View allAll Photos Tagged multimode
F-5E, s/n 74-1557 (msn R.1217). Shown assigned 65th FWS, 57th FWW, Nellis AFB, NV. Also flew with the 4477th Test and Evaluation Squadron ("Red Eagles"). Transfered to Brazilian AF as FAB 4875 in 1988 and assigned 1st Squadron of the 14th Aviation Group (1st/14th GAv), the Pampa Squadron, based at Canoas Air Base (RS). Modernized August 2006 by Embraer and AEL Sistemas (Elbit Systems) with a completely new and modern cockpit, oxygen generation system (OBOGS), multimode radar, combat capability beyond visual range, and new weapons capabilities. Still active today with the 1st Fighter Aviation Group, headquartered in Wing 12 (Santa Cruz Air Base), in Rio de Janeiro.
A New Jersey Transit light rail train departs the historic Broad Street Station in Newark New Jersey in the early morning. The historic rail station that dates back to 1903 when it opened after two years of construction to replace the first Delaware, Lackawanna and Western Railroad station is the design of Frank J. Niles, an architect for the DL and W Railroad Company. Once used for passenger transport as far as Buffalo New York, with stops at Scranton Pennsylvania, the historic landmark is an operating multimode transportation hub for New Jersey Transit, with the pictured light rail street level as well as buses connecting to heavy rail above that take commuters to Penn Station in New York City. iPhone 5c #developportdev @gothamtomato @developphotonewsletter @omsystem.cameras #excellent_america #omsystem @bheventspace @bhphoto @adorama @tamracphoto @tiffencompany #usaprimeshot #tamractales @kehcamera @mpbcom @cityofnewarknj @visit_nj @newjerseyisntboring @newjerseyisbeautiful #newjerseyisntboring #newjerseyisbeautiful @essexcountycommissioners #iphone5c @apple
Démonstration du Soukhoi Su 35 au salon du Bourget.
Le Soukhoï Su-35 (Flanker Plus dans le code OTAN) est un chasseur russe. Il a été créé dans le but d'accroître les capacités offensives du Su-27 et de lui donner la possibilité de détruire tant les cibles aériennes que de surface.
Le Su-35 est le premier chasseur au monde à avoir deux radars, un N-011 multimode à balayage électronique à l'avant et un N-012 dans le cône de queue. Le N-011 est capable d'acquérir 15 cibles et d'en engager 8, sa portée est de plus de 100 km pour un objectif d'une SER de 0,01 m2.
Sukhoi Su35 demonstration at Paris Air Show "Le Bourget".
The Sukhoi Su-35 (Russian: Сухой Су-35; NATO reporting name: Flanker-E) is designation of two different heavily-upgraded derivatives of the Su-27 'Flanker'. Both are single-seat, twin-engine supermaneuverable multirole fighters, designed by Sukhoi and built by Komsomolsk-on-Amur Aircraft Production Association (KnAAPO).
The first variant was designed during the 1980s, when Sukhoi was looking to upgrade its high-performance Su-27, and was initially known as the Su-27M. Later re-designated Su-35, this derivative incorporates aerodynamic refinements to increase manoeuvrability, enhanced avionics, longer range, and a more powerful engine. The first Su-35 prototype, converted from a Su-27, made its maiden flight in June 1988. More than a dozen of these were built with some used by the Russian Knights aerobatic demonstration team. The first Su-35 design was later modified into the Su-37 with thrust-vectoring engines and used as a technology demonstrator. A sole Su-35UB two-seat trainer was built in the late 1990s that, despite its name, shares a strong resemblance to the Su-30MK family.
In 2003, Sukhoi embarked on a second modernization of the Su-27 to produce what the company calls a 4++ generation fighter that would serve as an interim fighter prior to the arrival of the Sukhoi PAK FA. This derivative incorporates a reinforced airframe, improved avionics and radar, thrust-vectoring engines, and a reduced radar signature from the front, while omitting the canards and air brake. In 2008 the revamped variant, erroneously dubbed the Su-35BM by the media, started its flight test programme that involved four prototypes, one of which was lost in 2009.
The Russian Air Force has ordered 48 production units, designated Su-35S, of the newly-revamped Su-35. Both Su-35 models have been offered to many countries, including Brazil, China, India and South Korea, but so far have not attracted any export orders. Sukhoi originally projected that it would export more than 160 units of the second modernized Su-35 worldwide.
Démonstration du Soukhoi Su 35 au salon du Bourget.
Le Soukhoï Su-35 (Flanker Plus dans le code OTAN) est un chasseur russe. Il a été créé dans le but d'accroître les capacités offensives du Su-27 et de lui donner la possibilité de détruire tant les cibles aériennes que de surface.
Le Su-35 est le premier chasseur au monde à avoir deux radars, un N-011 multimode à balayage électronique à l'avant et un N-012 dans le cône de queue. Le N-011 est capable d'acquérir 15 cibles et d'en engager 8, sa portée est de plus de 100 km pour un objectif d'une SER de 0,01 m2.
Sukhoi Su35 demonstration at Paris Air Show "Le Bourget".
The Sukhoi Su-35 (Russian: Сухой Су-35; NATO reporting name: Flanker-E) is designation of two different heavily-upgraded derivatives of the Su-27 'Flanker'. Both are single-seat, twin-engine supermaneuverable multirole fighters, designed by Sukhoi and built by Komsomolsk-on-Amur Aircraft Production Association (KnAAPO).
The first variant was designed during the 1980s, when Sukhoi was looking to upgrade its high-performance Su-27, and was initially known as the Su-27M. Later re-designated Su-35, this derivative incorporates aerodynamic refinements to increase manoeuvrability, enhanced avionics, longer range, and a more powerful engine. The first Su-35 prototype, converted from a Su-27, made its maiden flight in June 1988. More than a dozen of these were built with some used by the Russian Knights aerobatic demonstration team. The first Su-35 design was later modified into the Su-37 with thrust-vectoring engines and used as a technology demonstrator. A sole Su-35UB two-seat trainer was built in the late 1990s that, despite its name, shares a strong resemblance to the Su-30MK family.
In 2003, Sukhoi embarked on a second modernization of the Su-27 to produce what the company calls a 4++ generation fighter that would serve as an interim fighter prior to the arrival of the Sukhoi PAK FA. This derivative incorporates a reinforced airframe, improved avionics and radar, thrust-vectoring engines, and a reduced radar signature from the front, while omitting the canards and air brake. In 2008 the revamped variant, erroneously dubbed the Su-35BM by the media, started its flight test programme that involved four prototypes, one of which was lost in 2009.
The Russian Air Force has ordered 48 production units, designated Su-35S, of the newly-revamped Su-35. Both Su-35 models have been offered to many countries, including Brazil, China, India and South Korea, but so far have not attracted any export orders. Sukhoi originally projected that it would export more than 160 units of the second modernized Su-35 worldwide.
An advanced version of the MiG-31 began development in 1983, known as the MiG-31M (also known as the Ye-155MPM, and izdeliye 05). The new S-255 aerial intercept weapons system featured new ultra-long-range air-to-air missiles (the R-37) and advanced avonics suite (Zaslon-AM WCS) were the primary upgrades over the original MiG-31. The new aircraft also included a few alterations, such as a wrap-around windscreen, a revised dorsal spine, the removal of the cannon, and moving the refueling probe to the starboard side. A revised, digital cockpit was included with a multifunction CRT cockpit displays, digital flight controls, and a multimode phased array radar. The original D-30F6 engines were upgraded to D-30F6M engines and the overall weight of the aircraft rose to 52,000 kg (114,640 lb).
In this image, first real MiG-31M prototype aircraft (052 Blue) sits on the apron at Zhukovskiy. Note the wrap-around windscreen, enlarged radome nose cone, and missing the side-mounted cannon. The MiG-31M carries the R-37 long-range BVR missiles (NATO reporting name: AA-13 “Axehead”) on the underside fuselage mounts and the R-73 short-range IR missiles (NATO reporting name: AA-11 “Archer”).
The Mikoyan MiG-31 (Russian: Микоян МиГ-31; NATO reporting name: Foxhound) is a supersonic interceptor aircraft developed to replace the MiG-25 "Foxbat". The MiG-31 was designed by the Mikoyan design bureau based on the MiG-25.
Development
The MiG-25 "Foxbat", despite Western panic about its tremendous performance, made substantial design sacrifices in capability for the sake of achieving high speed, altitude, and rate of climb. It lacked maneuverability at interception speeds, was difficult to fly at low altitudes, and its inefficient turbojet engines resulted in a short combat range at supersonic speeds.[citation needed] The MiG-25's speed was limited to Mach Mach 2.83 in operations. But it could reach a maximum speed of Mach 3.2 with the risk of damaging the engines beyond repair.
Development of the MiG-25's replacement began with the Ye-155MP (Russian: Е-155МП) prototype which first flew on 16 September 1975.Although it bore a superficial resemblance to a stretched MiG-25 with a longer fuselage for the radar operator cockpit, it was in many respects a new design. The MiG-25 used 80% nickel steel in its structure to allow welding.The Ye-155MP doubled the use of titanium to 16% and tripled the aluminium content to 33% to reduce structural mass. More importantly, supersonic speed was now possible at low altitudes. Fuel capacity was also increased, and new, more efficient low bypass ratio turbofan engines were fitted.
The most important development was introducing an advanced radar capable of both look-up and look-down engagement (locating targets above and below the aircraft), as well as multiple target tracking. This finally gave the Soviets an interceptor able to engage the most likely Western intruders at long range. It also reflected a policy shift from reliance on ground-controlled interception (GCI) to greater autonomy for flight crews.
Like its MiG-25 predecessor, the MiG-31 was surrounded by early speculation and misinformation concerning its design and abilities. The West learned of the new interceptor from Lieutenant Viktor Belenko, a pilot who defected to Japan in 1976 with his MiG-25P. Belenko described an upcoming "Super Foxbat" with two seats and an ability to intercept cruise missiles. According to his testimony, the new interceptor was to have air intakes similar to the Mikoyan-Gurevich MiG-23, which the MiG-31 does not have, at least not in production variants. While the MiG-31 was undergoing testing, an unknown aircraft was spotted by a reconnaissance satellite at the Zhukovsky flight test center near the town of Ramenskoye. The images were interpreted as a fixed-wing interceptor version of a swing-wing fighter codenamed "Ram-K". The latter was eventually revealed to be the Sukhoi Su-27 'Flanker', a wholly unrelated design.
Series production of the MiG-31 began in 1979 and about 400 were produced by 2000.
Some upgrade programs have found their way in the MiG-31 fleet, like the MiG-31BM multirole version with upgraded avionics, new multimode radar, hands-on-throttle-and-stick (HOTAS) controls, liquid crystal (LCD) color multi-function displays (MFDs), ability to carry the AA-12 'Adder' missile and various Russian air-to-ground missiles (AGMs) such as the AS-17 'Krypton' anti-radiation missile (ARM), a new and more powerful computer, and digital data links. A project to upgrade the Russian MiG-31 fleet to the MiG-31BM standard is nearing completion.
Design
Like the MiG-25, MiG-31 is a large twin-engine aircraft with side-mounted air intakes, a shoulder-mounted wing with an aspect ratio of 2.94, and twin vertical tailfins. Unlike the MiG-25, it has two seats, with the rear occupied by a dedicated weapon systems officer.
Airframe and engines
The wings and airframe of the MiG-31 are stronger than those of the MiG-25, permitting supersonic flight at low altitudes. Its Aviadvigatel D30-F6 turbofans, rated at 152 kN thrust, (also described as "bypass turbojets" due to the low bypass ratio) allow a maximum speed of Mach 1.23 at low altitude. High-altitude speed is temperature-redlined to Mach 2.83—the thrust-to-drag ratio is sufficient for speeds in excess of Mach 3, but such speeds pose unacceptable hazards to engine and airframe life in routine use.
Given the MiG-31's role as Mach 2.8+ interceptor and the sustained afterburning this requires, its fuel consumption is higher when compared to other aircraft serving in different roles, such as the Su-27. Consequently, the aircraft's fuel fraction has been increased to more than 0.40—16,350 kg (36,050 lb) of high-density T-6 jet fuel. The outer wing pylons are also plumbed for drop tanks, allowing an extra 5,000 L (1,320 US gal) of external fuel. Late-production aircraft have aerial refueling probes.
MiG-31 is limited to a maximum of only 5 g at supersonic speeds. At combat weight, its wing loading is marginal and its thrust to weight ratio is favorable. However, it is not designed for close combat or rapid turning.
General characteristics
Crew: Two (pilot and weapons system officer)
Length: 22.69 m (74 ft 5 in)
Wingspan: 13.46 m (44 ft 2 in)
Height: 6.15 m (20 ft 2 in)
Wing area: 61.6 m² (663 ft²)
Empty weight: 21,820 kg (48,100 lb)
Loaded weight: 41,000 kg (90,400 lb)
Max takeoff weight: 46,200 kg (101,900 lb)
Powerplant: 2 × Soloviev D-30F6 afterburning turbofans
Dry thrust: 93 kN (20,900 lbf) each
Thrust with afterburner: 152 kN (34,172 lbf) each
Performance
Maximum speed:
High altitude: Mach 2.83 (3,000 km/h, 1,860 mph)[3]
Low altitude: Mach 1.2 (1,500 km/h, 930 mph)
Combat radius: 720 km (450 mi) at Mach 2.35
Ferry range: 3,300 km (2,050 mi)
Service ceiling: 20,600 m (67,600 ft)
Rate of climb: 208 m/s (41,000 ft/min)
Wing loading: 665 kg/m² (136 lb/ft²)
Thrust/weight: 0.85
Maximum g-load: 5 g
Armament
1× GSh-6-23 23 mm cannon with 260 rounds.
Fuselage recesses for 4× R-33 (AA-9 'Amos') (or for MiG-31M/BM only 6× R-37 (AA-X-13 'Arrow') long-range air-to-air missiles)
4 underwing pylons for a combination of:
2× R-40TD1 (AA-6 'Acrid') medium-range missiles, and[clarification needed]
4× R-60 (AA-8 'Aphid') or
4× R-73 (AA-11 'Archer') short-range IR missiles, or
4× R-77 (AA-12 'Adder') medium-range missiles.
Some aircraft are equipped to launch the Kh-31P (AS-17 'Krypton') and Kh-58 (AS-11 'Kilter') anti-radiation missiles in the suppression of enemy air defenses (SEAD) role.
"The Primary Radar (PR), a major sensor of the AEW&C system, is a long range multimode radar. The major role of PR is to provide surveillance for air defence and early warning together with capability of aiding in tactical missions or in offensive strikes. It is a solid state fully active electronically steered active array (ESA) radar mounted on the dorsal unit of EMB-145 executive jet aircraft. The radar has monopulse processing capability in azimuth and elevation."
This image was created using stroboscopic flash to capture the movement of a ping pong ball through the frame.
strobist: The 580EX Speedlites, positioned left and right (slightly behind subject), were set for 15 flashes at 30Hz. Flashes triggered via ST-E2.
The Dassault Mirage 2000 is a French multirole, single-engine, delta wing, fourth-generation jet fighter manufactured by Dassault Aviation. It was designed in the late 1970s as a lightweight fighter to replace the Mirage III for the French Air Force (Armée de l'air). The Mirage 2000 evolved into a multirole aircraft with several variants developed, with sales to a number of nations. It was later developed into the Mirage 2000N and 2000D strike variants, the improved Mirage 2000-5, and several export variants. Over 600 aircraft were built and it has been in service with nine nations.
The origins of the Mirage 2000 could be traced back to 1965, when France and Britain agreed to develop the "Anglo-French Variable Geometry" (AFVG) swing-wing aircraft. Two years later, France withdrew from the project on grounds of costs, after which Britain would collaborate with West Germany and Italy to ultimately produce the Panavia Tornado. Dassault instead focused on its own variable-geometry aircraft, the Dassault Mirage G experimental prototype. The design was expected to materialise in the Mirage G8, which would serve as the replacement for the popular Mirage III in French Air Force service.
The Mirage 2000-5 is a major advancement over previous variants and embodies a comprehensive electronic, sensor, and cockpit upgrade to expand its combat ability, while reducing pilot workload. The centrepiece of the Mirage 2000-5 overhaul is the Thomson-CSF RDY (radar Doppler multitarget) with look down/shoot down capability. The multifunction radar is capable of air-to-ground, air-to-air, and air-to-sea operations. In the air-to-ground mode, the RDY has navigation and attack functions that give it deep-strike and close-support capabilities. Capable of automatically locking onto multiple targets at first contact, the radar could detect flying targets travelling as low as 60 m (200 ft). The introduction of the radar allows the aircraft to use the MICA missile, up to six of which could be fired simultaneously at targets due to the advances within the radar. Despite the increase in offensive capability, pilot workload is compensated for by the introduction of a multidisplay glass cockpit, based on the development of the Rafale. The aircraft has the ICMS Mk2 countermeasures suit, which contains three radar detectors and an infrared sensor that are linked to active jammers and chaff/flare dispensers.
Improvements over the Mirage 2000C included the Thales TV/CT CLDP laser designator pod and the multimode RDY, which allows detection of up to 24 targets and the ability to simultaneously track eight threats while guiding four MICA missiles to different targets. Updates to defensive systems included the ICMS 2 countermeasures suite and the Samir DDM missile warning system. ICMS 2 incorporates a receiver and associated signal processing system in the nose for detecting hostile missile-command data links, and can be interfaced to a new programmable mission-planning and postmission analysis ground system. Avionics were also updated, using a new night vision-compatible glass cockpit layout borrowed from the Dassault Rafale, a dual-linked wide-angle head-up display, and HOTAS controls. The Mirage 2000-5 can also carry the oversized drop tanks developed for the Mirage 2000N, greatly extending its range.
The MiG-31 was among the first aircraft with a phased array radar. It was the first operational fighter with a passive electronically scanned array (PESA) radar, known as the BRLS-8B Zaslon, or “barrier.” The NATO reporting name is “Flash Dance” and radar system is also referred to as the SBI-16, RP-31, N007, and S-800. The all-weather multimode airborne pulse-doppler radar can track fighter-sized targets at approximately 200 km (120 mi), track up to ten targets simultaneously, and attack four of them with the radar-guided Vympel R-33 (NATO reporting name: AA-9 “Amos”). The Zaslon was the Soviet Union’s first look-down/shoot-down radar, making it difficult for USAF aircraft and cruise missiles to penetrate Soviet airspace at low altitude without being detected. The Foxhound also pairs an infrared search and track (IRST) system in a retractable undernose fairing. This system would be used with the R-40 (NATO reporting name: AA-6 “Acrid”) and R-60 (NATO reporting name: AA-8 “Aphid”) IR-guided air-to-air missiles.
The MiG-31 was also equipped with the RK-RLDN and APD-518 digital secure datalinks. The RK-RLDN datalink provides communication with ground control centres whereas the APD-518 datalink enables a flight of four Foxhounds to automatically exchange radar-generated data within 200 km (120 mi) from each other. It also enables other aircraft with less sophisticated avionics, such as the MiG-23, MiG-25, MiG-29, Su-15, and Su-27, to be directed to targets spotted by the MiG-31. In combination with the Beriev A-50 AEW (NATO reporting name: “Mainstay”), the Foxhound can automatically exchange aerial and terrestrial radar target designation as well as coordinate air defence.
In this image, a MiG-31 (374 White) sits on static display at the 39th Paris Air Show in June 1991. Decorated in a stylish blue/white/grey demonstrator colour scheme, the radome is removed to show the phased-array antenna. Arranged in front are four Vympel R-33 missiles, two R-40 missiles, four R-60 missiles, and two large ferry fuel tanks. This demonstrator also displays an inflight refuelling probe that was currently in development with the MiG-31 01DZ.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The Indian „Samudree Baaj“ (समुद्री बाज, Sea Hawk) was a highly modified, navalized version of the British BAE Systems Hawk land-based training jet aircraft, which had been manufactured under license by Hindustan Aeronautics Limited (HAL). The first indigenously built Hawk Mk. 132 trainer was delivered in 2008 to the Indian Air Force, and the type has since then been updated with indigenous avionics into the “Hawk-I” Mk. 132 from 2020 onwards. The aircraft’s Rolls Royce Adour Mk 871 engine was also license-built by HAL, and the company had experience from a wide range of aircraft projects in the past.
The Samudree Baaj project was initiated in 2006 by the Indian Navy, as part of the long historic plan to provide the Indian Navy with a fully capable aircraft carrier. This plan had been initiated in 1989, when India announced a plan to replace its ageing British-built aircraft carriers, INS Vikrant and INS Viraat (ex-HMS Hermes), with two new 28,000-ton Air Defence Ships (ADS) that would operate the BAe Sea Harrier aircraft. The first vessel was to replace Vikrant, which was set to decommission in early 1997. Construction of the ADS was to start at the Cochin Shipyard (CSL) in 1993 after the Indian Naval Design Organisation had translated this design study into a production model. Following the 1991 economic crisis, the plans for construction of the vessels were put on hold indefinitely.
In 1999, then-Defence Minister George Fernandes revived the project and sanctioned the construction of the Project “71 ADS”. By that time, given the ageing Sea Harrier fleet, the letter of intent called for a carrier that would carry more modern jet fighters. In 2001, CSL released a graphic illustration showing a 32,000-ton STOBAR (Short Take-Off But Arrested Recovery) design with a pronounced ski jump. The aircraft carrier project finally received formal government approval in January 2003. By then, design updates called for a 37,500-ton carrier to operate the MiG-29K. India opted for a three-carrier fleet consisting of one carrier battle group stationed on each seaboard, and a third carrier held in reserve, in order to continuously protect both its flanks, to protect economic interests and mercantile traffic, and to provide humanitarian platforms in times of disasters, since a carrier can provide a self-generating supply of fresh water, medical assistance or engineering expertise to populations in need for assistance.
In August 2006, then-Chief of the Naval Staff, Admiral Arun Prakash stated that the designation for the vessel had been changed from Air Defence Ship (ADS) to Indigenous Aircraft Carrier (IAC). The euphemistic ADS had been adopted in planning stages to ward off concerns about a naval build-up. Final revisions to the design increased the displacement of the carrier from 37,500 tons to over 40,000 tons. The length of the ship also increased from 252 metres (827 ft) to 262 metres (860 ft).
It was at this time that, beyond the MiG-29K, primarily a carrier-capable trainer and also a light (and less costly) strike aircraft would be needed. With the running production of the Hawk Mk. 132 for the Indian Air Force and BAE Systems’ connection and experience to the USA and McDonnell/Boeing’s adaptation of the Hawk as the US Navy’s carrier-capable T-45 trainer, HAL was instructed to develop a suitable aircraft family on the Hawk’s basis for the new carriers.
HAL’s Samudree Baaj is a fully carrier-capable version of the British Aerospace Hawk Mk. The Hawk had not originally been designed to perform carrier operations, so that numerous modifications were required, such as the extensive strengthening of the airframe to withstand the excessive forces imposed by the stresses involved in catapult launches and high sink-rate landings, both scenarios being routine in aircraft carrier operations.
The aerodynamic changes of the aircraft, which were mutually developed by HAL and BAE Systems, included improvements to the low-speed handling characteristics and a reduction in the approach speed. Most notable amongst the changes made to the Hawk's design were extended flaps for better low-speed handling, along with the addition of spoilers on the wings to reduce lift and strakes on the fuselage which improved airflow and stabilizer efficiency.
Other, less obvious modifications included a reinforced airframe, the adoption of a more robust and widened landing gear, complete with a catapult tow bar attachment to the oleo strut of the new two-wheel nose gear design, and an arresting hook. The tail fin was extended by 1 foot (12 in, 30.5 cm) to compensate for the loss of the Hawk’s ventral stabilizing strakes. To make room for the arrester hook, the original ventral air brake was split and re-located to the flanks, similar to the USN’s T-45 trainer.
At the time of the Samudree Baaj’s design, the exact catapult arrangement and capacity on board of India’s new carriers was not clear yet – even more so, since the MiG-29K and its powerful engines might have made a catapult obsolete. Therefore, the Samudree Baaj was designed to be operable either with a ski jump ramp (in the style of the Russian Kiev class carriers, of which India had purchased one as INS Vikramaditya) or with only minimal launch support within the projected STOBAR concept, which included a relatively short-stroke steam catapult and a similarly short, undampened arrester gear.
By 2009 the basic airframe had been defined and four prototypes were built for two versions: the Mk. 101 trainer, which was basically a navalized version of the land-based Mk. 132 with almost the same mission equipment, and the Mk. 201, a single-seater. Two airframes of each type were built and the first Samudree Baaj flight took place in early 2011. The Indian government ordered 30 trainers and 15 attack aircraft, to be delivered with the first new Indian carrier, INS Vikrant, in late 2017.
The Samudree Baaj Mk. 201 was developed from the basic navalized Hawk airframe as a light multirole fighter with a small visual signature and high maneuverability, but high combat efficiency and capable of both strike and point defense missions. It differed from the trainer through a completely new forward fuselage whereby the forward cockpit area, which normally housed the trainee, was replaced by an electronics bay for avionics and onboard systems, including a fire control computer, a LINS 300 ring laser gyroscope inertial navigation system and a lightweight (145 kg) multimode, coherent, pulse-Doppler I band airborne radar. This multimode radar was developed from the Ferranti Blue Fox radar and capable of airborne interception and air-to-surface strike roles over water and land, with look-down/shoot-down and look-up modes. It had ten air-to-surface and ten air-to-ground modes for navigation and weapon aiming purposes.
A ventral fairing behind the radome carried a laser rangefinder and a forward-looking infrared (FLIR). Mid-air refueling was also possible, through a detachable (but fixed) probe. GPS navigation or modern night-flight systems were integrated, too.
Like the trainer, the Mk. 201 had a total of seven weapon hardpoints (1 ventral, four underwing and a pair of wing tip launch rails), but the more sophisticated avionics suite allowed a wider range of ordnance to be carried and deployed, which included radar-guided AAMs for BVR strokes and smart weapons and guided missiles – especially the Sea Eagle and AGM-84 “Harpoon” anti-ship missiles in the Indian Navy’s arsenal. For the maritime strike role and as a support for ASW missions, the Samudree Baaj Mk. 201 could even deploy Sting Ray homing torpedoes.
Furthermore, a pair of 30mm (1.18 in) ADEN machine cannon with 150 RPG were housed in a shallow fairing under the cockpit. The self-protection systems include a BAE SkyGuardian 200 RWR and automatic Vinten chaff/flare dispensers located above the engine exhaust.
The Samudree Baaj project was highly ambitious, so that it does not wonder that there were many delays and teething troubles. Beyond the complex avionics integration this included the maritime adaptation of the Adour engine, which eventually led to the uprated Adour Mk. 871-1N, which, as a side benefit, also offered about 10% more power.
However, in parallel, INS Vikrant also ran into delays: In July 2012, The Times of India reported that construction of Vikrant has been delayed by three years, and the ship would be ready for commissioning by 2018. Later, in November 2012, Indian English-language news channel NDTV reported that cost of the aircraft carrier had increased, and the delivery has been delayed by at least five years and is expected to be with the Indian Navy only after 2018 as against the scheduled date of delivery of 2014. Work then commenced for the next stage of construction, which included the installation of the integrated propulsion system, the superstructure, the upper decks, the cabling, sensors and weapons. Vikrant was eventually undocked on 10 June 2015 after the completion of structural work. Cabling, piping, heat and ventilation works were to be completed by 2017; sea trials would begin thereafter. In December 2019, it was reported that the engines on board the ship were switched on and in November 2020, only the basin trials of the aircraft carrier were completed.
By that time, the first Samudree Baaj aircraft had been delivered to Indian Navy 300 squadron, and even though only based at land at Hansa Air Station, flight training and military operations commenced. In the meantime, the start of Vikrant's trials had initially been scheduled to begin on 12 March 2020, but further construction delays caused that to be moved back to April. With the COVID-19 crisis, the navy explained that trials were unlikely to begin before September/October. During the Navy Day press meeting in December 2019, Navy Chief Admiral Karambir Singh said Vikrant would be fully operational before the end of 2022. The COVID-19 pandemic had already pushed that back to 2023 and further delays appeared possible.
In late 2020, the Indian Navy expected to commission Vikrant by the end of 2021. Until then, the Samudree Baaj fleet will remain land-based at INS Hansa near Goa. This not only is the INAS 300 home base, it is also the location of the Indian Navy's Shore Based Test Facility (SBTF), which is a mock-up of the 283-metre (928 ft) INS Vikramaditya (a modified Kiev-class aircraft carrier) deck built to train and certify navy pilots, primarily the the Mikoyan MiG-29K for operating from the aircraft carrier, but now also for the Samudree Baaj and for the developmental trials of the naval HAL Tejas lightweight fighter.
General characteristics:
Crew: 1
Length: 11.38 m (37 ft 4 in)
Wingspan: 9.39 m (30 ft 10 in)
Height: 4.30 m (14 ft 1 in)
Wing area: 17.66 m2 (190.1 sq ft)
Empty weight: 9,394 lb (4,261 kg)
Gross weight: 12,750 lb (5,783 kg)
Max takeoff weight: 9,101 kg (20,064 lb)
Fuel capacity: 1,360 kg (3,000 lb) internal
3,210 kg (7,080 lb) with 3 drop tanks
Powerplant:
1× Rolls-Royce Turbomeca Adour Mk. 871-1N non-afterburning turbofan, 28,89 kN (6,445 lbf) thrust
Performance:
Maximum speed: 1,037 km/h (644 mph, 560 kn) at sea level
Maximum speed: Mach 1.2 (never exceed at altitude)
Cruise speed: 796 km/h (495 mph, 430 kn) at 12,500 m (41,000 ft)
Carrier launch speed: 121 kn (139 mph; 224 km/h)
Approach speed: 125 kn (144 mph; 232 km/h)
Never exceed speed: 575 kn (662 mph, 1,065 km/h) / M1.04 design dive limit
Stall speed: 197 km/h (122 mph, 106 kn) flaps down
Range: 892 km (554 mi, 482 nmi) internal fuel only
Combat range: 617 km (383 mi, 333 nmi) with 2x AGM-84 and 2x 592 l (156 US gal; 130 imp gal)
Ferry range: 1,950 km (1,210 mi, 1,050 nmi) with 3 drop tanks
Service ceiling: 15,250 m (50,030 ft)
G-limits: +8/-3
Rate of climb: 58.466 m/s (11,509.1 ft/min)
Takeoff distance with maximum weapon load: 2,134 m (7,001 ft)
Landing distance at maximum landing weight with brake chute: 854 m (2,802 ft)
Landing distance at maximum landing weight without brake chute: 1,250 m (4,100 ft)
Armament:
2× 30 mm (1.181 in) Aden cannon with 150 rounds each
7× hardpoints (4× under-wing, 1× under-fuselage and 2 × wingtip)
for a total ordnance of 3.085 kg (6,800 lb) and a wide range of weapons
The kit and its assembly:
A subtle kitbashing project, inspired by a CG-rendition of a carrier-based (yet un-navalized) BAe Hawk 200 in Indian Navy service by fellow user SPINNERS in January 2021. I found the idea inspiring but thought that the basic concept could be taken further and into hardware form with a model. And I had a Matchbox Hawk 200 in The Stash™, as well as a McDonnell T-45 trainer from Italeri…
The plan sounds simple: take a T-45 and replace the cockpit section with the single-seat cockpit from the Hawk 200. And while the necessary cuts were easy to make, reality rears its ugly head when you try to mate parts from basically the same aircraft but from models by different manufacturers.
The challenges started with the fact that the fuselage shapes of both models differ – the Matchbox kit is more “voluminous”, and the different canopy shape called for a partial spine transplant, which turned out to be of very different shape than the T-45’s respective section! Lots of PSR…
In order to improve the pretty basic Matchbox Hawk cockpit I integrated the cockpit tub from the Italeri T-45, including the ejection seat, dashboard and its top cover.
For the totally different T-45 front wheel I had to enlarge the respective well and added a “ceiling” to it, since the strut had to be attached somewhere. The Hawk 200’s ventral tub for the cannons (which only the first prototype carried, later production aircraft did not feature them) were retained – partly because of their “whiffy“ nature, but also because making it disappear would have involved more major surgeries.
Most of the are behind the cockpit comes from the Italeri T-45, I just added a RHAWS fairing to the fin, extending it by 3mm.
A major problem became the air intakes, because the two kits differ in their construction. I wanted to use the Italeri parts, because they match the fairings on the fuselage flanks well and are better detailed than the Matchbox parts. But the boundary layer spacers between intakes and fuselage are molded into the Italeri parts, while the Matchbox kit has them molded into the fuselage. This called for major surgery and eventually worked out fine, and more PSR blended the rest of the fuselage donors around the cockpit together. A tedious process, though.
The pylons were puzzled together, including a former Matchbox EA-6B wing pylon under the fuselage, cut down and mounted in reverse and upside down! The ordnance comes from the Italeri NATO weapons set (Matra Magic and AGM-84), the ventral drop tank comes IIRC from an Eduard L-39 Albatros. Matra Magics were chosen because India never operated any Sidewinder AAM, just French or Soviet/Russian missiles like the R-60 or R-73 (unlikely on the Hawk, IMHO), and I had preferred a pair of Sea Eagle ASMs (from a Hasegawa Sea Harrier kit), but their span turned out to be too large for the Hawk’s low wings. The alternative, more slender Harpoons are plausible, though, since they are actually part of the Indian Navy’s inventory.
Painting and markings:
The Indian Navy theme was already settled, and I wanted to stay close to SPINNERS’ illustration as well as to real world Indian Navy aircraft. SPINNERS’ Hawk carried the typical Sea Harreir scheme in Extra Dark Sea Grey and White, and I found this livery to look a bit too much retro, because I’d place this what-if aircraft in the early 2020s, when the Sea Harriers had already been phased out. A “realistic” livery might have been an overall mid-grey paint scheme (like the land-based Indian Hawk 132s), but I found this to look too boring. As a compromise, I gave the Samudree Baaj a simple two-tone paint scheme, carried by a few late Indian Sea Harriers. It consists of upper surfaces in Dark Sea Grey (Humbrol 164) and undersides in Medium Sea Grey (Modelmaster 2058), with a low waterline. The Modelmaster MSG has – for my taste – a rather bluish hue and appears almost like PRU Blue, but I left it that way.
The decals were puzzled together from variosu sources. the roundels come from a MiG-21F (Begemot), the unit markings and tactical codes from a Model Alliance Sea Harrier sheet, and the stencils are a mix from the Matchbox Hawk 200 and the Italeri T-45.
The kit was sealed with matt acrylic varnish from Italeri.
The fictional HAL „Samudree Baaj“ looks simple, but combining kits of the basically same aircraft from different manufacturers reveals their differences, and they are not to be underestimated! However, I like the result of a navalized Hawk single-seater, and - also with the relatively simple and dull livery - it looks pretty convincing.
Many thanks to SPINNERS for the creative inspiration - even though my build is not a 100% "copy" of the artwork, but rather a step further into the navalisation idea with the T-45 parts.
In the mid-1980s, the Sukhoi bureau began developing the new tactical combat aircraft from the naval trainer version of the Su-27K, known internally as the T10KM-2, to replace its Su-24 Fencer. Later renamed the Su-27IB (IB standing for istrebitel-bombardirovshchik, or “fighter-bomber”), the prototype retained the Flanker’s main undercarriage, which was strengthened to accommodate a 45 ton maximum gross weight, but sported a new distinctive nose housing a phased array multimode attack radar and a digital or “glass cockpit” configuration. Although developed in tandem with the two-seat naval trainer, the Su-27KUB, the two aircraft were not directly related.
In 1992, the Su-27IB was shown to the public at the MosAeroshow (later renamed the MAKS Airshow) but officially introduced on 13 February 1992 at Machulishi in Belarus. The aircraft flew the following year at the MAKS Airshow. The next prototype and the first pre-production aircraft, the T10V-2, first flew on 18 December 1993. This aircraft was different from the T10KM-2 in having modified vertical stabilizers and wing of the Su-35, twin tandem main undercarriage, and a longer “stinger” that housed the N012 rearward-facing warning radar, the drag chute, and fuel jettison outlet.
Some photos from a job we did. Upgraded a network from 1gbit to 10gbit, adding in redundant core switches and installed two new servers.
This photo shows how I did the cable management for our two 48 port switches.
The light blue patch cables are multimode fiber @ 10gbits.
Shooting with Anne = lots of fun!
STROBIST
Just one speedlight in a little DIY projector...
Details for the projector: see here:
fotopraxis.wordpress.com/2012/10/25/news-blitz-musterproj...
Following that link you find the projector, equipped with a steel gobo, but it works also perfect with slides ...
And why not use a beamer?
Well, advantages of the little DIY projector are:
- works with batteries (with a battery-powered flash)
- light, small
- powerful
- no tripod or high ISO needed
- with preview (using your multimode or the modeling flash of your flashgun)
Some photos from a job we did. Upgraded a network from 1gbit to 10gbit, adding in redundant core switches and installed two new servers.
This photo shows our redundant core switches with fiber management brackets installed.
The light blue patch cables are multimode fiber @ 10gbits.
DETAILS IM BLOG (IN GERMAN)
fotopraxis.net/2015/07/10/sin-city-2/
NICER VIEWING
F11 and then farm1.staticflickr.com/386/19578768855_c9555876d7_o.jpg
STROBIST
Three manual speedlites: (1) Light blaster projector with a speedlite and with a homemade little slide for the ~Paris~ pattern. This one was on 1/2 power.
(2, 3) Two flashes with in Flashdiscs (> FStoppers) coming from the side to form that light, that is so typical for SINCITY (some sort of double-kicker, I'd say).
EXIF
5d3 with 24-70 at 47 mm and at f/2.8. ISO 250, 1^/125 second. Raw.
EFFECTS
Dryice from the left side, synthetic rain in Photoshop, that's it. :-)
NOTES & TRICKS
I used the YN-622 as focusing aid.
