View allAll Photos Tagged ovulation

Hippopotamuses love water, which is why the Greeks named them the "river horse." Hippos spend up to 16 hours a day submerged in rivers and lakes to keep their massive bodies cool under the hot African sun. Hippos are graceful in water, good swimmers, and can hold their breath underwater for up to five minutes. However, they are often large enough to simply walk or stand on the lake floor, or lie in the shallows. Their eyes and nostrils are located high on their heads, which allows them to see and breathe while mostly submerged. Hippos also bask on the shoreline and secrete an oily red substance, which gave rise to the myth that they sweat blood. The liquid is actually a skin moistener and sunblock that may also provide protection against germs. At sunset, hippopotamuses leave the water and travel overland to graze. They may travel 6 miles (10 kilometers) in a night, along single-file pathways, to consume some 80 pounds (35 kilograms) of grass. Considering their enormous size, a hippo's food intake is relatively low. If threatened on land hippos may run for the water—they can match a human's speed for short distances. Hippo calves weigh nearly 100 pounds (45 kilograms) at birth and can suckle on land or underwater by closing their ears and nostrils. Each female has only one calf every two years. Soon after birth, mother and young join schools that provide some protection against crocodiles, lions, and hyenas. Hippos once had a broader distribution but now live in eastern central and southern sub-Saharan Africa, where their populations are in decline. A partially submerged hippopotamus tries to keep cool in the hot African sun. The hippopotamus (Hippopotamus amphibius), or hippo, from the ancient Greek for "river horse" (ἱπποπόταμος), is a large, mostly herbivorous mammal in sub-Saharan Africa, and one of only two extant species in the family Hippopotamidae (the other is the Pygmy Hippopotamus.) After the elephant and rhinoceros, the hippopotamus is the third largest land mammal and the heaviest extant artiodactyl. Despite their physical resemblance to pigs and other terrestrial even-toed ungulates, their closest living relatives are cetaceans (whales, porpoises, etc.) from which they diverged about 55 million years ago. The common ancestor of whales and hippos split from other even-toed ungulates around 60 million years ago. The earliest known hippopotamus fossils, belonging to the genus Kenyapotamus in Africa, date to around 16 million years ago.

The hippopotamus is semi-aquatic, inhabiting rivers, lakes and mangrove swamps, where territorial bulls preside over a stretch of river and groups of 5 to 30 females and young. During the day they remain cool by staying in the water or mud; reproduction and childbirth both occur in water. They emerge at dusk to graze on grass. While hippopotamuses rest near each other in the water, grazing is a solitary activity and hippos are not territorial on land. Hippos are recognizable by their barrel-shaped torso, enormous mouth and teeth, nearly hairless body, stubby legs and tremendous size. It is the third largest land mammal by weight (between 1½ and 3 tonnes), behind the white rhinoceros (1½ to 3½ tonnes) and the three species of elephant (3 to 9 tonnes). The hippopotamus is one of the largest quadrupeds and despite its stocky shape and short legs, it can easily outrun a human. Hippos have been clocked at 30 km/h (19 mph) over short distances. The hippopotamus is one of the most aggressive creatures in the world and is often regarded as one of the most dangerous animals in Africa. They are still threatened by habitat loss and poaching for their meat and ivory canine teeth. There is also a colony of non-zoo hippos in Colombia introduced by Pablo Escobar. The most recent theory of the origins of Hippopotamidae suggests that hippos and whales shared a common semi-aquatic ancestor that branched off from other artiodactyls around 60 million years ago.[13][15] This hypothesized ancestral group likely split into two branches around 54 million years ago.[12] One branch would evolve into cetaceans, possibly beginning about 52 million years ago with the proto-whale Pakicetus and other early whale ancestors collectively known as Archaeoceti, which eventually underwent aquatic adaptation into the completely aquatic cetaceans.[17] The other branch became the anthracotheres, a large family of four-legged beasts, the earliest of whom in the late Eocene would have resembled skinny hippopotamuses with comparatively small and narrow heads. All branches of the anthracotheres, except that which evolved into Hippopotamidae, became extinct during the Pliocene without leaving any descendants.[15]

A rough evolutionary lineage can be traced from Eocene and Oligocene species: Anthracotherium and Elomeryx to the Miocene Merycopotamus and Libycosaurus and the very latest anthracotheres in the Pliocene.[18] Merycopotamus, Libycosaurus and all hippopotamids can be considered to form a clade, with Libycosaurus being more closely related to hippos. Their common ancestor would have lived in the Miocene, about 20 million years ago. Hippopotamids are therefore deeply nested within the family Anthracotheriidae. The Hippopotamidae are believed to have evolved in Africa; the oldest known hippopotamid is the genus Kenyapotamus which lived in Africa from 16 to 8 million years ago. While hippopotamid species spread across Asia and Europe, no hippopotamuses have ever been discovered in the Americas, although various anthracothere genera emigrated into North America during the early Oligocene. From 7.5 to 1.8 million years ago an ancestor to the modern hippopotamus, Archaeopotamus, lived in Africa and the Middle East.[19]

While the fossil record of hippos is still poorly understood, the two modern genera, Hippopotamus and Choeropsis (sometimes Hexaprotodon), may have diverged as far back as 8 million years ago. Taxonomists disagree whether or not the modern Pygmy Hippopotamus is a member of Hexaprotodon —an apparently paraphyletic genus also embracing many extinct Asian hippopotamuses that is more closely related to Hippopotamus, or Choeropsis —an older and basal genus.[18][19]

[edit]Extinct species

Three species of Malagasy Hippopotamus became extinct during the Holocene on Madagascar, one of them within the past 1,000 years. The Malagasy Hippos were smaller than the modern hippopotamus, likely through the process of insular dwarfism.[20] There is fossil evidence that many Malagasy Hippos were hunted by humans, a likely factor in their eventual extinction.[20] Isolated members of Malagasy Hippopotamus may have survived in remote pockets; in 1976, villagers described a living animal called the Kilopilopitsofy, which may have been a Malagasy Hippopotamus.[21]

Two species of Hippopotamus, the European Hippopotamus (H. antiquus) and H. gorgops ranged throughout continental Europe and the British Isles. Both species became extinct before the last glaciation. Ancestors of European Hippos found their way to many islands of the Mediterranean during the Pleistocene.[22] Both species were larger than the modern hippopotamus, averaging about 1 meter (3.3 feet) longer. The Pleistocene also saw a number of dwarf species evolve on several Mediterranean islands including Crete (H. creutzburgi), Cyprus (H. minor), Malta (H. melitensis) and Sicily (H. pentlandi). Of these, the Cyprus Dwarf Hippopotamus, survived until the end of the Pleistocene or early Holocene. Evidence from an archaeological site Aetokremnos, continues to cause debate on whether or not the species was encountered, and was driven to extinction, by man. Hippopotamuses are among the largest living mammals; only elephants and some rhinoceroses and whales are heavier. They can live in the water or on land. Their specific gravity allows them to sink and walk or run along the bottom of a river. Hippos are considered megafauna, but unlike all other African megafauna, hippos have adapted for a semi-aquatic life in freshwater lakes and rivers.[9]:3 A hippo's lifespan is typically 40–50 years.[6]:277 Donna the Hippo, 60, was the oldest living hippo in captivity. She lived at the Mesker Park Zoo in Evansville, Indiana, USA[24][25] until her death on August 1, 2012. The oldest hippo ever recorded was called Tanga; she lived in Munich, Germany, and died in 1995 at the age of 61.[26]

Because of their enormous size, hippopotamuses are difficult to weigh in the wild. Most estimates of the weight come from culling operations that were carried out in the 1960s. The average weights for adult males ranged between 1,500–1,800 kg (3,300–4,000 lb). Females are smaller than their male counterparts, with average weights measuring between 1,300–1,500 kg (2,900–3,300 lb).[9]:12 Older males can get much larger, reaching at least 3,200 kg (7,100 lb) with a few exceptional specimens exceeding 3,600 kg (7,900 lb).[27][28] The heaviest known hippopotamus weighed approximately 4,500 kg (9,900 lb).[29] Male hippos appear to continue growing throughout their lives; females reach a maximum weight at around age 25.[30]

Hippos measure 3.3 to 5.2 meters (11 to 17 ft) long, including a tail of about 56 centimeters (22 in) in length and average about 1.5 meters (5 ft) tall at the shoulder.[31][32] The range of hippopotamus sizes overlaps with the range of the white rhinoceros; use of different metrics makes it unclear which is the largest land animal after elephants. Even though they are bulky animals, hippopotamuses can run faster than a human on land. Estimates of their running speed vary from 30 km/h (18 mph) to 40 km/h (25 mph), or even 50 km/h (30 mph). The hippo can maintain these higher speeds for only a few hundred meters. Despite being semi-aquatic and having webbed feet, an adult hippo is not a particularly good swimmer nor can it float. It is rarely found in deep water; when it is, the animal moves by porpoise-like leaps from the bottom. The eyes, ears, and nostrils of hippos are placed high on the roof of the skull. This allows them to be in the water with most of their body submerged in the waters and mud of tropical rivers to stay cool and prevent sunburn. Their skeletal structure is graviportal, adapted to carrying the animals' enormous weight. Hippopotamuses have small legs (relative to other megafauna) because the water in which they live reduces the weight burden. Unlike most other semi-aquatic animals, the hippopotamus has very little hair.[6]:260 The skin is 6 in (15 cm) thick,[33] providing it great protection against conspecifics and predators. The animals's upper parts are purplish-gray to blue-black while the under parts and areas around the eyes and ears can be brownish-pink.[6]:260 The testes of the males descend only partially and a scrotum is not present. In addition, the penis retracts into the body when not erect. The genitals of the female are unusual in that the vagina is ridged and two large diverticula protrude from the vulval vestibule. The function of these is unknown.[9]:28–29

The hippo's jaw is powered by a large masseter and a well developed digastric; the latter loops up behind the former to the hyoid.[6]:259 The jaw hinge is located far back enough to allow the animal to open its mouth at almost 180°.[9]:17 On the National Geographic Channel television program, "Dangerous Encounters with Brady Barr", Dr. Brady Barr measured the bite force of an adult female hippo at 8100 N (1821 lbf); Barr also attempted to measure the bite pressure of an adult male hippo, but had to abandon the attempt due to the male's aggressiveness.[34] Hippopotamus teeth sharpen themselves as they grind together. The lower canines and lower incisors are enlarged, especially in males, and grow continuously. The incisors can reach 40 cm (16 in) while the canines reach up to 50 cm (20 in).[33]

Their skin secretes a natural sunscreen substance which is red-colored. The secretion is sometimes referred to as "blood sweat," but is neither blood nor sweat. This secretion is initially colorless and turns red-orange within minutes, eventually becoming brown. Two distinct pigments have been identified in the secretions, one red (hipposudoric acid) and one orange (norhipposudoric acid). The two pigments are highly acidic compounds. Both pigments inhibit the growth of disease-causing bacteria; as well, the light absorption of both pigments peaks in the ultraviolet range, creating a sunscreen effect. All hippos, even those with different diets, secrete the pigments, so it does not appear that food is the source of the pigments. Instead, the animals may synthesize the pigments from precursors such as the amino acid tyrosine. Hippopotamus amphibius was widespread in North Africa and Europe during the Eemian[36] and late Pleistocene until about 30,000 years ago. The species was common in Egypt's Nile region during antiquity but has since been extirpated. Pliny the Elder writes that, in his time, the best location in Egypt for capturing this animal was in the Saite nome;[37] the animal could still be found along the Damietta branch after the Arab Conquest in 639. Hippos are still found in the rivers and lakes of the northern Democratic Republic of the Congo, Uganda, Tanzania and Kenya, north through to Ethiopia, Somalia and Sudan, west from Ghana to Gambia, and also in Southern Africa (Botswana, Republic of South Africa, Zimbabwe, Zambia, Mozambique). Genetic evidence suggests that common hippos in Africa experienced a marked population expansion during or after the Pleistocene Epoch, attributed to an increase in water bodies at the end of the era. These findings have important conservation implications as hippo populations across the continent are currently threatened by loss of access to fresh water.[10] Hippos are also subject to unregulated hunting and poaching. In May 2006 the hippopotamus was identified as a vulnerable species on the IUCN Red List drawn up by the World Conservation Union (IUCN), with an estimated population of between 125,000 and 150,000 hippos, a decline of between 7% and 20% since the IUCN's 1996 study. Zambia (40,000) and Tanzania (20,000–30,000) possess the largest populations.[1]

The hippo population declined most dramatically in the Democratic Republic of the Congo.[38] The population in Virunga National Park had dropped to 800 or 900 from around 29,000 in the mid 1970s.[39] The decline is attributed to the disruptions caused by the Second Congo War.[39] The poachers are believed to be former Hutu rebels, poorly paid Congolese soldiers, and local militia groups.[39] Reasons for poaching include the belief that hippos are harmful to society, and also for money.[40] The sale of hippo meat is illegal, but black-market sales are difficult for Virunga National Park officers to track. Invasive potential

In the late 1980s, Pablo Escobar kept four hippos in a private menagerie at his residence in Hacienda Napoles, 100 km east of Medellín, Colombia, after buying them in New Orleans. They were deemed too difficult to seize and move after Escobar's fall, and hence left on the untended estate. By 2007, the animals had multiplied to 16 and had taken to roaming the area for food in the nearby Magdalena River.[41] In 2009, two adults and one calf escaped the herd, and after attacking humans and killing cattle, one of the adults (called "Pepe") was killed by hunters under authorization of the local authorities.[42][43] It is unknown what kind of effects the presence of hippos might have on the ecosystem in Colombia. According to experts interviewed by W Radio Colombia, the animals could survive in the Colombian jungles. It is believed that the lack of control from the Colombian government, which is not used to dealing with this species, could result in human fatalities. Hippos spend most of their days wallowing in the water or the mud, with the other members of their pod. The water serves to keep their body temperature down, and to keep their skin from drying out. With the exception of eating, most of hippopotamuses' lives —from childbirth, fighting with other hippos, to reproduction— occur in the water. Hippos leave the water at dusk and travel inland, sometimes up to 8 kilometers (5 mi), to graze on short grass, their main source of food. They spend four to five hours grazing and can consume 68 kilograms (150 lb) of grass each night.[44] Like almost any herbivore, they will consume many other plants if presented with them, but their diet in nature consists almost entirely of grass, with only minimal consumption of aquatic plants.[45] Hippos have (rarely) been filmed eating carrion, usually close to the water. There are other reports of meat-eating, and even cannibalism and predation.[46] The stomach anatomy of a hippo is not suited to carnivory, and meat-eating is likely caused by aberrant behavior or nutritional stress.[9]:84

The diet of hippos consists mostly of terrestrial grasses, even though they spend most of their time in the water. Most of their defecation occurs in the water, creating allochthonous deposits of organic matter along the river beds. These deposits have an unclear ecological function.[45] Because of their size and their habit of taking the same paths to feed, hippos can have a significant impact on the land they walk across, both by keeping the land clear of vegetation and depressing the ground. Over prolonged periods hippos can divert the paths of swamps and channels.[47]

Adult hippos move at speeds up to 8 km/h (5 mph) in water. Adult hippos typically resurface to breathe every three to five minutes. The young have to breathe every two to three minutes.[9]:4 The process of surfacing and breathing is automatic, and even a hippo sleeping underwater will rise and breathe without waking. A hippo closes its nostrils when it submerges into the water. As with fish and turtles on a coral reef, hippo occasionally visit cleaning stations and signal by wide-open mouth their readiness for being cleaned of parasites by certain species of fish. This situation is an example of mutualism in which the hippo benefits from the cleansing while the fish receive food.[ Studying the interaction of male and female hippopotamuses has long been complicated by the fact that hippos are not sexually dimorphic and thus females and young males are almost indistinguishable in the field.[49] Although hippos like to lie close to each other, they do not seem to form social bonds except between mothers and daughters, and are not social animals. The reason they huddle close together is unknown.[9]:49

Hippopotamuses are territorial only in water, where a bull presides over a small stretch of river, on average 250 meters in length, and containing ten females. The largest pods can contain over 100 hippos.[9]:50 Other bachelors are allowed in a bull's stretch, as long as they behave submissively toward the bull. The territories of hippos exist to establish mating rights. Within the pods, the hippos tend to segregate by gender. Bachelors will lounge near other bachelors, females with other females, and the bull on his own. When hippos emerge from the water to graze, they do so individually.[9]:4

Hippopotamuses appear to communicate verbally, through grunts and bellows, and it is thought that they may practice echolocation, but the purpose of these vocalizations is currently unknown. Hippos have the unique ability to hold their head partially above the water and send out a cry that travels through both water and air; hippos above and under water will respond.[ Female hippos reach sexual maturity at five to six years of age and have a gestation period of 8 months. A study of endocrine systems revealed that female hippopotamuses may begin puberty as early as 3 or 4 years of age.[51] Males reach maturity at around 7.5 years. A study of hippopotamus reproductive behavior in Uganda showed that peak conceptions occurred during the end of the wet season in the summer, and peak births occurred toward the beginning of the wet season in late winter. This is because of the female's estrous cycle; as with most large mammals, male hippopotamus spermatozoa is active year round. Studies of hippos in Zambia and South Africa also showed evidence of births occurring at the start of the wet season.[9]:60–61 After becoming pregnant, a female hippopotamus will typically not begin ovulation again for 17 months.[51]

Mating occurs in the water with the female submerged for most of the encounter,[9]:63 her head emerging periodically to draw breath. Baby hippos are born underwater at a weight between 25 and 45 kg (60–110 lb) and an average length of around 127 cm (50 in) and must swim to the surface to take their first breath. A mother typically gives birth to only one hippo, although twins also occur. The young often rest on their mothers' backs when in water that is too deep for them, and they swim underwater to suckle. They also will suckle on land when the mother leaves the water. Weaning starts between six and eight months after birth and most calves are fully weaned after a year.[9]:64 Like many other large mammals, hippos are described as K-strategists, in this case typically producing just one large, well-developed infant every couple of years (rather than large numbers of small, poorly developed young several times per year as is common among small mammals such as rodents. Hippopotamuses are by nature very aggressive animals, especially when young calves are present. Frequent targets of their aggression include crocodiles, which often inhabit the same river habitat as hippos. Nile crocodiles, lions and spotted hyenas are known to prey on young hippos.[53] Hippos are very aggressive towards humans, whom they commonly attack whether in boats or on land with no apparent provocation.[54] They are widely considered to be one of the most dangerous large animals in Africa.[55][56]

To mark territory, hippos spin their tails while defecating to distribute their excrement over a greater area.[57] Likely for the same reason, hippos are retromingent – that is, they urinate backwards.[58] When in combat, male hippos use their incisors to block each others attacks, and their lower canines to inflict damage.[6]:260 Hippos rarely kill each other, even in territorial challenges. Usually a territorial bull and a challenging bachelor will stop fighting when it is clear that one hippo is stronger. When hippos become overpopulated, or when a habitat starts to shrink, bulls will sometimes attempt to kill infants, but this behavior is not common under normal conditions.[52] Some incidents of hippo cannibalism have been documented, but it is believed to be the behavior of distressed or sick hippos, and not healthy behavior. The earliest evidence of human interaction with hippos comes from butchery cut marks upon hippo bones at Bouri Formation dated around 160,000 years ago.[59] Later rock paintings and engravings showing hippos being hunted have been found in the mountains of the central Sahara dated 4,000–5,000 years ago near Djanet in the Tassili n'Ajjer Mountains.[9]:1 The ancient Egyptians recognized the hippo as a ferocious denizen of the Nile.

The hippopotamus was also known to the Greeks and Romans. The Greek historian Herodotus described the hippopotamus in The Histories (written circa 440 BC) and the Roman Historian Pliny the Elder wrote about the hippopotamus in his encyclopedia Naturalis Historia (written circa 77 AD).[37][60] Hippopotamus was one of the many exotic animals brought to fight gladiators in Rome by the emperor Philip I the Arab to commemorate Rome's 1000 years anniversary in 248 AD. Silver coins with hippo's image were minted that year.[citation needed]

Zulu warriors preferred to be as brave as a hippopotamus, since even lions were not considered as brave. "In 1888, Captain Baden-Powell was part of a column searching for the Zulu chief Dinizulu, who was leading the Usutu people in revolt against the British colonists. The column was joined by John Dunn, a white Zulu chief, who led an impi (army) of 2000 Zulu warriors to join the British." [61]

The words of the Zulu anthem sounded like this:

"Een-gonyama Gonyama! "Invooboo! Yah-bo! Yah-bo! Invooboo!"

"John Dunn was at the head of his impi. [Baden Powell] asked him to translate the Zulu anthem his men had been singing. Dunn laughed and replied: "He is a lion. Yes, he is better than a lion—he is a hippopotamus. Hippopotamuses have long been popular zoo animals. The first zoo hippo in modern history was Obaysch who arrived at the London Zoo on May 25, 1850, where he attracted up to 10,000 visitors a day and inspired a popular song, the Hippopotamus Polka.[63] Hippos have remained popular zoo animals since Obaysch, and generally breed well in captivity. Their birth rates are lower than in the wild, but this is attributed to zoos' not wanting to breed as many hippos as possible, since hippos are large and relatively expensive animals to maintain.[9]:129[63]

Like many zoo animals, hippos were traditionally displayed in concrete exhibits. In the case of hippos, they usually had a pool of water and patch of grass. In the 1980s, zoo designers increasingly designed exhibits that reflected the animals' native habitats. The best known of these, the Toledo Zoo Hippoquarium, features a 360,000 gallon pool for hippos.[64] In 1987, researchers were able to tape, for the first time, an underwater birth (as in the wild) at the Toledo Zoo. The exhibit was so popular that the hippos became the logo of the Toledo Zoo. A red hippo represented the Ancient Egyptian god Set; the thigh is the 'phallic leg of set' symbolic of virility. Set's consort Tawaret was also seen as part hippo.[66] The hippopotamus-headed Tawaret was a goddess of protection in pregnancy and childbirth, because ancient Egyptians recognized the protective nature of a female hippopotamus toward her young.[67] The Ijo people wore masks of aquatic animals like the hippo when practicing their water spirit cults.[68] The Behemoth from the Book of Job, 40:15–24 is also thought to be based on a hippo.[69]

Hippos have been the subjects of various African folktales. According to a Bushmen story; when the Creator assigned each animal their place in nature, the hippos wanted to live in the water, but were refused out of fear that they might eat all the fish. After begging and pleading, the hippos were finally allowed to live in the water on the conditions that they would eat grass instead of fish and would fling their dung so that it can be inspected for fish bones.[70] In a Ndebele tale, the hippo originally had long, beautiful hair but was set on fire by a jealous hare and had to jump into a nearby pool. The hippo lost most of his hair and was too embarrassed to leave the water.[70]

Ever since Obaysch inspired the Hippopotamus Polka, hippos have been popular animals in Western culture for their rotund appearance that many consider comical.[63] Stories of hippos like Huberta who became a celebrity in South Africa in the 1930s for trekking across the country;[71] or the tale of Owen and Mzee, a hippo and tortoise who developed an intimate bond; have amused people who have bought hippo books, merchandise, and many a stuffed hippo toy.[72][73] Hippos were mentioned in the novelty Christmas song "I Want a Hippopotamus for Christmas" that became a hit for child star Gayla Peevey in 1953.[74] They also feature in the songs "The Hippopotamus" and "Hippo Encore" by Flanders and Swann, with the famous refrain Mud, Mud, Glorious Mud. They even inspired a popular board game, Hungry Hungry Hippos. Hippos have also been popular cartoon characters, where their rotund frame is used for humorous effect. The Disney film Fantasia featured a ballerina hippopotamus dancing to the opera, La Gioconda.[38] Other cartoon hippos have included Hanna-Barbera's Peter Potamus, the book and TV series George and Martha, Flavio and Marita on the Animaniacs, Pat of the French duo Pat et Stanley, The Backyardigan's Tasha, and Gloria and Moto-Moto from the Madagascar franchise. A Sesame Street cartoon from the early 1970s features a hippo who lives in the country and likes it quiet, while being disturbed when the mouse who likes it loud moves in with her.[citation needed]

The hippopotamus characters "Happy Hippos" were created in 1988 by the French designer Andre Roche [77] based in Munich, to be hidden in the "Kinder Surprise egg" of the Italian chocolate company Ferrero SpA. These characters were not placid like real hippos[contradiction] but rather cute and lively, and had such a success that they reappeared several times in different products of this company in the following years, increasing their popularity worldwide each time.[citation needed] The Nintendo Company published in the years 2001 and 2007 Game Boy adventures of them. In the game of chess, the hippopotamus lends its name to the Hippopotamus Defense, an opening system, which is generally considered weak.The River Horse is a popular outdoor sculpture at George Washington University, Washington, D.C. Botswana, Moremi National Park, Moremi Game reserve, private Reserve, Farm, chobe National park, Chobe Game Reserve, Zambia, Zambezi River, Livingstone, Zimbabwe, Kenya, Tanzania, Wildlife Conservation Project, Maramba River Lodge, South Africa, Krugger National Park. art beach blue bw california canada canon china city concert de england europe family festival film flower flowers food france friends green instagramapp iphoneography italy japan live london music nature new newyork night nikon nyc paris park party people photography portrait red sky snow square squareformat street summer sunset travel trip uk usa vacation water wedding white winter

Hippopotamuses love water, which is why the Greeks named them the "river horse." Hippos spend up to 16 hours a day submerged in rivers and lakes to keep their massive bodies cool under the hot African sun. Hippos are graceful in water, good swimmers, and can hold their breath underwater for up to five minutes. However, they are often large enough to simply walk or stand on the lake floor, or lie in the shallows. Their eyes and nostrils are located high on their heads, which allows them to see and breathe while mostly submerged. Hippos also bask on the shoreline and secrete an oily red substance, which gave rise to the myth that they sweat blood. The liquid is actually a skin moistener and sunblock that may also provide protection against germs. At sunset, hippopotamuses leave the water and travel overland to graze. They may travel 6 miles (10 kilometers) in a night, along single-file pathways, to consume some 80 pounds (35 kilograms) of grass. Considering their enormous size, a hippo's food intake is relatively low. If threatened on land hippos may run for the water—they can match a human's speed for short distances. Hippo calves weigh nearly 100 pounds (45 kilograms) at birth and can suckle on land or underwater by closing their ears and nostrils. Each female has only one calf every two years. Soon after birth, mother and young join schools that provide some protection against crocodiles, lions, and hyenas. Hippos once had a broader distribution but now live in eastern central and southern sub-Saharan Africa, where their populations are in decline. A partially submerged hippopotamus tries to keep cool in the hot African sun. The hippopotamus (Hippopotamus amphibius), or hippo, from the ancient Greek for "river horse" (ἱπποπόταμος), is a large, mostly herbivorous mammal in sub-Saharan Africa, and one of only two extant species in the family Hippopotamidae (the other is the Pygmy Hippopotamus.) After the elephant and rhinoceros, the hippopotamus is the third largest land mammal and the heaviest extant artiodactyl. Despite their physical resemblance to pigs and other terrestrial even-toed ungulates, their closest living relatives are cetaceans (whales, porpoises, etc.) from which they diverged about 55 million years ago. The common ancestor of whales and hippos split from other even-toed ungulates around 60 million years ago. The earliest known hippopotamus fossils, belonging to the genus Kenyapotamus in Africa, date to around 16 million years ago.

The hippopotamus is semi-aquatic, inhabiting rivers, lakes and mangrove swamps, where territorial bulls preside over a stretch of river and groups of 5 to 30 females and young. During the day they remain cool by staying in the water or mud; reproduction and childbirth both occur in water. They emerge at dusk to graze on grass. While hippopotamuses rest near each other in the water, grazing is a solitary activity and hippos are not territorial on land. Hippos are recognizable by their barrel-shaped torso, enormous mouth and teeth, nearly hairless body, stubby legs and tremendous size. It is the third largest land mammal by weight (between 1½ and 3 tonnes), behind the white rhinoceros (1½ to 3½ tonnes) and the three species of elephant (3 to 9 tonnes). The hippopotamus is one of the largest quadrupeds and despite its stocky shape and short legs, it can easily outrun a human. Hippos have been clocked at 30 km/h (19 mph) over short distances. The hippopotamus is one of the most aggressive creatures in the world and is often regarded as one of the most dangerous animals in Africa. They are still threatened by habitat loss and poaching for their meat and ivory canine teeth. There is also a colony of non-zoo hippos in Colombia introduced by Pablo Escobar. The most recent theory of the origins of Hippopotamidae suggests that hippos and whales shared a common semi-aquatic ancestor that branched off from other artiodactyls around 60 million years ago.[13][15] This hypothesized ancestral group likely split into two branches around 54 million years ago.[12] One branch would evolve into cetaceans, possibly beginning about 52 million years ago with the proto-whale Pakicetus and other early whale ancestors collectively known as Archaeoceti, which eventually underwent aquatic adaptation into the completely aquatic cetaceans.[17] The other branch became the anthracotheres, a large family of four-legged beasts, the earliest of whom in the late Eocene would have resembled skinny hippopotamuses with comparatively small and narrow heads. All branches of the anthracotheres, except that which evolved into Hippopotamidae, became extinct during the Pliocene without leaving any descendants.[15]

A rough evolutionary lineage can be traced from Eocene and Oligocene species: Anthracotherium and Elomeryx to the Miocene Merycopotamus and Libycosaurus and the very latest anthracotheres in the Pliocene.[18] Merycopotamus, Libycosaurus and all hippopotamids can be considered to form a clade, with Libycosaurus being more closely related to hippos. Their common ancestor would have lived in the Miocene, about 20 million years ago. Hippopotamids are therefore deeply nested within the family Anthracotheriidae. The Hippopotamidae are believed to have evolved in Africa; the oldest known hippopotamid is the genus Kenyapotamus which lived in Africa from 16 to 8 million years ago. While hippopotamid species spread across Asia and Europe, no hippopotamuses have ever been discovered in the Americas, although various anthracothere genera emigrated into North America during the early Oligocene. From 7.5 to 1.8 million years ago an ancestor to the modern hippopotamus, Archaeopotamus, lived in Africa and the Middle East.[19]

While the fossil record of hippos is still poorly understood, the two modern genera, Hippopotamus and Choeropsis (sometimes Hexaprotodon), may have diverged as far back as 8 million years ago. Taxonomists disagree whether or not the modern Pygmy Hippopotamus is a member of Hexaprotodon —an apparently paraphyletic genus also embracing many extinct Asian hippopotamuses that is more closely related to Hippopotamus, or Choeropsis —an older and basal genus.[18][19]

[edit]Extinct species

Three species of Malagasy Hippopotamus became extinct during the Holocene on Madagascar, one of them within the past 1,000 years. The Malagasy Hippos were smaller than the modern hippopotamus, likely through the process of insular dwarfism.[20] There is fossil evidence that many Malagasy Hippos were hunted by humans, a likely factor in their eventual extinction.[20] Isolated members of Malagasy Hippopotamus may have survived in remote pockets; in 1976, villagers described a living animal called the Kilopilopitsofy, which may have been a Malagasy Hippopotamus.[21]

Two species of Hippopotamus, the European Hippopotamus (H. antiquus) and H. gorgops ranged throughout continental Europe and the British Isles. Both species became extinct before the last glaciation. Ancestors of European Hippos found their way to many islands of the Mediterranean during the Pleistocene.[22] Both species were larger than the modern hippopotamus, averaging about 1 meter (3.3 feet) longer. The Pleistocene also saw a number of dwarf species evolve on several Mediterranean islands including Crete (H. creutzburgi), Cyprus (H. minor), Malta (H. melitensis) and Sicily (H. pentlandi). Of these, the Cyprus Dwarf Hippopotamus, survived until the end of the Pleistocene or early Holocene. Evidence from an archaeological site Aetokremnos, continues to cause debate on whether or not the species was encountered, and was driven to extinction, by man. Hippopotamuses are among the largest living mammals; only elephants and some rhinoceroses and whales are heavier. They can live in the water or on land. Their specific gravity allows them to sink and walk or run along the bottom of a river. Hippos are considered megafauna, but unlike all other African megafauna, hippos have adapted for a semi-aquatic life in freshwater lakes and rivers.[9]:3 A hippo's lifespan is typically 40–50 years.[6]:277 Donna the Hippo, 60, was the oldest living hippo in captivity. She lived at the Mesker Park Zoo in Evansville, Indiana, USA[24][25] until her death on August 1, 2012. The oldest hippo ever recorded was called Tanga; she lived in Munich, Germany, and died in 1995 at the age of 61.[26]

Because of their enormous size, hippopotamuses are difficult to weigh in the wild. Most estimates of the weight come from culling operations that were carried out in the 1960s. The average weights for adult males ranged between 1,500–1,800 kg (3,300–4,000 lb). Females are smaller than their male counterparts, with average weights measuring between 1,300–1,500 kg (2,900–3,300 lb).[9]:12 Older males can get much larger, reaching at least 3,200 kg (7,100 lb) with a few exceptional specimens exceeding 3,600 kg (7,900 lb).[27][28] The heaviest known hippopotamus weighed approximately 4,500 kg (9,900 lb).[29] Male hippos appear to continue growing throughout their lives; females reach a maximum weight at around age 25.[30]

Hippos measure 3.3 to 5.2 meters (11 to 17 ft) long, including a tail of about 56 centimeters (22 in) in length and average about 1.5 meters (5 ft) tall at the shoulder.[31][32] The range of hippopotamus sizes overlaps with the range of the white rhinoceros; use of different metrics makes it unclear which is the largest land animal after elephants. Even though they are bulky animals, hippopotamuses can run faster than a human on land. Estimates of their running speed vary from 30 km/h (18 mph) to 40 km/h (25 mph), or even 50 km/h (30 mph). The hippo can maintain these higher speeds for only a few hundred meters. Despite being semi-aquatic and having webbed feet, an adult hippo is not a particularly good swimmer nor can it float. It is rarely found in deep water; when it is, the animal moves by porpoise-like leaps from the bottom. The eyes, ears, and nostrils of hippos are placed high on the roof of the skull. This allows them to be in the water with most of their body submerged in the waters and mud of tropical rivers to stay cool and prevent sunburn. Their skeletal structure is graviportal, adapted to carrying the animals' enormous weight. Hippopotamuses have small legs (relative to other megafauna) because the water in which they live reduces the weight burden. Unlike most other semi-aquatic animals, the hippopotamus has very little hair.[6]:260 The skin is 6 in (15 cm) thick,[33] providing it great protection against conspecifics and predators. The animals's upper parts are purplish-gray to blue-black while the under parts and areas around the eyes and ears can be brownish-pink.[6]:260 The testes of the males descend only partially and a scrotum is not present. In addition, the penis retracts into the body when not erect. The genitals of the female are unusual in that the vagina is ridged and two large diverticula protrude from the vulval vestibule. The function of these is unknown.[9]:28–29

The hippo's jaw is powered by a large masseter and a well developed digastric; the latter loops up behind the former to the hyoid.[6]:259 The jaw hinge is located far back enough to allow the animal to open its mouth at almost 180°.[9]:17 On the National Geographic Channel television program, "Dangerous Encounters with Brady Barr", Dr. Brady Barr measured the bite force of an adult female hippo at 8100 N (1821 lbf); Barr also attempted to measure the bite pressure of an adult male hippo, but had to abandon the attempt due to the male's aggressiveness.[34] Hippopotamus teeth sharpen themselves as they grind together. The lower canines and lower incisors are enlarged, especially in males, and grow continuously. The incisors can reach 40 cm (16 in) while the canines reach up to 50 cm (20 in).[33]

Their skin secretes a natural sunscreen substance which is red-colored. The secretion is sometimes referred to as "blood sweat," but is neither blood nor sweat. This secretion is initially colorless and turns red-orange within minutes, eventually becoming brown. Two distinct pigments have been identified in the secretions, one red (hipposudoric acid) and one orange (norhipposudoric acid). The two pigments are highly acidic compounds. Both pigments inhibit the growth of disease-causing bacteria; as well, the light absorption of both pigments peaks in the ultraviolet range, creating a sunscreen effect. All hippos, even those with different diets, secrete the pigments, so it does not appear that food is the source of the pigments. Instead, the animals may synthesize the pigments from precursors such as the amino acid tyrosine. Hippopotamus amphibius was widespread in North Africa and Europe during the Eemian[36] and late Pleistocene until about 30,000 years ago. The species was common in Egypt's Nile region during antiquity but has since been extirpated. Pliny the Elder writes that, in his time, the best location in Egypt for capturing this animal was in the Saite nome;[37] the animal could still be found along the Damietta branch after the Arab Conquest in 639. Hippos are still found in the rivers and lakes of the northern Democratic Republic of the Congo, Uganda, Tanzania and Kenya, north through to Ethiopia, Somalia and Sudan, west from Ghana to Gambia, and also in Southern Africa (Botswana, Republic of South Africa, Zimbabwe, Zambia, Mozambique). Genetic evidence suggests that common hippos in Africa experienced a marked population expansion during or after the Pleistocene Epoch, attributed to an increase in water bodies at the end of the era. These findings have important conservation implications as hippo populations across the continent are currently threatened by loss of access to fresh water.[10] Hippos are also subject to unregulated hunting and poaching. In May 2006 the hippopotamus was identified as a vulnerable species on the IUCN Red List drawn up by the World Conservation Union (IUCN), with an estimated population of between 125,000 and 150,000 hippos, a decline of between 7% and 20% since the IUCN's 1996 study. Zambia (40,000) and Tanzania (20,000–30,000) possess the largest populations.[1]

The hippo population declined most dramatically in the Democratic Republic of the Congo.[38] The population in Virunga National Park had dropped to 800 or 900 from around 29,000 in the mid 1970s.[39] The decline is attributed to the disruptions caused by the Second Congo War.[39] The poachers are believed to be former Hutu rebels, poorly paid Congolese soldiers, and local militia groups.[39] Reasons for poaching include the belief that hippos are harmful to society, and also for money.[40] The sale of hippo meat is illegal, but black-market sales are difficult for Virunga National Park officers to track. Invasive potential

In the late 1980s, Pablo Escobar kept four hippos in a private menagerie at his residence in Hacienda Napoles, 100 km east of Medellín, Colombia, after buying them in New Orleans. They were deemed too difficult to seize and move after Escobar's fall, and hence left on the untended estate. By 2007, the animals had multiplied to 16 and had taken to roaming the area for food in the nearby Magdalena River.[41] In 2009, two adults and one calf escaped the herd, and after attacking humans and killing cattle, one of the adults (called "Pepe") was killed by hunters under authorization of the local authorities.[42][43] It is unknown what kind of effects the presence of hippos might have on the ecosystem in Colombia. According to experts interviewed by W Radio Colombia, the animals could survive in the Colombian jungles. It is believed that the lack of control from the Colombian government, which is not used to dealing with this species, could result in human fatalities. Hippos spend most of their days wallowing in the water or the mud, with the other members of their pod. The water serves to keep their body temperature down, and to keep their skin from drying out. With the exception of eating, most of hippopotamuses' lives —from childbirth, fighting with other hippos, to reproduction— occur in the water. Hippos leave the water at dusk and travel inland, sometimes up to 8 kilometers (5 mi), to graze on short grass, their main source of food. They spend four to five hours grazing and can consume 68 kilograms (150 lb) of grass each night.[44] Like almost any herbivore, they will consume many other plants if presented with them, but their diet in nature consists almost entirely of grass, with only minimal consumption of aquatic plants.[45] Hippos have (rarely) been filmed eating carrion, usually close to the water. There are other reports of meat-eating, and even cannibalism and predation.[46] The stomach anatomy of a hippo is not suited to carnivory, and meat-eating is likely caused by aberrant behavior or nutritional stress.[9]:84

The diet of hippos consists mostly of terrestrial grasses, even though they spend most of their time in the water. Most of their defecation occurs in the water, creating allochthonous deposits of organic matter along the river beds. These deposits have an unclear ecological function.[45] Because of their size and their habit of taking the same paths to feed, hippos can have a significant impact on the land they walk across, both by keeping the land clear of vegetation and depressing the ground. Over prolonged periods hippos can divert the paths of swamps and channels.[47]

Adult hippos move at speeds up to 8 km/h (5 mph) in water. Adult hippos typically resurface to breathe every three to five minutes. The young have to breathe every two to three minutes.[9]:4 The process of surfacing and breathing is automatic, and even a hippo sleeping underwater will rise and breathe without waking. A hippo closes its nostrils when it submerges into the water. As with fish and turtles on a coral reef, hippo occasionally visit cleaning stations and signal by wide-open mouth their readiness for being cleaned of parasites by certain species of fish. This situation is an example of mutualism in which the hippo benefits from the cleansing while the fish receive food.[ Studying the interaction of male and female hippopotamuses has long been complicated by the fact that hippos are not sexually dimorphic and thus females and young males are almost indistinguishable in the field.[49] Although hippos like to lie close to each other, they do not seem to form social bonds except between mothers and daughters, and are not social animals. The reason they huddle close together is unknown.[9]:49

Hippopotamuses are territorial only in water, where a bull presides over a small stretch of river, on average 250 meters in length, and containing ten females. The largest pods can contain over 100 hippos.[9]:50 Other bachelors are allowed in a bull's stretch, as long as they behave submissively toward the bull. The territories of hippos exist to establish mating rights. Within the pods, the hippos tend to segregate by gender. Bachelors will lounge near other bachelors, females with other females, and the bull on his own. When hippos emerge from the water to graze, they do so individually.[9]:4

Hippopotamuses appear to communicate verbally, through grunts and bellows, and it is thought that they may practice echolocation, but the purpose of these vocalizations is currently unknown. Hippos have the unique ability to hold their head partially above the water and send out a cry that travels through both water and air; hippos above and under water will respond.[ Female hippos reach sexual maturity at five to six years of age and have a gestation period of 8 months. A study of endocrine systems revealed that female hippopotamuses may begin puberty as early as 3 or 4 years of age.[51] Males reach maturity at around 7.5 years. A study of hippopotamus reproductive behavior in Uganda showed that peak conceptions occurred during the end of the wet season in the summer, and peak births occurred toward the beginning of the wet season in late winter. This is because of the female's estrous cycle; as with most large mammals, male hippopotamus spermatozoa is active year round. Studies of hippos in Zambia and South Africa also showed evidence of births occurring at the start of the wet season.[9]:60–61 After becoming pregnant, a female hippopotamus will typically not begin ovulation again for 17 months.[51]

Mating occurs in the water with the female submerged for most of the encounter,[9]:63 her head emerging periodically to draw breath. Baby hippos are born underwater at a weight between 25 and 45 kg (60–110 lb) and an average length of around 127 cm (50 in) and must swim to the surface to take their first breath. A mother typically gives birth to only one hippo, although twins also occur. The young often rest on their mothers' backs when in water that is too deep for them, and they swim underwater to suckle. They also will suckle on land when the mother leaves the water. Weaning starts between six and eight months after birth and most calves are fully weaned after a year.[9]:64 Like many other large mammals, hippos are described as K-strategists, in this case typically producing just one large, well-developed infant every couple of years (rather than large numbers of small, poorly developed young several times per year as is common among small mammals such as rodents. Hippopotamuses are by nature very aggressive animals, especially when young calves are present. Frequent targets of their aggression include crocodiles, which often inhabit the same river habitat as hippos. Nile crocodiles, lions and spotted hyenas are known to prey on young hippos.[53] Hippos are very aggressive towards humans, whom they commonly attack whether in boats or on land with no apparent provocation.[54] They are widely considered to be one of the most dangerous large animals in Africa.[55][56]

To mark territory, hippos spin their tails while defecating to distribute their excrement over a greater area.[57] Likely for the same reason, hippos are retromingent – that is, they urinate backwards.[58] When in combat, male hippos use their incisors to block each others attacks, and their lower canines to inflict damage.[6]:260 Hippos rarely kill each other, even in territorial challenges. Usually a territorial bull and a challenging bachelor will stop fighting when it is clear that one hippo is stronger. When hippos become overpopulated, or when a habitat starts to shrink, bulls will sometimes attempt to kill infants, but this behavior is not common under normal conditions.[52] Some incidents of hippo cannibalism have been documented, but it is believed to be the behavior of distressed or sick hippos, and not healthy behavior. The earliest evidence of human interaction with hippos comes from butchery cut marks upon hippo bones at Bouri Formation dated around 160,000 years ago.[59] Later rock paintings and engravings showing hippos being hunted have been found in the mountains of the central Sahara dated 4,000–5,000 years ago near Djanet in the Tassili n'Ajjer Mountains.[9]:1 The ancient Egyptians recognized the hippo as a ferocious denizen of the Nile.

The hippopotamus was also known to the Greeks and Romans. The Greek historian Herodotus described the hippopotamus in The Histories (written circa 440 BC) and the Roman Historian Pliny the Elder wrote about the hippopotamus in his encyclopedia Naturalis Historia (written circa 77 AD).[37][60] Hippopotamus was one of the many exotic animals brought to fight gladiators in Rome by the emperor Philip I the Arab to commemorate Rome's 1000 years anniversary in 248 AD. Silver coins with hippo's image were minted that year.[citation needed]

Zulu warriors preferred to be as brave as a hippopotamus, since even lions were not considered as brave. "In 1888, Captain Baden-Powell was part of a column searching for the Zulu chief Dinizulu, who was leading the Usutu people in revolt against the British colonists. The column was joined by John Dunn, a white Zulu chief, who led an impi (army) of 2000 Zulu warriors to join the British." [61]

The words of the Zulu anthem sounded like this:

"Een-gonyama Gonyama! "Invooboo! Yah-bo! Yah-bo! Invooboo!"

"John Dunn was at the head of his impi. [Baden Powell] asked him to translate the Zulu anthem his men had been singing. Dunn laughed and replied: "He is a lion. Yes, he is better than a lion—he is a hippopotamus. Hippopotamuses have long been popular zoo animals. The first zoo hippo in modern history was Obaysch who arrived at the London Zoo on May 25, 1850, where he attracted up to 10,000 visitors a day and inspired a popular song, the Hippopotamus Polka.[63] Hippos have remained popular zoo animals since Obaysch, and generally breed well in captivity. Their birth rates are lower than in the wild, but this is attributed to zoos' not wanting to breed as many hippos as possible, since hippos are large and relatively expensive animals to maintain.[9]:129[63]

Like many zoo animals, hippos were traditionally displayed in concrete exhibits. In the case of hippos, they usually had a pool of water and patch of grass. In the 1980s, zoo designers increasingly designed exhibits that reflected the animals' native habitats. The best known of these, the Toledo Zoo Hippoquarium, features a 360,000 gallon pool for hippos.[64] In 1987, researchers were able to tape, for the first time, an underwater birth (as in the wild) at the Toledo Zoo. The exhibit was so popular that the hippos became the logo of the Toledo Zoo. A red hippo represented the Ancient Egyptian god Set; the thigh is the 'phallic leg of set' symbolic of virility. Set's consort Tawaret was also seen as part hippo.[66] The hippopotamus-headed Tawaret was a goddess of protection in pregnancy and childbirth, because ancient Egyptians recognized the protective nature of a female hippopotamus toward her young.[67] The Ijo people wore masks of aquatic animals like the hippo when practicing their water spirit cults.[68] The Behemoth from the Book of Job, 40:15–24 is also thought to be based on a hippo.[69]

Hippos have been the subjects of various African folktales. According to a Bushmen story; when the Creator assigned each animal their place in nature, the hippos wanted to live in the water, but were refused out of fear that they might eat all the fish. After begging and pleading, the hippos were finally allowed to live in the water on the conditions that they would eat grass instead of fish and would fling their dung so that it can be inspected for fish bones.[70] In a Ndebele tale, the hippo originally had long, beautiful hair but was set on fire by a jealous hare and had to jump into a nearby pool. The hippo lost most of his hair and was too embarrassed to leave the water.[70]

Ever since Obaysch inspired the Hippopotamus Polka, hippos have been popular animals in Western culture for their rotund appearance that many consider comical.[63] Stories of hippos like Huberta who became a celebrity in South Africa in the 1930s for trekking across the country;[71] or the tale of Owen and Mzee, a hippo and tortoise who developed an intimate bond; have amused people who have bought hippo books, merchandise, and many a stuffed hippo toy.[72][73] Hippos were mentioned in the novelty Christmas song "I Want a Hippopotamus for Christmas" that became a hit for child star Gayla Peevey in 1953.[74] They also feature in the songs "The Hippopotamus" and "Hippo Encore" by Flanders and Swann, with the famous refrain Mud, Mud, Glorious Mud. They even inspired a popular board game, Hungry Hungry Hippos. Hippos have also been popular cartoon characters, where their rotund frame is used for humorous effect. The Disney film Fantasia featured a ballerina hippopotamus dancing to the opera, La Gioconda.[38] Other cartoon hippos have included Hanna-Barbera's Peter Potamus, the book and TV series George and Martha, Flavio and Marita on the Animaniacs, Pat of the French duo Pat et Stanley, The Backyardigan's Tasha, and Gloria and Moto-Moto from the Madagascar franchise. A Sesame Street cartoon from the early 1970s features a hippo who lives in the country and likes it quiet, while being disturbed when the mouse who likes it loud moves in with her.[citation needed]

The hippopotamus characters "Happy Hippos" were created in 1988 by the French designer Andre Roche [77] based in Munich, to be hidden in the "Kinder Surprise egg" of the Italian chocolate company Ferrero SpA. These characters were not placid like real hippos[contradiction] but rather cute and lively, and had such a success that they reappeared several times in different products of this company in the following years, increasing their popularity worldwide each time.[citation needed] The Nintendo Company published in the years 2001 and 2007 Game Boy adventures of them. In the game of chess, the hippopotamus lends its name to the Hippopotamus Defense, an opening system, which is generally considered weak.The River Horse is a popular outdoor sculpture at George Washington University, Washington, D.C. Botswana, Moremi National Park, Moremi Game reserve, private Reserve, Farm, chobe National park, Chobe Game Reserve, Zambia, Zambezi River, Livingstone, Zimbabwe, Kenya, Tanzania, Wildlife Conservation Project, Maramba River Lodge, South Africa, Krugger National Park. art beach blue bw california canada canon china city concert de england europe family festival film flower flowers food france friends green instagramapp iphoneography italy japan live london music nature new newyork night nikon nyc paris park party people photography portrait red sky snow square squareformat street summer sunset travel trip uk usa vacation water wedding white winter

Hippopotamuses love water, which is why the Greeks named them the "river horse." Hippos spend up to 16 hours a day submerged in rivers and lakes to keep their massive bodies cool under the hot African sun. Hippos are graceful in water, good swimmers, and can hold their breath underwater for up to five minutes. However, they are often large enough to simply walk or stand on the lake floor, or lie in the shallows. Their eyes and nostrils are located high on their heads, which allows them to see and breathe while mostly submerged. Hippos also bask on the shoreline and secrete an oily red substance, which gave rise to the myth that they sweat blood. The liquid is actually a skin moistener and sunblock that may also provide protection against germs. At sunset, hippopotamuses leave the water and travel overland to graze. They may travel 6 miles (10 kilometers) in a night, along single-file pathways, to consume some 80 pounds (35 kilograms) of grass. Considering their enormous size, a hippo's food intake is relatively low. If threatened on land hippos may run for the water—they can match a human's speed for short distances. Hippo calves weigh nearly 100 pounds (45 kilograms) at birth and can suckle on land or underwater by closing their ears and nostrils. Each female has only one calf every two years. Soon after birth, mother and young join schools that provide some protection against crocodiles, lions, and hyenas. Hippos once had a broader distribution but now live in eastern central and southern sub-Saharan Africa, where their populations are in decline. A partially submerged hippopotamus tries to keep cool in the hot African sun. The hippopotamus (Hippopotamus amphibius), or hippo, from the ancient Greek for "river horse" (ἱπποπόταμος), is a large, mostly herbivorous mammal in sub-Saharan Africa, and one of only two extant species in the family Hippopotamidae (the other is the Pygmy Hippopotamus.) After the elephant and rhinoceros, the hippopotamus is the third largest land mammal and the heaviest extant artiodactyl. Despite their physical resemblance to pigs and other terrestrial even-toed ungulates, their closest living relatives are cetaceans (whales, porpoises, etc.) from which they diverged about 55 million years ago. The common ancestor of whales and hippos split from other even-toed ungulates around 60 million years ago. The earliest known hippopotamus fossils, belonging to the genus Kenyapotamus in Africa, date to around 16 million years ago.

The hippopotamus is semi-aquatic, inhabiting rivers, lakes and mangrove swamps, where territorial bulls preside over a stretch of river and groups of 5 to 30 females and young. During the day they remain cool by staying in the water or mud; reproduction and childbirth both occur in water. They emerge at dusk to graze on grass. While hippopotamuses rest near each other in the water, grazing is a solitary activity and hippos are not territorial on land. Hippos are recognizable by their barrel-shaped torso, enormous mouth and teeth, nearly hairless body, stubby legs and tremendous size. It is the third largest land mammal by weight (between 1½ and 3 tonnes), behind the white rhinoceros (1½ to 3½ tonnes) and the three species of elephant (3 to 9 tonnes). The hippopotamus is one of the largest quadrupeds and despite its stocky shape and short legs, it can easily outrun a human. Hippos have been clocked at 30 km/h (19 mph) over short distances. The hippopotamus is one of the most aggressive creatures in the world and is often regarded as one of the most dangerous animals in Africa. They are still threatened by habitat loss and poaching for their meat and ivory canine teeth. There is also a colony of non-zoo hippos in Colombia introduced by Pablo Escobar. The most recent theory of the origins of Hippopotamidae suggests that hippos and whales shared a common semi-aquatic ancestor that branched off from other artiodactyls around 60 million years ago.[13][15] This hypothesized ancestral group likely split into two branches around 54 million years ago.[12] One branch would evolve into cetaceans, possibly beginning about 52 million years ago with the proto-whale Pakicetus and other early whale ancestors collectively known as Archaeoceti, which eventually underwent aquatic adaptation into the completely aquatic cetaceans.[17] The other branch became the anthracotheres, a large family of four-legged beasts, the earliest of whom in the late Eocene would have resembled skinny hippopotamuses with comparatively small and narrow heads. All branches of the anthracotheres, except that which evolved into Hippopotamidae, became extinct during the Pliocene without leaving any descendants.[15]

A rough evolutionary lineage can be traced from Eocene and Oligocene species: Anthracotherium and Elomeryx to the Miocene Merycopotamus and Libycosaurus and the very latest anthracotheres in the Pliocene.[18] Merycopotamus, Libycosaurus and all hippopotamids can be considered to form a clade, with Libycosaurus being more closely related to hippos. Their common ancestor would have lived in the Miocene, about 20 million years ago. Hippopotamids are therefore deeply nested within the family Anthracotheriidae. The Hippopotamidae are believed to have evolved in Africa; the oldest known hippopotamid is the genus Kenyapotamus which lived in Africa from 16 to 8 million years ago. While hippopotamid species spread across Asia and Europe, no hippopotamuses have ever been discovered in the Americas, although various anthracothere genera emigrated into North America during the early Oligocene. From 7.5 to 1.8 million years ago an ancestor to the modern hippopotamus, Archaeopotamus, lived in Africa and the Middle East.[19]

While the fossil record of hippos is still poorly understood, the two modern genera, Hippopotamus and Choeropsis (sometimes Hexaprotodon), may have diverged as far back as 8 million years ago. Taxonomists disagree whether or not the modern Pygmy Hippopotamus is a member of Hexaprotodon —an apparently paraphyletic genus also embracing many extinct Asian hippopotamuses that is more closely related to Hippopotamus, or Choeropsis —an older and basal genus.[18][19]

[edit]Extinct species

Three species of Malagasy Hippopotamus became extinct during the Holocene on Madagascar, one of them within the past 1,000 years. The Malagasy Hippos were smaller than the modern hippopotamus, likely through the process of insular dwarfism.[20] There is fossil evidence that many Malagasy Hippos were hunted by humans, a likely factor in their eventual extinction.[20] Isolated members of Malagasy Hippopotamus may have survived in remote pockets; in 1976, villagers described a living animal called the Kilopilopitsofy, which may have been a Malagasy Hippopotamus.[21]

Two species of Hippopotamus, the European Hippopotamus (H. antiquus) and H. gorgops ranged throughout continental Europe and the British Isles. Both species became extinct before the last glaciation. Ancestors of European Hippos found their way to many islands of the Mediterranean during the Pleistocene.[22] Both species were larger than the modern hippopotamus, averaging about 1 meter (3.3 feet) longer. The Pleistocene also saw a number of dwarf species evolve on several Mediterranean islands including Crete (H. creutzburgi), Cyprus (H. minor), Malta (H. melitensis) and Sicily (H. pentlandi). Of these, the Cyprus Dwarf Hippopotamus, survived until the end of the Pleistocene or early Holocene. Evidence from an archaeological site Aetokremnos, continues to cause debate on whether or not the species was encountered, and was driven to extinction, by man. Hippopotamuses are among the largest living mammals; only elephants and some rhinoceroses and whales are heavier. They can live in the water or on land. Their specific gravity allows them to sink and walk or run along the bottom of a river. Hippos are considered megafauna, but unlike all other African megafauna, hippos have adapted for a semi-aquatic life in freshwater lakes and rivers.[9]:3 A hippo's lifespan is typically 40–50 years.[6]:277 Donna the Hippo, 60, was the oldest living hippo in captivity. She lived at the Mesker Park Zoo in Evansville, Indiana, USA[24][25] until her death on August 1, 2012. The oldest hippo ever recorded was called Tanga; she lived in Munich, Germany, and died in 1995 at the age of 61.[26]

Because of their enormous size, hippopotamuses are difficult to weigh in the wild. Most estimates of the weight come from culling operations that were carried out in the 1960s. The average weights for adult males ranged between 1,500–1,800 kg (3,300–4,000 lb). Females are smaller than their male counterparts, with average weights measuring between 1,300–1,500 kg (2,900–3,300 lb).[9]:12 Older males can get much larger, reaching at least 3,200 kg (7,100 lb) with a few exceptional specimens exceeding 3,600 kg (7,900 lb).[27][28] The heaviest known hippopotamus weighed approximately 4,500 kg (9,900 lb).[29] Male hippos appear to continue growing throughout their lives; females reach a maximum weight at around age 25.[30]

Hippos measure 3.3 to 5.2 meters (11 to 17 ft) long, including a tail of about 56 centimeters (22 in) in length and average about 1.5 meters (5 ft) tall at the shoulder.[31][32] The range of hippopotamus sizes overlaps with the range of the white rhinoceros; use of different metrics makes it unclear which is the largest land animal after elephants. Even though they are bulky animals, hippopotamuses can run faster than a human on land. Estimates of their running speed vary from 30 km/h (18 mph) to 40 km/h (25 mph), or even 50 km/h (30 mph). The hippo can maintain these higher speeds for only a few hundred meters. Despite being semi-aquatic and having webbed feet, an adult hippo is not a particularly good swimmer nor can it float. It is rarely found in deep water; when it is, the animal moves by porpoise-like leaps from the bottom. The eyes, ears, and nostrils of hippos are placed high on the roof of the skull. This allows them to be in the water with most of their body submerged in the waters and mud of tropical rivers to stay cool and prevent sunburn. Their skeletal structure is graviportal, adapted to carrying the animals' enormous weight. Hippopotamuses have small legs (relative to other megafauna) because the water in which they live reduces the weight burden. Unlike most other semi-aquatic animals, the hippopotamus has very little hair.[6]:260 The skin is 6 in (15 cm) thick,[33] providing it great protection against conspecifics and predators. The animals's upper parts are purplish-gray to blue-black while the under parts and areas around the eyes and ears can be brownish-pink.[6]:260 The testes of the males descend only partially and a scrotum is not present. In addition, the penis retracts into the body when not erect. The genitals of the female are unusual in that the vagina is ridged and two large diverticula protrude from the vulval vestibule. The function of these is unknown.[9]:28–29

The hippo's jaw is powered by a large masseter and a well developed digastric; the latter loops up behind the former to the hyoid.[6]:259 The jaw hinge is located far back enough to allow the animal to open its mouth at almost 180°.[9]:17 On the National Geographic Channel television program, "Dangerous Encounters with Brady Barr", Dr. Brady Barr measured the bite force of an adult female hippo at 8100 N (1821 lbf); Barr also attempted to measure the bite pressure of an adult male hippo, but had to abandon the attempt due to the male's aggressiveness.[34] Hippopotamus teeth sharpen themselves as they grind together. The lower canines and lower incisors are enlarged, especially in males, and grow continuously. The incisors can reach 40 cm (16 in) while the canines reach up to 50 cm (20 in).[33]

Their skin secretes a natural sunscreen substance which is red-colored. The secretion is sometimes referred to as "blood sweat," but is neither blood nor sweat. This secretion is initially colorless and turns red-orange within minutes, eventually becoming brown. Two distinct pigments have been identified in the secretions, one red (hipposudoric acid) and one orange (norhipposudoric acid). The two pigments are highly acidic compounds. Both pigments inhibit the growth of disease-causing bacteria; as well, the light absorption of both pigments peaks in the ultraviolet range, creating a sunscreen effect. All hippos, even those with different diets, secrete the pigments, so it does not appear that food is the source of the pigments. Instead, the animals may synthesize the pigments from precursors such as the amino acid tyrosine. Hippopotamus amphibius was widespread in North Africa and Europe during the Eemian[36] and late Pleistocene until about 30,000 years ago. The species was common in Egypt's Nile region during antiquity but has since been extirpated. Pliny the Elder writes that, in his time, the best location in Egypt for capturing this animal was in the Saite nome;[37] the animal could still be found along the Damietta branch after the Arab Conquest in 639. Hippos are still found in the rivers and lakes of the northern Democratic Republic of the Congo, Uganda, Tanzania and Kenya, north through to Ethiopia, Somalia and Sudan, west from Ghana to Gambia, and also in Southern Africa (Botswana, Republic of South Africa, Zimbabwe, Zambia, Mozambique). Genetic evidence suggests that common hippos in Africa experienced a marked population expansion during or after the Pleistocene Epoch, attributed to an increase in water bodies at the end of the era. These findings have important conservation implications as hippo populations across the continent are currently threatened by loss of access to fresh water.[10] Hippos are also subject to unregulated hunting and poaching. In May 2006 the hippopotamus was identified as a vulnerable species on the IUCN Red List drawn up by the World Conservation Union (IUCN), with an estimated population of between 125,000 and 150,000 hippos, a decline of between 7% and 20% since the IUCN's 1996 study. Zambia (40,000) and Tanzania (20,000–30,000) possess the largest populations.[1]

The hippo population declined most dramatically in the Democratic Republic of the Congo.[38] The population in Virunga National Park had dropped to 800 or 900 from around 29,000 in the mid 1970s.[39] The decline is attributed to the disruptions caused by the Second Congo War.[39] The poachers are believed to be former Hutu rebels, poorly paid Congolese soldiers, and local militia groups.[39] Reasons for poaching include the belief that hippos are harmful to society, and also for money.[40] The sale of hippo meat is illegal, but black-market sales are difficult for Virunga National Park officers to track. Invasive potential

In the late 1980s, Pablo Escobar kept four hippos in a private menagerie at his residence in Hacienda Napoles, 100 km east of Medellín, Colombia, after buying them in New Orleans. They were deemed too difficult to seize and move after Escobar's fall, and hence left on the untended estate. By 2007, the animals had multiplied to 16 and had taken to roaming the area for food in the nearby Magdalena River.[41] In 2009, two adults and one calf escaped the herd, and after attacking humans and killing cattle, one of the adults (called "Pepe") was killed by hunters under authorization of the local authorities.[42][43] It is unknown what kind of effects the presence of hippos might have on the ecosystem in Colombia. According to experts interviewed by W Radio Colombia, the animals could survive in the Colombian jungles. It is believed that the lack of control from the Colombian government, which is not used to dealing with this species, could result in human fatalities. Hippos spend most of their days wallowing in the water or the mud, with the other members of their pod. The water serves to keep their body temperature down, and to keep their skin from drying out. With the exception of eating, most of hippopotamuses' lives —from childbirth, fighting with other hippos, to reproduction— occur in the water. Hippos leave the water at dusk and travel inland, sometimes up to 8 kilometers (5 mi), to graze on short grass, their main source of food. They spend four to five hours grazing and can consume 68 kilograms (150 lb) of grass each night.[44] Like almost any herbivore, they will consume many other plants if presented with them, but their diet in nature consists almost entirely of grass, with only minimal consumption of aquatic plants.[45] Hippos have (rarely) been filmed eating carrion, usually close to the water. There are other reports of meat-eating, and even cannibalism and predation.[46] The stomach anatomy of a hippo is not suited to carnivory, and meat-eating is likely caused by aberrant behavior or nutritional stress.[9]:84

The diet of hippos consists mostly of terrestrial grasses, even though they spend most of their time in the water. Most of their defecation occurs in the water, creating allochthonous deposits of organic matter along the river beds. These deposits have an unclear ecological function.[45] Because of their size and their habit of taking the same paths to feed, hippos can have a significant impact on the land they walk across, both by keeping the land clear of vegetation and depressing the ground. Over prolonged periods hippos can divert the paths of swamps and channels.[47]

Adult hippos move at speeds up to 8 km/h (5 mph) in water. Adult hippos typically resurface to breathe every three to five minutes. The young have to breathe every two to three minutes.[9]:4 The process of surfacing and breathing is automatic, and even a hippo sleeping underwater will rise and breathe without waking. A hippo closes its nostrils when it submerges into the water. As with fish and turtles on a coral reef, hippo occasionally visit cleaning stations and signal by wide-open mouth their readiness for being cleaned of parasites by certain species of fish. This situation is an example of mutualism in which the hippo benefits from the cleansing while the fish receive food.[ Studying the interaction of male and female hippopotamuses has long been complicated by the fact that hippos are not sexually dimorphic and thus females and young males are almost indistinguishable in the field.[49] Although hippos like to lie close to each other, they do not seem to form social bonds except between mothers and daughters, and are not social animals. The reason they huddle close together is unknown.[9]:49

Hippopotamuses are territorial only in water, where a bull presides over a small stretch of river, on average 250 meters in length, and containing ten females. The largest pods can contain over 100 hippos.[9]:50 Other bachelors are allowed in a bull's stretch, as long as they behave submissively toward the bull. The territories of hippos exist to establish mating rights. Within the pods, the hippos tend to segregate by gender. Bachelors will lounge near other bachelors, females with other females, and the bull on his own. When hippos emerge from the water to graze, they do so individually.[9]:4

Hippopotamuses appear to communicate verbally, through grunts and bellows, and it is thought that they may practice echolocation, but the purpose of these vocalizations is currently unknown. Hippos have the unique ability to hold their head partially above the water and send out a cry that travels through both water and air; hippos above and under water will respond.[ Female hippos reach sexual maturity at five to six years of age and have a gestation period of 8 months. A study of endocrine systems revealed that female hippopotamuses may begin puberty as early as 3 or 4 years of age.[51] Males reach maturity at around 7.5 years. A study of hippopotamus reproductive behavior in Uganda showed that peak conceptions occurred during the end of the wet season in the summer, and peak births occurred toward the beginning of the wet season in late winter. This is because of the female's estrous cycle; as with most large mammals, male hippopotamus spermatozoa is active year round. Studies of hippos in Zambia and South Africa also showed evidence of births occurring at the start of the wet season.[9]:60–61 After becoming pregnant, a female hippopotamus will typically not begin ovulation again for 17 months.[51]

Mating occurs in the water with the female submerged for most of the encounter,[9]:63 her head emerging periodically to draw breath. Baby hippos are born underwater at a weight between 25 and 45 kg (60–110 lb) and an average length of around 127 cm (50 in) and must swim to the surface to take their first breath. A mother typically gives birth to only one hippo, although twins also occur. The young often rest on their mothers' backs when in water that is too deep for them, and they swim underwater to suckle. They also will suckle on land when the mother leaves the water. Weaning starts between six and eight months after birth and most calves are fully weaned after a year.[9]:64 Like many other large mammals, hippos are described as K-strategists, in this case typically producing just one large, well-developed infant every couple of years (rather than large numbers of small, poorly developed young several times per year as is common among small mammals such as rodents. Hippopotamuses are by nature very aggressive animals, especially when young calves are present. Frequent targets of their aggression include crocodiles, which often inhabit the same river habitat as hippos. Nile crocodiles, lions and spotted hyenas are known to prey on young hippos.[53] Hippos are very aggressive towards humans, whom they commonly attack whether in boats or on land with no apparent provocation.[54] They are widely considered to be one of the most dangerous large animals in Africa.[55][56]

To mark territory, hippos spin their tails while defecating to distribute their excrement over a greater area.[57] Likely for the same reason, hippos are retromingent – that is, they urinate backwards.[58] When in combat, male hippos use their incisors to block each others attacks, and their lower canines to inflict damage.[6]:260 Hippos rarely kill each other, even in territorial challenges. Usually a territorial bull and a challenging bachelor will stop fighting when it is clear that one hippo is stronger. When hippos become overpopulated, or when a habitat starts to shrink, bulls will sometimes attempt to kill infants, but this behavior is not common under normal conditions.[52] Some incidents of hippo cannibalism have been documented, but it is believed to be the behavior of distressed or sick hippos, and not healthy behavior. The earliest evidence of human interaction with hippos comes from butchery cut marks upon hippo bones at Bouri Formation dated around 160,000 years ago.[59] Later rock paintings and engravings showing hippos being hunted have been found in the mountains of the central Sahara dated 4,000–5,000 years ago near Djanet in the Tassili n'Ajjer Mountains.[9]:1 The ancient Egyptians recognized the hippo as a ferocious denizen of the Nile.

The hippopotamus was also known to the Greeks and Romans. The Greek historian Herodotus described the hippopotamus in The Histories (written circa 440 BC) and the Roman Historian Pliny the Elder wrote about the hippopotamus in his encyclopedia Naturalis Historia (written circa 77 AD).[37][60] Hippopotamus was one of the many exotic animals brought to fight gladiators in Rome by the emperor Philip I the Arab to commemorate Rome's 1000 years anniversary in 248 AD. Silver coins with hippo's image were minted that year.[citation needed]

Zulu warriors preferred to be as brave as a hippopotamus, since even lions were not considered as brave. "In 1888, Captain Baden-Powell was part of a column searching for the Zulu chief Dinizulu, who was leading the Usutu people in revolt against the British colonists. The column was joined by John Dunn, a white Zulu chief, who led an impi (army) of 2000 Zulu warriors to join the British." [61]

The words of the Zulu anthem sounded like this:

"Een-gonyama Gonyama! "Invooboo! Yah-bo! Yah-bo! Invooboo!"

"John Dunn was at the head of his impi. [Baden Powell] asked him to translate the Zulu anthem his men had been singing. Dunn laughed and replied: "He is a lion. Yes, he is better than a lion—he is a hippopotamus. Hippopotamuses have long been popular zoo animals. The first zoo hippo in modern history was Obaysch who arrived at the London Zoo on May 25, 1850, where he attracted up to 10,000 visitors a day and inspired a popular song, the Hippopotamus Polka.[63] Hippos have remained popular zoo animals since Obaysch, and generally breed well in captivity. Their birth rates are lower than in the wild, but this is attributed to zoos' not wanting to breed as many hippos as possible, since hippos are large and relatively expensive animals to maintain.[9]:129[63]

Like many zoo animals, hippos were traditionally displayed in concrete exhibits. In the case of hippos, they usually had a pool of water and patch of grass. In the 1980s, zoo designers increasingly designed exhibits that reflected the animals' native habitats. The best known of these, the Toledo Zoo Hippoquarium, features a 360,000 gallon pool for hippos.[64] In 1987, researchers were able to tape, for the first time, an underwater birth (as in the wild) at the Toledo Zoo. The exhibit was so popular that the hippos became the logo of the Toledo Zoo. A red hippo represented the Ancient Egyptian god Set; the thigh is the 'phallic leg of set' symbolic of virility. Set's consort Tawaret was also seen as part hippo.[66] The hippopotamus-headed Tawaret was a goddess of protection in pregnancy and childbirth, because ancient Egyptians recognized the protective nature of a female hippopotamus toward her young.[67] The Ijo people wore masks of aquatic animals like the hippo when practicing their water spirit cults.[68] The Behemoth from the Book of Job, 40:15–24 is also thought to be based on a hippo.[69]

Hippos have been the subjects of various African folktales. According to a Bushmen story; when the Creator assigned each animal their place in nature, the hippos wanted to live in the water, but were refused out of fear that they might eat all the fish. After begging and pleading, the hippos were finally allowed to live in the water on the conditions that they would eat grass instead of fish and would fling their dung so that it can be inspected for fish bones.[70] In a Ndebele tale, the hippo originally had long, beautiful hair but was set on fire by a jealous hare and had to jump into a nearby pool. The hippo lost most of his hair and was too embarrassed to leave the water.[70]

Ever since Obaysch inspired the Hippopotamus Polka, hippos have been popular animals in Western culture for their rotund appearance that many consider comical.[63] Stories of hippos like Huberta who became a celebrity in South Africa in the 1930s for trekking across the country;[71] or the tale of Owen and Mzee, a hippo and tortoise who developed an intimate bond; have amused people who have bought hippo books, merchandise, and many a stuffed hippo toy.[72][73] Hippos were mentioned in the novelty Christmas song "I Want a Hippopotamus for Christmas" that became a hit for child star Gayla Peevey in 1953.[74] They also feature in the songs "The Hippopotamus" and "Hippo Encore" by Flanders and Swann, with the famous refrain Mud, Mud, Glorious Mud. They even inspired a popular board game, Hungry Hungry Hippos. Hippos have also been popular cartoon characters, where their rotund frame is used for humorous effect. The Disney film Fantasia featured a ballerina hippopotamus dancing to the opera, La Gioconda.[38] Other cartoon hippos have included Hanna-Barbera's Peter Potamus, the book and TV series George and Martha, Flavio and Marita on the Animaniacs, Pat of the French duo Pat et Stanley, The Backyardigan's Tasha, and Gloria and Moto-Moto from the Madagascar franchise. A Sesame Street cartoon from the early 1970s features a hippo who lives in the country and likes it quiet, while being disturbed when the mouse who likes it loud moves in with her.[citation needed]

The hippopotamus characters "Happy Hippos" were created in 1988 by the French designer Andre Roche [77] based in Munich, to be hidden in the "Kinder Surprise egg" of the Italian chocolate company Ferrero SpA. These characters were not placid like real hippos[contradiction] but rather cute and lively, and had such a success that they reappeared several times in different products of this company in the following years, increasing their popularity worldwide each time.[citation needed] The Nintendo Company published in the years 2001 and 2007 Game Boy adventures of them. In the game of chess, the hippopotamus lends its name to the Hippopotamus Defense, an opening system, which is generally considered weak.The River Horse is a popular outdoor sculpture at George Washington University, Washington, D.C. Botswana, Moremi National Park, Moremi Game reserve, private Reserve, Farm, chobe National park, Chobe Game Reserve, Zambia, Zambezi River, Livingstone, Zimbabwe, Kenya, Tanzania, Wildlife Conservation Project, Maramba River Lodge, South Africa, Krugger National Park. art beach blue bw california canada canon china city concert de england europe family festival film flower flowers food france friends green instagramapp iphoneography italy japan live london music nature new newyork night nikon nyc paris park party people photography portrait red sky snow square squareformat street summer sunset travel trip uk usa vacation water wedding white winter

Hippopotamuses love water, which is why the Greeks named them the "river horse." Hippos spend up to 16 hours a day submerged in rivers and lakes to keep their massive bodies cool under the hot African sun. Hippos are graceful in water, good swimmers, and can hold their breath underwater for up to five minutes. However, they are often large enough to simply walk or stand on the lake floor, or lie in the shallows. Their eyes and nostrils are located high on their heads, which allows them to see and breathe while mostly submerged. Hippos also bask on the shoreline and secrete an oily red substance, which gave rise to the myth that they sweat blood. The liquid is actually a skin moistener and sunblock that may also provide protection against germs. At sunset, hippopotamuses leave the water and travel overland to graze. They may travel 6 miles (10 kilometers) in a night, along single-file pathways, to consume some 80 pounds (35 kilograms) of grass. Considering their enormous size, a hippo's food intake is relatively low. If threatened on land hippos may run for the water—they can match a human's speed for short distances. Hippo calves weigh nearly 100 pounds (45 kilograms) at birth and can suckle on land or underwater by closing their ears and nostrils. Each female has only one calf every two years. Soon after birth, mother and young join schools that provide some protection against crocodiles, lions, and hyenas. Hippos once had a broader distribution but now live in eastern central and southern sub-Saharan Africa, where their populations are in decline. A partially submerged hippopotamus tries to keep cool in the hot African sun. The hippopotamus (Hippopotamus amphibius), or hippo, from the ancient Greek for "river horse" (ἱπποπόταμος), is a large, mostly herbivorous mammal in sub-Saharan Africa, and one of only two extant species in the family Hippopotamidae (the other is the Pygmy Hippopotamus.) After the elephant and rhinoceros, the hippopotamus is the third largest land mammal and the heaviest extant artiodactyl. Despite their physical resemblance to pigs and other terrestrial even-toed ungulates, their closest living relatives are cetaceans (whales, porpoises, etc.) from which they diverged about 55 million years ago. The common ancestor of whales and hippos split from other even-toed ungulates around 60 million years ago. The earliest known hippopotamus fossils, belonging to the genus Kenyapotamus in Africa, date to around 16 million years ago.

The hippopotamus is semi-aquatic, inhabiting rivers, lakes and mangrove swamps, where territorial bulls preside over a stretch of river and groups of 5 to 30 females and young. During the day they remain cool by staying in the water or mud; reproduction and childbirth both occur in water. They emerge at dusk to graze on grass. While hippopotamuses rest near each other in the water, grazing is a solitary activity and hippos are not territorial on land. Hippos are recognizable by their barrel-shaped torso, enormous mouth and teeth, nearly hairless body, stubby legs and tremendous size. It is the third largest land mammal by weight (between 1½ and 3 tonnes), behind the white rhinoceros (1½ to 3½ tonnes) and the three species of elephant (3 to 9 tonnes). The hippopotamus is one of the largest quadrupeds and despite its stocky shape and short legs, it can easily outrun a human. Hippos have been clocked at 30 km/h (19 mph) over short distances. The hippopotamus is one of the most aggressive creatures in the world and is often regarded as one of the most dangerous animals in Africa. They are still threatened by habitat loss and poaching for their meat and ivory canine teeth. There is also a colony of non-zoo hippos in Colombia introduced by Pablo Escobar. The most recent theory of the origins of Hippopotamidae suggests that hippos and whales shared a common semi-aquatic ancestor that branched off from other artiodactyls around 60 million years ago.[13][15] This hypothesized ancestral group likely split into two branches around 54 million years ago.[12] One branch would evolve into cetaceans, possibly beginning about 52 million years ago with the proto-whale Pakicetus and other early whale ancestors collectively known as Archaeoceti, which eventually underwent aquatic adaptation into the completely aquatic cetaceans.[17] The other branch became the anthracotheres, a large family of four-legged beasts, the earliest of whom in the late Eocene would have resembled skinny hippopotamuses with comparatively small and narrow heads. All branches of the anthracotheres, except that which evolved into Hippopotamidae, became extinct during the Pliocene without leaving any descendants.[15]

A rough evolutionary lineage can be traced from Eocene and Oligocene species: Anthracotherium and Elomeryx to the Miocene Merycopotamus and Libycosaurus and the very latest anthracotheres in the Pliocene.[18] Merycopotamus, Libycosaurus and all hippopotamids can be considered to form a clade, with Libycosaurus being more closely related to hippos. Their common ancestor would have lived in the Miocene, about 20 million years ago. Hippopotamids are therefore deeply nested within the family Anthracotheriidae. The Hippopotamidae are believed to have evolved in Africa; the oldest known hippopotamid is the genus Kenyapotamus which lived in Africa from 16 to 8 million years ago. While hippopotamid species spread across Asia and Europe, no hippopotamuses have ever been discovered in the Americas, although various anthracothere genera emigrated into North America during the early Oligocene. From 7.5 to 1.8 million years ago an ancestor to the modern hippopotamus, Archaeopotamus, lived in Africa and the Middle East.[19]

While the fossil record of hippos is still poorly understood, the two modern genera, Hippopotamus and Choeropsis (sometimes Hexaprotodon), may have diverged as far back as 8 million years ago. Taxonomists disagree whether or not the modern Pygmy Hippopotamus is a member of Hexaprotodon —an apparently paraphyletic genus also embracing many extinct Asian hippopotamuses that is more closely related to Hippopotamus, or Choeropsis —an older and basal genus.[18][19]

[edit]Extinct species

Three species of Malagasy Hippopotamus became extinct during the Holocene on Madagascar, one of them within the past 1,000 years. The Malagasy Hippos were smaller than the modern hippopotamus, likely through the process of insular dwarfism.[20] There is fossil evidence that many Malagasy Hippos were hunted by humans, a likely factor in their eventual extinction.[20] Isolated members of Malagasy Hippopotamus may have survived in remote pockets; in 1976, villagers described a living animal called the Kilopilopitsofy, which may have been a Malagasy Hippopotamus.[21]

Two species of Hippopotamus, the European Hippopotamus (H. antiquus) and H. gorgops ranged throughout continental Europe and the British Isles. Both species became extinct before the last glaciation. Ancestors of European Hippos found their way to many islands of the Mediterranean during the Pleistocene.[22] Both species were larger than the modern hippopotamus, averaging about 1 meter (3.3 feet) longer. The Pleistocene also saw a number of dwarf species evolve on several Mediterranean islands including Crete (H. creutzburgi), Cyprus (H. minor), Malta (H. melitensis) and Sicily (H. pentlandi). Of these, the Cyprus Dwarf Hippopotamus, survived until the end of the Pleistocene or early Holocene. Evidence from an archaeological site Aetokremnos, continues to cause debate on whether or not the species was encountered, and was driven to extinction, by man. Hippopotamuses are among the largest living mammals; only elephants and some rhinoceroses and whales are heavier. They can live in the water or on land. Their specific gravity allows them to sink and walk or run along the bottom of a river. Hippos are considered megafauna, but unlike all other African megafauna, hippos have adapted for a semi-aquatic life in freshwater lakes and rivers.[9]:3 A hippo's lifespan is typically 40–50 years.[6]:277 Donna the Hippo, 60, was the oldest living hippo in captivity. She lived at the Mesker Park Zoo in Evansville, Indiana, USA[24][25] until her death on August 1, 2012. The oldest hippo ever recorded was called Tanga; she lived in Munich, Germany, and died in 1995 at the age of 61.[26]

Because of their enormous size, hippopotamuses are difficult to weigh in the wild. Most estimates of the weight come from culling operations that were carried out in the 1960s. The average weights for adult males ranged between 1,500–1,800 kg (3,300–4,000 lb). Females are smaller than their male counterparts, with average weights measuring between 1,300–1,500 kg (2,900–3,300 lb).[9]:12 Older males can get much larger, reaching at least 3,200 kg (7,100 lb) with a few exceptional specimens exceeding 3,600 kg (7,900 lb).[27][28] The heaviest known hippopotamus weighed approximately 4,500 kg (9,900 lb).[29] Male hippos appear to continue growing throughout their lives; females reach a maximum weight at around age 25.[30]

Hippos measure 3.3 to 5.2 meters (11 to 17 ft) long, including a tail of about 56 centimeters (22 in) in length and average about 1.5 meters (5 ft) tall at the shoulder.[31][32] The range of hippopotamus sizes overlaps with the range of the white rhinoceros; use of different metrics makes it unclear which is the largest land animal after elephants. Even though they are bulky animals, hippopotamuses can run faster than a human on land. Estimates of their running speed vary from 30 km/h (18 mph) to 40 km/h (25 mph), or even 50 km/h (30 mph). The hippo can maintain these higher speeds for only a few hundred meters. Despite being semi-aquatic and having webbed feet, an adult hippo is not a particularly good swimmer nor can it float. It is rarely found in deep water; when it is, the animal moves by porpoise-like leaps from the bottom. The eyes, ears, and nostrils of hippos are placed high on the roof of the skull. This allows them to be in the water with most of their body submerged in the waters and mud of tropical rivers to stay cool and prevent sunburn. Their skeletal structure is graviportal, adapted to carrying the animals' enormous weight. Hippopotamuses have small legs (relative to other megafauna) because the water in which they live reduces the weight burden. Unlike most other semi-aquatic animals, the hippopotamus has very little hair.[6]:260 The skin is 6 in (15 cm) thick,[33] providing it great protection against conspecifics and predators. The animals's upper parts are purplish-gray to blue-black while the under parts and areas around the eyes and ears can be brownish-pink.[6]:260 The testes of the males descend only partially and a scrotum is not present. In addition, the penis retracts into the body when not erect. The genitals of the female are unusual in that the vagina is ridged and two large diverticula protrude from the vulval vestibule. The function of these is unknown.[9]:28–29

The hippo's jaw is powered by a large masseter and a well developed digastric; the latter loops up behind the former to the hyoid.[6]:259 The jaw hinge is located far back enough to allow the animal to open its mouth at almost 180°.[9]:17 On the National Geographic Channel television program, "Dangerous Encounters with Brady Barr", Dr. Brady Barr measured the bite force of an adult female hippo at 8100 N (1821 lbf); Barr also attempted to measure the bite pressure of an adult male hippo, but had to abandon the attempt due to the male's aggressiveness.[34] Hippopotamus teeth sharpen themselves as they grind together. The lower canines and lower incisors are enlarged, especially in males, and grow continuously. The incisors can reach 40 cm (16 in) while the canines reach up to 50 cm (20 in).[33]

Their skin secretes a natural sunscreen substance which is red-colored. The secretion is sometimes referred to as "blood sweat," but is neither blood nor sweat. This secretion is initially colorless and turns red-orange within minutes, eventually becoming brown. Two distinct pigments have been identified in the secretions, one red (hipposudoric acid) and one orange (norhipposudoric acid). The two pigments are highly acidic compounds. Both pigments inhibit the growth of disease-causing bacteria; as well, the light absorption of both pigments peaks in the ultraviolet range, creating a sunscreen effect. All hippos, even those with different diets, secrete the pigments, so it does not appear that food is the source of the pigments. Instead, the animals may synthesize the pigments from precursors such as the amino acid tyrosine. Hippopotamus amphibius was widespread in North Africa and Europe during the Eemian[36] and late Pleistocene until about 30,000 years ago. The species was common in Egypt's Nile region during antiquity but has since been extirpated. Pliny the Elder writes that, in his time, the best location in Egypt for capturing this animal was in the Saite nome;[37] the animal could still be found along the Damietta branch after the Arab Conquest in 639. Hippos are still found in the rivers and lakes of the northern Democratic Republic of the Congo, Uganda, Tanzania and Kenya, north through to Ethiopia, Somalia and Sudan, west from Ghana to Gambia, and also in Southern Africa (Botswana, Republic of South Africa, Zimbabwe, Zambia, Mozambique). Genetic evidence suggests that common hippos in Africa experienced a marked population expansion during or after the Pleistocene Epoch, attributed to an increase in water bodies at the end of the era. These findings have important conservation implications as hippo populations across the continent are currently threatened by loss of access to fresh water.[10] Hippos are also subject to unregulated hunting and poaching. In May 2006 the hippopotamus was identified as a vulnerable species on the IUCN Red List drawn up by the World Conservation Union (IUCN), with an estimated population of between 125,000 and 150,000 hippos, a decline of between 7% and 20% since the IUCN's 1996 study. Zambia (40,000) and Tanzania (20,000–30,000) possess the largest populations.[1]

The hippo population declined most dramatically in the Democratic Republic of the Congo.[38] The population in Virunga National Park had dropped to 800 or 900 from around 29,000 in the mid 1970s.[39] The decline is attributed to the disruptions caused by the Second Congo War.[39] The poachers are believed to be former Hutu rebels, poorly paid Congolese soldiers, and local militia groups.[39] Reasons for poaching include the belief that hippos are harmful to society, and also for money.[40] The sale of hippo meat is illegal, but black-market sales are difficult for Virunga National Park officers to track. Invasive potential

In the late 1980s, Pablo Escobar kept four hippos in a private menagerie at his residence in Hacienda Napoles, 100 km east of Medellín, Colombia, after buying them in New Orleans. They were deemed too difficult to seize and move after Escobar's fall, and hence left on the untended estate. By 2007, the animals had multiplied to 16 and had taken to roaming the area for food in the nearby Magdalena River.[41] In 2009, two adults and one calf escaped the herd, and after attacking humans and killing cattle, one of the adults (called "Pepe") was killed by hunters under authorization of the local authorities.[42][43] It is unknown what kind of effects the presence of hippos might have on the ecosystem in Colombia. According to experts interviewed by W Radio Colombia, the animals could survive in the Colombian jungles. It is believed that the lack of control from the Colombian government, which is not used to dealing with this species, could result in human fatalities. Hippos spend most of their days wallowing in the water or the mud, with the other members of their pod. The water serves to keep their body temperature down, and to keep their skin from drying out. With the exception of eating, most of hippopotamuses' lives —from childbirth, fighting with other hippos, to reproduction— occur in the water. Hippos leave the water at dusk and travel inland, sometimes up to 8 kilometers (5 mi), to graze on short grass, their main source of food. They spend four to five hours grazing and can consume 68 kilograms (150 lb) of grass each night.[44] Like almost any herbivore, they will consume many other plants if presented with them, but their diet in nature consists almost entirely of grass, with only minimal consumption of aquatic plants.[45] Hippos have (rarely) been filmed eating carrion, usually close to the water. There are other reports of meat-eating, and even cannibalism and predation.[46] The stomach anatomy of a hippo is not suited to carnivory, and meat-eating is likely caused by aberrant behavior or nutritional stress.[9]:84

The diet of hippos consists mostly of terrestrial grasses, even though they spend most of their time in the water. Most of their defecation occurs in the water, creating allochthonous deposits of organic matter along the river beds. These deposits have an unclear ecological function.[45] Because of their size and their habit of taking the same paths to feed, hippos can have a significant impact on the land they walk across, both by keeping the land clear of vegetation and depressing the ground. Over prolonged periods hippos can divert the paths of swamps and channels.[47]

Adult hippos move at speeds up to 8 km/h (5 mph) in water. Adult hippos typically resurface to breathe every three to five minutes. The young have to breathe every two to three minutes.[9]:4 The process of surfacing and breathing is automatic, and even a hippo sleeping underwater will rise and breathe without waking. A hippo closes its nostrils when it submerges into the water. As with fish and turtles on a coral reef, hippo occasionally visit cleaning stations and signal by wide-open mouth their readiness for being cleaned of parasites by certain species of fish. This situation is an example of mutualism in which the hippo benefits from the cleansing while the fish receive food.[ Studying the interaction of male and female hippopotamuses has long been complicated by the fact that hippos are not sexually dimorphic and thus females and young males are almost indistinguishable in the field.[49] Although hippos like to lie close to each other, they do not seem to form social bonds except between mothers and daughters, and are not social animals. The reason they huddle close together is unknown.[9]:49

Hippopotamuses are territorial only in water, where a bull presides over a small stretch of river, on average 250 meters in length, and containing ten females. The largest pods can contain over 100 hippos.[9]:50 Other bachelors are allowed in a bull's stretch, as long as they behave submissively toward the bull. The territories of hippos exist to establish mating rights. Within the pods, the hippos tend to segregate by gender. Bachelors will lounge near other bachelors, females with other females, and the bull on his own. When hippos emerge from the water to graze, they do so individually.[9]:4

Hippopotamuses appear to communicate verbally, through grunts and bellows, and it is thought that they may practice echolocation, but the purpose of these vocalizations is currently unknown. Hippos have the unique ability to hold their head partially above the water and send out a cry that travels through both water and air; hippos above and under water will respond.[ Female hippos reach sexual maturity at five to six years of age and have a gestation period of 8 months. A study of endocrine systems revealed that female hippopotamuses may begin puberty as early as 3 or 4 years of age.[51] Males reach maturity at around 7.5 years. A study of hippopotamus reproductive behavior in Uganda showed that peak conceptions occurred during the end of the wet season in the summer, and peak births occurred toward the beginning of the wet season in late winter. This is because of the female's estrous cycle; as with most large mammals, male hippopotamus spermatozoa is active year round. Studies of hippos in Zambia and South Africa also showed evidence of births occurring at the start of the wet season.[9]:60–61 After becoming pregnant, a female hippopotamus will typically not begin ovulation again for 17 months.[51]

Mating occurs in the water with the female submerged for most of the encounter,[9]:63 her head emerging periodically to draw breath. Baby hippos are born underwater at a weight between 25 and 45 kg (60–110 lb) and an average length of around 127 cm (50 in) and must swim to the surface to take their first breath. A mother typically gives birth to only one hippo, although twins also occur. The young often rest on their mothers' backs when in water that is too deep for them, and they swim underwater to suckle. They also will suckle on land when the mother leaves the water. Weaning starts between six and eight months after birth and most calves are fully weaned after a year.[9]:64 Like many other large mammals, hippos are described as K-strategists, in this case typically producing just one large, well-developed infant every couple of years (rather than large numbers of small, poorly developed young several times per year as is common among small mammals such as rodents. Hippopotamuses are by nature very aggressive animals, especially when young calves are present. Frequent targets of their aggression include crocodiles, which often inhabit the same river habitat as hippos. Nile crocodiles, lions and spotted hyenas are known to prey on young hippos.[53] Hippos are very aggressive towards humans, whom they commonly attack whether in boats or on land with no apparent provocation.[54] They are widely considered to be one of the most dangerous large animals in Africa.[55][56]

To mark territory, hippos spin their tails while defecating to distribute their excrement over a greater area.[57] Likely for the same reason, hippos are retromingent – that is, they urinate backwards.[58] When in combat, male hippos use their incisors to block each others attacks, and their lower canines to inflict damage.[6]:260 Hippos rarely kill each other, even in territorial challenges. Usually a territorial bull and a challenging bachelor will stop fighting when it is clear that one hippo is stronger. When hippos become overpopulated, or when a habitat starts to shrink, bulls will sometimes attempt to kill infants, but this behavior is not common under normal conditions.[52] Some incidents of hippo cannibalism have been documented, but it is believed to be the behavior of distressed or sick hippos, and not healthy behavior. The earliest evidence of human interaction with hippos comes from butchery cut marks upon hippo bones at Bouri Formation dated around 160,000 years ago.[59] Later rock paintings and engravings showing hippos being hunted have been found in the mountains of the central Sahara dated 4,000–5,000 years ago near Djanet in the Tassili n'Ajjer Mountains.[9]:1 The ancient Egyptians recognized the hippo as a ferocious denizen of the Nile.

The hippopotamus was also known to the Greeks and Romans. The Greek historian Herodotus described the hippopotamus in The Histories (written circa 440 BC) and the Roman Historian Pliny the Elder wrote about the hippopotamus in his encyclopedia Naturalis Historia (written circa 77 AD).[37][60] Hippopotamus was one of the many exotic animals brought to fight gladiators in Rome by the emperor Philip I the Arab to commemorate Rome's 1000 years anniversary in 248 AD. Silver coins with hippo's image were minted that year.[citation needed]

Zulu warriors preferred to be as brave as a hippopotamus, since even lions were not considered as brave. "In 1888, Captain Baden-Powell was part of a column searching for the Zulu chief Dinizulu, who was leading the Usutu people in revolt against the British colonists. The column was joined by John Dunn, a white Zulu chief, who led an impi (army) of 2000 Zulu warriors to join the British." [61]

The words of the Zulu anthem sounded like this:

"Een-gonyama Gonyama! "Invooboo! Yah-bo! Yah-bo! Invooboo!"

"John Dunn was at the head of his impi. [Baden Powell] asked him to translate the Zulu anthem his men had been singing. Dunn laughed and replied: "He is a lion. Yes, he is better than a lion—he is a hippopotamus. Hippopotamuses have long been popular zoo animals. The first zoo hippo in modern history was Obaysch who arrived at the London Zoo on May 25, 1850, where he attracted up to 10,000 visitors a day and inspired a popular song, the Hippopotamus Polka.[63] Hippos have remained popular zoo animals since Obaysch, and generally breed well in captivity. Their birth rates are lower than in the wild, but this is attributed to zoos' not wanting to breed as many hippos as possible, since hippos are large and relatively expensive animals to maintain.[9]:129[63]

Like many zoo animals, hippos were traditionally displayed in concrete exhibits. In the case of hippos, they usually had a pool of water and patch of grass. In the 1980s, zoo designers increasingly designed exhibits that reflected the animals' native habitats. The best known of these, the Toledo Zoo Hippoquarium, features a 360,000 gallon pool for hippos.[64] In 1987, researchers were able to tape, for the first time, an underwater birth (as in the wild) at the Toledo Zoo. The exhibit was so popular that the hippos became the logo of the Toledo Zoo. A red hippo represented the Ancient Egyptian god Set; the thigh is the 'phallic leg of set' symbolic of virility. Set's consort Tawaret was also seen as part hippo.[66] The hippopotamus-headed Tawaret was a goddess of protection in pregnancy and childbirth, because ancient Egyptians recognized the protective nature of a female hippopotamus toward her young.[67] The Ijo people wore masks of aquatic animals like the hippo when practicing their water spirit cults.[68] The Behemoth from the Book of Job, 40:15–24 is also thought to be based on a hippo.[69]

Hippos have been the subjects of various African folktales. According to a Bushmen story; when the Creator assigned each animal their place in nature, the hippos wanted to live in the water, but were refused out of fear that they might eat all the fish. After begging and pleading, the hippos were finally allowed to live in the water on the conditions that they would eat grass instead of fish and would fling their dung so that it can be inspected for fish bones.[70] In a Ndebele tale, the hippo originally had long, beautiful hair but was set on fire by a jealous hare and had to jump into a nearby pool. The hippo lost most of his hair and was too embarrassed to leave the water.[70]

Ever since Obaysch inspired the Hippopotamus Polka, hippos have been popular animals in Western culture for their rotund appearance that many consider comical.[63] Stories of hippos like Huberta who became a celebrity in South Africa in the 1930s for trekking across the country;[71] or the tale of Owen and Mzee, a hippo and tortoise who developed an intimate bond; have amused people who have bought hippo books, merchandise, and many a stuffed hippo toy.[72][73] Hippos were mentioned in the novelty Christmas song "I Want a Hippopotamus for Christmas" that became a hit for child star Gayla Peevey in 1953.[74] They also feature in the songs "The Hippopotamus" and "Hippo Encore" by Flanders and Swann, with the famous refrain Mud, Mud, Glorious Mud. They even inspired a popular board game, Hungry Hungry Hippos. Hippos have also been popular cartoon characters, where their rotund frame is used for humorous effect. The Disney film Fantasia featured a ballerina hippopotamus dancing to the opera, La Gioconda.[38] Other cartoon hippos have included Hanna-Barbera's Peter Potamus, the book and TV series George and Martha, Flavio and Marita on the Animaniacs, Pat of the French duo Pat et Stanley, The Backyardigan's Tasha, and Gloria and Moto-Moto from the Madagascar franchise. A Sesame Street cartoon from the early 1970s features a hippo who lives in the country and likes it quiet, while being disturbed when the mouse who likes it loud moves in with her.[citation needed]

The hippopotamus characters "Happy Hippos" were created in 1988 by the French designer Andre Roche [77] based in Munich, to be hidden in the "Kinder Surprise egg" of the Italian chocolate company Ferrero SpA. These characters were not placid like real hippos[contradiction] but rather cute and lively, and had such a success that they reappeared several times in different products of this company in the following years, increasing their popularity worldwide each time.[citation needed] The Nintendo Company published in the years 2001 and 2007 Game Boy adventures of them. In the game of chess, the hippopotamus lends its name to the Hippopotamus Defense, an opening system, which is generally considered weak.The River Horse is a popular outdoor sculpture at George Washington University, Washington, D.C. Botswana, Moremi National Park, Moremi Game reserve, private Reserve, Farm, chobe National park, Chobe Game Reserve, Zambia, Zambezi River, Livingstone, Zimbabwe, Kenya, Tanzania, Wildlife Conservation Project, Maramba River Lodge, South Africa, Krugger National Park. art beach blue bw california canada canon china city concert de england europe family festival film flower flowers food france friends green instagramapp iphoneography italy japan live london music nature new newyork night nikon nyc paris park party people photography portrait red sky snow square squareformat street summer sunset travel trip uk usa vacation water wedding white winter

Hippopotamuses love water, which is why the Greeks named them the "river horse." Hippos spend up to 16 hours a day submerged in rivers and lakes to keep their massive bodies cool under the hot African sun. Hippos are graceful in water, good swimmers, and can hold their breath underwater for up to five minutes. However, they are often large enough to simply walk or stand on the lake floor, or lie in the shallows. Their eyes and nostrils are located high on their heads, which allows them to see and breathe while mostly submerged. Hippos also bask on the shoreline and secrete an oily red substance, which gave rise to the myth that they sweat blood. The liquid is actually a skin moistener and sunblock that may also provide protection against germs. At sunset, hippopotamuses leave the water and travel overland to graze. They may travel 6 miles (10 kilometers) in a night, along single-file pathways, to consume some 80 pounds (35 kilograms) of grass. Considering their enormous size, a hippo's food intake is relatively low. If threatened on land hippos may run for the water—they can match a human's speed for short distances. Hippo calves weigh nearly 100 pounds (45 kilograms) at birth and can suckle on land or underwater by closing their ears and nostrils. Each female has only one calf every two years. Soon after birth, mother and young join schools that provide some protection against crocodiles, lions, and hyenas. Hippos once had a broader distribution but now live in eastern central and southern sub-Saharan Africa, where their populations are in decline. A partially submerged hippopotamus tries to keep cool in the hot African sun. The hippopotamus (Hippopotamus amphibius), or hippo, from the ancient Greek for "river horse" (ἱπποπόταμος), is a large, mostly herbivorous mammal in sub-Saharan Africa, and one of only two extant species in the family Hippopotamidae (the other is the Pygmy Hippopotamus.) After the elephant and rhinoceros, the hippopotamus is the third largest land mammal and the heaviest extant artiodactyl. Despite their physical resemblance to pigs and other terrestrial even-toed ungulates, their closest living relatives are cetaceans (whales, porpoises, etc.) from which they diverged about 55 million years ago. The common ancestor of whales and hippos split from other even-toed ungulates around 60 million years ago. The earliest known hippopotamus fossils, belonging to the genus Kenyapotamus in Africa, date to around 16 million years ago.

