View allAll Photos Tagged implied
Fish, any of approximately 34,000 species of vertebrate animals (phylum Chordata) found in the fresh and salt waters of the world. Living species range from the primitive jawless lampreys and hagfishes through the cartilaginous sharks, skates, and rays to the abundant and diverse bony fishes. Most fish species are cold-blooded; however, one species, the opah (Lampris guttatus), is warm-blooded.
The term fish is applied to a variety of vertebrates of several evolutionary lines. It describes a life-form rather than a taxonomic group. As members of the phylum Chordata, fish share certain features with other vertebrates. These features are gill slits at some point in the life cycle, a notochord, or skeletal supporting rod, a dorsal hollow nerve cord, and a tail. Living fishes represent some five classes, which are as distinct from one another as are the four classes of familiar air-breathing animals—amphibians, reptiles, birds, and mammals. For example, the jawless fishes (Agnatha) have gills in pouches and lack limb girdles. Extant agnathans are the lampreys and the hagfishes. As the name implies, the skeletons of fishes of the class Chondrichthyes (from chondr, “cartilage,” and ichthyes, “fish”) are made entirely of cartilage. Modern fish of this class lack a swim bladder, and their scales and teeth are made up of the same placoid material. Sharks, skates, and rays are examples of cartilaginous fishes. The bony fishes are by far the largest class. Examples range from the tiny seahorse to the 450-kg (1,000-pound) blue marlin, from the flattened soles and flounders to the boxy puffers and ocean sunfishes. Unlike the scales of the cartilaginous fishes, those of bony fishes, when present, grow throughout life and are made up of thin overlapping plates of bone. Bony fishes also have an operculum that covers the gill slits.
The study of fishes, the science of ichthyology, is of broad importance. Fishes are of interest to humans for many reasons, the most important being their relationship with and dependence on the environment. A more obvious reason for interest in fishes is their role as a moderate but important part of the world’s food supply. This resource, once thought unlimited, is now realized to be finite and in delicate balance with the biological, chemical, and physical factors of the aquatic environment. Overfishing, pollution, and alteration of the environment are the chief enemies of proper fisheries management, both in fresh waters and in the ocean. (For a detailed discussion of the technology and economics of fisheries, see commercial fishing.) Another practical reason for studying fishes is their use in disease control. As predators on mosquito larvae, they help curb malaria and other mosquito-borne diseases.
Fishes are valuable laboratory animals in many aspects of medical and biological research. For example, the readiness of many fishes to acclimate to captivity has allowed biologists to study behaviour, physiology, and even ecology under relatively natural conditions. Fishes have been especially important in the study of animal behaviour, where research on fishes has provided a broad base for the understanding of the more flexible behaviour of the higher vertebrates. The zebra fish is used as a model in studies of gene expression.
There are aesthetic and recreational reasons for an interest in fishes. Millions of people keep live fishes in home aquariums for the simple pleasure of observing the beauty and behaviour of animals otherwise unfamiliar to them. Aquarium fishes provide a personal challenge to many aquarists, allowing them to test their ability to keep a small section of the natural environment in their homes. Sportfishing is another way of enjoying the natural environment, also indulged in by millions of people every year. Interest in aquarium fishes and sportfishing supports multimillion-dollar industries throughout the world.
Fishes have been in existence for more than 450 million years, during which time they have evolved repeatedly to fit into almost every conceivable type of aquatic habitat. In a sense, land vertebrates are simply highly modified fishes: when fishes colonized the land habitat, they became tetrapod (four-legged) land vertebrates. The popular conception of a fish as a slippery, streamlined aquatic animal that possesses fins and breathes by gills applies to many fishes, but far more fishes deviate from that conception than conform to it. For example, the body is elongate in many forms and greatly shortened in others; the body is flattened in some (principally in bottom-dwelling fishes) and laterally compressed in many others; the fins may be elaborately extended, forming intricate shapes, or they may be reduced or even lost; and the positions of the mouth, eyes, nostrils, and gill openings vary widely. Air breathers have appeared in several evolutionary lines.
Many fishes are cryptically coloured and shaped, closely matching their respective environments; others are among the most brilliantly coloured of all organisms, with a wide range of hues, often of striking intensity, on a single individual. The brilliance of pigments may be enhanced by the surface structure of the fish, so that it almost seems to glow. A number of unrelated fishes have actual light-producing organs. Many fishes are able to alter their coloration—some for the purpose of camouflage, others for the enhancement of behavioral signals.
Fishes range in adult length from less than 10 mm (0.4 inch) to more than 20 metres (60 feet) and in weight from about 1.5 grams (less than 0.06 ounce) to many thousands of kilograms. Some live in shallow thermal springs at temperatures slightly above 42 °C (100 °F), others in cold Arctic seas a few degrees below 0 °C (32 °F) or in cold deep waters more than 4,000 metres (13,100 feet) beneath the ocean surface. The structural and, especially, the physiological adaptations for life at such extremes are relatively poorly known and provide the scientifically curious with great incentive for study.
Almost all natural bodies of water bear fish life, the exceptions being very hot thermal ponds and extremely salt-alkaline lakes, such as the Dead Sea in Asia and the Great Salt Lake in North America. The present distribution of fishes is a result of the geological history and development of Earth as well as the ability of fishes to undergo evolutionary change and to adapt to the available habitats. Fishes may be seen to be distributed according to habitat and according to geographical area. Major habitat differences are marine and freshwater. For the most part, the fishes in a marine habitat differ from those in a freshwater habitat, even in adjacent areas, but some, such as the salmon, migrate from one to the other. The freshwater habitats may be seen to be of many kinds. Fishes found in mountain torrents, Arctic lakes, tropical lakes, temperate streams, and tropical rivers will all differ from each other, both in obvious gross structure and in physiological attributes. Even in closely adjacent habitats where, for example, a tropical mountain torrent enters a lowland stream, the fish fauna will differ. The marine habitats can be divided into deep ocean floors (benthic), mid-water oceanic (bathypelagic), surface oceanic (pelagic), rocky coast, sandy coast, muddy shores, bays, estuaries, and others. Also, for example, rocky coastal shores in tropical and temperate regions will have different fish faunas, even when such habitats occur along the same coastline.
Although much is known about the present geographical distribution of fishes, far less is known about how that distribution came about. Many parts of the fish fauna of the fresh waters of North America and Eurasia are related and undoubtedly have a common origin. The faunas of Africa and South America are related, extremely old, and probably an expression of the drifting apart of the two continents. The fauna of southern Asia is related to that of Central Asia, and some of it appears to have entered Africa. The extremely large shore-fish faunas of the Indian and tropical Pacific oceans comprise a related complex, but the tropical shore fauna of the Atlantic, although containing Indo-Pacific components, is relatively limited and probably younger. The Arctic and Antarctic marine faunas are quite different from each other. The shore fauna of the North Pacific is quite distinct, and that of the North Atlantic more limited and probably younger. Pelagic oceanic fishes, especially those in deep waters, are similar the world over, showing little geographical isolation in terms of family groups. The deep oceanic habitat is very much the same throughout the world, but species differences do exist, showing geographical areas determined by oceanic currents and water masses.
All aspects of the life of a fish are closely correlated with adaptation to the total environment, physical, chemical, and biological. In studies, all the interdependent aspects of fish, such as behaviour, locomotion, reproduction, and physical and physiological characteristics, must be taken into account.
Correlated with their adaptation to an extremely wide variety of habitats is the extremely wide variety of life cycles that fishes display. The great majority hatch from relatively small eggs a few days to several weeks or more after the eggs are scattered in the water. Newly hatched young are still partially undeveloped and are called larvae until body structures such as fins, skeleton, and some organs are fully formed. Larval life is often very short, usually less than a few weeks, but it can be very long, some lampreys continuing as larvae for at least five years. Young and larval fishes, before reaching sexual maturity, must grow considerably, and their small size and other factors often dictate that they live in a habitat different than that of the adults. For example, most tropical marine shore fishes have pelagic larvae. Larval food also is different, and larval fishes often live in shallow waters, where they may be less exposed to predators.
After a fish reaches adult size, the length of its life is subject to many factors, such as innate rates of aging, predation pressure, and the nature of the local climate. The longevity of a species in the protected environment of an aquarium may have nothing to do with how long members of that species live in the wild. Many small fishes live only one to three years at the most. In some species, however, individuals may live as long as 10 or 20 or even 100 years.
Fish behaviour is a complicated and varied subject. As in almost all animals with a central nervous system, the nature of a response of an individual fish to stimuli from its environment depends upon the inherited characteristics of its nervous system, on what it has learned from past experience, and on the nature of the stimuli. Compared with the variety of human responses, however, that of a fish is stereotyped, not subject to much modification by “thought” or learning, and investigators must guard against anthropomorphic interpretations of fish behaviour.
Fishes perceive the world around them by the usual senses of sight, smell, hearing, touch, and taste and by special lateral line water-current detectors. In the few fishes that generate electric fields, a process that might best be called electrolocation aids in perception. One or another of these senses often is emphasized at the expense of others, depending upon the fish’s other adaptations. In fishes with large eyes, the sense of smell may be reduced; others, with small eyes, hunt and feed primarily by smell (such as some eels).
Specialized behaviour is primarily concerned with the three most important activities in the fish’s life: feeding, reproduction, and escape from enemies. Schooling behaviour of sardines on the high seas, for instance, is largely a protective device to avoid enemies, but it is also associated with and modified by their breeding and feeding requirements. Predatory fishes are often solitary, lying in wait to dart suddenly after their prey, a kind of locomotion impossible for beaked parrot fishes, which feed on coral, swimming in small groups from one coral head to the next. In addition, some predatory fishes that inhabit pelagic environments, such as tunas, often school.
Sleep in fishes, all of which lack true eyelids, consists of a seemingly listless state in which the fish maintains its balance but moves slowly. If attacked or disturbed, most can dart away. A few kinds of fishes lie on the bottom to sleep. Most catfishes, some loaches, and some eels and electric fishes are strictly nocturnal, being active and hunting for food during the night and retiring during the day to holes, thick vegetation, or other protective parts of the environment.
Communication between members of a species or between members of two or more species often is extremely important, especially in breeding behaviour (see below Reproduction). The mode of communication may be visual, as between the small so-called cleaner fish and a large fish of a very different species. The larger fish often allows the cleaner to enter its mouth to remove gill parasites. The cleaner is recognized by its distinctive colour and actions and therefore is not eaten, even if the larger fish is normally a predator. Communication is often chemical, signals being sent by specific chemicals called pheromones.
Many fishes have a streamlined body and swim freely in open water. Fish locomotion is closely correlated with habitat and ecological niche (the general position of the animal to its environment).
Many fishes in both marine and fresh waters swim at the surface and have mouths adapted to feed best (and sometimes only) at the surface. Often such fishes are long and slender, able to dart at surface insects or at other surface fishes and in turn to dart away from predators; needlefishes, halfbeaks, and topminnows (such as killifish and mosquito fish) are good examples. Oceanic flying fishes escape their predators by gathering speed above the water surface, with the lower lobe of the tail providing thrust in the water. They then glide hundreds of yards on enlarged, winglike pectoral and pelvic fins. South American freshwater flying fishes escape their enemies by jumping and propelling their strongly keeled bodies out of the water.
So-called mid-water swimmers, the most common type of fish, are of many kinds and live in many habitats. The powerful fusiform tunas and the trouts, for example, are adapted for strong, fast swimming, the tunas to capture prey speedily in the open ocean and the trouts to cope with the swift currents of streams and rivers. The trout body form is well adapted to many habitats. Fishes that live in relatively quiet waters such as bays or lake shores or slow rivers usually are not strong, fast swimmers but are capable of short, quick bursts of speed to escape a predator. Many of these fishes have their sides flattened, examples being the sunfish and the freshwater angelfish of aquarists. Fish associated with the bottom or substrate usually are slow swimmers. Open-water plankton-feeding fishes almost always remain fusiform and are capable of rapid, strong movement (for example, sardines and herrings of the open ocean and also many small minnows of streams and lakes).
Bottom-living fishes are of many kinds and have undergone many types of modification of their body shape and swimming habits. Rays, which evolved from strong-swimming mid-water sharks, usually stay close to the bottom and move by undulating their large pectoral fins. Flounders live in a similar habitat and move over the bottom by undulating the entire body. Many bottom fishes dart from place to place, resting on the bottom between movements, a motion common in gobies. One goby relative, the mudskipper, has taken to living at the edge of pools along the shore of muddy mangrove swamps. It escapes its enemies by flipping rapidly over the mud, out of the water. Some catfishes, synbranchid eels, the so-called climbing perch, and a few other fishes venture out over damp ground to find more promising waters than those that they left. They move by wriggling their bodies, sometimes using strong pectoral fins; most have accessory air-breathing organs. Many bottom-dwelling fishes live in mud holes or rocky crevices. Marine eels and gobies commonly are found in such habitats and for the most part venture far beyond their cavelike homes. Some bottom dwellers, such as the clingfishes (Gobiesocidae), have developed powerful adhesive disks that enable them to remain in place on the substrate in areas such as rocky coasts, where the action of the waves is great.
The methods of reproduction in fishes are varied, but most fishes lay a large number of small eggs, fertilized and scattered outside of the body. The eggs of pelagic fishes usually remain suspended in the open water. Many shore and freshwater fishes lay eggs on the bottom or among plants. Some have adhesive eggs. The mortality of the young and especially of the eggs is very high, and often only a few individuals grow to maturity out of hundreds, thousands, and in some cases millions of eggs laid.
Males produce sperm, usually as a milky white substance called milt, in two (sometimes one) testes within the body cavity. In bony fishes a sperm duct leads from each testis to a urogenital opening behind the vent or anus. In sharks and rays and in cyclostomes the duct leads to a cloaca. Sometimes the pelvic fins are modified to help transmit the milt to the eggs at the female’s vent or on the substrate where the female has placed them. Sometimes accessory organs are used to fertilize females internally—for example, the claspers of many sharks and rays.
In the females the eggs are formed in two ovaries (sometimes only one) and pass through the ovaries to the urogenital opening and to the outside. In some fishes the eggs are fertilized internally but are shed before development takes place. Members of about a dozen families each of bony fishes (teleosts) and sharks bear live young. Many skates and rays also bear live young. In some bony fishes the eggs simply develop within the female, the young emerging when the eggs hatch (ovoviviparous). Others develop within the ovary and are nourished by ovarian tissues after hatching (viviparous). There are also other methods utilized by fishes to nourish young within the female. In all live-bearers the young are born at a relatively large size and are few in number. In one family of primarily marine fishes, the surfperches from the Pacific coast of North America, Japan, and Korea, the males of at least one species are born sexually mature, although they are not fully grown.
Some fishes are hermaphroditic—an individual producing both sperm and eggs, usually at different stages of its life. Self-fertilization, however, is probably rare.
Successful reproduction and, in many cases, defense of the eggs and the young are assured by rather stereotypical but often elaborate courtship and parental behaviour, either by the male or the female or both. Some fishes prepare nests by hollowing out depressions in the sand bottom (cichlids, for example), build nests with plant materials and sticky threads excreted by the kidneys (sticklebacks), or blow a cluster of mucus-covered bubbles at the water surface (gouramis). The eggs are laid in these structures. Some varieties of cichlids and catfishes incubate eggs in their mouths.
Some fishes, such as salmon, undergo long migrations from the ocean and up large rivers to spawn in the gravel beds where they themselves hatched (anadromous fishes). Some, such as the freshwater eels (family Anguillidae), live and grow to maturity in fresh water and migrate to the sea to spawn (catadromous fishes). Other fishes undertake shorter migrations from lakes into streams, within the ocean, or enter spawning habitats that they do not ordinarily occupy in other ways.
The basic structure and function of the fish body are similar to those of all other vertebrates. The usual four types of tissues are present: surface or epithelial, connective (bone, cartilage, and fibrous tissues, as well as their derivative, blood), nerve, and muscle tissues. In addition, the fish’s organs and organ systems parallel those of other vertebrates.
The typical fish body is streamlined and spindle-shaped, with an anterior head, a gill apparatus, and a heart, the latter lying in the midline just below the gill chamber. The body cavity, containing the vital organs, is situated behind the head in the lower anterior part of the body. The anus usually marks the posterior termination of the body cavity and most often occurs just in front of the base of the anal fin. The spinal cord and vertebral column continue from the posterior part of the head to the base of the tail fin, passing dorsal to the body cavity and through the caudal (tail) region behind the body cavity. Most of the body is of muscular tissue, a high proportion of which is necessitated by swimming. In the course of evolution this basic body plan has been modified repeatedly into the many varieties of fish shapes that exist today.