On the projector, I used a EF 17-40 lens.
You can use the multimode, which some flashes have, to do the adjustment for the projector (to get a sort of continuous light).
--
Tilo ~gallo~ Gockel, www.fotopraxis.net
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The Indian „Samudree Baaj“ (समुद्री बाज, Sea Hawk) was a highly modified, navalized version of the British BAE Systems Hawk land-based training jet aircraft, which had been manufactured under license by Hindustan Aeronautics Limited (HAL). The first indigenously built Hawk Mk. 132 trainer was delivered in 2008 to the Indian Air Force, and the type has since then been updated with indigenous avionics into the “Hawk-I” Mk. 132 from 2020 onwards. The aircraft’s Rolls Royce Adour Mk 871 engine was also license-built by HAL, and the company had experience from a wide range of aircraft projects in the past.
The Samudree Baaj project was initiated in 2006 by the Indian Navy, as part of the long historic plan to provide the Indian Navy with a fully capable aircraft carrier. This plan had been initiated in 1989, when India announced a plan to replace its ageing British-built aircraft carriers, INS Vikrant and INS Viraat (ex-HMS Hermes), with two new 28,000-ton Air Defence Ships (ADS) that would operate the BAe Sea Harrier aircraft. The first vessel was to replace Vikrant, which was set to decommission in early 1997. Construction of the ADS was to start at the Cochin Shipyard (CSL) in 1993 after the Indian Naval Design Organisation had translated this design study into a production model. Following the 1991 economic crisis, the plans for construction of the vessels were put on hold indefinitely.
In 1999, then-Defence Minister George Fernandes revived the project and sanctioned the construction of the Project “71 ADS”. By that time, given the ageing Sea Harrier fleet, the letter of intent called for a carrier that would carry more modern jet fighters. In 2001, CSL released a graphic illustration showing a 32,000-ton STOBAR (Short Take-Off But Arrested Recovery) design with a pronounced ski jump. The aircraft carrier project finally received formal government approval in January 2003. By then, design updates called for a 37,500-ton carrier to operate the MiG-29K. India opted for a three-carrier fleet consisting of one carrier battle group stationed on each seaboard, and a third carrier held in reserve, in order to continuously protect both its flanks, to protect economic interests and mercantile traffic, and to provide humanitarian platforms in times of disasters, since a carrier can provide a self-generating supply of fresh water, medical assistance or engineering expertise to populations in need for assistance.
In August 2006, then-Chief of the Naval Staff, Admiral Arun Prakash stated that the designation for the vessel had been changed from Air Defence Ship (ADS) to Indigenous Aircraft Carrier (IAC). The euphemistic ADS had been adopted in planning stages to ward off concerns about a naval build-up. Final revisions to the design increased the displacement of the carrier from 37,500 tons to over 40,000 tons. The length of the ship also increased from 252 metres (827 ft) to 262 metres (860 ft).
It was at this time that, beyond the MiG-29K, primarily a carrier-capable trainer and also a light (and less costly) strike aircraft would be needed. With the running production of the Hawk Mk. 132 for the Indian Air Force and BAE Systems’ connection and experience to the USA and McDonnell/Boeing’s adaptation of the Hawk as the US Navy’s carrier-capable T-45 trainer, HAL was instructed to develop a suitable aircraft family on the Hawk’s basis for the new carriers.
HAL’s Samudree Baaj is a fully carrier-capable version of the British Aerospace Hawk Mk. The Hawk had not originally been designed to perform carrier operations, so that numerous modifications were required, such as the extensive strengthening of the airframe to withstand the excessive forces imposed by the stresses involved in catapult launches and high sink-rate landings, both scenarios being routine in aircraft carrier operations.
The aerodynamic changes of the aircraft, which were mutually developed by HAL and BAE Systems, included improvements to the low-speed handling characteristics and a reduction in the approach speed. Most notable amongst the changes made to the Hawk's design were extended flaps for better low-speed handling, along with the addition of spoilers on the wings to reduce lift and strakes on the fuselage which improved airflow and stabilizer efficiency.
Other, less obvious modifications included a reinforced airframe, the adoption of a more robust and widened landing gear, complete with a catapult tow bar attachment to the oleo strut of the new two-wheel nose gear design, and an arresting hook. The tail fin was extended by 1 foot (12 in, 30.5 cm) to compensate for the loss of the Hawk’s ventral stabilizing strakes. To make room for the arrester hook, the original ventral air brake was split and re-located to the flanks, similar to the USN’s T-45 trainer.
At the time of the Samudree Baaj’s design, the exact catapult arrangement and capacity on board of India’s new carriers was not clear yet – even more so, since the MiG-29K and its powerful engines might have made a catapult obsolete. Therefore, the Samudree Baaj was designed to be operable either with a ski jump ramp (in the style of the Russian Kiev class carriers, of which India had purchased one as INS Vikramaditya) or with only minimal launch support within the projected STOBAR concept, which included a relatively short-stroke steam catapult and a similarly short, undampened arrester gear.
By 2009 the basic airframe had been defined and four prototypes were built for two versions: the Mk. 101 trainer, which was basically a navalized version of the land-based Mk. 132 with almost the same mission equipment, and the Mk. 201, a single-seater. Two airframes of each type were built and the first Samudree Baaj flight took place in early 2011. The Indian government ordered 30 trainers and 15 attack aircraft, to be delivered with the first new Indian carrier, INS Vikrant, in late 2017.
The Samudree Baaj Mk. 201 was developed from the basic navalized Hawk airframe as a light multirole fighter with a small visual signature and high maneuverability, but high combat efficiency and capable of both strike and point defense missions. It differed from the trainer through a completely new forward fuselage whereby the forward cockpit area, which normally housed the trainee, was replaced by an electronics bay for avionics and onboard systems, including a fire control computer, a LINS 300 ring laser gyroscope inertial navigation system and a lightweight (145 kg) multimode, coherent, pulse-Doppler I band airborne radar. This multimode radar was developed from the Ferranti Blue Fox radar and capable of airborne interception and air-to-surface strike roles over water and land, with look-down/shoot-down and look-up modes. It had ten air-to-surface and ten air-to-ground modes for navigation and weapon aiming purposes.
A ventral fairing behind the radome carried a laser rangefinder and a forward-looking infrared (FLIR). Mid-air refueling was also possible, through a detachable (but fixed) probe. GPS navigation or modern night-flight systems were integrated, too.
Like the trainer, the Mk. 201 had a total of seven weapon hardpoints (1 ventral, four underwing and a pair of wing tip launch rails), but the more sophisticated avionics suite allowed a wider range of ordnance to be carried and deployed, which included radar-guided AAMs for BVR strokes and smart weapons and guided missiles – especially the Sea Eagle and AGM-84 “Harpoon” anti-ship missiles in the Indian Navy’s arsenal. For the maritime strike role and as a support for ASW missions, the Samudree Baaj Mk. 201 could even deploy Sting Ray homing torpedoes.
Furthermore, a pair of 30mm (1.18 in) ADEN machine cannon with 150 RPG were housed in a shallow fairing under the cockpit. The self-protection systems include a BAE SkyGuardian 200 RWR and automatic Vinten chaff/flare dispensers located above the engine exhaust.
The Samudree Baaj project was highly ambitious, so that it does not wonder that there were many delays and teething troubles. Beyond the complex avionics integration this included the maritime adaptation of the Adour engine, which eventually led to the uprated Adour Mk. 871-1N, which, as a side benefit, also offered about 10% more power.
However, in parallel, INS Vikrant also ran into delays: In July 2012, The Times of India reported that construction of Vikrant has been delayed by three years, and the ship would be ready for commissioning by 2018. Later, in November 2012, Indian English-language news channel NDTV reported that cost of the aircraft carrier had increased, and the delivery has been delayed by at least five years and is expected to be with the Indian Navy only after 2018 as against the scheduled date of delivery of 2014. Work then commenced for the next stage of construction, which included the installation of the integrated propulsion system, the superstructure, the upper decks, the cabling, sensors and weapons. Vikrant was eventually undocked on 10 June 2015 after the completion of structural work. Cabling, piping, heat and ventilation works were to be completed by 2017; sea trials would begin thereafter. In December 2019, it was reported that the engines on board the ship were switched on and in November 2020, only the basin trials of the aircraft carrier were completed.
By that time, the first Samudree Baaj aircraft had been delivered to Indian Navy 300 squadron, and even though only based at land at Hansa Air Station, flight training and military operations commenced. In the meantime, the start of Vikrant's trials had initially been scheduled to begin on 12 March 2020, but further construction delays caused that to be moved back to April. With the COVID-19 crisis, the navy explained that trials were unlikely to begin before September/October. During the Navy Day press meeting in December 2019, Navy Chief Admiral Karambir Singh said Vikrant would be fully operational before the end of 2022. The COVID-19 pandemic had already pushed that back to 2023 and further delays appeared possible.
In late 2020, the Indian Navy expected to commission Vikrant by the end of 2021. Until then, the Samudree Baaj fleet will remain land-based at INS Hansa near Goa. This not only is the INAS 300 home base, it is also the location of the Indian Navy's Shore Based Test Facility (SBTF), which is a mock-up of the 283-metre (928 ft) INS Vikramaditya (a modified Kiev-class aircraft carrier) deck built to train and certify navy pilots, primarily the the Mikoyan MiG-29K for operating from the aircraft carrier, but now also for the Samudree Baaj and for the developmental trials of the naval HAL Tejas lightweight fighter.
General characteristics:
Crew: 1
Length: 11.38 m (37 ft 4 in)
Wingspan: 9.39 m (30 ft 10 in)
Height: 4.30 m (14 ft 1 in)
Wing area: 17.66 m2 (190.1 sq ft)
Empty weight: 9,394 lb (4,261 kg)
Gross weight: 12,750 lb (5,783 kg)
Max takeoff weight: 9,101 kg (20,064 lb)
Fuel capacity: 1,360 kg (3,000 lb) internal
3,210 kg (7,080 lb) with 3 drop tanks
Powerplant:
1× Rolls-Royce Turbomeca Adour Mk. 871-1N non-afterburning turbofan, 28,89 kN (6,445 lbf) thrust
Performance:
Maximum speed: 1,037 km/h (644 mph, 560 kn) at sea level
Maximum speed: Mach 1.2 (never exceed at altitude)
Cruise speed: 796 km/h (495 mph, 430 kn) at 12,500 m (41,000 ft)
Carrier launch speed: 121 kn (139 mph; 224 km/h)
Approach speed: 125 kn (144 mph; 232 km/h)
Never exceed speed: 575 kn (662 mph, 1,065 km/h) / M1.04 design dive limit
Stall speed: 197 km/h (122 mph, 106 kn) flaps down
Range: 892 km (554 mi, 482 nmi) internal fuel only
Combat range: 617 km (383 mi, 333 nmi) with 2x AGM-84 and 2x 592 l (156 US gal; 130 imp gal)
Ferry range: 1,950 km (1,210 mi, 1,050 nmi) with 3 drop tanks
Service ceiling: 15,250 m (50,030 ft)
G-limits: +8/-3
Rate of climb: 58.466 m/s (11,509.1 ft/min)
Takeoff distance with maximum weapon load: 2,134 m (7,001 ft)
Landing distance at maximum landing weight with brake chute: 854 m (2,802 ft)
Landing distance at maximum landing weight without brake chute: 1,250 m (4,100 ft)
Armament:
2× 30 mm (1.181 in) Aden cannon with 150 rounds each
7× hardpoints (4× under-wing, 1× under-fuselage and 2 × wingtip)
for a total ordnance of 3.085 kg (6,800 lb) and a wide range of weapons
The kit and its assembly:
A subtle kitbashing project, inspired by a CG-rendition of a carrier-based (yet un-navalized) BAe Hawk 200 in Indian Navy service by fellow user SPINNERS in January 2021. I found the idea inspiring but thought that the basic concept could be taken further and into hardware form with a model. And I had a Matchbox Hawk 200 in The Stash™, as well as a McDonnell T-45 trainer from Italeri…
The plan sounds simple: take a T-45 and replace the cockpit section with the single-seat cockpit from the Hawk 200. And while the necessary cuts were easy to make, reality rears its ugly head when you try to mate parts from basically the same aircraft but from models by different manufacturers.
The challenges started with the fact that the fuselage shapes of both models differ – the Matchbox kit is more “voluminous”, and the different canopy shape called for a partial spine transplant, which turned out to be of very different shape than the T-45’s respective section! Lots of PSR…
In order to improve the pretty basic Matchbox Hawk cockpit I integrated the cockpit tub from the Italeri T-45, including the ejection seat, dashboard and its top cover.
For the totally different T-45 front wheel I had to enlarge the respective well and added a “ceiling” to it, since the strut had to be attached somewhere. The Hawk 200’s ventral tub for the cannons (which only the first prototype carried, later production aircraft did not feature them) were retained – partly because of their “whiffy“ nature, but also because making it disappear would have involved more major surgeries.
Most of the are behind the cockpit comes from the Italeri T-45, I just added a RHAWS fairing to the fin, extending it by 3mm.
A major problem became the air intakes, because the two kits differ in their construction. I wanted to use the Italeri parts, because they match the fairings on the fuselage flanks well and are better detailed than the Matchbox parts. But the boundary layer spacers between intakes and fuselage are molded into the Italeri parts, while the Matchbox kit has them molded into the fuselage. This called for major surgery and eventually worked out fine, and more PSR blended the rest of the fuselage donors around the cockpit together. A tedious process, though.
The pylons were puzzled together, including a former Matchbox EA-6B wing pylon under the fuselage, cut down and mounted in reverse and upside down! The ordnance comes from the Italeri NATO weapons set (Matra Magic and AGM-84), the ventral drop tank comes IIRC from an Eduard L-39 Albatros. Matra Magics were chosen because India never operated any Sidewinder AAM, just French or Soviet/Russian missiles like the R-60 or R-73 (unlikely on the Hawk, IMHO), and I had preferred a pair of Sea Eagle ASMs (from a Hasegawa Sea Harrier kit), but their span turned out to be too large for the Hawk’s low wings. The alternative, more slender Harpoons are plausible, though, since they are actually part of the Indian Navy’s inventory.
Painting and markings:
The Indian Navy theme was already settled, and I wanted to stay close to SPINNERS’ illustration as well as to real world Indian Navy aircraft. SPINNERS’ Hawk carried the typical Sea Harreir scheme in Extra Dark Sea Grey and White, and I found this livery to look a bit too much retro, because I’d place this what-if aircraft in the early 2020s, when the Sea Harriers had already been phased out. A “realistic” livery might have been an overall mid-grey paint scheme (like the land-based Indian Hawk 132s), but I found this to look too boring. As a compromise, I gave the Samudree Baaj a simple two-tone paint scheme, carried by a few late Indian Sea Harriers. It consists of upper surfaces in Dark Sea Grey (Humbrol 164) and undersides in Medium Sea Grey (Modelmaster 2058), with a low waterline. The Modelmaster MSG has – for my taste – a rather bluish hue and appears almost like PRU Blue, but I left it that way.
The decals were puzzled together from variosu sources. the roundels come from a MiG-21F (Begemot), the unit markings and tactical codes from a Model Alliance Sea Harrier sheet, and the stencils are a mix from the Matchbox Hawk 200 and the Italeri T-45.
The kit was sealed with matt acrylic varnish from Italeri.
The fictional HAL „Samudree Baaj“ looks simple, but combining kits of the basically same aircraft from different manufacturers reveals their differences, and they are not to be underestimated! However, I like the result of a navalized Hawk single-seater, and - also with the relatively simple and dull livery - it looks pretty convincing.
Many thanks to SPINNERS for the creative inspiration - even though my build is not a 100% "copy" of the artwork, but rather a step further into the navalisation idea with the T-45 parts.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The Indian „Samudree Baaj“ (समुद्री बाज, Sea Hawk) was a highly modified, navalized version of the British BAE Systems Hawk land-based training jet aircraft, which had been manufactured under license by Hindustan Aeronautics Limited (HAL). The first indigenously built Hawk Mk. 132 trainer was delivered in 2008 to the Indian Air Force, and the type has since then been updated with indigenous avionics into the “Hawk-I” Mk. 132 from 2020 onwards. The aircraft’s Rolls Royce Adour Mk 871 engine was also license-built by HAL, and the company had experience from a wide range of aircraft projects in the past.
The Samudree Baaj project was initiated in 2006 by the Indian Navy, as part of the long historic plan to provide the Indian Navy with a fully capable aircraft carrier. This plan had been initiated in 1989, when India announced a plan to replace its ageing British-built aircraft carriers, INS Vikrant and INS Viraat (ex-HMS Hermes), with two new 28,000-ton Air Defence Ships (ADS) that would operate the BAe Sea Harrier aircraft. The first vessel was to replace Vikrant, which was set to decommission in early 1997. Construction of the ADS was to start at the Cochin Shipyard (CSL) in 1993 after the Indian Naval Design Organisation had translated this design study into a production model. Following the 1991 economic crisis, the plans for construction of the vessels were put on hold indefinitely.
In 1999, then-Defence Minister George Fernandes revived the project and sanctioned the construction of the Project “71 ADS”. By that time, given the ageing Sea Harrier fleet, the letter of intent called for a carrier that would carry more modern jet fighters. In 2001, CSL released a graphic illustration showing a 32,000-ton STOBAR (Short Take-Off But Arrested Recovery) design with a pronounced ski jump. The aircraft carrier project finally received formal government approval in January 2003. By then, design updates called for a 37,500-ton carrier to operate the MiG-29K. India opted for a three-carrier fleet consisting of one carrier battle group stationed on each seaboard, and a third carrier held in reserve, in order to continuously protect both its flanks, to protect economic interests and mercantile traffic, and to provide humanitarian platforms in times of disasters, since a carrier can provide a self-generating supply of fresh water, medical assistance or engineering expertise to populations in need for assistance.
In August 2006, then-Chief of the Naval Staff, Admiral Arun Prakash stated that the designation for the vessel had been changed from Air Defence Ship (ADS) to Indigenous Aircraft Carrier (IAC). The euphemistic ADS had been adopted in planning stages to ward off concerns about a naval build-up. Final revisions to the design increased the displacement of the carrier from 37,500 tons to over 40,000 tons. The length of the ship also increased from 252 metres (827 ft) to 262 metres (860 ft).
It was at this time that, beyond the MiG-29K, primarily a carrier-capable trainer and also a light (and less costly) strike aircraft would be needed. With the running production of the Hawk Mk. 132 for the Indian Air Force and BAE Systems’ connection and experience to the USA and McDonnell/Boeing’s adaptation of the Hawk as the US Navy’s carrier-capable T-45 trainer, HAL was instructed to develop a suitable aircraft family on the Hawk’s basis for the new carriers.
HAL’s Samudree Baaj is a fully carrier-capable version of the British Aerospace Hawk Mk. The Hawk had not originally been designed to perform carrier operations, so that numerous modifications were required, such as the extensive strengthening of the airframe to withstand the excessive forces imposed by the stresses involved in catapult launches and high sink-rate landings, both scenarios being routine in aircraft carrier operations.
The aerodynamic changes of the aircraft, which were mutually developed by HAL and BAE Systems, included improvements to the low-speed handling characteristics and a reduction in the approach speed. Most notable amongst the changes made to the Hawk's design were extended flaps for better low-speed handling, along with the addition of spoilers on the wings to reduce lift and strakes on the fuselage which improved airflow and stabilizer efficiency.
Other, less obvious modifications included a reinforced airframe, the adoption of a more robust and widened landing gear, complete with a catapult tow bar attachment to the oleo strut of the new two-wheel nose gear design, and an arresting hook. The tail fin was extended by 1 foot (12 in, 30.5 cm) to compensate for the loss of the Hawk’s ventral stabilizing strakes. To make room for the arrester hook, the original ventral air brake was split and re-located to the flanks, similar to the USN’s T-45 trainer.
At the time of the Samudree Baaj’s design, the exact catapult arrangement and capacity on board of India’s new carriers was not clear yet – even more so, since the MiG-29K and its powerful engines might have made a catapult obsolete. Therefore, the Samudree Baaj was designed to be operable either with a ski jump ramp (in the style of the Russian Kiev class carriers, of which India had purchased one as INS Vikramaditya) or with only minimal launch support within the projected STOBAR concept, which included a relatively short-stroke steam catapult and a similarly short, undampened arrester gear.
By 2009 the basic airframe had been defined and four prototypes were built for two versions: the Mk. 101 trainer, which was basically a navalized version of the land-based Mk. 132 with almost the same mission equipment, and the Mk. 201, a single-seater. Two airframes of each type were built and the first Samudree Baaj flight took place in early 2011. The Indian government ordered 30 trainers and 15 attack aircraft, to be delivered with the first new Indian carrier, INS Vikrant, in late 2017.
The Samudree Baaj Mk. 201 was developed from the basic navalized Hawk airframe as a light multirole fighter with a small visual signature and high maneuverability, but high combat efficiency and capable of both strike and point defense missions. It differed from the trainer through a completely new forward fuselage whereby the forward cockpit area, which normally housed the trainee, was replaced by an electronics bay for avionics and onboard systems, including a fire control computer, a LINS 300 ring laser gyroscope inertial navigation system and a lightweight (145 kg) multimode, coherent, pulse-Doppler I band airborne radar. This multimode radar was developed from the Ferranti Blue Fox radar and capable of airborne interception and air-to-surface strike roles over water and land, with look-down/shoot-down and look-up modes. It had ten air-to-surface and ten air-to-ground modes for navigation and weapon aiming purposes.
A ventral fairing behind the radome carried a laser rangefinder and a forward-looking infrared (FLIR). Mid-air refueling was also possible, through a detachable (but fixed) probe. GPS navigation or modern night-flight systems were integrated, too.
Like the trainer, the Mk. 201 had a total of seven weapon hardpoints (1 ventral, four underwing and a pair of wing tip launch rails), but the more sophisticated avionics suite allowed a wider range of ordnance to be carried and deployed, which included radar-guided AAMs for BVR strokes and smart weapons and guided missiles – especially the Sea Eagle and AGM-84 “Harpoon” anti-ship missiles in the Indian Navy’s arsenal. For the maritime strike role and as a support for ASW missions, the Samudree Baaj Mk. 201 could even deploy Sting Ray homing torpedoes.
Furthermore, a pair of 30mm (1.18 in) ADEN machine cannon with 150 RPG were housed in a shallow fairing under the cockpit. The self-protection systems include a BAE SkyGuardian 200 RWR and automatic Vinten chaff/flare dispensers located above the engine exhaust.
The Samudree Baaj project was highly ambitious, so that it does not wonder that there were many delays and teething troubles. Beyond the complex avionics integration this included the maritime adaptation of the Adour engine, which eventually led to the uprated Adour Mk. 871-1N, which, as a side benefit, also offered about 10% more power.
However, in parallel, INS Vikrant also ran into delays: In July 2012, The Times of India reported that construction of Vikrant has been delayed by three years, and the ship would be ready for commissioning by 2018. Later, in November 2012, Indian English-language news channel NDTV reported that cost of the aircraft carrier had increased, and the delivery has been delayed by at least five years and is expected to be with the Indian Navy only after 2018 as against the scheduled date of delivery of 2014. Work then commenced for the next stage of construction, which included the installation of the integrated propulsion system, the superstructure, the upper decks, the cabling, sensors and weapons. Vikrant was eventually undocked on 10 June 2015 after the completion of structural work. Cabling, piping, heat and ventilation works were to be completed by 2017; sea trials would begin thereafter. In December 2019, it was reported that the engines on board the ship were switched on and in November 2020, only the basin trials of the aircraft carrier were completed.
By that time, the first Samudree Baaj aircraft had been delivered to Indian Navy 300 squadron, and even though only based at land at Hansa Air Station, flight training and military operations commenced. In the meantime, the start of Vikrant's trials had initially been scheduled to begin on 12 March 2020, but further construction delays caused that to be moved back to April. With the COVID-19 crisis, the navy explained that trials were unlikely to begin before September/October. During the Navy Day press meeting in December 2019, Navy Chief Admiral Karambir Singh said Vikrant would be fully operational before the end of 2022. The COVID-19 pandemic had already pushed that back to 2023 and further delays appeared possible.
In late 2020, the Indian Navy expected to commission Vikrant by the end of 2021. Until then, the Samudree Baaj fleet will remain land-based at INS Hansa near Goa. This not only is the INAS 300 home base, it is also the location of the Indian Navy's Shore Based Test Facility (SBTF), which is a mock-up of the 283-metre (928 ft) INS Vikramaditya (a modified Kiev-class aircraft carrier) deck built to train and certify navy pilots, primarily the the Mikoyan MiG-29K for operating from the aircraft carrier, but now also for the Samudree Baaj and for the developmental trials of the naval HAL Tejas lightweight fighter.
General characteristics:
Crew: 1
Length: 11.38 m (37 ft 4 in)
Wingspan: 9.39 m (30 ft 10 in)
Height: 4.30 m (14 ft 1 in)
Wing area: 17.66 m2 (190.1 sq ft)
Empty weight: 9,394 lb (4,261 kg)
Gross weight: 12,750 lb (5,783 kg)
Max takeoff weight: 9,101 kg (20,064 lb)
Fuel capacity: 1,360 kg (3,000 lb) internal
3,210 kg (7,080 lb) with 3 drop tanks
Powerplant:
1× Rolls-Royce Turbomeca Adour Mk. 871-1N non-afterburning turbofan, 28,89 kN (6,445 lbf) thrust
Performance:
Maximum speed: 1,037 km/h (644 mph, 560 kn) at sea level
Maximum speed: Mach 1.2 (never exceed at altitude)
Cruise speed: 796 km/h (495 mph, 430 kn) at 12,500 m (41,000 ft)
Carrier launch speed: 121 kn (139 mph; 224 km/h)
Approach speed: 125 kn (144 mph; 232 km/h)
Never exceed speed: 575 kn (662 mph, 1,065 km/h) / M1.04 design dive limit
Stall speed: 197 km/h (122 mph, 106 kn) flaps down
Range: 892 km (554 mi, 482 nmi) internal fuel only
Combat range: 617 km (383 mi, 333 nmi) with 2x AGM-84 and 2x 592 l (156 US gal; 130 imp gal)
Ferry range: 1,950 km (1,210 mi, 1,050 nmi) with 3 drop tanks
Service ceiling: 15,250 m (50,030 ft)
G-limits: +8/-3
Rate of climb: 58.466 m/s (11,509.1 ft/min)
Takeoff distance with maximum weapon load: 2,134 m (7,001 ft)
Landing distance at maximum landing weight with brake chute: 854 m (2,802 ft)
Landing distance at maximum landing weight without brake chute: 1,250 m (4,100 ft)
Armament:
2× 30 mm (1.181 in) Aden cannon with 150 rounds each
7× hardpoints (4× under-wing, 1× under-fuselage and 2 × wingtip)
for a total ordnance of 3.085 kg (6,800 lb) and a wide range of weapons
The kit and its assembly:
A subtle kitbashing project, inspired by a CG-rendition of a carrier-based (yet un-navalized) BAe Hawk 200 in Indian Navy service by fellow user SPINNERS in January 2021. I found the idea inspiring but thought that the basic concept could be taken further and into hardware form with a model. And I had a Matchbox Hawk 200 in The Stash™, as well as a McDonnell T-45 trainer from Italeri…
The plan sounds simple: take a T-45 and replace the cockpit section with the single-seat cockpit from the Hawk 200. And while the necessary cuts were easy to make, reality rears its ugly head when you try to mate parts from basically the same aircraft but from models by different manufacturers.
The challenges started with the fact that the fuselage shapes of both models differ – the Matchbox kit is more “voluminous”, and the different canopy shape called for a partial spine transplant, which turned out to be of very different shape than the T-45’s respective section! Lots of PSR…
In order to improve the pretty basic Matchbox Hawk cockpit I integrated the cockpit tub from the Italeri T-45, including the ejection seat, dashboard and its top cover.
For the totally different T-45 front wheel I had to enlarge the respective well and added a “ceiling” to it, since the strut had to be attached somewhere. The Hawk 200’s ventral tub for the cannons (which only the first prototype carried, later production aircraft did not feature them) were retained – partly because of their “whiffy“ nature, but also because making it disappear would have involved more major surgeries.
Most of the are behind the cockpit comes from the Italeri T-45, I just added a RHAWS fairing to the fin, extending it by 3mm.
A major problem became the air intakes, because the two kits differ in their construction. I wanted to use the Italeri parts, because they match the fairings on the fuselage flanks well and are better detailed than the Matchbox parts. But the boundary layer spacers between intakes and fuselage are molded into the Italeri parts, while the Matchbox kit has them molded into the fuselage. This called for major surgery and eventually worked out fine, and more PSR blended the rest of the fuselage donors around the cockpit together. A tedious process, though.
The pylons were puzzled together, including a former Matchbox EA-6B wing pylon under the fuselage, cut down and mounted in reverse and upside down! The ordnance comes from the Italeri NATO weapons set (Matra Magic and AGM-84), the ventral drop tank comes IIRC from an Eduard L-39 Albatros. Matra Magics were chosen because India never operated any Sidewinder AAM, just French or Soviet/Russian missiles like the R-60 or R-73 (unlikely on the Hawk, IMHO), and I had preferred a pair of Sea Eagle ASMs (from a Hasegawa Sea Harrier kit), but their span turned out to be too large for the Hawk’s low wings. The alternative, more slender Harpoons are plausible, though, since they are actually part of the Indian Navy’s inventory.
Painting and markings:
The Indian Navy theme was already settled, and I wanted to stay close to SPINNERS’ illustration as well as to real world Indian Navy aircraft. SPINNERS’ Hawk carried the typical Sea Harreir scheme in Extra Dark Sea Grey and White, and I found this livery to look a bit too much retro, because I’d place this what-if aircraft in the early 2020s, when the Sea Harriers had already been phased out. A “realistic” livery might have been an overall mid-grey paint scheme (like the land-based Indian Hawk 132s), but I found this to look too boring. As a compromise, I gave the Samudree Baaj a simple two-tone paint scheme, carried by a few late Indian Sea Harriers. It consists of upper surfaces in Dark Sea Grey (Humbrol 164) and undersides in Medium Sea Grey (Modelmaster 2058), with a low waterline. The Modelmaster MSG has – for my taste – a rather bluish hue and appears almost like PRU Blue, but I left it that way.
The decals were puzzled together from variosu sources. the roundels come from a MiG-21F (Begemot), the unit markings and tactical codes from a Model Alliance Sea Harrier sheet, and the stencils are a mix from the Matchbox Hawk 200 and the Italeri T-45.
The kit was sealed with matt acrylic varnish from Italeri.
The fictional HAL „Samudree Baaj“ looks simple, but combining kits of the basically same aircraft from different manufacturers reveals their differences, and they are not to be underestimated! However, I like the result of a navalized Hawk single-seater, and - also with the relatively simple and dull livery - it looks pretty convincing.
Many thanks to SPINNERS for the creative inspiration - even though my build is not a 100% "copy" of the artwork, but rather a step further into the navalisation idea with the T-45 parts.
Some photos from a job we did. Upgraded a network from 1gbit to 10gbit, adding in redundant core switches and installed two new servers.
Photographed while being tested at my shop before install.
The light blue patch cables are multimode fiber, not the copper stuff that you use at home.
Please see the camera-wiki article on the Ricoh XR-P Multi-program. As the name (and graph) indicate, this model offers different autoexposure programs, which can prioritize depth of field (small apertures), freezing action (fast shutter speeds), or a compromise.
The new Ricoh "P" series lenses are a modification of the original Pentax K mount to enable the body to drive the aperture position. Unfortunately, Ricoh uses its own custom linkage to do this and Pentax--A lenses are not compatible.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on authentic facts. BEWARE!
Some background:
The forerunners of the Philippine Air Force was the Philippine Militia, otherwise known as Philippine National Guard (PNG). On March 17, 1917 Senate President Manuel L. Quezon enacted a bill (Militia Act 2715) for the creation of the Philippine Militia, in anticipation that there would be an outbreak of hostilities between United States and Germany.
The early aviation unit was lacking enough knowledge and equipment to be considered as an air force and was then limited only to air transport duties. In 1935, Philippine Military Aviation was activated when the 10th Congress passed Commonwealth Act 1494 that provided for the organization of the Philippine Constabulary Air Corps (PCAC). PCAC was renamed as the Philippine Army Air Corps (PAAC) in 1936 and started with only three planes on its inventory. In 1941, PAAC had a total of 54 aircraft including fighters and light bombers, reconnaissance aircraft, light transport and trainers. They later engaged the Japanese when they invaded the Philippines in 1941–42, and were reformed in 1945 after the country's liberation.
The PAF became a separate military service on July 1, 1947, and the main aircraft type became the P-51 Mustang, flown from 1947 to 1959. Ground attack missions were flown against various insurgent groups, with aircraft hit by ground fire but none shot down. The Mustangs would be replaced by the jet-powered North American F-86 Sabres in the late 1950s, assisted by Lockheed T-33 Shooting Star and Beechcraft T-34 Mentor trainers.
During the 70s, the PAF was actively providing air support for the AFP campaign against the MNLF forces in Central Mindanao, aside from doing the airlifting duties for troop movements from Manila and Cebu to the warzone. In late 1977, the Philippine government purchased 35 secondhand U.S. Navy F-8Hs that had been stored at Davis-Monthan AFB in Arizona. Twenty-five of them were refurbished by Vought and the remaining 10 were used for spare parts. As part of the deal, the U.S. would train Philippine pilots in using the (only) TF-8A, and they were mostly used for intercepting Soviet bombers. The F-8s were grounded in 1988 and were finally withdrawn from service in 1991 after they were badly damaged by the Mount Pinatubo eruption, and have since been offered for sale as scrap.
This left the PAF with the F-5 Freedom Fighter as the only jet-powered combat aircraft. The Philippine Air Force acquired 37 F-5A and F-5B from 1965 to 1998 (from Taiwan and South Korea). The F-5A/Bs were used by the 6th Tactical Fighter Squadron (Cobras) of the 5th Fighter Wing and the Blue Diamonds aerobatic team. The F-5s also underwent an upgrade which equipped it with surplus AN/APQ-153 radars with significant overhaul at the end of the 1970s to stretch their service lives another 15 years.
Since the retirement of the Northrop F-5s in September 2005, the Philippine Air Force was left without any fighter jets and thus also without any serious air cover, considerably weakening the countries position in the region. Financial constraints prevented the procurement of refurbished F-16A/Bs from US surplus stocks, so that the PAF initially resorted to Aermacchi S-211 trainer jets to fill the void left by the F-5's. These S-211's were later upgraded to light attack capability and used for air and sea patrol and also performed counter-insurgency operations from time to time. Apart from these trainers, the only active fixed wing aircraft to fill the roles were SF-260 trainers with light attack capability, and a handful of obsolete OV-10 Bronco light attack and reconnaissance aircraft.
With rising tensions and frequent incidents with Chinese forces, however, the PAF settled upon the “Flight Plan 2028”, a long-term modernization and procurement plan. One of the first investments in order to re-build the PAF’s jet fighter force was eventually settled in 2010, when the Philippines started negotiations with Israel to purchase refurbished IAI Kfir fighter-bombers. In August 2012 Israel Aerospace Industries officially announced that it would deliver twenty-one pre-owned Kfir fighter jets to the Philippines, with a 40-year guarantee and a supply of Python 4 IR-homing AAMs, at a rumored unit price of USD $20 million - a price that represents 1/3 the cost of a brand new fighter with similar capability, but without the weaponry.
These machines were Kfir C.10s, a variant developed especially for export, basically an updated C.7. The aircraft for the Philippines received the designation C.10P in order to reflect the new operator’s specifications. The most important changes of the C.10 update were the adaptation of an Elta EL/M-2032 multi-role radar and the integration of two 127×177mm MFDs in the cockpit.
The EL/M-2032 is an advanced Multimode Airborne Fire Control Radar designed for multi-mission fighters, oriented for both air-to-air and strike missions. Modular hardware design, software control and flexible avionic interfaces ensure that the radar can be installed in a wide range of existing fighter aircraft (such as F-16, F-5, Mirage, Harrier variants, F-4, MiG-21, etc.), and it can be customized to meet specific user requirements.
The EL/M-2032 greatly enhances the Air-to-Air, Air-to-Ground and Air-to-Sea capabilities of the aircraft, even though the PAF’s machines did not feature the optional Helmet Mounted Display System (as installed on board of the upgraded Ecuadorean Kfir C.10s). In the Air-to-Air modes, the radar enables long-range target detection and tracking for weapon delivery or automatic target acquisition in close combat engagements. The EL/M-2032 has a maximum range of 150 km and can detect and track an aerial target with a 1m² radar reflection surface equivalent at 100 km. Up to 64 aerial targets can be tracked at the same time, and this information can be shared with other aircraft, including the status which aircraft actually tracks which target.
In Air-to-Ground missions, the radar provided very high-resolution mapping (SAR), surface target detection and tracking over RBM, DBS and SAR maps in addition to A/G ranging. In Air-to-Sea missions, the radar provided long-range target detection and tracking, including target classification capabilities (RS, ISAR).
The first Kfir C.10Ps were quickly delivered, and in September 2014 the PAF’s 6th Tactical Fighter Squadron “Cobras” at Basa AB was reformed, the unit which had formerly operated the country’s last F-5s until 2005. Despite the type’s multirole capability, the Filipino Kfirs primarily fulfill interceptor and air patrol tasks against intrusions into Philippine airspace. Their prime task is to act as a general repellant against Chinese aggressions in the South China Sea, esp. in defense of the Scarborough Shoal fishing ground that Manila claims as part of its territorial waters.
Since 2015, the PAF’s jet fighter force has also been augmented by supersonic FA-50 trainers, procured from South Korea, and the PAF’s updated “Flight Plan 2028” lists another 16 Kfirs C.10Ps (including four TC.10P two-seaters), as well as more FA-50s, planned for the future.