The hippopotamus is semi-aquatic, inhabiting rivers, lakes and mangrove swamps, where territorial bulls preside over a stretch of river and groups of 5 to 30 females and young. During the day they remain cool by staying in the water or mud; reproduction and childbirth both occur in water. They emerge at dusk to graze on grass. While hippopotamuses rest near each other in the water, grazing is a solitary activity and hippos are not territorial on land. Hippos are recognizable by their barrel-shaped torso, enormous mouth and teeth, nearly hairless body, stubby legs and tremendous size. It is the third largest land mammal by weight (between 1½ and 3 tonnes), behind the white rhinoceros (1½ to 3½ tonnes) and the three species of elephant (3 to 9 tonnes). The hippopotamus is one of the largest quadrupeds and despite its stocky shape and short legs, it can easily outrun a human. Hippos have been clocked at 30 km/h (19 mph) over short distances. The hippopotamus is one of the most aggressive creatures in the world and is often regarded as one of the most dangerous animals in Africa. They are still threatened by habitat loss and poaching for their meat and ivory canine teeth. There is also a colony of non-zoo hippos in Colombia introduced by Pablo Escobar. The most recent theory of the origins of Hippopotamidae suggests that hippos and whales shared a common semi-aquatic ancestor that branched off from other artiodactyls around 60 million years ago.[13][15] This hypothesized ancestral group likely split into two branches around 54 million years ago.[12] One branch would evolve into cetaceans, possibly beginning about 52 million years ago with the proto-whale Pakicetus and other early whale ancestors collectively known as Archaeoceti, which eventually underwent aquatic adaptation into the completely aquatic cetaceans.[17] The other branch became the anthracotheres, a large family of four-legged beasts, the earliest of whom in the late Eocene would have resembled skinny hippopotamuses with comparatively small and narrow heads. All branches of the anthracotheres, except that which evolved into Hippopotamidae, became extinct during the Pliocene without leaving any descendants.[15]

A rough evolutionary lineage can be traced from Eocene and Oligocene species: Anthracotherium and Elomeryx to the Miocene Merycopotamus and Libycosaurus and the very latest anthracotheres in the Pliocene.[18] Merycopotamus, Libycosaurus and all hippopotamids can be considered to form a clade, with Libycosaurus being more closely related to hippos. Their common ancestor would have lived in the Miocene, about 20 million years ago. Hippopotamids are therefore deeply nested within the family Anthracotheriidae. The Hippopotamidae are believed to have evolved in Africa; the oldest known hippopotamid is the genus Kenyapotamus which lived in Africa from 16 to 8 million years ago. While hippopotamid species spread across Asia and Europe, no hippopotamuses have ever been discovered in the Americas, although various anthracothere genera emigrated into North America during the early Oligocene. From 7.5 to 1.8 million years ago an ancestor to the modern hippopotamus, Archaeopotamus, lived in Africa and the Middle East.[19]

While the fossil record of hippos is still poorly understood, the two modern genera, Hippopotamus and Choeropsis (sometimes Hexaprotodon), may have diverged as far back as 8 million years ago. Taxonomists disagree whether or not the modern Pygmy Hippopotamus is a member of Hexaprotodon —an apparently paraphyletic genus also embracing many extinct Asian hippopotamuses that is more closely related to Hippopotamus, or Choeropsis —an older and basal genus.[18][19]

[edit]Extinct species

Three species of Malagasy Hippopotamus became extinct during the Holocene on Madagascar, one of them within the past 1,000 years. The Malagasy Hippos were smaller than the modern hippopotamus, likely through the process of insular dwarfism.[20] There is fossil evidence that many Malagasy Hippos were hunted by humans, a likely factor in their eventual extinction.[20] Isolated members of Malagasy Hippopotamus may have survived in remote pockets; in 1976, villagers described a living animal called the Kilopilopitsofy, which may have been a Malagasy Hippopotamus.[21]

Two species of Hippopotamus, the European Hippopotamus (H. antiquus) and H. gorgops ranged throughout continental Europe and the British Isles. Both species became extinct before the last glaciation. Ancestors of European Hippos found their way to many islands of the Mediterranean during the Pleistocene.[22] Both species were larger than the modern hippopotamus, averaging about 1 meter (3.3 feet) longer. The Pleistocene also saw a number of dwarf species evolve on several Mediterranean islands including Crete (H. creutzburgi), Cyprus (H. minor), Malta (H. melitensis) and Sicily (H. pentlandi). Of these, the Cyprus Dwarf Hippopotamus, survived until the end of the Pleistocene or early Holocene. Evidence from an archaeological site Aetokremnos, continues to cause debate on whether or not the species was encountered, and was driven to extinction, by man. Hippopotamuses are among the largest living mammals; only elephants and some rhinoceroses and whales are heavier. They can live in the water or on land. Their specific gravity allows them to sink and walk or run along the bottom of a river. Hippos are considered megafauna, but unlike all other African megafauna, hippos have adapted for a semi-aquatic life in freshwater lakes and rivers.[9]:3 A hippo's lifespan is typically 40–50 years.[6]:277 Donna the Hippo, 60, was the oldest living hippo in captivity. She lived at the Mesker Park Zoo in Evansville, Indiana, USA[24][25] until her death on August 1, 2012. The oldest hippo ever recorded was called Tanga; she lived in Munich, Germany, and died in 1995 at the age of 61.[26]

Because of their enormous size, hippopotamuses are difficult to weigh in the wild. Most estimates of the weight come from culling operations that were carried out in the 1960s. The average weights for adult males ranged between 1,500–1,800 kg (3,300–4,000 lb). Females are smaller than their male counterparts, with average weights measuring between 1,300–1,500 kg (2,900–3,300 lb).[9]:12 Older males can get much larger, reaching at least 3,200 kg (7,100 lb) with a few exceptional specimens exceeding 3,600 kg (7,900 lb).[27][28] The heaviest known hippopotamus weighed approximately 4,500 kg (9,900 lb).[29] Male hippos appear to continue growing throughout their lives; females reach a maximum weight at around age 25.[30]

Hippos measure 3.3 to 5.2 meters (11 to 17 ft) long, including a tail of about 56 centimeters (22 in) in length and average about 1.5 meters (5 ft) tall at the shoulder.[31][32] The range of hippopotamus sizes overlaps with the range of the white rhinoceros; use of different metrics makes it unclear which is the largest land animal after elephants. Even though they are bulky animals, hippopotamuses can run faster than a human on land. Estimates of their running speed vary from 30 km/h (18 mph) to 40 km/h (25 mph), or even 50 km/h (30 mph). The hippo can maintain these higher speeds for only a few hundred meters. Despite being semi-aquatic and having webbed feet, an adult hippo is not a particularly good swimmer nor can it float. It is rarely found in deep water; when it is, the animal moves by porpoise-like leaps from the bottom. The eyes, ears, and nostrils of hippos are placed high on the roof of the skull. This allows them to be in the water with most of their body submerged in the waters and mud of tropical rivers to stay cool and prevent sunburn. Their skeletal structure is graviportal, adapted to carrying the animals' enormous weight. Hippopotamuses have small legs (relative to other megafauna) because the water in which they live reduces the weight burden. Unlike most other semi-aquatic animals, the hippopotamus has very little hair.[6]:260 The skin is 6 in (15 cm) thick,[33] providing it great protection against conspecifics and predators. The animals's upper parts are purplish-gray to blue-black while the under parts and areas around the eyes and ears can be brownish-pink.[6]:260 The testes of the males descend only partially and a scrotum is not present. In addition, the penis retracts into the body when not erect. The genitals of the female are unusual in that the vagina is ridged and two large diverticula protrude from the vulval vestibule. The function of these is unknown.[9]:28–29

The hippo's jaw is powered by a large masseter and a well developed digastric; the latter loops up behind the former to the hyoid.[6]:259 The jaw hinge is located far back enough to allow the animal to open its mouth at almost 180°.[9]:17 On the National Geographic Channel television program, "Dangerous Encounters with Brady Barr", Dr. Brady Barr measured the bite force of an adult female hippo at 8100 N (1821 lbf); Barr also attempted to measure the bite pressure of an adult male hippo, but had to abandon the attempt due to the male's aggressiveness.[34] Hippopotamus teeth sharpen themselves as they grind together. The lower canines and lower incisors are enlarged, especially in males, and grow continuously. The incisors can reach 40 cm (16 in) while the canines reach up to 50 cm (20 in).[33]

Their skin secretes a natural sunscreen substance which is red-colored. The secretion is sometimes referred to as "blood sweat," but is neither blood nor sweat. This secretion is initially colorless and turns red-orange within minutes, eventually becoming brown. Two distinct pigments have been identified in the secretions, one red (hipposudoric acid) and one orange (norhipposudoric acid). The two pigments are highly acidic compounds. Both pigments inhibit the growth of disease-causing bacteria; as well, the light absorption of both pigments peaks in the ultraviolet range, creating a sunscreen effect. All hippos, even those with different diets, secrete the pigments, so it does not appear that food is the source of the pigments. Instead, the animals may synthesize the pigments from precursors such as the amino acid tyrosine. Hippopotamus amphibius was widespread in North Africa and Europe during the Eemian[36] and late Pleistocene until about 30,000 years ago. The species was common in Egypt's Nile region during antiquity but has since been extirpated. Pliny the Elder writes that, in his time, the best location in Egypt for capturing this animal was in the Saite nome;[37] the animal could still be found along the Damietta branch after the Arab Conquest in 639. Hippos are still found in the rivers and lakes of the northern Democratic Republic of the Congo, Uganda, Tanzania and Kenya, north through to Ethiopia, Somalia and Sudan, west from Ghana to Gambia, and also in Southern Africa (Botswana, Republic of South Africa, Zimbabwe, Zambia, Mozambique). Genetic evidence suggests that common hippos in Africa experienced a marked population expansion during or after the Pleistocene Epoch, attributed to an increase in water bodies at the end of the era. These findings have important conservation implications as hippo populations across the continent are currently threatened by loss of access to fresh water.[10] Hippos are also subject to unregulated hunting and poaching. In May 2006 the hippopotamus was identified as a vulnerable species on the IUCN Red List drawn up by the World Conservation Union (IUCN), with an estimated population of between 125,000 and 150,000 hippos, a decline of between 7% and 20% since the IUCN's 1996 study. Zambia (40,000) and Tanzania (20,000–30,000) possess the largest populations.[1]

The hippo population declined most dramatically in the Democratic Republic of the Congo.[38] The population in Virunga National Park had dropped to 800 or 900 from around 29,000 in the mid 1970s.[39] The decline is attributed to the disruptions caused by the Second Congo War.[39] The poachers are believed to be former Hutu rebels, poorly paid Congolese soldiers, and local militia groups.[39] Reasons for poaching include the belief that hippos are harmful to society, and also for money.[40] The sale of hippo meat is illegal, but black-market sales are difficult for Virunga National Park officers to track. Invasive potential

In the late 1980s, Pablo Escobar kept four hippos in a private menagerie at his residence in Hacienda Napoles, 100 km east of Medellín, Colombia, after buying them in New Orleans. They were deemed too difficult to seize and move after Escobar's fall, and hence left on the untended estate. By 2007, the animals had multiplied to 16 and had taken to roaming the area for food in the nearby Magdalena River.[41] In 2009, two adults and one calf escaped the herd, and after attacking humans and killing cattle, one of the adults (called "Pepe") was killed by hunters under authorization of the local authorities.[42][43] It is unknown what kind of effects the presence of hippos might have on the ecosystem in Colombia. According to experts interviewed by W Radio Colombia, the animals could survive in the Colombian jungles. It is believed that the lack of control from the Colombian government, which is not used to dealing with this species, could result in human fatalities. Hippos spend most of their days wallowing in the water or the mud, with the other members of their pod. The water serves to keep their body temperature down, and to keep their skin from drying out. With the exception of eating, most of hippopotamuses' lives —from childbirth, fighting with other hippos, to reproduction— occur in the water. Hippos leave the water at dusk and travel inland, sometimes up to 8 kilometers (5 mi), to graze on short grass, their main source of food. They spend four to five hours grazing and can consume 68 kilograms (150 lb) of grass each night.[44] Like almost any herbivore, they will consume many other plants if presented with them, but their diet in nature consists almost entirely of grass, with only minimal consumption of aquatic plants.[45] Hippos have (rarely) been filmed eating carrion, usually close to the water. There are other reports of meat-eating, and even cannibalism and predation.[46] The stomach anatomy of a hippo is not suited to carnivory, and meat-eating is likely caused by aberrant behavior or nutritional stress.[9]:84

The diet of hippos consists mostly of terrestrial grasses, even though they spend most of their time in the water. Most of their defecation occurs in the water, creating allochthonous deposits of organic matter along the river beds. These deposits have an unclear ecological function.[45] Because of their size and their habit of taking the same paths to feed, hippos can have a significant impact on the land they walk across, both by keeping the land clear of vegetation and depressing the ground. Over prolonged periods hippos can divert the paths of swamps and channels.[47]

Adult hippos move at speeds up to 8 km/h (5 mph) in water. Adult hippos typically resurface to breathe every three to five minutes. The young have to breathe every two to three minutes.[9]:4 The process of surfacing and breathing is automatic, and even a hippo sleeping underwater will rise and breathe without waking. A hippo closes its nostrils when it submerges into the water. As with fish and turtles on a coral reef, hippo occasionally visit cleaning stations and signal by wide-open mouth their readiness for being cleaned of parasites by certain species of fish. This situation is an example of mutualism in which the hippo benefits from the cleansing while the fish receive food.[ Studying the interaction of male and female hippopotamuses has long been complicated by the fact that hippos are not sexually dimorphic and thus females and young males are almost indistinguishable in the field.[49] Although hippos like to lie close to each other, they do not seem to form social bonds except between mothers and daughters, and are not social animals. The reason they huddle close together is unknown.[9]:49

Hippopotamuses are territorial only in water, where a bull presides over a small stretch of river, on average 250 meters in length, and containing ten females. The largest pods can contain over 100 hippos.[9]:50 Other bachelors are allowed in a bull's stretch, as long as they behave submissively toward the bull. The territories of hippos exist to establish mating rights. Within the pods, the hippos tend to segregate by gender. Bachelors will lounge near other bachelors, females with other females, and the bull on his own. When hippos emerge from the water to graze, they do so individually.[9]:4

Hippopotamuses appear to communicate verbally, through grunts and bellows, and it is thought that they may practice echolocation, but the purpose of these vocalizations is currently unknown. Hippos have the unique ability to hold their head partially above the water and send out a cry that travels through both water and air; hippos above and under water will respond.[ Female hippos reach sexual maturity at five to six years of age and have a gestation period of 8 months. A study of endocrine systems revealed that female hippopotamuses may begin puberty as early as 3 or 4 years of age.[51] Males reach maturity at around 7.5 years. A study of hippopotamus reproductive behavior in Uganda showed that peak conceptions occurred during the end of the wet season in the summer, and peak births occurred toward the beginning of the wet season in late winter. This is because of the female's estrous cycle; as with most large mammals, male hippopotamus spermatozoa is active year round. Studies of hippos in Zambia and South Africa also showed evidence of births occurring at the start of the wet season.[9]:60–61 After becoming pregnant, a female hippopotamus will typically not begin ovulation again for 17 months.[51]

Mating occurs in the water with the female submerged for most of the encounter,[9]:63 her head emerging periodically to draw breath. Baby hippos are born underwater at a weight between 25 and 45 kg (60–110 lb) and an average length of around 127 cm (50 in) and must swim to the surface to take their first breath. A mother typically gives birth to only one hippo, although twins also occur. The young often rest on their mothers' backs when in water that is too deep for them, and they swim underwater to suckle. They also will suckle on land when the mother leaves the water. Weaning starts between six and eight months after birth and most calves are fully weaned after a year.[9]:64 Like many other large mammals, hippos are described as K-strategists, in this case typically producing just one large, well-developed infant every couple of years (rather than large numbers of small, poorly developed young several times per year as is common among small mammals such as rodents. Hippopotamuses are by nature very aggressive animals, especially when young calves are present. Frequent targets of their aggression include crocodiles, which often inhabit the same river habitat as hippos. Nile crocodiles, lions and spotted hyenas are known to prey on young hippos.[53] Hippos are very aggressive towards humans, whom they commonly attack whether in boats or on land with no apparent provocation.[54] They are widely considered to be one of the most dangerous large animals in Africa.[55][56]

To mark territory, hippos spin their tails while defecating to distribute their excrement over a greater area.[57] Likely for the same reason, hippos are retromingent – that is, they urinate backwards.[58] When in combat, male hippos use their incisors to block each others attacks, and their lower canines to inflict damage.[6]:260 Hippos rarely kill each other, even in territorial challenges. Usually a territorial bull and a challenging bachelor will stop fighting when it is clear that one hippo is stronger. When hippos become overpopulated, or when a habitat starts to shrink, bulls will sometimes attempt to kill infants, but this behavior is not common under normal conditions.[52] Some incidents of hippo cannibalism have been documented, but it is believed to be the behavior of distressed or sick hippos, and not healthy behavior. The earliest evidence of human interaction with hippos comes from butchery cut marks upon hippo bones at Bouri Formation dated around 160,000 years ago.[59] Later rock paintings and engravings showing hippos being hunted have been found in the mountains of the central Sahara dated 4,000–5,000 years ago near Djanet in the Tassili n'Ajjer Mountains.[9]:1 The ancient Egyptians recognized the hippo as a ferocious denizen of the Nile.

The hippopotamus was also known to the Greeks and Romans. The Greek historian Herodotus described the hippopotamus in The Histories (written circa 440 BC) and the Roman Historian Pliny the Elder wrote about the hippopotamus in his encyclopedia Naturalis Historia (written circa 77 AD).[37][60] Hippopotamus was one of the many exotic animals brought to fight gladiators in Rome by the emperor Philip I the Arab to commemorate Rome's 1000 years anniversary in 248 AD. Silver coins with hippo's image were minted that year.[citation needed]

Zulu warriors preferred to be as brave as a hippopotamus, since even lions were not considered as brave. "In 1888, Captain Baden-Powell was part of a column searching for the Zulu chief Dinizulu, who was leading the Usutu people in revolt against the British colonists. The column was joined by John Dunn, a white Zulu chief, who led an impi (army) of 2000 Zulu warriors to join the British." [61]

The words of the Zulu anthem sounded like this:

"Een-gonyama Gonyama! "Invooboo! Yah-bo! Yah-bo! Invooboo!"

"John Dunn was at the head of his impi. [Baden Powell] asked him to translate the Zulu anthem his men had been singing. Dunn laughed and replied: "He is a lion. Yes, he is better than a lion—he is a hippopotamus. Hippopotamuses have long been popular zoo animals. The first zoo hippo in modern history was Obaysch who arrived at the London Zoo on May 25, 1850, where he attracted up to 10,000 visitors a day and inspired a popular song, the Hippopotamus Polka.[63] Hippos have remained popular zoo animals since Obaysch, and generally breed well in captivity. Their birth rates are lower than in the wild, but this is attributed to zoos' not wanting to breed as many hippos as possible, since hippos are large and relatively expensive animals to maintain.[9]:129[63]

Like many zoo animals, hippos were traditionally displayed in concrete exhibits. In the case of hippos, they usually had a pool of water and patch of grass. In the 1980s, zoo designers increasingly designed exhibits that reflected the animals' native habitats. The best known of these, the Toledo Zoo Hippoquarium, features a 360,000 gallon pool for hippos.[64] In 1987, researchers were able to tape, for the first time, an underwater birth (as in the wild) at the Toledo Zoo. The exhibit was so popular that the hippos became the logo of the Toledo Zoo. A red hippo represented the Ancient Egyptian god Set; the thigh is the 'phallic leg of set' symbolic of virility. Set's consort Tawaret was also seen as part hippo.[66] The hippopotamus-headed Tawaret was a goddess of protection in pregnancy and childbirth, because ancient Egyptians recognized the protective nature of a female hippopotamus toward her young.[67] The Ijo people wore masks of aquatic animals like the hippo when practicing their water spirit cults.[68] The Behemoth from the Book of Job, 40:15–24 is also thought to be based on a hippo.[69]

Hippos have been the subjects of various African folktales. According to a Bushmen story; when the Creator assigned each animal their place in nature, the hippos wanted to live in the water, but were refused out of fear that they might eat all the fish. After begging and pleading, the hippos were finally allowed to live in the water on the conditions that they would eat grass instead of fish and would fling their dung so that it can be inspected for fish bones.[70] In a Ndebele tale, the hippo originally had long, beautiful hair but was set on fire by a jealous hare and had to jump into a nearby pool. The hippo lost most of his hair and was too embarrassed to leave the water.[70]

Ever since Obaysch inspired the Hippopotamus Polka, hippos have been popular animals in Western culture for their rotund appearance that many consider comical.[63] Stories of hippos like Huberta who became a celebrity in South Africa in the 1930s for trekking across the country;[71] or the tale of Owen and Mzee, a hippo and tortoise who developed an intimate bond; have amused people who have bought hippo books, merchandise, and many a stuffed hippo toy.[72][73] Hippos were mentioned in the novelty Christmas song "I Want a Hippopotamus for Christmas" that became a hit for child star Gayla Peevey in 1953.[74] They also feature in the songs "The Hippopotamus" and "Hippo Encore" by Flanders and Swann, with the famous refrain Mud, Mud, Glorious Mud. They even inspired a popular board game, Hungry Hungry Hippos. Hippos have also been popular cartoon characters, where their rotund frame is used for humorous effect. The Disney film Fantasia featured a ballerina hippopotamus dancing to the opera, La Gioconda.[38] Other cartoon hippos have included Hanna-Barbera's Peter Potamus, the book and TV series George and Martha, Flavio and Marita on the Animaniacs, Pat of the French duo Pat et Stanley, The Backyardigan's Tasha, and Gloria and Moto-Moto from the Madagascar franchise. A Sesame Street cartoon from the early 1970s features a hippo who lives in the country and likes it quiet, while being disturbed when the mouse who likes it loud moves in with her.[citation needed]

The hippopotamus characters "Happy Hippos" were created in 1988 by the French designer Andre Roche [77] based in Munich, to be hidden in the "Kinder Surprise egg" of the Italian chocolate company Ferrero SpA. These characters were not placid like real hippos[contradiction] but rather cute and lively, and had such a success that they reappeared several times in different products of this company in the following years, increasing their popularity worldwide each time.[citation needed] The Nintendo Company published in the years 2001 and 2007 Game Boy adventures of them. In the game of chess, the hippopotamus lends its name to the Hippopotamus Defense, an opening system, which is generally considered weak.The River Horse is a popular outdoor sculpture at George Washington University, Washington, D.C. Botswana, Moremi National Park, Moremi Game reserve, private Reserve, Farm, chobe National park, Chobe Game Reserve, Zambia, Zambezi River, Livingstone, Zimbabwe, Kenya, Tanzania, Wildlife Conservation Project, Maramba River Lodge, South Africa, Krugger National Park. art beach blue bw california canada canon china city concert de england europe family festival film flower flowers food france friends green instagramapp iphoneography italy japan live london music nature new newyork night nikon nyc paris park party people photography portrait red sky snow square squareformat street summer sunset travel trip uk usa vacation water wedding white winter

Hippopotamuses love water, which is why the Greeks named them the "river horse." Hippos spend up to 16 hours a day submerged in rivers and lakes to keep their massive bodies cool under the hot African sun. Hippos are graceful in water, good swimmers, and can hold their breath underwater for up to five minutes. However, they are often large enough to simply walk or stand on the lake floor, or lie in the shallows. Their eyes and nostrils are located high on their heads, which allows them to see and breathe while mostly submerged. Hippos also bask on the shoreline and secrete an oily red substance, which gave rise to the myth that they sweat blood. The liquid is actually a skin moistener and sunblock that may also provide protection against germs. At sunset, hippopotamuses leave the water and travel overland to graze. They may travel 6 miles (10 kilometers) in a night, along single-file pathways, to consume some 80 pounds (35 kilograms) of grass. Considering their enormous size, a hippo's food intake is relatively low. If threatened on land hippos may run for the water—they can match a human's speed for short distances. Hippo calves weigh nearly 100 pounds (45 kilograms) at birth and can suckle on land or underwater by closing their ears and nostrils. Each female has only one calf every two years. Soon after birth, mother and young join schools that provide some protection against crocodiles, lions, and hyenas. Hippos once had a broader distribution but now live in eastern central and southern sub-Saharan Africa, where their populations are in decline. A partially submerged hippopotamus tries to keep cool in the hot African sun. The hippopotamus (Hippopotamus amphibius), or hippo, from the ancient Greek for "river horse" (ἱπποπόταμος), is a large, mostly herbivorous mammal in sub-Saharan Africa, and one of only two extant species in the family Hippopotamidae (the other is the Pygmy Hippopotamus.) After the elephant and rhinoceros, the hippopotamus is the third largest land mammal and the heaviest extant artiodactyl. Despite their physical resemblance to pigs and other terrestrial even-toed ungulates, their closest living relatives are cetaceans (whales, porpoises, etc.) from which they diverged about 55 million years ago. The common ancestor of whales and hippos split from other even-toed ungulates around 60 million years ago. The earliest known hippopotamus fossils, belonging to the genus Kenyapotamus in Africa, date to around 16 million years ago.

The hippopotamus is semi-aquatic, inhabiting rivers, lakes and mangrove swamps, where territorial bulls preside over a stretch of river and groups of 5 to 30 females and young. During the day they remain cool by staying in the water or mud; reproduction and childbirth both occur in water. They emerge at dusk to graze on grass. While hippopotamuses rest near each other in the water, grazing is a solitary activity and hippos are not territorial on land. Hippos are recognizable by their barrel-shaped torso, enormous mouth and teeth, nearly hairless body, stubby legs and tremendous size. It is the third largest land mammal by weight (between 1½ and 3 tonnes), behind the white rhinoceros (1½ to 3½ tonnes) and the three species of elephant (3 to 9 tonnes). The hippopotamus is one of the largest quadrupeds and despite its stocky shape and short legs, it can easily outrun a human. Hippos have been clocked at 30 km/h (19 mph) over short distances. The hippopotamus is one of the most aggressive creatures in the world and is often regarded as one of the most dangerous animals in Africa. They are still threatened by habitat loss and poaching for their meat and ivory canine teeth. There is also a colony of non-zoo hippos in Colombia introduced by Pablo Escobar. The most recent theory of the origins of Hippopotamidae suggests that hippos and whales shared a common semi-aquatic ancestor that branched off from other artiodactyls around 60 million years ago.[13][15] This hypothesized ancestral group likely split into two branches around 54 million years ago.[12] One branch would evolve into cetaceans, possibly beginning about 52 million years ago with the proto-whale Pakicetus and other early whale ancestors collectively known as Archaeoceti, which eventually underwent aquatic adaptation into the completely aquatic cetaceans.[17] The other branch became the anthracotheres, a large family of four-legged beasts, the earliest of whom in the late Eocene would have resembled skinny hippopotamuses with comparatively small and narrow heads. All branches of the anthracotheres, except that which evolved into Hippopotamidae, became extinct during the Pliocene without leaving any descendants.[15]

A rough evolutionary lineage can be traced from Eocene and Oligocene species: Anthracotherium and Elomeryx to the Miocene Merycopotamus and Libycosaurus and the very latest anthracotheres in the Pliocene.[18] Merycopotamus, Libycosaurus and all hippopotamids can be considered to form a clade, with Libycosaurus being more closely related to hippos. Their common ancestor would have lived in the Miocene, about 20 million years ago. Hippopotamids are therefore deeply nested within the family Anthracotheriidae. The Hippopotamidae are believed to have evolved in Africa; the oldest known hippopotamid is the genus Kenyapotamus which lived in Africa from 16 to 8 million years ago. While hippopotamid species spread across Asia and Europe, no hippopotamuses have ever been discovered in the Americas, although various anthracothere genera emigrated into North America during the early Oligocene. From 7.5 to 1.8 million years ago an ancestor to the modern hippopotamus, Archaeopotamus, lived in Africa and the Middle East.[19]

While the fossil record of hippos is still poorly understood, the two modern genera, Hippopotamus and Choeropsis (sometimes Hexaprotodon), may have diverged as far back as 8 million years ago. Taxonomists disagree whether or not the modern Pygmy Hippopotamus is a member of Hexaprotodon —an apparently paraphyletic genus also embracing many extinct Asian hippopotamuses that is more closely related to Hippopotamus, or Choeropsis —an older and basal genus.[18][19]

[edit]Extinct species

Three species of Malagasy Hippopotamus became extinct during the Holocene on Madagascar, one of them within the past 1,000 years. The Malagasy Hippos were smaller than the modern hippopotamus, likely through the process of insular dwarfism.[20] There is fossil evidence that many Malagasy Hippos were hunted by humans, a likely factor in their eventual extinction.[20] Isolated members of Malagasy Hippopotamus may have survived in remote pockets; in 1976, villagers described a living animal called the Kilopilopitsofy, which may have been a Malagasy Hippopotamus.[21]

Two species of Hippopotamus, the European Hippopotamus (H. antiquus) and H. gorgops ranged throughout continental Europe and the British Isles. Both species became extinct before the last glaciation. Ancestors of European Hippos found their way to many islands of the Mediterranean during the Pleistocene.[22] Both species were larger than the modern hippopotamus, averaging about 1 meter (3.3 feet) longer. The Pleistocene also saw a number of dwarf species evolve on several Mediterranean islands including Crete (H. creutzburgi), Cyprus (H. minor), Malta (H. melitensis) and Sicily (H. pentlandi). Of these, the Cyprus Dwarf Hippopotamus, survived until the end of the Pleistocene or early Holocene. Evidence from an archaeological site Aetokremnos, continues to cause debate on whether or not the species was encountered, and was driven to extinction, by man. Hippopotamuses are among the largest living mammals; only elephants and some rhinoceroses and whales are heavier. They can live in the water or on land. Their specific gravity allows them to sink and walk or run along the bottom of a river. Hippos are considered megafauna, but unlike all other African megafauna, hippos have adapted for a semi-aquatic life in freshwater lakes and rivers.[9]:3 A hippo's lifespan is typically 40–50 years.[6]:277 Donna the Hippo, 60, was the oldest living hippo in captivity. She lived at the Mesker Park Zoo in Evansville, Indiana, USA[24][25] until her death on August 1, 2012. The oldest hippo ever recorded was called Tanga; she lived in Munich, Germany, and died in 1995 at the age of 61.[26]

Because of their enormous size, hippopotamuses are difficult to weigh in the wild. Most estimates of the weight come from culling operations that were carried out in the 1960s. The average weights for adult males ranged between 1,500–1,800 kg (3,300–4,000 lb). Females are smaller than their male counterparts, with average weights measuring between 1,300–1,500 kg (2,900–3,300 lb).[9]:12 Older males can get much larger, reaching at least 3,200 kg (7,100 lb) with a few exceptional specimens exceeding 3,600 kg (7,900 lb).[27][28] The heaviest known hippopotamus weighed approximately 4,500 kg (9,900 lb).[29] Male hippos appear to continue growing throughout their lives; females reach a maximum weight at around age 25.[30]

Hippos measure 3.3 to 5.2 meters (11 to 17 ft) long, including a tail of about 56 centimeters (22 in) in length and average about 1.5 meters (5 ft) tall at the shoulder.[31][32] The range of hippopotamus sizes overlaps with the range of the white rhinoceros; use of different metrics makes it unclear which is the largest land animal after elephants. Even though they are bulky animals, hippopotamuses can run faster than a human on land. Estimates of their running speed vary from 30 km/h (18 mph) to 40 km/h (25 mph), or even 50 km/h (30 mph). The hippo can maintain these higher speeds for only a few hundred meters. Despite being semi-aquatic and having webbed feet, an adult hippo is not a particularly good swimmer nor can it float. It is rarely found in deep water; when it is, the animal moves by porpoise-like leaps from the bottom. The eyes, ears, and nostrils of hippos are placed high on the roof of the skull. This allows them to be in the water with most of their body submerged in the waters and mud of tropical rivers to stay cool and prevent sunburn. Their skeletal structure is graviportal, adapted to carrying the animals' enormous weight. Hippopotamuses have small legs (relative to other megafauna) because the water in which they live reduces the weight burden. Unlike most other semi-aquatic animals, the hippopotamus has very little hair.[6]:260 The skin is 6 in (15 cm) thick,[33] providing it great protection against conspecifics and predators. The animals's upper parts are purplish-gray to blue-black while the under parts and areas around the eyes and ears can be brownish-pink.[6]:260 The testes of the males descend only partially and a scrotum is not present. In addition, the penis retracts into the body when not erect. The genitals of the female are unusual in that the vagina is ridged and two large diverticula protrude from the vulval vestibule. The function of these is unknown.[9]:28–29

The hippo's jaw is powered by a large masseter and a well developed digastric; the latter loops up behind the former to the hyoid.[6]:259 The jaw hinge is located far back enough to allow the animal to open its mouth at almost 180°.[9]:17 On the National Geographic Channel television program, "Dangerous Encounters with Brady Barr", Dr. Brady Barr measured the bite force of an adult female hippo at 8100 N (1821 lbf); Barr also attempted to measure the bite pressure of an adult male hippo, but had to abandon the attempt due to the male's aggressiveness.[34] Hippopotamus teeth sharpen themselves as they grind together. The lower canines and lower incisors are enlarged, especially in males, and grow continuously. The incisors can reach 40 cm (16 in) while the canines reach up to 50 cm (20 in).[33]

Their skin secretes a natural sunscreen substance which is red-colored. The secretion is sometimes referred to as "blood sweat," but is neither blood nor sweat. This secretion is initially colorless and turns red-orange within minutes, eventually becoming brown. Two distinct pigments have been identified in the secretions, one red (hipposudoric acid) and one orange (norhipposudoric acid). The two pigments are highly acidic compounds. Both pigments inhibit the growth of disease-causing bacteria; as well, the light absorption of both pigments peaks in the ultraviolet range, creating a sunscreen effect. All hippos, even those with different diets, secrete the pigments, so it does not appear that food is the source of the pigments. Instead, the animals may synthesize the pigments from precursors such as the amino acid tyrosine. Hippopotamus amphibius was widespread in North Africa and Europe during the Eemian[36] and late Pleistocene until about 30,000 years ago. The species was common in Egypt's Nile region during antiquity but has since been extirpated. Pliny the Elder writes that, in his time, the best location in Egypt for capturing this animal was in the Saite nome;[37] the animal could still be found along the Damietta branch after the Arab Conquest in 639. Hippos are still found in the rivers and lakes of the northern Democratic Republic of the Congo, Uganda, Tanzania and Kenya, north through to Ethiopia, Somalia and Sudan, west from Ghana to Gambia, and also in Southern Africa (Botswana, Republic of South Africa, Zimbabwe, Zambia, Mozambique). Genetic evidence suggests that common hippos in Africa experienced a marked population expansion during or after the Pleistocene Epoch, attributed to an increase in water bodies at the end of the era. These findings have important conservation implications as hippo populations across the continent are currently threatened by loss of access to fresh water.[10] Hippos are also subject to unregulated hunting and poaching. In May 2006 the hippopotamus was identified as a vulnerable species on the IUCN Red List drawn up by the World Conservation Union (IUCN), with an estimated population of between 125,000 and 150,000 hippos, a decline of between 7% and 20% since the IUCN's 1996 study. Zambia (40,000) and Tanzania (20,000–30,000) possess the largest populations.[1]

The hippo population declined most dramatically in the Democratic Republic of the Congo.[38] The population in Virunga National Park had dropped to 800 or 900 from around 29,000 in the mid 1970s.[39] The decline is attributed to the disruptions caused by the Second Congo War.[39] The poachers are believed to be former Hutu rebels, poorly paid Congolese soldiers, and local militia groups.[39] Reasons for poaching include the belief that hippos are harmful to society, and also for money.[40] The sale of hippo meat is illegal, but black-market sales are difficult for Virunga National Park officers to track. Invasive potential

In the late 1980s, Pablo Escobar kept four hippos in a private menagerie at his residence in Hacienda Napoles, 100 km east of Medellín, Colombia, after buying them in New Orleans. They were deemed too difficult to seize and move after Escobar's fall, and hence left on the untended estate. By 2007, the animals had multiplied to 16 and had taken to roaming the area for food in the nearby Magdalena River.[41] In 2009, two adults and one calf escaped the herd, and after attacking humans and killing cattle, one of the adults (called "Pepe") was killed by hunters under authorization of the local authorities.[42][43] It is unknown what kind of effects the presence of hippos might have on the ecosystem in Colombia. According to experts interviewed by W Radio Colombia, the animals could survive in the Colombian jungles. It is believed that the lack of control from the Colombian government, which is not used to dealing with this species, could result in human fatalities. Hippos spend most of their days wallowing in the water or the mud, with the other members of their pod. The water serves to keep their body temperature down, and to keep their skin from drying out. With the exception of eating, most of hippopotamuses' lives —from childbirth, fighting with other hippos, to reproduction— occur in the water. Hippos leave the water at dusk and travel inland, sometimes up to 8 kilometers (5 mi), to graze on short grass, their main source of food. They spend four to five hours grazing and can consume 68 kilograms (150 lb) of grass each night.[44] Like almost any herbivore, they will consume many other plants if presented with them, but their diet in nature consists almost entirely of grass, with only minimal consumption of aquatic plants.[45] Hippos have (rarely) been filmed eating carrion, usually close to the water. There are other reports of meat-eating, and even cannibalism and predation.[46] The stomach anatomy of a hippo is not suited to carnivory, and meat-eating is likely caused by aberrant behavior or nutritional stress.[9]:84

The diet of hippos consists mostly of terrestrial grasses, even though they spend most of their time in the water. Most of their defecation occurs in the water, creating allochthonous deposits of organic matter along the river beds. These deposits have an unclear ecological function.[45] Because of their size and their habit of taking the same paths to feed, hippos can have a significant impact on the land they walk across, both by keeping the land clear of vegetation and depressing the ground. Over prolonged periods hippos can divert the paths of swamps and channels.[47]

Adult hippos move at speeds up to 8 km/h (5 mph) in water. Adult hippos typically resurface to breathe every three to five minutes. The young have to breathe every two to three minutes.[9]:4 The process of surfacing and breathing is automatic, and even a hippo sleeping underwater will rise and breathe without waking. A hippo closes its nostrils when it submerges into the water. As with fish and turtles on a coral reef, hippo occasionally visit cleaning stations and signal by wide-open mouth their readiness for being cleaned of parasites by certain species of fish. This situation is an example of mutualism in which the hippo benefits from the cleansing while the fish receive food.[ Studying the interaction of male and female hippopotamuses has long been complicated by the fact that hippos are not sexually dimorphic and thus females and young males are almost indistinguishable in the field.[49] Although hippos like to lie close to each other, they do not seem to form social bonds except between mothers and daughters, and are not social animals. The reason they huddle close together is unknown.[9]:49

Hippopotamuses are territorial only in water, where a bull presides over a small stretch of river, on average 250 meters in length, and containing ten females. The largest pods can contain over 100 hippos.[9]:50 Other bachelors are allowed in a bull's stretch, as long as they behave submissively toward the bull. The territories of hippos exist to establish mating rights. Within the pods, the hippos tend to segregate by gender. Bachelors will lounge near other bachelors, females with other females, and the bull on his own. When hippos emerge from the water to graze, they do so individually.[9]:4

Hippopotamuses appear to communicate verbally, through grunts and bellows, and it is thought that they may practice echolocation, but the purpose of these vocalizations is currently unknown. Hippos have the unique ability to hold their head partially above the water and send out a cry that travels through both water and air; hippos above and under water will respond.[ Female hippos reach sexual maturity at five to six years of age and have a gestation period of 8 months. A study of endocrine systems revealed that female hippopotamuses may begin puberty as early as 3 or 4 years of age.[51] Males reach maturity at around 7.5 years. A study of hippopotamus reproductive behavior in Uganda showed that peak conceptions occurred during the end of the wet season in the summer, and peak births occurred toward the beginning of the wet season in late winter. This is because of the female's estrous cycle; as with most large mammals, male hippopotamus spermatozoa is active year round. Studies of hippos in Zambia and South Africa also showed evidence of births occurring at the start of the wet season.[9]:60–61 After becoming pregnant, a female hippopotamus will typically not begin ovulation again for 17 months.[51]

Mating occurs in the water with the female submerged for most of the encounter,[9]:63 her head emerging periodically to draw breath. Baby hippos are born underwater at a weight between 25 and 45 kg (60–110 lb) and an average length of around 127 cm (50 in) and must swim to the surface to take their first breath. A mother typically gives birth to only one hippo, although twins also occur. The young often rest on their mothers' backs when in water that is too deep for them, and they swim underwater to suckle. They also will suckle on land when the mother leaves the water. Weaning starts between six and eight months after birth and most calves are fully weaned after a year.[9]:64 Like many other large mammals, hippos are described as K-strategists, in this case typically producing just one large, well-developed infant every couple of years (rather than large numbers of small, poorly developed young several times per year as is common among small mammals such as rodents. Hippopotamuses are by nature very aggressive animals, especially when young calves are present. Frequent targets of their aggression include crocodiles, which often inhabit the same river habitat as hippos. Nile crocodiles, lions and spotted hyenas are known to prey on young hippos.[53] Hippos are very aggressive towards humans, whom they commonly attack whether in boats or on land with no apparent provocation.[54] They are widely considered to be one of the most dangerous large animals in Africa.[55][56]

To mark territory, hippos spin their tails while defecating to distribute their excrement over a greater area.[57] Likely for the same reason, hippos are retromingent – that is, they urinate backwards.[58] When in combat, male hippos use their incisors to block each others attacks, and their lower canines to inflict damage.[6]:260 Hippos rarely kill each other, even in territorial challenges. Usually a territorial bull and a challenging bachelor will stop fighting when it is clear that one hippo is stronger. When hippos become overpopulated, or when a habitat starts to shrink, bulls will sometimes attempt to kill infants, but this behavior is not common under normal conditions.[52] Some incidents of hippo cannibalism have been documented, but it is believed to be the behavior of distressed or sick hippos, and not healthy behavior. The earliest evidence of human interaction with hippos comes from butchery cut marks upon hippo bones at Bouri Formation dated around 160,000 years ago.[59] Later rock paintings and engravings showing hippos being hunted have been found in the mountains of the central Sahara dated 4,000–5,000 years ago near Djanet in the Tassili n'Ajjer Mountains.[9]:1 The ancient Egyptians recognized the hippo as a ferocious denizen of the Nile.

The hippopotamus was also known to the Greeks and Romans. The Greek historian Herodotus described the hippopotamus in The Histories (written circa 440 BC) and the Roman Historian Pliny the Elder wrote about the hippopotamus in his encyclopedia Naturalis Historia (written circa 77 AD).[37][60] Hippopotamus was one of the many exotic animals brought to fight gladiators in Rome by the emperor Philip I the Arab to commemorate Rome's 1000 years anniversary in 248 AD. Silver coins with hippo's image were minted that year.[citation needed]

Zulu warriors preferred to be as brave as a hippopotamus, since even lions were not considered as brave. "In 1888, Captain Baden-Powell was part of a column searching for the Zulu chief Dinizulu, who was leading the Usutu people in revolt against the British colonists. The column was joined by John Dunn, a white Zulu chief, who led an impi (army) of 2000 Zulu warriors to join the British." [61]

The words of the Zulu anthem sounded like this:

"Een-gonyama Gonyama! "Invooboo! Yah-bo! Yah-bo! Invooboo!"

"John Dunn was at the head of his impi. [Baden Powell] asked him to translate the Zulu anthem his men had been singing. Dunn laughed and replied: "He is a lion. Yes, he is better than a lion—he is a hippopotamus. Hippopotamuses have long been popular zoo animals. The first zoo hippo in modern history was Obaysch who arrived at the London Zoo on May 25, 1850, where he attracted up to 10,000 visitors a day and inspired a popular song, the Hippopotamus Polka.[63] Hippos have remained popular zoo animals since Obaysch, and generally breed well in captivity. Their birth rates are lower than in the wild, but this is attributed to zoos' not wanting to breed as many hippos as possible, since hippos are large and relatively expensive animals to maintain.[9]:129[63]

Like many zoo animals, hippos were traditionally displayed in concrete exhibits. In the case of hippos, they usually had a pool of water and patch of grass. In the 1980s, zoo designers increasingly designed exhibits that reflected the animals' native habitats. The best known of these, the Toledo Zoo Hippoquarium, features a 360,000 gallon pool for hippos.[64] In 1987, researchers were able to tape, for the first time, an underwater birth (as in the wild) at the Toledo Zoo. The exhibit was so popular that the hippos became the logo of the Toledo Zoo. A red hippo represented the Ancient Egyptian god Set; the thigh is the 'phallic leg of set' symbolic of virility. Set's consort Tawaret was also seen as part hippo.[66] The hippopotamus-headed Tawaret was a goddess of protection in pregnancy and childbirth, because ancient Egyptians recognized the protective nature of a female hippopotamus toward her young.[67] The Ijo people wore masks of aquatic animals like the hippo when practicing their water spirit cults.[68] The Behemoth from the Book of Job, 40:15–24 is also thought to be based on a hippo.[69]

Hippos have been the subjects of various African folktales. According to a Bushmen story; when the Creator assigned each animal their place in nature, the hippos wanted to live in the water, but were refused out of fear that they might eat all the fish. After begging and pleading, the hippos were finally allowed to live in the water on the conditions that they would eat grass instead of fish and would fling their dung so that it can be inspected for fish bones.[70] In a Ndebele tale, the hippo originally had long, beautiful hair but was set on fire by a jealous hare and had to jump into a nearby pool. The hippo lost most of his hair and was too embarrassed to leave the water.[70]

Ever since Obaysch inspired the Hippopotamus Polka, hippos have been popular animals in Western culture for their rotund appearance that many consider comical.[63] Stories of hippos like Huberta who became a celebrity in South Africa in the 1930s for trekking across the country;[71] or the tale of Owen and Mzee, a hippo and tortoise who developed an intimate bond; have amused people who have bought hippo books, merchandise, and many a stuffed hippo toy.[72][73] Hippos were mentioned in the novelty Christmas song "I Want a Hippopotamus for Christmas" that became a hit for child star Gayla Peevey in 1953.[74] They also feature in the songs "The Hippopotamus" and "Hippo Encore" by Flanders and Swann, with the famous refrain Mud, Mud, Glorious Mud. They even inspired a popular board game, Hungry Hungry Hippos. Hippos have also been popular cartoon characters, where their rotund frame is used for humorous effect. The Disney film Fantasia featured a ballerina hippopotamus dancing to the opera, La Gioconda.[38] Other cartoon hippos have included Hanna-Barbera's Peter Potamus, the book and TV series George and Martha, Flavio and Marita on the Animaniacs, Pat of the French duo Pat et Stanley, The Backyardigan's Tasha, and Gloria and Moto-Moto from the Madagascar franchise. A Sesame Street cartoon from the early 1970s features a hippo who lives in the country and likes it quiet, while being disturbed when the mouse who likes it loud moves in with her.[citation needed]

The hippopotamus characters "Happy Hippos" were created in 1988 by the French designer Andre Roche [77] based in Munich, to be hidden in the "Kinder Surprise egg" of the Italian chocolate company Ferrero SpA. These characters were not placid like real hippos[contradiction] but rather cute and lively, and had such a success that they reappeared several times in different products of this company in the following years, increasing their popularity worldwide each time.[citation needed] The Nintendo Company published in the years 2001 and 2007 Game Boy adventures of them. In the game of chess, the hippopotamus lends its name to the Hippopotamus Defense, an opening system, which is generally considered weak.The River Horse is a popular outdoor sculpture at George Washington University, Washington, D.C. Botswana, Moremi National Park, Moremi Game reserve, private Reserve, Farm, chobe National park, Chobe Game Reserve, Zambia, Zambezi River, Livingstone, Zimbabwe, Kenya, Tanzania, Wildlife Conservation Project, Maramba River Lodge, South Africa, Krugger National Park. art beach blue bw california canada canon china city concert de england europe family festival film flower flowers food france friends green instagramapp iphoneography italy japan live london music nature new newyork night nikon nyc paris park party people photography portrait red sky snow square squareformat street summer sunset travel trip uk usa vacation water wedding white winter

Hippopotamuses love water, which is why the Greeks named them the "river horse." Hippos spend up to 16 hours a day submerged in rivers and lakes to keep their massive bodies cool under the hot African sun. Hippos are graceful in water, good swimmers, and can hold their breath underwater for up to five minutes. However, they are often large enough to simply walk or stand on the lake floor, or lie in the shallows. Their eyes and nostrils are located high on their heads, which allows them to see and breathe while mostly submerged. Hippos also bask on the shoreline and secrete an oily red substance, which gave rise to the myth that they sweat blood. The liquid is actually a skin moistener and sunblock that may also provide protection against germs. At sunset, hippopotamuses leave the water and travel overland to graze. They may travel 6 miles (10 kilometers) in a night, along single-file pathways, to consume some 80 pounds (35 kilograms) of grass. Considering their enormous size, a hippo's food intake is relatively low. If threatened on land hippos may run for the water—they can match a human's speed for short distances. Hippo calves weigh nearly 100 pounds (45 kilograms) at birth and can suckle on land or underwater by closing their ears and nostrils. Each female has only one calf every two years. Soon after birth, mother and young join schools that provide some protection against crocodiles, lions, and hyenas. Hippos once had a broader distribution but now live in eastern central and southern sub-Saharan Africa, where their populations are in decline. A partially submerged hippopotamus tries to keep cool in the hot African sun. The hippopotamus (Hippopotamus amphibius), or hippo, from the ancient Greek for "river horse" (ἱπποπόταμος), is a large, mostly herbivorous mammal in sub-Saharan Africa, and one of only two extant species in the family Hippopotamidae (the other is the Pygmy Hippopotamus.) After the elephant and rhinoceros, the hippopotamus is the third largest land mammal and the heaviest extant artiodactyl. Despite their physical resemblance to pigs and other terrestrial even-toed ungulates, their closest living relatives are cetaceans (whales, porpoises, etc.) from which they diverged about 55 million years ago. The common ancestor of whales and hippos split from other even-toed ungulates around 60 million years ago. The earliest known hippopotamus fossils, belonging to the genus Kenyapotamus in Africa, date to around 16 million years ago.

The hippopotamus is semi-aquatic, inhabiting rivers, lakes and mangrove swamps, where territorial bulls preside over a stretch of river and groups of 5 to 30 females and young. During the day they remain cool by staying in the water or mud; reproduction and childbirth both occur in water. They emerge at dusk to graze on grass. While hippopotamuses rest near each other in the water, grazing is a solitary activity and hippos are not territorial on land. Hippos are recognizable by their barrel-shaped torso, enormous mouth and teeth, nearly hairless body, stubby legs and tremendous size. It is the third largest land mammal by weight (between 1½ and 3 tonnes), behind the white rhinoceros (1½ to 3½ tonnes) and the three species of elephant (3 to 9 tonnes). The hippopotamus is one of the largest quadrupeds and despite its stocky shape and short legs, it can easily outrun a human. Hippos have been clocked at 30 km/h (19 mph) over short distances. The hippopotamus is one of the most aggressive creatures in the world and is often regarded as one of the most dangerous animals in Africa. They are still threatened by habitat loss and poaching for their meat and ivory canine teeth. There is also a colony of non-zoo hippos in Colombia introduced by Pablo Escobar. The most recent theory of the origins of Hippopotamidae suggests that hippos and whales shared a common semi-aquatic ancestor that branched off from other artiodactyls around 60 million years ago.[13][15] This hypothesized ancestral group likely split into two branches around 54 million years ago.[12] One branch would evolve into cetaceans, possibly beginning about 52 million years ago with the proto-whale Pakicetus and other early whale ancestors collectively known as Archaeoceti, which eventually underwent aquatic adaptation into the completely aquatic cetaceans.[17] The other branch became the anthracotheres, a large family of four-legged beasts, the earliest of whom in the late Eocene would have resembled skinny hippopotamuses with comparatively small and narrow heads. All branches of the anthracotheres, except that which evolved into Hippopotamidae, became extinct during the Pliocene without leaving any descendants.[15]

A rough evolutionary lineage can be traced from Eocene and Oligocene species: Anthracotherium and Elomeryx to the Miocene Merycopotamus and Libycosaurus and the very latest anthracotheres in the Pliocene.[18] Merycopotamus, Libycosaurus and all hippopotamids can be considered to form a clade, with Libycosaurus being more closely related to hippos. Their common ancestor would have lived in the Miocene, about 20 million years ago. Hippopotamids are therefore deeply nested within the family Anthracotheriidae. The Hippopotamidae are believed to have evolved in Africa; the oldest known hippopotamid is the genus Kenyapotamus which lived in Africa from 16 to 8 million years ago. While hippopotamid species spread across Asia and Europe, no hippopotamuses have ever been discovered in the Americas, although various anthracothere genera emigrated into North America during the early Oligocene. From 7.5 to 1.8 million years ago an ancestor to the modern hippopotamus, Archaeopotamus, lived in Africa and the Middle East.[19]

While the fossil record of hippos is still poorly understood, the two modern genera, Hippopotamus and Choeropsis (sometimes Hexaprotodon), may have diverged as far back as 8 million years ago. Taxonomists disagree whether or not the modern Pygmy Hippopotamus is a member of Hexaprotodon —an apparently paraphyletic genus also embracing many extinct Asian hippopotamuses that is more closely related to Hippopotamus, or Choeropsis —an older and basal genus.[18][19]

[edit]Extinct species

Three species of Malagasy Hippopotamus became extinct during the Holocene on Madagascar, one of them within the past 1,000 years. The Malagasy Hippos were smaller than the modern hippopotamus, likely through the process of insular dwarfism.[20] There is fossil evidence that many Malagasy Hippos were hunted by humans, a likely factor in their eventual extinction.[20] Isolated members of Malagasy Hippopotamus may have survived in remote pockets; in 1976, villagers described a living animal called the Kilopilopitsofy, which may have been a Malagasy Hippopotamus.[21]

Two species of Hippopotamus, the European Hippopotamus (H. antiquus) and H. gorgops ranged throughout continental Europe and the British Isles. Both species became extinct before the last glaciation. Ancestors of European Hippos found their way to many islands of the Mediterranean during the Pleistocene.[22] Both species were larger than the modern hippopotamus, averaging about 1 meter (3.3 feet) longer. The Pleistocene also saw a number of dwarf species evolve on several Mediterranean islands including Crete (H. creutzburgi), Cyprus (H. minor), Malta (H. melitensis) and Sicily (H. pentlandi). Of these, the Cyprus Dwarf Hippopotamus, survived until the end of the Pleistocene or early Holocene. Evidence from an archaeological site Aetokremnos, continues to cause debate on whether or not the species was encountered, and was driven to extinction, by man. Hippopotamuses are among the largest living mammals; only elephants and some rhinoceroses and whales are heavier. They can live in the water or on land. Their specific gravity allows them to sink and walk or run along the bottom of a river. Hippos are considered megafauna, but unlike all other African megafauna, hippos have adapted for a semi-aquatic life in freshwater lakes and rivers.[9]:3 A hippo's lifespan is typically 40–50 years.[6]:277 Donna the Hippo, 60, was the oldest living hippo in captivity. She lived at the Mesker Park Zoo in Evansville, Indiana, USA[24][25] until her death on August 1, 2012. The oldest hippo ever recorded was called Tanga; she lived in Munich, Germany, and died in 1995 at the age of 61.[26]

Because of their enormous size, hippopotamuses are difficult to weigh in the wild. Most estimates of the weight come from culling operations that were carried out in the 1960s. The average weights for adult males ranged between 1,500–1,800 kg (3,300–4,000 lb). Females are smaller than their male counterparts, with average weights measuring between 1,300–1,500 kg (2,900–3,300 lb).[9]:12 Older males can get much larger, reaching at least 3,200 kg (7,100 lb) with a few exceptional specimens exceeding 3,600 kg (7,900 lb).[27][28] The heaviest known hippopotamus weighed approximately 4,500 kg (9,900 lb).[29] Male hippos appear to continue growing throughout their lives; females reach a maximum weight at around age 25.[30]

Hippos measure 3.3 to 5.2 meters (11 to 17 ft) long, including a tail of about 56 centimeters (22 in) in length and average about 1.5 meters (5 ft) tall at the shoulder.[31][32] The range of hippopotamus sizes overlaps with the range of the white rhinoceros; use of different metrics makes it unclear which is the largest land animal after elephants. Even though they are bulky animals, hippopotamuses can run faster than a human on land. Estimates of their running speed vary from 30 km/h (18 mph) to 40 km/h (25 mph), or even 50 km/h (30 mph). The hippo can maintain these higher speeds for only a few hundred meters. Despite being semi-aquatic and having webbed feet, an adult hippo is not a particularly good swimmer nor can it float. It is rarely found in deep water; when it is, the animal moves by porpoise-like leaps from the bottom. The eyes, ears, and nostrils of hippos are placed high on the roof of the skull. This allows them to be in the water with most of their body submerged in the waters and mud of tropical rivers to stay cool and prevent sunburn. Their skeletal structure is graviportal, adapted to carrying the animals' enormous weight. Hippopotamuses have small legs (relative to other megafauna) because the water in which they live reduces the weight burden. Unlike most other semi-aquatic animals, the hippopotamus has very little hair.[6]:260 The skin is 6 in (15 cm) thick,[33] providing it great protection against conspecifics and predators. The animals's upper parts are purplish-gray to blue-black while the under parts and areas around the eyes and ears can be brownish-pink.[6]:260 The testes of the males descend only partially and a scrotum is not present. In addition, the penis retracts into the body when not erect. The genitals of the female are unusual in that the vagina is ridged and two large diverticula protrude from the vulval vestibule. The function of these is unknown.[9]:28–29

The hippo's jaw is powered by a large masseter and a well developed digastric; the latter loops up behind the former to the hyoid.[6]:259 The jaw hinge is located far back enough to allow the animal to open its mouth at almost 180°.[9]:17 On the National Geographic Channel television program, "Dangerous Encounters with Brady Barr", Dr. Brady Barr measured the bite force of an adult female hippo at 8100 N (1821 lbf); Barr also attempted to measure the bite pressure of an adult male hippo, but had to abandon the attempt due to the male's aggressiveness.[34] Hippopotamus teeth sharpen themselves as they grind together. The lower canines and lower incisors are enlarged, especially in males, and grow continuously. The incisors can reach 40 cm (16 in) while the canines reach up to 50 cm (20 in).[33]

Their skin secretes a natural sunscreen substance which is red-colored. The secretion is sometimes referred to as "blood sweat," but is neither blood nor sweat. This secretion is initially colorless and turns red-orange within minutes, eventually becoming brown. Two distinct pigments have been identified in the secretions, one red (hipposudoric acid) and one orange (norhipposudoric acid). The two pigments are highly acidic compounds. Both pigments inhibit the growth of disease-causing bacteria; as well, the light absorption of both pigments peaks in the ultraviolet range, creating a sunscreen effect. All hippos, even those with different diets, secrete the pigments, so it does not appear that food is the source of the pigments. Instead, the animals may synthesize the pigments from precursors such as the amino acid tyrosine. Hippopotamus amphibius was widespread in North Africa and Europe during the Eemian[36] and late Pleistocene until about 30,000 years ago. The species was common in Egypt's Nile region during antiquity but has since been extirpated. Pliny the Elder writes that, in his time, the best location in Egypt for capturing this animal was in the Saite nome;[37] the animal could still be found along the Damietta branch after the Arab Conquest in 639. Hippos are still found in the rivers and lakes of the northern Democratic Republic of the Congo, Uganda, Tanzania and Kenya, north through to Ethiopia, Somalia and Sudan, west from Ghana to Gambia, and also in Southern Africa (Botswana, Republic of South Africa, Zimbabwe, Zambia, Mozambique). Genetic evidence suggests that common hippos in Africa experienced a marked population expansion during or after the Pleistocene Epoch, attributed to an increase in water bodies at the end of the era. These findings have important conservation implications as hippo populations across the continent are currently threatened by loss of access to fresh water.[10] Hippos are also subject to unregulated hunting and poaching. In May 2006 the hippopotamus was identified as a vulnerable species on the IUCN Red List drawn up by the World Conservation Union (IUCN), with an estimated population of between 125,000 and 150,000 hippos, a decline of between 7% and 20% since the IUCN's 1996 study. Zambia (40,000) and Tanzania (20,000–30,000) possess the largest populations.[1]

The hippo population declined most dramatically in the Democratic Republic of the Congo.[38] The population in Virunga National Park had dropped to 800 or 900 from around 29,000 in the mid 1970s.[39] The decline is attributed to the disruptions caused by the Second Congo War.[39] The poachers are believed to be former Hutu rebels, poorly paid Congolese soldiers, and local militia groups.[39] Reasons for poaching include the belief that hippos are harmful to society, and also for money.[40] The sale of hippo meat is illegal, but black-market sales are difficult for Virunga National Park officers to track. Invasive potential

In the late 1980s, Pablo Escobar kept four hippos in a private menagerie at his residence in Hacienda Napoles, 100 km east of Medellín, Colombia, after buying them in New Orleans. They were deemed too difficult to seize and move after Escobar's fall, and hence left on the untended estate. By 2007, the animals had multiplied to 16 and had taken to roaming the area for food in the nearby Magdalena River.[41] In 2009, two adults and one calf escaped the herd, and after attacking humans and killing cattle, one of the adults (called "Pepe") was killed by hunters under authorization of the local authorities.[42][43] It is unknown what kind of effects the presence of hippos might have on the ecosystem in Colombia. According to experts interviewed by W Radio Colombia, the animals could survive in the Colombian jungles. It is believed that the lack of control from the Colombian government, which is not used to dealing with this species, could result in human fatalities. Hippos spend most of their days wallowing in the water or the mud, with the other members of their pod. The water serves to keep their body temperature down, and to keep their skin from drying out. With the exception of eating, most of hippopotamuses' lives —from childbirth, fighting with other hippos, to reproduction— occur in the water. Hippos leave the water at dusk and travel inland, sometimes up to 8 kilometers (5 mi), to graze on short grass, their main source of food. They spend four to five hours grazing and can consume 68 kilograms (150 lb) of grass each night.[44] Like almost any herbivore, they will consume many other plants if presented with them, but their diet in nature consists almost entirely of grass, with only minimal consumption of aquatic plants.[45] Hippos have (rarely) been filmed eating carrion, usually close to the water. There are other reports of meat-eating, and even cannibalism and predation.[46] The stomach anatomy of a hippo is not suited to carnivory, and meat-eating is likely caused by aberrant behavior or nutritional stress.[9]:84

The diet of hippos consists mostly of terrestrial grasses, even though they spend most of their time in the water. Most of their defecation occurs in the water, creating allochthonous deposits of organic matter along the river beds. These deposits have an unclear ecological function.[45] Because of their size and their habit of taking the same paths to feed, hippos can have a significant impact on the land they walk across, both by keeping the land clear of vegetation and depressing the ground. Over prolonged periods hippos can divert the paths of swamps and channels.[47]

Adult hippos move at speeds up to 8 km/h (5 mph) in water. Adult hippos typically resurface to breathe every three to five minutes. The young have to breathe every two to three minutes.[9]:4 The process of surfacing and breathing is automatic, and even a hippo sleeping underwater will rise and breathe without waking. A hippo closes its nostrils when it submerges into the water. As with fish and turtles on a coral reef, hippo occasionally visit cleaning stations and signal by wide-open mouth their readiness for being cleaned of parasites by certain species of fish. This situation is an example of mutualism in which the hippo benefits from the cleansing while the fish receive food.[ Studying the interaction of male and female hippopotamuses has long been complicated by the fact that hippos are not sexually dimorphic and thus females and young males are almost indistinguishable in the field.[49] Although hippos like to lie close to each other, they do not seem to form social bonds except between mothers and daughters, and are not social animals. The reason they huddle close together is unknown.[9]:49

Hippopotamuses are territorial only in water, where a bull presides over a small stretch of river, on average 250 meters in length, and containing ten females. The largest pods can contain over 100 hippos.[9]:50 Other bachelors are allowed in a bull's stretch, as long as they behave submissively toward the bull. The territories of hippos exist to establish mating rights. Within the pods, the hippos tend to segregate by gender. Bachelors will lounge near other bachelors, females with other females, and the bull on his own. When hippos emerge from the water to graze, they do so individually.[9]:4

Hippopotamuses appear to communicate verbally, through grunts and bellows, and it is thought that they may practice echolocation, but the purpose of these vocalizations is currently unknown. Hippos have the unique ability to hold their head partially above the water and send out a cry that travels through both water and air; hippos above and under water will respond.[ Female hippos reach sexual maturity at five to six years of age and have a gestation period of 8 months. A study of endocrine systems revealed that female hippopotamuses may begin puberty as early as 3 or 4 years of age.[51] Males reach maturity at around 7.5 years. A study of hippopotamus reproductive behavior in Uganda showed that peak conceptions occurred during the end of the wet season in the summer, and peak births occurred toward the beginning of the wet season in late winter. This is because of the female's estrous cycle; as with most large mammals, male hippopotamus spermatozoa is active year round. Studies of hippos in Zambia and South Africa also showed evidence of births occurring at the start of the wet season.[9]:60–61 After becoming pregnant, a female hippopotamus will typically not begin ovulation again for 17 months.[51]

Mating occurs in the water with the female submerged for most of the encounter,[9]:63 her head emerging periodically to draw breath. Baby hippos are born underwater at a weight between 25 and 45 kg (60–110 lb) and an average length of around 127 cm (50 in) and must swim to the surface to take their first breath. A mother typically gives birth to only one hippo, although twins also occur. The young often rest on their mothers' backs when in water that is too deep for them, and they swim underwater to suckle. They also will suckle on land when the mother leaves the water. Weaning starts between six and eight months after birth and most calves are fully weaned after a year.[9]:64 Like many other large mammals, hippos are described as K-strategists, in this case typically producing just one large, well-developed infant every couple of years (rather than large numbers of small, poorly developed young several times per year as is common among small mammals such as rodents. Hippopotamuses are by nature very aggressive animals, especially when young calves are present. Frequent targets of their aggression include crocodiles, which often inhabit the same river habitat as hippos. Nile crocodiles, lions and spotted hyenas are known to prey on young hippos.[53] Hippos are very aggressive towards humans, whom they commonly attack whether in boats or on land with no apparent provocation.[54] They are widely considered to be one of the most dangerous large animals in Africa.[55][56]

To mark territory, hippos spin their tails while defecating to distribute their excrement over a greater area.[57] Likely for the same reason, hippos are retromingent – that is, they urinate backwards.[58] When in combat, male hippos use their incisors to block each others attacks, and their lower canines to inflict damage.[6]:260 Hippos rarely kill each other, even in territorial challenges. Usually a territorial bull and a challenging bachelor will stop fighting when it is clear that one hippo is stronger. When hippos become overpopulated, or when a habitat starts to shrink, bulls will sometimes attempt to kill infants, but this behavior is not common under normal conditions.[52] Some incidents of hippo cannibalism have been documented, but it is believed to be the behavior of distressed or sick hippos, and not healthy behavior. The earliest evidence of human interaction with hippos comes from butchery cut marks upon hippo bones at Bouri Formation dated around 160,000 years ago.[59] Later rock paintings and engravings showing hippos being hunted have been found in the mountains of the central Sahara dated 4,000–5,000 years ago near Djanet in the Tassili n'Ajjer Mountains.[9]:1 The ancient Egyptians recognized the hippo as a ferocious denizen of the Nile.

The hippopotamus was also known to the Greeks and Romans. The Greek historian Herodotus described the hippopotamus in The Histories (written circa 440 BC) and the Roman Historian Pliny the Elder wrote about the hippopotamus in his encyclopedia Naturalis Historia (written circa 77 AD).[37][60] Hippopotamus was one of the many exotic animals brought to fight gladiators in Rome by the emperor Philip I the Arab to commemorate Rome's 1000 years anniversary in 248 AD. Silver coins with hippo's image were minted that year.[citation needed]

Zulu warriors preferred to be as brave as a hippopotamus, since even lions were not considered as brave. "In 1888, Captain Baden-Powell was part of a column searching for the Zulu chief Dinizulu, who was leading the Usutu people in revolt against the British colonists. The column was joined by John Dunn, a white Zulu chief, who led an impi (army) of 2000 Zulu warriors to join the British." [61]

The words of the Zulu anthem sounded like this:

"Een-gonyama Gonyama! "Invooboo! Yah-bo! Yah-bo! Invooboo!"

"John Dunn was at the head of his impi. [Baden Powell] asked him to translate the Zulu anthem his men had been singing. Dunn laughed and replied: "He is a lion. Yes, he is better than a lion—he is a hippopotamus. Hippopotamuses have long been popular zoo animals. The first zoo hippo in modern history was Obaysch who arrived at the London Zoo on May 25, 1850, where he attracted up to 10,000 visitors a day and inspired a popular song, the Hippopotamus Polka.[63] Hippos have remained popular zoo animals since Obaysch, and generally breed well in captivity. Their birth rates are lower than in the wild, but this is attributed to zoos' not wanting to breed as many hippos as possible, since hippos are large and relatively expensive animals to maintain.[9]:129[63]

Like many zoo animals, hippos were traditionally displayed in concrete exhibits. In the case of hippos, they usually had a pool of water and patch of grass. In the 1980s, zoo designers increasingly designed exhibits that reflected the animals' native habitats. The best known of these, the Toledo Zoo Hippoquarium, features a 360,000 gallon pool for hippos.[64] In 1987, researchers were able to tape, for the first time, an underwater birth (as in the wild) at the Toledo Zoo. The exhibit was so popular that the hippos became the logo of the Toledo Zoo. A red hippo represented the Ancient Egyptian god Set; the thigh is the 'phallic leg of set' symbolic of virility. Set's consort Tawaret was also seen as part hippo.[66] The hippopotamus-headed Tawaret was a goddess of protection in pregnancy and childbirth, because ancient Egyptians recognized the protective nature of a female hippopotamus toward her young.[67] The Ijo people wore masks of aquatic animals like the hippo when practicing their water spirit cults.[68] The Behemoth from the Book of Job, 40:15–24 is also thought to be based on a hippo.[69]

Hippos have been the subjects of various African folktales. According to a Bushmen story; when the Creator assigned each animal their place in nature, the hippos wanted to live in the water, but were refused out of fear that they might eat all the fish. After begging and pleading, the hippos were finally allowed to live in the water on the conditions that they would eat grass instead of fish and would fling their dung so that it can be inspected for fish bones.[70] In a Ndebele tale, the hippo originally had long, beautiful hair but was set on fire by a jealous hare and had to jump into a nearby pool. The hippo lost most of his hair and was too embarrassed to leave the water.[70]

Ever since Obaysch inspired the Hippopotamus Polka, hippos have been popular animals in Western culture for their rotund appearance that many consider comical.[63] Stories of hippos like Huberta who became a celebrity in South Africa in the 1930s for trekking across the country;[71] or the tale of Owen and Mzee, a hippo and tortoise who developed an intimate bond; have amused people who have bought hippo books, merchandise, and many a stuffed hippo toy.[72][73] Hippos were mentioned in the novelty Christmas song "I Want a Hippopotamus for Christmas" that became a hit for child star Gayla Peevey in 1953.[74] They also feature in the songs "The Hippopotamus" and "Hippo Encore" by Flanders and Swann, with the famous refrain Mud, Mud, Glorious Mud. They even inspired a popular board game, Hungry Hungry Hippos. Hippos have also been popular cartoon characters, where their rotund frame is used for humorous effect. The Disney film Fantasia featured a ballerina hippopotamus dancing to the opera, La Gioconda.[38] Other cartoon hippos have included Hanna-Barbera's Peter Potamus, the book and TV series George and Martha, Flavio and Marita on the Animaniacs, Pat of the French duo Pat et Stanley, The Backyardigan's Tasha, and Gloria and Moto-Moto from the Madagascar franchise. A Sesame Street cartoon from the early 1970s features a hippo who lives in the country and likes it quiet, while being disturbed when the mouse who likes it loud moves in with her.[citation needed]

The hippopotamus characters "Happy Hippos" were created in 1988 by the French designer Andre Roche [77] based in Munich, to be hidden in the "Kinder Surprise egg" of the Italian chocolate company Ferrero SpA. These characters were not placid like real hippos[contradiction] but rather cute and lively, and had such a success that they reappeared several times in different products of this company in the following years, increasing their popularity worldwide each time.[citation needed] The Nintendo Company published in the years 2001 and 2007 Game Boy adventures of them. In the game of chess, the hippopotamus lends its name to the Hippopotamus Defense, an opening system, which is generally considered weak.The River Horse is a popular outdoor sculpture at George Washington University, Washington, D.C. Botswana, Moremi National Park, Moremi Game reserve, private Reserve, Farm, chobe National park, Chobe Game Reserve, Zambia, Zambezi River, Livingstone, Zimbabwe, Kenya, Tanzania, Wildlife Conservation Project, Maramba River Lodge, South Africa, Krugger National Park. art beach blue bw california canada canon china city concert de england europe family festival film flower flowers food france friends green instagramapp iphoneography italy japan live london music nature new newyork night nikon nyc paris park party people photography portrait red sky snow square squareformat street summer sunset travel trip uk usa vacation water wedding white winter

Hippopotamuses love water, which is why the Greeks named them the "river horse." Hippos spend up to 16 hours a day submerged in rivers and lakes to keep their massive bodies cool under the hot African sun. Hippos are graceful in water, good swimmers, and can hold their breath underwater for up to five minutes. However, they are often large enough to simply walk or stand on the lake floor, or lie in the shallows. Their eyes and nostrils are located high on their heads, which allows them to see and breathe while mostly submerged. Hippos also bask on the shoreline and secrete an oily red substance, which gave rise to the myth that they sweat blood. The liquid is actually a skin moistener and sunblock that may also provide protection against germs. At sunset, hippopotamuses leave the water and travel overland to graze. They may travel 6 miles (10 kilometers) in a night, along single-file pathways, to consume some 80 pounds (35 kilograms) of grass. Considering their enormous size, a hippo's food intake is relatively low. If threatened on land hippos may run for the water—they can match a human's speed for short distances. Hippo calves weigh nearly 100 pounds (45 kilograms) at birth and can suckle on land or underwater by closing their ears and nostrils. Each female has only one calf every two years. Soon after birth, mother and young join schools that provide some protection against crocodiles, lions, and hyenas. Hippos once had a broader distribution but now live in eastern central and southern sub-Saharan Africa, where their populations are in decline. A partially submerged hippopotamus tries to keep cool in the hot African sun. The hippopotamus (Hippopotamus amphibius), or hippo, from the ancient Greek for "river horse" (ἱπποπόταμος), is a large, mostly herbivorous mammal in sub-Saharan Africa, and one of only two extant species in the family Hippopotamidae (the other is the Pygmy Hippopotamus.) After the elephant and rhinoceros, the hippopotamus is the third largest land mammal and the heaviest extant artiodactyl. Despite their physical resemblance to pigs and other terrestrial even-toed ungulates, their closest living relatives are cetaceans (whales, porpoises, etc.) from which they diverged about 55 million years ago. The common ancestor of whales and hippos split from other even-toed ungulates around 60 million years ago. The earliest known hippopotamus fossils, belonging to the genus Kenyapotamus in Africa, date to around 16 million years ago.

The hippopotamus is semi-aquatic, inhabiting rivers, lakes and mangrove swamps, where territorial bulls preside over a stretch of river and groups of 5 to 30 females and young. During the day they remain cool by staying in the water or mud; reproduction and childbirth both occur in water. They emerge at dusk to graze on grass. While hippopotamuses rest near each other in the water, grazing is a solitary activity and hippos are not territorial on land. Hippos are recognizable by their barrel-shaped torso, enormous mouth and teeth, nearly hairless body, stubby legs and tremendous size. It is the third largest land mammal by weight (between 1½ and 3 tonnes), behind the white rhinoceros (1½ to 3½ tonnes) and the three species of elephant (3 to 9 tonnes). The hippopotamus is one of the largest quadrupeds and despite its stocky shape and short legs, it can easily outrun a human. Hippos have been clocked at 30 km/h (19 mph) over short distances. The hippopotamus is one of the most aggressive creatures in the world and is often regarded as one of the most dangerous animals in Africa. They are still threatened by habitat loss and poaching for their meat and ivory canine teeth. There is also a colony of non-zoo hippos in Colombia introduced by Pablo Escobar. The most recent theory of the origins of Hippopotamidae suggests that hippos and whales shared a common semi-aquatic ancestor that branched off from other artiodactyls around 60 million years ago.[13][15] This hypothesized ancestral group likely split into two branches around 54 million years ago.[12] One branch would evolve into cetaceans, possibly beginning about 52 million years ago with the proto-whale Pakicetus and other early whale ancestors collectively known as Archaeoceti, which eventually underwent aquatic adaptation into the completely aquatic cetaceans.[17] The other branch became the anthracotheres, a large family of four-legged beasts, the earliest of whom in the late Eocene would have resembled skinny hippopotamuses with comparatively small and narrow heads. All branches of the anthracotheres, except that which evolved into Hippopotamidae, became extinct during the Pliocene without leaving any descendants.[15]

A rough evolutionary lineage can be traced from Eocene and Oligocene species: Anthracotherium and Elomeryx to the Miocene Merycopotamus and Libycosaurus and the very latest anthracotheres in the Pliocene.[18] Merycopotamus, Libycosaurus and all hippopotamids can be considered to form a clade, with Libycosaurus being more closely related to hippos. Their common ancestor would have lived in the Miocene, about 20 million years ago. Hippopotamids are therefore deeply nested within the family Anthracotheriidae. The Hippopotamidae are believed to have evolved in Africa; the oldest known hippopotamid is the genus Kenyapotamus which lived in Africa from 16 to 8 million years ago. While hippopotamid species spread across Asia and Europe, no hippopotamuses have ever been discovered in the Americas, although various anthracothere genera emigrated into North America during the early Oligocene. From 7.5 to 1.8 million years ago an ancestor to the modern hippopotamus, Archaeopotamus, lived in Africa and the Middle East.[19]

While the fossil record of hippos is still poorly understood, the two modern genera, Hippopotamus and Choeropsis (sometimes Hexaprotodon), may have diverged as far back as 8 million years ago. Taxonomists disagree whether or not the modern Pygmy Hippopotamus is a member of Hexaprotodon —an apparently paraphyletic genus also embracing many extinct Asian hippopotamuses that is more closely related to Hippopotamus, or Choeropsis —an older and basal genus.[18][19]

[edit]Extinct species

Three species of Malagasy Hippopotamus became extinct during the Holocene on Madagascar, one of them within the past 1,000 years. The Malagasy Hippos were smaller than the modern hippopotamus, likely through the process of insular dwarfism.[20] There is fossil evidence that many Malagasy Hippos were hunted by humans, a likely factor in their eventual extinction.[20] Isolated members of Malagasy Hippopotamus may have survived in remote pockets; in 1976, villagers described a living animal called the Kilopilopitsofy, which may have been a Malagasy Hippopotamus.[21]

Two species of Hippopotamus, the European Hippopotamus (H. antiquus) and H. gorgops ranged throughout continental Europe and the British Isles. Both species became extinct before the last glaciation. Ancestors of European Hippos found their way to many islands of the Mediterranean during the Pleistocene.[22] Both species were larger than the modern hippopotamus, averaging about 1 meter (3.3 feet) longer. The Pleistocene also saw a number of dwarf species evolve on several Mediterranean islands including Crete (H. creutzburgi), Cyprus (H. minor), Malta (H. melitensis) and Sicily (H. pentlandi). Of these, the Cyprus Dwarf Hippopotamus, survived until the end of the Pleistocene or early Holocene. Evidence from an archaeological site Aetokremnos, continues to cause debate on whether or not the species was encountered, and was driven to extinction, by man. Hippopotamuses are among the largest living mammals; only elephants and some rhinoceroses and whales are heavier. They can live in the water or on land. Their specific gravity allows them to sink and walk or run along the bottom of a river. Hippos are considered megafauna, but unlike all other African megafauna, hippos have adapted for a semi-aquatic life in freshwater lakes and rivers.[9]:3 A hippo's lifespan is typically 40–50 years.[6]:277 Donna the Hippo, 60, was the oldest living hippo in captivity. She lived at the Mesker Park Zoo in Evansville, Indiana, USA[24][25] until her death on August 1, 2012. The oldest hippo ever recorded was called Tanga; she lived in Munich, Germany, and died in 1995 at the age of 61.[26]

Because of their enormous size, hippopotamuses are difficult to weigh in the wild. Most estimates of the weight come from culling operations that were carried out in the 1960s. The average weights for adult males ranged between 1,500–1,800 kg (3,300–4,000 lb). Females are smaller than their male counterparts, with average weights measuring between 1,300–1,500 kg (2,900–3,300 lb).[9]:12 Older males can get much larger, reaching at least 3,200 kg (7,100 lb) with a few exceptional specimens exceeding 3,600 kg (7,900 lb).[27][28] The heaviest known hippopotamus weighed approximately 4,500 kg (9,900 lb).[29] Male hippos appear to continue growing throughout their lives; females reach a maximum weight at around age 25.[30]

Hippos measure 3.3 to 5.2 meters (11 to 17 ft) long, including a tail of about 56 centimeters (22 in) in length and average about 1.5 meters (5 ft) tall at the shoulder.[31][32] The range of hippopotamus sizes overlaps with the range of the white rhinoceros; use of different metrics makes it unclear which is the largest land animal after elephants. Even though they are bulky animals, hippopotamuses can run faster than a human on land. Estimates of their running speed vary from 30 km/h (18 mph) to 40 km/h (25 mph), or even 50 km/h (30 mph). The hippo can maintain these higher speeds for only a few hundred meters. Despite being semi-aquatic and having webbed feet, an adult hippo is not a particularly good swimmer nor can it float. It is rarely found in deep water; when it is, the animal moves by porpoise-like leaps from the bottom. The eyes, ears, and nostrils of hippos are placed high on the roof of the skull. This allows them to be in the water with most of their body submerged in the waters and mud of tropical rivers to stay cool and prevent sunburn. Their skeletal structure is graviportal, adapted to carrying the animals' enormous weight. Hippopotamuses have small legs (relative to other megafauna) because the water in which they live reduces the weight burden. Unlike most other semi-aquatic animals, the hippopotamus has very little hair.[6]:260 The skin is 6 in (15 cm) thick,[33] providing it great protection against conspecifics and predators. The animals's upper parts are purplish-gray to blue-black while the under parts and areas around the eyes and ears can be brownish-pink.[6]:260 The testes of the males descend only partially and a scrotum is not present. In addition, the penis retracts into the body when not erect. The genitals of the female are unusual in that the vagina is ridged and two large diverticula protrude from the vulval vestibule. The function of these is unknown.[9]:28–29

The hippo's jaw is powered by a large masseter and a well developed digastric; the latter loops up behind the former to the hyoid.[6]:259 The jaw hinge is located far back enough to allow the animal to open its mouth at almost 180°.[9]:17 On the National Geographic Channel television program, "Dangerous Encounters with Brady Barr", Dr. Brady Barr measured the bite force of an adult female hippo at 8100 N (1821 lbf); Barr also attempted to measure the bite pressure of an adult male hippo, but had to abandon the attempt due to the male's aggressiveness.[34] Hippopotamus teeth sharpen themselves as they grind together. The lower canines and lower incisors are enlarged, especially in males, and grow continuously. The incisors can reach 40 cm (16 in) while the canines reach up to 50 cm (20 in).[33]

Their skin secretes a natural sunscreen substance which is red-colored. The secretion is sometimes referred to as "blood sweat," but is neither blood nor sweat. This secretion is initially colorless and turns red-orange within minutes, eventually becoming brown. Two distinct pigments have been identified in the secretions, one red (hipposudoric acid) and one orange (norhipposudoric acid). The two pigments are highly acidic compounds. Both pigments inhibit the growth of disease-causing bacteria; as well, the light absorption of both pigments peaks in the ultraviolet range, creating a sunscreen effect. All hippos, even those with different diets, secrete the pigments, so it does not appear that food is the source of the pigments. Instead, the animals may synthesize the pigments from precursors such as the amino acid tyrosine. Hippopotamus amphibius was widespread in North Africa and Europe during the Eemian[36] and late Pleistocene until about 30,000 years ago. The species was common in Egypt's Nile region during antiquity but has since been extirpated. Pliny the Elder writes that, in his time, the best location in Egypt for capturing this animal was in the Saite nome;[37] the animal could still be found along the Damietta branch after the Arab Conquest in 639. Hippos are still found in the rivers and lakes of the northern Democratic Republic of the Congo, Uganda, Tanzania and Kenya, north through to Ethiopia, Somalia and Sudan, west from Ghana to Gambia, and also in Southern Africa (Botswana, Republic of South Africa, Zimbabwe, Zambia, Mozambique). Genetic evidence suggests that common hippos in Africa experienced a marked population expansion during or after the Pleistocene Epoch, attributed to an increase in water bodies at the end of the era. These findings have important conservation implications as hippo populations across the continent are currently threatened by loss of access to fresh water.[10] Hippos are also subject to unregulated hunting and poaching. In May 2006 the hippopotamus was identified as a vulnerable species on the IUCN Red List drawn up by the World Conservation Union (IUCN), with an estimated population of between 125,000 and 150,000 hippos, a decline of between 7% and 20% since the IUCN's 1996 study. Zambia (40,000) and Tanzania (20,000–30,000) possess the largest populations.[1]

The hippo population declined most dramatically in the Democratic Republic of the Congo.[38] The population in Virunga National Park had dropped to 800 or 900 from around 29,000 in the mid 1970s.[39] The decline is attributed to the disruptions caused by the Second Congo War.[39] The poachers are believed to be former Hutu rebels, poorly paid Congolese soldiers, and local militia groups.[39] Reasons for poaching include the belief that hippos are harmful to society, and also for money.[40] The sale of hippo meat is illegal, but black-market sales are difficult for Virunga National Park officers to track. Invasive potential

In the late 1980s, Pablo Escobar kept four hippos in a private menagerie at his residence in Hacienda Napoles, 100 km east of Medellín, Colombia, after buying them in New Orleans. They were deemed too difficult to seize and move after Escobar's fall, and hence left on the untended estate. By 2007, the animals had multiplied to 16 and had taken to roaming the area for food in the nearby Magdalena River.[41] In 2009, two adults and one calf escaped the herd, and after attacking humans and killing cattle, one of the adults (called "Pepe") was killed by hunters under authorization of the local authorities.[42][43] It is unknown what kind of effects the presence of hippos might have on the ecosystem in Colombia. According to experts interviewed by W Radio Colombia, the animals could survive in the Colombian jungles. It is believed that the lack of control from the Colombian government, which is not used to dealing with this species, could result in human fatalities. Hippos spend most of their days wallowing in the water or the mud, with the other members of their pod. The water serves to keep their body temperature down, and to keep their skin from drying out. With the exception of eating, most of hippopotamuses' lives —from childbirth, fighting with other hippos, to reproduction— occur in the water. Hippos leave the water at dusk and travel inland, sometimes up to 8 kilometers (5 mi), to graze on short grass, their main source of food. They spend four to five hours grazing and can consume 68 kilograms (150 lb) of grass each night.[44] Like almost any herbivore, they will consume many other plants if presented with them, but their diet in nature consists almost entirely of grass, with only minimal consumption of aquatic plants.[45] Hippos have (rarely) been filmed eating carrion, usually close to the water. There are other reports of meat-eating, and even cannibalism and predation.[46] The stomach anatomy of a hippo is not suited to carnivory, and meat-eating is likely caused by aberrant behavior or nutritional stress.[9]:84

The diet of hippos consists mostly of terrestrial grasses, even though they spend most of their time in the water. Most of their defecation occurs in the water, creating allochthonous deposits of organic matter along the river beds. These deposits have an unclear ecological function.[45] Because of their size and their habit of taking the same paths to feed, hippos can have a significant impact on the land they walk across, both by keeping the land clear of vegetation and depressing the ground. Over prolonged periods hippos can divert the paths of swamps and channels.[47]

Adult hippos move at speeds up to 8 km/h (5 mph) in water. Adult hippos typically resurface to breathe every three to five minutes. The young have to breathe every two to three minutes.[9]:4 The process of surfacing and breathing is automatic, and even a hippo sleeping underwater will rise and breathe without waking. A hippo closes its nostrils when it submerges into the water. As with fish and turtles on a coral reef, hippo occasionally visit cleaning stations and signal by wide-open mouth their readiness for being cleaned of parasites by certain species of fish. This situation is an example of mutualism in which the hippo benefits from the cleansing while the fish receive food.[ Studying the interaction of male and female hippopotamuses has long been complicated by the fact that hippos are not sexually dimorphic and thus females and young males are almost indistinguishable in the field.[49] Although hippos like to lie close to each other, they do not seem to form social bonds except between mothers and daughters, and are not social animals. The reason they huddle close together is unknown.[9]:49

Hippopotamuses are territorial only in water, where a bull presides over a small stretch of river, on average 250 meters in length, and containing ten females. The largest pods can contain over 100 hippos.[9]:50 Other bachelors are allowed in a bull's stretch, as long as they behave submissively toward the bull. The territories of hippos exist to establish mating rights. Within the pods, the hippos tend to segregate by gender. Bachelors will lounge near other bachelors, females with other females, and the bull on his own. When hippos emerge from the water to graze, they do so individually.[9]:4

Hippopotamuses appear to communicate verbally, through grunts and bellows, and it is thought that they may practice echolocation, but the purpose of these vocalizations is currently unknown. Hippos have the unique ability to hold their head partially above the water and send out a cry that travels through both water and air; hippos above and under water will respond.[ Female hippos reach sexual maturity at five to six years of age and have a gestation period of 8 months. A study of endocrine systems revealed that female hippopotamuses may begin puberty as early as 3 or 4 years of age.[51] Males reach maturity at around 7.5 years. A study of hippopotamus reproductive behavior in Uganda showed that peak conceptions occurred during the end of the wet season in the summer, and peak births occurred toward the beginning of the wet season in late winter. This is because of the female's estrous cycle; as with most large mammals, male hippopotamus spermatozoa is active year round. Studies of hippos in Zambia and South Africa also showed evidence of births occurring at the start of the wet season.[9]:60–61 After becoming pregnant, a female hippopotamus will typically not begin ovulation again for 17 months.[51]

Mating occurs in the water with the female submerged for most of the encounter,[9]:63 her head emerging periodically to draw breath. Baby hippos are born underwater at a weight between 25 and 45 kg (60–110 lb) and an average length of around 127 cm (50 in) and must swim to the surface to take their first breath. A mother typically gives birth to only one hippo, although twins also occur. The young often rest on their mothers' backs when in water that is too deep for them, and they swim underwater to suckle. They also will suckle on land when the mother leaves the water. Weaning starts between six and eight months after birth and most calves are fully weaned after a year.[9]:64 Like many other large mammals, hippos are described as K-strategists, in this case typically producing just one large, well-developed infant every couple of years (rather than large numbers of small, poorly developed young several times per year as is common among small mammals such as rodents. Hippopotamuses are by nature very aggressive animals, especially when young calves are present. Frequent targets of their aggression include crocodiles, which often inhabit the same river habitat as hippos. Nile crocodiles, lions and spotted hyenas are known to prey on young hippos.[53] Hippos are very aggressive towards humans, whom they commonly attack whether in boats or on land with no apparent provocation.[54] They are widely considered to be one of the most dangerous large animals in Africa.[55][56]

To mark territory, hippos spin their tails while defecating to distribute their excrement over a greater area.[57] Likely for the same reason, hippos are retromingent – that is, they urinate backwards.[58] When in combat, male hippos use their incisors to block each others attacks, and their lower canines to inflict damage.[6]:260 Hippos rarely kill each other, even in territorial challenges. Usually a territorial bull and a challenging bachelor will stop fighting when it is clear that one hippo is stronger. When hippos become overpopulated, or when a habitat starts to shrink, bulls will sometimes attempt to kill infants, but this behavior is not common under normal conditions.[52] Some incidents of hippo cannibalism have been documented, but it is believed to be the behavior of distressed or sick hippos, and not healthy behavior. The earliest evidence of human interaction with hippos comes from butchery cut marks upon hippo bones at Bouri Formation dated around 160,000 years ago.[59] Later rock paintings and engravings showing hippos being hunted have been found in the mountains of the central Sahara dated 4,000–5,000 years ago near Djanet in the Tassili n'Ajjer Mountains.[9]:1 The ancient Egyptians recognized the hippo as a ferocious denizen of the Nile.

The hippopotamus was also known to the Greeks and Romans. The Greek historian Herodotus described the hippopotamus in The Histories (written circa 440 BC) and the Roman Historian Pliny the Elder wrote about the hippopotamus in his encyclopedia Naturalis Historia (written circa 77 AD).[37][60] Hippopotamus was one of the many exotic animals brought to fight gladiators in Rome by the emperor Philip I the Arab to commemorate Rome's 1000 years anniversary in 248 AD. Silver coins with hippo's image were minted that year.[citation needed]

Zulu warriors preferred to be as brave as a hippopotamus, since even lions were not considered as brave. "In 1888, Captain Baden-Powell was part of a column searching for the Zulu chief Dinizulu, who was leading the Usutu people in revolt against the British colonists. The column was joined by John Dunn, a white Zulu chief, who led an impi (army) of 2000 Zulu warriors to join the British." [61]

The words of the Zulu anthem sounded like this:

"Een-gonyama Gonyama! "Invooboo! Yah-bo! Yah-bo! Invooboo!"

"John Dunn was at the head of his impi. [Baden Powell] asked him to translate the Zulu anthem his men had been singing. Dunn laughed and replied: "He is a lion. Yes, he is better than a lion—he is a hippopotamus. Hippopotamuses have long been popular zoo animals. The first zoo hippo in modern history was Obaysch who arrived at the London Zoo on May 25, 1850, where he attracted up to 10,000 visitors a day and inspired a popular song, the Hippopotamus Polka.[63] Hippos have remained popular zoo animals since Obaysch, and generally breed well in captivity. Their birth rates are lower than in the wild, but this is attributed to zoos' not wanting to breed as many hippos as possible, since hippos are large and relatively expensive animals to maintain.[9]:129[63]

Like many zoo animals, hippos were traditionally displayed in concrete exhibits. In the case of hippos, they usually had a pool of water and patch of grass. In the 1980s, zoo designers increasingly designed exhibits that reflected the animals' native habitats. The best known of these, the Toledo Zoo Hippoquarium, features a 360,000 gallon pool for hippos.[64] In 1987, researchers were able to tape, for the first time, an underwater birth (as in the wild) at the Toledo Zoo. The exhibit was so popular that the hippos became the logo of the Toledo Zoo. A red hippo represented the Ancient Egyptian god Set; the thigh is the 'phallic leg of set' symbolic of virility. Set's consort Tawaret was also seen as part hippo.[66] The hippopotamus-headed Tawaret was a goddess of protection in pregnancy and childbirth, because ancient Egyptians recognized the protective nature of a female hippopotamus toward her young.[67] The Ijo people wore masks of aquatic animals like the hippo when practicing their water spirit cults.[68] The Behemoth from the Book of Job, 40:15–24 is also thought to be based on a hippo.[69]

Hippos have been the subjects of various African folktales. According to a Bushmen story; when the Creator assigned each animal their place in nature, the hippos wanted to live in the water, but were refused out of fear that they might eat all the fish. After begging and pleading, the hippos were finally allowed to live in the water on the conditions that they would eat grass instead of fish and would fling their dung so that it can be inspected for fish bones.[70] In a Ndebele tale, the hippo originally had long, beautiful hair but was set on fire by a jealous hare and had to jump into a nearby pool. The hippo lost most of his hair and was too embarrassed to leave the water.[70]

Ever since Obaysch inspired the Hippopotamus Polka, hippos have been popular animals in Western culture for their rotund appearance that many consider comical.[63] Stories of hippos like Huberta who became a celebrity in South Africa in the 1930s for trekking across the country;[71] or the tale of Owen and Mzee, a hippo and tortoise who developed an intimate bond; have amused people who have bought hippo books, merchandise, and many a stuffed hippo toy.[72][73] Hippos were mentioned in the novelty Christmas song "I Want a Hippopotamus for Christmas" that became a hit for child star Gayla Peevey in 1953.[74] They also feature in the songs "The Hippopotamus" and "Hippo Encore" by Flanders and Swann, with the famous refrain Mud, Mud, Glorious Mud. They even inspired a popular board game, Hungry Hungry Hippos. Hippos have also been popular cartoon characters, where their rotund frame is used for humorous effect. The Disney film Fantasia featured a ballerina hippopotamus dancing to the opera, La Gioconda.[38] Other cartoon hippos have included Hanna-Barbera's Peter Potamus, the book and TV series George and Martha, Flavio and Marita on the Animaniacs, Pat of the French duo Pat et Stanley, The Backyardigan's Tasha, and Gloria and Moto-Moto from the Madagascar franchise. A Sesame Street cartoon from the early 1970s features a hippo who lives in the country and likes it quiet, while being disturbed when the mouse who likes it loud moves in with her.[citation needed]

The hippopotamus characters "Happy Hippos" were created in 1988 by the French designer Andre Roche [77] based in Munich, to be hidden in the "Kinder Surprise egg" of the Italian chocolate company Ferrero SpA. These characters were not placid like real hippos[contradiction] but rather cute and lively, and had such a success that they reappeared several times in different products of this company in the following years, increasing their popularity worldwide each time.[citation needed] The Nintendo Company published in the years 2001 and 2007 Game Boy adventures of them. In the game of chess, the hippopotamus lends its name to the Hippopotamus Defense, an opening system, which is generally considered weak.The River Horse is a popular outdoor sculpture at George Washington University, Washington, D.C. Botswana, Moremi National Park, Moremi Game reserve, private Reserve, Farm, chobe National park, Chobe Game Reserve, Zambia, Zambezi River, Livingstone, Zimbabwe, Kenya, Tanzania, Wildlife Conservation Project, Maramba River Lodge, South Africa, Krugger National Park. art beach blue bw california canada canon china city concert de england europe family festival film flower flowers food france friends green instagramapp iphoneography italy japan live london music nature new newyork night nikon nyc paris park party people photography portrait red sky snow square squareformat street summer sunset travel trip uk usa vacation water wedding white winter

Hippopotamuses love water, which is why the Greeks named them the "river horse." Hippos spend up to 16 hours a day submerged in rivers and lakes to keep their massive bodies cool under the hot African sun. Hippos are graceful in water, good swimmers, and can hold their breath underwater for up to five minutes. However, they are often large enough to simply walk or stand on the lake floor, or lie in the shallows. Their eyes and nostrils are located high on their heads, which allows them to see and breathe while mostly submerged. Hippos also bask on the shoreline and secrete an oily red substance, which gave rise to the myth that they sweat blood. The liquid is actually a skin moistener and sunblock that may also provide protection against germs. At sunset, hippopotamuses leave the water and travel overland to graze. They may travel 6 miles (10 kilometers) in a night, along single-file pathways, to consume some 80 pounds (35 kilograms) of grass. Considering their enormous size, a hippo's food intake is relatively low. If threatened on land hippos may run for the water—they can match a human's speed for short distances. Hippo calves weigh nearly 100 pounds (45 kilograms) at birth and can suckle on land or underwater by closing their ears and nostrils. Each female has only one calf every two years. Soon after birth, mother and young join schools that provide some protection against crocodiles, lions, and hyenas. Hippos once had a broader distribution but now live in eastern central and southern sub-Saharan Africa, where their populations are in decline. A partially submerged hippopotamus tries to keep cool in the hot African sun. The hippopotamus (Hippopotamus amphibius), or hippo, from the ancient Greek for "river horse" (ἱπποπόταμος), is a large, mostly herbivorous mammal in sub-Saharan Africa, and one of only two extant species in the family Hippopotamidae (the other is the Pygmy Hippopotamus.) After the elephant and rhinoceros, the hippopotamus is the third largest land mammal and the heaviest extant artiodactyl. Despite their physical resemblance to pigs and other terrestrial even-toed ungulates, their closest living relatives are cetaceans (whales, porpoises, etc.) from which they diverged about 55 million years ago. The common ancestor of whales and hippos split from other even-toed ungulates around 60 million years ago. The earliest known hippopotamus fossils, belonging to the genus Kenyapotamus in Africa, date to around 16 million years ago.

The hippopotamus is semi-aquatic, inhabiting rivers, lakes and mangrove swamps, where territorial bulls preside over a stretch of river and groups of 5 to 30 females and young. During the day they remain cool by staying in the water or mud; reproduction and childbirth both occur in water. They emerge at dusk to graze on grass. While hippopotamuses rest near each other in the water, grazing is a solitary activity and hippos are not territorial on land. Hippos are recognizable by their barrel-shaped torso, enormous mouth and teeth, nearly hairless body, stubby legs and tremendous size. It is the third largest land mammal by weight (between 1½ and 3 tonnes), behind the white rhinoceros (1½ to 3½ tonnes) and the three species of elephant (3 to 9 tonnes). The hippopotamus is one of the largest quadrupeds and despite its stocky shape and short legs, it can easily outrun a human. Hippos have been clocked at 30 km/h (19 mph) over short distances. The hippopotamus is one of the most aggressive creatures in the world and is often regarded as one of the most dangerous animals in Africa. They are still threatened by habitat loss and poaching for their meat and ivory canine teeth. There is also a colony of non-zoo hippos in Colombia introduced by Pablo Escobar. The most recent theory of the origins of Hippopotamidae suggests that hippos and whales shared a common semi-aquatic ancestor that branched off from other artiodactyls around 60 million years ago.[13][15] This hypothesized ancestral group likely split into two branches around 54 million years ago.[12] One branch would evolve into cetaceans, possibly beginning about 52 million years ago with the proto-whale Pakicetus and other early whale ancestors collectively known as Archaeoceti, which eventually underwent aquatic adaptation into the completely aquatic cetaceans.[17] The other branch became the anthracotheres, a large family of four-legged beasts, the earliest of whom in the late Eocene would have resembled skinny hippopotamuses with comparatively small and narrow heads. All branches of the anthracotheres, except that which evolved into Hippopotamidae, became extinct during the Pliocene without leaving any descendants.[15]

A rough evolutionary lineage can be traced from Eocene and Oligocene species: Anthracotherium and Elomeryx to the Miocene Merycopotamus and Libycosaurus and the very latest anthracotheres in the Pliocene.[18] Merycopotamus, Libycosaurus and all hippopotamids can be considered to form a clade, with Libycosaurus being more closely related to hippos. Their common ancestor would have lived in the Miocene, about 20 million years ago. Hippopotamids are therefore deeply nested within the family Anthracotheriidae. The Hippopotamidae are believed to have evolved in Africa; the oldest known hippopotamid is the genus Kenyapotamus which lived in Africa from 16 to 8 million years ago. While hippopotamid species spread across Asia and Europe, no hippopotamuses have ever been discovered in the Americas, although various anthracothere genera emigrated into North America during the early Oligocene. From 7.5 to 1.8 million years ago an ancestor to the modern hippopotamus, Archaeopotamus, lived in Africa and the Middle East.[19]

While the fossil record of hippos is still poorly understood, the two modern genera, Hippopotamus and Choeropsis (sometimes Hexaprotodon), may have diverged as far back as 8 million years ago. Taxonomists disagree whether or not the modern Pygmy Hippopotamus is a member of Hexaprotodon —an apparently paraphyletic genus also embracing many extinct Asian hippopotamuses that is more closely related to Hippopotamus, or Choeropsis —an older and basal genus.[18][19]

[edit]Extinct species

Three species of Malagasy Hippopotamus became extinct during the Holocene on Madagascar, one of them within the past 1,000 years. The Malagasy Hippos were smaller than the modern hippopotamus, likely through the process of insular dwarfism.[20] There is fossil evidence that many Malagasy Hippos were hunted by humans, a likely factor in their eventual extinction.[20] Isolated members of Malagasy Hippopotamus may have survived in remote pockets; in 1976, villagers described a living animal called the Kilopilopitsofy, which may have been a Malagasy Hippopotamus.[21]

Two species of Hippopotamus, the European Hippopotamus (H. antiquus) and H. gorgops ranged throughout continental Europe and the British Isles. Both species became extinct before the last glaciation. Ancestors of European Hippos found their way to many islands of the Mediterranean during the Pleistocene.[22] Both species were larger than the modern hippopotamus, averaging about 1 meter (3.3 feet) longer. The Pleistocene also saw a number of dwarf species evolve on several Mediterranean islands including Crete (H. creutzburgi), Cyprus (H. minor), Malta (H. melitensis) and Sicily (H. pentlandi). Of these, the Cyprus Dwarf Hippopotamus, survived until the end of the Pleistocene or early Holocene. Evidence from an archaeological site Aetokremnos, continues to cause debate on whether or not the species was encountered, and was driven to extinction, by man. Hippopotamuses are among the largest living mammals; only elephants and some rhinoceroses and whales are heavier. They can live in the water or on land. Their specific gravity allows them to sink and walk or run along the bottom of a river. Hippos are considered megafauna, but unlike all other African megafauna, hippos have adapted for a semi-aquatic life in freshwater lakes and rivers.[9]:3 A hippo's lifespan is typically 40–50 years.[6]:277 Donna the Hippo, 60, was the oldest living hippo in captivity. She lived at the Mesker Park Zoo in Evansville, Indiana, USA[24][25] until her death on August 1, 2012. The oldest hippo ever recorded was called Tanga; she lived in Munich, Germany, and died in 1995 at the age of 61.[26]

Because of their enormous size, hippopotamuses are difficult to weigh in the wild. Most estimates of the weight come from culling operations that were carried out in the 1960s. The average weights for adult males ranged between 1,500–1,800 kg (3,300–4,000 lb). Females are smaller than their male counterparts, with average weights measuring between 1,300–1,500 kg (2,900–3,300 lb).[9]:12 Older males can get much larger, reaching at least 3,200 kg (7,100 lb) with a few exceptional specimens exceeding 3,600 kg (7,900 lb).[27][28] The heaviest known hippopotamus weighed approximately 4,500 kg (9,900 lb).[29] Male hippos appear to continue growing throughout their lives; females reach a maximum weight at around age 25.[30]

Hippos measure 3.3 to 5.2 meters (11 to 17 ft) long, including a tail of about 56 centimeters (22 in) in length and average about 1.5 meters (5 ft) tall at the shoulder.[31][32] The range of hippopotamus sizes overlaps with the range of the white rhinoceros; use of different metrics makes it unclear which is the largest land animal after elephants. Even though they are bulky animals, hippopotamuses can run faster than a human on land. Estimates of their running speed vary from 30 km/h (18 mph) to 40 km/h (25 mph), or even 50 km/h (30 mph). The hippo can maintain these higher speeds for only a few hundred meters. Despite being semi-aquatic and having webbed feet, an adult hippo is not a particularly good swimmer nor can it float. It is rarely found in deep water; when it is, the animal moves by porpoise-like leaps from the bottom. The eyes, ears, and nostrils of hippos are placed high on the roof of the skull. This allows them to be in the water with most of their body submerged in the waters and mud of tropical rivers to stay cool and prevent sunburn. Their skeletal structure is graviportal, adapted to carrying the animals' enormous weight. Hippopotamuses have small legs (relative to other megafauna) because the water in which they live reduces the weight burden. Unlike most other semi-aquatic animals, the hippopotamus has very little hair.[6]:260 The skin is 6 in (15 cm) thick,[33] providing it great protection against conspecifics and predators. The animals's upper parts are purplish-gray to blue-black while the under parts and areas around the eyes and ears can be brownish-pink.[6]:260 The testes of the males descend only partially and a scrotum is not present. In addition, the penis retracts into the body when not erect. The genitals of the female are unusual in that the vagina is ridged and two large diverticula protrude from the vulval vestibule. The function of these is unknown.[9]:28–29

The hippo's jaw is powered by a large masseter and a well developed digastric; the latter loops up behind the former to the hyoid.[6]:259 The jaw hinge is located far back enough to allow the animal to open its mouth at almost 180°.[9]:17 On the National Geographic Channel television program, "Dangerous Encounters with Brady Barr", Dr. Brady Barr measured the bite force of an adult female hippo at 8100 N (1821 lbf); Barr also attempted to measure the bite pressure of an adult male hippo, but had to abandon the attempt due to the male's aggressiveness.[34] Hippopotamus teeth sharpen themselves as they grind together. The lower canines and lower incisors are enlarged, especially in males, and grow continuously. The incisors can reach 40 cm (16 in) while the canines reach up to 50 cm (20 in).[33]

Their skin secretes a natural sunscreen substance which is red-colored. The secretion is sometimes referred to as "blood sweat," but is neither blood nor sweat. This secretion is initially colorless and turns red-orange within minutes, eventually becoming brown. Two distinct pigments have been identified in the secretions, one red (hipposudoric acid) and one orange (norhipposudoric acid). The two pigments are highly acidic compounds. Both pigments inhibit the growth of disease-causing bacteria; as well, the light absorption of both pigments peaks in the ultraviolet range, creating a sunscreen effect. All hippos, even those with different diets, secrete the pigments, so it does not appear that food is the source of the pigments. Instead, the animals may synthesize the pigments from precursors such as the amino acid tyrosine. Hippopotamus amphibius was widespread in North Africa and Europe during the Eemian[36] and late Pleistocene until about 30,000 years ago. The species was common in Egypt's Nile region during antiquity but has since been extirpated. Pliny the Elder writes that, in his time, the best location in Egypt for capturing this animal was in the Saite nome;[37] the animal could still be found along the Damietta branch after the Arab Conquest in 639. Hippos are still found in the rivers and lakes of the northern Democratic Republic of the Congo, Uganda, Tanzania and Kenya, north through to Ethiopia, Somalia and Sudan, west from Ghana to Gambia, and also in Southern Africa (Botswana, Republic of South Africa, Zimbabwe, Zambia, Mozambique). Genetic evidence suggests that common hippos in Africa experienced a marked population expansion during or after the Pleistocene Epoch, attributed to an increase in water bodies at the end of the era. These findings have important conservation implications as hippo populations across the continent are currently threatened by loss of access to fresh water.[10] Hippos are also subject to unregulated hunting and poaching. In May 2006 the hippopotamus was identified as a vulnerable species on the IUCN Red List drawn up by the World Conservation Union (IUCN), with an estimated population of between 125,000 and 150,000 hippos, a decline of between 7% and 20% since the IUCN's 1996 study. Zambia (40,000) and Tanzania (20,000–30,000) possess the largest populations.[1]

The hippo population declined most dramatically in the Democratic Republic of the Congo.[38] The population in Virunga National Park had dropped to 800 or 900 from around 29,000 in the mid 1970s.[39] The decline is attributed to the disruptions caused by the Second Congo War.[39] The poachers are believed to be former Hutu rebels, poorly paid Congolese soldiers, and local militia groups.[39] Reasons for poaching include the belief that hippos are harmful to society, and also for money.[40] The sale of hippo meat is illegal, but black-market sales are difficult for Virunga National Park officers to track. Invasive potential

In the late 1980s, Pablo Escobar kept four hippos in a private menagerie at his residence in Hacienda Napoles, 100 km east of Medellín, Colombia, after buying them in New Orleans. They were deemed too difficult to seize and move after Escobar's fall, and hence left on the untended estate. By 2007, the animals had multiplied to 16 and had taken to roaming the area for food in the nearby Magdalena River.[41] In 2009, two adults and one calf escaped the herd, and after attacking humans and killing cattle, one of the adults (called "Pepe") was killed by hunters under authorization of the local authorities.[42][43] It is unknown what kind of effects the presence of hippos might have on the ecosystem in Colombia. According to experts interviewed by W Radio Colombia, the animals could survive in the Colombian jungles. It is believed that the lack of control from the Colombian government, which is not used to dealing with this species, could result in human fatalities. Hippos spend most of their days wallowing in the water or the mud, with the other members of their pod. The water serves to keep their body temperature down, and to keep their skin from drying out. With the exception of eating, most of hippopotamuses' lives —from childbirth, fighting with other hippos, to reproduction— occur in the water. Hippos leave the water at dusk and travel inland, sometimes up to 8 kilometers (5 mi), to graze on short grass, their main source of food. They spend four to five hours grazing and can consume 68 kilograms (150 lb) of grass each night.[44] Like almost any herbivore, they will consume many other plants if presented with them, but their diet in nature consists almost entirely of grass, with only minimal consumption of aquatic plants.[45] Hippos have (rarely) been filmed eating carrion, usually close to the water. There are other reports of meat-eating, and even cannibalism and predation.[46] The stomach anatomy of a hippo is not suited to carnivory, and meat-eating is likely caused by aberrant behavior or nutritional stress.[9]:84

The diet of hippos consists mostly of terrestrial grasses, even though they spend most of their time in the water. Most of their defecation occurs in the water, creating allochthonous deposits of organic matter along the river beds. These deposits have an unclear ecological function.[45] Because of their size and their habit of taking the same paths to feed, hippos can have a significant impact on the land they walk across, both by keeping the land clear of vegetation and depressing the ground. Over prolonged periods hippos can divert the paths of swamps and channels.[47]

Adult hippos move at speeds up to 8 km/h (5 mph) in water. Adult hippos typically resurface to breathe every three to five minutes. The young have to breathe every two to three minutes.[9]:4 The process of surfacing and breathing is automatic, and even a hippo sleeping underwater will rise and breathe without waking. A hippo closes its nostrils when it submerges into the water. As with fish and turtles on a coral reef, hippo occasionally visit cleaning stations and signal by wide-open mouth their readiness for being cleaned of parasites by certain species of fish. This situation is an example of mutualism in which the hippo benefits from the cleansing while the fish receive food.[ Studying the interaction of male and female hippopotamuses has long been complicated by the fact that hippos are not sexually dimorphic and thus females and young males are almost indistinguishable in the field.[49] Although hippos like to lie close to each other, they do not seem to form social bonds except between mothers and daughters, and are not social animals. The reason they huddle close together is unknown.[9]:49

Hippopotamuses are territorial only in water, where a bull presides over a small stretch of river, on average 250 meters in length, and containing ten females. The largest pods can contain over 100 hippos.[9]:50 Other bachelors are allowed in a bull's stretch, as long as they behave submissively toward the bull. The territories of hippos exist to establish mating rights. Within the pods, the hippos tend to segregate by gender. Bachelors will lounge near other bachelors, females with other females, and the bull on his own. When hippos emerge from the water to graze, they do so individually.[9]:4

Hippopotamuses appear to communicate verbally, through grunts and bellows, and it is thought that they may practice echolocation, but the purpose of these vocalizations is currently unknown. Hippos have the unique ability to hold their head partially above the water and send out a cry that travels through both water and air; hippos above and under water will respond.[ Female hippos reach sexual maturity at five to six years of age and have a gestation period of 8 months. A study of endocrine systems revealed that female hippopotamuses may begin puberty as early as 3 or 4 years of age.[51] Males reach maturity at around 7.5 years. A study of hippopotamus reproductive behavior in Uganda showed that peak conceptions occurred during the end of the wet season in the summer, and peak births occurred toward the beginning of the wet season in late winter. This is because of the female's estrous cycle; as with most large mammals, male hippopotamus spermatozoa is active year round. Studies of hippos in Zambia and South Africa also showed evidence of births occurring at the start of the wet season.[9]:60–61 After becoming pregnant, a female hippopotamus will typically not begin ovulation again for 17 months.[51]

Mating occurs in the water with the female submerged for most of the encounter,[9]:63 her head emerging periodically to draw breath. Baby hippos are born underwater at a weight between 25 and 45 kg (60–110 lb) and an average length of around 127 cm (50 in) and must swim to the surface to take their first breath. A mother typically gives birth to only one hippo, although twins also occur. The young often rest on their mothers' backs when in water that is too deep for them, and they swim underwater to suckle. They also will suckle on land when the mother leaves the water. Weaning starts between six and eight months after birth and most calves are fully weaned after a year.[9]:64 Like many other large mammals, hippos are described as K-strategists, in this case typically producing just one large, well-developed infant every couple of years (rather than large numbers of small, poorly developed young several times per year as is common among small mammals such as rodents. Hippopotamuses are by nature very aggressive animals, especially when young calves are present. Frequent targets of their aggression include crocodiles, which often inhabit the same river habitat as hippos. Nile crocodiles, lions and spotted hyenas are known to prey on young hippos.[53] Hippos are very aggressive towards humans, whom they commonly attack whether in boats or on land with no apparent provocation.[54] They are widely considered to be one of the most dangerous large animals in Africa.[55][56]

To mark territory, hippos spin their tails while defecating to distribute their excrement over a greater area.[57] Likely for the same reason, hippos are retromingent – that is, they urinate backwards.[58] When in combat, male hippos use their incisors to block each others attacks, and their lower canines to inflict damage.[6]:260 Hippos rarely kill each other, even in territorial challenges. Usually a territorial bull and a challenging bachelor will stop fighting when it is clear that one hippo is stronger. When hippos become overpopulated, or when a habitat starts to shrink, bulls will sometimes attempt to kill infants, but this behavior is not common under normal conditions.[52] Some incidents of hippo cannibalism have been documented, but it is believed to be the behavior of distressed or sick hippos, and not healthy behavior. The earliest evidence of human interaction with hippos comes from butchery cut marks upon hippo bones at Bouri Formation dated around 160,000 years ago.[59] Later rock paintings and engravings showing hippos being hunted have been found in the mountains of the central Sahara dated 4,000–5,000 years ago near Djanet in the Tassili n'Ajjer Mountains.[9]:1 The ancient Egyptians recognized the hippo as a ferocious denizen of the Nile.

