View allAll Photos Tagged industrialapplication
For more information on this product please visit uk.glasdon.com/enclosures-cabinets/bypass
Follow us on:
Twitter - twitter.com/GlasdonUK
LinkedIn - www.linkedin.com/company/glasdon-uk-limited
Google+ - plus.google.com/+GlasdonUKLtd
YouTube - www.youtube.com/user/GlasdonUK
Pinterest - www.pinterest.com/glasdonuk/
Facebook - www.facebook.com/GlasdonUK
The IMPAC-O door is a high speed door that opens and closes using a vertical pack away operation, as with our other high-speed doors the IMPAC-O model is suitable for applications where high speed opening and closing times are required.
This type of door is suited for larger size openings and is designed for prolonged everyday use both internally and externally with minimal maintenance.
OCM strives to achieve the optimum solution for all high-speed door solutions. This is achieved through a strict quality environment and controlled manufacturing process.
For any further information visit our website or contact us:
OCM Industrial Doors Srl
Via Mongilardi, 3
13900 Biella Italy
Tel.: (+39) 015 . 840 83 01
Fax: (+39) 015 . 849 26 60
Gps: N 45°32'52'',E 8°02'55''
Groschopp Inc. is a manufacturer of highly engineered fractional horsepower electric motors and gearmotors for Original Equipment Manufacturers (OEM’s) and distribution products.
This is an example of a fold up door, that we manufacture.
These models are suitable to external applications because they can resist to very high wind loads.
The information relating to wind loads in power operated doors is DIN EN 12424.
The following table doesn't take notice of particular conditions, such as geographic influences.
The integrity of the door could be jeopardized by the wind forces. These forces can produce structural damage and even destruction without proper design and construction.
Wind Class____________Wind Speed Km/h
____0______________________0
____1______________________80
____2_____________________100
____3_____________________120
____4_____________________150
For any further information visit our website or contact us:
OCM Industrial Doors Srl
Via Mongilardi, 3
13900 Biella, Italy
Tel.: (+39) 015 . 840 83 01
Fax: (+39) 015 . 849 26 60
Manufacturer of the flex high speed roll-up industrial doors for commercial and industrial applications - For high traffic areas - www.ocmflex.com/en/en_prod_avvolgimento.shtml
For more information on this product please visit uk.glasdon.com/enclosures-cabinets/steel/bypass
Follow us on:
Twitter - twitter.com/GlasdonUK
LinkedIn - www.linkedin.com/company/glasdon-uk-limited
Google+ - plus.google.com/+GlasdonUKLtd
YouTube - www.youtube.com/user/GlasdonUK
Pinterest - www.pinterest.com/glasdonuk/
Facebook - www.facebook.com/GlasdonUK
Roll up doors industrial high speed doors - Automatic fast speed door - Door in polyester textile for internal openings with high traffic - Climate zoned industries - www.ocmflex.com/en/en_prod_avvolgimento.shtml
For more information on this product please visit uk.glasdon.com/enclosures-cabinets/steel/bypass
Follow us on:
Twitter - twitter.com/GlasdonUK
LinkedIn - www.linkedin.com/company/glasdon-uk-limited
Google+ - plus.google.com/+GlasdonUKLtd
YouTube - www.youtube.com/user/GlasdonUK
Pinterest - www.pinterest.com/glasdonuk/
Facebook - www.facebook.com/GlasdonUK
In recent decades, developments in software and hardware technologies have created dramatic shifts in design, manufacturing and research. Software technologies have facilitated automated process and new solutions for complex problems. Computation has also become a platform for creativity through generative art and design. New hardware platforms and digital fabrication technologies have similarly transformed manufacturing, offering more efficient production and mass customization. Such advances have helped catalyzed the maker-movement, democratizing design and maker culture. This influx of new capabilities to design, compute and fabricate like never before, has sparked a renewed interest in material performance.
We are now witnessing significant advances in active matter, 3D/4D Printing, materials science, synthetic biology, DNA nanotechnology and soft robotics, which have led to the convergence of software, hardware and material technologies and the growing field of programmable materials.
This conference was about the emerging field of active matter and programmable materials that bridges the worlds of art, science, engineering and design, demonstrating new perspectives for computation, transformation and dynamic material applications.
If over the past few decades we have experienced a software revolution, and more recently, a hardware revolution, this conference aims to discuss the premises, challenges and innovations brought by today’s materials revolution. We can now sense, compute, and actuate with materials alone, just as we could with software and hardware platforms previously. How does this shift influence materials research, and how does it shape the future of design, arts, and industrial applications? What tools and design processes do we need to advance, augment and invent new materials today? What are the key roles that industry, government, academic and public institutions can play in catalyzing the field of programmable materials?
This two-day conference consisted of a range of talks and lively discussion from leading researchers in materials science, art & design, synthetic biology and soft-robotics along with leaders from government, public institutions and industry.
Learn more at activemattersummit.com
All photos ©L. Barry Hetherington
lbarryhetherington.com/
Please ask before use
For more information on this product please visit uk.glasdon.com/enclosures-cabinets/steel/bypass
Follow us on:
Twitter - twitter.com/GlasdonUK
LinkedIn - www.linkedin.com/company/glasdon-uk-limited
Google+ - plus.google.com/+GlasdonUKLtd
YouTube - www.youtube.com/user/GlasdonUK
Pinterest - www.pinterest.com/glasdonuk/
Facebook - www.facebook.com/GlasdonUK
Safety flags for oversize loads like carhaulers, autohaulers, car carriers, autotransport, car trailers, trailers, oversize loads,truckers, heavy trucks, tractor trailers, tractors, tankers, job sites, construction, road sites,
industrial, industrial applications, warning, towing, wreckers, and areas requiring a red or orange safety flag.
parts.ectts.com
Safety flags for carhaulers, autohaulers, car carriers, autotransport, car trailers, trailers, oversize loads,
truckers, heavy trucks, tractor trailers, tractors, tankers, job sites, construction, road sites,
industrial, industrial applications, warning, towing, wreckers, and areas requiring a red or orange
safety flag.
In recent decades, developments in software and hardware technologies have created dramatic shifts in design, manufacturing and research. Software technologies have facilitated automated process and new solutions for complex problems. Computation has also become a platform for creativity through generative art and design. New hardware platforms and digital fabrication technologies have similarly transformed manufacturing, offering more efficient production and mass customization. Such advances have helped catalyzed the maker-movement, democratizing design and maker culture. This influx of new capabilities to design, compute and fabricate like never before, has sparked a renewed interest in material performance.
We are now witnessing significant advances in active matter, 3D/4D Printing, materials science, synthetic biology, DNA nanotechnology and soft robotics, which have led to the convergence of software, hardware and material technologies and the growing field of programmable materials.
This conference was about the emerging field of active matter and programmable materials that bridges the worlds of art, science, engineering and design, demonstrating new perspectives for computation, transformation and dynamic material applications.