Since their introduction the FAP’s Kfirs frequently intercepted Chinese and Russian reconnaissance aircraft (typically Y-8 maritime patrol aircraft, but also H-6 missile strike bombers and reconnaissance aircraft) over the Spratly Islands in the South China Sea, even though with no serious confrontations so far.
Beyond these standard duties, the PAF’s new type also took part in several other deployments: On 26 January 2017, two Philippine Air Force Kfir C.10s demonstrated their strike capabilities for the first time and conducted a nighttime attack on terrorist hideouts in Butig, Lanao del Sur province in Mindanao, the first “hot” combat sortie flown by these aircraft. In June 2017, Kfirs and FA-50s were sent out to conduct airstrikes against Maute terrorists entrenched in the city of Marawi, starting in May 2017.
General characteristics:
Crew: One
Length: 15.65 m (51 ft 4¼ in)
Wingspan: 8.22 m (26 ft 11½ in)
Height: 4.55 m (14 ft 11¼ in)
Wing area: 34.8 m² (374.6 sq ft)
Empty weight: 7,285 kg (16,060 lb)
Loaded weight: 11,603 kg (25,580 lb) two 500 L drop tanks, two AAMs
Max. takeoff weight: 16,200 kg (35,715 lb)
Powerplant:
1× IAl Bedek-built General Electric J-79-J1E turbojet with a dry thrust of 52.9 kN (11,890 lb st)
and 79.62 kN (17,900 lb st) thrust with afterburner
Performance:
Maximum speed: 2,440 km/h (2 Mach, 1,317 knots, 1,516 mph) above 11,000 m (36,000 ft)
Combat radius: 768 km (415 nmi, 477 mi) in ground attack role, with, hi-lo-hi profile, seven 500 lb
bombs, two AAMs, two 1,300 L drop tanks
Maximum range: 3,232 km (2,008 miles, 1744 nm), high profile, with two 1,300 L drop tank
Service ceiling: 22,860 m (75,000 ft)
Rate of climb: 233 m/s (45,950 ft/min)
Armament:
2× Rafael-built 30 mm (1.18 in) DEFA 553 cannons, 140 RPG
9× hardpoints for a total payload of 5,775 kg (12,730 lb), including an assortment of unguided
air-to-ground rockets, guided missiles (AIM-9 Sidewinders, Shafrir or Python-series AAMs; Shrike
ARMs and AGM-65 Maverick ASMs) or bombs such as the Mark 80 series, Paveway and Griffin
LGBs, SMKBs,TAL-1 OR TAL-2 CBUs, BLU-107 Matra Durandal, reconnaissance pods or Drop tanks
The kit and its assembly:
Like many of my what-if models, this one is rooted in real life. AFAIK, the PAF actually considered the procurement of refurbished, ex-Israeli Kfirs after the purchase of 2nd hand F-16s had turned out to be too costly – but even the Kfir deal did not materialize due to budgetary restrictions. However, whifworld can change this… And eventually, the PAF procured the South Korean FA-50 Golden Eagle multi-role advanced trainer.
The kit is the Italeri Kfir C.2/7, a sound and priceworthy offering, but it comes with some inherent flaws - the alternative Hasegawa kit is IMHO much easier to build, even though it is not much more detailed. Problem zones of the Italeri kit include the complex intersection between the air intakes, wings and the fuselage (nothing fits well, gaps galore!), ejector pin markings on the landing gear and on the wheels, sinkholes on the wings’ upper side towards the leading edges and the cockpit tub as a whole, which seems to stem from a different kit - including the dashboard, which is too wide, too.
In order to keep things simple and plausible, the kit was mostly built OOB, which is in itself enough work, with only a few cosmetic changes:
- a new nose section with a bigger radome from the scrap box and transplanted chines and pitot
- replacement of the early OOB Shafrir AAMs with Python AAMs, left over from a Trumpeter J-8
- additional/modified antennae and air sensors, including a RHAWS sensor at the top of the fin
- a refueling probe above the right air intake, from a Harrier GR.3, modified
- a Martin Baker ejection seat and some cockpit interior details
Painting and markings:
Since the fictional PAF Kfirs were to be primarily operated in the interceptor role, I gave the aircraft an air superiority scheme. Inspiration was taken from the type’s predecessor, the PAF’s F-8 Crusaders and their late Eighties livery, a wraparound scheme in two grey tones, coupled with low-viz (black) markings.
I actually used the F-8 camouflage pattern as benchmark and tried to adapt it to the delta-wing Kfir, but this eventually ended in almost complete improvisation. The colors are – based on visual impressions of some PAF Crusaders rather than on hard facts (since these turned out to be quite contradictive and/or implausible) – FS 36440 and 36270, Humbrol 129 and 126, respectively. The result appears a bit pale and reminds a lot of the French air superiority scheme (which is more bluish, though), but it does not look bad at all.
The radome and other dielectric fairings were slightly set apart from the camouflage tones (with Revell 47). The landing gear as well as the air intake interior were painted in gloss white (Humbrol 22), while the cockpit was painted in Sea Grey (Humbrol 27).
The model only received a light weathering treatment through a black ink washing and some post-shading with slightly lighter tones, since the aircraft would be relatively new in service – even though I have the impression that any PAF aircraft’s exterior quickly suffered under the local climate?
The national markings belong to a Philippine F-5 (a late camouflaged aircraft, hence the insignias’ small size), taken from an Aztec Decal sheet. The modex was created from code markings for a Bréguet Alizé and the cobra emblems on the fin belong to a Malaysian MiG-29 (Begemot sheet). The contemporary USAF-style BuNo for PAF aircraft was created with single decal letters – a fiddly affair.
Only a few stencils were actually taken from the OOB sheet and many of the original red markings were replaced. Most stencils became black and the walkway markings on the wings were replaced by segmented lines from a Mirage 2000.
After some final, very light weathering with graphite the kit was finally sealed with a coat of matt acrylic varnish (Italeri) and completed.
Nothing spectacular, but rather an exotic and still plausible what-if build, rooted in real life. While the paint scheme as such is not outstanding, I must say that the two-tone grey scheme suits the Kfir well, esp. together with the subdued markings.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The Indian „Samudree Baaj“ (समुद्री बाज, Sea Hawk) was a highly modified, navalized version of the British BAE Systems Hawk land-based training jet aircraft, which had been manufactured under license by Hindustan Aeronautics Limited (HAL). The first indigenously built Hawk Mk. 132 trainer was delivered in 2008 to the Indian Air Force, and the type has since then been updated with indigenous avionics into the “Hawk-I” Mk. 132 from 2020 onwards. The aircraft’s Rolls Royce Adour Mk 871 engine was also license-built by HAL, and the company had experience from a wide range of aircraft projects in the past.
The Samudree Baaj project was initiated in 2006 by the Indian Navy, as part of the long historic plan to provide the Indian Navy with a fully capable aircraft carrier. This plan had been initiated in 1989, when India announced a plan to replace its ageing British-built aircraft carriers, INS Vikrant and INS Viraat (ex-HMS Hermes), with two new 28,000-ton Air Defence Ships (ADS) that would operate the BAe Sea Harrier aircraft. The first vessel was to replace Vikrant, which was set to decommission in early 1997. Construction of the ADS was to start at the Cochin Shipyard (CSL) in 1993 after the Indian Naval Design Organisation had translated this design study into a production model. Following the 1991 economic crisis, the plans for construction of the vessels were put on hold indefinitely.
In 1999, then-Defence Minister George Fernandes revived the project and sanctioned the construction of the Project “71 ADS”. By that time, given the ageing Sea Harrier fleet, the letter of intent called for a carrier that would carry more modern jet fighters. In 2001, CSL released a graphic illustration showing a 32,000-ton STOBAR (Short Take-Off But Arrested Recovery) design with a pronounced ski jump. The aircraft carrier project finally received formal government approval in January 2003. By then, design updates called for a 37,500-ton carrier to operate the MiG-29K. India opted for a three-carrier fleet consisting of one carrier battle group stationed on each seaboard, and a third carrier held in reserve, in order to continuously protect both its flanks, to protect economic interests and mercantile traffic, and to provide humanitarian platforms in times of disasters, since a carrier can provide a self-generating supply of fresh water, medical assistance or engineering expertise to populations in need for assistance.
In August 2006, then-Chief of the Naval Staff, Admiral Arun Prakash stated that the designation for the vessel had been changed from Air Defence Ship (ADS) to Indigenous Aircraft Carrier (IAC). The euphemistic ADS had been adopted in planning stages to ward off concerns about a naval build-up. Final revisions to the design increased the displacement of the carrier from 37,500 tons to over 40,000 tons. The length of the ship also increased from 252 metres (827 ft) to 262 metres (860 ft).
It was at this time that, beyond the MiG-29K, primarily a carrier-capable trainer and also a light (and less costly) strike aircraft would be needed. With the running production of the Hawk Mk. 132 for the Indian Air Force and BAE Systems’ connection and experience to the USA and McDonnell/Boeing’s adaptation of the Hawk as the US Navy’s carrier-capable T-45 trainer, HAL was instructed to develop a suitable aircraft family on the Hawk’s basis for the new carriers.
HAL’s Samudree Baaj is a fully carrier-capable version of the British Aerospace Hawk Mk. The Hawk had not originally been designed to perform carrier operations, so that numerous modifications were required, such as the extensive strengthening of the airframe to withstand the excessive forces imposed by the stresses involved in catapult launches and high sink-rate landings, both scenarios being routine in aircraft carrier operations.
The aerodynamic changes of the aircraft, which were mutually developed by HAL and BAE Systems, included improvements to the low-speed handling characteristics and a reduction in the approach speed. Most notable amongst the changes made to the Hawk's design were extended flaps for better low-speed handling, along with the addition of spoilers on the wings to reduce lift and strakes on the fuselage which improved airflow and stabilizer efficiency.
Other, less obvious modifications included a reinforced airframe, the adoption of a more robust and widened landing gear, complete with a catapult tow bar attachment to the oleo strut of the new two-wheel nose gear design, and an arresting hook. The tail fin was extended by 1 foot (12 in, 30.5 cm) to compensate for the loss of the Hawk’s ventral stabilizing strakes. To make room for the arrester hook, the original ventral air brake was split and re-located to the flanks, similar to the USN’s T-45 trainer.
At the time of the Samudree Baaj’s design, the exact catapult arrangement and capacity on board of India’s new carriers was not clear yet – even more so, since the MiG-29K and its powerful engines might have made a catapult obsolete. Therefore, the Samudree Baaj was designed to be operable either with a ski jump ramp (in the style of the Russian Kiev class carriers, of which India had purchased one as INS Vikramaditya) or with only minimal launch support within the projected STOBAR concept, which included a relatively short-stroke steam catapult and a similarly short, undampened arrester gear.
By 2009 the basic airframe had been defined and four prototypes were built for two versions: the Mk. 101 trainer, which was basically a navalized version of the land-based Mk. 132 with almost the same mission equipment, and the Mk. 201, a single-seater. Two airframes of each type were built and the first Samudree Baaj flight took place in early 2011. The Indian government ordered 30 trainers and 15 attack aircraft, to be delivered with the first new Indian carrier, INS Vikrant, in late 2017.
The Samudree Baaj Mk. 201 was developed from the basic navalized Hawk airframe as a light multirole fighter with a small visual signature and high maneuverability, but high combat efficiency and capable of both strike and point defense missions. It differed from the trainer through a completely new forward fuselage whereby the forward cockpit area, which normally housed the trainee, was replaced by an electronics bay for avionics and onboard systems, including a fire control computer, a LINS 300 ring laser gyroscope inertial navigation system and a lightweight (145 kg) multimode, coherent, pulse-Doppler I band airborne radar. This multimode radar was developed from the Ferranti Blue Fox radar and capable of airborne interception and air-to-surface strike roles over water and land, with look-down/shoot-down and look-up modes. It had ten air-to-surface and ten air-to-ground modes for navigation and weapon aiming purposes.
A ventral fairing behind the radome carried a laser rangefinder and a forward-looking infrared (FLIR). Mid-air refueling was also possible, through a detachable (but fixed) probe. GPS navigation or modern night-flight systems were integrated, too.
Like the trainer, the Mk. 201 had a total of seven weapon hardpoints (1 ventral, four underwing and a pair of wing tip launch rails), but the more sophisticated avionics suite allowed a wider range of ordnance to be carried and deployed, which included radar-guided AAMs for BVR strokes and smart weapons and guided missiles – especially the Sea Eagle and AGM-84 “Harpoon” anti-ship missiles in the Indian Navy’s arsenal. For the maritime strike role and as a support for ASW missions, the Samudree Baaj Mk. 201 could even deploy Sting Ray homing torpedoes.
Furthermore, a pair of 30mm (1.18 in) ADEN machine cannon with 150 RPG were housed in a shallow fairing under the cockpit. The self-protection systems include a BAE SkyGuardian 200 RWR and automatic Vinten chaff/flare dispensers located above the engine exhaust.
The Samudree Baaj project was highly ambitious, so that it does not wonder that there were many delays and teething troubles. Beyond the complex avionics integration this included the maritime adaptation of the Adour engine, which eventually led to the uprated Adour Mk. 871-1N, which, as a side benefit, also offered about 10% more power.
However, in parallel, INS Vikrant also ran into delays: In July 2012, The Times of India reported that construction of Vikrant has been delayed by three years, and the ship would be ready for commissioning by 2018. Later, in November 2012, Indian English-language news channel NDTV reported that cost of the aircraft carrier had increased, and the delivery has been delayed by at least five years and is expected to be with the Indian Navy only after 2018 as against the scheduled date of delivery of 2014. Work then commenced for the next stage of construction, which included the installation of the integrated propulsion system, the superstructure, the upper decks, the cabling, sensors and weapons. Vikrant was eventually undocked on 10 June 2015 after the completion of structural work. Cabling, piping, heat and ventilation works were to be completed by 2017; sea trials would begin thereafter. In December 2019, it was reported that the engines on board the ship were switched on and in November 2020, only the basin trials of the aircraft carrier were completed.
By that time, the first Samudree Baaj aircraft had been delivered to Indian Navy 300 squadron, and even though only based at land at Hansa Air Station, flight training and military operations commenced. In the meantime, the start of Vikrant's trials had initially been scheduled to begin on 12 March 2020, but further construction delays caused that to be moved back to April. With the COVID-19 crisis, the navy explained that trials were unlikely to begin before September/October. During the Navy Day press meeting in December 2019, Navy Chief Admiral Karambir Singh said Vikrant would be fully operational before the end of 2022. The COVID-19 pandemic had already pushed that back to 2023 and further delays appeared possible.
In late 2020, the Indian Navy expected to commission Vikrant by the end of 2021. Until then, the Samudree Baaj fleet will remain land-based at INS Hansa near Goa. This not only is the INAS 300 home base, it is also the location of the Indian Navy's Shore Based Test Facility (SBTF), which is a mock-up of the 283-metre (928 ft) INS Vikramaditya (a modified Kiev-class aircraft carrier) deck built to train and certify navy pilots, primarily the the Mikoyan MiG-29K for operating from the aircraft carrier, but now also for the Samudree Baaj and for the developmental trials of the naval HAL Tejas lightweight fighter.
General characteristics:
Crew: 1
Length: 11.38 m (37 ft 4 in)
Wingspan: 9.39 m (30 ft 10 in)
Height: 4.30 m (14 ft 1 in)
Wing area: 17.66 m2 (190.1 sq ft)
Empty weight: 9,394 lb (4,261 kg)
Gross weight: 12,750 lb (5,783 kg)
Max takeoff weight: 9,101 kg (20,064 lb)
Fuel capacity: 1,360 kg (3,000 lb) internal
3,210 kg (7,080 lb) with 3 drop tanks
Powerplant:
1× Rolls-Royce Turbomeca Adour Mk. 871-1N non-afterburning turbofan, 28,89 kN (6,445 lbf) thrust
Performance:
Maximum speed: 1,037 km/h (644 mph, 560 kn) at sea level
Maximum speed: Mach 1.2 (never exceed at altitude)
Cruise speed: 796 km/h (495 mph, 430 kn) at 12,500 m (41,000 ft)
Carrier launch speed: 121 kn (139 mph; 224 km/h)
Approach speed: 125 kn (144 mph; 232 km/h)
Never exceed speed: 575 kn (662 mph, 1,065 km/h) / M1.04 design dive limit
Stall speed: 197 km/h (122 mph, 106 kn) flaps down
Range: 892 km (554 mi, 482 nmi) internal fuel only
Combat range: 617 km (383 mi, 333 nmi) with 2x AGM-84 and 2x 592 l (156 US gal; 130 imp gal)
Ferry range: 1,950 km (1,210 mi, 1,050 nmi) with 3 drop tanks
Service ceiling: 15,250 m (50,030 ft)
G-limits: +8/-3
Rate of climb: 58.466 m/s (11,509.1 ft/min)
Takeoff distance with maximum weapon load: 2,134 m (7,001 ft)
Landing distance at maximum landing weight with brake chute: 854 m (2,802 ft)
Landing distance at maximum landing weight without brake chute: 1,250 m (4,100 ft)
Armament:
2× 30 mm (1.181 in) Aden cannon with 150 rounds each
7× hardpoints (4× under-wing, 1× under-fuselage and 2 × wingtip)
for a total ordnance of 3.085 kg (6,800 lb) and a wide range of weapons
The kit and its assembly:
A subtle kitbashing project, inspired by a CG-rendition of a carrier-based (yet un-navalized) BAe Hawk 200 in Indian Navy service by fellow user SPINNERS in January 2021. I found the idea inspiring but thought that the basic concept could be taken further and into hardware form with a model. And I had a Matchbox Hawk 200 in The Stash™, as well as a McDonnell T-45 trainer from Italeri…
The plan sounds simple: take a T-45 and replace the cockpit section with the single-seat cockpit from the Hawk 200. And while the necessary cuts were easy to make, reality rears its ugly head when you try to mate parts from basically the same aircraft but from models by different manufacturers.
The challenges started with the fact that the fuselage shapes of both models differ – the Matchbox kit is more “voluminous”, and the different canopy shape called for a partial spine transplant, which turned out to be of very different shape than the T-45’s respective section! Lots of PSR…
In order to improve the pretty basic Matchbox Hawk cockpit I integrated the cockpit tub from the Italeri T-45, including the ejection seat, dashboard and its top cover.
For the totally different T-45 front wheel I had to enlarge the respective well and added a “ceiling” to it, since the strut had to be attached somewhere. The Hawk 200’s ventral tub for the cannons (which only the first prototype carried, later production aircraft did not feature them) were retained – partly because of their “whiffy“ nature, but also because making it disappear would have involved more major surgeries.
Most of the are behind the cockpit comes from the Italeri T-45, I just added a RHAWS fairing to the fin, extending it by 3mm.
A major problem became the air intakes, because the two kits differ in their construction. I wanted to use the Italeri parts, because they match the fairings on the fuselage flanks well and are better detailed than the Matchbox parts. But the boundary layer spacers between intakes and fuselage are molded into the Italeri parts, while the Matchbox kit has them molded into the fuselage. This called for major surgery and eventually worked out fine, and more PSR blended the rest of the fuselage donors around the cockpit together. A tedious process, though.
The pylons were puzzled together, including a former Matchbox EA-6B wing pylon under the fuselage, cut down and mounted in reverse and upside down! The ordnance comes from the Italeri NATO weapons set (Matra Magic and AGM-84), the ventral drop tank comes IIRC from an Eduard L-39 Albatros. Matra Magics were chosen because India never operated any Sidewinder AAM, just French or Soviet/Russian missiles like the R-60 or R-73 (unlikely on the Hawk, IMHO), and I had preferred a pair of Sea Eagle ASMs (from a Hasegawa Sea Harrier kit), but their span turned out to be too large for the Hawk’s low wings. The alternative, more slender Harpoons are plausible, though, since they are actually part of the Indian Navy’s inventory.
Painting and markings:
The Indian Navy theme was already settled, and I wanted to stay close to SPINNERS’ illustration as well as to real world Indian Navy aircraft. SPINNERS’ Hawk carried the typical Sea Harreir scheme in Extra Dark Sea Grey and White, and I found this livery to look a bit too much retro, because I’d place this what-if aircraft in the early 2020s, when the Sea Harriers had already been phased out. A “realistic” livery might have been an overall mid-grey paint scheme (like the land-based Indian Hawk 132s), but I found this to look too boring. As a compromise, I gave the Samudree Baaj a simple two-tone paint scheme, carried by a few late Indian Sea Harriers. It consists of upper surfaces in Dark Sea Grey (Humbrol 164) and undersides in Medium Sea Grey (Modelmaster 2058), with a low waterline. The Modelmaster MSG has – for my taste – a rather bluish hue and appears almost like PRU Blue, but I left it that way.
The decals were puzzled together from variosu sources. the roundels come from a MiG-21F (Begemot), the unit markings and tactical codes from a Model Alliance Sea Harrier sheet, and the stencils are a mix from the Matchbox Hawk 200 and the Italeri T-45.
The kit was sealed with matt acrylic varnish from Italeri.
The fictional HAL „Samudree Baaj“ looks simple, but combining kits of the basically same aircraft from different manufacturers reveals their differences, and they are not to be underestimated! However, I like the result of a navalized Hawk single-seater, and - also with the relatively simple and dull livery - it looks pretty convincing.
Many thanks to SPINNERS for the creative inspiration - even though my build is not a 100% "copy" of the artwork, but rather a step further into the navalisation idea with the T-45 parts.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The Indian „Samudree Baaj“ (समुद्री बाज, Sea Hawk) was a highly modified, navalized version of the British BAE Systems Hawk land-based training jet aircraft, which had been manufactured under license by Hindustan Aeronautics Limited (HAL). The first indigenously built Hawk Mk. 132 trainer was delivered in 2008 to the Indian Air Force, and the type has since then been updated with indigenous avionics into the “Hawk-I” Mk. 132 from 2020 onwards. The aircraft’s Rolls Royce Adour Mk 871 engine was also license-built by HAL, and the company had experience from a wide range of aircraft projects in the past.
The Samudree Baaj project was initiated in 2006 by the Indian Navy, as part of the long historic plan to provide the Indian Navy with a fully capable aircraft carrier. This plan had been initiated in 1989, when India announced a plan to replace its ageing British-built aircraft carriers, INS Vikrant and INS Viraat (ex-HMS Hermes), with two new 28,000-ton Air Defence Ships (ADS) that would operate the BAe Sea Harrier aircraft. The first vessel was to replace Vikrant, which was set to decommission in early 1997. Construction of the ADS was to start at the Cochin Shipyard (CSL) in 1993 after the Indian Naval Design Organisation had translated this design study into a production model. Following the 1991 economic crisis, the plans for construction of the vessels were put on hold indefinitely.
In 1999, then-Defence Minister George Fernandes revived the project and sanctioned the construction of the Project “71 ADS”. By that time, given the ageing Sea Harrier fleet, the letter of intent called for a carrier that would carry more modern jet fighters. In 2001, CSL released a graphic illustration showing a 32,000-ton STOBAR (Short Take-Off But Arrested Recovery) design with a pronounced ski jump. The aircraft carrier project finally received formal government approval in January 2003. By then, design updates called for a 37,500-ton carrier to operate the MiG-29K. India opted for a three-carrier fleet consisting of one carrier battle group stationed on each seaboard, and a third carrier held in reserve, in order to continuously protect both its flanks, to protect economic interests and mercantile traffic, and to provide humanitarian platforms in times of disasters, since a carrier can provide a self-generating supply of fresh water, medical assistance or engineering expertise to populations in need for assistance.
In August 2006, then-Chief of the Naval Staff, Admiral Arun Prakash stated that the designation for the vessel had been changed from Air Defence Ship (ADS) to Indigenous Aircraft Carrier (IAC). The euphemistic ADS had been adopted in planning stages to ward off concerns about a naval build-up. Final revisions to the design increased the displacement of the carrier from 37,500 tons to over 40,000 tons. The length of the ship also increased from 252 metres (827 ft) to 262 metres (860 ft).
It was at this time that, beyond the MiG-29K, primarily a carrier-capable trainer and also a light (and less costly) strike aircraft would be needed. With the running production of the Hawk Mk. 132 for the Indian Air Force and BAE Systems’ connection and experience to the USA and McDonnell/Boeing’s adaptation of the Hawk as the US Navy’s carrier-capable T-45 trainer, HAL was instructed to develop a suitable aircraft family on the Hawk’s basis for the new carriers.
HAL’s Samudree Baaj is a fully carrier-capable version of the British Aerospace Hawk Mk. The Hawk had not originally been designed to perform carrier operations, so that numerous modifications were required, such as the extensive strengthening of the airframe to withstand the excessive forces imposed by the stresses involved in catapult launches and high sink-rate landings, both scenarios being routine in aircraft carrier operations.
The aerodynamic changes of the aircraft, which were mutually developed by HAL and BAE Systems, included improvements to the low-speed handling characteristics and a reduction in the approach speed. Most notable amongst the changes made to the Hawk's design were extended flaps for better low-speed handling, along with the addition of spoilers on the wings to reduce lift and strakes on the fuselage which improved airflow and stabilizer efficiency.
Other, less obvious modifications included a reinforced airframe, the adoption of a more robust and widened landing gear, complete with a catapult tow bar attachment to the oleo strut of the new two-wheel nose gear design, and an arresting hook. The tail fin was extended by 1 foot (12 in, 30.5 cm) to compensate for the loss of the Hawk’s ventral stabilizing strakes. To make room for the arrester hook, the original ventral air brake was split and re-located to the flanks, similar to the USN’s T-45 trainer.
At the time of the Samudree Baaj’s design, the exact catapult arrangement and capacity on board of India’s new carriers was not clear yet – even more so, since the MiG-29K and its powerful engines might have made a catapult obsolete. Therefore, the Samudree Baaj was designed to be operable either with a ski jump ramp (in the style of the Russian Kiev class carriers, of which India had purchased one as INS Vikramaditya) or with only minimal launch support within the projected STOBAR concept, which included a relatively short-stroke steam catapult and a similarly short, undampened arrester gear.
By 2009 the basic airframe had been defined and four prototypes were built for two versions: the Mk. 101 trainer, which was basically a navalized version of the land-based Mk. 132 with almost the same mission equipment, and the Mk. 201, a single-seater. Two airframes of each type were built and the first Samudree Baaj flight took place in early 2011. The Indian government ordered 30 trainers and 15 attack aircraft, to be delivered with the first new Indian carrier, INS Vikrant, in late 2017.
The Samudree Baaj Mk. 201 was developed from the basic navalized Hawk airframe as a light multirole fighter with a small visual signature and high maneuverability, but high combat efficiency and capable of both strike and point defense missions. It differed from the trainer through a completely new forward fuselage whereby the forward cockpit area, which normally housed the trainee, was replaced by an electronics bay for avionics and onboard systems, including a fire control computer, a LINS 300 ring laser gyroscope inertial navigation system and a lightweight (145 kg) multimode, coherent, pulse-Doppler I band airborne radar. This multimode radar was developed from the Ferranti Blue Fox radar and capable of airborne interception and air-to-surface strike roles over water and land, with look-down/shoot-down and look-up modes. It had ten air-to-surface and ten air-to-ground modes for navigation and weapon aiming purposes.
A ventral fairing behind the radome carried a laser rangefinder and a forward-looking infrared (FLIR). Mid-air refueling was also possible, through a detachable (but fixed) probe. GPS navigation or modern night-flight systems were integrated, too.
Like the trainer, the Mk. 201 had a total of seven weapon hardpoints (1 ventral, four underwing and a pair of wing tip launch rails), but the more sophisticated avionics suite allowed a wider range of ordnance to be carried and deployed, which included radar-guided AAMs for BVR strokes and smart weapons and guided missiles – especially the Sea Eagle and AGM-84 “Harpoon” anti-ship missiles in the Indian Navy’s arsenal. For the maritime strike role and as a support for ASW missions, the Samudree Baaj Mk. 201 could even deploy Sting Ray homing torpedoes.
Furthermore, a pair of 30mm (1.18 in) ADEN machine cannon with 150 RPG were housed in a shallow fairing under the cockpit. The self-protection systems include a BAE SkyGuardian 200 RWR and automatic Vinten chaff/flare dispensers located above the engine exhaust.
The Samudree Baaj project was highly ambitious, so that it does not wonder that there were many delays and teething troubles. Beyond the complex avionics integration this included the maritime adaptation of the Adour engine, which eventually led to the uprated Adour Mk. 871-1N, which, as a side benefit, also offered about 10% more power.
However, in parallel, INS Vikrant also ran into delays: In July 2012, The Times of India reported that construction of Vikrant has been delayed by three years, and the ship would be ready for commissioning by 2018. Later, in November 2012, Indian English-language news channel NDTV reported that cost of the aircraft carrier had increased, and the delivery has been delayed by at least five years and is expected to be with the Indian Navy only after 2018 as against the scheduled date of delivery of 2014. Work then commenced for the next stage of construction, which included the installation of the integrated propulsion system, the superstructure, the upper decks, the cabling, sensors and weapons. Vikrant was eventually undocked on 10 June 2015 after the completion of structural work. Cabling, piping, heat and ventilation works were to be completed by 2017; sea trials would begin thereafter. In December 2019, it was reported that the engines on board the ship were switched on and in November 2020, only the basin trials of the aircraft carrier were completed.
By that time, the first Samudree Baaj aircraft had been delivered to Indian Navy 300 squadron, and even though only based at land at Hansa Air Station, flight training and military operations commenced. In the meantime, the start of Vikrant's trials had initially been scheduled to begin on 12 March 2020, but further construction delays caused that to be moved back to April. With the COVID-19 crisis, the navy explained that trials were unlikely to begin before September/October. During the Navy Day press meeting in December 2019, Navy Chief Admiral Karambir Singh said Vikrant would be fully operational before the end of 2022. The COVID-19 pandemic had already pushed that back to 2023 and further delays appeared possible.
In late 2020, the Indian Navy expected to commission Vikrant by the end of 2021. Until then, the Samudree Baaj fleet will remain land-based at INS Hansa near Goa. This not only is the INAS 300 home base, it is also the location of the Indian Navy's Shore Based Test Facility (SBTF), which is a mock-up of the 283-metre (928 ft) INS Vikramaditya (a modified Kiev-class aircraft carrier) deck built to train and certify navy pilots, primarily the the Mikoyan MiG-29K for operating from the aircraft carrier, but now also for the Samudree Baaj and for the developmental trials of the naval HAL Tejas lightweight fighter.
General characteristics:
Crew: 1
Length: 11.38 m (37 ft 4 in)
Wingspan: 9.39 m (30 ft 10 in)
Height: 4.30 m (14 ft 1 in)
Wing area: 17.66 m2 (190.1 sq ft)
Empty weight: 9,394 lb (4,261 kg)
Gross weight: 12,750 lb (5,783 kg)
Max takeoff weight: 9,101 kg (20,064 lb)
Fuel capacity: 1,360 kg (3,000 lb) internal
3,210 kg (7,080 lb) with 3 drop tanks
Powerplant:
1× Rolls-Royce Turbomeca Adour Mk. 871-1N non-afterburning turbofan, 28,89 kN (6,445 lbf) thrust
Performance:
Maximum speed: 1,037 km/h (644 mph, 560 kn) at sea level
Maximum speed: Mach 1.2 (never exceed at altitude)
Cruise speed: 796 km/h (495 mph, 430 kn) at 12,500 m (41,000 ft)
Carrier launch speed: 121 kn (139 mph; 224 km/h)
Approach speed: 125 kn (144 mph; 232 km/h)
Never exceed speed: 575 kn (662 mph, 1,065 km/h) / M1.04 design dive limit
Stall speed: 197 km/h (122 mph, 106 kn) flaps down
Range: 892 km (554 mi, 482 nmi) internal fuel only
Combat range: 617 km (383 mi, 333 nmi) with 2x AGM-84 and 2x 592 l (156 US gal; 130 imp gal)
Ferry range: 1,950 km (1,210 mi, 1,050 nmi) with 3 drop tanks
Service ceiling: 15,250 m (50,030 ft)
G-limits: +8/-3
Rate of climb: 58.466 m/s (11,509.1 ft/min)
Takeoff distance with maximum weapon load: 2,134 m (7,001 ft)
Landing distance at maximum landing weight with brake chute: 854 m (2,802 ft)
Landing distance at maximum landing weight without brake chute: 1,250 m (4,100 ft)
Armament:
2× 30 mm (1.181 in) Aden cannon with 150 rounds each
7× hardpoints (4× under-wing, 1× under-fuselage and 2 × wingtip)
for a total ordnance of 3.085 kg (6,800 lb) and a wide range of weapons
The kit and its assembly:
A subtle kitbashing project, inspired by a CG-rendition of a carrier-based (yet un-navalized) BAe Hawk 200 in Indian Navy service by fellow user SPINNERS in January 2021. I found the idea inspiring but thought that the basic concept could be taken further and into hardware form with a model. And I had a Matchbox Hawk 200 in The Stash™, as well as a McDonnell T-45 trainer from Italeri…
The plan sounds simple: take a T-45 and replace the cockpit section with the single-seat cockpit from the Hawk 200. And while the necessary cuts were easy to make, reality rears its ugly head when you try to mate parts from basically the same aircraft but from models by different manufacturers.
The challenges started with the fact that the fuselage shapes of both models differ – the Matchbox kit is more “voluminous”, and the different canopy shape called for a partial spine transplant, which turned out to be of very different shape than the T-45’s respective section! Lots of PSR…
In order to improve the pretty basic Matchbox Hawk cockpit I integrated the cockpit tub from the Italeri T-45, including the ejection seat, dashboard and its top cover.
For the totally different T-45 front wheel I had to enlarge the respective well and added a “ceiling” to it, since the strut had to be attached somewhere. The Hawk 200’s ventral tub for the cannons (which only the first prototype carried, later production aircraft did not feature them) were retained – partly because of their “whiffy“ nature, but also because making it disappear would have involved more major surgeries.
Most of the are behind the cockpit comes from the Italeri T-45, I just added a RHAWS fairing to the fin, extending it by 3mm.
A major problem became the air intakes, because the two kits differ in their construction. I wanted to use the Italeri parts, because they match the fairings on the fuselage flanks well and are better detailed than the Matchbox parts. But the boundary layer spacers between intakes and fuselage are molded into the Italeri parts, while the Matchbox kit has them molded into the fuselage. This called for major surgery and eventually worked out fine, and more PSR blended the rest of the fuselage donors around the cockpit together. A tedious process, though.
The pylons were puzzled together, including a former Matchbox EA-6B wing pylon under the fuselage, cut down and mounted in reverse and upside down! The ordnance comes from the Italeri NATO weapons set (Matra Magic and AGM-84), the ventral drop tank comes IIRC from an Eduard L-39 Albatros. Matra Magics were chosen because India never operated any Sidewinder AAM, just French or Soviet/Russian missiles like the R-60 or R-73 (unlikely on the Hawk, IMHO), and I had preferred a pair of Sea Eagle ASMs (from a Hasegawa Sea Harrier kit), but their span turned out to be too large for the Hawk’s low wings. The alternative, more slender Harpoons are plausible, though, since they are actually part of the Indian Navy’s inventory.
Painting and markings:
The Indian Navy theme was already settled, and I wanted to stay close to SPINNERS’ illustration as well as to real world Indian Navy aircraft. SPINNERS’ Hawk carried the typical Sea Harreir scheme in Extra Dark Sea Grey and White, and I found this livery to look a bit too much retro, because I’d place this what-if aircraft in the early 2020s, when the Sea Harriers had already been phased out. A “realistic” livery might have been an overall mid-grey paint scheme (like the land-based Indian Hawk 132s), but I found this to look too boring. As a compromise, I gave the Samudree Baaj a simple two-tone paint scheme, carried by a few late Indian Sea Harriers. It consists of upper surfaces in Dark Sea Grey (Humbrol 164) and undersides in Medium Sea Grey (Modelmaster 2058), with a low waterline. The Modelmaster MSG has – for my taste – a rather bluish hue and appears almost like PRU Blue, but I left it that way.
The decals were puzzled together from variosu sources. the roundels come from a MiG-21F (Begemot), the unit markings and tactical codes from a Model Alliance Sea Harrier sheet, and the stencils are a mix from the Matchbox Hawk 200 and the Italeri T-45.
The kit was sealed with matt acrylic varnish from Italeri.
The fictional HAL „Samudree Baaj“ looks simple, but combining kits of the basically same aircraft from different manufacturers reveals their differences, and they are not to be underestimated! However, I like the result of a navalized Hawk single-seater, and - also with the relatively simple and dull livery - it looks pretty convincing.
Many thanks to SPINNERS for the creative inspiration - even though my build is not a 100% "copy" of the artwork, but rather a step further into the navalisation idea with the T-45 parts.
Some photos from a job we did. Upgraded a network from 1gbit to 10gbit, adding in redundant core switches and installed two new servers.
Photographed while being tested at my shop before install.
The light blue patch cables are multimode fiber, not the copper stuff that you use at home.
While the F-16A had proven a success, its lack of long-range missile and true all-weather capability hampered it, especially in projected combat against the Warsaw Pact over Central Europe. General Dynamics began work on the upgraded F-16C/D version, with the first Block 25 F-16C flying in June 1984 and entering USAF service that September.
Externally, the only ways to tell apart the F-16C from the F-16A is the slightly enlarged base of the tail and a UHF radio antenna at the base of the tail. The intake is also slightly larger, though later marks of the F-16A also have this feature. Internally, however, the F-16C is a significantly different aircraft. The earlier APG-66 radar was replaced by the APG-68 multimode radar used by the F/A-18, which gave the F-16C the same capability to switch between ground-attack and dogfight mode and vastly improved all-weather capability. Cockpit layout was also changed in response to pilots’ requests, with a larger Heads-Up Display and movement of the radar display to eye level rather than between the pilot’s legs on the F-16A. The F-16C would also have the capability to carry the AIM-120 AMRAAM, though it would not be until 1992 that the missile entered service. Other small upgrades were made throughout the design, including the engine.