The hippopotamus was also known to the Greeks and Romans. The Greek historian Herodotus described the hippopotamus in The Histories (written circa 440 BC) and the Roman Historian Pliny the Elder wrote about the hippopotamus in his encyclopedia Naturalis Historia (written circa 77 AD).[37][60] Hippopotamus was one of the many exotic animals brought to fight gladiators in Rome by the emperor Philip I the Arab to commemorate Rome's 1000 years anniversary in 248 AD. Silver coins with hippo's image were minted that year.[citation needed]

Zulu warriors preferred to be as brave as a hippopotamus, since even lions were not considered as brave. "In 1888, Captain Baden-Powell was part of a column searching for the Zulu chief Dinizulu, who was leading the Usutu people in revolt against the British colonists. The column was joined by John Dunn, a white Zulu chief, who led an impi (army) of 2000 Zulu warriors to join the British." [61]

The words of the Zulu anthem sounded like this:

"Een-gonyama Gonyama! "Invooboo! Yah-bo! Yah-bo! Invooboo!"

"John Dunn was at the head of his impi. [Baden Powell] asked him to translate the Zulu anthem his men had been singing. Dunn laughed and replied: "He is a lion. Yes, he is better than a lion—he is a hippopotamus. Hippopotamuses have long been popular zoo animals. The first zoo hippo in modern history was Obaysch who arrived at the London Zoo on May 25, 1850, where he attracted up to 10,000 visitors a day and inspired a popular song, the Hippopotamus Polka.[63] Hippos have remained popular zoo animals since Obaysch, and generally breed well in captivity. Their birth rates are lower than in the wild, but this is attributed to zoos' not wanting to breed as many hippos as possible, since hippos are large and relatively expensive animals to maintain.[9]:129[63]

Like many zoo animals, hippos were traditionally displayed in concrete exhibits. In the case of hippos, they usually had a pool of water and patch of grass. In the 1980s, zoo designers increasingly designed exhibits that reflected the animals' native habitats. The best known of these, the Toledo Zoo Hippoquarium, features a 360,000 gallon pool for hippos.[64] In 1987, researchers were able to tape, for the first time, an underwater birth (as in the wild) at the Toledo Zoo. The exhibit was so popular that the hippos became the logo of the Toledo Zoo. A red hippo represented the Ancient Egyptian god Set; the thigh is the 'phallic leg of set' symbolic of virility. Set's consort Tawaret was also seen as part hippo.[66] The hippopotamus-headed Tawaret was a goddess of protection in pregnancy and childbirth, because ancient Egyptians recognized the protective nature of a female hippopotamus toward her young.[67] The Ijo people wore masks of aquatic animals like the hippo when practicing their water spirit cults.[68] The Behemoth from the Book of Job, 40:15–24 is also thought to be based on a hippo.[69]

Hippos have been the subjects of various African folktales. According to a Bushmen story; when the Creator assigned each animal their place in nature, the hippos wanted to live in the water, but were refused out of fear that they might eat all the fish. After begging and pleading, the hippos were finally allowed to live in the water on the conditions that they would eat grass instead of fish and would fling their dung so that it can be inspected for fish bones.[70] In a Ndebele tale, the hippo originally had long, beautiful hair but was set on fire by a jealous hare and had to jump into a nearby pool. The hippo lost most of his hair and was too embarrassed to leave the water.[70]

Ever since Obaysch inspired the Hippopotamus Polka, hippos have been popular animals in Western culture for their rotund appearance that many consider comical.[63] Stories of hippos like Huberta who became a celebrity in South Africa in the 1930s for trekking across the country;[71] or the tale of Owen and Mzee, a hippo and tortoise who developed an intimate bond; have amused people who have bought hippo books, merchandise, and many a stuffed hippo toy.[72][73] Hippos were mentioned in the novelty Christmas song "I Want a Hippopotamus for Christmas" that became a hit for child star Gayla Peevey in 1953.[74] They also feature in the songs "The Hippopotamus" and "Hippo Encore" by Flanders and Swann, with the famous refrain Mud, Mud, Glorious Mud. They even inspired a popular board game, Hungry Hungry Hippos. Hippos have also been popular cartoon characters, where their rotund frame is used for humorous effect. The Disney film Fantasia featured a ballerina hippopotamus dancing to the opera, La Gioconda.[38] Other cartoon hippos have included Hanna-Barbera's Peter Potamus, the book and TV series George and Martha, Flavio and Marita on the Animaniacs, Pat of the French duo Pat et Stanley, The Backyardigan's Tasha, and Gloria and Moto-Moto from the Madagascar franchise. A Sesame Street cartoon from the early 1970s features a hippo who lives in the country and likes it quiet, while being disturbed when the mouse who likes it loud moves in with her.[citation needed]

The hippopotamus characters "Happy Hippos" were created in 1988 by the French designer Andre Roche [77] based in Munich, to be hidden in the "Kinder Surprise egg" of the Italian chocolate company Ferrero SpA. These characters were not placid like real hippos[contradiction] but rather cute and lively, and had such a success that they reappeared several times in different products of this company in the following years, increasing their popularity worldwide each time.[citation needed] The Nintendo Company published in the years 2001 and 2007 Game Boy adventures of them. In the game of chess, the hippopotamus lends its name to the Hippopotamus Defense, an opening system, which is generally considered weak.The River Horse is a popular outdoor sculpture at George Washington University, Washington, D.C. Botswana, Moremi National Park, Moremi Game reserve, private Reserve, Farm, chobe National park, Chobe Game Reserve, Zambia, Zambezi River, Livingstone, Zimbabwe, Kenya, Tanzania, Wildlife Conservation Project, Maramba River Lodge, South Africa, Krugger National Park. art beach blue bw california canada canon china city concert de england europe family festival film flower flowers food france friends green instagramapp iphoneography italy japan live london music nature new newyork night nikon nyc paris park party people photography portrait red sky snow square squareformat street summer sunset travel trip uk usa vacation water wedding white winter

Picture taken 1983 - digitally captured from paper print

__________________________________________

 

The orangutans (also spelled orang-utan, orangutang, or orang-utang) are the two exclusively Asian species of extant great apes. Native to Indonesia and Malaysia, orangutans are currently found in only the rainforests of Borneo and Sumatra. Classified in the genus Pongo, orangutans were considered to be one species. Since 1996, they have been divided into two species: the Bornean orangutan (P. pygmaeus) and the Sumatran orangutan (P. abelii). In addition, the Bornean species is divided into three subspecies.

 

Based on genome sequencing, the two extant orangutan species evidently diverged around 400,000 years ago. The orangutans are also the only surviving species of the subfamily Ponginae, which also included several other species, such as the three extinct species of the genus Gigantopithecus, including the largest known primate Gigantopithecus blacki. The ancestors of the Ponginae subfamily split from the main ape line in Africa 16 to 19 million years ago (mya) and spread into Asia.

 

Orangutans are the most arboreal of the great apes and spend most of their time in trees. Their hair is typically reddish-brown, instead of the brown or black hair typical of chimpanzees and gorillas. Males and females differ in size and appearance. Dominant adult males have distinctive cheek pads and produce long calls that attract females and intimidate rivals. Younger males do not have these characteristics and resemble adult females. Orangutans are the most solitary of the great apes, with social bonds occurring primarily between mothers and their dependent offspring, who stay together for the first two years. Fruit is the most important component of an orangutan's diet; however, the apes will also eat vegetation, bark, honey, insects and even bird eggs. They can live over 30 years in both the wild and captivity.

 

Orangutans are among the most intelligent primates; they use a variety of sophisticated tools and construct elaborate sleeping nests each night from branches and foliage. The apes have been extensively studied for their learning abilities. There may even be distinctive cultures within populations. Field studies of the apes were pioneered by primatologist Birutė Galdikas. Both orangutan species are considered to be endangered, with the Sumatran orangutan being critically endangered. Human activities have caused severe declines in the populations and ranges of both species. Threats to wild orangutan populations include poaching, habitat destruction, and the illegal pet trade. Several conservation and rehabilitation organisations are dedicated to the survival of orangutans in the wild.

 

ETYMOLOGY

The name "orangutan" (also written orang-utan, orang utan, orangutang, and ourang-outang) is derived from the Malay and Indonesian words orang meaning "person" and hutan meaning "forest", thus "person of the forest". Orang Hutan was originally not used to refer to apes, but to forest-dwelling humans.

 

The Malay words used to refer specifically to the ape are maias and mawas, but it is unclear if those words refer to just orangutans, or to all apes in general. The first attestation of the word to name the Asian ape is in Dutch physician Jacobus Bontius' 1631 Historiae naturalis et medicae Indiae orientalis – he reported that Malays had informed him the ape was able to talk, but preferred not to "lest he be compelled to labour". The word appeared in several German-language descriptions of Indonesian zoology in the 17th century. The likely origin of the word comes specifically from the Banjarese variety of Malay.

 

Cribb et al. (2014) suggest that Bontius' account referred not to apes (which were not known from Java) but rather to humans suffering some serious medical condition (most likely endemic cretinism) and that his use of the word was misunderstood by Nicolaes Tulp, who was the first to use the term in a publication.

 

The word was first attested in English in 1691 in the form orang-outang, and variants with -ng instead of -n as in the Malay original are found in many languages. This spelling (and pronunciation) has remained in use in English up to the present, but has come to be regarded as incorrect. The loss of "h" in Utan and the shift from n to -ng has been taken to suggest that the term entered English through Portuguese. In 1869, British naturalist Alfred Russel Wallace, co-creator of modern evolutionary theory, published his account of Malaysia's wildlife: The Malay Archipelago: The Land of the Orang-Utan and the Bird of Paradise.

 

The name of the genus, Pongo, comes from a 16th-century account by Andrew Battell, an English sailor held prisoner by the Portuguese in Angola, which describes two anthropoid "monsters" named Pongo and Engeco. He is now believed to have been describing gorillas, but in the 18th century, the terms orangutan and pongo were used for all great apes. Lacépède used the term Pongo for the genus following the German botanist Friedrich von Wurmb who sent a skeleton from the Indies to Europe.

 

TAXONOMY, PHYLOGENY AND GENETICS

The two orangutan species are the only extant members of the subfamily Ponginae. This subfamily also included the extinct genera Lufengpithecus, which lived in southern China and Thailand 2–8 mya, and Sivapithecus, which lived India and Pakistan from 12.5 mya until 8.5 mya. These apes likely lived in drier and cooler environments than orangutans do today. Khoratpithecus piriyai, which lived in Thailand 5–7 mya, is believed to have been the closest known relative of the orangutans. The largest known primate, Gigantopithecus, was also a member of Ponginae and lived in China, India and Vietnam from 5 mya to 100,000 years ago.

 

Within apes (superfamily Hominoidea), the gibbons diverged during the early Miocene (between 19.7 and 24.1 mya, according to molecular evidence) and the orangutans split from the African great ape lineage between 15.7 and 19.3 mya.

 

HISTORY OF ORANGUTAN TAXONOMY

The orangutan was first described scientifically in the Systema Naturae of Linnaeus as Simia satyrus. The populations on the two islands were classified as subspecies until 1996, when they were elevated to full species status, and the three distinct populations on Borneo were elevated to subspecies. The population currently listed as P. p. wurmbii may be closer to the Sumatran orangutan than the other Bornean orangutan subspecies. If confirmed, abelii would be a subspecies of P. wurmbii (Tiedeman, 1808).

 

Regardless, the type locality of P. pygmaeus has not been established beyond doubts, and may be from the population currently listed as P. wurmbii (in which case P. wurmbii would be a junior synonym of P. pygmaeus, while one of the names currently considered a junior synonym of P. pygmaeus would take precedence for the northwest Bornean taxon). To further confuse, the name P. morio, as well as some suggested junior synonyms, may be junior synonyms of the P. pygmaeus subspecies, thus leaving the east Bornean populations unnamed.

 

In addition, some fossils described under the name P. hooijeri have been found in Vietnam, and multiple fossil subspecies have been described from several parts of southeastern Asia. It is unclear if these belong to P. pygmaeus or

 

P. abelii or, in fact, represent distinct species.

 

GENOMICS

The Sumatran orangutan genome was sequenced in January 2011. Following humans and chimpanzees, the Sumatran orangutan has become the third species of hominid to have its genome sequenced. Subsequently, the Bornean species would have its genome sequenced. Genetic diversity was found to be lower in Bornean orangutans (P. pygmaeus) than in Sumatran ones (P. abelii), despite the fact that Borneo is home to six or seven times as many orangutans as Sumatra.

 

The comparison has shown these two species diverged around 400,000 years ago, more recently than was previously thought. Also, the orangutan genome was found to have evolved much more slowly than chimpanzee and human DNA. Previously, the species was estimated to have diverged 2.9 to 4.9 mya. The researchers hope these data may help conservationists save the endangered ape, and also prove useful in further understanding of human genetic diseases.

 

Bornean orangutans have 48 diploid chromosomes.

 

ANATOMY AND PHYSIOLOGY

An orangutan has a large, bulky body, a thick neck, very long, strong arms, short, bowed legs, and no tail. It is mostly covered with long, reddish-brown hair and grey-black skin. Sumatran orangutans have more sparse and lighter-coloured coats. The orangutan has a large head with a prominent mouth area. Though largely hairless, their faces can develop some hair in males, giving them a moustache.

 

Adult males have large cheek flaps to show their dominance to other males. The cheek flaps are made mostly of fatty tissue and are supported by the musculature of the face. Mature males' throat pouches allow them to make loud calls. The species display significant sexual dimorphism; females typically stand 115 cm tall and weigh around 37 kg, while flanged adult males stand 136 cm tall and weigh 75 kg. A male orangutan has an arm span of about 2 m.

 

Orangutan hands are similar to human hands; they have four long fingers and an opposable thumb. However, the joint and tendon arrangement in the orangutans' hands produces two adaptations that are significant for arboreal locomotion. The resting configuration of the fingers is curved, creating a suspensory hook grip. Additionally, without the use of the thumb, the fingers and hands can grip tightly around objects with a small diameter by resting the tops of the fingers against the inside of the palm, creating a double-locked grip.

 

Their feet have four long toes and an opposable big toe. Orangutans can grasp things with both their hands and their feet. Their fingers and toes are curved, allowing them to get a better grip on branches. Since their hip joints have the same flexibility as their shoulder and arm joints, orangutans have less restriction in the movements of their legs than humans have. Unlike gorillas and chimpanzees, orangutans are not true knuckle-walkers, and are instead fist-walkers.

 

ECOLOGY AND BEHAVIOUR

Orangutans live in primary and old secondary forests, particularly dipterocarp forests and peat swamp forests. Both species can be found in mountainous and lowland swampy areas. Sumatran orangutans live at elevations as high as 1500 m, while Bornean orangutans live no higher than 1000 m. Other habitats used by orangutans include grasslands, cultivated fields, gardens, young secondary forest, and shallow lakes. Orangutans are the most arboreal of the great apes, spending nearly all their time in the trees.Most of the day is spent feeding, resting, and travelling. They start the day feeding for 2–3 hours in the morning. They rest during midday then travel in the late afternoon. When evening arrives, they begin to prepare their nests for the night. Orangutans do not swim, although they have been recorded wading in water. The main predators of orangutans are tigers. Other predators include clouded leopards, wild dogs and crocodiles. The absence of tigers on Borneo may explain why Bornean orangutans can be found on the ground more often than their Sumatran relatives.

 

DIET

Orangutans are opportunistic foragers, and their diets vary markedly from month to month. Fruit makes up 65–90% of the orangutan diet, and those with sugary or fatty pulp are favoured. Ficus fruits are commonly eaten and are easy to harvest and digest. Lowland dipterocarp forests are preferred by orangutans because of their plentiful fruit. Bornean orangutans consume at least 317 different food items that include young leaves, shoots, bark, insects, honey and bird eggs.

 

A decade-long study of urine and faecal samples at the Gunung Palung Orangutan Conservation Project in West Kalimantan has shown that orangutans give birth during and after the high fruit season (though not every year), during which they consume various abundant fruits, totalling up to 11,000 calories per day. In the low-fruit season, they eat whatever fruit is available in addition to tree bark and leaves, with daily intake at only 2,000 calories. Together with a long lactation period, orangutans also have a long birth interval.

 

Orangutans are thought to be the sole fruit disperser for some plant species including the climber species Strychnos ignatii which contains the toxic alkaloid strychnine. It does not appear to have any effect on orangutans except for excessive saliva production.

 

Geophagy, the practice of eating soil or rock, has been observed in orangutans. There are three main reasons for this dietary behaviour: for the addition of mineral nutrients to their diet; for the ingestion of clay minerals that can absorb toxic substances; or to treat a disorder such as diarrhoea. Orangutans also use plants of the genus Commelina as an anti-inflammatory balm.

 

SOCIAL LIFE

Orangutans live a more solitary lifestyle than the other great apes. Most social bonds occur between adult females and their dependent and weaned offspring. Adult males and independent adolescents of both sexes tend to live alone. Orangutan societies are made up of resident and transient individuals of both sexes. Resident females live with their offspring in defined home ranges that overlap with those of other adult females, which may be their immediate relatives. One to several resident female home ranges are encompassed within the home range of a resident male, who is their main mating partner.

 

Transient males and females move widely. Orangutans usually travel alone, but they may travel in small groups in their subadult years. However, this behaviour ends at adulthood. The social structure of the orangutan can be best described as solitary but social. Interactions between adult females range from friendly to avoidance to antagonistic. Resident males may have overlapping ranges and interactions between them tend to be hostile.

 

During dispersal, females tend to settle in home ranges that overlap with their mothers. However, they do not seem to have any special social bonds with them. Males disperse much farther from their mothers and enter into a transient phase. This phase lasts until a male can challenge and displace a dominant, resident male from his home range. Adult males dominate sub-adult males.

 

Both resident and transient orangutans aggregate on large fruiting trees to feed. The fruits tend to be abundant, so competition is low and individuals may engage in social interactions. Orangutans will also form travelling groups with members moving between different food sources. These groups tend to be made of only a few individuals. They also tend to be consortships between an adult male and female.

 

COMMUNICATION

Orangutans communicate with various sounds. Males will make long calls, both to attract females and advertise themselves to other males. Both sexes will try to intimidate conspecifics with a series of low guttural noises known collectively as the "rolling call". When annoyed, an orangutan will suck in air through pursed lips, making a kissing sound that is hence known as the "kiss squeak". Infants make soft hoots when distressed. Orangutans are also known to blow raspberries.

 

NESTING

Orangutans build nests specialized for both day or night use. These are carefully constructed; young orangutans learn from observing their mother's nest-building behaviour. In fact, nest-building is a leading cause in young orangutans leaving their mother for the first time. From six months of age onwards, orangutans practice nest-building and gain proficiency by the time they are three years old.

 

Construction of a night nest is done by following a sequence of steps. Initially, a suitable tree is located, orangutans being selective about sites though many tree species are used. The nest is then built by pulling together branches under them and joining them at a point. After the foundation has been built, the orangutan bends smaller, leafy branches onto the foundation; this serves the purpose of and is termed the "mattress". After this, orangutans stand and braid the tips of branches into the mattress. Doing this increases the stability of the nest and forms the final act of nest-building. In addition, orangutans may add additional features, such as "pillows", "blankets", "roofs" and "bunk-beds" to their nests.

 

REPRODUCTION AND PARENTING

Males mature at around 15 years of age, by which time they have fully descended testicles and can reproduce. However, they exhibit arrested development by not developing the distinctive cheek pads, pronounced throat pouches, long fur, or long-calls until they are between 15 and 20 years old. The development of these characteristics depends largely on the absence of a resident male.

 

Males without them are known as unflanged males in contrast to the more developed flanged males. The transformation from unflanged to flanged can occur very quickly. Unflanged and flanged males have two different mating strategies. Flanged males attract oestrous females with their characteristic long calls. Those calls may also suppress development in younger males. Unflanged males wander widely in search of oestrous females and upon finding one, will force copulation on her. While both strategies are successful, females prefer to mate with flanged males and seek their company for protection against unflanged males. Resident males may form consortships with females that can last days, weeks or months after copulation.

 

Female orangutans experience their first ovulatory cycle around 5.8–11.1 years. These occur earlier in females with more body fat. Like other great apes, female orangutans enter a period of infertility during adolescence which may last for 1–4 years. Female orangutans also have a 22– to 30-day menstrual cycle. Gestation lasts for 9 months, with females giving birth to their first offspring between the ages of 14 and 15 years.

 

Female orangutans have eight-year intervals between births, the longest interbirth intervals among the great apes. Unlike many other primates, male orangutans do not seem to practice infanticide. This may be because they cannot ensure they will sire a female's next offspring because she does not immediately begin ovulating again after her infant dies.

 

Male orangutans play almost no role in raising the young. Females do most of the caring and socializing of the young. A female often has an older offspring with her to help in socializing the infant. Infant orangutans are completely dependent on their mothers for the first two years of their lives. The mother will carry the infant during travelling, as well as feed it and sleep with it in the same night nest. For the first four months, the infant is carried on its belly and never relieves physical contact. In the following months, the time an infant spends with its mother decreases.

 

When an orangutan reaches the age of two, its climbing skills improve and it will travel through the canopy holding hands with other orangutans, a behaviour known as "buddy travel". Orangutans are juveniles from about two to five years of age and will start to temporarily move away from their mothers. Juveniles are usually weaned at about four years of age. Adolescent orangutans will socialize with their peers while still having contact with their mothers. Typically, orangutans live over 30 years in both the wild and captivity.

 

INTELLIGENCE

Orangutans are among the most intelligent primates. Experiments suggest they can figure out some invisible displacement problems with a representational strategy. In addition, Zoo Atlanta has a touch-screen computer where their two Sumatran orangutans play games. Scientists hope the data they collect will help researchers learn about socialising patterns, such as whether the apes learn behaviours through trial and error or by mimicry, and point to new conservation strategies.

 

A 2008 study of two orangutans at the Leipzig Zoo showed orangutans can use "calculated reciprocity", which involves weighing the costs and benefits of gift exchanges and keeping track of these over time. Orangutans are the first nonhuman species documented to do so. Orangutans are very technically adept nest builders, making a new nest each evening in only in 5 to 6 minutes and choosing branches which they know can support their body weight.

 

TOOL USE AND CULTURE

Tool use in orangutans was observed by primatologist Birutė Galdikas in ex-captive populations. In addition, evidence of sophisticated tool manufacture and use in the wild was reported from a population of orangutans in Suaq Balimbing (Pongo abelii) in 1996. These orangutans developed a tool kit for use in foraging that consisted of both insect-extraction tools for use in the hollows of trees and seed-extraction tools for harvesting seeds from hard-husked fruit. The orangutans adjusted their tools according to the nature of the task at hand, and preference was given to oral tool use. This preference was also found in an experimental study of captive orangutans (P. pygmaeus).

 

Primatologist Carel P. van Schaik and biological anthropologist Cheryl D. Knott further investigated tool use in different wild orangutan populations. They compared geographic variations in tool use related to the processing of Neesia fruit. The orangutans of Suaq Balimbing (P. abelii) were found to be avid users of insect and seed-extraction tools when compared to other wild orangutans. The scientists suggested these differences are cultural. The orangutans at Suaq Balimbing live in dense groups and are socially tolerant; this creates good conditions for social transmission. Further evidence that highly social orangutans are more likely to exhibit cultural behaviours came from a study of leaf-carrying behaviours of ex-captive orangutans that were being rehabilitated on the island of Kaja in Borneo.

 

Wild orangutans (P. pygmaeus wurmbii) in Tuanan, Borneo, were reported to use tools in acoustic communication. They use leaves to amplify the kiss squeak sounds they produce. The apes may employ this method of amplification to deceive the listener into believing they are larger animals.

 

In 2003, researchers from six different orangutan field sites who used the same behavioural coding scheme compared the behaviours of the animals from the different sites. They found the different orangutan populations behaved differently. The evidence suggested the differences were cultural: first, the extent of the differences increased with distance, suggesting cultural diffusion was occurring, and second, the size of the orangutans' cultural repertoire increased according to the amount of social contact present within the group. Social contact facilitates cultural transmission.

 

POSSIBLE LINGUISTIC CAPABILITIES

A study of orangutan symbolic capability was conducted from 1973 to 1975 by zoologist Gary L. Shapiro with Aazk, a juvenile female orangutan at the Fresno City Zoo (now Chaffee Zoo) in Fresno, California. The study employed the techniques of psychologist David Premack, who used plastic tokens to teach linguistic skills to the chimpanzee, Sarah. Shapiro continued to examine the linguistic and learning abilities of ex-captive orangutans in Tanjung Puting National Park, in Indonesian Borneo, between 1978 and 1980.

 

During that time, Shapiro instructed ex-captive orangutans in the acquisition and use of signs following the techniques of psychologists R. Allen Gardner and Beatrix Gardner, who taught the chimpanzee, Washoe, in the late 1960s. In the only signing study ever conducted in a great ape's natural environment, Shapiro home-reared Princess, a juvenile female, which learned nearly 40 signs (according to the criteria of sign acquisition used by psychologist Francine Patterson with Koko, the gorilla) and trained Rinnie, a free-ranging adult female orangutan, which learned nearly 30 signs over a two-year period. For his dissertation study, Shapiro examined the factors influencing sign learning by four juvenile orangutans over a 15-month period.

 

ORANGUTANS AND HUMANS

Orangutans were known to the native people of Sumatra and Borneo for millennia. While some communities hunted them for food and decoration, others placed taboos on such practices. In central Borneo, some traditional folk beliefs consider it bad luck to look in the face of an orangutan. Some folk tales involve orangutans mating with and kidnapping humans. There are even stories of hunters being seduced by female orangutans.

 

Europeans became aware of the existence of the orangutan possibly as early as the 17th century. European explorers in Borneo hunted them extensively during the 19th century. The first accurate description of orangutans was given by Dutch anatomist Petrus Camper, who observed the animals and dissected some specimens.

 

Little was known about their behaviour until the field studies of Birutė Galdikas, who became a leading authority on the apes. When she arrived in Borneo, Galdikas settled into a primitive bark and thatch hut, at a site she dubbed Camp Leakey, near the edge of the Java Sea. Despite numerous hardships, she remained there for over 30 years and became an outspoken advocate for orangutans and the preservation of their rainforest habitat, which is rapidly being devastated by loggers, palm oil plantations, gold miners, and unnatural forest fires.

 

Galdikas's conservation efforts have extended well beyond advocacy, largely focusing on rehabilitation of the many orphaned orangutans turned over to her for care. Galdikas is considered to be one of Leakey's Angels, along with Jane Goodall and Dian Fossey. According to the World Wildlife Fund, half of the habitat of the Bornean orangutan has been lost since 1994.

 

A persistent folktale on Sumatra and Borneo and in popular culture, is that male orangutans display sexual attraction to human women, and may even forcibly copulate with them. The only serious, but anecdotal, report of such an incident taking place, is primatologist Birutė Galdikas' report that her cook was sexually assaulted by a male orangutan. This orangutan, though, was raised in captivity and may have suffered from a skewed species identity, and forced copulation is a standard mating strategy for low-ranking male orangutans.

 

A female orangutan was rescued from a village brothel in Kareng Pangi village, Central Kalimantan, in 2003. The orangutan was shaved and chained for sexual purposes. Since being freed, the orangutan, named Pony, has been living with the Borneo Orangutan Survival Foundation. She has been re-socialised to live with other orang-utans.

 

LEGAL STATUS

In December 2014, Argentina became the first country to recognize a non-human primate as having legal rights when it ruled that an orangutan named Sandra at the Buenos Aires Zoo must be moved to a sanctuary in Brazil in order to provide her "partial or controlled freedom". Although animal rights groups interpreted the ruling as applicable to all species in captivity, legal specialists considered the ruling only applicable to hominid apes due to their genetic similarities to humans.

 

CONSERVATION

CONSERVATION STATUS

The Sumatran and Bornean species are both critically endangered according to the IUCN Red List of mammals, and both are listed on Appendix I of CITES.

 

The Bornean orangutan population declined by 60% in the past 60 years and is projected to decline by 82% over 75 years. Its range has become patchy throughout Borneo, being largely extirpated from various parts of the island, including the southeast. The largest remaining population is found in the forest around the Sabangau River, but this environment is at risk.

 

Sumatran orangutan populations declined by 80% in 75 years. This species is now found only in the northern part of Sumatra, with most of the population inhabiting the Leuser Ecosystem. In late March 2012, some of the last Sumatran orangutans in northern Sumatra were reported to be threatened with approaching forest fires and might be wiped out entirely within a matter of weeks.

 

Estimates between 2000 and 2003 found 7,300 Sumatran orangutans and between 45,000 and 69,000 Bornean orangutans remain in the wild. A 2007 study by the Government of Indonesia noted a total wild population of 61,234 orangutans, 54,567 of which were found on the island of Borneo in 2004.

 

During the early 2000s, orangutan habitat has decreased rapidly due to logging and forest fires, as well as fragmentation by roads. A major factor in that period of time has been the conversion of vast areas of tropical forest to palm oil plantations in response to international demand. Palm oil is used for cooking, cosmetics, mechanics, and biodiesel. Hunting is also a major problem as is the illegal pet trade.

 

Orangutans may be killed for the bushmeat trade, crop protection, or for use for traditional medicine. Orangutan bones are secretly traded in souvenir shops in several cities in Kalimantan, Indonesia. Mother orangutans are killed so their infants can be sold as pets, and many of these infants die without the help of their mother. Since 2004, several pet orangutans were confiscated by local authorities and sent to rehabilitation centres.

 

CONSERVATION CENTRES AND ORGANISATIONS

A number of organisations are working for the rescue, rehabilitation and reintroduction of orangutans. The largest of these is the Borneo Orangutan Survival Foundation, founded by conservationist Willie Smits. It is audited by a multinational auditor company and operates a number of large projects, such as the Nyaru Menteng Rehabilitation Program founded by conservationist Lone Drøscher Nielsen.

 

Other major conservation centres in Indonesia include those at Tanjung Puting National Park and Sebangau National Park in Central Kalimantan, Kutai in East Kalimantan, Gunung Palung National Park in West Kalimantan, and Bukit Lawang in the Gunung Leuser National Park on the border of Aceh and North Sumatra. In Malaysia, conservation areas include Semenggoh Wildlife Centre in Sarawak and Matang Wildlife Centre also in Sarawak, and the Sepilok Orang Utan Sanctuary near Sandakan in Sabah. Major conservation centres that are headquartered outside of the orangutan's home countries; include Frankfurt Zoological Society, Orangutan Foundation International, which was founded by Birutė Galdikas, and the Australian Orangutan Project.

 

Conservation organisations such as Orangutan Land Trust work with the palm oil industry to improve sustainability and encourages the industry to establish conservation areas for orangutans. It works to bring different stakeholders together to achieve conservation of the species and its habitat.

 

WIKIPEDIA

A camel is an even-toed ungulate within the genus Camelus, bearing distinctive fatty deposits known as "humps" on its back. The two surviving species of camel are the dromedary, or one-humped camel (C. dromedarius), which inhabits the Middle East and the Horn of Africa; and the bactrian, or two-humped camel (C. bactrianus), which inhabits Central Asia. Both species have been domesticated; they provide milk, meat, hair for textiles or goods such as felted pouches, and are working animals with tasks ranging from human transport to bearing loads.

 

The term "camel" is derived via Latin and Greek (camelus and κάμηλος kamēlos respectively) from Hebrew or Phoenician gāmāl.

 

"Camel" is also used more broadly to describe any of the six camel-like mammals in the family Camelidae: the two true camels and the four New World camelids: the llama, alpaca, guanaco, and vicuña of South America.

 

BIOLOGY

The average life expectancy of a camel is 40 to 50 years. A full-grown adult camel stands 1.85 m at the shoulder and 2.15 m at the hump. Camels can run at up to 65 km/h in short bursts and sustain speeds of up to 40 km/h. Bactrian camels weigh 300 to 1,000 kg and dromedaries 300 to 600 kg.

 

The male dromedary camel has in its throat an organ called a dulla, a large, inflatable sac he extrudes from his mouth when in rut to assert dominance and attract females. It resembles a long, swollen, pink tongue hanging out of the side of its mouth. Camels mate by having both male and female sitting on the ground, with the male mounting from behind. The male usually ejaculates three or four times within a single mating session. Camelids are the only ungulates to mate in a sitting position.

 

ECOLOGICAL AND BEHAVIORAL ADAPTIONS

Camels do not directly store water in their humps as was once commonly believed. The humps are actually reservoirs of fatty tissue: concentrating body fat in their humps minimizes the insulating effect fat would have if distributed over the rest of their bodies, helping camels survive in hot climates. When this tissue is metabolized, it yields more than one gram of water for every gram of fat processed. This fat metabolization, while releasing energy, causes water to evaporate from the lungs during respiration (as oxygen is required for the metabolic process): overall, there is a net decrease in water.

 

Camels have a series of physiological adaptations that allow them to withstand long periods of time without any external source of water. Unlike other mammals, their red blood cells are oval rather than circular in shape. This facilitates the flow of red blood cells during dehydration and makes them better at withstanding high osmotic variation without rupturing when drinking large amounts of water: a 600 kg camel can drink 200 L of water in three minutes.

 

Camels are able to withstand changes in body temperature and water consumption that would kill most other animals. Their temperature ranges from 34 °C at dawn and steadily increases to 40 °C by sunset, before they cool off at night again. Maintaining the brain temperature within certain limits is critical for animals; to assist this, camels have a rete mirabile, a complex of arteries and veins lying very close to each other which utilizes countercurrent blood flow to cool blood flowing to the brain. Camels rarely sweat, even when ambient temperatures reach 49 °C Any sweat that does occur evaporates at the skin level rather than at the surface of their coat; the heat of vaporization therefore comes from body heat rather than ambient heat. Camels can withstand losing 25% of their body weight to sweating, whereas most other mammals can withstand only about 12–14% dehydration before cardiac failure results from circulatory disturbance.

 

When the camel exhales, water vapor becomes trapped in their nostrils and is reabsorbed into the body as a means to conserve water. Camels eating green herbage can ingest sufficient moisture in milder conditions to maintain their bodies' hydrated state without the need for drinking.

 

The camels' thick coats insulate them from the intense heat radiated from desert sand; a shorn camel must sweat 50% more to avoid overheating. During the summer the coat becomes lighter in color, reflecting light as well as helping avoid sunburn. The camel's long legs help by keeping its body farther from the ground, which can heat up to 70 °C. Dromedaries have a pad of thick tissue over the sternum called the pedestal. When the animal lies down in a sternal recumbent position, the pedestal raises the body from the hot surface and allows cooling air to pass under the body.

 

Camels' mouths have a thick leathery lining, allowing them to chew thorny desert plants. Long eyelashes and ear hairs, together with nostrils that can close, form a barrier against sand. If sand gets lodged in their eyes, they can dislodge it using their transparent third eyelid. The camels' gait and widened feet help them move without sinking into the sand.

 

The kidneys and intestines of a camel are very efficient at reabsorbing water. Camel urine comes out as a thick syrup, and camel feces are so dry that they do not require drying when the Bedouins use them to fuel fires.

 

Camels' immune system differs from those of other mammals. Normally, the Y-shaped antibody molecules consist of two heavy (or long) chains along the length of the Y, and two light (or short) chains at each tip of the Y. Camels, in addition to these, also have antibodies made of only two heavy chains, a trait that makes them smaller and more durable. These "heavy-chain-only" antibodies, discovered in 1993, are thought to have developed 50 million years ago, after camelids split from ruminants and pigs.

 

GENETICS

The karyotypes of different camelid species have been studied earlier by many groups, but no agreement on chromosome nomenclature of camelids has been reached. A 2007 study flow sorted camel chromosomes, building on the fact that camels have 37 pairs of chromosomes (2n=74), and found that the karyotime consisted of one metacentric, three submetacentric, and 32 acrocentric autosomes. The Y is a small metacentric chromosome, while the X is a large metacentric chromosome.The hybrid camel, a hybrid between Bactrian and dromedary camels, has one hump, though it has an indentation 4–12 cm deep that divides the front from the back. The hybrid is 2.15 m at the shoulder and 2.32 m tall at the hump. It weighs an average of 650 kg and can carry around 400 to 450 kg, which is more than either the dromedary or Bactrian can. According to molecular data, the New World and Old World camelids diverged 11 million years ago. In spite of this, these species can still hybridize and produce fertile offspring. The cama is a camel–llama hybrid bred by scientists who wanted to see how closely related the parent species were. Scientists collected semen from a camel via an artificial vagina and inseminated a llama after stimulating ovulation with gonadotrophin injections. The cama has ears halfway between the length of camel and llama ears, no hump, longer legs than the llama, and partially cloven hooves. According to cama breeder Lulu Skidmore, cama have "the fleece of the llamas" and "the strength and patience of the camel". Like the mule, camas are sterile, despite both parents having the same number of chromosomes.

 

EVOLUTION

The earliest known camel, called Protylopus, lived in North America 40 to 50 million years ago (during the Eocene). It was about the size of a rabbit and lived in the open woodlands of what is now South Dakota. By 35 million years ago, the Poebrotherium was the size of a goat and had many more traits similar to camels and llamas. The hoofed Stenomylus, which walked on the tips of its toes, also existed around this time, and the long-necked Aepycamelus evolved in the Miocene.

 

The direct ancestor of all modern camels, Procamelus, existed in the upper Miocone and lower Pliocene. Around 3–5 million years ago, the North American Camelidae spread to South America via the Isthmus of Panama, where they gave rise to guanacos and related animals, and to Asia via the Bering land bridge. Surprising finds of fossil Paracamelus on Ellesmere Island beginning in 2006 in the high Canadian Arctic indicate the dromedary is descended from a larger, boreal browser whose hump may have evolved as an adaptation in a cold climate. This creature is estimated to have stood around nine feet tall.

 

The last camel native to North America was Camelops hesternus, which vanished along with horses, short-faced bears, mammoths and mastodons, ground sloths, sabertooth cats, and many other megafauna, coinciding with the migration of humans from Asia.

 

DOMESTICATION

Most camels surviving today are domesticated. Along with many other megafauna in North America, the original wild camels were wiped out during the spread of Native Americans from Asia into North America, 12,000 to 10,000 years ago. The only wild camels left are the Bactrian camels of the Gobi Desert.

 

Like the horse, before their extinction in their native land, camels spread across the Bering land bridge, moving the opposite direction from the Asian immigration to America, to survive in the Old World and eventually be domesticated and spread globally by humans.

 

Dromedaries may have first been domesticated by humans in Somalia and southern Arabia, around 3,000 BC, the Bactrian in central Asia around 2,500 BC, as at Shar-i Sokhta (also known as the Burnt City), Iran.

 

Discussions concerning camel domestication in Mesopotamia are often related to mentions of camels in the Hebrew Bible. The International Standard Bible Encyclopedia: E-J for instance mentions that "In accord with patriarchal traditions, cylinder seals from Middle Bronze Age Mesopotamia showed riders seated upon camels."

 

Martin Heide's 2010 work on the domestication of the camel tentatively concludes that the bactrian camel was domesticated by at least the middle of the third millennium somewhere east of the Zagros Mountains, then moving into Mesopotamia, and suggests that mentions of camels "in the patriarchal narratives may refer, at least in some places, to the Bactrian camel." while noting that the camel is not mentioned in relationship to Canaan.

 

Recent excavations in the Timna Valley by Lidar Sapir-Hen and Erez Ben-Yosef discovered what may be the earliest domestic camel bones found in Israel or even outside the Arabian peninsula, dating to around 930 BCE. This garnered considerable media coverage as it was described as evidence that the stories of Abraham, Joseph, Jacob and Esau were written after this time.

 

The existence of camels in Mesopotamia but not in Israel is not a new idea. According to an article in Time Magazine, the historian Richard Bulliet wrote in his 1975 book "The Camel and the Wheel" that "the occasional mention of camels in patriarchal narratives does not mean that the domestic camels were common in the Holy Land at that period." The archaeologist William F. Albright writing even earlier saw camels in the Bible as an anachronism. The official report by Sapir-Hen and Ben-Joseph notes that "The introduction of the dromedary camel (Camelus dromedarius) as a pack animal to the southern Levant signifies a crucial juncture in the history of the region; it substantially facilitated trade across the vast deserts of Arabia, promoting both economic and social change (e.g., Kohler 1984; Borowski 1998: 112-116; Jasmin 2005). This, together with the depiction of camels in the Patriarchal narrative, has generated extensive discussion regarding the date of the earliest domestic camel in the southern Levant (and beyond) (e.g., Albright 1949: 207; Epstein 1971: 558-584; Bulliet 1975; Zarins 1989; Köhler-Rollefson 1993; Uerpmann and Uerpmann 2002; Jasmin 2005; 2006; Heide 2010; Rosen and Saidel 2010; Grigson 2012). Most scholars today agree that the dromedary was exploited as a pack animal sometime in the early Iron Age (not before the 12th century BCE)" and concludes that "Current data from copper smelting sites of the Aravah Valley enable us to pinpoint the introduction of domestic camels to the southern Levant more precisely based on stratigraphic contexts associated with an extensive suite of radiocarbon dates. The data indicate that this event occurred not earlier than the last third of the 10th century BCE and most probably during this time. The coincidence of this event with a major reorganization of the copper industry of the region - attributed to the results of the campaign of Pharaoh Shoshenq I - raises the possibility that the two were connected, and that camels were introduced as part of the efforts to improve efficiency by facilitating trade."

 

MILITARY USES

By at least 1200 BC, the first camel saddles had appeared, and Bactrian camels could be ridden. The first saddle was positioned to the back of the camel, and control of the Bactrian camel was exercised by means of a stick. However, between 500–100 BC, Bactrian camels attained military use. New saddles, which were inflexible and bent, were put over the humps and divided the rider's weight over the animal. In the seventh century BC, the military Arabian saddle appeared, which improved the saddle design again slightly.

 

Camel cavalries have been used in wars throughout Africa, the Middle East, and into modern-day Border Security Force of India (though as of July 2012, the BSF has planned the replacement of camels with ATVs). The first use of camel cavalries was in the Battle of Qarqar in 853 BC. Armies have also used camels as freight animals instead of horses and mules.

In the East Roman Empire, the Romans used auxiliary forces known as dromedarii, whom they recruited in desert provinces. The camels were used mostly in combat because of their ability to scare off horses at close ranges (horses are afraid of the camels' scent), a quality famously employed by the Achaemenid Persians when fighting Lydia in the Battle of Thymbra.

 

19th and 20th CENTURIES

The United States Army established the U.S. Camel Corps, which was stationed in California in the late 19th century. One may still see stables at the Benicia Arsenal in Benicia, California, where they nowadays serve as the Benicia Historical Museum. Though the experimental use of camels was seen as a success (John B. Floyd, Secretary of War in 1858, recommended that funds be allocated towards obtaining a thousand more camels), the outbreak of the American Civil War saw the end of the Camel Corps: Texas became part of the Confederacy, and most of the camels were left to wander away into the desert.

 

France created a méhariste camel corps in 1912 as part of the Armée d'Afrique in the Sahara in order to exercise greater control over the camel-riding Tuareg and Arab insurgents, as previous efforts to defeat them on foot had failed. The camel-mounted units remained in service until the end of French rule over Algeria in 1962.

 

In 1916, the British created the Imperial Camel Corps. It was originally used to fight the Senussi, but was later used in the Sinai and Palestine Campaign in World War I. The Imperial Camel Corps comprised infantrymen mounted on camels for movement across desert, though they dismounted at battle sites and fought on foot. After July 1918, the Corps began to become run down, receiving no new reinforcements, and was formally disbanded in 1919.

 

In World War I, the British Army also created the Egyptian Camel Transport Corps, which consisted of a group of Egyptian camel drivers and their camels. The Corps supported British war operations in Sinai, Palestine, and Syria by transporting supplies to the troops.

 

The Somaliland Camel Corps was created by colonial authorities in British Somaliland in 1912; it was disbanded in 1944.

 

Bactrian camels were used by Romanian forces during World War II in the Caucasian region.

 

The Bikaner Camel Corps of British India fought alongside the British Indian Army in World Wars I and II.

 

The Tropas Nómadas (Nomad Troops) were an auxiliary regiment of Sahrawi tribesmen serving in the colonial army in Spanish Sahara (today Western Sahara). Operational from the 1930s until the end of the Spanish presence in the territory in 1975, the Tropas Nómadas were equipped with small arms and led by Spanish officers. The unit guarded outposts and sometimes conducted patrols on camelback.

 

FOOD USES

DAIRY

Camel milk is a staple food of desert nomad tribes and is sometimes considered a meal in and of itself; a nomad can live on only camel milk for almost a month. Camel milk is rich in vitamins, minerals, proteins, and immunoglobulins; compared to cow's milk, it is lower in fat and lactose, and higher in potassium, iron, and vitamin C. Bedouins believe the curative powers of camel milk are enhanced if the camel's diet consists of certain desert plants. Camel milk can readily be made into a drinkable yogurt, as well as butter or cheese, though the yields for cheese tend to be low.

 

Camel milk cannot be made into butter by the traditional churning method. It can be made if it is soured first, churned, and a clarifying agent is then added. Until recently, camel milk could not be made into camel cheese because rennet was unable to coagulate the milk proteins to allow the collection of curds. Developing less wasteful uses of the milk, the FAO commissioned Professor J.P. Ramet of the École Nationale Supérieure d'Agronomie et des Industries Alimentaires, who was able to produce curdling by the addition of calcium phosphate and vegetable rennet. The cheese produced from this process has low levels of cholesterol and is easy to digest, even for the lactose intolerant. The sale of camel cheese is limited owing to the small output of the few dairies producing camel cheese and the absence of camel cheese in local (West African) markets. Cheese imports from countries that traditionally breed camels are difficult to obtain due to restrictions on dairy imports from these regions.

 

Additionally, camel milk has been made into ice cream in a Netherlands camel farm.

 

MEAT

A camel carcass can provide a substantial amount of meat. The male dromedary carcass can weigh 300–400 kg, while the carcass of a male Bactrian can weigh up to 650 kg. The carcass of a female dromedary weighs less than the male, ranging between 250 and 350 kg. The brisket, ribs and loin are among the preferred parts, and the hump is considered a delicacy. The hump contains "white and sickly fat", which can be used to make the khli (preserved meat) of mutton, beef, or camel. Camel meat is reported to taste like coarse beef, but older camels can prove to be very tough, although camel meat becomes more tender the more it is cooked. The Abu Dhabi Officers' Club serves a camel burger mixed with beef or lamb fat in order to improve the texture and taste. In Karachi, Pakistan, some restaurants prepare nihari from camel meat. In Syria and Egypt, there are specialist camel butchers.

 

Camel meat has been eaten for centuries. It has been recorded by ancient Greek writers as an available dish at banquets in ancient Persia, usually roasted whole. The ancient Roman emperor Heliogabalus enjoyed camel's heel.[31] Camel meat is still eaten in certain regions, including Eritrea, Somalia, Djibouti, Saudi Arabia, Egypt, Syria, Libya, Sudan, Ethiopia, Kazakhstan, and other arid regions where alternative forms of protein may be limited or where camel meat has had a long cultural history. Camel blood is also consumable, as is the case among pastoralists in northern Kenya, where camel blood is drunk with milk and acts as a key source of iron, vitamin D, salts and minerals. Camel meat is also occasionally found in Australian cuisine: for example, a camel lasagna is available in Alice Springs.

 

A 2005 report issued jointly by the Saudi Ministry of Health and the United States Centers for Disease Control and Prevention details cases of human bubonic plague resulting from the ingestion of raw camel liver.

 

RELIGION

ISLAM

Camel meat is halal for Muslims. However, according to some Islamic schools of thought, a state of impurity is brought on by the consumption of it. Consequently, these schools hold that Muslims must perform wudhu (ablution) before the next time they pray after eating camel meat.

 

Also, some Islamic schools of thought consider it haraam for a Muslim to perform salat in places where camels lie, as it is said to be a dwelling place of shaytan.

 

According to Suni ahadith collected by Bukhari and Muslim, Muhammad ordered a certain group of people to drink camel milk and urine as a medicine. However, according to Abū Ḥanīfa, the drinking of camel urine, while not forbidden (ḥaram), is disliked (makrūh) in Islam.

 

Camel urine is sold as traditional medicine in shops in Saudi Arabia. The Sunni scholar Muhammad Al-Munajjid's IslamQA.info recommends camel urine as beneficial to curing certain diseases and to human health and cited Ahadith and scientific studies as justification. King Abdulaziz University researcher Dr. Faten Abdel-Rajman Khorshid has claimed that cancer and other diseases could be treated with camel urine as recommended by the Prophet. The United Arab Emirates "Arab Science and Technology Foundation" reported that cancer could be treated with camel urine. Camel urine was also prescribed as a treatment by Zaghloul El-Naggar, a religious scholar. Camel urine is the only urine which is permitted to be drunk according to the Hanbali madhhab of Sunni Islam. The World Health Organization said that camel urine consumption may be a factor in the spread of the MERS virus in Saudi Arabia. The Gulf Times writer Ahmad al-Sayyed wrote that various afflictions are dealt with camel urine by people. Dandruff, scalp ailments, hair, sores, and wounds were recommended to be treated with camel urine by Ibn Sina. Arab American University Professor of Cell Biology and Immunology Bashar Saad (PhD) along with Omar Said (PhD) wrote that medicinal use of camel urine is approved of and promoted by Islam since it was recommended by the prophet. A test on mice found that cytotoxic effects similar to cyclophosphamide were induced on bone marrow by camel urine. Besides for consumption as a medicinal drink, camel urine is believed to help treat hair. Bites from insects were warded off with camel urine, which also served as a shampoo. Camel urine is also used to help treat asthma, infections, treat hair, sores, hair growth and boost libido.

 

Several Sunni Ahadith mention drinking camel urine. Some Shia criticized Wahhabis for camel urine treatment. Shia scholars also recommend the medicinal use of camel urine. Shia Hadith on Imam Ja'far al-Sadiq reported that shortness of breath (asthma) was treated with camel urine. Shia Marja Ayatollah Sistani said that for medicinal purposes only, sheep, cow, and camel urine can be drunk.

 

JUDAISM

According to Jewish tradition, camel meat and milk are not kosher. Camels possess only one of the two kosher criteria; although they chew their cud, they do not possess cloven hooves:

 

Nevertheless these shall ye not eat of them that only chew the cud, or of them that only part the hoof: the camel, because he cheweth the cud but parteth not the hoof, he is unclean unto you.

— Leviticus 11:4

 

DISTRIBUTION ANDNUMBERS

There are around 14 million camels alive as of 2010, with 90% being dromedaries. Dromedaries alive today are domesticated animals (mostly living in the Horn of Africa, the Sahel, Maghreb, Middle East and South Asia). The Horn region alone has the largest concentration of camels in the world, where the dromedaries constitute an important part of local nomadic life. They provide nomadic people in Somalia (which has the largest camel herd in the world) and Ethiopia with milk, food, and transportation.

 

The Bactrian camel is, as of 2010, reduced to an estimated 1.4 million animals, most of which are domesticated. The only truly wild Bactrian camels, of which there are less than one thousand, are thought to inhabit the Gobi Desert in China and Mongolia.

 

The largest population of feral camels is in Australia. There are around 700,000 feral dromedary camels in central parts of Australia, descended from those introduced as a method of transport in the 19th and early 20th centuries. This population is growing about 8% per year. Representatives of the Australian government have culled more than 100,000 of the animals in part because the camels use too much of the limited resources needed by sheep farmers.

 

A small population of introduced camels, dromedaries and Bactrians, wandered through Southwest United States after having been imported in the 1800s as part of the U.S. Camel Corps experiment. When the project ended, they were used as draft animals in mines and escaped or were released. Twenty-five U.S. camels were bought and imported to Canada during the Cariboo Gold Rush.

 

WIKIPEDIA

A camel is an even-toed ungulate within the genus Camelus, bearing distinctive fatty deposits known as "humps" on its back. The two surviving species of camel are the dromedary, or one-humped camel (C. dromedarius), which inhabits the Middle East and the Horn of Africa; and the bactrian, or two-humped camel (C. bactrianus), which inhabits Central Asia. Both species have been domesticated; they provide milk, meat, hair for textiles or goods such as felted pouches, and are working animals with tasks ranging from human transport to bearing loads.

 

The term "camel" is derived via Latin and Greek (camelus and κάμηλος kamēlos respectively) from Hebrew or Phoenician gāmāl.

 

"Camel" is also used more broadly to describe any of the six camel-like mammals in the family Camelidae: the two true camels and the four New World camelids: the llama, alpaca, guanaco, and vicuña of South America.

 

BIOLOGY

The average life expectancy of a camel is 40 to 50 years. A full-grown adult camel stands 1.85 m at the shoulder and 2.15 m at the hump. Camels can run at up to 65 km/h in short bursts and sustain speeds of up to 40 km/h. Bactrian camels weigh 300 to 1,000 kg and dromedaries 300 to 600 kg.

 

The male dromedary camel has in its throat an organ called a dulla, a large, inflatable sac he extrudes from his mouth when in rut to assert dominance and attract females. It resembles a long, swollen, pink tongue hanging out of the side of its mouth. Camels mate by having both male and female sitting on the ground, with the male mounting from behind. The male usually ejaculates three or four times within a single mating session. Camelids are the only ungulates to mate in a sitting position.

 

ECOLOGICAL AND BEHAVIORAL ADAPTIONS

Camels do not directly store water in their humps as was once commonly believed. The humps are actually reservoirs of fatty tissue: concentrating body fat in their humps minimizes the insulating effect fat would have if distributed over the rest of their bodies, helping camels survive in hot climates. When this tissue is metabolized, it yields more than one gram of water for every gram of fat processed. This fat metabolization, while releasing energy, causes water to evaporate from the lungs during respiration (as oxygen is required for the metabolic process): overall, there is a net decrease in water.

 

Camels have a series of physiological adaptations that allow them to withstand long periods of time without any external source of water. Unlike other mammals, their red blood cells are oval rather than circular in shape. This facilitates the flow of red blood cells during dehydration and makes them better at withstanding high osmotic variation without rupturing when drinking large amounts of water: a 600 kg camel can drink 200 L of water in three minutes.

 

Camels are able to withstand changes in body temperature and water consumption that would kill most other animals. Their temperature ranges from 34 °C at dawn and steadily increases to 40 °C by sunset, before they cool off at night again. Maintaining the brain temperature within certain limits is critical for animals; to assist this, camels have a rete mirabile, a complex of arteries and veins lying very close to each other which utilizes countercurrent blood flow to cool blood flowing to the brain. Camels rarely sweat, even when ambient temperatures reach 49 °C Any sweat that does occur evaporates at the skin level rather than at the surface of their coat; the heat of vaporization therefore comes from body heat rather than ambient heat. Camels can withstand losing 25% of their body weight to sweating, whereas most other mammals can withstand only about 12–14% dehydration before cardiac failure results from circulatory disturbance.

 

When the camel exhales, water vapor becomes trapped in their nostrils and is reabsorbed into the body as a means to conserve water. Camels eating green herbage can ingest sufficient moisture in milder conditions to maintain their bodies' hydrated state without the need for drinking.

 

The camels' thick coats insulate them from the intense heat radiated from desert sand; a shorn camel must sweat 50% more to avoid overheating. During the summer the coat becomes lighter in color, reflecting light as well as helping avoid sunburn. The camel's long legs help by keeping its body farther from the ground, which can heat up to 70 °C. Dromedaries have a pad of thick tissue over the sternum called the pedestal. When the animal lies down in a sternal recumbent position, the pedestal raises the body from the hot surface and allows cooling air to pass under the body.

 

Camels' mouths have a thick leathery lining, allowing them to chew thorny desert plants. Long eyelashes and ear hairs, together with nostrils that can close, form a barrier against sand. If sand gets lodged in their eyes, they can dislodge it using their transparent third eyelid. The camels' gait and widened feet help them move without sinking into the sand.

 

The kidneys and intestines of a camel are very efficient at reabsorbing water. Camel urine comes out as a thick syrup, and camel feces are so dry that they do not require drying when the Bedouins use them to fuel fires.

 

Camels' immune system differs from those of other mammals. Normally, the Y-shaped antibody molecules consist of two heavy (or long) chains along the length of the Y, and two light (or short) chains at each tip of the Y. Camels, in addition to these, also have antibodies made of only two heavy chains, a trait that makes them smaller and more durable. These "heavy-chain-only" antibodies, discovered in 1993, are thought to have developed 50 million years ago, after camelids split from ruminants and pigs.

 

GENETICS

The karyotypes of different camelid species have been studied earlier by many groups, but no agreement on chromosome nomenclature of camelids has been reached. A 2007 study flow sorted camel chromosomes, building on the fact that camels have 37 pairs of chromosomes (2n=74), and found that the karyotime consisted of one metacentric, three submetacentric, and 32 acrocentric autosomes. The Y is a small metacentric chromosome, while the X is a large metacentric chromosome.The hybrid camel, a hybrid between Bactrian and dromedary camels, has one hump, though it has an indentation 4–12 cm deep that divides the front from the back. The hybrid is 2.15 m at the shoulder and 2.32 m tall at the hump. It weighs an average of 650 kg and can carry around 400 to 450 kg, which is more than either the dromedary or Bactrian can. According to molecular data, the New World and Old World camelids diverged 11 million years ago. In spite of this, these species can still hybridize and produce fertile offspring. The cama is a camel–llama hybrid bred by scientists who wanted to see how closely related the parent species were. Scientists collected semen from a camel via an artificial vagina and inseminated a llama after stimulating ovulation with gonadotrophin injections. The cama has ears halfway between the length of camel and llama ears, no hump, longer legs than the llama, and partially cloven hooves. According to cama breeder Lulu Skidmore, cama have "the fleece of the llamas" and "the strength and patience of the camel". Like the mule, camas are sterile, despite both parents having the same number of chromosomes.

 

EVOLUTION

The earliest known camel, called Protylopus, lived in North America 40 to 50 million years ago (during the Eocene). It was about the size of a rabbit and lived in the open woodlands of what is now South Dakota. By 35 million years ago, the Poebrotherium was the size of a goat and had many more traits similar to camels and llamas. The hoofed Stenomylus, which walked on the tips of its toes, also existed around this time, and the long-necked Aepycamelus evolved in the Miocene.

 

The direct ancestor of all modern camels, Procamelus, existed in the upper Miocone and lower Pliocene. Around 3–5 million years ago, the North American Camelidae spread to South America via the Isthmus of Panama, where they gave rise to guanacos and related animals, and to Asia via the Bering land bridge. Surprising finds of fossil Paracamelus on Ellesmere Island beginning in 2006 in the high Canadian Arctic indicate the dromedary is descended from a larger, boreal browser whose hump may have evolved as an adaptation in a cold climate. This creature is estimated to have stood around nine feet tall.

 

The last camel native to North America was Camelops hesternus, which vanished along with horses, short-faced bears, mammoths and mastodons, ground sloths, sabertooth cats, and many other megafauna, coinciding with the migration of humans from Asia.

 

DOMESTICATION

Most camels surviving today are domesticated. Along with many other megafauna in North America, the original wild camels were wiped out during the spread of Native Americans from Asia into North America, 12,000 to 10,000 years ago. The only wild camels left are the Bactrian camels of the Gobi Desert.

 

Like the horse, before their extinction in their native land, camels spread across the Bering land bridge, moving the opposite direction from the Asian immigration to America, to survive in the Old World and eventually be domesticated and spread globally by humans.

 

Dromedaries may have first been domesticated by humans in Somalia and southern Arabia, around 3,000 BC, the Bactrian in central Asia around 2,500 BC, as at Shar-i Sokhta (also known as the Burnt City), Iran.

 

Discussions concerning camel domestication in Mesopotamia are often related to mentions of camels in the Hebrew Bible. The International Standard Bible Encyclopedia: E-J for instance mentions that "In accord with patriarchal traditions, cylinder seals from Middle Bronze Age Mesopotamia showed riders seated upon camels."

 

Martin Heide's 2010 work on the domestication of the camel tentatively concludes that the bactrian camel was domesticated by at least the middle of the third millennium somewhere east of the Zagros Mountains, then moving into Mesopotamia, and suggests that mentions of camels "in the patriarchal narratives may refer, at least in some places, to the Bactrian camel." while noting that the camel is not mentioned in relationship to Canaan.

 

Recent excavations in the Timna Valley by Lidar Sapir-Hen and Erez Ben-Yosef discovered what may be the earliest domestic camel bones found in Israel or even outside the Arabian peninsula, dating to around 930 BCE. This garnered considerable media coverage as it was described as evidence that the stories of Abraham, Joseph, Jacob and Esau were written after this time.

 

The existence of camels in Mesopotamia but not in Israel is not a new idea. According to an article in Time Magazine, the historian Richard Bulliet wrote in his 1975 book "The Camel and the Wheel" that "the occasional mention of camels in patriarchal narratives does not mean that the domestic camels were common in the Holy Land at that period." The archaeologist William F. Albright writing even earlier saw camels in the Bible as an anachronism. The official report by Sapir-Hen and Ben-Joseph notes that "The introduction of the dromedary camel (Camelus dromedarius) as a pack animal to the southern Levant signifies a crucial juncture in the history of the region; it substantially facilitated trade across the vast deserts of Arabia, promoting both economic and social change (e.g., Kohler 1984; Borowski 1998: 112-116; Jasmin 2005). This, together with the depiction of camels in the Patriarchal narrative, has generated extensive discussion regarding the date of the earliest domestic camel in the southern Levant (and beyond) (e.g., Albright 1949: 207; Epstein 1971: 558-584; Bulliet 1975; Zarins 1989; Köhler-Rollefson 1993; Uerpmann and Uerpmann 2002; Jasmin 2005; 2006; Heide 2010; Rosen and Saidel 2010; Grigson 2012). Most scholars today agree that the dromedary was exploited as a pack animal sometime in the early Iron Age (not before the 12th century BCE)" and concludes that "Current data from copper smelting sites of the Aravah Valley enable us to pinpoint the introduction of domestic camels to the southern Levant more precisely based on stratigraphic contexts associated with an extensive suite of radiocarbon dates. The data indicate that this event occurred not earlier than the last third of the 10th century BCE and most probably during this time. The coincidence of this event with a major reorganization of the copper industry of the region - attributed to the results of the campaign of Pharaoh Shoshenq I - raises the possibility that the two were connected, and that camels were introduced as part of the efforts to improve efficiency by facilitating trade."

 

MILITARY USES

By at least 1200 BC, the first camel saddles had appeared, and Bactrian camels could be ridden. The first saddle was positioned to the back of the camel, and control of the Bactrian camel was exercised by means of a stick. However, between 500–100 BC, Bactrian camels attained military use. New saddles, which were inflexible and bent, were put over the humps and divided the rider's weight over the animal. In the seventh century BC, the military Arabian saddle appeared, which improved the saddle design again slightly.

 

Camel cavalries have been used in wars throughout Africa, the Middle East, and into modern-day Border Security Force of India (though as of July 2012, the BSF has planned the replacement of camels with ATVs). The first use of camel cavalries was in the Battle of Qarqar in 853 BC. Armies have also used camels as freight animals instead of horses and mules.

In the East Roman Empire, the Romans used auxiliary forces known as dromedarii, whom they recruited in desert provinces. The camels were used mostly in combat because of their ability to scare off horses at close ranges (horses are afraid of the camels' scent), a quality famously employed by the Achaemenid Persians when fighting Lydia in the Battle of Thymbra.

 

19th and 20th CENTURIES

The United States Army established the U.S. Camel Corps, which was stationed in California in the late 19th century. One may still see stables at the Benicia Arsenal in Benicia, California, where they nowadays serve as the Benicia Historical Museum. Though the experimental use of camels was seen as a success (John B. Floyd, Secretary of War in 1858, recommended that funds be allocated towards obtaining a thousand more camels), the outbreak of the American Civil War saw the end of the Camel Corps: Texas became part of the Confederacy, and most of the camels were left to wander away into the desert.

 

France created a méhariste camel corps in 1912 as part of the Armée d'Afrique in the Sahara in order to exercise greater control over the camel-riding Tuareg and Arab insurgents, as previous efforts to defeat them on foot had failed. The camel-mounted units remained in service until the end of French rule over Algeria in 1962.

 

In 1916, the British created the Imperial Camel Corps. It was originally used to fight the Senussi, but was later used in the Sinai and Palestine Campaign in World War I. The Imperial Camel Corps comprised infantrymen mounted on camels for movement across desert, though they dismounted at battle sites and fought on foot. After July 1918, the Corps began to become run down, receiving no new reinforcements, and was formally disbanded in 1919.

 

In World War I, the British Army also created the Egyptian Camel Transport Corps, which consisted of a group of Egyptian camel drivers and their camels. The Corps supported British war operations in Sinai, Palestine, and Syria by transporting supplies to the troops.

 

The Somaliland Camel Corps was created by colonial authorities in British Somaliland in 1912; it was disbanded in 1944.

 

Bactrian camels were used by Romanian forces during World War II in the Caucasian region.

 

The Bikaner Camel Corps of British India fought alongside the British Indian Army in World Wars I and II.

 

The Tropas Nómadas (Nomad Troops) were an auxiliary regiment of Sahrawi tribesmen serving in the colonial army in Spanish Sahara (today Western Sahara). Operational from the 1930s until the end of the Spanish presence in the territory in 1975, the Tropas Nómadas were equipped with small arms and led by Spanish officers. The unit guarded outposts and sometimes conducted patrols on camelback.

 

FOOD USES

DAIRY

Camel milk is a staple food of desert nomad tribes and is sometimes considered a meal in and of itself; a nomad can live on only camel milk for almost a month. Camel milk is rich in vitamins, minerals, proteins, and immunoglobulins; compared to cow's milk, it is lower in fat and lactose, and higher in potassium, iron, and vitamin C. Bedouins believe the curative powers of camel milk are enhanced if the camel's diet consists of certain desert plants. Camel milk can readily be made into a drinkable yogurt, as well as butter or cheese, though the yields for cheese tend to be low.

 

Camel milk cannot be made into butter by the traditional churning method. It can be made if it is soured first, churned, and a clarifying agent is then added. Until recently, camel milk could not be made into camel cheese because rennet was unable to coagulate the milk proteins to allow the collection of curds. Developing less wasteful uses of the milk, the FAO commissioned Professor J.P. Ramet of the École Nationale Supérieure d'Agronomie et des Industries Alimentaires, who was able to produce curdling by the addition of calcium phosphate and vegetable rennet. The cheese produced from this process has low levels of cholesterol and is easy to digest, even for the lactose intolerant. The sale of camel cheese is limited owing to the small output of the few dairies producing camel cheese and the absence of camel cheese in local (West African) markets. Cheese imports from countries that traditionally breed camels are difficult to obtain due to restrictions on dairy imports from these regions.

 

Additionally, camel milk has been made into ice cream in a Netherlands camel farm.

 

MEAT

A camel carcass can provide a substantial amount of meat. The male dromedary carcass can weigh 300–400 kg, while the carcass of a male Bactrian can weigh up to 650 kg. The carcass of a female dromedary weighs less than the male, ranging between 250 and 350 kg. The brisket, ribs and loin are among the preferred parts, and the hump is considered a delicacy. The hump contains "white and sickly fat", which can be used to make the khli (preserved meat) of mutton, beef, or camel. Camel meat is reported to taste like coarse beef, but older camels can prove to be very tough, although camel meat becomes more tender the more it is cooked. The Abu Dhabi Officers' Club serves a camel burger mixed with beef or lamb fat in order to improve the texture and taste. In Karachi, Pakistan, some restaurants prepare nihari from camel meat. In Syria and Egypt, there are specialist camel butchers.

 

Camel meat has been eaten for centuries. It has been recorded by ancient Greek writers as an available dish at banquets in ancient Persia, usually roasted whole. The ancient Roman emperor Heliogabalus enjoyed camel's heel.[31] Camel meat is still eaten in certain regions, including Eritrea, Somalia, Djibouti, Saudi Arabia, Egypt, Syria, Libya, Sudan, Ethiopia, Kazakhstan, and other arid regions where alternative forms of protein may be limited or where camel meat has had a long cultural history. Camel blood is also consumable, as is the case among pastoralists in northern Kenya, where camel blood is drunk with milk and acts as a key source of iron, vitamin D, salts and minerals. Camel meat is also occasionally found in Australian cuisine: for example, a camel lasagna is available in Alice Springs.

 

A 2005 report issued jointly by the Saudi Ministry of Health and the United States Centers for Disease Control and Prevention details cases of human bubonic plague resulting from the ingestion of raw camel liver.

 

RELIGION

ISLAM

Camel meat is halal for Muslims. However, according to some Islamic schools of thought, a state of impurity is brought on by the consumption of it. Consequently, these schools hold that Muslims must perform wudhu (ablution) before the next time they pray after eating camel meat.

 

Also, some Islamic schools of thought consider it haraam for a Muslim to perform salat in places where camels lie, as it is said to be a dwelling place of shaytan.

 

According to Suni ahadith collected by Bukhari and Muslim, Muhammad ordered a certain group of people to drink camel milk and urine as a medicine. However, according to Abū Ḥanīfa, the drinking of camel urine, while not forbidden (ḥaram), is disliked (makrūh) in Islam.

 

Camel urine is sold as traditional medicine in shops in Saudi Arabia. The Sunni scholar Muhammad Al-Munajjid's IslamQA.info recommends camel urine as beneficial to curing certain diseases and to human health and cited Ahadith and scientific studies as justification. King Abdulaziz University researcher Dr. Faten Abdel-Rajman Khorshid has claimed that cancer and other diseases could be treated with camel urine as recommended by the Prophet. The United Arab Emirates "Arab Science and Technology Foundation" reported that cancer could be treated with camel urine. Camel urine was also prescribed as a treatment by Zaghloul El-Naggar, a religious scholar. Camel urine is the only urine which is permitted to be drunk according to the Hanbali madhhab of Sunni Islam. The World Health Organization said that camel urine consumption may be a factor in the spread of the MERS virus in Saudi Arabia. The Gulf Times writer Ahmad al-Sayyed wrote that various afflictions are dealt with camel urine by people. Dandruff, scalp ailments, hair, sores, and wounds were recommended to be treated with camel urine by Ibn Sina. Arab American University Professor of Cell Biology and Immunology Bashar Saad (PhD) along with Omar Said (PhD) wrote that medicinal use of camel urine is approved of and promoted by Islam since it was recommended by the prophet. A test on mice found that cytotoxic effects similar to cyclophosphamide were induced on bone marrow by camel urine. Besides for consumption as a medicinal drink, camel urine is believed to help treat hair. Bites from insects were warded off with camel urine, which also served as a shampoo. Camel urine is also used to help treat asthma, infections, treat hair, sores, hair growth and boost libido.

 

Several Sunni Ahadith mention drinking camel urine. Some Shia criticized Wahhabis for camel urine treatment. Shia scholars also recommend the medicinal use of camel urine. Shia Hadith on Imam Ja'far al-Sadiq reported that shortness of breath (asthma) was treated with camel urine. Shia Marja Ayatollah Sistani said that for medicinal purposes only, sheep, cow, and camel urine can be drunk.

 

JUDAISM

According to Jewish tradition, camel meat and milk are not kosher. Camels possess only one of the two kosher criteria; although they chew their cud, they do not possess cloven hooves:

 

Nevertheless these shall ye not eat of them that only chew the cud, or of them that only part the hoof: the camel, because he cheweth the cud but parteth not the hoof, he is unclean unto you.

— Leviticus 11:4

 

DISTRIBUTION ANDNUMBERS

There are around 14 million camels alive as of 2010, with 90% being dromedaries. Dromedaries alive today are domesticated animals (mostly living in the Horn of Africa, the Sahel, Maghreb, Middle East and South Asia). The Horn region alone has the largest concentration of camels in the world, where the dromedaries constitute an important part of local nomadic life. They provide nomadic people in Somalia (which has the largest camel herd in the world) and Ethiopia with milk, food, and transportation.

 

The Bactrian camel is, as of 2010, reduced to an estimated 1.4 million animals, most of which are domesticated. The only truly wild Bactrian camels, of which there are less than one thousand, are thought to inhabit the Gobi Desert in China and Mongolia.

 

The largest population of feral camels is in Australia. There are around 700,000 feral dromedary camels in central parts of Australia, descended from those introduced as a method of transport in the 19th and early 20th centuries. This population is growing about 8% per year. Representatives of the Australian government have culled more than 100,000 of the animals in part because the camels use too much of the limited resources needed by sheep farmers.

 

A small population of introduced camels, dromedaries and Bactrians, wandered through Southwest United States after having been imported in the 1800s as part of the U.S. Camel Corps experiment. When the project ended, they were used as draft animals in mines and escaped or were released. Twenty-five U.S. camels were bought and imported to Canada during the Cariboo Gold Rush.

 

WIKIPEDIA

A camel is an even-toed ungulate within the genus Camelus, bearing distinctive fatty deposits known as "humps" on its back. The two surviving species of camel are the dromedary, or one-humped camel (C. dromedarius), which inhabits the Middle East and the Horn of Africa; and the bactrian, or two-humped camel (C. bactrianus), which inhabits Central Asia. Both species have been domesticated; they provide milk, meat, hair for textiles or goods such as felted pouches, and are working animals with tasks ranging from human transport to bearing loads.

 

The term "camel" is derived via Latin and Greek (camelus and κάμηλος kamēlos respectively) from Hebrew or Phoenician gāmāl.

 

"Camel" is also used more broadly to describe any of the six camel-like mammals in the family Camelidae: the two true camels and the four New World camelids: the llama, alpaca, guanaco, and vicuña of South America.

 

BIOLOGY

The average life expectancy of a camel is 40 to 50 years. A full-grown adult camel stands 1.85 m at the shoulder and 2.15 m at the hump. Camels can run at up to 65 km/h in short bursts and sustain speeds of up to 40 km/h. Bactrian camels weigh 300 to 1,000 kg and dromedaries 300 to 600 kg.

 

The male dromedary camel has in its throat an organ called a dulla, a large, inflatable sac he extrudes from his mouth when in rut to assert dominance and attract females. It resembles a long, swollen, pink tongue hanging out of the side of its mouth. Camels mate by having both male and female sitting on the ground, with the male mounting from behind. The male usually ejaculates three or four times within a single mating session. Camelids are the only ungulates to mate in a sitting position.

 

ECOLOGICAL AND BEHAVIORAL ADAPTIONS

Camels do not directly store water in their humps as was once commonly believed. The humps are actually reservoirs of fatty tissue: concentrating body fat in their humps minimizes the insulating effect fat would have if distributed over the rest of their bodies, helping camels survive in hot climates. When this tissue is metabolized, it yields more than one gram of water for every gram of fat processed. This fat metabolization, while releasing energy, causes water to evaporate from the lungs during respiration (as oxygen is required for the metabolic process): overall, there is a net decrease in water.

 

Camels have a series of physiological adaptations that allow them to withstand long periods of time without any external source of water. Unlike other mammals, their red blood cells are oval rather than circular in shape. This facilitates the flow of red blood cells during dehydration and makes them better at withstanding high osmotic variation without rupturing when drinking large amounts of water: a 600 kg camel can drink 200 L of water in three minutes.

 

Camels are able to withstand changes in body temperature and water consumption that would kill most other animals. Their temperature ranges from 34 °C at dawn and steadily increases to 40 °C by sunset, before they cool off at night again. Maintaining the brain temperature within certain limits is critical for animals; to assist this, camels have a rete mirabile, a complex of arteries and veins lying very close to each other which utilizes countercurrent blood flow to cool blood flowing to the brain. Camels rarely sweat, even when ambient temperatures reach 49 °C Any sweat that does occur evaporates at the skin level rather than at the surface of their coat; the heat of vaporization therefore comes from body heat rather than ambient heat. Camels can withstand losing 25% of their body weight to sweating, whereas most other mammals can withstand only about 12–14% dehydration before cardiac failure results from circulatory disturbance.

 

When the camel exhales, water vapor becomes trapped in their nostrils and is reabsorbed into the body as a means to conserve water. Camels eating green herbage can ingest sufficient moisture in milder conditions to maintain their bodies' hydrated state without the need for drinking.

 

The camels' thick coats insulate them from the intense heat radiated from desert sand; a shorn camel must sweat 50% more to avoid overheating. During the summer the coat becomes lighter in color, reflecting light as well as helping avoid sunburn. The camel's long legs help by keeping its body farther from the ground, which can heat up to 70 °C. Dromedaries have a pad of thick tissue over the sternum called the pedestal. When the animal lies down in a sternal recumbent position, the pedestal raises the body from the hot surface and allows cooling air to pass under the body.

 

Camels' mouths have a thick leathery lining, allowing them to chew thorny desert plants. Long eyelashes and ear hairs, together with nostrils that can close, form a barrier against sand. If sand gets lodged in their eyes, they can dislodge it using their transparent third eyelid. The camels' gait and widened feet help them move without sinking into the sand.

 

The kidneys and intestines of a camel are very efficient at reabsorbing water. Camel urine comes out as a thick syrup, and camel feces are so dry that they do not require drying when the Bedouins use them to fuel fires.

 

Camels' immune system differs from those of other mammals. Normally, the Y-shaped antibody molecules consist of two heavy (or long) chains along the length of the Y, and two light (or short) chains at each tip of the Y. Camels, in addition to these, also have antibodies made of only two heavy chains, a trait that makes them smaller and more durable. These "heavy-chain-only" antibodies, discovered in 1993, are thought to have developed 50 million years ago, after camelids split from ruminants and pigs.

 

GENETICS

The karyotypes of different camelid species have been studied earlier by many groups, but no agreement on chromosome nomenclature of camelids has been reached. A 2007 study flow sorted camel chromosomes, building on the fact that camels have 37 pairs of chromosomes (2n=74), and found that the karyotime consisted of one metacentric, three submetacentric, and 32 acrocentric autosomes. The Y is a small metacentric chromosome, while the X is a large metacentric chromosome.The hybrid camel, a hybrid between Bactrian and dromedary camels, has one hump, though it has an indentation 4–12 cm deep that divides the front from the back. The hybrid is 2.15 m at the shoulder and 2.32 m tall at the hump. It weighs an average of 650 kg and can carry around 400 to 450 kg, which is more than either the dromedary or Bactrian can. According to molecular data, the New World and Old World camelids diverged 11 million years ago. In spite of this, these species can still hybridize and produce fertile offspring. The cama is a camel–llama hybrid bred by scientists who wanted to see how closely related the parent species were. Scientists collected semen from a camel via an artificial vagina and inseminated a llama after stimulating ovulation with gonadotrophin injections. The cama has ears halfway between the length of camel and llama ears, no hump, longer legs than the llama, and partially cloven hooves. According to cama breeder Lulu Skidmore, cama have "the fleece of the llamas" and "the strength and patience of the camel". Like the mule, camas are sterile, despite both parents having the same number of chromosomes.

 

EVOLUTION

The earliest known camel, called Protylopus, lived in North America 40 to 50 million years ago (during the Eocene). It was about the size of a rabbit and lived in the open woodlands of what is now South Dakota. By 35 million years ago, the Poebrotherium was the size of a goat and had many more traits similar to camels and llamas. The hoofed Stenomylus, which walked on the tips of its toes, also existed around this time, and the long-necked Aepycamelus evolved in the Miocene.

 

The direct ancestor of all modern camels, Procamelus, existed in the upper Miocone and lower Pliocene. Around 3–5 million years ago, the North American Camelidae spread to South America via the Isthmus of Panama, where they gave rise to guanacos and related animals, and to Asia via the Bering land bridge. Surprising finds of fossil Paracamelus on Ellesmere Island beginning in 2006 in the high Canadian Arctic indicate the dromedary is descended from a larger, boreal browser whose hump may have evolved as an adaptation in a cold climate. This creature is estimated to have stood around nine feet tall.

 

The last camel native to North America was Camelops hesternus, which vanished along with horses, short-faced bears, mammoths and mastodons, ground sloths, sabertooth cats, and many other megafauna, coinciding with the migration of humans from Asia.

 

DOMESTICATION

Most camels surviving today are domesticated. Along with many other megafauna in North America, the original wild camels were wiped out during the spread of Native Americans from Asia into North America, 12,000 to 10,000 years ago. The only wild camels left are the Bactrian camels of the Gobi Desert.

 

Like the horse, before their extinction in their native land, camels spread across the Bering land bridge, moving the opposite direction from the Asian immigration to America, to survive in the Old World and eventually be domesticated and spread globally by humans.

 

Dromedaries may have first been domesticated by humans in Somalia and southern Arabia, around 3,000 BC, the Bactrian in central Asia around 2,500 BC, as at Shar-i Sokhta (also known as the Burnt City), Iran.

 

Discussions concerning camel domestication in Mesopotamia are often related to mentions of camels in the Hebrew Bible. The International Standard Bible Encyclopedia: E-J for instance mentions that "In accord with patriarchal traditions, cylinder seals from Middle Bronze Age Mesopotamia showed riders seated upon camels."

 

Martin Heide's 2010 work on the domestication of the camel tentatively concludes that the bactrian camel was domesticated by at least the middle of the third millennium somewhere east of the Zagros Mountains, then moving into Mesopotamia, and suggests that mentions of camels "in the patriarchal narratives may refer, at least in some places, to the Bactrian camel." while noting that the camel is not mentioned in relationship to Canaan.

 

Recent excavations in the Timna Valley by Lidar Sapir-Hen and Erez Ben-Yosef discovered what may be the earliest domestic camel bones found in Israel or even outside the Arabian peninsula, dating to around 930 BCE. This garnered considerable media coverage as it was described as evidence that the stories of Abraham, Joseph, Jacob and Esau were written after this time.

 

The existence of camels in Mesopotamia but not in Israel is not a new idea. According to an article in Time Magazine, the historian Richard Bulliet wrote in his 1975 book "The Camel and the Wheel" that "the occasional mention of camels in patriarchal narratives does not mean that the domestic camels were common in the Holy Land at that period." The archaeologist William F. Albright writing even earlier saw camels in the Bible as an anachronism. The official report by Sapir-Hen and Ben-Joseph notes that "The introduction of the dromedary camel (Camelus dromedarius) as a pack animal to the southern Levant signifies a crucial juncture in the history of the region; it substantially facilitated trade across the vast deserts of Arabia, promoting both economic and social change (e.g., Kohler 1984; Borowski 1998: 112-116; Jasmin 2005). This, together with the depiction of camels in the Patriarchal narrative, has generated extensive discussion regarding the date of the earliest domestic camel in the southern Levant (and beyond) (e.g., Albright 1949: 207; Epstein 1971: 558-584; Bulliet 1975; Zarins 1989; Köhler-Rollefson 1993; Uerpmann and Uerpmann 2002; Jasmin 2005; 2006; Heide 2010; Rosen and Saidel 2010; Grigson 2012). Most scholars today agree that the dromedary was exploited as a pack animal sometime in the early Iron Age (not before the 12th century BCE)" and concludes that "Current data from copper smelting sites of the Aravah Valley enable us to pinpoint the introduction of domestic camels to the southern Levant more precisely based on stratigraphic contexts associated with an extensive suite of radiocarbon dates. The data indicate that this event occurred not earlier than the last third of the 10th century BCE and most probably during this time. The coincidence of this event with a major reorganization of the copper industry of the region - attributed to the results of the campaign of Pharaoh Shoshenq I - raises the possibility that the two were connected, and that camels were introduced as part of the efforts to improve efficiency by facilitating trade."

 

MILITARY USES

By at least 1200 BC, the first camel saddles had appeared, and Bactrian camels could be ridden. The first saddle was positioned to the back of the camel, and control of the Bactrian camel was exercised by means of a stick. However, between 500–100 BC, Bactrian camels attained military use. New saddles, which were inflexible and bent, were put over the humps and divided the rider's weight over the animal. In the seventh century BC, the military Arabian saddle appeared, which improved the saddle design again slightly.

 

Camel cavalries have been used in wars throughout Africa, the Middle East, and into modern-day Border Security Force of India (though as of July 2012, the BSF has planned the replacement of camels with ATVs). The first use of camel cavalries was in the Battle of Qarqar in 853 BC. Armies have also used camels as freight animals instead of horses and mules.

In the East Roman Empire, the Romans used auxiliary forces known as dromedarii, whom they recruited in desert provinces. The camels were used mostly in combat because of their ability to scare off horses at close ranges (horses are afraid of the camels' scent), a quality famously employed by the Achaemenid Persians when fighting Lydia in the Battle of Thymbra.

 

19th and 20th CENTURIES

The United States Army established the U.S. Camel Corps, which was stationed in California in the late 19th century. One may still see stables at the Benicia Arsenal in Benicia, California, where they nowadays serve as the Benicia Historical Museum. Though the experimental use of camels was seen as a success (John B. Floyd, Secretary of War in 1858, recommended that funds be allocated towards obtaining a thousand more camels), the outbreak of the American Civil War saw the end of the Camel Corps: Texas became part of the Confederacy, and most of the camels were left to wander away into the desert.

 

France created a méhariste camel corps in 1912 as part of the Armée d'Afrique in the Sahara in order to exercise greater control over the camel-riding Tuareg and Arab insurgents, as previous efforts to defeat them on foot had failed. The camel-mounted units remained in service until the end of French rule over Algeria in 1962.

 

In 1916, the British created the Imperial Camel Corps. It was originally used to fight the Senussi, but was later used in the Sinai and Palestine Campaign in World War I. The Imperial Camel Corps comprised infantrymen mounted on camels for movement across desert, though they dismounted at battle sites and fought on foot. After July 1918, the Corps began to become run down, receiving no new reinforcements, and was formally disbanded in 1919.

 

In World War I, the British Army also created the Egyptian Camel Transport Corps, which consisted of a group of Egyptian camel drivers and their camels. The Corps supported British war operations in Sinai, Palestine, and Syria by transporting supplies to the troops.

 

The Somaliland Camel Corps was created by colonial authorities in British Somaliland in 1912; it was disbanded in 1944.

 

Bactrian camels were used by Romanian forces during World War II in the Caucasian region.

 

The Bikaner Camel Corps of British India fought alongside the British Indian Army in World Wars I and II.

 

The Tropas Nómadas (Nomad Troops) were an auxiliary regiment of Sahrawi tribesmen serving in the colonial army in Spanish Sahara (today Western Sahara). Operational from the 1930s until the end of the Spanish presence in the territory in 1975, the Tropas Nómadas were equipped with small arms and led by Spanish officers. The unit guarded outposts and sometimes conducted patrols on camelback.

 

FOOD USES

DAIRY

Camel milk is a staple food of desert nomad tribes and is sometimes considered a meal in and of itself; a nomad can live on only camel milk for almost a month. Camel milk is rich in vitamins, minerals, proteins, and immunoglobulins; compared to cow's milk, it is lower in fat and lactose, and higher in potassium, iron, and vitamin C. Bedouins believe the curative powers of camel milk are enhanced if the camel's diet consists of certain desert plants. Camel milk can readily be made into a drinkable yogurt, as well as butter or cheese, though the yields for cheese tend to be low.

 

Camel milk cannot be made into butter by the traditional churning method. It can be made if it is soured first, churned, and a clarifying agent is then added. Until recently, camel milk could not be made into camel cheese because rennet was unable to coagulate the milk proteins to allow the collection of curds. Developing less wasteful uses of the milk, the FAO commissioned Professor J.P. Ramet of the École Nationale Supérieure d'Agronomie et des Industries Alimentaires, who was able to produce curdling by the addition of calcium phosphate and vegetable rennet. The cheese produced from this process has low levels of cholesterol and is easy to digest, even for the lactose intolerant. The sale of camel cheese is limited owing to the small output of the few dairies producing camel cheese and the absence of camel cheese in local (West African) markets. Cheese imports from countries that traditionally breed camels are difficult to obtain due to restrictions on dairy imports from these regions.

 

Additionally, camel milk has been made into ice cream in a Netherlands camel farm.

 

MEAT

A camel carcass can provide a substantial amount of meat. The male dromedary carcass can weigh 300–400 kg, while the carcass of a male Bactrian can weigh up to 650 kg. The carcass of a female dromedary weighs less than the male, ranging between 250 and 350 kg. The brisket, ribs and loin are among the preferred parts, and the hump is considered a delicacy. The hump contains "white and sickly fat", which can be used to make the khli (preserved meat) of mutton, beef, or camel. Camel meat is reported to taste like coarse beef, but older camels can prove to be very tough, although camel meat becomes more tender the more it is cooked. The Abu Dhabi Officers' Club serves a camel burger mixed with beef or lamb fat in order to improve the texture and taste. In Karachi, Pakistan, some restaurants prepare nihari from camel meat. In Syria and Egypt, there are specialist camel butchers.

 

Camel meat has been eaten for centuries. It has been recorded by ancient Greek writers as an available dish at banquets in ancient Persia, usually roasted whole. The ancient Roman emperor Heliogabalus enjoyed camel's heel.[31] Camel meat is still eaten in certain regions, including Eritrea, Somalia, Djibouti, Saudi Arabia, Egypt, Syria, Libya, Sudan, Ethiopia, Kazakhstan, and other arid regions where alternative forms of protein may be limited or where camel meat has had a long cultural history. Camel blood is also consumable, as is the case among pastoralists in northern Kenya, where camel blood is drunk with milk and acts as a key source of iron, vitamin D, salts and minerals. Camel meat is also occasionally found in Australian cuisine: for example, a camel lasagna is available in Alice Springs.

 

A 2005 report issued jointly by the Saudi Ministry of Health and the United States Centers for Disease Control and Prevention details cases of human bubonic plague resulting from the ingestion of raw camel liver.

 

RELIGION

ISLAM

Camel meat is halal for Muslims. However, according to some Islamic schools of thought, a state of impurity is brought on by the consumption of it. Consequently, these schools hold that Muslims must perform wudhu (ablution) before the next time they pray after eating camel meat.

 

Also, some Islamic schools of thought consider it haraam for a Muslim to perform salat in places where camels lie, as it is said to be a dwelling place of shaytan.

 

According to Suni ahadith collected by Bukhari and Muslim, Muhammad ordered a certain group of people to drink camel milk and urine as a medicine. However, according to Abū Ḥanīfa, the drinking of camel urine, while not forbidden (ḥaram), is disliked (makrūh) in Islam.

 

Camel urine is sold as traditional medicine in shops in Saudi Arabia. The Sunni scholar Muhammad Al-Munajjid's IslamQA.info recommends camel urine as beneficial to curing certain diseases and to human health and cited Ahadith and scientific studies as justification. King Abdulaziz University researcher Dr. Faten Abdel-Rajman Khorshid has claimed that cancer and other diseases could be treated with camel urine as recommended by the Prophet. The United Arab Emirates "Arab Science and Technology Foundation" reported that cancer could be treated with camel urine. Camel urine was also prescribed as a treatment by Zaghloul El-Naggar, a religious scholar. Camel urine is the only urine which is permitted to be drunk according to the Hanbali madhhab of Sunni Islam. The World Health Organization said that camel urine consumption may be a factor in the spread of the MERS virus in Saudi Arabia. The Gulf Times writer Ahmad al-Sayyed wrote that various afflictions are dealt with camel urine by people. Dandruff, scalp ailments, hair, sores, and wounds were recommended to be treated with camel urine by Ibn Sina. Arab American University Professor of Cell Biology and Immunology Bashar Saad (PhD) along with Omar Said (PhD) wrote that medicinal use of camel urine is approved of and promoted by Islam since it was recommended by the prophet. A test on mice found that cytotoxic effects similar to cyclophosphamide were induced on bone marrow by camel urine. Besides for consumption as a medicinal drink, camel urine is believed to help treat hair. Bites from insects were warded off with camel urine, which also served as a shampoo. Camel urine is also used to help treat asthma, infections, treat hair, sores, hair growth and boost libido.

 

Several Sunni Ahadith mention drinking camel urine. Some Shia criticized Wahhabis for camel urine treatment. Shia scholars also recommend the medicinal use of camel urine. Shia Hadith on Imam Ja'far al-Sadiq reported that shortness of breath (asthma) was treated with camel urine. Shia Marja Ayatollah Sistani said that for medicinal purposes only, sheep, cow, and camel urine can be drunk.

 

JUDAISM

According to Jewish tradition, camel meat and milk are not kosher. Camels possess only one of the two kosher criteria; although they chew their cud, they do not possess cloven hooves:

 

Nevertheless these shall ye not eat of them that only chew the cud, or of them that only part the hoof: the camel, because he cheweth the cud but parteth not the hoof, he is unclean unto you.

— Leviticus 11:4

 

DISTRIBUTION ANDNUMBERS

There are around 14 million camels alive as of 2010, with 90% being dromedaries. Dromedaries alive today are domesticated animals (mostly living in the Horn of Africa, the Sahel, Maghreb, Middle East and South Asia). The Horn region alone has the largest concentration of camels in the world, where the dromedaries constitute an important part of local nomadic life. They provide nomadic people in Somalia (which has the largest camel herd in the world) and Ethiopia with milk, food, and transportation.

 

The Bactrian camel is, as of 2010, reduced to an estimated 1.4 million animals, most of which are domesticated. The only truly wild Bactrian camels, of which there are less than one thousand, are thought to inhabit the Gobi Desert in China and Mongolia.

 

The largest population of feral camels is in Australia. There are around 700,000 feral dromedary camels in central parts of Australia, descended from those introduced as a method of transport in the 19th and early 20th centuries. This population is growing about 8% per year. Representatives of the Australian government have culled more than 100,000 of the animals in part because the camels use too much of the limited resources needed by sheep farmers.

 

A small population of introduced camels, dromedaries and Bactrians, wandered through Southwest United States after having been imported in the 1800s as part of the U.S. Camel Corps experiment. When the project ended, they were used as draft animals in mines and escaped or were released. Twenty-five U.S. camels were bought and imported to Canada during the Cariboo Gold Rush.

 

WIKIPEDIA

A camel is an even-toed ungulate within the genus Camelus, bearing distinctive fatty deposits known as "humps" on its back. The two surviving species of camel are the dromedary, or one-humped camel (C. dromedarius), which inhabits the Middle East and the Horn of Africa; and the bactrian, or two-humped camel (C. bactrianus), which inhabits Central Asia. Both species have been domesticated; they provide milk, meat, hair for textiles or goods such as felted pouches, and are working animals with tasks ranging from human transport to bearing loads.

 

The term "camel" is derived via Latin and Greek (camelus and κάμηλος kamēlos respectively) from Hebrew or Phoenician gāmāl.

 

"Camel" is also used more broadly to describe any of the six camel-like mammals in the family Camelidae: the two true camels and the four New World camelids: the llama, alpaca, guanaco, and vicuña of South America.

 

BIOLOGY

The average life expectancy of a camel is 40 to 50 years. A full-grown adult camel stands 1.85 m at the shoulder and 2.15 m at the hump. Camels can run at up to 65 km/h in short bursts and sustain speeds of up to 40 km/h. Bactrian camels weigh 300 to 1,000 kg and dromedaries 300 to 600 kg.

 

The male dromedary camel has in its throat an organ called a dulla, a large, inflatable sac he extrudes from his mouth when in rut to assert dominance and attract females. It resembles a long, swollen, pink tongue hanging out of the side of its mouth. Camels mate by having both male and female sitting on the ground, with the male mounting from behind. The male usually ejaculates three or four times within a single mating session. Camelids are the only ungulates to mate in a sitting position.

 

ECOLOGICAL AND BEHAVIORAL ADAPTIONS

Camels do not directly store water in their humps as was once commonly believed. The humps are actually reservoirs of fatty tissue: concentrating body fat in their humps minimizes the insulating effect fat would have if distributed over the rest of their bodies, helping camels survive in hot climates. When this tissue is metabolized, it yields more than one gram of water for every gram of fat processed. This fat metabolization, while releasing energy, causes water to evaporate from the lungs during respiration (as oxygen is required for the metabolic process): overall, there is a net decrease in water.

 

Camels have a series of physiological adaptations that allow them to withstand long periods of time without any external source of water. Unlike other mammals, their red blood cells are oval rather than circular in shape. This facilitates the flow of red blood cells during dehydration and makes them better at withstanding high osmotic variation without rupturing when drinking large amounts of water: a 600 kg camel can drink 200 L of water in three minutes.

 

Camels are able to withstand changes in body temperature and water consumption that would kill most other animals. Their temperature ranges from 34 °C at dawn and steadily increases to 40 °C by sunset, before they cool off at night again. Maintaining the brain temperature within certain limits is critical for animals; to assist this, camels have a rete mirabile, a complex of arteries and veins lying very close to each other which utilizes countercurrent blood flow to cool blood flowing to the brain. Camels rarely sweat, even when ambient temperatures reach 49 °C Any sweat that does occur evaporates at the skin level rather than at the surface of their coat; the heat of vaporization therefore comes from body heat rather than ambient heat. Camels can withstand losing 25% of their body weight to sweating, whereas most other mammals can withstand only about 12–14% dehydration before cardiac failure results from circulatory disturbance.

 

When the camel exhales, water vapor becomes trapped in their nostrils and is reabsorbed into the body as a means to conserve water. Camels eating green herbage can ingest sufficient moisture in milder conditions to maintain their bodies' hydrated state without the need for drinking.

 

The camels' thick coats insulate them from the intense heat radiated from desert sand; a shorn camel must sweat 50% more to avoid overheating. During the summer the coat becomes lighter in color, reflecting light as well as helping avoid sunburn. The camel's long legs help by keeping its body farther from the ground, which can heat up to 70 °C. Dromedaries have a pad of thick tissue over the sternum called the pedestal. When the animal lies down in a sternal recumbent position, the pedestal raises the body from the hot surface and allows cooling air to pass under the body.

 

Camels' mouths have a thick leathery lining, allowing them to chew thorny desert plants. Long eyelashes and ear hairs, together with nostrils that can close, form a barrier against sand. If sand gets lodged in their eyes, they can dislodge it using their transparent third eyelid. The camels' gait and widened feet help them move without sinking into the sand.

 

The kidneys and intestines of a camel are very efficient at reabsorbing water. Camel urine comes out as a thick syrup, and camel feces are so dry that they do not require drying when the Bedouins use them to fuel fires.

 

Camels' immune system differs from those of other mammals. Normally, the Y-shaped antibody molecules consist of two heavy (or long) chains along the length of the Y, and two light (or short) chains at each tip of the Y. Camels, in addition to these, also have antibodies made of only two heavy chains, a trait that makes them smaller and more durable. These "heavy-chain-only" antibodies, discovered in 1993, are thought to have developed 50 million years ago, after camelids split from ruminants and pigs.

 

GENETICS

The karyotypes of different camelid species have been studied earlier by many groups, but no agreement on chromosome nomenclature of camelids has been reached. A 2007 study flow sorted camel chromosomes, building on the fact that camels have 37 pairs of chromosomes (2n=74), and found that the karyotime consisted of one metacentric, three submetacentric, and 32 acrocentric autosomes. The Y is a small metacentric chromosome, while the X is a large metacentric chromosome.The hybrid camel, a hybrid between Bactrian and dromedary camels, has one hump, though it has an indentation 4–12 cm deep that divides the front from the back. The hybrid is 2.15 m at the shoulder and 2.32 m tall at the hump. It weighs an average of 650 kg and can carry around 400 to 450 kg, which is more than either the dromedary or Bactrian can. According to molecular data, the New World and Old World camelids diverged 11 million years ago. In spite of this, these species can still hybridize and produce fertile offspring. The cama is a camel–llama hybrid bred by scientists who wanted to see how closely related the parent species were. Scientists collected semen from a camel via an artificial vagina and inseminated a llama after stimulating ovulation with gonadotrophin injections. The cama has ears halfway between the length of camel and llama ears, no hump, longer legs than the llama, and partially cloven hooves. According to cama breeder Lulu Skidmore, cama have "the fleece of the llamas" and "the strength and patience of the camel". Like the mule, camas are sterile, despite both parents having the same number of chromosomes.

 

EVOLUTION

The earliest known camel, called Protylopus, lived in North America 40 to 50 million years ago (during the Eocene). It was about the size of a rabbit and lived in the open woodlands of what is now South Dakota. By 35 million years ago, the Poebrotherium was the size of a goat and had many more traits similar to camels and llamas. The hoofed Stenomylus, which walked on the tips of its toes, also existed around this time, and the long-necked Aepycamelus evolved in the Miocene.

 

The direct ancestor of all modern camels, Procamelus, existed in the upper Miocone and lower Pliocene. Around 3–5 million years ago, the North American Camelidae spread to South America via the Isthmus of Panama, where they gave rise to guanacos and related animals, and to Asia via the Bering land bridge. Surprising finds of fossil Paracamelus on Ellesmere Island beginning in 2006 in the high Canadian Arctic indicate the dromedary is descended from a larger, boreal browser whose hump may have evolved as an adaptation in a cold climate. This creature is estimated to have stood around nine feet tall.

 

The last camel native to North America was Camelops hesternus, which vanished along with horses, short-faced bears, mammoths and mastodons, ground sloths, sabertooth cats, and many other megafauna, coinciding with the migration of humans from Asia.

 

DOMESTICATION

Most camels surviving today are domesticated. Along with many other megafauna in North America, the original wild camels were wiped out during the spread of Native Americans from Asia into North America, 12,000 to 10,000 years ago. The only wild camels left are the Bactrian camels of the Gobi Desert.

 

Like the horse, before their extinction in their native land, camels spread across the Bering land bridge, moving the opposite direction from the Asian immigration to America, to survive in the Old World and eventually be domesticated and spread globally by humans.

 

Dromedaries may have first been domesticated by humans in Somalia and southern Arabia, around 3,000 BC, the Bactrian in central Asia around 2,500 BC, as at Shar-i Sokhta (also known as the Burnt City), Iran.

 

Discussions concerning camel domestication in Mesopotamia are often related to mentions of camels in the Hebrew Bible. The International Standard Bible Encyclopedia: E-J for instance mentions that "In accord with patriarchal traditions, cylinder seals from Middle Bronze Age Mesopotamia showed riders seated upon camels."

 

Martin Heide's 2010 work on the domestication of the camel tentatively concludes that the bactrian camel was domesticated by at least the middle of the third millennium somewhere east of the Zagros Mountains, then moving into Mesopotamia, and suggests that mentions of camels "in the patriarchal narratives may refer, at least in some places, to the Bactrian camel." while noting that the camel is not mentioned in relationship to Canaan.

 

Recent excavations in the Timna Valley by Lidar Sapir-Hen and Erez Ben-Yosef discovered what may be the earliest domestic camel bones found in Israel or even outside the Arabian peninsula, dating to around 930 BCE. This garnered considerable media coverage as it was described as evidence that the stories of Abraham, Joseph, Jacob and Esau were written after this time.

 

The existence of camels in Mesopotamia but not in Israel is not a new idea. According to an article in Time Magazine, the historian Richard Bulliet wrote in his 1975 book "The Camel and the Wheel" that "the occasional mention of camels in patriarchal narratives does not mean that the domestic camels were common in the Holy Land at that period." The archaeologist William F. Albright writing even earlier saw camels in the Bible as an anachronism. The official report by Sapir-Hen and Ben-Joseph notes that "The introduction of the dromedary camel (Camelus dromedarius) as a pack animal to the southern Levant signifies a crucial juncture in the history of the region; it substantially facilitated trade across the vast deserts of Arabia, promoting both economic and social change (e.g., Kohler 1984; Borowski 1998: 112-116; Jasmin 2005). This, together with the depiction of camels in the Patriarchal narrative, has generated extensive discussion regarding the date of the earliest domestic camel in the southern Levant (and beyond) (e.g., Albright 1949: 207; Epstein 1971: 558-584; Bulliet 1975; Zarins 1989; Köhler-Rollefson 1993; Uerpmann and Uerpmann 2002; Jasmin 2005; 2006; Heide 2010; Rosen and Saidel 2010; Grigson 2012). Most scholars today agree that the dromedary was exploited as a pack animal sometime in the early Iron Age (not before the 12th century BCE)" and concludes that "Current data from copper smelting sites of the Aravah Valley enable us to pinpoint the introduction of domestic camels to the southern Levant more precisely based on stratigraphic contexts associated with an extensive suite of radiocarbon dates. The data indicate that this event occurred not earlier than the last third of the 10th century BCE and most probably during this time. The coincidence of this event with a major reorganization of the copper industry of the region - attributed to the results of the campaign of Pharaoh Shoshenq I - raises the possibility that the two were connected, and that camels were introduced as part of the efforts to improve efficiency by facilitating trade."

 

MILITARY USES

By at least 1200 BC, the first camel saddles had appeared, and Bactrian camels could be ridden. The first saddle was positioned to the back of the camel, and control of the Bactrian camel was exercised by means of a stick. However, between 500–100 BC, Bactrian camels attained military use. New saddles, which were inflexible and bent, were put over the humps and divided the rider's weight over the animal. In the seventh century BC, the military Arabian saddle appeared, which improved the saddle design again slightly.

 

Camel cavalries have been used in wars throughout Africa, the Middle East, and into modern-day Border Security Force of India (though as of July 2012, the BSF has planned the replacement of camels with ATVs). The first use of camel cavalries was in the Battle of Qarqar in 853 BC. Armies have also used camels as freight animals instead of horses and mules.

In the East Roman Empire, the Romans used auxiliary forces known as dromedarii, whom they recruited in desert provinces. The camels were used mostly in combat because of their ability to scare off horses at close ranges (horses are afraid of the camels' scent), a quality famously employed by the Achaemenid Persians when fighting Lydia in the Battle of Thymbra.

 

19th and 20th CENTURIES

The United States Army established the U.S. Camel Corps, which was stationed in California in the late 19th century. One may still see stables at the Benicia Arsenal in Benicia, California, where they nowadays serve as the Benicia Historical Museum. Though the experimental use of camels was seen as a success (John B. Floyd, Secretary of War in 1858, recommended that funds be allocated towards obtaining a thousand more camels), the outbreak of the American Civil War saw the end of the Camel Corps: Texas became part of the Confederacy, and most of the camels were left to wander away into the desert.

 

France created a méhariste camel corps in 1912 as part of the Armée d'Afrique in the Sahara in order to exercise greater control over the camel-riding Tuareg and Arab insurgents, as previous efforts to defeat them on foot had failed. The camel-mounted units remained in service until the end of French rule over Algeria in 1962.

 

In 1916, the British created the Imperial Camel Corps. It was originally used to fight the Senussi, but was later used in the Sinai and Palestine Campaign in World War I. The Imperial Camel Corps comprised infantrymen mounted on camels for movement across desert, though they dismounted at battle sites and fought on foot. After July 1918, the Corps began to become run down, receiving no new reinforcements, and was formally disbanded in 1919.

 

In World War I, the British Army also created the Egyptian Camel Transport Corps, which consisted of a group of Egyptian camel drivers and their camels. The Corps supported British war operations in Sinai, Palestine, and Syria by transporting supplies to the troops.

 

The Somaliland Camel Corps was created by colonial authorities in British Somaliland in 1912; it was disbanded in 1944.

 

Bactrian camels were used by Romanian forces during World War II in the Caucasian region.

 

The Bikaner Camel Corps of British India fought alongside the British Indian Army in World Wars I and II.

 

The Tropas Nómadas (Nomad Troops) were an auxiliary regiment of Sahrawi tribesmen serving in the colonial army in Spanish Sahara (today Western Sahara). Operational from the 1930s until the end of the Spanish presence in the territory in 1975, the Tropas Nómadas were equipped with small arms and led by Spanish officers. The unit guarded outposts and sometimes conducted patrols on camelback.

 

FOOD USES

DAIRY

Camel milk is a staple food of desert nomad tribes and is sometimes considered a meal in and of itself; a nomad can live on only camel milk for almost a month. Camel milk is rich in vitamins, minerals, proteins, and immunoglobulins; compared to cow's milk, it is lower in fat and lactose, and higher in potassium, iron, and vitamin C. Bedouins believe the curative powers of camel milk are enhanced if the camel's diet consists of certain desert plants. Camel milk can readily be made into a drinkable yogurt, as well as butter or cheese, though the yields for cheese tend to be low.

 

Camel milk cannot be made into butter by the traditional churning method. It can be made if it is soured first, churned, and a clarifying agent is then added. Until recently, camel milk could not be made into camel cheese because rennet was unable to coagulate the milk proteins to allow the collection of curds. Developing less wasteful uses of the milk, the FAO commissioned Professor J.P. Ramet of the École Nationale Supérieure d'Agronomie et des Industries Alimentaires, who was able to produce curdling by the addition of calcium phosphate and vegetable rennet. The cheese produced from this process has low levels of cholesterol and is easy to digest, even for the lactose intolerant. The sale of camel cheese is limited owing to the small output of the few dairies producing camel cheese and the absence of camel cheese in local (West African) markets. Cheese imports from countries that traditionally breed camels are difficult to obtain due to restrictions on dairy imports from these regions.

 

Additionally, camel milk has been made into ice cream in a Netherlands camel farm.