If over the past few decades we have experienced a software revolution, and more recently, a hardware revolution, this conference aims to discuss the premises, challenges and innovations brought by today’s materials revolution. We can now sense, compute, and actuate with materials alone, just as we could with software and hardware platforms previously. How does this shift influence materials research, and how does it shape the future of design, arts, and industrial applications? What tools and design processes do we need to advance, augment and invent new materials today? What are the key roles that industry, government, academic and public institutions can play in catalyzing the field of programmable materials?
This two-day conference consisted of a range of talks and lively discussion from leading researchers in materials science, art & design, synthetic biology and soft-robotics along with leaders from government, public institutions and industry.
Learn more at activemattersummit.com
All photos ©L. Barry Hetherington
lbarryhetherington.com/
Please ask before use
In recent decades, developments in software and hardware technologies have created dramatic shifts in design, manufacturing and research. Software technologies have facilitated automated process and new solutions for complex problems. Computation has also become a platform for creativity through generative art and design. New hardware platforms and digital fabrication technologies have similarly transformed manufacturing, offering more efficient production and mass customization. Such advances have helped catalyzed the maker-movement, democratizing design and maker culture. This influx of new capabilities to design, compute and fabricate like never before, has sparked a renewed interest in material performance.
We are now witnessing significant advances in active matter, 3D/4D Printing, materials science, synthetic biology, DNA nanotechnology and soft robotics, which have led to the convergence of software, hardware and material technologies and the growing field of programmable materials.
This conference was about the emerging field of active matter and programmable materials that bridges the worlds of art, science, engineering and design, demonstrating new perspectives for computation, transformation and dynamic material applications.
If over the past few decades we have experienced a software revolution, and more recently, a hardware revolution, this conference aims to discuss the premises, challenges and innovations brought by today’s materials revolution. We can now sense, compute, and actuate with materials alone, just as we could with software and hardware platforms previously. How does this shift influence materials research, and how does it shape the future of design, arts, and industrial applications? What tools and design processes do we need to advance, augment and invent new materials today? What are the key roles that industry, government, academic and public institutions can play in catalyzing the field of programmable materials?
This two-day conference consisted of a range of talks and lively discussion from leading researchers in materials science, art & design, synthetic biology and soft-robotics along with leaders from government, public institutions and industry.
Learn more at activemattersummit.com
All photos ©L. Barry Hetherington
lbarryhetherington.com/
Please ask before use
Safety flags for carhaulers, autohaulers, car carriers, autotransport, car trailers, trailers, oversize loads,
truckers, heavy trucks, tractor trailers, tractors, tankers, job sites, construction, road sites,
industrial, industrial applications, warning, towing, wreckers, and areas requiring a red or orange
safety flag.
In recent decades, developments in software and hardware technologies have created dramatic shifts in design, manufacturing and research. Software technologies have facilitated automated process and new solutions for complex problems. Computation has also become a platform for creativity through generative art and design. New hardware platforms and digital fabrication technologies have similarly transformed manufacturing, offering more efficient production and mass customization. Such advances have helped catalyzed the maker-movement, democratizing design and maker culture. This influx of new capabilities to design, compute and fabricate like never before, has sparked a renewed interest in material performance.
We are now witnessing significant advances in active matter, 3D/4D Printing, materials science, synthetic biology, DNA nanotechnology and soft robotics, which have led to the convergence of software, hardware and material technologies and the growing field of programmable materials.
This conference was about the emerging field of active matter and programmable materials that bridges the worlds of art, science, engineering and design, demonstrating new perspectives for computation, transformation and dynamic material applications.
If over the past few decades we have experienced a software revolution, and more recently, a hardware revolution, this conference aims to discuss the premises, challenges and innovations brought by today’s materials revolution. We can now sense, compute, and actuate with materials alone, just as we could with software and hardware platforms previously. How does this shift influence materials research, and how does it shape the future of design, arts, and industrial applications? What tools and design processes do we need to advance, augment and invent new materials today? What are the key roles that industry, government, academic and public institutions can play in catalyzing the field of programmable materials?
This two-day conference consisted of a range of talks and lively discussion from leading researchers in materials science, art & design, synthetic biology and soft-robotics along with leaders from government, public institutions and industry.
Learn more at activemattersummit.com
All photos ©L. Barry Hetherington
lbarryhetherington.com/
Please ask before use
In recent decades, developments in software and hardware technologies have created dramatic shifts in design, manufacturing and research. Software technologies have facilitated automated process and new solutions for complex problems. Computation has also become a platform for creativity through generative art and design. New hardware platforms and digital fabrication technologies have similarly transformed manufacturing, offering more efficient production and mass customization. Such advances have helped catalyzed the maker-movement, democratizing design and maker culture. This influx of new capabilities to design, compute and fabricate like never before, has sparked a renewed interest in material performance.
We are now witnessing significant advances in active matter, 3D/4D Printing, materials science, synthetic biology, DNA nanotechnology and soft robotics, which have led to the convergence of software, hardware and material technologies and the growing field of programmable materials.
This conference was about the emerging field of active matter and programmable materials that bridges the worlds of art, science, engineering and design, demonstrating new perspectives for computation, transformation and dynamic material applications.
If over the past few decades we have experienced a software revolution, and more recently, a hardware revolution, this conference aims to discuss the premises, challenges and innovations brought by today’s materials revolution. We can now sense, compute, and actuate with materials alone, just as we could with software and hardware platforms previously. How does this shift influence materials research, and how does it shape the future of design, arts, and industrial applications? What tools and design processes do we need to advance, augment and invent new materials today? What are the key roles that industry, government, academic and public institutions can play in catalyzing the field of programmable materials?
This two-day conference consisted of a range of talks and lively discussion from leading researchers in materials science, art & design, synthetic biology and soft-robotics along with leaders from government, public institutions and industry.
Learn more at activemattersummit.com
All photos ©L. Barry Hetherington
lbarryhetherington.com/
Please ask before use
In recent decades, developments in software and hardware technologies have created dramatic shifts in design, manufacturing and research. Software technologies have facilitated automated process and new solutions for complex problems. Computation has also become a platform for creativity through generative art and design. New hardware platforms and digital fabrication technologies have similarly transformed manufacturing, offering more efficient production and mass customization. Such advances have helped catalyzed the maker-movement, democratizing design and maker culture. This influx of new capabilities to design, compute and fabricate like never before, has sparked a renewed interest in material performance.
We are now witnessing significant advances in active matter, 3D/4D Printing, materials science, synthetic biology, DNA nanotechnology and soft robotics, which have led to the convergence of software, hardware and material technologies and the growing field of programmable materials.
This conference was about the emerging field of active matter and programmable materials that bridges the worlds of art, science, engineering and design, demonstrating new perspectives for computation, transformation and dynamic material applications.
If over the past few decades we have experienced a software revolution, and more recently, a hardware revolution, this conference aims to discuss the premises, challenges and innovations brought by today’s materials revolution. We can now sense, compute, and actuate with materials alone, just as we could with software and hardware platforms previously. How does this shift influence materials research, and how does it shape the future of design, arts, and industrial applications? What tools and design processes do we need to advance, augment and invent new materials today? What are the key roles that industry, government, academic and public institutions can play in catalyzing the field of programmable materials?