The Block 25 initial production was superseded by the Block 30 F-16C in 1987, which gave it better navigation systems, and the capability to carry the either the General Electric F110 or the Pratt and Whitney F100 turbofan. The Block 40/42 “Night Falcon” followed in 1988, equipped with LANTIRN night attack pods, followed by the Block 50/52, which was a dedicated Wild Weasel variant. In USAF service, the latter are semi-officially known as F-16CG and F-16CJ variants.
The F-16C had replaced the F-16A in nearly all overseas USAF units by the First Gulf War in 1991, and as a result, the aircraft was among the first deployed to the theater in August 1990. During the war, the F-16C was used mainly in ground attack and strike sorties, due to delays in the AIM-120, but it performed superbly in this role. USAF F-16s finally scored kills in the F-16C, beginning in 1992, when an Iraqi MiG-23 was shot down over the southern no-fly zone; the victory was also the first with the AMRAAM. Four Serbian G-4 Super Galebs were shot down over Bosnia in 1994. F-16Cs had replaced the F-16A entirely in regular and Reserve USAF service by 1997, and further service was seen over Kosovo, Iraq, Afghanistan, and Libya by 2012. Subsequent upgrades to USAF F-16Cs with GPS allow them to carry advanced precision weapons such as JSOW and JDAM.
Whatever the variant, the F-16 is today the most prolific combat aircraft in existence, with 28 nations operating the type (17 of which operate F-16Cs). Over 4450 have been built, with more in production; the F-16C is also license-produced by Turkey and South Korea. It also forms the basis for the Mitsubishi F-2 fighter for Japan, though the F-2 is significantly different, with a longer nose and larger wing. Though the USAF projects that the F-16C will be replaced by the F-35 beginning in 2020, it will likely remain in service for a very long time.
F-16D 89-2174 is a later Block 40 F-16D, and joined the USAF's 388th Fighter Wing at Hill AFB, Utah in 1991. It may have seen combat over Iraq, both during Operation Southern Watch in the 1990s and during Operation Iraqi Freedom. As the 388th began to transition to the F-35A Lightning II, 89-2174 was transferred to the 114th FW (South Dakota ANG) at Sioux Falls in 2011.
Seeing a South Dakota F-16 was not much of a surprise at the Wings Over the Falls airshow in July 2022; seeing it in Have Glass camouflage was. Have Glass uses a variation of the "ironball" paint applied to the B-1, B-2, F-22 and F-35 fleet, and reduces the F-16's radar signature by a small amount. F-16s with Have Glass tend to look almost black in direct sunlight, and lack the two-tone gray camouflage that is synonymous with the regular F-16 fleet. 89-2174 carries two practice Sidewinder rounds on the wingtips and two drop tanks below the wings, plus an ALQ-131 ECM pod in the centerline and Sniper targeting pods on the intake stations.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The Indian „Samudree Baaj“ (समुद्री बाज, Sea Hawk) was a highly modified, navalized version of the British BAE Systems Hawk land-based training jet aircraft, which had been manufactured under license by Hindustan Aeronautics Limited (HAL). The first indigenously built Hawk Mk. 132 trainer was delivered in 2008 to the Indian Air Force, and the type has since then been updated with indigenous avionics into the “Hawk-I” Mk. 132 from 2020 onwards. The aircraft’s Rolls Royce Adour Mk 871 engine was also license-built by HAL, and the company had experience from a wide range of aircraft projects in the past.
The Samudree Baaj project was initiated in 2006 by the Indian Navy, as part of the long historic plan to provide the Indian Navy with a fully capable aircraft carrier. This plan had been initiated in 1989, when India announced a plan to replace its ageing British-built aircraft carriers, INS Vikrant and INS Viraat (ex-HMS Hermes), with two new 28,000-ton Air Defence Ships (ADS) that would operate the BAe Sea Harrier aircraft. The first vessel was to replace Vikrant, which was set to decommission in early 1997. Construction of the ADS was to start at the Cochin Shipyard (CSL) in 1993 after the Indian Naval Design Organisation had translated this design study into a production model. Following the 1991 economic crisis, the plans for construction of the vessels were put on hold indefinitely.
In 1999, then-Defence Minister George Fernandes revived the project and sanctioned the construction of the Project “71 ADS”. By that time, given the ageing Sea Harrier fleet, the letter of intent called for a carrier that would carry more modern jet fighters. In 2001, CSL released a graphic illustration showing a 32,000-ton STOBAR (Short Take-Off But Arrested Recovery) design with a pronounced ski jump. The aircraft carrier project finally received formal government approval in January 2003. By then, design updates called for a 37,500-ton carrier to operate the MiG-29K. India opted for a three-carrier fleet consisting of one carrier battle group stationed on each seaboard, and a third carrier held in reserve, in order to continuously protect both its flanks, to protect economic interests and mercantile traffic, and to provide humanitarian platforms in times of disasters, since a carrier can provide a self-generating supply of fresh water, medical assistance or engineering expertise to populations in need for assistance.
In August 2006, then-Chief of the Naval Staff, Admiral Arun Prakash stated that the designation for the vessel had been changed from Air Defence Ship (ADS) to Indigenous Aircraft Carrier (IAC). The euphemistic ADS had been adopted in planning stages to ward off concerns about a naval build-up. Final revisions to the design increased the displacement of the carrier from 37,500 tons to over 40,000 tons. The length of the ship also increased from 252 metres (827 ft) to 262 metres (860 ft).
It was at this time that, beyond the MiG-29K, primarily a carrier-capable trainer and also a light (and less costly) strike aircraft would be needed. With the running production of the Hawk Mk. 132 for the Indian Air Force and BAE Systems’ connection and experience to the USA and McDonnell/Boeing’s adaptation of the Hawk as the US Navy’s carrier-capable T-45 trainer, HAL was instructed to develop a suitable aircraft family on the Hawk’s basis for the new carriers.
HAL’s Samudree Baaj is a fully carrier-capable version of the British Aerospace Hawk Mk. The Hawk had not originally been designed to perform carrier operations, so that numerous modifications were required, such as the extensive strengthening of the airframe to withstand the excessive forces imposed by the stresses involved in catapult launches and high sink-rate landings, both scenarios being routine in aircraft carrier operations.
The aerodynamic changes of the aircraft, which were mutually developed by HAL and BAE Systems, included improvements to the low-speed handling characteristics and a reduction in the approach speed. Most notable amongst the changes made to the Hawk's design were extended flaps for better low-speed handling, along with the addition of spoilers on the wings to reduce lift and strakes on the fuselage which improved airflow and stabilizer efficiency.
Other, less obvious modifications included a reinforced airframe, the adoption of a more robust and widened landing gear, complete with a catapult tow bar attachment to the oleo strut of the new two-wheel nose gear design, and an arresting hook. The tail fin was extended by 1 foot (12 in, 30.5 cm) to compensate for the loss of the Hawk’s ventral stabilizing strakes. To make room for the arrester hook, the original ventral air brake was split and re-located to the flanks, similar to the USN’s T-45 trainer.
At the time of the Samudree Baaj’s design, the exact catapult arrangement and capacity on board of India’s new carriers was not clear yet – even more so, since the MiG-29K and its powerful engines might have made a catapult obsolete. Therefore, the Samudree Baaj was designed to be operable either with a ski jump ramp (in the style of the Russian Kiev class carriers, of which India had purchased one as INS Vikramaditya) or with only minimal launch support within the projected STOBAR concept, which included a relatively short-stroke steam catapult and a similarly short, undampened arrester gear.
By 2009 the basic airframe had been defined and four prototypes were built for two versions: the Mk. 101 trainer, which was basically a navalized version of the land-based Mk. 132 with almost the same mission equipment, and the Mk. 201, a single-seater. Two airframes of each type were built and the first Samudree Baaj flight took place in early 2011. The Indian government ordered 30 trainers and 15 attack aircraft, to be delivered with the first new Indian carrier, INS Vikrant, in late 2017.
The Samudree Baaj Mk. 201 was developed from the basic navalized Hawk airframe as a light multirole fighter with a small visual signature and high maneuverability, but high combat efficiency and capable of both strike and point defense missions. It differed from the trainer through a completely new forward fuselage whereby the forward cockpit area, which normally housed the trainee, was replaced by an electronics bay for avionics and onboard systems, including a fire control computer, a LINS 300 ring laser gyroscope inertial navigation system and a lightweight (145 kg) multimode, coherent, pulse-Doppler I band airborne radar. This multimode radar was developed from the Ferranti Blue Fox radar and capable of airborne interception and air-to-surface strike roles over water and land, with look-down/shoot-down and look-up modes. It had ten air-to-surface and ten air-to-ground modes for navigation and weapon aiming purposes.
A ventral fairing behind the radome carried a laser rangefinder and a forward-looking infrared (FLIR). Mid-air refueling was also possible, through a detachable (but fixed) probe. GPS navigation or modern night-flight systems were integrated, too.
Like the trainer, the Mk. 201 had a total of seven weapon hardpoints (1 ventral, four underwing and a pair of wing tip launch rails), but the more sophisticated avionics suite allowed a wider range of ordnance to be carried and deployed, which included radar-guided AAMs for BVR strokes and smart weapons and guided missiles – especially the Sea Eagle and AGM-84 “Harpoon” anti-ship missiles in the Indian Navy’s arsenal. For the maritime strike role and as a support for ASW missions, the Samudree Baaj Mk. 201 could even deploy Sting Ray homing torpedoes.
Furthermore, a pair of 30mm (1.18 in) ADEN machine cannon with 150 RPG were housed in a shallow fairing under the cockpit. The self-protection systems include a BAE SkyGuardian 200 RWR and automatic Vinten chaff/flare dispensers located above the engine exhaust.
The Samudree Baaj project was highly ambitious, so that it does not wonder that there were many delays and teething troubles. Beyond the complex avionics integration this included the maritime adaptation of the Adour engine, which eventually led to the uprated Adour Mk. 871-1N, which, as a side benefit, also offered about 10% more power.
However, in parallel, INS Vikrant also ran into delays: In July 2012, The Times of India reported that construction of Vikrant has been delayed by three years, and the ship would be ready for commissioning by 2018. Later, in November 2012, Indian English-language news channel NDTV reported that cost of the aircraft carrier had increased, and the delivery has been delayed by at least five years and is expected to be with the Indian Navy only after 2018 as against the scheduled date of delivery of 2014. Work then commenced for the next stage of construction, which included the installation of the integrated propulsion system, the superstructure, the upper decks, the cabling, sensors and weapons. Vikrant was eventually undocked on 10 June 2015 after the completion of structural work. Cabling, piping, heat and ventilation works were to be completed by 2017; sea trials would begin thereafter. In December 2019, it was reported that the engines on board the ship were switched on and in November 2020, only the basin trials of the aircraft carrier were completed.
By that time, the first Samudree Baaj aircraft had been delivered to Indian Navy 300 squadron, and even though only based at land at Hansa Air Station, flight training and military operations commenced. In the meantime, the start of Vikrant's trials had initially been scheduled to begin on 12 March 2020, but further construction delays caused that to be moved back to April. With the COVID-19 crisis, the navy explained that trials were unlikely to begin before September/October. During the Navy Day press meeting in December 2019, Navy Chief Admiral Karambir Singh said Vikrant would be fully operational before the end of 2022. The COVID-19 pandemic had already pushed that back to 2023 and further delays appeared possible.
In late 2020, the Indian Navy expected to commission Vikrant by the end of 2021. Until then, the Samudree Baaj fleet will remain land-based at INS Hansa near Goa. This not only is the INAS 300 home base, it is also the location of the Indian Navy's Shore Based Test Facility (SBTF), which is a mock-up of the 283-metre (928 ft) INS Vikramaditya (a modified Kiev-class aircraft carrier) deck built to train and certify navy pilots, primarily the the Mikoyan MiG-29K for operating from the aircraft carrier, but now also for the Samudree Baaj and for the developmental trials of the naval HAL Tejas lightweight fighter.
General characteristics:
Crew: 1
Length: 11.38 m (37 ft 4 in)
Wingspan: 9.39 m (30 ft 10 in)
Height: 4.30 m (14 ft 1 in)
Wing area: 17.66 m2 (190.1 sq ft)
Empty weight: 9,394 lb (4,261 kg)
Gross weight: 12,750 lb (5,783 kg)
Max takeoff weight: 9,101 kg (20,064 lb)
Fuel capacity: 1,360 kg (3,000 lb) internal
3,210 kg (7,080 lb) with 3 drop tanks
Powerplant:
1× Rolls-Royce Turbomeca Adour Mk. 871-1N non-afterburning turbofan, 28,89 kN (6,445 lbf) thrust
Performance:
Maximum speed: 1,037 km/h (644 mph, 560 kn) at sea level
Maximum speed: Mach 1.2 (never exceed at altitude)
Cruise speed: 796 km/h (495 mph, 430 kn) at 12,500 m (41,000 ft)
Carrier launch speed: 121 kn (139 mph; 224 km/h)
Approach speed: 125 kn (144 mph; 232 km/h)
Never exceed speed: 575 kn (662 mph, 1,065 km/h) / M1.04 design dive limit
Stall speed: 197 km/h (122 mph, 106 kn) flaps down
Range: 892 km (554 mi, 482 nmi) internal fuel only
Combat range: 617 km (383 mi, 333 nmi) with 2x AGM-84 and 2x 592 l (156 US gal; 130 imp gal)
Ferry range: 1,950 km (1,210 mi, 1,050 nmi) with 3 drop tanks
Service ceiling: 15,250 m (50,030 ft)
G-limits: +8/-3
Rate of climb: 58.466 m/s (11,509.1 ft/min)
Takeoff distance with maximum weapon load: 2,134 m (7,001 ft)
Landing distance at maximum landing weight with brake chute: 854 m (2,802 ft)
Landing distance at maximum landing weight without brake chute: 1,250 m (4,100 ft)
Armament:
2× 30 mm (1.181 in) Aden cannon with 150 rounds each
7× hardpoints (4× under-wing, 1× under-fuselage and 2 × wingtip)
for a total ordnance of 3.085 kg (6,800 lb) and a wide range of weapons
The kit and its assembly:
A subtle kitbashing project, inspired by a CG-rendition of a carrier-based (yet un-navalized) BAe Hawk 200 in Indian Navy service by fellow user SPINNERS in January 2021. I found the idea inspiring but thought that the basic concept could be taken further and into hardware form with a model. And I had a Matchbox Hawk 200 in The Stash™, as well as a McDonnell T-45 trainer from Italeri…
The plan sounds simple: take a T-45 and replace the cockpit section with the single-seat cockpit from the Hawk 200. And while the necessary cuts were easy to make, reality rears its ugly head when you try to mate parts from basically the same aircraft but from models by different manufacturers.
The challenges started with the fact that the fuselage shapes of both models differ – the Matchbox kit is more “voluminous”, and the different canopy shape called for a partial spine transplant, which turned out to be of very different shape than the T-45’s respective section! Lots of PSR…
In order to improve the pretty basic Matchbox Hawk cockpit I integrated the cockpit tub from the Italeri T-45, including the ejection seat, dashboard and its top cover.
For the totally different T-45 front wheel I had to enlarge the respective well and added a “ceiling” to it, since the strut had to be attached somewhere. The Hawk 200’s ventral tub for the cannons (which only the first prototype carried, later production aircraft did not feature them) were retained – partly because of their “whiffy“ nature, but also because making it disappear would have involved more major surgeries.
Most of the are behind the cockpit comes from the Italeri T-45, I just added a RHAWS fairing to the fin, extending it by 3mm.
A major problem became the air intakes, because the two kits differ in their construction. I wanted to use the Italeri parts, because they match the fairings on the fuselage flanks well and are better detailed than the Matchbox parts. But the boundary layer spacers between intakes and fuselage are molded into the Italeri parts, while the Matchbox kit has them molded into the fuselage. This called for major surgery and eventually worked out fine, and more PSR blended the rest of the fuselage donors around the cockpit together. A tedious process, though.
The pylons were puzzled together, including a former Matchbox EA-6B wing pylon under the fuselage, cut down and mounted in reverse and upside down! The ordnance comes from the Italeri NATO weapons set (Matra Magic and AGM-84), the ventral drop tank comes IIRC from an Eduard L-39 Albatros. Matra Magics were chosen because India never operated any Sidewinder AAM, just French or Soviet/Russian missiles like the R-60 or R-73 (unlikely on the Hawk, IMHO), and I had preferred a pair of Sea Eagle ASMs (from a Hasegawa Sea Harrier kit), but their span turned out to be too large for the Hawk’s low wings. The alternative, more slender Harpoons are plausible, though, since they are actually part of the Indian Navy’s inventory.
Painting and markings:
The Indian Navy theme was already settled, and I wanted to stay close to SPINNERS’ illustration as well as to real world Indian Navy aircraft. SPINNERS’ Hawk carried the typical Sea Harreir scheme in Extra Dark Sea Grey and White, and I found this livery to look a bit too much retro, because I’d place this what-if aircraft in the early 2020s, when the Sea Harriers had already been phased out. A “realistic” livery might have been an overall mid-grey paint scheme (like the land-based Indian Hawk 132s), but I found this to look too boring. As a compromise, I gave the Samudree Baaj a simple two-tone paint scheme, carried by a few late Indian Sea Harriers. It consists of upper surfaces in Dark Sea Grey (Humbrol 164) and undersides in Medium Sea Grey (Modelmaster 2058), with a low waterline. The Modelmaster MSG has – for my taste – a rather bluish hue and appears almost like PRU Blue, but I left it that way.
The decals were puzzled together from variosu sources. the roundels come from a MiG-21F (Begemot), the unit markings and tactical codes from a Model Alliance Sea Harrier sheet, and the stencils are a mix from the Matchbox Hawk 200 and the Italeri T-45.
The kit was sealed with matt acrylic varnish from Italeri.
The fictional HAL „Samudree Baaj“ looks simple, but combining kits of the basically same aircraft from different manufacturers reveals their differences, and they are not to be underestimated! However, I like the result of a navalized Hawk single-seater, and - also with the relatively simple and dull livery - it looks pretty convincing.
Many thanks to SPINNERS for the creative inspiration - even though my build is not a 100% "copy" of the artwork, but rather a step further into the navalisation idea with the T-45 parts.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The Indian „Samudree Baaj“ (समुद्री बाज, Sea Hawk) was a highly modified, navalized version of the British BAE Systems Hawk land-based training jet aircraft, which had been manufactured under license by Hindustan Aeronautics Limited (HAL). The first indigenously built Hawk Mk. 132 trainer was delivered in 2008 to the Indian Air Force, and the type has since then been updated with indigenous avionics into the “Hawk-I” Mk. 132 from 2020 onwards. The aircraft’s Rolls Royce Adour Mk 871 engine was also license-built by HAL, and the company had experience from a wide range of aircraft projects in the past.
The Samudree Baaj project was initiated in 2006 by the Indian Navy, as part of the long historic plan to provide the Indian Navy with a fully capable aircraft carrier. This plan had been initiated in 1989, when India announced a plan to replace its ageing British-built aircraft carriers, INS Vikrant and INS Viraat (ex-HMS Hermes), with two new 28,000-ton Air Defence Ships (ADS) that would operate the BAe Sea Harrier aircraft. The first vessel was to replace Vikrant, which was set to decommission in early 1997. Construction of the ADS was to start at the Cochin Shipyard (CSL) in 1993 after the Indian Naval Design Organisation had translated this design study into a production model. Following the 1991 economic crisis, the plans for construction of the vessels were put on hold indefinitely.
In 1999, then-Defence Minister George Fernandes revived the project and sanctioned the construction of the Project “71 ADS”. By that time, given the ageing Sea Harrier fleet, the letter of intent called for a carrier that would carry more modern jet fighters. In 2001, CSL released a graphic illustration showing a 32,000-ton STOBAR (Short Take-Off But Arrested Recovery) design with a pronounced ski jump. The aircraft carrier project finally received formal government approval in January 2003. By then, design updates called for a 37,500-ton carrier to operate the MiG-29K. India opted for a three-carrier fleet consisting of one carrier battle group stationed on each seaboard, and a third carrier held in reserve, in order to continuously protect both its flanks, to protect economic interests and mercantile traffic, and to provide humanitarian platforms in times of disasters, since a carrier can provide a self-generating supply of fresh water, medical assistance or engineering expertise to populations in need for assistance.
In August 2006, then-Chief of the Naval Staff, Admiral Arun Prakash stated that the designation for the vessel had been changed from Air Defence Ship (ADS) to Indigenous Aircraft Carrier (IAC). The euphemistic ADS had been adopted in planning stages to ward off concerns about a naval build-up. Final revisions to the design increased the displacement of the carrier from 37,500 tons to over 40,000 tons. The length of the ship also increased from 252 metres (827 ft) to 262 metres (860 ft).
It was at this time that, beyond the MiG-29K, primarily a carrier-capable trainer and also a light (and less costly) strike aircraft would be needed. With the running production of the Hawk Mk. 132 for the Indian Air Force and BAE Systems’ connection and experience to the USA and McDonnell/Boeing’s adaptation of the Hawk as the US Navy’s carrier-capable T-45 trainer, HAL was instructed to develop a suitable aircraft family on the Hawk’s basis for the new carriers.
HAL’s Samudree Baaj is a fully carrier-capable version of the British Aerospace Hawk Mk. The Hawk had not originally been designed to perform carrier operations, so that numerous modifications were required, such as the extensive strengthening of the airframe to withstand the excessive forces imposed by the stresses involved in catapult launches and high sink-rate landings, both scenarios being routine in aircraft carrier operations.
The aerodynamic changes of the aircraft, which were mutually developed by HAL and BAE Systems, included improvements to the low-speed handling characteristics and a reduction in the approach speed. Most notable amongst the changes made to the Hawk's design were extended flaps for better low-speed handling, along with the addition of spoilers on the wings to reduce lift and strakes on the fuselage which improved airflow and stabilizer efficiency.
Other, less obvious modifications included a reinforced airframe, the adoption of a more robust and widened landing gear, complete with a catapult tow bar attachment to the oleo strut of the new two-wheel nose gear design, and an arresting hook. The tail fin was extended by 1 foot (12 in, 30.5 cm) to compensate for the loss of the Hawk’s ventral stabilizing strakes. To make room for the arrester hook, the original ventral air brake was split and re-located to the flanks, similar to the USN’s T-45 trainer.
At the time of the Samudree Baaj’s design, the exact catapult arrangement and capacity on board of India’s new carriers was not clear yet – even more so, since the MiG-29K and its powerful engines might have made a catapult obsolete. Therefore, the Samudree Baaj was designed to be operable either with a ski jump ramp (in the style of the Russian Kiev class carriers, of which India had purchased one as INS Vikramaditya) or with only minimal launch support within the projected STOBAR concept, which included a relatively short-stroke steam catapult and a similarly short, undampened arrester gear.
By 2009 the basic airframe had been defined and four prototypes were built for two versions: the Mk. 101 trainer, which was basically a navalized version of the land-based Mk. 132 with almost the same mission equipment, and the Mk. 201, a single-seater. Two airframes of each type were built and the first Samudree Baaj flight took place in early 2011. The Indian government ordered 30 trainers and 15 attack aircraft, to be delivered with the first new Indian carrier, INS Vikrant, in late 2017.
The Samudree Baaj Mk. 201 was developed from the basic navalized Hawk airframe as a light multirole fighter with a small visual signature and high maneuverability, but high combat efficiency and capable of both strike and point defense missions. It differed from the trainer through a completely new forward fuselage whereby the forward cockpit area, which normally housed the trainee, was replaced by an electronics bay for avionics and onboard systems, including a fire control computer, a LINS 300 ring laser gyroscope inertial navigation system and a lightweight (145 kg) multimode, coherent, pulse-Doppler I band airborne radar. This multimode radar was developed from the Ferranti Blue Fox radar and capable of airborne interception and air-to-surface strike roles over water and land, with look-down/shoot-down and look-up modes. It had ten air-to-surface and ten air-to-ground modes for navigation and weapon aiming purposes.
A ventral fairing behind the radome carried a laser rangefinder and a forward-looking infrared (FLIR). Mid-air refueling was also possible, through a detachable (but fixed) probe. GPS navigation or modern night-flight systems were integrated, too.
Like the trainer, the Mk. 201 had a total of seven weapon hardpoints (1 ventral, four underwing and a pair of wing tip launch rails), but the more sophisticated avionics suite allowed a wider range of ordnance to be carried and deployed, which included radar-guided AAMs for BVR strokes and smart weapons and guided missiles – especially the Sea Eagle and AGM-84 “Harpoon” anti-ship missiles in the Indian Navy’s arsenal. For the maritime strike role and as a support for ASW missions, the Samudree Baaj Mk. 201 could even deploy Sting Ray homing torpedoes.
Furthermore, a pair of 30mm (1.18 in) ADEN machine cannon with 150 RPG were housed in a shallow fairing under the cockpit. The self-protection systems include a BAE SkyGuardian 200 RWR and automatic Vinten chaff/flare dispensers located above the engine exhaust.
The Samudree Baaj project was highly ambitious, so that it does not wonder that there were many delays and teething troubles. Beyond the complex avionics integration this included the maritime adaptation of the Adour engine, which eventually led to the uprated Adour Mk. 871-1N, which, as a side benefit, also offered about 10% more power.
However, in parallel, INS Vikrant also ran into delays: In July 2012, The Times of India reported that construction of Vikrant has been delayed by three years, and the ship would be ready for commissioning by 2018. Later, in November 2012, Indian English-language news channel NDTV reported that cost of the aircraft carrier had increased, and the delivery has been delayed by at least five years and is expected to be with the Indian Navy only after 2018 as against the scheduled date of delivery of 2014. Work then commenced for the next stage of construction, which included the installation of the integrated propulsion system, the superstructure, the upper decks, the cabling, sensors and weapons. Vikrant was eventually undocked on 10 June 2015 after the completion of structural work. Cabling, piping, heat and ventilation works were to be completed by 2017; sea trials would begin thereafter. In December 2019, it was reported that the engines on board the ship were switched on and in November 2020, only the basin trials of the aircraft carrier were completed.
By that time, the first Samudree Baaj aircraft had been delivered to Indian Navy 300 squadron, and even though only based at land at Hansa Air Station, flight training and military operations commenced. In the meantime, the start of Vikrant's trials had initially been scheduled to begin on 12 March 2020, but further construction delays caused that to be moved back to April. With the COVID-19 crisis, the navy explained that trials were unlikely to begin before September/October. During the Navy Day press meeting in December 2019, Navy Chief Admiral Karambir Singh said Vikrant would be fully operational before the end of 2022. The COVID-19 pandemic had already pushed that back to 2023 and further delays appeared possible.
In late 2020, the Indian Navy expected to commission Vikrant by the end of 2021. Until then, the Samudree Baaj fleet will remain land-based at INS Hansa near Goa. This not only is the INAS 300 home base, it is also the location of the Indian Navy's Shore Based Test Facility (SBTF), which is a mock-up of the 283-metre (928 ft) INS Vikramaditya (a modified Kiev-class aircraft carrier) deck built to train and certify navy pilots, primarily the the Mikoyan MiG-29K for operating from the aircraft carrier, but now also for the Samudree Baaj and for the developmental trials of the naval HAL Tejas lightweight fighter.
General characteristics:
Crew: 1
Length: 11.38 m (37 ft 4 in)
Wingspan: 9.39 m (30 ft 10 in)
Height: 4.30 m (14 ft 1 in)
Wing area: 17.66 m2 (190.1 sq ft)
Empty weight: 9,394 lb (4,261 kg)
Gross weight: 12,750 lb (5,783 kg)
Max takeoff weight: 9,101 kg (20,064 lb)
Fuel capacity: 1,360 kg (3,000 lb) internal
3,210 kg (7,080 lb) with 3 drop tanks
Powerplant:
1× Rolls-Royce Turbomeca Adour Mk. 871-1N non-afterburning turbofan, 28,89 kN (6,445 lbf) thrust
Performance:
Maximum speed: 1,037 km/h (644 mph, 560 kn) at sea level
Maximum speed: Mach 1.2 (never exceed at altitude)
Cruise speed: 796 km/h (495 mph, 430 kn) at 12,500 m (41,000 ft)
Carrier launch speed: 121 kn (139 mph; 224 km/h)
Approach speed: 125 kn (144 mph; 232 km/h)
Never exceed speed: 575 kn (662 mph, 1,065 km/h) / M1.04 design dive limit
Stall speed: 197 km/h (122 mph, 106 kn) flaps down
Range: 892 km (554 mi, 482 nmi) internal fuel only
Combat range: 617 km (383 mi, 333 nmi) with 2x AGM-84 and 2x 592 l (156 US gal; 130 imp gal)
Ferry range: 1,950 km (1,210 mi, 1,050 nmi) with 3 drop tanks
Service ceiling: 15,250 m (50,030 ft)
G-limits: +8/-3
Rate of climb: 58.466 m/s (11,509.1 ft/min)
Takeoff distance with maximum weapon load: 2,134 m (7,001 ft)
Landing distance at maximum landing weight with brake chute: 854 m (2,802 ft)
Landing distance at maximum landing weight without brake chute: 1,250 m (4,100 ft)
Armament:
2× 30 mm (1.181 in) Aden cannon with 150 rounds each
7× hardpoints (4× under-wing, 1× under-fuselage and 2 × wingtip)
for a total ordnance of 3.085 kg (6,800 lb) and a wide range of weapons
The kit and its assembly:
A subtle kitbashing project, inspired by a CG-rendition of a carrier-based (yet un-navalized) BAe Hawk 200 in Indian Navy service by fellow user SPINNERS in January 2021. I found the idea inspiring but thought that the basic concept could be taken further and into hardware form with a model. And I had a Matchbox Hawk 200 in The Stash™, as well as a McDonnell T-45 trainer from Italeri…
The plan sounds simple: take a T-45 and replace the cockpit section with the single-seat cockpit from the Hawk 200. And while the necessary cuts were easy to make, reality rears its ugly head when you try to mate parts from basically the same aircraft but from models by different manufacturers.
The challenges started with the fact that the fuselage shapes of both models differ – the Matchbox kit is more “voluminous”, and the different canopy shape called for a partial spine transplant, which turned out to be of very different shape than the T-45’s respective section! Lots of PSR…
In order to improve the pretty basic Matchbox Hawk cockpit I integrated the cockpit tub from the Italeri T-45, including the ejection seat, dashboard and its top cover.
For the totally different T-45 front wheel I had to enlarge the respective well and added a “ceiling” to it, since the strut had to be attached somewhere. The Hawk 200’s ventral tub for the cannons (which only the first prototype carried, later production aircraft did not feature them) were retained – partly because of their “whiffy“ nature, but also because making it disappear would have involved more major surgeries.
Most of the are behind the cockpit comes from the Italeri T-45, I just added a RHAWS fairing to the fin, extending it by 3mm.
A major problem became the air intakes, because the two kits differ in their construction. I wanted to use the Italeri parts, because they match the fairings on the fuselage flanks well and are better detailed than the Matchbox parts. But the boundary layer spacers between intakes and fuselage are molded into the Italeri parts, while the Matchbox kit has them molded into the fuselage. This called for major surgery and eventually worked out fine, and more PSR blended the rest of the fuselage donors around the cockpit together. A tedious process, though.
The pylons were puzzled together, including a former Matchbox EA-6B wing pylon under the fuselage, cut down and mounted in reverse and upside down! The ordnance comes from the Italeri NATO weapons set (Matra Magic and AGM-84), the ventral drop tank comes IIRC from an Eduard L-39 Albatros. Matra Magics were chosen because India never operated any Sidewinder AAM, just French or Soviet/Russian missiles like the R-60 or R-73 (unlikely on the Hawk, IMHO), and I had preferred a pair of Sea Eagle ASMs (from a Hasegawa Sea Harrier kit), but their span turned out to be too large for the Hawk’s low wings. The alternative, more slender Harpoons are plausible, though, since they are actually part of the Indian Navy’s inventory.
Painting and markings:
The Indian Navy theme was already settled, and I wanted to stay close to SPINNERS’ illustration as well as to real world Indian Navy aircraft. SPINNERS’ Hawk carried the typical Sea Harreir scheme in Extra Dark Sea Grey and White, and I found this livery to look a bit too much retro, because I’d place this what-if aircraft in the early 2020s, when the Sea Harriers had already been phased out. A “realistic” livery might have been an overall mid-grey paint scheme (like the land-based Indian Hawk 132s), but I found this to look too boring. As a compromise, I gave the Samudree Baaj a simple two-tone paint scheme, carried by a few late Indian Sea Harriers. It consists of upper surfaces in Dark Sea Grey (Humbrol 164) and undersides in Medium Sea Grey (Modelmaster 2058), with a low waterline. The Modelmaster MSG has – for my taste – a rather bluish hue and appears almost like PRU Blue, but I left it that way.
The decals were puzzled together from variosu sources. the roundels come from a MiG-21F (Begemot), the unit markings and tactical codes from a Model Alliance Sea Harrier sheet, and the stencils are a mix from the Matchbox Hawk 200 and the Italeri T-45.
The kit was sealed with matt acrylic varnish from Italeri.
The fictional HAL „Samudree Baaj“ looks simple, but combining kits of the basically same aircraft from different manufacturers reveals their differences, and they are not to be underestimated! However, I like the result of a navalized Hawk single-seater, and - also with the relatively simple and dull livery - it looks pretty convincing.
Many thanks to SPINNERS for the creative inspiration - even though my build is not a 100% "copy" of the artwork, but rather a step further into the navalisation idea with the T-45 parts.
In the frame is a MH-47G from the US Army 4th Battalion, 160th SOAR/Special Operations Aviation Regiment. This helicopter - 04-03745 - is a rebuild from CH-47D 82-23773 which is a rebuild of CH-47C 68-16002. Yes, quite the history in this helicopter that visited Historic Flight Foundation/HFF for HFF's D-Day + 70 commemeration (my photoset).
According to the Boeing factsheet, "The MH-47G’s fully integrated digital Common Avionics architecture System (CAAS) permits global communications and navigation. CAAS is among the most advanced U.S. Army helicopter systems. CAAS includes integrated forward-looking infrared (FLIR) and multimode radar for nap-of-the-earth and low-level flight operations in conditions of extremely poor visibility and adverse weather. Today’s MH-47Gs contain a fully integrated digital cockpit management system, long-range fuel tanks and advanced cargo-handling capabilities that complement the aircraft’s mission performance and handling characteristics."
Special thanks to Historic Flight Foundation & 4th Battalion, 160th Special Operations Aviation Regiment (Airborne) for this unique opportunity to photograph SOAR's helicopters. Much appreciate - especially to you Todd & Vanessa when you could have turned me away!
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on authentic facts. BEWARE!
Some background:
The forerunners of the Philippine Air Force was the Philippine Militia, otherwise known as Philippine National Guard (PNG). On March 17, 1917 Senate President Manuel L. Quezon enacted a bill (Militia Act 2715) for the creation of the Philippine Militia, in anticipation that there would be an outbreak of hostilities between United States and Germany.
The early aviation unit was lacking enough knowledge and equipment to be considered as an air force and was then limited only to air transport duties. In 1935, Philippine Military Aviation was activated when the 10th Congress passed Commonwealth Act 1494 that provided for the organization of the Philippine Constabulary Air Corps (PCAC). PCAC was renamed as the Philippine Army Air Corps (PAAC) in 1936 and started with only three planes on its inventory. In 1941, PAAC had a total of 54 aircraft including fighters and light bombers, reconnaissance aircraft, light transport and trainers. They later engaged the Japanese when they invaded the Philippines in 1941–42, and were reformed in 1945 after the country's liberation.
The PAF became a separate military service on July 1, 1947, and the main aircraft type became the P-51 Mustang, flown from 1947 to 1959. Ground attack missions were flown against various insurgent groups, with aircraft hit by ground fire but none shot down. The Mustangs would be replaced by the jet-powered North American F-86 Sabres in the late 1950s, assisted by Lockheed T-33 Shooting Star and Beechcraft T-34 Mentor trainers.
During the 70s, the PAF was actively providing air support for the AFP campaign against the MNLF forces in Central Mindanao, aside from doing the airlifting duties for troop movements from Manila and Cebu to the warzone. In late 1977, the Philippine government purchased 35 secondhand U.S. Navy F-8Hs that had been stored at Davis-Monthan AFB in Arizona. Twenty-five of them were refurbished by Vought and the remaining 10 were used for spare parts. As part of the deal, the U.S. would train Philippine pilots in using the (only) TF-8A, and they were mostly used for intercepting Soviet bombers. The F-8s were grounded in 1988 and were finally withdrawn from service in 1991 after they were badly damaged by the Mount Pinatubo eruption, and have since been offered for sale as scrap.
This left the PAF with the F-5 Freedom Fighter as the only jet-powered combat aircraft. The Philippine Air Force acquired 37 F-5A and F-5B from 1965 to 1998 (from Taiwan and South Korea). The F-5A/Bs were used by the 6th Tactical Fighter Squadron (Cobras) of the 5th Fighter Wing and the Blue Diamonds aerobatic team. The F-5s also underwent an upgrade which equipped it with surplus AN/APQ-153 radars with significant overhaul at the end of the 1970s to stretch their service lives another 15 years.
Since the retirement of the Northrop F-5s in September 2005, the Philippine Air Force was left without any fighter jets and thus also without any serious air cover, considerably weakening the countries position in the region. Financial constraints prevented the procurement of refurbished F-16A/Bs from US surplus stocks, so that the PAF initially resorted to Aermacchi S-211 trainer jets to fill the void left by the F-5's. These S-211's were later upgraded to light attack capability and used for air and sea patrol and also performed counter-insurgency operations from time to time. Apart from these trainers, the only active fixed wing aircraft to fill the roles were SF-260 trainers with light attack capability, and a handful of obsolete OV-10 Bronco light attack and reconnaissance aircraft.