 

MEAT

A camel carcass can provide a substantial amount of meat. The male dromedary carcass can weigh 300–400 kg, while the carcass of a male Bactrian can weigh up to 650 kg. The carcass of a female dromedary weighs less than the male, ranging between 250 and 350 kg. The brisket, ribs and loin are among the preferred parts, and the hump is considered a delicacy. The hump contains "white and sickly fat", which can be used to make the khli (preserved meat) of mutton, beef, or camel. Camel meat is reported to taste like coarse beef, but older camels can prove to be very tough, although camel meat becomes more tender the more it is cooked. The Abu Dhabi Officers' Club serves a camel burger mixed with beef or lamb fat in order to improve the texture and taste. In Karachi, Pakistan, some restaurants prepare nihari from camel meat. In Syria and Egypt, there are specialist camel butchers.

 

Camel meat has been eaten for centuries. It has been recorded by ancient Greek writers as an available dish at banquets in ancient Persia, usually roasted whole. The ancient Roman emperor Heliogabalus enjoyed camel's heel.[31] Camel meat is still eaten in certain regions, including Eritrea, Somalia, Djibouti, Saudi Arabia, Egypt, Syria, Libya, Sudan, Ethiopia, Kazakhstan, and other arid regions where alternative forms of protein may be limited or where camel meat has had a long cultural history. Camel blood is also consumable, as is the case among pastoralists in northern Kenya, where camel blood is drunk with milk and acts as a key source of iron, vitamin D, salts and minerals. Camel meat is also occasionally found in Australian cuisine: for example, a camel lasagna is available in Alice Springs.

 

A 2005 report issued jointly by the Saudi Ministry of Health and the United States Centers for Disease Control and Prevention details cases of human bubonic plague resulting from the ingestion of raw camel liver.

 

RELIGION

ISLAM

Camel meat is halal for Muslims. However, according to some Islamic schools of thought, a state of impurity is brought on by the consumption of it. Consequently, these schools hold that Muslims must perform wudhu (ablution) before the next time they pray after eating camel meat.

 

Also, some Islamic schools of thought consider it haraam for a Muslim to perform salat in places where camels lie, as it is said to be a dwelling place of shaytan.

 

According to Suni ahadith collected by Bukhari and Muslim, Muhammad ordered a certain group of people to drink camel milk and urine as a medicine. However, according to Abū Ḥanīfa, the drinking of camel urine, while not forbidden (ḥaram), is disliked (makrūh) in Islam.

 

Camel urine is sold as traditional medicine in shops in Saudi Arabia. The Sunni scholar Muhammad Al-Munajjid's IslamQA.info recommends camel urine as beneficial to curing certain diseases and to human health and cited Ahadith and scientific studies as justification. King Abdulaziz University researcher Dr. Faten Abdel-Rajman Khorshid has claimed that cancer and other diseases could be treated with camel urine as recommended by the Prophet. The United Arab Emirates "Arab Science and Technology Foundation" reported that cancer could be treated with camel urine. Camel urine was also prescribed as a treatment by Zaghloul El-Naggar, a religious scholar. Camel urine is the only urine which is permitted to be drunk according to the Hanbali madhhab of Sunni Islam. The World Health Organization said that camel urine consumption may be a factor in the spread of the MERS virus in Saudi Arabia. The Gulf Times writer Ahmad al-Sayyed wrote that various afflictions are dealt with camel urine by people. Dandruff, scalp ailments, hair, sores, and wounds were recommended to be treated with camel urine by Ibn Sina. Arab American University Professor of Cell Biology and Immunology Bashar Saad (PhD) along with Omar Said (PhD) wrote that medicinal use of camel urine is approved of and promoted by Islam since it was recommended by the prophet. A test on mice found that cytotoxic effects similar to cyclophosphamide were induced on bone marrow by camel urine. Besides for consumption as a medicinal drink, camel urine is believed to help treat hair. Bites from insects were warded off with camel urine, which also served as a shampoo. Camel urine is also used to help treat asthma, infections, treat hair, sores, hair growth and boost libido.

 

Several Sunni Ahadith mention drinking camel urine. Some Shia criticized Wahhabis for camel urine treatment. Shia scholars also recommend the medicinal use of camel urine. Shia Hadith on Imam Ja'far al-Sadiq reported that shortness of breath (asthma) was treated with camel urine. Shia Marja Ayatollah Sistani said that for medicinal purposes only, sheep, cow, and camel urine can be drunk.

 

JUDAISM

According to Jewish tradition, camel meat and milk are not kosher. Camels possess only one of the two kosher criteria; although they chew their cud, they do not possess cloven hooves:

 

Nevertheless these shall ye not eat of them that only chew the cud, or of them that only part the hoof: the camel, because he cheweth the cud but parteth not the hoof, he is unclean unto you.

— Leviticus 11:4

 

DISTRIBUTION ANDNUMBERS

There are around 14 million camels alive as of 2010, with 90% being dromedaries. Dromedaries alive today are domesticated animals (mostly living in the Horn of Africa, the Sahel, Maghreb, Middle East and South Asia). The Horn region alone has the largest concentration of camels in the world, where the dromedaries constitute an important part of local nomadic life. They provide nomadic people in Somalia (which has the largest camel herd in the world) and Ethiopia with milk, food, and transportation.

 

The Bactrian camel is, as of 2010, reduced to an estimated 1.4 million animals, most of which are domesticated. The only truly wild Bactrian camels, of which there are less than one thousand, are thought to inhabit the Gobi Desert in China and Mongolia.

 

The largest population of feral camels is in Australia. There are around 700,000 feral dromedary camels in central parts of Australia, descended from those introduced as a method of transport in the 19th and early 20th centuries. This population is growing about 8% per year. Representatives of the Australian government have culled more than 100,000 of the animals in part because the camels use too much of the limited resources needed by sheep farmers.

 

A small population of introduced camels, dromedaries and Bactrians, wandered through Southwest United States after having been imported in the 1800s as part of the U.S. Camel Corps experiment. When the project ended, they were used as draft animals in mines and escaped or were released. Twenty-five U.S. camels were bought and imported to Canada during the Cariboo Gold Rush.

 

WIKIPEDIA

A camel is an even-toed ungulate within the genus Camelus, bearing distinctive fatty deposits known as "humps" on its back. The two surviving species of camel are the dromedary, or one-humped camel (C. dromedarius), which inhabits the Middle East and the Horn of Africa; and the bactrian, or two-humped camel (C. bactrianus), which inhabits Central Asia. Both species have been domesticated; they provide milk, meat, hair for textiles or goods such as felted pouches, and are working animals with tasks ranging from human transport to bearing loads.

 

The term "camel" is derived via Latin and Greek (camelus and κάμηλος kamēlos respectively) from Hebrew or Phoenician gāmāl.

 

"Camel" is also used more broadly to describe any of the six camel-like mammals in the family Camelidae: the two true camels and the four New World camelids: the llama, alpaca, guanaco, and vicuña of South America.

 

BIOLOGY

The average life expectancy of a camel is 40 to 50 years. A full-grown adult camel stands 1.85 m at the shoulder and 2.15 m at the hump. Camels can run at up to 65 km/h in short bursts and sustain speeds of up to 40 km/h. Bactrian camels weigh 300 to 1,000 kg and dromedaries 300 to 600 kg.

 

The male dromedary camel has in its throat an organ called a dulla, a large, inflatable sac he extrudes from his mouth when in rut to assert dominance and attract females. It resembles a long, swollen, pink tongue hanging out of the side of its mouth. Camels mate by having both male and female sitting on the ground, with the male mounting from behind. The male usually ejaculates three or four times within a single mating session. Camelids are the only ungulates to mate in a sitting position.

 

ECOLOGICAL AND BEHAVIORAL ADAPTIONS

Camels do not directly store water in their humps as was once commonly believed. The humps are actually reservoirs of fatty tissue: concentrating body fat in their humps minimizes the insulating effect fat would have if distributed over the rest of their bodies, helping camels survive in hot climates. When this tissue is metabolized, it yields more than one gram of water for every gram of fat processed. This fat metabolization, while releasing energy, causes water to evaporate from the lungs during respiration (as oxygen is required for the metabolic process): overall, there is a net decrease in water.

 

Camels have a series of physiological adaptations that allow them to withstand long periods of time without any external source of water. Unlike other mammals, their red blood cells are oval rather than circular in shape. This facilitates the flow of red blood cells during dehydration and makes them better at withstanding high osmotic variation without rupturing when drinking large amounts of water: a 600 kg camel can drink 200 L of water in three minutes.

 

Camels are able to withstand changes in body temperature and water consumption that would kill most other animals. Their temperature ranges from 34 °C at dawn and steadily increases to 40 °C by sunset, before they cool off at night again. Maintaining the brain temperature within certain limits is critical for animals; to assist this, camels have a rete mirabile, a complex of arteries and veins lying very close to each other which utilizes countercurrent blood flow to cool blood flowing to the brain. Camels rarely sweat, even when ambient temperatures reach 49 °C Any sweat that does occur evaporates at the skin level rather than at the surface of their coat; the heat of vaporization therefore comes from body heat rather than ambient heat. Camels can withstand losing 25% of their body weight to sweating, whereas most other mammals can withstand only about 12–14% dehydration before cardiac failure results from circulatory disturbance.

 

When the camel exhales, water vapor becomes trapped in their nostrils and is reabsorbed into the body as a means to conserve water. Camels eating green herbage can ingest sufficient moisture in milder conditions to maintain their bodies' hydrated state without the need for drinking.

 

The camels' thick coats insulate them from the intense heat radiated from desert sand; a shorn camel must sweat 50% more to avoid overheating. During the summer the coat becomes lighter in color, reflecting light as well as helping avoid sunburn. The camel's long legs help by keeping its body farther from the ground, which can heat up to 70 °C. Dromedaries have a pad of thick tissue over the sternum called the pedestal. When the animal lies down in a sternal recumbent position, the pedestal raises the body from the hot surface and allows cooling air to pass under the body.

 

Camels' mouths have a thick leathery lining, allowing them to chew thorny desert plants. Long eyelashes and ear hairs, together with nostrils that can close, form a barrier against sand. If sand gets lodged in their eyes, they can dislodge it using their transparent third eyelid. The camels' gait and widened feet help them move without sinking into the sand.

 

The kidneys and intestines of a camel are very efficient at reabsorbing water. Camel urine comes out as a thick syrup, and camel feces are so dry that they do not require drying when the Bedouins use them to fuel fires.

 

Camels' immune system differs from those of other mammals. Normally, the Y-shaped antibody molecules consist of two heavy (or long) chains along the length of the Y, and two light (or short) chains at each tip of the Y. Camels, in addition to these, also have antibodies made of only two heavy chains, a trait that makes them smaller and more durable. These "heavy-chain-only" antibodies, discovered in 1993, are thought to have developed 50 million years ago, after camelids split from ruminants and pigs.

 

GENETICS

The karyotypes of different camelid species have been studied earlier by many groups, but no agreement on chromosome nomenclature of camelids has been reached. A 2007 study flow sorted camel chromosomes, building on the fact that camels have 37 pairs of chromosomes (2n=74), and found that the karyotime consisted of one metacentric, three submetacentric, and 32 acrocentric autosomes. The Y is a small metacentric chromosome, while the X is a large metacentric chromosome.The hybrid camel, a hybrid between Bactrian and dromedary camels, has one hump, though it has an indentation 4–12 cm deep that divides the front from the back. The hybrid is 2.15 m at the shoulder and 2.32 m tall at the hump. It weighs an average of 650 kg and can carry around 400 to 450 kg, which is more than either the dromedary or Bactrian can. According to molecular data, the New World and Old World camelids diverged 11 million years ago. In spite of this, these species can still hybridize and produce fertile offspring. The cama is a camel–llama hybrid bred by scientists who wanted to see how closely related the parent species were. Scientists collected semen from a camel via an artificial vagina and inseminated a llama after stimulating ovulation with gonadotrophin injections. The cama has ears halfway between the length of camel and llama ears, no hump, longer legs than the llama, and partially cloven hooves. According to cama breeder Lulu Skidmore, cama have "the fleece of the llamas" and "the strength and patience of the camel". Like the mule, camas are sterile, despite both parents having the same number of chromosomes.

 

EVOLUTION

The earliest known camel, called Protylopus, lived in North America 40 to 50 million years ago (during the Eocene). It was about the size of a rabbit and lived in the open woodlands of what is now South Dakota. By 35 million years ago, the Poebrotherium was the size of a goat and had many more traits similar to camels and llamas. The hoofed Stenomylus, which walked on the tips of its toes, also existed around this time, and the long-necked Aepycamelus evolved in the Miocene.

 

The direct ancestor of all modern camels, Procamelus, existed in the upper Miocone and lower Pliocene. Around 3–5 million years ago, the North American Camelidae spread to South America via the Isthmus of Panama, where they gave rise to guanacos and related animals, and to Asia via the Bering land bridge. Surprising finds of fossil Paracamelus on Ellesmere Island beginning in 2006 in the high Canadian Arctic indicate the dromedary is descended from a larger, boreal browser whose hump may have evolved as an adaptation in a cold climate. This creature is estimated to have stood around nine feet tall.

 

The last camel native to North America was Camelops hesternus, which vanished along with horses, short-faced bears, mammoths and mastodons, ground sloths, sabertooth cats, and many other megafauna, coinciding with the migration of humans from Asia.

 

DOMESTICATION

Most camels surviving today are domesticated. Along with many other megafauna in North America, the original wild camels were wiped out during the spread of Native Americans from Asia into North America, 12,000 to 10,000 years ago. The only wild camels left are the Bactrian camels of the Gobi Desert.

 

Like the horse, before their extinction in their native land, camels spread across the Bering land bridge, moving the opposite direction from the Asian immigration to America, to survive in the Old World and eventually be domesticated and spread globally by humans.

 

Dromedaries may have first been domesticated by humans in Somalia and southern Arabia, around 3,000 BC, the Bactrian in central Asia around 2,500 BC, as at Shar-i Sokhta (also known as the Burnt City), Iran.

 

Discussions concerning camel domestication in Mesopotamia are often related to mentions of camels in the Hebrew Bible. The International Standard Bible Encyclopedia: E-J for instance mentions that "In accord with patriarchal traditions, cylinder seals from Middle Bronze Age Mesopotamia showed riders seated upon camels."

 

Martin Heide's 2010 work on the domestication of the camel tentatively concludes that the bactrian camel was domesticated by at least the middle of the third millennium somewhere east of the Zagros Mountains, then moving into Mesopotamia, and suggests that mentions of camels "in the patriarchal narratives may refer, at least in some places, to the Bactrian camel." while noting that the camel is not mentioned in relationship to Canaan.

 

Recent excavations in the Timna Valley by Lidar Sapir-Hen and Erez Ben-Yosef discovered what may be the earliest domestic camel bones found in Israel or even outside the Arabian peninsula, dating to around 930 BCE. This garnered considerable media coverage as it was described as evidence that the stories of Abraham, Joseph, Jacob and Esau were written after this time.

 

The existence of camels in Mesopotamia but not in Israel is not a new idea. According to an article in Time Magazine, the historian Richard Bulliet wrote in his 1975 book "The Camel and the Wheel" that "the occasional mention of camels in patriarchal narratives does not mean that the domestic camels were common in the Holy Land at that period." The archaeologist William F. Albright writing even earlier saw camels in the Bible as an anachronism. The official report by Sapir-Hen and Ben-Joseph notes that "The introduction of the dromedary camel (Camelus dromedarius) as a pack animal to the southern Levant signifies a crucial juncture in the history of the region; it substantially facilitated trade across the vast deserts of Arabia, promoting both economic and social change (e.g., Kohler 1984; Borowski 1998: 112-116; Jasmin 2005). This, together with the depiction of camels in the Patriarchal narrative, has generated extensive discussion regarding the date of the earliest domestic camel in the southern Levant (and beyond) (e.g., Albright 1949: 207; Epstein 1971: 558-584; Bulliet 1975; Zarins 1989; Köhler-Rollefson 1993; Uerpmann and Uerpmann 2002; Jasmin 2005; 2006; Heide 2010; Rosen and Saidel 2010; Grigson 2012). Most scholars today agree that the dromedary was exploited as a pack animal sometime in the early Iron Age (not before the 12th century BCE)" and concludes that "Current data from copper smelting sites of the Aravah Valley enable us to pinpoint the introduction of domestic camels to the southern Levant more precisely based on stratigraphic contexts associated with an extensive suite of radiocarbon dates. The data indicate that this event occurred not earlier than the last third of the 10th century BCE and most probably during this time. The coincidence of this event with a major reorganization of the copper industry of the region - attributed to the results of the campaign of Pharaoh Shoshenq I - raises the possibility that the two were connected, and that camels were introduced as part of the efforts to improve efficiency by facilitating trade."

 

MILITARY USES

By at least 1200 BC, the first camel saddles had appeared, and Bactrian camels could be ridden. The first saddle was positioned to the back of the camel, and control of the Bactrian camel was exercised by means of a stick. However, between 500–100 BC, Bactrian camels attained military use. New saddles, which were inflexible and bent, were put over the humps and divided the rider's weight over the animal. In the seventh century BC, the military Arabian saddle appeared, which improved the saddle design again slightly.

 

Camel cavalries have been used in wars throughout Africa, the Middle East, and into modern-day Border Security Force of India (though as of July 2012, the BSF has planned the replacement of camels with ATVs). The first use of camel cavalries was in the Battle of Qarqar in 853 BC. Armies have also used camels as freight animals instead of horses and mules.

In the East Roman Empire, the Romans used auxiliary forces known as dromedarii, whom they recruited in desert provinces. The camels were used mostly in combat because of their ability to scare off horses at close ranges (horses are afraid of the camels' scent), a quality famously employed by the Achaemenid Persians when fighting Lydia in the Battle of Thymbra.

 

19th and 20th CENTURIES

The United States Army established the U.S. Camel Corps, which was stationed in California in the late 19th century. One may still see stables at the Benicia Arsenal in Benicia, California, where they nowadays serve as the Benicia Historical Museum. Though the experimental use of camels was seen as a success (John B. Floyd, Secretary of War in 1858, recommended that funds be allocated towards obtaining a thousand more camels), the outbreak of the American Civil War saw the end of the Camel Corps: Texas became part of the Confederacy, and most of the camels were left to wander away into the desert.

 

France created a méhariste camel corps in 1912 as part of the Armée d'Afrique in the Sahara in order to exercise greater control over the camel-riding Tuareg and Arab insurgents, as previous efforts to defeat them on foot had failed. The camel-mounted units remained in service until the end of French rule over Algeria in 1962.

 

In 1916, the British created the Imperial Camel Corps. It was originally used to fight the Senussi, but was later used in the Sinai and Palestine Campaign in World War I. The Imperial Camel Corps comprised infantrymen mounted on camels for movement across desert, though they dismounted at battle sites and fought on foot. After July 1918, the Corps began to become run down, receiving no new reinforcements, and was formally disbanded in 1919.

 

In World War I, the British Army also created the Egyptian Camel Transport Corps, which consisted of a group of Egyptian camel drivers and their camels. The Corps supported British war operations in Sinai, Palestine, and Syria by transporting supplies to the troops.

 

The Somaliland Camel Corps was created by colonial authorities in British Somaliland in 1912; it was disbanded in 1944.

 

Bactrian camels were used by Romanian forces during World War II in the Caucasian region.

 

The Bikaner Camel Corps of British India fought alongside the British Indian Army in World Wars I and II.

 

The Tropas Nómadas (Nomad Troops) were an auxiliary regiment of Sahrawi tribesmen serving in the colonial army in Spanish Sahara (today Western Sahara). Operational from the 1930s until the end of the Spanish presence in the territory in 1975, the Tropas Nómadas were equipped with small arms and led by Spanish officers. The unit guarded outposts and sometimes conducted patrols on camelback.

 

FOOD USES

DAIRY

Camel milk is a staple food of desert nomad tribes and is sometimes considered a meal in and of itself; a nomad can live on only camel milk for almost a month. Camel milk is rich in vitamins, minerals, proteins, and immunoglobulins; compared to cow's milk, it is lower in fat and lactose, and higher in potassium, iron, and vitamin C. Bedouins believe the curative powers of camel milk are enhanced if the camel's diet consists of certain desert plants. Camel milk can readily be made into a drinkable yogurt, as well as butter or cheese, though the yields for cheese tend to be low.

 

Camel milk cannot be made into butter by the traditional churning method. It can be made if it is soured first, churned, and a clarifying agent is then added. Until recently, camel milk could not be made into camel cheese because rennet was unable to coagulate the milk proteins to allow the collection of curds. Developing less wasteful uses of the milk, the FAO commissioned Professor J.P. Ramet of the École Nationale Supérieure d'Agronomie et des Industries Alimentaires, who was able to produce curdling by the addition of calcium phosphate and vegetable rennet. The cheese produced from this process has low levels of cholesterol and is easy to digest, even for the lactose intolerant. The sale of camel cheese is limited owing to the small output of the few dairies producing camel cheese and the absence of camel cheese in local (West African) markets. Cheese imports from countries that traditionally breed camels are difficult to obtain due to restrictions on dairy imports from these regions.

 

Additionally, camel milk has been made into ice cream in a Netherlands camel farm.

 

MEAT

A camel carcass can provide a substantial amount of meat. The male dromedary carcass can weigh 300–400 kg, while the carcass of a male Bactrian can weigh up to 650 kg. The carcass of a female dromedary weighs less than the male, ranging between 250 and 350 kg. The brisket, ribs and loin are among the preferred parts, and the hump is considered a delicacy. The hump contains "white and sickly fat", which can be used to make the khli (preserved meat) of mutton, beef, or camel. Camel meat is reported to taste like coarse beef, but older camels can prove to be very tough, although camel meat becomes more tender the more it is cooked. The Abu Dhabi Officers' Club serves a camel burger mixed with beef or lamb fat in order to improve the texture and taste. In Karachi, Pakistan, some restaurants prepare nihari from camel meat. In Syria and Egypt, there are specialist camel butchers.

 

Camel meat has been eaten for centuries. It has been recorded by ancient Greek writers as an available dish at banquets in ancient Persia, usually roasted whole. The ancient Roman emperor Heliogabalus enjoyed camel's heel.[31] Camel meat is still eaten in certain regions, including Eritrea, Somalia, Djibouti, Saudi Arabia, Egypt, Syria, Libya, Sudan, Ethiopia, Kazakhstan, and other arid regions where alternative forms of protein may be limited or where camel meat has had a long cultural history. Camel blood is also consumable, as is the case among pastoralists in northern Kenya, where camel blood is drunk with milk and acts as a key source of iron, vitamin D, salts and minerals. Camel meat is also occasionally found in Australian cuisine: for example, a camel lasagna is available in Alice Springs.

 

A 2005 report issued jointly by the Saudi Ministry of Health and the United States Centers for Disease Control and Prevention details cases of human bubonic plague resulting from the ingestion of raw camel liver.

 

RELIGION

ISLAM

Camel meat is halal for Muslims. However, according to some Islamic schools of thought, a state of impurity is brought on by the consumption of it. Consequently, these schools hold that Muslims must perform wudhu (ablution) before the next time they pray after eating camel meat.

 

Also, some Islamic schools of thought consider it haraam for a Muslim to perform salat in places where camels lie, as it is said to be a dwelling place of shaytan.

 

According to Suni ahadith collected by Bukhari and Muslim, Muhammad ordered a certain group of people to drink camel milk and urine as a medicine. However, according to Abū Ḥanīfa, the drinking of camel urine, while not forbidden (ḥaram), is disliked (makrūh) in Islam.

 

Camel urine is sold as traditional medicine in shops in Saudi Arabia. The Sunni scholar Muhammad Al-Munajjid's IslamQA.info recommends camel urine as beneficial to curing certain diseases and to human health and cited Ahadith and scientific studies as justification. King Abdulaziz University researcher Dr. Faten Abdel-Rajman Khorshid has claimed that cancer and other diseases could be treated with camel urine as recommended by the Prophet. The United Arab Emirates "Arab Science and Technology Foundation" reported that cancer could be treated with camel urine. Camel urine was also prescribed as a treatment by Zaghloul El-Naggar, a religious scholar. Camel urine is the only urine which is permitted to be drunk according to the Hanbali madhhab of Sunni Islam. The World Health Organization said that camel urine consumption may be a factor in the spread of the MERS virus in Saudi Arabia. The Gulf Times writer Ahmad al-Sayyed wrote that various afflictions are dealt with camel urine by people. Dandruff, scalp ailments, hair, sores, and wounds were recommended to be treated with camel urine by Ibn Sina. Arab American University Professor of Cell Biology and Immunology Bashar Saad (PhD) along with Omar Said (PhD) wrote that medicinal use of camel urine is approved of and promoted by Islam since it was recommended by the prophet. A test on mice found that cytotoxic effects similar to cyclophosphamide were induced on bone marrow by camel urine. Besides for consumption as a medicinal drink, camel urine is believed to help treat hair. Bites from insects were warded off with camel urine, which also served as a shampoo. Camel urine is also used to help treat asthma, infections, treat hair, sores, hair growth and boost libido.

 

Several Sunni Ahadith mention drinking camel urine. Some Shia criticized Wahhabis for camel urine treatment. Shia scholars also recommend the medicinal use of camel urine. Shia Hadith on Imam Ja'far al-Sadiq reported that shortness of breath (asthma) was treated with camel urine. Shia Marja Ayatollah Sistani said that for medicinal purposes only, sheep, cow, and camel urine can be drunk.

 

JUDAISM

According to Jewish tradition, camel meat and milk are not kosher. Camels possess only one of the two kosher criteria; although they chew their cud, they do not possess cloven hooves:

 

Nevertheless these shall ye not eat of them that only chew the cud, or of them that only part the hoof: the camel, because he cheweth the cud but parteth not the hoof, he is unclean unto you.

— Leviticus 11:4

 

DISTRIBUTION ANDNUMBERS

There are around 14 million camels alive as of 2010, with 90% being dromedaries. Dromedaries alive today are domesticated animals (mostly living in the Horn of Africa, the Sahel, Maghreb, Middle East and South Asia). The Horn region alone has the largest concentration of camels in the world, where the dromedaries constitute an important part of local nomadic life. They provide nomadic people in Somalia (which has the largest camel herd in the world) and Ethiopia with milk, food, and transportation.

 

The Bactrian camel is, as of 2010, reduced to an estimated 1.4 million animals, most of which are domesticated. The only truly wild Bactrian camels, of which there are less than one thousand, are thought to inhabit the Gobi Desert in China and Mongolia.

 

The largest population of feral camels is in Australia. There are around 700,000 feral dromedary camels in central parts of Australia, descended from those introduced as a method of transport in the 19th and early 20th centuries. This population is growing about 8% per year. Representatives of the Australian government have culled more than 100,000 of the animals in part because the camels use too much of the limited resources needed by sheep farmers.

 

A small population of introduced camels, dromedaries and Bactrians, wandered through Southwest United States after having been imported in the 1800s as part of the U.S. Camel Corps experiment. When the project ended, they were used as draft animals in mines and escaped or were released. Twenty-five U.S. camels were bought and imported to Canada during the Cariboo Gold Rush.

 

WIKIPEDIA

A camel is an even-toed ungulate within the genus Camelus, bearing distinctive fatty deposits known as "humps" on its back. The two surviving species of camel are the dromedary, or one-humped camel (C. dromedarius), which inhabits the Middle East and the Horn of Africa; and the bactrian, or two-humped camel (C. bactrianus), which inhabits Central Asia. Both species have been domesticated; they provide milk, meat, hair for textiles or goods such as felted pouches, and are working animals with tasks ranging from human transport to bearing loads.

 

The term "camel" is derived via Latin and Greek (camelus and κάμηλος kamēlos respectively) from Hebrew or Phoenician gāmāl.

 

"Camel" is also used more broadly to describe any of the six camel-like mammals in the family Camelidae: the two true camels and the four New World camelids: the llama, alpaca, guanaco, and vicuña of South America.

 

BIOLOGY

The average life expectancy of a camel is 40 to 50 years. A full-grown adult camel stands 1.85 m at the shoulder and 2.15 m at the hump. Camels can run at up to 65 km/h in short bursts and sustain speeds of up to 40 km/h. Bactrian camels weigh 300 to 1,000 kg and dromedaries 300 to 600 kg.

 

The male dromedary camel has in its throat an organ called a dulla, a large, inflatable sac he extrudes from his mouth when in rut to assert dominance and attract females. It resembles a long, swollen, pink tongue hanging out of the side of its mouth. Camels mate by having both male and female sitting on the ground, with the male mounting from behind. The male usually ejaculates three or four times within a single mating session. Camelids are the only ungulates to mate in a sitting position.

 

ECOLOGICAL AND BEHAVIORAL ADAPTIONS

Camels do not directly store water in their humps as was once commonly believed. The humps are actually reservoirs of fatty tissue: concentrating body fat in their humps minimizes the insulating effect fat would have if distributed over the rest of their bodies, helping camels survive in hot climates. When this tissue is metabolized, it yields more than one gram of water for every gram of fat processed. This fat metabolization, while releasing energy, causes water to evaporate from the lungs during respiration (as oxygen is required for the metabolic process): overall, there is a net decrease in water.

 

Camels have a series of physiological adaptations that allow them to withstand long periods of time without any external source of water. Unlike other mammals, their red blood cells are oval rather than circular in shape. This facilitates the flow of red blood cells during dehydration and makes them better at withstanding high osmotic variation without rupturing when drinking large amounts of water: a 600 kg camel can drink 200 L of water in three minutes.

 

Camels are able to withstand changes in body temperature and water consumption that would kill most other animals. Their temperature ranges from 34 °C at dawn and steadily increases to 40 °C by sunset, before they cool off at night again. Maintaining the brain temperature within certain limits is critical for animals; to assist this, camels have a rete mirabile, a complex of arteries and veins lying very close to each other which utilizes countercurrent blood flow to cool blood flowing to the brain. Camels rarely sweat, even when ambient temperatures reach 49 °C Any sweat that does occur evaporates at the skin level rather than at the surface of their coat; the heat of vaporization therefore comes from body heat rather than ambient heat. Camels can withstand losing 25% of their body weight to sweating, whereas most other mammals can withstand only about 12–14% dehydration before cardiac failure results from circulatory disturbance.

 

When the camel exhales, water vapor becomes trapped in their nostrils and is reabsorbed into the body as a means to conserve water. Camels eating green herbage can ingest sufficient moisture in milder conditions to maintain their bodies' hydrated state without the need for drinking.

 

The camels' thick coats insulate them from the intense heat radiated from desert sand; a shorn camel must sweat 50% more to avoid overheating. During the summer the coat becomes lighter in color, reflecting light as well as helping avoid sunburn. The camel's long legs help by keeping its body farther from the ground, which can heat up to 70 °C. Dromedaries have a pad of thick tissue over the sternum called the pedestal. When the animal lies down in a sternal recumbent position, the pedestal raises the body from the hot surface and allows cooling air to pass under the body.

 

Camels' mouths have a thick leathery lining, allowing them to chew thorny desert plants. Long eyelashes and ear hairs, together with nostrils that can close, form a barrier against sand. If sand gets lodged in their eyes, they can dislodge it using their transparent third eyelid. The camels' gait and widened feet help them move without sinking into the sand.

 

The kidneys and intestines of a camel are very efficient at reabsorbing water. Camel urine comes out as a thick syrup, and camel feces are so dry that they do not require drying when the Bedouins use them to fuel fires.

 

Camels' immune system differs from those of other mammals. Normally, the Y-shaped antibody molecules consist of two heavy (or long) chains along the length of the Y, and two light (or short) chains at each tip of the Y. Camels, in addition to these, also have antibodies made of only two heavy chains, a trait that makes them smaller and more durable. These "heavy-chain-only" antibodies, discovered in 1993, are thought to have developed 50 million years ago, after camelids split from ruminants and pigs.

 

GENETICS

The karyotypes of different camelid species have been studied earlier by many groups, but no agreement on chromosome nomenclature of camelids has been reached. A 2007 study flow sorted camel chromosomes, building on the fact that camels have 37 pairs of chromosomes (2n=74), and found that the karyotime consisted of one metacentric, three submetacentric, and 32 acrocentric autosomes. The Y is a small metacentric chromosome, while the X is a large metacentric chromosome.The hybrid camel, a hybrid between Bactrian and dromedary camels, has one hump, though it has an indentation 4–12 cm deep that divides the front from the back. The hybrid is 2.15 m at the shoulder and 2.32 m tall at the hump. It weighs an average of 650 kg and can carry around 400 to 450 kg, which is more than either the dromedary or Bactrian can. According to molecular data, the New World and Old World camelids diverged 11 million years ago. In spite of this, these species can still hybridize and produce fertile offspring. The cama is a camel–llama hybrid bred by scientists who wanted to see how closely related the parent species were. Scientists collected semen from a camel via an artificial vagina and inseminated a llama after stimulating ovulation with gonadotrophin injections. The cama has ears halfway between the length of camel and llama ears, no hump, longer legs than the llama, and partially cloven hooves. According to cama breeder Lulu Skidmore, cama have "the fleece of the llamas" and "the strength and patience of the camel". Like the mule, camas are sterile, despite both parents having the same number of chromosomes.

 

EVOLUTION

The earliest known camel, called Protylopus, lived in North America 40 to 50 million years ago (during the Eocene). It was about the size of a rabbit and lived in the open woodlands of what is now South Dakota. By 35 million years ago, the Poebrotherium was the size of a goat and had many more traits similar to camels and llamas. The hoofed Stenomylus, which walked on the tips of its toes, also existed around this time, and the long-necked Aepycamelus evolved in the Miocene.

 

The direct ancestor of all modern camels, Procamelus, existed in the upper Miocone and lower Pliocene. Around 3–5 million years ago, the North American Camelidae spread to South America via the Isthmus of Panama, where they gave rise to guanacos and related animals, and to Asia via the Bering land bridge. Surprising finds of fossil Paracamelus on Ellesmere Island beginning in 2006 in the high Canadian Arctic indicate the dromedary is descended from a larger, boreal browser whose hump may have evolved as an adaptation in a cold climate. This creature is estimated to have stood around nine feet tall.

 

The last camel native to North America was Camelops hesternus, which vanished along with horses, short-faced bears, mammoths and mastodons, ground sloths, sabertooth cats, and many other megafauna, coinciding with the migration of humans from Asia.

 

DOMESTICATION

Most camels surviving today are domesticated. Along with many other megafauna in North America, the original wild camels were wiped out during the spread of Native Americans from Asia into North America, 12,000 to 10,000 years ago. The only wild camels left are the Bactrian camels of the Gobi Desert.

 

Like the horse, before their extinction in their native land, camels spread across the Bering land bridge, moving the opposite direction from the Asian immigration to America, to survive in the Old World and eventually be domesticated and spread globally by humans.

 

Dromedaries may have first been domesticated by humans in Somalia and southern Arabia, around 3,000 BC, the Bactrian in central Asia around 2,500 BC, as at Shar-i Sokhta (also known as the Burnt City), Iran.

 

Discussions concerning camel domestication in Mesopotamia are often related to mentions of camels in the Hebrew Bible. The International Standard Bible Encyclopedia: E-J for instance mentions that "In accord with patriarchal traditions, cylinder seals from Middle Bronze Age Mesopotamia showed riders seated upon camels."

 

Martin Heide's 2010 work on the domestication of the camel tentatively concludes that the bactrian camel was domesticated by at least the middle of the third millennium somewhere east of the Zagros Mountains, then moving into Mesopotamia, and suggests that mentions of camels "in the patriarchal narratives may refer, at least in some places, to the Bactrian camel." while noting that the camel is not mentioned in relationship to Canaan.

 

Recent excavations in the Timna Valley by Lidar Sapir-Hen and Erez Ben-Yosef discovered what may be the earliest domestic camel bones found in Israel or even outside the Arabian peninsula, dating to around 930 BCE. This garnered considerable media coverage as it was described as evidence that the stories of Abraham, Joseph, Jacob and Esau were written after this time.

 

The existence of camels in Mesopotamia but not in Israel is not a new idea. According to an article in Time Magazine, the historian Richard Bulliet wrote in his 1975 book "The Camel and the Wheel" that "the occasional mention of camels in patriarchal narratives does not mean that the domestic camels were common in the Holy Land at that period." The archaeologist William F. Albright writing even earlier saw camels in the Bible as an anachronism. The official report by Sapir-Hen and Ben-Joseph notes that "The introduction of the dromedary camel (Camelus dromedarius) as a pack animal to the southern Levant signifies a crucial juncture in the history of the region; it substantially facilitated trade across the vast deserts of Arabia, promoting both economic and social change (e.g., Kohler 1984; Borowski 1998: 112-116; Jasmin 2005). This, together with the depiction of camels in the Patriarchal narrative, has generated extensive discussion regarding the date of the earliest domestic camel in the southern Levant (and beyond) (e.g., Albright 1949: 207; Epstein 1971: 558-584; Bulliet 1975; Zarins 1989; Köhler-Rollefson 1993; Uerpmann and Uerpmann 2002; Jasmin 2005; 2006; Heide 2010; Rosen and Saidel 2010; Grigson 2012). Most scholars today agree that the dromedary was exploited as a pack animal sometime in the early Iron Age (not before the 12th century BCE)" and concludes that "Current data from copper smelting sites of the Aravah Valley enable us to pinpoint the introduction of domestic camels to the southern Levant more precisely based on stratigraphic contexts associated with an extensive suite of radiocarbon dates. The data indicate that this event occurred not earlier than the last third of the 10th century BCE and most probably during this time. The coincidence of this event with a major reorganization of the copper industry of the region - attributed to the results of the campaign of Pharaoh Shoshenq I - raises the possibility that the two were connected, and that camels were introduced as part of the efforts to improve efficiency by facilitating trade."

 

MILITARY USES

By at least 1200 BC, the first camel saddles had appeared, and Bactrian camels could be ridden. The first saddle was positioned to the back of the camel, and control of the Bactrian camel was exercised by means of a stick. However, between 500–100 BC, Bactrian camels attained military use. New saddles, which were inflexible and bent, were put over the humps and divided the rider's weight over the animal. In the seventh century BC, the military Arabian saddle appeared, which improved the saddle design again slightly.

 

Camel cavalries have been used in wars throughout Africa, the Middle East, and into modern-day Border Security Force of India (though as of July 2012, the BSF has planned the replacement of camels with ATVs). The first use of camel cavalries was in the Battle of Qarqar in 853 BC. Armies have also used camels as freight animals instead of horses and mules.

In the East Roman Empire, the Romans used auxiliary forces known as dromedarii, whom they recruited in desert provinces. The camels were used mostly in combat because of their ability to scare off horses at close ranges (horses are afraid of the camels' scent), a quality famously employed by the Achaemenid Persians when fighting Lydia in the Battle of Thymbra.

 

19th and 20th CENTURIES

The United States Army established the U.S. Camel Corps, which was stationed in California in the late 19th century. One may still see stables at the Benicia Arsenal in Benicia, California, where they nowadays serve as the Benicia Historical Museum. Though the experimental use of camels was seen as a success (John B. Floyd, Secretary of War in 1858, recommended that funds be allocated towards obtaining a thousand more camels), the outbreak of the American Civil War saw the end of the Camel Corps: Texas became part of the Confederacy, and most of the camels were left to wander away into the desert.

 

France created a méhariste camel corps in 1912 as part of the Armée d'Afrique in the Sahara in order to exercise greater control over the camel-riding Tuareg and Arab insurgents, as previous efforts to defeat them on foot had failed. The camel-mounted units remained in service until the end of French rule over Algeria in 1962.

 

In 1916, the British created the Imperial Camel Corps. It was originally used to fight the Senussi, but was later used in the Sinai and Palestine Campaign in World War I. The Imperial Camel Corps comprised infantrymen mounted on camels for movement across desert, though they dismounted at battle sites and fought on foot. After July 1918, the Corps began to become run down, receiving no new reinforcements, and was formally disbanded in 1919.

 

In World War I, the British Army also created the Egyptian Camel Transport Corps, which consisted of a group of Egyptian camel drivers and their camels. The Corps supported British war operations in Sinai, Palestine, and Syria by transporting supplies to the troops.

 

The Somaliland Camel Corps was created by colonial authorities in British Somaliland in 1912; it was disbanded in 1944.

 

Bactrian camels were used by Romanian forces during World War II in the Caucasian region.

 

The Bikaner Camel Corps of British India fought alongside the British Indian Army in World Wars I and II.

 

The Tropas Nómadas (Nomad Troops) were an auxiliary regiment of Sahrawi tribesmen serving in the colonial army in Spanish Sahara (today Western Sahara). Operational from the 1930s until the end of the Spanish presence in the territory in 1975, the Tropas Nómadas were equipped with small arms and led by Spanish officers. The unit guarded outposts and sometimes conducted patrols on camelback.

 

FOOD USES

DAIRY

Camel milk is a staple food of desert nomad tribes and is sometimes considered a meal in and of itself; a nomad can live on only camel milk for almost a month. Camel milk is rich in vitamins, minerals, proteins, and immunoglobulins; compared to cow's milk, it is lower in fat and lactose, and higher in potassium, iron, and vitamin C. Bedouins believe the curative powers of camel milk are enhanced if the camel's diet consists of certain desert plants. Camel milk can readily be made into a drinkable yogurt, as well as butter or cheese, though the yields for cheese tend to be low.

 

Camel milk cannot be made into butter by the traditional churning method. It can be made if it is soured first, churned, and a clarifying agent is then added. Until recently, camel milk could not be made into camel cheese because rennet was unable to coagulate the milk proteins to allow the collection of curds. Developing less wasteful uses of the milk, the FAO commissioned Professor J.P. Ramet of the École Nationale Supérieure d'Agronomie et des Industries Alimentaires, who was able to produce curdling by the addition of calcium phosphate and vegetable rennet. The cheese produced from this process has low levels of cholesterol and is easy to digest, even for the lactose intolerant. The sale of camel cheese is limited owing to the small output of the few dairies producing camel cheese and the absence of camel cheese in local (West African) markets. Cheese imports from countries that traditionally breed camels are difficult to obtain due to restrictions on dairy imports from these regions.

 

Additionally, camel milk has been made into ice cream in a Netherlands camel farm.

 

MEAT

A camel carcass can provide a substantial amount of meat. The male dromedary carcass can weigh 300–400 kg, while the carcass of a male Bactrian can weigh up to 650 kg. The carcass of a female dromedary weighs less than the male, ranging between 250 and 350 kg. The brisket, ribs and loin are among the preferred parts, and the hump is considered a delicacy. The hump contains "white and sickly fat", which can be used to make the khli (preserved meat) of mutton, beef, or camel. Camel meat is reported to taste like coarse beef, but older camels can prove to be very tough, although camel meat becomes more tender the more it is cooked. The Abu Dhabi Officers' Club serves a camel burger mixed with beef or lamb fat in order to improve the texture and taste. In Karachi, Pakistan, some restaurants prepare nihari from camel meat. In Syria and Egypt, there are specialist camel butchers.

 

Camel meat has been eaten for centuries. It has been recorded by ancient Greek writers as an available dish at banquets in ancient Persia, usually roasted whole. The ancient Roman emperor Heliogabalus enjoyed camel's heel.[31] Camel meat is still eaten in certain regions, including Eritrea, Somalia, Djibouti, Saudi Arabia, Egypt, Syria, Libya, Sudan, Ethiopia, Kazakhstan, and other arid regions where alternative forms of protein may be limited or where camel meat has had a long cultural history. Camel blood is also consumable, as is the case among pastoralists in northern Kenya, where camel blood is drunk with milk and acts as a key source of iron, vitamin D, salts and minerals. Camel meat is also occasionally found in Australian cuisine: for example, a camel lasagna is available in Alice Springs.

 

A 2005 report issued jointly by the Saudi Ministry of Health and the United States Centers for Disease Control and Prevention details cases of human bubonic plague resulting from the ingestion of raw camel liver.

 

RELIGION

ISLAM

Camel meat is halal for Muslims. However, according to some Islamic schools of thought, a state of impurity is brought on by the consumption of it. Consequently, these schools hold that Muslims must perform wudhu (ablution) before the next time they pray after eating camel meat.

 

Also, some Islamic schools of thought consider it haraam for a Muslim to perform salat in places where camels lie, as it is said to be a dwelling place of shaytan.

 

According to Suni ahadith collected by Bukhari and Muslim, Muhammad ordered a certain group of people to drink camel milk and urine as a medicine. However, according to Abū Ḥanīfa, the drinking of camel urine, while not forbidden (ḥaram), is disliked (makrūh) in Islam.

 

Camel urine is sold as traditional medicine in shops in Saudi Arabia. The Sunni scholar Muhammad Al-Munajjid's IslamQA.info recommends camel urine as beneficial to curing certain diseases and to human health and cited Ahadith and scientific studies as justification. King Abdulaziz University researcher Dr. Faten Abdel-Rajman Khorshid has claimed that cancer and other diseases could be treated with camel urine as recommended by the Prophet. The United Arab Emirates "Arab Science and Technology Foundation" reported that cancer could be treated with camel urine. Camel urine was also prescribed as a treatment by Zaghloul El-Naggar, a religious scholar. Camel urine is the only urine which is permitted to be drunk according to the Hanbali madhhab of Sunni Islam. The World Health Organization said that camel urine consumption may be a factor in the spread of the MERS virus in Saudi Arabia. The Gulf Times writer Ahmad al-Sayyed wrote that various afflictions are dealt with camel urine by people. Dandruff, scalp ailments, hair, sores, and wounds were recommended to be treated with camel urine by Ibn Sina. Arab American University Professor of Cell Biology and Immunology Bashar Saad (PhD) along with Omar Said (PhD) wrote that medicinal use of camel urine is approved of and promoted by Islam since it was recommended by the prophet. A test on mice found that cytotoxic effects similar to cyclophosphamide were induced on bone marrow by camel urine. Besides for consumption as a medicinal drink, camel urine is believed to help treat hair. Bites from insects were warded off with camel urine, which also served as a shampoo. Camel urine is also used to help treat asthma, infections, treat hair, sores, hair growth and boost libido.

 

Several Sunni Ahadith mention drinking camel urine. Some Shia criticized Wahhabis for camel urine treatment. Shia scholars also recommend the medicinal use of camel urine. Shia Hadith on Imam Ja'far al-Sadiq reported that shortness of breath (asthma) was treated with camel urine. Shia Marja Ayatollah Sistani said that for medicinal purposes only, sheep, cow, and camel urine can be drunk.

 

JUDAISM

According to Jewish tradition, camel meat and milk are not kosher. Camels possess only one of the two kosher criteria; although they chew their cud, they do not possess cloven hooves:

 

Nevertheless these shall ye not eat of them that only chew the cud, or of them that only part the hoof: the camel, because he cheweth the cud but parteth not the hoof, he is unclean unto you.

— Leviticus 11:4

 

DISTRIBUTION ANDNUMBERS

There are around 14 million camels alive as of 2010, with 90% being dromedaries. Dromedaries alive today are domesticated animals (mostly living in the Horn of Africa, the Sahel, Maghreb, Middle East and South Asia). The Horn region alone has the largest concentration of camels in the world, where the dromedaries constitute an important part of local nomadic life. They provide nomadic people in Somalia (which has the largest camel herd in the world) and Ethiopia with milk, food, and transportation.

 

The Bactrian camel is, as of 2010, reduced to an estimated 1.4 million animals, most of which are domesticated. The only truly wild Bactrian camels, of which there are less than one thousand, are thought to inhabit the Gobi Desert in China and Mongolia.

 

The largest population of feral camels is in Australia. There are around 700,000 feral dromedary camels in central parts of Australia, descended from those introduced as a method of transport in the 19th and early 20th centuries. This population is growing about 8% per year. Representatives of the Australian government have culled more than 100,000 of the animals in part because the camels use too much of the limited resources needed by sheep farmers.

 

A small population of introduced camels, dromedaries and Bactrians, wandered through Southwest United States after having been imported in the 1800s as part of the U.S. Camel Corps experiment. When the project ended, they were used as draft animals in mines and escaped or were released. Twenty-five U.S. camels were bought and imported to Canada during the Cariboo Gold Rush.

 

WIKIPEDIA

Model In Fibre-Glass. Period 200-65 Million Years Ago

Height 4,57 Meter - Length 6,70 Meter

___________________________________________

 

Tyrannosaurus (/tɨˌrænəˈsɔrəs/ or /taɪˌrænəˈsɔrəs/ ("tyrant lizard", from the Ancient Greek tyrannos (τύραννος), "tyrant", and sauros (σαῦρος), "lizard")) is a genus of coelurosaurian theropod dinosaur. The species Tyrannosaurus rex (rex meaning "king" in Latin), commonly abbreviated to T. rex, is one of the most well-represented of the large theropods. Tyrannosaurus lived throughout what is now western North America, on what was then an island continent known as Laramidia. Tyrannosaurus had a much wider range than other tyrannosaurids. Fossils are found in a variety of rock formations dating to the Maastrichtian age of the upper Cretaceous Period, 68 to 66 million years ago. It was the last known member of the tyrannosaurids, and among the last non-avian dinosaurs to exist before the Cretaceous–Paleogene extinction event.

 

Like other tyrannosaurids, Tyrannosaurus was a bipedal carnivore with a massive skull balanced by a long, heavy tail. Relative to its large and powerful hind limbs, Tyrannosaurus fore limbs were short but unusually powerful for their size and had two clawed digits. The most complete specimen measures up to 12.3 m in length, up to 4 meters tall at the hips, and up to 6.8 metric tons in weight. Although other theropods rivaled or exceeded Tyrannosaurus rex in size, it is still among the largest known land predators and may have exerted one of the largest biting forces among all animals, given its skull structure. By far the largest carnivore in its environment, Tyrannosaurus rex may have been an apex predator, preying upon hadrosaurs, ceratopsians, and possibly sauropods, although some experts have suggested the dinosaur was primarily a scavenger. The question of whether Tyrannosaurus was an apex predator or a pure scavenger was among the longest ongoing debates in paleontology; however, a majority of scientists now agree that Tyrannosaurus rex was most likely an opportunistic carnivore, acting as both a predator and a scavenger when appropriate.

 

More than 50 specimens of Tyrannosaurus rex have been identified, some of which are nearly complete skeletons. Soft tissue and proteins have been reported in at least one of these specimens. The abundance of fossil material has allowed significant research into many aspects of its biology, including its life history and biomechanics. The feeding habits, physiology and potential speed of Tyrannosaurus rex are a few subjects of debate. Its taxonomy is also controversial, as some scientists consider Tarbosaurus bataar from Asia to be a second Tyrannosaurus species while others maintain Tarbosaurus is a separate genus. Several other genera of North American tyrannosaurids have also been synonymized with Tyrannosaurus.

 

DESCRIPTION

Tyrannosaurus rex was one of the largest land carnivores of all time; the largest complete specimen, located at the Field Museum of Natural History under the name FMNH PR2081 and nicknamed Sue, measured 12.3 meters long, and was 4 meters tall at the hips. Mass estimates have varied widely over the years, from more than 7.2 metric tons, to less than 4.5 metric tons, with most modern estimates ranging between 5.4 metric tons and 6.8 metric tons. One study in 2011 found that the maximum weight of Sue, the largest Tyrannosaurus, was between 9.5 and 18.5 metric tons, though the authors stated that their upper and lower estimates were based on models with wide error bars and that they "consider [them] to be too skinny, too fat, or too disproportionate". Packard et al. (2009) tested dinosaur mass estimation procedures on elephants and concluded that those of dinosaurs are flawed and produce over-estimations; thus, the weight of Tyrannosaurus could have been much less than previously thought. Other estimations have concluded that the largest known Tyrannosaurus specimens had masses approaching or exceeding 9 tonnes. The neck of Tyrannosaurus rex formed a natural S-shaped curve like that of other theropods, but was short and muscular to support the massive head. The forelimbs had only two clawed fingers, along with an additional small metacarpal representing the remnant of a third digit. In contrast the hind limbs were among the longest in proportion to body size of any theropod. The tail was heavy and long, sometimes containing over forty vertebrae, in order to balance the massive head and torso. To compensate for the immense bulk of the animal, many bones throughout the skeleton were hollow, reducing its weight without significant loss of strength.

 

The largest known Tyrannosaurus rex skulls measure up to 1.5 meters in length. Large fenestrae (openings) in the skull reduced weight and provided areas for muscle attachment, as in all carnivorous theropods. But in other respects Tyrannosaurus's skull was significantly different from those of large non-tyrannosauroid theropods. It was extremely wide at the rear but had a narrow snout, allowing unusually good binocular vision. The skull bones were massive and the nasals and some other bones were fused, preventing movement between them; but many were pneumatized (contained a "honeycomb" of tiny air spaces) which may have made the bones more flexible as well as lighter. These and other skull-strengthening features are part of the tyrannosaurid trend towards an increasingly powerful bite, which easily surpassed that of all non-tyrannosaurids. The tip of the upper jaw was U-shaped (most non-tyrannosauroid carnivores had V-shaped upper jaws), which increased the amount of tissue and bone a tyrannosaur could rip out with one bite, although it also increased the stresses on the front teeth.

 

The teeth of Tyrannosaurus rex displayed marked heterodonty (differences in shape). The premaxillary teeth at the front of the upper jaw were closely packed, D-shaped in cross-section, had reinforcing ridges on the rear surface, were incisiform (their tips were chisel-like blades) and curved backwards. The D-shaped cross-section, reinforcing ridges and backwards curve reduced the risk that the teeth would snap when Tyrannosaurus bit and pulled. The remaining teeth were robust, like "lethal bananas" rather than daggers, more widely spaced and also had reinforcing ridges. Those in the upper jaw were larger than those in all but the rear of the lower jaw. The largest found so far is estimated to have been 30 centimeters long including the root when the animal was alive, making it the largest tooth of any carnivorous dinosaur yet found.

 

SKIN AND FEATHERS

While there is no direct evidence for Tyrannosaurus rex having had feathers, many scientists now consider it likely that T. rex had feathers on at least parts of its body, due to their presence in related species of similar size. Mark Norell of the American Museum of Natural History summarized the balance of evidence by stating that: "we have as much evidence that T. rex was feathered, at least during some stage of its life, as we do that australopithecines like Lucy had hair."

 

The first evidence for feathers in tyrannosauroids came from the small species Dilong paradoxus, found in the Yixian Formation of China, and reported in the journal Nature in 2004. As with many other theropods discovered in the Yixian, the fossil skeleton was preserved with a coat of filamentous structures which are commonly recognized as the precursors of feathers. Because all known skin impressions from larger tyrannosauroids known at the time showed evidence of scales, the researchers who studied Dilong speculated that feathers may correlate negatively with body size - that juveniles may have been feathered, then shed the feathers and expressed only scales as the animal became larger and no longer needed insulation to stay warm. However, subsequent discoveries showed that even some gigantic tyrannosauroids had feathers covering much of their bodies, casting doubt on the hypothesis that they were a size-related feature.

 

While skin impressions from a Tyrannosaurus rex specimen nicknamed "Wyrex" (BHI 6230) discovered in Montana in 2002, as well as some other giant tyrannosauroid specimens, show at least small patches of mosaic scales, others, such as Yutyrannus huali (which was up to 9 meters long and weighed about 1,400 kilograms), preserve feathers on various sections of the body, strongly suggesting that its whole body was covered in feathers. It is possible that the extent and nature of feather covering in tyrannosauroids may have changed over time in response to body size, a warmer climate, or other factors.

 

CLASSIFICATION

Tyrannosaurus is the type genus of the superfamily Tyrannosauroidea, the family Tyrannosauridae, and the subfamily Tyrannosaurinae; in other words it is the standard by which paleontologists decide whether to include other species in the same group. Other members of the tyrannosaurine subfamily include the North American Daspletosaurus and the Asian Tarbosaurus, both of which have occasionally been synonymized with Tyrannosaurus. Tyrannosaurids were once commonly thought to be descendants of earlier large theropods such as megalosaurs and carnosaurs, although more recently they were reclassified with the generally smaller coelurosaurs.

 

In 1955, Soviet paleontologist Evgeny Maleev named a new species, Tyrannosaurus bataar, from Mongolia. By 1965, this species had been renamed Tarbosaurus bataar. Despite the renaming, many phylogenetic analyses have found Tarbosaurus bataar to be the sister taxon of Tyrannosaurus rex, and it has often been considered an Asian species of Tyrannosaurus. A recent redescription of the skull of Tarbosaurus bataar has shown that it was much narrower than that of Tyrannosaurus rex and that during a bite, the distribution of stress in the skull would have been very different, closer to that of Alioramus, another Asian tyrannosaur. A related cladistic analysis found that Alioramus, not Tyrannosaurus, was the sister taxon of Tarbosaurus, which, if true, would suggest that Tarbosaurus and Tyrannosaurus should remain separate.

 

Other tyrannosaurid fossils found in the same formations as Tyrannosaurus rex were originally classified as separate taxa, including Aublysodon and Albertosaurus megagracilis, the latter being named Dinotyrannus megagracilis in 1995. However, these fossils are now universally considered to belong to juvenile Tyrannosaurus rex. A small but nearly complete skull from Montana, 60 centimeters long, may be an exception. This skull was originally classified as a species of Gorgosaurus (G. lancensis) by Charles W. Gilmore in 1946, but was later referred to a new genus, Nanotyrannus. Opinions remain divided on the validity of N. lancensis. Many paleontologists consider the skull to belong to a juvenile Tyrannosaurus rex. There are minor differences between the two species, including the higher number of teeth in N. lancensis, which lead some scientists to recommend keeping the two genera separate until further research or discoveries clarify the situation.

 

PALEOBIOLOGY

LIFE HISTORY

The identification of several specimens as juvenile Tyrannosaurus rex has allowed scientists to document ontogenetic changes in the species, estimate the lifespan, and determine how quickly the animals would have grown. The smallest known individual (LACM 28471, the "Jordan theropod") is estimated to have weighed only 30 kg, while the largest, such as FMNH PR2081 (Sue) most likely weighed over 5,400 kg. Histologic analysis of Tyrannosaurus rex bones showed LACM 28471 had aged only 2 years when it died, while Sue was 28 years old, an age which may have been close to the maximum for the species. Histology has also allowed the age of other specimens to be determined. Growth curves can be developed when the ages of different specimens are plotted on a graph along with their mass. A Tyrannosaurus rex growth curve is S-shaped, with juveniles remaining under 1,800 kg until approximately 14 years of age, when body size began to increase dramatically. During this rapid growth phase, a young Tyrannosaurus rex would gain an average of 600 kg a year for the next four years. At 18 years of age, the curve plateaus again, indicating that growth slowed dramatically. For example, only 600 kg separated the 28-year-old Sue from a 22-year-old Canadian specimen (RTMP 81.12.1). A 2004 histological study performed by different workers corroborates these results, finding that rapid growth began to slow at around 16 years of age. Another study corroborated the latter study's results but found the growth rate to be much faster, finding it to be around 1800 kilograms. Although these results were much higher than previous estimations, the authors noted that these results significantly lowered the great difference between its actual growth rate and the one which would be expected of an animal of its size. The sudden change in growth rate at the end of the growth spurt may indicate physical maturity, a hypothesis which is supported by the discovery of medullary tissue in the femur of a 16 to 20-year-old Tyrannosaurus rex from Montana (MOR 1125, also known as B-rex). Medullary tissue is found only in female birds during ovulation, indicating that B-rex was of reproductive age. Further study indicates an age of 18 for this specimen. Other tyrannosaurids exhibit extremely similar growth curves, although with lower growth rates corresponding to their lower adult sizes.

 

Over half of the known Tyrannosaurus rex specimens appear to have died within six years of reaching sexual maturity, a pattern which is also seen in other tyrannosaurs and in some large, long-lived birds and mammals today. These species are characterized by high infant mortality rates, followed by relatively low mortality among juveniles. Mortality increases again following sexual maturity, partly due to the stresses of reproduction. One study suggests that the rarity of juvenile Tyrannosaurus rex fossils is due in part to low juvenile mortality rates; the animals were not dying in large numbers at these ages, and so were not often fossilized. However, this rarity may also be due to the incompleteness of the fossil record or to the bias of fossil collectors towards larger, more spectacular specimens. In a 2013 lecture, Thomas Holtz Jr. would suggest that dinosaurs "lived fast and died young" because they reproduced quickly whereas mammals have long life spans because they take longer to reproduce. Gregory S. Paul also writes that Tyrannosaurus reproduced quickly and died young, but attributes their short life spans to the dangerous lives they lived.

 

SEXUAL DIMORPHISM

As the number of known specimens increased, scientists began to analyze the variation between individuals and discovered what appeared to be two distinct body types, or morphs, similar to some other theropod species. As one of these morphs was more solidly built, it was termed the 'robust' morph while the other was termed 'gracile'. Several morphological differences associated with the two morphs were used to analyze sexual dimorphism in Tyrannosaurus rex, with the 'robust' morph usually suggested to be female. For example, the pelvis of several 'robust' specimens seemed to be wider, perhaps to allow the passage of eggs. It was also thought that the 'robust' morphology correlated with a reduced chevron on the first tail vertebra, also ostensibly to allow eggs to pass out of the reproductive tract, as had been erroneously reported for crocodiles.

 

In recent years, evidence for sexual dimorphism has been weakened. A 2005 study reported that previous claims of sexual dimorphism in crocodile chevron anatomy were in error, casting doubt on the existence of similar dimorphism between Tyrannosaurus rex sexes. A full-sized chevron was discovered on the first tail vertebra of Sue, an extremely robust individual, indicating that this feature could not be used to differentiate the two morphs anyway. As Tyrannosaurus rex specimens have been found from Saskatchewan to New Mexico, differences between individuals may be indicative of geographic variation rather than sexual dimorphism. The differences could also be age-related, with 'robust' individuals being older animals.

Only a single Tyrannosaurus rex specimen has been conclusively shown to belong to a specific sex. Examination of B-rex demonstrated the preservation of soft tissue within several bones. Some of this tissue has been identified as a medullary tissue, a specialized tissue grown only in modern birds as a source of calcium for the production of eggshell during ovulation. As only female birds lay eggs, medullary tissue is only found naturally in females, although males are capable of producing it when injected with female reproductive hormones like estrogen. This strongly suggests that B-rex was female, and that she died during ovulation Recent research has shown that medullary tissue is never found in crocodiles, which are thought to be the closest living relatives of dinosaurs, aside from birds. The shared presence of medullary tissue in birds and theropod dinosaurs is further evidence of the close evolutionary relationship between the two.

 

POSTURE

Modern representations in museums, art, and film show Tyrannosaurus rex with its body approximately parallel to the ground and tail extended behind the body to balance the head.

 

Like many bipedal dinosaurs, Tyrannosaurus rex was historically depicted as a 'living tripod', with the body at 45 degrees or less from the vertical and the tail dragging along the ground, similar to a kangaroo. This concept dates from Joseph Leidy's 1865 reconstruction of Hadrosaurus, the first to depict a dinosaur in a bipedal posture. In 1915, convinced that the creature stood upright, Henry Fairfield Osborn, former president of the American Museum of Natural History, further reinforced the notion in unveiling the first complete Tyrannosaurus rex skeleton arranged this way. It stood in an upright pose for 77 years, until it was dismantled in 1992.

 

By 1970, scientists realized this pose was incorrect and could not have been maintained by a living animal, as it would have resulted in the dislocation or weakening of several joints, including the hips and the articulation between the head and the spinal column. The inaccurate AMNH mount inspired similar depictions in many films and paintings (such as Rudolph Zallinger's famous mural The Age of Reptiles in Yale University's Peabody Museum of Natural History) until the 1990s, when films such as Jurassic Park introduced a more accurate posture to the general public.

 

ARMS

When Tyrannosaurus rex was first discovered, the humerus was the only element of the forelimb known. For the initial mounted skeleton as seen by the public in 1915, Osborn substituted longer, three-fingered forelimbs like those of Allosaurus. However, a year earlier, Lawrence Lambe described the short, two-fingered forelimbs of the closely related Gorgosaurus. This strongly suggested that Tyrannosaurus rex had similar forelimbs, but this hypothesis was not confirmed until the first complete Tyrannosaurus rex forelimbs were identified in 1989, belonging to MOR 555 (the "Wankel rex"). The remains of Sue also include complete forelimbs. Tyrannosaurus rex arms are very small relative to overall body size, measuring only 1 meter long, and some scholars have labelled them as vestigial. However, the bones show large areas for muscle attachment, indicating considerable strength. This was recognized as early as 1906 by Osborn, who speculated that the forelimbs may have been used to grasp a mate during copulation. It has also been suggested that the forelimbs were used to assist the animal in rising from a prone position.Another possibility is that the forelimbs held struggling prey while it was killed by the tyrannosaur's enormous jaws. This hypothesis may be supported by biomechanical analysis. Tyrannosaurus rex forelimb bones exhibit extremely thick cortical bone, which have been interpreted as evidence that they were developed to withstand heavy loads. The biceps brachii muscle of a full-grown Tyrannosaurus rex was capable of lifting 199 kilograms by itself; other muscles such as the brachialis would work along with the biceps to make elbow flexion even more powerful. The M. biceps muscle of T. rex was 3.5 times as powerful as the human equivalent. A Tyrannosaurus rex forearm had a limited range of motion, with the shoulder and elbow joints allowing only 40 and 45 degrees of motion, respectively. In contrast, the same two joints in Deinonychus allow up to 88 and 130 degrees of motion, respectively, while a human arm can rotate 360 degrees at the shoulder and move through 165 degrees at the elbow. The heavy build of the arm bones, strength of the muscles, and limited range of motion may indicate a system evolved to hold fast despite the stresses of a struggling prey animal. In the first detailed scientific description of Tyrannosaurus forelimbs, paleontologists Kenneth Carpenter and Matt Smith dismissed notions that the forelimbs were useless or that Tyrannosaurus rex was an obligate scavenger.

 

SOFT TISSUE

In the March 2005 issue of Science, Mary Higby Schweitzer of North Carolina State University and colleagues announced the recovery of soft tissue from the marrow cavity of a fossilized leg bone from a Tyrannosaurus rex. The bone had been intentionally, though reluctantly, broken for shipping and then not preserved in the normal manner, specifically because Schweitzer was hoping to test it for soft tissue. Designated as the Museum of the Rockies specimen 1125, or MOR 1125, the dinosaur was previously excavated from the Hell Creek Formation. Flexible, bifurcating blood vessels and fibrous but elastic bone matrix tissue were recognized. In addition, microstructures resembling blood cells were found inside the matrix and vessels. The structures bear resemblance to ostrich blood cells and vessels. Whether an unknown process, distinct from normal fossilization, preserved the material, or the material is original, the researchers do not know, and they are careful not to make any claims about preservation. If it is found to be original material, any surviving proteins may be used as a means of indirectly guessing some of the DNA content of the dinosaurs involved, because each protein is typically created by a specific gene. The absence of previous finds may be the result of people assuming preserved tissue was impossible, therefore not looking. Since the first, two more tyrannosaurs and a hadrosaur have also been found to have such tissue-like structures. Research on some of the tissues involved has suggested that birds are closer relatives to tyrannosaurs than other modern animals.

 

In studies reported in Science in April 2007, Asara and colleagues concluded that seven traces of collagen proteins detected in purified Tyrannosaurus rex bone most closely match those reported in chickens, followed by frogs and newts. The discovery of proteins from a creature tens of millions of years old, along with similar traces the team found in a mastodon bone at least 160,000 years old, upends the conventional view of fossils and may shift paleontologists' focus from bone hunting to biochemistry. Until these finds, most scientists presumed that fossilization replaced all living tissue with inert minerals. Paleontologist Hans Larsson of McGill University in Montreal, who was not part of the studies, called the finds "a milestone", and suggested that dinosaurs could "enter the field of molecular biology and really slingshot paleontology into the modern world".

 

Subsequent studies in April 2008 confirmed the close connection of Tyrannosaurus rex to modern birds. Postdoctoral biology researcher Chris Organ at Harvard University announced, "With more data, they would probably be able to place T. rex on the evolutionary tree between alligators and chickens and ostriches." Co-author John M. Asara added, "We also show that it groups better with birds than modern reptiles, such as alligators and green anole lizards."

 

The presumed soft tissue was called into question by Thomas Kaye of the University of Washington and his co-authors in 2008. They contend that what was really inside the tyrannosaur bone was slimy biofilm created by bacteria that coated the voids once occupied by blood vessels and cells. The researchers found that what previously had been identified as remnants of blood cells, because of the presence of iron, were actually framboids, microscopic mineral spheres bearing iron. They found similar spheres in a variety of other fossils from various periods, including an ammonite. In the ammonite they found the spheres in a place where the iron they contain could not have had any relationship to the presence of blood. However, Schweitzer has strongly criticized Kaye's claims and argues that there's no reported evidence that biofilms can produce branching, hollow tubes like those noted in her study. San Antonio, Schweitzer and colleagues published an analysis in 2011 of what parts of the collagen had been recovered, finding that it was the inner parts of the collagen coil that had been preserved, as would have been expected from a long period of protein degradation. Other research challenges the identification of soft tissue as biofilm and confirms finding "branching, vessel-like structures" from within fossilized bone.

 

THERMOREGULATION

As of 2014, it is not clear if Tyrannosaurus was endothermic (warm-blooded). Tyrannosaurus, like most dinosaurs, was long thought to have an ectothermic ("cold-blooded") reptilian metabolism. The idea of dinosaur ectothermy was challenged by scientists like Robert T. Bakker and John Ostrom in the early years of the "Dinosaur Renaissance", beginning in the late 1960s. Tyrannosaurus rex itself was claimed to have been endothermic ("warm-blooded"), implying a very active lifestyle. Since then, several paleontologists have sought to determine the ability of Tyrannosaurus to regulate its body temperature. Histological evidence of high growth rates in young Tyrannosaurus rex, comparable to those of mammals and birds, may support the hypothesis of a high metabolism. Growth curves indicate that, as in mammals and birds, Tyrannosaurus rex growth was limited mostly to immature animals, rather than the indeterminate growth seen in most other vertebrates.

 

Oxygen isotope ratios in fossilized bone are sometimes used to determine the temperature at which the bone was deposited, as the ratio between certain isotopes correlates with temperature. In one specimen, the isotope ratios in bones from different parts of the body indicated a temperature difference of no more than 4 to 5 °C between the vertebrae of the torso and the tibia of the lower leg. This small temperature range between the body core and the extremities was claimed by paleontologist Reese Barrick and geochemist William Showers to indicate that Tyrannosaurus rex maintained a constant internal body temperature (homeothermy) and that it enjoyed a metabolism somewhere between ectothermic reptiles and endothermic mammals. Other scientists have pointed out that the ratio of oxygen isotopes in the fossils today does not necessarily represent the same ratio in the distant past, and may have been altered during or after fossilization (diagenesis). Barrick and Showers have defended their conclusions in subsequent papers, finding similar results in another theropod dinosaur from a different continent and tens of millions of years earlier in time (Giganotosaurus). Ornithischian dinosaurs also showed evidence of homeothermy, while varanid lizards from the same formation did not. Even if Tyrannosaurus rex does exhibit evidence of homeothermy, it does not necessarily mean that it was endothermic. Such thermoregulation may also be explained by gigantothermy, as in some living sea turtles.

 

FOOTPRINTS

Two isolated fossilized footprints have been tentatively assigned to Tyrannosaurus rex. The first was discovered at Philmont Scout Ranch, New Mexico, in 1983 by American geologist Charles Pillmore. Originally thought to belong to a hadrosaurid, examination of the footprint revealed a large 'heel' unknown in ornithopod dinosaur tracks, and traces of what may have been a hallux, the dewclaw-like fourth digit of the tyrannosaur foot. The footprint was published as the ichnogenus Tyrannosauripus pillmorei in 1994, by Martin Lockley and Adrian Hunt. Lockley and Hunt suggested that it was very likely the track was made by a Tyrannosaurus rex, which would make it the first known footprint from this species. The track was made in what was once a vegetated wetland mud flat. It measures 83 centimeters long by 71 centimeters wide.

 

A second footprint that may have been made by a Tyrannosaurus was first reported in 2007 by British paleontologist Phil Manning, from the Hell Creek Formation of Montana. This second track measures 72 centimeters long, shorter than the track described by Lockley and Hunt. Whether or not the track was made by Tyrannosaurus is unclear, though Tyrannosaurus and Nanotyrannus are the only large theropods known to have existed in the Hell Creek Formation.

 

LOCOMOTION

There are two main issues concerning the locomotory abilities of Tyrannosaurus: how well it could turn; and what its maximum straight-line speed was likely to have been. Both are relevant to the debate about whether it was a hunter or a scavenger.

 

Tyrannosaurus may have been slow to turn, possibly taking one to two seconds to turn only 45° - an amount that humans, being vertically oriented and tailless, can spin in a fraction of a second. The cause of the difficulty is rotational inertia, since much of Tyrannosaurus' mass was some distance from its center of gravity, like a human carrying a heavy timber - although it might have reduced the average distance by arching its back and tail and pulling its head and forelimbs close to its body, rather like the way ice skaters pull their arms closer in order to spin faster.

 

Scientists have produced a wide range of maximum speed estimates, mostly around 11 meters per second (40 km/h), but a few as low as 5–11 meters per second (18–40 km/h), and a few as high as 20 meters per second (72 km/h). Researchers have to rely on various estimating techniques because, while there are many tracks of very large theropods walking, so far none have been found of very large theropods running - and this absence may indicate that they did not run. Scientists who think that Tyrannosaurus was able to run point out that hollow bones and other features that would have lightened its body may have kept adult weight to a mere 4.5 metric tons or so, or that other animals like ostriches and horses with long, flexible legs are able to achieve high speeds through slower but longer strides. Additionally, some have argued that Tyrannosaurus had relatively larger leg muscles than any animal alive today, which could have enabled fast running at 40–70 kilometers per hour.

 

Jack Horner and Don Lessem argued in 1993 that Tyrannosaurus was slow and probably could not run (no airborne phase in mid-stride), because its ratio of femur (thigh bone) to tibia (shin bone) length was greater than 1, as in most large theropods and like a modern elephant. However, Holtz (1998) noted that tyrannosaurids and some closely related groups had significantly longer distal hindlimb components (shin plus foot plus toes) relative to the femur length than most other theropods, and that tyrannosaurids and their close relatives had a tightly interlocked metatarsus that more effectively transmitted locomotory forces from the foot to the lower leg than in earlier theropods ("metatarsus" means the foot bones, which function as part of the leg in digitigrade animals). He therefore concluded that tyrannosaurids and their close relatives were the fastest large theropods. Thomas Holtz Jr. would echo these sentiments in his 2013 lecture, stating that the giant allosaurs had shorter feet for the same body size than Tyrannosaurus, whereas Tyrannosaurus had longer, skinnier and more interlocked feet for the same body size; attributes of faster moving animals. A study by Eric Snively and Anthony P. Russel published in 2003 would also find that the tyrannosaurid arctometatarsals and elastic ligaments worked together in what he called a 'tensile keystone model' to strengthen the feet of Tyrannosaurus, increase the animal's stability and add greater resistance to dissociation over that of other theropod families; while still allowing resiliency that is otherwise reduced in ratites, horses, giraffids and other animals with metapodia to a single element. The study would also point out that elastic ligaments in larger vertebrates could store and return relatively more elastic strain energy, which could have improved locomotor efficiency and decrease the strain energy transferred to the bones. The study would suggest that this mechanism could have worked efficiently in tyrannosaurids as well. Hence, the study involved identifying the type of ligaments attached to the metatarsals, then how they functioned together and comparing it to those of other theropods and modern day analogs. The scientists would find that arctometatarsals may have enabled tyrannosaurid feet to absorb forces such as linear deceleration, lateral acceleration and torsion more effectively than those of other theropods. It is also stated in their study that this may imply, though not demonstrate, that tyrannosaurids such as Tyrannosaurus had greater agility than other large theropods without an arctometatarsus.

 

Christiansen (1998) estimated that the leg bones of Tyrannosaurus were not significantly stronger than those of elephants, which are relatively limited in their top speed and never actually run (there is no airborne phase), and hence proposed that the dinosaur's maximum speed would have been about 11 meters per second (40 km/h), which is about the speed of a human sprinter. But he also noted that such estimates depend on many dubious assumptions.

 

Farlow and colleagues (1995) have argued that a Tyrannosaurus weighing 5.4 metric tons to 7.3 metric tons would have been critically or even fatally injured if it had fallen while moving quickly, since its torso would have slammed into the ground at a deceleration of 6 g (six times the acceleration due to gravity, or about 60 meters/s²) and its tiny arms could not have reduced the impact. However, giraffes have been known to gallop at 50 kilometers per hour, despite the risk that they might break a leg or worse, which can be fatal even in a "safe" environment such as a zoo. Thus it is possible that Tyrannosaurus also moved fast when necessary and had to accept such risks.

 

In a study published by Gregory S. Paul in the journal Gaia, he would point out that the flexed kneed and digitigrade adult Tyrannosaurus were much better designed for running than elephants or humans, pointing out that Tyrannosaurus had a large ilium bone and cnemial crest that would have supported large muscles needed for running. He would also mention that Alexander's (1989) formula to calculate speed by bone strength was only partly reliable. He suggests that the formula is overly sensitive to bone length; making long bones artificially weak. He would also point out that the lowered risk of being wounded in combat may have been worth the risk of Tyrannosaurus falling while running. Most recent research on Tyrannosaurus locomotion does not support speeds faster than 40 kilometers per hour, i.e. moderate-speed running. For example, a 2002 paper in Nature used a mathematical model (validated by applying it to three living animals, alligators, chickens, and humans; later eight more species including emus and ostriches) to gauge the leg muscle mass needed for fast running (over 40 km/h). They found that proposed top speeds in excess of 40 kilometers per hour were infeasible, because they would require very large leg muscles (more than approximately 40–86% of total body mass). Even moderately fast speeds would have required large leg muscles. This discussion is difficult to resolve, as it is unknown how large the leg muscles actually were in Tyrannosaurus. If they were smaller, only 18 kilometers per hour walking or jogging might have been possible.A study in 2007 used computer models to estimate running speeds, based on data taken directly from fossils, and claimed that Tyrannosaurus rex had a top running speed of 8 meters per second (29 km/h). An average professional football (soccer) player would be slightly slower, while a human sprinter can reach 12 meters per second (43 km/h). These computer models predict a top speed of 17.8 meters per second (64 km/h) for a 3-kilogram Compsognathus (probably a juvenile individual).

 

However, in 2010, Scott Persons, a graduate student from the University of Alberta proposed that Tyrannosaurus's speed may have been enhanced by strong tail muscles. He found that theropods such as T rex had certain muscle arrangements that are different from modern day birds and mammals but with some similarities to modern reptiles. He concluded that the caudofemoralis muscles which link the tail bones and the upper leg bones could have assisted Tyrannosaurus in leg retraction and enhanced its running ability, agility and balance. The caudofemoralis muscle would have been a key muscle in femoral retraction; pulling back the leg at the femur. The study also found that theropod skeletons such as those of Tyrannosaurus had adaptations (such as elevated transverse processes in the tail vertebrae) to enable the growth of larger tail muscles and that Tyrannosaurus's tail muscle mass may have been underestimated by over 25 percent and perhaps as much as 45 percent. The caudofemoralis muscle was found to comprise 58 percent of the muscle mass in the tail of Tyrannosaurus. Tyrannosaurus also had the largest absolute and relative caudofemoralis muscle mass out of the three extinct organisms in the study. This is because Tyrannosaurus also had additional adaptations to enable large tail muscles; the elongation of its tail's hemal arches. According to Persons, the increase in tail muscle mass would have moved the center of mass closer to the hindquarters and hips which would have lessened the strain on the leg muscles to support its weight; improving its overall balance and agility. This would also have made the animal less front-heavy, thus reducing rotational inertia. Persons also notes that the tail is also rich in tendons and septa which could have been stores of elastic energy, and thereby improved locomotive efficiency. Persons adds that this means non-avian theropods actually had broader tails than previously depicted, as broad or broader laterally than dorsoventrally near the base.

 

Heinrich Mallison from Berlin's Museum of Natural History would also present a theory in 2011, suggesting that Tyrannosaurus and many other dinosaurs may have achieved relatively high speeds through short rapid strides instead of the long strides employed by modern birds and mammals when running, likening their movement to power-walking. This, according to Mallison, would have been achievable irrespective of joint strength and lessened the need for additional muscle mass in the legs, particularly at the ankles. To support his theory, Mallison assessed the limbs of various dinosaurs and found that they were different from those of modern mammals and birds; having their stride length greatly limited by their skeletons, but also having relatively large muscles at the hindquarters. He would however find a few similarities between the musculature of dinosaurs and race-walkers; having less muscle mass in the ankles but more at the hindquarters. Mallison suggests that the differences between dinosaurs and extant mammals and birds would also have made equations to calculate speed from stride length inapplicable to dinosaurs. John Hutchinson however advised caution regarding this theory, suggesting that they must first look into dinosaur muscles to see how frequently they could have contracted.

______________________________________________

. . . continue reading at photo Tyrannosaurus 2d

The cat (Felis catus), commonly referred to as the domestic cat or house cat, is the only domesticated species in the family Felidae. Recent advances in archaeology and genetics have shown that the domestication of the cat occurred in the Near East around 7500 BC. It is commonly kept as a house pet and farm cat, but also ranges freely as a feral cat avoiding human contact. It is valued by humans for companionship and its ability to kill vermin. Because of its retractable claws it is adapted to killing small prey like mice and rats. It has a strong flexible body, quick reflexes, sharp teeth, and its night vision and sense of smell are well developed. It is a social species, but a solitary hunter and a crepuscular predator. Cat communication includes vocalizations like meowing, purring, trilling, hissing, growling, and grunting as well as cat body language. It can hear sounds too faint or too high in frequency for human ears, such as those made by small mammals. It also secretes and perceives pheromones.

 

Female domestic cats can have kittens from spring to late autumn in temperate zones and throughout the year in equatorial regions, with litter sizes often ranging from two to five kittens. Domestic cats are bred and shown at events as registered pedigreed cats, a hobby known as cat fancy. Animal population control of cats may be achieved by spaying and neutering, but their proliferation and the abandonment of pets has resulted in large numbers of feral cats worldwide, contributing to the extinction of bird, mammal and reptile species.

 

As of 2017, the domestic cat was the second most popular pet in the United States, with 95.6 million cats owned and around 42 million households owning at least one cat. In the United Kingdom, 26% of adults have a cat, with an estimated population of 10.9 million pet cats as of 2020. As of 2021, there were an estimated 220 million owned and 480 million stray cats in the world.

 

Etymology and naming

The origin of the English word cat, Old English catt, is thought to be the Late Latin word cattus, which was first used at the beginning of the 6th century. The Late Latin word may be derived from an unidentified African language. The Nubian word kaddîska 'wildcat' and Nobiin kadīs are possible sources or cognates. The Nubian word may be a loan from Arabic قَطّ‎ qaṭṭ ~ قِطّ qiṭṭ.

 

The forms might also have derived from an ancient Germanic word that was imported into Latin and then into Greek, Syriac, and Arabic. The word may be derived from Germanic and Northern European languages, and ultimately be borrowed from Uralic, cf. Northern Sámi gáđfi, 'female stoat', and Hungarian hölgy, 'lady, female stoat'; from Proto-Uralic *käďwä, 'female (of a furred animal)'.

 

The English puss, extended as pussy and pussycat, is attested from the 16th century and may have been introduced from Dutch poes or from Low German puuskatte, related to Swedish kattepus, or Norwegian pus, pusekatt. Similar forms exist in Lithuanian puižė and Irish puisín or puiscín. The etymology of this word is unknown, but it may have arisen from a sound used to attract a cat.

 

A male cat is called a tom or tomcat (or a gib, if neutered). A female is called a queen or a molly, if spayed, especially in a cat-breeding context. A juvenile cat is referred to as a kitten. In Early Modern English, the word kitten was interchangeable with the now-obsolete word catling.

 

A group of cats can be referred to as a clowder or a glaring.

 

Taxonomy

The scientific name Felis catus was proposed by Carl Linnaeus in 1758 for a domestic cat. Felis catus domesticus was proposed by Johann Christian Polycarp Erxleben in 1777. Felis daemon proposed by Konstantin Satunin in 1904 was a black cat from the Transcaucasus, later identified as a domestic cat.

 

In 2003, the International Commission on Zoological Nomenclature ruled that the domestic cat is a distinct species, namely Felis catus. In 2007, it was considered a subspecies, F. silvestris catus, of the European wildcat (F. silvestris) following results of phylogenetic research. In 2017, the IUCN Cat Classification Taskforce followed the recommendation of the ICZN in regarding the domestic cat as a distinct species, Felis catus.

 

Evolution

Main article: Cat evolution

The domestic cat is a member of the Felidae, a family that had a common ancestor about 10 to 15 million years ago. The evolutionary radiation of the Felidae began in Asia during the Miocene around 8.38 to 14.45 million years ago. Analysis of mitochondrial DNA of all Felidae species indicates a radiation at 6.46 to 16.76 million years ago. The genus Felis genetically diverged from other Felidae around 6 to 7 million years ago. Results of phylogenetic research shows that the wild members of this genus evolved through sympatric or parapatric speciation, whereas the domestic cat evolved through artificial selection. The domestic cat and its closest wild ancestor are diploid and both possess 38 chromosomes and roughly 20,000 genes.

 

Domestication

See also: Domestication of the cat and Cats in ancient Egypt

It was long thought that the domestication of the cat began in ancient Egypt, where cats were venerated from around 3100 BC, However, the earliest known indication for the taming of an African wildcat was excavated close by a human Neolithic grave in Shillourokambos, southern Cyprus, dating to about 7500–7200 BC. Since there is no evidence of native mammalian fauna on Cyprus, the inhabitants of this Neolithic village most likely brought the cat and other wild mammals to the island from the Middle Eastern mainland. Scientists therefore assume that African wildcats were attracted to early human settlements in the Fertile Crescent by rodents, in particular the house mouse (Mus musculus), and were tamed by Neolithic farmers. This mutual relationship between early farmers and tamed cats lasted thousands of years. As agricultural practices spread, so did tame and domesticated cats. Wildcats of Egypt contributed to the maternal gene pool of the domestic cat at a later time.

The earliest known evidence for the occurrence of the domestic cat in Greece dates to around 1200 BC. Greek, Phoenician, Carthaginian and Etruscan traders introduced domestic cats to southern Europe. During the Roman Empire they were introduced to Corsica and Sardinia before the beginning of the 1st millennium. By the 5th century BC, they were familiar animals around settlements in Magna Graecia and Etruria. By the end of the Western Roman Empire in the 5th century, the Egyptian domestic cat lineage had arrived in a Baltic Sea port in northern Germany.

 

The leopard cat (Prionailurus bengalensis) was tamed independently in China around 5500 BC. This line of partially domesticated cats leaves no trace in the domestic cat populations of today.

 

During domestication, cats have undergone only minor changes in anatomy and behavior, and they are still capable of surviving in the wild. Several natural behaviors and characteristics of wildcats may have pre-adapted them for domestication as pets. These traits include their small size, social nature, obvious body language, love of play, and high intelligence. Captive Leopardus cats may also display affectionate behavior toward humans but were not domesticated. House cats often mate with feral cats. Hybridisation between domestic and other Felinae species is also possible, producing hybrids such as the Kellas cat in Scotland.

 

Development of cat breeds started in the mid 19th century. An analysis of the domestic cat genome revealed that the ancestral wildcat genome was significantly altered in the process of domestication, as specific mutations were selected to develop cat breeds. Most breeds are founded on random-bred domestic cats. Genetic diversity of these breeds varies between regions, and is lowest in purebred populations, which show more than 20 deleterious genetic disorders.

 

Characteristics

Main article: Cat anatomy

Size

The domestic cat has a smaller skull and shorter bones than the European wildcat. It averages about 46 cm (18 in) in head-to-body length and 23–25 cm (9.1–9.8 in) in height, with about 30 cm (12 in) long tails. Males are larger than females. Adult domestic cats typically weigh 4–5 kg (8.8–11.0 lb).

 

Skeleton

Cats have seven cervical vertebrae (as do most mammals); 13 thoracic vertebrae (humans have 12); seven lumbar vertebrae (humans have five); three sacral vertebrae (as do most mammals, but humans have five); and a variable number of caudal vertebrae in the tail (humans have only three to five vestigial caudal vertebrae, fused into an internal coccyx).  The extra lumbar and thoracic vertebrae account for the cat's spinal mobility and flexibility. Attached to the spine are 13 ribs, the shoulder, and the pelvis.  Unlike human arms, cat forelimbs are attached to the shoulder by free-floating clavicle bones which allow them to pass their body through any space into which they can fit their head.

 

Skull

The cat skull is unusual among mammals in having very large eye sockets and a powerful specialized jaw.  Within the jaw, cats have teeth adapted for killing prey and tearing meat. When it overpowers its prey, a cat delivers a lethal neck bite with its two long canine teeth, inserting them between two of the prey's vertebrae and severing its spinal cord, causing irreversible paralysis and death. Compared to other felines, domestic cats have narrowly spaced canine teeth relative to the size of their jaw, which is an adaptation to their preferred prey of small rodents, which have small vertebrae.

 

The premolar and first molar together compose the carnassial pair on each side of the mouth, which efficiently shears meat into small pieces, like a pair of scissors. These are vital in feeding, since cats' small molars cannot chew food effectively, and cats are largely incapable of mastication.:  Cats tend to have better teeth than most humans, with decay generally less likely because of a thicker protective layer of enamel, a less damaging saliva, less retention of food particles between teeth, and a diet mostly devoid of sugar. Nonetheless, they are subject to occasional tooth loss and infection.

 

Claws

Cats have protractible and retractable claws. In their normal, relaxed position, the claws are sheathed with the skin and fur around the paw's toe pads. This keeps the claws sharp by preventing wear from contact with the ground and allows for the silent stalking of prey. The claws on the forefeet are typically sharper than those on the hindfeet. Cats can voluntarily extend their claws on one or more paws. They may extend their claws in hunting or self-defense, climbing, kneading, or for extra traction on soft surfaces. Cats shed the outside layer of their claw sheaths when scratching rough surfaces.

 

Most cats have five claws on their front paws and four on their rear paws. The dewclaw is proximal to the other claws. More proximally is a protrusion which appears to be a sixth "finger". This special feature of the front paws on the inside of the wrists has no function in normal walking but is thought to be an antiskidding device used while jumping. Some cat breeds are prone to having extra digits ("polydactyly"). Polydactylous cats occur along North America's northeast coast and in Great Britain.

 

Ambulation

The cat is digitigrade. It walks on the toes, with the bones of the feet making up the lower part of the visible leg. Unlike most mammals, it uses a "pacing" gait and moves both legs on one side of the body before the legs on the other side. It registers directly by placing each hind paw close to the track of the corresponding fore paw, minimizing noise and visible tracks. This also provides sure footing for hind paws when navigating rough terrain. As it speeds up from walking to trotting, its gait changes to a "diagonal" gait: The diagonally opposite hind and fore legs move simultaneously.

 

Balance

Cats are generally fond of sitting in high places or perching. A higher place may serve as a concealed site from which to hunt; domestic cats strike prey by pouncing from a perch such as a tree branch. Another possible explanation is that height gives the cat a better observation point, allowing it to survey its territory. A cat falling from heights of up to 3 m (9.8 ft) can right itself and land on its paws.

 

During a fall from a high place, a cat reflexively twists its body and rights itself to land on its feet using its acute sense of balance and flexibility. This reflex is known as the cat righting reflex. A cat always rights itself in the same way during a fall, if it has enough time to do so, which is the case in falls of 90 cm (3.0 ft) or more. How cats are able to right themselves when falling has been investigated as the "falling cat problem".

 

Coats

Main article: Cat coat genetics

The cat family (Felidae) can pass down many colors and patterns to their offspring. The domestic cat genes MC1R and ASIP allow for the variety of color in coats. The feline ASIP gene consists of three coding exons. Three novel microsatellite markers linked to ASIP were isolated from a domestic cat BAC clone containing this gene and were used to perform linkage analysis in a pedigree of 89 domestic cats that segregated for melanism.[citation needed]

 

Senses

Main article: Cat senses

Vision

A cat's nictitating membrane shown as it blinks

Cats have excellent night vision and can see at only one-sixth the light level required for human vision.  This is partly the result of cat eyes having a tapetum lucidum, which reflects any light that passes through the retina back into the eye, thereby increasing the eye's sensitivity to dim light. Large pupils are an adaptation to dim light. The domestic cat has slit pupils, which allow it to focus bright light without chromatic aberration. At low light, a cat's pupils expand to cover most of the exposed surface of its eyes. The domestic cat has rather poor color vision and only two types of cone cells, optimized for sensitivity to blue and yellowish green; its ability to distinguish between red and green is limited. A response to middle wavelengths from a system other than the rod cells might be due to a third type of cone. This appears to be an adaptation to low light levels rather than representing true trichromatic vision. Cats also have a nictitating membrane, allowing them to blink without hindering their vision.

 

Hearing

The domestic cat's hearing is most acute in the range of 500 Hz to 32 kHz. It can detect an extremely broad range of frequencies ranging from 55 Hz to 79 kHz, whereas humans can only detect frequencies between 20 Hz and 20 kHz. It can hear a range of 10.5 octaves, while humans and dogs can hear ranges of about 9 octaves. Its hearing sensitivity is enhanced by its large movable outer ears, the pinnae, which amplify sounds and help detect the location of a noise. It can detect ultrasound, which enables it to detect ultrasonic calls made by rodent prey. Recent research has shown that cats have socio-spatial cognitive abilities to create mental maps of owners' locations based on hearing owners' voices.

 

Smell

Cats have an acute sense of smell, due in part to their well-developed olfactory bulb and a large surface of olfactory mucosa, about 5.8 cm2 (0.90 in2) in area, which is about twice that of humans. Cats and many other animals have a Jacobson's organ in their mouths that is used in the behavioral process of flehmening. It allows them to sense certain aromas in a way that humans cannot. Cats are sensitive to pheromones such as 3-mercapto-3-methylbutan-1-ol, which they use to communicate through urine spraying and marking with scent glands. Many cats also respond strongly to plants that contain nepetalactone, especially catnip, as they can detect that substance at less than one part per billion. About 70–80% of cats are affected by nepetalactone. This response is also produced by other plants, such as silver vine (Actinidia polygama) and the herb valerian; it may be caused by the smell of these plants mimicking a pheromone and stimulating cats' social or sexual behaviors.

 

Taste

Cats have relatively few taste buds compared to humans (470 or so versus more than 9,000 on the human tongue). Domestic and wild cats share a taste receptor gene mutation that keeps their sweet taste buds from binding to sugary molecules, leaving them with no ability to taste sweetness. They, however, possess taste bud receptors specialized for acids, amino acids like protein, and bitter tastes. Their taste buds possess the receptors needed to detect umami. However, these receptors contain molecular changes that make the cat taste of umami different from that of humans. In humans, they detect the amino acids of glutamic acid and aspartic acid, but in cats they instead detect nucleotides, in this case inosine monophosphate and l-Histidine. These nucleotides are particularly enriched in tuna. This has been argued is why cats find tuna so palatable: as put by researchers into cat taste, "the specific combination of the high IMP and free l-Histidine contents of tuna" .. "produces a strong umami taste synergy that is highly preferred by cats". One of the researchers involved in this research has further claimed, "I think umami is as important for cats as sweet is for humans".[87]

 

Cats also have a distinct temperature preference for their food, preferring food with a temperature around 38 °C (100 °F) which is similar to that of a fresh kill; some cats reject cold food (which would signal to the cat that the "prey" item is long dead and therefore possibly toxic or decomposing).

 

Whiskers

To aid with navigation and sensation, cats have dozens of movable whiskers (vibrissae) over their body, especially their faces. These provide information on the width of gaps and on the location of objects in the dark, both by touching objects directly and by sensing air currents; they also trigger protective blink reflexes to protect the eyes from damage.: 47 

 

Behavior

See also: Cat behavior

Outdoor cats are active both day and night, although they tend to be slightly more active at night.[88] Domestic cats spend the majority of their time in the vicinity of their homes but can range many hundreds of meters from this central point. They establish territories that vary considerably in size, in one study ranging 7–28 ha (17–69 acres). The timing of cats' activity is quite flexible and varied but being low-light predators, they are generally crepuscular, which means they tend to be more active near dawn and dusk. However, house cats' behavior is also influenced by human activity and they may adapt to their owners' sleeping patterns to some extent.

 

Cats conserve energy by sleeping more than most animals, especially as they grow older. The daily duration of sleep varies, usually between 12 and 16 hours, with 13 and 14 being the average. Some cats can sleep as much as 20 hours. The term "cat nap" for a short rest refers to the cat's tendency to fall asleep (lightly) for a brief period. While asleep, cats experience short periods of rapid eye movement sleep often accompanied by muscle twitches, which suggests they are dreaming.

 

Sociability

The social behavior of the domestic cat ranges from widely dispersed individuals to feral cat colonies that gather around a food source, based on groups of co-operating females. Within such groups, one cat is usually dominant over the others. Each cat in a colony holds a distinct territory, with sexually active males having the largest territories, which are about 10 times larger than those of female cats and may overlap with several females' territories. These territories are marked by urine spraying, by rubbing objects at head height with secretions from facial glands, and by defecation. Between these territories are neutral areas where cats watch and greet one another without territorial conflicts. Outside these neutral areas, territory holders usually chase away stranger cats, at first by staring, hissing, and growling and, if that does not work, by short but noisy and violent attacks. Despite this colonial organization, cats do not have a social survival strategy or a herd behavior, and always hunt alone.

 

Life in proximity to humans and other domestic animals has led to a symbiotic social adaptation in cats, and cats may express great affection toward humans or other animals. Ethologically, a cat's human keeper functions as if a mother surrogate. Adult cats live their lives in a kind of extended kittenhood, a form of behavioral neoteny. Their high-pitched sounds may mimic the cries of a hungry human infant, making them particularly difficult for humans to ignore. Some pet cats are poorly socialized. In particular, older cats show aggressiveness toward newly arrived kittens, which include biting and scratching; this type of behavior is known as feline asocial aggression.

 

Redirected aggression is a common form of aggression which can occur in multiple cat households. In redirected aggression there is usually something that agitates the cat: this could be a sight, sound, or another source of stimuli which causes a heightened level of anxiety or arousal. If the cat cannot attack the stimuli, it may direct anger elsewhere by attacking or directing aggression to the nearest cat, dog, human or other being.

 

Domestic cats' scent rubbing behavior toward humans or other cats is thought to be a feline means for social bonding.

 

Communication

Main article: Cat communication

Domestic cats use many vocalizations for communication, including purring, trilling, hissing, growling/snarling, grunting, and several different forms of meowing. Their body language, including position of ears and tail, relaxation of the whole body, and kneading of the paws, are all indicators of mood. The tail and ears are particularly important social signal mechanisms in cats. A raised tail indicates a friendly greeting, and flattened ears indicate hostility. Tail-raising also indicates the cat's position in the group's social hierarchy, with dominant individuals raising their tails less often than subordinate ones. Feral cats are generally silent.: 208  Nose-to-nose touching is also a common greeting and may be followed by social grooming, which is solicited by one of the cats raising and tilting its head.

 

Purring may have developed as an evolutionary advantage as a signaling mechanism of reassurance between mother cats and nursing kittens, who are thought to use it as a care-soliciting signal. Post-nursing cats also often purr as a sign of contentment: when being petted, becoming relaxed, or eating. Even though purring is popularly interpreted as indicative of pleasure, it has been recorded in a wide variety of circumstances, most of which involve physical contact between the cat and another, presumably trusted individual. Some cats have been observed to purr continuously when chronically ill or in apparent pain.

 

The exact mechanism by which cats purr has long been elusive, but it has been proposed that purring is generated via a series of sudden build-ups and releases of pressure as the glottis is opened and closed, which causes the vocal folds to separate forcefully. The laryngeal muscles in control of the glottis are thought to be driven by a neural oscillator which generates a cycle of contraction and release every 30–40 milliseconds (giving a frequency of 33 to 25 Hz).

 

Domestic cats observed in a rescue facility have total of 276 distinct facial expressions based on 26 different facial movements; each facial expression corresponds to different social functions that are likely influenced by domestication.

 

Grooming

Cats are known for spending considerable amounts of time licking their coats to keep them clean. The cat's tongue has backward-facing spines about 500 μm long, which are called papillae. These contain keratin which makes them rigid so the papillae act like a hairbrush. Some cats, particularly longhaired cats, occasionally regurgitate hairballs of fur that have collected in their stomachs from grooming. These clumps of fur are usually sausage-shaped and about 2–3 cm (0.79–1.18 in) long. Hairballs can be prevented with remedies that ease elimination of the hair through the gut, as well as regular grooming of the coat with a comb or stiff brush.

 

Fighting

Among domestic cats, males are more likely to fight than females. Among feral cats, the most common reason for cat fighting is competition between two males to mate with a female. In such cases, most fights are won by the heavier male. Another common reason for fighting in domestic cats is the difficulty of establishing territories within a small home. Female cats also fight over territory or to defend their kittens. Neutering will decrease or eliminate this behavior in many cases, suggesting that the behavior is linked to sex hormones.

 

When cats become aggressive, they try to make themselves appear larger and more threatening by raising their fur, arching their backs, turning sideways and hissing or spitting. Often, the ears are pointed down and back to avoid damage to the inner ear and potentially listen for any changes behind them while focused forward. Cats may also vocalize loudly and bare their teeth in an effort to further intimidate their opponents. Fights usually consist of grappling and delivering powerful slaps to the face and body with the forepaws as well as bites. Cats also throw themselves to the ground in a defensive posture to rake their opponent's belly with their powerful hind legs.

 

Serious damage is rare, as the fights are usually short in duration, with the loser running away with little more than a few scratches to the face and ears. Fights for mating rights are typically more severe and injuries may include deep puncture wounds and lacerations. Normally, serious injuries from fighting are limited to infections of scratches and bites, though these can occasionally kill cats if untreated. In addition, bites are probably the main route of transmission of feline immunodeficiency virus. Sexually active males are usually involved in many fights during their lives, and often have decidedly battered faces with obvious scars and cuts to their ears and nose. Cats are willing to threaten animals larger than them to defend their territory, such as dogs and foxes.

 

Hunting and feeding

See also: Cat food

The shape and structure of cats' cheeks is insufficient to allow them to take in liquids using suction. Therefore, when drinking they lap with the tongue to draw liquid upward into their mouths. Lapping at a rate of four times a second, the cat touches the smooth tip of its tongue to the surface of the water, and quickly retracts it like a corkscrew, drawing water upward.

 

Feral cats and free-fed house cats consume several small meals in a day. The frequency and size of meals varies between individuals. They select food based on its temperature, smell and texture; they dislike chilled foods and respond most strongly to moist foods rich in amino acids, which are similar to meat. Cats reject novel flavors (a response termed neophobia) and learn quickly to avoid foods that have tasted unpleasant in the past. It is also a common misconception that cats like milk/cream, as they tend to avoid sweet food and milk. Most adult cats are lactose intolerant; the sugar in milk is not easily digested and may cause soft stools or diarrhea. Some also develop odd eating habits and like to eat or chew on things like wool, plastic, cables, paper, string, aluminum foil, or even coal. This condition, pica, can threaten their health, depending on the amount and toxicity of the items eaten.

 

Cats hunt small prey, primarily birds and rodents, and are often used as a form of pest control. Other common small creatures such as lizards and snakes may also become prey. Cats use two hunting strategies, either stalking prey actively, or waiting in ambush until an animal comes close enough to be captured. The strategy used depends on the prey species in the area, with cats waiting in ambush outside burrows, but tending to actively stalk birds.: 153  Domestic cats are a major predator of wildlife in the United States, killing an estimated 1.3 to 4.0 billion birds and 6.3 to 22.3 billion mammals annually.

 

Certain species appear more susceptible than others; in one English village, for example, 30% of house sparrow mortality was linked to the domestic cat. In the recovery of ringed robins (Erithacus rubecula) and dunnocks (Prunella modularis) in Britain, 31% of deaths were a result of cat predation. In parts of North America, the presence of larger carnivores such as coyotes which prey on cats and other small predators reduces the effect of predation by cats and other small predators such as opossums and raccoons on bird numbers and variety.

 

Perhaps the best-known element of cats' hunting behavior, which is commonly misunderstood and often appalls cat owners because it looks like torture, is that cats often appear to "play" with prey by releasing and recapturing it. This cat and mouse behavior is due to an instinctive imperative to ensure that the prey is weak enough to be killed without endangering the cat.

 

Another poorly understood element of cat hunting behavior is the presentation of prey to human guardians. One explanation is that cats adopt humans into their social group and share excess kill with others in the group according to the dominance hierarchy, in which humans are reacted to as if they are at or near the top. Another explanation is that they attempt to teach their guardians to hunt or to help their human as if feeding "an elderly cat, or an inept kitten". This hypothesis is inconsistent with the fact that male cats also bring home prey, despite males having negligible involvement in raising kittens.:

 

Play

Main article: Cat play and toys

Domestic cats, especially young kittens, are known for their love of play. This behavior mimics hunting and is important in helping kittens learn to stalk, capture, and kill prey. Cats also engage in play fighting, with each other and with humans. This behavior may be a way for cats to practice the skills needed for real combat, and might also reduce any fear they associate with launching attacks on other animals.

 

Cats also tend to play with toys more when they are hungry. Owing to the close similarity between play and hunting, cats prefer to play with objects that resemble prey, such as small furry toys that move rapidly, but rapidly lose interest. They become habituated to a toy they have played with before. String is often used as a toy, but if it is eaten, it can become caught at the base of the cat's tongue and then move into the intestines, a medical emergency which can cause serious illness, even death. Owing to the risks posed by cats eating string, it is sometimes replaced with a laser pointer's dot, which cats may chase.

 

Reproduction

See also: Kitten

The cat secretes and perceives pheromones. Female cats, called queens, are polyestrous with several estrus cycles during a year, lasting usually 21 days. They are usually ready to mate between early February and August in northern temperate zones and throughout the year in equatorial regions.

 

Several males, called tomcats, are attracted to a female in heat. They fight over her, and the victor wins the right to mate. At first, the female rejects the male, but eventually, the female allows the male to mate. The female utters a loud yowl as the male pulls out of her because a male cat's penis has a band of about 120–150 backward-pointing penile spines, which are about 1 mm (0.039 in) long; upon withdrawal of the penis, the spines may provide the female with increased sexual stimulation, which acts to induce ovulation.

 

After mating, the female cleans her vulva thoroughly. If a male attempts to mate with her at this point, the female attacks him. After about 20 to 30 minutes, once the female is finished grooming, the cycle will repeat. Because ovulation is not always triggered by a single mating, females may not be impregnated by the first male with which they mate. Furthermore, cats are superfecund; that is, a female may mate with more than one male when she is in heat, with the result that different kittens in a litter may have different fathers.

 

The morula forms 124 hours after conception. At 148 hours, early blastocysts form. At 10–12 days, implantation occurs. The gestation of queens lasts between 64 and 67 days, with an average of 65 days.

 

Data on the reproductive capacity of more than 2,300 free-ranging queens were collected during a study between May 1998 and October 2000. They had one to six kittens per litter, with an average of three kittens. They produced a mean of 1.4 litters per year, but a maximum of three litters in a year. Of 169 kittens, 127 died before they were six months old due to a trauma caused in most cases by dog attacks and road accidents. The first litter is usually smaller than subsequent litters. Kittens are weaned between six and seven weeks of age. Queens normally reach sexual maturity at 5–10 months, and males at 5–7 months. This varies depending on breed. Kittens reach puberty at the age of 9–10 months.

 

Cats are ready to go to new homes at about 12 weeks of age, when they are ready to leave their mother. They can be surgically sterilized (spayed or castrated) as early as seven weeks to limit unwanted reproduction. This surgery also prevents undesirable sex-related behavior, such as aggression, territory marking (spraying urine) in males and yowling (calling) in females. Traditionally, this surgery was performed at around six to nine months of age, but it is increasingly being performed before puberty, at about three to six months. In the United States, about 80% of household cats are neutered.

 

Lifespan and health

Main articles: Cat health and Aging in cats

The average lifespan of pet cats has risen in recent decades. In the early 1980s, it was about seven years,: 33  rising to 9.4 years in 1995: 33  and an average of about 13 years as of 2014 and 2023. Some cats have been reported as surviving into their 30s, with the oldest known cat dying at a verified age of 38.

 

Neutering increases life expectancy: one study found castrated male cats live twice as long as intact males, while spayed female cats live 62% longer than intact females.: 35  Having a cat neutered confers health benefits, because castrated males cannot develop testicular cancer, spayed females cannot develop uterine or ovarian cancer, and both have a reduced risk of mammary cancer.

 

Disease

Main article: List of feline diseases

About 250 heritable genetic disorders have been identified in cats, many similar to human inborn errors of metabolism. The high level of similarity among the metabolism of mammals allows many of these feline diseases to be diagnosed using genetic tests that were originally developed for use in humans, as well as the use of cats as animal models in the study of the human diseases. Diseases affecting domestic cats include acute infections, parasitic infestations, injuries, and chronic diseases such as kidney disease, thyroid disease, and arthritis. Vaccinations are available for many infectious diseases, as are treatments to eliminate parasites such as worms, ticks, and fleas.

