View allAll Photos Tagged jameswebbspacetelescope

Wadi Rum Collection RAW Nx2 Tiff stitch Nk df dn psdR sk A logo Tiff 85.8 MB.

 

Wadi Rum is a protected desert wilderness in southern Jordan almost 300 Km South of Amman city (Capital of Jordan). It features dramatic sandstone mountains and Natural Arches. Many prehistoric inscriptions and carvings line rocky caverns and steep chasms. The natural water source of Lawrence’s Spring is named after British Lieutenant Lawrence of Arabia, who allegedly washed there.

Wadi Rum in Jordan was used for filming the external scenes as the surface of Planet Mars in the Hollywood movie (The Martian) and many other movies.

We are star-gazers and star travellers. We love the mystery of space, and the new Webb Space Telescope has us intrigued!

 

Are the James Webb Telescope images fake?? : www.ufstarfleet.org/are-james-webb-telescope-images-fake/

 

Visit : maps.secondlife.com/secondlife/UF%20Starfleet%20Headquart...

 

www.ufstarfleet.org

  

The largest and brightest region of star formation in the Local Group of galaxies, including the Milky Way, is called 30 Doradus (or, informally, the Tarantula Nebula). Located in the Large Magellanic Cloud, a small neighbor galaxy to the Milky Way, 30 Doradus has long been studied by astronomers who want to better understand how stars like the Sun are born and evolve.

 

NASA's Chandra X-ray Observatory has frequently looked at 30 Doradus over the lifetime of the mission, often under the direction of Dr. Leisa Townsley who passed away in the summer of 2022. These data will continue to be collected and analyzed, providing opportunities for scientists both now and in the future to learn more about star formation and its related processes.

 

This new composite image combines the X-ray data from Chandra observations of 30 Doradus with an infrared image from NASA's James Webb Space Telescope that was released in the fall of 2022. The X-rays (royal blue and purple) reveal gas that has been heated to millions of degrees by shock waves — similar to sonic booms from airplanes — generated by the winds from massive stars. The Chandra data also identify the remains of supernova explosions, which will ultimately send important elements such as oxygen and carbon into space where they will become part of the next generation of stars.

 

The infrared data from JWST (red, orange, green, and light blue) show spectacular canvases of cooler gas that provide the raw ingredients for future stars. JWST’s view also reveals “protostars,” that is, stars in their infancy, just igniting their stellar engines. The chemical composition of 30 Doradus is different from most of the nebulas found in the Milky Way. Instead it represents the conditions in our galaxy that existed several billion years ago when stars were forming at a much faster pace than astronomers see today. This, combined with its relative proximity and brightness, means that 30 Doradus provides scientists with an opportunity to learn more about how stars formed in our galaxy in the distant past.

 

Image credit: X-ray: NASA/CXC/Penn State Univ./L. Townsley et al.; IR: NASA/ESA/CSA/STScI/JWST ERO Production Team

 

#NASAMarshall #Chandra #NASAChandra #ChandraXrayObservatory #STScI #ESA #jwst #jameswebbspacetelescope #NASAGoddard #nebula #TarantulaNebula

 

Read more

 

Read more about the Chandra X-ray Observatory

 

More about the James Webb Space Telescope

 

NASA Media Usage Guidelines

The rare sight of a Wolf-Rayet star – among the most luminous, most massive, and most briefly detectable stars known – was one of the first observations made by NASA’s James Webb Space Telescope in June 2022. Webb shows the star, WR 124, in unprecedented detail with its powerful infrared instruments. The star is 15,000 light-years away in the constellation Sagittarius.

 

Massive stars race through their lifecycles, and only some of them go through a brief Wolf-Rayet phase before going supernova, making Webb's detailed observations of this rare phase valuable to astronomers. Wolf-Rayet stars are in the process of casting off their outer layers, resulting in their characteristic halos of gas and dust. The star WR 124 is 30 times the mass of the Sun and has shed 10 Suns' worth of material – so far. As the ejected gas moves away from the star and cools, cosmic dust forms and glows in the infrared light detectable by Webb.

 

The origin of cosmic dust that can survive a supernova blast and contribute to the universe's overall “dust budget” is of great interest to astronomers for multiple reasons. Dust is integral to the workings of the universe: It shelters forming stars, gathers together to help form planets, and serves as a platform for molecules to form and clump together – including the building blocks of life on Earth. Despite the many essential roles that dust plays, there is still more dust in the universe than astronomers' current dust-formation theories can explain. The universe is operating with a dust budget surplus.

 

Image credit: NASA, ESA, CSA, STScI, Webb ERO Production Team

 

#NASA #STScI #jwst #jameswebbspacetelescope #NASAGoddard #NASAMarshall

 

Read more

 

More about the James Webb Space Telescope

 

NASA Media Usage Guidelines

The James Webb Space Telescope is safely stowed inside the fairing of ESA’s Ariane 5 launch vehicle, which is now on the launch pad undergoing final checks and fuelling for a targeted liftoff at 12:20 GMT / 13:20 CET on 25 December from Europe's Spaceport in French Guiana.

 

Webb will be the largest, most powerful telescope ever launched into space. As part of an international collaboration agreement, ESA is providing the telescope’s launch service using the Ariane 5 launch vehicle. Working with partners, ESA was responsible for the development and qualification of Ariane 5 adaptations for the Webb mission and for the procurement of the launch service by Arianespace.

 

Webb is an international partnership between NASA, ESA and the Canadian Space Agency (CSA).

 

Find out more about Webb in ESA’s launch kit and interactive brochure.

 

Credit: ESA - S. Corvaja

Using my poetic license to celebrate JWST!

This is not an ethereal landscape of time-forgotten tombs. Nor are these soot-tinged fingers reaching out. These pillars, flush with gas and dust, enshroud stars that are slowly forming over many millennia. NASA’s James Webb Space Telescope has snapped this eerie, extremely dusty view of the Pillars of Creation in mid-infrared light – showing us a new view of a familiar landscape.

 

Why does mid-infrared light set such a somber, chilling mood in Webb’s Mid-Infrared Instrument (MIRI) image? Interstellar dust cloaks the scene. And while mid-infrared light specializes in detailing where dust is, the stars aren’t bright enough at these wavelengths to appear. Instead, these looming, leaden-hued pillars of gas and dust gleam at their edges, hinting at the activity within.

 

Thousands and thousands of stars have formed in this region. This is made plain when examining Webb’s recent Near-Infrared Camera (NIRCam) image. In MIRI’s view, the majority of the stars appear missing. Why? Many newly formed stars are no longer surrounded by enough dust to be detected in mid-infrared light. Instead, MIRI observes young stars that have not yet cast off their dusty “cloaks.” These are the crimson orbs toward the fringes of the pillars. In contrast, the blue stars that dot the scene are aging, which means they have shed most of their layers of gas and dust.

 

Mid-infrared light excels at observing gas and dust in extreme detail. This is also unmistakable throughout the background. The densest areas of dust are the darkest shades of gray. The red region toward the top, which forms an uncanny V, like an owl with outstretched wings, is where the dust is diffuse and cooler. Notice that no background galaxies make an appearance – the interstellar medium in the densest part of the Milky Way’s disk is too swollen with gas and dust to allow their distant light to penetrate.

 

How vast is this landscape? Trace the topmost pillar, landing on the bright red star jutting out of its lower edge like a broomstick. This star and its dusty shroud are larger than the size of our entire solar system.

 

Image Credit: NASA, ESA, CSA, STScI; Joseph DePasquale (STScI), Alyssa Pagan (STScI)

 

#NASA #STScI #jwst #jameswebbspacetelescope #NASAGoddard #NASAMarshall #PillarsOfCreation

 

Read more

 

More about the James Webb Space Telescope

 

NASA Media Usage Guidelines

 

An international team of astronomers using NASA’s James Webb Space Telescope has obtained an in-depth inventory of the deepest, coldest ices measured to date in a molecular cloud. In addition to simple ices like water, the team was able to identify frozen forms of a wide range of molecules, from carbonyl sulfide, ammonia, and methane, to the simplest complex organic molecule, methanol. This is the most comprehensive census to date of the icy ingredients available to make future generations of stars and planets, before they are heated during the formation of young stars.