This two-day conference consisted of a range of talks and lively discussion from leading researchers in materials science, art & design, synthetic biology and soft-robotics along with leaders from government, public institutions and industry.
Learn more at activemattersummit.com
All photos ©L. Barry Hetherington
lbarryhetherington.com/
Please ask before use
In recent decades, developments in software and hardware technologies have created dramatic shifts in design, manufacturing and research. Software technologies have facilitated automated process and new solutions for complex problems. Computation has also become a platform for creativity through generative art and design. New hardware platforms and digital fabrication technologies have similarly transformed manufacturing, offering more efficient production and mass customization. Such advances have helped catalyzed the maker-movement, democratizing design and maker culture. This influx of new capabilities to design, compute and fabricate like never before, has sparked a renewed interest in material performance.
We are now witnessing significant advances in active matter, 3D/4D Printing, materials science, synthetic biology, DNA nanotechnology and soft robotics, which have led to the convergence of software, hardware and material technologies and the growing field of programmable materials.
This conference was about the emerging field of active matter and programmable materials that bridges the worlds of art, science, engineering and design, demonstrating new perspectives for computation, transformation and dynamic material applications.
If over the past few decades we have experienced a software revolution, and more recently, a hardware revolution, this conference aims to discuss the premises, challenges and innovations brought by today’s materials revolution. We can now sense, compute, and actuate with materials alone, just as we could with software and hardware platforms previously. How does this shift influence materials research, and how does it shape the future of design, arts, and industrial applications? What tools and design processes do we need to advance, augment and invent new materials today? What are the key roles that industry, government, academic and public institutions can play in catalyzing the field of programmable materials?
This two-day conference consisted of a range of talks and lively discussion from leading researchers in materials science, art & design, synthetic biology and soft-robotics along with leaders from government, public institutions and industry.
Learn more at activemattersummit.com
All photos ©L. Barry Hetherington
lbarryhetherington.com/
Please ask before use
In recent decades, developments in software and hardware technologies have created dramatic shifts in design, manufacturing and research. Software technologies have facilitated automated process and new solutions for complex problems. Computation has also become a platform for creativity through generative art and design. New hardware platforms and digital fabrication technologies have similarly transformed manufacturing, offering more efficient production and mass customization. Such advances have helped catalyzed the maker-movement, democratizing design and maker culture. This influx of new capabilities to design, compute and fabricate like never before, has sparked a renewed interest in material performance.
We are now witnessing significant advances in active matter, 3D/4D Printing, materials science, synthetic biology, DNA nanotechnology and soft robotics, which have led to the convergence of software, hardware and material technologies and the growing field of programmable materials.
This conference was about the emerging field of active matter and programmable materials that bridges the worlds of art, science, engineering and design, demonstrating new perspectives for computation, transformation and dynamic material applications.
If over the past few decades we have experienced a software revolution, and more recently, a hardware revolution, this conference aims to discuss the premises, challenges and innovations brought by today’s materials revolution. We can now sense, compute, and actuate with materials alone, just as we could with software and hardware platforms previously. How does this shift influence materials research, and how does it shape the future of design, arts, and industrial applications? What tools and design processes do we need to advance, augment and invent new materials today? What are the key roles that industry, government, academic and public institutions can play in catalyzing the field of programmable materials?
This two-day conference consisted of a range of talks and lively discussion from leading researchers in materials science, art & design, synthetic biology and soft-robotics along with leaders from government, public institutions and industry.
Learn more at activemattersummit.com
All photos ©L. Barry Hetherington
lbarryhetherington.com/
Please ask before use
In recent decades, developments in software and hardware technologies have created dramatic shifts in design, manufacturing and research. Software technologies have facilitated automated process and new solutions for complex problems. Computation has also become a platform for creativity through generative art and design. New hardware platforms and digital fabrication technologies have similarly transformed manufacturing, offering more efficient production and mass customization. Such advances have helped catalyzed the maker-movement, democratizing design and maker culture. This influx of new capabilities to design, compute and fabricate like never before, has sparked a renewed interest in material performance.
We are now witnessing significant advances in active matter, 3D/4D Printing, materials science, synthetic biology, DNA nanotechnology and soft robotics, which have led to the convergence of software, hardware and material technologies and the growing field of programmable materials.
This conference was about the emerging field of active matter and programmable materials that bridges the worlds of art, science, engineering and design, demonstrating new perspectives for computation, transformation and dynamic material applications.
If over the past few decades we have experienced a software revolution, and more recently, a hardware revolution, this conference aims to discuss the premises, challenges and innovations brought by today’s materials revolution. We can now sense, compute, and actuate with materials alone, just as we could with software and hardware platforms previously. How does this shift influence materials research, and how does it shape the future of design, arts, and industrial applications? What tools and design processes do we need to advance, augment and invent new materials today? What are the key roles that industry, government, academic and public institutions can play in catalyzing the field of programmable materials?
This two-day conference consisted of a range of talks and lively discussion from leading researchers in materials science, art & design, synthetic biology and soft-robotics along with leaders from government, public institutions and industry.
Learn more at activemattersummit.com
All photos ©L. Barry Hetherington
lbarryhetherington.com/
Please ask before use
In recent decades, developments in software and hardware technologies have created dramatic shifts in design, manufacturing and research. Software technologies have facilitated automated process and new solutions for complex problems. Computation has also become a platform for creativity through generative art and design. New hardware platforms and digital fabrication technologies have similarly transformed manufacturing, offering more efficient production and mass customization. Such advances have helped catalyzed the maker-movement, democratizing design and maker culture. This influx of new capabilities to design, compute and fabricate like never before, has sparked a renewed interest in material performance.
We are now witnessing significant advances in active matter, 3D/4D Printing, materials science, synthetic biology, DNA nanotechnology and soft robotics, which have led to the convergence of software, hardware and material technologies and the growing field of programmable materials.
This conference was about the emerging field of active matter and programmable materials that bridges the worlds of art, science, engineering and design, demonstrating new perspectives for computation, transformation and dynamic material applications.
If over the past few decades we have experienced a software revolution, and more recently, a hardware revolution, this conference aims to discuss the premises, challenges and innovations brought by today’s materials revolution. We can now sense, compute, and actuate with materials alone, just as we could with software and hardware platforms previously. How does this shift influence materials research, and how does it shape the future of design, arts, and industrial applications? What tools and design processes do we need to advance, augment and invent new materials today? What are the key roles that industry, government, academic and public institutions can play in catalyzing the field of programmable materials?
This two-day conference consisted of a range of talks and lively discussion from leading researchers in materials science, art & design, synthetic biology and soft-robotics along with leaders from government, public institutions and industry.
Learn more at activemattersummit.com
All photos ©L. Barry Hetherington
lbarryhetherington.com/
Please ask before use
In recent decades, developments in software and hardware technologies have created dramatic shifts in design, manufacturing and research. Software technologies have facilitated automated process and new solutions for complex problems. Computation has also become a platform for creativity through generative art and design. New hardware platforms and digital fabrication technologies have similarly transformed manufacturing, offering more efficient production and mass customization. Such advances have helped catalyzed the maker-movement, democratizing design and maker culture. This influx of new capabilities to design, compute and fabricate like never before, has sparked a renewed interest in material performance.