 

Ecology

Habitats

The domestic cat is a cosmopolitan species and occurs across much of the world. It is adaptable and now present on all continents except Antarctica, and on 118 of the 131 main groups of islands, even on the isolated Kerguelen Islands. Due to its ability to thrive in almost any terrestrial habitat, it is among the world's most invasive species. It lives on small islands with no human inhabitants. Feral cats can live in forests, grasslands, tundra, coastal areas, agricultural land, scrublands, urban areas, and wetlands.

 

The unwantedness that leads to the domestic cat being treated as an invasive species is twofold. On one hand, as it is little altered from the wildcat, it can readily interbreed with the wildcat. This hybridization poses a danger to the genetic distinctiveness of some wildcat populations, particularly in Scotland and Hungary, possibly also the Iberian Peninsula, and where protected natural areas are close to human-dominated landscapes, such as Kruger National Park in South Africa. However, its introduction to places where no native felines are present also contributes to the decline of native species.

 

Ferality

Main article: Feral cat

Feral cats are domestic cats that were born in or have reverted to a wild state. They are unfamiliar with and wary of humans and roam freely in urban and rural areas. The numbers of feral cats is not known, but estimates of the United States feral population range from 25 to 60 million. Feral cats may live alone, but most are found in large colonies, which occupy a specific territory and are usually associated with a source of food. Famous feral cat colonies are found in Rome around the Colosseum and Forum Romanum, with cats at some of these sites being fed and given medical attention by volunteers.

 

Public attitudes toward feral cats vary widely, from seeing them as free-ranging pets to regarding them as vermin.

 

Some feral cats can be successfully socialized and 're-tamed' for adoption; young cats, especially kittens and cats that have had prior experience and contact with humans are the most receptive to these efforts.

 

Impact on wildlife

Main article: Cat predation on wildlife

On islands, birds can contribute as much as 60% of a cat's diet. In nearly all cases, the cat cannot be identified as the sole cause for reducing the numbers of island birds, and in some instances, eradication of cats has caused a "mesopredator release" effect; where the suppression of top carnivores creates an abundance of smaller predators that cause a severe decline in their shared prey. Domestic cats are a contributing factor to the decline of many species, a factor that has ultimately led, in some cases, to extinction. The South Island piopio, Chatham rail, and the New Zealand merganser are a few from a long list, with the most extreme case being the flightless Lyall's wren, which was driven to extinction only a few years after its discovery. One feral cat in New Zealand killed 102 New Zealand lesser short-tailed bats in seven days. In the US, feral and free-ranging domestic cats kill an estimated 6.3 – 22.3 billion mammals annually.

 

In Australia, the impact of cats on mammal populations is even greater than the impact of habitat loss. More than one million reptiles are killed by feral cats each day, representing 258 species. Cats have contributed to the extinction of the Navassa curly-tailed lizard and Chioninia coctei.

 

Interaction with humans

Main article: Human interaction with cats

Cats are common pets throughout the world, and their worldwide population as of 2007 exceeded 500 million. As of 2017, the domestic cat was the second most popular pet in the United States, with 95.6 million cats owned and around 42 million households owning at least one cat. In the United Kingdom, 26% of adults have a cat, with an estimated population of 10.9 million pet cats as of 2020. As of 2021, there were an estimated 220 million owned and 480 million stray cats in the world.

 

Cats have been used for millennia to control rodents, notably around grain stores and aboard ships, and both uses extend to the present day.

 

As well as being kept as pets, cats are also used in the international fur trade and leather industries for making coats, hats, blankets, stuffed toys, shoes, gloves, and musical instruments. About 24 cats are needed to make a cat-fur coat. This use has been outlawed in the United States since 2000 and in the European Union (as well as the United Kingdom) since 2007.

 

Cat pelts have been used for superstitious purposes as part of the practice of witchcraft, and are still made into blankets in Switzerland as traditional medicine thought to cure rheumatism.

 

A few attempts to build a cat census have been made over the years, both through associations or national and international organizations (such as that of the Canadian Federation of Humane Societies) and over the Internet, but such a task does not seem simple to achieve. General estimates for the global population of domestic cats range widely from anywhere between 200 million to 600 million. Walter Chandoha made his career photographing cats after his 1949 images of Loco, an especially charming stray taken in, were published around the world. He is reported to have photographed 90,000 cats during his career and maintained an archive of 225,000 images that he drew from for publications during his lifetime.

 

Shows

Main article: Cat show

A cat show is a judged event in which the owners of cats compete to win titles in various cat-registering organizations by entering their cats to be judged after a breed standard. It is often required that a cat must be healthy and vaccinated in order to participate in a cat show. Both pedigreed and non-purebred companion ("moggy") cats are admissible, although the rules differ depending on the organization. Competing cats are compared to the applicable breed standard, and assessed for temperament.

 

Infection

Main article: Feline zoonosis

Cats can be infected or infested with viruses, bacteria, fungus, protozoans, arthropods or worms that can transmit diseases to humans. In some cases, the cat exhibits no symptoms of the disease. The same disease can then become evident in a human. The likelihood that a person will become diseased depends on the age and immune status of the person. Humans who have cats living in their home or in close association are more likely to become infected. Others might also acquire infections from cat feces and parasites exiting the cat's body. Some of the infections of most concern include salmonella, cat-scratch disease and toxoplasmosis.

 

History and mythology

Main articles: Cultural depictions of cats and Cats in ancient Egypt

In ancient Egypt, cats were worshipped, and the goddess Bastet often depicted in cat form, sometimes taking on the war-like aspect of a lioness. The Greek historian Herodotus reported that killing a cat was forbidden, and when a household cat died, the entire family mourned and shaved their eyebrows. Families took their dead cats to the sacred city of Bubastis, where they were embalmed and buried in sacred repositories. Herodotus expressed astonishment at the domestic cats in Egypt, because he had only ever seen wildcats.

 

Ancient Greeks and Romans kept weasels as pets, which were seen as the ideal rodent-killers. The earliest unmistakable evidence of the Greeks having domestic cats comes from two coins from Magna Graecia dating to the mid-fifth century BC showing Iokastos and Phalanthos, the legendary founders of Rhegion and Taras respectively, playing with their pet cats. The usual ancient Greek word for 'cat' was ailouros, meaning 'thing with the waving tail'. Cats are rarely mentioned in ancient Greek literature. Aristotle remarked in his History of Animals that "female cats are naturally lecherous." The Greeks later syncretized their own goddess Artemis with the Egyptian goddess Bastet, adopting Bastet's associations with cats and ascribing them to Artemis. In Ovid's Metamorphoses, when the deities flee to Egypt and take animal forms, the goddess Diana turns into a cat.

 

Cats eventually displaced weasels as the pest control of choice because they were more pleasant to have around the house and were more enthusiastic hunters of mice. During the Middle Ages, many of Artemis's associations with cats were grafted onto the Virgin Mary. Cats are often shown in icons of Annunciation and of the Holy Family and, according to Italian folklore, on the same night that Mary gave birth to Jesus, a cat in Bethlehem gave birth to a kitten. Domestic cats were spread throughout much of the rest of the world during the Age of Discovery, as ships' cats were carried on sailing ships to control shipboard rodents and as good-luck charms.

 

Several ancient religions believed cats are exalted souls, companions or guides for humans, that are all-knowing but mute so they cannot influence decisions made by humans. In Japan, the maneki neko cat is a symbol of good fortune. In Norse mythology, Freyja, the goddess of love, beauty, and fertility, is depicted as riding a chariot drawn by cats. In Jewish legend, the first cat was living in the house of the first man Adam as a pet that got rid of mice. The cat was once partnering with the first dog before the latter broke an oath they had made which resulted in enmity between the descendants of these two animals. It is also written that neither cats nor foxes are represented in the water, while every other animal has an incarnation species in the water. Although no species are sacred in Islam, cats are revered by Muslims. Some Western writers have stated Muhammad had a favorite cat, Muezza. He is reported to have loved cats so much, "he would do without his cloak rather than disturb one that was sleeping on it". The story has no origin in early Muslim writers, and seems to confuse a story of a later Sufi saint, Ahmed ar-Rifa'i, centuries after Muhammad. One of the companions of Muhammad was known as Abu Hurayrah ("father of the kitten"), in reference to his documented affection to cats.

 

Superstitions and rituals

Many cultures have negative superstitions about cats. An example would be the belief that encountering a black cat ("crossing one's path") leads to bad luck, or that cats are witches' familiars used to augment a witch's powers and skills. The killing of cats in Medieval Ypres, Belgium, is commemorated in the innocuous present-day Kattenstoet (cat parade). In mid-16th century France, cats would be burnt alive as a form of entertainment, particularly during midsummer festivals. According to Norman Davies, the assembled people "shrieked with laughter as the animals, howling with pain, were singed, roasted, and finally carbonized". The remaining ashes were sometimes taken back home by the people for good luck.

 

According to a myth in many cultures, cats have multiple lives. In many countries, they are believed to have nine lives, but in Italy, Germany, Greece, Brazil and some Spanish-speaking regions, they are said to have seven lives, while in Arabic traditions, the number of lives is six. An early mention of the myth can be found in John Heywood's The Proverbs of John Heywood (1546)

 

Husband, (quoth she), ye studie, be merrie now,

And even as ye thinke now, so come to yow.

Nay not so, (quoth he), for my thought to tell right,

I thinke how you lay groning, wife, all last night.

Husband, a groning horse and a groning wife

Never faile their master, (quoth she), for my life.

No wife, a woman hath nine lives like a cat.

 

The myth is attributed to the natural suppleness and swiftness cats exhibit to escape life-threatening situations. Also lending credence to this myth is the fact that falling cats often land on their feet, using an instinctive righting reflex to twist their bodies around. Nonetheless, cats can still be injured or killed by a high fall.

Recording Month Two:

Vital stats

Mother's age: 32

Height: 5'3"

Weight: 131.4 lbs

Body Fat: 29%

Symptoms:

Positive HCG test

Dizzy

Sleepy

Raised body tempurature

Nausea, but not too bad

Feels like a pinky finger is gently poking the inside of my lower left abdomen

Nasal congestion

Prefer sweet and cold food. Cooked, steaming or fragrant food is unappealing. Eating "children's food" (i.e. cold sandwiches and milk)

Taking:

Throxine for underactive thyroid

Pre-natal vitamin

Omega-3 Fish Oil

Extra calcium, choline

Precautionary prometrium 200 mg

Baby's age 9 weeks

Est. due date: June 15, 2008

   

A camel is an even-toed ungulate within the genus Camelus, bearing distinctive fatty deposits known as "humps" on its back. The two surviving species of camel are the dromedary, or one-humped camel (C. dromedarius), which inhabits the Middle East and the Horn of Africa; and the bactrian, or two-humped camel (C. bactrianus), which inhabits Central Asia. Both species have been domesticated; they provide milk, meat, hair for textiles or goods such as felted pouches, and are working animals with tasks ranging from human transport to bearing loads.

 

The term "camel" is derived via Latin and Greek (camelus and κάμηλος kamēlos respectively) from Hebrew or Phoenician gāmāl.

 

"Camel" is also used more broadly to describe any of the six camel-like mammals in the family Camelidae: the two true camels and the four New World camelids: the llama, alpaca, guanaco, and vicuña of South America.

 

BIOLOGY

The average life expectancy of a camel is 40 to 50 years. A full-grown adult camel stands 1.85 m at the shoulder and 2.15 m at the hump. Camels can run at up to 65 km/h in short bursts and sustain speeds of up to 40 km/h. Bactrian camels weigh 300 to 1,000 kg and dromedaries 300 to 600 kg.

 

The male dromedary camel has in its throat an organ called a dulla, a large, inflatable sac he extrudes from his mouth when in rut to assert dominance and attract females. It resembles a long, swollen, pink tongue hanging out of the side of its mouth. Camels mate by having both male and female sitting on the ground, with the male mounting from behind. The male usually ejaculates three or four times within a single mating session. Camelids are the only ungulates to mate in a sitting position.

 

ECOLOGICAL AND BEHAVIORAL ADAPTIONS

Camels do not directly store water in their humps as was once commonly believed. The humps are actually reservoirs of fatty tissue: concentrating body fat in their humps minimizes the insulating effect fat would have if distributed over the rest of their bodies, helping camels survive in hot climates. When this tissue is metabolized, it yields more than one gram of water for every gram of fat processed. This fat metabolization, while releasing energy, causes water to evaporate from the lungs during respiration (as oxygen is required for the metabolic process): overall, there is a net decrease in water.

 

Camels have a series of physiological adaptations that allow them to withstand long periods of time without any external source of water. Unlike other mammals, their red blood cells are oval rather than circular in shape. This facilitates the flow of red blood cells during dehydration and makes them better at withstanding high osmotic variation without rupturing when drinking large amounts of water: a 600 kg camel can drink 200 L of water in three minutes.

 

Camels are able to withstand changes in body temperature and water consumption that would kill most other animals. Their temperature ranges from 34 °C at dawn and steadily increases to 40 °C by sunset, before they cool off at night again. Maintaining the brain temperature within certain limits is critical for animals; to assist this, camels have a rete mirabile, a complex of arteries and veins lying very close to each other which utilizes countercurrent blood flow to cool blood flowing to the brain. Camels rarely sweat, even when ambient temperatures reach 49 °C Any sweat that does occur evaporates at the skin level rather than at the surface of their coat; the heat of vaporization therefore comes from body heat rather than ambient heat. Camels can withstand losing 25% of their body weight to sweating, whereas most other mammals can withstand only about 12–14% dehydration before cardiac failure results from circulatory disturbance.

 

When the camel exhales, water vapor becomes trapped in their nostrils and is reabsorbed into the body as a means to conserve water. Camels eating green herbage can ingest sufficient moisture in milder conditions to maintain their bodies' hydrated state without the need for drinking.

 

The camels' thick coats insulate them from the intense heat radiated from desert sand; a shorn camel must sweat 50% more to avoid overheating. During the summer the coat becomes lighter in color, reflecting light as well as helping avoid sunburn. The camel's long legs help by keeping its body farther from the ground, which can heat up to 70 °C. Dromedaries have a pad of thick tissue over the sternum called the pedestal. When the animal lies down in a sternal recumbent position, the pedestal raises the body from the hot surface and allows cooling air to pass under the body.

 

Camels' mouths have a thick leathery lining, allowing them to chew thorny desert plants. Long eyelashes and ear hairs, together with nostrils that can close, form a barrier against sand. If sand gets lodged in their eyes, they can dislodge it using their transparent third eyelid. The camels' gait and widened feet help them move without sinking into the sand.

 

The kidneys and intestines of a camel are very efficient at reabsorbing water. Camel urine comes out as a thick syrup, and camel feces are so dry that they do not require drying when the Bedouins use them to fuel fires.

 

Camels' immune system differs from those of other mammals. Normally, the Y-shaped antibody molecules consist of two heavy (or long) chains along the length of the Y, and two light (or short) chains at each tip of the Y. Camels, in addition to these, also have antibodies made of only two heavy chains, a trait that makes them smaller and more durable. These "heavy-chain-only" antibodies, discovered in 1993, are thought to have developed 50 million years ago, after camelids split from ruminants and pigs.

 

GENETICS

The karyotypes of different camelid species have been studied earlier by many groups, but no agreement on chromosome nomenclature of camelids has been reached. A 2007 study flow sorted camel chromosomes, building on the fact that camels have 37 pairs of chromosomes (2n=74), and found that the karyotime consisted of one metacentric, three submetacentric, and 32 acrocentric autosomes. The Y is a small metacentric chromosome, while the X is a large metacentric chromosome.The hybrid camel, a hybrid between Bactrian and dromedary camels, has one hump, though it has an indentation 4–12 cm deep that divides the front from the back. The hybrid is 2.15 m at the shoulder and 2.32 m tall at the hump. It weighs an average of 650 kg and can carry around 400 to 450 kg, which is more than either the dromedary or Bactrian can. According to molecular data, the New World and Old World camelids diverged 11 million years ago. In spite of this, these species can still hybridize and produce fertile offspring. The cama is a camel–llama hybrid bred by scientists who wanted to see how closely related the parent species were. Scientists collected semen from a camel via an artificial vagina and inseminated a llama after stimulating ovulation with gonadotrophin injections. The cama has ears halfway between the length of camel and llama ears, no hump, longer legs than the llama, and partially cloven hooves. According to cama breeder Lulu Skidmore, cama have "the fleece of the llamas" and "the strength and patience of the camel". Like the mule, camas are sterile, despite both parents having the same number of chromosomes.

 

EVOLUTION

The earliest known camel, called Protylopus, lived in North America 40 to 50 million years ago (during the Eocene). It was about the size of a rabbit and lived in the open woodlands of what is now South Dakota. By 35 million years ago, the Poebrotherium was the size of a goat and had many more traits similar to camels and llamas. The hoofed Stenomylus, which walked on the tips of its toes, also existed around this time, and the long-necked Aepycamelus evolved in the Miocene.

 

The direct ancestor of all modern camels, Procamelus, existed in the upper Miocone and lower Pliocene. Around 3–5 million years ago, the North American Camelidae spread to South America via the Isthmus of Panama, where they gave rise to guanacos and related animals, and to Asia via the Bering land bridge. Surprising finds of fossil Paracamelus on Ellesmere Island beginning in 2006 in the high Canadian Arctic indicate the dromedary is descended from a larger, boreal browser whose hump may have evolved as an adaptation in a cold climate. This creature is estimated to have stood around nine feet tall.

 

The last camel native to North America was Camelops hesternus, which vanished along with horses, short-faced bears, mammoths and mastodons, ground sloths, sabertooth cats, and many other megafauna, coinciding with the migration of humans from Asia.

 

DOMESTICATION

Most camels surviving today are domesticated. Along with many other megafauna in North America, the original wild camels were wiped out during the spread of Native Americans from Asia into North America, 12,000 to 10,000 years ago. The only wild camels left are the Bactrian camels of the Gobi Desert.

 

Like the horse, before their extinction in their native land, camels spread across the Bering land bridge, moving the opposite direction from the Asian immigration to America, to survive in the Old World and eventually be domesticated and spread globally by humans.

 

Dromedaries may have first been domesticated by humans in Somalia and southern Arabia, around 3,000 BC, the Bactrian in central Asia around 2,500 BC, as at Shar-i Sokhta (also known as the Burnt City), Iran.

 

Discussions concerning camel domestication in Mesopotamia are often related to mentions of camels in the Hebrew Bible. The International Standard Bible Encyclopedia: E-J for instance mentions that "In accord with patriarchal traditions, cylinder seals from Middle Bronze Age Mesopotamia showed riders seated upon camels."

 

Martin Heide's 2010 work on the domestication of the camel tentatively concludes that the bactrian camel was domesticated by at least the middle of the third millennium somewhere east of the Zagros Mountains, then moving into Mesopotamia, and suggests that mentions of camels "in the patriarchal narratives may refer, at least in some places, to the Bactrian camel." while noting that the camel is not mentioned in relationship to Canaan.

 

Recent excavations in the Timna Valley by Lidar Sapir-Hen and Erez Ben-Yosef discovered what may be the earliest domestic camel bones found in Israel or even outside the Arabian peninsula, dating to around 930 BCE. This garnered considerable media coverage as it was described as evidence that the stories of Abraham, Joseph, Jacob and Esau were written after this time.

 

The existence of camels in Mesopotamia but not in Israel is not a new idea. According to an article in Time Magazine, the historian Richard Bulliet wrote in his 1975 book "The Camel and the Wheel" that "the occasional mention of camels in patriarchal narratives does not mean that the domestic camels were common in the Holy Land at that period." The archaeologist William F. Albright writing even earlier saw camels in the Bible as an anachronism. The official report by Sapir-Hen and Ben-Joseph notes that "The introduction of the dromedary camel (Camelus dromedarius) as a pack animal to the southern Levant signifies a crucial juncture in the history of the region; it substantially facilitated trade across the vast deserts of Arabia, promoting both economic and social change (e.g., Kohler 1984; Borowski 1998: 112-116; Jasmin 2005). This, together with the depiction of camels in the Patriarchal narrative, has generated extensive discussion regarding the date of the earliest domestic camel in the southern Levant (and beyond) (e.g., Albright 1949: 207; Epstein 1971: 558-584; Bulliet 1975; Zarins 1989; Köhler-Rollefson 1993; Uerpmann and Uerpmann 2002; Jasmin 2005; 2006; Heide 2010; Rosen and Saidel 2010; Grigson 2012). Most scholars today agree that the dromedary was exploited as a pack animal sometime in the early Iron Age (not before the 12th century BCE)" and concludes that "Current data from copper smelting sites of the Aravah Valley enable us to pinpoint the introduction of domestic camels to the southern Levant more precisely based on stratigraphic contexts associated with an extensive suite of radiocarbon dates. The data indicate that this event occurred not earlier than the last third of the 10th century BCE and most probably during this time. The coincidence of this event with a major reorganization of the copper industry of the region - attributed to the results of the campaign of Pharaoh Shoshenq I - raises the possibility that the two were connected, and that camels were introduced as part of the efforts to improve efficiency by facilitating trade."

 

MILITARY USES

By at least 1200 BC, the first camel saddles had appeared, and Bactrian camels could be ridden. The first saddle was positioned to the back of the camel, and control of the Bactrian camel was exercised by means of a stick. However, between 500–100 BC, Bactrian camels attained military use. New saddles, which were inflexible and bent, were put over the humps and divided the rider's weight over the animal. In the seventh century BC, the military Arabian saddle appeared, which improved the saddle design again slightly.

 

Camel cavalries have been used in wars throughout Africa, the Middle East, and into modern-day Border Security Force of India (though as of July 2012, the BSF has planned the replacement of camels with ATVs). The first use of camel cavalries was in the Battle of Qarqar in 853 BC. Armies have also used camels as freight animals instead of horses and mules.

In the East Roman Empire, the Romans used auxiliary forces known as dromedarii, whom they recruited in desert provinces. The camels were used mostly in combat because of their ability to scare off horses at close ranges (horses are afraid of the camels' scent), a quality famously employed by the Achaemenid Persians when fighting Lydia in the Battle of Thymbra.

 

19th and 20th CENTURIES

The United States Army established the U.S. Camel Corps, which was stationed in California in the late 19th century. One may still see stables at the Benicia Arsenal in Benicia, California, where they nowadays serve as the Benicia Historical Museum. Though the experimental use of camels was seen as a success (John B. Floyd, Secretary of War in 1858, recommended that funds be allocated towards obtaining a thousand more camels), the outbreak of the American Civil War saw the end of the Camel Corps: Texas became part of the Confederacy, and most of the camels were left to wander away into the desert.

 

France created a méhariste camel corps in 1912 as part of the Armée d'Afrique in the Sahara in order to exercise greater control over the camel-riding Tuareg and Arab insurgents, as previous efforts to defeat them on foot had failed. The camel-mounted units remained in service until the end of French rule over Algeria in 1962.

 

In 1916, the British created the Imperial Camel Corps. It was originally used to fight the Senussi, but was later used in the Sinai and Palestine Campaign in World War I. The Imperial Camel Corps comprised infantrymen mounted on camels for movement across desert, though they dismounted at battle sites and fought on foot. After July 1918, the Corps began to become run down, receiving no new reinforcements, and was formally disbanded in 1919.

 

In World War I, the British Army also created the Egyptian Camel Transport Corps, which consisted of a group of Egyptian camel drivers and their camels. The Corps supported British war operations in Sinai, Palestine, and Syria by transporting supplies to the troops.

 

The Somaliland Camel Corps was created by colonial authorities in British Somaliland in 1912; it was disbanded in 1944.

 

Bactrian camels were used by Romanian forces during World War II in the Caucasian region.

 

The Bikaner Camel Corps of British India fought alongside the British Indian Army in World Wars I and II.

 

The Tropas Nómadas (Nomad Troops) were an auxiliary regiment of Sahrawi tribesmen serving in the colonial army in Spanish Sahara (today Western Sahara). Operational from the 1930s until the end of the Spanish presence in the territory in 1975, the Tropas Nómadas were equipped with small arms and led by Spanish officers. The unit guarded outposts and sometimes conducted patrols on camelback.

 

FOOD USES

DAIRY

Camel milk is a staple food of desert nomad tribes and is sometimes considered a meal in and of itself; a nomad can live on only camel milk for almost a month. Camel milk is rich in vitamins, minerals, proteins, and immunoglobulins; compared to cow's milk, it is lower in fat and lactose, and higher in potassium, iron, and vitamin C. Bedouins believe the curative powers of camel milk are enhanced if the camel's diet consists of certain desert plants. Camel milk can readily be made into a drinkable yogurt, as well as butter or cheese, though the yields for cheese tend to be low.

 

Camel milk cannot be made into butter by the traditional churning method. It can be made if it is soured first, churned, and a clarifying agent is then added. Until recently, camel milk could not be made into camel cheese because rennet was unable to coagulate the milk proteins to allow the collection of curds. Developing less wasteful uses of the milk, the FAO commissioned Professor J.P. Ramet of the École Nationale Supérieure d'Agronomie et des Industries Alimentaires, who was able to produce curdling by the addition of calcium phosphate and vegetable rennet. The cheese produced from this process has low levels of cholesterol and is easy to digest, even for the lactose intolerant. The sale of camel cheese is limited owing to the small output of the few dairies producing camel cheese and the absence of camel cheese in local (West African) markets. Cheese imports from countries that traditionally breed camels are difficult to obtain due to restrictions on dairy imports from these regions.

 

Additionally, camel milk has been made into ice cream in a Netherlands camel farm.

 

MEAT

A camel carcass can provide a substantial amount of meat. The male dromedary carcass can weigh 300–400 kg, while the carcass of a male Bactrian can weigh up to 650 kg. The carcass of a female dromedary weighs less than the male, ranging between 250 and 350 kg. The brisket, ribs and loin are among the preferred parts, and the hump is considered a delicacy. The hump contains "white and sickly fat", which can be used to make the khli (preserved meat) of mutton, beef, or camel. Camel meat is reported to taste like coarse beef, but older camels can prove to be very tough, although camel meat becomes more tender the more it is cooked. The Abu Dhabi Officers' Club serves a camel burger mixed with beef or lamb fat in order to improve the texture and taste. In Karachi, Pakistan, some restaurants prepare nihari from camel meat. In Syria and Egypt, there are specialist camel butchers.

 

Camel meat has been eaten for centuries. It has been recorded by ancient Greek writers as an available dish at banquets in ancient Persia, usually roasted whole. The ancient Roman emperor Heliogabalus enjoyed camel's heel.[31] Camel meat is still eaten in certain regions, including Eritrea, Somalia, Djibouti, Saudi Arabia, Egypt, Syria, Libya, Sudan, Ethiopia, Kazakhstan, and other arid regions where alternative forms of protein may be limited or where camel meat has had a long cultural history. Camel blood is also consumable, as is the case among pastoralists in northern Kenya, where camel blood is drunk with milk and acts as a key source of iron, vitamin D, salts and minerals. Camel meat is also occasionally found in Australian cuisine: for example, a camel lasagna is available in Alice Springs.

 

A 2005 report issued jointly by the Saudi Ministry of Health and the United States Centers for Disease Control and Prevention details cases of human bubonic plague resulting from the ingestion of raw camel liver.

 

RELIGION

ISLAM

Camel meat is halal for Muslims. However, according to some Islamic schools of thought, a state of impurity is brought on by the consumption of it. Consequently, these schools hold that Muslims must perform wudhu (ablution) before the next time they pray after eating camel meat.

 

Also, some Islamic schools of thought consider it haraam for a Muslim to perform salat in places where camels lie, as it is said to be a dwelling place of shaytan.

 

According to Suni ahadith collected by Bukhari and Muslim, Muhammad ordered a certain group of people to drink camel milk and urine as a medicine. However, according to Abū Ḥanīfa, the drinking of camel urine, while not forbidden (ḥaram), is disliked (makrūh) in Islam.

 

Camel urine is sold as traditional medicine in shops in Saudi Arabia. The Sunni scholar Muhammad Al-Munajjid's IslamQA.info recommends camel urine as beneficial to curing certain diseases and to human health and cited Ahadith and scientific studies as justification. King Abdulaziz University researcher Dr. Faten Abdel-Rajman Khorshid has claimed that cancer and other diseases could be treated with camel urine as recommended by the Prophet. The United Arab Emirates "Arab Science and Technology Foundation" reported that cancer could be treated with camel urine. Camel urine was also prescribed as a treatment by Zaghloul El-Naggar, a religious scholar. Camel urine is the only urine which is permitted to be drunk according to the Hanbali madhhab of Sunni Islam. The World Health Organization said that camel urine consumption may be a factor in the spread of the MERS virus in Saudi Arabia. The Gulf Times writer Ahmad al-Sayyed wrote that various afflictions are dealt with camel urine by people. Dandruff, scalp ailments, hair, sores, and wounds were recommended to be treated with camel urine by Ibn Sina. Arab American University Professor of Cell Biology and Immunology Bashar Saad (PhD) along with Omar Said (PhD) wrote that medicinal use of camel urine is approved of and promoted by Islam since it was recommended by the prophet. A test on mice found that cytotoxic effects similar to cyclophosphamide were induced on bone marrow by camel urine. Besides for consumption as a medicinal drink, camel urine is believed to help treat hair. Bites from insects were warded off with camel urine, which also served as a shampoo. Camel urine is also used to help treat asthma, infections, treat hair, sores, hair growth and boost libido.

 

Several Sunni Ahadith mention drinking camel urine. Some Shia criticized Wahhabis for camel urine treatment. Shia scholars also recommend the medicinal use of camel urine. Shia Hadith on Imam Ja'far al-Sadiq reported that shortness of breath (asthma) was treated with camel urine. Shia Marja Ayatollah Sistani said that for medicinal purposes only, sheep, cow, and camel urine can be drunk.

 

JUDAISM

According to Jewish tradition, camel meat and milk are not kosher. Camels possess only one of the two kosher criteria; although they chew their cud, they do not possess cloven hooves:

 

Nevertheless these shall ye not eat of them that only chew the cud, or of them that only part the hoof: the camel, because he cheweth the cud but parteth not the hoof, he is unclean unto you.

— Leviticus 11:4

 

DISTRIBUTION ANDNUMBERS

There are around 14 million camels alive as of 2010, with 90% being dromedaries. Dromedaries alive today are domesticated animals (mostly living in the Horn of Africa, the Sahel, Maghreb, Middle East and South Asia). The Horn region alone has the largest concentration of camels in the world, where the dromedaries constitute an important part of local nomadic life. They provide nomadic people in Somalia (which has the largest camel herd in the world) and Ethiopia with milk, food, and transportation.

 

The Bactrian camel is, as of 2010, reduced to an estimated 1.4 million animals, most of which are domesticated. The only truly wild Bactrian camels, of which there are less than one thousand, are thought to inhabit the Gobi Desert in China and Mongolia.

 

The largest population of feral camels is in Australia. There are around 700,000 feral dromedary camels in central parts of Australia, descended from those introduced as a method of transport in the 19th and early 20th centuries. This population is growing about 8% per year. Representatives of the Australian government have culled more than 100,000 of the animals in part because the camels use too much of the limited resources needed by sheep farmers.

 

A small population of introduced camels, dromedaries and Bactrians, wandered through Southwest United States after having been imported in the 1800s as part of the U.S. Camel Corps experiment. When the project ended, they were used as draft animals in mines and escaped or were released. Twenty-five U.S. camels were bought and imported to Canada during the Cariboo Gold Rush.

 

WIKIPEDIA

A camel is an even-toed ungulate within the genus Camelus, bearing distinctive fatty deposits known as "humps" on its back. The two surviving species of camel are the dromedary, or one-humped camel (C. dromedarius), which inhabits the Middle East and the Horn of Africa; and the bactrian, or two-humped camel (C. bactrianus), which inhabits Central Asia. Both species have been domesticated; they provide milk, meat, hair for textiles or goods such as felted pouches, and are working animals with tasks ranging from human transport to bearing loads.

 

The term "camel" is derived via Latin and Greek (camelus and κάμηλος kamēlos respectively) from Hebrew or Phoenician gāmāl.

 

"Camel" is also used more broadly to describe any of the six camel-like mammals in the family Camelidae: the two true camels and the four New World camelids: the llama, alpaca, guanaco, and vicuña of South America.

 

BIOLOGY

The average life expectancy of a camel is 40 to 50 years. A full-grown adult camel stands 1.85 m at the shoulder and 2.15 m at the hump. Camels can run at up to 65 km/h in short bursts and sustain speeds of up to 40 km/h. Bactrian camels weigh 300 to 1,000 kg and dromedaries 300 to 600 kg.

 

The male dromedary camel has in its throat an organ called a dulla, a large, inflatable sac he extrudes from his mouth when in rut to assert dominance and attract females. It resembles a long, swollen, pink tongue hanging out of the side of its mouth. Camels mate by having both male and female sitting on the ground, with the male mounting from behind. The male usually ejaculates three or four times within a single mating session. Camelids are the only ungulates to mate in a sitting position.

 

ECOLOGICAL AND BEHAVIORAL ADAPTIONS

Camels do not directly store water in their humps as was once commonly believed. The humps are actually reservoirs of fatty tissue: concentrating body fat in their humps minimizes the insulating effect fat would have if distributed over the rest of their bodies, helping camels survive in hot climates. When this tissue is metabolized, it yields more than one gram of water for every gram of fat processed. This fat metabolization, while releasing energy, causes water to evaporate from the lungs during respiration (as oxygen is required for the metabolic process): overall, there is a net decrease in water.

 

Camels have a series of physiological adaptations that allow them to withstand long periods of time without any external source of water. Unlike other mammals, their red blood cells are oval rather than circular in shape. This facilitates the flow of red blood cells during dehydration and makes them better at withstanding high osmotic variation without rupturing when drinking large amounts of water: a 600 kg camel can drink 200 L of water in three minutes.

 

Camels are able to withstand changes in body temperature and water consumption that would kill most other animals. Their temperature ranges from 34 °C at dawn and steadily increases to 40 °C by sunset, before they cool off at night again. Maintaining the brain temperature within certain limits is critical for animals; to assist this, camels have a rete mirabile, a complex of arteries and veins lying very close to each other which utilizes countercurrent blood flow to cool blood flowing to the brain. Camels rarely sweat, even when ambient temperatures reach 49 °C Any sweat that does occur evaporates at the skin level rather than at the surface of their coat; the heat of vaporization therefore comes from body heat rather than ambient heat. Camels can withstand losing 25% of their body weight to sweating, whereas most other mammals can withstand only about 12–14% dehydration before cardiac failure results from circulatory disturbance.

 

When the camel exhales, water vapor becomes trapped in their nostrils and is reabsorbed into the body as a means to conserve water. Camels eating green herbage can ingest sufficient moisture in milder conditions to maintain their bodies' hydrated state without the need for drinking.

 

The camels' thick coats insulate them from the intense heat radiated from desert sand; a shorn camel must sweat 50% more to avoid overheating. During the summer the coat becomes lighter in color, reflecting light as well as helping avoid sunburn. The camel's long legs help by keeping its body farther from the ground, which can heat up to 70 °C. Dromedaries have a pad of thick tissue over the sternum called the pedestal. When the animal lies down in a sternal recumbent position, the pedestal raises the body from the hot surface and allows cooling air to pass under the body.

 

Camels' mouths have a thick leathery lining, allowing them to chew thorny desert plants. Long eyelashes and ear hairs, together with nostrils that can close, form a barrier against sand. If sand gets lodged in their eyes, they can dislodge it using their transparent third eyelid. The camels' gait and widened feet help them move without sinking into the sand.

 

The kidneys and intestines of a camel are very efficient at reabsorbing water. Camel urine comes out as a thick syrup, and camel feces are so dry that they do not require drying when the Bedouins use them to fuel fires.

 

Camels' immune system differs from those of other mammals. Normally, the Y-shaped antibody molecules consist of two heavy (or long) chains along the length of the Y, and two light (or short) chains at each tip of the Y. Camels, in addition to these, also have antibodies made of only two heavy chains, a trait that makes them smaller and more durable. These "heavy-chain-only" antibodies, discovered in 1993, are thought to have developed 50 million years ago, after camelids split from ruminants and pigs.

 

GENETICS

The karyotypes of different camelid species have been studied earlier by many groups, but no agreement on chromosome nomenclature of camelids has been reached. A 2007 study flow sorted camel chromosomes, building on the fact that camels have 37 pairs of chromosomes (2n=74), and found that the karyotime consisted of one metacentric, three submetacentric, and 32 acrocentric autosomes. The Y is a small metacentric chromosome, while the X is a large metacentric chromosome.The hybrid camel, a hybrid between Bactrian and dromedary camels, has one hump, though it has an indentation 4–12 cm deep that divides the front from the back. The hybrid is 2.15 m at the shoulder and 2.32 m tall at the hump. It weighs an average of 650 kg and can carry around 400 to 450 kg, which is more than either the dromedary or Bactrian can. According to molecular data, the New World and Old World camelids diverged 11 million years ago. In spite of this, these species can still hybridize and produce fertile offspring. The cama is a camel–llama hybrid bred by scientists who wanted to see how closely related the parent species were. Scientists collected semen from a camel via an artificial vagina and inseminated a llama after stimulating ovulation with gonadotrophin injections. The cama has ears halfway between the length of camel and llama ears, no hump, longer legs than the llama, and partially cloven hooves. According to cama breeder Lulu Skidmore, cama have "the fleece of the llamas" and "the strength and patience of the camel". Like the mule, camas are sterile, despite both parents having the same number of chromosomes.

 

EVOLUTION

The earliest known camel, called Protylopus, lived in North America 40 to 50 million years ago (during the Eocene). It was about the size of a rabbit and lived in the open woodlands of what is now South Dakota. By 35 million years ago, the Poebrotherium was the size of a goat and had many more traits similar to camels and llamas. The hoofed Stenomylus, which walked on the tips of its toes, also existed around this time, and the long-necked Aepycamelus evolved in the Miocene.

 

The direct ancestor of all modern camels, Procamelus, existed in the upper Miocone and lower Pliocene. Around 3–5 million years ago, the North American Camelidae spread to South America via the Isthmus of Panama, where they gave rise to guanacos and related animals, and to Asia via the Bering land bridge. Surprising finds of fossil Paracamelus on Ellesmere Island beginning in 2006 in the high Canadian Arctic indicate the dromedary is descended from a larger, boreal browser whose hump may have evolved as an adaptation in a cold climate. This creature is estimated to have stood around nine feet tall.

 

The last camel native to North America was Camelops hesternus, which vanished along with horses, short-faced bears, mammoths and mastodons, ground sloths, sabertooth cats, and many other megafauna, coinciding with the migration of humans from Asia.

 

DOMESTICATION

Most camels surviving today are domesticated. Along with many other megafauna in North America, the original wild camels were wiped out during the spread of Native Americans from Asia into North America, 12,000 to 10,000 years ago. The only wild camels left are the Bactrian camels of the Gobi Desert.

 

Like the horse, before their extinction in their native land, camels spread across the Bering land bridge, moving the opposite direction from the Asian immigration to America, to survive in the Old World and eventually be domesticated and spread globally by humans.

 

Dromedaries may have first been domesticated by humans in Somalia and southern Arabia, around 3,000 BC, the Bactrian in central Asia around 2,500 BC, as at Shar-i Sokhta (also known as the Burnt City), Iran.

 

Discussions concerning camel domestication in Mesopotamia are often related to mentions of camels in the Hebrew Bible. The International Standard Bible Encyclopedia: E-J for instance mentions that "In accord with patriarchal traditions, cylinder seals from Middle Bronze Age Mesopotamia showed riders seated upon camels."

 

Martin Heide's 2010 work on the domestication of the camel tentatively concludes that the bactrian camel was domesticated by at least the middle of the third millennium somewhere east of the Zagros Mountains, then moving into Mesopotamia, and suggests that mentions of camels "in the patriarchal narratives may refer, at least in some places, to the Bactrian camel." while noting that the camel is not mentioned in relationship to Canaan.

 

Recent excavations in the Timna Valley by Lidar Sapir-Hen and Erez Ben-Yosef discovered what may be the earliest domestic camel bones found in Israel or even outside the Arabian peninsula, dating to around 930 BCE. This garnered considerable media coverage as it was described as evidence that the stories of Abraham, Joseph, Jacob and Esau were written after this time.

 

The existence of camels in Mesopotamia but not in Israel is not a new idea. According to an article in Time Magazine, the historian Richard Bulliet wrote in his 1975 book "The Camel and the Wheel" that "the occasional mention of camels in patriarchal narratives does not mean that the domestic camels were common in the Holy Land at that period." The archaeologist William F. Albright writing even earlier saw camels in the Bible as an anachronism. The official report by Sapir-Hen and Ben-Joseph notes that "The introduction of the dromedary camel (Camelus dromedarius) as a pack animal to the southern Levant signifies a crucial juncture in the history of the region; it substantially facilitated trade across the vast deserts of Arabia, promoting both economic and social change (e.g., Kohler 1984; Borowski 1998: 112-116; Jasmin 2005). This, together with the depiction of camels in the Patriarchal narrative, has generated extensive discussion regarding the date of the earliest domestic camel in the southern Levant (and beyond) (e.g., Albright 1949: 207; Epstein 1971: 558-584; Bulliet 1975; Zarins 1989; Köhler-Rollefson 1993; Uerpmann and Uerpmann 2002; Jasmin 2005; 2006; Heide 2010; Rosen and Saidel 2010; Grigson 2012). Most scholars today agree that the dromedary was exploited as a pack animal sometime in the early Iron Age (not before the 12th century BCE)" and concludes that "Current data from copper smelting sites of the Aravah Valley enable us to pinpoint the introduction of domestic camels to the southern Levant more precisely based on stratigraphic contexts associated with an extensive suite of radiocarbon dates. The data indicate that this event occurred not earlier than the last third of the 10th century BCE and most probably during this time. The coincidence of this event with a major reorganization of the copper industry of the region - attributed to the results of the campaign of Pharaoh Shoshenq I - raises the possibility that the two were connected, and that camels were introduced as part of the efforts to improve efficiency by facilitating trade."

 

MILITARY USES

By at least 1200 BC, the first camel saddles had appeared, and Bactrian camels could be ridden. The first saddle was positioned to the back of the camel, and control of the Bactrian camel was exercised by means of a stick. However, between 500–100 BC, Bactrian camels attained military use. New saddles, which were inflexible and bent, were put over the humps and divided the rider's weight over the animal. In the seventh century BC, the military Arabian saddle appeared, which improved the saddle design again slightly.

 

Camel cavalries have been used in wars throughout Africa, the Middle East, and into modern-day Border Security Force of India (though as of July 2012, the BSF has planned the replacement of camels with ATVs). The first use of camel cavalries was in the Battle of Qarqar in 853 BC. Armies have also used camels as freight animals instead of horses and mules.

In the East Roman Empire, the Romans used auxiliary forces known as dromedarii, whom they recruited in desert provinces. The camels were used mostly in combat because of their ability to scare off horses at close ranges (horses are afraid of the camels' scent), a quality famously employed by the Achaemenid Persians when fighting Lydia in the Battle of Thymbra.

 

19th and 20th CENTURIES

The United States Army established the U.S. Camel Corps, which was stationed in California in the late 19th century. One may still see stables at the Benicia Arsenal in Benicia, California, where they nowadays serve as the Benicia Historical Museum. Though the experimental use of camels was seen as a success (John B. Floyd, Secretary of War in 1858, recommended that funds be allocated towards obtaining a thousand more camels), the outbreak of the American Civil War saw the end of the Camel Corps: Texas became part of the Confederacy, and most of the camels were left to wander away into the desert.

 

France created a méhariste camel corps in 1912 as part of the Armée d'Afrique in the Sahara in order to exercise greater control over the camel-riding Tuareg and Arab insurgents, as previous efforts to defeat them on foot had failed. The camel-mounted units remained in service until the end of French rule over Algeria in 1962.

 

In 1916, the British created the Imperial Camel Corps. It was originally used to fight the Senussi, but was later used in the Sinai and Palestine Campaign in World War I. The Imperial Camel Corps comprised infantrymen mounted on camels for movement across desert, though they dismounted at battle sites and fought on foot. After July 1918, the Corps began to become run down, receiving no new reinforcements, and was formally disbanded in 1919.

 

In World War I, the British Army also created the Egyptian Camel Transport Corps, which consisted of a group of Egyptian camel drivers and their camels. The Corps supported British war operations in Sinai, Palestine, and Syria by transporting supplies to the troops.

 

The Somaliland Camel Corps was created by colonial authorities in British Somaliland in 1912; it was disbanded in 1944.

 

Bactrian camels were used by Romanian forces during World War II in the Caucasian region.

 

The Bikaner Camel Corps of British India fought alongside the British Indian Army in World Wars I and II.

 

The Tropas Nómadas (Nomad Troops) were an auxiliary regiment of Sahrawi tribesmen serving in the colonial army in Spanish Sahara (today Western Sahara). Operational from the 1930s until the end of the Spanish presence in the territory in 1975, the Tropas Nómadas were equipped with small arms and led by Spanish officers. The unit guarded outposts and sometimes conducted patrols on camelback.

 

FOOD USES

DAIRY

Camel milk is a staple food of desert nomad tribes and is sometimes considered a meal in and of itself; a nomad can live on only camel milk for almost a month. Camel milk is rich in vitamins, minerals, proteins, and immunoglobulins; compared to cow's milk, it is lower in fat and lactose, and higher in potassium, iron, and vitamin C. Bedouins believe the curative powers of camel milk are enhanced if the camel's diet consists of certain desert plants. Camel milk can readily be made into a drinkable yogurt, as well as butter or cheese, though the yields for cheese tend to be low.

 

Camel milk cannot be made into butter by the traditional churning method. It can be made if it is soured first, churned, and a clarifying agent is then added. Until recently, camel milk could not be made into camel cheese because rennet was unable to coagulate the milk proteins to allow the collection of curds. Developing less wasteful uses of the milk, the FAO commissioned Professor J.P. Ramet of the École Nationale Supérieure d'Agronomie et des Industries Alimentaires, who was able to produce curdling by the addition of calcium phosphate and vegetable rennet. The cheese produced from this process has low levels of cholesterol and is easy to digest, even for the lactose intolerant. The sale of camel cheese is limited owing to the small output of the few dairies producing camel cheese and the absence of camel cheese in local (West African) markets. Cheese imports from countries that traditionally breed camels are difficult to obtain due to restrictions on dairy imports from these regions.

 

Additionally, camel milk has been made into ice cream in a Netherlands camel farm.

 

MEAT

A camel carcass can provide a substantial amount of meat. The male dromedary carcass can weigh 300–400 kg, while the carcass of a male Bactrian can weigh up to 650 kg. The carcass of a female dromedary weighs less than the male, ranging between 250 and 350 kg. The brisket, ribs and loin are among the preferred parts, and the hump is considered a delicacy. The hump contains "white and sickly fat", which can be used to make the khli (preserved meat) of mutton, beef, or camel. Camel meat is reported to taste like coarse beef, but older camels can prove to be very tough, although camel meat becomes more tender the more it is cooked. The Abu Dhabi Officers' Club serves a camel burger mixed with beef or lamb fat in order to improve the texture and taste. In Karachi, Pakistan, some restaurants prepare nihari from camel meat. In Syria and Egypt, there are specialist camel butchers.

 

Camel meat has been eaten for centuries. It has been recorded by ancient Greek writers as an available dish at banquets in ancient Persia, usually roasted whole. The ancient Roman emperor Heliogabalus enjoyed camel's heel.[31] Camel meat is still eaten in certain regions, including Eritrea, Somalia, Djibouti, Saudi Arabia, Egypt, Syria, Libya, Sudan, Ethiopia, Kazakhstan, and other arid regions where alternative forms of protein may be limited or where camel meat has had a long cultural history. Camel blood is also consumable, as is the case among pastoralists in northern Kenya, where camel blood is drunk with milk and acts as a key source of iron, vitamin D, salts and minerals. Camel meat is also occasionally found in Australian cuisine: for example, a camel lasagna is available in Alice Springs.

 

A 2005 report issued jointly by the Saudi Ministry of Health and the United States Centers for Disease Control and Prevention details cases of human bubonic plague resulting from the ingestion of raw camel liver.

 

RELIGION

ISLAM

Camel meat is halal for Muslims. However, according to some Islamic schools of thought, a state of impurity is brought on by the consumption of it. Consequently, these schools hold that Muslims must perform wudhu (ablution) before the next time they pray after eating camel meat.

 

Also, some Islamic schools of thought consider it haraam for a Muslim to perform salat in places where camels lie, as it is said to be a dwelling place of shaytan.

 

According to Suni ahadith collected by Bukhari and Muslim, Muhammad ordered a certain group of people to drink camel milk and urine as a medicine. However, according to Abū Ḥanīfa, the drinking of camel urine, while not forbidden (ḥaram), is disliked (makrūh) in Islam.

 

Camel urine is sold as traditional medicine in shops in Saudi Arabia. The Sunni scholar Muhammad Al-Munajjid's IslamQA.info recommends camel urine as beneficial to curing certain diseases and to human health and cited Ahadith and scientific studies as justification. King Abdulaziz University researcher Dr. Faten Abdel-Rajman Khorshid has claimed that cancer and other diseases could be treated with camel urine as recommended by the Prophet. The United Arab Emirates "Arab Science and Technology Foundation" reported that cancer could be treated with camel urine. Camel urine was also prescribed as a treatment by Zaghloul El-Naggar, a religious scholar. Camel urine is the only urine which is permitted to be drunk according to the Hanbali madhhab of Sunni Islam. The World Health Organization said that camel urine consumption may be a factor in the spread of the MERS virus in Saudi Arabia. The Gulf Times writer Ahmad al-Sayyed wrote that various afflictions are dealt with camel urine by people. Dandruff, scalp ailments, hair, sores, and wounds were recommended to be treated with camel urine by Ibn Sina. Arab American University Professor of Cell Biology and Immunology Bashar Saad (PhD) along with Omar Said (PhD) wrote that medicinal use of camel urine is approved of and promoted by Islam since it was recommended by the prophet. A test on mice found that cytotoxic effects similar to cyclophosphamide were induced on bone marrow by camel urine. Besides for consumption as a medicinal drink, camel urine is believed to help treat hair. Bites from insects were warded off with camel urine, which also served as a shampoo. Camel urine is also used to help treat asthma, infections, treat hair, sores, hair growth and boost libido.

 

Several Sunni Ahadith mention drinking camel urine. Some Shia criticized Wahhabis for camel urine treatment. Shia scholars also recommend the medicinal use of camel urine. Shia Hadith on Imam Ja'far al-Sadiq reported that shortness of breath (asthma) was treated with camel urine. Shia Marja Ayatollah Sistani said that for medicinal purposes only, sheep, cow, and camel urine can be drunk.

 

JUDAISM

According to Jewish tradition, camel meat and milk are not kosher. Camels possess only one of the two kosher criteria; although they chew their cud, they do not possess cloven hooves:

 

Nevertheless these shall ye not eat of them that only chew the cud, or of them that only part the hoof: the camel, because he cheweth the cud but parteth not the hoof, he is unclean unto you.

— Leviticus 11:4

 

DISTRIBUTION ANDNUMBERS

There are around 14 million camels alive as of 2010, with 90% being dromedaries. Dromedaries alive today are domesticated animals (mostly living in the Horn of Africa, the Sahel, Maghreb, Middle East and South Asia). The Horn region alone has the largest concentration of camels in the world, where the dromedaries constitute an important part of local nomadic life. They provide nomadic people in Somalia (which has the largest camel herd in the world) and Ethiopia with milk, food, and transportation.

 

The Bactrian camel is, as of 2010, reduced to an estimated 1.4 million animals, most of which are domesticated. The only truly wild Bactrian camels, of which there are less than one thousand, are thought to inhabit the Gobi Desert in China and Mongolia.

 

The largest population of feral camels is in Australia. There are around 700,000 feral dromedary camels in central parts of Australia, descended from those introduced as a method of transport in the 19th and early 20th centuries. This population is growing about 8% per year. Representatives of the Australian government have culled more than 100,000 of the animals in part because the camels use too much of the limited resources needed by sheep farmers.

 

A small population of introduced camels, dromedaries and Bactrians, wandered through Southwest United States after having been imported in the 1800s as part of the U.S. Camel Corps experiment. When the project ended, they were used as draft animals in mines and escaped or were released. Twenty-five U.S. camels were bought and imported to Canada during the Cariboo Gold Rush.

 

WIKIPEDIA

A camel is an even-toed ungulate within the genus Camelus, bearing distinctive fatty deposits known as "humps" on its back. The two surviving species of camel are the dromedary, or one-humped camel (C. dromedarius), which inhabits the Middle East and the Horn of Africa; and the bactrian, or two-humped camel (C. bactrianus), which inhabits Central Asia. Both species have been domesticated; they provide milk, meat, hair for textiles or goods such as felted pouches, and are working animals with tasks ranging from human transport to bearing loads.

 

The term "camel" is derived via Latin and Greek (camelus and κάμηλος kamēlos respectively) from Hebrew or Phoenician gāmāl.

 

"Camel" is also used more broadly to describe any of the six camel-like mammals in the family Camelidae: the two true camels and the four New World camelids: the llama, alpaca, guanaco, and vicuña of South America.

 

BIOLOGY

The average life expectancy of a camel is 40 to 50 years. A full-grown adult camel stands 1.85 m at the shoulder and 2.15 m at the hump. Camels can run at up to 65 km/h in short bursts and sustain speeds of up to 40 km/h. Bactrian camels weigh 300 to 1,000 kg and dromedaries 300 to 600 kg.

 

The male dromedary camel has in its throat an organ called a dulla, a large, inflatable sac he extrudes from his mouth when in rut to assert dominance and attract females. It resembles a long, swollen, pink tongue hanging out of the side of its mouth. Camels mate by having both male and female sitting on the ground, with the male mounting from behind. The male usually ejaculates three or four times within a single mating session. Camelids are the only ungulates to mate in a sitting position.

 

ECOLOGICAL AND BEHAVIORAL ADAPTIONS

Camels do not directly store water in their humps as was once commonly believed. The humps are actually reservoirs of fatty tissue: concentrating body fat in their humps minimizes the insulating effect fat would have if distributed over the rest of their bodies, helping camels survive in hot climates. When this tissue is metabolized, it yields more than one gram of water for every gram of fat processed. This fat metabolization, while releasing energy, causes water to evaporate from the lungs during respiration (as oxygen is required for the metabolic process): overall, there is a net decrease in water.

 

Camels have a series of physiological adaptations that allow them to withstand long periods of time without any external source of water. Unlike other mammals, their red blood cells are oval rather than circular in shape. This facilitates the flow of red blood cells during dehydration and makes them better at withstanding high osmotic variation without rupturing when drinking large amounts of water: a 600 kg camel can drink 200 L of water in three minutes.

 

Camels are able to withstand changes in body temperature and water consumption that would kill most other animals. Their temperature ranges from 34 °C at dawn and steadily increases to 40 °C by sunset, before they cool off at night again. Maintaining the brain temperature within certain limits is critical for animals; to assist this, camels have a rete mirabile, a complex of arteries and veins lying very close to each other which utilizes countercurrent blood flow to cool blood flowing to the brain. Camels rarely sweat, even when ambient temperatures reach 49 °C Any sweat that does occur evaporates at the skin level rather than at the surface of their coat; the heat of vaporization therefore comes from body heat rather than ambient heat. Camels can withstand losing 25% of their body weight to sweating, whereas most other mammals can withstand only about 12–14% dehydration before cardiac failure results from circulatory disturbance.

 

When the camel exhales, water vapor becomes trapped in their nostrils and is reabsorbed into the body as a means to conserve water. Camels eating green herbage can ingest sufficient moisture in milder conditions to maintain their bodies' hydrated state without the need for drinking.

 

The camels' thick coats insulate them from the intense heat radiated from desert sand; a shorn camel must sweat 50% more to avoid overheating. During the summer the coat becomes lighter in color, reflecting light as well as helping avoid sunburn. The camel's long legs help by keeping its body farther from the ground, which can heat up to 70 °C. Dromedaries have a pad of thick tissue over the sternum called the pedestal. When the animal lies down in a sternal recumbent position, the pedestal raises the body from the hot surface and allows cooling air to pass under the body.

 

Camels' mouths have a thick leathery lining, allowing them to chew thorny desert plants. Long eyelashes and ear hairs, together with nostrils that can close, form a barrier against sand. If sand gets lodged in their eyes, they can dislodge it using their transparent third eyelid. The camels' gait and widened feet help them move without sinking into the sand.

 

The kidneys and intestines of a camel are very efficient at reabsorbing water. Camel urine comes out as a thick syrup, and camel feces are so dry that they do not require drying when the Bedouins use them to fuel fires.

 

Camels' immune system differs from those of other mammals. Normally, the Y-shaped antibody molecules consist of two heavy (or long) chains along the length of the Y, and two light (or short) chains at each tip of the Y. Camels, in addition to these, also have antibodies made of only two heavy chains, a trait that makes them smaller and more durable. These "heavy-chain-only" antibodies, discovered in 1993, are thought to have developed 50 million years ago, after camelids split from ruminants and pigs.

 

GENETICS

The karyotypes of different camelid species have been studied earlier by many groups, but no agreement on chromosome nomenclature of camelids has been reached. A 2007 study flow sorted camel chromosomes, building on the fact that camels have 37 pairs of chromosomes (2n=74), and found that the karyotime consisted of one metacentric, three submetacentric, and 32 acrocentric autosomes. The Y is a small metacentric chromosome, while the X is a large metacentric chromosome.The hybrid camel, a hybrid between Bactrian and dromedary camels, has one hump, though it has an indentation 4–12 cm deep that divides the front from the back. The hybrid is 2.15 m at the shoulder and 2.32 m tall at the hump. It weighs an average of 650 kg and can carry around 400 to 450 kg, which is more than either the dromedary or Bactrian can. According to molecular data, the New World and Old World camelids diverged 11 million years ago. In spite of this, these species can still hybridize and produce fertile offspring. The cama is a camel–llama hybrid bred by scientists who wanted to see how closely related the parent species were. Scientists collected semen from a camel via an artificial vagina and inseminated a llama after stimulating ovulation with gonadotrophin injections. The cama has ears halfway between the length of camel and llama ears, no hump, longer legs than the llama, and partially cloven hooves. According to cama breeder Lulu Skidmore, cama have "the fleece of the llamas" and "the strength and patience of the camel". Like the mule, camas are sterile, despite both parents having the same number of chromosomes.

 

EVOLUTION

The earliest known camel, called Protylopus, lived in North America 40 to 50 million years ago (during the Eocene). It was about the size of a rabbit and lived in the open woodlands of what is now South Dakota. By 35 million years ago, the Poebrotherium was the size of a goat and had many more traits similar to camels and llamas. The hoofed Stenomylus, which walked on the tips of its toes, also existed around this time, and the long-necked Aepycamelus evolved in the Miocene.

 

The direct ancestor of all modern camels, Procamelus, existed in the upper Miocone and lower Pliocene. Around 3–5 million years ago, the North American Camelidae spread to South America via the Isthmus of Panama, where they gave rise to guanacos and related animals, and to Asia via the Bering land bridge. Surprising finds of fossil Paracamelus on Ellesmere Island beginning in 2006 in the high Canadian Arctic indicate the dromedary is descended from a larger, boreal browser whose hump may have evolved as an adaptation in a cold climate. This creature is estimated to have stood around nine feet tall.

 

The last camel native to North America was Camelops hesternus, which vanished along with horses, short-faced bears, mammoths and mastodons, ground sloths, sabertooth cats, and many other megafauna, coinciding with the migration of humans from Asia.

 

DOMESTICATION

Most camels surviving today are domesticated. Along with many other megafauna in North America, the original wild camels were wiped out during the spread of Native Americans from Asia into North America, 12,000 to 10,000 years ago. The only wild camels left are the Bactrian camels of the Gobi Desert.

 

Like the horse, before their extinction in their native land, camels spread across the Bering land bridge, moving the opposite direction from the Asian immigration to America, to survive in the Old World and eventually be domesticated and spread globally by humans.

 

Dromedaries may have first been domesticated by humans in Somalia and southern Arabia, around 3,000 BC, the Bactrian in central Asia around 2,500 BC, as at Shar-i Sokhta (also known as the Burnt City), Iran.

 

Discussions concerning camel domestication in Mesopotamia are often related to mentions of camels in the Hebrew Bible. The International Standard Bible Encyclopedia: E-J for instance mentions that "In accord with patriarchal traditions, cylinder seals from Middle Bronze Age Mesopotamia showed riders seated upon camels."

 

Martin Heide's 2010 work on the domestication of the camel tentatively concludes that the bactrian camel was domesticated by at least the middle of the third millennium somewhere east of the Zagros Mountains, then moving into Mesopotamia, and suggests that mentions of camels "in the patriarchal narratives may refer, at least in some places, to the Bactrian camel." while noting that the camel is not mentioned in relationship to Canaan.

 

Recent excavations in the Timna Valley by Lidar Sapir-Hen and Erez Ben-Yosef discovered what may be the earliest domestic camel bones found in Israel or even outside the Arabian peninsula, dating to around 930 BCE. This garnered considerable media coverage as it was described as evidence that the stories of Abraham, Joseph, Jacob and Esau were written after this time.

 

The existence of camels in Mesopotamia but not in Israel is not a new idea. According to an article in Time Magazine, the historian Richard Bulliet wrote in his 1975 book "The Camel and the Wheel" that "the occasional mention of camels in patriarchal narratives does not mean that the domestic camels were common in the Holy Land at that period." The archaeologist William F. Albright writing even earlier saw camels in the Bible as an anachronism. The official report by Sapir-Hen and Ben-Joseph notes that "The introduction of the dromedary camel (Camelus dromedarius) as a pack animal to the southern Levant signifies a crucial juncture in the history of the region; it substantially facilitated trade across the vast deserts of Arabia, promoting both economic and social change (e.g., Kohler 1984; Borowski 1998: 112-116; Jasmin 2005). This, together with the depiction of camels in the Patriarchal narrative, has generated extensive discussion regarding the date of the earliest domestic camel in the southern Levant (and beyond) (e.g., Albright 1949: 207; Epstein 1971: 558-584; Bulliet 1975; Zarins 1989; Köhler-Rollefson 1993; Uerpmann and Uerpmann 2002; Jasmin 2005; 2006; Heide 2010; Rosen and Saidel 2010; Grigson 2012). Most scholars today agree that the dromedary was exploited as a pack animal sometime in the early Iron Age (not before the 12th century BCE)" and concludes that "Current data from copper smelting sites of the Aravah Valley enable us to pinpoint the introduction of domestic camels to the southern Levant more precisely based on stratigraphic contexts associated with an extensive suite of radiocarbon dates. The data indicate that this event occurred not earlier than the last third of the 10th century BCE and most probably during this time. The coincidence of this event with a major reorganization of the copper industry of the region - attributed to the results of the campaign of Pharaoh Shoshenq I - raises the possibility that the two were connected, and that camels were introduced as part of the efforts to improve efficiency by facilitating trade."

 

MILITARY USES

By at least 1200 BC, the first camel saddles had appeared, and Bactrian camels could be ridden. The first saddle was positioned to the back of the camel, and control of the Bactrian camel was exercised by means of a stick. However, between 500–100 BC, Bactrian camels attained military use. New saddles, which were inflexible and bent, were put over the humps and divided the rider's weight over the animal. In the seventh century BC, the military Arabian saddle appeared, which improved the saddle design again slightly.

 

Camel cavalries have been used in wars throughout Africa, the Middle East, and into modern-day Border Security Force of India (though as of July 2012, the BSF has planned the replacement of camels with ATVs). The first use of camel cavalries was in the Battle of Qarqar in 853 BC. Armies have also used camels as freight animals instead of horses and mules.

In the East Roman Empire, the Romans used auxiliary forces known as dromedarii, whom they recruited in desert provinces. The camels were used mostly in combat because of their ability to scare off horses at close ranges (horses are afraid of the camels' scent), a quality famously employed by the Achaemenid Persians when fighting Lydia in the Battle of Thymbra.

 

19th and 20th CENTURIES

The United States Army established the U.S. Camel Corps, which was stationed in California in the late 19th century. One may still see stables at the Benicia Arsenal in Benicia, California, where they nowadays serve as the Benicia Historical Museum. Though the experimental use of camels was seen as a success (John B. Floyd, Secretary of War in 1858, recommended that funds be allocated towards obtaining a thousand more camels), the outbreak of the American Civil War saw the end of the Camel Corps: Texas became part of the Confederacy, and most of the camels were left to wander away into the desert.

 

France created a méhariste camel corps in 1912 as part of the Armée d'Afrique in the Sahara in order to exercise greater control over the camel-riding Tuareg and Arab insurgents, as previous efforts to defeat them on foot had failed. The camel-mounted units remained in service until the end of French rule over Algeria in 1962.

 

In 1916, the British created the Imperial Camel Corps. It was originally used to fight the Senussi, but was later used in the Sinai and Palestine Campaign in World War I. The Imperial Camel Corps comprised infantrymen mounted on camels for movement across desert, though they dismounted at battle sites and fought on foot. After July 1918, the Corps began to become run down, receiving no new reinforcements, and was formally disbanded in 1919.

 

In World War I, the British Army also created the Egyptian Camel Transport Corps, which consisted of a group of Egyptian camel drivers and their camels. The Corps supported British war operations in Sinai, Palestine, and Syria by transporting supplies to the troops.

 

The Somaliland Camel Corps was created by colonial authorities in British Somaliland in 1912; it was disbanded in 1944.

 

Bactrian camels were used by Romanian forces during World War II in the Caucasian region.

 

The Bikaner Camel Corps of British India fought alongside the British Indian Army in World Wars I and II.

 

The Tropas Nómadas (Nomad Troops) were an auxiliary regiment of Sahrawi tribesmen serving in the colonial army in Spanish Sahara (today Western Sahara). Operational from the 1930s until the end of the Spanish presence in the territory in 1975, the Tropas Nómadas were equipped with small arms and led by Spanish officers. The unit guarded outposts and sometimes conducted patrols on camelback.

 

FOOD USES

DAIRY

Camel milk is a staple food of desert nomad tribes and is sometimes considered a meal in and of itself; a nomad can live on only camel milk for almost a month. Camel milk is rich in vitamins, minerals, proteins, and immunoglobulins; compared to cow's milk, it is lower in fat and lactose, and higher in potassium, iron, and vitamin C. Bedouins believe the curative powers of camel milk are enhanced if the camel's diet consists of certain desert plants. Camel milk can readily be made into a drinkable yogurt, as well as butter or cheese, though the yields for cheese tend to be low.

 

Camel milk cannot be made into butter by the traditional churning method. It can be made if it is soured first, churned, and a clarifying agent is then added. Until recently, camel milk could not be made into camel cheese because rennet was unable to coagulate the milk proteins to allow the collection of curds. Developing less wasteful uses of the milk, the FAO commissioned Professor J.P. Ramet of the École Nationale Supérieure d'Agronomie et des Industries Alimentaires, who was able to produce curdling by the addition of calcium phosphate and vegetable rennet. The cheese produced from this process has low levels of cholesterol and is easy to digest, even for the lactose intolerant. The sale of camel cheese is limited owing to the small output of the few dairies producing camel cheese and the absence of camel cheese in local (West African) markets. Cheese imports from countries that traditionally breed camels are difficult to obtain due to restrictions on dairy imports from these regions.

 

Additionally, camel milk has been made into ice cream in a Netherlands camel farm.

 

MEAT

A camel carcass can provide a substantial amount of meat. The male dromedary carcass can weigh 300–400 kg, while the carcass of a male Bactrian can weigh up to 650 kg. The carcass of a female dromedary weighs less than the male, ranging between 250 and 350 kg. The brisket, ribs and loin are among the preferred parts, and the hump is considered a delicacy. The hump contains "white and sickly fat", which can be used to make the khli (preserved meat) of mutton, beef, or camel. Camel meat is reported to taste like coarse beef, but older camels can prove to be very tough, although camel meat becomes more tender the more it is cooked. The Abu Dhabi Officers' Club serves a camel burger mixed with beef or lamb fat in order to improve the texture and taste. In Karachi, Pakistan, some restaurants prepare nihari from camel meat. In Syria and Egypt, there are specialist camel butchers.

 

Camel meat has been eaten for centuries. It has been recorded by ancient Greek writers as an available dish at banquets in ancient Persia, usually roasted whole. The ancient Roman emperor Heliogabalus enjoyed camel's heel.[31] Camel meat is still eaten in certain regions, including Eritrea, Somalia, Djibouti, Saudi Arabia, Egypt, Syria, Libya, Sudan, Ethiopia, Kazakhstan, and other arid regions where alternative forms of protein may be limited or where camel meat has had a long cultural history. Camel blood is also consumable, as is the case among pastoralists in northern Kenya, where camel blood is drunk with milk and acts as a key source of iron, vitamin D, salts and minerals. Camel meat is also occasionally found in Australian cuisine: for example, a camel lasagna is available in Alice Springs.

 

A 2005 report issued jointly by the Saudi Ministry of Health and the United States Centers for Disease Control and Prevention details cases of human bubonic plague resulting from the ingestion of raw camel liver.

 

RELIGION

ISLAM

Camel meat is halal for Muslims. However, according to some Islamic schools of thought, a state of impurity is brought on by the consumption of it. Consequently, these schools hold that Muslims must perform wudhu (ablution) before the next time they pray after eating camel meat.

 

Also, some Islamic schools of thought consider it haraam for a Muslim to perform salat in places where camels lie, as it is said to be a dwelling place of shaytan.

 

According to Suni ahadith collected by Bukhari and Muslim, Muhammad ordered a certain group of people to drink camel milk and urine as a medicine. However, according to Abū Ḥanīfa, the drinking of camel urine, while not forbidden (ḥaram), is disliked (makrūh) in Islam.

 

Camel urine is sold as traditional medicine in shops in Saudi Arabia. The Sunni scholar Muhammad Al-Munajjid's IslamQA.info recommends camel urine as beneficial to curing certain diseases and to human health and cited Ahadith and scientific studies as justification. King Abdulaziz University researcher Dr. Faten Abdel-Rajman Khorshid has claimed that cancer and other diseases could be treated with camel urine as recommended by the Prophet. The United Arab Emirates "Arab Science and Technology Foundation" reported that cancer could be treated with camel urine. Camel urine was also prescribed as a treatment by Zaghloul El-Naggar, a religious scholar. Camel urine is the only urine which is permitted to be drunk according to the Hanbali madhhab of Sunni Islam. The World Health Organization said that camel urine consumption may be a factor in the spread of the MERS virus in Saudi Arabia. The Gulf Times writer Ahmad al-Sayyed wrote that various afflictions are dealt with camel urine by people. Dandruff, scalp ailments, hair, sores, and wounds were recommended to be treated with camel urine by Ibn Sina. Arab American University Professor of Cell Biology and Immunology Bashar Saad (PhD) along with Omar Said (PhD) wrote that medicinal use of camel urine is approved of and promoted by Islam since it was recommended by the prophet. A test on mice found that cytotoxic effects similar to cyclophosphamide were induced on bone marrow by camel urine. Besides for consumption as a medicinal drink, camel urine is believed to help treat hair. Bites from insects were warded off with camel urine, which also served as a shampoo. Camel urine is also used to help treat asthma, infections, treat hair, sores, hair growth and boost libido.

 

Several Sunni Ahadith mention drinking camel urine. Some Shia criticized Wahhabis for camel urine treatment. Shia scholars also recommend the medicinal use of camel urine. Shia Hadith on Imam Ja'far al-Sadiq reported that shortness of breath (asthma) was treated with camel urine. Shia Marja Ayatollah Sistani said that for medicinal purposes only, sheep, cow, and camel urine can be drunk.

 

JUDAISM

According to Jewish tradition, camel meat and milk are not kosher. Camels possess only one of the two kosher criteria; although they chew their cud, they do not possess cloven hooves:

 

Nevertheless these shall ye not eat of them that only chew the cud, or of them that only part the hoof: the camel, because he cheweth the cud but parteth not the hoof, he is unclean unto you.

— Leviticus 11:4

 

DISTRIBUTION ANDNUMBERS

There are around 14 million camels alive as of 2010, with 90% being dromedaries. Dromedaries alive today are domesticated animals (mostly living in the Horn of Africa, the Sahel, Maghreb, Middle East and South Asia). The Horn region alone has the largest concentration of camels in the world, where the dromedaries constitute an important part of local nomadic life. They provide nomadic people in Somalia (which has the largest camel herd in the world) and Ethiopia with milk, food, and transportation.

 

The Bactrian camel is, as of 2010, reduced to an estimated 1.4 million animals, most of which are domesticated. The only truly wild Bactrian camels, of which there are less than one thousand, are thought to inhabit the Gobi Desert in China and Mongolia.

 

The largest population of feral camels is in Australia. There are around 700,000 feral dromedary camels in central parts of Australia, descended from those introduced as a method of transport in the 19th and early 20th centuries. This population is growing about 8% per year. Representatives of the Australian government have culled more than 100,000 of the animals in part because the camels use too much of the limited resources needed by sheep farmers.

 

A small population of introduced camels, dromedaries and Bactrians, wandered through Southwest United States after having been imported in the 1800s as part of the U.S. Camel Corps experiment. When the project ended, they were used as draft animals in mines and escaped or were released. Twenty-five U.S. camels were bought and imported to Canada during the Cariboo Gold Rush.

 

WIKIPEDIA

A camel is an even-toed ungulate within the genus Camelus, bearing distinctive fatty deposits known as "humps" on its back. The two surviving species of camel are the dromedary, or one-humped camel (C. dromedarius), which inhabits the Middle East and the Horn of Africa; and the bactrian, or two-humped camel (C. bactrianus), which inhabits Central Asia. Both species have been domesticated; they provide milk, meat, hair for textiles or goods such as felted pouches, and are working animals with tasks ranging from human transport to bearing loads.

 

The term "camel" is derived via Latin and Greek (camelus and κάμηλος kamēlos respectively) from Hebrew or Phoenician gāmāl.

 

"Camel" is also used more broadly to describe any of the six camel-like mammals in the family Camelidae: the two true camels and the four New World camelids: the llama, alpaca, guanaco, and vicuña of South America.

 

BIOLOGY

The average life expectancy of a camel is 40 to 50 years. A full-grown adult camel stands 1.85 m at the shoulder and 2.15 m at the hump. Camels can run at up to 65 km/h in short bursts and sustain speeds of up to 40 km/h. Bactrian camels weigh 300 to 1,000 kg and dromedaries 300 to 600 kg.

 

The male dromedary camel has in its throat an organ called a dulla, a large, inflatable sac he extrudes from his mouth when in rut to assert dominance and attract females. It resembles a long, swollen, pink tongue hanging out of the side of its mouth. Camels mate by having both male and female sitting on the ground, with the male mounting from behind. The male usually ejaculates three or four times within a single mating session. Camelids are the only ungulates to mate in a sitting position.

 

ECOLOGICAL AND BEHAVIORAL ADAPTIONS

Camels do not directly store water in their humps as was once commonly believed. The humps are actually reservoirs of fatty tissue: concentrating body fat in their humps minimizes the insulating effect fat would have if distributed over the rest of their bodies, helping camels survive in hot climates. When this tissue is metabolized, it yields more than one gram of water for every gram of fat processed. This fat metabolization, while releasing energy, causes water to evaporate from the lungs during respiration (as oxygen is required for the metabolic process): overall, there is a net decrease in water.

 

Camels have a series of physiological adaptations that allow them to withstand long periods of time without any external source of water. Unlike other mammals, their red blood cells are oval rather than circular in shape. This facilitates the flow of red blood cells during dehydration and makes them better at withstanding high osmotic variation without rupturing when drinking large amounts of water: a 600 kg camel can drink 200 L of water in three minutes.

 

Camels are able to withstand changes in body temperature and water consumption that would kill most other animals. Their temperature ranges from 34 °C at dawn and steadily increases to 40 °C by sunset, before they cool off at night again. Maintaining the brain temperature within certain limits is critical for animals; to assist this, camels have a rete mirabile, a complex of arteries and veins lying very close to each other which utilizes countercurrent blood flow to cool blood flowing to the brain. Camels rarely sweat, even when ambient temperatures reach 49 °C Any sweat that does occur evaporates at the skin level rather than at the surface of their coat; the heat of vaporization therefore comes from body heat rather than ambient heat. Camels can withstand losing 25% of their body weight to sweating, whereas most other mammals can withstand only about 12–14% dehydration before cardiac failure results from circulatory disturbance.

 

When the camel exhales, water vapor becomes trapped in their nostrils and is reabsorbed into the body as a means to conserve water. Camels eating green herbage can ingest sufficient moisture in milder conditions to maintain their bodies' hydrated state without the need for drinking.

 

The camels' thick coats insulate them from the intense heat radiated from desert sand; a shorn camel must sweat 50% more to avoid overheating. During the summer the coat becomes lighter in color, reflecting light as well as helping avoid sunburn. The camel's long legs help by keeping its body farther from the ground, which can heat up to 70 °C. Dromedaries have a pad of thick tissue over the sternum called the pedestal. When the animal lies down in a sternal recumbent position, the pedestal raises the body from the hot surface and allows cooling air to pass under the body.

 

Camels' mouths have a thick leathery lining, allowing them to chew thorny desert plants. Long eyelashes and ear hairs, together with nostrils that can close, form a barrier against sand. If sand gets lodged in their eyes, they can dislodge it using their transparent third eyelid. The camels' gait and widened feet help them move without sinking into the sand.

 

The kidneys and intestines of a camel are very efficient at reabsorbing water. Camel urine comes out as a thick syrup, and camel feces are so dry that they do not require drying when the Bedouins use them to fuel fires.

 

Camels' immune system differs from those of other mammals. Normally, the Y-shaped antibody molecules consist of two heavy (or long) chains along the length of the Y, and two light (or short) chains at each tip of the Y. Camels, in addition to these, also have antibodies made of only two heavy chains, a trait that makes them smaller and more durable. These "heavy-chain-only" antibodies, discovered in 1993, are thought to have developed 50 million years ago, after camelids split from ruminants and pigs.

 

GENETICS

The karyotypes of different camelid species have been studied earlier by many groups, but no agreement on chromosome nomenclature of camelids has been reached. A 2007 study flow sorted camel chromosomes, building on the fact that camels have 37 pairs of chromosomes (2n=74), and found that the karyotime consisted of one metacentric, three submetacentric, and 32 acrocentric autosomes. The Y is a small metacentric chromosome, while the X is a large metacentric chromosome.The hybrid camel, a hybrid between Bactrian and dromedary camels, has one hump, though it has an indentation 4–12 cm deep that divides the front from the back. The hybrid is 2.15 m at the shoulder and 2.32 m tall at the hump. It weighs an average of 650 kg and can carry around 400 to 450 kg, which is more than either the dromedary or Bactrian can. According to molecular data, the New World and Old World camelids diverged 11 million years ago. In spite of this, these species can still hybridize and produce fertile offspring. The cama is a camel–llama hybrid bred by scientists who wanted to see how closely related the parent species were. Scientists collected semen from a camel via an artificial vagina and inseminated a llama after stimulating ovulation with gonadotrophin injections. The cama has ears halfway between the length of camel and llama ears, no hump, longer legs than the llama, and partially cloven hooves. According to cama breeder Lulu Skidmore, cama have "the fleece of the llamas" and "the strength and patience of the camel". Like the mule, camas are sterile, despite both parents having the same number of chromosomes.

 

EVOLUTION

The earliest known camel, called Protylopus, lived in North America 40 to 50 million years ago (during the Eocene). It was about the size of a rabbit and lived in the open woodlands of what is now South Dakota. By 35 million years ago, the Poebrotherium was the size of a goat and had many more traits similar to camels and llamas. The hoofed Stenomylus, which walked on the tips of its toes, also existed around this time, and the long-necked Aepycamelus evolved in the Miocene.

 

The direct ancestor of all modern camels, Procamelus, existed in the upper Miocone and lower Pliocene. Around 3–5 million years ago, the North American Camelidae spread to South America via the Isthmus of Panama, where they gave rise to guanacos and related animals, and to Asia via the Bering land bridge. Surprising finds of fossil Paracamelus on Ellesmere Island beginning in 2006 in the high Canadian Arctic indicate the dromedary is descended from a larger, boreal browser whose hump may have evolved as an adaptation in a cold climate. This creature is estimated to have stood around nine feet tall.

 

The last camel native to North America was Camelops hesternus, which vanished along with horses, short-faced bears, mammoths and mastodons, ground sloths, sabertooth cats, and many other megafauna, coinciding with the migration of humans from Asia.

 

DOMESTICATION

Most camels surviving today are domesticated. Along with many other megafauna in North America, the original wild camels were wiped out during the spread of Native Americans from Asia into North America, 12,000 to 10,000 years ago. The only wild camels left are the Bactrian camels of the Gobi Desert.

 

Like the horse, before their extinction in their native land, camels spread across the Bering land bridge, moving the opposite direction from the Asian immigration to America, to survive in the Old World and eventually be domesticated and spread globally by humans.

 

Dromedaries may have first been domesticated by humans in Somalia and southern Arabia, around 3,000 BC, the Bactrian in central Asia around 2,500 BC, as at Shar-i Sokhta (also known as the Burnt City), Iran.

 

Discussions concerning camel domestication in Mesopotamia are often related to mentions of camels in the Hebrew Bible. The International Standard Bible Encyclopedia: E-J for instance mentions that "In accord with patriarchal traditions, cylinder seals from Middle Bronze Age Mesopotamia showed riders seated upon camels."

 

Martin Heide's 2010 work on the domestication of the camel tentatively concludes that the bactrian camel was domesticated by at least the middle of the third millennium somewhere east of the Zagros Mountains, then moving into Mesopotamia, and suggests that mentions of camels "in the patriarchal narratives may refer, at least in some places, to the Bactrian camel." while noting that the camel is not mentioned in relationship to Canaan.

 

Recent excavations in the Timna Valley by Lidar Sapir-Hen and Erez Ben-Yosef discovered what may be the earliest domestic camel bones found in Israel or even outside the Arabian peninsula, dating to around 930 BCE. This garnered considerable media coverage as it was described as evidence that the stories of Abraham, Joseph, Jacob and Esau were written after this time.

 

The existence of camels in Mesopotamia but not in Israel is not a new idea. According to an article in Time Magazine, the historian Richard Bulliet wrote in his 1975 book "The Camel and the Wheel" that "the occasional mention of camels in patriarchal narratives does not mean that the domestic camels were common in the Holy Land at that period." The archaeologist William F. Albright writing even earlier saw camels in the Bible as an anachronism. The official report by Sapir-Hen and Ben-Joseph notes that "The introduction of the dromedary camel (Camelus dromedarius) as a pack animal to the southern Levant signifies a crucial juncture in the history of the region; it substantially facilitated trade across the vast deserts of Arabia, promoting both economic and social change (e.g., Kohler 1984; Borowski 1998: 112-116; Jasmin 2005). This, together with the depiction of camels in the Patriarchal narrative, has generated extensive discussion regarding the date of the earliest domestic camel in the southern Levant (and beyond) (e.g., Albright 1949: 207; Epstein 1971: 558-584; Bulliet 1975; Zarins 1989; Köhler-Rollefson 1993; Uerpmann and Uerpmann 2002; Jasmin 2005; 2006; Heide 2010; Rosen and Saidel 2010; Grigson 2012). Most scholars today agree that the dromedary was exploited as a pack animal sometime in the early Iron Age (not before the 12th century BCE)" and concludes that "Current data from copper smelting sites of the Aravah Valley enable us to pinpoint the introduction of domestic camels to the southern Levant more precisely based on stratigraphic contexts associated with an extensive suite of radiocarbon dates. The data indicate that this event occurred not earlier than the last third of the 10th century BCE and most probably during this time. The coincidence of this event with a major reorganization of the copper industry of the region - attributed to the results of the campaign of Pharaoh Shoshenq I - raises the possibility that the two were connected, and that camels were introduced as part of the efforts to improve efficiency by facilitating trade."

 

MILITARY USES

By at least 1200 BC, the first camel saddles had appeared, and Bactrian camels could be ridden. The first saddle was positioned to the back of the camel, and control of the Bactrian camel was exercised by means of a stick. However, between 500–100 BC, Bactrian camels attained military use. New saddles, which were inflexible and bent, were put over the humps and divided the rider's weight over the animal. In the seventh century BC, the military Arabian saddle appeared, which improved the saddle design again slightly.

 

Camel cavalries have been used in wars throughout Africa, the Middle East, and into modern-day Border Security Force of India (though as of July 2012, the BSF has planned the replacement of camels with ATVs). The first use of camel cavalries was in the Battle of Qarqar in 853 BC. Armies have also used camels as freight animals instead of horses and mules.

In the East Roman Empire, the Romans used auxiliary forces known as dromedarii, whom they recruited in desert provinces. The camels were used mostly in combat because of their ability to scare off horses at close ranges (horses are afraid of the camels' scent), a quality famously employed by the Achaemenid Persians when fighting Lydia in the Battle of Thymbra.

 

19th and 20th CENTURIES

The United States Army established the U.S. Camel Corps, which was stationed in California in the late 19th century. One may still see stables at the Benicia Arsenal in Benicia, California, where they nowadays serve as the Benicia Historical Museum. Though the experimental use of camels was seen as a success (John B. Floyd, Secretary of War in 1858, recommended that funds be allocated towards obtaining a thousand more camels), the outbreak of the American Civil War saw the end of the Camel Corps: Texas became part of the Confederacy, and most of the camels were left to wander away into the desert.

 

France created a méhariste camel corps in 1912 as part of the Armée d'Afrique in the Sahara in order to exercise greater control over the camel-riding Tuareg and Arab insurgents, as previous efforts to defeat them on foot had failed. The camel-mounted units remained in service until the end of French rule over Algeria in 1962.

 

In 1916, the British created the Imperial Camel Corps. It was originally used to fight the Senussi, but was later used in the Sinai and Palestine Campaign in World War I. The Imperial Camel Corps comprised infantrymen mounted on camels for movement across desert, though they dismounted at battle sites and fought on foot. After July 1918, the Corps began to become run down, receiving no new reinforcements, and was formally disbanded in 1919.

 

In World War I, the British Army also created the Egyptian Camel Transport Corps, which consisted of a group of Egyptian camel drivers and their camels. The Corps supported British war operations in Sinai, Palestine, and Syria by transporting supplies to the troops.

 

The Somaliland Camel Corps was created by colonial authorities in British Somaliland in 1912; it was disbanded in 1944.

 

Bactrian camels were used by Romanian forces during World War II in the Caucasian region.

 

The Bikaner Camel Corps of British India fought alongside the British Indian Army in World Wars I and II.

 

The Tropas Nómadas (Nomad Troops) were an auxiliary regiment of Sahrawi tribesmen serving in the colonial army in Spanish Sahara (today Western Sahara). Operational from the 1930s until the end of the Spanish presence in the territory in 1975, the Tropas Nómadas were equipped with small arms and led by Spanish officers. The unit guarded outposts and sometimes conducted patrols on camelback.

 

FOOD USES

DAIRY

Camel milk is a staple food of desert nomad tribes and is sometimes considered a meal in and of itself; a nomad can live on only camel milk for almost a month. Camel milk is rich in vitamins, minerals, proteins, and immunoglobulins; compared to cow's milk, it is lower in fat and lactose, and higher in potassium, iron, and vitamin C. Bedouins believe the curative powers of camel milk are enhanced if the camel's diet consists of certain desert plants. Camel milk can readily be made into a drinkable yogurt, as well as butter or cheese, though the yields for cheese tend to be low.

 

Camel milk cannot be made into butter by the traditional churning method. It can be made if it is soured first, churned, and a clarifying agent is then added. Until recently, camel milk could not be made into camel cheese because rennet was unable to coagulate the milk proteins to allow the collection of curds. Developing less wasteful uses of the milk, the FAO commissioned Professor J.P. Ramet of the École Nationale Supérieure d'Agronomie et des Industries Alimentaires, who was able to produce curdling by the addition of calcium phosphate and vegetable rennet. The cheese produced from this process has low levels of cholesterol and is easy to digest, even for the lactose intolerant. The sale of camel cheese is limited owing to the small output of the few dairies producing camel cheese and the absence of camel cheese in local (West African) markets. Cheese imports from countries that traditionally breed camels are difficult to obtain due to restrictions on dairy imports from these regions.

 

Additionally, camel milk has been made into ice cream in a Netherlands camel farm.

 

MEAT

A camel carcass can provide a substantial amount of meat. The male dromedary carcass can weigh 300–400 kg, while the carcass of a male Bactrian can weigh up to 650 kg. The carcass of a female dromedary weighs less than the male, ranging between 250 and 350 kg. The brisket, ribs and loin are among the preferred parts, and the hump is considered a delicacy. The hump contains "white and sickly fat", which can be used to make the khli (preserved meat) of mutton, beef, or camel. Camel meat is reported to taste like coarse beef, but older camels can prove to be very tough, although camel meat becomes more tender the more it is cooked. The Abu Dhabi Officers' Club serves a camel burger mixed with beef or lamb fat in order to improve the texture and taste. In Karachi, Pakistan, some restaurants prepare nihari from camel meat. In Syria and Egypt, there are specialist camel butchers.

 

Camel meat has been eaten for centuries. It has been recorded by ancient Greek writers as an available dish at banquets in ancient Persia, usually roasted whole. The ancient Roman emperor Heliogabalus enjoyed camel's heel.[31] Camel meat is still eaten in certain regions, including Eritrea, Somalia, Djibouti, Saudi Arabia, Egypt, Syria, Libya, Sudan, Ethiopia, Kazakhstan, and other arid regions where alternative forms of protein may be limited or where camel meat has had a long cultural history. Camel blood is also consumable, as is the case among pastoralists in northern Kenya, where camel blood is drunk with milk and acts as a key source of iron, vitamin D, salts and minerals. Camel meat is also occasionally found in Australian cuisine: for example, a camel lasagna is available in Alice Springs.

 

A 2005 report issued jointly by the Saudi Ministry of Health and the United States Centers for Disease Control and Prevention details cases of human bubonic plague resulting from the ingestion of raw camel liver.

 

RELIGION

ISLAM

Camel meat is halal for Muslims. However, according to some Islamic schools of thought, a state of impurity is brought on by the consumption of it. Consequently, these schools hold that Muslims must perform wudhu (ablution) before the next time they pray after eating camel meat.

 

Also, some Islamic schools of thought consider it haraam for a Muslim to perform salat in places where camels lie, as it is said to be a dwelling place of shaytan.

 

According to Suni ahadith collected by Bukhari and Muslim, Muhammad ordered a certain group of people to drink camel milk and urine as a medicine. However, according to Abū Ḥanīfa, the drinking of camel urine, while not forbidden (ḥaram), is disliked (makrūh) in Islam.

 

Camel urine is sold as traditional medicine in shops in Saudi Arabia. The Sunni scholar Muhammad Al-Munajjid's IslamQA.info recommends camel urine as beneficial to curing certain diseases and to human health and cited Ahadith and scientific studies as justification. King Abdulaziz University researcher Dr. Faten Abdel-Rajman Khorshid has claimed that cancer and other diseases could be treated with camel urine as recommended by the Prophet. The United Arab Emirates "Arab Science and Technology Foundation" reported that cancer could be treated with camel urine. Camel urine was also prescribed as a treatment by Zaghloul El-Naggar, a religious scholar. Camel urine is the only urine which is permitted to be drunk according to the Hanbali madhhab of Sunni Islam. The World Health Organization said that camel urine consumption may be a factor in the spread of the MERS virus in Saudi Arabia. The Gulf Times writer Ahmad al-Sayyed wrote that various afflictions are dealt with camel urine by people. Dandruff, scalp ailments, hair, sores, and wounds were recommended to be treated with camel urine by Ibn Sina. Arab American University Professor of Cell Biology and Immunology Bashar Saad (PhD) along with Omar Said (PhD) wrote that medicinal use of camel urine is approved of and promoted by Islam since it was recommended by the prophet. A test on mice found that cytotoxic effects similar to cyclophosphamide were induced on bone marrow by camel urine. Besides for consumption as a medicinal drink, camel urine is believed to help treat hair. Bites from insects were warded off with camel urine, which also served as a shampoo. Camel urine is also used to help treat asthma, infections, treat hair, sores, hair growth and boost libido.

 

Several Sunni Ahadith mention drinking camel urine. Some Shia criticized Wahhabis for camel urine treatment. Shia scholars also recommend the medicinal use of camel urine. Shia Hadith on Imam Ja'far al-Sadiq reported that shortness of breath (asthma) was treated with camel urine. Shia Marja Ayatollah Sistani said that for medicinal purposes only, sheep, cow, and camel urine can be drunk.

 

JUDAISM

According to Jewish tradition, camel meat and milk are not kosher. Camels possess only one of the two kosher criteria; although they chew their cud, they do not possess cloven hooves:

 

Nevertheless these shall ye not eat of them that only chew the cud, or of them that only part the hoof: the camel, because he cheweth the cud but parteth not the hoof, he is unclean unto you.

— Leviticus 11:4

 

DISTRIBUTION ANDNUMBERS

There are around 14 million camels alive as of 2010, with 90% being dromedaries. Dromedaries alive today are domesticated animals (mostly living in the Horn of Africa, the Sahel, Maghreb, Middle East and South Asia). The Horn region alone has the largest concentration of camels in the world, where the dromedaries constitute an important part of local nomadic life. They provide nomadic people in Somalia (which has the largest camel herd in the world) and Ethiopia with milk, food, and transportation.

 

The Bactrian camel is, as of 2010, reduced to an estimated 1.4 million animals, most of which are domesticated. The only truly wild Bactrian camels, of which there are less than one thousand, are thought to inhabit the Gobi Desert in China and Mongolia.

 

The largest population of feral camels is in Australia. There are around 700,000 feral dromedary camels in central parts of Australia, descended from those introduced as a method of transport in the 19th and early 20th centuries. This population is growing about 8% per year. Representatives of the Australian government have culled more than 100,000 of the animals in part because the camels use too much of the limited resources needed by sheep farmers.

 

A small population of introduced camels, dromedaries and Bactrians, wandered through Southwest United States after having been imported in the 1800s as part of the U.S. Camel Corps experiment. When the project ended, they were used as draft animals in mines and escaped or were released. Twenty-five U.S. camels were bought and imported to Canada during the Cariboo Gold Rush.

 

WIKIPEDIA

A camel is an even-toed ungulate within the genus Camelus, bearing distinctive fatty deposits known as "humps" on its back. The two surviving species of camel are the dromedary, or one-humped camel (C. dromedarius), which inhabits the Middle East and the Horn of Africa; and the bactrian, or two-humped camel (C. bactrianus), which inhabits Central Asia. Both species have been domesticated; they provide milk, meat, hair for textiles or goods such as felted pouches, and are working animals with tasks ranging from human transport to bearing loads.

 

The term "camel" is derived via Latin and Greek (camelus and κάμηλος kamēlos respectively) from Hebrew or Phoenician gāmāl.

 

"Camel" is also used more broadly to describe any of the six camel-like mammals in the family Camelidae: the two true camels and the four New World camelids: the llama, alpaca, guanaco, and vicuña of South America.

 

BIOLOGY

The average life expectancy of a camel is 40 to 50 years. A full-grown adult camel stands 1.85 m at the shoulder and 2.15 m at the hump. Camels can run at up to 65 km/h in short bursts and sustain speeds of up to 40 km/h. Bactrian camels weigh 300 to 1,000 kg and dromedaries 300 to 600 kg.

 

The male dromedary camel has in its throat an organ called a dulla, a large, inflatable sac he extrudes from his mouth when in rut to assert dominance and attract females. It resembles a long, swollen, pink tongue hanging out of the side of its mouth. Camels mate by having both male and female sitting on the ground, with the male mounting from behind. The male usually ejaculates three or four times within a single mating session. Camelids are the only ungulates to mate in a sitting position.

 

ECOLOGICAL AND BEHAVIORAL ADAPTIONS

Camels do not directly store water in their humps as was once commonly believed. The humps are actually reservoirs of fatty tissue: concentrating body fat in their humps minimizes the insulating effect fat would have if distributed over the rest of their bodies, helping camels survive in hot climates. When this tissue is metabolized, it yields more than one gram of water for every gram of fat processed. This fat metabolization, while releasing energy, causes water to evaporate from the lungs during respiration (as oxygen is required for the metabolic process): overall, there is a net decrease in water.

 

Camels have a series of physiological adaptations that allow them to withstand long periods of time without any external source of water. Unlike other mammals, their red blood cells are oval rather than circular in shape. This facilitates the flow of red blood cells during dehydration and makes them better at withstanding high osmotic variation without rupturing when drinking large amounts of water: a 600 kg camel can drink 200 L of water in three minutes.

 

Camels are able to withstand changes in body temperature and water consumption that would kill most other animals. Their temperature ranges from 34 °C at dawn and steadily increases to 40 °C by sunset, before they cool off at night again. Maintaining the brain temperature within certain limits is critical for animals; to assist this, camels have a rete mirabile, a complex of arteries and veins lying very close to each other which utilizes countercurrent blood flow to cool blood flowing to the brain. Camels rarely sweat, even when ambient temperatures reach 49 °C Any sweat that does occur evaporates at the skin level rather than at the surface of their coat; the heat of vaporization therefore comes from body heat rather than ambient heat. Camels can withstand losing 25% of their body weight to sweating, whereas most other mammals can withstand only about 12–14% dehydration before cardiac failure results from circulatory disturbance.

 

When the camel exhales, water vapor becomes trapped in their nostrils and is reabsorbed into the body as a means to conserve water. Camels eating green herbage can ingest sufficient moisture in milder conditions to maintain their bodies' hydrated state without the need for drinking.

 

The camels' thick coats insulate them from the intense heat radiated from desert sand; a shorn camel must sweat 50% more to avoid overheating. During the summer the coat becomes lighter in color, reflecting light as well as helping avoid sunburn. The camel's long legs help by keeping its body farther from the ground, which can heat up to 70 °C. Dromedaries have a pad of thick tissue over the sternum called the pedestal. When the animal lies down in a sternal recumbent position, the pedestal raises the body from the hot surface and allows cooling air to pass under the body.

 

Camels' mouths have a thick leathery lining, allowing them to chew thorny desert plants. Long eyelashes and ear hairs, together with nostrils that can close, form a barrier against sand. If sand gets lodged in their eyes, they can dislodge it using their transparent third eyelid. The camels' gait and widened feet help them move without sinking into the sand.

 

The kidneys and intestines of a camel are very efficient at reabsorbing water. Camel urine comes out as a thick syrup, and camel feces are so dry that they do not require drying when the Bedouins use them to fuel fires.

 

Camels' immune system differs from those of other mammals. Normally, the Y-shaped antibody molecules consist of two heavy (or long) chains along the length of the Y, and two light (or short) chains at each tip of the Y. Camels, in addition to these, also have antibodies made of only two heavy chains, a trait that makes them smaller and more durable. These "heavy-chain-only" antibodies, discovered in 1993, are thought to have developed 50 million years ago, after camelids split from ruminants and pigs.

 

GENETICS

The karyotypes of different camelid species have been studied earlier by many groups, but no agreement on chromosome nomenclature of camelids has been reached. A 2007 study flow sorted camel chromosomes, building on the fact that camels have 37 pairs of chromosomes (2n=74), and found that the karyotime consisted of one metacentric, three submetacentric, and 32 acrocentric autosomes. The Y is a small metacentric chromosome, while the X is a large metacentric chromosome.The hybrid camel, a hybrid between Bactrian and dromedary camels, has one hump, though it has an indentation 4–12 cm deep that divides the front from the back. The hybrid is 2.15 m at the shoulder and 2.32 m tall at the hump. It weighs an average of 650 kg and can carry around 400 to 450 kg, which is more than either the dromedary or Bactrian can. According to molecular data, the New World and Old World camelids diverged 11 million years ago. In spite of this, these species can still hybridize and produce fertile offspring. The cama is a camel–llama hybrid bred by scientists who wanted to see how closely related the parent species were. Scientists collected semen from a camel via an artificial vagina and inseminated a llama after stimulating ovulation with gonadotrophin injections. The cama has ears halfway between the length of camel and llama ears, no hump, longer legs than the llama, and partially cloven hooves. According to cama breeder Lulu Skidmore, cama have "the fleece of the llamas" and "the strength and patience of the camel". Like the mule, camas are sterile, despite both parents having the same number of chromosomes.

 

EVOLUTION

The earliest known camel, called Protylopus, lived in North America 40 to 50 million years ago (during the Eocene). It was about the size of a rabbit and lived in the open woodlands of what is now South Dakota. By 35 million years ago, the Poebrotherium was the size of a goat and had many more traits similar to camels and llamas. The hoofed Stenomylus, which walked on the tips of its toes, also existed around this time, and the long-necked Aepycamelus evolved in the Miocene.

 

The direct ancestor of all modern camels, Procamelus, existed in the upper Miocone and lower Pliocene. Around 3–5 million years ago, the North American Camelidae spread to South America via the Isthmus of Panama, where they gave rise to guanacos and related animals, and to Asia via the Bering land bridge. Surprising finds of fossil Paracamelus on Ellesmere Island beginning in 2006 in the high Canadian Arctic indicate the dromedary is descended from a larger, boreal browser whose hump may have evolved as an adaptation in a cold climate. This creature is estimated to have stood around nine feet tall.

 

The last camel native to North America was Camelops hesternus, which vanished along with horses, short-faced bears, mammoths and mastodons, ground sloths, sabertooth cats, and many other megafauna, coinciding with the migration of humans from Asia.

 

DOMESTICATION

Most camels surviving today are domesticated. Along with many other megafauna in North America, the original wild camels were wiped out during the spread of Native Americans from Asia into North America, 12,000 to 10,000 years ago. The only wild camels left are the Bactrian camels of the Gobi Desert.

 

Like the horse, before their extinction in their native land, camels spread across the Bering land bridge, moving the opposite direction from the Asian immigration to America, to survive in the Old World and eventually be domesticated and spread globally by humans.

 

Dromedaries may have first been domesticated by humans in Somalia and southern Arabia, around 3,000 BC, the Bactrian in central Asia around 2,500 BC, as at Shar-i Sokhta (also known as the Burnt City), Iran.

 

Discussions concerning camel domestication in Mesopotamia are often related to mentions of camels in the Hebrew Bible. The International Standard Bible Encyclopedia: E-J for instance mentions that "In accord with patriarchal traditions, cylinder seals from Middle Bronze Age Mesopotamia showed riders seated upon camels."

 

Martin Heide's 2010 work on the domestication of the camel tentatively concludes that the bactrian camel was domesticated by at least the middle of the third millennium somewhere east of the Zagros Mountains, then moving into Mesopotamia, and suggests that mentions of camels "in the patriarchal narratives may refer, at least in some places, to the Bactrian camel." while noting that the camel is not mentioned in relationship to Canaan.

 

Recent excavations in the Timna Valley by Lidar Sapir-Hen and Erez Ben-Yosef discovered what may be the earliest domestic camel bones found in Israel or even outside the Arabian peninsula, dating to around 930 BCE. This garnered considerable media coverage as it was described as evidence that the stories of Abraham, Joseph, Jacob and Esau were written after this time.

 

The existence of camels in Mesopotamia but not in Israel is not a new idea. According to an article in Time Magazine, the historian Richard Bulliet wrote in his 1975 book "The Camel and the Wheel" that "the occasional mention of camels in patriarchal narratives does not mean that the domestic camels were common in the Holy Land at that period." The archaeologist William F. Albright writing even earlier saw camels in the Bible as an anachronism. The official report by Sapir-Hen and Ben-Joseph notes that "The introduction of the dromedary camel (Camelus dromedarius) as a pack animal to the southern Levant signifies a crucial juncture in the history of the region; it substantially facilitated trade across the vast deserts of Arabia, promoting both economic and social change (e.g., Kohler 1984; Borowski 1998: 112-116; Jasmin 2005). This, together with the depiction of camels in the Patriarchal narrative, has generated extensive discussion regarding the date of the earliest domestic camel in the southern Levant (and beyond) (e.g., Albright 1949: 207; Epstein 1971: 558-584; Bulliet 1975; Zarins 1989; Köhler-Rollefson 1993; Uerpmann and Uerpmann 2002; Jasmin 2005; 2006; Heide 2010; Rosen and Saidel 2010; Grigson 2012). Most scholars today agree that the dromedary was exploited as a pack animal sometime in the early Iron Age (not before the 12th century BCE)" and concludes that "Current data from copper smelting sites of the Aravah Valley enable us to pinpoint the introduction of domestic camels to the southern Levant more precisely based on stratigraphic contexts associated with an extensive suite of radiocarbon dates. The data indicate that this event occurred not earlier than the last third of the 10th century BCE and most probably during this time. The coincidence of this event with a major reorganization of the copper industry of the region - attributed to the results of the campaign of Pharaoh Shoshenq I - raises the possibility that the two were connected, and that camels were introduced as part of the efforts to improve efficiency by facilitating trade."

 

MILITARY USES

By at least 1200 BC, the first camel saddles had appeared, and Bactrian camels could be ridden. The first saddle was positioned to the back of the camel, and control of the Bactrian camel was exercised by means of a stick. However, between 500–100 BC, Bactrian camels attained military use. New saddles, which were inflexible and bent, were put over the humps and divided the rider's weight over the animal. In the seventh century BC, the military Arabian saddle appeared, which improved the saddle design again slightly.

 

Camel cavalries have been used in wars throughout Africa, the Middle East, and into modern-day Border Security Force of India (though as of July 2012, the BSF has planned the replacement of camels with ATVs). The first use of camel cavalries was in the Battle of Qarqar in 853 BC. Armies have also used camels as freight animals instead of horses and mules.

In the East Roman Empire, the Romans used auxiliary forces known as dromedarii, whom they recruited in desert provinces. The camels were used mostly in combat because of their ability to scare off horses at close ranges (horses are afraid of the camels' scent), a quality famously employed by the Achaemenid Persians when fighting Lydia in the Battle of Thymbra.

 

19th and 20th CENTURIES

The United States Army established the U.S. Camel Corps, which was stationed in California in the late 19th century. One may still see stables at the Benicia Arsenal in Benicia, California, where they nowadays serve as the Benicia Historical Museum. Though the experimental use of camels was seen as a success (John B. Floyd, Secretary of War in 1858, recommended that funds be allocated towards obtaining a thousand more camels), the outbreak of the American Civil War saw the end of the Camel Corps: Texas became part of the Confederacy, and most of the camels were left to wander away into the desert.

 

France created a méhariste camel corps in 1912 as part of the Armée d'Afrique in the Sahara in order to exercise greater control over the camel-riding Tuareg and Arab insurgents, as previous efforts to defeat them on foot had failed. The camel-mounted units remained in service until the end of French rule over Algeria in 1962.

 

In 1916, the British created the Imperial Camel Corps. It was originally used to fight the Senussi, but was later used in the Sinai and Palestine Campaign in World War I. The Imperial Camel Corps comprised infantrymen mounted on camels for movement across desert, though they dismounted at battle sites and fought on foot. After July 1918, the Corps began to become run down, receiving no new reinforcements, and was formally disbanded in 1919.

 

In World War I, the British Army also created the Egyptian Camel Transport Corps, which consisted of a group of Egyptian camel drivers and their camels. The Corps supported British war operations in Sinai, Palestine, and Syria by transporting supplies to the troops.

 

The Somaliland Camel Corps was created by colonial authorities in British Somaliland in 1912; it was disbanded in 1944.

 

Bactrian camels were used by Romanian forces during World War II in the Caucasian region.

 

The Bikaner Camel Corps of British India fought alongside the British Indian Army in World Wars I and II.

 

The Tropas Nómadas (Nomad Troops) were an auxiliary regiment of Sahrawi tribesmen serving in the colonial army in Spanish Sahara (today Western Sahara). Operational from the 1930s until the end of the Spanish presence in the territory in 1975, the Tropas Nómadas were equipped with small arms and led by Spanish officers. The unit guarded outposts and sometimes conducted patrols on camelback.

 

FOOD USES

DAIRY

Camel milk is a staple food of desert nomad tribes and is sometimes considered a meal in and of itself; a nomad can live on only camel milk for almost a month. Camel milk is rich in vitamins, minerals, proteins, and immunoglobulins; compared to cow's milk, it is lower in fat and lactose, and higher in potassium, iron, and vitamin C. Bedouins believe the curative powers of camel milk are enhanced if the camel's diet consists of certain desert plants. Camel milk can readily be made into a drinkable yogurt, as well as butter or cheese, though the yields for cheese tend to be low.

 

Camel milk cannot be made into butter by the traditional churning method. It can be made if it is soured first, churned, and a clarifying agent is then added. Until recently, camel milk could not be made into camel cheese because rennet was unable to coagulate the milk proteins to allow the collection of curds. Developing less wasteful uses of the milk, the FAO commissioned Professor J.P. Ramet of the École Nationale Supérieure d'Agronomie et des Industries Alimentaires, who was able to produce curdling by the addition of calcium phosphate and vegetable rennet. The cheese produced from this process has low levels of cholesterol and is easy to digest, even for the lactose intolerant. The sale of camel cheese is limited owing to the small output of the few dairies producing camel cheese and the absence of camel cheese in local (West African) markets. Cheese imports from countries that traditionally breed camels are difficult to obtain due to restrictions on dairy imports from these regions.

 

Additionally, camel milk has been made into ice cream in a Netherlands camel farm.