 

This image from the telescope’s Near-Infrared Camera (NIRCam) features the central region of the Chamaeleon I dark molecular cloud, which resides 630 light-years away. The cold, wispy cloud material (blue, center) is illuminated in the infrared by the glow of the young, outflowing protostar Ced 110 IRS 4 (orange, upper left). The light from numerous background stars, seen as orange dots behind the cloud, can be used to detect ices in the cloud, which absorb the starlight passing through them.

 

This research forms part of the Ice Age project, one of Webb's 13 Early Release Science programs. These observations are designed to showcase Webb’s observing capabilities and to allow the astronomical community to learn how to get the best from its instruments. The Ice Age team has already planned further observations, and hopes to trace out the journey of ices from their formation through to the assemblage of icy comets.

 

Image credit: NASA, ESA, CSA, and M. Zamani (ESA)

 

#NASA #STScI #jwst #jameswebbspacetelescope #NASAGoddard #NASAMarshall #galaxy

 

Read more

 

More about the James Webb Space Telescope

 

NASA Media Usage Guidelines

... or just another damn shot of the Space Needle. Happy Sliders Sunday!

Images from NASA’s James Webb Space Telescope reveal large amounts of dust within Supernova 2004et and Supernova 2017eaw. These supernovae are located in spiral galaxy NGC 6946, 22 million light-years away from Earth. The hexagonal shape of SN 2004et in Webb’s image is an artifact of the telescope’s mirror and struts — when the bright light of a point source is observed, the light interacts with the sharp edges of the telescope, creating diffraction spikes. In these images, blue, green, and red were assigned to Webb’s MIRI data at 10; 11.3, 12.8, and 15.0; and 18 and 21 microns (F1000W; F1130, F1280W, and F1500; and F1800W and F2100W, respectively).

 

Image credit: NASA, ESA, CSA, Ori Fox (STScI), Melissa Shahbandeh (STScI), Alyssa Pagan (STScI)

 

#NASA #STScI #jwst #jameswebbspacetelescope #NASAGoddard #NASAMarshall #galaxy #supernova

 

Read more

 

More about the James Webb Space Telescope

 

NASA Media Usage Guidelines

NASA’s James Webb Space Telescope has captured a lush, highly detailed landscape – the iconic Pillars of Creation – where new stars are forming within dense clouds of gas and dust. The three-dimensional pillars look like majestic rock formations, but are far more permeable. These columns are made up of cool interstellar gas and dust that appear – at times – semi-transparent in near-infrared light.

 

Webb’s new view of the Pillars of Creation, which were first made famous when imaged by NASA’s Hubble Space Telescope in 1995, will help researchers revamp their models of star formation by identifying far more precise counts of newly formed stars, along with the quantities of gas and dust in the region. Over time, they will begin to build a clearer understanding of how stars form and burst out of these dusty clouds over millions of years.

 

Image Credit: NASA, ESA, CSA, STScI; Joseph DePasquale (STScI), Anton M. Koekemoer (STScI), Alyssa Pagan (STScI)

 

#NASA #STScI #jwst #jameswebbspacetelescope #NASAGoddard #NASAMarshall #PillarsOfCreation

 

Read more

 

More about the James Webb Space Telescope

 

NASA Media Usage Guidelines

NASA’s James Webb Space Telescope has enabled another long-sought scientific breakthrough, this time for solar system scientists studying the origins of Earth’s abundant water. Using Webb’s NIRSpec (Near-Infrared Spectrograph) instrument, astronomers have confirmed gas – specifically water vapor – around a comet in the main asteroid belt for the first time, indicating that water ice from the primordial solar system can be preserved in that region. However, the successful detection of water comes with a new puzzle: unlike other comets, Comet 238P/Read had no detectable carbon dioxide.

 

This image of Comet 238P/Read was captured by the NIRCam (Near-Infrared Camera) instrument on NASA’s James Webb Space Telescope on September 8, 2022. It displays the hazy halo, called the coma, and tail that are characteristic of comets, as opposed to asteroids. The dusty coma and tail result from the vaporization of ices as the Sun warms the main body of the comet.

 

Image credit: NASA, ESA, CSA, M. Kelley (University of Maryland). Image processing: H. Hsieh (Planetary Science Institute), A. Pagan (STScI)

 

#NASA #STScI #jwst #jameswebbspacetelescope #NASAGoddard #NASAMarshall #comet #water

 

Read more

 

More about the James Webb Space Telescope

 

NASA Media Usage Guidelines

The first anniversary image from NASA’s James Webb Space Telescope displays star birth like it’s never been seen before, full of detailed, impressionistic texture. The subject is the Rho Ophiuchi cloud complex, the closest star-forming region to Earth. It is a relatively small, quiet stellar nursery, but you’d never know it from Webb’s chaotic close-up. Jets bursting from young stars crisscross the image, impacting the surrounding interstellar gas and lighting up molecular hydrogen, shown in red. Some stars display the telltale shadow of a circumstellar disk, the makings of future planetary systems.

 

Image credit: NASA, ESA, CSA, STScI, Klaus Pontoppidan (STScI)

 

#NASA #STScI #jwst #jameswebbspacetelescope #NASAGoddard #NASAMarshall #stellarnursery

 

Read more

 

More about the James Webb Space Telescope

 

NASA Media Usage Guidelines

Four composite images deliver dazzling views from NASA's Chandra X-ray Observatory and James Webb Space Telescope of two galaxies, a nebula, and a star cluster. Each image combines Chandra's X-rays — a form of high-energy light — with infrared data from previously released Webb images, both of which are invisible to the unaided eye. Data from NASA's Hubble Space Telescope (optical light) and retired Spitzer Space Telescope (infrared), plus the European Space Agency's XMM-Newton (X-ray) and the European Southern Observatory's New Technology Telescope (optical) is also used. These cosmic wonders and details are made available by mapping the data to colors that humans can perceive.

 

Messier 16, also known as the Eagle Nebula, is a famous region of the sky often referred to as the “Pillars of Creation.” The Webb image shows the dark columns of gas and dust shrouding the few remaining fledgling stars just being formed. The Chandra sources, which look like dots, are young stars that give off copious amounts of X-rays. (X-ray: red, blue; infrared: red, green, blue)

 

Image credit: X-ray: Chandra: NASA/CXC/SAO, XMM: ESA/XMM-Newton; IR: JWST: NASA/ESA/CSA/STScI, Spitzer: NASA/JPL/CalTech; Optical: Hubble: NASA/ESA/STScI, ESO; Image Processing: L. Frattare, J. Major, and K. Arcand

 

#NASAMarshall #NASA #astrophysics #astronomy #chandra #NASAChandra #NASA #STScI #jwst #jameswebbspacetelescope #NASAGoddard #nebula

 

Read more

 

Read more about the Chanddra X-ray Observatory

 

More about the James Webb Space Telescope

 

NASA Media Usage Guidelines

NASA’s James Webb Space Telescope has peered into the chaos of the Cartwheel Galaxy, revealing new details about star formation and the galaxy’s central black hole. Webb’s powerful infrared gaze produced this detailed image of the Cartwheel and two smaller companion galaxies against a backdrop of many other galaxies. This image provides a new view of how the Cartwheel Galaxy has changed over billions of years.

 

The Cartwheel Galaxy, located about 500 million light-years away in the Sculptor constellation, is a rare sight. Its appearance, much like that of the wheel of a wagon, is the result of an intense event – a high-speed collision between a large spiral galaxy and a smaller galaxy not visible in this image. Collisions of galactic proportions cause a cascade of different, smaller events between the galaxies involved; the Cartwheel is no exception.