The skeleton forms an integral part of the fish’s locomotion system, as well as serving to protect vital parts. The internal skeleton consists of the skull bones (except for the roofing bones of the head, which are really part of the external skeleton), the vertebral column, and the fin supports (fin rays). The fin supports are derived from the external skeleton but will be treated here because of their close functional relationship to the internal skeleton. The internal skeleton of cyclostomes, sharks, and rays is of cartilage; that of many fossil groups and some primitive living fishes is mostly of cartilage but may include some bone. In place of the vertebral column, the earliest vertebrates had a fully developed notochord, a flexible stiff rod of viscous cells surrounded by a strong fibrous sheath. During the evolution of modern fishes the rod was replaced in part by cartilage and then by ossified cartilage. Sharks and rays retain a cartilaginous vertebral column; bony fishes have spool-shaped vertebrae that in the more primitive living forms only partially replace the notochord. The skull, including the gill arches and jaws of bony fishes, is fully, or at least partially, ossified. That of sharks and rays remains cartilaginous, at times partially replaced by calcium deposits but never by true bone.
The supportive elements of the fins (basal or radial bones or both) have changed greatly during fish evolution. Some of these changes are described in the section below (Evolution and paleontology). Most fishes possess a single dorsal fin on the midline of the back. Many have two and a few have three dorsal fins. The other fins are the single tail and anal fins and paired pelvic and pectoral fins. A small fin, the adipose fin, with hairlike fin rays, occurs in many of the relatively primitive teleosts (such as trout) on the back near the base of the caudal fin.
The skin of a fish must serve many functions. It aids in maintaining the osmotic balance, provides physical protection for the body, is the site of coloration, contains sensory receptors, and, in some fishes, functions in respiration. Mucous glands, which aid in maintaining the water balance and offer protection from bacteria, are extremely numerous in fish skin, especially in cyclostomes and teleosts. Since mucous glands are present in the modern lampreys, it is reasonable to assume that they were present in primitive fishes, such as the ancient Silurian and Devonian agnathans. Protection from abrasion and predation is another function of the fish skin, and dermal (skin) bone arose early in fish evolution in response to this need. It is thought that bone first evolved in skin and only later invaded the cartilaginous areas of the fish’s body, to provide additional support and protection. There is some argument as to which came first, cartilage or bone, and fossil evidence does not settle the question. In any event, dermal bone has played an important part in fish evolution and has different characteristics in different groups of fishes. Several groups are characterized at least in part by the kind of bony scales they possess.
Scales have played an important part in the evolution of fishes. Primitive fishes usually had thick bony plates or thick scales in several layers of bone, enamel, and related substances. Modern teleost fishes have scales of bone, which, while still protective, allow much more freedom of motion in the body. A few modern teleosts (some catfishes, sticklebacks, and others) have secondarily acquired bony plates in the skin. Modern and early sharks possessed placoid scales, a relatively primitive type of scale with a toothlike structure, consisting of an outside layer of enamel-like substance (vitrodentine), an inner layer of dentine, and a pulp cavity containing nerves and blood vessels. Primitive bony fishes had thick scales of either the ganoid or the cosmoid type. Cosmoid scales have a hard, enamel-like outer layer, an inner layer of cosmine (a form of dentine), and then a layer of vascular bone (isopedine). In ganoid scales the hard outer layer is different chemically and is called ganoin. Under this is a cosminelike layer and then a vascular bony layer. The thin, translucent bony scales of modern fishes, called cycloid and ctenoid (the latter distinguished by serrations at the edges), lack enameloid and dentine layers.
Skin has several other functions in fishes. It is well supplied with nerve endings and presumably receives tactile, thermal, and pain stimuli. Skin is also well supplied with blood vessels. Some fishes breathe in part through the skin, by the exchange of oxygen and carbon dioxide between the surrounding water and numerous small blood vessels near the skin surface.
Skin serves as protection through the control of coloration. Fishes exhibit an almost limitless range of colours. The colours often blend closely with the surroundings, effectively hiding the animal. Many fishes use bright colours for territorial advertisement or as recognition marks for other members of their own species, or sometimes for members of other species. Many fishes can change their colour to a greater or lesser degree, by movement of pigment within the pigment cells (chromatophores). Black pigment cells (melanophores), of almost universal occurrence in fishes, are often juxtaposed with other pigment cells. When placed beneath iridocytes or leucophores (bearing the silvery or white pigment guanine), melanophores produce structural colours of blue and green. These colours are often extremely intense, because they are formed by refraction of light through the needlelike crystals of guanine. The blue and green refracted colours are often relatively pure, lacking the red and yellow rays, which have been absorbed by the black pigment (melanin) of the melanophores. Yellow, orange, and red colours are produced by erythrophores, cells containing the appropriate carotenoid pigments. Other colours are produced by combinations of melanophores, erythrophores, and iridocytes.
The major portion of the body of most fishes consists of muscles. Most of the mass is trunk musculature, the fin muscles usually being relatively small. The caudal fin is usually the most powerful fin, being moved by the trunk musculature. The body musculature is usually arranged in rows of chevron-shaped segments on each side. Contractions of these segments, each attached to adjacent vertebrae and vertebral processes, bends the body on the vertebral joint, producing successive undulations of the body, passing from the head to the tail, and producing driving strokes of the tail. It is the latter that provides the strong forward movement for most fishes.
The digestive system, in a functional sense, starts at the mouth, with the teeth used to capture prey or collect plant foods. Mouth shape and tooth structure vary greatly in fishes, depending on the kind of food normally eaten. Most fishes are predacious, feeding on small invertebrates or other fishes and have simple conical teeth on the jaws, on at least some of the bones of the roof of the mouth, and on special gill arch structures just in front of the esophagus. The latter are throat teeth. Most predacious fishes swallow their prey whole, and the teeth are used for grasping and holding prey, for orienting prey to be swallowed (head first) and for working the prey toward the esophagus. There are a variety of tooth types in fishes. Some fishes, such as sharks and piranhas, have cutting teeth for biting chunks out of their victims. A shark’s tooth, although superficially like that of a piranha, appears in many respects to be a modified scale, while that of the piranha is like that of other bony fishes, consisting of dentine and enamel. Parrot fishes have beaklike mouths with short incisor-like teeth for breaking off coral and have heavy pavementlike throat teeth for crushing the coral. Some catfishes have small brushlike teeth, arranged in rows on the jaws, for scraping plant and animal growth from rocks. Many fishes (such as the Cyprinidae or minnows) have no jaw teeth at all but have very strong throat teeth.
Some fishes gather planktonic food by straining it from their gill cavities with numerous elongate stiff rods (gill rakers) anchored by one end to the gill bars. The food collected on these rods is passed to the throat, where it is swallowed. Most fishes have only short gill rakers that help keep food particles from escaping out the mouth cavity into the gill chamber.
Once reaching the throat, food enters a short, often greatly distensible esophagus, a simple tube with a muscular wall leading into a stomach. The stomach varies greatly in fishes, depending upon the diet. In most predacious fishes it is a simple straight or curved tube or pouch with a muscular wall and a glandular lining. Food is largely digested there and leaves the stomach in liquid form.
Between the stomach and the intestine, ducts enter the digestive tube from the liver and pancreas. The liver is a large, clearly defined organ. The pancreas may be embedded in it, diffused through it, or broken into small parts spread along some of the intestine. The junction between the stomach and the intestine is marked by a muscular valve. Pyloric ceca (blind sacs) occur in some fishes at this junction and have a digestive or absorptive function or both.
The intestine itself is quite variable in length, depending upon the fish’s diet. It is short in predacious forms, sometimes no longer than the body cavity, but long in herbivorous forms, being coiled and several times longer than the entire length of the fish in some species of South American catfishes. The intestine is primarily an organ for absorbing nutrients into the bloodstream. The larger its internal surface, the greater its absorptive efficiency, and a spiral valve is one method of increasing its absorption surface.
Sharks, rays, chimaeras, lungfishes, surviving chondrosteans, holosteans, and even a few of the more primitive teleosts have a spiral valve or at least traces of it in the intestine. Most modern teleosts have increased the area of the intestinal walls by having numerous folds and villi (fingerlike projections) somewhat like those in humans. Undigested substances are passed to the exterior through the anus in most teleost fishes. In lungfishes, sharks, and rays, it is first passed through the cloaca, a common cavity receiving the intestinal opening and the ducts from the urogenital system.
Oxygen and carbon dioxide dissolve in water, and most fishes exchange dissolved oxygen and carbon dioxide in water by means of the gills. The gills lie behind and to the side of the mouth cavity and consist of fleshy filaments supported by the gill arches and filled with blood vessels, which give gills a bright red colour. Water taken in continuously through the mouth passes backward between the gill bars and over the gill filaments, where the exchange of gases takes place. The gills are protected by a gill cover in teleosts and many other fishes but by flaps of skin in sharks, rays, and some of the older fossil fish groups. The blood capillaries in the gill filaments are close to the gill surface to take up oxygen from the water and to give up excess carbon dioxide to the water.
Most modern fishes have a hydrostatic (ballast) organ, called the swim bladder, that lies in the body cavity just below the kidney and above the stomach and intestine. It originated as a diverticulum of the digestive canal. In advanced teleosts, especially the acanthopterygians, the bladder has lost its connection with the digestive tract, a condition called physoclistic. The connection has been retained (physostomous) by many relatively primitive teleosts. In several unrelated lines of fishes, the bladder has become specialized as a lung or, at least, as a highly vascularized accessory breathing organ. Some fishes with such accessory organs are obligate air breathers and will drown if denied access to the surface, even in well-oxygenated water. Fishes with a hydrostatic form of swim bladder can control their depth by regulating the amount of gas in the bladder. The gas, mostly oxygen, is secreted into the bladder by special glands, rendering the fish more buoyant; the gas is absorbed into the bloodstream by another special organ, reducing the overall buoyancy and allowing the fish to sink. Some deep-sea fishes may have oils, rather than gas, in the bladder. Other deep-sea and some bottom-living forms have much-reduced swim bladders or have lost the organ entirely.
The swim bladder of fishes follows the same developmental pattern as the lungs of land vertebrates. There is no doubt that the two structures have the same historical origin in primitive fishes. More or less intermediate forms still survive among the more primitive types of fishes, such as the lungfishes Lepidosiren and Protopterus.
The circulatory, or blood vascular, system consists of the heart, the arteries, the capillaries, and the veins. It is in the capillaries that the interchange of oxygen, carbon dioxide, nutrients, and other substances such as hormones and waste products takes place. The capillaries lead to the veins, which return the venous blood with its waste products to the heart, kidneys, and gills. There are two kinds of capillary beds: those in the gills and those in the rest of the body. The heart, a folded continuous muscular tube with three or four saclike enlargements, undergoes rhythmic contractions and receives venous blood in a sinus venosus. It passes the blood to an auricle and then into a thick muscular pump, the ventricle. From the ventricle the blood goes to a bulbous structure at the base of a ventral aorta just below the gills. The blood passes to the afferent (receiving) arteries of the gill arches and then to the gill capillaries. There waste gases are given off to the environment, and oxygen is absorbed. The oxygenated blood enters efferent (exuant) arteries of the gill arches and then flows into the dorsal aorta. From there blood is distributed to the tissues and organs of the body. One-way valves prevent backflow. The circulation of fishes thus differs from that of the reptiles, birds, and mammals in that oxygenated blood is not returned to the heart prior to distribution to the other parts of the body.
The primary excretory organ in fishes, as in other vertebrates, is the kidney. In fishes some excretion also takes place in the digestive tract, skin, and especially the gills (where ammonia is given off). Compared with land vertebrates, fishes have a special problem in maintaining their internal environment at a constant concentration of water and dissolved substances, such as salts. Proper balance of the internal environment (homeostasis) of a fish is in a great part maintained by the excretory system, especially the kidney.
The kidney, gills, and skin play an important role in maintaining a fish’s internal environment and checking the effects of osmosis. Marine fishes live in an environment in which the water around them has a greater concentration of salts than they can have inside their body and still maintain life. Freshwater fishes, on the other hand, live in water with a much lower concentration of salts than they require inside their bodies. Osmosis tends to promote the loss of water from the body of a marine fish and absorption of water by that of a freshwater fish. Mucus in the skin tends to slow the process but is not a sufficient barrier to prevent the movement of fluids through the permeable skin. When solutions on two sides of a permeable membrane have different concentrations of dissolved substances, water will pass through the membrane into the more concentrated solution, while the dissolved chemicals move into the area of lower concentration (diffusion).
The kidney of freshwater fishes is often larger in relation to body weight than that of marine fishes. In both groups the kidney excretes wastes from the body, but the kidney of freshwater fishes also excretes large amounts of water, counteracting the water absorbed through the skin. Freshwater fishes tend to lose salt to the environment and must replace it. They get some salt from their food, but the gills and skin inside the mouth actively absorb salt from water passed through the mouth. This absorption is performed by special cells capable of moving salts against the diffusion gradient. Freshwater fishes drink very little water and take in little water with their food.
Marine fishes must conserve water, and therefore their kidneys excrete little water. To maintain their water balance, marine fishes drink large quantities of seawater, retaining most of the water and excreting the salt. Most nitrogenous waste in marine fishes appears to be secreted by the gills as ammonia. Marine fishes can excrete salt by clusters of special cells (chloride cells) in the gills.
There are several teleosts—for example, the salmon—that travel between fresh water and seawater and must adjust to the reversal of osmotic gradients. They adjust their physiological processes by spending time (often surprisingly little time) in the intermediate brackish environment.
Marine hagfishes, sharks, and rays have osmotic concentrations in their blood about equal to that of seawater and so do not have to drink water nor perform much physiological work to maintain their osmotic balance. In sharks and rays the osmotic concentration is kept high by retention of urea in the blood. Freshwater sharks have a lowered concentration of urea in the blood.
Endocrine glands secrete their products into the bloodstream and body tissues and, along with the central nervous system, control and regulate many kinds of body functions. Cyclostomes have a well-developed endocrine system, and presumably it was well developed in the early Agnatha, ancestral to modern fishes. Although the endocrine system in fishes is similar to that of higher vertebrates, there are numerous differences in detail. The pituitary, the thyroid, the suprarenals, the adrenals, the pancreatic islets, the sex glands (ovaries and testes), the inner wall of the intestine, and the bodies of the ultimobranchial gland make up the endocrine system in fishes. There are some others whose function is not well understood. These organs regulate sexual activity and reproduction, growth, osmotic pressure, general metabolic activities such as the storage of fat and the utilization of foodstuffs, blood pressure, and certain aspects of skin colour. Many of these activities are also controlled in part by the central nervous system, which works with the endocrine system in maintaining the life of a fish. Some parts of the endocrine system are developmentally, and undoubtedly evolutionarily, derived from the nervous system.
As in all vertebrates, the nervous system of fishes is the primary mechanism coordinating body activities, as well as integrating these activities in the appropriate manner with stimuli from the environment. The central nervous system, consisting of the brain and spinal cord, is the primary integrating mechanism. The peripheral nervous system, consisting of nerves that connect the brain and spinal cord to various body organs, carries sensory information from special receptor organs such as the eyes, internal ears, nares (sense of smell), taste glands, and others to the integrating centres of the brain and spinal cord. The peripheral nervous system also carries information via different nerve cells from the integrating centres of the brain and spinal cord. This coded information is carried to the various organs and body systems, such as the skeletal muscular system, for appropriate action in response to the original external or internal stimulus. Another branch of the nervous system, the autonomic nervous system, helps to coordinate the activities of many glands and organs and is itself closely connected to the integrating centres of the brain.
The brain of the fish is divided into several anatomical and functional parts, all closely interconnected but each serving as the primary centre of integrating particular kinds of responses and activities. Several of these centres or parts are primarily associated with one type of sensory perception, such as sight, hearing, or smell (olfaction).
The sense of smell is important in almost all fishes. Certain eels with tiny eyes depend mostly on smell for location of food. The olfactory, or nasal, organ of fishes is located on the dorsal surface of the snout. The lining of the nasal organ has special sensory cells that perceive chemicals dissolved in the water, such as substances from food material, and send sensory information to the brain by way of the first cranial nerve. Odour also serves as an alarm system. Many fishes, especially various species of freshwater minnows, react with alarm to a chemical released from the skin of an injured member of their own species.