 

MEAT

A camel carcass can provide a substantial amount of meat. The male dromedary carcass can weigh 300–400 kg, while the carcass of a male Bactrian can weigh up to 650 kg. The carcass of a female dromedary weighs less than the male, ranging between 250 and 350 kg. The brisket, ribs and loin are among the preferred parts, and the hump is considered a delicacy. The hump contains "white and sickly fat", which can be used to make the khli (preserved meat) of mutton, beef, or camel. Camel meat is reported to taste like coarse beef, but older camels can prove to be very tough, although camel meat becomes more tender the more it is cooked. The Abu Dhabi Officers' Club serves a camel burger mixed with beef or lamb fat in order to improve the texture and taste. In Karachi, Pakistan, some restaurants prepare nihari from camel meat. In Syria and Egypt, there are specialist camel butchers.

 

Camel meat has been eaten for centuries. It has been recorded by ancient Greek writers as an available dish at banquets in ancient Persia, usually roasted whole. The ancient Roman emperor Heliogabalus enjoyed camel's heel.[31] Camel meat is still eaten in certain regions, including Eritrea, Somalia, Djibouti, Saudi Arabia, Egypt, Syria, Libya, Sudan, Ethiopia, Kazakhstan, and other arid regions where alternative forms of protein may be limited or where camel meat has had a long cultural history. Camel blood is also consumable, as is the case among pastoralists in northern Kenya, where camel blood is drunk with milk and acts as a key source of iron, vitamin D, salts and minerals. Camel meat is also occasionally found in Australian cuisine: for example, a camel lasagna is available in Alice Springs.

 

A 2005 report issued jointly by the Saudi Ministry of Health and the United States Centers for Disease Control and Prevention details cases of human bubonic plague resulting from the ingestion of raw camel liver.

 

RELIGION

ISLAM

Camel meat is halal for Muslims. However, according to some Islamic schools of thought, a state of impurity is brought on by the consumption of it. Consequently, these schools hold that Muslims must perform wudhu (ablution) before the next time they pray after eating camel meat.

 

Also, some Islamic schools of thought consider it haraam for a Muslim to perform salat in places where camels lie, as it is said to be a dwelling place of shaytan.

 

According to Suni ahadith collected by Bukhari and Muslim, Muhammad ordered a certain group of people to drink camel milk and urine as a medicine. However, according to Abū Ḥanīfa, the drinking of camel urine, while not forbidden (ḥaram), is disliked (makrūh) in Islam.

 

Camel urine is sold as traditional medicine in shops in Saudi Arabia. The Sunni scholar Muhammad Al-Munajjid's IslamQA.info recommends camel urine as beneficial to curing certain diseases and to human health and cited Ahadith and scientific studies as justification. King Abdulaziz University researcher Dr. Faten Abdel-Rajman Khorshid has claimed that cancer and other diseases could be treated with camel urine as recommended by the Prophet. The United Arab Emirates "Arab Science and Technology Foundation" reported that cancer could be treated with camel urine. Camel urine was also prescribed as a treatment by Zaghloul El-Naggar, a religious scholar. Camel urine is the only urine which is permitted to be drunk according to the Hanbali madhhab of Sunni Islam. The World Health Organization said that camel urine consumption may be a factor in the spread of the MERS virus in Saudi Arabia. The Gulf Times writer Ahmad al-Sayyed wrote that various afflictions are dealt with camel urine by people. Dandruff, scalp ailments, hair, sores, and wounds were recommended to be treated with camel urine by Ibn Sina. Arab American University Professor of Cell Biology and Immunology Bashar Saad (PhD) along with Omar Said (PhD) wrote that medicinal use of camel urine is approved of and promoted by Islam since it was recommended by the prophet. A test on mice found that cytotoxic effects similar to cyclophosphamide were induced on bone marrow by camel urine. Besides for consumption as a medicinal drink, camel urine is believed to help treat hair. Bites from insects were warded off with camel urine, which also served as a shampoo. Camel urine is also used to help treat asthma, infections, treat hair, sores, hair growth and boost libido.

 

Several Sunni Ahadith mention drinking camel urine. Some Shia criticized Wahhabis for camel urine treatment. Shia scholars also recommend the medicinal use of camel urine. Shia Hadith on Imam Ja'far al-Sadiq reported that shortness of breath (asthma) was treated with camel urine. Shia Marja Ayatollah Sistani said that for medicinal purposes only, sheep, cow, and camel urine can be drunk.

 

JUDAISM

According to Jewish tradition, camel meat and milk are not kosher. Camels possess only one of the two kosher criteria; although they chew their cud, they do not possess cloven hooves:

 

Nevertheless these shall ye not eat of them that only chew the cud, or of them that only part the hoof: the camel, because he cheweth the cud but parteth not the hoof, he is unclean unto you.

— Leviticus 11:4

 

DISTRIBUTION ANDNUMBERS

There are around 14 million camels alive as of 2010, with 90% being dromedaries. Dromedaries alive today are domesticated animals (mostly living in the Horn of Africa, the Sahel, Maghreb, Middle East and South Asia). The Horn region alone has the largest concentration of camels in the world, where the dromedaries constitute an important part of local nomadic life. They provide nomadic people in Somalia (which has the largest camel herd in the world) and Ethiopia with milk, food, and transportation.

 

The Bactrian camel is, as of 2010, reduced to an estimated 1.4 million animals, most of which are domesticated. The only truly wild Bactrian camels, of which there are less than one thousand, are thought to inhabit the Gobi Desert in China and Mongolia.

 

The largest population of feral camels is in Australia. There are around 700,000 feral dromedary camels in central parts of Australia, descended from those introduced as a method of transport in the 19th and early 20th centuries. This population is growing about 8% per year. Representatives of the Australian government have culled more than 100,000 of the animals in part because the camels use too much of the limited resources needed by sheep farmers.

 

A small population of introduced camels, dromedaries and Bactrians, wandered through Southwest United States after having been imported in the 1800s as part of the U.S. Camel Corps experiment. When the project ended, they were used as draft animals in mines and escaped or were released. Twenty-five U.S. camels were bought and imported to Canada during the Cariboo Gold Rush.

 

WIKIPEDIA

A camel is an even-toed ungulate within the genus Camelus, bearing distinctive fatty deposits known as "humps" on its back. The two surviving species of camel are the dromedary, or one-humped camel (C. dromedarius), which inhabits the Middle East and the Horn of Africa; and the bactrian, or two-humped camel (C. bactrianus), which inhabits Central Asia. Both species have been domesticated; they provide milk, meat, hair for textiles or goods such as felted pouches, and are working animals with tasks ranging from human transport to bearing loads.

 

The term "camel" is derived via Latin and Greek (camelus and κάμηλος kamēlos respectively) from Hebrew or Phoenician gāmāl.

 

"Camel" is also used more broadly to describe any of the six camel-like mammals in the family Camelidae: the two true camels and the four New World camelids: the llama, alpaca, guanaco, and vicuña of South America.

 

BIOLOGY

The average life expectancy of a camel is 40 to 50 years. A full-grown adult camel stands 1.85 m at the shoulder and 2.15 m at the hump. Camels can run at up to 65 km/h in short bursts and sustain speeds of up to 40 km/h. Bactrian camels weigh 300 to 1,000 kg and dromedaries 300 to 600 kg.

 

The male dromedary camel has in its throat an organ called a dulla, a large, inflatable sac he extrudes from his mouth when in rut to assert dominance and attract females. It resembles a long, swollen, pink tongue hanging out of the side of its mouth. Camels mate by having both male and female sitting on the ground, with the male mounting from behind. The male usually ejaculates three or four times within a single mating session. Camelids are the only ungulates to mate in a sitting position.

 

ECOLOGICAL AND BEHAVIORAL ADAPTIONS

Camels do not directly store water in their humps as was once commonly believed. The humps are actually reservoirs of fatty tissue: concentrating body fat in their humps minimizes the insulating effect fat would have if distributed over the rest of their bodies, helping camels survive in hot climates. When this tissue is metabolized, it yields more than one gram of water for every gram of fat processed. This fat metabolization, while releasing energy, causes water to evaporate from the lungs during respiration (as oxygen is required for the metabolic process): overall, there is a net decrease in water.

 

Camels have a series of physiological adaptations that allow them to withstand long periods of time without any external source of water. Unlike other mammals, their red blood cells are oval rather than circular in shape. This facilitates the flow of red blood cells during dehydration and makes them better at withstanding high osmotic variation without rupturing when drinking large amounts of water: a 600 kg camel can drink 200 L of water in three minutes.

 

Camels are able to withstand changes in body temperature and water consumption that would kill most other animals. Their temperature ranges from 34 °C at dawn and steadily increases to 40 °C by sunset, before they cool off at night again. Maintaining the brain temperature within certain limits is critical for animals; to assist this, camels have a rete mirabile, a complex of arteries and veins lying very close to each other which utilizes countercurrent blood flow to cool blood flowing to the brain. Camels rarely sweat, even when ambient temperatures reach 49 °C Any sweat that does occur evaporates at the skin level rather than at the surface of their coat; the heat of vaporization therefore comes from body heat rather than ambient heat. Camels can withstand losing 25% of their body weight to sweating, whereas most other mammals can withstand only about 12–14% dehydration before cardiac failure results from circulatory disturbance.

 

When the camel exhales, water vapor becomes trapped in their nostrils and is reabsorbed into the body as a means to conserve water. Camels eating green herbage can ingest sufficient moisture in milder conditions to maintain their bodies' hydrated state without the need for drinking.

 

The camels' thick coats insulate them from the intense heat radiated from desert sand; a shorn camel must sweat 50% more to avoid overheating. During the summer the coat becomes lighter in color, reflecting light as well as helping avoid sunburn. The camel's long legs help by keeping its body farther from the ground, which can heat up to 70 °C. Dromedaries have a pad of thick tissue over the sternum called the pedestal. When the animal lies down in a sternal recumbent position, the pedestal raises the body from the hot surface and allows cooling air to pass under the body.

 

Camels' mouths have a thick leathery lining, allowing them to chew thorny desert plants. Long eyelashes and ear hairs, together with nostrils that can close, form a barrier against sand. If sand gets lodged in their eyes, they can dislodge it using their transparent third eyelid. The camels' gait and widened feet help them move without sinking into the sand.

 

The kidneys and intestines of a camel are very efficient at reabsorbing water. Camel urine comes out as a thick syrup, and camel feces are so dry that they do not require drying when the Bedouins use them to fuel fires.

 

Camels' immune system differs from those of other mammals. Normally, the Y-shaped antibody molecules consist of two heavy (or long) chains along the length of the Y, and two light (or short) chains at each tip of the Y. Camels, in addition to these, also have antibodies made of only two heavy chains, a trait that makes them smaller and more durable. These "heavy-chain-only" antibodies, discovered in 1993, are thought to have developed 50 million years ago, after camelids split from ruminants and pigs.

 

GENETICS

The karyotypes of different camelid species have been studied earlier by many groups, but no agreement on chromosome nomenclature of camelids has been reached. A 2007 study flow sorted camel chromosomes, building on the fact that camels have 37 pairs of chromosomes (2n=74), and found that the karyotime consisted of one metacentric, three submetacentric, and 32 acrocentric autosomes. The Y is a small metacentric chromosome, while the X is a large metacentric chromosome.The hybrid camel, a hybrid between Bactrian and dromedary camels, has one hump, though it has an indentation 4–12 cm deep that divides the front from the back. The hybrid is 2.15 m at the shoulder and 2.32 m tall at the hump. It weighs an average of 650 kg and can carry around 400 to 450 kg, which is more than either the dromedary or Bactrian can. According to molecular data, the New World and Old World camelids diverged 11 million years ago. In spite of this, these species can still hybridize and produce fertile offspring. The cama is a camel–llama hybrid bred by scientists who wanted to see how closely related the parent species were. Scientists collected semen from a camel via an artificial vagina and inseminated a llama after stimulating ovulation with gonadotrophin injections. The cama has ears halfway between the length of camel and llama ears, no hump, longer legs than the llama, and partially cloven hooves. According to cama breeder Lulu Skidmore, cama have "the fleece of the llamas" and "the strength and patience of the camel". Like the mule, camas are sterile, despite both parents having the same number of chromosomes.

 

EVOLUTION

The earliest known camel, called Protylopus, lived in North America 40 to 50 million years ago (during the Eocene). It was about the size of a rabbit and lived in the open woodlands of what is now South Dakota. By 35 million years ago, the Poebrotherium was the size of a goat and had many more traits similar to camels and llamas. The hoofed Stenomylus, which walked on the tips of its toes, also existed around this time, and the long-necked Aepycamelus evolved in the Miocene.

 

The direct ancestor of all modern camels, Procamelus, existed in the upper Miocone and lower Pliocene. Around 3–5 million years ago, the North American Camelidae spread to South America via the Isthmus of Panama, where they gave rise to guanacos and related animals, and to Asia via the Bering land bridge. Surprising finds of fossil Paracamelus on Ellesmere Island beginning in 2006 in the high Canadian Arctic indicate the dromedary is descended from a larger, boreal browser whose hump may have evolved as an adaptation in a cold climate. This creature is estimated to have stood around nine feet tall.

 

The last camel native to North America was Camelops hesternus, which vanished along with horses, short-faced bears, mammoths and mastodons, ground sloths, sabertooth cats, and many other megafauna, coinciding with the migration of humans from Asia.

 

DOMESTICATION

Most camels surviving today are domesticated. Along with many other megafauna in North America, the original wild camels were wiped out during the spread of Native Americans from Asia into North America, 12,000 to 10,000 years ago. The only wild camels left are the Bactrian camels of the Gobi Desert.

 

Like the horse, before their extinction in their native land, camels spread across the Bering land bridge, moving the opposite direction from the Asian immigration to America, to survive in the Old World and eventually be domesticated and spread globally by humans.

 

Dromedaries may have first been domesticated by humans in Somalia and southern Arabia, around 3,000 BC, the Bactrian in central Asia around 2,500 BC, as at Shar-i Sokhta (also known as the Burnt City), Iran.

 

Discussions concerning camel domestication in Mesopotamia are often related to mentions of camels in the Hebrew Bible. The International Standard Bible Encyclopedia: E-J for instance mentions that "In accord with patriarchal traditions, cylinder seals from Middle Bronze Age Mesopotamia showed riders seated upon camels."

 

Martin Heide's 2010 work on the domestication of the camel tentatively concludes that the bactrian camel was domesticated by at least the middle of the third millennium somewhere east of the Zagros Mountains, then moving into Mesopotamia, and suggests that mentions of camels "in the patriarchal narratives may refer, at least in some places, to the Bactrian camel." while noting that the camel is not mentioned in relationship to Canaan.

 

Recent excavations in the Timna Valley by Lidar Sapir-Hen and Erez Ben-Yosef discovered what may be the earliest domestic camel bones found in Israel or even outside the Arabian peninsula, dating to around 930 BCE. This garnered considerable media coverage as it was described as evidence that the stories of Abraham, Joseph, Jacob and Esau were written after this time.

 

The existence of camels in Mesopotamia but not in Israel is not a new idea. According to an article in Time Magazine, the historian Richard Bulliet wrote in his 1975 book "The Camel and the Wheel" that "the occasional mention of camels in patriarchal narratives does not mean that the domestic camels were common in the Holy Land at that period." The archaeologist William F. Albright writing even earlier saw camels in the Bible as an anachronism. The official report by Sapir-Hen and Ben-Joseph notes that "The introduction of the dromedary camel (Camelus dromedarius) as a pack animal to the southern Levant signifies a crucial juncture in the history of the region; it substantially facilitated trade across the vast deserts of Arabia, promoting both economic and social change (e.g., Kohler 1984; Borowski 1998: 112-116; Jasmin 2005). This, together with the depiction of camels in the Patriarchal narrative, has generated extensive discussion regarding the date of the earliest domestic camel in the southern Levant (and beyond) (e.g., Albright 1949: 207; Epstein 1971: 558-584; Bulliet 1975; Zarins 1989; Köhler-Rollefson 1993; Uerpmann and Uerpmann 2002; Jasmin 2005; 2006; Heide 2010; Rosen and Saidel 2010; Grigson 2012). Most scholars today agree that the dromedary was exploited as a pack animal sometime in the early Iron Age (not before the 12th century BCE)" and concludes that "Current data from copper smelting sites of the Aravah Valley enable us to pinpoint the introduction of domestic camels to the southern Levant more precisely based on stratigraphic contexts associated with an extensive suite of radiocarbon dates. The data indicate that this event occurred not earlier than the last third of the 10th century BCE and most probably during this time. The coincidence of this event with a major reorganization of the copper industry of the region - attributed to the results of the campaign of Pharaoh Shoshenq I - raises the possibility that the two were connected, and that camels were introduced as part of the efforts to improve efficiency by facilitating trade."

 

MILITARY USES

By at least 1200 BC, the first camel saddles had appeared, and Bactrian camels could be ridden. The first saddle was positioned to the back of the camel, and control of the Bactrian camel was exercised by means of a stick. However, between 500–100 BC, Bactrian camels attained military use. New saddles, which were inflexible and bent, were put over the humps and divided the rider's weight over the animal. In the seventh century BC, the military Arabian saddle appeared, which improved the saddle design again slightly.

 

Camel cavalries have been used in wars throughout Africa, the Middle East, and into modern-day Border Security Force of India (though as of July 2012, the BSF has planned the replacement of camels with ATVs). The first use of camel cavalries was in the Battle of Qarqar in 853 BC. Armies have also used camels as freight animals instead of horses and mules.

In the East Roman Empire, the Romans used auxiliary forces known as dromedarii, whom they recruited in desert provinces. The camels were used mostly in combat because of their ability to scare off horses at close ranges (horses are afraid of the camels' scent), a quality famously employed by the Achaemenid Persians when fighting Lydia in the Battle of Thymbra.

 

19th and 20th CENTURIES

The United States Army established the U.S. Camel Corps, which was stationed in California in the late 19th century. One may still see stables at the Benicia Arsenal in Benicia, California, where they nowadays serve as the Benicia Historical Museum. Though the experimental use of camels was seen as a success (John B. Floyd, Secretary of War in 1858, recommended that funds be allocated towards obtaining a thousand more camels), the outbreak of the American Civil War saw the end of the Camel Corps: Texas became part of the Confederacy, and most of the camels were left to wander away into the desert.

 

France created a méhariste camel corps in 1912 as part of the Armée d'Afrique in the Sahara in order to exercise greater control over the camel-riding Tuareg and Arab insurgents, as previous efforts to defeat them on foot had failed. The camel-mounted units remained in service until the end of French rule over Algeria in 1962.

 

In 1916, the British created the Imperial Camel Corps. It was originally used to fight the Senussi, but was later used in the Sinai and Palestine Campaign in World War I. The Imperial Camel Corps comprised infantrymen mounted on camels for movement across desert, though they dismounted at battle sites and fought on foot. After July 1918, the Corps began to become run down, receiving no new reinforcements, and was formally disbanded in 1919.

 

In World War I, the British Army also created the Egyptian Camel Transport Corps, which consisted of a group of Egyptian camel drivers and their camels. The Corps supported British war operations in Sinai, Palestine, and Syria by transporting supplies to the troops.

 

The Somaliland Camel Corps was created by colonial authorities in British Somaliland in 1912; it was disbanded in 1944.

 

Bactrian camels were used by Romanian forces during World War II in the Caucasian region.

 

The Bikaner Camel Corps of British India fought alongside the British Indian Army in World Wars I and II.

 

The Tropas Nómadas (Nomad Troops) were an auxiliary regiment of Sahrawi tribesmen serving in the colonial army in Spanish Sahara (today Western Sahara). Operational from the 1930s until the end of the Spanish presence in the territory in 1975, the Tropas Nómadas were equipped with small arms and led by Spanish officers. The unit guarded outposts and sometimes conducted patrols on camelback.

 

FOOD USES

DAIRY

Camel milk is a staple food of desert nomad tribes and is sometimes considered a meal in and of itself; a nomad can live on only camel milk for almost a month. Camel milk is rich in vitamins, minerals, proteins, and immunoglobulins; compared to cow's milk, it is lower in fat and lactose, and higher in potassium, iron, and vitamin C. Bedouins believe the curative powers of camel milk are enhanced if the camel's diet consists of certain desert plants. Camel milk can readily be made into a drinkable yogurt, as well as butter or cheese, though the yields for cheese tend to be low.

 

Camel milk cannot be made into butter by the traditional churning method. It can be made if it is soured first, churned, and a clarifying agent is then added. Until recently, camel milk could not be made into camel cheese because rennet was unable to coagulate the milk proteins to allow the collection of curds. Developing less wasteful uses of the milk, the FAO commissioned Professor J.P. Ramet of the École Nationale Supérieure d'Agronomie et des Industries Alimentaires, who was able to produce curdling by the addition of calcium phosphate and vegetable rennet. The cheese produced from this process has low levels of cholesterol and is easy to digest, even for the lactose intolerant. The sale of camel cheese is limited owing to the small output of the few dairies producing camel cheese and the absence of camel cheese in local (West African) markets. Cheese imports from countries that traditionally breed camels are difficult to obtain due to restrictions on dairy imports from these regions.

 

Additionally, camel milk has been made into ice cream in a Netherlands camel farm.

 

MEAT

A camel carcass can provide a substantial amount of meat. The male dromedary carcass can weigh 300–400 kg, while the carcass of a male Bactrian can weigh up to 650 kg. The carcass of a female dromedary weighs less than the male, ranging between 250 and 350 kg. The brisket, ribs and loin are among the preferred parts, and the hump is considered a delicacy. The hump contains "white and sickly fat", which can be used to make the khli (preserved meat) of mutton, beef, or camel. Camel meat is reported to taste like coarse beef, but older camels can prove to be very tough, although camel meat becomes more tender the more it is cooked. The Abu Dhabi Officers' Club serves a camel burger mixed with beef or lamb fat in order to improve the texture and taste. In Karachi, Pakistan, some restaurants prepare nihari from camel meat. In Syria and Egypt, there are specialist camel butchers.

 

Camel meat has been eaten for centuries. It has been recorded by ancient Greek writers as an available dish at banquets in ancient Persia, usually roasted whole. The ancient Roman emperor Heliogabalus enjoyed camel's heel.[31] Camel meat is still eaten in certain regions, including Eritrea, Somalia, Djibouti, Saudi Arabia, Egypt, Syria, Libya, Sudan, Ethiopia, Kazakhstan, and other arid regions where alternative forms of protein may be limited or where camel meat has had a long cultural history. Camel blood is also consumable, as is the case among pastoralists in northern Kenya, where camel blood is drunk with milk and acts as a key source of iron, vitamin D, salts and minerals. Camel meat is also occasionally found in Australian cuisine: for example, a camel lasagna is available in Alice Springs.

 

A 2005 report issued jointly by the Saudi Ministry of Health and the United States Centers for Disease Control and Prevention details cases of human bubonic plague resulting from the ingestion of raw camel liver.

 

RELIGION

ISLAM

Camel meat is halal for Muslims. However, according to some Islamic schools of thought, a state of impurity is brought on by the consumption of it. Consequently, these schools hold that Muslims must perform wudhu (ablution) before the next time they pray after eating camel meat.

 

Also, some Islamic schools of thought consider it haraam for a Muslim to perform salat in places where camels lie, as it is said to be a dwelling place of shaytan.

 

According to Suni ahadith collected by Bukhari and Muslim, Muhammad ordered a certain group of people to drink camel milk and urine as a medicine. However, according to Abū Ḥanīfa, the drinking of camel urine, while not forbidden (ḥaram), is disliked (makrūh) in Islam.

 

Camel urine is sold as traditional medicine in shops in Saudi Arabia. The Sunni scholar Muhammad Al-Munajjid's IslamQA.info recommends camel urine as beneficial to curing certain diseases and to human health and cited Ahadith and scientific studies as justification. King Abdulaziz University researcher Dr. Faten Abdel-Rajman Khorshid has claimed that cancer and other diseases could be treated with camel urine as recommended by the Prophet. The United Arab Emirates "Arab Science and Technology Foundation" reported that cancer could be treated with camel urine. Camel urine was also prescribed as a treatment by Zaghloul El-Naggar, a religious scholar. Camel urine is the only urine which is permitted to be drunk according to the Hanbali madhhab of Sunni Islam. The World Health Organization said that camel urine consumption may be a factor in the spread of the MERS virus in Saudi Arabia. The Gulf Times writer Ahmad al-Sayyed wrote that various afflictions are dealt with camel urine by people. Dandruff, scalp ailments, hair, sores, and wounds were recommended to be treated with camel urine by Ibn Sina. Arab American University Professor of Cell Biology and Immunology Bashar Saad (PhD) along with Omar Said (PhD) wrote that medicinal use of camel urine is approved of and promoted by Islam since it was recommended by the prophet. A test on mice found that cytotoxic effects similar to cyclophosphamide were induced on bone marrow by camel urine. Besides for consumption as a medicinal drink, camel urine is believed to help treat hair. Bites from insects were warded off with camel urine, which also served as a shampoo. Camel urine is also used to help treat asthma, infections, treat hair, sores, hair growth and boost libido.

 

Several Sunni Ahadith mention drinking camel urine. Some Shia criticized Wahhabis for camel urine treatment. Shia scholars also recommend the medicinal use of camel urine. Shia Hadith on Imam Ja'far al-Sadiq reported that shortness of breath (asthma) was treated with camel urine. Shia Marja Ayatollah Sistani said that for medicinal purposes only, sheep, cow, and camel urine can be drunk.

 

JUDAISM

According to Jewish tradition, camel meat and milk are not kosher. Camels possess only one of the two kosher criteria; although they chew their cud, they do not possess cloven hooves:

 

Nevertheless these shall ye not eat of them that only chew the cud, or of them that only part the hoof: the camel, because he cheweth the cud but parteth not the hoof, he is unclean unto you.

— Leviticus 11:4

 

DISTRIBUTION ANDNUMBERS

There are around 14 million camels alive as of 2010, with 90% being dromedaries. Dromedaries alive today are domesticated animals (mostly living in the Horn of Africa, the Sahel, Maghreb, Middle East and South Asia). The Horn region alone has the largest concentration of camels in the world, where the dromedaries constitute an important part of local nomadic life. They provide nomadic people in Somalia (which has the largest camel herd in the world) and Ethiopia with milk, food, and transportation.

 

The Bactrian camel is, as of 2010, reduced to an estimated 1.4 million animals, most of which are domesticated. The only truly wild Bactrian camels, of which there are less than one thousand, are thought to inhabit the Gobi Desert in China and Mongolia.

 

The largest population of feral camels is in Australia. There are around 700,000 feral dromedary camels in central parts of Australia, descended from those introduced as a method of transport in the 19th and early 20th centuries. This population is growing about 8% per year. Representatives of the Australian government have culled more than 100,000 of the animals in part because the camels use too much of the limited resources needed by sheep farmers.

 

A small population of introduced camels, dromedaries and Bactrians, wandered through Southwest United States after having been imported in the 1800s as part of the U.S. Camel Corps experiment. When the project ended, they were used as draft animals in mines and escaped or were released. Twenty-five U.S. camels were bought and imported to Canada during the Cariboo Gold Rush.

 

WIKIPEDIA

A camel is an even-toed ungulate within the genus Camelus, bearing distinctive fatty deposits known as "humps" on its back. The two surviving species of camel are the dromedary, or one-humped camel (C. dromedarius), which inhabits the Middle East and the Horn of Africa; and the bactrian, or two-humped camel (C. bactrianus), which inhabits Central Asia. Both species have been domesticated; they provide milk, meat, hair for textiles or goods such as felted pouches, and are working animals with tasks ranging from human transport to bearing loads.

 

The term "camel" is derived via Latin and Greek (camelus and κάμηλος kamēlos respectively) from Hebrew or Phoenician gāmāl.

 

"Camel" is also used more broadly to describe any of the six camel-like mammals in the family Camelidae: the two true camels and the four New World camelids: the llama, alpaca, guanaco, and vicuña of South America.

 

BIOLOGY

The average life expectancy of a camel is 40 to 50 years. A full-grown adult camel stands 1.85 m at the shoulder and 2.15 m at the hump. Camels can run at up to 65 km/h in short bursts and sustain speeds of up to 40 km/h. Bactrian camels weigh 300 to 1,000 kg and dromedaries 300 to 600 kg.

 

The male dromedary camel has in its throat an organ called a dulla, a large, inflatable sac he extrudes from his mouth when in rut to assert dominance and attract females. It resembles a long, swollen, pink tongue hanging out of the side of its mouth. Camels mate by having both male and female sitting on the ground, with the male mounting from behind. The male usually ejaculates three or four times within a single mating session. Camelids are the only ungulates to mate in a sitting position.

 

ECOLOGICAL AND BEHAVIORAL ADAPTIONS

Camels do not directly store water in their humps as was once commonly believed. The humps are actually reservoirs of fatty tissue: concentrating body fat in their humps minimizes the insulating effect fat would have if distributed over the rest of their bodies, helping camels survive in hot climates. When this tissue is metabolized, it yields more than one gram of water for every gram of fat processed. This fat metabolization, while releasing energy, causes water to evaporate from the lungs during respiration (as oxygen is required for the metabolic process): overall, there is a net decrease in water.

 

Camels have a series of physiological adaptations that allow them to withstand long periods of time without any external source of water. Unlike other mammals, their red blood cells are oval rather than circular in shape. This facilitates the flow of red blood cells during dehydration and makes them better at withstanding high osmotic variation without rupturing when drinking large amounts of water: a 600 kg camel can drink 200 L of water in three minutes.

 

Camels are able to withstand changes in body temperature and water consumption that would kill most other animals. Their temperature ranges from 34 °C at dawn and steadily increases to 40 °C by sunset, before they cool off at night again. Maintaining the brain temperature within certain limits is critical for animals; to assist this, camels have a rete mirabile, a complex of arteries and veins lying very close to each other which utilizes countercurrent blood flow to cool blood flowing to the brain. Camels rarely sweat, even when ambient temperatures reach 49 °C Any sweat that does occur evaporates at the skin level rather than at the surface of their coat; the heat of vaporization therefore comes from body heat rather than ambient heat. Camels can withstand losing 25% of their body weight to sweating, whereas most other mammals can withstand only about 12–14% dehydration before cardiac failure results from circulatory disturbance.

 

When the camel exhales, water vapor becomes trapped in their nostrils and is reabsorbed into the body as a means to conserve water. Camels eating green herbage can ingest sufficient moisture in milder conditions to maintain their bodies' hydrated state without the need for drinking.

 

The camels' thick coats insulate them from the intense heat radiated from desert sand; a shorn camel must sweat 50% more to avoid overheating. During the summer the coat becomes lighter in color, reflecting light as well as helping avoid sunburn. The camel's long legs help by keeping its body farther from the ground, which can heat up to 70 °C. Dromedaries have a pad of thick tissue over the sternum called the pedestal. When the animal lies down in a sternal recumbent position, the pedestal raises the body from the hot surface and allows cooling air to pass under the body.

 

Camels' mouths have a thick leathery lining, allowing them to chew thorny desert plants. Long eyelashes and ear hairs, together with nostrils that can close, form a barrier against sand. If sand gets lodged in their eyes, they can dislodge it using their transparent third eyelid. The camels' gait and widened feet help them move without sinking into the sand.

 

The kidneys and intestines of a camel are very efficient at reabsorbing water. Camel urine comes out as a thick syrup, and camel feces are so dry that they do not require drying when the Bedouins use them to fuel fires.

 

Camels' immune system differs from those of other mammals. Normally, the Y-shaped antibody molecules consist of two heavy (or long) chains along the length of the Y, and two light (or short) chains at each tip of the Y. Camels, in addition to these, also have antibodies made of only two heavy chains, a trait that makes them smaller and more durable. These "heavy-chain-only" antibodies, discovered in 1993, are thought to have developed 50 million years ago, after camelids split from ruminants and pigs.

 

GENETICS

The karyotypes of different camelid species have been studied earlier by many groups, but no agreement on chromosome nomenclature of camelids has been reached. A 2007 study flow sorted camel chromosomes, building on the fact that camels have 37 pairs of chromosomes (2n=74), and found that the karyotime consisted of one metacentric, three submetacentric, and 32 acrocentric autosomes. The Y is a small metacentric chromosome, while the X is a large metacentric chromosome.The hybrid camel, a hybrid between Bactrian and dromedary camels, has one hump, though it has an indentation 4–12 cm deep that divides the front from the back. The hybrid is 2.15 m at the shoulder and 2.32 m tall at the hump. It weighs an average of 650 kg and can carry around 400 to 450 kg, which is more than either the dromedary or Bactrian can. According to molecular data, the New World and Old World camelids diverged 11 million years ago. In spite of this, these species can still hybridize and produce fertile offspring. The cama is a camel–llama hybrid bred by scientists who wanted to see how closely related the parent species were. Scientists collected semen from a camel via an artificial vagina and inseminated a llama after stimulating ovulation with gonadotrophin injections. The cama has ears halfway between the length of camel and llama ears, no hump, longer legs than the llama, and partially cloven hooves. According to cama breeder Lulu Skidmore, cama have "the fleece of the llamas" and "the strength and patience of the camel". Like the mule, camas are sterile, despite both parents having the same number of chromosomes.

 

EVOLUTION

The earliest known camel, called Protylopus, lived in North America 40 to 50 million years ago (during the Eocene). It was about the size of a rabbit and lived in the open woodlands of what is now South Dakota. By 35 million years ago, the Poebrotherium was the size of a goat and had many more traits similar to camels and llamas. The hoofed Stenomylus, which walked on the tips of its toes, also existed around this time, and the long-necked Aepycamelus evolved in the Miocene.

 

The direct ancestor of all modern camels, Procamelus, existed in the upper Miocone and lower Pliocene. Around 3–5 million years ago, the North American Camelidae spread to South America via the Isthmus of Panama, where they gave rise to guanacos and related animals, and to Asia via the Bering land bridge. Surprising finds of fossil Paracamelus on Ellesmere Island beginning in 2006 in the high Canadian Arctic indicate the dromedary is descended from a larger, boreal browser whose hump may have evolved as an adaptation in a cold climate. This creature is estimated to have stood around nine feet tall.

 

The last camel native to North America was Camelops hesternus, which vanished along with horses, short-faced bears, mammoths and mastodons, ground sloths, sabertooth cats, and many other megafauna, coinciding with the migration of humans from Asia.

 

DOMESTICATION

Most camels surviving today are domesticated. Along with many other megafauna in North America, the original wild camels were wiped out during the spread of Native Americans from Asia into North America, 12,000 to 10,000 years ago. The only wild camels left are the Bactrian camels of the Gobi Desert.

 

Like the horse, before their extinction in their native land, camels spread across the Bering land bridge, moving the opposite direction from the Asian immigration to America, to survive in the Old World and eventually be domesticated and spread globally by humans.

 

Dromedaries may have first been domesticated by humans in Somalia and southern Arabia, around 3,000 BC, the Bactrian in central Asia around 2,500 BC, as at Shar-i Sokhta (also known as the Burnt City), Iran.

 

Discussions concerning camel domestication in Mesopotamia are often related to mentions of camels in the Hebrew Bible. The International Standard Bible Encyclopedia: E-J for instance mentions that "In accord with patriarchal traditions, cylinder seals from Middle Bronze Age Mesopotamia showed riders seated upon camels."

 

Martin Heide's 2010 work on the domestication of the camel tentatively concludes that the bactrian camel was domesticated by at least the middle of the third millennium somewhere east of the Zagros Mountains, then moving into Mesopotamia, and suggests that mentions of camels "in the patriarchal narratives may refer, at least in some places, to the Bactrian camel." while noting that the camel is not mentioned in relationship to Canaan.

 

Recent excavations in the Timna Valley by Lidar Sapir-Hen and Erez Ben-Yosef discovered what may be the earliest domestic camel bones found in Israel or even outside the Arabian peninsula, dating to around 930 BCE. This garnered considerable media coverage as it was described as evidence that the stories of Abraham, Joseph, Jacob and Esau were written after this time.

 

The existence of camels in Mesopotamia but not in Israel is not a new idea. According to an article in Time Magazine, the historian Richard Bulliet wrote in his 1975 book "The Camel and the Wheel" that "the occasional mention of camels in patriarchal narratives does not mean that the domestic camels were common in the Holy Land at that period." The archaeologist William F. Albright writing even earlier saw camels in the Bible as an anachronism. The official report by Sapir-Hen and Ben-Joseph notes that "The introduction of the dromedary camel (Camelus dromedarius) as a pack animal to the southern Levant signifies a crucial juncture in the history of the region; it substantially facilitated trade across the vast deserts of Arabia, promoting both economic and social change (e.g., Kohler 1984; Borowski 1998: 112-116; Jasmin 2005). This, together with the depiction of camels in the Patriarchal narrative, has generated extensive discussion regarding the date of the earliest domestic camel in the southern Levant (and beyond) (e.g., Albright 1949: 207; Epstein 1971: 558-584; Bulliet 1975; Zarins 1989; Köhler-Rollefson 1993; Uerpmann and Uerpmann 2002; Jasmin 2005; 2006; Heide 2010; Rosen and Saidel 2010; Grigson 2012). Most scholars today agree that the dromedary was exploited as a pack animal sometime in the early Iron Age (not before the 12th century BCE)" and concludes that "Current data from copper smelting sites of the Aravah Valley enable us to pinpoint the introduction of domestic camels to the southern Levant more precisely based on stratigraphic contexts associated with an extensive suite of radiocarbon dates. The data indicate that this event occurred not earlier than the last third of the 10th century BCE and most probably during this time. The coincidence of this event with a major reorganization of the copper industry of the region - attributed to the results of the campaign of Pharaoh Shoshenq I - raises the possibility that the two were connected, and that camels were introduced as part of the efforts to improve efficiency by facilitating trade."

 

MILITARY USES

By at least 1200 BC, the first camel saddles had appeared, and Bactrian camels could be ridden. The first saddle was positioned to the back of the camel, and control of the Bactrian camel was exercised by means of a stick. However, between 500–100 BC, Bactrian camels attained military use. New saddles, which were inflexible and bent, were put over the humps and divided the rider's weight over the animal. In the seventh century BC, the military Arabian saddle appeared, which improved the saddle design again slightly.

 

Camel cavalries have been used in wars throughout Africa, the Middle East, and into modern-day Border Security Force of India (though as of July 2012, the BSF has planned the replacement of camels with ATVs). The first use of camel cavalries was in the Battle of Qarqar in 853 BC. Armies have also used camels as freight animals instead of horses and mules.

In the East Roman Empire, the Romans used auxiliary forces known as dromedarii, whom they recruited in desert provinces. The camels were used mostly in combat because of their ability to scare off horses at close ranges (horses are afraid of the camels' scent), a quality famously employed by the Achaemenid Persians when fighting Lydia in the Battle of Thymbra.

 

19th and 20th CENTURIES

The United States Army established the U.S. Camel Corps, which was stationed in California in the late 19th century. One may still see stables at the Benicia Arsenal in Benicia, California, where they nowadays serve as the Benicia Historical Museum. Though the experimental use of camels was seen as a success (John B. Floyd, Secretary of War in 1858, recommended that funds be allocated towards obtaining a thousand more camels), the outbreak of the American Civil War saw the end of the Camel Corps: Texas became part of the Confederacy, and most of the camels were left to wander away into the desert.

 

France created a méhariste camel corps in 1912 as part of the Armée d'Afrique in the Sahara in order to exercise greater control over the camel-riding Tuareg and Arab insurgents, as previous efforts to defeat them on foot had failed. The camel-mounted units remained in service until the end of French rule over Algeria in 1962.

 

In 1916, the British created the Imperial Camel Corps. It was originally used to fight the Senussi, but was later used in the Sinai and Palestine Campaign in World War I. The Imperial Camel Corps comprised infantrymen mounted on camels for movement across desert, though they dismounted at battle sites and fought on foot. After July 1918, the Corps began to become run down, receiving no new reinforcements, and was formally disbanded in 1919.

 

In World War I, the British Army also created the Egyptian Camel Transport Corps, which consisted of a group of Egyptian camel drivers and their camels. The Corps supported British war operations in Sinai, Palestine, and Syria by transporting supplies to the troops.

 

The Somaliland Camel Corps was created by colonial authorities in British Somaliland in 1912; it was disbanded in 1944.

 

Bactrian camels were used by Romanian forces during World War II in the Caucasian region.

 

The Bikaner Camel Corps of British India fought alongside the British Indian Army in World Wars I and II.

 

The Tropas Nómadas (Nomad Troops) were an auxiliary regiment of Sahrawi tribesmen serving in the colonial army in Spanish Sahara (today Western Sahara). Operational from the 1930s until the end of the Spanish presence in the territory in 1975, the Tropas Nómadas were equipped with small arms and led by Spanish officers. The unit guarded outposts and sometimes conducted patrols on camelback.

 

FOOD USES

DAIRY

Camel milk is a staple food of desert nomad tribes and is sometimes considered a meal in and of itself; a nomad can live on only camel milk for almost a month. Camel milk is rich in vitamins, minerals, proteins, and immunoglobulins; compared to cow's milk, it is lower in fat and lactose, and higher in potassium, iron, and vitamin C. Bedouins believe the curative powers of camel milk are enhanced if the camel's diet consists of certain desert plants. Camel milk can readily be made into a drinkable yogurt, as well as butter or cheese, though the yields for cheese tend to be low.

 

Camel milk cannot be made into butter by the traditional churning method. It can be made if it is soured first, churned, and a clarifying agent is then added. Until recently, camel milk could not be made into camel cheese because rennet was unable to coagulate the milk proteins to allow the collection of curds. Developing less wasteful uses of the milk, the FAO commissioned Professor J.P. Ramet of the École Nationale Supérieure d'Agronomie et des Industries Alimentaires, who was able to produce curdling by the addition of calcium phosphate and vegetable rennet. The cheese produced from this process has low levels of cholesterol and is easy to digest, even for the lactose intolerant. The sale of camel cheese is limited owing to the small output of the few dairies producing camel cheese and the absence of camel cheese in local (West African) markets. Cheese imports from countries that traditionally breed camels are difficult to obtain due to restrictions on dairy imports from these regions.

 

Additionally, camel milk has been made into ice cream in a Netherlands camel farm.

 

MEAT

A camel carcass can provide a substantial amount of meat. The male dromedary carcass can weigh 300–400 kg, while the carcass of a male Bactrian can weigh up to 650 kg. The carcass of a female dromedary weighs less than the male, ranging between 250 and 350 kg. The brisket, ribs and loin are among the preferred parts, and the hump is considered a delicacy. The hump contains "white and sickly fat", which can be used to make the khli (preserved meat) of mutton, beef, or camel. Camel meat is reported to taste like coarse beef, but older camels can prove to be very tough, although camel meat becomes more tender the more it is cooked. The Abu Dhabi Officers' Club serves a camel burger mixed with beef or lamb fat in order to improve the texture and taste. In Karachi, Pakistan, some restaurants prepare nihari from camel meat. In Syria and Egypt, there are specialist camel butchers.

 

Camel meat has been eaten for centuries. It has been recorded by ancient Greek writers as an available dish at banquets in ancient Persia, usually roasted whole. The ancient Roman emperor Heliogabalus enjoyed camel's heel.[31] Camel meat is still eaten in certain regions, including Eritrea, Somalia, Djibouti, Saudi Arabia, Egypt, Syria, Libya, Sudan, Ethiopia, Kazakhstan, and other arid regions where alternative forms of protein may be limited or where camel meat has had a long cultural history. Camel blood is also consumable, as is the case among pastoralists in northern Kenya, where camel blood is drunk with milk and acts as a key source of iron, vitamin D, salts and minerals. Camel meat is also occasionally found in Australian cuisine: for example, a camel lasagna is available in Alice Springs.

 

A 2005 report issued jointly by the Saudi Ministry of Health and the United States Centers for Disease Control and Prevention details cases of human bubonic plague resulting from the ingestion of raw camel liver.

 

RELIGION

ISLAM

Camel meat is halal for Muslims. However, according to some Islamic schools of thought, a state of impurity is brought on by the consumption of it. Consequently, these schools hold that Muslims must perform wudhu (ablution) before the next time they pray after eating camel meat.

 

Also, some Islamic schools of thought consider it haraam for a Muslim to perform salat in places where camels lie, as it is said to be a dwelling place of shaytan.

 

According to Suni ahadith collected by Bukhari and Muslim, Muhammad ordered a certain group of people to drink camel milk and urine as a medicine. However, according to Abū Ḥanīfa, the drinking of camel urine, while not forbidden (ḥaram), is disliked (makrūh) in Islam.

 

Camel urine is sold as traditional medicine in shops in Saudi Arabia. The Sunni scholar Muhammad Al-Munajjid's IslamQA.info recommends camel urine as beneficial to curing certain diseases and to human health and cited Ahadith and scientific studies as justification. King Abdulaziz University researcher Dr. Faten Abdel-Rajman Khorshid has claimed that cancer and other diseases could be treated with camel urine as recommended by the Prophet. The United Arab Emirates "Arab Science and Technology Foundation" reported that cancer could be treated with camel urine. Camel urine was also prescribed as a treatment by Zaghloul El-Naggar, a religious scholar. Camel urine is the only urine which is permitted to be drunk according to the Hanbali madhhab of Sunni Islam. The World Health Organization said that camel urine consumption may be a factor in the spread of the MERS virus in Saudi Arabia. The Gulf Times writer Ahmad al-Sayyed wrote that various afflictions are dealt with camel urine by people. Dandruff, scalp ailments, hair, sores, and wounds were recommended to be treated with camel urine by Ibn Sina. Arab American University Professor of Cell Biology and Immunology Bashar Saad (PhD) along with Omar Said (PhD) wrote that medicinal use of camel urine is approved of and promoted by Islam since it was recommended by the prophet. A test on mice found that cytotoxic effects similar to cyclophosphamide were induced on bone marrow by camel urine. Besides for consumption as a medicinal drink, camel urine is believed to help treat hair. Bites from insects were warded off with camel urine, which also served as a shampoo. Camel urine is also used to help treat asthma, infections, treat hair, sores, hair growth and boost libido.

 

Several Sunni Ahadith mention drinking camel urine. Some Shia criticized Wahhabis for camel urine treatment. Shia scholars also recommend the medicinal use of camel urine. Shia Hadith on Imam Ja'far al-Sadiq reported that shortness of breath (asthma) was treated with camel urine. Shia Marja Ayatollah Sistani said that for medicinal purposes only, sheep, cow, and camel urine can be drunk.

 

JUDAISM

According to Jewish tradition, camel meat and milk are not kosher. Camels possess only one of the two kosher criteria; although they chew their cud, they do not possess cloven hooves:

 

Nevertheless these shall ye not eat of them that only chew the cud, or of them that only part the hoof: the camel, because he cheweth the cud but parteth not the hoof, he is unclean unto you.

— Leviticus 11:4

 

DISTRIBUTION AND NUMBERS

There are around 14 million camels alive as of 2010, with 90% being dromedaries. Dromedaries alive today are domesticated animals (mostly living in the Horn of Africa, the Sahel, Maghreb, Middle East and South Asia). The Horn region alone has the largest concentration of camels in the world, where the dromedaries constitute an important part of local nomadic life. They provide nomadic people in Somalia (which has the largest camel herd in the world) and Ethiopia with milk, food, and transportation.

 

The Bactrian camel is, as of 2010, reduced to an estimated 1.4 million animals, most of which are domesticated. The only truly wild Bactrian camels, of which there are less than one thousand, are thought to inhabit the Gobi Desert in China and Mongolia.

 

The largest population of feral camels is in Australia. There are around 700,000 feral dromedary camels in central parts of Australia, descended from those introduced as a method of transport in the 19th and early 20th centuries. This population is growing about 8% per year. Representatives of the Australian government have culled more than 100,000 of the animals in part because the camels use too much of the limited resources needed by sheep farmers.

 

A small population of introduced camels, dromedaries and Bactrians, wandered through Southwest United States after having been imported in the 1800s as part of the U.S. Camel Corps experiment. When the project ended, they were used as draft animals in mines and escaped or were released. Twenty-five U.S. camels were bought and imported to Canada during the Cariboo Gold Rush.

 

WIKIPEDIA

A camel is an even-toed ungulate within the genus Camelus, bearing distinctive fatty deposits known as "humps" on its back. The two surviving species of camel are the dromedary, or one-humped camel (C. dromedarius), which inhabits the Middle East and the Horn of Africa; and the bactrian, or two-humped camel (C. bactrianus), which inhabits Central Asia. Both species have been domesticated; they provide milk, meat, hair for textiles or goods such as felted pouches, and are working animals with tasks ranging from human transport to bearing loads.

 

The term "camel" is derived via Latin and Greek (camelus and κάμηλος kamēlos respectively) from Hebrew or Phoenician gāmāl.

 

"Camel" is also used more broadly to describe any of the six camel-like mammals in the family Camelidae: the two true camels and the four New World camelids: the llama, alpaca, guanaco, and vicuña of South America.

 

BIOLOGY

The average life expectancy of a camel is 40 to 50 years. A full-grown adult camel stands 1.85 m at the shoulder and 2.15 m at the hump. Camels can run at up to 65 km/h in short bursts and sustain speeds of up to 40 km/h. Bactrian camels weigh 300 to 1,000 kg and dromedaries 300 to 600 kg.

 

The male dromedary camel has in its throat an organ called a dulla, a large, inflatable sac he extrudes from his mouth when in rut to assert dominance and attract females. It resembles a long, swollen, pink tongue hanging out of the side of its mouth. Camels mate by having both male and female sitting on the ground, with the male mounting from behind. The male usually ejaculates three or four times within a single mating session. Camelids are the only ungulates to mate in a sitting position.

 

ECOLOGICAL AND BEHAVIORAL ADAPTIONS

Camels do not directly store water in their humps as was once commonly believed. The humps are actually reservoirs of fatty tissue: concentrating body fat in their humps minimizes the insulating effect fat would have if distributed over the rest of their bodies, helping camels survive in hot climates. When this tissue is metabolized, it yields more than one gram of water for every gram of fat processed. This fat metabolization, while releasing energy, causes water to evaporate from the lungs during respiration (as oxygen is required for the metabolic process): overall, there is a net decrease in water.

 

Camels have a series of physiological adaptations that allow them to withstand long periods of time without any external source of water. Unlike other mammals, their red blood cells are oval rather than circular in shape. This facilitates the flow of red blood cells during dehydration and makes them better at withstanding high osmotic variation without rupturing when drinking large amounts of water: a 600 kg camel can drink 200 L of water in three minutes.

 

Camels are able to withstand changes in body temperature and water consumption that would kill most other animals. Their temperature ranges from 34 °C at dawn and steadily increases to 40 °C by sunset, before they cool off at night again. Maintaining the brain temperature within certain limits is critical for animals; to assist this, camels have a rete mirabile, a complex of arteries and veins lying very close to each other which utilizes countercurrent blood flow to cool blood flowing to the brain. Camels rarely sweat, even when ambient temperatures reach 49 °C Any sweat that does occur evaporates at the skin level rather than at the surface of their coat; the heat of vaporization therefore comes from body heat rather than ambient heat. Camels can withstand losing 25% of their body weight to sweating, whereas most other mammals can withstand only about 12–14% dehydration before cardiac failure results from circulatory disturbance.

 

When the camel exhales, water vapor becomes trapped in their nostrils and is reabsorbed into the body as a means to conserve water. Camels eating green herbage can ingest sufficient moisture in milder conditions to maintain their bodies' hydrated state without the need for drinking.

 

The camels' thick coats insulate them from the intense heat radiated from desert sand; a shorn camel must sweat 50% more to avoid overheating. During the summer the coat becomes lighter in color, reflecting light as well as helping avoid sunburn. The camel's long legs help by keeping its body farther from the ground, which can heat up to 70 °C. Dromedaries have a pad of thick tissue over the sternum called the pedestal. When the animal lies down in a sternal recumbent position, the pedestal raises the body from the hot surface and allows cooling air to pass under the body.

 

Camels' mouths have a thick leathery lining, allowing them to chew thorny desert plants. Long eyelashes and ear hairs, together with nostrils that can close, form a barrier against sand. If sand gets lodged in their eyes, they can dislodge it using their transparent third eyelid. The camels' gait and widened feet help them move without sinking into the sand.

 

The kidneys and intestines of a camel are very efficient at reabsorbing water. Camel urine comes out as a thick syrup, and camel feces are so dry that they do not require drying when the Bedouins use them to fuel fires.

 

Camels' immune system differs from those of other mammals. Normally, the Y-shaped antibody molecules consist of two heavy (or long) chains along the length of the Y, and two light (or short) chains at each tip of the Y. Camels, in addition to these, also have antibodies made of only two heavy chains, a trait that makes them smaller and more durable. These "heavy-chain-only" antibodies, discovered in 1993, are thought to have developed 50 million years ago, after camelids split from ruminants and pigs.

 

GENETICS

The karyotypes of different camelid species have been studied earlier by many groups, but no agreement on chromosome nomenclature of camelids has been reached. A 2007 study flow sorted camel chromosomes, building on the fact that camels have 37 pairs of chromosomes (2n=74), and found that the karyotime consisted of one metacentric, three submetacentric, and 32 acrocentric autosomes. The Y is a small metacentric chromosome, while the X is a large metacentric chromosome.The hybrid camel, a hybrid between Bactrian and dromedary camels, has one hump, though it has an indentation 4–12 cm deep that divides the front from the back. The hybrid is 2.15 m at the shoulder and 2.32 m tall at the hump. It weighs an average of 650 kg and can carry around 400 to 450 kg, which is more than either the dromedary or Bactrian can. According to molecular data, the New World and Old World camelids diverged 11 million years ago. In spite of this, these species can still hybridize and produce fertile offspring. The cama is a camel–llama hybrid bred by scientists who wanted to see how closely related the parent species were. Scientists collected semen from a camel via an artificial vagina and inseminated a llama after stimulating ovulation with gonadotrophin injections. The cama has ears halfway between the length of camel and llama ears, no hump, longer legs than the llama, and partially cloven hooves. According to cama breeder Lulu Skidmore, cama have "the fleece of the llamas" and "the strength and patience of the camel". Like the mule, camas are sterile, despite both parents having the same number of chromosomes.

 

EVOLUTION

The earliest known camel, called Protylopus, lived in North America 40 to 50 million years ago (during the Eocene). It was about the size of a rabbit and lived in the open woodlands of what is now South Dakota. By 35 million years ago, the Poebrotherium was the size of a goat and had many more traits similar to camels and llamas. The hoofed Stenomylus, which walked on the tips of its toes, also existed around this time, and the long-necked Aepycamelus evolved in the Miocene.

 

The direct ancestor of all modern camels, Procamelus, existed in the upper Miocone and lower Pliocene. Around 3–5 million years ago, the North American Camelidae spread to South America via the Isthmus of Panama, where they gave rise to guanacos and related animals, and to Asia via the Bering land bridge. Surprising finds of fossil Paracamelus on Ellesmere Island beginning in 2006 in the high Canadian Arctic indicate the dromedary is descended from a larger, boreal browser whose hump may have evolved as an adaptation in a cold climate. This creature is estimated to have stood around nine feet tall.

 

The last camel native to North America was Camelops hesternus, which vanished along with horses, short-faced bears, mammoths and mastodons, ground sloths, sabertooth cats, and many other megafauna, coinciding with the migration of humans from Asia.

 

DOMESTICATION

Most camels surviving today are domesticated. Along with many other megafauna in North America, the original wild camels were wiped out during the spread of Native Americans from Asia into North America, 12,000 to 10,000 years ago. The only wild camels left are the Bactrian camels of the Gobi Desert.

 

Like the horse, before their extinction in their native land, camels spread across the Bering land bridge, moving the opposite direction from the Asian immigration to America, to survive in the Old World and eventually be domesticated and spread globally by humans.

 

Dromedaries may have first been domesticated by humans in Somalia and southern Arabia, around 3,000 BC, the Bactrian in central Asia around 2,500 BC, as at Shar-i Sokhta (also known as the Burnt City), Iran.

 

Discussions concerning camel domestication in Mesopotamia are often related to mentions of camels in the Hebrew Bible. The International Standard Bible Encyclopedia: E-J for instance mentions that "In accord with patriarchal traditions, cylinder seals from Middle Bronze Age Mesopotamia showed riders seated upon camels."

 

Martin Heide's 2010 work on the domestication of the camel tentatively concludes that the bactrian camel was domesticated by at least the middle of the third millennium somewhere east of the Zagros Mountains, then moving into Mesopotamia, and suggests that mentions of camels "in the patriarchal narratives may refer, at least in some places, to the Bactrian camel." while noting that the camel is not mentioned in relationship to Canaan.

 

Recent excavations in the Timna Valley by Lidar Sapir-Hen and Erez Ben-Yosef discovered what may be the earliest domestic camel bones found in Israel or even outside the Arabian peninsula, dating to around 930 BCE. This garnered considerable media coverage as it was described as evidence that the stories of Abraham, Joseph, Jacob and Esau were written after this time.

 

The existence of camels in Mesopotamia but not in Israel is not a new idea. According to an article in Time Magazine, the historian Richard Bulliet wrote in his 1975 book "The Camel and the Wheel" that "the occasional mention of camels in patriarchal narratives does not mean that the domestic camels were common in the Holy Land at that period." The archaeologist William F. Albright writing even earlier saw camels in the Bible as an anachronism. The official report by Sapir-Hen and Ben-Joseph notes that "The introduction of the dromedary camel (Camelus dromedarius) as a pack animal to the southern Levant signifies a crucial juncture in the history of the region; it substantially facilitated trade across the vast deserts of Arabia, promoting both economic and social change (e.g., Kohler 1984; Borowski 1998: 112-116; Jasmin 2005). This, together with the depiction of camels in the Patriarchal narrative, has generated extensive discussion regarding the date of the earliest domestic camel in the southern Levant (and beyond) (e.g., Albright 1949: 207; Epstein 1971: 558-584; Bulliet 1975; Zarins 1989; Köhler-Rollefson 1993; Uerpmann and Uerpmann 2002; Jasmin 2005; 2006; Heide 2010; Rosen and Saidel 2010; Grigson 2012). Most scholars today agree that the dromedary was exploited as a pack animal sometime in the early Iron Age (not before the 12th century BCE)" and concludes that "Current data from copper smelting sites of the Aravah Valley enable us to pinpoint the introduction of domestic camels to the southern Levant more precisely based on stratigraphic contexts associated with an extensive suite of radiocarbon dates. The data indicate that this event occurred not earlier than the last third of the 10th century BCE and most probably during this time. The coincidence of this event with a major reorganization of the copper industry of the region - attributed to the results of the campaign of Pharaoh Shoshenq I - raises the possibility that the two were connected, and that camels were introduced as part of the efforts to improve efficiency by facilitating trade."

 

MILITARY USES

By at least 1200 BC, the first camel saddles had appeared, and Bactrian camels could be ridden. The first saddle was positioned to the back of the camel, and control of the Bactrian camel was exercised by means of a stick. However, between 500–100 BC, Bactrian camels attained military use. New saddles, which were inflexible and bent, were put over the humps and divided the rider's weight over the animal. In the seventh century BC, the military Arabian saddle appeared, which improved the saddle design again slightly.

 

Camel cavalries have been used in wars throughout Africa, the Middle East, and into modern-day Border Security Force of India (though as of July 2012, the BSF has planned the replacement of camels with ATVs). The first use of camel cavalries was in the Battle of Qarqar in 853 BC. Armies have also used camels as freight animals instead of horses and mules.

In the East Roman Empire, the Romans used auxiliary forces known as dromedarii, whom they recruited in desert provinces. The camels were used mostly in combat because of their ability to scare off horses at close ranges (horses are afraid of the camels' scent), a quality famously employed by the Achaemenid Persians when fighting Lydia in the Battle of Thymbra.

 

19th and 20th CENTURIES

The United States Army established the U.S. Camel Corps, which was stationed in California in the late 19th century. One may still see stables at the Benicia Arsenal in Benicia, California, where they nowadays serve as the Benicia Historical Museum. Though the experimental use of camels was seen as a success (John B. Floyd, Secretary of War in 1858, recommended that funds be allocated towards obtaining a thousand more camels), the outbreak of the American Civil War saw the end of the Camel Corps: Texas became part of the Confederacy, and most of the camels were left to wander away into the desert.

 

France created a méhariste camel corps in 1912 as part of the Armée d'Afrique in the Sahara in order to exercise greater control over the camel-riding Tuareg and Arab insurgents, as previous efforts to defeat them on foot had failed. The camel-mounted units remained in service until the end of French rule over Algeria in 1962.

 

In 1916, the British created the Imperial Camel Corps. It was originally used to fight the Senussi, but was later used in the Sinai and Palestine Campaign in World War I. The Imperial Camel Corps comprised infantrymen mounted on camels for movement across desert, though they dismounted at battle sites and fought on foot. After July 1918, the Corps began to become run down, receiving no new reinforcements, and was formally disbanded in 1919.

 

In World War I, the British Army also created the Egyptian Camel Transport Corps, which consisted of a group of Egyptian camel drivers and their camels. The Corps supported British war operations in Sinai, Palestine, and Syria by transporting supplies to the troops.

 

The Somaliland Camel Corps was created by colonial authorities in British Somaliland in 1912; it was disbanded in 1944.

 

Bactrian camels were used by Romanian forces during World War II in the Caucasian region.

 

The Bikaner Camel Corps of British India fought alongside the British Indian Army in World Wars I and II.

 

The Tropas Nómadas (Nomad Troops) were an auxiliary regiment of Sahrawi tribesmen serving in the colonial army in Spanish Sahara (today Western Sahara). Operational from the 1930s until the end of the Spanish presence in the territory in 1975, the Tropas Nómadas were equipped with small arms and led by Spanish officers. The unit guarded outposts and sometimes conducted patrols on camelback.

 

FOOD USES

DAIRY

Camel milk is a staple food of desert nomad tribes and is sometimes considered a meal in and of itself; a nomad can live on only camel milk for almost a month. Camel milk is rich in vitamins, minerals, proteins, and immunoglobulins; compared to cow's milk, it is lower in fat and lactose, and higher in potassium, iron, and vitamin C. Bedouins believe the curative powers of camel milk are enhanced if the camel's diet consists of certain desert plants. Camel milk can readily be made into a drinkable yogurt, as well as butter or cheese, though the yields for cheese tend to be low.

 

Camel milk cannot be made into butter by the traditional churning method. It can be made if it is soured first, churned, and a clarifying agent is then added. Until recently, camel milk could not be made into camel cheese because rennet was unable to coagulate the milk proteins to allow the collection of curds. Developing less wasteful uses of the milk, the FAO commissioned Professor J.P. Ramet of the École Nationale Supérieure d'Agronomie et des Industries Alimentaires, who was able to produce curdling by the addition of calcium phosphate and vegetable rennet. The cheese produced from this process has low levels of cholesterol and is easy to digest, even for the lactose intolerant. The sale of camel cheese is limited owing to the small output of the few dairies producing camel cheese and the absence of camel cheese in local (West African) markets. Cheese imports from countries that traditionally breed camels are difficult to obtain due to restrictions on dairy imports from these regions.

 

Additionally, camel milk has been made into ice cream in a Netherlands camel farm.

 

MEAT

A camel carcass can provide a substantial amount of meat. The male dromedary carcass can weigh 300–400 kg, while the carcass of a male Bactrian can weigh up to 650 kg. The carcass of a female dromedary weighs less than the male, ranging between 250 and 350 kg. The brisket, ribs and loin are among the preferred parts, and the hump is considered a delicacy. The hump contains "white and sickly fat", which can be used to make the khli (preserved meat) of mutton, beef, or camel. Camel meat is reported to taste like coarse beef, but older camels can prove to be very tough, although camel meat becomes more tender the more it is cooked. The Abu Dhabi Officers' Club serves a camel burger mixed with beef or lamb fat in order to improve the texture and taste. In Karachi, Pakistan, some restaurants prepare nihari from camel meat. In Syria and Egypt, there are specialist camel butchers.

 

Camel meat has been eaten for centuries. It has been recorded by ancient Greek writers as an available dish at banquets in ancient Persia, usually roasted whole. The ancient Roman emperor Heliogabalus enjoyed camel's heel.[31] Camel meat is still eaten in certain regions, including Eritrea, Somalia, Djibouti, Saudi Arabia, Egypt, Syria, Libya, Sudan, Ethiopia, Kazakhstan, and other arid regions where alternative forms of protein may be limited or where camel meat has had a long cultural history. Camel blood is also consumable, as is the case among pastoralists in northern Kenya, where camel blood is drunk with milk and acts as a key source of iron, vitamin D, salts and minerals. Camel meat is also occasionally found in Australian cuisine: for example, a camel lasagna is available in Alice Springs.

 

A 2005 report issued jointly by the Saudi Ministry of Health and the United States Centers for Disease Control and Prevention details cases of human bubonic plague resulting from the ingestion of raw camel liver.

 

RELIGION

ISLAM

Camel meat is halal for Muslims. However, according to some Islamic schools of thought, a state of impurity is brought on by the consumption of it. Consequently, these schools hold that Muslims must perform wudhu (ablution) before the next time they pray after eating camel meat.

 

Also, some Islamic schools of thought consider it haraam for a Muslim to perform salat in places where camels lie, as it is said to be a dwelling place of shaytan.

 

According to Suni ahadith collected by Bukhari and Muslim, Muhammad ordered a certain group of people to drink camel milk and urine as a medicine. However, according to Abū Ḥanīfa, the drinking of camel urine, while not forbidden (ḥaram), is disliked (makrūh) in Islam.

 

Camel urine is sold as traditional medicine in shops in Saudi Arabia. The Sunni scholar Muhammad Al-Munajjid's IslamQA.info recommends camel urine as beneficial to curing certain diseases and to human health and cited Ahadith and scientific studies as justification. King Abdulaziz University researcher Dr. Faten Abdel-Rajman Khorshid has claimed that cancer and other diseases could be treated with camel urine as recommended by the Prophet. The United Arab Emirates "Arab Science and Technology Foundation" reported that cancer could be treated with camel urine. Camel urine was also prescribed as a treatment by Zaghloul El-Naggar, a religious scholar. Camel urine is the only urine which is permitted to be drunk according to the Hanbali madhhab of Sunni Islam. The World Health Organization said that camel urine consumption may be a factor in the spread of the MERS virus in Saudi Arabia. The Gulf Times writer Ahmad al-Sayyed wrote that various afflictions are dealt with camel urine by people. Dandruff, scalp ailments, hair, sores, and wounds were recommended to be treated with camel urine by Ibn Sina. Arab American University Professor of Cell Biology and Immunology Bashar Saad (PhD) along with Omar Said (PhD) wrote that medicinal use of camel urine is approved of and promoted by Islam since it was recommended by the prophet. A test on mice found that cytotoxic effects similar to cyclophosphamide were induced on bone marrow by camel urine. Besides for consumption as a medicinal drink, camel urine is believed to help treat hair. Bites from insects were warded off with camel urine, which also served as a shampoo. Camel urine is also used to help treat asthma, infections, treat hair, sores, hair growth and boost libido.

 

Several Sunni Ahadith mention drinking camel urine. Some Shia criticized Wahhabis for camel urine treatment. Shia scholars also recommend the medicinal use of camel urine. Shia Hadith on Imam Ja'far al-Sadiq reported that shortness of breath (asthma) was treated with camel urine. Shia Marja Ayatollah Sistani said that for medicinal purposes only, sheep, cow, and camel urine can be drunk.

 

JUDAISM

According to Jewish tradition, camel meat and milk are not kosher. Camels possess only one of the two kosher criteria; although they chew their cud, they do not possess cloven hooves:

 

Nevertheless these shall ye not eat of them that only chew the cud, or of them that only part the hoof: the camel, because he cheweth the cud but parteth not the hoof, he is unclean unto you.

— Leviticus 11:4

 

DISTRIBUTION ANDNUMBERS

There are around 14 million camels alive as of 2010, with 90% being dromedaries. Dromedaries alive today are domesticated animals (mostly living in the Horn of Africa, the Sahel, Maghreb, Middle East and South Asia). The Horn region alone has the largest concentration of camels in the world, where the dromedaries constitute an important part of local nomadic life. They provide nomadic people in Somalia (which has the largest camel herd in the world) and Ethiopia with milk, food, and transportation.

 

The Bactrian camel is, as of 2010, reduced to an estimated 1.4 million animals, most of which are domesticated. The only truly wild Bactrian camels, of which there are less than one thousand, are thought to inhabit the Gobi Desert in China and Mongolia.

 

The largest population of feral camels is in Australia. There are around 700,000 feral dromedary camels in central parts of Australia, descended from those introduced as a method of transport in the 19th and early 20th centuries. This population is growing about 8% per year. Representatives of the Australian government have culled more than 100,000 of the animals in part because the camels use too much of the limited resources needed by sheep farmers.

 

A small population of introduced camels, dromedaries and Bactrians, wandered through Southwest United States after having been imported in the 1800s as part of the U.S. Camel Corps experiment. When the project ended, they were used as draft animals in mines and escaped or were released. Twenty-five U.S. camels were bought and imported to Canada during the Cariboo Gold Rush.

 

WIKIPEDIA

A camel is an even-toed ungulate within the genus Camelus, bearing distinctive fatty deposits known as "humps" on its back. The two surviving species of camel are the dromedary, or one-humped camel (C. dromedarius), which inhabits the Middle East and the Horn of Africa; and the bactrian, or two-humped camel (C. bactrianus), which inhabits Central Asia. Both species have been domesticated; they provide milk, meat, hair for textiles or goods such as felted pouches, and are working animals with tasks ranging from human transport to bearing loads.

 

The term "camel" is derived via Latin and Greek (camelus and κάμηλος kamēlos respectively) from Hebrew or Phoenician gāmāl.

 

"Camel" is also used more broadly to describe any of the six camel-like mammals in the family Camelidae: the two true camels and the four New World camelids: the llama, alpaca, guanaco, and vicuña of South America.

 

BIOLOGY

The average life expectancy of a camel is 40 to 50 years. A full-grown adult camel stands 1.85 m at the shoulder and 2.15 m at the hump. Camels can run at up to 65 km/h in short bursts and sustain speeds of up to 40 km/h. Bactrian camels weigh 300 to 1,000 kg and dromedaries 300 to 600 kg.

 

The male dromedary camel has in its throat an organ called a dulla, a large, inflatable sac he extrudes from his mouth when in rut to assert dominance and attract females. It resembles a long, swollen, pink tongue hanging out of the side of its mouth. Camels mate by having both male and female sitting on the ground, with the male mounting from behind. The male usually ejaculates three or four times within a single mating session. Camelids are the only ungulates to mate in a sitting position.

 

ECOLOGICAL AND BEHAVIORAL ADAPTIONS

Camels do not directly store water in their humps as was once commonly believed. The humps are actually reservoirs of fatty tissue: concentrating body fat in their humps minimizes the insulating effect fat would have if distributed over the rest of their bodies, helping camels survive in hot climates. When this tissue is metabolized, it yields more than one gram of water for every gram of fat processed. This fat metabolization, while releasing energy, causes water to evaporate from the lungs during respiration (as oxygen is required for the metabolic process): overall, there is a net decrease in water.

 

Camels have a series of physiological adaptations that allow them to withstand long periods of time without any external source of water. Unlike other mammals, their red blood cells are oval rather than circular in shape. This facilitates the flow of red blood cells during dehydration and makes them better at withstanding high osmotic variation without rupturing when drinking large amounts of water: a 600 kg camel can drink 200 L of water in three minutes.

 

Camels are able to withstand changes in body temperature and water consumption that would kill most other animals. Their temperature ranges from 34 °C at dawn and steadily increases to 40 °C by sunset, before they cool off at night again. Maintaining the brain temperature within certain limits is critical for animals; to assist this, camels have a rete mirabile, a complex of arteries and veins lying very close to each other which utilizes countercurrent blood flow to cool blood flowing to the brain. Camels rarely sweat, even when ambient temperatures reach 49 °C Any sweat that does occur evaporates at the skin level rather than at the surface of their coat; the heat of vaporization therefore comes from body heat rather than ambient heat. Camels can withstand losing 25% of their body weight to sweating, whereas most other mammals can withstand only about 12–14% dehydration before cardiac failure results from circulatory disturbance.

 

When the camel exhales, water vapor becomes trapped in their nostrils and is reabsorbed into the body as a means to conserve water. Camels eating green herbage can ingest sufficient moisture in milder conditions to maintain their bodies' hydrated state without the need for drinking.

 

The camels' thick coats insulate them from the intense heat radiated from desert sand; a shorn camel must sweat 50% more to avoid overheating. During the summer the coat becomes lighter in color, reflecting light as well as helping avoid sunburn. The camel's long legs help by keeping its body farther from the ground, which can heat up to 70 °C. Dromedaries have a pad of thick tissue over the sternum called the pedestal. When the animal lies down in a sternal recumbent position, the pedestal raises the body from the hot surface and allows cooling air to pass under the body.

 

Camels' mouths have a thick leathery lining, allowing them to chew thorny desert plants. Long eyelashes and ear hairs, together with nostrils that can close, form a barrier against sand. If sand gets lodged in their eyes, they can dislodge it using their transparent third eyelid. The camels' gait and widened feet help them move without sinking into the sand.

 

The kidneys and intestines of a camel are very efficient at reabsorbing water. Camel urine comes out as a thick syrup, and camel feces are so dry that they do not require drying when the Bedouins use them to fuel fires.

 

Camels' immune system differs from those of other mammals. Normally, the Y-shaped antibody molecules consist of two heavy (or long) chains along the length of the Y, and two light (or short) chains at each tip of the Y. Camels, in addition to these, also have antibodies made of only two heavy chains, a trait that makes them smaller and more durable. These "heavy-chain-only" antibodies, discovered in 1993, are thought to have developed 50 million years ago, after camelids split from ruminants and pigs.

 

GENETICS

The karyotypes of different camelid species have been studied earlier by many groups, but no agreement on chromosome nomenclature of camelids has been reached. A 2007 study flow sorted camel chromosomes, building on the fact that camels have 37 pairs of chromosomes (2n=74), and found that the karyotime consisted of one metacentric, three submetacentric, and 32 acrocentric autosomes. The Y is a small metacentric chromosome, while the X is a large metacentric chromosome.The hybrid camel, a hybrid between Bactrian and dromedary camels, has one hump, though it has an indentation 4–12 cm deep that divides the front from the back. The hybrid is 2.15 m at the shoulder and 2.32 m tall at the hump. It weighs an average of 650 kg and can carry around 400 to 450 kg, which is more than either the dromedary or Bactrian can. According to molecular data, the New World and Old World camelids diverged 11 million years ago. In spite of this, these species can still hybridize and produce fertile offspring. The cama is a camel–llama hybrid bred by scientists who wanted to see how closely related the parent species were. Scientists collected semen from a camel via an artificial vagina and inseminated a llama after stimulating ovulation with gonadotrophin injections. The cama has ears halfway between the length of camel and llama ears, no hump, longer legs than the llama, and partially cloven hooves. According to cama breeder Lulu Skidmore, cama have "the fleece of the llamas" and "the strength and patience of the camel". Like the mule, camas are sterile, despite both parents having the same number of chromosomes.

 

EVOLUTION

The earliest known camel, called Protylopus, lived in North America 40 to 50 million years ago (during the Eocene). It was about the size of a rabbit and lived in the open woodlands of what is now South Dakota. By 35 million years ago, the Poebrotherium was the size of a goat and had many more traits similar to camels and llamas. The hoofed Stenomylus, which walked on the tips of its toes, also existed around this time, and the long-necked Aepycamelus evolved in the Miocene.

 

The direct ancestor of all modern camels, Procamelus, existed in the upper Miocone and lower Pliocene. Around 3–5 million years ago, the North American Camelidae spread to South America via the Isthmus of Panama, where they gave rise to guanacos and related animals, and to Asia via the Bering land bridge. Surprising finds of fossil Paracamelus on Ellesmere Island beginning in 2006 in the high Canadian Arctic indicate the dromedary is descended from a larger, boreal browser whose hump may have evolved as an adaptation in a cold climate. This creature is estimated to have stood around nine feet tall.

 

The last camel native to North America was Camelops hesternus, which vanished along with horses, short-faced bears, mammoths and mastodons, ground sloths, sabertooth cats, and many other megafauna, coinciding with the migration of humans from Asia.

 

DOMESTICATION

Most camels surviving today are domesticated. Along with many other megafauna in North America, the original wild camels were wiped out during the spread of Native Americans from Asia into North America, 12,000 to 10,000 years ago. The only wild camels left are the Bactrian camels of the Gobi Desert.

 

Like the horse, before their extinction in their native land, camels spread across the Bering land bridge, moving the opposite direction from the Asian immigration to America, to survive in the Old World and eventually be domesticated and spread globally by humans.

 

Dromedaries may have first been domesticated by humans in Somalia and southern Arabia, around 3,000 BC, the Bactrian in central Asia around 2,500 BC, as at Shar-i Sokhta (also known as the Burnt City), Iran.

 

Discussions concerning camel domestication in Mesopotamia are often related to mentions of camels in the Hebrew Bible. The International Standard Bible Encyclopedia: E-J for instance mentions that "In accord with patriarchal traditions, cylinder seals from Middle Bronze Age Mesopotamia showed riders seated upon camels."

 

Martin Heide's 2010 work on the domestication of the camel tentatively concludes that the bactrian camel was domesticated by at least the middle of the third millennium somewhere east of the Zagros Mountains, then moving into Mesopotamia, and suggests that mentions of camels "in the patriarchal narratives may refer, at least in some places, to the Bactrian camel." while noting that the camel is not mentioned in relationship to Canaan.

 

Recent excavations in the Timna Valley by Lidar Sapir-Hen and Erez Ben-Yosef discovered what may be the earliest domestic camel bones found in Israel or even outside the Arabian peninsula, dating to around 930 BCE. This garnered considerable media coverage as it was described as evidence that the stories of Abraham, Joseph, Jacob and Esau were written after this time.

 

The existence of camels in Mesopotamia but not in Israel is not a new idea. According to an article in Time Magazine, the historian Richard Bulliet wrote in his 1975 book "The Camel and the Wheel" that "the occasional mention of camels in patriarchal narratives does not mean that the domestic camels were common in the Holy Land at that period." The archaeologist William F. Albright writing even earlier saw camels in the Bible as an anachronism. The official report by Sapir-Hen and Ben-Joseph notes that "The introduction of the dromedary camel (Camelus dromedarius) as a pack animal to the southern Levant signifies a crucial juncture in the history of the region; it substantially facilitated trade across the vast deserts of Arabia, promoting both economic and social change (e.g., Kohler 1984; Borowski 1998: 112-116; Jasmin 2005). This, together with the depiction of camels in the Patriarchal narrative, has generated extensive discussion regarding the date of the earliest domestic camel in the southern Levant (and beyond) (e.g., Albright 1949: 207; Epstein 1971: 558-584; Bulliet 1975; Zarins 1989; Köhler-Rollefson 1993; Uerpmann and Uerpmann 2002; Jasmin 2005; 2006; Heide 2010; Rosen and Saidel 2010; Grigson 2012). Most scholars today agree that the dromedary was exploited as a pack animal sometime in the early Iron Age (not before the 12th century BCE)" and concludes that "Current data from copper smelting sites of the Aravah Valley enable us to pinpoint the introduction of domestic camels to the southern Levant more precisely based on stratigraphic contexts associated with an extensive suite of radiocarbon dates. The data indicate that this event occurred not earlier than the last third of the 10th century BCE and most probably during this time. The coincidence of this event with a major reorganization of the copper industry of the region - attributed to the results of the campaign of Pharaoh Shoshenq I - raises the possibility that the two were connected, and that camels were introduced as part of the efforts to improve efficiency by facilitating trade."

 

MILITARY USES

By at least 1200 BC, the first camel saddles had appeared, and Bactrian camels could be ridden. The first saddle was positioned to the back of the camel, and control of the Bactrian camel was exercised by means of a stick. However, between 500–100 BC, Bactrian camels attained military use. New saddles, which were inflexible and bent, were put over the humps and divided the rider's weight over the animal. In the seventh century BC, the military Arabian saddle appeared, which improved the saddle design again slightly.

 

Camel cavalries have been used in wars throughout Africa, the Middle East, and into modern-day Border Security Force of India (though as of July 2012, the BSF has planned the replacement of camels with ATVs). The first use of camel cavalries was in the Battle of Qarqar in 853 BC. Armies have also used camels as freight animals instead of horses and mules.

In the East Roman Empire, the Romans used auxiliary forces known as dromedarii, whom they recruited in desert provinces. The camels were used mostly in combat because of their ability to scare off horses at close ranges (horses are afraid of the camels' scent), a quality famously employed by the Achaemenid Persians when fighting Lydia in the Battle of Thymbra.

 

19th and 20th CENTURIES

The United States Army established the U.S. Camel Corps, which was stationed in California in the late 19th century. One may still see stables at the Benicia Arsenal in Benicia, California, where they nowadays serve as the Benicia Historical Museum. Though the experimental use of camels was seen as a success (John B. Floyd, Secretary of War in 1858, recommended that funds be allocated towards obtaining a thousand more camels), the outbreak of the American Civil War saw the end of the Camel Corps: Texas became part of the Confederacy, and most of the camels were left to wander away into the desert.

 

France created a méhariste camel corps in 1912 as part of the Armée d'Afrique in the Sahara in order to exercise greater control over the camel-riding Tuareg and Arab insurgents, as previous efforts to defeat them on foot had failed. The camel-mounted units remained in service until the end of French rule over Algeria in 1962.

 

In 1916, the British created the Imperial Camel Corps. It was originally used to fight the Senussi, but was later used in the Sinai and Palestine Campaign in World War I. The Imperial Camel Corps comprised infantrymen mounted on camels for movement across desert, though they dismounted at battle sites and fought on foot. After July 1918, the Corps began to become run down, receiving no new reinforcements, and was formally disbanded in 1919.

 

In World War I, the British Army also created the Egyptian Camel Transport Corps, which consisted of a group of Egyptian camel drivers and their camels. The Corps supported British war operations in Sinai, Palestine, and Syria by transporting supplies to the troops.

 

The Somaliland Camel Corps was created by colonial authorities in British Somaliland in 1912; it was disbanded in 1944.

 

Bactrian camels were used by Romanian forces during World War II in the Caucasian region.

 

The Bikaner Camel Corps of British India fought alongside the British Indian Army in World Wars I and II.

 

The Tropas Nómadas (Nomad Troops) were an auxiliary regiment of Sahrawi tribesmen serving in the colonial army in Spanish Sahara (today Western Sahara). Operational from the 1930s until the end of the Spanish presence in the territory in 1975, the Tropas Nómadas were equipped with small arms and led by Spanish officers. The unit guarded outposts and sometimes conducted patrols on camelback.

 

FOOD USES

DAIRY

Camel milk is a staple food of desert nomad tribes and is sometimes considered a meal in and of itself; a nomad can live on only camel milk for almost a month. Camel milk is rich in vitamins, minerals, proteins, and immunoglobulins; compared to cow's milk, it is lower in fat and lactose, and higher in potassium, iron, and vitamin C. Bedouins believe the curative powers of camel milk are enhanced if the camel's diet consists of certain desert plants. Camel milk can readily be made into a drinkable yogurt, as well as butter or cheese, though the yields for cheese tend to be low.

 

Camel milk cannot be made into butter by the traditional churning method. It can be made if it is soured first, churned, and a clarifying agent is then added. Until recently, camel milk could not be made into camel cheese because rennet was unable to coagulate the milk proteins to allow the collection of curds. Developing less wasteful uses of the milk, the FAO commissioned Professor J.P. Ramet of the École Nationale Supérieure d'Agronomie et des Industries Alimentaires, who was able to produce curdling by the addition of calcium phosphate and vegetable rennet. The cheese produced from this process has low levels of cholesterol and is easy to digest, even for the lactose intolerant. The sale of camel cheese is limited owing to the small output of the few dairies producing camel cheese and the absence of camel cheese in local (West African) markets. Cheese imports from countries that traditionally breed camels are difficult to obtain due to restrictions on dairy imports from these regions.

 

Additionally, camel milk has been made into ice cream in a Netherlands camel farm.

 

MEAT

A camel carcass can provide a substantial amount of meat. The male dromedary carcass can weigh 300–400 kg, while the carcass of a male Bactrian can weigh up to 650 kg. The carcass of a female dromedary weighs less than the male, ranging between 250 and 350 kg. The brisket, ribs and loin are among the preferred parts, and the hump is considered a delicacy. The hump contains "white and sickly fat", which can be used to make the khli (preserved meat) of mutton, beef, or camel. Camel meat is reported to taste like coarse beef, but older camels can prove to be very tough, although camel meat becomes more tender the more it is cooked. The Abu Dhabi Officers' Club serves a camel burger mixed with beef or lamb fat in order to improve the texture and taste. In Karachi, Pakistan, some restaurants prepare nihari from camel meat. In Syria and Egypt, there are specialist camel butchers.

 

Camel meat has been eaten for centuries. It has been recorded by ancient Greek writers as an available dish at banquets in ancient Persia, usually roasted whole. The ancient Roman emperor Heliogabalus enjoyed camel's heel.[31] Camel meat is still eaten in certain regions, including Eritrea, Somalia, Djibouti, Saudi Arabia, Egypt, Syria, Libya, Sudan, Ethiopia, Kazakhstan, and other arid regions where alternative forms of protein may be limited or where camel meat has had a long cultural history. Camel blood is also consumable, as is the case among pastoralists in northern Kenya, where camel blood is drunk with milk and acts as a key source of iron, vitamin D, salts and minerals. Camel meat is also occasionally found in Australian cuisine: for example, a camel lasagna is available in Alice Springs.

 

A 2005 report issued jointly by the Saudi Ministry of Health and the United States Centers for Disease Control and Prevention details cases of human bubonic plague resulting from the ingestion of raw camel liver.

 

RELIGION

ISLAM

Camel meat is halal for Muslims. However, according to some Islamic schools of thought, a state of impurity is brought on by the consumption of it. Consequently, these schools hold that Muslims must perform wudhu (ablution) before the next time they pray after eating camel meat.

 

Also, some Islamic schools of thought consider it haraam for a Muslim to perform salat in places where camels lie, as it is said to be a dwelling place of shaytan.

 

According to Suni ahadith collected by Bukhari and Muslim, Muhammad ordered a certain group of people to drink camel milk and urine as a medicine. However, according to Abū Ḥanīfa, the drinking of camel urine, while not forbidden (ḥaram), is disliked (makrūh) in Islam.

 

Camel urine is sold as traditional medicine in shops in Saudi Arabia. The Sunni scholar Muhammad Al-Munajjid's IslamQA.info recommends camel urine as beneficial to curing certain diseases and to human health and cited Ahadith and scientific studies as justification. King Abdulaziz University researcher Dr. Faten Abdel-Rajman Khorshid has claimed that cancer and other diseases could be treated with camel urine as recommended by the Prophet. The United Arab Emirates "Arab Science and Technology Foundation" reported that cancer could be treated with camel urine. Camel urine was also prescribed as a treatment by Zaghloul El-Naggar, a religious scholar. Camel urine is the only urine which is permitted to be drunk according to the Hanbali madhhab of Sunni Islam. The World Health Organization said that camel urine consumption may be a factor in the spread of the MERS virus in Saudi Arabia. The Gulf Times writer Ahmad al-Sayyed wrote that various afflictions are dealt with camel urine by people. Dandruff, scalp ailments, hair, sores, and wounds were recommended to be treated with camel urine by Ibn Sina. Arab American University Professor of Cell Biology and Immunology Bashar Saad (PhD) along with Omar Said (PhD) wrote that medicinal use of camel urine is approved of and promoted by Islam since it was recommended by the prophet. A test on mice found that cytotoxic effects similar to cyclophosphamide were induced on bone marrow by camel urine. Besides for consumption as a medicinal drink, camel urine is believed to help treat hair. Bites from insects were warded off with camel urine, which also served as a shampoo. Camel urine is also used to help treat asthma, infections, treat hair, sores, hair growth and boost libido.

 

Several Sunni Ahadith mention drinking camel urine. Some Shia criticized Wahhabis for camel urine treatment. Shia scholars also recommend the medicinal use of camel urine. Shia Hadith on Imam Ja'far al-Sadiq reported that shortness of breath (asthma) was treated with camel urine. Shia Marja Ayatollah Sistani said that for medicinal purposes only, sheep, cow, and camel urine can be drunk.

 

JUDAISM

According to Jewish tradition, camel meat and milk are not kosher. Camels possess only one of the two kosher criteria; although they chew their cud, they do not possess cloven hooves:

 

Nevertheless these shall ye not eat of them that only chew the cud, or of them that only part the hoof: the camel, because he cheweth the cud but parteth not the hoof, he is unclean unto you.

— Leviticus 11:4

 

DISTRIBUTION ANDNUMBERS

There are around 14 million camels alive as of 2010, with 90% being dromedaries. Dromedaries alive today are domesticated animals (mostly living in the Horn of Africa, the Sahel, Maghreb, Middle East and South Asia). The Horn region alone has the largest concentration of camels in the world, where the dromedaries constitute an important part of local nomadic life. They provide nomadic people in Somalia (which has the largest camel herd in the world) and Ethiopia with milk, food, and transportation.

 

The Bactrian camel is, as of 2010, reduced to an estimated 1.4 million animals, most of which are domesticated. The only truly wild Bactrian camels, of which there are less than one thousand, are thought to inhabit the Gobi Desert in China and Mongolia.

 

The largest population of feral camels is in Australia. There are around 700,000 feral dromedary camels in central parts of Australia, descended from those introduced as a method of transport in the 19th and early 20th centuries. This population is growing about 8% per year. Representatives of the Australian government have culled more than 100,000 of the animals in part because the camels use too much of the limited resources needed by sheep farmers.

 

A small population of introduced camels, dromedaries and Bactrians, wandered through Southwest United States after having been imported in the 1800s as part of the U.S. Camel Corps experiment. When the project ended, they were used as draft animals in mines and escaped or were released. Twenty-five U.S. camels were bought and imported to Canada during the Cariboo Gold Rush.

 

WIKIPEDIA

A camel is an even-toed ungulate within the genus Camelus, bearing distinctive fatty deposits known as "humps" on its back. The two surviving species of camel are the dromedary, or one-humped camel (C. dromedarius), which inhabits the Middle East and the Horn of Africa; and the bactrian, or two-humped camel (C. bactrianus), which inhabits Central Asia. Both species have been domesticated; they provide milk, meat, hair for textiles or goods such as felted pouches, and are working animals with tasks ranging from human transport to bearing loads.

 

The term "camel" is derived via Latin and Greek (camelus and κάμηλος kamēlos respectively) from Hebrew or Phoenician gāmāl.

 

"Camel" is also used more broadly to describe any of the six camel-like mammals in the family Camelidae: the two true camels and the four New World camelids: the llama, alpaca, guanaco, and vicuña of South America.

 

BIOLOGY

The average life expectancy of a camel is 40 to 50 years. A full-grown adult camel stands 1.85 m at the shoulder and 2.15 m at the hump. Camels can run at up to 65 km/h in short bursts and sustain speeds of up to 40 km/h. Bactrian camels weigh 300 to 1,000 kg and dromedaries 300 to 600 kg.

 

The male dromedary camel has in its throat an organ called a dulla, a large, inflatable sac he extrudes from his mouth when in rut to assert dominance and attract females. It resembles a long, swollen, pink tongue hanging out of the side of its mouth. Camels mate by having both male and female sitting on the ground, with the male mounting from behind. The male usually ejaculates three or four times within a single mating session. Camelids are the only ungulates to mate in a sitting position.

 

ECOLOGICAL AND BEHAVIORAL ADAPTIONS

Camels do not directly store water in their humps as was once commonly believed. The humps are actually reservoirs of fatty tissue: concentrating body fat in their humps minimizes the insulating effect fat would have if distributed over the rest of their bodies, helping camels survive in hot climates. When this tissue is metabolized, it yields more than one gram of water for every gram of fat processed. This fat metabolization, while releasing energy, causes water to evaporate from the lungs during respiration (as oxygen is required for the metabolic process): overall, there is a net decrease in water.

 

Camels have a series of physiological adaptations that allow them to withstand long periods of time without any external source of water. Unlike other mammals, their red blood cells are oval rather than circular in shape. This facilitates the flow of red blood cells during dehydration and makes them better at withstanding high osmotic variation without rupturing when drinking large amounts of water: a 600 kg camel can drink 200 L of water in three minutes.

 

Camels are able to withstand changes in body temperature and water consumption that would kill most other animals. Their temperature ranges from 34 °C at dawn and steadily increases to 40 °C by sunset, before they cool off at night again. Maintaining the brain temperature within certain limits is critical for animals; to assist this, camels have a rete mirabile, a complex of arteries and veins lying very close to each other which utilizes countercurrent blood flow to cool blood flowing to the brain. Camels rarely sweat, even when ambient temperatures reach 49 °C Any sweat that does occur evaporates at the skin level rather than at the surface of their coat; the heat of vaporization therefore comes from body heat rather than ambient heat. Camels can withstand losing 25% of their body weight to sweating, whereas most other mammals can withstand only about 12–14% dehydration before cardiac failure results from circulatory disturbance.

 

When the camel exhales, water vapor becomes trapped in their nostrils and is reabsorbed into the body as a means to conserve water. Camels eating green herbage can ingest sufficient moisture in milder conditions to maintain their bodies' hydrated state without the need for drinking.

 

The camels' thick coats insulate them from the intense heat radiated from desert sand; a shorn camel must sweat 50% more to avoid overheating. During the summer the coat becomes lighter in color, reflecting light as well as helping avoid sunburn. The camel's long legs help by keeping its body farther from the ground, which can heat up to 70 °C. Dromedaries have a pad of thick tissue over the sternum called the pedestal. When the animal lies down in a sternal recumbent position, the pedestal raises the body from the hot surface and allows cooling air to pass under the body.

 

Camels' mouths have a thick leathery lining, allowing them to chew thorny desert plants. Long eyelashes and ear hairs, together with nostrils that can close, form a barrier against sand. If sand gets lodged in their eyes, they can dislodge it using their transparent third eyelid. The camels' gait and widened feet help them move without sinking into the sand.

 

The kidneys and intestines of a camel are very efficient at reabsorbing water. Camel urine comes out as a thick syrup, and camel feces are so dry that they do not require drying when the Bedouins use them to fuel fires.

 

Camels' immune system differs from those of other mammals. Normally, the Y-shaped antibody molecules consist of two heavy (or long) chains along the length of the Y, and two light (or short) chains at each tip of the Y. Camels, in addition to these, also have antibodies made of only two heavy chains, a trait that makes them smaller and more durable. These "heavy-chain-only" antibodies, discovered in 1993, are thought to have developed 50 million years ago, after camelids split from ruminants and pigs.

 

GENETICS

The karyotypes of different camelid species have been studied earlier by many groups, but no agreement on chromosome nomenclature of camelids has been reached. A 2007 study flow sorted camel chromosomes, building on the fact that camels have 37 pairs of chromosomes (2n=74), and found that the karyotime consisted of one metacentric, three submetacentric, and 32 acrocentric autosomes. The Y is a small metacentric chromosome, while the X is a large metacentric chromosome.The hybrid camel, a hybrid between Bactrian and dromedary camels, has one hump, though it has an indentation 4–12 cm deep that divides the front from the back. The hybrid is 2.15 m at the shoulder and 2.32 m tall at the hump. It weighs an average of 650 kg and can carry around 400 to 450 kg, which is more than either the dromedary or Bactrian can. According to molecular data, the New World and Old World camelids diverged 11 million years ago. In spite of this, these species can still hybridize and produce fertile offspring. The cama is a camel–llama hybrid bred by scientists who wanted to see how closely related the parent species were. Scientists collected semen from a camel via an artificial vagina and inseminated a llama after stimulating ovulation with gonadotrophin injections. The cama has ears halfway between the length of camel and llama ears, no hump, longer legs than the llama, and partially cloven hooves. According to cama breeder Lulu Skidmore, cama have "the fleece of the llamas" and "the strength and patience of the camel". Like the mule, camas are sterile, despite both parents having the same number of chromosomes.

 

EVOLUTION

The earliest known camel, called Protylopus, lived in North America 40 to 50 million years ago (during the Eocene). It was about the size of a rabbit and lived in the open woodlands of what is now South Dakota. By 35 million years ago, the Poebrotherium was the size of a goat and had many more traits similar to camels and llamas. The hoofed Stenomylus, which walked on the tips of its toes, also existed around this time, and the long-necked Aepycamelus evolved in the Miocene.

 

The direct ancestor of all modern camels, Procamelus, existed in the upper Miocone and lower Pliocene. Around 3–5 million years ago, the North American Camelidae spread to South America via the Isthmus of Panama, where they gave rise to guanacos and related animals, and to Asia via the Bering land bridge. Surprising finds of fossil Paracamelus on Ellesmere Island beginning in 2006 in the high Canadian Arctic indicate the dromedary is descended from a larger, boreal browser whose hump may have evolved as an adaptation in a cold climate. This creature is estimated to have stood around nine feet tall.

 

The last camel native to North America was Camelops hesternus, which vanished along with horses, short-faced bears, mammoths and mastodons, ground sloths, sabertooth cats, and many other megafauna, coinciding with the migration of humans from Asia.

 

DOMESTICATION

Most camels surviving today are domesticated. Along with many other megafauna in North America, the original wild camels were wiped out during the spread of Native Americans from Asia into North America, 12,000 to 10,000 years ago. The only wild camels left are the Bactrian camels of the Gobi Desert.

 

Like the horse, before their extinction in their native land, camels spread across the Bering land bridge, moving the opposite direction from the Asian immigration to America, to survive in the Old World and eventually be domesticated and spread globally by humans.

 

Dromedaries may have first been domesticated by humans in Somalia and southern Arabia, around 3,000 BC, the Bactrian in central Asia around 2,500 BC, as at Shar-i Sokhta (also known as the Burnt City), Iran.

 

Discussions concerning camel domestication in Mesopotamia are often related to mentions of camels in the Hebrew Bible. The International Standard Bible Encyclopedia: E-J for instance mentions that "In accord with patriarchal traditions, cylinder seals from Middle Bronze Age Mesopotamia showed riders seated upon camels."

 

Martin Heide's 2010 work on the domestication of the camel tentatively concludes that the bactrian camel was domesticated by at least the middle of the third millennium somewhere east of the Zagros Mountains, then moving into Mesopotamia, and suggests that mentions of camels "in the patriarchal narratives may refer, at least in some places, to the Bactrian camel." while noting that the camel is not mentioned in relationship to Canaan.

 

Recent excavations in the Timna Valley by Lidar Sapir-Hen and Erez Ben-Yosef discovered what may be the earliest domestic camel bones found in Israel or even outside the Arabian peninsula, dating to around 930 BCE. This garnered considerable media coverage as it was described as evidence that the stories of Abraham, Joseph, Jacob and Esau were written after this time.

 

The existence of camels in Mesopotamia but not in Israel is not a new idea. According to an article in Time Magazine, the historian Richard Bulliet wrote in his 1975 book "The Camel and the Wheel" that "the occasional mention of camels in patriarchal narratives does not mean that the domestic camels were common in the Holy Land at that period." The archaeologist William F. Albright writing even earlier saw camels in the Bible as an anachronism. The official report by Sapir-Hen and Ben-Joseph notes that "The introduction of the dromedary camel (Camelus dromedarius) as a pack animal to the southern Levant signifies a crucial juncture in the history of the region; it substantially facilitated trade across the vast deserts of Arabia, promoting both economic and social change (e.g., Kohler 1984; Borowski 1998: 112-116; Jasmin 2005). This, together with the depiction of camels in the Patriarchal narrative, has generated extensive discussion regarding the date of the earliest domestic camel in the southern Levant (and beyond) (e.g., Albright 1949: 207; Epstein 1971: 558-584; Bulliet 1975; Zarins 1989; Köhler-Rollefson 1993; Uerpmann and Uerpmann 2002; Jasmin 2005; 2006; Heide 2010; Rosen and Saidel 2010; Grigson 2012). Most scholars today agree that the dromedary was exploited as a pack animal sometime in the early Iron Age (not before the 12th century BCE)" and concludes that "Current data from copper smelting sites of the Aravah Valley enable us to pinpoint the introduction of domestic camels to the southern Levant more precisely based on stratigraphic contexts associated with an extensive suite of radiocarbon dates. The data indicate that this event occurred not earlier than the last third of the 10th century BCE and most probably during this time. The coincidence of this event with a major reorganization of the copper industry of the region - attributed to the results of the campaign of Pharaoh Shoshenq I - raises the possibility that the two were connected, and that camels were introduced as part of the efforts to improve efficiency by facilitating trade."

 

MILITARY USES

By at least 1200 BC, the first camel saddles had appeared, and Bactrian camels could be ridden. The first saddle was positioned to the back of the camel, and control of the Bactrian camel was exercised by means of a stick. However, between 500–100 BC, Bactrian camels attained military use. New saddles, which were inflexible and bent, were put over the humps and divided the rider's weight over the animal. In the seventh century BC, the military Arabian saddle appeared, which improved the saddle design again slightly.

 

Camel cavalries have been used in wars throughout Africa, the Middle East, and into modern-day Border Security Force of India (though as of July 2012, the BSF has planned the replacement of camels with ATVs). The first use of camel cavalries was in the Battle of Qarqar in 853 BC. Armies have also used camels as freight animals instead of horses and mules.

In the East Roman Empire, the Romans used auxiliary forces known as dromedarii, whom they recruited in desert provinces. The camels were used mostly in combat because of their ability to scare off horses at close ranges (horses are afraid of the camels' scent), a quality famously employed by the Achaemenid Persians when fighting Lydia in the Battle of Thymbra.

 

19th and 20th CENTURIES

The United States Army established the U.S. Camel Corps, which was stationed in California in the late 19th century. One may still see stables at the Benicia Arsenal in Benicia, California, where they nowadays serve as the Benicia Historical Museum. Though the experimental use of camels was seen as a success (John B. Floyd, Secretary of War in 1858, recommended that funds be allocated towards obtaining a thousand more camels), the outbreak of the American Civil War saw the end of the Camel Corps: Texas became part of the Confederacy, and most of the camels were left to wander away into the desert.

 

France created a méhariste camel corps in 1912 as part of the Armée d'Afrique in the Sahara in order to exercise greater control over the camel-riding Tuareg and Arab insurgents, as previous efforts to defeat them on foot had failed. The camel-mounted units remained in service until the end of French rule over Algeria in 1962.

 

In 1916, the British created the Imperial Camel Corps. It was originally used to fight the Senussi, but was later used in the Sinai and Palestine Campaign in World War I. The Imperial Camel Corps comprised infantrymen mounted on camels for movement across desert, though they dismounted at battle sites and fought on foot. After July 1918, the Corps began to become run down, receiving no new reinforcements, and was formally disbanded in 1919.

 

In World War I, the British Army also created the Egyptian Camel Transport Corps, which consisted of a group of Egyptian camel drivers and their camels. The Corps supported British war operations in Sinai, Palestine, and Syria by transporting supplies to the troops.

 

The Somaliland Camel Corps was created by colonial authorities in British Somaliland in 1912; it was disbanded in 1944.

 

Bactrian camels were used by Romanian forces during World War II in the Caucasian region.

 

The Bikaner Camel Corps of British India fought alongside the British Indian Army in World Wars I and II.

 

The Tropas Nómadas (Nomad Troops) were an auxiliary regiment of Sahrawi tribesmen serving in the colonial army in Spanish Sahara (today Western Sahara). Operational from the 1930s until the end of the Spanish presence in the territory in 1975, the Tropas Nómadas were equipped with small arms and led by Spanish officers. The unit guarded outposts and sometimes conducted patrols on camelback.

 

FOOD USES

DAIRY

Camel milk is a staple food of desert nomad tribes and is sometimes considered a meal in and of itself; a nomad can live on only camel milk for almost a month. Camel milk is rich in vitamins, minerals, proteins, and immunoglobulins; compared to cow's milk, it is lower in fat and lactose, and higher in potassium, iron, and vitamin C. Bedouins believe the curative powers of camel milk are enhanced if the camel's diet consists of certain desert plants. Camel milk can readily be made into a drinkable yogurt, as well as butter or cheese, though the yields for cheese tend to be low.

 

Camel milk cannot be made into butter by the traditional churning method. It can be made if it is soured first, churned, and a clarifying agent is then added. Until recently, camel milk could not be made into camel cheese because rennet was unable to coagulate the milk proteins to allow the collection of curds. Developing less wasteful uses of the milk, the FAO commissioned Professor J.P. Ramet of the École Nationale Supérieure d'Agronomie et des Industries Alimentaires, who was able to produce curdling by the addition of calcium phosphate and vegetable rennet. The cheese produced from this process has low levels of cholesterol and is easy to digest, even for the lactose intolerant. The sale of camel cheese is limited owing to the small output of the few dairies producing camel cheese and the absence of camel cheese in local (West African) markets. Cheese imports from countries that traditionally breed camels are difficult to obtain due to restrictions on dairy imports from these regions.

 

Additionally, camel milk has been made into ice cream in a Netherlands camel farm.

 

MEAT

A camel carcass can provide a substantial amount of meat. The male dromedary carcass can weigh 300–400 kg, while the carcass of a male Bactrian can weigh up to 650 kg. The carcass of a female dromedary weighs less than the male, ranging between 250 and 350 kg. The brisket, ribs and loin are among the preferred parts, and the hump is considered a delicacy. The hump contains "white and sickly fat", which can be used to make the khli (preserved meat) of mutton, beef, or camel. Camel meat is reported to taste like coarse beef, but older camels can prove to be very tough, although camel meat becomes more tender the more it is cooked. The Abu Dhabi Officers' Club serves a camel burger mixed with beef or lamb fat in order to improve the texture and taste. In Karachi, Pakistan, some restaurants prepare nihari from camel meat. In Syria and Egypt, there are specialist camel butchers.

 

Camel meat has been eaten for centuries. It has been recorded by ancient Greek writers as an available dish at banquets in ancient Persia, usually roasted whole. The ancient Roman emperor Heliogabalus enjoyed camel's heel.[31] Camel meat is still eaten in certain regions, including Eritrea, Somalia, Djibouti, Saudi Arabia, Egypt, Syria, Libya, Sudan, Ethiopia, Kazakhstan, and other arid regions where alternative forms of protein may be limited or where camel meat has had a long cultural history. Camel blood is also consumable, as is the case among pastoralists in northern Kenya, where camel blood is drunk with milk and acts as a key source of iron, vitamin D, salts and minerals. Camel meat is also occasionally found in Australian cuisine: for example, a camel lasagna is available in Alice Springs.

 

A 2005 report issued jointly by the Saudi Ministry of Health and the United States Centers for Disease Control and Prevention details cases of human bubonic plague resulting from the ingestion of raw camel liver.

 

RELIGION

ISLAM

Camel meat is halal for Muslims. However, according to some Islamic schools of thought, a state of impurity is brought on by the consumption of it. Consequently, these schools hold that Muslims must perform wudhu (ablution) before the next time they pray after eating camel meat.

 

Also, some Islamic schools of thought consider it haraam for a Muslim to perform salat in places where camels lie, as it is said to be a dwelling place of shaytan.

 

According to Suni ahadith collected by Bukhari and Muslim, Muhammad ordered a certain group of people to drink camel milk and urine as a medicine. However, according to Abū Ḥanīfa, the drinking of camel urine, while not forbidden (ḥaram), is disliked (makrūh) in Islam.

 

Camel urine is sold as traditional medicine in shops in Saudi Arabia. The Sunni scholar Muhammad Al-Munajjid's IslamQA.info recommends camel urine as beneficial to curing certain diseases and to human health and cited Ahadith and scientific studies as justification. King Abdulaziz University researcher Dr. Faten Abdel-Rajman Khorshid has claimed that cancer and other diseases could be treated with camel urine as recommended by the Prophet. The United Arab Emirates "Arab Science and Technology Foundation" reported that cancer could be treated with camel urine. Camel urine was also prescribed as a treatment by Zaghloul El-Naggar, a religious scholar. Camel urine is the only urine which is permitted to be drunk according to the Hanbali madhhab of Sunni Islam. The World Health Organization said that camel urine consumption may be a factor in the spread of the MERS virus in Saudi Arabia. The Gulf Times writer Ahmad al-Sayyed wrote that various afflictions are dealt with camel urine by people. Dandruff, scalp ailments, hair, sores, and wounds were recommended to be treated with camel urine by Ibn Sina. Arab American University Professor of Cell Biology and Immunology Bashar Saad (PhD) along with Omar Said (PhD) wrote that medicinal use of camel urine is approved of and promoted by Islam since it was recommended by the prophet. A test on mice found that cytotoxic effects similar to cyclophosphamide were induced on bone marrow by camel urine. Besides for consumption as a medicinal drink, camel urine is believed to help treat hair. Bites from insects were warded off with camel urine, which also served as a shampoo. Camel urine is also used to help treat asthma, infections, treat hair, sores, hair growth and boost libido.

 

Several Sunni Ahadith mention drinking camel urine. Some Shia criticized Wahhabis for camel urine treatment. Shia scholars also recommend the medicinal use of camel urine. Shia Hadith on Imam Ja'far al-Sadiq reported that shortness of breath (asthma) was treated with camel urine. Shia Marja Ayatollah Sistani said that for medicinal purposes only, sheep, cow, and camel urine can be drunk.

 

JUDAISM

According to Jewish tradition, camel meat and milk are not kosher. Camels possess only one of the two kosher criteria; although they chew their cud, they do not possess cloven hooves:

 

Nevertheless these shall ye not eat of them that only chew the cud, or of them that only part the hoof: the camel, because he cheweth the cud but parteth not the hoof, he is unclean unto you.