 

The collision most notably affected the galaxy’s shape and structure. The Cartwheel Galaxy sports two rings — a bright inner ring and a surrounding, colorful ring. These two rings expand outwards from the center of the collision, like ripples in a pond after a stone is tossed into it. Because of these distinctive features, astronomers call this a “ring galaxy,” a structure less common than spiral galaxies like our Milky Way.

 

The bright core contains a tremendous amount of hot dust with the brightest areas being the home to gigantic young star clusters. On the other hand, the outer ring, which has expanded for about 440 million years, is dominated by star formation and supernovas. As this ring expands, it plows into surrounding gas and triggers star formation.

 

Other telescopes, including the Hubble Space Telescope, have previously examined the Cartwheel. But the dramatic galaxy has been shrouded in mystery – perhaps literally, given the amount of dust that obscures the view. Webb, with its ability to detect infrared light, now uncovers new insights into the nature of the Cartwheel.

 

Image credit: NASA, ESA, CSA, STScI

 

#NASA #STScI #SpaceTelescopeScienceInstitute #jwst #jameswebbspacetelescope #GoddardSpaceFlightCenter #Goddard #GSFC #marshallspaceflightcenter #msfc #marshall #galaxy

 

Read more

 

More about the James Webb Space Telescope

 

NASA Media Usage Guidelines

 

In this mosaic image stretching 340 light-years across, Webb’s Near-Infrared Camera (NIRCam) displays the Tarantula Nebula star-forming region in a new light, including tens of thousands of never-before-seen young stars that were previously shrouded in cosmic dust. The most active region appears to sparkle with massive young stars, appearing pale blue.

 

Image credit: NASA, ESA, CSA, STScI

 

#NASA #STScI #SpaceTelescopeScienceInstitute #jwst #jameswebbspacetelescope #GoddardSpaceFlightCenter #Goddard #GSFC #marshallspaceflightcenter #msfc #marshall #nebula

 

Read more

 

More about the James Webb Space Telescope

 

NASA Media Usage Guidelines

Saturn is showing off 💎

 

On June 25, 2023, NASA’s James Webb Space Telescope turned to the famed ringed world Saturn for its first near-infrared observations of the planet.

 

Saturn itself appears extremely dark at this infrared wavelength observed by the telescope, as methane gas absorbs almost all of the sunlight falling on the atmosphere. However, the icy rings stay relatively bright, leading to the unusual appearance of Saturn in the Webb image.

 

#NASA #NASAMarshall #Webb #JamesWebbSpaceTelescope #Telescope #Space #Saturn #Planet

This image is dominated by NGC 7469, a luminous, face-on spiral galaxy approximately 90 000 light-years in diameter that lies roughly 220 million light-years from Earth in the constellation Pegasus. Its companion galaxy IC 5283 is partly visible in the lower left portion of this image.

 

This spiral galaxy has recently been studied as part of the Great Observatories All-sky LIRGs Survey (GOALS) Early Release Science program with the NASA/ESA/CSA James Webb Space Telescope, which aims to study the physics of star formation, black hole growth, and feedback in four nearby, merging luminous infrared galaxies. Other galaxies studied as part of the survey include previous ESA/Webb Pictures of the Month II ZW 096 and IC 1623.

 

NGC 7469 is home to an active galactic nucleus (AGN), which is an extremely bright central region that is dominated by the light emitted by dust and gas as it falls into the galaxy’s central black hole. This galaxy provides astronomers with the unique opportunity to study the relationship between AGNs and starburst activity because this particular object hosts an AGN that is surrounded by a starburst ring at a distance of a mere 1500 light-years. While NGC 7469 is one of the best studied AGNs in the sky, the compact nature of this system and the presence of a great deal of dust have made it difficult for scientists to achieve both the resolution and sensitivity needed to study this relationship in the infrared. Now, with Webb, astronomers can explore the galaxy’s starburst ring, the central AGN, and the gas and dust in between.

 

Image Credit: ESA/Webb, NASA & CSA, L. Armus, A. S. Evans

 

#NASA #STScI #jwst #jameswebbspacetelescope #NASAGoddard #NASAMarshall #ESA #CSA #galaxy

 

Read more

 

More about the James Webb Space Telescope

 

NASA Media Usage Guidelines

In the summer of 2022, NASA's James Webb Space Telescope released images from some of its earliest observations with the newly commissioned telescope. Almost instantaneously, these stunning images landed everywhere from the front pages of news outlets to larger-than-life displays in Times Square.

 

Webb, however, will not pursue its exploration of the universe on its own. It is designed to work in concert with NASA's many other telescopes as well as facilities both in space and on the ground. These new versions of Webb’s first images combine its infrared data with X-rays collected by NASA’s Chandra X-ray Observatory, underscoring how the power of any of these telescopes is only enhanced when joined with others.

 

The four galaxies within Stephan’s Quintet are undergoing an intricate dance choreographed by gravity. (The fifth galaxy, on the left, is an interloping galaxy at a different distance.) The Webb image (red, orange, yellow, green, blue) of this object features never-seen-before details of the results of these interactions, including sweeping tails of gas and bursts of star formation. The Chandra data (light blue) of this system has uncovered a shock wave that heats gas to tens of millions of degrees, as one of the galaxies passes through the others at speeds of around 2 million miles per hour. This new composite also includes infrared data from NASA’s now-retired Spitzer Space Telescope (red, green, blue).

 

Image credit: X-ray: NASA/CXC/SAO; IR (Spitzer): NASA/JPL-Caltech; IR (Webb): NASA/ESA/CSA/STScI

 

#NASAMarshall #Chandra #NASA #ChandraXrayObservatory #jwst #jameswebbspacetelescope #SpitzerSpaceTelescope #galaxy

 

Read more

 

Read more about the Chandra X-ray Observatory

 

More about the James Webb Space Telescope

 

NASA Media Usage Guidelines

On Sept. 21, 2022, the James Webb Space Telescope delivered the clearest view of Neptune's rings in more than 30 years. Webb's Near-Infrared Camera (NIRCam) captured several bright, narrow rings as well as the planet's fainter dust bands. Voyager 2 was the last to detect some of these rings during its flyby in 1989, but this is the first time we have an infrared image of them.

 

Since NIRCam images objects in the near-infrared range from 0.6 to 5 microns, Neptune does not appear blue to Webb. In fact, the methane gas so strongly absorbs red and infrared light that the planet is quite dark at these near-infrared wavelengths, except where high-altitude clouds are present. Those methane-ice clouds are prominent as bright streaks and spots, which reflect sunlight before it is absorbed by methane gas.

 

Image Credit: NASA, ESA, CSA, STScI

 

#NASA #STScI #jwst #jameswebbspacetelescope #NASAGoddard #NASAMarshall #planet #Neptune

 

Read more

 

More about the James Webb Space Telescope

 

NASA Media Usage Guidelines

Four composite images deliver dazzling views from NASA's Chandra X-ray Observatory and James Webb Space Telescope of two galaxies, a nebula, and a star cluster. Each image combines Chandra's X-rays — a form of high-energy light — with infrared data from previously released Webb images, both of which are invisible to the unaided eye. Data from NASA's Hubble Space Telescope (optical light) and retired Spitzer Space Telescope (infrared), plus the European Space Agency's XMM-Newton (X-ray) and the European Southern Observatory's New Technology Telescope (optical) is also used. These cosmic wonders and details are made available by mapping the data to colors that humans can perceive.