With rising tensions and frequent incidents with Chinese forces, however, the PAF settled upon the “Flight Plan 2028”, a long-term modernization and procurement plan. One of the first investments in order to re-build the PAF’s jet fighter force was eventually settled in 2010, when the Philippines started negotiations with Israel to purchase refurbished IAI Kfir fighter-bombers. In August 2012 Israel Aerospace Industries officially announced that it would deliver twenty-one pre-owned Kfir fighter jets to the Philippines, with a 40-year guarantee and a supply of Python 4 IR-homing AAMs, at a rumored unit price of USD $20 million - a price that represents 1/3 the cost of a brand new fighter with similar capability, but without the weaponry.
These machines were Kfir C.10s, a variant developed especially for export, basically an updated C.7. The aircraft for the Philippines received the designation C.10P in order to reflect the new operator’s specifications. The most important changes of the C.10 update were the adaptation of an Elta EL/M-2032 multi-role radar and the integration of two 127×177mm MFDs in the cockpit.
The EL/M-2032 is an advanced Multimode Airborne Fire Control Radar designed for multi-mission fighters, oriented for both air-to-air and strike missions. Modular hardware design, software control and flexible avionic interfaces ensure that the radar can be installed in a wide range of existing fighter aircraft (such as F-16, F-5, Mirage, Harrier variants, F-4, MiG-21, etc.), and it can be customized to meet specific user requirements.
The EL/M-2032 greatly enhances the Air-to-Air, Air-to-Ground and Air-to-Sea capabilities of the aircraft, even though the PAF’s machines did not feature the optional Helmet Mounted Display System (as installed on board of the upgraded Ecuadorean Kfir C.10s). In the Air-to-Air modes, the radar enables long-range target detection and tracking for weapon delivery or automatic target acquisition in close combat engagements. The EL/M-2032 has a maximum range of 150 km and can detect and track an aerial target with a 1m² radar reflection surface equivalent at 100 km. Up to 64 aerial targets can be tracked at the same time, and this information can be shared with other aircraft, including the status which aircraft actually tracks which target.
In Air-to-Ground missions, the radar provided very high-resolution mapping (SAR), surface target detection and tracking over RBM, DBS and SAR maps in addition to A/G ranging. In Air-to-Sea missions, the radar provided long-range target detection and tracking, including target classification capabilities (RS, ISAR).
The first Kfir C.10Ps were quickly delivered, and in September 2014 the PAF’s 6th Tactical Fighter Squadron “Cobras” at Basa AB was reformed, the unit which had formerly operated the country’s last F-5s until 2005. Despite the type’s multirole capability, the Filipino Kfirs primarily fulfill interceptor and air patrol tasks against intrusions into Philippine airspace. Their prime task is to act as a general repellant against Chinese aggressions in the South China Sea, esp. in defense of the Scarborough Shoal fishing ground that Manila claims as part of its territorial waters.
Since 2015, the PAF’s jet fighter force has also been augmented by supersonic FA-50 trainers, procured from South Korea, and the PAF’s updated “Flight Plan 2028” lists another 16 Kfirs C.10Ps (including four TC.10P two-seaters), as well as more FA-50s, planned for the future.
Since their introduction the FAP’s Kfirs frequently intercepted Chinese and Russian reconnaissance aircraft (typically Y-8 maritime patrol aircraft, but also H-6 missile strike bombers and reconnaissance aircraft) over the Spratly Islands in the South China Sea, even though with no serious confrontations so far.
Beyond these standard duties, the PAF’s new type also took part in several other deployments: On 26 January 2017, two Philippine Air Force Kfir C.10s demonstrated their strike capabilities for the first time and conducted a nighttime attack on terrorist hideouts in Butig, Lanao del Sur province in Mindanao, the first “hot” combat sortie flown by these aircraft. In June 2017, Kfirs and FA-50s were sent out to conduct airstrikes against Maute terrorists entrenched in the city of Marawi, starting in May 2017.
General characteristics:
Crew: One
Length: 15.65 m (51 ft 4¼ in)
Wingspan: 8.22 m (26 ft 11½ in)
Height: 4.55 m (14 ft 11¼ in)
Wing area: 34.8 m² (374.6 sq ft)
Empty weight: 7,285 kg (16,060 lb)
Loaded weight: 11,603 kg (25,580 lb) two 500 L drop tanks, two AAMs
Max. takeoff weight: 16,200 kg (35,715 lb)
Powerplant:
1× IAl Bedek-built General Electric J-79-J1E turbojet with a dry thrust of 52.9 kN (11,890 lb st)
and 79.62 kN (17,900 lb st) thrust with afterburner
Performance:
Maximum speed: 2,440 km/h (2 Mach, 1,317 knots, 1,516 mph) above 11,000 m (36,000 ft)
Combat radius: 768 km (415 nmi, 477 mi) in ground attack role, with, hi-lo-hi profile, seven 500 lb
bombs, two AAMs, two 1,300 L drop tanks
Maximum range: 3,232 km (2,008 miles, 1744 nm), high profile, with two 1,300 L drop tank
Service ceiling: 22,860 m (75,000 ft)
Rate of climb: 233 m/s (45,950 ft/min)
Armament:
2× Rafael-built 30 mm (1.18 in) DEFA 553 cannons, 140 RPG
9× hardpoints for a total payload of 5,775 kg (12,730 lb), including an assortment of unguided
air-to-ground rockets, guided missiles (AIM-9 Sidewinders, Shafrir or Python-series AAMs; Shrike
ARMs and AGM-65 Maverick ASMs) or bombs such as the Mark 80 series, Paveway and Griffin
LGBs, SMKBs,TAL-1 OR TAL-2 CBUs, BLU-107 Matra Durandal, reconnaissance pods or Drop tanks
The kit and its assembly:
Like many of my what-if models, this one is rooted in real life. AFAIK, the PAF actually considered the procurement of refurbished, ex-Israeli Kfirs after the purchase of 2nd hand F-16s had turned out to be too costly – but even the Kfir deal did not materialize due to budgetary restrictions. However, whifworld can change this… And eventually, the PAF procured the South Korean FA-50 Golden Eagle multi-role advanced trainer.
The kit is the Italeri Kfir C.2/7, a sound and priceworthy offering, but it comes with some inherent flaws - the alternative Hasegawa kit is IMHO much easier to build, even though it is not much more detailed. Problem zones of the Italeri kit include the complex intersection between the air intakes, wings and the fuselage (nothing fits well, gaps galore!), ejector pin markings on the landing gear and on the wheels, sinkholes on the wings’ upper side towards the leading edges and the cockpit tub as a whole, which seems to stem from a different kit - including the dashboard, which is too wide, too.
In order to keep things simple and plausible, the kit was mostly built OOB, which is in itself enough work, with only a few cosmetic changes:
- a new nose section with a bigger radome from the scrap box and transplanted chines and pitot
- replacement of the early OOB Shafrir AAMs with Python AAMs, left over from a Trumpeter J-8
- additional/modified antennae and air sensors, including a RHAWS sensor at the top of the fin
- a refueling probe above the right air intake, from a Harrier GR.3, modified
- a Martin Baker ejection seat and some cockpit interior details
Painting and markings:
Since the fictional PAF Kfirs were to be primarily operated in the interceptor role, I gave the aircraft an air superiority scheme. Inspiration was taken from the type’s predecessor, the PAF’s F-8 Crusaders and their late Eighties livery, a wraparound scheme in two grey tones, coupled with low-viz (black) markings.
I actually used the F-8 camouflage pattern as benchmark and tried to adapt it to the delta-wing Kfir, but this eventually ended in almost complete improvisation. The colors are – based on visual impressions of some PAF Crusaders rather than on hard facts (since these turned out to be quite contradictive and/or implausible) – FS 36440 and 36270, Humbrol 129 and 126, respectively. The result appears a bit pale and reminds a lot of the French air superiority scheme (which is more bluish, though), but it does not look bad at all.
The radome and other dielectric fairings were slightly set apart from the camouflage tones (with Revell 47). The landing gear as well as the air intake interior were painted in gloss white (Humbrol 22), while the cockpit was painted in Sea Grey (Humbrol 27).
The model only received a light weathering treatment through a black ink washing and some post-shading with slightly lighter tones, since the aircraft would be relatively new in service – even though I have the impression that any PAF aircraft’s exterior quickly suffered under the local climate?
The national markings belong to a Philippine F-5 (a late camouflaged aircraft, hence the insignias’ small size), taken from an Aztec Decal sheet. The modex was created from code markings for a Bréguet Alizé and the cobra emblems on the fin belong to a Malaysian MiG-29 (Begemot sheet). The contemporary USAF-style BuNo for PAF aircraft was created with single decal letters – a fiddly affair.
Only a few stencils were actually taken from the OOB sheet and many of the original red markings were replaced. Most stencils became black and the walkway markings on the wings were replaced by segmented lines from a Mirage 2000.
After some final, very light weathering with graphite the kit was finally sealed with a coat of matt acrylic varnish (Italeri) and completed.
Nothing spectacular, but rather an exotic and still plausible what-if build, rooted in real life. While the paint scheme as such is not outstanding, I must say that the two-tone grey scheme suits the Kfir well, esp. together with the subdued markings.
Left to right, multimode VHF receiver with VHF antenna tuner on top, VHF/UHF scanner with AM broadcast band loop antenna (I enjoy AM dx'ing) on top, multimode HF transceiver with DMU display in panadapter mode on top, DMU, speaker system for transceiver. I haven't got any serious antenna systems up, I kind of permanently installed the tower at my last QTH. Need to start over. I do have a multiband dipole for SWL, was thinking about an 80...6 meter vertical for an interim setup until I work out what the rules are for towers in this part of town, find one to match, etc.
UPDATE: I rigged up a 20 meter inverted vee of wire and wood components I made in my wood shop, and made my first contact in 15 years (to California), even received a few SSTV images. But the band.... she is awfully quiet.
The window visible behind the gear is waiting for its turn at stained glass; our renovations haven't gotten to the south side of our former church yet. So it's a standard casement window stuffed with R10 foam. It'll be a real kick for me when we put the SG in; like working in front of jewels or something. At least during the day. :o)
This shot reached #145 on Explore; thanks, everyone. Not bad for gear porn!
The younger sibling of the FL1
(There was also a model FL2 which was the same as the FL3 but without the "auto-notch" add-on as standard)
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The Indian „Samudree Baaj“ (समुद्री बाज, Sea Hawk) was a highly modified, navalized version of the British BAE Systems Hawk land-based training jet aircraft, which had been manufactured under license by Hindustan Aeronautics Limited (HAL). The first indigenously built Hawk Mk. 132 trainer was delivered in 2008 to the Indian Air Force, and the type has since then been updated with indigenous avionics into the “Hawk-I” Mk. 132 from 2020 onwards. The aircraft’s Rolls Royce Adour Mk 871 engine was also license-built by HAL, and the company had experience from a wide range of aircraft projects in the past.
The Samudree Baaj project was initiated in 2006 by the Indian Navy, as part of the long historic plan to provide the Indian Navy with a fully capable aircraft carrier. This plan had been initiated in 1989, when India announced a plan to replace its ageing British-built aircraft carriers, INS Vikrant and INS Viraat (ex-HMS Hermes), with two new 28,000-ton Air Defence Ships (ADS) that would operate the BAe Sea Harrier aircraft. The first vessel was to replace Vikrant, which was set to decommission in early 1997. Construction of the ADS was to start at the Cochin Shipyard (CSL) in 1993 after the Indian Naval Design Organisation had translated this design study into a production model. Following the 1991 economic crisis, the plans for construction of the vessels were put on hold indefinitely.
In 1999, then-Defence Minister George Fernandes revived the project and sanctioned the construction of the Project “71 ADS”. By that time, given the ageing Sea Harrier fleet, the letter of intent called for a carrier that would carry more modern jet fighters. In 2001, CSL released a graphic illustration showing a 32,000-ton STOBAR (Short Take-Off But Arrested Recovery) design with a pronounced ski jump. The aircraft carrier project finally received formal government approval in January 2003. By then, design updates called for a 37,500-ton carrier to operate the MiG-29K. India opted for a three-carrier fleet consisting of one carrier battle group stationed on each seaboard, and a third carrier held in reserve, in order to continuously protect both its flanks, to protect economic interests and mercantile traffic, and to provide humanitarian platforms in times of disasters, since a carrier can provide a self-generating supply of fresh water, medical assistance or engineering expertise to populations in need for assistance.
In August 2006, then-Chief of the Naval Staff, Admiral Arun Prakash stated that the designation for the vessel had been changed from Air Defence Ship (ADS) to Indigenous Aircraft Carrier (IAC). The euphemistic ADS had been adopted in planning stages to ward off concerns about a naval build-up. Final revisions to the design increased the displacement of the carrier from 37,500 tons to over 40,000 tons. The length of the ship also increased from 252 metres (827 ft) to 262 metres (860 ft).
It was at this time that, beyond the MiG-29K, primarily a carrier-capable trainer and also a light (and less costly) strike aircraft would be needed. With the running production of the Hawk Mk. 132 for the Indian Air Force and BAE Systems’ connection and experience to the USA and McDonnell/Boeing’s adaptation of the Hawk as the US Navy’s carrier-capable T-45 trainer, HAL was instructed to develop a suitable aircraft family on the Hawk’s basis for the new carriers.
HAL’s Samudree Baaj is a fully carrier-capable version of the British Aerospace Hawk Mk. The Hawk had not originally been designed to perform carrier operations, so that numerous modifications were required, such as the extensive strengthening of the airframe to withstand the excessive forces imposed by the stresses involved in catapult launches and high sink-rate landings, both scenarios being routine in aircraft carrier operations.
The aerodynamic changes of the aircraft, which were mutually developed by HAL and BAE Systems, included improvements to the low-speed handling characteristics and a reduction in the approach speed. Most notable amongst the changes made to the Hawk's design were extended flaps for better low-speed handling, along with the addition of spoilers on the wings to reduce lift and strakes on the fuselage which improved airflow and stabilizer efficiency.
Other, less obvious modifications included a reinforced airframe, the adoption of a more robust and widened landing gear, complete with a catapult tow bar attachment to the oleo strut of the new two-wheel nose gear design, and an arresting hook. The tail fin was extended by 1 foot (12 in, 30.5 cm) to compensate for the loss of the Hawk’s ventral stabilizing strakes. To make room for the arrester hook, the original ventral air brake was split and re-located to the flanks, similar to the USN’s T-45 trainer.
At the time of the Samudree Baaj’s design, the exact catapult arrangement and capacity on board of India’s new carriers was not clear yet – even more so, since the MiG-29K and its powerful engines might have made a catapult obsolete. Therefore, the Samudree Baaj was designed to be operable either with a ski jump ramp (in the style of the Russian Kiev class carriers, of which India had purchased one as INS Vikramaditya) or with only minimal launch support within the projected STOBAR concept, which included a relatively short-stroke steam catapult and a similarly short, undampened arrester gear.
By 2009 the basic airframe had been defined and four prototypes were built for two versions: the Mk. 101 trainer, which was basically a navalized version of the land-based Mk. 132 with almost the same mission equipment, and the Mk. 201, a single-seater. Two airframes of each type were built and the first Samudree Baaj flight took place in early 2011. The Indian government ordered 30 trainers and 15 attack aircraft, to be delivered with the first new Indian carrier, INS Vikrant, in late 2017.
The Samudree Baaj Mk. 201 was developed from the basic navalized Hawk airframe as a light multirole fighter with a small visual signature and high maneuverability, but high combat efficiency and capable of both strike and point defense missions. It differed from the trainer through a completely new forward fuselage whereby the forward cockpit area, which normally housed the trainee, was replaced by an electronics bay for avionics and onboard systems, including a fire control computer, a LINS 300 ring laser gyroscope inertial navigation system and a lightweight (145 kg) multimode, coherent, pulse-Doppler I band airborne radar. This multimode radar was developed from the Ferranti Blue Fox radar and capable of airborne interception and air-to-surface strike roles over water and land, with look-down/shoot-down and look-up modes. It had ten air-to-surface and ten air-to-ground modes for navigation and weapon aiming purposes.
A ventral fairing behind the radome carried a laser rangefinder and a forward-looking infrared (FLIR). Mid-air refueling was also possible, through a detachable (but fixed) probe. GPS navigation or modern night-flight systems were integrated, too.
Like the trainer, the Mk. 201 had a total of seven weapon hardpoints (1 ventral, four underwing and a pair of wing tip launch rails), but the more sophisticated avionics suite allowed a wider range of ordnance to be carried and deployed, which included radar-guided AAMs for BVR strokes and smart weapons and guided missiles – especially the Sea Eagle and AGM-84 “Harpoon” anti-ship missiles in the Indian Navy’s arsenal. For the maritime strike role and as a support for ASW missions, the Samudree Baaj Mk. 201 could even deploy Sting Ray homing torpedoes.
Furthermore, a pair of 30mm (1.18 in) ADEN machine cannon with 150 RPG were housed in a shallow fairing under the cockpit. The self-protection systems include a BAE SkyGuardian 200 RWR and automatic Vinten chaff/flare dispensers located above the engine exhaust.
The Samudree Baaj project was highly ambitious, so that it does not wonder that there were many delays and teething troubles. Beyond the complex avionics integration this included the maritime adaptation of the Adour engine, which eventually led to the uprated Adour Mk. 871-1N, which, as a side benefit, also offered about 10% more power.
However, in parallel, INS Vikrant also ran into delays: In July 2012, The Times of India reported that construction of Vikrant has been delayed by three years, and the ship would be ready for commissioning by 2018. Later, in November 2012, Indian English-language news channel NDTV reported that cost of the aircraft carrier had increased, and the delivery has been delayed by at least five years and is expected to be with the Indian Navy only after 2018 as against the scheduled date of delivery of 2014. Work then commenced for the next stage of construction, which included the installation of the integrated propulsion system, the superstructure, the upper decks, the cabling, sensors and weapons. Vikrant was eventually undocked on 10 June 2015 after the completion of structural work. Cabling, piping, heat and ventilation works were to be completed by 2017; sea trials would begin thereafter. In December 2019, it was reported that the engines on board the ship were switched on and in November 2020, only the basin trials of the aircraft carrier were completed.
By that time, the first Samudree Baaj aircraft had been delivered to Indian Navy 300 squadron, and even though only based at land at Hansa Air Station, flight training and military operations commenced. In the meantime, the start of Vikrant's trials had initially been scheduled to begin on 12 March 2020, but further construction delays caused that to be moved back to April. With the COVID-19 crisis, the navy explained that trials were unlikely to begin before September/October. During the Navy Day press meeting in December 2019, Navy Chief Admiral Karambir Singh said Vikrant would be fully operational before the end of 2022. The COVID-19 pandemic had already pushed that back to 2023 and further delays appeared possible.
In late 2020, the Indian Navy expected to commission Vikrant by the end of 2021. Until then, the Samudree Baaj fleet will remain land-based at INS Hansa near Goa. This not only is the INAS 300 home base, it is also the location of the Indian Navy's Shore Based Test Facility (SBTF), which is a mock-up of the 283-metre (928 ft) INS Vikramaditya (a modified Kiev-class aircraft carrier) deck built to train and certify navy pilots, primarily the the Mikoyan MiG-29K for operating from the aircraft carrier, but now also for the Samudree Baaj and for the developmental trials of the naval HAL Tejas lightweight fighter.
General characteristics:
Crew: 1
Length: 11.38 m (37 ft 4 in)
Wingspan: 9.39 m (30 ft 10 in)
Height: 4.30 m (14 ft 1 in)
Wing area: 17.66 m2 (190.1 sq ft)
Empty weight: 9,394 lb (4,261 kg)
Gross weight: 12,750 lb (5,783 kg)
Max takeoff weight: 9,101 kg (20,064 lb)
Fuel capacity: 1,360 kg (3,000 lb) internal
3,210 kg (7,080 lb) with 3 drop tanks
Powerplant:
1× Rolls-Royce Turbomeca Adour Mk. 871-1N non-afterburning turbofan, 28,89 kN (6,445 lbf) thrust
Performance:
Maximum speed: 1,037 km/h (644 mph, 560 kn) at sea level
Maximum speed: Mach 1.2 (never exceed at altitude)
Cruise speed: 796 km/h (495 mph, 430 kn) at 12,500 m (41,000 ft)
Carrier launch speed: 121 kn (139 mph; 224 km/h)
Approach speed: 125 kn (144 mph; 232 km/h)
Never exceed speed: 575 kn (662 mph, 1,065 km/h) / M1.04 design dive limit
Stall speed: 197 km/h (122 mph, 106 kn) flaps down
Range: 892 km (554 mi, 482 nmi) internal fuel only
Combat range: 617 km (383 mi, 333 nmi) with 2x AGM-84 and 2x 592 l (156 US gal; 130 imp gal)
Ferry range: 1,950 km (1,210 mi, 1,050 nmi) with 3 drop tanks
Service ceiling: 15,250 m (50,030 ft)
G-limits: +8/-3
Rate of climb: 58.466 m/s (11,509.1 ft/min)
Takeoff distance with maximum weapon load: 2,134 m (7,001 ft)
Landing distance at maximum landing weight with brake chute: 854 m (2,802 ft)
Landing distance at maximum landing weight without brake chute: 1,250 m (4,100 ft)
Armament:
2× 30 mm (1.181 in) Aden cannon with 150 rounds each
7× hardpoints (4× under-wing, 1× under-fuselage and 2 × wingtip)
for a total ordnance of 3.085 kg (6,800 lb) and a wide range of weapons
The kit and its assembly:
A subtle kitbashing project, inspired by a CG-rendition of a carrier-based (yet un-navalized) BAe Hawk 200 in Indian Navy service by fellow user SPINNERS in January 2021. I found the idea inspiring but thought that the basic concept could be taken further and into hardware form with a model. And I had a Matchbox Hawk 200 in The Stash™, as well as a McDonnell T-45 trainer from Italeri…
The plan sounds simple: take a T-45 and replace the cockpit section with the single-seat cockpit from the Hawk 200. And while the necessary cuts were easy to make, reality rears its ugly head when you try to mate parts from basically the same aircraft but from models by different manufacturers.
The challenges started with the fact that the fuselage shapes of both models differ – the Matchbox kit is more “voluminous”, and the different canopy shape called for a partial spine transplant, which turned out to be of very different shape than the T-45’s respective section! Lots of PSR…
In order to improve the pretty basic Matchbox Hawk cockpit I integrated the cockpit tub from the Italeri T-45, including the ejection seat, dashboard and its top cover.
For the totally different T-45 front wheel I had to enlarge the respective well and added a “ceiling” to it, since the strut had to be attached somewhere. The Hawk 200’s ventral tub for the cannons (which only the first prototype carried, later production aircraft did not feature them) were retained – partly because of their “whiffy“ nature, but also because making it disappear would have involved more major surgeries.
Most of the are behind the cockpit comes from the Italeri T-45, I just added a RHAWS fairing to the fin, extending it by 3mm.
A major problem became the air intakes, because the two kits differ in their construction. I wanted to use the Italeri parts, because they match the fairings on the fuselage flanks well and are better detailed than the Matchbox parts. But the boundary layer spacers between intakes and fuselage are molded into the Italeri parts, while the Matchbox kit has them molded into the fuselage. This called for major surgery and eventually worked out fine, and more PSR blended the rest of the fuselage donors around the cockpit together. A tedious process, though.
The pylons were puzzled together, including a former Matchbox EA-6B wing pylon under the fuselage, cut down and mounted in reverse and upside down! The ordnance comes from the Italeri NATO weapons set (Matra Magic and AGM-84), the ventral drop tank comes IIRC from an Eduard L-39 Albatros. Matra Magics were chosen because India never operated any Sidewinder AAM, just French or Soviet/Russian missiles like the R-60 or R-73 (unlikely on the Hawk, IMHO), and I had preferred a pair of Sea Eagle ASMs (from a Hasegawa Sea Harrier kit), but their span turned out to be too large for the Hawk’s low wings. The alternative, more slender Harpoons are plausible, though, since they are actually part of the Indian Navy’s inventory.
Painting and markings:
The Indian Navy theme was already settled, and I wanted to stay close to SPINNERS’ illustration as well as to real world Indian Navy aircraft. SPINNERS’ Hawk carried the typical Sea Harreir scheme in Extra Dark Sea Grey and White, and I found this livery to look a bit too much retro, because I’d place this what-if aircraft in the early 2020s, when the Sea Harriers had already been phased out. A “realistic” livery might have been an overall mid-grey paint scheme (like the land-based Indian Hawk 132s), but I found this to look too boring. As a compromise, I gave the Samudree Baaj a simple two-tone paint scheme, carried by a few late Indian Sea Harriers. It consists of upper surfaces in Dark Sea Grey (Humbrol 164) and undersides in Medium Sea Grey (Modelmaster 2058), with a low waterline. The Modelmaster MSG has – for my taste – a rather bluish hue and appears almost like PRU Blue, but I left it that way.
The decals were puzzled together from variosu sources. the roundels come from a MiG-21F (Begemot), the unit markings and tactical codes from a Model Alliance Sea Harrier sheet, and the stencils are a mix from the Matchbox Hawk 200 and the Italeri T-45.
The kit was sealed with matt acrylic varnish from Italeri.
The fictional HAL „Samudree Baaj“ looks simple, but combining kits of the basically same aircraft from different manufacturers reveals their differences, and they are not to be underestimated! However, I like the result of a navalized Hawk single-seater, and - also with the relatively simple and dull livery - it looks pretty convincing.
Many thanks to SPINNERS for the creative inspiration - even though my build is not a 100% "copy" of the artwork, but rather a step further into the navalisation idea with the T-45 parts.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The Indian „Samudree Baaj“ (समुद्री बाज, Sea Hawk) was a highly modified, navalized version of the British BAE Systems Hawk land-based training jet aircraft, which had been manufactured under license by Hindustan Aeronautics Limited (HAL). The first indigenously built Hawk Mk. 132 trainer was delivered in 2008 to the Indian Air Force, and the type has since then been updated with indigenous avionics into the “Hawk-I” Mk. 132 from 2020 onwards. The aircraft’s Rolls Royce Adour Mk 871 engine was also license-built by HAL, and the company had experience from a wide range of aircraft projects in the past.
The Samudree Baaj project was initiated in 2006 by the Indian Navy, as part of the long historic plan to provide the Indian Navy with a fully capable aircraft carrier. This plan had been initiated in 1989, when India announced a plan to replace its ageing British-built aircraft carriers, INS Vikrant and INS Viraat (ex-HMS Hermes), with two new 28,000-ton Air Defence Ships (ADS) that would operate the BAe Sea Harrier aircraft. The first vessel was to replace Vikrant, which was set to decommission in early 1997. Construction of the ADS was to start at the Cochin Shipyard (CSL) in 1993 after the Indian Naval Design Organisation had translated this design study into a production model. Following the 1991 economic crisis, the plans for construction of the vessels were put on hold indefinitely.
In 1999, then-Defence Minister George Fernandes revived the project and sanctioned the construction of the Project “71 ADS”. By that time, given the ageing Sea Harrier fleet, the letter of intent called for a carrier that would carry more modern jet fighters. In 2001, CSL released a graphic illustration showing a 32,000-ton STOBAR (Short Take-Off But Arrested Recovery) design with a pronounced ski jump. The aircraft carrier project finally received formal government approval in January 2003. By then, design updates called for a 37,500-ton carrier to operate the MiG-29K. India opted for a three-carrier fleet consisting of one carrier battle group stationed on each seaboard, and a third carrier held in reserve, in order to continuously protect both its flanks, to protect economic interests and mercantile traffic, and to provide humanitarian platforms in times of disasters, since a carrier can provide a self-generating supply of fresh water, medical assistance or engineering expertise to populations in need for assistance.
In August 2006, then-Chief of the Naval Staff, Admiral Arun Prakash stated that the designation for the vessel had been changed from Air Defence Ship (ADS) to Indigenous Aircraft Carrier (IAC). The euphemistic ADS had been adopted in planning stages to ward off concerns about a naval build-up. Final revisions to the design increased the displacement of the carrier from 37,500 tons to over 40,000 tons. The length of the ship also increased from 252 metres (827 ft) to 262 metres (860 ft).
It was at this time that, beyond the MiG-29K, primarily a carrier-capable trainer and also a light (and less costly) strike aircraft would be needed. With the running production of the Hawk Mk. 132 for the Indian Air Force and BAE Systems’ connection and experience to the USA and McDonnell/Boeing’s adaptation of the Hawk as the US Navy’s carrier-capable T-45 trainer, HAL was instructed to develop a suitable aircraft family on the Hawk’s basis for the new carriers.
HAL’s Samudree Baaj is a fully carrier-capable version of the British Aerospace Hawk Mk. The Hawk had not originally been designed to perform carrier operations, so that numerous modifications were required, such as the extensive strengthening of the airframe to withstand the excessive forces imposed by the stresses involved in catapult launches and high sink-rate landings, both scenarios being routine in aircraft carrier operations.
The aerodynamic changes of the aircraft, which were mutually developed by HAL and BAE Systems, included improvements to the low-speed handling characteristics and a reduction in the approach speed. Most notable amongst the changes made to the Hawk's design were extended flaps for better low-speed handling, along with the addition of spoilers on the wings to reduce lift and strakes on the fuselage which improved airflow and stabilizer efficiency.
Other, less obvious modifications included a reinforced airframe, the adoption of a more robust and widened landing gear, complete with a catapult tow bar attachment to the oleo strut of the new two-wheel nose gear design, and an arresting hook. The tail fin was extended by 1 foot (12 in, 30.5 cm) to compensate for the loss of the Hawk’s ventral stabilizing strakes. To make room for the arrester hook, the original ventral air brake was split and re-located to the flanks, similar to the USN’s T-45 trainer.
At the time of the Samudree Baaj’s design, the exact catapult arrangement and capacity on board of India’s new carriers was not clear yet – even more so, since the MiG-29K and its powerful engines might have made a catapult obsolete. Therefore, the Samudree Baaj was designed to be operable either with a ski jump ramp (in the style of the Russian Kiev class carriers, of which India had purchased one as INS Vikramaditya) or with only minimal launch support within the projected STOBAR concept, which included a relatively short-stroke steam catapult and a similarly short, undampened arrester gear.
By 2009 the basic airframe had been defined and four prototypes were built for two versions: the Mk. 101 trainer, which was basically a navalized version of the land-based Mk. 132 with almost the same mission equipment, and the Mk. 201, a single-seater. Two airframes of each type were built and the first Samudree Baaj flight took place in early 2011. The Indian government ordered 30 trainers and 15 attack aircraft, to be delivered with the first new Indian carrier, INS Vikrant, in late 2017.
The Samudree Baaj Mk. 201 was developed from the basic navalized Hawk airframe as a light multirole fighter with a small visual signature and high maneuverability, but high combat efficiency and capable of both strike and point defense missions. It differed from the trainer through a completely new forward fuselage whereby the forward cockpit area, which normally housed the trainee, was replaced by an electronics bay for avionics and onboard systems, including a fire control computer, a LINS 300 ring laser gyroscope inertial navigation system and a lightweight (145 kg) multimode, coherent, pulse-Doppler I band airborne radar. This multimode radar was developed from the Ferranti Blue Fox radar and capable of airborne interception and air-to-surface strike roles over water and land, with look-down/shoot-down and look-up modes. It had ten air-to-surface and ten air-to-ground modes for navigation and weapon aiming purposes.
A ventral fairing behind the radome carried a laser rangefinder and a forward-looking infrared (FLIR). Mid-air refueling was also possible, through a detachable (but fixed) probe. GPS navigation or modern night-flight systems were integrated, too.
Like the trainer, the Mk. 201 had a total of seven weapon hardpoints (1 ventral, four underwing and a pair of wing tip launch rails), but the more sophisticated avionics suite allowed a wider range of ordnance to be carried and deployed, which included radar-guided AAMs for BVR strokes and smart weapons and guided missiles – especially the Sea Eagle and AGM-84 “Harpoon” anti-ship missiles in the Indian Navy’s arsenal. For the maritime strike role and as a support for ASW missions, the Samudree Baaj Mk. 201 could even deploy Sting Ray homing torpedoes.
Furthermore, a pair of 30mm (1.18 in) ADEN machine cannon with 150 RPG were housed in a shallow fairing under the cockpit. The self-protection systems include a BAE SkyGuardian 200 RWR and automatic Vinten chaff/flare dispensers located above the engine exhaust.
The Samudree Baaj project was highly ambitious, so that it does not wonder that there were many delays and teething troubles. Beyond the complex avionics integration this included the maritime adaptation of the Adour engine, which eventually led to the uprated Adour Mk. 871-1N, which, as a side benefit, also offered about 10% more power.
However, in parallel, INS Vikrant also ran into delays: In July 2012, The Times of India reported that construction of Vikrant has been delayed by three years, and the ship would be ready for commissioning by 2018. Later, in November 2012, Indian English-language news channel NDTV reported that cost of the aircraft carrier had increased, and the delivery has been delayed by at least five years and is expected to be with the Indian Navy only after 2018 as against the scheduled date of delivery of 2014. Work then commenced for the next stage of construction, which included the installation of the integrated propulsion system, the superstructure, the upper decks, the cabling, sensors and weapons. Vikrant was eventually undocked on 10 June 2015 after the completion of structural work. Cabling, piping, heat and ventilation works were to be completed by 2017; sea trials would begin thereafter. In December 2019, it was reported that the engines on board the ship were switched on and in November 2020, only the basin trials of the aircraft carrier were completed.
By that time, the first Samudree Baaj aircraft had been delivered to Indian Navy 300 squadron, and even though only based at land at Hansa Air Station, flight training and military operations commenced. In the meantime, the start of Vikrant's trials had initially been scheduled to begin on 12 March 2020, but further construction delays caused that to be moved back to April. With the COVID-19 crisis, the navy explained that trials were unlikely to begin before September/October. During the Navy Day press meeting in December 2019, Navy Chief Admiral Karambir Singh said Vikrant would be fully operational before the end of 2022. The COVID-19 pandemic had already pushed that back to 2023 and further delays appeared possible.
In late 2020, the Indian Navy expected to commission Vikrant by the end of 2021. Until then, the Samudree Baaj fleet will remain land-based at INS Hansa near Goa. This not only is the INAS 300 home base, it is also the location of the Indian Navy's Shore Based Test Facility (SBTF), which is a mock-up of the 283-metre (928 ft) INS Vikramaditya (a modified Kiev-class aircraft carrier) deck built to train and certify navy pilots, primarily the the Mikoyan MiG-29K for operating from the aircraft carrier, but now also for the Samudree Baaj and for the developmental trials of the naval HAL Tejas lightweight fighter.
General characteristics:
Crew: 1
Length: 11.38 m (37 ft 4 in)
Wingspan: 9.39 m (30 ft 10 in)
Height: 4.30 m (14 ft 1 in)
Wing area: 17.66 m2 (190.1 sq ft)
Empty weight: 9,394 lb (4,261 kg)
Gross weight: 12,750 lb (5,783 kg)
Max takeoff weight: 9,101 kg (20,064 lb)
Fuel capacity: 1,360 kg (3,000 lb) internal
3,210 kg (7,080 lb) with 3 drop tanks
Powerplant:
1× Rolls-Royce Turbomeca Adour Mk. 871-1N non-afterburning turbofan, 28,89 kN (6,445 lbf) thrust
Performance:
Maximum speed: 1,037 km/h (644 mph, 560 kn) at sea level
Maximum speed: Mach 1.2 (never exceed at altitude)
Cruise speed: 796 km/h (495 mph, 430 kn) at 12,500 m (41,000 ft)
Carrier launch speed: 121 kn (139 mph; 224 km/h)
Approach speed: 125 kn (144 mph; 232 km/h)
Never exceed speed: 575 kn (662 mph, 1,065 km/h) / M1.04 design dive limit
Stall speed: 197 km/h (122 mph, 106 kn) flaps down
Range: 892 km (554 mi, 482 nmi) internal fuel only
Combat range: 617 km (383 mi, 333 nmi) with 2x AGM-84 and 2x 592 l (156 US gal; 130 imp gal)
Ferry range: 1,950 km (1,210 mi, 1,050 nmi) with 3 drop tanks
Service ceiling: 15,250 m (50,030 ft)
G-limits: +8/-3
Rate of climb: 58.466 m/s (11,509.1 ft/min)
Takeoff distance with maximum weapon load: 2,134 m (7,001 ft)
Landing distance at maximum landing weight with brake chute: 854 m (2,802 ft)
Landing distance at maximum landing weight without brake chute: 1,250 m (4,100 ft)
Armament:
2× 30 mm (1.181 in) Aden cannon with 150 rounds each
7× hardpoints (4× under-wing, 1× under-fuselage and 2 × wingtip)
for a total ordnance of 3.085 kg (6,800 lb) and a wide range of weapons
The kit and its assembly:
A subtle kitbashing project, inspired by a CG-rendition of a carrier-based (yet un-navalized) BAe Hawk 200 in Indian Navy service by fellow user SPINNERS in January 2021. I found the idea inspiring but thought that the basic concept could be taken further and into hardware form with a model. And I had a Matchbox Hawk 200 in The Stash™, as well as a McDonnell T-45 trainer from Italeri…
The plan sounds simple: take a T-45 and replace the cockpit section with the single-seat cockpit from the Hawk 200. And while the necessary cuts were easy to make, reality rears its ugly head when you try to mate parts from basically the same aircraft but from models by different manufacturers.
The challenges started with the fact that the fuselage shapes of both models differ – the Matchbox kit is more “voluminous”, and the different canopy shape called for a partial spine transplant, which turned out to be of very different shape than the T-45’s respective section! Lots of PSR…
In order to improve the pretty basic Matchbox Hawk cockpit I integrated the cockpit tub from the Italeri T-45, including the ejection seat, dashboard and its top cover.