— Leviticus 11:4

 

DISTRIBUTION ANDNUMBERS

There are around 14 million camels alive as of 2010, with 90% being dromedaries. Dromedaries alive today are domesticated animals (mostly living in the Horn of Africa, the Sahel, Maghreb, Middle East and South Asia). The Horn region alone has the largest concentration of camels in the world, where the dromedaries constitute an important part of local nomadic life. They provide nomadic people in Somalia (which has the largest camel herd in the world) and Ethiopia with milk, food, and transportation.

 

The Bactrian camel is, as of 2010, reduced to an estimated 1.4 million animals, most of which are domesticated. The only truly wild Bactrian camels, of which there are less than one thousand, are thought to inhabit the Gobi Desert in China and Mongolia.

 

The largest population of feral camels is in Australia. There are around 700,000 feral dromedary camels in central parts of Australia, descended from those introduced as a method of transport in the 19th and early 20th centuries. This population is growing about 8% per year. Representatives of the Australian government have culled more than 100,000 of the animals in part because the camels use too much of the limited resources needed by sheep farmers.

 

A small population of introduced camels, dromedaries and Bactrians, wandered through Southwest United States after having been imported in the 1800s as part of the U.S. Camel Corps experiment. When the project ended, they were used as draft animals in mines and escaped or were released. Twenty-five U.S. camels were bought and imported to Canada during the Cariboo Gold Rush.

 

WIKIPEDIA

The American kestrel (Falco sparverius), also called the sparrow hawk, is the smallest and most common falcon in North America. It has a roughly two-to-one range in size over subspecies and sex, varying in size from about the weight of a blue jay to a mourning dove. It also ranges to South America and is a well-established species that has evolved into 17 subspecies adapted to different environments and habitats throughout the Americas. It exhibits sexual dimorphism in size (females being moderately larger) and plumage, although both sexes have a rufous back with noticeable barring. Its plumage is colorful and attractive, and juveniles are similar in plumage to adults.

 

The American kestrel usually hunts in energy-conserving fashion by perching and scanning the ground for prey to ambush, though it also hunts from the air. It sometimes hovers in the air with rapid wing beats while homing in on prey. Its diet typically consists of grasshoppers and other insects, lizards, mice, and small birds (e.g. sparrows). This broad diet has contributed to its wide success as a species. It nests in cavities in trees, cliffs, buildings, and other structures. The female lays three to seven eggs, which both sexes help to incubate.

 

Its breeding range extends from central and western Alaska across northern Canada to Nova Scotia, and south throughout North America, into central Mexico and the Caribbean. It is a local breeder in Central America and is widely distributed throughout South America. Most birds breeding in Canada and the northern United States migrate south in the winter. It is an occasional vagrant to Western Europe.

 

Based on appearance and behavior it was for many years considered a member of the primarily European and African kestrel clade within the genus Falco, but DNA analysis shows the American kestrel to actually be genetically more closely related to the larger American falcons such as the peregrine, aplomado, and prairie falcons. Though the species has not been renamed as a result of these genetic analyses, it is not actually a kestrel in the phylogenetic sense. Instead, a process of convergent evolution to fit a similar small prey niche in the ecosystem as the true kestrels have left it with similar physical characteristics and hunting methods.

 

The American kestrel is a common bird used in falconry, especially by beginners. Though not as strong a flyer as many other, larger falcons, proper training and weight control by the falconer allows many American kestrels to become effective hunters of birds in the size range of sparrows and starlings, with occasional success against birds up to approximately twice their own weight.

 

Description

Under traditional classification, the American kestrel is the smallest raptor in America. The American kestrel is sexually dimorphic, although there is some overlap in plumage coloration between the sexes. The bird ranges from 22 to 31 cm (8.7 to 12.2 in) in length with a wingspan of 51–61 cm (20–24 in). The female kestrel is larger than the male, though less so than larger falcons, being typically about 10% to 15% larger within a subspecies. The more northern subspecies tend to larger sizes (northern hemisphere), with a large northern female being about twice the size of a small southern male. The male typically weighs 80–143 g (2.8–5.0 oz), and the female 86–165 g (3.0–5.8 oz). In standard measurements, the wing bone is 16–21 cm (6.3–8.3 in) long, the tail is 11–15 cm (4.3–5.9 in) and the tarsus is 3.2–4 cm (1.3–1.6 in).

 

Physically, American kestrels are leaner and less muscular than larger falcons. The pectoral flight muscles of the American kestrel make up only about 12% of its body weight, as compared to about 20% for the strongest flying falcons such as the peregrine. The wings are moderately long, fairly narrow, and taper to a point. Their less muscular body type is adapted to energy-conserving ambush hunting, rather than spending large amounts of energy-consuming time on the wing and getting into long tail-chases of bird prey. For their size, they have strong talons and beaks, and can swiftly dispatch prey. Their lean build and energy-conserving strategy allow a lower daily food intake than if they were more strongly muscled, yet with enough strength to commonly take bird prey as large as themselves, and occasionally larger. The success of this body style and hunting strategy is reflected in the high success of the species in densely populating a large range throughout the Americas. The flight of the American kestrel is not so dramatic and swift as more muscular falcons such as merlins and peregrines, but their efficient adaptation to a broader diet of more available smaller prey, and need for less food per day, has resulted in there being many more of them.

 

In contrast to many other raptor species, the sexes differ more in plumage than in size. Males have blue-grey wings with black spots and white undersides with black barring. The back is rufous, with barring on the lower half. The belly and flanks are white with black spotting. The tail is also rufous, with a white or rufous tip and a black subterminal band. The back and wings of the female American kestrel are rufous with dark brown barring. The undersides of the females are creamy to buff with heavy brown streaking. The tail is noticeably different from the male's, being rufous in color with numerous narrow dark black bars. Juveniles exhibit coloration patterns similar to the adults'. In both sexes, the head is white with a bluish-grey top. There are also two narrow, vertical black facial markings on each side of the head, while other falcons have one. Two black spots (ocelli) can be found on each side of the white or orangish nape. The function of these spots is debated, but the most commonly accepted theory is that they act as "false eyes", and help to protect the bird from potential attackers.

 

Vocalizations

The American kestrel has three basic vocalizations – the "klee" or "killy", the "whine", and the "chitter". The "klee" is usually delivered as a rapid series – klee, klee, klee, klee when the kestrel is upset or excited. This call is used in a wide variety of situations and is heard from both sexes, but the larger females typically have lower-pitched voices than the males. The "whine" call is primarily associated with feeding but is also uttered during copulation. The "chitter" is used in activities that involve interaction between male and female birds, including courtship feeding, copulation, and the feeding of nestlings. Nestlings can produce calls similar to those of adults at 16 days old.

 

Taxonomy

Until the sixth edition of the AOU Checklist of North American Birds was published by the American Ornithologists' Union in 1983, the most commonly used name for the American kestrel was the sparrow hawk. This was due to a mistaken connection with the Eurasian sparrowhawk in the genus Accipiter. The sixth edition of the AOU Checklist corrected this, officially renaming the bird American kestrel. Several other colloquial names for the kestrel are also in use, including grasshopper hawk, due to its diet, and killy hawk, due to its distinct call.

 

As noted in the introduction, DNA analysis shows the American kestrel to actually be genetically more closely related to the larger American falcons than to the true kestrels. However, based on its physical similarity to the kestrels and the established nature of the name American kestrel, there has been little impetus to change its name. This could change in the future if continued genetic research more precisely determines the evolutionary history of the American kestrel within the genus Falco. The entire genus is actually a set of species so closely related that most or all can be hybridized by artificial insemination. Significant natural hybridization of species has occurred in the past during the evolution of this closely related set of species, such that precise evolutionary genetic analysis as to which species are more basal to other species or to the genus as a whole is difficult to render.

 

The American kestrel's scientific name, Falco sparverius, was given by Carl Linnaeus in his 18th century work Systema Naturae. The genus refers to the falcate, or hooked, shape of the beak, and the specific name means "pertaining to a sparrow", referring to the bird's small size and hunting of sparrows as a typical prey.

 

Seventeen subspecies of the American kestrel are recognized, generally based upon plumage, size, and vocalizations:

 

F. s. sparverius, described by Carl Linnaeus in 1758, is the nominate subspecies. It is found in most of the United States, Canada and Mexico.

F. s. paulus, described by Howe and King in 1902, is found in the southeastern United States from Louisiana to Florida.

F. s. peninsularis, described by Edgar Alexander Mearns in 1892, is found in southern Baja California.

F. s. tropicalis, described by Ludlow Griscom in 1930, is found from southern Mexico to northern Honduras.

F. s. nicaraguensis, described by Howell in 1965, is found in Honduras and Nicaragua.

F. s. sparveroides, described by Nicholas Aylward Vigors in 1827, is found on Cuba, Isla de Juventud and the central and southern Bahamas.

F. s. dominicensis, described by Johann Friedrich Gmelin in 1788, is found on Hispaniola (both the Dominican Republic and Haiti) and Jamaica.

F. s. caribaearum, described by Gmelin in 1788, is found on Puerto Rico and throughout the Lesser Antilles to Grenada.

F. s. brevipennis, described by Hans von Berlepsch in 1892, is found in the Netherlands Antilles.

F. s. isabellinus, described by William John Swainson in 1837, is found from Venezuela to northern Brazil.

F. s. ochraceus, described by Charles B. Cory in 1915, is found in eastern Colombia and northwestern Venezuela.

F. s. caucae, described by Frank Chapman in 1915, is found in western Colombia.

F. s. aequatorialis, described by Mearns in 1892, is found in northern Ecuador.

F. s. peruvianus, described by Cory in 1915, is found in southwestern Ecuador, Peru and northern Chile.

F. s. fernandensis, described by Chapman in 1915, is found on the Juan Fernández Islands off Chile.

F. s. cinnamominus, described by Swainson in 1837, is found in Peru, Chile and Argentina.

F. s. cearae, described by Cory in 1915, is found from northeastern Brazil south to eastern Bolivia.

 

Ecology and behavior

American kestrels are found in a wide variety of habitats, including grasslands, meadows, deserts and other open to semi-open regions. They can also be found in both urban and suburban areas. A kestrel's habitat must include perches, open space for hunting, and cavities for nesting (whether natural or man-made). The American kestrel is able to live in very diverse conditions, ranging from above the Arctic Circle, to the tropics of Central America, to elevations of over 4,500 m (14,800 ft) in the Andes Mountains. The bird is distributed from northern Canada and Alaska to the southernmost tip of South America, Tierra del Fuego. It is the only kestrel found in the Americas, though as mentioned above this classification is genetically inaccurate. It has occurred as a vagrant in the UK, Denmark, Malta and the Azores.

 

American kestrels in Canada and the northern United States typically migrate south in the winter, some of them converging with resident kestrels of smaller size in Mexico, sometimes going as far as Central America and the Caribbean. Birds that breed south of about 35° north latitude are usually year-round residents. Migration also depends on local weather conditions. American Kestrels breeding at lower latitudes – below 48ºN to be precise – arrive earlier after warmer springs, whereas birds from higher latitudes return to their breeding grounds at the same time each year. These patterns suggest that short-distance migrants are better able to cope with climate change. Wintering kestrels' choice of habitat varies by sex. Females are found in open areas more often than males during the non-breeding season. A common explanation for this behavior is that the larger females who are bigger than the males arrive at the preferred habitat first and exclude males from their territory.

 

The American kestrel is not long-lived, with a lifespan of <5 years for wild birds. The oldest banded wild bird was 11 years and 7 months, while captive kestrels can live up to 14–17 years. In a study, humans accounted for 43.2% of 1,355 reported deaths, which included direct killing and roadkills, while predation (including by larger birds of prey) accounted for 2.8%. This statistic is likely biased, however, as reported deaths are usually found near or in areas populated by humans.

 

Feeding

American kestrels feed largely on small animals such as grasshoppers, crickets, butterflies, moths, dragonflies, beetles, lizards, mice, voles, shrews, frogs, and small birds. The kestrel has also been reported to have killed scorpions, snakes, bats, and squirrels. The kestrel is able to maintain high population densities, at least in part because of the broad scope of its diet. The American kestrel's primary mode of hunting is by perching and waiting for prey to come near. The bird is characteristically seen along roadsides or fields perched on objects such as trees, overhead power lines, or fence posts. It also hunts by kiting, hovering in the air with rapid wing beats and scanning the ground for prey. Other hunting techniques include low flight over fields, or chasing insects and birds in the air.

 

Prey is most often caught on the ground, though occasionally they take birds in flight. Before striking, the kestrel characteristically bobs its head and tail, then makes a direct flight toward the prey to grab it in its talons. Much like the red-tailed hawk, American kestrels conserve energy in a hunt and pick their attacks with care as to position and odds of success. During the breeding season, the bird will carry large prey back to its mate or young. One study found that an American kestrel pair "foraged in ways that minimized the costs of energy acquisition in its particular situation". For example, if the success rate for catching prey decreases significantly in a particular area, the bird will move to a different area.

 

Reproduction

American kestrels are sexually mature by their first spring. In migratory populations, the males arrive at the breeding ground before females, then the female selects a mate. Pair bonds are strong, often permanent. Pairs usually use previous nesting sites in consecutive years. This gives birds an advantage over younger or invading individuals, as they would already be familiar with the hunting grounds, neighbors, predators, and other features of the site. Males perform elaborate dive displays to advertise their territory and attract a mate. These displays consist of several climbs and dives, with three or four "klee" calls at their peaks. Females are promiscuous for about one to two weeks after their arrival at the nesting site. This is thought to stimulate ovulation. Food transfers from the male to the female occur from about four to five weeks prior to egg laying to one to two weeks after.

 

American kestrels are cavity nesters, but they are able to adapt to a wide variety of nesting situations. They generally prefer natural cavities (such as in trees) with closed tops and tight-fitting entrances that provide for maximum protection of the eggs and young. Kestrels occasionally nest in holes created by large woodpeckers, or use the abandoned nests of other birds, such as red-tailed hawks, merlins, and crows. They have been recorded nesting on cliff ledges and building tops, as well as in abandoned cavities in cactuses. American kestrels also commonly utilize nesting boxes.

 

Three to seven eggs (typically four or five) are laid approximately 24–72 hours apart. (Two supernormal clutches of eight eggs and one of nine have been documented. One egg in one of the eight-egg clutches hatched as did one egg in the nine-egg clutch.) The average egg size is 32 mm × 29 mm (1.3 in × 1.1 in), 10% larger than average for birds of its body size. The eggs are white to cream in color with brown or grey splotching. Incubation usually lasts 30 days and is mainly the responsibility of the female, although the male incubates 15–20% of the time. Eggs that are lost are typically replaced in 11–12 days. Hatching takes place over three to four days. Hatchlings are altricial, and are only able to sit up after five days. They grow rapidly, reaching an adult weight after 16–17 days. After 28–31 days, their wings have developed and they are able to leave the nest. The young adult kestrels may breed from a year old, and the species has approximately a three to five-year life expectancy in the wild.

 

In ecological terms, the reproductive pattern of the American kestrel leans towards a small bird "r selection" strategy. In r/K selection theory, selective pressures are hypothesized to drive evolution in one of two generalized directions: r or K selection. R-selected species are those that place an emphasis on a high growth rate, typically exploiting less-crowded ecological niches, and produce many offspring, each of which has a relatively low probability of surviving to adulthood (i.e., high r, low K). By contrast, K-selected species display traits associated with living at densities close to carrying capacity, and typically are strong competitors in such crowded niches that invest more heavily in fewer offspring, each of which has a relatively high probability of surviving to adulthood (i.e., low r, high K). Between these two extremes, the American kestrel is one of the few raptor species that lean towards being r-selected. They are able to breed at one year old, have few non-breeding adults in the population, and have larger broods. Their population growth rate is high relative to larger raptors, which typically lean towards being K-selected.

 

Stress physiology

American kestrels are often useful in scientific studies on animal physiology, and are typically captured using the bal-chatri method or raised in nest boxes for experiments. Kestrel metabolic rate has been found to increase in response to rainfall, and at ambient temperatures below about 25 °C. Kestrel metabolic responses to weather and temperature do not vary, however, with sex. Kestrels will increase their oxygen consumption, and therefore their metabolic rate in cold and wet conditions to counteract heat loss.

 

Environmental disturbance

American kestrels' response to environmental stress is measured as blood concentration of corticosterone (CORT), a hormone produced by the hypothalamic-pituitary-adrenal (HPA) axis that releases stored energy for essential body functions. Extended periods of elevated blood CORT levels may direct metabolic energy away from growth and reproduction. Thus, high levels of traffic disturbance and human development surrounding American kestrel nests are found to increase stress hormones leading to reproductive failure. Among successful nests, however, nestlings do not typically experience a higher stress response to environmental human disturbance, suggesting that they can tolerate a considerable degree of human activity near the nest.

 

Environmental contaminants

Since American kestrels are carnivores, toxic chemical runoff ingested by their prey can concentrate at high levels in their blood. Wild kestrels are subject to immunomodulation, or an altered immune response, to polybrominated diphenyl ethers (PBDEs), a group of industrial flame retardants that may leach from factories into the environment. When PBDEs accumulate in body tissues of kestrels, the T-cell mediated immune response decreases in efficiency. As a result, kestrels that ingest PBDEs may not respond sufficiently to viruses or other invading microorganisms. In addition, certain PBDEs may suppress the growth and development of the spleen and bursa in American kestrels.

 

While PBDEs can affect immune response and suppress growth of certain organs, they can also affect the thyroid system of American Kestrels. Exposure to PBDEs in vivo can alter the thyroid system and retinol concentrations in kestrels. This leads to oxidative stress, lipid peroxidation, and changes in glutathione metabolism. These systems are important in early development, growth, regulation of metabolism, thermoregulation, and reproduction. Oxidative stress is also known to contribute to cancers and neurological diseases.

 

Exposure to PCBs might also affect American Kestrel reproduction. It was found that PCBs affect the function of carotenoids in kestrels. This led to changes in coloration, especially during breeding season for adults. PCB-exposed males where duller and contributed less to egg incubation than unexposed males. PCB-exposed females kept their color longer than they should have. Normally, loss in color is associated with carotenoids being directed to ovaries to help in egg development. PCB-exposed females retained their colors longer, suggesting the PCBs made them less prepared for reproduction. The same females also had significant delays in egg laying. Offspring also showed higher incidence of developmental problems and decreased reproductive success.

 

PCBs have also been found to affect eye color in American Kestrels. Eye color in kestrels is known to vary with age and sex, however, when exposed to PCBs, color patterns were suppressed regardless of age and sex. While it is unknown what role eye color plays in visual acuity, this may be of greater concern to birds like kestrels who rely heavily on vision for hunting.

 

PDBEs were linked to changes in breeding behavior in kestrels as well. Different levels of PDBE exposure were linked to different changes in behavior as well. Overall, PDBE exposure led to changes in behaviors that strengthen the bond between a breeding pair. Such behaviors include frequent copulation, food transfers, male posturing, nest box inspection, and specific mating calls (7). High exposure levels led to increases in some behaviors and decreases in some, whereas low exposure caused decreases in almost all behaviors observed. PDBE exposure also altered the timing of these behaviors, often delaying them by several days when compared to the control group.

 

American Kestrels have also been used extensively in toxicology research. Fenthion is a common pesticide that is used to kill insects such as flies and gnats. It was also found that kestrels are highly susceptible to secondary fenthion poisoning. When 14 kestrels were presented with live sparrows who had come into contact with a fenthion solution, all 14 died within 3 days after consuming the sparrows.

 

Diphacinone is another common pesticide that is often used to kill rodents and is thought to be related to secondary poisoning in birds of prey. When kestrels were orally dosed with diphacinone, blood clotting rates significantly decreases. Kestrels were also found to be 20 to 30 times more sensitive to secondary poisoning from diphacinone than other birds like Northern bobwhite and mallard ducks.

 

American kestrels can also be significantly influenced by air contaminants. When exposed to common gaseous pollutants such as benzene, toluene, nitrogen dioxide, and sulfur dioxide, significant changes to the thyroid systems were observed. Higher levels of thyroid activity indicate that exposure to these gases leads to a loss of inhibition of thyroid glands in kestrels. However, there were no changes to immune function or food consumption.

 

Status and conservation

The American kestrel is likely the most abundant falcon in North America, although its total population is difficult to quantify, as local populations can change quickly due to resource availability. Count data from the USGS Breeding Bird Survey (BBS) indicate that the North American breeding population is experiencing long-term and gradual but sustained declines, with some regions, such as New England and coastal California, exhibiting more rapid declines. Count data from raptor migration corridors also indicate regional population declines and largely corroborate BBS data. The North American population has been estimated at 1.2 million pairs, with the Central and South American populations being as large. A smaller estimate is 236,000 birds wintering in North America. A population increase occurred in the 18th and 19th centuries, probably due to deforestation for agriculture. The resulting pastures provided an ideal habitat for kestrels.

 

The southeastern U.S. subspecies (Falco sparverius paulus) has declined 82% since 1940 due to a decrease in nest site availability. This decline is a result of longleaf pines being cleared for agricultural fields. Despite this, the American kestrel is classed as least concern on the IUCN Red List.

 

The Peregrine Fund, a leading non-profit organization advancing research and conservation of birds of prey worldwide, launched the American Kestrel Partnership in 2012. The American Kestrel Partnership developed and maintains a web-based network for citizen and professional scientists to enter, manage, and consolidate data from kestrel nest box monitoring programs in the Western Hemisphere. The database is being used by researchers to model and understand relationships between kestrel nesting parameters (e.g., phenology, occupancy, survival, productivity, and nestling weight and exposure to environmental toxins) and environmental factors, such as land use, landscape composition and configuration, climate conditions (e.g., drought), and point sources of environmental toxins. Each breeding season, the American Kestrel Partnership features a live-streaming video feed from the nest box located at The Peregrine Fund's campus in Boise, Idaho.

 

Use in falconry

One important use of American kestrels is in falconry. It is often considered a beginner's bird, though the careful weight control needed to maintain the kestrel's desire to aggressively hunt takes skill. Falconers experienced in extracting the best performance the species is capable of, report they are highly reliable on the normal game of sparrows and starlings. More aggressive individuals are sometimes capable of capturing prey up to approximately twice their own body weight, allowing the occasional capture of true game birds such as quail and dove. However, most falconers interested in the reliable taking of such game do prefer larger falcons or hawks. The advantage the American kestrel offers the experienced falconer is its suitability to simple and urban falconry not requiring large tracts of land or the use of hunting dogs. This form of falconry is sometimes referred to as "micro-falconry" or "micro-hawking". The other small raptor species commonly used in micro-falconry are the merlin, the sharp-shinned hawk (the smallest accipiter), and the European kestrel (a true kestrel).

 

Hawking with the American kestrel requires adapting to the strengths and weaknesses of the bird. It is a tiny falcon, and even for its size, it is less muscular than other small falcons such as the athletic and swift merlin. It is more adapted to ambush hunting and short chases than to the longer aerial chases larger falcons often adopt. Used within its limits, it is effective. Experienced falconer Matthew Mullenix, author of the book American Kestrels in Modern Falconry, in an article comparing kestrels to merlins, summed their abilities up as follows:

 

1. "Kestrels are thin-winged, flat-chested, under-powered and lack acceleration compared to merlins. I say that with much affection for them and with thousands of kestrel kills to prove these are not necessarily damning differences. Comparing a red-tailed hawk to a Harris' or goshawk will conjure equally negative points of fact, yet we all know how good trained red-tails can be!"

 

2. "The chief variable to choosing between a kestrel and a merlin may be your hawking land. If you live in open country or have access at least to good pasture for cattle, a merlin can excel there. If you plan to hunt mostly in town or suburb, and especially if you plan to hawk from a car, I'd recommend the kestrel. The consideration coming in at close second is your intended quarry. To snipe, dove, quail and open-country sparrows, merlins are best suited. For most blackbirds (Icteridea), either falcon can prove effective. Starlings in close are extremely vulnerable to kestrels, but in the open are best prey for merlins. The same holds true for house sparrows, with this exception: sparrows in thick cover are better quarry for kestrels. This is the slip for which I feel the American kestrel is perfect."

 

3. "Once committed to an attack, trained kestrels tend to follow through to the end. They will stoop into cover, chase birds on foot, bind to quarry twice their size, and never let go voluntarily. They have small feet, but as written elsewhere, also have the strongest feet for their size. It is a simple fact that American kestrels hold starlings better than merlins, on average, and will gladly tackle larger quarry than will any jack (male merlin)."

 

American kestrels do not train so easily as some larger falcons (particularly the peregrine falcon) in the art of "waiting on" to perform a diving stoop on flushed prey. However, some individual kestrels do master this skill. Falconers sometimes train them to climb to a stooping position with tidbits on kites or balloons that the kestrels learn to climb after. More common hunting techniques are to "slip" them after spotted game from the fist, or to release them from a vehicle window close to spotted quarry. These techniques are more of a natural fit to the kestrel's ambushing methods in the wild.

 

Falconers using the American kestrel should be alert to protect the falcon from larger predators that may attack the kestrel, particularly if it is distracted on the ground with captured prey. Domestic cats and dogs are the greatest threat to attack the falcon on the ground, but the Cooper's hawk is well known to boldly attack kestrels. This mid-sized American accipiter has sufficient size and strength to carry the kestrel away, though falconers have reported often being successful in recovering the kestrel unharmed by acting quickly to intimidate the larger hawk into releasing the kestrel.

 

American kestrels are bred in captivity for use in falconry and are among the easier falcons to breed. They are also sufficiently common that "passage" birds in their first year are relatively easy to trap. Wild-caught kestrels "tame down" fairly quickly. They will usually be eating from a falconer's hand the day after capture, be training within a week, and be ready to hunt in three to five weeks. A very tame American kestrel will allow itself to be picked up around the body with one hand while accepting tidbits from the other hand. Such tameness is very useful when checking or treating the bird for injury or illness.

 

Migratory raptors native to the United States are protected by the Migratory Bird Treaty Act of 1918, so American kestrels are illegal to possess without a permit (such as a falconry permit) in the United States, Canada, and Mexico.

A camel is an even-toed ungulate within the genus Camelus, bearing distinctive fatty deposits known as "humps" on its back. The two surviving species of camel are the dromedary, or one-humped camel (C. dromedarius), which inhabits the Middle East and the Horn of Africa; and the bactrian, or two-humped camel (C. bactrianus), which inhabits Central Asia. Both species have been domesticated; they provide milk, meat, hair for textiles or goods such as felted pouches, and are working animals with tasks ranging from human transport to bearing loads.

 

The term "camel" is derived via Latin and Greek (camelus and κάμηλος kamēlos respectively) from Hebrew or Phoenician gāmāl.

 

"Camel" is also used more broadly to describe any of the six camel-like mammals in the family Camelidae: the two true camels and the four New World camelids: the llama, alpaca, guanaco, and vicuña of South America.

 

BIOLOGY

The average life expectancy of a camel is 40 to 50 years. A full-grown adult camel stands 1.85 m at the shoulder and 2.15 m at the hump. Camels can run at up to 65 km/h in short bursts and sustain speeds of up to 40 km/h. Bactrian camels weigh 300 to 1,000 kg and dromedaries 300 to 600 kg.

 

The male dromedary camel has in its throat an organ called a dulla, a large, inflatable sac he extrudes from his mouth when in rut to assert dominance and attract females. It resembles a long, swollen, pink tongue hanging out of the side of its mouth. Camels mate by having both male and female sitting on the ground, with the male mounting from behind. The male usually ejaculates three or four times within a single mating session. Camelids are the only ungulates to mate in a sitting position.

 

ECOLOGICAL AND BEHAVIORAL ADAPTIONS

Camels do not directly store water in their humps as was once commonly believed. The humps are actually reservoirs of fatty tissue: concentrating body fat in their humps minimizes the insulating effect fat would have if distributed over the rest of their bodies, helping camels survive in hot climates. When this tissue is metabolized, it yields more than one gram of water for every gram of fat processed. This fat metabolization, while releasing energy, causes water to evaporate from the lungs during respiration (as oxygen is required for the metabolic process): overall, there is a net decrease in water.

 

Camels have a series of physiological adaptations that allow them to withstand long periods of time without any external source of water. Unlike other mammals, their red blood cells are oval rather than circular in shape. This facilitates the flow of red blood cells during dehydration and makes them better at withstanding high osmotic variation without rupturing when drinking large amounts of water: a 600 kg camel can drink 200 L of water in three minutes.

 

Camels are able to withstand changes in body temperature and water consumption that would kill most other animals. Their temperature ranges from 34 °C at dawn and steadily increases to 40 °C by sunset, before they cool off at night again. Maintaining the brain temperature within certain limits is critical for animals; to assist this, camels have a rete mirabile, a complex of arteries and veins lying very close to each other which utilizes countercurrent blood flow to cool blood flowing to the brain. Camels rarely sweat, even when ambient temperatures reach 49 °C Any sweat that does occur evaporates at the skin level rather than at the surface of their coat; the heat of vaporization therefore comes from body heat rather than ambient heat. Camels can withstand losing 25% of their body weight to sweating, whereas most other mammals can withstand only about 12–14% dehydration before cardiac failure results from circulatory disturbance.

 

When the camel exhales, water vapor becomes trapped in their nostrils and is reabsorbed into the body as a means to conserve water. Camels eating green herbage can ingest sufficient moisture in milder conditions to maintain their bodies' hydrated state without the need for drinking.

 

The camels' thick coats insulate them from the intense heat radiated from desert sand; a shorn camel must sweat 50% more to avoid overheating. During the summer the coat becomes lighter in color, reflecting light as well as helping avoid sunburn. The camel's long legs help by keeping its body farther from the ground, which can heat up to 70 °C. Dromedaries have a pad of thick tissue over the sternum called the pedestal. When the animal lies down in a sternal recumbent position, the pedestal raises the body from the hot surface and allows cooling air to pass under the body.

 

Camels' mouths have a thick leathery lining, allowing them to chew thorny desert plants. Long eyelashes and ear hairs, together with nostrils that can close, form a barrier against sand. If sand gets lodged in their eyes, they can dislodge it using their transparent third eyelid. The camels' gait and widened feet help them move without sinking into the sand.

 

The kidneys and intestines of a camel are very efficient at reabsorbing water. Camel urine comes out as a thick syrup, and camel feces are so dry that they do not require drying when the Bedouins use them to fuel fires.

 

Camels' immune system differs from those of other mammals. Normally, the Y-shaped antibody molecules consist of two heavy (or long) chains along the length of the Y, and two light (or short) chains at each tip of the Y. Camels, in addition to these, also have antibodies made of only two heavy chains, a trait that makes them smaller and more durable. These "heavy-chain-only" antibodies, discovered in 1993, are thought to have developed 50 million years ago, after camelids split from ruminants and pigs.

 

GENETICS

The karyotypes of different camelid species have been studied earlier by many groups, but no agreement on chromosome nomenclature of camelids has been reached. A 2007 study flow sorted camel chromosomes, building on the fact that camels have 37 pairs of chromosomes (2n=74), and found that the karyotime consisted of one metacentric, three submetacentric, and 32 acrocentric autosomes. The Y is a small metacentric chromosome, while the X is a large metacentric chromosome.The hybrid camel, a hybrid between Bactrian and dromedary camels, has one hump, though it has an indentation 4–12 cm deep that divides the front from the back. The hybrid is 2.15 m at the shoulder and 2.32 m tall at the hump. It weighs an average of 650 kg and can carry around 400 to 450 kg, which is more than either the dromedary or Bactrian can. According to molecular data, the New World and Old World camelids diverged 11 million years ago. In spite of this, these species can still hybridize and produce fertile offspring. The cama is a camel–llama hybrid bred by scientists who wanted to see how closely related the parent species were. Scientists collected semen from a camel via an artificial vagina and inseminated a llama after stimulating ovulation with gonadotrophin injections. The cama has ears halfway between the length of camel and llama ears, no hump, longer legs than the llama, and partially cloven hooves. According to cama breeder Lulu Skidmore, cama have "the fleece of the llamas" and "the strength and patience of the camel". Like the mule, camas are sterile, despite both parents having the same number of chromosomes.

 

EVOLUTION

The earliest known camel, called Protylopus, lived in North America 40 to 50 million years ago (during the Eocene). It was about the size of a rabbit and lived in the open woodlands of what is now South Dakota. By 35 million years ago, the Poebrotherium was the size of a goat and had many more traits similar to camels and llamas. The hoofed Stenomylus, which walked on the tips of its toes, also existed around this time, and the long-necked Aepycamelus evolved in the Miocene.

 

The direct ancestor of all modern camels, Procamelus, existed in the upper Miocone and lower Pliocene. Around 3–5 million years ago, the North American Camelidae spread to South America via the Isthmus of Panama, where they gave rise to guanacos and related animals, and to Asia via the Bering land bridge. Surprising finds of fossil Paracamelus on Ellesmere Island beginning in 2006 in the high Canadian Arctic indicate the dromedary is descended from a larger, boreal browser whose hump may have evolved as an adaptation in a cold climate. This creature is estimated to have stood around nine feet tall.

 

The last camel native to North America was Camelops hesternus, which vanished along with horses, short-faced bears, mammoths and mastodons, ground sloths, sabertooth cats, and many other megafauna, coinciding with the migration of humans from Asia.

 

DOMESTICATION

Most camels surviving today are domesticated. Along with many other megafauna in North America, the original wild camels were wiped out during the spread of Native Americans from Asia into North America, 12,000 to 10,000 years ago. The only wild camels left are the Bactrian camels of the Gobi Desert.

 

Like the horse, before their extinction in their native land, camels spread across the Bering land bridge, moving the opposite direction from the Asian immigration to America, to survive in the Old World and eventually be domesticated and spread globally by humans.

 

Dromedaries may have first been domesticated by humans in Somalia and southern Arabia, around 3,000 BC, the Bactrian in central Asia around 2,500 BC, as at Shar-i Sokhta (also known as the Burnt City), Iran.

 

Discussions concerning camel domestication in Mesopotamia are often related to mentions of camels in the Hebrew Bible. The International Standard Bible Encyclopedia: E-J for instance mentions that "In accord with patriarchal traditions, cylinder seals from Middle Bronze Age Mesopotamia showed riders seated upon camels."

 

Martin Heide's 2010 work on the domestication of the camel tentatively concludes that the bactrian camel was domesticated by at least the middle of the third millennium somewhere east of the Zagros Mountains, then moving into Mesopotamia, and suggests that mentions of camels "in the patriarchal narratives may refer, at least in some places, to the Bactrian camel." while noting that the camel is not mentioned in relationship to Canaan.

 

Recent excavations in the Timna Valley by Lidar Sapir-Hen and Erez Ben-Yosef discovered what may be the earliest domestic camel bones found in Israel or even outside the Arabian peninsula, dating to around 930 BCE. This garnered considerable media coverage as it was described as evidence that the stories of Abraham, Joseph, Jacob and Esau were written after this time.

 

The existence of camels in Mesopotamia but not in Israel is not a new idea. According to an article in Time Magazine, the historian Richard Bulliet wrote in his 1975 book "The Camel and the Wheel" that "the occasional mention of camels in patriarchal narratives does not mean that the domestic camels were common in the Holy Land at that period." The archaeologist William F. Albright writing even earlier saw camels in the Bible as an anachronism. The official report by Sapir-Hen and Ben-Joseph notes that "The introduction of the dromedary camel (Camelus dromedarius) as a pack animal to the southern Levant signifies a crucial juncture in the history of the region; it substantially facilitated trade across the vast deserts of Arabia, promoting both economic and social change (e.g., Kohler 1984; Borowski 1998: 112-116; Jasmin 2005). This, together with the depiction of camels in the Patriarchal narrative, has generated extensive discussion regarding the date of the earliest domestic camel in the southern Levant (and beyond) (e.g., Albright 1949: 207; Epstein 1971: 558-584; Bulliet 1975; Zarins 1989; Köhler-Rollefson 1993; Uerpmann and Uerpmann 2002; Jasmin 2005; 2006; Heide 2010; Rosen and Saidel 2010; Grigson 2012). Most scholars today agree that the dromedary was exploited as a pack animal sometime in the early Iron Age (not before the 12th century BCE)" and concludes that "Current data from copper smelting sites of the Aravah Valley enable us to pinpoint the introduction of domestic camels to the southern Levant more precisely based on stratigraphic contexts associated with an extensive suite of radiocarbon dates. The data indicate that this event occurred not earlier than the last third of the 10th century BCE and most probably during this time. The coincidence of this event with a major reorganization of the copper industry of the region - attributed to the results of the campaign of Pharaoh Shoshenq I - raises the possibility that the two were connected, and that camels were introduced as part of the efforts to improve efficiency by facilitating trade."

 

MILITARY USES

By at least 1200 BC, the first camel saddles had appeared, and Bactrian camels could be ridden. The first saddle was positioned to the back of the camel, and control of the Bactrian camel was exercised by means of a stick. However, between 500–100 BC, Bactrian camels attained military use. New saddles, which were inflexible and bent, were put over the humps and divided the rider's weight over the animal. In the seventh century BC, the military Arabian saddle appeared, which improved the saddle design again slightly.

 

Camel cavalries have been used in wars throughout Africa, the Middle East, and into modern-day Border Security Force of India (though as of July 2012, the BSF has planned the replacement of camels with ATVs). The first use of camel cavalries was in the Battle of Qarqar in 853 BC. Armies have also used camels as freight animals instead of horses and mules.

In the East Roman Empire, the Romans used auxiliary forces known as dromedarii, whom they recruited in desert provinces. The camels were used mostly in combat because of their ability to scare off horses at close ranges (horses are afraid of the camels' scent), a quality famously employed by the Achaemenid Persians when fighting Lydia in the Battle of Thymbra.

 

19th and 20th CENTURIES

The United States Army established the U.S. Camel Corps, which was stationed in California in the late 19th century. One may still see stables at the Benicia Arsenal in Benicia, California, where they nowadays serve as the Benicia Historical Museum. Though the experimental use of camels was seen as a success (John B. Floyd, Secretary of War in 1858, recommended that funds be allocated towards obtaining a thousand more camels), the outbreak of the American Civil War saw the end of the Camel Corps: Texas became part of the Confederacy, and most of the camels were left to wander away into the desert.

 

France created a méhariste camel corps in 1912 as part of the Armée d'Afrique in the Sahara in order to exercise greater control over the camel-riding Tuareg and Arab insurgents, as previous efforts to defeat them on foot had failed. The camel-mounted units remained in service until the end of French rule over Algeria in 1962.

 

In 1916, the British created the Imperial Camel Corps. It was originally used to fight the Senussi, but was later used in the Sinai and Palestine Campaign in World War I. The Imperial Camel Corps comprised infantrymen mounted on camels for movement across desert, though they dismounted at battle sites and fought on foot. After July 1918, the Corps began to become run down, receiving no new reinforcements, and was formally disbanded in 1919.

 

In World War I, the British Army also created the Egyptian Camel Transport Corps, which consisted of a group of Egyptian camel drivers and their camels. The Corps supported British war operations in Sinai, Palestine, and Syria by transporting supplies to the troops.

 

The Somaliland Camel Corps was created by colonial authorities in British Somaliland in 1912; it was disbanded in 1944.

 

Bactrian camels were used by Romanian forces during World War II in the Caucasian region.

 

The Bikaner Camel Corps of British India fought alongside the British Indian Army in World Wars I and II.

 

The Tropas Nómadas (Nomad Troops) were an auxiliary regiment of Sahrawi tribesmen serving in the colonial army in Spanish Sahara (today Western Sahara). Operational from the 1930s until the end of the Spanish presence in the territory in 1975, the Tropas Nómadas were equipped with small arms and led by Spanish officers. The unit guarded outposts and sometimes conducted patrols on camelback.

 

FOOD USES

DAIRY

Camel milk is a staple food of desert nomad tribes and is sometimes considered a meal in and of itself; a nomad can live on only camel milk for almost a month. Camel milk is rich in vitamins, minerals, proteins, and immunoglobulins; compared to cow's milk, it is lower in fat and lactose, and higher in potassium, iron, and vitamin C. Bedouins believe the curative powers of camel milk are enhanced if the camel's diet consists of certain desert plants. Camel milk can readily be made into a drinkable yogurt, as well as butter or cheese, though the yields for cheese tend to be low.

 

Camel milk cannot be made into butter by the traditional churning method. It can be made if it is soured first, churned, and a clarifying agent is then added. Until recently, camel milk could not be made into camel cheese because rennet was unable to coagulate the milk proteins to allow the collection of curds. Developing less wasteful uses of the milk, the FAO commissioned Professor J.P. Ramet of the École Nationale Supérieure d'Agronomie et des Industries Alimentaires, who was able to produce curdling by the addition of calcium phosphate and vegetable rennet. The cheese produced from this process has low levels of cholesterol and is easy to digest, even for the lactose intolerant. The sale of camel cheese is limited owing to the small output of the few dairies producing camel cheese and the absence of camel cheese in local (West African) markets. Cheese imports from countries that traditionally breed camels are difficult to obtain due to restrictions on dairy imports from these regions.

 

Additionally, camel milk has been made into ice cream in a Netherlands camel farm.

 

MEAT

A camel carcass can provide a substantial amount of meat. The male dromedary carcass can weigh 300–400 kg, while the carcass of a male Bactrian can weigh up to 650 kg. The carcass of a female dromedary weighs less than the male, ranging between 250 and 350 kg. The brisket, ribs and loin are among the preferred parts, and the hump is considered a delicacy. The hump contains "white and sickly fat", which can be used to make the khli (preserved meat) of mutton, beef, or camel. Camel meat is reported to taste like coarse beef, but older camels can prove to be very tough, although camel meat becomes more tender the more it is cooked. The Abu Dhabi Officers' Club serves a camel burger mixed with beef or lamb fat in order to improve the texture and taste. In Karachi, Pakistan, some restaurants prepare nihari from camel meat. In Syria and Egypt, there are specialist camel butchers.

 

Camel meat has been eaten for centuries. It has been recorded by ancient Greek writers as an available dish at banquets in ancient Persia, usually roasted whole. The ancient Roman emperor Heliogabalus enjoyed camel's heel.[31] Camel meat is still eaten in certain regions, including Eritrea, Somalia, Djibouti, Saudi Arabia, Egypt, Syria, Libya, Sudan, Ethiopia, Kazakhstan, and other arid regions where alternative forms of protein may be limited or where camel meat has had a long cultural history. Camel blood is also consumable, as is the case among pastoralists in northern Kenya, where camel blood is drunk with milk and acts as a key source of iron, vitamin D, salts and minerals. Camel meat is also occasionally found in Australian cuisine: for example, a camel lasagna is available in Alice Springs.

 

A 2005 report issued jointly by the Saudi Ministry of Health and the United States Centers for Disease Control and Prevention details cases of human bubonic plague resulting from the ingestion of raw camel liver.

 

RELIGION

ISLAM

Camel meat is halal for Muslims. However, according to some Islamic schools of thought, a state of impurity is brought on by the consumption of it. Consequently, these schools hold that Muslims must perform wudhu (ablution) before the next time they pray after eating camel meat.

 

Also, some Islamic schools of thought consider it haraam for a Muslim to perform salat in places where camels lie, as it is said to be a dwelling place of shaytan.

 

According to Suni ahadith collected by Bukhari and Muslim, Muhammad ordered a certain group of people to drink camel milk and urine as a medicine. However, according to Abū Ḥanīfa, the drinking of camel urine, while not forbidden (ḥaram), is disliked (makrūh) in Islam.

 

Camel urine is sold as traditional medicine in shops in Saudi Arabia. The Sunni scholar Muhammad Al-Munajjid's IslamQA.info recommends camel urine as beneficial to curing certain diseases and to human health and cited Ahadith and scientific studies as justification. King Abdulaziz University researcher Dr. Faten Abdel-Rajman Khorshid has claimed that cancer and other diseases could be treated with camel urine as recommended by the Prophet. The United Arab Emirates "Arab Science and Technology Foundation" reported that cancer could be treated with camel urine. Camel urine was also prescribed as a treatment by Zaghloul El-Naggar, a religious scholar. Camel urine is the only urine which is permitted to be drunk according to the Hanbali madhhab of Sunni Islam. The World Health Organization said that camel urine consumption may be a factor in the spread of the MERS virus in Saudi Arabia. The Gulf Times writer Ahmad al-Sayyed wrote that various afflictions are dealt with camel urine by people. Dandruff, scalp ailments, hair, sores, and wounds were recommended to be treated with camel urine by Ibn Sina. Arab American University Professor of Cell Biology and Immunology Bashar Saad (PhD) along with Omar Said (PhD) wrote that medicinal use of camel urine is approved of and promoted by Islam since it was recommended by the prophet. A test on mice found that cytotoxic effects similar to cyclophosphamide were induced on bone marrow by camel urine. Besides for consumption as a medicinal drink, camel urine is believed to help treat hair. Bites from insects were warded off with camel urine, which also served as a shampoo. Camel urine is also used to help treat asthma, infections, treat hair, sores, hair growth and boost libido.

 

Several Sunni Ahadith mention drinking camel urine. Some Shia criticized Wahhabis for camel urine treatment. Shia scholars also recommend the medicinal use of camel urine. Shia Hadith on Imam Ja'far al-Sadiq reported that shortness of breath (asthma) was treated with camel urine. Shia Marja Ayatollah Sistani said that for medicinal purposes only, sheep, cow, and camel urine can be drunk.

 

JUDAISM

According to Jewish tradition, camel meat and milk are not kosher. Camels possess only one of the two kosher criteria; although they chew their cud, they do not possess cloven hooves:

 

Nevertheless these shall ye not eat of them that only chew the cud, or of them that only part the hoof: the camel, because he cheweth the cud but parteth not the hoof, he is unclean unto you.

— Leviticus 11:4

 

DISTRIBUTION ANDNUMBERS

There are around 14 million camels alive as of 2010, with 90% being dromedaries. Dromedaries alive today are domesticated animals (mostly living in the Horn of Africa, the Sahel, Maghreb, Middle East and South Asia). The Horn region alone has the largest concentration of camels in the world, where the dromedaries constitute an important part of local nomadic life. They provide nomadic people in Somalia (which has the largest camel herd in the world) and Ethiopia with milk, food, and transportation.

 

The Bactrian camel is, as of 2010, reduced to an estimated 1.4 million animals, most of which are domesticated. The only truly wild Bactrian camels, of which there are less than one thousand, are thought to inhabit the Gobi Desert in China and Mongolia.

 

The largest population of feral camels is in Australia. There are around 700,000 feral dromedary camels in central parts of Australia, descended from those introduced as a method of transport in the 19th and early 20th centuries. This population is growing about 8% per year. Representatives of the Australian government have culled more than 100,000 of the animals in part because the camels use too much of the limited resources needed by sheep farmers.

 

A small population of introduced camels, dromedaries and Bactrians, wandered through Southwest United States after having been imported in the 1800s as part of the U.S. Camel Corps experiment. When the project ended, they were used as draft animals in mines and escaped or were released. Twenty-five U.S. camels were bought and imported to Canada during the Cariboo Gold Rush.

 

WIKIPEDIA

Picture taken 1983 - digitally captured from paper print

__________________________________________

 

The orangutans (also spelled orang-utan, orangutang, or orang-utang) are the two exclusively Asian species of extant great apes. Native to Indonesia and Malaysia, orangutans are currently found in only the rainforests of Borneo and Sumatra. Classified in the genus Pongo, orangutans were considered to be one species. Since 1996, they have been divided into two species: the Bornean orangutan (P. pygmaeus) and the Sumatran orangutan (P. abelii). In addition, the Bornean species is divided into three subspecies.

 

Based on genome sequencing, the two extant orangutan species evidently diverged around 400,000 years ago. The orangutans are also the only surviving species of the subfamily Ponginae, which also included several other species, such as the three extinct species of the genus Gigantopithecus, including the largest known primate Gigantopithecus blacki. The ancestors of the Ponginae subfamily split from the main ape line in Africa 16 to 19 million years ago (mya) and spread into Asia.

 

Orangutans are the most arboreal of the great apes and spend most of their time in trees. Their hair is typically reddish-brown, instead of the brown or black hair typical of chimpanzees and gorillas. Males and females differ in size and appearance. Dominant adult males have distinctive cheek pads and produce long calls that attract females and intimidate rivals. Younger males do not have these characteristics and resemble adult females. Orangutans are the most solitary of the great apes, with social bonds occurring primarily between mothers and their dependent offspring, who stay together for the first two years. Fruit is the most important component of an orangutan's diet; however, the apes will also eat vegetation, bark, honey, insects and even bird eggs. They can live over 30 years in both the wild and captivity.

 

Orangutans are among the most intelligent primates; they use a variety of sophisticated tools and construct elaborate sleeping nests each night from branches and foliage. The apes have been extensively studied for their learning abilities. There may even be distinctive cultures within populations. Field studies of the apes were pioneered by primatologist Birutė Galdikas. Both orangutan species are considered to be endangered, with the Sumatran orangutan being critically endangered. Human activities have caused severe declines in the populations and ranges of both species. Threats to wild orangutan populations include poaching, habitat destruction, and the illegal pet trade. Several conservation and rehabilitation organisations are dedicated to the survival of orangutans in the wild.

 

ETYMOLOGY

The name "orangutan" (also written orang-utan, orang utan, orangutang, and ourang-outang) is derived from the Malay and Indonesian words orang meaning "person" and hutan meaning "forest", thus "person of the forest". Orang Hutan was originally not used to refer to apes, but to forest-dwelling humans.

 

The Malay words used to refer specifically to the ape are maias and mawas, but it is unclear if those words refer to just orangutans, or to all apes in general. The first attestation of the word to name the Asian ape is in Dutch physician Jacobus Bontius' 1631 Historiae naturalis et medicae Indiae orientalis – he reported that Malays had informed him the ape was able to talk, but preferred not to "lest he be compelled to labour". The word appeared in several German-language descriptions of Indonesian zoology in the 17th century. The likely origin of the word comes specifically from the Banjarese variety of Malay.

 

Cribb et al. (2014) suggest that Bontius' account referred not to apes (which were not known from Java) but rather to humans suffering some serious medical condition (most likely endemic cretinism) and that his use of the word was misunderstood by Nicolaes Tulp, who was the first to use the term in a publication.

 

The word was first attested in English in 1691 in the form orang-outang, and variants with -ng instead of -n as in the Malay original are found in many languages. This spelling (and pronunciation) has remained in use in English up to the present, but has come to be regarded as incorrect. The loss of "h" in Utan and the shift from n to -ng has been taken to suggest that the term entered English through Portuguese. In 1869, British naturalist Alfred Russel Wallace, co-creator of modern evolutionary theory, published his account of Malaysia's wildlife: The Malay Archipelago: The Land of the Orang-Utan and the Bird of Paradise.

 

The name of the genus, Pongo, comes from a 16th-century account by Andrew Battell, an English sailor held prisoner by the Portuguese in Angola, which describes two anthropoid "monsters" named Pongo and Engeco. He is now believed to have been describing gorillas, but in the 18th century, the terms orangutan and pongo were used for all great apes. Lacépède used the term Pongo for the genus following the German botanist Friedrich von Wurmb who sent a skeleton from the Indies to Europe.

 

TAXONOMY, PHYLOGENY AND GENETICS

The two orangutan species are the only extant members of the subfamily Ponginae. This subfamily also included the extinct genera Lufengpithecus, which lived in southern China and Thailand 2–8 mya, and Sivapithecus, which lived India and Pakistan from 12.5 mya until 8.5 mya. These apes likely lived in drier and cooler environments than orangutans do today. Khoratpithecus piriyai, which lived in Thailand 5–7 mya, is believed to have been the closest known relative of the orangutans. The largest known primate, Gigantopithecus, was also a member of Ponginae and lived in China, India and Vietnam from 5 mya to 100,000 years ago.

 

Within apes (superfamily Hominoidea), the gibbons diverged during the early Miocene (between 19.7 and 24.1 mya, according to molecular evidence) and the orangutans split from the African great ape lineage between 15.7 and 19.3 mya.

 

HISTORY OF ORANGUTAN TAXONOMY

The orangutan was first described scientifically in the Systema Naturae of Linnaeus as Simia satyrus. The populations on the two islands were classified as subspecies until 1996, when they were elevated to full species status, and the three distinct populations on Borneo were elevated to subspecies. The population currently listed as P. p. wurmbii may be closer to the Sumatran orangutan than the other Bornean orangutan subspecies. If confirmed, abelii would be a subspecies of P. wurmbii (Tiedeman, 1808).

 

Regardless, the type locality of P. pygmaeus has not been established beyond doubts, and may be from the population currently listed as P. wurmbii (in which case P. wurmbii would be a junior synonym of P. pygmaeus, while one of the names currently considered a junior synonym of P. pygmaeus would take precedence for the northwest Bornean taxon). To further confuse, the name P. morio, as well as some suggested junior synonyms, may be junior synonyms of the P. pygmaeus subspecies, thus leaving the east Bornean populations unnamed.

 

In addition, some fossils described under the name P. hooijeri have been found in Vietnam, and multiple fossil subspecies have been described from several parts of southeastern Asia. It is unclear if these belong to P. pygmaeus or

 

P. abelii or, in fact, represent distinct species.

 

GENOMICS

The Sumatran orangutan genome was sequenced in January 2011. Following humans and chimpanzees, the Sumatran orangutan has become the third species of hominid to have its genome sequenced. Subsequently, the Bornean species would have its genome sequenced. Genetic diversity was found to be lower in Bornean orangutans (P. pygmaeus) than in Sumatran ones (P. abelii), despite the fact that Borneo is home to six or seven times as many orangutans as Sumatra.

 

The comparison has shown these two species diverged around 400,000 years ago, more recently than was previously thought. Also, the orangutan genome was found to have evolved much more slowly than chimpanzee and human DNA. Previously, the species was estimated to have diverged 2.9 to 4.9 mya. The researchers hope these data may help conservationists save the endangered ape, and also prove useful in further understanding of human genetic diseases.

 

Bornean orangutans have 48 diploid chromosomes.

 

ANATOMY AND PHYSIOLOGY

An orangutan has a large, bulky body, a thick neck, very long, strong arms, short, bowed legs, and no tail. It is mostly covered with long, reddish-brown hair and grey-black skin. Sumatran orangutans have more sparse and lighter-coloured coats. The orangutan has a large head with a prominent mouth area. Though largely hairless, their faces can develop some hair in males, giving them a moustache.

 

Adult males have large cheek flaps to show their dominance to other males. The cheek flaps are made mostly of fatty tissue and are supported by the musculature of the face. Mature males' throat pouches allow them to make loud calls. The species display significant sexual dimorphism; females typically stand 115 cm tall and weigh around 37 kg, while flanged adult males stand 136 cm tall and weigh 75 kg. A male orangutan has an arm span of about 2 m.

 

Orangutan hands are similar to human hands; they have four long fingers and an opposable thumb. However, the joint and tendon arrangement in the orangutans' hands produces two adaptations that are significant for arboreal locomotion. The resting configuration of the fingers is curved, creating a suspensory hook grip. Additionally, without the use of the thumb, the fingers and hands can grip tightly around objects with a small diameter by resting the tops of the fingers against the inside of the palm, creating a double-locked grip.

 

Their feet have four long toes and an opposable big toe. Orangutans can grasp things with both their hands and their feet. Their fingers and toes are curved, allowing them to get a better grip on branches. Since their hip joints have the same flexibility as their shoulder and arm joints, orangutans have less restriction in the movements of their legs than humans have. Unlike gorillas and chimpanzees, orangutans are not true knuckle-walkers, and are instead fist-walkers.

 

ECOLOGY AND BEHAVIOUR

Orangutans live in primary and old secondary forests, particularly dipterocarp forests and peat swamp forests. Both species can be found in mountainous and lowland swampy areas. Sumatran orangutans live at elevations as high as 1500 m, while Bornean orangutans live no higher than 1000 m. Other habitats used by orangutans include grasslands, cultivated fields, gardens, young secondary forest, and shallow lakes. Orangutans are the most arboreal of the great apes, spending nearly all their time in the trees.Most of the day is spent feeding, resting, and travelling. They start the day feeding for 2–3 hours in the morning. They rest during midday then travel in the late afternoon. When evening arrives, they begin to prepare their nests for the night. Orangutans do not swim, although they have been recorded wading in water. The main predators of orangutans are tigers. Other predators include clouded leopards, wild dogs and crocodiles. The absence of tigers on Borneo may explain why Bornean orangutans can be found on the ground more often than their Sumatran relatives.

 

DIET

Orangutans are opportunistic foragers, and their diets vary markedly from month to month. Fruit makes up 65–90% of the orangutan diet, and those with sugary or fatty pulp are favoured. Ficus fruits are commonly eaten and are easy to harvest and digest. Lowland dipterocarp forests are preferred by orangutans because of their plentiful fruit. Bornean orangutans consume at least 317 different food items that include young leaves, shoots, bark, insects, honey and bird eggs.

 

A decade-long study of urine and faecal samples at the Gunung Palung Orangutan Conservation Project in West Kalimantan has shown that orangutans give birth during and after the high fruit season (though not every year), during which they consume various abundant fruits, totalling up to 11,000 calories per day. In the low-fruit season, they eat whatever fruit is available in addition to tree bark and leaves, with daily intake at only 2,000 calories. Together with a long lactation period, orangutans also have a long birth interval.

 

Orangutans are thought to be the sole fruit disperser for some plant species including the climber species Strychnos ignatii which contains the toxic alkaloid strychnine. It does not appear to have any effect on orangutans except for excessive saliva production.

 

Geophagy, the practice of eating soil or rock, has been observed in orangutans. There are three main reasons for this dietary behaviour: for the addition of mineral nutrients to their diet; for the ingestion of clay minerals that can absorb toxic substances; or to treat a disorder such as diarrhoea. Orangutans also use plants of the genus Commelina as an anti-inflammatory balm.

 

SOCIAL LIFE

Orangutans live a more solitary lifestyle than the other great apes. Most social bonds occur between adult females and their dependent and weaned offspring. Adult males and independent adolescents of both sexes tend to live alone. Orangutan societies are made up of resident and transient individuals of both sexes. Resident females live with their offspring in defined home ranges that overlap with those of other adult females, which may be their immediate relatives. One to several resident female home ranges are encompassed within the home range of a resident male, who is their main mating partner.

 

Transient males and females move widely. Orangutans usually travel alone, but they may travel in small groups in their subadult years. However, this behaviour ends at adulthood. The social structure of the orangutan can be best described as solitary but social. Interactions between adult females range from friendly to avoidance to antagonistic. Resident males may have overlapping ranges and interactions between them tend to be hostile.

 

During dispersal, females tend to settle in home ranges that overlap with their mothers. However, they do not seem to have any special social bonds with them. Males disperse much farther from their mothers and enter into a transient phase. This phase lasts until a male can challenge and displace a dominant, resident male from his home range. Adult males dominate sub-adult males.

 

Both resident and transient orangutans aggregate on large fruiting trees to feed. The fruits tend to be abundant, so competition is low and individuals may engage in social interactions. Orangutans will also form travelling groups with members moving between different food sources. These groups tend to be made of only a few individuals. They also tend to be consortships between an adult male and female.

 

COMMUNICATION

Orangutans communicate with various sounds. Males will make long calls, both to attract females and advertise themselves to other males. Both sexes will try to intimidate conspecifics with a series of low guttural noises known collectively as the "rolling call". When annoyed, an orangutan will suck in air through pursed lips, making a kissing sound that is hence known as the "kiss squeak". Infants make soft hoots when distressed. Orangutans are also known to blow raspberries.

 

NESTING

Orangutans build nests specialized for both day or night use. These are carefully constructed; young orangutans learn from observing their mother's nest-building behaviour. In fact, nest-building is a leading cause in young orangutans leaving their mother for the first time. From six months of age onwards, orangutans practice nest-building and gain proficiency by the time they are three years old.

 

Construction of a night nest is done by following a sequence of steps. Initially, a suitable tree is located, orangutans being selective about sites though many tree species are used. The nest is then built by pulling together branches under them and joining them at a point. After the foundation has been built, the orangutan bends smaller, leafy branches onto the foundation; this serves the purpose of and is termed the "mattress". After this, orangutans stand and braid the tips of branches into the mattress. Doing this increases the stability of the nest and forms the final act of nest-building. In addition, orangutans may add additional features, such as "pillows", "blankets", "roofs" and "bunk-beds" to their nests.

 

REPRODUCTION AND PARENTING

Males mature at around 15 years of age, by which time they have fully descended testicles and can reproduce. However, they exhibit arrested development by not developing the distinctive cheek pads, pronounced throat pouches, long fur, or long-calls until they are between 15 and 20 years old. The development of these characteristics depends largely on the absence of a resident male.

 

Males without them are known as unflanged males in contrast to the more developed flanged males. The transformation from unflanged to flanged can occur very quickly. Unflanged and flanged males have two different mating strategies. Flanged males attract oestrous females with their characteristic long calls. Those calls may also suppress development in younger males. Unflanged males wander widely in search of oestrous females and upon finding one, will force copulation on her. While both strategies are successful, females prefer to mate with flanged males and seek their company for protection against unflanged males. Resident males may form consortships with females that can last days, weeks or months after copulation.

 

Female orangutans experience their first ovulatory cycle around 5.8–11.1 years. These occur earlier in females with more body fat. Like other great apes, female orangutans enter a period of infertility during adolescence which may last for 1–4 years. Female orangutans also have a 22– to 30-day menstrual cycle. Gestation lasts for 9 months, with females giving birth to their first offspring between the ages of 14 and 15 years.

 

Female orangutans have eight-year intervals between births, the longest interbirth intervals among the great apes. Unlike many other primates, male orangutans do not seem to practice infanticide. This may be because they cannot ensure they will sire a female's next offspring because she does not immediately begin ovulating again after her infant dies.

 

Male orangutans play almost no role in raising the young. Females do most of the caring and socializing of the young. A female often has an older offspring with her to help in socializing the infant. Infant orangutans are completely dependent on their mothers for the first two years of their lives. The mother will carry the infant during travelling, as well as feed it and sleep with it in the same night nest. For the first four months, the infant is carried on its belly and never relieves physical contact. In the following months, the time an infant spends with its mother decreases.

 

When an orangutan reaches the age of two, its climbing skills improve and it will travel through the canopy holding hands with other orangutans, a behaviour known as "buddy travel". Orangutans are juveniles from about two to five years of age and will start to temporarily move away from their mothers. Juveniles are usually weaned at about four years of age. Adolescent orangutans will socialize with their peers while still having contact with their mothers. Typically, orangutans live over 30 years in both the wild and captivity.

 

INTELLIGENCE

Orangutans are among the most intelligent primates. Experiments suggest they can figure out some invisible displacement problems with a representational strategy. In addition, Zoo Atlanta has a touch-screen computer where their two Sumatran orangutans play games. Scientists hope the data they collect will help researchers learn about socialising patterns, such as whether the apes learn behaviours through trial and error or by mimicry, and point to new conservation strategies.

 

A 2008 study of two orangutans at the Leipzig Zoo showed orangutans can use "calculated reciprocity", which involves weighing the costs and benefits of gift exchanges and keeping track of these over time. Orangutans are the first nonhuman species documented to do so. Orangutans are very technically adept nest builders, making a new nest each evening in only in 5 to 6 minutes and choosing branches which they know can support their body weight.

 

TOOL USE AND CULTURE

Tool use in orangutans was observed by primatologist Birutė Galdikas in ex-captive populations. In addition, evidence of sophisticated tool manufacture and use in the wild was reported from a population of orangutans in Suaq Balimbing (Pongo abelii) in 1996. These orangutans developed a tool kit for use in foraging that consisted of both insect-extraction tools for use in the hollows of trees and seed-extraction tools for harvesting seeds from hard-husked fruit. The orangutans adjusted their tools according to the nature of the task at hand, and preference was given to oral tool use. This preference was also found in an experimental study of captive orangutans (P. pygmaeus).

 

Primatologist Carel P. van Schaik and biological anthropologist Cheryl D. Knott further investigated tool use in different wild orangutan populations. They compared geographic variations in tool use related to the processing of Neesia fruit. The orangutans of Suaq Balimbing (P. abelii) were found to be avid users of insect and seed-extraction tools when compared to other wild orangutans. The scientists suggested these differences are cultural. The orangutans at Suaq Balimbing live in dense groups and are socially tolerant; this creates good conditions for social transmission. Further evidence that highly social orangutans are more likely to exhibit cultural behaviours came from a study of leaf-carrying behaviours of ex-captive orangutans that were being rehabilitated on the island of Kaja in Borneo.

 

Wild orangutans (P. pygmaeus wurmbii) in Tuanan, Borneo, were reported to use tools in acoustic communication. They use leaves to amplify the kiss squeak sounds they produce. The apes may employ this method of amplification to deceive the listener into believing they are larger animals.

 

In 2003, researchers from six different orangutan field sites who used the same behavioural coding scheme compared the behaviours of the animals from the different sites. They found the different orangutan populations behaved differently. The evidence suggested the differences were cultural: first, the extent of the differences increased with distance, suggesting cultural diffusion was occurring, and second, the size of the orangutans' cultural repertoire increased according to the amount of social contact present within the group. Social contact facilitates cultural transmission.

 

POSSIBLE LINGUISTIC CAPABILITIES

A study of orangutan symbolic capability was conducted from 1973 to 1975 by zoologist Gary L. Shapiro with Aazk, a juvenile female orangutan at the Fresno City Zoo (now Chaffee Zoo) in Fresno, California. The study employed the techniques of psychologist David Premack, who used plastic tokens to teach linguistic skills to the chimpanzee, Sarah. Shapiro continued to examine the linguistic and learning abilities of ex-captive orangutans in Tanjung Puting National Park, in Indonesian Borneo, between 1978 and 1980.

 

During that time, Shapiro instructed ex-captive orangutans in the acquisition and use of signs following the techniques of psychologists R. Allen Gardner and Beatrix Gardner, who taught the chimpanzee, Washoe, in the late 1960s. In the only signing study ever conducted in a great ape's natural environment, Shapiro home-reared Princess, a juvenile female, which learned nearly 40 signs (according to the criteria of sign acquisition used by psychologist Francine Patterson with Koko, the gorilla) and trained Rinnie, a free-ranging adult female orangutan, which learned nearly 30 signs over a two-year period. For his dissertation study, Shapiro examined the factors influencing sign learning by four juvenile orangutans over a 15-month period.

 

ORANGUTANS AND HUMANS

Orangutans were known to the native people of Sumatra and Borneo for millennia. While some communities hunted them for food and decoration, others placed taboos on such practices. In central Borneo, some traditional folk beliefs consider it bad luck to look in the face of an orangutan. Some folk tales involve orangutans mating with and kidnapping humans. There are even stories of hunters being seduced by female orangutans.

 

Europeans became aware of the existence of the orangutan possibly as early as the 17th century. European explorers in Borneo hunted them extensively during the 19th century. The first accurate description of orangutans was given by Dutch anatomist Petrus Camper, who observed the animals and dissected some specimens.

 

Little was known about their behaviour until the field studies of Birutė Galdikas, who became a leading authority on the apes. When she arrived in Borneo, Galdikas settled into a primitive bark and thatch hut, at a site she dubbed Camp Leakey, near the edge of the Java Sea. Despite numerous hardships, she remained there for over 30 years and became an outspoken advocate for orangutans and the preservation of their rainforest habitat, which is rapidly being devastated by loggers, palm oil plantations, gold miners, and unnatural forest fires.

 

Galdikas's conservation efforts have extended well beyond advocacy, largely focusing on rehabilitation of the many orphaned orangutans turned over to her for care. Galdikas is considered to be one of Leakey's Angels, along with Jane Goodall and Dian Fossey. According to the World Wildlife Fund, half of the habitat of the Bornean orangutan has been lost since 1994.

 

A persistent folktale on Sumatra and Borneo and in popular culture, is that male orangutans display sexual attraction to human women, and may even forcibly copulate with them. The only serious, but anecdotal, report of such an incident taking place, is primatologist Birutė Galdikas' report that her cook was sexually assaulted by a male orangutan. This orangutan, though, was raised in captivity and may have suffered from a skewed species identity, and forced copulation is a standard mating strategy for low-ranking male orangutans.

 

A female orangutan was rescued from a village brothel in Kareng Pangi village, Central Kalimantan, in 2003. The orangutan was shaved and chained for sexual purposes. Since being freed, the orangutan, named Pony, has been living with the Borneo Orangutan Survival Foundation. She has been re-socialised to live with other orang-utans.

 

LEGAL STATUS

In December 2014, Argentina became the first country to recognize a non-human primate as having legal rights when it ruled that an orangutan named Sandra at the Buenos Aires Zoo must be moved to a sanctuary in Brazil in order to provide her "partial or controlled freedom". Although animal rights groups interpreted the ruling as applicable to all species in captivity, legal specialists considered the ruling only applicable to hominid apes due to their genetic similarities to humans.

 

CONSERVATION

CONSERVATION STATUS

The Sumatran and Bornean species are both critically endangered according to the IUCN Red List of mammals, and both are listed on Appendix I of CITES.

 

The Bornean orangutan population declined by 60% in the past 60 years and is projected to decline by 82% over 75 years. Its range has become patchy throughout Borneo, being largely extirpated from various parts of the island, including the southeast. The largest remaining population is found in the forest around the Sabangau River, but this environment is at risk.

 

Sumatran orangutan populations declined by 80% in 75 years. This species is now found only in the northern part of Sumatra, with most of the population inhabiting the Leuser Ecosystem. In late March 2012, some of the last Sumatran orangutans in northern Sumatra were reported to be threatened with approaching forest fires and might be wiped out entirely within a matter of weeks.

 

Estimates between 2000 and 2003 found 7,300 Sumatran orangutans and between 45,000 and 69,000 Bornean orangutans remain in the wild. A 2007 study by the Government of Indonesia noted a total wild population of 61,234 orangutans, 54,567 of which were found on the island of Borneo in 2004.

 

During the early 2000s, orangutan habitat has decreased rapidly due to logging and forest fires, as well as fragmentation by roads. A major factor in that period of time has been the conversion of vast areas of tropical forest to palm oil plantations in response to international demand. Palm oil is used for cooking, cosmetics, mechanics, and biodiesel. Hunting is also a major problem as is the illegal pet trade.

 

Orangutans may be killed for the bushmeat trade, crop protection, or for use for traditional medicine. Orangutan bones are secretly traded in souvenir shops in several cities in Kalimantan, Indonesia. Mother orangutans are killed so their infants can be sold as pets, and many of these infants die without the help of their mother. Since 2004, several pet orangutans were confiscated by local authorities and sent to rehabilitation centres.

 

CONSERVATION CENTRES AND ORGANISATIONS

A number of organisations are working for the rescue, rehabilitation and reintroduction of orangutans. The largest of these is the Borneo Orangutan Survival Foundation, founded by conservationist Willie Smits. It is audited by a multinational auditor company and operates a number of large projects, such as the Nyaru Menteng Rehabilitation Program founded by conservationist Lone Drøscher Nielsen.

 

Other major conservation centres in Indonesia include those at Tanjung Puting National Park and Sebangau National Park in Central Kalimantan, Kutai in East Kalimantan, Gunung Palung National Park in West Kalimantan, and Bukit Lawang in the Gunung Leuser National Park on the border of Aceh and North Sumatra. In Malaysia, conservation areas include Semenggoh Wildlife Centre in Sarawak and Matang Wildlife Centre also in Sarawak, and the Sepilok Orang Utan Sanctuary near Sandakan in Sabah. Major conservation centres that are headquartered outside of the orangutan's home countries; include Frankfurt Zoological Society, Orangutan Foundation International, which was founded by Birutė Galdikas, and the Australian Orangutan Project.

 

Conservation organisations such as Orangutan Land Trust work with the palm oil industry to improve sustainability and encourages the industry to establish conservation areas for orangutans. It works to bring different stakeholders together to achieve conservation of the species and its habitat.

 

WIKIPEDIA

A camel is an even-toed ungulate within the genus Camelus, bearing distinctive fatty deposits known as "humps" on its back. The two surviving species of camel are the dromedary, or one-humped camel (C. dromedarius), which inhabits the Middle East and the Horn of Africa; and the bactrian, or two-humped camel (C. bactrianus), which inhabits Central Asia. Both species have been domesticated; they provide milk, meat, hair for textiles or goods such as felted pouches, and are working animals with tasks ranging from human transport to bearing loads.

 

The term "camel" is derived via Latin and Greek (camelus and κάμηλος kamēlos respectively) from Hebrew or Phoenician gāmāl.

 

"Camel" is also used more broadly to describe any of the six camel-like mammals in the family Camelidae: the two true camels and the four New World camelids: the llama, alpaca, guanaco, and vicuña of South America.

 

BIOLOGY

The average life expectancy of a camel is 40 to 50 years. A full-grown adult camel stands 1.85 m at the shoulder and 2.15 m at the hump. Camels can run at up to 65 km/h in short bursts and sustain speeds of up to 40 km/h. Bactrian camels weigh 300 to 1,000 kg and dromedaries 300 to 600 kg.

 

The male dromedary camel has in its throat an organ called a dulla, a large, inflatable sac he extrudes from his mouth when in rut to assert dominance and attract females. It resembles a long, swollen, pink tongue hanging out of the side of its mouth. Camels mate by having both male and female sitting on the ground, with the male mounting from behind. The male usually ejaculates three or four times within a single mating session. Camelids are the only ungulates to mate in a sitting position.

 

ECOLOGICAL AND BEHAVIORAL ADAPTIONS

Camels do not directly store water in their humps as was once commonly believed. The humps are actually reservoirs of fatty tissue: concentrating body fat in their humps minimizes the insulating effect fat would have if distributed over the rest of their bodies, helping camels survive in hot climates. When this tissue is metabolized, it yields more than one gram of water for every gram of fat processed. This fat metabolization, while releasing energy, causes water to evaporate from the lungs during respiration (as oxygen is required for the metabolic process): overall, there is a net decrease in water.

 

Camels have a series of physiological adaptations that allow them to withstand long periods of time without any external source of water. Unlike other mammals, their red blood cells are oval rather than circular in shape. This facilitates the flow of red blood cells during dehydration and makes them better at withstanding high osmotic variation without rupturing when drinking large amounts of water: a 600 kg camel can drink 200 L of water in three minutes.

 

Camels are able to withstand changes in body temperature and water consumption that would kill most other animals. Their temperature ranges from 34 °C at dawn and steadily increases to 40 °C by sunset, before they cool off at night again. Maintaining the brain temperature within certain limits is critical for animals; to assist this, camels have a rete mirabile, a complex of arteries and veins lying very close to each other which utilizes countercurrent blood flow to cool blood flowing to the brain. Camels rarely sweat, even when ambient temperatures reach 49 °C Any sweat that does occur evaporates at the skin level rather than at the surface of their coat; the heat of vaporization therefore comes from body heat rather than ambient heat. Camels can withstand losing 25% of their body weight to sweating, whereas most other mammals can withstand only about 12–14% dehydration before cardiac failure results from circulatory disturbance.

 

When the camel exhales, water vapor becomes trapped in their nostrils and is reabsorbed into the body as a means to conserve water. Camels eating green herbage can ingest sufficient moisture in milder conditions to maintain their bodies' hydrated state without the need for drinking.

 

The camels' thick coats insulate them from the intense heat radiated from desert sand; a shorn camel must sweat 50% more to avoid overheating. During the summer the coat becomes lighter in color, reflecting light as well as helping avoid sunburn. The camel's long legs help by keeping its body farther from the ground, which can heat up to 70 °C. Dromedaries have a pad of thick tissue over the sternum called the pedestal. When the animal lies down in a sternal recumbent position, the pedestal raises the body from the hot surface and allows cooling air to pass under the body.

 

Camels' mouths have a thick leathery lining, allowing them to chew thorny desert plants. Long eyelashes and ear hairs, together with nostrils that can close, form a barrier against sand. If sand gets lodged in their eyes, they can dislodge it using their transparent third eyelid. The camels' gait and widened feet help them move without sinking into the sand.

 

The kidneys and intestines of a camel are very efficient at reabsorbing water. Camel urine comes out as a thick syrup, and camel feces are so dry that they do not require drying when the Bedouins use them to fuel fires.

 

Camels' immune system differs from those of other mammals. Normally, the Y-shaped antibody molecules consist of two heavy (or long) chains along the length of the Y, and two light (or short) chains at each tip of the Y. Camels, in addition to these, also have antibodies made of only two heavy chains, a trait that makes them smaller and more durable. These "heavy-chain-only" antibodies, discovered in 1993, are thought to have developed 50 million years ago, after camelids split from ruminants and pigs.

 

GENETICS

The karyotypes of different camelid species have been studied earlier by many groups, but no agreement on chromosome nomenclature of camelids has been reached. A 2007 study flow sorted camel chromosomes, building on the fact that camels have 37 pairs of chromosomes (2n=74), and found that the karyotime consisted of one metacentric, three submetacentric, and 32 acrocentric autosomes. The Y is a small metacentric chromosome, while the X is a large metacentric chromosome.The hybrid camel, a hybrid between Bactrian and dromedary camels, has one hump, though it has an indentation 4–12 cm deep that divides the front from the back. The hybrid is 2.15 m at the shoulder and 2.32 m tall at the hump. It weighs an average of 650 kg and can carry around 400 to 450 kg, which is more than either the dromedary or Bactrian can. According to molecular data, the New World and Old World camelids diverged 11 million years ago. In spite of this, these species can still hybridize and produce fertile offspring. The cama is a camel–llama hybrid bred by scientists who wanted to see how closely related the parent species were. Scientists collected semen from a camel via an artificial vagina and inseminated a llama after stimulating ovulation with gonadotrophin injections. The cama has ears halfway between the length of camel and llama ears, no hump, longer legs than the llama, and partially cloven hooves. According to cama breeder Lulu Skidmore, cama have "the fleece of the llamas" and "the strength and patience of the camel". Like the mule, camas are sterile, despite both parents having the same number of chromosomes.

 

EVOLUTION

The earliest known camel, called Protylopus, lived in North America 40 to 50 million years ago (during the Eocene). It was about the size of a rabbit and lived in the open woodlands of what is now South Dakota. By 35 million years ago, the Poebrotherium was the size of a goat and had many more traits similar to camels and llamas. The hoofed Stenomylus, which walked on the tips of its toes, also existed around this time, and the long-necked Aepycamelus evolved in the Miocene.

 

The direct ancestor of all modern camels, Procamelus, existed in the upper Miocone and lower Pliocene. Around 3–5 million years ago, the North American Camelidae spread to South America via the Isthmus of Panama, where they gave rise to guanacos and related animals, and to Asia via the Bering land bridge. Surprising finds of fossil Paracamelus on Ellesmere Island beginning in 2006 in the high Canadian Arctic indicate the dromedary is descended from a larger, boreal browser whose hump may have evolved as an adaptation in a cold climate. This creature is estimated to have stood around nine feet tall.

 

The last camel native to North America was Camelops hesternus, which vanished along with horses, short-faced bears, mammoths and mastodons, ground sloths, sabertooth cats, and many other megafauna, coinciding with the migration of humans from Asia.

 

DOMESTICATION

Most camels surviving today are domesticated. Along with many other megafauna in North America, the original wild camels were wiped out during the spread of Native Americans from Asia into North America, 12,000 to 10,000 years ago. The only wild camels left are the Bactrian camels of the Gobi Desert.

 

Like the horse, before their extinction in their native land, camels spread across the Bering land bridge, moving the opposite direction from the Asian immigration to America, to survive in the Old World and eventually be domesticated and spread globally by humans.

 

Dromedaries may have first been domesticated by humans in Somalia and southern Arabia, around 3,000 BC, the Bactrian in central Asia around 2,500 BC, as at Shar-i Sokhta (also known as the Burnt City), Iran.

 

Discussions concerning camel domestication in Mesopotamia are often related to mentions of camels in the Hebrew Bible. The International Standard Bible Encyclopedia: E-J for instance mentions that "In accord with patriarchal traditions, cylinder seals from Middle Bronze Age Mesopotamia showed riders seated upon camels."

 

Martin Heide's 2010 work on the domestication of the camel tentatively concludes that the bactrian camel was domesticated by at least the middle of the third millennium somewhere east of the Zagros Mountains, then moving into Mesopotamia, and suggests that mentions of camels "in the patriarchal narratives may refer, at least in some places, to the Bactrian camel." while noting that the camel is not mentioned in relationship to Canaan.

 

Recent excavations in the Timna Valley by Lidar Sapir-Hen and Erez Ben-Yosef discovered what may be the earliest domestic camel bones found in Israel or even outside the Arabian peninsula, dating to around 930 BCE. This garnered considerable media coverage as it was described as evidence that the stories of Abraham, Joseph, Jacob and Esau were written after this time.

 

The existence of camels in Mesopotamia but not in Israel is not a new idea. According to an article in Time Magazine, the historian Richard Bulliet wrote in his 1975 book "The Camel and the Wheel" that "the occasional mention of camels in patriarchal narratives does not mean that the domestic camels were common in the Holy Land at that period." The archaeologist William F. Albright writing even earlier saw camels in the Bible as an anachronism. The official report by Sapir-Hen and Ben-Joseph notes that "The introduction of the dromedary camel (Camelus dromedarius) as a pack animal to the southern Levant signifies a crucial juncture in the history of the region; it substantially facilitated trade across the vast deserts of Arabia, promoting both economic and social change (e.g., Kohler 1984; Borowski 1998: 112-116; Jasmin 2005). This, together with the depiction of camels in the Patriarchal narrative, has generated extensive discussion regarding the date of the earliest domestic camel in the southern Levant (and beyond) (e.g., Albright 1949: 207; Epstein 1971: 558-584; Bulliet 1975; Zarins 1989; Köhler-Rollefson 1993; Uerpmann and Uerpmann 2002; Jasmin 2005; 2006; Heide 2010; Rosen and Saidel 2010; Grigson 2012). Most scholars today agree that the dromedary was exploited as a pack animal sometime in the early Iron Age (not before the 12th century BCE)" and concludes that "Current data from copper smelting sites of the Aravah Valley enable us to pinpoint the introduction of domestic camels to the southern Levant more precisely based on stratigraphic contexts associated with an extensive suite of radiocarbon dates. The data indicate that this event occurred not earlier than the last third of the 10th century BCE and most probably during this time. The coincidence of this event with a major reorganization of the copper industry of the region - attributed to the results of the campaign of Pharaoh Shoshenq I - raises the possibility that the two were connected, and that camels were introduced as part of the efforts to improve efficiency by facilitating trade."

 

MILITARY USES

By at least 1200 BC, the first camel saddles had appeared, and Bactrian camels could be ridden. The first saddle was positioned to the back of the camel, and control of the Bactrian camel was exercised by means of a stick. However, between 500–100 BC, Bactrian camels attained military use. New saddles, which were inflexible and bent, were put over the humps and divided the rider's weight over the animal. In the seventh century BC, the military Arabian saddle appeared, which improved the saddle design again slightly.

 

Camel cavalries have been used in wars throughout Africa, the Middle East, and into modern-day Border Security Force of India (though as of July 2012, the BSF has planned the replacement of camels with ATVs). The first use of camel cavalries was in the Battle of Qarqar in 853 BC. Armies have also used camels as freight animals instead of horses and mules.

In the East Roman Empire, the Romans used auxiliary forces known as dromedarii, whom they recruited in desert provinces. The camels were used mostly in combat because of their ability to scare off horses at close ranges (horses are afraid of the camels' scent), a quality famously employed by the Achaemenid Persians when fighting Lydia in the Battle of Thymbra.

 

19th and 20th CENTURIES

The United States Army established the U.S. Camel Corps, which was stationed in California in the late 19th century. One may still see stables at the Benicia Arsenal in Benicia, California, where they nowadays serve as the Benicia Historical Museum. Though the experimental use of camels was seen as a success (John B. Floyd, Secretary of War in 1858, recommended that funds be allocated towards obtaining a thousand more camels), the outbreak of the American Civil War saw the end of the Camel Corps: Texas became part of the Confederacy, and most of the camels were left to wander away into the desert.

 

France created a méhariste camel corps in 1912 as part of the Armée d'Afrique in the Sahara in order to exercise greater control over the camel-riding Tuareg and Arab insurgents, as previous efforts to defeat them on foot had failed. The camel-mounted units remained in service until the end of French rule over Algeria in 1962.

 

In 1916, the British created the Imperial Camel Corps. It was originally used to fight the Senussi, but was later used in the Sinai and Palestine Campaign in World War I. The Imperial Camel Corps comprised infantrymen mounted on camels for movement across desert, though they dismounted at battle sites and fought on foot. After July 1918, the Corps began to become run down, receiving no new reinforcements, and was formally disbanded in 1919.

 

In World War I, the British Army also created the Egyptian Camel Transport Corps, which consisted of a group of Egyptian camel drivers and their camels. The Corps supported British war operations in Sinai, Palestine, and Syria by transporting supplies to the troops.

 

The Somaliland Camel Corps was created by colonial authorities in British Somaliland in 1912; it was disbanded in 1944.

 

Bactrian camels were used by Romanian forces during World War II in the Caucasian region.

 

The Bikaner Camel Corps of British India fought alongside the British Indian Army in World Wars I and II.

 

The Tropas Nómadas (Nomad Troops) were an auxiliary regiment of Sahrawi tribesmen serving in the colonial army in Spanish Sahara (today Western Sahara). Operational from the 1930s until the end of the Spanish presence in the territory in 1975, the Tropas Nómadas were equipped with small arms and led by Spanish officers. The unit guarded outposts and sometimes conducted patrols on camelback.

 

FOOD USES

DAIRY

Camel milk is a staple food of desert nomad tribes and is sometimes considered a meal in and of itself; a nomad can live on only camel milk for almost a month. Camel milk is rich in vitamins, minerals, proteins, and immunoglobulins; compared to cow's milk, it is lower in fat and lactose, and higher in potassium, iron, and vitamin C. Bedouins believe the curative powers of camel milk are enhanced if the camel's diet consists of certain desert plants. Camel milk can readily be made into a drinkable yogurt, as well as butter or cheese, though the yields for cheese tend to be low.

 

Camel milk cannot be made into butter by the traditional churning method. It can be made if it is soured first, churned, and a clarifying agent is then added. Until recently, camel milk could not be made into camel cheese because rennet was unable to coagulate the milk proteins to allow the collection of curds. Developing less wasteful uses of the milk, the FAO commissioned Professor J.P. Ramet of the École Nationale Supérieure d'Agronomie et des Industries Alimentaires, who was able to produce curdling by the addition of calcium phosphate and vegetable rennet. The cheese produced from this process has low levels of cholesterol and is easy to digest, even for the lactose intolerant. The sale of camel cheese is limited owing to the small output of the few dairies producing camel cheese and the absence of camel cheese in local (West African) markets. Cheese imports from countries that traditionally breed camels are difficult to obtain due to restrictions on dairy imports from these regions.

 

Additionally, camel milk has been made into ice cream in a Netherlands camel farm.

 

MEAT

A camel carcass can provide a substantial amount of meat. The male dromedary carcass can weigh 300–400 kg, while the carcass of a male Bactrian can weigh up to 650 kg. The carcass of a female dromedary weighs less than the male, ranging between 250 and 350 kg. The brisket, ribs and loin are among the preferred parts, and the hump is considered a delicacy. The hump contains "white and sickly fat", which can be used to make the khli (preserved meat) of mutton, beef, or camel. Camel meat is reported to taste like coarse beef, but older camels can prove to be very tough, although camel meat becomes more tender the more it is cooked. The Abu Dhabi Officers' Club serves a camel burger mixed with beef or lamb fat in order to improve the texture and taste. In Karachi, Pakistan, some restaurants prepare nihari from camel meat. In Syria and Egypt, there are specialist camel butchers.

 

Camel meat has been eaten for centuries. It has been recorded by ancient Greek writers as an available dish at banquets in ancient Persia, usually roasted whole. The ancient Roman emperor Heliogabalus enjoyed camel's heel.[31] Camel meat is still eaten in certain regions, including Eritrea, Somalia, Djibouti, Saudi Arabia, Egypt, Syria, Libya, Sudan, Ethiopia, Kazakhstan, and other arid regions where alternative forms of protein may be limited or where camel meat has had a long cultural history. Camel blood is also consumable, as is the case among pastoralists in northern Kenya, where camel blood is drunk with milk and acts as a key source of iron, vitamin D, salts and minerals. Camel meat is also occasionally found in Australian cuisine: for example, a camel lasagna is available in Alice Springs.

 

A 2005 report issued jointly by the Saudi Ministry of Health and the United States Centers for Disease Control and Prevention details cases of human bubonic plague resulting from the ingestion of raw camel liver.

 

RELIGION

ISLAM

Camel meat is halal for Muslims. However, according to some Islamic schools of thought, a state of impurity is brought on by the consumption of it. Consequently, these schools hold that Muslims must perform wudhu (ablution) before the next time they pray after eating camel meat.

 

Also, some Islamic schools of thought consider it haraam for a Muslim to perform salat in places where camels lie, as it is said to be a dwelling place of shaytan.

 

According to Suni ahadith collected by Bukhari and Muslim, Muhammad ordered a certain group of people to drink camel milk and urine as a medicine. However, according to Abū Ḥanīfa, the drinking of camel urine, while not forbidden (ḥaram), is disliked (makrūh) in Islam.

 

Camel urine is sold as traditional medicine in shops in Saudi Arabia. The Sunni scholar Muhammad Al-Munajjid's IslamQA.info recommends camel urine as beneficial to curing certain diseases and to human health and cited Ahadith and scientific studies as justification. King Abdulaziz University researcher Dr. Faten Abdel-Rajman Khorshid has claimed that cancer and other diseases could be treated with camel urine as recommended by the Prophet. The United Arab Emirates "Arab Science and Technology Foundation" reported that cancer could be treated with camel urine. Camel urine was also prescribed as a treatment by Zaghloul El-Naggar, a religious scholar. Camel urine is the only urine which is permitted to be drunk according to the Hanbali madhhab of Sunni Islam. The World Health Organization said that camel urine consumption may be a factor in the spread of the MERS virus in Saudi Arabia. The Gulf Times writer Ahmad al-Sayyed wrote that various afflictions are dealt with camel urine by people. Dandruff, scalp ailments, hair, sores, and wounds were recommended to be treated with camel urine by Ibn Sina. Arab American University Professor of Cell Biology and Immunology Bashar Saad (PhD) along with Omar Said (PhD) wrote that medicinal use of camel urine is approved of and promoted by Islam since it was recommended by the prophet. A test on mice found that cytotoxic effects similar to cyclophosphamide were induced on bone marrow by camel urine. Besides for consumption as a medicinal drink, camel urine is believed to help treat hair. Bites from insects were warded off with camel urine, which also served as a shampoo. Camel urine is also used to help treat asthma, infections, treat hair, sores, hair growth and boost libido.

 

Several Sunni Ahadith mention drinking camel urine. Some Shia criticized Wahhabis for camel urine treatment. Shia scholars also recommend the medicinal use of camel urine. Shia Hadith on Imam Ja'far al-Sadiq reported that shortness of breath (asthma) was treated with camel urine. Shia Marja Ayatollah Sistani said that for medicinal purposes only, sheep, cow, and camel urine can be drunk.

 

JUDAISM

According to Jewish tradition, camel meat and milk are not kosher. Camels possess only one of the two kosher criteria; although they chew their cud, they do not possess cloven hooves:

 

Nevertheless these shall ye not eat of them that only chew the cud, or of them that only part the hoof: the camel, because he cheweth the cud but parteth not the hoof, he is unclean unto you.

— Leviticus 11:4

 

DISTRIBUTION ANDNUMBERS

There are around 14 million camels alive as of 2010, with 90% being dromedaries. Dromedaries alive today are domesticated animals (mostly living in the Horn of Africa, the Sahel, Maghreb, Middle East and South Asia). The Horn region alone has the largest concentration of camels in the world, where the dromedaries constitute an important part of local nomadic life. They provide nomadic people in Somalia (which has the largest camel herd in the world) and Ethiopia with milk, food, and transportation.

 

The Bactrian camel is, as of 2010, reduced to an estimated 1.4 million animals, most of which are domesticated. The only truly wild Bactrian camels, of which there are less than one thousand, are thought to inhabit the Gobi Desert in China and Mongolia.

 

The largest population of feral camels is in Australia. There are around 700,000 feral dromedary camels in central parts of Australia, descended from those introduced as a method of transport in the 19th and early 20th centuries. This population is growing about 8% per year. Representatives of the Australian government have culled more than 100,000 of the animals in part because the camels use too much of the limited resources needed by sheep farmers.

 

A small population of introduced camels, dromedaries and Bactrians, wandered through Southwest United States after having been imported in the 1800s as part of the U.S. Camel Corps experiment. When the project ended, they were used as draft animals in mines and escaped or were released. Twenty-five U.S. camels were bought and imported to Canada during the Cariboo Gold Rush.

 

WIKIPEDIA

A camel is an even-toed ungulate within the genus Camelus, bearing distinctive fatty deposits known as "humps" on its back. The two surviving species of camel are the dromedary, or one-humped camel (C. dromedarius), which inhabits the Middle East and the Horn of Africa; and the bactrian, or two-humped camel (C. bactrianus), which inhabits Central Asia. Both species have been domesticated; they provide milk, meat, hair for textiles or goods such as felted pouches, and are working animals with tasks ranging from human transport to bearing loads.

 

The term "camel" is derived via Latin and Greek (camelus and κάμηλος kamēlos respectively) from Hebrew or Phoenician gāmāl.

 

"Camel" is also used more broadly to describe any of the six camel-like mammals in the family Camelidae: the two true camels and the four New World camelids: the llama, alpaca, guanaco, and vicuña of South America.

 

BIOLOGY

The average life expectancy of a camel is 40 to 50 years. A full-grown adult camel stands 1.85 m at the shoulder and 2.15 m at the hump. Camels can run at up to 65 km/h in short bursts and sustain speeds of up to 40 km/h. Bactrian camels weigh 300 to 1,000 kg and dromedaries 300 to 600 kg.

 

The male dromedary camel has in its throat an organ called a dulla, a large, inflatable sac he extrudes from his mouth when in rut to assert dominance and attract females. It resembles a long, swollen, pink tongue hanging out of the side of its mouth. Camels mate by having both male and female sitting on the ground, with the male mounting from behind. The male usually ejaculates three or four times within a single mating session. Camelids are the only ungulates to mate in a sitting position.

 

ECOLOGICAL AND BEHAVIORAL ADAPTIONS

Camels do not directly store water in their humps as was once commonly believed. The humps are actually reservoirs of fatty tissue: concentrating body fat in their humps minimizes the insulating effect fat would have if distributed over the rest of their bodies, helping camels survive in hot climates. When this tissue is metabolized, it yields more than one gram of water for every gram of fat processed. This fat metabolization, while releasing energy, causes water to evaporate from the lungs during respiration (as oxygen is required for the metabolic process): overall, there is a net decrease in water.

 

Camels have a series of physiological adaptations that allow them to withstand long periods of time without any external source of water. Unlike other mammals, their red blood cells are oval rather than circular in shape. This facilitates the flow of red blood cells during dehydration and makes them better at withstanding high osmotic variation without rupturing when drinking large amounts of water: a 600 kg camel can drink 200 L of water in three minutes.

 

Camels are able to withstand changes in body temperature and water consumption that would kill most other animals. Their temperature ranges from 34 °C at dawn and steadily increases to 40 °C by sunset, before they cool off at night again. Maintaining the brain temperature within certain limits is critical for animals; to assist this, camels have a rete mirabile, a complex of arteries and veins lying very close to each other which utilizes countercurrent blood flow to cool blood flowing to the brain. Camels rarely sweat, even when ambient temperatures reach 49 °C Any sweat that does occur evaporates at the skin level rather than at the surface of their coat; the heat of vaporization therefore comes from body heat rather than ambient heat. Camels can withstand losing 25% of their body weight to sweating, whereas most other mammals can withstand only about 12–14% dehydration before cardiac failure results from circulatory disturbance.

 

When the camel exhales, water vapor becomes trapped in their nostrils and is reabsorbed into the body as a means to conserve water. Camels eating green herbage can ingest sufficient moisture in milder conditions to maintain their bodies' hydrated state without the need for drinking.

 

The camels' thick coats insulate them from the intense heat radiated from desert sand; a shorn camel must sweat 50% more to avoid overheating. During the summer the coat becomes lighter in color, reflecting light as well as helping avoid sunburn. The camel's long legs help by keeping its body farther from the ground, which can heat up to 70 °C. Dromedaries have a pad of thick tissue over the sternum called the pedestal. When the animal lies down in a sternal recumbent position, the pedestal raises the body from the hot surface and allows cooling air to pass under the body.

 

Camels' mouths have a thick leathery lining, allowing them to chew thorny desert plants. Long eyelashes and ear hairs, together with nostrils that can close, form a barrier against sand. If sand gets lodged in their eyes, they can dislodge it using their transparent third eyelid. The camels' gait and widened feet help them move without sinking into the sand.

 

The kidneys and intestines of a camel are very efficient at reabsorbing water. Camel urine comes out as a thick syrup, and camel feces are so dry that they do not require drying when the Bedouins use them to fuel fires.

 

Camels' immune system differs from those of other mammals. Normally, the Y-shaped antibody molecules consist of two heavy (or long) chains along the length of the Y, and two light (or short) chains at each tip of the Y. Camels, in addition to these, also have antibodies made of only two heavy chains, a trait that makes them smaller and more durable. These "heavy-chain-only" antibodies, discovered in 1993, are thought to have developed 50 million years ago, after camelids split from ruminants and pigs.

 

GENETICS

The karyotypes of different camelid species have been studied earlier by many groups, but no agreement on chromosome nomenclature of camelids has been reached. A 2007 study flow sorted camel chromosomes, building on the fact that camels have 37 pairs of chromosomes (2n=74), and found that the karyotime consisted of one metacentric, three submetacentric, and 32 acrocentric autosomes. The Y is a small metacentric chromosome, while the X is a large metacentric chromosome.The hybrid camel, a hybrid between Bactrian and dromedary camels, has one hump, though it has an indentation 4–12 cm deep that divides the front from the back. The hybrid is 2.15 m at the shoulder and 2.32 m tall at the hump. It weighs an average of 650 kg and can carry around 400 to 450 kg, which is more than either the dromedary or Bactrian can. According to molecular data, the New World and Old World camelids diverged 11 million years ago. In spite of this, these species can still hybridize and produce fertile offspring. The cama is a camel–llama hybrid bred by scientists who wanted to see how closely related the parent species were. Scientists collected semen from a camel via an artificial vagina and inseminated a llama after stimulating ovulation with gonadotrophin injections. The cama has ears halfway between the length of camel and llama ears, no hump, longer legs than the llama, and partially cloven hooves. According to cama breeder Lulu Skidmore, cama have "the fleece of the llamas" and "the strength and patience of the camel". Like the mule, camas are sterile, despite both parents having the same number of chromosomes.

 

EVOLUTION

The earliest known camel, called Protylopus, lived in North America 40 to 50 million years ago (during the Eocene). It was about the size of a rabbit and lived in the open woodlands of what is now South Dakota. By 35 million years ago, the Poebrotherium was the size of a goat and had many more traits similar to camels and llamas. The hoofed Stenomylus, which walked on the tips of its toes, also existed around this time, and the long-necked Aepycamelus evolved in the Miocene.

 

The direct ancestor of all modern camels, Procamelus, existed in the upper Miocone and lower Pliocene. Around 3–5 million years ago, the North American Camelidae spread to South America via the Isthmus of Panama, where they gave rise to guanacos and related animals, and to Asia via the Bering land bridge. Surprising finds of fossil Paracamelus on Ellesmere Island beginning in 2006 in the high Canadian Arctic indicate the dromedary is descended from a larger, boreal browser whose hump may have evolved as an adaptation in a cold climate. This creature is estimated to have stood around nine feet tall.

 

The last camel native to North America was Camelops hesternus, which vanished along with horses, short-faced bears, mammoths and mastodons, ground sloths, sabertooth cats, and many other megafauna, coinciding with the migration of humans from Asia.

 

DOMESTICATION

Most camels surviving today are domesticated. Along with many other megafauna in North America, the original wild camels were wiped out during the spread of Native Americans from Asia into North America, 12,000 to 10,000 years ago. The only wild camels left are the Bactrian camels of the Gobi Desert.

 

Like the horse, before their extinction in their native land, camels spread across the Bering land bridge, moving the opposite direction from the Asian immigration to America, to survive in the Old World and eventually be domesticated and spread globally by humans.

 

Dromedaries may have first been domesticated by humans in Somalia and southern Arabia, around 3,000 BC, the Bactrian in central Asia around 2,500 BC, as at Shar-i Sokhta (also known as the Burnt City), Iran.

 

Discussions concerning camel domestication in Mesopotamia are often related to mentions of camels in the Hebrew Bible. The International Standard Bible Encyclopedia: E-J for instance mentions that "In accord with patriarchal traditions, cylinder seals from Middle Bronze Age Mesopotamia showed riders seated upon camels."

 

Martin Heide's 2010 work on the domestication of the camel tentatively concludes that the bactrian camel was domesticated by at least the middle of the third millennium somewhere east of the Zagros Mountains, then moving into Mesopotamia, and suggests that mentions of camels "in the patriarchal narratives may refer, at least in some places, to the Bactrian camel." while noting that the camel is not mentioned in relationship to Canaan.

 

Recent excavations in the Timna Valley by Lidar Sapir-Hen and Erez Ben-Yosef discovered what may be the earliest domestic camel bones found in Israel or even outside the Arabian peninsula, dating to around 930 BCE. This garnered considerable media coverage as it was described as evidence that the stories of Abraham, Joseph, Jacob and Esau were written after this time.

 

The existence of camels in Mesopotamia but not in Israel is not a new idea. According to an article in Time Magazine, the historian Richard Bulliet wrote in his 1975 book "The Camel and the Wheel" that "the occasional mention of camels in patriarchal narratives does not mean that the domestic camels were common in the Holy Land at that period." The archaeologist William F. Albright writing even earlier saw camels in the Bible as an anachronism. The official report by Sapir-Hen and Ben-Joseph notes that "The introduction of the dromedary camel (Camelus dromedarius) as a pack animal to the southern Levant signifies a crucial juncture in the history of the region; it substantially facilitated trade across the vast deserts of Arabia, promoting both economic and social change (e.g., Kohler 1984; Borowski 1998: 112-116; Jasmin 2005). This, together with the depiction of camels in the Patriarchal narrative, has generated extensive discussion regarding the date of the earliest domestic camel in the southern Levant (and beyond) (e.g., Albright 1949: 207; Epstein 1971: 558-584; Bulliet 1975; Zarins 1989; Köhler-Rollefson 1993; Uerpmann and Uerpmann 2002; Jasmin 2005; 2006; Heide 2010; Rosen and Saidel 2010; Grigson 2012). Most scholars today agree that the dromedary was exploited as a pack animal sometime in the early Iron Age (not before the 12th century BCE)" and concludes that "Current data from copper smelting sites of the Aravah Valley enable us to pinpoint the introduction of domestic camels to the southern Levant more precisely based on stratigraphic contexts associated with an extensive suite of radiocarbon dates. The data indicate that this event occurred not earlier than the last third of the 10th century BCE and most probably during this time. The coincidence of this event with a major reorganization of the copper industry of the region - attributed to the results of the campaign of Pharaoh Shoshenq I - raises the possibility that the two were connected, and that camels were introduced as part of the efforts to improve efficiency by facilitating trade."

 

MILITARY USES

By at least 1200 BC, the first camel saddles had appeared, and Bactrian camels could be ridden. The first saddle was positioned to the back of the camel, and control of the Bactrian camel was exercised by means of a stick. However, between 500–100 BC, Bactrian camels attained military use. New saddles, which were inflexible and bent, were put over the humps and divided the rider's weight over the animal. In the seventh century BC, the military Arabian saddle appeared, which improved the saddle design again slightly.

 

Camel cavalries have been used in wars throughout Africa, the Middle East, and into modern-day Border Security Force of India (though as of July 2012, the BSF has planned the replacement of camels with ATVs). The first use of camel cavalries was in the Battle of Qarqar in 853 BC. Armies have also used camels as freight animals instead of horses and mules.

In the East Roman Empire, the Romans used auxiliary forces known as dromedarii, whom they recruited in desert provinces. The camels were used mostly in combat because of their ability to scare off horses at close ranges (horses are afraid of the camels' scent), a quality famously employed by the Achaemenid Persians when fighting Lydia in the Battle of Thymbra.

 

19th and 20th CENTURIES

The United States Army established the U.S. Camel Corps, which was stationed in California in the late 19th century. One may still see stables at the Benicia Arsenal in Benicia, California, where they nowadays serve as the Benicia Historical Museum. Though the experimental use of camels was seen as a success (John B. Floyd, Secretary of War in 1858, recommended that funds be allocated towards obtaining a thousand more camels), the outbreak of the American Civil War saw the end of the Camel Corps: Texas became part of the Confederacy, and most of the camels were left to wander away into the desert.

 

France created a méhariste camel corps in 1912 as part of the Armée d'Afrique in the Sahara in order to exercise greater control over the camel-riding Tuareg and Arab insurgents, as previous efforts to defeat them on foot had failed. The camel-mounted units remained in service until the end of French rule over Algeria in 1962.

 

In 1916, the British created the Imperial Camel Corps. It was originally used to fight the Senussi, but was later used in the Sinai and Palestine Campaign in World War I. The Imperial Camel Corps comprised infantrymen mounted on camels for movement across desert, though they dismounted at battle sites and fought on foot. After July 1918, the Corps began to become run down, receiving no new reinforcements, and was formally disbanded in 1919.

 

In World War I, the British Army also created the Egyptian Camel Transport Corps, which consisted of a group of Egyptian camel drivers and their camels. The Corps supported British war operations in Sinai, Palestine, and Syria by transporting supplies to the troops.

 

The Somaliland Camel Corps was created by colonial authorities in British Somaliland in 1912; it was disbanded in 1944.

 

Bactrian camels were used by Romanian forces during World War II in the Caucasian region.

 

The Bikaner Camel Corps of British India fought alongside the British Indian Army in World Wars I and II.

 

The Tropas Nómadas (Nomad Troops) were an auxiliary regiment of Sahrawi tribesmen serving in the colonial army in Spanish Sahara (today Western Sahara). Operational from the 1930s until the end of the Spanish presence in the territory in 1975, the Tropas Nómadas were equipped with small arms and led by Spanish officers. The unit guarded outposts and sometimes conducted patrols on camelback.

 

FOOD USES

DAIRY

Camel milk is a staple food of desert nomad tribes and is sometimes considered a meal in and of itself; a nomad can live on only camel milk for almost a month. Camel milk is rich in vitamins, minerals, proteins, and immunoglobulins; compared to cow's milk, it is lower in fat and lactose, and higher in potassium, iron, and vitamin C. Bedouins believe the curative powers of camel milk are enhanced if the camel's diet consists of certain desert plants. Camel milk can readily be made into a drinkable yogurt, as well as butter or cheese, though the yields for cheese tend to be low.

 

Camel milk cannot be made into butter by the traditional churning method. It can be made if it is soured first, churned, and a clarifying agent is then added. Until recently, camel milk could not be made into camel cheese because rennet was unable to coagulate the milk proteins to allow the collection of curds. Developing less wasteful uses of the milk, the FAO commissioned Professor J.P. Ramet of the École Nationale Supérieure d'Agronomie et des Industries Alimentaires, who was able to produce curdling by the addition of calcium phosphate and vegetable rennet. The cheese produced from this process has low levels of cholesterol and is easy to digest, even for the lactose intolerant. The sale of camel cheese is limited owing to the small output of the few dairies producing camel cheese and the absence of camel cheese in local (West African) markets. Cheese imports from countries that traditionally breed camels are difficult to obtain due to restrictions on dairy imports from these regions.

 

Additionally, camel milk has been made into ice cream in a Netherlands camel farm.

 

MEAT

A camel carcass can provide a substantial amount of meat. The male dromedary carcass can weigh 300–400 kg, while the carcass of a male Bactrian can weigh up to 650 kg. The carcass of a female dromedary weighs less than the male, ranging between 250 and 350 kg. The brisket, ribs and loin are among the preferred parts, and the hump is considered a delicacy. The hump contains "white and sickly fat", which can be used to make the khli (preserved meat) of mutton, beef, or camel. Camel meat is reported to taste like coarse beef, but older camels can prove to be very tough, although camel meat becomes more tender the more it is cooked. The Abu Dhabi Officers' Club serves a camel burger mixed with beef or lamb fat in order to improve the texture and taste. In Karachi, Pakistan, some restaurants prepare nihari from camel meat. In Syria and Egypt, there are specialist camel butchers.

 

Camel meat has been eaten for centuries. It has been recorded by ancient Greek writers as an available dish at banquets in ancient Persia, usually roasted whole. The ancient Roman emperor Heliogabalus enjoyed camel's heel.[31] Camel meat is still eaten in certain regions, including Eritrea, Somalia, Djibouti, Saudi Arabia, Egypt, Syria, Libya, Sudan, Ethiopia, Kazakhstan, and other arid regions where alternative forms of protein may be limited or where camel meat has had a long cultural history. Camel blood is also consumable, as is the case among pastoralists in northern Kenya, where camel blood is drunk with milk and acts as a key source of iron, vitamin D, salts and minerals. Camel meat is also occasionally found in Australian cuisine: for example, a camel lasagna is available in Alice Springs.

 

A 2005 report issued jointly by the Saudi Ministry of Health and the United States Centers for Disease Control and Prevention details cases of human bubonic plague resulting from the ingestion of raw camel liver.

 

RELIGION

ISLAM

Camel meat is halal for Muslims. However, according to some Islamic schools of thought, a state of impurity is brought on by the consumption of it. Consequently, these schools hold that Muslims must perform wudhu (ablution) before the next time they pray after eating camel meat.