 

Messier 74 is also a spiral galaxy — like our Milky Way — that we see face-on from our vantage point on Earth. It is about 32 million light-years away. Messier 74 is nicknamed the Phantom Galaxy because it is relatively dim, making it harder to spot with small telescopes than other galaxies in Charles Messier’s famous catalog from the 18th century. Webb outlines gas and dust in the infrared while Chandra data spotlights high-energy activity from stars at X-ray wavelengths. Hubble optical data showcases additional stars and dust along the dust lanes. (X-ray: purple; optical: orange, cyan, blue, infrared: green, yellow, red, magenta)

 

Image credit: X-ray: Chandra: NASA/CXC/SAO, XMM: ESA/XMM-Newton; IR: JWST: NASA/ESA/CSA/STScI, Spitzer: NASA/JPL/CalTech; Optical: Hubble: NASA/ESA/STScI, ESO; Image Processing: L. Frattare, J. Major, and K. Arcand

 

#NASAMarshall #NASA #astrophysics #astronomy #chandra #NASAChandra #NASA #STScI #jwst #jameswebbspacetelescope #NASAGoddard #galaxy

 

Read more

 

Read more about the Chanddra X-ray Observatory

 

More about the James Webb Space Telescope

 

NASA Media Usage Guidelines

Parallel Universes

Planet Impero

Interplanetary Travel

 

Camera: Canon EOS Kiss X7i

Photograph by Yusuf Alioglu

Location: Outer space (space)

 

Facebook

Become a Patron!

Twitter

Youtube

Instagram

iStock

Blogger

Vimeo

UnbornArt

deviantART

Tumblr

Check out this portfolio on Shutterstock!

Four composite images deliver dazzling views from NASA's Chandra X-ray Observatory and James Webb Space Telescope of two galaxies, a nebula, and a star cluster. Each image combines Chandra's X-rays — a form of high-energy light — with infrared data from previously released Webb images, both of which are invisible to the unaided eye. Data from NASA's Hubble Space Telescope (optical light) and retired Spitzer Space Telescope (infrared), plus the European Space Agency's XMM-Newton (X-ray) and the European Southern Observatory's New Technology Telescope (optical) is also used. These cosmic wonders and details are made available by mapping the data to colors that humans can perceive.

 

NGC 346 is a star cluster in a nearby galaxy, the Small Magellanic Cloud, about 200,000 light-years from Earth. Webb shows plumes and arcs of gas and dust that stars and planets use as source material during their formation. The purple cloud on the left seen with Chandra is the remains of a supernova explosion from a massive star. The Chandra data also reveals young, hot, and massive stars that send powerful winds outward from their surfaces. Additional data from Hubble and Spitzer is included, along with supporting data from XMM-Newton and ESO’s New Technology Telescope. (X-ray: purple and blue; infrared/optical: red, green, blue)

 

Image credit: X-ray: Chandra: NASA/CXC/SAO, XMM: ESA/XMM-Newton; IR: JWST: NASA/ESA/CSA/STScI, Spitzer: NASA/JPL/CalTech; Optical: Hubble: NASA/ESA/STScI, ESO; Image Processing: L. Frattare, J. Major, and K. Arcand

 

#NASAMarshall #NASA #astrophysics #astronomy #chandra #NASAChandra #NASA #STScI #jwst #jameswebbspacetelescope #NASAGoddard #starcluster

 

Read more

 

Read more about the Chanddra X-ray Observatory

 

More about the James Webb Space Telescope

 

NASA Media Usage Guidelines

Astronomers used NASA’s James Webb Space Telescope to image the warm dust around a nearby young star, Fomalhaut, in order to study the first asteroid belt ever seen outside of our solar system in infrared light. But to their surprise, the dusty structures are much more complex than the asteroid and Kuiper dust belts of our solar system. Overall, there are three nested belts extending out to 14 billion miles (23 billion kilometers) from the star; that’s 150 times the distance of Earth from the Sun. The scale of the outermost belt is roughly twice the scale of our solar system’s Kuiper Belt of small bodies and cold dust beyond Neptune. The inner belts – which had never been seen before – were revealed by Webb for the first time.

 

The belts encircle the young hot star, which can be seen with the naked eye as the brightest star in the southern constellation Piscis Austrinus. The dusty belts are the debris from collisions of larger bodies, analogous to asteroids and comets, and are frequently described as ‘debris disks.’

 

Image credit: NASA, ESA, CSA, A. Gáspár (University of Arizona). Image processing: A. Pagan (STScI)

 

#NASA #STScI #jwst #jameswebbspacetelescope #NASAGoddard #NASAMarshall #star

 

Read more

 

More about the James Webb Space Telescope

 

NASA Media Usage Guidelines

Four composite images deliver dazzling views from NASA's Chandra X-ray Observatory and James Webb Space Telescope of two galaxies, a nebula, and a star cluster. Each image combines Chandra's X-rays — a form of high-energy light — with infrared data from previously released Webb images, both of which are invisible to the unaided eye. Data from NASA's Hubble Space Telescope (optical light) and retired Spitzer Space Telescope (infrared), plus the European Space Agency's XMM-Newton (X-ray) and the European Southern Observatory's New Technology Telescope (optical) is also used. These cosmic wonders and details are made available by mapping the data to colors that humans can perceive.

 

NGC 1672 is a spiral galaxy, but one that astronomers categorize as a “barred” spiral. In regions close to their centers, the arms of barred spiral galaxies are mostly in a straight band of stars across the center that encloses the core, as opposed to other spirals that have arms that twist all the way to their core. The Chandra data reveals compact objects like neutron stars or black holes pulling material from companion stars as well as the remnants of exploded stars. Additional data from Hubble (optical light) helps fill out the spiral arms with dust and gas, while Webb data shows dust and gas in the galaxy’s spiral arms. (X-ray: purple; optical: red, green, blue; infrared: red, green, blue)

 

Image credit: X-ray: Chandra: NASA/CXC/SAO, XMM: ESA/XMM-Newton; IR: JWST: NASA/ESA/CSA/STScI, Spitzer: NASA/JPL/CalTech; Optical: Hubble: NASA/ESA/STScI, ESO; Image Processing: L. Frattare, J. Major, and K. Arcand

 

#NASAMarshall #NASA #astrophysics #astronomy #chandra #NASAChandra #NASA #STScI #jwst #jameswebbspacetelescope #NASAGoddard #starcluster

 

Read more

 

Read more about the Chanddra X-ray Observatory

 

More about the James Webb Space Telescope

 

NASA Media Usage Guidelines

Detail of the full-scale model of the James Webb space telescope on display at the Royal Hospital in Kilmainham. It will be replacing the Hubble space telescope.

 

You can read more about this telescope in Wired magazine.

 

(Are they testing if the telescope survives the Irish weather?)

NASA’s James Webb Space Telescope has revealed the once-hidden features of the protostar within the dark cloud L1527, providing insight into the beginnings of a new star. These blazing clouds within the Taurus star-forming region are only visible in infrared light, making it an ideal target for Webb’s Near-Infrared Camera (NIRCam).

 

The protostar itself is hidden from view within the “neck” of this hourglass shape. An edge-on protoplanetary disk is seen as a dark line across the middle of the neck. Light from the protostar leaks above and below this disk, illuminating cavities within the surrounding gas and dust.

 

Image Credit: NASA, ESA, CSA, and STScI. Image processing: J. DePasquale, A. Pagan, and A. Koekemoer (STScI)

 

#NASA #STScI #jwst #jameswebbspacetelescope #NASAGoddard #NASAMarshall #PillarsOfCreation

 

Read more

 

More about the James Webb Space Telescope

 

NASA Media Usage Guidelines

The spiral arms of NGC 7496 are filled with cavernous bubbles and shells overlapping one another in this image from NASA’s James Webb Space Telescope. These filaments and hollow cavities are evidence of young stars releasing energy and, in some cases, blowing out the gas and dust of the interstellar medium surrounding them. In this image of NGC 7496, blue, green, and red were assigned to Webb’s MIRI data at 7.7, 10 and 11.3, and 21 microns (F770W, F1000W and F1130W, and F2100W, respectively).