For the totally different T-45 front wheel I had to enlarge the respective well and added a “ceiling” to it, since the strut had to be attached somewhere. The Hawk 200’s ventral tub for the cannons (which only the first prototype carried, later production aircraft did not feature them) were retained – partly because of their “whiffy“ nature, but also because making it disappear would have involved more major surgeries.
Most of the are behind the cockpit comes from the Italeri T-45, I just added a RHAWS fairing to the fin, extending it by 3mm.
A major problem became the air intakes, because the two kits differ in their construction. I wanted to use the Italeri parts, because they match the fairings on the fuselage flanks well and are better detailed than the Matchbox parts. But the boundary layer spacers between intakes and fuselage are molded into the Italeri parts, while the Matchbox kit has them molded into the fuselage. This called for major surgery and eventually worked out fine, and more PSR blended the rest of the fuselage donors around the cockpit together. A tedious process, though.
The pylons were puzzled together, including a former Matchbox EA-6B wing pylon under the fuselage, cut down and mounted in reverse and upside down! The ordnance comes from the Italeri NATO weapons set (Matra Magic and AGM-84), the ventral drop tank comes IIRC from an Eduard L-39 Albatros. Matra Magics were chosen because India never operated any Sidewinder AAM, just French or Soviet/Russian missiles like the R-60 or R-73 (unlikely on the Hawk, IMHO), and I had preferred a pair of Sea Eagle ASMs (from a Hasegawa Sea Harrier kit), but their span turned out to be too large for the Hawk’s low wings. The alternative, more slender Harpoons are plausible, though, since they are actually part of the Indian Navy’s inventory.
Painting and markings:
The Indian Navy theme was already settled, and I wanted to stay close to SPINNERS’ illustration as well as to real world Indian Navy aircraft. SPINNERS’ Hawk carried the typical Sea Harreir scheme in Extra Dark Sea Grey and White, and I found this livery to look a bit too much retro, because I’d place this what-if aircraft in the early 2020s, when the Sea Harriers had already been phased out. A “realistic” livery might have been an overall mid-grey paint scheme (like the land-based Indian Hawk 132s), but I found this to look too boring. As a compromise, I gave the Samudree Baaj a simple two-tone paint scheme, carried by a few late Indian Sea Harriers. It consists of upper surfaces in Dark Sea Grey (Humbrol 164) and undersides in Medium Sea Grey (Modelmaster 2058), with a low waterline. The Modelmaster MSG has – for my taste – a rather bluish hue and appears almost like PRU Blue, but I left it that way.
The decals were puzzled together from variosu sources. the roundels come from a MiG-21F (Begemot), the unit markings and tactical codes from a Model Alliance Sea Harrier sheet, and the stencils are a mix from the Matchbox Hawk 200 and the Italeri T-45.
The kit was sealed with matt acrylic varnish from Italeri.
The fictional HAL „Samudree Baaj“ looks simple, but combining kits of the basically same aircraft from different manufacturers reveals their differences, and they are not to be underestimated! However, I like the result of a navalized Hawk single-seater, and - also with the relatively simple and dull livery - it looks pretty convincing.
Many thanks to SPINNERS for the creative inspiration - even though my build is not a 100% "copy" of the artwork, but rather a step further into the navalisation idea with the T-45 parts.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The Indian „Samudree Baaj“ (समुद्री बाज, Sea Hawk) was a highly modified, navalized version of the British BAE Systems Hawk land-based training jet aircraft, which had been manufactured under license by Hindustan Aeronautics Limited (HAL). The first indigenously built Hawk Mk. 132 trainer was delivered in 2008 to the Indian Air Force, and the type has since then been updated with indigenous avionics into the “Hawk-I” Mk. 132 from 2020 onwards. The aircraft’s Rolls Royce Adour Mk 871 engine was also license-built by HAL, and the company had experience from a wide range of aircraft projects in the past.
The Samudree Baaj project was initiated in 2006 by the Indian Navy, as part of the long historic plan to provide the Indian Navy with a fully capable aircraft carrier. This plan had been initiated in 1989, when India announced a plan to replace its ageing British-built aircraft carriers, INS Vikrant and INS Viraat (ex-HMS Hermes), with two new 28,000-ton Air Defence Ships (ADS) that would operate the BAe Sea Harrier aircraft. The first vessel was to replace Vikrant, which was set to decommission in early 1997. Construction of the ADS was to start at the Cochin Shipyard (CSL) in 1993 after the Indian Naval Design Organisation had translated this design study into a production model. Following the 1991 economic crisis, the plans for construction of the vessels were put on hold indefinitely.
In 1999, then-Defence Minister George Fernandes revived the project and sanctioned the construction of the Project “71 ADS”. By that time, given the ageing Sea Harrier fleet, the letter of intent called for a carrier that would carry more modern jet fighters. In 2001, CSL released a graphic illustration showing a 32,000-ton STOBAR (Short Take-Off But Arrested Recovery) design with a pronounced ski jump. The aircraft carrier project finally received formal government approval in January 2003. By then, design updates called for a 37,500-ton carrier to operate the MiG-29K. India opted for a three-carrier fleet consisting of one carrier battle group stationed on each seaboard, and a third carrier held in reserve, in order to continuously protect both its flanks, to protect economic interests and mercantile traffic, and to provide humanitarian platforms in times of disasters, since a carrier can provide a self-generating supply of fresh water, medical assistance or engineering expertise to populations in need for assistance.
In August 2006, then-Chief of the Naval Staff, Admiral Arun Prakash stated that the designation for the vessel had been changed from Air Defence Ship (ADS) to Indigenous Aircraft Carrier (IAC). The euphemistic ADS had been adopted in planning stages to ward off concerns about a naval build-up. Final revisions to the design increased the displacement of the carrier from 37,500 tons to over 40,000 tons. The length of the ship also increased from 252 metres (827 ft) to 262 metres (860 ft).
It was at this time that, beyond the MiG-29K, primarily a carrier-capable trainer and also a light (and less costly) strike aircraft would be needed. With the running production of the Hawk Mk. 132 for the Indian Air Force and BAE Systems’ connection and experience to the USA and McDonnell/Boeing’s adaptation of the Hawk as the US Navy’s carrier-capable T-45 trainer, HAL was instructed to develop a suitable aircraft family on the Hawk’s basis for the new carriers.
HAL’s Samudree Baaj is a fully carrier-capable version of the British Aerospace Hawk Mk. The Hawk had not originally been designed to perform carrier operations, so that numerous modifications were required, such as the extensive strengthening of the airframe to withstand the excessive forces imposed by the stresses involved in catapult launches and high sink-rate landings, both scenarios being routine in aircraft carrier operations.
The aerodynamic changes of the aircraft, which were mutually developed by HAL and BAE Systems, included improvements to the low-speed handling characteristics and a reduction in the approach speed. Most notable amongst the changes made to the Hawk's design were extended flaps for better low-speed handling, along with the addition of spoilers on the wings to reduce lift and strakes on the fuselage which improved airflow and stabilizer efficiency.
Other, less obvious modifications included a reinforced airframe, the adoption of a more robust and widened landing gear, complete with a catapult tow bar attachment to the oleo strut of the new two-wheel nose gear design, and an arresting hook. The tail fin was extended by 1 foot (12 in, 30.5 cm) to compensate for the loss of the Hawk’s ventral stabilizing strakes. To make room for the arrester hook, the original ventral air brake was split and re-located to the flanks, similar to the USN’s T-45 trainer.
At the time of the Samudree Baaj’s design, the exact catapult arrangement and capacity on board of India’s new carriers was not clear yet – even more so, since the MiG-29K and its powerful engines might have made a catapult obsolete. Therefore, the Samudree Baaj was designed to be operable either with a ski jump ramp (in the style of the Russian Kiev class carriers, of which India had purchased one as INS Vikramaditya) or with only minimal launch support within the projected STOBAR concept, which included a relatively short-stroke steam catapult and a similarly short, undampened arrester gear.
By 2009 the basic airframe had been defined and four prototypes were built for two versions: the Mk. 101 trainer, which was basically a navalized version of the land-based Mk. 132 with almost the same mission equipment, and the Mk. 201, a single-seater. Two airframes of each type were built and the first Samudree Baaj flight took place in early 2011. The Indian government ordered 30 trainers and 15 attack aircraft, to be delivered with the first new Indian carrier, INS Vikrant, in late 2017.
The Samudree Baaj Mk. 201 was developed from the basic navalized Hawk airframe as a light multirole fighter with a small visual signature and high maneuverability, but high combat efficiency and capable of both strike and point defense missions. It differed from the trainer through a completely new forward fuselage whereby the forward cockpit area, which normally housed the trainee, was replaced by an electronics bay for avionics and onboard systems, including a fire control computer, a LINS 300 ring laser gyroscope inertial navigation system and a lightweight (145 kg) multimode, coherent, pulse-Doppler I band airborne radar. This multimode radar was developed from the Ferranti Blue Fox radar and capable of airborne interception and air-to-surface strike roles over water and land, with look-down/shoot-down and look-up modes. It had ten air-to-surface and ten air-to-ground modes for navigation and weapon aiming purposes.
A ventral fairing behind the radome carried a laser rangefinder and a forward-looking infrared (FLIR). Mid-air refueling was also possible, through a detachable (but fixed) probe. GPS navigation or modern night-flight systems were integrated, too.
Like the trainer, the Mk. 201 had a total of seven weapon hardpoints (1 ventral, four underwing and a pair of wing tip launch rails), but the more sophisticated avionics suite allowed a wider range of ordnance to be carried and deployed, which included radar-guided AAMs for BVR strokes and smart weapons and guided missiles – especially the Sea Eagle and AGM-84 “Harpoon” anti-ship missiles in the Indian Navy’s arsenal. For the maritime strike role and as a support for ASW missions, the Samudree Baaj Mk. 201 could even deploy Sting Ray homing torpedoes.
Furthermore, a pair of 30mm (1.18 in) ADEN machine cannon with 150 RPG were housed in a shallow fairing under the cockpit. The self-protection systems include a BAE SkyGuardian 200 RWR and automatic Vinten chaff/flare dispensers located above the engine exhaust.
The Samudree Baaj project was highly ambitious, so that it does not wonder that there were many delays and teething troubles. Beyond the complex avionics integration this included the maritime adaptation of the Adour engine, which eventually led to the uprated Adour Mk. 871-1N, which, as a side benefit, also offered about 10% more power.
However, in parallel, INS Vikrant also ran into delays: In July 2012, The Times of India reported that construction of Vikrant has been delayed by three years, and the ship would be ready for commissioning by 2018. Later, in November 2012, Indian English-language news channel NDTV reported that cost of the aircraft carrier had increased, and the delivery has been delayed by at least five years and is expected to be with the Indian Navy only after 2018 as against the scheduled date of delivery of 2014. Work then commenced for the next stage of construction, which included the installation of the integrated propulsion system, the superstructure, the upper decks, the cabling, sensors and weapons. Vikrant was eventually undocked on 10 June 2015 after the completion of structural work. Cabling, piping, heat and ventilation works were to be completed by 2017; sea trials would begin thereafter. In December 2019, it was reported that the engines on board the ship were switched on and in November 2020, only the basin trials of the aircraft carrier were completed.
By that time, the first Samudree Baaj aircraft had been delivered to Indian Navy 300 squadron, and even though only based at land at Hansa Air Station, flight training and military operations commenced. In the meantime, the start of Vikrant's trials had initially been scheduled to begin on 12 March 2020, but further construction delays caused that to be moved back to April. With the COVID-19 crisis, the navy explained that trials were unlikely to begin before September/October. During the Navy Day press meeting in December 2019, Navy Chief Admiral Karambir Singh said Vikrant would be fully operational before the end of 2022. The COVID-19 pandemic had already pushed that back to 2023 and further delays appeared possible.
In late 2020, the Indian Navy expected to commission Vikrant by the end of 2021. Until then, the Samudree Baaj fleet will remain land-based at INS Hansa near Goa. This not only is the INAS 300 home base, it is also the location of the Indian Navy's Shore Based Test Facility (SBTF), which is a mock-up of the 283-metre (928 ft) INS Vikramaditya (a modified Kiev-class aircraft carrier) deck built to train and certify navy pilots, primarily the the Mikoyan MiG-29K for operating from the aircraft carrier, but now also for the Samudree Baaj and for the developmental trials of the naval HAL Tejas lightweight fighter.
General characteristics:
Crew: 1
Length: 11.38 m (37 ft 4 in)
Wingspan: 9.39 m (30 ft 10 in)
Height: 4.30 m (14 ft 1 in)
Wing area: 17.66 m2 (190.1 sq ft)
Empty weight: 9,394 lb (4,261 kg)
Gross weight: 12,750 lb (5,783 kg)
Max takeoff weight: 9,101 kg (20,064 lb)
Fuel capacity: 1,360 kg (3,000 lb) internal
3,210 kg (7,080 lb) with 3 drop tanks
Powerplant:
1× Rolls-Royce Turbomeca Adour Mk. 871-1N non-afterburning turbofan, 28,89 kN (6,445 lbf) thrust
Performance:
Maximum speed: 1,037 km/h (644 mph, 560 kn) at sea level
Maximum speed: Mach 1.2 (never exceed at altitude)
Cruise speed: 796 km/h (495 mph, 430 kn) at 12,500 m (41,000 ft)
Carrier launch speed: 121 kn (139 mph; 224 km/h)
Approach speed: 125 kn (144 mph; 232 km/h)
Never exceed speed: 575 kn (662 mph, 1,065 km/h) / M1.04 design dive limit
Stall speed: 197 km/h (122 mph, 106 kn) flaps down
Range: 892 km (554 mi, 482 nmi) internal fuel only
Combat range: 617 km (383 mi, 333 nmi) with 2x AGM-84 and 2x 592 l (156 US gal; 130 imp gal)
Ferry range: 1,950 km (1,210 mi, 1,050 nmi) with 3 drop tanks
Service ceiling: 15,250 m (50,030 ft)
G-limits: +8/-3
Rate of climb: 58.466 m/s (11,509.1 ft/min)
Takeoff distance with maximum weapon load: 2,134 m (7,001 ft)
Landing distance at maximum landing weight with brake chute: 854 m (2,802 ft)
Landing distance at maximum landing weight without brake chute: 1,250 m (4,100 ft)
Armament:
2× 30 mm (1.181 in) Aden cannon with 150 rounds each
7× hardpoints (4× under-wing, 1× under-fuselage and 2 × wingtip)
for a total ordnance of 3.085 kg (6,800 lb) and a wide range of weapons
The kit and its assembly:
A subtle kitbashing project, inspired by a CG-rendition of a carrier-based (yet un-navalized) BAe Hawk 200 in Indian Navy service by fellow user SPINNERS in January 2021. I found the idea inspiring but thought that the basic concept could be taken further and into hardware form with a model. And I had a Matchbox Hawk 200 in The Stash™, as well as a McDonnell T-45 trainer from Italeri…
The plan sounds simple: take a T-45 and replace the cockpit section with the single-seat cockpit from the Hawk 200. And while the necessary cuts were easy to make, reality rears its ugly head when you try to mate parts from basically the same aircraft but from models by different manufacturers.
The challenges started with the fact that the fuselage shapes of both models differ – the Matchbox kit is more “voluminous”, and the different canopy shape called for a partial spine transplant, which turned out to be of very different shape than the T-45’s respective section! Lots of PSR…
In order to improve the pretty basic Matchbox Hawk cockpit I integrated the cockpit tub from the Italeri T-45, including the ejection seat, dashboard and its top cover.
For the totally different T-45 front wheel I had to enlarge the respective well and added a “ceiling” to it, since the strut had to be attached somewhere. The Hawk 200’s ventral tub for the cannons (which only the first prototype carried, later production aircraft did not feature them) were retained – partly because of their “whiffy“ nature, but also because making it disappear would have involved more major surgeries.
Most of the are behind the cockpit comes from the Italeri T-45, I just added a RHAWS fairing to the fin, extending it by 3mm.
A major problem became the air intakes, because the two kits differ in their construction. I wanted to use the Italeri parts, because they match the fairings on the fuselage flanks well and are better detailed than the Matchbox parts. But the boundary layer spacers between intakes and fuselage are molded into the Italeri parts, while the Matchbox kit has them molded into the fuselage. This called for major surgery and eventually worked out fine, and more PSR blended the rest of the fuselage donors around the cockpit together. A tedious process, though.
The pylons were puzzled together, including a former Matchbox EA-6B wing pylon under the fuselage, cut down and mounted in reverse and upside down! The ordnance comes from the Italeri NATO weapons set (Matra Magic and AGM-84), the ventral drop tank comes IIRC from an Eduard L-39 Albatros. Matra Magics were chosen because India never operated any Sidewinder AAM, just French or Soviet/Russian missiles like the R-60 or R-73 (unlikely on the Hawk, IMHO), and I had preferred a pair of Sea Eagle ASMs (from a Hasegawa Sea Harrier kit), but their span turned out to be too large for the Hawk’s low wings. The alternative, more slender Harpoons are plausible, though, since they are actually part of the Indian Navy’s inventory.
Painting and markings:
The Indian Navy theme was already settled, and I wanted to stay close to SPINNERS’ illustration as well as to real world Indian Navy aircraft. SPINNERS’ Hawk carried the typical Sea Harreir scheme in Extra Dark Sea Grey and White, and I found this livery to look a bit too much retro, because I’d place this what-if aircraft in the early 2020s, when the Sea Harriers had already been phased out. A “realistic” livery might have been an overall mid-grey paint scheme (like the land-based Indian Hawk 132s), but I found this to look too boring. As a compromise, I gave the Samudree Baaj a simple two-tone paint scheme, carried by a few late Indian Sea Harriers. It consists of upper surfaces in Dark Sea Grey (Humbrol 164) and undersides in Medium Sea Grey (Modelmaster 2058), with a low waterline. The Modelmaster MSG has – for my taste – a rather bluish hue and appears almost like PRU Blue, but I left it that way.
The decals were puzzled together from variosu sources. the roundels come from a MiG-21F (Begemot), the unit markings and tactical codes from a Model Alliance Sea Harrier sheet, and the stencils are a mix from the Matchbox Hawk 200 and the Italeri T-45.
The kit was sealed with matt acrylic varnish from Italeri.
The fictional HAL „Samudree Baaj“ looks simple, but combining kits of the basically same aircraft from different manufacturers reveals their differences, and they are not to be underestimated! However, I like the result of a navalized Hawk single-seater, and - also with the relatively simple and dull livery - it looks pretty convincing.
Many thanks to SPINNERS for the creative inspiration - even though my build is not a 100% "copy" of the artwork, but rather a step further into the navalisation idea with the T-45 parts.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!
Some background
The Bulgarian Air Force (BAF, 'Bulgarski Voyenno Vozdushshni Sili') is one of the oldest air forces in Europe and the world. In the past decade Bulgaria has been trying actively to restructure its army as a whole and a lot of attention has been placed on keeping the aging Russian aircraft operational In recent times BAF aircraft have been actively taking part in numerous NATO missions and exercises in Europe. In 2010, the Bulgarian Air Force's inventory numbered around 137 aircraft, including 55-56 combat jets. But only the MiG-29s and about a dozen Su-25s and a few MiG-21bis were flight worthy, the L-39ZA only used for training.
Since 2000 the BAF planned to retire most of its Soviet-era aircraft, keeping only the Mikoyan-Gurevich MiG-29 'Fulcrum' fleet (which was modernized only recently) as well as its Mi-24 gunships and the Su-25s. The MiG-21s in service were scheduled to be replaced with possible American or European aircraft – and in 2006, a proposal from Israel Aircraft Industries (IAI) won a deal: the delivery of IAI’s Kfir C.60.
The Kfir C.60 was an upgraded version of the C.10, a variant developed especially for export and sold to Ecuador and Colombia. The most important feature of this version is the adaptation of the Elta EL/M-2032 radar, an advanced pulse Doppler, multimode Fire Control Radar intended for multi-role fighter aircraft originated from the Lavi project. It is suitable for air-to-air and air-to-surface mode, including high-resolution mapping (SAR), and offers a high mission performance in all weather conditions. Other new features include two 127×177mm MFD's, HOTAS configured cockpit, a Helmet Mounted Display System (HMD) and in-flight refuelling capability.
A total order of 18 Kfir C.60 was placed, deliveries were completed in April 2008. The planes were actually converted from mothballed IAF C.7 fighter bombers, keeping costs and development time low. The Kfir C.60 is supposed to replace BAF’s vintage MiG-21bis completely, parts of the Su-25 fleet and fill the gap of the fighter bomber role the Su-22 (which had already been retired in early 2004) left.
The Bulgarian C.60 would primarily be used in the ground attack/CAS role, but also augment the small MiG-29 fleet in air defence tasks. Consequently, the Kfir C.60 can not only carry a wide range of air-to-ground ordnance, the planes were also equipped with IR-homing AAMs like the R-60 (AA-8 'Aphid') and R-73 (AA-11 'Archer') missiles of Russian origin, still making up most of the BAF's weapon inventory.
All Kfir C.60 were allotted to the 3rd Fighter Squadron at Graf Ignatievo Air base, where they replaced the leftover ten MiG-21bis at 1/3 Fighter Squadron and grounded Su-25 from 22nd Ground Attack Squadron, formerly based at Bezmer Air Base.
It is uncertain if more Kfirs will be acquired, but chances are good. In January 2011 the Bulgarian MoD issued a Request for Information (RFI) regarding the acquisition of 8 multi-role fighters. The main competitors are expected to be the Eurofighter GmbH Eurofighter Typhoon, Dassault Rafale, Saab JAS 39 Gripen, Mikoyan MiG-29 or MiG-35, or the Lockheed Martin F-16 and Boeing F/A-18 Super Hornet. On March 9, 2011 the Swedish Government submitted its response to the RFI containing 8 new Gripen C/D fighters. The Bulgarian MoD has extended the time limit for submittal of responses by two months due to the lack of responses from the other competitors.
In October 2011, IAI stepped in and offered the Kfir as a new combat aircraft for the Bulgarian Air force (see: www.timawa.net/forum/index.php?topic=29248.0) It coincided with the two days visit of Israeli Prime Minister Benjamin Netanyahu in Bulgaria, which may bring another competitor for a new fighter for Bulgarian Air force – a modernized version of the Kfir C.60 already in service. Two weeks earlier the Bulgaria defence minister Anu Angelov was ‘tempted’ by such an offer when visited the IAI booth at the Paris Air show. The supposed price in times smaller compared to the ones offered by the companies requested by the RFI, sent in February to Eurofighter, SAAB, Boeing and Martin Lockheed.
Bulgaria and Israel held a joint session of their governments and signed a defence cooperation agreement on July 7 2011 in Sofia. "This is the first joint session that Israel holds with another country in the (Balkan) region," ministry spokeswoman Vesela Cherneva said. Cherneva added that the two countries will sign a bilateral agreement for defence cooperation, with Israeli companies encouraged to participate in the modernisation of Bulgaria's defence equipment.
However, as stated by the Ministry of Defense the contract for new multirole fighter should be signed by midterm of 2012 and the first machines should start arriving in 2015. Tactical UAV should be procured in support of the land forces operations, too. No decision has been settled upon yet.
General characteristics:
Crew: One
Length: 16.27 m (53 ft 4½ in)
Wingspan: 8.22 m (26 ft 11½ in)
Height: 4.55 m (14 ft 11¼ in)
Wing area: 34.8 m² (374.6 sq ft)
Empty weight: 7,285 kg (16,060 lb)
Loaded weight: 11,603 kg (25,580 lb) two 500 L drop tanks, two AAMs
Max. take off weight: 16,200 kg (35,715 lb)
Powerplant: 1 × IAl Bedek-built General Electric J-79-J1E turbojet, rated at 52.9 kN (11,890 lbs) dry thrust and 79.62 kN (17,900 lbs) with full afterburner
Maximum speed: 2,440 km/h (1,317 knots, 1,516 mph) above 11,000 m (36,000 ft)
Combat radius: 768 km (415 nmi, 477 mi) (ground attack, hi-lo-hi profile, seven 500 lb bombs, two AAMs, two 1,300 L drop tanks)
Service ceiling: 17,680 m (58,000 ft)
Rate of climb: 233 m/s (45,950 ft/min)
Armament: 2× Rafael-built 30 mm (1.18 in) DEFA 553 cannons, 140 rounds/gun; 5,775 kg (12,730 lb) of payload on seven external hardpoints, including guided and unguided missiles and bombs, air-to-air missiles, reconnaissance pods or drop tanks.
The kit and its assembly
While the kit and its livery are a whif, the IAI Kfir C.60 was/is a real proposal to the BAF – and this kit is a guess of what the plane might have looked like in real life, if it had been actually introduced about 5 years earlier. A kind of semi-whif, I think.
The basis is the 1:72 Kfir C.7 kit from Italeri (#163) which has been around for years. I have already built about a dozen of them, and foremost it is a kit if you are on a budget - the Hasegawa kit, for instance, is IMHO much better, concerning fit and production quality.
The Italeri Kfir is good at detail, easy to build, but production quality has definitive flaws. You get sinkholes in the upper and lower wing parts, ejector markings from the mould almost everywhere, and the fit of the parts is rather so-so. The cockpit element just does not fit into the fuselage, and the area at the air intake/wing roots intersection needs major attention (read: putty work). This is not to bash the kit, but if you want a "pretty" Kfir, look elsewhere. Because I know the kit by heart and wanted to convert it, anyway, I went with the Italeri option, though.
Since there’s no C.10 kit available, not even a conversion kit, I built the new nose sectionj for the bigger radar according to pictures from C.10 and C.12 Kfirs from scratch. Basically, the new nose is the front half of a Tornado F3 drop tank, but with some sculpting for a more slender look. Other additions I gleaned from C.10 pictures are the refuelling probe (from an A-4 Skyhawk), some new antennae and pitots, a new seat and a Matchbox pilot figure. Detail changes include the slightly dropped flaps, the open cockpit hatch and opened auxillary blow-in doors.
Additional weapon stations were fitted under the wing roots and just outside of the main landing gear wells, plus the respective ordnance. The R-60 missiles come from the scrap box (ESCI, maybe?), the KAB-500kr guided bombs come from an ICM weapon set, the drop tank comes from the original kit.
Painting
The whif comes with the looks, and the Kfir C.60 makes no exception. Since the plane was supposed to replace MiG-21MF and Su-25, I did not apply a MiG-29-like air superiority scheme. I rather went for a juicy ground attack livery and settled for a typical and contemporary BAF three-tone camouflage with blue-grey lower sides. Benchmarks were online pictures and Yefim Gordon’s fascinating MiG-21 book. Another very good reference are the French books from the “Planes & Pilots” series – here, the profile books for the MiG-21 and the Mirage III and derivates were handy sources for details.
The scheme was puzzled together through pictures and profiles of BAF’s MiG-21R "55 White". It appears as if there’s no valid pattern (or even colour!) paradigm, so the overall impression counts.I guesstimated the BAF colours with:
● Humbrol 120 (Light Green, FS 34227), toned up and later even dry-brushed with Testors 2071 (RLM 02 Grey) and even Humbrol 90 (Sky Type S)
● Testors 2091 (RLM 82 Dark Green), shaded with Testors 2081 (RLM 71 Dark Green)
● Testors 1701 (Military Brown, FS 30117), toned and dry-brushed with Humbrol 118 (FS 30219 Tan) and even Humbrol 63 (Sand)
● Testors 2123 (Russian Underside Blue) for the undersides, shaded with Humbrol 128 (FS 36320, Compass Grey)
All active BAF planes I found look worn and a bit ratty, so I decided to weather the C.60 accordingly, despite the machines’ young age in fictional real life. Hence, sun-bleached areas were painted on the top sides through dry-brusing with paler hues. On the other side, some panels and panel lines were emphasized with Tamiya's X19 'Smoke', an experiment which turned out satisfactory but not perfect. Additionally, a light wash with black ink was applied to enhance engravings and depth effects, plus some good soot stains around cannon muzzles and the exhaust area with grinded soft pencil mine. The result is a nice workhorse.
Bulgarian national roundels are surprisingly hard to find as decals, but I finally found a matching set on a Su-25 decal sheet from Balkan Models (hunted down in Canada!), from which I also took the registration number, just switching digits. It turned out to be a bit large, but: why not? Other stencils and warning signs were taken from the original Italeri decal sheet and from the scrap box - the Kfir wears more warning signs than one would expect!
Overall, the impression of the kit is very good - and time will tell if this one even turns out more realistic than I'd expected in the first place, when I took the idea of a Bulgarian Kfir to the (mdel kit) hardware stage.
The fourth of the 1950s era “Century Series,” the F-104 Starfighter was designed around one single element: speed. Clarence “Kelly” Johnson, head of Lockheed’s famous “Skunk Works” factory, had interviewed US Air Force pilots during the Korean War, seeking their input on any new fighter. Since the pilots reported that they wanted high performance more than anything else, Johnson returned to the United States determined to deliver exactly that: a simple, point-defense interceptor marrying the lightest airframe to the most powerful engine then available, the superb General Electric J79.
When Johnson offered the L-098 design to the USAF in 1952, the service was so impressed that they created an entire competition for the aircraft to be accepted, ostensibly as a F-100 Super Sabre replacement. The Lockheed design had the clear edge, though both North American’s and Northrop’s design went on to be built themselves—the North American F-107A Ultra Sabre and the Northrop T-38 Talon. The USAF purchased the L-098 as the F-104A Starfighter. The design changed very little from initial design to prototype to operational aircraft, which was done in the astonishing time of two years.
When the first F-104As reached the USAF in 1958, pilots quickly found that it was indeed a hot fighter—too hot. The Starfighter’s design philosophy of speed above all else resulted in an aircraft with a long fuselage, T-tail for stability, and small wings, which were so thin that special guards had to be put on the leading edges to avoid injuring ground personnel. Because of its small wing, the F-104 required a lot of runway, and blown flaps (which vents airflow from the engine over the flaps to increase lift) were a necessity; unfortunately, the airflow system often failed, which meant that the F-104 pilot would be coming in at a dangerous rate of speed. Because it was feared that a pilot who ejected from a F-104 would never clear the tail, a downward-ejection seat was fitted, but after killing over 20 pilots, the seat was retrofitted with a more reliable, upward-firing type. The design also was not very maneuverable in the horizontal, though it was difficult to match in the vertical. Its shape earned it the moniker “Missile With a Man In It” and “Zipper.”
One thing pilots did not complain about was its speed—the listed top speed of the F-104 was Mach 2.2, but this was because above that the fuselage would melt. The J79 was a near flawless engine that gave the Starfighter an excellent thrust-to-weight ratio; uniquely, the intake design of the Starfighter gave the engine a bansheelike wail. So superb was the F-104 at level speed and climbing that NASA leased several as trainers for the X-15 program, and in setting a number of speed and time-to-climb records.
If the F-104 had gotten a mixed reception at best in the USAF, Lockheed felt that it had potential as an export aircraft. Beating out several excellent British and other American designs in a 1961 competition, every NATO nation except France and Great Britain bought F-104s and manufactured their own as the F-104G; Japan also license-built Starfighters as F-104Js, while still more were supplied to Pakistan and Taiwan. Just as in USAF service, accident rates were incredibly high, particularly in West German and Canadian service—Germany lost 30 percent of its initial batch, and the Canadians over half. Worries that the F-104 was too “hot” for pilots usually transitioning from the F-86 were ignored, and later it was learned why: German, Dutch, and Japanese politicians later admitted to being bribed by Lockheed into buying the Starfighter.
Its high accident rate earned such nicknames as “Widowmaker,” “Flying Coffin,” and “Ground Nail.” Pakistani pilots simply called it Badmash (“Criminal”) and the Japanese Eiko (“Glory,” inferring that it was the easiest way to reach it). German pilots joked that the quickest way to obtain a F-104 was to buy a patch of land and wait.
Nonetheless, once pilots learned how to tame the beast, the accident rates eased somewhat, and NATO pilots discovered that the Starfighter excelled as a low-level attack aircraft: fitted with bomb racks, the F-104 was remarkably stable at low altitude and high speed, and Luftwaffe pilots in particular found that they could sneak up on a target, launch a simulated attack, and be gone before ground defenses could react. The Italians in particular loved the F-104, building their own as the F-104S: these aircraft were equipped with multimode radar and armed with AIM-7 Sparrow and Aspide radar-guided missiles, making them a superb interceptor. Though most NATO nations reequipped their F-104 units with F-16s, F-18s, or Tornados beginning in 1980, the Italian F-104S fleet was continually upgraded and soldiered on until final retirement in 2004. 2578 F-104s were built, mostly F-104Gs; today over 150 survive in museums, with at least ten flyable examples, making it one of the best preserved of the Century Series.
F-104C 56-0936 followed the path of most USAF F-104s: it started off with the 479th Tactical Fighter Wing at George AFB, California in 1959, and would remain there until 1965, when it was transferred to the 8th TFW's 435th TFS, deployed at Da Nang, South Vietnam. There, it flew escort and occasionally ground attack missions until 1967, by which time the USAF had realized the F-104 was not really suited to Southeast Asia. It was then relegated to the 156th TFG (Puerto Rico ANG) at San Juan, and in 1975 made its last flight from there to Peterson AFB, Colorado to become a gate guard.
Today, 56-0936 is considered part of the Peterson Air and Space Museum's collection, even if it is not at the museum itself--it is a block away, but serves as a nice marker to know where to turn! The name "Lil' Poo II" came from one of the men who flew it in South Vietnam--"Lil' Poo" was the nickname for his wife, and he regarded his F-104 as his "second wife"! It carries Southeast Asia camouflage and is displayed with two AIM-9 Sidewinders. This ended up being the last aircraft I would photograph for my June 2023 trip.
As the “Thin Slice” aircraft were being developed, 14 C-130Es were purchased for SOG in 1965 for similar modifications. The first aircraft were production C-130Es from 1964 without specialized equipment and produced at Lockheed’s facility in Marietta, Georgia. Three production aircraft per month were fitted with the Fulton STARS (then ARS) system. While awaiting the ARS equipment, the C-130s were ferried to Greenville, Texas, for painting by Ling-Temco-Vought Electrosystems with a low-radar reflective paint that added 168 kg (370 lbs) weight. The velvet black and green scheme drew the nickname “Blackbird.” As the installation was completed, the Blackbirds were returned to Ontario to install the electronics package, code-named “Rivet Clamp.” These modified aircraft became known as “Clamps,” and collectively redesignated “Combat Talon” in 1967.
In this image, a C-130E “Blackbird” (serial number: 64-0551) sits on the apron at Hurlburt Field at Eglin AFB in Florida. The Rivet Clamps, originally designated C-130E(I)sp, were equipped with an electronic and infrared (IR) countermeasures suite and the SPR2 multimode radar was later upgraded to the AN/APQ-115 TF/TA unit. The radar was adapted from the Texas Instruments AN/APQ-99 radar used in the RF-4C Phantom photo reconnaissance aircraft, featuring terrain following/terrain avoidance (TF/TA) and mapping radar modes to enable it to operate at low altitudes at night and in all weather conditions. The radar also helped the “Clamps” to avoid known enemy radar and anti-aircraft weapons concentrations.
Beginning in 1970, Texas Instruments and Lockheed Air Service worked to adapt the existing AN/APQ-122 Adverse Weather Aerial Delivery System (AWADS) with terrain following/terrain avoidance modes to replace the original APQ-115, which suffered throughout its life with an unacceptably adverse mean-time-between-failure (MTBF) rate. In 1970, they succeeded, coupling the APQ-122 with the Litton LN-15J Inertial Navigation System (INS). Known as MOD-70, the modified radar was installed in all 12 operational Combat Talons and the four “Heavy Chain” test beds between 1971 and 1973. The system proved so successful that it continued in service until the late 1980s. Following the completion of MOD-70, the Combat Talons were divided into three designations: C-130E(CT) for the “Clamp” aircraft, C-130E(Y) for the “Yank” (formerly “Yard”) Talons, and C-130E(S) for the “Swap.” These various designations and aircraft were consolidated in 1977 as the MC-130E Combat Talon. The Combat Talon became the Combat Talon I in 1984 with the authorization to modify 24 C-130Hs to Combat Talon II specifications.
Please see the camera-wiki article on the Yashica 230-AF. Note the early appearance of "Kyocera" branding down in the fine print.
This SLR offered all of the 1980s bells and whistles: PASM exposure modes (with three programs), LCD panel, motorized winding and optional data backs. It's almost always seen with the protuberant TTL auto-flash unit attached, although this is removable and not part of the body like Pentax's. And as the copy proclaims, "trap focus" shutter release was its special feature.
Sadly the lens mount used in Yashica's AF line was not compatible with the legacy Contax/Yashica mount with its option of Zeiss lenses. There were never very many first-party AF lenses released; and 3rd-partly lens support was spotty. This surely held back Yashica's AF series from greater popularity, and it's not much remembered today.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The Indian „Samudree Baaj“ (समुद्री बाज, Sea Hawk) was a highly modified, navalized version of the British BAE Systems Hawk land-based training jet aircraft, which had been manufactured under license by Hindustan Aeronautics Limited (HAL). The first indigenously built Hawk Mk. 132 trainer was delivered in 2008 to the Indian Air Force, and the type has since then been updated with indigenous avionics into the “Hawk-I” Mk. 132 from 2020 onwards. The aircraft’s Rolls Royce Adour Mk 871 engine was also license-built by HAL, and the company had experience from a wide range of aircraft projects in the past.
The Samudree Baaj project was initiated in 2006 by the Indian Navy, as part of the long historic plan to provide the Indian Navy with a fully capable aircraft carrier. This plan had been initiated in 1989, when India announced a plan to replace its ageing British-built aircraft carriers, INS Vikrant and INS Viraat (ex-HMS Hermes), with two new 28,000-ton Air Defence Ships (ADS) that would operate the BAe Sea Harrier aircraft. The first vessel was to replace Vikrant, which was set to decommission in early 1997. Construction of the ADS was to start at the Cochin Shipyard (CSL) in 1993 after the Indian Naval Design Organisation had translated this design study into a production model. Following the 1991 economic crisis, the plans for construction of the vessels were put on hold indefinitely.