We are now witnessing significant advances in active matter, 3D/4D Printing, materials science, synthetic biology, DNA nanotechnology and soft robotics, which have led to the convergence of software, hardware and material technologies and the growing field of programmable materials.
This conference was about the emerging field of active matter and programmable materials that bridges the worlds of art, science, engineering and design, demonstrating new perspectives for computation, transformation and dynamic material applications.
If over the past few decades we have experienced a software revolution, and more recently, a hardware revolution, this conference aims to discuss the premises, challenges and innovations brought by today’s materials revolution. We can now sense, compute, and actuate with materials alone, just as we could with software and hardware platforms previously. How does this shift influence materials research, and how does it shape the future of design, arts, and industrial applications? What tools and design processes do we need to advance, augment and invent new materials today? What are the key roles that industry, government, academic and public institutions can play in catalyzing the field of programmable materials?
This two-day conference consisted of a range of talks and lively discussion from leading researchers in materials science, art & design, synthetic biology and soft-robotics along with leaders from government, public institutions and industry.
Learn more at activemattersummit.com
All photos ©L. Barry Hetherington
lbarryhetherington.com/
Please ask before use
In recent decades, developments in software and hardware technologies have created dramatic shifts in design, manufacturing and research. Software technologies have facilitated automated process and new solutions for complex problems. Computation has also become a platform for creativity through generative art and design. New hardware platforms and digital fabrication technologies have similarly transformed manufacturing, offering more efficient production and mass customization. Such advances have helped catalyzed the maker-movement, democratizing design and maker culture. This influx of new capabilities to design, compute and fabricate like never before, has sparked a renewed interest in material performance.
We are now witnessing significant advances in active matter, 3D/4D Printing, materials science, synthetic biology, DNA nanotechnology and soft robotics, which have led to the convergence of software, hardware and material technologies and the growing field of programmable materials.
This conference was about the emerging field of active matter and programmable materials that bridges the worlds of art, science, engineering and design, demonstrating new perspectives for computation, transformation and dynamic material applications.
If over the past few decades we have experienced a software revolution, and more recently, a hardware revolution, this conference aims to discuss the premises, challenges and innovations brought by today’s materials revolution. We can now sense, compute, and actuate with materials alone, just as we could with software and hardware platforms previously. How does this shift influence materials research, and how does it shape the future of design, arts, and industrial applications? What tools and design processes do we need to advance, augment and invent new materials today? What are the key roles that industry, government, academic and public institutions can play in catalyzing the field of programmable materials?
This two-day conference consisted of a range of talks and lively discussion from leading researchers in materials science, art & design, synthetic biology and soft-robotics along with leaders from government, public institutions and industry.
Learn more at activemattersummit.com
All photos ©L. Barry Hetherington
lbarryhetherington.com/
Please ask before use
In recent decades, developments in software and hardware technologies have created dramatic shifts in design, manufacturing and research. Software technologies have facilitated automated process and new solutions for complex problems. Computation has also become a platform for creativity through generative art and design. New hardware platforms and digital fabrication technologies have similarly transformed manufacturing, offering more efficient production and mass customization. Such advances have helped catalyzed the maker-movement, democratizing design and maker culture. This influx of new capabilities to design, compute and fabricate like never before, has sparked a renewed interest in material performance.
We are now witnessing significant advances in active matter, 3D/4D Printing, materials science, synthetic biology, DNA nanotechnology and soft robotics, which have led to the convergence of software, hardware and material technologies and the growing field of programmable materials.
This conference was about the emerging field of active matter and programmable materials that bridges the worlds of art, science, engineering and design, demonstrating new perspectives for computation, transformation and dynamic material applications.
If over the past few decades we have experienced a software revolution, and more recently, a hardware revolution, this conference aims to discuss the premises, challenges and innovations brought by today’s materials revolution. We can now sense, compute, and actuate with materials alone, just as we could with software and hardware platforms previously. How does this shift influence materials research, and how does it shape the future of design, arts, and industrial applications? What tools and design processes do we need to advance, augment and invent new materials today? What are the key roles that industry, government, academic and public institutions can play in catalyzing the field of programmable materials?
This two-day conference consisted of a range of talks and lively discussion from leading researchers in materials science, art & design, synthetic biology and soft-robotics along with leaders from government, public institutions and industry.
Learn more at activemattersummit.com
All photos ©L. Barry Hetherington
lbarryhetherington.com/
Please ask before use
In recent decades, developments in software and hardware technologies have created dramatic shifts in design, manufacturing and research. Software technologies have facilitated automated process and new solutions for complex problems. Computation has also become a platform for creativity through generative art and design. New hardware platforms and digital fabrication technologies have similarly transformed manufacturing, offering more efficient production and mass customization. Such advances have helped catalyzed the maker-movement, democratizing design and maker culture. This influx of new capabilities to design, compute and fabricate like never before, has sparked a renewed interest in material performance.
We are now witnessing significant advances in active matter, 3D/4D Printing, materials science, synthetic biology, DNA nanotechnology and soft robotics, which have led to the convergence of software, hardware and material technologies and the growing field of programmable materials.
This conference was about the emerging field of active matter and programmable materials that bridges the worlds of art, science, engineering and design, demonstrating new perspectives for computation, transformation and dynamic material applications.
If over the past few decades we have experienced a software revolution, and more recently, a hardware revolution, this conference aims to discuss the premises, challenges and innovations brought by today’s materials revolution. We can now sense, compute, and actuate with materials alone, just as we could with software and hardware platforms previously. How does this shift influence materials research, and how does it shape the future of design, arts, and industrial applications? What tools and design processes do we need to advance, augment and invent new materials today? What are the key roles that industry, government, academic and public institutions can play in catalyzing the field of programmable materials?
This two-day conference consisted of a range of talks and lively discussion from leading researchers in materials science, art & design, synthetic biology and soft-robotics along with leaders from government, public institutions and industry.
Learn more at activemattersummit.com
All photos ©L. Barry Hetherington
lbarryhetherington.com/
Please ask before use
In recent decades, developments in software and hardware technologies have created dramatic shifts in design, manufacturing and research. Software technologies have facilitated automated process and new solutions for complex problems. Computation has also become a platform for creativity through generative art and design. New hardware platforms and digital fabrication technologies have similarly transformed manufacturing, offering more efficient production and mass customization. Such advances have helped catalyzed the maker-movement, democratizing design and maker culture. This influx of new capabilities to design, compute and fabricate like never before, has sparked a renewed interest in material performance.
We are now witnessing significant advances in active matter, 3D/4D Printing, materials science, synthetic biology, DNA nanotechnology and soft robotics, which have led to the convergence of software, hardware and material technologies and the growing field of programmable materials.
This conference was about the emerging field of active matter and programmable materials that bridges the worlds of art, science, engineering and design, demonstrating new perspectives for computation, transformation and dynamic material applications.