 

Image credit: NASA, ESA, CSA, and J. Lee (NOIRLab). Image processing: A. Pagan (STScI)

 

#NASA #STScI #jwst #jameswebbspacetelescope #NASAGoddard #NASAMarshall #galaxy

 

Read more

 

More about the James Webb Space Telescope

 

NASA Media Usage Guidelines

New imagery from NASA’s James Webb Space Telescope is giving scientists their first look at high resolution into the fine structure of nearby galaxies and how that’s impacted by the formation of young stars. NGC 1433 is a barred spiral galaxy with a particularly bright core surrounded by double star forming rings. For the first time, in Webb’s infrared images, scientists can see cavernous bubbles of gas where forming stars have released energy into their surrounding environment.

 

Image credit: NASA, ESA, CSA, and J. Lee (NOIRLab). Image processing: A. Pagan (STScI)

 

#NASA #STScI #jwst #jameswebbspacetelescope #NASAGoddard #NASAMarshall #galaxy

 

Read more

 

More about the James Webb Space Telescope

 

NASA Media Usage Guidelines

NGC 346, shown here in this image from NASA’s James Webb Space Telescope Near-Infrared Camera (NIRCam), is a dynamic star cluster that lies within a nebula 200,000 light years away. Webb reveals the presence of many more building blocks than previously expected, not only for stars, but also planets, in the form of clouds packed with dust and hydrogen. The plumes and arcs of gas in this image contain two types of hydrogen. The pink gas represents energized hydrogen, which is typically as hot as around 10,000 °C (approximately 18,000 °F) or more, while the more orange gas represents dense, molecular hydrogen, which is much colder at around -200 °C or less (approximately -300 °F), and associated dust. The colder gas provides an excellent environment for stars to form, and, as they do, they change the environment around them. The effect of this is seen in the various ridges throughout, which are created as the light of these young stars breaks down the dense clouds. The many pillars of glowing gas show the effects of this stellar erosion throughout the region. In this image blue was assigned to the wavelength of 2.0 microns (F200W), green was assigned to 2.77 microns (F277W), orange was assigned to 3.35 microns (F335M), and red was assigned to 4.44 microns (F444W).

 

Image Credit: NASA, ESA, CSA, O. Jones (UK ATC), G. De Marchi (ESTEC), and M. Meixner (USRA). Image processing: A. Pagan (STScI), N. Habel (USRA), L. Lenkic (USRA) and L. Chu (NASA/Ames)

 

#NASA #STScI #jwst #jameswebbspacetelescope #NASAGoddard #NASAMarshall #galaxy

 

Read more

 

More about the James Webb Space Telescope

 

NASA Media Usage Guidelines

Shining like a brilliant beacon amidst a sea of galaxies, Arp 220 lights up the night sky in this view from NASA’s James Webb Space Telescope. Actually two spiral galaxies in the process of merging, Arp 220 glows brightest in infrared light, making it an ideal target for Webb. It is an ultra-luminous infrared galaxy (ULIRG) with a luminosity of more than a trillion suns. In comparison, our Milky Way galaxy has a much more modest luminosity of about ten billion suns.

 

Located 250 million light-years away in the constellation of Serpens, the Serpent, Arp 220 is the 220th object in Halton Arp’s Atlas of Peculiar Galaxies. It is the nearest ULIRG and the brightest of the three galactic mergers closest to Earth.

 

The collision of the two spiral galaxies began about 700 million years ago. It sparked an enormous burst of star formation. About 200 huge star clusters reside in a packed, dusty region about 5,000 light-years across (about 5 percent of the Milky Way's diameter). The amount of gas in this tiny region is equal to all of the gas in the entire Milky Way galaxy.

 

Image credit: NASA, ESA, CSA, STScI, Alyssa Pagan (STScI)

 

#NASA #STScI #jwst #jameswebbspacetelescope #NASAGoddard #NASAMarshall #galaxy

 

Read more

 

More about the James Webb Space Telescope

 

NASA Media Usage Guidelines

Auroras and hazes glow in this composite image of Jupiter taken by the James Webb Space Telescope's Near-Infrared Camera (NIRCam). NIRCam has three specialized infrared filters that showcase details of the planet.

 

Since infrared light is invisible to the human eye, the light has been mapped onto the visible spectrum: the auroras are mapped to redder colors, hazes to yellows and greens, and light reflected from a deeper main cloud to blues.

 

Image credit: NASA, ESA, CSA, Jupiter ERS Team; image processing by Judy Schmidt.

 

#NASA #STScI #jwst #jameswebbspacetelescope #NASAGoddard #NASAMarshall #planet #Jupiter

 

Read more

 

More about the James Webb Space Telescope

 

NASA Media Usage Guidelines

Following in the footsteps of the Neptune image released in 2022, NASA’s James Webb Space Telescope has taken a stunning image of the solar system’s other ice giant, the planet Uranus. The new image features dramatic rings as well as bright features in the planet’s atmosphere. The Webb data demonstrates the observatory’s unprecedented sensitivity for the faintest dusty rings, which have only ever been imaged by two other facilities: the Voyager 2 spacecraft as it flew past the planet in 1986, and the Keck Observatory with advanced adaptive optics.

 

The seventh planet from the Sun, Uranus is unique: It rotates on its side, at roughly a 90-degree angle from the plane of its orbit. This causes extreme seasons since the planet’s poles experience many years of constant sunlight followed by an equal number of years of complete darkness. (Uranus takes 84 years to orbit the Sun.) Currently, it is late spring for the northern pole, which is visible here; Uranus’ northern summer will be in 2028. In contrast, when Voyager 2 visited Uranus it was summer at the south pole. The south pole is now on the ‘dark side’ of the planet, out of view and facing the darkness of space.

 

This infrared image from Webb’s Near-Infrared Camera (NIRCam) combines data from two filters at 1.4 and 3.0 microns, which are shown here in blue and orange, respectively. The planet displays a blue hue in the resulting representative-color image.

 

When Voyager 2 looked at Uranus, its camera showed an almost featureless blue-green ball in visible wavelengths. With the infrared wavelengths and extra sensitivity of Webb we see more detail, showing how dynamic the atmosphere of Uranus really is.

 

On the right side of the planet there’s an area of brightening at the pole facing the Sun, known as a polar cap. This polar cap is unique to Uranus – it seems to appear when the pole enters direct sunlight in the summer and vanish in the fall; these Webb data will help scientists understand the currently mysterious mechanism. Webb revealed a surprising aspect of the polar cap: a subtle enhanced brightening at the center of the cap. The sensitivity and longer wavelengths of Webb’s NIRCam may be why we can see this enhanced Uranus polar feature when it has not been seen as clearly with other powerful telescopes like the Hubble Space Telescope and Keck Observatory.

 

Image credit: NASA, ESA, CSA, STScI. Image processing: J. DePasquale (STScI)

 

#NASA #STScI #jwst #jameswebbspacetelescope #NASAGoddard #NASAMarshall #Uranus #planet

 

Read more

 

More about the James Webb Space Telescope

 

NASA Media Usage Guidelines

 

Astronomers have revealed the latest deep field image from NASA’s James Webb Space Telescope, featuring never-before-seen details in a region of space known as Pandora’s Cluster (Abell 2744). Webb’s view displays three clusters of galaxies – already massive – coming together to form a megacluster. The combined mass of the galaxy clusters creates a powerful gravitational lens, a natural magnification effect of gravity, allowing much more distant galaxies in the early universe to be observed by using the cluster like a magnifying glass.

 

Image credit: NASA, ESA, CSA, I. Labbe (Swinburne University of Technology) and R. Bezanson (University of Pittsburgh). Image processing: Alyssa Pagan (STScI)

 

#NASA #STScI #jwst #jameswebbspacetelescope #NASAGoddard #NASAMarshall #galaxy #galaxycluster

 

Read more

 

More about the James Webb Space Telescope

 

NASA Media Usage Guidelines

A delicate tracery of dust and bright star clusters threads across this image from the James Webb Space Telescope. The bright tendrils of gas and stars belong to the barred spiral galaxy NGC 5068, whose bright central bar is visible in the upper left of this image – a composite from two of Webb’s instruments. NASA Administrator Bill Nelson revealed the image Friday during an event with students at the Copernicus Science Centre in Warsaw, Poland.