Many fishes have a well-developed sense of taste, and tiny pitlike taste buds or organs are located not only within their mouth cavities but also over their heads and parts of their body. Catfishes, which often have poor vision, have barbels (“whiskers”) that serve as supplementary taste organs, those around the mouth being actively used to search out food on the bottom. Some species of naturally blind cave fishes are especially well supplied with taste buds, which often cover most of their body surface.
Sight is extremely important in most fishes. The eye of a fish is basically like that of all other vertebrates, but the eyes of fishes are extremely varied in structure and adaptation. In general, fishes living in dark and dim water habitats have large eyes, unless they have specialized in some compensatory way so that another sense (such as smell) is dominant, in which case the eyes will often be reduced. Fishes living in brightly lighted shallow waters often will have relatively small but efficient eyes. Cyclostomes have somewhat less elaborate eyes than other fishes, with skin stretched over the eyeball perhaps making their vision somewhat less effective. Most fishes have a spherical lens and accommodate their vision to far or near subjects by moving the lens within the eyeball. A few sharks accommodate by changing the shape of the lens, as in land vertebrates. Those fishes that are heavily dependent upon the eyes have especially strong muscles for accommodation. Most fishes see well, despite the restrictions imposed by frequent turbidity of the water and by light refraction.
Fossil evidence suggests that colour vision evolved in fishes more than 300 million years ago, but not all living fishes have retained this ability. Experimental evidence indicates that many shallow-water fishes, if not all, have colour vision and see some colours especially well, but some bottom-dwelling shore fishes live in areas where the water is sufficiently deep to filter out most if not all colours, and these fishes apparently never see colours. When tested in shallow water, they apparently are unable to respond to colour differences.
Sound perception and balance are intimately associated senses in a fish. The organs of hearing are entirely internal, located within the skull, on each side of the brain and somewhat behind the eyes. Sound waves, especially those of low frequencies, travel readily through water and impinge directly upon the bones and fluids of the head and body, to be transmitted to the hearing organs. Fishes readily respond to sound; for example, a trout conditioned to escape by the approach of fishermen will take flight upon perceiving footsteps on a stream bank even if it cannot see a fisherman. Compared with humans, however, the range of sound frequencies heard by fishes is greatly restricted. Many fishes communicate with each other by producing sounds in their swim bladders, in their throats by rasping their teeth, and in other ways.
A fish or other vertebrate seldom has to rely on a single type of sensory information to determine the nature of the environment around it. A catfish uses taste and touch when examining a food object with its oral barbels. Like most other animals, fishes have many touch receptors over their body surface. Pain and temperature receptors also are present in fishes and presumably produce the same kind of information to a fish as to humans. Fishes react in a negative fashion to stimuli that would be painful to human beings, suggesting that they feel a sensation of pain.
An important sensory system in fishes that is absent in other vertebrates (except some amphibians) is the lateral line system. This consists of a series of heavily innervated small canals located in the skin and bone around the eyes, along the lower jaw, over the head, and down the mid-side of the body, where it is associated with the scales. Intermittently along these canals are located tiny sensory organs (pit organs) that apparently detect changes in pressure. The system allows a fish to sense changes in water currents and pressure, thereby helping the fish to orient itself to the various changes that occur in the physical environment.
The ruins at Aphendrika were first identified as the ancient city of Ourania by the British archaeologist David
George Hogarth (1889) and the Cypriot scholar Ieronymos Peristianis (1910). The site preserves the remains
of an ancient settlement with a harbour, which possibly thrived during the Classical Period. Three ruined
churches and other architectural remains imply that the site prospered again from the Early to the Middle
Byzantine Period (6th - 12th century). These churches are the basilica of Panagia Aphendrika, the basilica of
Asomatos and the church of Agios Georgios.
The standing church of Panagia Aphentrika is a 16th century single-aisled vaulted chapel with a pointed vault.
This church was built within the west part of the nave of an earlier barrel-vaulted basilica (8th century), which
was in turn built over a timber-roofed basilica of the 6th century A.D. Little is known about the internal
decoration and the liturgical furnishings of Panagia Aphentrika. The original floor has never been unearthed.
The marble base of the templon (iconostasis: barrier with icons in front of the Holy Bema) of the 16th century
church, may belong to the original 6th century liturgical installations.
Asomatos church is located approximately 30 meters south of Panagia Aphentrika. The two churches have a
similar ground plan and construction characteristics but the first one is smaller. The original 6th century
Asomatos church was a timber roofed, three-aisled basilica with three apses to the east end. The nave was
divided from the aisles by two colonnades of five limestone columns, crowned with stone capitals of local
production.
Like Panagia Aphentrika, Asomatos church was converted into a vaulted basilica at the end of the 8th century,
utilizing the original ground plan. The three apses and the synthronon were reused from the previous phase.
However, unlike Panagia, the north, south and west walls were completely rebuilt upon earlier foundations.
The 6th century arcades were replaced by two pier arcades consisting of three cross-shaped piers. The
synthronon is the only liturgical furnishing which is still in situ and probably belongs to the original phase of
the basilica.
The small single-aisled church of Agios Georgios lies about 50 meters west of Panagia Aphentrika. It has a
symmetrical twin apse built in ashlar blocks. It is one of the two churches in Cyprus with a double apse (the
other one is Agios Georgios at Choulou, Paphos). It was previously covered with a dome on transverse round
arches. Originally, the church was may have been decorated with wall paintings. It has been suggested that
Agios Georgios is the earliest surviving domed building in Cyprus, dated between the 9th and the 10th
centuries.
The Karpas Peninsula (Greek: Καρπασία "Karpasía"; Turkish: Karpaz), also known as the Karpass, Karpaz or Karpasia, is a long, finger-like peninsula that is one of the most prominent geographical features of the island of Cyprus. Its farthest extent is Cape Apostolos Andreas, and its major population centre is the town of Rizokarpaso (Greek: Ριζοκάρπασο; Turkish: Dipkarpaz). The peninsula de facto forms the İskele District of Northern Cyprus, while de jure it lies in the Famagusta District of the Republic of Cyprus.
It covers an area of 898 km2, making up 27% of the territory of Northern Cyprus. It is much less densely populated than the average of Northern Cyprus, with a population density of 26 people per km2 in 2010. The town of Trikomo (İskele), the district capital, is considered to be the "gateway" and the geographical starting point of the peninsula, along with the neighboring village of Bogazi (Boğaz). Apart from Trikomo, the most important towns and municipalities in the area are Yialousa, Galateia, Rizokarpaso, Komi Kebir and Akanthou.
The peninsula hosts a number of historical sites such as Kantara Castle and Apostolos Andreas Monastery, as well as the ruins of Agia Trias Basilica and the ancient cities of Karpasia and Aphendrika among numerous others.
There are more than 46 sandy beaches in the peninsula, which are the primary Eastern Mediterranean nesting grounds for the loggerhead (Caretta caretta) and green sea turtles (Chelonia mydas). The Golden Beach is situated around 15 km from the town of Rizokarpaso and is considered one of the finest and most remote beaches of Cyprus. It is one of the least tourist-frequented beaches in the island. The Karpas Peninsula is home to the Karpas donkey, known as a symbol of Cyprus; there are campaigns carried out jointly by Turkish and Greek Cypriots to conserve the rare donkeys of the peninsula.
Most of the activities in the Karpas Peninsula are related to agriculture, fishing, hunting, and some to micro-tourism. Local farmers take advantage of this natural environment to grow different fruits and vegetables mostly as sub-subsistence farming (although for local commerce too). The region is mostly known for its karpuz (Turkish for "watermelon"). Several tourist businesses can be found in the town of Rizokarpaso. These are generally restaurants serving traditional Turkish-Cypriot Cuisine, including meze.
Due to its geographical position, the Karpas Peninsula is somewhat protected from human interference. This makes it a pristine natural environment, home to many inland and marine species. When hunting season starts, the Karpas's forests are a popular location to go hunting for partridges. Meanwhile, the coastal region, with its clear waters, moderate northern currents, and rocky bottom with cave-like structures, is home to two of the most highly valued fish species: the orfoz (dusky grouper) and lahos (Epinepheluses). The price per kilogram of each species ranges from 35-80 Turkish lira, depending on the location and the season. However, fishing rates in the Karpas region and most of North Cyprus dramatically decreased last century because of the use of dynamite. This is why the Zafer Burunu (the tip of the peninsula) is now a protected natural heritage area, where marine species are slowly recovering to healthy population parameters.
Northern Cyprus, officially the Turkish Republic of Northern Cyprus (TRNC), is a de facto state that comprises the northeastern portion of the island of Cyprus. It is recognised only by Turkey, and its territory is considered by all other states to be part of the Republic of Cyprus.
Northern Cyprus extends from the tip of the Karpass Peninsula in the northeast to Morphou Bay, Cape Kormakitis and its westernmost point, the Kokkina exclave in the west. Its southernmost point is the village of Louroujina. A buffer zone under the control of the United Nations stretches between Northern Cyprus and the rest of the island and divides Nicosia, the island's largest city and capital of both sides.
A coup d'état in 1974, performed as part of an attempt to annex the island to Greece, prompted the Turkish invasion of Cyprus. This resulted in the eviction of much of the north's Greek Cypriot population, the flight of Turkish Cypriots from the south, and the partitioning of the island, leading to a unilateral declaration of independence by the north in 1983. Due to its lack of recognition, Northern Cyprus is heavily dependent on Turkey for economic, political and military support.
Attempts to reach a solution to the Cyprus dispute have been unsuccessful. The Turkish Army maintains a large force in Northern Cyprus with the support and approval of the TRNC government, while the Republic of Cyprus, the European Union as a whole, and the international community regard it as an occupation force. This military presence has been denounced in several United Nations Security Council resolutions.
Northern Cyprus is a semi-presidential, democratic republic with a cultural heritage incorporating various influences and an economy that is dominated by the services sector. The economy has seen growth through the 2000s and 2010s, with the GNP per capita more than tripling in the 2000s, but is held back by an international embargo due to the official closure of the ports in Northern Cyprus by the Republic of Cyprus. The official language is Turkish, with a distinct local dialect being spoken. The vast majority of the population consists of Sunni Muslims, while religious attitudes are mostly moderate and secular. Northern Cyprus is an observer state of ECO and OIC under the name "Turkish Cypriot State", PACE under the name "Turkish Cypriot Community", and Organization of Turkic States with its own name.
Several distinct periods of Cypriot intercommunal violence involving the two main ethnic communities, Greek Cypriots and Turkish Cypriots, marked mid-20th century Cyprus. These included the Cyprus Emergency of 1955–59 during British rule, the post-independence Cyprus crisis of 1963–64, and the Cyprus crisis of 1967. Hostilities culminated in the 1974 de facto division of the island along the Green Line following the Turkish invasion of Cyprus. The region has been relatively peaceful since then, but the Cyprus dispute has continued, with various attempts to solve it diplomatically having been generally unsuccessful.
Cyprus, an island lying in the eastern Mediterranean, hosted a population of Greeks and Turks (four-fifths and one-fifth, respectively), who lived under British rule in the late nineteenth-century and the first half of the twentieth-century. Christian Orthodox Church of Cyprus played a prominent political role among the Greek Cypriot community, a privilege that it acquired during the Ottoman Empire with the employment of the millet system, which gave the archbishop an unofficial ethnarch status.
The repeated rejections by the British of Greek Cypriot demands for enosis, union with Greece, led to armed resistance, organised by the National Organization of Cypriot Struggle, or EOKA. EOKA, led by the Greek-Cypriot commander George Grivas, systematically targeted British colonial authorities. One of the effects of EOKA's campaign was to alter the Turkish position from demanding full reincorporation into Turkey to a demand for taksim (partition). EOKA's mission and activities caused a "Cretan syndrome" (see Turkish Resistance Organisation) within the Turkish Cypriot community, as its members feared that they would be forced to leave the island in such a case as had been the case with Cretan Turks. As such, they preferred the continuation of British colonial rule and then taksim, the division of the island. Due to the Turkish Cypriots' support for the British, EOKA's leader, Georgios Grivas, declared them to be enemies. The fact that the Turks were a minority was, according to Nihat Erim, to be addressed by the transfer of thousands of Turks from mainland Turkey so that Greek Cypriots would cease to be the majority. When Erim visited Cyprus as the Turkish representative, he was advised by Field Marshal Sir John Harding, the then Governor of Cyprus, that Turkey should send educated Turks to settle in Cyprus.
Turkey actively promoted the idea that on the island of Cyprus two distinctive communities existed, and sidestepped its former claim that "the people of Cyprus were all Turkish subjects". In doing so, Turkey's aim to have self-determination of two to-be equal communities in effect led to de jure partition of the island.[citation needed] This could be justified to the international community against the will of the majority Greek population of the island. Dr. Fazil Küçük in 1954 had already proposed Cyprus be divided in two at the 35° parallel.
Lindley Dan, from Notre Dame University, spotted the roots of intercommunal violence to different visions among the two communities of Cyprus (enosis for Greek Cypriots, taksim for Turkish Cypriots). Also, Lindlay wrote that "the merging of church, schools/education, and politics in divisive and nationalistic ways" had played a crucial role in creation of havoc in Cyprus' history. Attalides Michael also pointed to the opposing nationalisms as the cause of the Cyprus problem.
By the mid-1950's, the "Cyprus is Turkish" party, movement, and slogan gained force in both Cyprus and Turkey. In a 1954 editorial, Turkish Cypriot leader Dr. Fazil Kuchuk expressed the sentiment that the Turkish youth had grown up with the idea that "as soon as Great Britain leaves the island, it will be taken over by the Turks", and that "Turkey cannot tolerate otherwise". This perspective contributed to the willingness of Turkish Cypriots to align themselves with the British, who started recruiting Turkish Cypriots into the police force that patrolled Cyprus to fight EOKA, a Greek Cypriot nationalist organisation that sought to rid the island of British rule.
EOKA targeted colonial authorities, including police, but Georgios Grivas, the leader of EOKA, did not initially wish to open up a new front by fighting Turkish Cypriots and reassured them that EOKA would not harm their people. In 1956, some Turkish Cypriot policemen were killed by EOKA members and this provoked some intercommunal violence in the spring and summer, but these attacks on policemen were not motivated by the fact that they were Turkish Cypriots.
However, in January 1957, Grivas changed his policy as his forces in the mountains became increasingly pressured by the British Crown forces. In order to divert the attention of the Crown forces, EOKA members started to target Turkish Cypriot policemen intentionally in the towns, so that Turkish Cypriots would riot against the Greek Cypriots and the security forces would have to be diverted to the towns to restore order. The killing of a Turkish Cypriot policeman on 19 January, when a power station was bombed, and the injury of three others, provoked three days of intercommunal violence in Nicosia. The two communities targeted each other in reprisals, at least one Greek Cypriot was killed and the British Army was deployed in the streets. Greek Cypriot stores were burned and their neighbourhoods attacked. Following the events, the Greek Cypriot leadership spread the propaganda that the riots had merely been an act of Turkish Cypriot aggression. Such events created chaos and drove the communities apart both in Cyprus and in Turkey.
On 22 October 1957 Sir Hugh Mackintosh Foot replaced Sir John Harding as the British Governor of Cyprus. Foot suggested five to seven years of self-government before any final decision. His plan rejected both enosis and taksim. The Turkish Cypriot response to this plan was a series of anti-British demonstrations in Nicosia on 27 and 28 January 1958 rejecting the proposed plan because the plan did not include partition. The British then withdrew the plan.
In 1957, Black Gang, a Turkish Cypriot pro-taksim paramilitary organisation, was formed to patrol a Turkish Cypriot enclave, the Tahtakale district of Nicosia, against activities of EOKA. The organisation later attempted to grow into a national scale, but failed to gain public support.
By 1958, signs of dissatisfaction with the British increased on both sides, with a group of Turkish Cypriots forming Volkan (later renamed to the Turkish Resistance Organisation) paramilitary group to promote partition and the annexation of Cyprus to Turkey as dictated by the Menderes plan. Volkan initially consisted of roughly 100 members, with the stated aim of raising awareness in Turkey of the Cyprus issue and courting military training and support for Turkish Cypriot fighters from the Turkish government.