If over the past few decades we have experienced a software revolution, and more recently, a hardware revolution, this conference aims to discuss the premises, challenges and innovations brought by today’s materials revolution. We can now sense, compute, and actuate with materials alone, just as we could with software and hardware platforms previously. How does this shift influence materials research, and how does it shape the future of design, arts, and industrial applications? What tools and design processes do we need to advance, augment and invent new materials today? What are the key roles that industry, government, academic and public institutions can play in catalyzing the field of programmable materials?
This two-day conference consisted of a range of talks and lively discussion from leading researchers in materials science, art & design, synthetic biology and soft-robotics along with leaders from government, public institutions and industry.
Learn more at activemattersummit.com
All photos ©L. Barry Hetherington
lbarryhetherington.com/
Please ask before use
In recent decades, developments in software and hardware technologies have created dramatic shifts in design, manufacturing and research. Software technologies have facilitated automated process and new solutions for complex problems. Computation has also become a platform for creativity through generative art and design. New hardware platforms and digital fabrication technologies have similarly transformed manufacturing, offering more efficient production and mass customization. Such advances have helped catalyzed the maker-movement, democratizing design and maker culture. This influx of new capabilities to design, compute and fabricate like never before, has sparked a renewed interest in material performance.
We are now witnessing significant advances in active matter, 3D/4D Printing, materials science, synthetic biology, DNA nanotechnology and soft robotics, which have led to the convergence of software, hardware and material technologies and the growing field of programmable materials.
This conference was about the emerging field of active matter and programmable materials that bridges the worlds of art, science, engineering and design, demonstrating new perspectives for computation, transformation and dynamic material applications.
If over the past few decades we have experienced a software revolution, and more recently, a hardware revolution, this conference aims to discuss the premises, challenges and innovations brought by today’s materials revolution. We can now sense, compute, and actuate with materials alone, just as we could with software and hardware platforms previously. How does this shift influence materials research, and how does it shape the future of design, arts, and industrial applications? What tools and design processes do we need to advance, augment and invent new materials today? What are the key roles that industry, government, academic and public institutions can play in catalyzing the field of programmable materials?
This two-day conference consisted of a range of talks and lively discussion from leading researchers in materials science, art & design, synthetic biology and soft-robotics along with leaders from government, public institutions and industry.
Learn more at activemattersummit.com
All photos ©L. Barry Hetherington
lbarryhetherington.com/
Please ask before use
In recent decades, developments in software and hardware technologies have created dramatic shifts in design, manufacturing and research. Software technologies have facilitated automated process and new solutions for complex problems. Computation has also become a platform for creativity through generative art and design. New hardware platforms and digital fabrication technologies have similarly transformed manufacturing, offering more efficient production and mass customization. Such advances have helped catalyzed the maker-movement, democratizing design and maker culture. This influx of new capabilities to design, compute and fabricate like never before, has sparked a renewed interest in material performance.
We are now witnessing significant advances in active matter, 3D/4D Printing, materials science, synthetic biology, DNA nanotechnology and soft robotics, which have led to the convergence of software, hardware and material technologies and the growing field of programmable materials.
This conference was about the emerging field of active matter and programmable materials that bridges the worlds of art, science, engineering and design, demonstrating new perspectives for computation, transformation and dynamic material applications.
If over the past few decades we have experienced a software revolution, and more recently, a hardware revolution, this conference aims to discuss the premises, challenges and innovations brought by today’s materials revolution. We can now sense, compute, and actuate with materials alone, just as we could with software and hardware platforms previously. How does this shift influence materials research, and how does it shape the future of design, arts, and industrial applications? What tools and design processes do we need to advance, augment and invent new materials today? What are the key roles that industry, government, academic and public institutions can play in catalyzing the field of programmable materials?
This two-day conference consisted of a range of talks and lively discussion from leading researchers in materials science, art & design, synthetic biology and soft-robotics along with leaders from government, public institutions and industry.
Learn more at activemattersummit.com
All photos ©L. Barry Hetherington
lbarryhetherington.com/
Please ask before use
Safety flags for carhaulers, autohaulers, car carriers, autotransport, car trailers, trailers, oversize loads,
truckers, heavy trucks, tractor trailers, tractors, tankers, job sites, construction, road sites,
industrial, industrial applications, warning, towing, wreckers, and areas requiring a red or orange
safety flag.
In recent decades, developments in software and hardware technologies have created dramatic shifts in design, manufacturing and research. Software technologies have facilitated automated process and new solutions for complex problems. Computation has also become a platform for creativity through generative art and design. New hardware platforms and digital fabrication technologies have similarly transformed manufacturing, offering more efficient production and mass customization. Such advances have helped catalyzed the maker-movement, democratizing design and maker culture. This influx of new capabilities to design, compute and fabricate like never before, has sparked a renewed interest in material performance.
We are now witnessing significant advances in active matter, 3D/4D Printing, materials science, synthetic biology, DNA nanotechnology and soft robotics, which have led to the convergence of software, hardware and material technologies and the growing field of programmable materials.
This conference was about the emerging field of active matter and programmable materials that bridges the worlds of art, science, engineering and design, demonstrating new perspectives for computation, transformation and dynamic material applications.
If over the past few decades we have experienced a software revolution, and more recently, a hardware revolution, this conference aims to discuss the premises, challenges and innovations brought by today’s materials revolution. We can now sense, compute, and actuate with materials alone, just as we could with software and hardware platforms previously. How does this shift influence materials research, and how does it shape the future of design, arts, and industrial applications? What tools and design processes do we need to advance, augment and invent new materials today? What are the key roles that industry, government, academic and public institutions can play in catalyzing the field of programmable materials?
This two-day conference consisted of a range of talks and lively discussion from leading researchers in materials science, art & design, synthetic biology and soft-robotics along with leaders from government, public institutions and industry.
Learn more at activemattersummit.com
All photos ©L. Barry Hetherington
lbarryhetherington.com/
Please ask before use
In recent decades, developments in software and hardware technologies have created dramatic shifts in design, manufacturing and research. Software technologies have facilitated automated process and new solutions for complex problems. Computation has also become a platform for creativity through generative art and design. New hardware platforms and digital fabrication technologies have similarly transformed manufacturing, offering more efficient production and mass customization. Such advances have helped catalyzed the maker-movement, democratizing design and maker culture. This influx of new capabilities to design, compute and fabricate like never before, has sparked a renewed interest in material performance.
We are now witnessing significant advances in active matter, 3D/4D Printing, materials science, synthetic biology, DNA nanotechnology and soft robotics, which have led to the convergence of software, hardware and material technologies and the growing field of programmable materials.
This conference was about the emerging field of active matter and programmable materials that bridges the worlds of art, science, engineering and design, demonstrating new perspectives for computation, transformation and dynamic material applications.
If over the past few decades we have experienced a software revolution, and more recently, a hardware revolution, this conference aims to discuss the premises, challenges and innovations brought by today’s materials revolution. We can now sense, compute, and actuate with materials alone, just as we could with software and hardware platforms previously. How does this shift influence materials research, and how does it shape the future of design, arts, and industrial applications? What tools and design processes do we need to advance, augment and invent new materials today? What are the key roles that industry, government, academic and public institutions can play in catalyzing the field of programmable materials?