 

NGC 5068 lies around 20 million light-years from Earth in the constellation Virgo. This image of the central, bright star-forming regions of the galaxy is part of a campaign to create an astronomical treasure trove, a repository of observations of star formation in nearby galaxies. Previous gems from this collection can be seen here (IC 5332) and here (M74). These observations are particularly valuable to astronomers for two reasons. The first is because star formation underpins so many fields in astronomy, from the physics of the tenuous plasma that lies between stars to the evolution of entire galaxies. By observing the formation of stars in nearby galaxies, astronomers hope to kick-start major scientific advances with some of the first available data from Webb.

 

The second reason is that Webb’s observations build on other studies using telescopes including the Hubble Space Telescope and ground-based observatories. Webb collected images of 19 nearby star-forming galaxies which astronomers could then combine with Hubble images of 10,000 star clusters, spectroscopic mapping of 20,000 star-forming emission nebulae from the Very Large Telescope (VLT), and observations of 12,000 dark, dense molecular clouds identified by the Atacama Large Millimeter/submillimeter Array (ALMA). These observations span the electromagnetic spectrum and give astronomers an unprecedented opportunity to piece together the minutiae of star formation.

 

With its ability to peer through the gas and dust enshrouding newborn stars, Webb is particularly well-suited to explore the processes governing star formation. Stars and planetary systems are born amongst swirling clouds of gas and dust that are opaque to visible-light observatories like Hubble or the VLT. The keen vision at infrared wavelengths of two of Webb’s instruments — MIRI (Mid-Infrared Instrument) and NIRCam (Near-Infrared Camera) — allowed astronomers to see right through the gargantuan clouds of dust in NGC 5068 and capture the processes of star formation as they happened. This image combines the capabilities of these two instruments, providing a truly unique look at the composition of NGC 5068.

 

This image of the barred spiral galaxy NGC 5068 is a composite from two of the James Webb Space Telescope’s instruments, MIRI and NIRCam.

 

Image credit: ESA/Webb, NASA & CSA, J. Lee and the PHANGS-JWST Team

 

#NASA #STScI #jwst #jameswebbspacetelescope #NASAGoddard #NASAMarshall #galaxy

 

Read more

 

More about the James Webb Space Telescope

 

NASA Media Usage Guidelines

Galaxies are not scattered randomly across the universe. They gather together not only into clusters, but into vast interconnected filamentary structures with gigantic barren voids in between. This “cosmic web” started out tenuous and became more distinct over time as gravity drew matter together.

 

Astronomers using NASA's James Webb Space Telescope have discovered a thread-like arrangement of 10 galaxies that existed just 830 million years after the big bang. The 3 million light-year-long structure is anchored by a luminous quasar – a galaxy with an active, supermassive black hole at its core. The team believes the filament will eventually evolve into a massive cluster of galaxies, much like the well-known Coma Cluster in the nearby universe.

 

This deep galaxy field from Webb’s NIRCam (Near-Infrared Camera) shows an arrangement of 10 distant galaxies marked by eight white circles in a diagonal, thread-like line. (Two of the circles contain more than one galaxy.) This 3 million light-year-long filament is anchored by a very distant and luminous quasar – a galaxy with an active, supermassive black hole at its core. The quasar, called J0305-3150, appears in the middle of the cluster of three circles on the right side of the image. Its brightness outshines its host galaxy. The 10 marked galaxies existed just 830 million years after the big bang. The team believes the filament will eventually evolve into a massive cluster of galaxies.

 

Image credit: NASA, ESA, CSA, Feige Wang (University of Arizona), and Joseph DePasquale (STScI)

 

#NASA #STScI #jwst #jameswebbspacetelescope #NASAGoddard #NASAMarshall #galaxy #quasar #supermassiveblackhole

 

Read more

 

More about the James Webb Space Telescope

 

NASA Media Usage Guidelines

In this image by Webb’s Near-Infrared Camera (NIRCam), a smattering of hundreds of background galaxies, varying in size and shape, appear alongside the Neptune system.

 

Neptune, when compared to Earth, is a big planet. If Earth were the size of a nickel, Neptune would be as big as a basketball. In most portraits, the outer planets of our Solar System reflect this otherworldly size. However, Neptune appears relatively small in a wide field of the vast Universe.

 

Towards the bottom left of this image, a barred spiral galaxy comes into focus. Scientists say this particular galaxy, previously unexplored in detail, is about 1200 million light years away. These types of galaxies at this relative difference are typically dominated by young stars that appear blueish in these wavelengths.

 

Credit:

NASA/ESA/CSA and STScI

The explosion of a star is a dramatic event, but the remains the star leaves behind can be even more dramatic. A new mid-infrared image from NASA’s James Webb Space Telescope provides one stunning example. It shows the supernova remnant Cassiopeia A (Cas A), created by a stellar explosion 340 years ago. Cas A is the youngest known remnant from an exploding, massive star in our galaxy, which makes it a unique opportunity to learn more about how such supernovae occur.

 

Cassiopeia A is a prototypical supernova remnant that has been widely studied by a number of ground-based and space-based observatories, including NASA's Chandra X-ray Observatory. The multi-wavelength observations can be combined to provide scientists with a more comprehensive understanding of the remnant.

 

The striking colors of the new Cas A image, in which infrared light is translated into visible-light wavelengths, hold a wealth of scientific information the team is just beginning to tease out. On the bubble’s exterior, particularly at the top and left, lie curtains of material appearing orange and red due to emission from warm dust. This marks where ejected material from the exploded star is ramming into surrounding circumstellar gas and dust.

 

Interior to this outer shell lie mottled filaments of bright pink studded with clumps and knots. This represents material from the star itself, which is shining due to a mix of various heavy elements, such as oxygen, argon, and neon, as well as dust emission.

 

Image credit: NASA, ESA, CSA, STScI. Image processing: J. DePasquale (STScI)

 

#NASA #STScI #jwst #jameswebbspacetelescope #NASAGoddard #NASAMarshall #supernova

 

Read more

 

More about the James Webb Space Telescope

 

NASA Media Usage Guidelines

A merging galaxy pair cavort in this image captured by the James Webb Space Telescope, an international mission led by NASA with its partners ESA (European Space Agency) and CSA (Canadian Space Agency). This new Webb image of a pair of galaxies, known to astronomers as II ZW 96, was first previewed for Vice President Kamala Harris and French President Emmanuel Macron during a visit to NASA Headquarters in Washington Wednesday, Nov. 30. Vice President Harris and President Macron also previewed a new composite image of the Pillars of Creation from Webb.

 

II ZW 96 is roughly 500 million light-years from Earth and lies in the constellation Delphinus, close to the celestial equator. As well as the wild swirl of the merging galaxies, a menagerie of background galaxies are dotted throughout the image.

 

The two galaxies are in the process of merging and as a result have a chaotic, disturbed shape. The bright cores of the two galaxies are connected by bright tendrils of star-forming regions, and the spiral arms of the lower galaxy have been twisted out of shape by the gravitational perturbation of the galaxy merger. It is these star-forming regions that made II ZW 96 such a tempting target for Webb; the galaxy pair is particularly bright at infrared wavelengths thanks to the presence of the star formation.

 

Image Credit: ESA/Webb, NASA & CSA, L. Armus, A. Evans

 

#NASA #STScI #jwst #jameswebbspacetelescope #NASAGoddard #NASAMarshall #galaxy #esa #csa

Approaching To Stephan's Quintet

Planet Impero

Interplanetary Travel

 

Camera: Canon EOS Kiss X7i

Photograph by Yusuf Alioglu

Location: Outer space (space)

 

Facebook

Become a Patron!