In June 1958, the British Prime Minister, Harold Macmillan, was expected to propose a plan to resolve the Cyprus issue. In light of the new development, the Turks rioted in Nicosia to promote the idea that Greek and Turkish Cypriots could not live together and therefore any plan that did not include partition would not be viable. This violence was soon followed by bombing, Greek Cypriot deaths and looting of Greek Cypriot-owned shops and houses. Greek and Turkish Cypriots started to flee mixed population villages where they were a minority in search of safety. This was effectively the beginning of the segregation of the two communities. On 7 June 1958, a bomb exploded at the entrance of the Turkish Embassy in Cyprus. Following the bombing, Turkish Cypriots looted Greek Cypriot properties. On 26 June 1984, the Turkish Cypriot leader, Rauf Denktaş, admitted on British channel ITV that the bomb was placed by the Turks themselves in order to create tension. On 9 January 1995, Rauf Denktaş repeated his claim to the famous Turkish newspaper Milliyet in Turkey.
The crisis reached a climax on 12 June 1958, when eight Greeks, out of an armed group of thirty five arrested by soldiers of the Royal Horse Guards on suspicion of preparing an attack on the Turkish quarter of Skylloura, were killed in a suspected attack by Turkish Cypriot locals, near the village of Geunyeli, having been ordered to walk back to their village of Kondemenos.
After the EOKA campaign had begun, the British government successfully began to turn the Cyprus issue from a British colonial problem into a Greek-Turkish issue. British diplomacy exerted backstage influence on the Adnan Menderes government, with the aim of making Turkey active in Cyprus. For the British, the attempt had a twofold objective. The EOKA campaign would be silenced as quickly as possible, and Turkish Cypriots would not side with Greek Cypriots against the British colonial claims over the island, which would thus remain under the British. The Turkish Cypriot leadership visited Menderes to discuss the Cyprus issue. When asked how the Turkish Cypriots should respond to the Greek Cypriot claim of enosis, Menderes replied: "You should go to the British foreign minister and request the status quo be prolonged, Cyprus to remain as a British colony". When the Turkish Cypriots visited the British Foreign Secretary and requested for Cyprus to remain a colony, he replied: "You should not be asking for colonialism at this day and age, you should be asking for Cyprus be returned to Turkey, its former owner".
As Turkish Cypriots began to look to Turkey for protection, Greek Cypriots soon understood that enosis was extremely unlikely. The Greek Cypriot leader, Archbishop Makarios III, now set independence for the island as his objective.
Britain resolved to solve the dispute by creating an independent Cyprus. In 1959, all involved parties signed the Zurich Agreements: Britain, Turkey, Greece, and the Greek and Turkish Cypriot leaders, Makarios and Dr. Fazil Kucuk, respectively. The new constitution drew heavily on the ethnic composition of the island. The President would be a Greek Cypriot, and the Vice-President a Turkish Cypriot with an equal veto. The contribution to the public service would be set at a ratio of 70:30, and the Supreme Court would consist of an equal number of judges from both communities as well as an independent judge who was not Greek, Turkish or British. The Zurich Agreements were supplemented by a number of treaties. The Treaty of Guarantee stated that secession or union with any state was forbidden, and that Greece, Turkey and Britain would be given guarantor status to intervene if that was violated. The Treaty of Alliance allowed for two small Greek and Turkish military contingents to be stationed on the island, and the Treaty of Establishment gave Britain sovereignty over two bases in Akrotiri and Dhekelia.
On 15 August 1960, the Colony of Cyprus became fully independent as the Republic of Cyprus. The new republic remained within the Commonwealth of Nations.
The new constitution brought dissatisfaction to Greek Cypriots, who felt it to be highly unjust for them for historical, demographic and contributional reasons. Although 80% of the island's population were Greek Cypriots and these indigenous people had lived on the island for thousands of years and paid 94% of taxes, the new constitution was giving the 17% of the population that was Turkish Cypriots, who paid 6% of taxes, around 30% of government jobs and 40% of national security jobs.
Within three years tensions between the two communities in administrative affairs began to show. In particular disputes over separate municipalities and taxation created a deadlock in government. A constitutional court ruled in 1963 Makarios had failed to uphold article 173 of the constitution which called for the establishment of separate municipalities for Turkish Cypriots. Makarios subsequently declared his intention to ignore the judgement, resulting in the West German judge resigning from his position. Makarios proposed thirteen amendments to the constitution, which would have had the effect of resolving most of the issues in the Greek Cypriot favour. Under the proposals, the President and Vice-President would lose their veto, the separate municipalities as sought after by the Turkish Cypriots would be abandoned, the need for separate majorities by both communities in passing legislation would be discarded and the civil service contribution would be set at actual population ratios (82:18) instead of the slightly higher figure for Turkish Cypriots.
The intention behind the amendments has long been called into question. The Akritas plan, written in the height of the constitutional dispute by the Greek Cypriot interior minister Polycarpos Georkadjis, called for the removal of undesirable elements of the constitution so as to allow power-sharing to work. The plan envisaged a swift retaliatory attack on Turkish Cypriot strongholds should Turkish Cypriots resort to violence to resist the measures, stating "In the event of a planned or staged Turkish attack, it is imperative to overcome it by force in the shortest possible time, because if we succeed in gaining command of the situation (in one or two days), no outside, intervention would be either justified or possible." Whether Makarios's proposals were part of the Akritas plan is unclear, however it remains that sentiment towards enosis had not completely disappeared with independence. Makarios described independence as "a step on the road to enosis".[31] Preparations for conflict were not entirely absent from Turkish Cypriots either, with right wing elements still believing taksim (partition) the best safeguard against enosis.
Greek Cypriots however believe the amendments were a necessity stemming from a perceived attempt by Turkish Cypriots to frustrate the working of government. Turkish Cypriots saw it as a means to reduce their status within the state from one of co-founder to that of minority, seeing it as a first step towards enosis. The security situation deteriorated rapidly.
Main articles: Bloody Christmas (1963) and Battle of Tillyria
An armed conflict was triggered after December 21, 1963, a period remembered by Turkish Cypriots as Bloody Christmas, when a Greek Cypriot policemen that had been called to help deal with a taxi driver refusing officers already on the scene access to check the identification documents of his customers, took out his gun upon arrival and shot and killed the taxi driver and his partner. Eric Solsten summarised the events as follows: "a Greek Cypriot police patrol, ostensibly checking identification documents, stopped a Turkish Cypriot couple on the edge of the Turkish quarter. A hostile crowd gathered, shots were fired, and two Turkish Cypriots were killed."
In the morning after the shooting, crowds gathered in protest in Northern Nicosia, likely encouraged by the TMT, without incident. On the evening of the 22nd, gunfire broke out, communication lines to the Turkish neighbourhoods were cut, and the Greek Cypriot police occupied the nearby airport. On the 23rd, a ceasefire was negotiated, but did not hold. Fighting, including automatic weapons fire, between Greek and Turkish Cypriots and militias increased in Nicosia and Larnaca. A force of Greek Cypriot irregulars led by Nikos Sampson entered the Nicosia suburb of Omorphita and engaged in heavy firing on armed, as well as by some accounts unarmed, Turkish Cypriots. The Omorphita clash has been described by Turkish Cypriots as a massacre, while this view has generally not been acknowledged by Greek Cypriots.
Further ceasefires were arranged between the two sides, but also failed. By Christmas Eve, the 24th, Britain, Greece, and Turkey had joined talks, with all sides calling for a truce. On Christmas day, Turkish fighter jets overflew Nicosia in a show of support. Finally it was agreed to allow a force of 2,700 British soldiers to help enforce a ceasefire. In the next days, a "buffer zone" was created in Nicosia, and a British officer marked a line on a map with green ink, separating the two sides of the city, which was the beginning of the "Green Line". Fighting continued across the island for the next several weeks.
In total 364 Turkish Cypriots and 174 Greek Cypriots were killed during the violence. 25,000 Turkish Cypriots from 103-109 villages fled and were displaced into enclaves and thousands of Turkish Cypriot houses were ransacked or completely destroyed.
Contemporary newspapers also reported on the forceful exodus of the Turkish Cypriots from their homes. According to The Times in 1964, threats, shootings and attempts of arson were committed against the Turkish Cypriots to force them out of their homes. The Daily Express wrote that "25,000 Turks have already been forced to leave their homes". The Guardian reported a massacre of Turks at Limassol on 16 February 1964.
Turkey had by now readied its fleet and its fighter jets appeared over Nicosia. Turkey was dissuaded from direct involvement by the creation of a United Nations Peacekeeping Force in Cyprus (UNFICYP) in 1964. Despite the negotiated ceasefire in Nicosia, attacks on the Turkish Cypriot persisted, particularly in Limassol. Concerned about the possibility of a Turkish invasion, Makarios undertook the creation of a Greek Cypriot conscript-based army called the "National Guard". A general from Greece took charge of the army, whilst a further 20,000 well-equipped officers and men were smuggled from Greece into Cyprus. Turkey threatened to intervene once more, but was prevented by a strongly worded letter from the American President Lyndon B. Johnson, anxious to avoid a conflict between NATO allies Greece and Turkey at the height of the Cold War.
Turkish Cypriots had by now established an important bridgehead at Kokkina, provided with arms, volunteers and materials from Turkey and abroad. Seeing this incursion of foreign weapons and troops as a major threat, the Cypriot government invited George Grivas to return from Greece as commander of the Greek troops on the island and launch a major attack on the bridgehead. Turkey retaliated by dispatching its fighter jets to bomb Greek positions, causing Makarios to threaten an attack on every Turkish Cypriot village on the island if the bombings did not cease. The conflict had now drawn in Greece and Turkey, with both countries amassing troops on their Thracian borders. Efforts at mediation by Dean Acheson, a former U.S. Secretary of State, and UN-appointed mediator Galo Plaza had failed, all the while the division of the two communities becoming more apparent. Greek Cypriot forces were estimated at some 30,000, including the National Guard and the large contingent from Greece. Defending the Turkish Cypriot enclaves was a force of approximately 5,000 irregulars, led by a Turkish colonel, but lacking the equipment and organisation of the Greek forces.
The Secretary-General of the United Nations in 1964, U Thant, reported the damage during the conflicts:
UNFICYP carried out a detailed survey of all damage to properties throughout the island during the disturbances; it shows that in 109 villages, most of them Turkish-Cypriot or mixed villages, 527 houses have been destroyed while 2,000 others have suffered damage from looting.
The situation worsened in 1967, when a military junta overthrew the democratically elected government of Greece, and began applying pressure on Makarios to achieve enosis. Makarios, not wishing to become part of a military dictatorship or trigger a Turkish invasion, began to distance himself from the goal of enosis. This caused tensions with the junta in Greece as well as George Grivas in Cyprus. Grivas's control over the National Guard and Greek contingent was seen as a threat to Makarios's position, who now feared a possible coup.[citation needed] The National Guard and Cyprus Police began patrolling the Turkish Cypriot enclaves of Ayios Theodoros and Kophinou, and on November 15 engaged in heavy fighting with the Turkish Cypriots.
By the time of his withdrawal 26 Turkish Cypriots had been killed. Turkey replied with an ultimatum demanding that Grivas be removed from the island, that the troops smuggled from Greece in excess of the limits of the Treaty of Alliance be removed, and that the economic blockades on the Turkish Cypriot enclaves be lifted. Grivas was recalled by the Athens Junta and the 12,000 Greek troops were withdrawn. Makarios now attempted to consolidate his position by reducing the number of National Guard troops, and by creating a paramilitary force loyal to Cypriot independence. In 1968, acknowledging that enosis was now all but impossible, Makarios stated, "A solution by necessity must be sought within the limits of what is feasible which does not always coincide with the limits of what is desirable."
After 1967 tensions between the Greek and Turkish Cypriots subsided. Instead, the main source of tension on the island came from factions within the Greek Cypriot community. Although Makarios had effectively abandoned enosis in favour of an 'attainable solution', many others continued to believe that the only legitimate political aspiration for Greek Cypriots was union with Greece.
On his arrival, Grivas began by establishing a nationalist paramilitary group known as the National Organization of Cypriot Fighters (Ethniki Organosis Kyprion Agoniston B or EOKA-B), drawing comparisons with the EOKA struggle for enosis under the British colonial administration of the 1950s.
The military junta in Athens saw Makarios as an obstacle. Makarios's failure to disband the National Guard, whose officer class was dominated by mainland Greeks, had meant the junta had practical control over the Cypriot military establishment, leaving Makarios isolated and a vulnerable target.
During the first Turkish invasion, Turkish troops invaded Cyprus territory on 20 July 1974, invoking its rights under the Treaty of Guarantee. This expansion of Turkish-occupied zone violated International Law as well as the Charter of the United Nations. Turkish troops managed to capture 3% of the island which was accompanied by the burning of the Turkish Cypriot quarter, as well as the raping and killing of women and children. A temporary cease-fire followed which was mitigated by the UN Security Council. Subsequently, the Greek military Junta collapsed on July 23, 1974, and peace talks commenced in which a democratic government was installed. The Resolution 353 was broken after Turkey attacked a second time and managed to get a hold of 37% of Cyprus territory. The Island of Cyprus was appointed a Buffer Zone by the United Nations, which divided the island into two zones through the 'Green Line' and put an end to the Turkish invasion. Although Turkey announced that the occupied areas of Cyprus to be called the Federated Turkish State in 1975, it is not legitimised on a worldwide political scale. The United Nations called for the international recognition of independence for the Republic of Cyprus in the Security Council Resolution 367.
In the years after the Turkish invasion of northern Cyprus one can observe a history of failed talks between the two parties. The 1983 declaration of the independent Turkish Republic of Cyprus resulted in a rise of inter-communal tensions and made it increasingly hard to find mutual understanding. With Cyprus' interest of a possible EU membership and a new UN Secretary-General Kofi Annan in 1997 new hopes arose for a fresh start. International involvement from sides of the US and UK, wanting a solution to the Cyprus dispute prior to the EU accession led to political pressures for new talks. The believe that an accession without a solution would threaten Greek-Turkish relations and acknowledge the partition of the island would direct the coming negotiations.
Over the course of two years a concrete plan, the Annan plan was formulated. In 2004 the fifth version agreed upon from both sides and with the endorsement of Turkey, US, UK and EU then was presented to the public and was given a referendum in both Cypriot communities to assure the legitimisation of the resolution. The Turkish Cypriots voted with 65% for the plan, however the Greek Cypriots voted with a 76% majority against. The Annan plan contained multiple important topics. Firstly it established a confederation of two separate states called the United Cyprus Republic. Both communities would have autonomous states combined under one unified government. The members of parliament would be chosen according to the percentage in population numbers to ensure a just involvement from both communities. The paper proposed a demilitarisation of the island over the next years. Furthermore it agreed upon a number of 45000 Turkish settlers that could remain on the island. These settlers became a very important issue concerning peace talks. Originally the Turkish government encouraged Turks to settle in Cyprus providing transfer and property, to establish a counterpart to the Greek Cypriot population due to their 1 to 5 minority. With the economic situation many Turkish-Cypriot decided to leave the island, however their departure is made up by incoming Turkish settlers leaving the population ratio between Turkish Cypriots and Greek Cypriots stable. However all these points where criticised and as seen in the vote rejected mainly by the Greek Cypriots. These name the dissolution of the „Republic of Cyprus", economic consequences of a reunion and the remaining Turkish settlers as reason. Many claim that the plan was indeed drawing more from Turkish-Cypriot demands then Greek-Cypriot interests. Taking in consideration that the US wanted to keep Turkey as a strategic partner in future Middle Eastern conflicts.
A week after the failed referendum the Republic of Cyprus joined the EU. In multiple instances the EU tried to promote trade with Northern Cyprus but without internationally recognised ports this spiked a grand debate. Both side endure their intention of negotiations, however without the prospect of any new compromises or agreements the UN is unwilling to start the process again. Since 2004 negotiations took place in numbers but without any results, both sides are strongly holding on to their position without an agreeable solution in sight that would suit both parties.