This two-day conference consisted of a range of talks and lively discussion from leading researchers in materials science, art & design, synthetic biology and soft-robotics along with leaders from government, public institutions and industry.
Learn more at activemattersummit.com
All photos ©L. Barry Hetherington
lbarryhetherington.com/
Please ask before use
In recent decades, developments in software and hardware technologies have created dramatic shifts in design, manufacturing and research. Software technologies have facilitated automated process and new solutions for complex problems. Computation has also become a platform for creativity through generative art and design. New hardware platforms and digital fabrication technologies have similarly transformed manufacturing, offering more efficient production and mass customization. Such advances have helped catalyzed the maker-movement, democratizing design and maker culture. This influx of new capabilities to design, compute and fabricate like never before, has sparked a renewed interest in material performance.
We are now witnessing significant advances in active matter, 3D/4D Printing, materials science, synthetic biology, DNA nanotechnology and soft robotics, which have led to the convergence of software, hardware and material technologies and the growing field of programmable materials.
This conference was about the emerging field of active matter and programmable materials that bridges the worlds of art, science, engineering and design, demonstrating new perspectives for computation, transformation and dynamic material applications.
If over the past few decades we have experienced a software revolution, and more recently, a hardware revolution, this conference aims to discuss the premises, challenges and innovations brought by today’s materials revolution. We can now sense, compute, and actuate with materials alone, just as we could with software and hardware platforms previously. How does this shift influence materials research, and how does it shape the future of design, arts, and industrial applications? What tools and design processes do we need to advance, augment and invent new materials today? What are the key roles that industry, government, academic and public institutions can play in catalyzing the field of programmable materials?
This two-day conference consisted of a range of talks and lively discussion from leading researchers in materials science, art & design, synthetic biology and soft-robotics along with leaders from government, public institutions and industry.
Learn more at activemattersummit.com
All photos ©L. Barry Hetherington
lbarryhetherington.com/
Please ask before use
In recent decades, developments in software and hardware technologies have created dramatic shifts in design, manufacturing and research. Software technologies have facilitated automated process and new solutions for complex problems. Computation has also become a platform for creativity through generative art and design. New hardware platforms and digital fabrication technologies have similarly transformed manufacturing, offering more efficient production and mass customization. Such advances have helped catalyzed the maker-movement, democratizing design and maker culture. This influx of new capabilities to design, compute and fabricate like never before, has sparked a renewed interest in material performance.
We are now witnessing significant advances in active matter, 3D/4D Printing, materials science, synthetic biology, DNA nanotechnology and soft robotics, which have led to the convergence of software, hardware and material technologies and the growing field of programmable materials.
This conference was about the emerging field of active matter and programmable materials that bridges the worlds of art, science, engineering and design, demonstrating new perspectives for computation, transformation and dynamic material applications.
If over the past few decades we have experienced a software revolution, and more recently, a hardware revolution, this conference aims to discuss the premises, challenges and innovations brought by today’s materials revolution. We can now sense, compute, and actuate with materials alone, just as we could with software and hardware platforms previously. How does this shift influence materials research, and how does it shape the future of design, arts, and industrial applications? What tools and design processes do we need to advance, augment and invent new materials today? What are the key roles that industry, government, academic and public institutions can play in catalyzing the field of programmable materials?
This two-day conference consisted of a range of talks and lively discussion from leading researchers in materials science, art & design, synthetic biology and soft-robotics along with leaders from government, public institutions and industry.
Learn more at activemattersummit.com
All photos ©L. Barry Hetherington
lbarryhetherington.com/
Please ask before use
In recent decades, developments in software and hardware technologies have created dramatic shifts in design, manufacturing and research. Software technologies have facilitated automated process and new solutions for complex problems. Computation has also become a platform for creativity through generative art and design. New hardware platforms and digital fabrication technologies have similarly transformed manufacturing, offering more efficient production and mass customization. Such advances have helped catalyzed the maker-movement, democratizing design and maker culture. This influx of new capabilities to design, compute and fabricate like never before, has sparked a renewed interest in material performance.
We are now witnessing significant advances in active matter, 3D/4D Printing, materials science, synthetic biology, DNA nanotechnology and soft robotics, which have led to the convergence of software, hardware and material technologies and the growing field of programmable materials.
This conference was about the emerging field of active matter and programmable materials that bridges the worlds of art, science, engineering and design, demonstrating new perspectives for computation, transformation and dynamic material applications.
If over the past few decades we have experienced a software revolution, and more recently, a hardware revolution, this conference aims to discuss the premises, challenges and innovations brought by today’s materials revolution. We can now sense, compute, and actuate with materials alone, just as we could with software and hardware platforms previously. How does this shift influence materials research, and how does it shape the future of design, arts, and industrial applications? What tools and design processes do we need to advance, augment and invent new materials today? What are the key roles that industry, government, academic and public institutions can play in catalyzing the field of programmable materials?
This two-day conference consisted of a range of talks and lively discussion from leading researchers in materials science, art & design, synthetic biology and soft-robotics along with leaders from government, public institutions and industry.
Learn more at activemattersummit.com
All photos ©L. Barry Hetherington
lbarryhetherington.com/
Please ask before use
In recent decades, developments in software and hardware technologies have created dramatic shifts in design, manufacturing and research. Software technologies have facilitated automated process and new solutions for complex problems. Computation has also become a platform for creativity through generative art and design. New hardware platforms and digital fabrication technologies have similarly transformed manufacturing, offering more efficient production and mass customization. Such advances have helped catalyzed the maker-movement, democratizing design and maker culture. This influx of new capabilities to design, compute and fabricate like never before, has sparked a renewed interest in material performance.
We are now witnessing significant advances in active matter, 3D/4D Printing, materials science, synthetic biology, DNA nanotechnology and soft robotics, which have led to the convergence of software, hardware and material technologies and the growing field of programmable materials.
This conference was about the emerging field of active matter and programmable materials that bridges the worlds of art, science, engineering and design, demonstrating new perspectives for computation, transformation and dynamic material applications.
If over the past few decades we have experienced a software revolution, and more recently, a hardware revolution, this conference aims to discuss the premises, challenges and innovations brought by today’s materials revolution. We can now sense, compute, and actuate with materials alone, just as we could with software and hardware platforms previously. How does this shift influence materials research, and how does it shape the future of design, arts, and industrial applications? What tools and design processes do we need to advance, augment and invent new materials today? What are the key roles that industry, government, academic and public institutions can play in catalyzing the field of programmable materials?
This two-day conference consisted of a range of talks and lively discussion from leading researchers in materials science, art & design, synthetic biology and soft-robotics along with leaders from government, public institutions and industry.
Learn more at activemattersummit.com
All photos ©L. Barry Hetherington
lbarryhetherington.com/
Please ask before use
In recent decades, developments in software and hardware technologies have created dramatic shifts in design, manufacturing and research. Software technologies have facilitated automated process and new solutions for complex problems. Computation has also become a platform for creativity through generative art and design. New hardware platforms and digital fabrication technologies have similarly transformed manufacturing, offering more efficient production and mass customization. Such advances have helped catalyzed the maker-movement, democratizing design and maker culture. This influx of new capabilities to design, compute and fabricate like never before, has sparked a renewed interest in material performance.