Twitter

Youtube

Instagram

iStock

Blogger

Vimeo

UnbornArt

deviantART

Tumblr

Check out this portfolio on Shutterstock!

In the summer of 2022, NASA's James Webb Space Telescope released images from some of its earliest observations with the newly commissioned telescope. Almost instantaneously, these stunning images landed everywhere from the front pages of news outlets to larger-than-life displays in Times Square.

 

Webb, however, will not pursue its exploration of the universe on its own. It is designed to work in concert with NASA's many other telescopes as well as facilities both in space and on the ground. These new versions of Webb’s first images combine its infrared data with X-rays collected by NASA’s Chandra X-ray Observatory, underscoring how the power of any of these telescopes is only enhanced when joined with others.

 

The Cartwheel galaxy gets its shape from a collision with another smaller galaxy — located outside the field of this image — about 100 million years ago. When this smaller galaxy punched through the Cartwheel, it triggered star formation that appears around an outer ring and elsewhere throughout the galaxy. X-rays seen by Chandra (blue and purple) come from superheated gas, individual exploded stars, and neutron stars and black holes pulling material from companion stars. Webb’s infrared view (red, orange, yellow, green, blue) shows the Cartwheel galaxy plus two smaller companion galaxies — not part of the collision — against a backdrop of many more distant galactic cousins.

 

Image credit: X-ray: NASA/CXC/SAO; IR (Spitzer): NASA/JPL-Caltech; IR (Webb): NASA/ESA/CSA/STScI

 

#NASAMarshall #Chandra #NASA #ChandraXrayObservatory #jwst #jameswebbspacetelescope #SpitzerSpaceTelescope #galaxy

 

Read more

 

Read more about the Chandra X-ray Observatory

 

More about the James Webb Space Telescope

 

NASA Media Usage Guidelines

The center of our Milky Way galaxy is hidden from the prying eyes of optical telescopes by clouds of obscuring dust and gas. But in this stunning vista, the Spitzer Space Telescope's infrared cameras penetrate much of the dust, revealing the stars of the crowded galactic center region. The upcoming James Webb Space Telescope will offer a much-improved infrared view, teasing out fainter stars and sharper details.

 

The center of our galaxy is a crowded place: A black hole weighing 4 million times as much as our Sun is surrounded by millions of stars whipping around it at breakneck speeds. This extreme environment is bathed in intense ultraviolet light and X-ray radiation. Yet much of this activity is hidden from our view, obscured by vast swaths of interstellar dust.

 

NASA’s James Webb Space Telescope is designed to view the universe in infrared light, which is invisible to the human eye, but is very important for looking at astronomical objects hidden by dust. After its launch, Webb will gather infrared light that has penetrated the dusty veil, revealing the galactic center in unprecedented detail.

 

Image credit: NASA/JPL-Caltech

 

Read more

 

More about the Spitzer Space Telescope

 

NASA Media Usage Guidelines

 

A delicate tracery of dust and bright star clusters threads across this image from the NASA/ESA/CSA James Webb Space Telescope. The bright tendrils of gas and stars belong to the barred spiral galaxy NGC 5068, whose bright central bar is visible in the upper left of this image. NGC 5068 lies around 17 million light-years from Earth in the constellation Virgo.

 

This portrait of NGC 5068 is part of a campaign to create an astronomical treasure trove, a repository of observations of star formation in nearby galaxies. Previous gems from this collection can be seen here and here. These observations are particularly valuable to astronomers for two reasons. The first is because star formation underpins so many fields in astronomy, from the physics of the tenuous plasma that lies between stars to the evolution of entire galaxies. By observing the formation of stars in nearby galaxies, astronomers hope to kick-start major scientific advances with some of the first available data from Webb.

 

The second reason is that Webb’s observations build on other studies using telescopes including the NASA/ESA Hubble Space Telescope and some of the world’s most capable ground-based observatories. Webb collected images of 19 nearby star-forming galaxies which astronomers could then combine with catalogues from Hubble of 10 000 star clusters, spectroscopic mapping of 20 000 star-forming emission nebulae from the Very Large Telescope (VLT), and observations of 12 000 dark, dense molecular clouds identified by the Atacama Large Millimeter/submillimeter Array (ALMA). These observations span the electromagnetic spectrum and give astronomers an unprecedented opportunity to piece together the minutiae of star formation.

 

With its ability to peer through the gas and dust enshrouding newborn stars, Webb is the perfect telescope to explore the processes governing star formation. Stars and planetary systems are born amongst swirling clouds of gas and dust that are opaque to observations in visible light, like many from Hubble or the VLT. The keen vision at infrared wavelengths of two of Webb’s instruments — MIRI and NIRCam — allowed astronomers to see right through the gargantuan clouds of dust in NGC 5068 and capture the processes of star formation as they happened. This image combines the capabilities of these two instruments, providing a truly unique look at the composition of NGC 5068.

 

NGC 5068 MIRI image

NGC 5068 NIRCam image

 

[Image description: A close-in image of a spiral galaxy, showing its core and part of a spiral arm. Thousands upon thousands of tiny stars that make it up can be seen, most dense in a whitish bar that forms its core. Clumps and filaments of dust form an almost skeletal structure that follows the twist of the galaxy and its spiral arm. Large, glowing bubbles of red gas are hidden in the dust.]

 

Credit:

ESA/Webb, NASA & CSA, J. Lee and the PHANGS-JWST Team

Scientists taking a “deep dive” into one of Webb’s iconic first images have discovered dozens of energetic jets and outflows from young stars previously hidden by dust clouds. The discovery marks the beginning of a new era of investigating how stars like our Sun form, and how the radiation from nearby massive stars might affect the development of planets.

 

The Cosmic Cliffs, a region at the edge of a gigantic, gaseous cavity within the star cluster NGC 3324, has long intrigued astronomers as a hotbed for star formation. While well-studied by the Hubble Space Telescope, many details of star formation in NGC 3324 remain hidden at visible-light wavelengths. Webb is perfectly primed to tease out these long-sought-after details since it is built to detect jets and outflows seen only in the infrared at high resolution. Webb’s capabilities also allow researchers to track the movement of other features previously captured by Hubble.

 

Image Credit: NASA, ESA, CSA, and STScI. Image processing: J. DePasquale (STScI)

 

#NASA #STScI #jwst #jameswebbspacetelescope #NASAGoddard #NASAMarshall #CosmicCliffs #starcluster

 

Read more

 

More about the James Webb Space Telescope

 

NASA Media Usage Guidelines

A group of galaxies is plunging into the Coma galaxy cluster and leaving behind an enormous tail of superheated gas. Astronomers have confirmed this is the longest known tail behind a galaxy group and used it to gain a deeper understanding of how galaxy clusters – some of the largest structures in the universe – grow to their enormous sizes.

 

Astronomers trained NASA’s Chandra X-ray Observatory on the galaxy group NGC 4839. Galaxy groups are collections of about 50 galaxies or less that are bound together by gravity. Galaxy clusters are even larger and can contain hundreds or thousands of individual galaxies.

 

Both galaxy clusters and galaxy groups are enveloped by huge amounts of hot gas that are best studied using X-rays. These superheated pools of gas, though extremely thin and diffuse, represent a significant portion of the mass in galaxy groups or clusters and are crucial for understanding these systems.

 

NGC 4839 is located near the edge of the Coma galaxy cluster, one of the largest known clusters in the universe about 340 million light-years away. As NGC 4839 moves toward the center of the Coma cluster, the hot gas in the galaxy group is stripped away by its collision with gas in the cluster. This results in a tail forming behind the galaxy group.