Creating a Unbreakable Toa
Toa Bomonga's devastating jet powered Level 10 hammer.
this powerful and very durable hammer hits hard and fast with a deadly blow, leaving a creator as its name implies, rock and earth crumble into smaller chunks or even dust, water explodes from the rushed and violent impact, wind bellows from the intense pressure crashing down, a sonic boom reaches the heavens and miles on land, hitting its target with great force
Bomonga
Kanohi: Obelisk (Mask of Growth)
Element: Stone, Sand & Iron Sand
Weapon: Level 10 Meteor Breaker Hammer
(Originally larger but decided to tone it done in size to be lighter and easier to use.
would be a level 20 hammer with the extra weight of the the second head)
Powers: Bending the earth
Sand bending & creating dry storms
creating towers of stone
side effects: chance of rust, slowness and increased weight
able to retreat & hide in the the sand & stone in perfect stealth
Bomonga spent his matoran days as a builder, carving and often finding treasure and ore he would use in forging stronger better weapons & armor for himself, his fellow villages and other villages in need. he took his duty very seriously and with pride, like Hafu and a few other hard working matoran of each tribe, some helping him set up shop. often he would go adventuring away from his shop and village, finding more and new material to work with, trade & make repairs if needed, if he found a favorite dig-site or some place that was worth his time, he would honor it with a statue of his image or a highlight of the surrounding area. Bomonga's life would change one day, new doors would open, his skills great as they are would improve greatly with new ability's and powers, the Stone Artist matoran would face his destiny when he unearthed a strange stone he only heard from stories long past, a mysterious stone radiating with power, glowing from the cracks hidden under rock, most likely forgotten by the makuta or piraka, Bomonga reached for the stone, it glowed intensely before it faded and absorb into his hand, it continued as it flowed up his arm and through his whole body as it grew and transformed into a new and stronger generation of Toa.
As a Toa, Bomonga took great care in being stealthy as a hunter, one in heavy armor & a heavy duty hammer may seem strange, but he knows his new life isnt a game, Bomonga treasures his life. relying on his gear and knowledge are his best and sharpest tools.
January 7th 2014
Overdose (noun): too large a dose or too many doses (implies that there is a safe dosage).
I realized something today: As humans we all have the tendency to over-do everything. I was grocery shopping and it hit me just how easy it is. How many different varieties of items there are and with them new ways to go beyond reasonable limits. And our society makes it that much easier. We’re overloaded. And then overloaded more by things disguised as “deals.” Once we hear something like “buy 2 get 1,” “half off,” or “two for $5,” we go crazy. Even though we know one is enough and that we’d still get the deal regardless, we still pick up more because why not?
Similarly, we over-indulge in everything these days. Our hobbies, our feelings, our relationships, the internet. We over-do everything. We find what we love and we let it consume us. It’s excess and extremes everywhere. More than is needed, far past temperance. Even when we’re satisfied, we go back for more. And while these things aren’t inherently bad at all, it’s a bad habit to lose sight of moderation. It’s all fine and dandy until we have to face dependency, cravings, and withdrawal.
Now I am confident with the skin im in, I agreed to do my first implied nude shoot with photographer "Heidi Rebecca".
She wanted it to be very natural, and once you add water to my hair, BAM! Out come the curls.
Heidi has also chosen me to be her model at her next photography workshop in March 2011, stay tuned!
Whenever I have a professional makeover, especially with a MAC artist as I did the day this pic was taken, I walk away with greater confidence that I can go almost anywhere and people would assume I am an actual female. I know, it's a delusional way to think but otherwise I'd be scared out of my mind to do the things I do and go the places I go in my womanly persona. The thing is, it's so much more exciting to interact with the real world and breathe life into the female spirit within me.
‘There are many paths to God‘ has become a politically, correct catchphrase, used by the liberal establishment to imply that all religions and beliefs are equally worthy.
Of course, you don’t need a degree in common sense to work out that this is illogical nonsense.
Everybody is aware that even the major religions disagree on many important issues. Therefore, simple logic dictates that they cannot all be right. Where they all disagree on a particular belief (if any are right) it can only be ONE that is right.
It is obvious then that all those religions that are wrong in any belief cannot be equal in merit, or equal as a path to God, as the one that is wholly right. So to insist they are all equally worthy is to be unjustly biased against the one that is true.
Error should never be given equality with truth.
Therefore it is inexcusable that our society should not to make every effort to discern, and then to officially recognise the truth in this matter.
For anyone to contend that ERROR should ever be entitled to equal endorsement and support by the state as TRUTH is unjust, prejudiced, morally reprehensible and downright stupid.
Western civilisation was founded and built on the commendable notion that truth really matters and should be encouraged and supported.
For centuries, it was accepted and agreed by the most learned persons and rulers, that the beliefs of Christianity best represent spiritual truth. Whilst also providing superlative spiritual and social benefits for citizens and society. And therefore it was agreed that Christianity should be entitled to official recognition and special support by society and the state. The traditions, heritage, laws and culture of Christendom were founded on this generally, accepted precept.
It is not hard to understand why?
Christianity really is special.
Jesus Christ taught love, peace and forgiveness.
Jesus is the role model for Christians. Although they are not always completely successful, the teaching and example of Jesus Christ are what every genuine Christian aspires to. Those things are eminently conducive to the moral, spiritual and material good of society. They are the fundamentals of Christianity and a Christian society. We hear a lot today about religious fundamentalism being something bad, but in the case of Christianity the opposite has to be true. The more fundamental a Christian seeks to be, the more like (the Christian role model) Jesus they hope to become.
In a nutshell Jesus taught - love God above all and love your neighbour as yourself. and seek to advance the welfare of all, materially and spiritually - be humble, not proud or envious, be prepared to serve others, not lord it over them - love and forgive even your enemies and do not seek revenge or bear grudges.
Saint Augustine.
“Let those who say that the teachings of Christ are harmful to the State find armies with soldiers who live up to the standards of the teachings of Jesus. Let them provide governors, husbands and wives, parents and children, masters and servants, kings, judges, taxpayers and tax collectors who can compare to those who take Christian teachings to heart. Then let them dare to say that such teaching is contrary to the welfare of the State! Indeed, under no circumstances can they fail to realize that this teaching is the greatest safeguard of the State when faithfully observed.” (“Epis. 138 ad Marcellinum,” in Opera Omnia, vol. 2, in J.P. Migne, Patrologia Latina, col. 532.)
A major problem today is that the term 'religion' is cynically used by secularists rather than 'religions'. The effect is to lump all religions together and stereotype them as though they are a single entity. Which means if one religion is perceived in some way as not conducive to the public good, people are led to believe that all religions are a problem - that 'religion' is a problem per se. This sort of stereotyping would be unlikely to be tolerated in any other field. But it suits the aims of militant atheists and the liberal, secular, politically correct agenda.
There is no question that the twentieth century was the bloodiest century in the history of the world. It was in this century that the major nations of Christendom began to abandon Christian beliefs, principles and heritage. And, in the misguided name of progress, began to embrace a variety of pagan, atheistic, materialist, Darwinian, Marxist and socialist ideologies. As a result we were subjected to 2 world wars, numerous other wars, including the Spanish civil war, and an horrendous, mass murder as a result of the German nation adopting the national, socialist policies of a crazed, Darwinian inspired, anti-Christian, pagan occultist named Hitler. An even greater, mass slaughter was carried out by atheistic, socialist revolutionaries in pursuit of their proposed ‘paradise on earth‘. The historical record of the twentieth century is absolutely horrendous, the atheistic, Marxist, socialist regimes of; Lenin, Stalin, Mao and Pol Pot were together responsible for the brutal slaughter of an estimated thirty six million people. In addition, we have seen millions of war deaths, countless murders carried out by other, atheistic, socialist regimes and various other tyrannies, and millions of unborn babies callously slaughtered in state approved and funded, abortion mills.
We hear a lot today about equality, which sounds admirable. And true equality certainly is admirable and a God-given right. However, false equality is not admirable, it can be discriminatory against truth, goodness and, if enforced by the state, can result in an evil tyranny. Error should never be equated with truth and evil should never be equated with good.
So what is true equality?
Every human person is of equal value and should be equally respected and cared for, regardless of gender, colour, race, disability, wealth, influence, intelligence or power. That is true equality.
What is false equality?
False equality is the idea that everything any human person does or believes, is equally valid. The idea that all lifestyles, beliefs, traditions or cultures (that are not against whatever the state decides should be legal) are equally valid and worthy of equal respect.
In post Christian, secular society, while it is demanded by supporters of the liberal establishment that all religions, beliefs and lifestyles should be treated by the state as equally worthy, with no preference or special status given to any. In practice, we can see this is completely ignored in one respect, because there is an exception, inasmuch as it is now the beliefs of 'atheism' that actually receive special recognition and status in most, Western nations. This is evident in the state approved and funded, promotion and teaching of the (unscientific) naturalistic beliefs of Darwinian evolution and spontaneous generation of life, as though they are ‘scientific truths’ (they are treated as sacrosanct - with no alternative, scientific views or contrary evidence, permitted in any state funded or approved, educational curriculum).
The modern, secular state's 'enforced' equality demands that all beliefs etc. are treated as equally worthy, regardless of truth or merit. But, in practice, the liberal mind-set is that all beliefs/religions are inferior to the atheist/secularist ideology, which is perceived as the pinnacle of rationality and arbiter of 'scientific truth' which benevolently deigns to grant (a false) equality to every inferior, belief system. And religions should all be grateful that the secular state grants them equality with each other.
All religions and religious beliefs are thus lumped together as
being equal (the crazy with the not so crazy - the logical with the illogical - the true with the patently false) with no intelligent, or logical discernment permitted.
And so we are led to believe by a secular state (which doesn't recognise God) that there are:
‘Many paths to God’ -That all religions and beliefs are equally valid.
But are they?
Anyone who agrees with this automatically rejects the claims of Jesus Christ, who stated; “I am the way, the truth and the life” and “no one can come to the Father except through Me.”
Uniquely, Jesus backed up his claim by suffering an agonising death on the cross as a sacrifice for the salvation of all humanity. The words of Jesus means you cannot be a Christian if you claim or believe there are many paths to God, or that there is any path to God other than through Jesus Christ.
The fact is that Jesus (although completely innocent of all sin himself) suffered for the sins of all humankind, He was crucified for the redemption of His enemies as well as His friends. We are all sinners and have all offended the infinite goodness of God, no one (not even a saint) deserves heaven entirely on their own merit. Everyone is defiled by sin, and nothing defiled can enter heaven. An offence against the infinite goodness of an infinitely loving, but also an infinitely, just God can only be redeemed by an infinitely, good sacrifice. So only a divine sacrifice can pay the price justice demands for our sins.
Only the sacrifice of the true, spiritual messiah, Jesus Christ, the son of the living God, incarnated as man, is sufficient to save us all from the consequences of sin, open the gates of heaven and restore eternal life to the whole human race.
Only those whose garments have been ‘washed white by the blood of the lamb’ are fit to enter heaven.
The debt for our sin has been paid by Jesus and His saving sacrifice is offered as an unsurpassed, loving and free gift to us all. We simply have to gratefully acknowledge and accept that gift in a spirit of humility and repentance.
Jesus requested that a remembrance of his sacrifice should be celebrated (the Eucharist). This unites us with Him and His sacrifice, and is the only sacrificial ceremony for sin which is truly acceptable to God. All other sacrifices devised and offered by humans are as ‘dirty rags’ before the divine majesty of the almighty creator.
Only the sacrifice of the true messiah, God made man
(as prophesied by Isaiah in the old testament), is acceptable to God.
By his supreme sacrifice Jesus paid the price for every sin ever committed, and thereby opened the gates of heaven to the whole human race.
Without His sacrifice, no one of any religion could ever enter heaven.
It matters not whether you are the most devout Muslim, Hindu, Jew, Buddhist or person of any other faith, ultimately you will rely, not on any rituals and customs of these various religions, but on the sacrifice of Jesus to enter heaven.
All who enter heaven and eternal life do so only with a passport provided by Jesus, without His sacrifice you would never get there.
This is the truth whether you like it or not.
Of course, we all have free choice. Quite rightly, we are all entitled to follow any religion we wish. But once we know that it is only the sacrifice of Jesus that can make us fit to enter heaven and entitled to eternal life, we will surely wish to follow Him. It would be foolishness indeed for us to choose to follow any other religion which refuses to acknowledge this, and pretends that we can redeem ourselves just by following its manmade doctrines and rituals.
Does atheist/secularist ideology, deserve to be regarded by the state and society as the pinnacle of rationality and arbiter of 'scientific truth'?
Atheism revealed as false ... Why God MUST exist.
There are only 2 basic options for the origin of the universe .... an uncaused, supernatural first cause of the universe OR an uncaused, natural first cause of the universe. If you categorically reject the former (as atheists do), you have no option but to accept the latter by default. It is an intellectually dishonest cop-out to say atheism is merely a lack of belief. A genuine lack of belief would be classed as agnosticism, which is a neutral position. It is a 'don't know' or 'fence sitting' position. A 'don't know' position is not one which would specifically single out to reject, attack and ridicule just one side of the argument, i.e. the concept of a supernatural, first cause, as atheism does.
Atheists cannot simply deny, attack and vociferously ridicule the concept of - a supernatural, first cause, without being expected to justify the only alternative - a natural, first cause. That cannot be regarded as intellectually credible or rational.
We see that atheists dogmatically reject supernaturalism and are zealously on the side of naturalism (a naturalistic origin and explanation for everything). That is not a neutral, 'don't know' or objective position. It is not merely a lack of belief. It is a positive and subjective belief in naturalism. And hence a belief in a natural cause of the universe, and everything that exists or has ever existed.
So how do we know that atheism false and that God MUST exist?
Firstly ...
We know that the universe has not always existed, we know it had a beginning and it is 'running down' from an original peak of energy potential at its beginning. The Second Law of Thermodynamics (law of entropy) confirms that. So we know the universe had an origin.
Secondly .....
What about matter itself?
Can matter have always existed? The simple answer is no.
Matter/energy and all natural entities and events are contingent, they rely on causes for everything. Because they are contingent they cannot be eternally self-existent or necessary entities. They do not contain within themselves the reason or cause of their own existence. As contingent entities, they are entirely reliant on that which causes and maintains them. They cannot exist or operate in any way without causes, Thus they must have had an original cause at some stage, even if the chain of causes and effects is very long, it had to have a beginning at some point.
A basic principle of the scientific method is that we can expect to find an adequate cause for every natural occurrence. All scientific research is based on that premise.
To propose a non-contingent, natural occurrence or entity as the originator of the universe (as atheists are forced to do), is unscientific fantasy.
Thirdly ....
A supernatural first cause (God) is not a contingent entity. It is not natural, and is not bound by natural laws which govern matter and all natural events. In fact, as the first cause of matter/energy, it is also the author of the laws that govern matter/energy. It cannot be subject to laws it has created.
As the very first cause, it also cannot have had any preceding cause, so we know it cannot be a contingent entity.
Why? Because ...first means first, not second or third. If something is first, nothing preceded it. It must have always existed and must have had within itself the means of its own existence. It could not have relied on anything else for its existence. So the supernatural, first cause (a creator God) has to be eternally, self-existent and necessary.
It also has to have the powers and ability to create everything else that exists in the universe. As the original cause, it has to be an adequate cause of everything ...of all causes and effects that follow it, forever. That means - it has to have the powers, properties and qualities sufficient to create: time, matter/energy, natural laws, information, life, intelligence, consciousness and every characteristic that humans have. Because we, as a mere effect of the first cause, cannot be greater than that which ultimately caused us.
So God is the non-contingent, self-existent, necessary, supernatural, first cause of everything in the universe.
That is the logical conclusion of the understanding and application of natural laws.
ATHEIST BELIEF IN A NATURAL FIRST CAUSE VIOLATES NATURAL LAW.
THUS ATHEISM IS ILLOGICAL, AND ANTI-SCIENCE.
Essential characteristics of the first cause.
Consider this short chain of causes and effects:
A causes B, - B causes C, - C causes D, - D causes E.
'A, B, C & D' are all causes and may all look similar, but they are not, there is an enormous and crucial difference between them.
Causes B, C & D are fundamentally different from cause A.
Why?
Because A is the very first cause and thus had no previous cause. It exists without a cause. It doesn’t rely on anything else for its existence, it is completely independent of causes - while B, C & D would not exist without A. They are entirely dependent on A.
Causes; B, C & D are also effects, whereas A is not an effect, only a cause.
So we can say that the first cause ‘A’ is both self-existent and necessary. It is necessary because the rest of the chain of causes and effects could not exist without it. We also have to say that the subsequent causes and effects B, C, D and E are all contingent. That is; they are not self-existent they all depend entirely on other causes to exist.
We can also say that A is eternally self-existent, i.e. it has always existed, it had no beginning. Why? Because if A came into being at some point, there must have been something other than itself that brought it into being … which would mean A was not the first cause (A could not create A) … the something that brought A into being would be the first cause. In which case, A would be contingent and no different from B, C, D & E.
We can also say that A is adequate to produce all the properties of B, C, D & E.
Why?