We are now witnessing significant advances in active matter, 3D/4D Printing, materials science, synthetic biology, DNA nanotechnology and soft robotics, which have led to the convergence of software, hardware and material technologies and the growing field of programmable materials.
This conference was about the emerging field of active matter and programmable materials that bridges the worlds of art, science, engineering and design, demonstrating new perspectives for computation, transformation and dynamic material applications.
If over the past few decades we have experienced a software revolution, and more recently, a hardware revolution, this conference aims to discuss the premises, challenges and innovations brought by today’s materials revolution. We can now sense, compute, and actuate with materials alone, just as we could with software and hardware platforms previously. How does this shift influence materials research, and how does it shape the future of design, arts, and industrial applications? What tools and design processes do we need to advance, augment and invent new materials today? What are the key roles that industry, government, academic and public institutions can play in catalyzing the field of programmable materials?
This two-day conference consisted of a range of talks and lively discussion from leading researchers in materials science, art & design, synthetic biology and soft-robotics along with leaders from government, public institutions and industry.
Learn more at activemattersummit.com
All photos ©L. Barry Hetherington
lbarryhetherington.com/
Please ask before use
In recent decades, developments in software and hardware technologies have created dramatic shifts in design, manufacturing and research. Software technologies have facilitated automated process and new solutions for complex problems. Computation has also become a platform for creativity through generative art and design. New hardware platforms and digital fabrication technologies have similarly transformed manufacturing, offering more efficient production and mass customization. Such advances have helped catalyzed the maker-movement, democratizing design and maker culture. This influx of new capabilities to design, compute and fabricate like never before, has sparked a renewed interest in material performance.
We are now witnessing significant advances in active matter, 3D/4D Printing, materials science, synthetic biology, DNA nanotechnology and soft robotics, which have led to the convergence of software, hardware and material technologies and the growing field of programmable materials.
This conference was about the emerging field of active matter and programmable materials that bridges the worlds of art, science, engineering and design, demonstrating new perspectives for computation, transformation and dynamic material applications.
If over the past few decades we have experienced a software revolution, and more recently, a hardware revolution, this conference aims to discuss the premises, challenges and innovations brought by today’s materials revolution. We can now sense, compute, and actuate with materials alone, just as we could with software and hardware platforms previously. How does this shift influence materials research, and how does it shape the future of design, arts, and industrial applications? What tools and design processes do we need to advance, augment and invent new materials today? What are the key roles that industry, government, academic and public institutions can play in catalyzing the field of programmable materials?
This two-day conference consisted of a range of talks and lively discussion from leading researchers in materials science, art & design, synthetic biology and soft-robotics along with leaders from government, public institutions and industry.
Learn more at activemattersummit.com
All photos ©L. Barry Hetherington
lbarryhetherington.com/
Please ask before use
In recent decades, developments in software and hardware technologies have created dramatic shifts in design, manufacturing and research. Software technologies have facilitated automated process and new solutions for complex problems. Computation has also become a platform for creativity through generative art and design. New hardware platforms and digital fabrication technologies have similarly transformed manufacturing, offering more efficient production and mass customization. Such advances have helped catalyzed the maker-movement, democratizing design and maker culture. This influx of new capabilities to design, compute and fabricate like never before, has sparked a renewed interest in material performance.
We are now witnessing significant advances in active matter, 3D/4D Printing, materials science, synthetic biology, DNA nanotechnology and soft robotics, which have led to the convergence of software, hardware and material technologies and the growing field of programmable materials.
This conference was about the emerging field of active matter and programmable materials that bridges the worlds of art, science, engineering and design, demonstrating new perspectives for computation, transformation and dynamic material applications.
If over the past few decades we have experienced a software revolution, and more recently, a hardware revolution, this conference aims to discuss the premises, challenges and innovations brought by today’s materials revolution. We can now sense, compute, and actuate with materials alone, just as we could with software and hardware platforms previously. How does this shift influence materials research, and how does it shape the future of design, arts, and industrial applications? What tools and design processes do we need to advance, augment and invent new materials today? What are the key roles that industry, government, academic and public institutions can play in catalyzing the field of programmable materials?
This two-day conference consisted of a range of talks and lively discussion from leading researchers in materials science, art & design, synthetic biology and soft-robotics along with leaders from government, public institutions and industry.
Learn more at activemattersummit.com
All photos ©L. Barry Hetherington
lbarryhetherington.com/
Please ask before use
In recent decades, developments in software and hardware technologies have created dramatic shifts in design, manufacturing and research. Software technologies have facilitated automated process and new solutions for complex problems. Computation has also become a platform for creativity through generative art and design. New hardware platforms and digital fabrication technologies have similarly transformed manufacturing, offering more efficient production and mass customization. Such advances have helped catalyzed the maker-movement, democratizing design and maker culture. This influx of new capabilities to design, compute and fabricate like never before, has sparked a renewed interest in material performance.
We are now witnessing significant advances in active matter, 3D/4D Printing, materials science, synthetic biology, DNA nanotechnology and soft robotics, which have led to the convergence of software, hardware and material technologies and the growing field of programmable materials.
This conference was about the emerging field of active matter and programmable materials that bridges the worlds of art, science, engineering and design, demonstrating new perspectives for computation, transformation and dynamic material applications.
If over the past few decades we have experienced a software revolution, and more recently, a hardware revolution, this conference aims to discuss the premises, challenges and innovations brought by today’s materials revolution. We can now sense, compute, and actuate with materials alone, just as we could with software and hardware platforms previously. How does this shift influence materials research, and how does it shape the future of design, arts, and industrial applications? What tools and design processes do we need to advance, augment and invent new materials today? What are the key roles that industry, government, academic and public institutions can play in catalyzing the field of programmable materials?
This two-day conference consisted of a range of talks and lively discussion from leading researchers in materials science, art & design, synthetic biology and soft-robotics along with leaders from government, public institutions and industry.
Learn more at activemattersummit.com
All photos ©L. Barry Hetherington
lbarryhetherington.com/
Please ask before use
In recent decades, developments in software and hardware technologies have created dramatic shifts in design, manufacturing and research. Software technologies have facilitated automated process and new solutions for complex problems. Computation has also become a platform for creativity through generative art and design. New hardware platforms and digital fabrication technologies have similarly transformed manufacturing, offering more efficient production and mass customization. Such advances have helped catalyzed the maker-movement, democratizing design and maker culture. This influx of new capabilities to design, compute and fabricate like never before, has sparked a renewed interest in material performance.
We are now witnessing significant advances in active matter, 3D/4D Printing, materials science, synthetic biology, DNA nanotechnology and soft robotics, which have led to the convergence of software, hardware and material technologies and the growing field of programmable materials.
This conference was about the emerging field of active matter and programmable materials that bridges the worlds of art, science, engineering and design, demonstrating new perspectives for computation, transformation and dynamic material applications.