 

The image on the left shows an X-ray view of the Coma galaxy cluster taken with ESA’s (European Space Agency’s) XMM-Newton (blue), along with optical data from the Sloan Digital Sky Survey (yellow). The galaxy group NGC 4839 is located in the lower right of that image. The inset on the right is the Chandra image (purple) of the region outlined by the square. The head of NGC 4839’s tail is on the left side of the Chandra image and contains the brightest galaxy in the group and the densest gas. The tail trails to the right. (The Chandra image has been rotated so that north is about 30 degrees to the left of vertical.)

 

X-rays from the hot gas in the outer regions of the Coma cluster — that NGC 4839 is traveling through — are too faint to be seen in the XMM image shown here, but are highlighted in a supplementary, XMM-only image. This mosaic of images shows gaps between individual images where data was not obtained, and dark holes where point sources of X-rays were removed.

 

This tail is, in fact, 1.5 million light-years long, or hundreds of thousands of times the distance between the Sun and the nearest star, making it the longest tail ever seen trailing behind a group of galaxies.

 

Image credit: X-ray: Chandra: NASA/SAO/Univ. of Alabama/M. S. Mirakhor et al.; XMM: ESA/XMM-Newton; Optical: SDSS; Image processing: N. Wolk

 

#NASAMarshall #NASA #astrophysics #astronomy #chandra #NASAChandra #NASA #STScI #jwst #jameswebbspacetelescope #NASAGoddard #galaxy

 

Read more

 

Read more about the Chandra X-ray Observatory

 

More about the James Webb Space Telescope

 

NASA Media Usage Guidelines

 

Alignment of the James Webb Space Telescope is now complete. After full review, the observatory has been confirmed to be capable of capturing crisp, well-focused images with each of its four powerful onboard science instruments.

 

Upon completing the seventh and final stage of telescope alignment, the team held a set of key decision meetings and unanimously agreed that Webb is ready to move forward into its next and final series of preparations, known as science instrument commissioning. This process of setting up and testing the instruments will take about two months before scientific operations begin in the summer.

 

The alignment of the telescope across all of Webb’s instruments can be seen in a series of images that captures the observatory’s full field of view.

 

Engineering images of sharply focused stars in the field of view of each instrument demonstrate that the telescope is fully aligned and in focus. For this test, Webb pointed at part of the Large Magellanic Cloud, a small satellite galaxy of the Milky Way, providing a dense field of hundreds of thousands of stars across all the observatory’s sensors.

 

The sizes and positions of the images shown here depict the relative arrangement of each of Webb’s instruments in the telescope’s focal plane, each pointing at a slightly offset part of the sky relative to one another.

 

Webb’s three imaging instruments are NIRCam (images shown here at a wavelength of 2 microns), NIRISS (image shown here at 1.5 microns), and MIRI (shown at 7.7 microns, a longer wavelength revealing emission from interstellar clouds as well as starlight).

 

ESA's NIRSpec is a spectrograph rather than imager but can take images, such as the 1.1 micron image shown here, for calibrations and target acquisition. The dark regions visible in parts of the NIRSpec data are due to structures of its microshutter array, which has several hundred thousand controllable shutters that can be opened or shut to select which light is sent into the spectrograph.

 

Lastly, Webb’s Fine Guidance Sensor tracks guide stars to point the observatory accurately and precisely; its two sensors are not generally used for scientific imaging but can take calibration images such as those shown here. This image data is used not just to assess image sharpness but also to precisely measure and calibrate subtle image distortions and alignments between sensors as part of Webb’s overall instrument calibration process.

 

The optical performance of the telescope continues to be better than the engineering team’s most optimistic predictions. Webb’s mirrors are now directing fully focused light collected from space down into each instrument, and each instrument is successfully capturing images with the light being delivered to them. The image quality delivered to all instruments is “diffraction-limited,” meaning that the fineness of detail that can be seen is as good as physically possible given the size of the telescope. From this point forward the only changes to the mirrors will be very small, periodic adjustments to the primary mirror segments.

 

Now, the Webb team will turn its attention to science instrument commissioning. Each instrument is a highly sophisticated set of detectors equipped with unique lenses, masks, filters, and customised equipment that helps it perform the science it was designed to achieve. The specialised characteristics of these instruments will be configured and operated in various combinations during the instrument commissioning phase to fully confirm their readiness for science. With the formal conclusion of telescope alignment, key personnel involved with the commissioning of each instrument have arrived at the Mission Operations Center at the Space Telescope Science Institute in Baltimore, USA, and some personnel involved with telescope alignment have concluded their duties.

 

Though telescope alignment is complete, some telescope calibration activities remain: As part of scientific instrument commissioning, the telescope will be commanded to point to different areas in the sky where the total amount of solar radiation hitting the observatory will vary to confirm thermal stability when changing targets. Furthermore, ongoing maintenance observations every two days will monitor the mirror alignment and, when needed, apply corrections to keep the mirrors in their aligned locations.

 

Webb is an international partnership between NASA, ESA and CSA.

 

Credits: NASA/STScI

In the summer of 2022, NASA's James Webb Space Telescope released images from some of its earliest observations with the newly commissioned telescope. Almost instantaneously, these stunning images landed everywhere from the front pages of news outlets to larger-than-life displays in Times Square.

 

Webb, however, will not pursue its exploration of the universe on its own. It is designed to work in concert with NASA's many other telescopes as well as facilities both in space and on the ground. These new versions of Webb’s first images combine its infrared data with X-rays collected by NASA’s Chandra X-ray Observatory, underscoring how the power of any of these telescopes is only enhanced when joined with others.

 

Image credit: NASA/CXC/A. Hobart

 

#NASAMarshall #Chandra #NASA #ChandraXrayObservatory #jwst #jameswebbspacetelescope

 

Read more

 

Read more about the Chandra X-ray Observatory

 

More about the James Webb Space Telescope

 

NASA Media Usage Guidelines

The world’s most powerful space science telescope has opened its primary mirror for the last time on Earth.

 

As part of the international James Webb Space Telescope’s final tests, the 6.5 meter (21 feet 4 inch) mirror was commanded to fully expand and lock itself into place, just like it would in space. The conclusion of this test represents the team’s final checkpoint in a long series of tests designed to ensure Webb’s 18 hexagonal mirrors are prepared for a long journey in space, and a life of profound discovery. After this, all of Webb’s many movable parts will have confirmed in testing that they can perform their intended operations after being exposed to the expected launch environment.

 

Making the testing conditions close to what Webb will experience in space helps to ensure the observatory is fully prepared for its science mission one million miles away from Earth.

 

Commands to unlatch and deploy the side panels of the mirror were relayed from Webb’s testing control room at Northrop Grumman, in Redondo Beach, California. The software instructions sent, and the mechanisms that operated are the same as those used in space. Special gravity offsetting equipment was attached to Webb to simulate the zero-gravity environment in which its complex mechanisms will operate. All of the final thermal blanketing and innovative shielding designed to protect its mirrors and instruments from interference were in place during testing.

 

Read more.

 

Webb is an international partnership between NASA, ESA and CSA. The telescope will launch on an Ariane 5 from Europe's Spaceport in French Guiana.

 

Credits: NASA/Chris Gunn

   

On May 4th 2016 engineers at the Goddard Space Flight Center tilted the uncovered primary mirror of the James Webb Space Telescope upright and to a rollover position.

 

In this rare timelapse video see inside the world's largest clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland as the James Webb Space Telescope team lifts and turns the telescope for the first time. With glimmering gold surfaces, the large primary and rounded secondary mirror on this telescope are specially designed to reflect infrared light from some of the first stars ever born. The team will now begin to prepare to install the telescope's science instruments to the back of the mirrors. Webb is an international project led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency. For more information, visit: www.jwst.nasa.gov or www.nasa.gov/webb

 

Credit: NASA/Goddard

 

NASA image use policy.

 

NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission.

 

Follow us on Twitter

 

Like us on Facebook

 

Find us on Instagram

1 3 4 5 6 7 ••• 60 61