Well in the case of E we can see that it relies entirely on D for its existence, E can in no way be superior to D because D had to contain within it everything necessary to produce E. The same applies to D it cannot be superior to C, but furthermore neither E or D can be superior to C, because both rely on C for their existence, and C had to contain everything necessary to produce D & E.
Likewise with B, which is responsible for the existence of C, D & E.
As they all depend on A for their existence and all their properties, abilities and potentials, none can be superior to A whether singly or combined. A had to contain everything necessary to produce B, C, D & E including all their properties, abilities and potentials.
Thus we deduce that; nothing in the universe can be superior in any way to the very first cause of the universe, because the whole universe, and all material things that exist, depend entirely on the abilities and properties of the first cause to produce them.
So to sum up … a first cause must be uncaused, must have always existed and cannot be in any way inferior to all subsequent causes and effects. In other words, the first cause of the universe must be eternally, self-existent and omnipotent (greater than everything that exists). No natural entity can have those attributes, that is why a Supernatural, Creator God MUST exist.
What about polytheism, can there be more than one God or Creator.
It is patently obvious there can only be one supernatural first cause.
The first cause is infinite - and logically, there cannot be more than one infinite entity.
If there were two infinite entities, for example, A and B. The qualities and perfections that are the property of B would be a limitation on the qualities and perfections of A. and vice versa, so neither would be infinite.
If A & B had identical qualities and perfections they would not be two different entities, they would be identical and therefore the same entity, i.e. a single, infinite, first cause. So there can be only one infinite being or entity, only one supernatural, first cause and creator of the universe.
So when atheists keep repeating the claim - that there is no reason to believe the monotheistic, Christian God is any different from the multiple, gods of pagan religions, it simply displays their ignorance and lack of reasoning.
Does the first cause have to be a supernatural one, or is it (as atheists claim) just a desperate attempt by ignorant people to fill a gap in scientific knowledge, by saying - God did it?
What does 'supernatural' mean? It means something which cannot be explained by science, natural laws or by natural processes.
The origin of the universe cannot be explained by genuine science, natural laws or by natural processes. And that is an undeniable FACT.
Why?
Because EVERY possible explanation by natural processes violates both the fundamental principle of the scientific method - the Law of Cause and Effect - and other natural laws.
Hence, the first cause, by virtue of the fact that it cannot be explained by science or natural processes, automatically qualifies as a supernatural entity.
To insist that the first cause must be a natural entity or event is to invoke a magical explanation, not a scientific one. The only choice, therefore is between a supernatural first cause or a magical first cause? A natural event that is purported to defy natural laws and scientific principles can only be described as MAGIC. And that is exactly what atheists propose. They cynically dress up their belief - that nature can evade natural laws - as science, but science certainly cannot envisage a causeless, natural event or entity, science cannot look for non-causes.
No one has ever proposed a natural explanation for the origin of the universe that does not violate the law of cause and effect and other natural laws. But, whenever they are challenged about this fact, they always make the excuse that the laws of nature/physics somehow DID NOT APPLY to their proposed, natural origin scenario.
The most, well known case of this excuse is the alleged 'Singularity' which, it was claimed, preceded the Big Bang. Remember it was claimed to be a "one-off event where the laws of physics did not apply." A natural event that defied natural laws! - That used to be called 'magic', before atheist 'scientists' hi-jacked science with their religion of naturalism - the All Powerful, autonomous, Mother Nature.
Excuses aren't science. A natural event that violates natural laws is by definition, not possible. There are no ifs, buts or perhaps, natural things are bound by natural laws, without question. Natural laws describe the inherent properties of natural entities. And the whole essence of science is the fact that every natural entity/event is contingent - has to have an ADEQUATE CAUSE.
The idea of 'laws not applying' to a natural event, is not science. It is just fantasy.
If the origin of the universe is inexplicable to science, within the accepted framework of normal, natural processes and natural laws, then it is a supernatural event.
You cannot claim something as a natural event that violates natural laws. For that reason it is inexplicable to science.
In fact. to claim that something natural can defy natural laws is anti-science.
Those who believe such nonsense are enemies of science.
ALL NATURAL explanations for the origin of the universe violate the Law of Cause and Effect and other natural laws.
Conclusion: the atheist belief in a natural explanation for the origin of the universe (that Mother Nature did it) is impossible - according to science.
Atheist myths debunked - abiogenesis - the inherent predisposition of matter to create life.
www.flickr.com/photos/truth-in-science/22250603246
The world's fist ever photograph.
The new astonishing phenomenon detected on the Shroud of Turin
EUbabel. The shocking occult symbolism of the European Union.
peuplesobservateursblog.wordpress.com/2017/09/23/togo-all...
Model: Lorna Lynne
MM#: 4402245
Lingerie & Implied Shoot
Studio Chez-Moi
Photographer/Editor: Pedro Marenco
Almyra (the name implies sea salt) lies near to Vlichada, Santorini island. The beach is quiet and scenic with ‘moon cliffs’.
More like implied-nude on couch in an artistic style, but hey.
Funny thing was that this was done in between looks. I thought of the shot and had to postpone the next set by a few minutes to pose Mina for this.
My store and other sites:
FB - www.facebook.com/maxmakesphotos
Society6 - www.Society6.com/maxmakespinups
MM - www.modelmayhem.com/maxjohnson
Instagram - instagram.com/maxmakesphotos
Model - Mina Caustic: www.modelmayhem.com/519062
Styling - Erin Lopez www.facebook.com/victoryroll
Makeup - Artistry by Wendy Tran: www.facebook.com/pages/ARTISTRY-BY-WENDY-TRAN/156236876784
It's "this" time of the year again, isn't it? Sometimes I can't help but feel as if I was "programmed" to watch insanely sad and depressing anime series every August, like how much it's a coincidence that I had a NGE "short review" kinda thing last year... on August 15th (!).
Although I really messed up the anniversary, eh? xD
Well, I finished Bokurano (* literally "Ours" in Eng translation ). Can't tell much without spoiling some HUGE plot twists, although I do think some info can be told here. So... there's a group of 15 middle-school children who are invited to play (and later "contracted" into) a so-called "game" where they pilot a giant robot and have to win over 15 enemies to save the world. I must note here that the whole "game" thing just doesn't sound right off the start, but children decide to participate it nonetheless.
And then terrible things happen. Gotta say Bokurano shares same psychologic themes with Evangelion and even The Big O, however leaving the viewer in a rather "powerless", "devastated" mind state after seeing it. If you ask me I would describe NGE as "a tale of overcoming one's personal fears"; The Big O was about importance of human memories and self-identity crisis -- then Bokurano would tell us that the imperfect world we live in still deserves to be cared for.
Sadly, I can't provide more in-depth definition of it since I think it would reveal one of the biggest and shocking twists in the series, because there are actually plenty of them.
I'd like to warn any potential viewers who are about to watch it: Bokurano is excruciating to follow, it's extremely depressing and it can't be easily distracted from. Bokurano has some truly stellar characterization and character development, story pacing and strong premise, it touches upon the world's major problems, it gives a food for thought on many social and inner problems not only children face, but grown ups as well. It's an anime about irrevocable sacrifices people have to make.
Sadly, it doesn't rely on science like NGE, and some things in the show are NEVER revealed neither to protagonists, nor to viewers while the show would definitely benefit from explaining these things. But I guess it's better to speculate upon the nature of, say, the giant robot, or the enemies children fought -- instead of knowing for sure from the authors' perspective. I also tend to defend that "ambiguity" (in some key plot elements) mostly because the story is likely shown through the children's point of view.
May be it's fine if certain events or objects, or whatever isn't explained -- all these things are open to interpretation.
Although personally I feel like I could warn that the OP is not just SPECTACULAR, and beautiful, and sounds eternally good, and poetic (though quite sad, especially if you read the lyrics later. I kinda ask you to avoid reading it from the very start, if only there's no OP lyrics text inlcluded in subs. It was excluded in the release I watched, so I was lucky there :) )
-- the OP is impossible to let go, so good luck humming it and trying to shift your attention from it for days after you finish the series.
There're some flaws in the show, too. I feel like these are rather my personal nitpicky stuff, related to my taste, and nothing more though:
-graphics (speaking of 2D graphics, 'cause 3D looks neat!) are too plain, blank at times, "schematic" if you will, characters' emotions could be portrayed much better in certain scenes. But as I said before: the show isn't about it, its visual appeal complements its themes;
-OST which doesn't feel like fitting in some scenes, like, at all. Of course I compare it to Evangelion (again and again. May be I shouldn't do so), but I can listen to NGE's OST on its own, it's a truly grand collection of masterfully arranged, admirable and simply epic music pieces that fill you with strong, even overwhelming emotions. Again, I suppose the music of Bokurano was never designed to deliver the same, but some tracks there are really nice and have the exact "magnificent" vibe in them. Bokurano's OST tracks just don't catch up to their premise, they don't hit the viewer with the same amount of energy -- remaining only "fitting to specific on-screen scenarios and events", and nothing more. Besides OP and EDs, they're phenomenal.
-again, trying not to spoil a thing, I would describe the next (also, the last) show's "flaw" as "unnecessary visual introduction of... something". Spoiler-free, it's a thing revealed later in the series without any further info given past that "relelation" happened.
Like, "Hey, you're seeing it? Good, 'cause that's all, we showed you what you wanted without any constructive info on it. Have fun!" -- I find it quite "off" to the show in general, and also a bit "false foreshadowing" to the audience in particular. You see, if one thing is heavily implied to have the biggest impact on the story -- and it's speculated upon the whole show, it's often supposed to be either explained at least briefly in the show, or be left unclarified and never ever re-introduced/ returned to, shifting to fans' speculation threads, blogs and stuff.
In the anime there was no such a big discussion between the protagonists about it, but later on we're not just reminded of it, we're greeted with an IMAGE of it. A visual representation of phenomena noone was really questioning before, accepting it "as is", as a given that it definitely exists but its motives and actions are far beyond our comprehension.
I'm perfectly fine with the whole idea of "NOT showing something treated as godlike... thing... thus neither protagonists nor viewers would NOT be able to undestand its actions or intensions" -- but I'm against the fact that authors then show us a PICTURE of that "something", leaving everyone with even MORE questions popping up instead of resolving some. I say it's like breaking the unspoken rule one had established before. It's "a mystery" created just for the sake of "something being mysterious" without real foundation for it to be put into the show in the first place.
That being said, I guess now is the time to sum it all up. Tell about "short (p)reviews, huh? xD
Bokurano isn't a mecha, at all. Sure it has some elements of it, but thankfully it's not a shonen-manga adaption. It's a deep psychologic analysis work, with probably too much depression put into it. I heard the manga is even darker, but at the moment I just can't make myself read it, it's too hard to even think of. Also, incredibly emotional endings are incredibly emotional!
7/10 (-3 points for graphics, OST and some key plot elements and questionable authors' choices -- though still these 3 are just my personal complaints, and they're not in any way should be concerned for/ taken too seriously as I'm no anime reviewer, I'm merely sharing my thoughts on anime.
Mostly -- on anime which I think deserves WAY more attention that it receives initially. Both Bokurano and The Big O were ridiculously underrated shows actually (and still are, I guess)).
DISCLAIMER: I do NOT own this image. All rights belong to its rightful owners. No copyright infringement intended. *Also, sorry for the poor pic quality - this is, like, the best possible title screen shot I could find out there.
UPD: Fixed blanks and gaps within the text, something went wrong when I was arranging it.
Another film soak - 35mm film in pickled beetroot juice.
Zenit B with Helios 44-2 58mm f2.
Fujicolor 200 ISO 35mm film.
Processed at home with Tetenal C-41 kit.
Model: Lorna Lynne
MM#: 4402245
Lingerie & Implied Shoot
Studio Chez-Moi
Photographer/Editor: Pedro Marenco
Redhead Actress Pason, Art Implied Nude, Chanel Heels, pasonactress.com, www.imdb.me/pason, www.RedheadActress.com
We did some crazy lighting where I blasted her with differently gelled strobes earlier where she was wearing more. But it ended up that she liked some of the crazy lighting that I'd done earlier in the shoot that she wanted some of what is technically known as "implied nudes" with the same sort of lighting setup.
Yeah, it's a booty shot. I'm really not big on looking at people's rear end, which is why you don't have very many on my stream.
Since I'm not a butt person, you want to know what I love most about this shot? How there's a big blue glint off of one of her earrings. That's what makes this shot for me.
Strobist details: Three lights. One Vivitar 285HV with a blue gel to the left, one Sunpak 622 with an orange gel to the right, and one backlight, all with bare heads. The 285HV was cable triggered, the pair of 622s were optically triggered.
Fish, any of approximately 34,000 species of vertebrate animals (phylum Chordata) found in the fresh and salt waters of the world. Living species range from the primitive jawless lampreys and hagfishes through the cartilaginous sharks, skates, and rays to the abundant and diverse bony fishes. Most fish species are cold-blooded; however, one species, the opah (Lampris guttatus), is warm-blooded.
The term fish is applied to a variety of vertebrates of several evolutionary lines. It describes a life-form rather than a taxonomic group. As members of the phylum Chordata, fish share certain features with other vertebrates. These features are gill slits at some point in the life cycle, a notochord, or skeletal supporting rod, a dorsal hollow nerve cord, and a tail. Living fishes represent some five classes, which are as distinct from one another as are the four classes of familiar air-breathing animals—amphibians, reptiles, birds, and mammals. For example, the jawless fishes (Agnatha) have gills in pouches and lack limb girdles. Extant agnathans are the lampreys and the hagfishes. As the name implies, the skeletons of fishes of the class Chondrichthyes (from chondr, “cartilage,” and ichthyes, “fish”) are made entirely of cartilage. Modern fish of this class lack a swim bladder, and their scales and teeth are made up of the same placoid material. Sharks, skates, and rays are examples of cartilaginous fishes. The bony fishes are by far the largest class. Examples range from the tiny seahorse to the 450-kg (1,000-pound) blue marlin, from the flattened soles and flounders to the boxy puffers and ocean sunfishes. Unlike the scales of the cartilaginous fishes, those of bony fishes, when present, grow throughout life and are made up of thin overlapping plates of bone. Bony fishes also have an operculum that covers the gill slits.
The study of fishes, the science of ichthyology, is of broad importance. Fishes are of interest to humans for many reasons, the most important being their relationship with and dependence on the environment. A more obvious reason for interest in fishes is their role as a moderate but important part of the world’s food supply. This resource, once thought unlimited, is now realized to be finite and in delicate balance with the biological, chemical, and physical factors of the aquatic environment. Overfishing, pollution, and alteration of the environment are the chief enemies of proper fisheries management, both in fresh waters and in the ocean. (For a detailed discussion of the technology and economics of fisheries, see commercial fishing.) Another practical reason for studying fishes is their use in disease control. As predators on mosquito larvae, they help curb malaria and other mosquito-borne diseases.
Fishes are valuable laboratory animals in many aspects of medical and biological research. For example, the readiness of many fishes to acclimate to captivity has allowed biologists to study behaviour, physiology, and even ecology under relatively natural conditions. Fishes have been especially important in the study of animal behaviour, where research on fishes has provided a broad base for the understanding of the more flexible behaviour of the higher vertebrates. The zebra fish is used as a model in studies of gene expression.
There are aesthetic and recreational reasons for an interest in fishes. Millions of people keep live fishes in home aquariums for the simple pleasure of observing the beauty and behaviour of animals otherwise unfamiliar to them. Aquarium fishes provide a personal challenge to many aquarists, allowing them to test their ability to keep a small section of the natural environment in their homes. Sportfishing is another way of enjoying the natural environment, also indulged in by millions of people every year. Interest in aquarium fishes and sportfishing supports multimillion-dollar industries throughout the world.
Fishes have been in existence for more than 450 million years, during which time they have evolved repeatedly to fit into almost every conceivable type of aquatic habitat. In a sense, land vertebrates are simply highly modified fishes: when fishes colonized the land habitat, they became tetrapod (four-legged) land vertebrates. The popular conception of a fish as a slippery, streamlined aquatic animal that possesses fins and breathes by gills applies to many fishes, but far more fishes deviate from that conception than conform to it. For example, the body is elongate in many forms and greatly shortened in others; the body is flattened in some (principally in bottom-dwelling fishes) and laterally compressed in many others; the fins may be elaborately extended, forming intricate shapes, or they may be reduced or even lost; and the positions of the mouth, eyes, nostrils, and gill openings vary widely. Air breathers have appeared in several evolutionary lines.