If over the past few decades we have experienced a software revolution, and more recently, a hardware revolution, this conference aims to discuss the premises, challenges and innovations brought by today’s materials revolution. We can now sense, compute, and actuate with materials alone, just as we could with software and hardware platforms previously. How does this shift influence materials research, and how does it shape the future of design, arts, and industrial applications? What tools and design processes do we need to advance, augment and invent new materials today? What are the key roles that industry, government, academic and public institutions can play in catalyzing the field of programmable materials?
This two-day conference consisted of a range of talks and lively discussion from leading researchers in materials science, art & design, synthetic biology and soft-robotics along with leaders from government, public institutions and industry.
Learn more at activemattersummit.com
All photos ©L. Barry Hetherington
lbarryhetherington.com/
Please ask before use
In recent decades, developments in software and hardware technologies have created dramatic shifts in design, manufacturing and research. Software technologies have facilitated automated process and new solutions for complex problems. Computation has also become a platform for creativity through generative art and design. New hardware platforms and digital fabrication technologies have similarly transformed manufacturing, offering more efficient production and mass customization. Such advances have helped catalyzed the maker-movement, democratizing design and maker culture. This influx of new capabilities to design, compute and fabricate like never before, has sparked a renewed interest in material performance.
We are now witnessing significant advances in active matter, 3D/4D Printing, materials science, synthetic biology, DNA nanotechnology and soft robotics, which have led to the convergence of software, hardware and material technologies and the growing field of programmable materials.
This conference was about the emerging field of active matter and programmable materials that bridges the worlds of art, science, engineering and design, demonstrating new perspectives for computation, transformation and dynamic material applications.
If over the past few decades we have experienced a software revolution, and more recently, a hardware revolution, this conference aims to discuss the premises, challenges and innovations brought by today’s materials revolution. We can now sense, compute, and actuate with materials alone, just as we could with software and hardware platforms previously. How does this shift influence materials research, and how does it shape the future of design, arts, and industrial applications? What tools and design processes do we need to advance, augment and invent new materials today? What are the key roles that industry, government, academic and public institutions can play in catalyzing the field of programmable materials?
This two-day conference consisted of a range of talks and lively discussion from leading researchers in materials science, art & design, synthetic biology and soft-robotics along with leaders from government, public institutions and industry.
Learn more at activemattersummit.com
All photos ©L. Barry Hetherington
lbarryhetherington.com/
Please ask before use
In recent decades, developments in software and hardware technologies have created dramatic shifts in design, manufacturing and research. Software technologies have facilitated automated process and new solutions for complex problems. Computation has also become a platform for creativity through generative art and design. New hardware platforms and digital fabrication technologies have similarly transformed manufacturing, offering more efficient production and mass customization. Such advances have helped catalyzed the maker-movement, democratizing design and maker culture. This influx of new capabilities to design, compute and fabricate like never before, has sparked a renewed interest in material performance.
We are now witnessing significant advances in active matter, 3D/4D Printing, materials science, synthetic biology, DNA nanotechnology and soft robotics, which have led to the convergence of software, hardware and material technologies and the growing field of programmable materials.
This conference was about the emerging field of active matter and programmable materials that bridges the worlds of art, science, engineering and design, demonstrating new perspectives for computation, transformation and dynamic material applications.
If over the past few decades we have experienced a software revolution, and more recently, a hardware revolution, this conference aims to discuss the premises, challenges and innovations brought by today’s materials revolution. We can now sense, compute, and actuate with materials alone, just as we could with software and hardware platforms previously. How does this shift influence materials research, and how does it shape the future of design, arts, and industrial applications? What tools and design processes do we need to advance, augment and invent new materials today? What are the key roles that industry, government, academic and public institutions can play in catalyzing the field of programmable materials?
This two-day conference consisted of a range of talks and lively discussion from leading researchers in materials science, art & design, synthetic biology and soft-robotics along with leaders from government, public institutions and industry.
Learn more at activemattersummit.com
All photos ©L. Barry Hetherington
lbarryhetherington.com/
Please ask before use
In recent decades, developments in software and hardware technologies have created dramatic shifts in design, manufacturing and research. Software technologies have facilitated automated process and new solutions for complex problems. Computation has also become a platform for creativity through generative art and design. New hardware platforms and digital fabrication technologies have similarly transformed manufacturing, offering more efficient production and mass customization. Such advances have helped catalyzed the maker-movement, democratizing design and maker culture. This influx of new capabilities to design, compute and fabricate like never before, has sparked a renewed interest in material performance.
We are now witnessing significant advances in active matter, 3D/4D Printing, materials science, synthetic biology, DNA nanotechnology and soft robotics, which have led to the convergence of software, hardware and material technologies and the growing field of programmable materials.
This conference was about the emerging field of active matter and programmable materials that bridges the worlds of art, science, engineering and design, demonstrating new perspectives for computation, transformation and dynamic material applications.
If over the past few decades we have experienced a software revolution, and more recently, a hardware revolution, this conference aims to discuss the premises, challenges and innovations brought by today’s materials revolution. We can now sense, compute, and actuate with materials alone, just as we could with software and hardware platforms previously. How does this shift influence materials research, and how does it shape the future of design, arts, and industrial applications? What tools and design processes do we need to advance, augment and invent new materials today? What are the key roles that industry, government, academic and public institutions can play in catalyzing the field of programmable materials?
This two-day conference consisted of a range of talks and lively discussion from leading researchers in materials science, art & design, synthetic biology and soft-robotics along with leaders from government, public institutions and industry.
Learn more at activemattersummit.com
All photos ©L. Barry Hetherington
lbarryhetherington.com/
Please ask before use
In recent decades, developments in software and hardware technologies have created dramatic shifts in design, manufacturing and research. Software technologies have facilitated automated process and new solutions for complex problems. Computation has also become a platform for creativity through generative art and design. New hardware platforms and digital fabrication technologies have similarly transformed manufacturing, offering more efficient production and mass customization. Such advances have helped catalyzed the maker-movement, democratizing design and maker culture. This influx of new capabilities to design, compute and fabricate like never before, has sparked a renewed interest in material performance.
We are now witnessing significant advances in active matter, 3D/4D Printing, materials science, synthetic biology, DNA nanotechnology and soft robotics, which have led to the convergence of software, hardware and material technologies and the growing field of programmable materials.
This conference was about the emerging field of active matter and programmable materials that bridges the worlds of art, science, engineering and design, demonstrating new perspectives for computation, transformation and dynamic material applications.
If over the past few decades we have experienced a software revolution, and more recently, a hardware revolution, this conference aims to discuss the premises, challenges and innovations brought by today’s materials revolution. We can now sense, compute, and actuate with materials alone, just as we could with software and hardware platforms previously. How does this shift influence materials research, and how does it shape the future of design, arts, and industrial applications? What tools and design processes do we need to advance, augment and invent new materials today? What are the key roles that industry, government, academic and public institutions can play in catalyzing the field of programmable materials?
This two-day conference consisted of a range of talks and lively discussion from leading researchers in materials science, art & design, synthetic biology and soft-robotics along with leaders from government, public institutions and industry.
Learn more at activemattersummit.com
All photos ©L. Barry Hetherington
lbarryhetherington.com/
Please ask before use