In 1999, then-Defence Minister George Fernandes revived the project and sanctioned the construction of the Project “71 ADS”. By that time, given the ageing Sea Harrier fleet, the letter of intent called for a carrier that would carry more modern jet fighters. In 2001, CSL released a graphic illustration showing a 32,000-ton STOBAR (Short Take-Off But Arrested Recovery) design with a pronounced ski jump. The aircraft carrier project finally received formal government approval in January 2003. By then, design updates called for a 37,500-ton carrier to operate the MiG-29K. India opted for a three-carrier fleet consisting of one carrier battle group stationed on each seaboard, and a third carrier held in reserve, in order to continuously protect both its flanks, to protect economic interests and mercantile traffic, and to provide humanitarian platforms in times of disasters, since a carrier can provide a self-generating supply of fresh water, medical assistance or engineering expertise to populations in need for assistance.
In August 2006, then-Chief of the Naval Staff, Admiral Arun Prakash stated that the designation for the vessel had been changed from Air Defence Ship (ADS) to Indigenous Aircraft Carrier (IAC). The euphemistic ADS had been adopted in planning stages to ward off concerns about a naval build-up. Final revisions to the design increased the displacement of the carrier from 37,500 tons to over 40,000 tons. The length of the ship also increased from 252 metres (827 ft) to 262 metres (860 ft).
It was at this time that, beyond the MiG-29K, primarily a carrier-capable trainer and also a light (and less costly) strike aircraft would be needed. With the running production of the Hawk Mk. 132 for the Indian Air Force and BAE Systems’ connection and experience to the USA and McDonnell/Boeing’s adaptation of the Hawk as the US Navy’s carrier-capable T-45 trainer, HAL was instructed to develop a suitable aircraft family on the Hawk’s basis for the new carriers.
HAL’s Samudree Baaj is a fully carrier-capable version of the British Aerospace Hawk Mk. The Hawk had not originally been designed to perform carrier operations, so that numerous modifications were required, such as the extensive strengthening of the airframe to withstand the excessive forces imposed by the stresses involved in catapult launches and high sink-rate landings, both scenarios being routine in aircraft carrier operations.
The aerodynamic changes of the aircraft, which were mutually developed by HAL and BAE Systems, included improvements to the low-speed handling characteristics and a reduction in the approach speed. Most notable amongst the changes made to the Hawk's design were extended flaps for better low-speed handling, along with the addition of spoilers on the wings to reduce lift and strakes on the fuselage which improved airflow and stabilizer efficiency.
Other, less obvious modifications included a reinforced airframe, the adoption of a more robust and widened landing gear, complete with a catapult tow bar attachment to the oleo strut of the new two-wheel nose gear design, and an arresting hook. The tail fin was extended by 1 foot (12 in, 30.5 cm) to compensate for the loss of the Hawk’s ventral stabilizing strakes. To make room for the arrester hook, the original ventral air brake was split and re-located to the flanks, similar to the USN’s T-45 trainer.
At the time of the Samudree Baaj’s design, the exact catapult arrangement and capacity on board of India’s new carriers was not clear yet – even more so, since the MiG-29K and its powerful engines might have made a catapult obsolete. Therefore, the Samudree Baaj was designed to be operable either with a ski jump ramp (in the style of the Russian Kiev class carriers, of which India had purchased one as INS Vikramaditya) or with only minimal launch support within the projected STOBAR concept, which included a relatively short-stroke steam catapult and a similarly short, undampened arrester gear.
By 2009 the basic airframe had been defined and four prototypes were built for two versions: the Mk. 101 trainer, which was basically a navalized version of the land-based Mk. 132 with almost the same mission equipment, and the Mk. 201, a single-seater. Two airframes of each type were built and the first Samudree Baaj flight took place in early 2011. The Indian government ordered 30 trainers and 15 attack aircraft, to be delivered with the first new Indian carrier, INS Vikrant, in late 2017.
The Samudree Baaj Mk. 201 was developed from the basic navalized Hawk airframe as a light multirole fighter with a small visual signature and high maneuverability, but high combat efficiency and capable of both strike and point defense missions. It differed from the trainer through a completely new forward fuselage whereby the forward cockpit area, which normally housed the trainee, was replaced by an electronics bay for avionics and onboard systems, including a fire control computer, a LINS 300 ring laser gyroscope inertial navigation system and a lightweight (145 kg) multimode, coherent, pulse-Doppler I band airborne radar. This multimode radar was developed from the Ferranti Blue Fox radar and capable of airborne interception and air-to-surface strike roles over water and land, with look-down/shoot-down and look-up modes. It had ten air-to-surface and ten air-to-ground modes for navigation and weapon aiming purposes.
A ventral fairing behind the radome carried a laser rangefinder and a forward-looking infrared (FLIR). Mid-air refueling was also possible, through a detachable (but fixed) probe. GPS navigation or modern night-flight systems were integrated, too.
Like the trainer, the Mk. 201 had a total of seven weapon hardpoints (1 ventral, four underwing and a pair of wing tip launch rails), but the more sophisticated avionics suite allowed a wider range of ordnance to be carried and deployed, which included radar-guided AAMs for BVR strokes and smart weapons and guided missiles – especially the Sea Eagle and AGM-84 “Harpoon” anti-ship missiles in the Indian Navy’s arsenal. For the maritime strike role and as a support for ASW missions, the Samudree Baaj Mk. 201 could even deploy Sting Ray homing torpedoes.
Furthermore, a pair of 30mm (1.18 in) ADEN machine cannon with 150 RPG were housed in a shallow fairing under the cockpit. The self-protection systems include a BAE SkyGuardian 200 RWR and automatic Vinten chaff/flare dispensers located above the engine exhaust.
The Samudree Baaj project was highly ambitious, so that it does not wonder that there were many delays and teething troubles. Beyond the complex avionics integration this included the maritime adaptation of the Adour engine, which eventually led to the uprated Adour Mk. 871-1N, which, as a side benefit, also offered about 10% more power.
However, in parallel, INS Vikrant also ran into delays: In July 2012, The Times of India reported that construction of Vikrant has been delayed by three years, and the ship would be ready for commissioning by 2018. Later, in November 2012, Indian English-language news channel NDTV reported that cost of the aircraft carrier had increased, and the delivery has been delayed by at least five years and is expected to be with the Indian Navy only after 2018 as against the scheduled date of delivery of 2014. Work then commenced for the next stage of construction, which included the installation of the integrated propulsion system, the superstructure, the upper decks, the cabling, sensors and weapons. Vikrant was eventually undocked on 10 June 2015 after the completion of structural work. Cabling, piping, heat and ventilation works were to be completed by 2017; sea trials would begin thereafter. In December 2019, it was reported that the engines on board the ship were switched on and in November 2020, only the basin trials of the aircraft carrier were completed.
By that time, the first Samudree Baaj aircraft had been delivered to Indian Navy 300 squadron, and even though only based at land at Hansa Air Station, flight training and military operations commenced. In the meantime, the start of Vikrant's trials had initially been scheduled to begin on 12 March 2020, but further construction delays caused that to be moved back to April. With the COVID-19 crisis, the navy explained that trials were unlikely to begin before September/October. During the Navy Day press meeting in December 2019, Navy Chief Admiral Karambir Singh said Vikrant would be fully operational before the end of 2022. The COVID-19 pandemic had already pushed that back to 2023 and further delays appeared possible.
In late 2020, the Indian Navy expected to commission Vikrant by the end of 2021. Until then, the Samudree Baaj fleet will remain land-based at INS Hansa near Goa. This not only is the INAS 300 home base, it is also the location of the Indian Navy's Shore Based Test Facility (SBTF), which is a mock-up of the 283-metre (928 ft) INS Vikramaditya (a modified Kiev-class aircraft carrier) deck built to train and certify navy pilots, primarily the the Mikoyan MiG-29K for operating from the aircraft carrier, but now also for the Samudree Baaj and for the developmental trials of the naval HAL Tejas lightweight fighter.
General characteristics:
Crew: 1
Length: 11.38 m (37 ft 4 in)
Wingspan: 9.39 m (30 ft 10 in)
Height: 4.30 m (14 ft 1 in)
Wing area: 17.66 m2 (190.1 sq ft)
Empty weight: 9,394 lb (4,261 kg)
Gross weight: 12,750 lb (5,783 kg)
Max takeoff weight: 9,101 kg (20,064 lb)
Fuel capacity: 1,360 kg (3,000 lb) internal
3,210 kg (7,080 lb) with 3 drop tanks
Powerplant:
1× Rolls-Royce Turbomeca Adour Mk. 871-1N non-afterburning turbofan, 28,89 kN (6,445 lbf) thrust
Performance:
Maximum speed: 1,037 km/h (644 mph, 560 kn) at sea level
Maximum speed: Mach 1.2 (never exceed at altitude)
Cruise speed: 796 km/h (495 mph, 430 kn) at 12,500 m (41,000 ft)
Carrier launch speed: 121 kn (139 mph; 224 km/h)
Approach speed: 125 kn (144 mph; 232 km/h)
Never exceed speed: 575 kn (662 mph, 1,065 km/h) / M1.04 design dive limit
Stall speed: 197 km/h (122 mph, 106 kn) flaps down
Range: 892 km (554 mi, 482 nmi) internal fuel only
Combat range: 617 km (383 mi, 333 nmi) with 2x AGM-84 and 2x 592 l (156 US gal; 130 imp gal)
Ferry range: 1,950 km (1,210 mi, 1,050 nmi) with 3 drop tanks
Service ceiling: 15,250 m (50,030 ft)
G-limits: +8/-3
Rate of climb: 58.466 m/s (11,509.1 ft/min)
Takeoff distance with maximum weapon load: 2,134 m (7,001 ft)
Landing distance at maximum landing weight with brake chute: 854 m (2,802 ft)
Landing distance at maximum landing weight without brake chute: 1,250 m (4,100 ft)
Armament:
2× 30 mm (1.181 in) Aden cannon with 150 rounds each
7× hardpoints (4× under-wing, 1× under-fuselage and 2 × wingtip)
for a total ordnance of 3.085 kg (6,800 lb) and a wide range of weapons
The kit and its assembly:
A subtle kitbashing project, inspired by a CG-rendition of a carrier-based (yet un-navalized) BAe Hawk 200 in Indian Navy service by fellow user SPINNERS in January 2021. I found the idea inspiring but thought that the basic concept could be taken further and into hardware form with a model. And I had a Matchbox Hawk 200 in The Stash™, as well as a McDonnell T-45 trainer from Italeri…
The plan sounds simple: take a T-45 and replace the cockpit section with the single-seat cockpit from the Hawk 200. And while the necessary cuts were easy to make, reality rears its ugly head when you try to mate parts from basically the same aircraft but from models by different manufacturers.
The challenges started with the fact that the fuselage shapes of both models differ – the Matchbox kit is more “voluminous”, and the different canopy shape called for a partial spine transplant, which turned out to be of very different shape than the T-45’s respective section! Lots of PSR…
In order to improve the pretty basic Matchbox Hawk cockpit I integrated the cockpit tub from the Italeri T-45, including the ejection seat, dashboard and its top cover.
For the totally different T-45 front wheel I had to enlarge the respective well and added a “ceiling” to it, since the strut had to be attached somewhere. The Hawk 200’s ventral tub for the cannons (which only the first prototype carried, later production aircraft did not feature them) were retained – partly because of their “whiffy“ nature, but also because making it disappear would have involved more major surgeries.
Most of the are behind the cockpit comes from the Italeri T-45, I just added a RHAWS fairing to the fin, extending it by 3mm.
A major problem became the air intakes, because the two kits differ in their construction. I wanted to use the Italeri parts, because they match the fairings on the fuselage flanks well and are better detailed than the Matchbox parts. But the boundary layer spacers between intakes and fuselage are molded into the Italeri parts, while the Matchbox kit has them molded into the fuselage. This called for major surgery and eventually worked out fine, and more PSR blended the rest of the fuselage donors around the cockpit together. A tedious process, though.
The pylons were puzzled together, including a former Matchbox EA-6B wing pylon under the fuselage, cut down and mounted in reverse and upside down! The ordnance comes from the Italeri NATO weapons set (Matra Magic and AGM-84), the ventral drop tank comes IIRC from an Eduard L-39 Albatros. Matra Magics were chosen because India never operated any Sidewinder AAM, just French or Soviet/Russian missiles like the R-60 or R-73 (unlikely on the Hawk, IMHO), and I had preferred a pair of Sea Eagle ASMs (from a Hasegawa Sea Harrier kit), but their span turned out to be too large for the Hawk’s low wings. The alternative, more slender Harpoons are plausible, though, since they are actually part of the Indian Navy’s inventory.
Painting and markings:
The Indian Navy theme was already settled, and I wanted to stay close to SPINNERS’ illustration as well as to real world Indian Navy aircraft. SPINNERS’ Hawk carried the typical Sea Harreir scheme in Extra Dark Sea Grey and White, and I found this livery to look a bit too much retro, because I’d place this what-if aircraft in the early 2020s, when the Sea Harriers had already been phased out. A “realistic” livery might have been an overall mid-grey paint scheme (like the land-based Indian Hawk 132s), but I found this to look too boring. As a compromise, I gave the Samudree Baaj a simple two-tone paint scheme, carried by a few late Indian Sea Harriers. It consists of upper surfaces in Dark Sea Grey (Humbrol 164) and undersides in Medium Sea Grey (Modelmaster 2058), with a low waterline. The Modelmaster MSG has – for my taste – a rather bluish hue and appears almost like PRU Blue, but I left it that way.
The decals were puzzled together from variosu sources. the roundels come from a MiG-21F (Begemot), the unit markings and tactical codes from a Model Alliance Sea Harrier sheet, and the stencils are a mix from the Matchbox Hawk 200 and the Italeri T-45.
The kit was sealed with matt acrylic varnish from Italeri.
The fictional HAL „Samudree Baaj“ looks simple, but combining kits of the basically same aircraft from different manufacturers reveals their differences, and they are not to be underestimated! However, I like the result of a navalized Hawk single-seater, and - also with the relatively simple and dull livery - it looks pretty convincing.
Many thanks to SPINNERS for the creative inspiration - even though my build is not a 100% "copy" of the artwork, but rather a step further into the navalisation idea with the T-45 parts.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The Indian „Samudree Baaj“ (समुद्री बाज, Sea Hawk) was a highly modified, navalized version of the British BAE Systems Hawk land-based training jet aircraft, which had been manufactured under license by Hindustan Aeronautics Limited (HAL). The first indigenously built Hawk Mk. 132 trainer was delivered in 2008 to the Indian Air Force, and the type has since then been updated with indigenous avionics into the “Hawk-I” Mk. 132 from 2020 onwards. The aircraft’s Rolls Royce Adour Mk 871 engine was also license-built by HAL, and the company had experience from a wide range of aircraft projects in the past.
The Samudree Baaj project was initiated in 2006 by the Indian Navy, as part of the long historic plan to provide the Indian Navy with a fully capable aircraft carrier. This plan had been initiated in 1989, when India announced a plan to replace its ageing British-built aircraft carriers, INS Vikrant and INS Viraat (ex-HMS Hermes), with two new 28,000-ton Air Defence Ships (ADS) that would operate the BAe Sea Harrier aircraft. The first vessel was to replace Vikrant, which was set to decommission in early 1997. Construction of the ADS was to start at the Cochin Shipyard (CSL) in 1993 after the Indian Naval Design Organisation had translated this design study into a production model. Following the 1991 economic crisis, the plans for construction of the vessels were put on hold indefinitely.
In 1999, then-Defence Minister George Fernandes revived the project and sanctioned the construction of the Project “71 ADS”. By that time, given the ageing Sea Harrier fleet, the letter of intent called for a carrier that would carry more modern jet fighters. In 2001, CSL released a graphic illustration showing a 32,000-ton STOBAR (Short Take-Off But Arrested Recovery) design with a pronounced ski jump. The aircraft carrier project finally received formal government approval in January 2003. By then, design updates called for a 37,500-ton carrier to operate the MiG-29K. India opted for a three-carrier fleet consisting of one carrier battle group stationed on each seaboard, and a third carrier held in reserve, in order to continuously protect both its flanks, to protect economic interests and mercantile traffic, and to provide humanitarian platforms in times of disasters, since a carrier can provide a self-generating supply of fresh water, medical assistance or engineering expertise to populations in need for assistance.
In August 2006, then-Chief of the Naval Staff, Admiral Arun Prakash stated that the designation for the vessel had been changed from Air Defence Ship (ADS) to Indigenous Aircraft Carrier (IAC). The euphemistic ADS had been adopted in planning stages to ward off concerns about a naval build-up. Final revisions to the design increased the displacement of the carrier from 37,500 tons to over 40,000 tons. The length of the ship also increased from 252 metres (827 ft) to 262 metres (860 ft).
It was at this time that, beyond the MiG-29K, primarily a carrier-capable trainer and also a light (and less costly) strike aircraft would be needed. With the running production of the Hawk Mk. 132 for the Indian Air Force and BAE Systems’ connection and experience to the USA and McDonnell/Boeing’s adaptation of the Hawk as the US Navy’s carrier-capable T-45 trainer, HAL was instructed to develop a suitable aircraft family on the Hawk’s basis for the new carriers.
HAL’s Samudree Baaj is a fully carrier-capable version of the British Aerospace Hawk Mk. The Hawk had not originally been designed to perform carrier operations, so that numerous modifications were required, such as the extensive strengthening of the airframe to withstand the excessive forces imposed by the stresses involved in catapult launches and high sink-rate landings, both scenarios being routine in aircraft carrier operations.
The aerodynamic changes of the aircraft, which were mutually developed by HAL and BAE Systems, included improvements to the low-speed handling characteristics and a reduction in the approach speed. Most notable amongst the changes made to the Hawk's design were extended flaps for better low-speed handling, along with the addition of spoilers on the wings to reduce lift and strakes on the fuselage which improved airflow and stabilizer efficiency.
Other, less obvious modifications included a reinforced airframe, the adoption of a more robust and widened landing gear, complete with a catapult tow bar attachment to the oleo strut of the new two-wheel nose gear design, and an arresting hook. The tail fin was extended by 1 foot (12 in, 30.5 cm) to compensate for the loss of the Hawk’s ventral stabilizing strakes. To make room for the arrester hook, the original ventral air brake was split and re-located to the flanks, similar to the USN’s T-45 trainer.
At the time of the Samudree Baaj’s design, the exact catapult arrangement and capacity on board of India’s new carriers was not clear yet – even more so, since the MiG-29K and its powerful engines might have made a catapult obsolete. Therefore, the Samudree Baaj was designed to be operable either with a ski jump ramp (in the style of the Russian Kiev class carriers, of which India had purchased one as INS Vikramaditya) or with only minimal launch support within the projected STOBAR concept, which included a relatively short-stroke steam catapult and a similarly short, undampened arrester gear.
By 2009 the basic airframe had been defined and four prototypes were built for two versions: the Mk. 101 trainer, which was basically a navalized version of the land-based Mk. 132 with almost the same mission equipment, and the Mk. 201, a single-seater. Two airframes of each type were built and the first Samudree Baaj flight took place in early 2011. The Indian government ordered 30 trainers and 15 attack aircraft, to be delivered with the first new Indian carrier, INS Vikrant, in late 2017.
The Samudree Baaj Mk. 201 was developed from the basic navalized Hawk airframe as a light multirole fighter with a small visual signature and high maneuverability, but high combat efficiency and capable of both strike and point defense missions. It differed from the trainer through a completely new forward fuselage whereby the forward cockpit area, which normally housed the trainee, was replaced by an electronics bay for avionics and onboard systems, including a fire control computer, a LINS 300 ring laser gyroscope inertial navigation system and a lightweight (145 kg) multimode, coherent, pulse-Doppler I band airborne radar. This multimode radar was developed from the Ferranti Blue Fox radar and capable of airborne interception and air-to-surface strike roles over water and land, with look-down/shoot-down and look-up modes. It had ten air-to-surface and ten air-to-ground modes for navigation and weapon aiming purposes.
A ventral fairing behind the radome carried a laser rangefinder and a forward-looking infrared (FLIR). Mid-air refueling was also possible, through a detachable (but fixed) probe. GPS navigation or modern night-flight systems were integrated, too.
Like the trainer, the Mk. 201 had a total of seven weapon hardpoints (1 ventral, four underwing and a pair of wing tip launch rails), but the more sophisticated avionics suite allowed a wider range of ordnance to be carried and deployed, which included radar-guided AAMs for BVR strokes and smart weapons and guided missiles – especially the Sea Eagle and AGM-84 “Harpoon” anti-ship missiles in the Indian Navy’s arsenal. For the maritime strike role and as a support for ASW missions, the Samudree Baaj Mk. 201 could even deploy Sting Ray homing torpedoes.
Furthermore, a pair of 30mm (1.18 in) ADEN machine cannon with 150 RPG were housed in a shallow fairing under the cockpit. The self-protection systems include a BAE SkyGuardian 200 RWR and automatic Vinten chaff/flare dispensers located above the engine exhaust.
The Samudree Baaj project was highly ambitious, so that it does not wonder that there were many delays and teething troubles. Beyond the complex avionics integration this included the maritime adaptation of the Adour engine, which eventually led to the uprated Adour Mk. 871-1N, which, as a side benefit, also offered about 10% more power.
However, in parallel, INS Vikrant also ran into delays: In July 2012, The Times of India reported that construction of Vikrant has been delayed by three years, and the ship would be ready for commissioning by 2018. Later, in November 2012, Indian English-language news channel NDTV reported that cost of the aircraft carrier had increased, and the delivery has been delayed by at least five years and is expected to be with the Indian Navy only after 2018 as against the scheduled date of delivery of 2014. Work then commenced for the next stage of construction, which included the installation of the integrated propulsion system, the superstructure, the upper decks, the cabling, sensors and weapons. Vikrant was eventually undocked on 10 June 2015 after the completion of structural work. Cabling, piping, heat and ventilation works were to be completed by 2017; sea trials would begin thereafter. In December 2019, it was reported that the engines on board the ship were switched on and in November 2020, only the basin trials of the aircraft carrier were completed.
By that time, the first Samudree Baaj aircraft had been delivered to Indian Navy 300 squadron, and even though only based at land at Hansa Air Station, flight training and military operations commenced. In the meantime, the start of Vikrant's trials had initially been scheduled to begin on 12 March 2020, but further construction delays caused that to be moved back to April. With the COVID-19 crisis, the navy explained that trials were unlikely to begin before September/October. During the Navy Day press meeting in December 2019, Navy Chief Admiral Karambir Singh said Vikrant would be fully operational before the end of 2022. The COVID-19 pandemic had already pushed that back to 2023 and further delays appeared possible.
In late 2020, the Indian Navy expected to commission Vikrant by the end of 2021. Until then, the Samudree Baaj fleet will remain land-based at INS Hansa near Goa. This not only is the INAS 300 home base, it is also the location of the Indian Navy's Shore Based Test Facility (SBTF), which is a mock-up of the 283-metre (928 ft) INS Vikramaditya (a modified Kiev-class aircraft carrier) deck built to train and certify navy pilots, primarily the the Mikoyan MiG-29K for operating from the aircraft carrier, but now also for the Samudree Baaj and for the developmental trials of the naval HAL Tejas lightweight fighter.
General characteristics:
Crew: 1
Length: 11.38 m (37 ft 4 in)
Wingspan: 9.39 m (30 ft 10 in)
Height: 4.30 m (14 ft 1 in)
Wing area: 17.66 m2 (190.1 sq ft)
Empty weight: 9,394 lb (4,261 kg)
Gross weight: 12,750 lb (5,783 kg)
Max takeoff weight: 9,101 kg (20,064 lb)
Fuel capacity: 1,360 kg (3,000 lb) internal
3,210 kg (7,080 lb) with 3 drop tanks
Powerplant:
1× Rolls-Royce Turbomeca Adour Mk. 871-1N non-afterburning turbofan, 28,89 kN (6,445 lbf) thrust
Performance:
Maximum speed: 1,037 km/h (644 mph, 560 kn) at sea level
Maximum speed: Mach 1.2 (never exceed at altitude)
Cruise speed: 796 km/h (495 mph, 430 kn) at 12,500 m (41,000 ft)
Carrier launch speed: 121 kn (139 mph; 224 km/h)
Approach speed: 125 kn (144 mph; 232 km/h)
Never exceed speed: 575 kn (662 mph, 1,065 km/h) / M1.04 design dive limit
Stall speed: 197 km/h (122 mph, 106 kn) flaps down
Range: 892 km (554 mi, 482 nmi) internal fuel only
Combat range: 617 km (383 mi, 333 nmi) with 2x AGM-84 and 2x 592 l (156 US gal; 130 imp gal)
Ferry range: 1,950 km (1,210 mi, 1,050 nmi) with 3 drop tanks
Service ceiling: 15,250 m (50,030 ft)
G-limits: +8/-3
Rate of climb: 58.466 m/s (11,509.1 ft/min)
Takeoff distance with maximum weapon load: 2,134 m (7,001 ft)
Landing distance at maximum landing weight with brake chute: 854 m (2,802 ft)
Landing distance at maximum landing weight without brake chute: 1,250 m (4,100 ft)
Armament:
2× 30 mm (1.181 in) Aden cannon with 150 rounds each
7× hardpoints (4× under-wing, 1× under-fuselage and 2 × wingtip)
for a total ordnance of 3.085 kg (6,800 lb) and a wide range of weapons
The kit and its assembly:
A subtle kitbashing project, inspired by a CG-rendition of a carrier-based (yet un-navalized) BAe Hawk 200 in Indian Navy service by fellow user SPINNERS in January 2021. I found the idea inspiring but thought that the basic concept could be taken further and into hardware form with a model. And I had a Matchbox Hawk 200 in The Stash™, as well as a McDonnell T-45 trainer from Italeri…
The plan sounds simple: take a T-45 and replace the cockpit section with the single-seat cockpit from the Hawk 200. And while the necessary cuts were easy to make, reality rears its ugly head when you try to mate parts from basically the same aircraft but from models by different manufacturers.
The challenges started with the fact that the fuselage shapes of both models differ – the Matchbox kit is more “voluminous”, and the different canopy shape called for a partial spine transplant, which turned out to be of very different shape than the T-45’s respective section! Lots of PSR…
In order to improve the pretty basic Matchbox Hawk cockpit I integrated the cockpit tub from the Italeri T-45, including the ejection seat, dashboard and its top cover.
For the totally different T-45 front wheel I had to enlarge the respective well and added a “ceiling” to it, since the strut had to be attached somewhere. The Hawk 200’s ventral tub for the cannons (which only the first prototype carried, later production aircraft did not feature them) were retained – partly because of their “whiffy“ nature, but also because making it disappear would have involved more major surgeries.
Most of the are behind the cockpit comes from the Italeri T-45, I just added a RHAWS fairing to the fin, extending it by 3mm.
A major problem became the air intakes, because the two kits differ in their construction. I wanted to use the Italeri parts, because they match the fairings on the fuselage flanks well and are better detailed than the Matchbox parts. But the boundary layer spacers between intakes and fuselage are molded into the Italeri parts, while the Matchbox kit has them molded into the fuselage. This called for major surgery and eventually worked out fine, and more PSR blended the rest of the fuselage donors around the cockpit together. A tedious process, though.
The pylons were puzzled together, including a former Matchbox EA-6B wing pylon under the fuselage, cut down and mounted in reverse and upside down! The ordnance comes from the Italeri NATO weapons set (Matra Magic and AGM-84), the ventral drop tank comes IIRC from an Eduard L-39 Albatros. Matra Magics were chosen because India never operated any Sidewinder AAM, just French or Soviet/Russian missiles like the R-60 or R-73 (unlikely on the Hawk, IMHO), and I had preferred a pair of Sea Eagle ASMs (from a Hasegawa Sea Harrier kit), but their span turned out to be too large for the Hawk’s low wings. The alternative, more slender Harpoons are plausible, though, since they are actually part of the Indian Navy’s inventory.
Painting and markings:
The Indian Navy theme was already settled, and I wanted to stay close to SPINNERS’ illustration as well as to real world Indian Navy aircraft. SPINNERS’ Hawk carried the typical Sea Harreir scheme in Extra Dark Sea Grey and White, and I found this livery to look a bit too much retro, because I’d place this what-if aircraft in the early 2020s, when the Sea Harriers had already been phased out. A “realistic” livery might have been an overall mid-grey paint scheme (like the land-based Indian Hawk 132s), but I found this to look too boring. As a compromise, I gave the Samudree Baaj a simple two-tone paint scheme, carried by a few late Indian Sea Harriers. It consists of upper surfaces in Dark Sea Grey (Humbrol 164) and undersides in Medium Sea Grey (Modelmaster 2058), with a low waterline. The Modelmaster MSG has – for my taste – a rather bluish hue and appears almost like PRU Blue, but I left it that way.
The decals were puzzled together from variosu sources. the roundels come from a MiG-21F (Begemot), the unit markings and tactical codes from a Model Alliance Sea Harrier sheet, and the stencils are a mix from the Matchbox Hawk 200 and the Italeri T-45.
The kit was sealed with matt acrylic varnish from Italeri.
The fictional HAL „Samudree Baaj“ looks simple, but combining kits of the basically same aircraft from different manufacturers reveals their differences, and they are not to be underestimated! However, I like the result of a navalized Hawk single-seater, and - also with the relatively simple and dull livery - it looks pretty convincing.
Many thanks to SPINNERS for the creative inspiration - even though my build is not a 100% "copy" of the artwork, but rather a step further into the navalisation idea with the T-45 parts.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The Indian „Samudree Baaj“ (समुद्री बाज, Sea Hawk) was a highly modified, navalized version of the British BAE Systems Hawk land-based training jet aircraft, which had been manufactured under license by Hindustan Aeronautics Limited (HAL). The first indigenously built Hawk Mk. 132 trainer was delivered in 2008 to the Indian Air Force, and the type has since then been updated with indigenous avionics into the “Hawk-I” Mk. 132 from 2020 onwards. The aircraft’s Rolls Royce Adour Mk 871 engine was also license-built by HAL, and the company had experience from a wide range of aircraft projects in the past.
The Samudree Baaj project was initiated in 2006 by the Indian Navy, as part of the long historic plan to provide the Indian Navy with a fully capable aircraft carrier. This plan had been initiated in 1989, when India announced a plan to replace its ageing British-built aircraft carriers, INS Vikrant and INS Viraat (ex-HMS Hermes), with two new 28,000-ton Air Defence Ships (ADS) that would operate the BAe Sea Harrier aircraft. The first vessel was to replace Vikrant, which was set to decommission in early 1997. Construction of the ADS was to start at the Cochin Shipyard (CSL) in 1993 after the Indian Naval Design Organisation had translated this design study into a production model. Following the 1991 economic crisis, the plans for construction of the vessels were put on hold indefinitely.
In 1999, then-Defence Minister George Fernandes revived the project and sanctioned the construction of the Project “71 ADS”. By that time, given the ageing Sea Harrier fleet, the letter of intent called for a carrier that would carry more modern jet fighters. In 2001, CSL released a graphic illustration showing a 32,000-ton STOBAR (Short Take-Off But Arrested Recovery) design with a pronounced ski jump. The aircraft carrier project finally received formal government approval in January 2003. By then, design updates called for a 37,500-ton carrier to operate the MiG-29K. India opted for a three-carrier fleet consisting of one carrier battle group stationed on each seaboard, and a third carrier held in reserve, in order to continuously protect both its flanks, to protect economic interests and mercantile traffic, and to provide humanitarian platforms in times of disasters, since a carrier can provide a self-generating supply of fresh water, medical assistance or engineering expertise to populations in need for assistance.
In August 2006, then-Chief of the Naval Staff, Admiral Arun Prakash stated that the designation for the vessel had been changed from Air Defence Ship (ADS) to Indigenous Aircraft Carrier (IAC). The euphemistic ADS had been adopted in planning stages to ward off concerns about a naval build-up. Final revisions to the design increased the displacement of the carrier from 37,500 tons to over 40,000 tons. The length of the ship also increased from 252 metres (827 ft) to 262 metres (860 ft).
It was at this time that, beyond the MiG-29K, primarily a carrier-capable trainer and also a light (and less costly) strike aircraft would be needed. With the running production of the Hawk Mk. 132 for the Indian Air Force and BAE Systems’ connection and experience to the USA and McDonnell/Boeing’s adaptation of the Hawk as the US Navy’s carrier-capable T-45 trainer, HAL was instructed to develop a suitable aircraft family on the Hawk’s basis for the new carriers.
HAL’s Samudree Baaj is a fully carrier-capable version of the British Aerospace Hawk Mk. The Hawk had not originally been designed to perform carrier operations, so that numerous modifications were required, such as the extensive strengthening of the airframe to withstand the excessive forces imposed by the stresses involved in catapult launches and high sink-rate landings, both scenarios being routine in aircraft carrier operations.
The aerodynamic changes of the aircraft, which were mutually developed by HAL and BAE Systems, included improvements to the low-speed handling characteristics and a reduction in the approach speed. Most notable amongst the changes made to the Hawk's design were extended flaps for better low-speed handling, along with the addition of spoilers on the wings to reduce lift and strakes on the fuselage which improved airflow and stabilizer efficiency.
Other, less obvious modifications included a reinforced airframe, the adoption of a more robust and widened landing gear, complete with a catapult tow bar attachment to the oleo strut of the new two-wheel nose gear design, and an arresting hook. The tail fin was extended by 1 foot (12 in, 30.5 cm) to compensate for the loss of the Hawk’s ventral stabilizing strakes. To make room for the arrester hook, the original ventral air brake was split and re-located to the flanks, similar to the USN’s T-45 trainer.
At the time of the Samudree Baaj’s design, the exact catapult arrangement and capacity on board of India’s new carriers was not clear yet – even more so, since the MiG-29K and its powerful engines might have made a catapult obsolete. Therefore, the Samudree Baaj was designed to be operable either with a ski jump ramp (in the style of the Russian Kiev class carriers, of which India had purchased one as INS Vikramaditya) or with only minimal launch support within the projected STOBAR concept, which included a relatively short-stroke steam catapult and a similarly short, undampened arrester gear.
By 2009 the basic airframe had been defined and four prototypes were built for two versions: the Mk. 101 trainer, which was basically a navalized version of the land-based Mk. 132 with almost the same mission equipment, and the Mk. 201, a single-seater. Two airframes of each type were built and the first Samudree Baaj flight took place in early 2011. The Indian government ordered 30 trainers and 15 attack aircraft, to be delivered with the first new Indian carrier, INS Vikrant, in late 2017.
The Samudree Baaj Mk. 201 was developed from the basic navalized Hawk airframe as a light multirole fighter with a small visual signature and high maneuverability, but high combat efficiency and capable of both strike and point defense missions. It differed from the trainer through a completely new forward fuselage whereby the forward cockpit area, which normally housed the trainee, was replaced by an electronics bay for avionics and onboard systems, including a fire control computer, a LINS 300 ring laser gyroscope inertial navigation system and a lightweight (145 kg) multimode, coherent, pulse-Doppler I band airborne radar. This multimode radar was developed from the Ferranti Blue Fox radar and capable of airborne interception and air-to-surface strike roles over water and land, with look-down/shoot-down and look-up modes. It had ten air-to-surface and ten air-to-ground modes for navigation and weapon aiming purposes.
A ventral fairing behind the radome carried a laser rangefinder and a forward-looking infrared (FLIR). Mid-air refueling was also possible, through a detachable (but fixed) probe. GPS navigation or modern night-flight systems were integrated, too.
Like the trainer, the Mk. 201 had a total of seven weapon hardpoints (1 ventral, four underwing and a pair of wing tip launch rails), but the more sophisticated avionics suite allowed a wider range of ordnance to be carried and deployed, which included radar-guided AAMs for BVR strokes and smart weapons and guided missiles – especially the Sea Eagle and AGM-84 “Harpoon” anti-ship missiles in the Indian Navy’s arsenal. For the maritime strike role and as a support for ASW missions, the Samudree Baaj Mk. 201 could even deploy Sting Ray homing torpedoes.
Furthermore, a pair of 30mm (1.18 in) ADEN machine cannon with 150 RPG were housed in a shallow fairing under the cockpit. The self-protection systems include a BAE SkyGuardian 200 RWR and automatic Vinten chaff/flare dispensers located above the engine exhaust.
The Samudree Baaj project was highly ambitious, so that it does not wonder that there were many delays and teething troubles. Beyond the complex avionics integration this included the maritime adaptation of the Adour engine, which eventually led to the uprated Adour Mk. 871-1N, which, as a side benefit, also offered about 10% more power.
However, in parallel, INS Vikrant also ran into delays: In July 2012, The Times of India reported that construction of Vikrant has been delayed by three years, and the ship would be ready for commissioning by 2018. Later, in November 2012, Indian English-language news channel NDTV reported that cost of the aircraft carrier had increased, and the delivery has been delayed by at least five years and is expected to be with the Indian Navy only after 2018 as against the scheduled date of delivery of 2014. Work then commenced for the next stage of construction, which included the installation of the integrated propulsion system, the superstructure, the upper decks, the cabling, sensors and weapons. Vikrant was eventually undocked on 10 June 2015 after the completion of structural work. Cabling, piping, heat and ventilation works were to be completed by 2017; sea trials would begin thereafter. In December 2019, it was reported that the engines on board the ship were switched on and in November 2020, only the basin trials of the aircraft carrier were completed.
By that time, the first Samudree Baaj aircraft had been delivered to Indian Navy 300 squadron, and even though only based at land at Hansa Air Station, flight training and military operations commenced. In the meantime, the start of Vikrant's trials had initially been scheduled to begin on 12 March 2020, but further construction delays caused that to be moved back to April. With the COVID-19 crisis, the navy explained that trials were unlikely to begin before September/October. During the Navy Day press meeting in December 2019, Navy Chief Admiral Karambir Singh said Vikrant would be fully operational before the end of 2022. The COVID-19 pandemic had already pushed that back to 2023 and further delays appeared possible.