Many fishes are cryptically coloured and shaped, closely matching their respective environments; others are among the most brilliantly coloured of all organisms, with a wide range of hues, often of striking intensity, on a single individual. The brilliance of pigments may be enhanced by the surface structure of the fish, so that it almost seems to glow. A number of unrelated fishes have actual light-producing organs. Many fishes are able to alter their coloration—some for the purpose of camouflage, others for the enhancement of behavioral signals.
Fishes range in adult length from less than 10 mm (0.4 inch) to more than 20 metres (60 feet) and in weight from about 1.5 grams (less than 0.06 ounce) to many thousands of kilograms. Some live in shallow thermal springs at temperatures slightly above 42 °C (100 °F), others in cold Arctic seas a few degrees below 0 °C (32 °F) or in cold deep waters more than 4,000 metres (13,100 feet) beneath the ocean surface. The structural and, especially, the physiological adaptations for life at such extremes are relatively poorly known and provide the scientifically curious with great incentive for study.
Almost all natural bodies of water bear fish life, the exceptions being very hot thermal ponds and extremely salt-alkaline lakes, such as the Dead Sea in Asia and the Great Salt Lake in North America. The present distribution of fishes is a result of the geological history and development of Earth as well as the ability of fishes to undergo evolutionary change and to adapt to the available habitats. Fishes may be seen to be distributed according to habitat and according to geographical area. Major habitat differences are marine and freshwater. For the most part, the fishes in a marine habitat differ from those in a freshwater habitat, even in adjacent areas, but some, such as the salmon, migrate from one to the other. The freshwater habitats may be seen to be of many kinds. Fishes found in mountain torrents, Arctic lakes, tropical lakes, temperate streams, and tropical rivers will all differ from each other, both in obvious gross structure and in physiological attributes. Even in closely adjacent habitats where, for example, a tropical mountain torrent enters a lowland stream, the fish fauna will differ. The marine habitats can be divided into deep ocean floors (benthic), mid-water oceanic (bathypelagic), surface oceanic (pelagic), rocky coast, sandy coast, muddy shores, bays, estuaries, and others. Also, for example, rocky coastal shores in tropical and temperate regions will have different fish faunas, even when such habitats occur along the same coastline.
Although much is known about the present geographical distribution of fishes, far less is known about how that distribution came about. Many parts of the fish fauna of the fresh waters of North America and Eurasia are related and undoubtedly have a common origin. The faunas of Africa and South America are related, extremely old, and probably an expression of the drifting apart of the two continents. The fauna of southern Asia is related to that of Central Asia, and some of it appears to have entered Africa. The extremely large shore-fish faunas of the Indian and tropical Pacific oceans comprise a related complex, but the tropical shore fauna of the Atlantic, although containing Indo-Pacific components, is relatively limited and probably younger. The Arctic and Antarctic marine faunas are quite different from each other. The shore fauna of the North Pacific is quite distinct, and that of the North Atlantic more limited and probably younger. Pelagic oceanic fishes, especially those in deep waters, are similar the world over, showing little geographical isolation in terms of family groups. The deep oceanic habitat is very much the same throughout the world, but species differences do exist, showing geographical areas determined by oceanic currents and water masses.
All aspects of the life of a fish are closely correlated with adaptation to the total environment, physical, chemical, and biological. In studies, all the interdependent aspects of fish, such as behaviour, locomotion, reproduction, and physical and physiological characteristics, must be taken into account.
Correlated with their adaptation to an extremely wide variety of habitats is the extremely wide variety of life cycles that fishes display. The great majority hatch from relatively small eggs a few days to several weeks or more after the eggs are scattered in the water. Newly hatched young are still partially undeveloped and are called larvae until body structures such as fins, skeleton, and some organs are fully formed. Larval life is often very short, usually less than a few weeks, but it can be very long, some lampreys continuing as larvae for at least five years. Young and larval fishes, before reaching sexual maturity, must grow considerably, and their small size and other factors often dictate that they live in a habitat different than that of the adults. For example, most tropical marine shore fishes have pelagic larvae. Larval food also is different, and larval fishes often live in shallow waters, where they may be less exposed to predators.
After a fish reaches adult size, the length of its life is subject to many factors, such as innate rates of aging, predation pressure, and the nature of the local climate. The longevity of a species in the protected environment of an aquarium may have nothing to do with how long members of that species live in the wild. Many small fishes live only one to three years at the most. In some species, however, individuals may live as long as 10 or 20 or even 100 years.
Fish behaviour is a complicated and varied subject. As in almost all animals with a central nervous system, the nature of a response of an individual fish to stimuli from its environment depends upon the inherited characteristics of its nervous system, on what it has learned from past experience, and on the nature of the stimuli. Compared with the variety of human responses, however, that of a fish is stereotyped, not subject to much modification by “thought” or learning, and investigators must guard against anthropomorphic interpretations of fish behaviour.
Fishes perceive the world around them by the usual senses of sight, smell, hearing, touch, and taste and by special lateral line water-current detectors. In the few fishes that generate electric fields, a process that might best be called electrolocation aids in perception. One or another of these senses often is emphasized at the expense of others, depending upon the fish’s other adaptations. In fishes with large eyes, the sense of smell may be reduced; others, with small eyes, hunt and feed primarily by smell (such as some eels).
Specialized behaviour is primarily concerned with the three most important activities in the fish’s life: feeding, reproduction, and escape from enemies. Schooling behaviour of sardines on the high seas, for instance, is largely a protective device to avoid enemies, but it is also associated with and modified by their breeding and feeding requirements. Predatory fishes are often solitary, lying in wait to dart suddenly after their prey, a kind of locomotion impossible for beaked parrot fishes, which feed on coral, swimming in small groups from one coral head to the next. In addition, some predatory fishes that inhabit pelagic environments, such as tunas, often school.
Sleep in fishes, all of which lack true eyelids, consists of a seemingly listless state in which the fish maintains its balance but moves slowly. If attacked or disturbed, most can dart away. A few kinds of fishes lie on the bottom to sleep. Most catfishes, some loaches, and some eels and electric fishes are strictly nocturnal, being active and hunting for food during the night and retiring during the day to holes, thick vegetation, or other protective parts of the environment.
Communication between members of a species or between members of two or more species often is extremely important, especially in breeding behaviour (see below Reproduction). The mode of communication may be visual, as between the small so-called cleaner fish and a large fish of a very different species. The larger fish often allows the cleaner to enter its mouth to remove gill parasites. The cleaner is recognized by its distinctive colour and actions and therefore is not eaten, even if the larger fish is normally a predator. Communication is often chemical, signals being sent by specific chemicals called pheromones.
Many fishes have a streamlined body and swim freely in open water. Fish locomotion is closely correlated with habitat and ecological niche (the general position of the animal to its environment).
Many fishes in both marine and fresh waters swim at the surface and have mouths adapted to feed best (and sometimes only) at the surface. Often such fishes are long and slender, able to dart at surface insects or at other surface fishes and in turn to dart away from predators; needlefishes, halfbeaks, and topminnows (such as killifish and mosquito fish) are good examples. Oceanic flying fishes escape their predators by gathering speed above the water surface, with the lower lobe of the tail providing thrust in the water. They then glide hundreds of yards on enlarged, winglike pectoral and pelvic fins. South American freshwater flying fishes escape their enemies by jumping and propelling their strongly keeled bodies out of the water.
So-called mid-water swimmers, the most common type of fish, are of many kinds and live in many habitats. The powerful fusiform tunas and the trouts, for example, are adapted for strong, fast swimming, the tunas to capture prey speedily in the open ocean and the trouts to cope with the swift currents of streams and rivers. The trout body form is well adapted to many habitats. Fishes that live in relatively quiet waters such as bays or lake shores or slow rivers usually are not strong, fast swimmers but are capable of short, quick bursts of speed to escape a predator. Many of these fishes have their sides flattened, examples being the sunfish and the freshwater angelfish of aquarists. Fish associated with the bottom or substrate usually are slow swimmers. Open-water plankton-feeding fishes almost always remain fusiform and are capable of rapid, strong movement (for example, sardines and herrings of the open ocean and also many small minnows of streams and lakes).
Bottom-living fishes are of many kinds and have undergone many types of modification of their body shape and swimming habits. Rays, which evolved from strong-swimming mid-water sharks, usually stay close to the bottom and move by undulating their large pectoral fins. Flounders live in a similar habitat and move over the bottom by undulating the entire body. Many bottom fishes dart from place to place, resting on the bottom between movements, a motion common in gobies. One goby relative, the mudskipper, has taken to living at the edge of pools along the shore of muddy mangrove swamps. It escapes its enemies by flipping rapidly over the mud, out of the water. Some catfishes, synbranchid eels, the so-called climbing perch, and a few other fishes venture out over damp ground to find more promising waters than those that they left. They move by wriggling their bodies, sometimes using strong pectoral fins; most have accessory air-breathing organs. Many bottom-dwelling fishes live in mud holes or rocky crevices. Marine eels and gobies commonly are found in such habitats and for the most part venture far beyond their cavelike homes. Some bottom dwellers, such as the clingfishes (Gobiesocidae), have developed powerful adhesive disks that enable them to remain in place on the substrate in areas such as rocky coasts, where the action of the waves is great.
The methods of reproduction in fishes are varied, but most fishes lay a large number of small eggs, fertilized and scattered outside of the body. The eggs of pelagic fishes usually remain suspended in the open water. Many shore and freshwater fishes lay eggs on the bottom or among plants. Some have adhesive eggs. The mortality of the young and especially of the eggs is very high, and often only a few individuals grow to maturity out of hundreds, thousands, and in some cases millions of eggs laid.
Males produce sperm, usually as a milky white substance called milt, in two (sometimes one) testes within the body cavity. In bony fishes a sperm duct leads from each testis to a urogenital opening behind the vent or anus. In sharks and rays and in cyclostomes the duct leads to a cloaca. Sometimes the pelvic fins are modified to help transmit the milt to the eggs at the female’s vent or on the substrate where the female has placed them. Sometimes accessory organs are used to fertilize females internally—for example, the claspers of many sharks and rays.
In the females the eggs are formed in two ovaries (sometimes only one) and pass through the ovaries to the urogenital opening and to the outside. In some fishes the eggs are fertilized internally but are shed before development takes place. Members of about a dozen families each of bony fishes (teleosts) and sharks bear live young. Many skates and rays also bear live young. In some bony fishes the eggs simply develop within the female, the young emerging when the eggs hatch (ovoviviparous). Others develop within the ovary and are nourished by ovarian tissues after hatching (viviparous). There are also other methods utilized by fishes to nourish young within the female. In all live-bearers the young are born at a relatively large size and are few in number. In one family of primarily marine fishes, the surfperches from the Pacific coast of North America, Japan, and Korea, the males of at least one species are born sexually mature, although they are not fully grown.
Some fishes are hermaphroditic—an individual producing both sperm and eggs, usually at different stages of its life. Self-fertilization, however, is probably rare.
Successful reproduction and, in many cases, defense of the eggs and the young are assured by rather stereotypical but often elaborate courtship and parental behaviour, either by the male or the female or both. Some fishes prepare nests by hollowing out depressions in the sand bottom (cichlids, for example), build nests with plant materials and sticky threads excreted by the kidneys (sticklebacks), or blow a cluster of mucus-covered bubbles at the water surface (gouramis). The eggs are laid in these structures. Some varieties of cichlids and catfishes incubate eggs in their mouths.
Some fishes, such as salmon, undergo long migrations from the ocean and up large rivers to spawn in the gravel beds where they themselves hatched (anadromous fishes). Some, such as the freshwater eels (family Anguillidae), live and grow to maturity in fresh water and migrate to the sea to spawn (catadromous fishes). Other fishes undertake shorter migrations from lakes into streams, within the ocean, or enter spawning habitats that they do not ordinarily occupy in other ways.
The basic structure and function of the fish body are similar to those of all other vertebrates. The usual four types of tissues are present: surface or epithelial, connective (bone, cartilage, and fibrous tissues, as well as their derivative, blood), nerve, and muscle tissues. In addition, the fish’s organs and organ systems parallel those of other vertebrates.
The typical fish body is streamlined and spindle-shaped, with an anterior head, a gill apparatus, and a heart, the latter lying in the midline just below the gill chamber. The body cavity, containing the vital organs, is situated behind the head in the lower anterior part of the body. The anus usually marks the posterior termination of the body cavity and most often occurs just in front of the base of the anal fin. The spinal cord and vertebral column continue from the posterior part of the head to the base of the tail fin, passing dorsal to the body cavity and through the caudal (tail) region behind the body cavity. Most of the body is of muscular tissue, a high proportion of which is necessitated by swimming. In the course of evolution this basic body plan has been modified repeatedly into the many varieties of fish shapes that exist today.
The skeleton forms an integral part of the fish’s locomotion system, as well as serving to protect vital parts. The internal skeleton consists of the skull bones (except for the roofing bones of the head, which are really part of the external skeleton), the vertebral column, and the fin supports (fin rays). The fin supports are derived from the external skeleton but will be treated here because of their close functional relationship to the internal skeleton. The internal skeleton of cyclostomes, sharks, and rays is of cartilage; that of many fossil groups and some primitive living fishes is mostly of cartilage but may include some bone. In place of the vertebral column, the earliest vertebrates had a fully developed notochord, a flexible stiff rod of viscous cells surrounded by a strong fibrous sheath. During the evolution of modern fishes the rod was replaced in part by cartilage and then by ossified cartilage. Sharks and rays retain a cartilaginous vertebral column; bony fishes have spool-shaped vertebrae that in the more primitive living forms only partially replace the notochord. The skull, including the gill arches and jaws of bony fishes, is fully, or at least partially, ossified. That of sharks and rays remains cartilaginous, at times partially replaced by calcium deposits but never by true bone.
The supportive elements of the fins (basal or radial bones or both) have changed greatly during fish evolution. Some of these changes are described in the section below (Evolution and paleontology). Most fishes possess a single dorsal fin on the midline of the back. Many have two and a few have three dorsal fins. The other fins are the single tail and anal fins and paired pelvic and pectoral fins. A small fin, the adipose fin, with hairlike fin rays, occurs in many of the relatively primitive teleosts (such as trout) on the back near the base of the caudal fin.
The skin of a fish must serve many functions. It aids in maintaining the osmotic balance, provides physical protection for the body, is the site of coloration, contains sensory receptors, and, in some fishes, functions in respiration. Mucous glands, which aid in maintaining the water balance and offer protection from bacteria, are extremely numerous in fish skin, especially in cyclostomes and teleosts. Since mucous glands are present in the modern lampreys, it is reasonable to assume that they were present in primitive fishes, such as the ancient Silurian and Devonian agnathans. Protection from abrasion and predation is another function of the fish skin, and dermal (skin) bone arose early in fish evolution in response to this need. It is thought that bone first evolved in skin and only later invaded the cartilaginous areas of the fish’s body, to provide additional support and protection. There is some argument as to which came first, cartilage or bone, and fossil evidence does not settle the question. In any event, dermal bone has played an important part in fish evolution and has different characteristics in different groups of fishes. Several groups are characterized at least in part by the kind of bony scales they possess.
Scales have played an important part in the evolution of fishes. Primitive fishes usually had thick bony plates or thick scales in several layers of bone, enamel, and related substances. Modern teleost fishes have scales of bone, which, while still protective, allow much more freedom of motion in the body. A few modern teleosts (some catfishes, sticklebacks, and others) have secondarily acquired bony plates in the skin. Modern and early sharks possessed placoid scales, a relatively primitive type of scale with a toothlike structure, consisting of an outside layer of enamel-like substance (vitrodentine), an inner layer of dentine, and a pulp cavity containing nerves and blood vessels. Primitive bony fishes had thick scales of either the ganoid or the cosmoid type. Cosmoid scales have a hard, enamel-like outer layer, an inner layer of cosmine (a form of dentine), and then a layer of vascular bone (isopedine). In ganoid scales the hard outer layer is different chemically and is called ganoin. Under this is a cosminelike layer and then a vascular bony layer. The thin, translucent bony scales of modern fishes, called cycloid and ctenoid (the latter distinguished by serrations at the edges), lack enameloid and dentine layers.
Skin has several other functions in fishes. It is well supplied with nerve endings and presumably receives tactile, thermal, and pain stimuli. Skin is also well supplied with blood vessels. Some fishes breathe in part through the skin, by the exchange of oxygen and carbon dioxide between the surrounding water and numerous small blood vessels near the skin surface.
