogen aerospace, space plane, hypersonic weapons, icao, son of blackbird, scramjet physics, cfd, ramjet, supersonic, supersonic jet, aviation, aerospace, usaf, boeing, lockheed martin, northrop grumman, raytheon, turbine, dynetics, afrl, nrl, onr, defcon, darpa, graphene, physics, computational fluid dynamics, aircraft, nasa, engineering, energy, nsic AIAA, innovation, renewables, aerospace, green aerospace, AFWERX, Air Force Research Laboratory, United States Air Force, Defense Advanced Research Projects Agency, DARPA, NASA, National Aeronautics and Space Administration, Army Futures Command, USMC Special Operations, DLR, NATO

HVL130 Condor, VTOL Hypersonic Transport, global point to point capable. www.ioaircraft.com/hypersonic/condor.php

 

130' length, 22-25 TON cargo bay capacity, H2 fueled, with onboard oxidizer as needed for Mach 15 velocity at 70 mile altitude (above the karman line). Website link: www.ioaircraft.com/hypersonic/condor.php

  

At apx 100,000-120,000ft, cruise velocity is Mach 8-10, with a 10,000nm range. Cargo bay and cockpit are hemetically sealed, with onboard oxygen supply and environmentals.

  

The entire cargo bay opens instead of a cargo bay door, while the nose gear retracts on the ground providing 8 1/2 ft of clearance into the bay.

 

*This same engineering principle that applies to Condor, can be scaled up further, with a 50-100 ton cargo capacity.

 

Propulsion for this aircraft is extensive:

2 U-TBCC (Unified Turbine Based Combine Cycle / Dual Mode Scramjet (300,000 LBS Thrust)

5 H2/O2 Compressed Fueled Bell Nozzle Rockets. No turbo pumps.

3 U-GTG / Thrust Producing Gas Turbine Generators (60-70K LBS vertical thrust by themselves)

24 Graphene Based Super Conducting Lift Fans, 70-90K+ LBS vertically lift)

 

In the last image, for sizing comparison are

Discovery SSTO Heavy Lift: www.ioaircraft.com/hypersonic/discovery-218.php

 

Raven B Model, 22 Person Hypersonic Business Jet www.ioaircraft.com/hypersonic/raven-business.php

 

Grey Hawk, Mach 8-10 7th Gen Hypersonic Super Fighter www.ioaircraft.com/hypersonic/greyhawk.php

 

All are serial production ready.

 

vtol, hypersonics, evtol, hydrogen, hsvtol, hypersonic, hypersonic plane, hypersonic aircraft, hypersonic jet, business jet, arrw, hsv, hawc, scramjet, tbcc, reaction engines, hermeus, hypersonix, hydrogen aviation, hydrogen aerospace, space plane, hypersonic weapons, icao, son of blackbird, scramjet physics, cfd, ramjet, supersonic, supersonic jet, aviation, aerospace, usaf, boeing, lockheed martin, northrop grumman, raytheon, turbine, dynetics, afrl, nrl, onr, defcon, darpa, graphene, physics, computational fluid dynamics, aircraft, nasa, engineering, energy, nsic AIAA, innovation, renewables, aerospace, green aerospace, AFWERX, Air Force Research Laboratory, United States Air Force, Defense Advanced Research Projects Agency, DARPA, NASA, National Aeronautics and Space Administration, Army Futures Command, USMC Special Operations, DLR, NATO

Airbus 330-200

Pratt & Whitney 4168A

The Project STERN ED nozzled, Hydrogen fueled rocket engine designed and built by Reaction Engines, on the static test stand ready for static test firing by Airborne Engineering - February 2009

1