In late 2020, the Indian Navy expected to commission Vikrant by the end of 2021. Until then, the Samudree Baaj fleet will remain land-based at INS Hansa near Goa. This not only is the INAS 300 home base, it is also the location of the Indian Navy's Shore Based Test Facility (SBTF), which is a mock-up of the 283-metre (928 ft) INS Vikramaditya (a modified Kiev-class aircraft carrier) deck built to train and certify navy pilots, primarily the the Mikoyan MiG-29K for operating from the aircraft carrier, but now also for the Samudree Baaj and for the developmental trials of the naval HAL Tejas lightweight fighter.
General characteristics:
Crew: 1
Length: 11.38 m (37 ft 4 in)
Wingspan: 9.39 m (30 ft 10 in)
Height: 4.30 m (14 ft 1 in)
Wing area: 17.66 m2 (190.1 sq ft)
Empty weight: 9,394 lb (4,261 kg)
Gross weight: 12,750 lb (5,783 kg)
Max takeoff weight: 9,101 kg (20,064 lb)
Fuel capacity: 1,360 kg (3,000 lb) internal
3,210 kg (7,080 lb) with 3 drop tanks
Powerplant:
1× Rolls-Royce Turbomeca Adour Mk. 871-1N non-afterburning turbofan, 28,89 kN (6,445 lbf) thrust
Performance:
Maximum speed: 1,037 km/h (644 mph, 560 kn) at sea level
Maximum speed: Mach 1.2 (never exceed at altitude)
Cruise speed: 796 km/h (495 mph, 430 kn) at 12,500 m (41,000 ft)
Carrier launch speed: 121 kn (139 mph; 224 km/h)
Approach speed: 125 kn (144 mph; 232 km/h)
Never exceed speed: 575 kn (662 mph, 1,065 km/h) / M1.04 design dive limit
Stall speed: 197 km/h (122 mph, 106 kn) flaps down
Range: 892 km (554 mi, 482 nmi) internal fuel only
Combat range: 617 km (383 mi, 333 nmi) with 2x AGM-84 and 2x 592 l (156 US gal; 130 imp gal)
Ferry range: 1,950 km (1,210 mi, 1,050 nmi) with 3 drop tanks
Service ceiling: 15,250 m (50,030 ft)
G-limits: +8/-3
Rate of climb: 58.466 m/s (11,509.1 ft/min)
Takeoff distance with maximum weapon load: 2,134 m (7,001 ft)
Landing distance at maximum landing weight with brake chute: 854 m (2,802 ft)
Landing distance at maximum landing weight without brake chute: 1,250 m (4,100 ft)
Armament:
2× 30 mm (1.181 in) Aden cannon with 150 rounds each
7× hardpoints (4× under-wing, 1× under-fuselage and 2 × wingtip)
for a total ordnance of 3.085 kg (6,800 lb) and a wide range of weapons
The kit and its assembly:
A subtle kitbashing project, inspired by a CG-rendition of a carrier-based (yet un-navalized) BAe Hawk 200 in Indian Navy service by fellow user SPINNERS in January 2021. I found the idea inspiring but thought that the basic concept could be taken further and into hardware form with a model. And I had a Matchbox Hawk 200 in The Stash™, as well as a McDonnell T-45 trainer from Italeri…
The plan sounds simple: take a T-45 and replace the cockpit section with the single-seat cockpit from the Hawk 200. And while the necessary cuts were easy to make, reality rears its ugly head when you try to mate parts from basically the same aircraft but from models by different manufacturers.
The challenges started with the fact that the fuselage shapes of both models differ – the Matchbox kit is more “voluminous”, and the different canopy shape called for a partial spine transplant, which turned out to be of very different shape than the T-45’s respective section! Lots of PSR…
In order to improve the pretty basic Matchbox Hawk cockpit I integrated the cockpit tub from the Italeri T-45, including the ejection seat, dashboard and its top cover.
For the totally different T-45 front wheel I had to enlarge the respective well and added a “ceiling” to it, since the strut had to be attached somewhere. The Hawk 200’s ventral tub for the cannons (which only the first prototype carried, later production aircraft did not feature them) were retained – partly because of their “whiffy“ nature, but also because making it disappear would have involved more major surgeries.
Most of the are behind the cockpit comes from the Italeri T-45, I just added a RHAWS fairing to the fin, extending it by 3mm.
A major problem became the air intakes, because the two kits differ in their construction. I wanted to use the Italeri parts, because they match the fairings on the fuselage flanks well and are better detailed than the Matchbox parts. But the boundary layer spacers between intakes and fuselage are molded into the Italeri parts, while the Matchbox kit has them molded into the fuselage. This called for major surgery and eventually worked out fine, and more PSR blended the rest of the fuselage donors around the cockpit together. A tedious process, though.
The pylons were puzzled together, including a former Matchbox EA-6B wing pylon under the fuselage, cut down and mounted in reverse and upside down! The ordnance comes from the Italeri NATO weapons set (Matra Magic and AGM-84), the ventral drop tank comes IIRC from an Eduard L-39 Albatros. Matra Magics were chosen because India never operated any Sidewinder AAM, just French or Soviet/Russian missiles like the R-60 or R-73 (unlikely on the Hawk, IMHO), and I had preferred a pair of Sea Eagle ASMs (from a Hasegawa Sea Harrier kit), but their span turned out to be too large for the Hawk’s low wings. The alternative, more slender Harpoons are plausible, though, since they are actually part of the Indian Navy’s inventory.
Painting and markings:
The Indian Navy theme was already settled, and I wanted to stay close to SPINNERS’ illustration as well as to real world Indian Navy aircraft. SPINNERS’ Hawk carried the typical Sea Harreir scheme in Extra Dark Sea Grey and White, and I found this livery to look a bit too much retro, because I’d place this what-if aircraft in the early 2020s, when the Sea Harriers had already been phased out. A “realistic” livery might have been an overall mid-grey paint scheme (like the land-based Indian Hawk 132s), but I found this to look too boring. As a compromise, I gave the Samudree Baaj a simple two-tone paint scheme, carried by a few late Indian Sea Harriers. It consists of upper surfaces in Dark Sea Grey (Humbrol 164) and undersides in Medium Sea Grey (Modelmaster 2058), with a low waterline. The Modelmaster MSG has – for my taste – a rather bluish hue and appears almost like PRU Blue, but I left it that way.
The decals were puzzled together from variosu sources. the roundels come from a MiG-21F (Begemot), the unit markings and tactical codes from a Model Alliance Sea Harrier sheet, and the stencils are a mix from the Matchbox Hawk 200 and the Italeri T-45.
The kit was sealed with matt acrylic varnish from Italeri.
The fictional HAL „Samudree Baaj“ looks simple, but combining kits of the basically same aircraft from different manufacturers reveals their differences, and they are not to be underestimated! However, I like the result of a navalized Hawk single-seater, and - also with the relatively simple and dull livery - it looks pretty convincing.
Many thanks to SPINNERS for the creative inspiration - even though my build is not a 100% "copy" of the artwork, but rather a step further into the navalisation idea with the T-45 parts.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The Indian „Samudree Baaj“ (समुद्री बाज, Sea Hawk) was a highly modified, navalized version of the British BAE Systems Hawk land-based training jet aircraft, which had been manufactured under license by Hindustan Aeronautics Limited (HAL). The first indigenously built Hawk Mk. 132 trainer was delivered in 2008 to the Indian Air Force, and the type has since then been updated with indigenous avionics into the “Hawk-I” Mk. 132 from 2020 onwards. The aircraft’s Rolls Royce Adour Mk 871 engine was also license-built by HAL, and the company had experience from a wide range of aircraft projects in the past.
The Samudree Baaj project was initiated in 2006 by the Indian Navy, as part of the long historic plan to provide the Indian Navy with a fully capable aircraft carrier. This plan had been initiated in 1989, when India announced a plan to replace its ageing British-built aircraft carriers, INS Vikrant and INS Viraat (ex-HMS Hermes), with two new 28,000-ton Air Defence Ships (ADS) that would operate the BAe Sea Harrier aircraft. The first vessel was to replace Vikrant, which was set to decommission in early 1997. Construction of the ADS was to start at the Cochin Shipyard (CSL) in 1993 after the Indian Naval Design Organisation had translated this design study into a production model. Following the 1991 economic crisis, the plans for construction of the vessels were put on hold indefinitely.
In 1999, then-Defence Minister George Fernandes revived the project and sanctioned the construction of the Project “71 ADS”. By that time, given the ageing Sea Harrier fleet, the letter of intent called for a carrier that would carry more modern jet fighters. In 2001, CSL released a graphic illustration showing a 32,000-ton STOBAR (Short Take-Off But Arrested Recovery) design with a pronounced ski jump. The aircraft carrier project finally received formal government approval in January 2003. By then, design updates called for a 37,500-ton carrier to operate the MiG-29K. India opted for a three-carrier fleet consisting of one carrier battle group stationed on each seaboard, and a third carrier held in reserve, in order to continuously protect both its flanks, to protect economic interests and mercantile traffic, and to provide humanitarian platforms in times of disasters, since a carrier can provide a self-generating supply of fresh water, medical assistance or engineering expertise to populations in need for assistance.
In August 2006, then-Chief of the Naval Staff, Admiral Arun Prakash stated that the designation for the vessel had been changed from Air Defence Ship (ADS) to Indigenous Aircraft Carrier (IAC). The euphemistic ADS had been adopted in planning stages to ward off concerns about a naval build-up. Final revisions to the design increased the displacement of the carrier from 37,500 tons to over 40,000 tons. The length of the ship also increased from 252 metres (827 ft) to 262 metres (860 ft).
It was at this time that, beyond the MiG-29K, primarily a carrier-capable trainer and also a light (and less costly) strike aircraft would be needed. With the running production of the Hawk Mk. 132 for the Indian Air Force and BAE Systems’ connection and experience to the USA and McDonnell/Boeing’s adaptation of the Hawk as the US Navy’s carrier-capable T-45 trainer, HAL was instructed to develop a suitable aircraft family on the Hawk’s basis for the new carriers.
HAL’s Samudree Baaj is a fully carrier-capable version of the British Aerospace Hawk Mk. The Hawk had not originally been designed to perform carrier operations, so that numerous modifications were required, such as the extensive strengthening of the airframe to withstand the excessive forces imposed by the stresses involved in catapult launches and high sink-rate landings, both scenarios being routine in aircraft carrier operations.
The aerodynamic changes of the aircraft, which were mutually developed by HAL and BAE Systems, included improvements to the low-speed handling characteristics and a reduction in the approach speed. Most notable amongst the changes made to the Hawk's design were extended flaps for better low-speed handling, along with the addition of spoilers on the wings to reduce lift and strakes on the fuselage which improved airflow and stabilizer efficiency.
Other, less obvious modifications included a reinforced airframe, the adoption of a more robust and widened landing gear, complete with a catapult tow bar attachment to the oleo strut of the new two-wheel nose gear design, and an arresting hook. The tail fin was extended by 1 foot (12 in, 30.5 cm) to compensate for the loss of the Hawk’s ventral stabilizing strakes. To make room for the arrester hook, the original ventral air brake was split and re-located to the flanks, similar to the USN’s T-45 trainer.
At the time of the Samudree Baaj’s design, the exact catapult arrangement and capacity on board of India’s new carriers was not clear yet – even more so, since the MiG-29K and its powerful engines might have made a catapult obsolete. Therefore, the Samudree Baaj was designed to be operable either with a ski jump ramp (in the style of the Russian Kiev class carriers, of which India had purchased one as INS Vikramaditya) or with only minimal launch support within the projected STOBAR concept, which included a relatively short-stroke steam catapult and a similarly short, undampened arrester gear.
By 2009 the basic airframe had been defined and four prototypes were built for two versions: the Mk. 101 trainer, which was basically a navalized version of the land-based Mk. 132 with almost the same mission equipment, and the Mk. 201, a single-seater. Two airframes of each type were built and the first Samudree Baaj flight took place in early 2011. The Indian government ordered 30 trainers and 15 attack aircraft, to be delivered with the first new Indian carrier, INS Vikrant, in late 2017.
The Samudree Baaj Mk. 201 was developed from the basic navalized Hawk airframe as a light multirole fighter with a small visual signature and high maneuverability, but high combat efficiency and capable of both strike and point defense missions. It differed from the trainer through a completely new forward fuselage whereby the forward cockpit area, which normally housed the trainee, was replaced by an electronics bay for avionics and onboard systems, including a fire control computer, a LINS 300 ring laser gyroscope inertial navigation system and a lightweight (145 kg) multimode, coherent, pulse-Doppler I band airborne radar. This multimode radar was developed from the Ferranti Blue Fox radar and capable of airborne interception and air-to-surface strike roles over water and land, with look-down/shoot-down and look-up modes. It had ten air-to-surface and ten air-to-ground modes for navigation and weapon aiming purposes.
A ventral fairing behind the radome carried a laser rangefinder and a forward-looking infrared (FLIR). Mid-air refueling was also possible, through a detachable (but fixed) probe. GPS navigation or modern night-flight systems were integrated, too.
Like the trainer, the Mk. 201 had a total of seven weapon hardpoints (1 ventral, four underwing and a pair of wing tip launch rails), but the more sophisticated avionics suite allowed a wider range of ordnance to be carried and deployed, which included radar-guided AAMs for BVR strokes and smart weapons and guided missiles – especially the Sea Eagle and AGM-84 “Harpoon” anti-ship missiles in the Indian Navy’s arsenal. For the maritime strike role and as a support for ASW missions, the Samudree Baaj Mk. 201 could even deploy Sting Ray homing torpedoes.
Furthermore, a pair of 30mm (1.18 in) ADEN machine cannon with 150 RPG were housed in a shallow fairing under the cockpit. The self-protection systems include a BAE SkyGuardian 200 RWR and automatic Vinten chaff/flare dispensers located above the engine exhaust.
The Samudree Baaj project was highly ambitious, so that it does not wonder that there were many delays and teething troubles. Beyond the complex avionics integration this included the maritime adaptation of the Adour engine, which eventually led to the uprated Adour Mk. 871-1N, which, as a side benefit, also offered about 10% more power.
However, in parallel, INS Vikrant also ran into delays: In July 2012, The Times of India reported that construction of Vikrant has been delayed by three years, and the ship would be ready for commissioning by 2018. Later, in November 2012, Indian English-language news channel NDTV reported that cost of the aircraft carrier had increased, and the delivery has been delayed by at least five years and is expected to be with the Indian Navy only after 2018 as against the scheduled date of delivery of 2014. Work then commenced for the next stage of construction, which included the installation of the integrated propulsion system, the superstructure, the upper decks, the cabling, sensors and weapons. Vikrant was eventually undocked on 10 June 2015 after the completion of structural work. Cabling, piping, heat and ventilation works were to be completed by 2017; sea trials would begin thereafter. In December 2019, it was reported that the engines on board the ship were switched on and in November 2020, only the basin trials of the aircraft carrier were completed.
By that time, the first Samudree Baaj aircraft had been delivered to Indian Navy 300 squadron, and even though only based at land at Hansa Air Station, flight training and military operations commenced. In the meantime, the start of Vikrant's trials had initially been scheduled to begin on 12 March 2020, but further construction delays caused that to be moved back to April. With the COVID-19 crisis, the navy explained that trials were unlikely to begin before September/October. During the Navy Day press meeting in December 2019, Navy Chief Admiral Karambir Singh said Vikrant would be fully operational before the end of 2022. The COVID-19 pandemic had already pushed that back to 2023 and further delays appeared possible.
In late 2020, the Indian Navy expected to commission Vikrant by the end of 2021. Until then, the Samudree Baaj fleet will remain land-based at INS Hansa near Goa. This not only is the INAS 300 home base, it is also the location of the Indian Navy's Shore Based Test Facility (SBTF), which is a mock-up of the 283-metre (928 ft) INS Vikramaditya (a modified Kiev-class aircraft carrier) deck built to train and certify navy pilots, primarily the the Mikoyan MiG-29K for operating from the aircraft carrier, but now also for the Samudree Baaj and for the developmental trials of the naval HAL Tejas lightweight fighter.
General characteristics:
Crew: 1
Length: 11.38 m (37 ft 4 in)
Wingspan: 9.39 m (30 ft 10 in)
Height: 4.30 m (14 ft 1 in)
Wing area: 17.66 m2 (190.1 sq ft)
Empty weight: 9,394 lb (4,261 kg)
Gross weight: 12,750 lb (5,783 kg)
Max takeoff weight: 9,101 kg (20,064 lb)
Fuel capacity: 1,360 kg (3,000 lb) internal
3,210 kg (7,080 lb) with 3 drop tanks
Powerplant:
1× Rolls-Royce Turbomeca Adour Mk. 871-1N non-afterburning turbofan, 28,89 kN (6,445 lbf) thrust
Performance:
Maximum speed: 1,037 km/h (644 mph, 560 kn) at sea level
Maximum speed: Mach 1.2 (never exceed at altitude)
Cruise speed: 796 km/h (495 mph, 430 kn) at 12,500 m (41,000 ft)
Carrier launch speed: 121 kn (139 mph; 224 km/h)
Approach speed: 125 kn (144 mph; 232 km/h)
Never exceed speed: 575 kn (662 mph, 1,065 km/h) / M1.04 design dive limit
Stall speed: 197 km/h (122 mph, 106 kn) flaps down
Range: 892 km (554 mi, 482 nmi) internal fuel only
Combat range: 617 km (383 mi, 333 nmi) with 2x AGM-84 and 2x 592 l (156 US gal; 130 imp gal)
Ferry range: 1,950 km (1,210 mi, 1,050 nmi) with 3 drop tanks
Service ceiling: 15,250 m (50,030 ft)
G-limits: +8/-3
Rate of climb: 58.466 m/s (11,509.1 ft/min)
Takeoff distance with maximum weapon load: 2,134 m (7,001 ft)
Landing distance at maximum landing weight with brake chute: 854 m (2,802 ft)
Landing distance at maximum landing weight without brake chute: 1,250 m (4,100 ft)
Armament:
2× 30 mm (1.181 in) Aden cannon with 150 rounds each
7× hardpoints (4× under-wing, 1× under-fuselage and 2 × wingtip)
for a total ordnance of 3.085 kg (6,800 lb) and a wide range of weapons
The kit and its assembly:
A subtle kitbashing project, inspired by a CG-rendition of a carrier-based (yet un-navalized) BAe Hawk 200 in Indian Navy service by fellow user SPINNERS in January 2021. I found the idea inspiring but thought that the basic concept could be taken further and into hardware form with a model. And I had a Matchbox Hawk 200 in The Stash™, as well as a McDonnell T-45 trainer from Italeri…
The plan sounds simple: take a T-45 and replace the cockpit section with the single-seat cockpit from the Hawk 200. And while the necessary cuts were easy to make, reality rears its ugly head when you try to mate parts from basically the same aircraft but from models by different manufacturers.
The challenges started with the fact that the fuselage shapes of both models differ – the Matchbox kit is more “voluminous”, and the different canopy shape called for a partial spine transplant, which turned out to be of very different shape than the T-45’s respective section! Lots of PSR…
In order to improve the pretty basic Matchbox Hawk cockpit I integrated the cockpit tub from the Italeri T-45, including the ejection seat, dashboard and its top cover.
For the totally different T-45 front wheel I had to enlarge the respective well and added a “ceiling” to it, since the strut had to be attached somewhere. The Hawk 200’s ventral tub for the cannons (which only the first prototype carried, later production aircraft did not feature them) were retained – partly because of their “whiffy“ nature, but also because making it disappear would have involved more major surgeries.
Most of the are behind the cockpit comes from the Italeri T-45, I just added a RHAWS fairing to the fin, extending it by 3mm.
A major problem became the air intakes, because the two kits differ in their construction. I wanted to use the Italeri parts, because they match the fairings on the fuselage flanks well and are better detailed than the Matchbox parts. But the boundary layer spacers between intakes and fuselage are molded into the Italeri parts, while the Matchbox kit has them molded into the fuselage. This called for major surgery and eventually worked out fine, and more PSR blended the rest of the fuselage donors around the cockpit together. A tedious process, though.
The pylons were puzzled together, including a former Matchbox EA-6B wing pylon under the fuselage, cut down and mounted in reverse and upside down! The ordnance comes from the Italeri NATO weapons set (Matra Magic and AGM-84), the ventral drop tank comes IIRC from an Eduard L-39 Albatros. Matra Magics were chosen because India never operated any Sidewinder AAM, just French or Soviet/Russian missiles like the R-60 or R-73 (unlikely on the Hawk, IMHO), and I had preferred a pair of Sea Eagle ASMs (from a Hasegawa Sea Harrier kit), but their span turned out to be too large for the Hawk’s low wings. The alternative, more slender Harpoons are plausible, though, since they are actually part of the Indian Navy’s inventory.
Painting and markings:
The Indian Navy theme was already settled, and I wanted to stay close to SPINNERS’ illustration as well as to real world Indian Navy aircraft. SPINNERS’ Hawk carried the typical Sea Harreir scheme in Extra Dark Sea Grey and White, and I found this livery to look a bit too much retro, because I’d place this what-if aircraft in the early 2020s, when the Sea Harriers had already been phased out. A “realistic” livery might have been an overall mid-grey paint scheme (like the land-based Indian Hawk 132s), but I found this to look too boring. As a compromise, I gave the Samudree Baaj a simple two-tone paint scheme, carried by a few late Indian Sea Harriers. It consists of upper surfaces in Dark Sea Grey (Humbrol 164) and undersides in Medium Sea Grey (Modelmaster 2058), with a low waterline. The Modelmaster MSG has – for my taste – a rather bluish hue and appears almost like PRU Blue, but I left it that way.
The decals were puzzled together from variosu sources. the roundels come from a MiG-21F (Begemot), the unit markings and tactical codes from a Model Alliance Sea Harrier sheet, and the stencils are a mix from the Matchbox Hawk 200 and the Italeri T-45.
The kit was sealed with matt acrylic varnish from Italeri.
The fictional HAL „Samudree Baaj“ looks simple, but combining kits of the basically same aircraft from different manufacturers reveals their differences, and they are not to be underestimated! However, I like the result of a navalized Hawk single-seater, and - also with the relatively simple and dull livery - it looks pretty convincing.
Many thanks to SPINNERS for the creative inspiration - even though my build is not a 100% "copy" of the artwork, but rather a step further into the navalisation idea with the T-45 parts.
+++ DISCLAIMER +++
Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!
Some background:
The Indian „Samudree Baaj“ (समुद्री बाज, Sea Hawk) was a highly modified, navalized version of the British BAE Systems Hawk land-based training jet aircraft, which had been manufactured under license by Hindustan Aeronautics Limited (HAL). The first indigenously built Hawk Mk. 132 trainer was delivered in 2008 to the Indian Air Force, and the type has since then been updated with indigenous avionics into the “Hawk-I” Mk. 132 from 2020 onwards. The aircraft’s Rolls Royce Adour Mk 871 engine was also license-built by HAL, and the company had experience from a wide range of aircraft projects in the past.
The Samudree Baaj project was initiated in 2006 by the Indian Navy, as part of the long historic plan to provide the Indian Navy with a fully capable aircraft carrier. This plan had been initiated in 1989, when India announced a plan to replace its ageing British-built aircraft carriers, INS Vikrant and INS Viraat (ex-HMS Hermes), with two new 28,000-ton Air Defence Ships (ADS) that would operate the BAe Sea Harrier aircraft. The first vessel was to replace Vikrant, which was set to decommission in early 1997. Construction of the ADS was to start at the Cochin Shipyard (CSL) in 1993 after the Indian Naval Design Organisation had translated this design study into a production model. Following the 1991 economic crisis, the plans for construction of the vessels were put on hold indefinitely.
In 1999, then-Defence Minister George Fernandes revived the project and sanctioned the construction of the Project “71 ADS”. By that time, given the ageing Sea Harrier fleet, the letter of intent called for a carrier that would carry more modern jet fighters. In 2001, CSL released a graphic illustration showing a 32,000-ton STOBAR (Short Take-Off But Arrested Recovery) design with a pronounced ski jump. The aircraft carrier project finally received formal government approval in January 2003. By then, design updates called for a 37,500-ton carrier to operate the MiG-29K. India opted for a three-carrier fleet consisting of one carrier battle group stationed on each seaboard, and a third carrier held in reserve, in order to continuously protect both its flanks, to protect economic interests and mercantile traffic, and to provide humanitarian platforms in times of disasters, since a carrier can provide a self-generating supply of fresh water, medical assistance or engineering expertise to populations in need for assistance.
In August 2006, then-Chief of the Naval Staff, Admiral Arun Prakash stated that the designation for the vessel had been changed from Air Defence Ship (ADS) to Indigenous Aircraft Carrier (IAC). The euphemistic ADS had been adopted in planning stages to ward off concerns about a naval build-up. Final revisions to the design increased the displacement of the carrier from 37,500 tons to over 40,000 tons. The length of the ship also increased from 252 metres (827 ft) to 262 metres (860 ft).
It was at this time that, beyond the MiG-29K, primarily a carrier-capable trainer and also a light (and less costly) strike aircraft would be needed. With the running production of the Hawk Mk. 132 for the Indian Air Force and BAE Systems’ connection and experience to the USA and McDonnell/Boeing’s adaptation of the Hawk as the US Navy’s carrier-capable T-45 trainer, HAL was instructed to develop a suitable aircraft family on the Hawk’s basis for the new carriers.
HAL’s Samudree Baaj is a fully carrier-capable version of the British Aerospace Hawk Mk. The Hawk had not originally been designed to perform carrier operations, so that numerous modifications were required, such as the extensive strengthening of the airframe to withstand the excessive forces imposed by the stresses involved in catapult launches and high sink-rate landings, both scenarios being routine in aircraft carrier operations.
The aerodynamic changes of the aircraft, which were mutually developed by HAL and BAE Systems, included improvements to the low-speed handling characteristics and a reduction in the approach speed. Most notable amongst the changes made to the Hawk's design were extended flaps for better low-speed handling, along with the addition of spoilers on the wings to reduce lift and strakes on the fuselage which improved airflow and stabilizer efficiency.
Other, less obvious modifications included a reinforced airframe, the adoption of a more robust and widened landing gear, complete with a catapult tow bar attachment to the oleo strut of the new two-wheel nose gear design, and an arresting hook. The tail fin was extended by 1 foot (12 in, 30.5 cm) to compensate for the loss of the Hawk’s ventral stabilizing strakes. To make room for the arrester hook, the original ventral air brake was split and re-located to the flanks, similar to the USN’s T-45 trainer.
At the time of the Samudree Baaj’s design, the exact catapult arrangement and capacity on board of India’s new carriers was not clear yet – even more so, since the MiG-29K and its powerful engines might have made a catapult obsolete. Therefore, the Samudree Baaj was designed to be operable either with a ski jump ramp (in the style of the Russian Kiev class carriers, of which India had purchased one as INS Vikramaditya) or with only minimal launch support within the projected STOBAR concept, which included a relatively short-stroke steam catapult and a similarly short, undampened arrester gear.
By 2009 the basic airframe had been defined and four prototypes were built for two versions: the Mk. 101 trainer, which was basically a navalized version of the land-based Mk. 132 with almost the same mission equipment, and the Mk. 201, a single-seater. Two airframes of each type were built and the first Samudree Baaj flight took place in early 2011. The Indian government ordered 30 trainers and 15 attack aircraft, to be delivered with the first new Indian carrier, INS Vikrant, in late 2017.
The Samudree Baaj Mk. 201 was developed from the basic navalized Hawk airframe as a light multirole fighter with a small visual signature and high maneuverability, but high combat efficiency and capable of both strike and point defense missions. It differed from the trainer through a completely new forward fuselage whereby the forward cockpit area, which normally housed the trainee, was replaced by an electronics bay for avionics and onboard systems, including a fire control computer, a LINS 300 ring laser gyroscope inertial navigation system and a lightweight (145 kg) multimode, coherent, pulse-Doppler I band airborne radar. This multimode radar was developed from the Ferranti Blue Fox radar and capable of airborne interception and air-to-surface strike roles over water and land, with look-down/shoot-down and look-up modes. It had ten air-to-surface and ten air-to-ground modes for navigation and weapon aiming purposes.
A ventral fairing behind the radome carried a laser rangefinder and a forward-looking infrared (FLIR). Mid-air refueling was also possible, through a detachable (but fixed) probe. GPS navigation or modern night-flight systems were integrated, too.
Like the trainer, the Mk. 201 had a total of seven weapon hardpoints (1 ventral, four underwing and a pair of wing tip launch rails), but the more sophisticated avionics suite allowed a wider range of ordnance to be carried and deployed, which included radar-guided AAMs for BVR strokes and smart weapons and guided missiles – especially the Sea Eagle and AGM-84 “Harpoon” anti-ship missiles in the Indian Navy’s arsenal. For the maritime strike role and as a support for ASW missions, the Samudree Baaj Mk. 201 could even deploy Sting Ray homing torpedoes.
Furthermore, a pair of 30mm (1.18 in) ADEN machine cannon with 150 RPG were housed in a shallow fairing under the cockpit. The self-protection systems include a BAE SkyGuardian 200 RWR and automatic Vinten chaff/flare dispensers located above the engine exhaust.
The Samudree Baaj project was highly ambitious, so that it does not wonder that there were many delays and teething troubles. Beyond the complex avionics integration this included the maritime adaptation of the Adour engine, which eventually led to the uprated Adour Mk. 871-1N, which, as a side benefit, also offered about 10% more power.
However, in parallel, INS Vikrant also ran into delays: In July 2012, The Times of India reported that construction of Vikrant has been delayed by three years, and the ship would be ready for commissioning by 2018. Later, in November 2012, Indian English-language news channel NDTV reported that cost of the aircraft carrier had increased, and the delivery has been delayed by at least five years and is expected to be with the Indian Navy only after 2018 as against the scheduled date of delivery of 2014. Work then commenced for the next stage of construction, which included the installation of the integrated propulsion system, the superstructure, the upper decks, the cabling, sensors and weapons. Vikrant was eventually undocked on 10 June 2015 after the completion of structural work. Cabling, piping, heat and ventilation works were to be completed by 2017; sea trials would begin thereafter. In December 2019, it was reported that the engines on board the ship were switched on and in November 2020, only the basin trials of the aircraft carrier were completed.
By that time, the first Samudree Baaj aircraft had been delivered to Indian Navy 300 squadron, and even though only based at land at Hansa Air Station, flight training and military operations commenced. In the meantime, the start of Vikrant's trials had initially been scheduled to begin on 12 March 2020, but further construction delays caused that to be moved back to April. With the COVID-19 crisis, the navy explained that trials were unlikely to begin before September/October. During the Navy Day press meeting in December 2019, Navy Chief Admiral Karambir Singh said Vikrant would be fully operational before the end of 2022. The COVID-19 pandemic had already pushed that back to 2023 and further delays appeared possible.
In late 2020, the Indian Navy expected to commission Vikrant by the end of 2021. Until then, the Samudree Baaj fleet will remain land-based at INS Hansa near Goa. This not only is the INAS 300 home base, it is also the location of the Indian Navy's Shore Based Test Facility (SBTF), which is a mock-up of the 283-metre (928 ft) INS Vikramaditya (a modified Kiev-class aircraft carrier) deck built to train and certify navy pilots, primarily the the Mikoyan MiG-29K for operating from the aircraft carrier, but now also for the Samudree Baaj and for the developmental trials of the naval HAL Tejas lightweight fighter.
General characteristics:
Crew: 1
Length: 11.38 m (37 ft 4 in)
Wingspan: 9.39 m (30 ft 10 in)
Height: 4.30 m (14 ft 1 in)
Wing area: 17.66 m2 (190.1 sq ft)
Empty weight: 9,394 lb (4,261 kg)
Gross weight: 12,750 lb (5,783 kg)
Max takeoff weight: 9,101 kg (20,064 lb)
Fuel capacity: 1,360 kg (3,000 lb) internal
3,210 kg (7,080 lb) with 3 drop tanks
Powerplant:
1× Rolls-Royce Turbomeca Adour Mk. 871-1N non-afterburning turbofan, 28,89 kN (6,445 lbf) thrust
Performance:
Maximum speed: 1,037 km/h (644 mph, 560 kn) at sea level
Maximum speed: Mach 1.2 (never exceed at altitude)
Cruise speed: 796 km/h (495 mph, 430 kn) at 12,500 m (41,000 ft)
Carrier launch speed: 121 kn (139 mph; 224 km/h)
Approach speed: 125 kn (144 mph; 232 km/h)
Never exceed speed: 575 kn (662 mph, 1,065 km/h) / M1.04 design dive limit
Stall speed: 197 km/h (122 mph, 106 kn) flaps down
Range: 892 km (554 mi, 482 nmi) internal fuel only
Combat range: 617 km (383 mi, 333 nmi) with 2x AGM-84 and 2x 592 l (156 US gal; 130 imp gal)
Ferry range: 1,950 km (1,210 mi, 1,050 nmi) with 3 drop tanks
Service ceiling: 15,250 m (50,030 ft)
G-limits: +8/-3
Rate of climb: 58.466 m/s (11,509.1 ft/min)
Takeoff distance with maximum weapon load: 2,134 m (7,001 ft)
Landing distance at maximum landing weight with brake chute: 854 m (2,802 ft)
Landing distance at maximum landing weight without brake chute: 1,250 m (4,100 ft)
Armament:
2× 30 mm (1.181 in) Aden cannon with 150 rounds each
7× hardpoints (4× under-wing, 1× under-fuselage and 2 × wingtip)
for a total ordnance of 3.085 kg (6,800 lb) and a wide range of weapons
The kit and its assembly:
A subtle kitbashing project, inspired by a CG-rendition of a carrier-based (yet un-navalized) BAe Hawk 200 in Indian Navy service by fellow user SPINNERS in January 2021. I found the idea inspiring but thought that the basic concept could be taken further and into hardware form with a model. And I had a Matchbox Hawk 200 in The Stash™, as well as a McDonnell T-45 trainer from Italeri…
The plan sounds simple: take a T-45 and replace the cockpit section with the single-seat cockpit from the Hawk 200. And while the necessary cuts were easy to make, reality rears its ugly head when you try to mate parts from basically the same aircraft but from models by different manufacturers.
The challenges started with the fact that the fuselage shapes of both models differ – the Matchbox kit is more “voluminous”, and the different canopy shape called for a partial spine transplant, which turned out to be of very different shape than the T-45’s respective section! Lots of PSR…
In order to improve the pretty basic Matchbox Hawk cockpit I integrated the cockpit tub from the Italeri T-45, including the ejection seat, dashboard and its top cover.
For the totally different T-45 front wheel I had to enlarge the respective well and added a “ceiling” to it, since the strut had to be attached somewhere. The Hawk 200’s ventral tub for the cannons (which only the first prototype carried, later production aircraft did not feature them) were retained – partly because of their “whiffy“ nature, but also because making it disappear would have involved more major surgeries.
Most of the are behind the cockpit comes from the Italeri T-45, I just added a RHAWS fairing to the fin, extending it by 3mm.
A major problem became the air intakes, because the two kits differ in their construction. I wanted to use the Italeri parts, because they match the fairings on the fuselage flanks well and are better detailed than the Matchbox parts. But the boundary layer spacers between intakes and fuselage are molded into the Italeri parts, while the Matchbox kit has them molded into the fuselage. This called for major surgery and eventually worked out fine, and more PSR blended the rest of the fuselage donors around the cockpit together. A tedious process, though.
The pylons were puzzled together, including a former Matchbox EA-6B wing pylon under the fuselage, cut down and mounted in reverse and upside down! The ordnance comes from the Italeri NATO weapons set (Matra Magic and AGM-84), the ventral drop tank comes IIRC from an Eduard L-39 Albatros. Matra Magics were chosen because India never operated any Sidewinder AAM, just French or Soviet/Russian missiles like the R-60 or R-73 (unlikely on the Hawk, IMHO), and I had preferred a pair of Sea Eagle ASMs (from a Hasegawa Sea Harrier kit), but their span turned out to be too large for the Hawk’s low wings. The alternative, more slender Harpoons are plausible, though, since they are actually part of the Indian Navy’s inventory.
Painting and markings:
The Indian Navy theme was already settled, and I wanted to stay close to SPINNERS’ illustration as well as to real world Indian Navy aircraft. SPINNERS’ Hawk carried the typical Sea Harreir scheme in Extra Dark Sea Grey and White, and I found this livery to look a bit too much retro, because I’d place this what-if aircraft in the early 2020s, when the Sea Harriers had already been phased out. A “realistic” livery might have been an overall mid-grey paint scheme (like the land-based Indian Hawk 132s), but I found this to look too boring. As a compromise, I gave the Samudree Baaj a simple two-tone paint scheme, carried by a few late Indian Sea Harriers. It consists of upper surfaces in Dark Sea Grey (Humbrol 164) and undersides in Medium Sea Grey (Modelmaster 2058), with a low waterline. The Modelmaster MSG has – for my taste – a rather bluish hue and appears almost like PRU Blue, but I left it that way.
The decals were puzzled together from variosu sources. the roundels come from a MiG-21F (Begemot), the unit markings and tactical codes from a Model Alliance Sea Harrier sheet, and the stencils are a mix from the Matchbox Hawk 200 and the Italeri T-45.
The kit was sealed with matt acrylic varnish from Italeri.
The fictional HAL „Samudree Baaj“ looks simple, but combining kits of the basically same aircraft from different manufacturers reveals their differences, and they are not to be underestimated! However, I like the result of a navalized Hawk single-seater, and - also with the relatively simple and dull livery - it looks pretty convincing.
Many thanks to SPINNERS for the creative inspiration - even though my build is not a 100% "copy" of the artwork, but rather a step further into the navalisation idea with the T-45 parts.