 

Also, some Islamic schools of thought consider it haraam for a Muslim to perform salat in places where camels lie, as it is said to be a dwelling place of shaytan.

 

According to Suni ahadith collected by Bukhari and Muslim, Muhammad ordered a certain group of people to drink camel milk and urine as a medicine. However, according to Abū Ḥanīfa, the drinking of camel urine, while not forbidden (ḥaram), is disliked (makrūh) in Islam.

 

Camel urine is sold as traditional medicine in shops in Saudi Arabia. The Sunni scholar Muhammad Al-Munajjid's IslamQA.info recommends camel urine as beneficial to curing certain diseases and to human health and cited Ahadith and scientific studies as justification. King Abdulaziz University researcher Dr. Faten Abdel-Rajman Khorshid has claimed that cancer and other diseases could be treated with camel urine as recommended by the Prophet. The United Arab Emirates "Arab Science and Technology Foundation" reported that cancer could be treated with camel urine. Camel urine was also prescribed as a treatment by Zaghloul El-Naggar, a religious scholar. Camel urine is the only urine which is permitted to be drunk according to the Hanbali madhhab of Sunni Islam. The World Health Organization said that camel urine consumption may be a factor in the spread of the MERS virus in Saudi Arabia. The Gulf Times writer Ahmad al-Sayyed wrote that various afflictions are dealt with camel urine by people. Dandruff, scalp ailments, hair, sores, and wounds were recommended to be treated with camel urine by Ibn Sina. Arab American University Professor of Cell Biology and Immunology Bashar Saad (PhD) along with Omar Said (PhD) wrote that medicinal use of camel urine is approved of and promoted by Islam since it was recommended by the prophet. A test on mice found that cytotoxic effects similar to cyclophosphamide were induced on bone marrow by camel urine. Besides for consumption as a medicinal drink, camel urine is believed to help treat hair. Bites from insects were warded off with camel urine, which also served as a shampoo. Camel urine is also used to help treat asthma, infections, treat hair, sores, hair growth and boost libido.

 

Several Sunni Ahadith mention drinking camel urine. Some Shia criticized Wahhabis for camel urine treatment. Shia scholars also recommend the medicinal use of camel urine. Shia Hadith on Imam Ja'far al-Sadiq reported that shortness of breath (asthma) was treated with camel urine. Shia Marja Ayatollah Sistani said that for medicinal purposes only, sheep, cow, and camel urine can be drunk.

 

JUDAISM

According to Jewish tradition, camel meat and milk are not kosher. Camels possess only one of the two kosher criteria; although they chew their cud, they do not possess cloven hooves:

 

Nevertheless these shall ye not eat of them that only chew the cud, or of them that only part the hoof: the camel, because he cheweth the cud but parteth not the hoof, he is unclean unto you.

— Leviticus 11:4

 

DISTRIBUTION ANDNUMBERS

There are around 14 million camels alive as of 2010, with 90% being dromedaries. Dromedaries alive today are domesticated animals (mostly living in the Horn of Africa, the Sahel, Maghreb, Middle East and South Asia). The Horn region alone has the largest concentration of camels in the world, where the dromedaries constitute an important part of local nomadic life. They provide nomadic people in Somalia (which has the largest camel herd in the world) and Ethiopia with milk, food, and transportation.

 

The Bactrian camel is, as of 2010, reduced to an estimated 1.4 million animals, most of which are domesticated. The only truly wild Bactrian camels, of which there are less than one thousand, are thought to inhabit the Gobi Desert in China and Mongolia.

 

The largest population of feral camels is in Australia. There are around 700,000 feral dromedary camels in central parts of Australia, descended from those introduced as a method of transport in the 19th and early 20th centuries. This population is growing about 8% per year. Representatives of the Australian government have culled more than 100,000 of the animals in part because the camels use too much of the limited resources needed by sheep farmers.

 

A small population of introduced camels, dromedaries and Bactrians, wandered through Southwest United States after having been imported in the 1800s as part of the U.S. Camel Corps experiment. When the project ended, they were used as draft animals in mines and escaped or were released. Twenty-five U.S. camels were bought and imported to Canada during the Cariboo Gold Rush.

 

WIKIPEDIA

Recording Month Five

Vital stats

Mother's age: 32

Height: 5'3"

Weight: 141.6 lbs

Body Fat: 34%

Symptoms:

Positive HCG test

Not dizzy anymore

Energetic

Raised body tempurature

Appetite is good.

I'm feeling regular kicks and rolls at 1:30 pm and midnight and at times when I am still and on my back.

Nasal congestion

Round ligament pains

Freakishly strong/hard nails.

I saw spots twice. Weird.

Memory loss.

Taking:

Throxine for underactive thyroid

Pre-natal vitamin

Omega-3 Fish Oil

Extra calcium, choline

Precautionary prometrium 200 mg was discontinued after week 12.

Baby's age 21 weeks

Est. due date: June 15, 2008

Cheetah. Jock Safari Lodge. Kruger National Park. South Africa. Dec/2020

  

Cheetah

The cheetah (Acinonyx jubatus; /ˈtʃiːtə/) is a large cat of the subfamily Felinae that occurs in North, Southern and East Africa, and a few localities in Iran. It inhabits a variety of mostly arid habitats like dry forests, scrub forests, and savannahs. The species is IUCN Red Listed as Vulnerable, as it suffered a substantial decline in its historic range in the 20th century due to habitat loss, poaching for the illegal pet trade, and conflict with humans. By 2016, the global cheetah population has been estimated at approximately 7,100 individuals in the wild. Several African countries have taken steps to improve cheetah conservation measures.

The cheetah was formally described by Johann Christian Daniel von Schreber in 1775 and is the only extant member of the genus Acinonyx. Its yellowish tan or rufous to greyish white coat is uniformly covered with nearly 2,000 solid black spots. Its body is slender with a small rounded head, black tear-like streaks on the face, deep chest, long thin legs and long spotted tail. It reaches 70–90 cm (28–35 in) at the shoulder, and weighs 21–72 kg (46–159 lb).

The cheetah breeds throughout the year, and is an induced ovulator. Gestation lasts nearly three months, resulting in a litter of typically three to five, in rare cases up to eight cubs. They are weaned at the age of about six months. After siblings become independent from their mother, they usually stay together for some time. It is active mainly during the day, with hunting its major activity. It is a carnivore and preys mainly upon antelopes. It stalks its prey to within 100–300 m (330–980 ft), charge towards it and kill it by tripping it during the chase and biting its throat to suffocate it to death. Female cheetahs are solitary or live with their offspring in home ranges. Adult males are sociable despite their territoriality, forming groups called coalitions.

African cheetahs may achieve successful hunts only running up to a speed of 64 km/h (40 mph) while hunting due to their exceptional ability to accelerate; but are capable of accelerating up to 112 km/h (70 mph) on short distances of 100 m (330 ft). It is therefore the fastest land animal. Because of its prowess at hunting, the cheetah was tamed as early as the 16th century BC in Egypt to kill game at hunts. Cheetahs have been widely depicted in art, literature, advertising and animation.

Source: Wikipedia

Guepardo ou Chita

O guepardo ou chita (Acinonyx jubatus) é um animal da família dos felídeos (Felidae), ainda que de comportamento atípico, se comparado com outros da mesma família. É a única espécie vivente do gênero Acinonyx. Tendo como habitat a savana, vive na África, península Arábica e no sudoeste da Ásia. Também é conhecido pelos nomes de cheetah, cheetah-africana, lobo-tigre, leopardo-caçador ou onça-africana. Fisicamente, o guepardo ou chita é significativamente parecido com o leopardo. As almofadas das patas da chita têm ranhuras para se moverem melhor em alta velocidade, e sua longa cauda serve para lhe dar estabilidade nas curvas em alta velocidade. Cada chita pode ser identificada pelo padrão exclusivo de anéis existentes em sua cauda, tem uma cabeça pequena e aerodinâmica e uma coluna incrivelmente flexível, são habilidades que ajudam bastante na hora da perseguição.

É um animal predador, preferindo uma estratégia simples: caçar as suas presas através de perseguições a alta velocidade, em vez de táticas como a caça por emboscada ou em grupo, mas por vezes, pode caçar em dupla. Consegue atingir velocidades de 115 km/h, por curtos períodos de cada vez (até 500 metros de corrida), sendo o mais rápido de todos os animais terrestres.

 

Fonte: Wikipedia

 

Jock Safari Lodge

Located within 6, 000 ha of pristine bushveld, Jock Safari Lodge is an exclusive private concession, perfectly positioned in the southern part of the Kruger National Park, South Africa’s largest national park. The wildlife within this region have survived undisturbed without negative impact from mankind, encouraged to thrive. Jock Safari Lodge emerges where the Mitomeni and Biyamiti rivers flow as one – this natural unbroken landscape offers guests one of the best Big Five game viewing experiences in South Africa with its exclusive riverbed traversing rights. Steeped in history, Jock Safari Lodge was the first private concession granted within the Kruger National Park and is named after local legend, Jock of the Bushveld, the canine hero of Sir Percy FitzPatrick’s famous story of courage and loyalty that is set during South Africa’s first gold rush era. Relive one of South Africa’s cultural heritages through this wonderful story and view the original mementoes on display at the Main Lodge.

Source: jocksafarilodge.com/

Jock Safari Lodge

Localizado em 6.000 ha de savana intocada, o Jock Safari Lodge é uma concessão privada exclusiva, perfeitamente posicionada ao sul do Parque Nacional Kruger, o maior parque nacional da África do Sul. A vida selvagem nesta região sobreviveu sem ser perturbada, sem impacto negativo da humanidade, encorajada a prosperar. O Jock Safari Lodge surge onde os rios Mitomeni e Biyamiti fluem como um só - esta paisagem natural contínua oferece aos hóspedes uma das melhores experiências de observação do Big Five na África do Sul com seus direitos exclusivos de travessia do leito do rio. Repleto de história, Jock Safari Lodge foi a primeira concessão privada concedida dentro do Parque Nacional Kruger e leva o nome de uma lenda local, Jock of the Bushveld, o herói canino da famosa história de coragem e lealdade de Sir Percy FitzPatrick que se passa durante o primeiro era da corrida do ouro. Reviva uma das heranças culturais da África do Sul por meio desta história maravilhosa e veja as lembranças originais em exibição no Main Lodge.

Fonte: jocksafarilodge.com/ (tradução livre)

 

Rabbits, also known as bunnies or bunny rabbits, are small mammals in the family Leporidae (which also includes the hares), which is in the order Lagomorpha (which also includes the pikas). Oryctolagus cuniculus is the European rabbit, including its descendants, the world's 305 breeds[1] of domestic rabbit. Sylvilagus includes 13 wild rabbit species, among them the seven types of cottontail. The European rabbit, which has been introduced on every continent except Antarctica, is familiar throughout the world as a wild prey animal, a domesticated form of livestock and a pet. With its widespread effect on ecologies and cultures, in many areas of the world, the rabbit is a part of daily life – as food, clothing, a companion, and a source of artistic inspiration.

 

Although once considered rodents, lagomorphs like rabbits have been discovered to have diverged separately and earlier than their rodent cousins and have a number of traits rodents lack, like two extra incisors.

 

Terminology and etymology

A male rabbit is called a buck; a female is called a doe. An older term for an adult rabbit used until the 18th century is coney (derived ultimately from the Latin cuniculus), while rabbit once referred only to the young animals.[2] Another term for a young rabbit is bunny, though this term is often applied informally (particularly by children) to rabbits generally, especially domestic ones. More recently, the term kit or kitten has been used to refer to a young rabbit.

 

A group of rabbits is known as a colony or nest (or, occasionally, a warren, though this more commonly refers to where the rabbits live).[3] A group of baby rabbits produced from a single mating is referred to as a litter[4] and a group of domestic rabbits living together is sometimes called a herd.[5]

 

The word rabbit itself derives from the Middle English rabet, a borrowing from the Walloon robète, which was a diminutive of the French or Middle Dutch robbe.[6]

  

Taxonomy

See also: List of leporids

Rabbits and hares were formerly classified in the order Rodentia (rodent) until 1912, when they were moved into a new order, Lagomorpha (which also includes pikas).

 

Order Lagomorpha

Family Leporidae (in part)

Genus Brachylagus

Pygmy rabbit, Brachylagus idahoensis

Genus Bunolagus

Bushman rabbit, Bunolagus monticularis

Genus Lepus[a]

Genus Nesolagus

Sumatran striped rabbit, Nesolagus netscheri

Annamite striped rabbit, Nesolagus timminsi

Genus Oryctolagus

European rabbit, Oryctolagus cuniculus

Genus Pentalagus

Amami rabbit/Ryūkyū rabbit, Pentalagus furnessi

Genus Poelagus

Central African Rabbit, Poelagus marjorita

Genus Romerolagus

Volcano rabbit, Romerolagus diazi

Genus Sylvilagus

Swamp rabbit, Sylvilagus aquaticus

Desert cottontail, Sylvilagus audubonii

Brush rabbit, Sylvilagus bachmani

Forest rabbit, Sylvilagus brasiliensis

Mexican cottontail, Sylvilagus cunicularis

Dice's cottontail, Sylvilagus dicei

Eastern cottontail, Sylvilagus floridanus

Tres Marias rabbit, Sylvilagus graysoni

Omilteme cottontail, Sylvilagus insonus

San Jose brush rabbit, Sylvilagus mansuetus

Mountain cottontail, Sylvilagus nuttallii

Marsh rabbit, Sylvilagus palustris

New England cottontail, Sylvilagus transitionalis

Differences from hares

Main article: Hare

 

Hare

Johann Daniel Meyer (1748)

 

Rabbit

Johann Daniel Meyer (1748)

The term rabbit is typically used for all Leporidae species excluding the genus Lepus. Members of that genus are instead known as hares or jackrabbits.

 

Lepus species are precocial, born relatively mature and mobile with hair and good vision, while rabbit species are altricial, born hairless and blind. Hares & some rabbits live a relatively solitary life in a simple nest above the ground, while other rabbits live in social groups in burrows, which are grouped together to form warrens. Hares are generally larger than rabbits, with ears that are more elongated, and with hind legs that are larger and longer. Descendants of the European rabbit are commonly bred as livestock and kept as pets, whereas no hares have been domesticated – the breed called the Belgian hare is actually a domestic rabbit which has been selectively bred to resemble a hare.

 

Domestication

Main article: Domestic rabbit

Rabbits have long been domesticated. The European rabbit has been widely kept as livestock, starting in ancient Rome. Selective breeding, which began in the Middle Ages, has generated a wide variety of rabbit breeds, of which many (since the early 19th century) are also kept as pets.[7] Some strains of rabbit have been bred specifically as research subjects.

 

As livestock, rabbits are bred for their meat and fur. The earliest breeds were important sources of meat, and so became larger than wild rabbits, but domestic rabbits in modern times range in size from dwarf to giant. Rabbit fur, prized for its softness, can be found in a broad range of coat colors and patterns, as well as lengths. The Angora rabbit breed, for example, was developed for its long, silky fur, which is often hand-spun into yarn. Other domestic rabbit breeds have been developed primarily for the commercial fur trade, including the Rex, which has a short plush coat.

 

Biology

 

Wax models showing the development of the rabbit heart

Evolution

Because the rabbit's epiglottis is engaged over the soft palate except when swallowing, the rabbit is an obligate nasal breather. Rabbits have two sets of incisor teeth, one behind the other. This way they can be distinguished from rodents, with which they are often confused.[8] Another difference is that for rabbits, all of their teeth continue to grow, where as for most rodents, only their incisors continue to grow. Carl Linnaeus originally grouped rabbits and rodents under the class Glires; later, they were separated as the scientific consensus is that many of their similarities were a result of convergent evolution. Recent DNA analysis and the discovery of a common ancestor has supported the view that they share a common lineage, so rabbits and rodents are now often grouped together in the superorder Glires.[9]

 

Morphology

 

Skeleton of the rabbit

Since speed and agility are a rabbit's main defenses against predators (including the swift fox), rabbits have large hind leg bones and well-developed musculature. Though plantigrade at rest, rabbits are on their toes while running, assuming a more digitigrade posture. Rabbits use their strong claws for digging and (along with their teeth) for defense.[10] Each front foot has four toes plus a dewclaw. Each hind foot has four toes (but no dewclaw).[11]

  

Melanistic coloring

Oryctologus cuniculus

European rabbit (wild)

Most wild rabbits (especially compared to hares) have relatively full, egg-shaped bodies. The soft coat of the wild rabbit is agouti in coloration (or, rarely, melanistic), which aids in camouflage. The tail of the rabbit (with the exception of the cottontail species) is dark on top and white below. Cottontails have white on the top of their tails.[12]

 

As a result of the position of the eyes in its skull, the rabbit has a field of vision that encompasses nearly 360 degrees, with just a small blind spot at the bridge of the nose.[13]

 

Hind limb elements

 

This image comes from a specimen in the Pacific Lutheran University natural history collection. It displays all of the skeletal articulations of rabbit's hind limbs.

The anatomy of rabbits' hind limbs is structurally similar to that of other land mammals and contributes to their specialized form of locomotion. The bones of the hind limbs consist of long bones (the femur, tibia, fibula, and phalanges) as well as short bones (the tarsals). These bones are created through endochondral ossification during development. Like most land mammals, the round head of the femur articulates with the acetabulum of the os coxae. The femur articulates with the tibia, but not the fibula, which is fused to the tibia. The tibia and fibula articulate with the tarsals of the pes, commonly called the foot. The hind limbs of the rabbit are longer than the front limbs. This allows them to produce their hopping form of locomotion. Longer hind limbs are more capable of producing faster speeds. Hares, which have longer legs than cottontail rabbits, are able to move considerably faster.[14] Rabbits stay just on their toes when moving; this is called digitigrade locomotion. The hind feet have four long toes that allow for this and are webbed to prevent them from spreading when hopping.[15] Rabbits do not have paw pads on their feet like most other animals that use digitigrade locomotion. Instead, they have coarse compressed hair that offers protection.[16]

 

Musculature

 

The rabbit's hind limb (lateral view) includes muscles involved in the quadriceps and hamstrings.

Rabbits have muscled hind legs that allow for maximum force, maneuverability, and acceleration that is divided into three main parts: foot, thigh, and leg. The hind limbs of a rabbit are an exaggerated feature. They are much longer than the forelimbs, providing more force. Rabbits run on their toes to gain the optimal stride during locomotion. The force put out by the hind limbs is contributed by both the structural anatomy of the fusion tibia and fibula, and muscular features.[17] Bone formation and removal, from a cellular standpoint, is directly correlated to hind limb muscles. Action pressure from muscles creates force that is then distributed through the skeletal structures. Rabbits that generate less force, putting less stress on bones are more prone to osteoporosis due to bone rarefaction.[18] In rabbits, the more fibers in a muscle, the more resistant to fatigue. For example, hares have a greater resistance to fatigue than cottontails. The muscles of rabbit's hind limbs can be classified into four main categories: hamstrings, quadriceps, dorsiflexors, or plantar flexors. The quadriceps muscles are in charge of force production when jumping. Complementing these muscles are the hamstrings, which aid in short bursts of action. These muscles play off of one another in the same way as the plantar flexors and dorsiflexors, contributing to the generation and actions associated with force.[19]

 

Ears

 

Anatomy of mammalian ear

 

A Holland Lop resting with one ear up and one ear down. Some rabbits can adjust their ears to hear distant sounds.

Within the order lagomorphs, the ears are used to detect and avoid predators. In the family Leporidae, the ears are typically longer than they are wide. For example, in black tailed jack rabbits, their long ears cover a greater surface area relative to their body size that allow them to detect predators from far away. In contrast with cottontail rabbits, their ears are smaller and shorter, requiring that predators be closer before they can detect them and flee. Evolution has favored rabbits having shorter ears, so the larger surface area does not cause them to lose heat in more temperate regions. The opposite can be seen in rabbits that live in hotter climates; possessing longer ears with a larger surface area helps with dispersion of heat. Since sound travels less well in arid as opposed to cooler air, longer ears may aid the organism in detecting predators sooner rather than later, in warmer temperatures.[20][page needed] Rabbits are characterized by shorter ears than hares.[21][page needed] Rabbits' ears are an important structure to aid thermoregulation as well as in detecting predators due to the way the outer, middle, and inner ear muscles coordinate with one another. The ear muscles also aid in maintaining balance and movement when fleeing predators.[22]

 

Outer ear

The auricle, also known as the pinna, is a rabbit's outer ear.[23] The rabbit's pinnae represent a fair part of the body surface area. It is theorized that the ears aid in dispersion of heat at temperatures above 30 °C (86 °F), with rabbits in warmer climates having longer pinnae due to this. Another theory is that the ears function as shock absorbers that could aid and stabilize rabbits' vision when fleeing predators, but this has typically only been seen in hares.[24][page needed] The rest of the outer ear has bent canals that lead to the eardrum or tympanic membrane.[25]

 

Middle ear

The middle ear, separated by the outer eardrum in the back of the rabbit's skull, contains three bones: the hammer, anvil, and stirrup, collectively called ossicles, which act to decrease sound before it hits the inner ear; in general, the ossicles act as a barrier to the inner ear for sound energy.[25]

 

Inner ear

Inner ear fluid, called endolymph, receives the sound energy. After receiving the energy. The inner ear comprises two parts: the cochlea that uses sound waves from the ossicles, and the vestibular apparatus that manages the rabbit's position in regard to movement. Within the cochlea a basilar membrane contains sensory hair structures that send nerve signals to the brain, allowing it to recognize different sound frequencies. Within the vestibular apparatus three semicircular canals help detect angular motion.[25]

 

Dewlaps

 

A palomino rabbit displaying her dewlap beside a month-old kit

A dewlap is a longitudinal flap of skin or similar flesh that hangs beneath the lower jaw or neck. It is a secondary sex characteristic in rabbits, caused by the presence of female sex hormones. They develop with puberty. A female rabbit who has been neutered before reaching sexual maturity will not develop a dewlap, and even if a doe is neutered after developing a dewlap, the dewlap will gradually disappear over several months. This also aligns with the results of injecting male rabbits with female sex hormones, specifically the ones from pregnant women's urine. The male rabbits developed dewlaps, which then gradually disappeared once administration had ceased.[26] (This is not the process of the rabbit test, a common way to test for human female pregnancy in the 20th century; the pregnancy test involved dissecting female rabbits after injection with urine to see if their ovaries had enlarged.)[27] While it is unclear exactly what function a dewlap performs, pregnant female rabbits will pluck fur from their dewlaps shortly before giving birth to line a nest for their young.[28]

 

Thermoregulation

 

The blood flow through the rabbit's large ears help with thermoregulation.

Thermoregulation is the process that an organism uses to maintain an optimal body temperature independent of external conditions.[29] This process is carried out by the pinnae, which takes up most of the rabbit's body surface and contain a vascular network and arteriovenous shunts.[30] In a rabbit, the optimal body temperature is around 38.5–40.0 °C (101.3–104.0 °F).[31] If their body temperature exceeds or does not meet this optimal temperature, the rabbit must return to homeostasis. Homeostasis of body temperature is maintained by the use of their large, highly vascularized ears that are able to change the amount of blood flow that passes through the ears.

 

Respiratory system

 

Ventral view of dissected rabbit lungs with key structures labeled.

The rabbit's nasal cavity lies dorsal to the oral cavity, and the two compartments are separated by the hard and soft palate.[32] The nasal cavity itself is separated into a left and right side by a cartilage barrier, and it is covered in fine hairs that trap dust before it can enter the respiratory tract.[32][33][page needed] As the rabbit breathes, air flows in through the nostrils along the alar folds. From there, the air moves into the nasal cavity, also known as the nasopharynx, down through the trachea, through the larynx, and into the lungs.[33][page needed][34] The larynx functions as the rabbit's voice box, which enables it to produce a wide variety of sounds.[33][page needed] The trachea is a long tube embedded with cartilaginous rings that prevent the tube from collapsing as air moves in and out of the lungs. The trachea then splits into a left and right bronchus, which meet the lungs at a structure called the hilum. From there, the bronchi split into progressively more narrow and numerous branches. The bronchi branch into bronchioles, into respiratory bronchioles, and ultimately terminate at the alveolar ducts. The branching that is typically found in rabbit lungs is a clear example of monopodial branching, in which smaller branches divide out laterally from a larger central branch.[35]

 

The structure of the rabbit's nasal and oral cavities necessitates breathing through the nose. This is due to the fact that the epiglottis is fixed to the backmost portion of the soft palate.[34] Within the oral cavity, a layer of tissue sits over the opening of the glottis, which blocks airflow from the oral cavity to the trachea.[32] The epiglottis functions to prevent the rabbit from aspirating on its food. Further, the presence of a soft and hard palate allow the rabbit to breathe through its nose while it feeds.[33][page needed]

  

Monopodial branching as seen in dissected rabbit lungs.

Rabbits' lungs are divided into four lobes: the cranial, middle, caudal, and accessory lobes. The right lung is made up of all four lobes, while the left lung only has two: the cranial and caudal lobes.[35] To provide space for the heart, the left cranial lobe of the lungs is significantly smaller than that of the right.[32] The diaphragm is a muscular structure that lies caudal to the lungs and contracts to facilitate respiration.[32][34]

  

Digestion

 

This section needs additional citations for verification. Please help improve this article by adding citations to reliable sources in this section. Unsourced material may be challenged and removed. (October 2022) (Learn how and when to remove this template message)

Rabbits are herbivores that feed by grazing on grass and other leafy plants. Consequently, their diet contains large amounts of cellulose, which is hard to digest. Rabbits solve this problem via a form of hindgut fermentation. They pass two distinct types of feces: hard droppings and soft black viscous pellets, the latter of which are known as cecotropes or "night droppings"[36] and are immediately eaten (a behaviour known as cecotrophy ). Rabbits reingest their own droppings (rather than chewing the cud as do cows and numerous other herbivores) to digest their food further and extract sufficient nutrients.[37]

 

Rabbits graze heavily and rapidly for roughly the first half-hour of a grazing period (usually in the late afternoon), followed by about half an hour of more selective feeding.[38] In this time, the rabbit will also excrete many hard fecal pellets, being waste pellets that will not be reingested. If the environment is relatively non-threatening, the rabbit will remain outdoors for many hours, grazing at intervals. The rabbit will reingest its soft, partially digested pellets in a process known as cecotrophy; this is rarely observed, since the pellets are reingested as they are produced.[39]

 

Hard pellets are made up of hay-like fragments of plant cuticle and stalk, being the final waste product after redigestion of soft pellets. These are only released outside the burrow or form and are not reingested. Soft pellets are usually produced several hours after grazing, after the hard pellets have all been excreted. They are made up of micro-organisms and undigested plant cell walls, among other necessary nutrients.[39]

 

Rabbits are hindgut digesters. This means that most of their digestion takes place in their large intestine and cecum. In rabbits, the cecum is about 10 times bigger than the stomach and it along with the large intestine makes up roughly 40% of the rabbit's digestive tract.[40] The unique musculature of the cecum allows the intestinal tract of the rabbit to separate fibrous material from more digestible material; the fibrous material is passed as feces, while the more nutritious material is encased in a mucous lining as a cecotrope. Cecotropes, sometimes called "night feces", are high in minerals, vitamins and proteins that are necessary to the rabbit's health. Rabbits eat these to meet their nutritional requirements; the mucous coating allows the nutrients to pass through the acidic stomach for digestion in the intestines. This process allows rabbits to extract the necessary nutrients from their food.[41]

 

The chewed plant material collects in the large cecum, a secondary chamber between the large and small intestine containing large quantities of symbiotic bacteria that help with the digestion of cellulose and also produce certain B vitamins. The pellets are about 56% bacteria by dry weight, largely accounting for the pellets being 24.4% protein on average. The soft feces form here and contain up to five times the vitamins of hard feces. After being excreted, they are eaten whole by the rabbit and redigested in a special part of the stomach. The pellets remain intact for up to six hours in the stomach; the bacteria within continue to digest the plant carbohydrates. This double-digestion process enables rabbits to use nutrients that they may have missed during the first passage through the gut, as well as the nutrients formed by the microbial activity and thus ensures that maximum nutrition is derived from the food they eat.[12] This process serves the same purpose in the rabbit as rumination does in cattle and sheep.[42]

  

Dissected image of the male rabbit reproductive system with key structures labeled

Because rabbits cannot vomit,[43] if buildup occurs within the intestines (due often to a diet with insufficient fibre),[44] intestinal blockage can occur.[45]

 

Reproduction

 

Diagram of the male rabbit reproductive system with main components labeled

The adult male reproductive system forms the same as most mammals with the seminiferous tubular compartment containing the Sertoli cells and an adluminal compartment that contains the Leydig cells.[46] The Leydig cells produce testosterone, which maintains libido[46] and creates secondary sex characteristics such as the genital tubercle and penis. The Sertoli cells triggers the production of Anti-Müllerian duct hormone, which absorbs the Müllerian duct. In an adult male rabbit, the sheath of the penis is cylinder-like and can be extruded as early as two months of age.[47] The scrotal sacs lay lateral to the penis and contain epididymal fat pads which protect the testes. Between 10 and 14 weeks, the testes descend and are able to retract into the pelvic cavity to thermoregulate.[47] Furthermore, the secondary sex characteristics, such as the testes, are complex and secrete many compounds. These compounds include fructose, citric acid, minerals, and a uniquely high amount of catalase.[46]

  

Diagram of the female rabbit reproductive system with main components labeled.

The adult female reproductive tract is bipartite, which prevents an embryo from translocating between uteri.[48] The two uterine horns communicate to two cervixes and forms one vaginal canal. Along with being bipartite, the female rabbit does not go through an estrus cycle, which causes mating induced ovulation.[47]

 

The average female rabbit becomes sexually mature at three to eight months of age and can conceive at any time of the year for the duration of her life. Egg and sperm production can begin to decline after three years.[46] During mating, the male rabbit will mount the female rabbit from behind and insert his penis into the female and make rapid pelvic hip thrusts. The encounter lasts only 20–40 seconds and after, the male will throw himself backwards off the female.[49]

 

The rabbit gestation period is short and ranges from 28 to 36 days with an average period of 31 days. A longer gestation period will generally yield a smaller litter while shorter gestation periods will give birth to a larger litter. The size of a single litter can range from four to 12 kits allowing a female to deliver up to 60 new kits a year. After birth, the female can become pregnant again as early as the next day.[47]

 

After mating, in some species, hormonal changes will cause the doe to begin to dig a burrow for her nest about a week before giving birth. Between three days and a few hours before giving birth another series of hormonal changes will cause her to prepare the nest structure. The doe will first gather grass for a structure, and an elevation in prolactin shortly before birth will cause her fur to shed that the doe will then use to line the nest, providing insulation for the newborn kits.[50]

 

The mortality rates of embryos are high in rabbits and can be due to infection, trauma, poor nutrition and environmental stress so a high fertility rate is necessary to counter this.

 

Sleep

Further information: Sleep (non-human)

Rabbits may appear to be crepuscular, but their natural inclination is toward nocturnal activity. In 2011, the average sleep time of a rabbit in captivity was calculated at 8.4 hours per day. As with other prey animals, rabbits often sleep with their eyes open, so that sudden movements will awaken the rabbit to respond to potential danger.

  

Diseases and immunity

See also: Category:Rabbit diseases

In addition to being at risk of disease from common pathogens such as Bordetella bronchiseptica and Escherichia coli, rabbits can contract the virulent, species-specific viruses RHD ("rabbit hemorrhagic disease", a form of calicivirus) or myxomatosis. Among the parasites that infect rabbits are tapeworms (such as Taenia serialis), external parasites (including fleas and mites), coccidia species, and Toxoplasma gondii. Domesticated rabbits with a diet lacking in high fiber sources, such as hay and grass, are susceptible to potentially lethal gastrointestinal stasis. Rabbits and hares are almost never found to be infected with rabies and have not been known to transmit rabies to humans.

 

Encephalitozoon cuniculi, a microsporidial parasite, is capable of infecting many mammals, including rabbits.

 

Rabbit immunity has significantly diverged from other tetrapods in the manner it employs immunoglobulin light chains. In one case McCartney-Francis et al., 1984 discover a unique additional disulfide bond between Cys 80 in Vκ and Cys 171 in Cκ. They suggest that this may serve to stabilise rabbit antibodies. Meanwhile IGKC1 shows high amino acid divergence between domesticated types and ferals derived from them.[61] This can be as high as 40%.

 

Rabbit hemorrhagic disease (RHD) is caused by strains of rabbit hemorrhagic disease virus (RHDV) including type 2 (RHDV2). RHDV2 was detected for the first time in Washington state, US in May 2022 and then in August once in Washington and twice in Oregon. Since then, it has spread to many states in the US.

 

Ecology

Rabbits are prey animals and are therefore constantly aware of their surroundings. For instance, in Mediterranean Europe, rabbits are the main prey of red foxes, badgers, and Iberian lynxes. If confronted by a potential threat, a rabbit may freeze and observe then warn others in the warren with powerful thumps on the ground. Rabbits have a remarkably wide field of vision, and a good deal of it is devoted to overhead scanning. The doe (mother) is aware that she gives off scent which can attract predators, so she will stay away from the nest to avoid putting the kits (babies) in danger, returning the nest only a few times a day to feed the kits.

 

Rabbits survive predation by burrowing (some species), hopping away in a zig-zag motion, and, if captured, delivering powerful kicks with their hind legs. Their strong teeth allow them to bite to escape a struggle. The longest-lived rabbit on record, a domesticated European rabbit living in Tasmania, died at age 18. The lifespan of wild rabbits is much shorter; the average longevity of an eastern cottontail, for instance, is less than one year.

 

Habitat and range

Rabbit habitats include meadows, woods, forests, grasslands, deserts and wetlands. While some rabbits live solitary lives, others live in groups, and the best known species, the European rabbit, lives in burrows, or rabbit holes. A group of burrows is called a warren.

 

More than half the world's rabbit population resides in North America. They are also native to southwestern Europe, Southeast Asia, Sumatra, some islands of Japan, and in parts of Africa and South America. They are not naturally found in most of Eurasia, where a number of species of hares are present. Rabbits first entered South America relatively recently, as part of the Great American Interchange. Much of the continent has just one species of rabbit, the tapeti, while most of South America's Southern Cone is without rabbits.

 

The European rabbit has been introduced to many places around the world. A recent study found that "the (so-called) Chinese rabbits were introduced from Europe. Genetic diversity in Chinese rabbits was very low."

 

Rabbits have been launched into space orbit.

 

Environmental problems

Rabbits have been a source of environmental problems when introduced into the wild by humans. As a result of their appetites, and the rate at which they breed, feral rabbit depredation can be problematic for agriculture. Gassing (fumigation of warrens), barriers (fences), shooting, snaring, and ferreting have been used to control rabbit populations, but the most effective measures are diseases such as myxomatosis (myxo or mixi, colloquially) and calicivirus. In Europe, where rabbits are farmed on a large scale, they are protected against myxomatosis and calicivirus with a genetically modified virus. The virus was developed in Spain, and is beneficial to rabbit farmers. If it were to make its way into wild populations in areas such as Australia, it could create a population boom, as those diseases are the most serious threats to rabbit survival. Rabbits in Australia and New Zealand are considered to be such a pest that land owners are legally obliged to control them.

 

Rabbits are known to be able to catch fire and spread wildfires, but the efficiency and relevance of this method has been doubted by forest experts who contend that a rabbit on fire could move some meters. Knowledge on fire-spreading rabbits is based on anecdotes as there is no known scientific investigation on the subject.

 

As food and clothingIn some areas, wild rabbits and hares are hunted for their meat, a lean source of high quality protein. In the wild, such hunting is accomplished with the aid of trained falcons, ferrets, or dogs, as well as with snares or other traps, and rifles. A caught rabbit may be dispatched with a sharp blow to the back of its head, a practice from which the term rabbit punch is derived.

 

Wild leporids comprise a small portion of global rabbit-meat consumption. Domesticated descendants of the European rabbit (Oryctolagus cuniculus) that are bred and kept as livestock (a practice called cuniculture) account for the estimated 200 million tons of rabbit meat produced annually. Approximately 1.2 billion rabbits are slaughtered each year for meat worldwide. In 1994, the countries with the highest consumption per capita of rabbit meat were Malta with 8.89 kg (19.6 lb), Italy with 5.71 kg (12.6 lb), and Cyprus with 4.37 kg (9.6 lb), falling to 0.03 kg (0.07 lb) in Japan. The figure for the United States was 0.14 kg (0.31 lb) per capita. The largest producers of rabbit meat in 1994 were China, Russia, Italy, France, and Spain. Rabbit meat was once a common commodity in Sydney, but declined after the myxomatosis virus was intentionally introduced to control the exploding population of feral rabbits in the area.

 

In the United Kingdom, fresh rabbit is sold in butcher shops and markets, and some supermarkets sell frozen rabbit meat. At farmers markets there, including the famous Borough Market in London, rabbit carcasses are sometimes displayed hanging, unbutchered (in the traditional style), next to braces of pheasant or other small game. Rabbit meat is a feature of Moroccan cuisine, where it is cooked in a tajine with "raisins and grilled almonds added a few minutes before serving". In China, rabbit meat is particularly popular in Sichuan cuisine, with its stewed rabbit, spicy diced rabbit, BBQ-style rabbit, and even spicy rabbit heads, which have been compared to spicy duck neck. Rabbit meat is comparatively unpopular elsewhere in the Asia-Pacific.

 

An extremely rare infection associated with rabbits-as-food is tularemia (also known as rabbit fever), which may be contracted from an infected rabbit. Hunters are at higher risk for tularemia because of the potential for inhaling the bacteria during the skinning process.

 

In addition to their meat, rabbits are used for their wool, fur, and pelts, as well as their nitrogen-rich manure and their high-protein milk. Production industries have developed domesticated rabbit breeds (such as the well-known Angora rabbit) to efficiently fill these needs.

  

Behaviors

Binkies in rabbits are characterized by a sudden kick with their hind legs, shaking their head sideways (usually mid-air), and running around rapidly; usually called zooming. Another term is half binky, which is characterized by a shorter span sharp flick of its head, both types of binkies indicate happiness or excitement. All of which typically only last for around a second. A rabbit might do quick rapid multiple binkies in one session. It's thought to be a practice run in case they need to escape from danger Such behavior commonly occurs in domesticated rabbits living in a comfortable environment, e.g. in home.

 

Rabbits mostly use full-body actions, like flopping to communicate emotion to other rabbits and humans. Rabbit displaying flopping in front of other rabbits can be meant as a non-aggressive insult. Rabbits commonly smell the ground first, then tilt their head to the side with a subtle jerky movement in order to lie down to its side, which exposes their belly.

 

They may thump their hind feet on the ground to signal other rabbits that they're feeling threatened or that potential dangers are near their territory. Some domesticated rabbits might thump to get their owner's attention. Not all rabbits thump.

 

Both sexes of rabbits often rub their chin to objects or people with their scent gland located under the chin. This is the rabbit's way of marking their territory or possessions for other rabbits to recognize by depositing scent gland secretions, similar to what cats and dogs do. It might also serve as a reminder for the rabbit to return and investigate the object later, helping them navigate in the dark and to help them in their recollection of where they have been. Rabbits who have bonded will respect each other's smell that indicates territorial border.

 

In art, literature, and culture

Rabbits are often used as a symbol of fertility or rebirth, and have long been associated with spring and Easter as the Easter Bunny. The species' role as a prey animal with few defenses evokes vulnerability and innocence, and in folklore and modern children's stories, rabbits often appear as sympathetic characters, able to connect easily with youth of all kinds (for example, the Velveteen Rabbit, or Thumper in Bambi).

 

With its reputation as a prolific breeder, the rabbit juxtaposes sexuality with innocence, as in the Playboy Bunny. The rabbit (as a swift prey animal) is also known for its speed, agility, and endurance, symbolized (for example) by the marketing icons the Energizer Bunny and the Duracell Bunny.

 

Folklore

Main article: List of fictional hares and rabbits

The rabbit often appears in folklore as the trickster archetype, as he uses his cunning to outwit his enemies.

 

In Aztec mythology, a pantheon of four hundred rabbit gods known as Centzon Totochtin, led by Ometochtli or Two Rabbit, represented fertility, parties, and drunkenness.

In Central Africa, the common hare (Kalulu), is "inevitably described" as a trickster figure.

In Chinese folklore, rabbits accompany Chang'e on the Moon. In the Chinese New Year, the zodiacal rabbit is one of the twelve celestial animals in the Chinese zodiac. Note that the Vietnamese zodiac includes a zodiacal cat in place of the rabbit, possibly because rabbits did not inhabit Vietnam. The most common explanation is that the ancient Vietnamese word for "rabbit" (mao) sounds like the Chinese word for "cat" (卯, mao).

In Japanese tradition, rabbits live on the Moon where they make mochi, the popular snack of mashed sticky rice. This comes from interpreting the pattern of dark patches on the moon as a rabbit standing on tiptoes on the left pounding on an usu, a Japanese mortar.

In Jewish folklore, rabbits (shfanim שפנים) are associated with cowardice, a usage still current in contemporary Israeli spoken Hebrew (similar to the English colloquial use of "chicken" to denote cowardice).

In Korean mythology, as in Japanese, rabbits live on the moon making rice cakes ("Tteok" in Korean).

In Anishinaabe traditional beliefs, held by the Ojibwe and some other Native American peoples, Nanabozho, or Great Rabbit, is an important deity related to the creation of the world.

A Vietnamese mythological story portrays the rabbit of innocence and youthfulness. The gods of the myth are shown to be hunting and killing rabbits to show off their power.

Buddhism, Christianity, and Judaism have associations with an ancient circular motif called the three rabbits (or "three hares"). Its meaning ranges from "peace and tranquility", to purity or the Holy Trinity, to Kabbalistic levels of the soul or to the Jewish diaspora. The tripartite symbol also appears in heraldry and even tattoos.

The rabbit as trickster is a part of American popular culture, as Br'er Rabbit (from African-American folktales and, later, Disney animation) and Bugs Bunny (the cartoon character from Warner Bros.), for example.

 

Anthropomorphized rabbits have appeared in film and literature, in Alice's Adventures in Wonderland (the White Rabbit and the March Hare characters), in Watership Down (including the film and television adaptations), in Rabbit Hill (by Robert Lawson), and in the Peter Rabbit stories (by Beatrix Potter). In the 1920s Oswald the Lucky Rabbit was a popular cartoon character.

 

A rabbit's foot may be carried as an amulet, believed to bring protection and good luck. This belief is found in many parts of the world, with the earliest use being recorded in Europe c. 600 BC.

 

On the Isle of Portland in Dorset, UK, the rabbit is said to be unlucky and even speaking the creature's name can cause upset among older island residents. This is thought to date back to early times in the local quarrying industry where (to save space) extracted stones that were not fit for sale were set aside in what became tall, unstable walls. The local rabbits' tendency to burrow there would weaken the walls and their collapse resulted in injuries or even death. Thus, invoking the name of the culprit became an unlucky act to be avoided. In the local culture to this day, the rabbit (when he has to be referred to) may instead be called a "long ears" or "underground mutton", so as not to risk bringing a downfall upon oneself.

 

In other parts of Britain and in North America, invoking the rabbit's name may instead bring good luck. "Rabbit rabbit rabbit" is one variant of an apotropaic or talismanic superstition that involves saying or repeating the word "rabbit" (or "rabbits" or "white rabbits" or some combination thereof) out loud upon waking on the first day of each month, because doing so will ensure good fortune for the duration of that month.

 

The "rabbit test" is a term, first used in 1949, for the Friedman test, an early diagnostic tool for detecting a pregnancy in humans. It is a common misconception (or perhaps an urban legend) that the test-rabbit would die if the woman was pregnant. This led to the phrase "the rabbit died" becoming a euphemism for a positive pregnancy test.

  

A camel is an even-toed ungulate within the genus Camelus, bearing distinctive fatty deposits known as "humps" on its back. The two surviving species of camel are the dromedary, or one-humped camel (C. dromedarius), which inhabits the Middle East and the Horn of Africa; and the bactrian, or two-humped camel (C. bactrianus), which inhabits Central Asia. Both species have been domesticated; they provide milk, meat, hair for textiles or goods such as felted pouches, and are working animals with tasks ranging from human transport to bearing loads.

 

The term "camel" is derived via Latin and Greek (camelus and κάμηλος kamēlos respectively) from Hebrew or Phoenician gāmāl.

 

"Camel" is also used more broadly to describe any of the six camel-like mammals in the family Camelidae: the two true camels and the four New World camelids: the llama, alpaca, guanaco, and vicuña of South America.

 

BIOLOGY

The average life expectancy of a camel is 40 to 50 years. A full-grown adult camel stands 1.85 m at the shoulder and 2.15 m at the hump. Camels can run at up to 65 km/h in short bursts and sustain speeds of up to 40 km/h. Bactrian camels weigh 300 to 1,000 kg and dromedaries 300 to 600 kg.

 

The male dromedary camel has in its throat an organ called a dulla, a large, inflatable sac he extrudes from his mouth when in rut to assert dominance and attract females. It resembles a long, swollen, pink tongue hanging out of the side of its mouth. Camels mate by having both male and female sitting on the ground, with the male mounting from behind. The male usually ejaculates three or four times within a single mating session. Camelids are the only ungulates to mate in a sitting position.

 

ECOLOGICAL AND BEHAVIORAL ADAPTIONS

Camels do not directly store water in their humps as was once commonly believed. The humps are actually reservoirs of fatty tissue: concentrating body fat in their humps minimizes the insulating effect fat would have if distributed over the rest of their bodies, helping camels survive in hot climates. When this tissue is metabolized, it yields more than one gram of water for every gram of fat processed. This fat metabolization, while releasing energy, causes water to evaporate from the lungs during respiration (as oxygen is required for the metabolic process): overall, there is a net decrease in water.

 

Camels have a series of physiological adaptations that allow them to withstand long periods of time without any external source of water. Unlike other mammals, their red blood cells are oval rather than circular in shape. This facilitates the flow of red blood cells during dehydration and makes them better at withstanding high osmotic variation without rupturing when drinking large amounts of water: a 600 kg camel can drink 200 L of water in three minutes.

 

Camels are able to withstand changes in body temperature and water consumption that would kill most other animals. Their temperature ranges from 34 °C at dawn and steadily increases to 40 °C by sunset, before they cool off at night again. Maintaining the brain temperature within certain limits is critical for animals; to assist this, camels have a rete mirabile, a complex of arteries and veins lying very close to each other which utilizes countercurrent blood flow to cool blood flowing to the brain. Camels rarely sweat, even when ambient temperatures reach 49 °C Any sweat that does occur evaporates at the skin level rather than at the surface of their coat; the heat of vaporization therefore comes from body heat rather than ambient heat. Camels can withstand losing 25% of their body weight to sweating, whereas most other mammals can withstand only about 12–14% dehydration before cardiac failure results from circulatory disturbance.

 

When the camel exhales, water vapor becomes trapped in their nostrils and is reabsorbed into the body as a means to conserve water. Camels eating green herbage can ingest sufficient moisture in milder conditions to maintain their bodies' hydrated state without the need for drinking.

 

The camels' thick coats insulate them from the intense heat radiated from desert sand; a shorn camel must sweat 50% more to avoid overheating. During the summer the coat becomes lighter in color, reflecting light as well as helping avoid sunburn. The camel's long legs help by keeping its body farther from the ground, which can heat up to 70 °C. Dromedaries have a pad of thick tissue over the sternum called the pedestal. When the animal lies down in a sternal recumbent position, the pedestal raises the body from the hot surface and allows cooling air to pass under the body.

 

Camels' mouths have a thick leathery lining, allowing them to chew thorny desert plants. Long eyelashes and ear hairs, together with nostrils that can close, form a barrier against sand. If sand gets lodged in their eyes, they can dislodge it using their transparent third eyelid. The camels' gait and widened feet help them move without sinking into the sand.

 

The kidneys and intestines of a camel are very efficient at reabsorbing water. Camel urine comes out as a thick syrup, and camel feces are so dry that they do not require drying when the Bedouins use them to fuel fires.

 

Camels' immune system differs from those of other mammals. Normally, the Y-shaped antibody molecules consist of two heavy (or long) chains along the length of the Y, and two light (or short) chains at each tip of the Y. Camels, in addition to these, also have antibodies made of only two heavy chains, a trait that makes them smaller and more durable. These "heavy-chain-only" antibodies, discovered in 1993, are thought to have developed 50 million years ago, after camelids split from ruminants and pigs.

 

GENETICS

The karyotypes of different camelid species have been studied earlier by many groups, but no agreement on chromosome nomenclature of camelids has been reached. A 2007 study flow sorted camel chromosomes, building on the fact that camels have 37 pairs of chromosomes (2n=74), and found that the karyotime consisted of one metacentric, three submetacentric, and 32 acrocentric autosomes. The Y is a small metacentric chromosome, while the X is a large metacentric chromosome.The hybrid camel, a hybrid between Bactrian and dromedary camels, has one hump, though it has an indentation 4–12 cm deep that divides the front from the back. The hybrid is 2.15 m at the shoulder and 2.32 m tall at the hump. It weighs an average of 650 kg and can carry around 400 to 450 kg, which is more than either the dromedary or Bactrian can. According to molecular data, the New World and Old World camelids diverged 11 million years ago. In spite of this, these species can still hybridize and produce fertile offspring. The cama is a camel–llama hybrid bred by scientists who wanted to see how closely related the parent species were. Scientists collected semen from a camel via an artificial vagina and inseminated a llama after stimulating ovulation with gonadotrophin injections. The cama has ears halfway between the length of camel and llama ears, no hump, longer legs than the llama, and partially cloven hooves. According to cama breeder Lulu Skidmore, cama have "the fleece of the llamas" and "the strength and patience of the camel". Like the mule, camas are sterile, despite both parents having the same number of chromosomes.

 

EVOLUTION

The earliest known camel, called Protylopus, lived in North America 40 to 50 million years ago (during the Eocene). It was about the size of a rabbit and lived in the open woodlands of what is now South Dakota. By 35 million years ago, the Poebrotherium was the size of a goat and had many more traits similar to camels and llamas. The hoofed Stenomylus, which walked on the tips of its toes, also existed around this time, and the long-necked Aepycamelus evolved in the Miocene.

 

The direct ancestor of all modern camels, Procamelus, existed in the upper Miocone and lower Pliocene. Around 3–5 million years ago, the North American Camelidae spread to South America via the Isthmus of Panama, where they gave rise to guanacos and related animals, and to Asia via the Bering land bridge. Surprising finds of fossil Paracamelus on Ellesmere Island beginning in 2006 in the high Canadian Arctic indicate the dromedary is descended from a larger, boreal browser whose hump may have evolved as an adaptation in a cold climate. This creature is estimated to have stood around nine feet tall.

 

The last camel native to North America was Camelops hesternus, which vanished along with horses, short-faced bears, mammoths and mastodons, ground sloths, sabertooth cats, and many other megafauna, coinciding with the migration of humans from Asia.

 

DOMESTICATION

Most camels surviving today are domesticated. Along with many other megafauna in North America, the original wild camels were wiped out during the spread of Native Americans from Asia into North America, 12,000 to 10,000 years ago. The only wild camels left are the Bactrian camels of the Gobi Desert.

 

Like the horse, before their extinction in their native land, camels spread across the Bering land bridge, moving the opposite direction from the Asian immigration to America, to survive in the Old World and eventually be domesticated and spread globally by humans.

 

Dromedaries may have first been domesticated by humans in Somalia and southern Arabia, around 3,000 BC, the Bactrian in central Asia around 2,500 BC, as at Shar-i Sokhta (also known as the Burnt City), Iran.

 

Discussions concerning camel domestication in Mesopotamia are often related to mentions of camels in the Hebrew Bible. The International Standard Bible Encyclopedia: E-J for instance mentions that "In accord with patriarchal traditions, cylinder seals from Middle Bronze Age Mesopotamia showed riders seated upon camels."

 

Martin Heide's 2010 work on the domestication of the camel tentatively concludes that the bactrian camel was domesticated by at least the middle of the third millennium somewhere east of the Zagros Mountains, then moving into Mesopotamia, and suggests that mentions of camels "in the patriarchal narratives may refer, at least in some places, to the Bactrian camel." while noting that the camel is not mentioned in relationship to Canaan.

 

Recent excavations in the Timna Valley by Lidar Sapir-Hen and Erez Ben-Yosef discovered what may be the earliest domestic camel bones found in Israel or even outside the Arabian peninsula, dating to around 930 BCE. This garnered considerable media coverage as it was described as evidence that the stories of Abraham, Joseph, Jacob and Esau were written after this time.

 

The existence of camels in Mesopotamia but not in Israel is not a new idea. According to an article in Time Magazine, the historian Richard Bulliet wrote in his 1975 book "The Camel and the Wheel" that "the occasional mention of camels in patriarchal narratives does not mean that the domestic camels were common in the Holy Land at that period." The archaeologist William F. Albright writing even earlier saw camels in the Bible as an anachronism. The official report by Sapir-Hen and Ben-Joseph notes that "The introduction of the dromedary camel (Camelus dromedarius) as a pack animal to the southern Levant signifies a crucial juncture in the history of the region; it substantially facilitated trade across the vast deserts of Arabia, promoting both economic and social change (e.g., Kohler 1984; Borowski 1998: 112-116; Jasmin 2005). This, together with the depiction of camels in the Patriarchal narrative, has generated extensive discussion regarding the date of the earliest domestic camel in the southern Levant (and beyond) (e.g., Albright 1949: 207; Epstein 1971: 558-584; Bulliet 1975; Zarins 1989; Köhler-Rollefson 1993; Uerpmann and Uerpmann 2002; Jasmin 2005; 2006; Heide 2010; Rosen and Saidel 2010; Grigson 2012). Most scholars today agree that the dromedary was exploited as a pack animal sometime in the early Iron Age (not before the 12th century BCE)" and concludes that "Current data from copper smelting sites of the Aravah Valley enable us to pinpoint the introduction of domestic camels to the southern Levant more precisely based on stratigraphic contexts associated with an extensive suite of radiocarbon dates. The data indicate that this event occurred not earlier than the last third of the 10th century BCE and most probably during this time. The coincidence of this event with a major reorganization of the copper industry of the region - attributed to the results of the campaign of Pharaoh Shoshenq I - raises the possibility that the two were connected, and that camels were introduced as part of the efforts to improve efficiency by facilitating trade."

 

MILITARY USES

By at least 1200 BC, the first camel saddles had appeared, and Bactrian camels could be ridden. The first saddle was positioned to the back of the camel, and control of the Bactrian camel was exercised by means of a stick. However, between 500–100 BC, Bactrian camels attained military use. New saddles, which were inflexible and bent, were put over the humps and divided the rider's weight over the animal. In the seventh century BC, the military Arabian saddle appeared, which improved the saddle design again slightly.

 

Camel cavalries have been used in wars throughout Africa, the Middle East, and into modern-day Border Security Force of India (though as of July 2012, the BSF has planned the replacement of camels with ATVs). The first use of camel cavalries was in the Battle of Qarqar in 853 BC. Armies have also used camels as freight animals instead of horses and mules.

In the East Roman Empire, the Romans used auxiliary forces known as dromedarii, whom they recruited in desert provinces. The camels were used mostly in combat because of their ability to scare off horses at close ranges (horses are afraid of the camels' scent), a quality famously employed by the Achaemenid Persians when fighting Lydia in the Battle of Thymbra.

 

19th and 20th CENTURIES

The United States Army established the U.S. Camel Corps, which was stationed in California in the late 19th century. One may still see stables at the Benicia Arsenal in Benicia, California, where they nowadays serve as the Benicia Historical Museum. Though the experimental use of camels was seen as a success (John B. Floyd, Secretary of War in 1858, recommended that funds be allocated towards obtaining a thousand more camels), the outbreak of the American Civil War saw the end of the Camel Corps: Texas became part of the Confederacy, and most of the camels were left to wander away into the desert.

 

France created a méhariste camel corps in 1912 as part of the Armée d'Afrique in the Sahara in order to exercise greater control over the camel-riding Tuareg and Arab insurgents, as previous efforts to defeat them on foot had failed. The camel-mounted units remained in service until the end of French rule over Algeria in 1962.

 

In 1916, the British created the Imperial Camel Corps. It was originally used to fight the Senussi, but was later used in the Sinai and Palestine Campaign in World War I. The Imperial Camel Corps comprised infantrymen mounted on camels for movement across desert, though they dismounted at battle sites and fought on foot. After July 1918, the Corps began to become run down, receiving no new reinforcements, and was formally disbanded in 1919.

 

In World War I, the British Army also created the Egyptian Camel Transport Corps, which consisted of a group of Egyptian camel drivers and their camels. The Corps supported British war operations in Sinai, Palestine, and Syria by transporting supplies to the troops.

 

The Somaliland Camel Corps was created by colonial authorities in British Somaliland in 1912; it was disbanded in 1944.

 

Bactrian camels were used by Romanian forces during World War II in the Caucasian region.

 

The Bikaner Camel Corps of British India fought alongside the British Indian Army in World Wars I and II.

 

The Tropas Nómadas (Nomad Troops) were an auxiliary regiment of Sahrawi tribesmen serving in the colonial army in Spanish Sahara (today Western Sahara). Operational from the 1930s until the end of the Spanish presence in the territory in 1975, the Tropas Nómadas were equipped with small arms and led by Spanish officers. The unit guarded outposts and sometimes conducted patrols on camelback.

 

FOOD USES

DAIRY

Camel milk is a staple food of desert nomad tribes and is sometimes considered a meal in and of itself; a nomad can live on only camel milk for almost a month. Camel milk is rich in vitamins, minerals, proteins, and immunoglobulins; compared to cow's milk, it is lower in fat and lactose, and higher in potassium, iron, and vitamin C. Bedouins believe the curative powers of camel milk are enhanced if the camel's diet consists of certain desert plants. Camel milk can readily be made into a drinkable yogurt, as well as butter or cheese, though the yields for cheese tend to be low.

 

Camel milk cannot be made into butter by the traditional churning method. It can be made if it is soured first, churned, and a clarifying agent is then added. Until recently, camel milk could not be made into camel cheese because rennet was unable to coagulate the milk proteins to allow the collection of curds. Developing less wasteful uses of the milk, the FAO commissioned Professor J.P. Ramet of the École Nationale Supérieure d'Agronomie et des Industries Alimentaires, who was able to produce curdling by the addition of calcium phosphate and vegetable rennet. The cheese produced from this process has low levels of cholesterol and is easy to digest, even for the lactose intolerant. The sale of camel cheese is limited owing to the small output of the few dairies producing camel cheese and the absence of camel cheese in local (West African) markets. Cheese imports from countries that traditionally breed camels are difficult to obtain due to restrictions on dairy imports from these regions.

 

Additionally, camel milk has been made into ice cream in a Netherlands camel farm.

 

MEAT

A camel carcass can provide a substantial amount of meat. The male dromedary carcass can weigh 300–400 kg, while the carcass of a male Bactrian can weigh up to 650 kg. The carcass of a female dromedary weighs less than the male, ranging between 250 and 350 kg. The brisket, ribs and loin are among the preferred parts, and the hump is considered a delicacy. The hump contains "white and sickly fat", which can be used to make the khli (preserved meat) of mutton, beef, or camel. Camel meat is reported to taste like coarse beef, but older camels can prove to be very tough, although camel meat becomes more tender the more it is cooked. The Abu Dhabi Officers' Club serves a camel burger mixed with beef or lamb fat in order to improve the texture and taste. In Karachi, Pakistan, some restaurants prepare nihari from camel meat. In Syria and Egypt, there are specialist camel butchers.

 

Camel meat has been eaten for centuries. It has been recorded by ancient Greek writers as an available dish at banquets in ancient Persia, usually roasted whole. The ancient Roman emperor Heliogabalus enjoyed camel's heel.[31] Camel meat is still eaten in certain regions, including Eritrea, Somalia, Djibouti, Saudi Arabia, Egypt, Syria, Libya, Sudan, Ethiopia, Kazakhstan, and other arid regions where alternative forms of protein may be limited or where camel meat has had a long cultural history. Camel blood is also consumable, as is the case among pastoralists in northern Kenya, where camel blood is drunk with milk and acts as a key source of iron, vitamin D, salts and minerals. Camel meat is also occasionally found in Australian cuisine: for example, a camel lasagna is available in Alice Springs.

 

A 2005 report issued jointly by the Saudi Ministry of Health and the United States Centers for Disease Control and Prevention details cases of human bubonic plague resulting from the ingestion of raw camel liver.

 

RELIGION

ISLAM

Camel meat is halal for Muslims. However, according to some Islamic schools of thought, a state of impurity is brought on by the consumption of it. Consequently, these schools hold that Muslims must perform wudhu (ablution) before the next time they pray after eating camel meat.

 

Also, some Islamic schools of thought consider it haraam for a Muslim to perform salat in places where camels lie, as it is said to be a dwelling place of shaytan.

 

According to Suni ahadith collected by Bukhari and Muslim, Muhammad ordered a certain group of people to drink camel milk and urine as a medicine. However, according to Abū Ḥanīfa, the drinking of camel urine, while not forbidden (ḥaram), is disliked (makrūh) in Islam.

 

Camel urine is sold as traditional medicine in shops in Saudi Arabia. The Sunni scholar Muhammad Al-Munajjid's IslamQA.info recommends camel urine as beneficial to curing certain diseases and to human health and cited Ahadith and scientific studies as justification. King Abdulaziz University researcher Dr. Faten Abdel-Rajman Khorshid has claimed that cancer and other diseases could be treated with camel urine as recommended by the Prophet. The United Arab Emirates "Arab Science and Technology Foundation" reported that cancer could be treated with camel urine. Camel urine was also prescribed as a treatment by Zaghloul El-Naggar, a religious scholar. Camel urine is the only urine which is permitted to be drunk according to the Hanbali madhhab of Sunni Islam. The World Health Organization said that camel urine consumption may be a factor in the spread of the MERS virus in Saudi Arabia. The Gulf Times writer Ahmad al-Sayyed wrote that various afflictions are dealt with camel urine by people. Dandruff, scalp ailments, hair, sores, and wounds were recommended to be treated with camel urine by Ibn Sina. Arab American University Professor of Cell Biology and Immunology Bashar Saad (PhD) along with Omar Said (PhD) wrote that medicinal use of camel urine is approved of and promoted by Islam since it was recommended by the prophet. A test on mice found that cytotoxic effects similar to cyclophosphamide were induced on bone marrow by camel urine. Besides for consumption as a medicinal drink, camel urine is believed to help treat hair. Bites from insects were warded off with camel urine, which also served as a shampoo. Camel urine is also used to help treat asthma, infections, treat hair, sores, hair growth and boost libido.

 

Several Sunni Ahadith mention drinking camel urine. Some Shia criticized Wahhabis for camel urine treatment. Shia scholars also recommend the medicinal use of camel urine. Shia Hadith on Imam Ja'far al-Sadiq reported that shortness of breath (asthma) was treated with camel urine. Shia Marja Ayatollah Sistani said that for medicinal purposes only, sheep, cow, and camel urine can be drunk.

 

JUDAISM

According to Jewish tradition, camel meat and milk are not kosher. Camels possess only one of the two kosher criteria; although they chew their cud, they do not possess cloven hooves:

 

Nevertheless these shall ye not eat of them that only chew the cud, or of them that only part the hoof: the camel, because he cheweth the cud but parteth not the hoof, he is unclean unto you.

— Leviticus 11:4

 

DISTRIBUTION ANDNUMBERS

There are around 14 million camels alive as of 2010, with 90% being dromedaries. Dromedaries alive today are domesticated animals (mostly living in the Horn of Africa, the Sahel, Maghreb, Middle East and South Asia). The Horn region alone has the largest concentration of camels in the world, where the dromedaries constitute an important part of local nomadic life. They provide nomadic people in Somalia (which has the largest camel herd in the world) and Ethiopia with milk, food, and transportation.

 

The Bactrian camel is, as of 2010, reduced to an estimated 1.4 million animals, most of which are domesticated. The only truly wild Bactrian camels, of which there are less than one thousand, are thought to inhabit the Gobi Desert in China and Mongolia.

 

The largest population of feral camels is in Australia. There are around 700,000 feral dromedary camels in central parts of Australia, descended from those introduced as a method of transport in the 19th and early 20th centuries. This population is growing about 8% per year. Representatives of the Australian government have culled more than 100,000 of the animals in part because the camels use too much of the limited resources needed by sheep farmers.

 

A small population of introduced camels, dromedaries and Bactrians, wandered through Southwest United States after having been imported in the 1800s as part of the U.S. Camel Corps experiment. When the project ended, they were used as draft animals in mines and escaped or were released. Twenty-five U.S. camels were bought and imported to Canada during the Cariboo Gold Rush.

 

WIKIPEDIA

Recording Month Four:

Vital stats

Mother's age: 32

Height: 5'3"

Weight: 135.4 lbs

Body Fat: 31%

Symptoms:

Positive HCG test

Not dizzy anymore

Energetic

Raised body tempurature

My appetite is back

I think I felt a real kick 3 days ago.

Nasal congestion

Round ligament pains

Taking:

Throxine for underactive thyroid

Pre-natal vitamin

Omega-3 Fish Oil

Extra calcium, choline

Precautionary prometrium 200 mg was discontinued after week 12.

Baby's age 17 weeks

Est. due date: June 15, 2008

There couldn't have been a superior name for an organization, Advanced Fertility and Surrogacy Centre Lajpat Nagar the best IVF focus in Delhi that has conveyed a lifetime of happiness to thousands of families over the world.

 

Advanced Fertility and Surrogacy Centre Lajpat Nagar , Latin for bliss, has introduced new period of moderate and successful IVF facility in Delhi, India, rising as the favored goal for patients looking for fertility mind they can trust. A main Government-endorsed IVF focus with 9 best in class focuses crosswise over North India, Advanced Fertility IVF focus consolidates advanced regenerative innovation with world-class clinical skill to bring you tweaked fertility arrangements that work. Every patient who strolls into a Advanced Fertilityoffice is treated with most extreme empathy and regard and gets customized consideration from a devoted group of specialists.

 

Today there are more than 8500 Advanced Fertility babies everywhere throughout the world — a reverberating assertion of unparalleled achievement of Advanced FertilityIVF focus which has presented to us various honors and respects along and uncommon worldwide praise.

 

At Advanced Fertility and Surrogacy Centre Lajpat Nagar, we regard your dream as our own and work energetically to enable you to have a sound child to bring home. We give the best surrogacy administrations and IVF treatment to barren individuals at our IVF center. We are resolved to offer our patients the best IVF treatment at moderate cost.

 

A prepared Obstetrician and Gynecologist with over a time of involvement in IVF barrenness management, Best Infertility Specialist in Delhi Dr. Kaberi Banerjee is famous fruitlessness and IVF authority in Delhi and NCR. Dr. Banerjee is the Medical Director of Advance Fertility and Gynecological Center, New Delhi and has dealt with more than 5000 pregnancy cases up until now. Her skill lies in effectively dealing with confused instances of rehashed IVF disappointments, giver, and surrogacy.

 

A Qualified Professional

 

Dr. Kaberi Banerjee Gynecologist is barrenness and IVF Specialist, prepared from the renowned Guys and St. Thomas Hospital, London, where she went as a Commonwealth researcher and has put in three years in London (UK) doing thorough preparing in the space of barrenness and IVF. She finished her MBBS and MD in Obstetrics and Gynecology from the esteemed All India Institute of Medical Sciences (AIIMS), New Delhi. She has done her participation from the Royal College of Obstetrics and Gynecology (MRCOG), London and is additionally an individual from the National Academy of Medical Sciences (MNAMS). She is effectively engaged with composing articles and sections in the worldwide diaries, logical distributions, and introductions for the IVF site and has been showing at a few International Conferences as a welcomed staff.

 

She has acted as a Senior IVF Specialist in major corporate hospitals in Delhi and is the sorting out administrator of CUPART (Current Practices and Recent Advances in ART), an International association meant to encourage the correct treatment and research in richness and IVF. The establishment was established in the year 2011 by Dr. Kaberi Banerjee.

  

A dynamic member in this field, an enthusiastic author, and an exhaustive expert, Dr. Kaberi Banerjee has gotten numerous eminent national honors, incorporating IMA grant in IVF in 2007 and Bharat Jyoti Award in 2008, for outstanding commitment in prescription and the lofty India Excellence Award in Medicine in 2015.

 

Professional Certifications

 

Royal College of Obstetrics and Gynecologists, London

 

American Society of Reproductive Medicine (Member)

 

National Academy of Medical Sciences (NAMS), India

 

Relationship of Obstericians and Gynecologists of Delhi (AOGD)

 

Alliance of Obsterics and Gynecology Societies of India (FOGSI)

 

Indian Society of Perinatology and Reproductive Biology

 

National Association of Reproductive and Child Health of India

 

AIIMSONIANS (The AIIMS Alma mater)

 

IVF & Infertility Treatment

 

Infertility is characterized as a couple's powerlessness to imagine following one year of unprotected intercourse. Infertility is seen as a social issue in our nation, with different restorative indications.

 

Infertility influences 15% of couples worldwide or one of every six couples all inclusive. As of now, the quantity of fruitless couples stands at 60-80 million, and the number is expanding each year.

 

In India, upwards of 20% of couples look for treatment for this issue. Medicinal purposes behind the inability to imagine could be available in both of the accomplices. In our nation, issues of infertility are seen in 35-40% of men, and an equivalent level of ladies, while, the two accomplices confront the issue in 20-30% of cases.

 

Be that as it may, progresses in restorative science have made it workable for fruitless couples to encounter the delights of parenthood. Since the introduction of Louise Brown on 25th July 1978, more than 3 million unnaturally conceived children have been conceived, illuminating their folks' lives.

 

Infertility influences one of every six couple. There are around 60-80 million barren couples worldwide and the rate is expanding. A few patients precipitously accomplish pregnancy however others at some stage encounter trouble in accomplishing origination and these patients require some sort of help with getting pregnant. There is around 3-5% likelihood of accomplishing pregnancy in one menstrual cycle this is called Fecundability, fertility is the likelihood that a solitary cycle will bring about a live birth. It is evaluated that out 100 couple with female accomplice's age under 35 years, approx 80-85% will accomplish pregnancy inside the principal year of unprotected intercourse, 90% will imagine inside year and a half and around 95% will consider inside two years. The rest of the 5% once in a while accomplish pregnancy without some type of help.

 

Infertility might be characterized as a powerlessness to accomplish pregnancy inside 2 years of having unprotected intercourse, however a few clinicians incline toward this time utmost to be 1year. Ladies who are over 35 years ought to counsel a specialist following a half year of prophylactic free sex when it has not brought about pregnancy. This distinction in as far as possible is attributable to the declining egg quality with expanding age. In a few couples the fertility is hindered to some degree however not totally, these patients may consider in third year or accordingly with no help as there is a postpone these patients are called sub ripe. While, sterility is a flat out condition of failure to imagine.

 

The reason for infertility could be in both of the accomplices (Male factor-35%, Female factor-40%) or in 10-15% the two accomplices might be barren or sub rich. some of the time each could be separately fruitful however as a couple may require help to accomplish pregnancy the causes could be immunological or hereditary, this is called Combined infertility. While in around 10%, the fertility assessment demonstrate no variation from the norm, these patients are probably going to have issues which are not analyzed by current accessible examinations, this is named unexplained infertility.

  

IUI

 

Intrauterine Insemination alludes to the strategy of insemination at the season of ovulation. This aides in expanding the odds of origination far beyond the normal course. It is shown in instances of gentle issues in sperm check/motility, dysovulation, mellow endometriosis, unexplained infertility and in instances of benefactor sperm.

 

IVF

 

In Vitro Fertilization (IVF) is a procedure in which eggs are treated by sperms outside the womb (uterus). In layman terms, it implies an 'unnaturally conceived child'. IVF enables numerous childless couples to accomplish parenthood. It is shown in instances of tubal square, male infertility, extreme endometriosis, unexplained infertility, past fizzled IUI cycles, egg gift and surrogacy, and so on.

 

ICSI

 

ICSI is a method that is utilized alongside IVF. In this strategy a solitary sperm is specifically infused into an egg

 

Surgical Procedure

 

Fertility improving Laparoscopy and Hysteroscopy is shown for expulsion of ovarian pimple, fibroid, polyp, tubal redress, septum resection, adhesiolysis, division of intrauterine synechiae, and so forth.

  

Treatment for Male Infertility

 

Contingent upon the reason, either medicinal or surgical treatment can be embraced. In instances of Azoospermia, surgical sperm recovery took after by IVF-ICSI can be attempted.

www.elawoman.com

 

Elawoman Twitter

 

Elawoman Facebook

 

Elawoman Pinterest

The Eastern Red Bat (Lasiurus borealis) is a species of bat from the Vespertilionidae family. See also the Desert red bat (Lasiurus blossevillii), a related species.

 

Eastern red bats are widespread across eastern North America, with additional records in Bermuda. It is also scarce but widespread throughout many of the Bahamian islands. This is a medium-sized Vespertilionid, averaging weights of 9.5-14 g and measurements of 112.3 mm in total length. Adults are usually dimorphic: males have red hair while females are chestnut-colored with whitish frosting on the tips of the fur.

 

Like most Vespertilionids, eastern red bats are insectivorous. Moths (Lepidoptera) form the majority of the diet, but red bats also prey heavily on beetles (Coleoptera), flies (Diptera), and other insects. Echolocation calls have low minimum frequencies, but calls are highly variable ranging from (35-50 kHz). Eastern red bats are best suited for foraging in open spaces due to their body size, wing shape, and echolocation call structure. However, red bats are frequently captured by researches foraging over narrow streams and roads

 

Mating likely occurs in late summer or autumn and the sperm is stored in the female's reproductive tract until spring when ovulation and fertilization occurs. In June, females usually give birth to three or four young and then roost with their young until they are weaned. Males roost alone throughout the Summer. High temperature demands associated with gestation and rearing young may limit the northern range for reproductive females. Eastern red bats often roost amongst live or dead leaves on the branches of live hardwood trees, but have also been found using loblolly pine trees in pine plantations.

 

In late summer, eastern red bats from the northern parts of the range may migrate south for the winter, although little is known about migration routes or overwintering range. In winter, red bats forage for insects on warm nights and even warm days. On warm days during the winter, red bats enter torpor while roosting in the canopy of hardwood or coniferous trees, but during cold bouts they crawl underneath dead leaf litter on the ground and use their furred tail as a blanket.

Cheetah. Kgalagadi Transfrontier Park/ Kalahari Desert. South Africa. Nov/2019

 

Cheetah

The cheetah (Acinonyx jubatus; /ˈtʃiːtə/) is a large cat of the subfamily Felinae that occurs in North, Southern and East Africa, and a few localities in Iran. It inhabits a variety of mostly arid habitats like dry forests, scrub forests, and savannahs. The species is IUCN Red Listed as Vulnerable, as it suffered a substantial decline in its historic range in the 20th century due to habitat loss, poaching for the illegal pet trade, and conflict with humans. By 2016, the global cheetah population has been estimated at approximately 7,100 individuals in the wild. Several African countries have taken steps to improve cheetah conservation measures.

The cheetah was formally described by Johann Christian Daniel von Schreber in 1775 and is the only extant member of the genus Acinonyx. Its yellowish tan or rufous to greyish white coat is uniformly covered with nearly 2,000 solid black spots. Its body is slender with a small rounded head, black tear-like streaks on the face, deep chest, long thin legs and long spotted tail. It reaches 70–90 cm (28–35 in) at the shoulder, and weighs 21–72 kg (46–159 lb).

The cheetah breeds throughout the year, and is an induced ovulator. Gestation lasts nearly three months, resulting in a litter of typically three to five, in rare cases up to eight cubs. They are weaned at the age of about six months. After siblings become independent from their mother, they usually stay together for some time. It is active mainly during the day, with hunting its major activity. It is a carnivore and preys mainly upon antelopes. It stalks its prey to within 100–300 m (330–980 ft), charge towards it and kill it by tripping it during the chase and biting its throat to suffocate it to death. Female cheetahs are solitary or live with their offspring in home ranges. Adult males are sociable despite their territoriality, forming groups called coalitions.

African cheetahs may achieve successful hunts only running up to a speed of 64 km/h (40 mph) while hunting due to their exceptional ability to accelerate; but are capable of accelerating up to 112 km/h (70 mph) on short distances of 100 m (330 ft). It is therefore the fastest land animal. Because of its prowess at hunting, the cheetah was tamed as early as the 16th century BC in Egypt to kill game at hunts. Cheetahs have been widely depicted in art, literature, advertising and animation.

Source: Wikipedia

Guepardo pu Chita

O guepardo ou chita (Acinonyx jubatus) é um animal da família dos felídeos (Felidae), ainda que de comportamento atípico, se comparado com outros da mesma família. É a única espécie vivente do gênero Acinonyx. Tendo como habitat a savana, vive na África, península Arábica e no sudoeste da Ásia. Também é conhecido pelos nomes de cheetah, cheetah-africana, lobo-tigre, leopardo-caçador ou onça-africana. Fisicamente, o guepardo ou chita é significativamente parecido com o leopardo. As almofadas das patas da chita têm ranhuras para se moverem melhor em alta velocidade, e sua longa cauda serve para lhe dar estabilidade nas curvas em alta velocidade. Cada chita pode ser identificada pelo padrão exclusivo de anéis existentes em sua cauda, tem uma cabeça pequena e aerodinâmica e uma coluna incrivelmente flexível, são habilidades que ajudam bastante na hora da perseguição.

É um animal predador, preferindo uma estratégia simples: caçar as suas presas através de perseguições a alta velocidade, em vez de táticas como a caça por emboscada ou em grupo, mas por vezes, pode caçar em dupla. Consegue atingir velocidades de 115 km/h, por curtos períodos de cada vez (até 500 metros de corrida), sendo o mais rápido de todos os animais terrestres.

 

Fonte: Wikipedia

  

Kgalagadi Transfrontier Park

Kgalagadi Transfrontier Park is a large wildlife preserve and conservation area in southern Africa. The park straddles the border between South Africa and Botswana and comprises two adjoining national parks:

•Kalahari Gemsbok National Park in South Africa

•Gemsbok National Park in Botswana

The total area of the park is 38,000 square kilometres (15,000 sq mi). Approximately three-quarters of the park lies in Botswana and one-quarter in South Africa. Kgalagadi means "place of thirst." [1] In September 2014, more than half of the Botswana portion of the park was sold for gas-fracking

 

The park is located largely within the southern Kalahari Desert. The terrain consists of red sand dunes, sparse vegetation, occasional trees, and the dry riverbeds of the Nossob and Auob Rivers. The rivers are said to flow only about once per century. However, water flows underground and provides life for grass and camelthorn trees growing in the river beds. The rivers may flow briefly after large thunderstorms

Source: Wikpedia

 

Kalahari Desert

 

The Kalahari Desert is a large semi-arid sandy savanna in Southern Africa extending for 900,000 square kilometres (350,000 sq mi), covering much of Botswana, parts of Namibia and regions of South Africa.

It is not to be confused with the Angolan, Namibian and South African Namib coastal desert, whose name is of Khoekhoegowab origin and means "vast place"

Kalahari is derived from the Tswana word Kgala, meaning "the great thirst", or Kgalagadi, meaning "a waterless place"; the Kalahari has vast areas covered by red sand without any permanent surface water

Source: Wikpedia

 

Parque Transfronteiriço do Kgalagadi

O Parque Transfronteiriço de Kgalagadi é uma grande área de preservação e conservação da vida selvagem no sul da África. O parque fica na fronteira entre a África do Sul e o Botsuana e compreende dois parques nacionais adjacentes:

• Parque Nacional Kalahari Gemsbok na África do Sul

• Parque Nacional Gemsbok no Botsuana

A área total do parque é de 38.000 quilômetros quadrados (15.000 milhas quadradas). Aproximadamente três quartos do parque ficam no Botsuana e um quarto na África do Sul. Kgalagadi significa "lugar de sede". Em setembro de 2014, mais da metade da parte do parque em Botsuana foi vendida por fracking a gás

 

O parque está localizado em grande parte no sul do deserto de Kalahari. O terreno consiste em dunas de areia vermelha, vegetação escassa, árvores ocasionais e leitos secos dos rios Nossob e Auob. Diz-se que os rios fluem apenas uma vez por século. No entanto, a água flui no subsolo e fornece vida para as árvores que crescem nos leitos dos rios. Os rios podem fluir brevemente após grandes tempestades

Fonte: Wikipedia (tradução livre)

 

Deserto do Kalahari

 

O Kalahari, Calaari ou Calaári é um deserto localizado na África Austral, com cerca de 900.000 km² abrangendo partes de Angola, do Botswana, Namíbia e África do Sul.

O nome é derivado de uma palavra em tsuana[2] e significa "a grande sede"

Derivada da palavra Kgalagadi, significa o lugar da a grande sede (kgala - sede; gadi - lugar). A formação do deserto é devida, principalmente, a corrente marítima fria de Benguela, que atua na costa sudoeste da África, condensando o vapor de água que vai em direção ao continente, fazendo com que as massas de ar cheguem mais secas ao mesmo. O Kalahari possui vasta área coberta por areia avermelhada sem afloramento de água em caráter permanente. Porém Kalahari não é um deserto verdadeiro. Partes dele recebem mais de 250 mm de chuva mal distribuída anualmente e possuem bastante vegetação. É realmente árido somente no sudoeste (menos de 175 mm de chuva ao ano), fazendo do Kalahari um deserto de fósseis. As temperaturas no verão do Kalahari vão de 20 a 40°C. No inverno, o Kalahari tem um clima seco e frio com geada à noite. As baixas temperaturas do inverno podem ficar abaixo de 0°C. O clima no verão em algumas regiões do Kalahari pode alcançar 50°C (por isso algumas tribos bosquimanas se recolhem nos momentos mais quentes do dia).

Fonte: Wikipedia

 

Cheetah. Kruger National Park. South Africa. Oct/2020

  

Cheetah

The cheetah (Acinonyx jubatus; /ˈtʃiːtə/) is a large cat of the subfamily Felinae that occurs in North, Southern and East Africa, and a few localities in Iran. It inhabits a variety of mostly arid habitats like dry forests, scrub forests, and savannahs. The species is IUCN Red Listed as Vulnerable, as it suffered a substantial decline in its historic range in the 20th century due to habitat loss, poaching for the illegal pet trade, and conflict with humans. By 2016, the global cheetah population has been estimated at approximately 7,100 individuals in the wild. Several African countries have taken steps to improve cheetah conservation measures.

The cheetah was formally described by Johann Christian Daniel von Schreber in 1775 and is the only extant member of the genus Acinonyx. Its yellowish tan or rufous to greyish white coat is uniformly covered with nearly 2,000 solid black spots. Its body is slender with a small rounded head, black tear-like streaks on the face, deep chest, long thin legs and long spotted tail. It reaches 70–90 cm (28–35 in) at the shoulder, and weighs 21–72 kg (46–159 lb).

The cheetah breeds throughout the year, and is an induced ovulator. Gestation lasts nearly three months, resulting in a litter of typically three to five, in rare cases up to eight cubs. They are weaned at the age of about six months. After siblings become independent from their mother, they usually stay together for some time. It is active mainly during the day, with hunting its major activity. It is a carnivore and preys mainly upon antelopes. It stalks its prey to within 100–300 m (330–980 ft), charge towards it and kill it by tripping it during the chase and biting its throat to suffocate it to death. Female cheetahs are solitary or live with their offspring in home ranges. Adult males are sociable despite their territoriality, forming groups called coalitions.

African cheetahs may achieve successful hunts only running up to a speed of 64 km/h (40 mph) while hunting due to their exceptional ability to accelerate; but are capable of accelerating up to 112 km/h (70 mph) on short distances of 100 m (330 ft). It is therefore the fastest land animal. Because of its prowess at hunting, the cheetah was tamed as early as the 16th century BC in Egypt to kill game at hunts. Cheetahs have been widely depicted in art, literature, advertising and animation.

Source: Wikipedia

Guepardo ou Chita

O guepardo ou chita (Acinonyx jubatus) é um animal da família dos felídeos (Felidae), ainda que de comportamento atípico, se comparado com outros da mesma família. É a única espécie vivente do gênero Acinonyx. Tendo como habitat a savana, vive na África, península Arábica e no sudoeste da Ásia. Também é conhecido pelos nomes de cheetah, cheetah-africana, lobo-tigre, leopardo-caçador ou onça-africana. Fisicamente, o guepardo ou chita é significativamente parecido com o leopardo. As almofadas das patas da chita têm ranhuras para se moverem melhor em alta velocidade, e sua longa cauda serve para lhe dar estabilidade nas curvas em alta velocidade. Cada chita pode ser identificada pelo padrão exclusivo de anéis existentes em sua cauda, tem uma cabeça pequena e aerodinâmica e uma coluna incrivelmente flexível, são habilidades que ajudam bastante na hora da perseguição.

É um animal predador, preferindo uma estratégia simples: caçar as suas presas através de perseguições a alta velocidade, em vez de táticas como a caça por emboscada ou em grupo, mas por vezes, pode caçar em dupla. Consegue atingir velocidades de 115 km/h, por curtos períodos de cada vez (até 500 metros de corrida), sendo o mais rápido de todos os animais terrestres.

 

Fonte: Wikipedia

  

Kruger National Park

Kruger National Park is one of the largest game reserves in Africa. It covers an area of around 20,000 square kilometres in the provinces of Limpopo and Mpumalanga in northeastern South Africa, and extends 360 kilometres (220 mi) from north to south and 65 kilometres (40 mi) from east to west.

Source: Wikipedia

Parque Nacional Kruger

O Parque Nacional Kruger é a maior área protegida de fauna bravia da África do Sul, cobrindo cerca de 20 000 km2. Está localizado no nordeste do país, nas províncias de Mpumalanga e Limpopo e tem uma extensão de cerca de 360 km de norte a sul e 65 km de leste a oeste.

Os parques nacionais africanos, nas regiões da savana africana são importantes pelo turismo com safári de observação e fotográfico.

O seu nome foi dado em homenagem a Stephanus Johannes Paul Kruger, último presidente da República Sul-Africana bôere. Foi criado em 31 de Maio de 1926

Fonte: Wikipedia

 

via

 

You did it. You birthed a bouncing baby and your body is in recovery from enduring the sheer awesomeness that is childbirth. As the months that follow unfold and that baby starts to grow, you can’t help but shake the feeling that something is not quite right down there. Why is peeing so weird now? When did my body decide it was okay to just leak out said pee every time I cough? Am I supposed to just wear panty liners all day every day just in case someone makes me laugh? Why does it feel like there is a bulge in my vagina?

 

Though it is a common post-birth issue, the first time you hear that you have pelvic organ prolapse may be frustrating and quite upsetting. I mean, your body was made to have babies. Why would something so natural cause such an issue?

 

Avoiding the S Word

 

Your doctor may suggest many treatment options to help prevent your prolapse from advancing to the point where they begin to start talking about surgery. Surgery is a SCARY word that we would like to help you avoid. Prolapse reconstruction surgery, or Vaginoplasty, may be recommended in advanced cases. However, if you aren’t severely prolapsed, there are steps you can take that may help you avoid surgery all together. Yes, early prolapse can be corrected without ever ending up under the knife. Even a grade 3.

 

Popular less invasive treatment offered can include vaginal pessaries and Kegels as the only form of pelvic floor treatment. Don’t hear me wrong, these can be very helpful, but I am more a fan of using a functional, whole body exercise approach to healing core and pelvic floor issues. Here at Restore your Core®, we are fellow partners of your health-focused team and are seriously invested in empowering you to make every movement throughout your everyday life healing. We believe and have seen first hand with many clients, that our 12-week program can train you to bring symptom relief and avoid the discussion of surgery altogether. No matter when you discover a prolapse, we always recommend 1 year of pelvic floor rehab before deciding on more drastic routes.

 

Pelvic Organ Prolapse: What is it?

 

First things first, let’s make sure we are all speaking the same language here: pelvic organ prolapse is the injury in which one or more of your pelvic organs “drop” from their normal position. Though bladder prolapse is the most common, any pelvic organ (bladder, uterus, rectum) can make the descent. This injury happens for a variety of reasons and sometimes, it is really not known why. Birth injury, core and pelvic floor muscle imbalances, postural misalignments, and excess intra ab pressure are all reasons one might sustain a prolapse.

 

If pelvic organ prolapse is allowed to advance to its fullest potential, the prolapsed organ will make its way down the path of least resistance into the vaginal canal. Eventually, the organ may exit the vaginal opening.

 

Different types of Pelvic Organ Prolapse include:

 

Bladder prolapse- Cystocele (the most common)

 

Rectum prolapse- Rectocele

 

Uterine Prolapse

 

Vaginal Vault Prolapse

 

Small Intestine Prolapse- Enterocele

 

Though pelvic organ prolapse can be caused by obesity, aging, and other stressors on the floor muscles, vaginal birth is the leading cause of prolapse. As you can imagine, vaginal birth does a number on those pelvic floor muscles because of the amount of stretch the pelvic floor muscle must undergo to make way for the baby’s grand entrance into the world. This is why it is pretty common to pelvic floor prolapse after childbirth.

 

How Do I Know if My Prolapse is Severe?

 

The severity of Pelvic Organ Prolapse has to be diagnosed by your healthcare provider, but the general rule of thumb for staging is:

 

Stage 1: Very minimal prolapse – organs still have a fair amount of support by the pelvic floor.

 

Stage 2: Pelvic floor organs have begun to drop, but they are still contained inside the vagina.

 

Stage 3: Pelvic floor organs have dropped to, or beyond the opening of the vagina.

 

Stage 4: Pelvic floor organs have dropped completely through the vaginal opening.

 

Stage 3 and 4 are when you may be experiencing the more severe effects of prolapse. If your prolapse is severe, you may experience a wide range of symptoms. Check out our other articles that break down the specifics for different types of pelvic organ prolapse. Some of the most common symptoms for severe prolapse can include but are not limited to :

 

the sensation that you are sitting on a ball

 

A dragging sensation or heaviness in the vagina

 

vaginal bleeding

 

increase or change in discharge

 

problems with or inability to engage in sexual intercourse

 

any pelvic organ protruding out of the vagina

 

a heavy feeling in the pelvic area

 

The feeling of trapped bubbles in your vagina

 

constipation or difficulty passing stool

 

recurring bladder infections or difficulty emptying your bladder

 

Incontinence, which is the inability to control when you pee.

 

If you experience any of these, contact your doctor. We recommend seeing a Urogyn to get tested, and ideal is to be tested standing up, not lying down.

 

Can Prolapse Correct Itself?

 

We have many clients who are not symptom free! Unfortunately, if left to its own devices, organ prolapse may continue getting worse if no intervention or treatment measures are taken. Our muscles and skeletal systems are the protectors and stabilizers of our organs. When our pelvic floor is just as strong as the rest of our core, straining and bearing down is countered within the core to keep all the organs in their assigned spots. Once the pelvic floor muscles have been compromised / weakened, they are no longer able to counter the force of your rest of your core.

 

If your prolapse is the result of a vaginal birth you had, you are likely to be doing some heavy lifting in the day to day life just to take care of your newest addition to your family. Every time you do heavy lifting, the force that is placed on your already prolapsed organ may push it further down the path of least resistance and right into your vaginal tissues. Because of this it is important to begin building a strong organ support system to help prevent pelvic organ prolapse from becoming worse.

 

Can I push a Prolapse back up?

 

When our insides decide to try to escape to the outside, it is time to get a professional involved. Though it may actually be possible to temporarily push fully prolapsed pelvic organs back into the vaginal opening, this is not a long term solution or an actual treatment. It is important to seek medical advice and see a pelvic floor therapist if severe symptomatic stage 3 or stage 4 prolapse occurs.

 

Why is My Prolapse Worse Some Days?

 

There are times during your cycle where you might feel worse. Hormonal changes can affect how your prolapse feels. This is common and even if you are doing great in your rehab process and this happens, do not panic! Many women feel it worse during ovulation. If you have just finished moving furniture around the house or gotten home from an intense workout just to be greeted with worse prolapse symptoms for the rest of the day, this is actually very normal for many women who suffer with pelvic organ prolapse. Straining on the toilet while trying to work through some constipation can also worsen your symptoms. When doing strenuous activities, we bear down and increase the pressure within ourselves and this can place even more pressure and force on the organs.

 

What should you not do with a prolapse?

 

You may have noticed a bulge in your vaginal wall, a lower hanging uterus or experienced a change in your urine, stool, or discharge pattern that makes you suspect a pelvic organ prolapse. As you seek medical advice, it is important to begin to treat your conditions by cutting back on strenuous exercise until you can build up your pelvic floor muscles through direct treatment. Prolapse can be frustrating to deal with to say the very least, but if there must be a silver lining, it is that the doctor has ordered you to get another family member to move that couch.

 

Here are the things to avoid when you have pelvic organ prolapse:

 

Avoid straining while on the toilet

 

Avoid being on your feet for long periods of time

 

Avoid lifting, pulling or straining

 

Avoid an intense workout routine – until you have a great core / pelvic floor strategy.

 

Here are the things TO DO when you have pelvic organ prolapse:

 

Make sure you hydrate frequently throughout the day

 

Eat all the fiber. Beans, veggies, fruits, you name it.

 

Educate yourself on prolapse, the core system, all of the connections that can increase and decrease pressure.

 

Consider a pelvic floor therapist, pelvic floor trained teacher, or Online program to guide you through healing.

 

How Can I Reverse Prolapse Without Surgery?

 

Pelvic organ prolapse may be reversed without invasive procedures like surgery. Working on your pelvic floor system in a functional way can begin to reverse the prolapse descent.

 

If I have not said it enough, I will say it again: always talk to your provider if you are experiencing symptoms that interfere with your daily routine and you are worried about.

 

Your doctor may recommend Kegel exercises as the only form of pelvic floor muscle treatment. Kegel exercises are the favorite prescription within the medical field for weakness in pelvic floor muscles but it is essentially an old school approach that fails to work for many and makes things worse for many others. We strongly believe in a more functional approach to the pelvic floor – one that incorporates the whole body for healing and works on integrating your pelvic floor into the whole system of pressure, load and movement.

 

Restore Your Core program was created to offer ways of treatment for women that does not involve just sitting and clenching your pelvic muscles a thousand times over, but rather teaches you patterns of movements that build a functional, responsive core and pelvic floor. RYC® is a whole body approach that takes your daily movements and patterns into account so that you can retrain your body all day long and not just when you are sprawled out on the floor doing your next set of Kegels. To our excitement, our hypothesis was confirmed when we began to hear feedback from women who had restored their core and minimized or eliminated prolapse symptoms. Give us 12 weeks, and we will show you how to champion your own core.

 

restoreyourcore.com/learn/prolapse/how-to-stop-a-prolapse...

Recording Month Three

Vital stats

Mother's age: 32

Height: 5'3"

Weight: 132.8lbs

Body Fat: 31%

Symptoms:

Positive HCG test

Not dizzy anymore

Less sleepy

Raised body tempurature

Nausea, but not too bad. Almost over it.

Unsure if I am feeling the baby or if it is something gastrointestinal.

Nasal congestion

Prefer sweet and cold food. Cooked, steaming or fragrant food is unappealing. Eating "children's food" (i.e. cold sandwiches and milk)

Taking:

Throxine for underactive thyroid

Pre-natal vitamin

Omega-3 Fish Oil

Extra calcium, choline

Precautionary prometrium 200 mg was discontinued after week 12.

Baby's age 14 weeks

Est. due date: June 15, 2008

The Eastern Red Bat (Lasiurus borealis) is a species of bat from the Vespertilionidae family. See also the Desert red bat (Lasiurus blossevillii), a related species.

 

Eastern red bats are widespread across eastern North America, with additional records in Bermuda. It is also scarce but widespread throughout many of the Bahamian islands. This is a medium-sized Vespertilionid, averaging weights of 9.5-14 g and measurements of 112.3 mm in total length. Adults are usually dimorphic: males have red hair while females are chestnut-colored with whitish frosting on the tips of the fur.

 

Like most Vespertilionids, eastern red bats are insectivorous. Moths (Lepidoptera) form the majority of the diet, but red bats also prey heavily on beetles (Coleoptera), flies (Diptera), and other insects. Echolocation calls have low minimum frequencies, but calls are highly variable ranging from (35-50 kHz). Eastern red bats are best suited for foraging in open spaces due to their body size, wing shape, and echolocation call structure. However, red bats are frequently captured by researches foraging over narrow streams and roads

 

Mating likely occurs in late summer or autumn and the sperm is stored in the female's reproductive tract until spring when ovulation and fertilization occurs. In June, females usually give birth to three or four young and then roost with their young until they are weaned. Males roost alone throughout the Summer. High temperature demands associated with gestation and rearing young may limit the northern range for reproductive females. Eastern red bats often roost amongst live or dead leaves on the branches of live hardwood trees, but have also been found using loblolly pine trees in pine plantations.

 

In late summer, eastern red bats from the northern parts of the range may migrate south for the winter, although little is known about migration routes or overwintering range. In winter, red bats forage for insects on warm nights and even warm days. On warm days during the winter, red bats enter torpor while roosting in the canopy of hardwood or coniferous trees, but during cold bouts they crawl underneath dead leaf litter on the ground and use their furred tail as a blanket.

A little after midnight last night on Animal Planet's web cam, Tian Tian the daddy panda was blissfully lounging in and munching on his bamboo. His lovely wife Mei Xiang continues to cuddle their wee stick-of-butter-sized cub to her chest. When Wee Butter squeals, she shifts positions. She has not had anything to eat or drink in four days now, which is normal. From what I can see observing her via the web cam, she isn't getting tons of rest. She lays on her side or in a slumped over position, or one of several other positions, but Wee Butter has her shifting positions often. When Wee Butter cries Mei Xiang instantly soothes him and shifts her position if need be. I feel so sorry for her. Someone get that bear some pillows!

Wee Butter sounds full of vim and vigor again today. Panda cubs are less developed than humans when they are born and the critical danger period for them is a full 100 days. Please read more about Tian Tian, Mei Xiang and Wee Butter on the National Zoo's web site. The National Zoo has a web cam but the capacity is small. They were trying to change that but I don't know if they ever did. The Washington Post online has a section with links to everything you'd want to know about these pandas and pandas in general.

 

Oh - it is Chinese tradition not to name the cubs until the danger period passes. So after 100 days, the Chinese will reveal Wee Butter's true name.

 

Update on names - looks like we get a selection of names from China and then the people vote!

----------------------------------------------------------------------------------------------------------------

From the national zoo's web site:

 

Giant Panda Reproduction

• Giant pandas reach breeding maturity between four and eight years of age; they may be reproductive until about age 20.

• Female pandas come into estrus (heat) only once a year, in the spring, during a short period of two to three days.

• When female giant pandas ovulate but fail to conceive, they undergo

pseudopregnancies, where hormonal changes and behaviors are identical to a true pregnancy, which makes it very difficult to determine if a panda is pregnant.

• Panda gestation length ranges from 90 to 185 days, with an average pregnancy lasting 135 days. This two-month variation in gestation occurs because the fertilized panda egg usually floats free in the mother's uterus before it implants and begins developing. Once the embryo is attached to the uterine wall in late pregnancy, its development continues until a panda is born

• A newborn cub weighs 3 to 5 ounces and is about the size of a stick of butter. Pink, hairless, and blind, the cub is 1/900th the size of its mother. Except for a marsupial (such as the kangaroo or opossum), a giant panda baby is the smallest mammal newborn relative to its mother's size.

• Cubs do not open their eyes until they are six to eight weeks of age and are not mobile until three months.

• Any baby born to Mei Xiang and Tian Tian would belong to China, and the National

Zoo would likely return the cub to China when it’s two years old, so that it could become part of the breeding population there.

• The giant panda is listed as endangered in the World Conservation Union's Red List of Threatened Animals. It is one of the most critically endangered species in the world. There are about 1,600 left in the wild. More than 160 pandas live in zoos and breeding centers around the world, mostly in China.

• The Smithsonian’s National Zoo is one of four U.S. zoos that exhibit giant pandas. The other zoos are in Atlanta, Memphis and San Diego.

via

 

Surgery for pelvic organ prolapse is a big deal. It is a big deal because you live in an age where you have many pathways to health, and don’t have to live with pelvic organ prolapse.Although surgery can be a viable, medically recommended option for many people, it is very invasive without a guaranteed outcome. Some people may find relief from their painful symptoms, yet, like many procedures, it can often require more intensive medical treatmenteven after the first surgery was performed. Surgery should be considered a last option when dealing with core, pelvic floor, or other related issues.

 

To be clear, our goal here at Restore Your Core is to strengthen your core and pelvic floor so you can live without surgery being a part of your story. Thousands of women use our program with amazing success as an alternative route to surgery because we work to restore function and integrity to the pelvic floor. However, we do not judge anyone’s choice to have surgery and we understand that sometimes it is the only choice! We support all choices so we would like to use this article to educate you on those choices. Please note, even if you decide on surgery, one year of pelvic floor rehab is very much recommended to prepare the body as it is a major surgery.

 

How Do I Know if My prolapse is Severe?

 

Surgery is for severe cases. So when are you considered severe? We strongly urge you to discuss it with your provider and get multiple opinions from doctors and therapists regarding your case.

 

It is important to recognize that pelvic organ prolapse can involve one or more of your pelvic organs, including your uterus, bladder, and rectum. After injury to or the weakening of your pelvic floor muscles, your organs can drop into the wall of your vagina. We break down the different types of pelvic organ prolapse in other articles, but for your knowledge, we will include a list here:

 

Bladder prolapse- Cystocele (The most common)

 

Rectum prolapse- Rectocele

 

Uterine Prolapse

 

Vaginal Vault Prolapse

 

Small Intestine Prolapse- Enterocele

 

How Do I Know What Stage My Pelvic Organ Prolapse Is?

 

Severity of Pelvic Organ Prolapse has to be diagnosed by your healthcare provider, but the general rule of thumb for staging is:

 

Stage 1: Very minimal prolapse – organs still have a fair amount of support by the pelvic floor.

 

Stage 2: Pelvic floor organs have begun to drop, but they are still contained inside the vagina.

 

Stage 3: Pelvic floor organs have dropped to, or beyond the opening of the vagina.

 

Stage 4: Pelvic floor organs have dropped completely through the vaginal opening.

 

What Happens if Prolapse is Left Untreated?

 

That is hard to know because some women have it for years and it can stay the same! However, for others, it can actually get worse. It can depend on a variety of factors, many might be out of your control: like tissue integrity and genes. Other elements, like movement and exercise choices are more in your control. Strengthening your pelvic floor can keep your organs from bulging further into the wall of the vagina without surgery.

 

What are the Symptoms of Severe Pelvic Organ Prolapse?

 

A range of symptoms can be present in any stage of your journey with prolapsed pelvic organs. It is when your symptoms are interfering with your everyday routine or when interfering with other bodily functions that your doctor may talk seriously about surgery for your pelvic organs. Surgery is especially needed when we have organs exiting the body, a vaginal vault starts folding in on itself or your body becomes unable to rid itself of waste. Other symptoms can include:

 

the sensation that you are sitting on a ball

 

a dragging sensation or heaviness in the vagina

 

vaginal bleeding (uterus prolapse)

 

increase or change in discharge from vagina

 

problems with or inability to engage in sex

 

any pelvic organs protruding out of the vagina

 

a heavy feeling in the pelvic area

 

constipation or difficulty passing stool

 

recurring bladder infections or difficulty emptying your bladder

 

urinary incontinence, (the inability to control when you pee)

 

People can often experience a prolapse post birth. Other common causes can be obesity, aging, or other surgery in the pelvic area. It can also be genetic and related to tissue integrity.

 

Why is My Prolapse Worse Some Days?

 

There are times during your cycle where you might feel worse. Hormonal changes can affect how your prolapse feels. This is common and even if you are doing great in your rehab process and this happens, do not panic! Many women feel it worse during ovulation. If you have just finished moving furniture around the house or gotten home from an intense workout just to be greeted with worse prolapse symptoms for the rest of the day, this is actually very normal for many women who suffer with pelvic organ prolapse. Straining on the toilet while trying to work through some constipation can also worsen your symptoms. When doing strenuous activities, we bear down and increase the pressure within ourselves and this can place even more pressure and force on the organs.

 

How Do You Fix a Prolapse?

 

Many forms and stages of prolapse, or pelvic organ prolapse can be treated by exercises that strengthen the pelvic floor.

 

However some women need a little extra help getting their pelvic organs to stay where they are supposed to be. In these cases, surgery may become a necessary part of the journey. When it comes to surgical prolapse repair, there is no one size fits all reconstructive surgical option. Since we are not doctors, we do not give medical advice. The following is simply educational material and not intended as a form of medical advice. The type of surgery for your prolapse depends on your type of prolapse. We set out to tackle some of the most common questions regarding this.

 

What Types of Surgery are There?

 

Reconstructive surgery returns organs to their original position while repairing the pelvic floor. This can be done through an incision either in the abdomen or the wall of the vagina. Laparoscopic surgery is also an option here, which just means the surgeon makes smaller cuts in the abdomen while using instruments specialized for the surgery.

 

Obliterative surgery is the last effort to prevent vault prolapse. This type of surgery is used if other invasive surgeries haven’t worked or can not be tolerated due to other health conditions. During this procedure, the vagina is narrowed or all together closed up. The goal is to provide more support to the organs that have dropped out of their normal positions and are pressing against the walls of the vagina. This isn’t the first choice because after the surgery, intercourse would no longer be an option.

 

Sacrospinous ligament fixation and uterosacral ligament suspension surgery. A vaginal mesh of your own tissue is made to improve the support of the uterus. Mesh is placed under the vaginal skin to support the organs that are attempting to sag. Stitches are used to attach the vaginal vault to a ligament on your pelvis.

 

Anterior and posterior colporrhaphy surgery. The anterior surgery is used for cystocele that bulges through the vagina with urinary incontinence. Surgery is used to make tissue stronger and tighter. Posterior repair is used when in rectocele that has dropped prominently into the vagina. This procedure often uses mesh as well as existing tissue to repair the sagging organs done through the vagina by using your own tissues or vaginal mesh to repair the prolapse.

 

Sacrocolpopexy and sacrohysteropexy surgery. Both of these procedures focus on anchoring organs with mesh. Sacrocolpopexy is used to repair vaginal vault prolapse. Sacrohysteropexy is used to fix prolapse uterine. These can be done laparoscopically or through incisions on the abdomen.

 

Can Your Organs Descend After a Hysterectomy?

 

A prolapse of the uterus is unique because it is the only pelvic organ prolapse in which one of the surgical options is to just remove the problem organ if it will not stay in place. It is said that the traditional approach to uterine prolapse is to remove the uterus through the vagina, otherwise known as a vaginal hysterectomy Other treatment options are vaginal reconstruction, the placement of a pessary. (Of course, there are many other reasons why one would have a hysterectomy.)

 

The issue with a hysterectomy is it could cause further prolapse of other organs because that sizable uterus isn’t there to claim its space anymore. Also, in doing the hysterectomy the underlying issue that is the weak, stretched out pelvic floor muscles were not dealt with. Information regarding the rate of post-hysterectomy prolapse varies. Currently, cumulative data shows the risk that your pelvic floor does not keep your organs in place is 1% three years after hysterectomy and up to 15% fifteen years later.

 

This is why it is so important to strengthen your pelvic floor after you have healed from your hysterectomy. Many women who have a prolapsed uterus and want the surgical option will opt for the less invasive laparoscopic surgery or vaginal reconstruction surgery with a vaginal mesh rather than a hysterectomy.

 

What Type of Surgery is Required for a Prolapsed Bladder?

 

Cystocele, also known as a bladder prolapse, is one of the most common types of pelvic organ prolapse. The common surgical procedure to attempt to fix this condition is mid-urethral sling surgery. This surgery implants a mesh sling around the urethra, connected to the pubic bone, to help properly re-align the urethra to resolve urinary incontinence (leak pee). However, there are known complications with this surgery. If the mesh sling does not resolve your symptoms, often the surgeon will recommend anterior repair surgery.

 

Surgery is not something we encourage or discourage our clients to consider. However, if your doctor has recommended surgery as being your best option, it is better to discuss this solution with a medical professional

 

Is Prolapse Surgery Painful?

 

As with many surgical procedures, there is a time for recovery that may be painful for some. With pelvic prolapse surgery, your body has undergone a pretty dramatic transition. Post-op, you will most likely be given medication to help reduce pain. Take it as directed by your doctor. It is important that if you are considering, or have received surgery to repair pelvic floor dysfunction that you address any concerns you may have with your healthcare provider.

 

How Long Does it Take to Recover from Prolapse Surgery?

 

Your recovery time will be dependent upon the length, type, and invasiveness of your procedure. In some cases, recovery times may only take up to a week or two and in others it may be over a month. When talking with your doctor, be sure to discuss recovery time and what is expected during your recovery.

 

What Should I Expect After Surgery for Pelvic Organ Prolapse?

 

We hope that your recovery will be a quick transition back into your daily activities. It is common for many women to experience fatigue, slight bleeding at the surgery site, and to be prescribed pain medication post-op. If you have any concerns or questions regarding the requirements after surgery, it is best to discuss this with your doctor.

 

As soon as your doctor has confirmed that you have recovered from surgery, we hope that you join us in our 12 week program and learn how to Restore Your Core beyond surgery!

 

restoreyourcore.com/learn/prolapse/prolapse-surgery/

1 2 ••• 4 5 7 9 10 ••• 55 56