Skin serves as protection through the control of coloration. Fishes exhibit an almost limitless range of colours. The colours often blend closely with the surroundings, effectively hiding the animal. Many fishes use bright colours for territorial advertisement or as recognition marks for other members of their own species, or sometimes for members of other species. Many fishes can change their colour to a greater or lesser degree, by movement of pigment within the pigment cells (chromatophores). Black pigment cells (melanophores), of almost universal occurrence in fishes, are often juxtaposed with other pigment cells. When placed beneath iridocytes or leucophores (bearing the silvery or white pigment guanine), melanophores produce structural colours of blue and green. These colours are often extremely intense, because they are formed by refraction of light through the needlelike crystals of guanine. The blue and green refracted colours are often relatively pure, lacking the red and yellow rays, which have been absorbed by the black pigment (melanin) of the melanophores. Yellow, orange, and red colours are produced by erythrophores, cells containing the appropriate carotenoid pigments. Other colours are produced by combinations of melanophores, erythrophores, and iridocytes.
The major portion of the body of most fishes consists of muscles. Most of the mass is trunk musculature, the fin muscles usually being relatively small. The caudal fin is usually the most powerful fin, being moved by the trunk musculature. The body musculature is usually arranged in rows of chevron-shaped segments on each side. Contractions of these segments, each attached to adjacent vertebrae and vertebral processes, bends the body on the vertebral joint, producing successive undulations of the body, passing from the head to the tail, and producing driving strokes of the tail. It is the latter that provides the strong forward movement for most fishes.
The digestive system, in a functional sense, starts at the mouth, with the teeth used to capture prey or collect plant foods. Mouth shape and tooth structure vary greatly in fishes, depending on the kind of food normally eaten. Most fishes are predacious, feeding on small invertebrates or other fishes and have simple conical teeth on the jaws, on at least some of the bones of the roof of the mouth, and on special gill arch structures just in front of the esophagus. The latter are throat teeth. Most predacious fishes swallow their prey whole, and the teeth are used for grasping and holding prey, for orienting prey to be swallowed (head first) and for working the prey toward the esophagus. There are a variety of tooth types in fishes. Some fishes, such as sharks and piranhas, have cutting teeth for biting chunks out of their victims. A shark’s tooth, although superficially like that of a piranha, appears in many respects to be a modified scale, while that of the piranha is like that of other bony fishes, consisting of dentine and enamel. Parrot fishes have beaklike mouths with short incisor-like teeth for breaking off coral and have heavy pavementlike throat teeth for crushing the coral. Some catfishes have small brushlike teeth, arranged in rows on the jaws, for scraping plant and animal growth from rocks. Many fishes (such as the Cyprinidae or minnows) have no jaw teeth at all but have very strong throat teeth.
Some fishes gather planktonic food by straining it from their gill cavities with numerous elongate stiff rods (gill rakers) anchored by one end to the gill bars. The food collected on these rods is passed to the throat, where it is swallowed. Most fishes have only short gill rakers that help keep food particles from escaping out the mouth cavity into the gill chamber.
Once reaching the throat, food enters a short, often greatly distensible esophagus, a simple tube with a muscular wall leading into a stomach. The stomach varies greatly in fishes, depending upon the diet. In most predacious fishes it is a simple straight or curved tube or pouch with a muscular wall and a glandular lining. Food is largely digested there and leaves the stomach in liquid form.
Between the stomach and the intestine, ducts enter the digestive tube from the liver and pancreas. The liver is a large, clearly defined organ. The pancreas may be embedded in it, diffused through it, or broken into small parts spread along some of the intestine. The junction between the stomach and the intestine is marked by a muscular valve. Pyloric ceca (blind sacs) occur in some fishes at this junction and have a digestive or absorptive function or both.
The intestine itself is quite variable in length, depending upon the fish’s diet. It is short in predacious forms, sometimes no longer than the body cavity, but long in herbivorous forms, being coiled and several times longer than the entire length of the fish in some species of South American catfishes. The intestine is primarily an organ for absorbing nutrients into the bloodstream. The larger its internal surface, the greater its absorptive efficiency, and a spiral valve is one method of increasing its absorption surface.
Sharks, rays, chimaeras, lungfishes, surviving chondrosteans, holosteans, and even a few of the more primitive teleosts have a spiral valve or at least traces of it in the intestine. Most modern teleosts have increased the area of the intestinal walls by having numerous folds and villi (fingerlike projections) somewhat like those in humans. Undigested substances are passed to the exterior through the anus in most teleost fishes. In lungfishes, sharks, and rays, it is first passed through the cloaca, a common cavity receiving the intestinal opening and the ducts from the urogenital system.
Oxygen and carbon dioxide dissolve in water, and most fishes exchange dissolved oxygen and carbon dioxide in water by means of the gills. The gills lie behind and to the side of the mouth cavity and consist of fleshy filaments supported by the gill arches and filled with blood vessels, which give gills a bright red colour. Water taken in continuously through the mouth passes backward between the gill bars and over the gill filaments, where the exchange of gases takes place. The gills are protected by a gill cover in teleosts and many other fishes but by flaps of skin in sharks, rays, and some of the older fossil fish groups. The blood capillaries in the gill filaments are close to the gill surface to take up oxygen from the water and to give up excess carbon dioxide to the water.
Most modern fishes have a hydrostatic (ballast) organ, called the swim bladder, that lies in the body cavity just below the kidney and above the stomach and intestine. It originated as a diverticulum of the digestive canal. In advanced teleosts, especially the acanthopterygians, the bladder has lost its connection with the digestive tract, a condition called physoclistic. The connection has been retained (physostomous) by many relatively primitive teleosts. In several unrelated lines of fishes, the bladder has become specialized as a lung or, at least, as a highly vascularized accessory breathing organ. Some fishes with such accessory organs are obligate air breathers and will drown if denied access to the surface, even in well-oxygenated water. Fishes with a hydrostatic form of swim bladder can control their depth by regulating the amount of gas in the bladder. The gas, mostly oxygen, is secreted into the bladder by special glands, rendering the fish more buoyant; the gas is absorbed into the bloodstream by another special organ, reducing the overall buoyancy and allowing the fish to sink. Some deep-sea fishes may have oils, rather than gas, in the bladder. Other deep-sea and some bottom-living forms have much-reduced swim bladders or have lost the organ entirely.
The swim bladder of fishes follows the same developmental pattern as the lungs of land vertebrates. There is no doubt that the two structures have the same historical origin in primitive fishes. More or less intermediate forms still survive among the more primitive types of fishes, such as the lungfishes Lepidosiren and Protopterus.
The circulatory, or blood vascular, system consists of the heart, the arteries, the capillaries, and the veins. It is in the capillaries that the interchange of oxygen, carbon dioxide, nutrients, and other substances such as hormones and waste products takes place. The capillaries lead to the veins, which return the venous blood with its waste products to the heart, kidneys, and gills. There are two kinds of capillary beds: those in the gills and those in the rest of the body. The heart, a folded continuous muscular tube with three or four saclike enlargements, undergoes rhythmic contractions and receives venous blood in a sinus venosus. It passes the blood to an auricle and then into a thick muscular pump, the ventricle. From the ventricle the blood goes to a bulbous structure at the base of a ventral aorta just below the gills. The blood passes to the afferent (receiving) arteries of the gill arches and then to the gill capillaries. There waste gases are given off to the environment, and oxygen is absorbed. The oxygenated blood enters efferent (exuant) arteries of the gill arches and then flows into the dorsal aorta. From there blood is distributed to the tissues and organs of the body. One-way valves prevent backflow. The circulation of fishes thus differs from that of the reptiles, birds, and mammals in that oxygenated blood is not returned to the heart prior to distribution to the other parts of the body.
The primary excretory organ in fishes, as in other vertebrates, is the kidney. In fishes some excretion also takes place in the digestive tract, skin, and especially the gills (where ammonia is given off). Compared with land vertebrates, fishes have a special problem in maintaining their internal environment at a constant concentration of water and dissolved substances, such as salts. Proper balance of the internal environment (homeostasis) of a fish is in a great part maintained by the excretory system, especially the kidney.
The kidney, gills, and skin play an important role in maintaining a fish’s internal environment and checking the effects of osmosis. Marine fishes live in an environment in which the water around them has a greater concentration of salts than they can have inside their body and still maintain life. Freshwater fishes, on the other hand, live in water with a much lower concentration of salts than they require inside their bodies. Osmosis tends to promote the loss of water from the body of a marine fish and absorption of water by that of a freshwater fish. Mucus in the skin tends to slow the process but is not a sufficient barrier to prevent the movement of fluids through the permeable skin. When solutions on two sides of a permeable membrane have different concentrations of dissolved substances, water will pass through the membrane into the more concentrated solution, while the dissolved chemicals move into the area of lower concentration (diffusion).
The kidney of freshwater fishes is often larger in relation to body weight than that of marine fishes. In both groups the kidney excretes wastes from the body, but the kidney of freshwater fishes also excretes large amounts of water, counteracting the water absorbed through the skin. Freshwater fishes tend to lose salt to the environment and must replace it. They get some salt from their food, but the gills and skin inside the mouth actively absorb salt from water passed through the mouth. This absorption is performed by special cells capable of moving salts against the diffusion gradient. Freshwater fishes drink very little water and take in little water with their food.
Marine fishes must conserve water, and therefore their kidneys excrete little water. To maintain their water balance, marine fishes drink large quantities of seawater, retaining most of the water and excreting the salt. Most nitrogenous waste in marine fishes appears to be secreted by the gills as ammonia. Marine fishes can excrete salt by clusters of special cells (chloride cells) in the gills.
There are several teleosts—for example, the salmon—that travel between fresh water and seawater and must adjust to the reversal of osmotic gradients. They adjust their physiological processes by spending time (often surprisingly little time) in the intermediate brackish environment.
Marine hagfishes, sharks, and rays have osmotic concentrations in their blood about equal to that of seawater and so do not have to drink water nor perform much physiological work to maintain their osmotic balance. In sharks and rays the osmotic concentration is kept high by retention of urea in the blood. Freshwater sharks have a lowered concentration of urea in the blood.
Endocrine glands secrete their products into the bloodstream and body tissues and, along with the central nervous system, control and regulate many kinds of body functions. Cyclostomes have a well-developed endocrine system, and presumably it was well developed in the early Agnatha, ancestral to modern fishes. Although the endocrine system in fishes is similar to that of higher vertebrates, there are numerous differences in detail. The pituitary, the thyroid, the suprarenals, the adrenals, the pancreatic islets, the sex glands (ovaries and testes), the inner wall of the intestine, and the bodies of the ultimobranchial gland make up the endocrine system in fishes. There are some others whose function is not well understood. These organs regulate sexual activity and reproduction, growth, osmotic pressure, general metabolic activities such as the storage of fat and the utilization of foodstuffs, blood pressure, and certain aspects of skin colour. Many of these activities are also controlled in part by the central nervous system, which works with the endocrine system in maintaining the life of a fish. Some parts of the endocrine system are developmentally, and undoubtedly evolutionarily, derived from the nervous system.
As in all vertebrates, the nervous system of fishes is the primary mechanism coordinating body activities, as well as integrating these activities in the appropriate manner with stimuli from the environment. The central nervous system, consisting of the brain and spinal cord, is the primary integrating mechanism. The peripheral nervous system, consisting of nerves that connect the brain and spinal cord to various body organs, carries sensory information from special receptor organs such as the eyes, internal ears, nares (sense of smell), taste glands, and others to the integrating centres of the brain and spinal cord. The peripheral nervous system also carries information via different nerve cells from the integrating centres of the brain and spinal cord. This coded information is carried to the various organs and body systems, such as the skeletal muscular system, for appropriate action in response to the original external or internal stimulus. Another branch of the nervous system, the autonomic nervous system, helps to coordinate the activities of many glands and organs and is itself closely connected to the integrating centres of the brain.
The brain of the fish is divided into several anatomical and functional parts, all closely interconnected but each serving as the primary centre of integrating particular kinds of responses and activities. Several of these centres or parts are primarily associated with one type of sensory perception, such as sight, hearing, or smell (olfaction).
The sense of smell is important in almost all fishes. Certain eels with tiny eyes depend mostly on smell for location of food. The olfactory, or nasal, organ of fishes is located on the dorsal surface of the snout. The lining of the nasal organ has special sensory cells that perceive chemicals dissolved in the water, such as substances from food material, and send sensory information to the brain by way of the first cranial nerve. Odour also serves as an alarm system. Many fishes, especially various species of freshwater minnows, react with alarm to a chemical released from the skin of an injured member of their own species.
Many fishes have a well-developed sense of taste, and tiny pitlike taste buds or organs are located not only within their mouth cavities but also over their heads and parts of their body. Catfishes, which often have poor vision, have barbels (“whiskers”) that serve as supplementary taste organs, those around the mouth being actively used to search out food on the bottom. Some species of naturally blind cave fishes are especially well supplied with taste buds, which often cover most of their body surface.
Sight is extremely important in most fishes. The eye of a fish is basically like that of all other vertebrates, but the eyes of fishes are extremely varied in structure and adaptation. In general, fishes living in dark and dim water habitats have large eyes, unless they have specialized in some compensatory way so that another sense (such as smell) is dominant, in which case the eyes will often be reduced. Fishes living in brightly lighted shallow waters often will have relatively small but efficient eyes. Cyclostomes have somewhat less elaborate eyes than other fishes, with skin stretched over the eyeball perhaps making their vision somewhat less effective. Most fishes have a spherical lens and accommodate their vision to far or near subjects by moving the lens within the eyeball. A few sharks accommodate by changing the shape of the lens, as in land vertebrates. Those fishes that are heavily dependent upon the eyes have especially strong muscles for accommodation. Most fishes see well, despite the restrictions imposed by frequent turbidity of the water and by light refraction.
Fossil evidence suggests that colour vision evolved in fishes more than 300 million years ago, but not all living fishes have retained this ability. Experimental evidence indicates that many shallow-water fishes, if not all, have colour vision and see some colours especially well, but some bottom-dwelling shore fishes live in areas where the water is sufficiently deep to filter out most if not all colours, and these fishes apparently never see colours. When tested in shallow water, they apparently are unable to respond to colour differences.
Sound perception and balance are intimately associated senses in a fish. The organs of hearing are entirely internal, located within the skull, on each side of the brain and somewhat behind the eyes. Sound waves, especially those of low frequencies, travel readily through water and impinge directly upon the bones and fluids of the head and body, to be transmitted to the hearing organs. Fishes readily respond to sound; for example, a trout conditioned to escape by the approach of fishermen will take flight upon perceiving footsteps on a stream bank even if it cannot see a fisherman. Compared with humans, however, the range of sound frequencies heard by fishes is greatly restricted. Many fishes communicate with each other by producing sounds in their swim bladders, in their throats by rasping their teeth, and in other ways.
A fish or other vertebrate seldom has to rely on a single type of sensory information to determine the nature of the environment around it. A catfish uses taste and touch when examining a food object with its oral barbels. Like most other animals, fishes have many touch receptors over their body surface. Pain and temperature receptors also are present in fishes and presumably produce the same kind of information to a fish as to humans. Fishes react in a negative fashion to stimuli that would be painful to human beings, suggesting that they feel a sensation of pain.
An important sensory system in fishes that is absent in other vertebrates (except some amphibians) is the lateral line system. This consists of a series of heavily innervated small canals located in the skin and bone around the eyes, along the lower jaw, over the head, and down the mid-side of the body, where it is associated with the scales. Intermittently along these canals are located tiny sensory organs (pit organs) that apparently detect changes in pressure. The system allows a fish to sense changes in water currents and pressure, thereby helping the fish to orient itself to the various changes that occur in the physical environment.
Model: Julz
www.modelmayhem.com/member.php?id=740394
Hair: Do or Dye
Makeup: Angelina Broso
Wardrobe: me
Strobist:
* canon 580ex with gobo , model right, pointed at backdrop
* vivitar 285hv with gobo, model left, pointed at backdrop
As the name implies it sits on the eastern most point of Prince Edward Island. Money was granted for a lighthouse in 1865 and the work was done in 1866-1867. The light was relocated in 1885, when the tower and dwelling were moved 1,600 feet east to a spot about 200 feet from the tip of the point. Also in 1885 a fog alarm building was constructed 100 feet east of the tower to hold two foghorns. A radio beacon was established at East Point in 1935 and commenced operation on November 21 of that year. In early 2010, Friends of Elmira Inc., which had operated the lighthouse on a lease basis with the Department of Fisheries and Oceans since 2002, was given ownership of the property.