View allAll Photos Tagged igf1
via WordPress ift.tt/2dRyG5f
Im Artikel „Ketogene Diäten. Vorsicht bei Verzicht auf Kohlenhydrate“ wird empfohlen, sich nicht ketogen zu ernähren. Wir als Ketoseportal können das natürlich nicht so stehen lassen.
Hier eine Richtigstellung der Fakten:
Dieser Artikel sagt prinzipiell aus, dass
a) kohlenhydratreduzierte Diäten nur helfen bei Epilepsie, alle weiteren Anwendungsfälle sind nicht nachgewiesen
b) ketogene Diäten zu Ablagerungen an den Gefäßen führen mit der Folge von Schlaganfällen oder Herzinfarkten
c) Ketogene Diät führt zu einer erhöhten Harnsäureproduktion und kann somit zu Gicht führen
Der Artikel zitiert als Quellen nur Interviewpartnern wie Professor Georg Wechsler oder Margret Morlo. Wissenschaftliche Studien werden nicht angegeben. Soviel schon mal zur Tiefe der Recherche, die der Journalist da unternommen hat. Vielleicht ist deswegen auch die Kommentarfunktion ausgeschaltet bei dem Artikel.
Schauen wir doch mal, was an den Punkten jeweils an Wahrheit dran ist.
Zu a) kohlenhydratreduzierte Diäten nur helfen bei Epilepsie, alle weiteren Anwendungsfälle sind nicht nachgewiesen
Dass Ketose bei Epilepsie hilft, ist lange nachgewiesen. Außerdem ist seit über 20 Jahren bekannt, dass Kohlenhydratverzehr zum Metabolischen Syndrom, das zusammen hängt mit Herzkrankheiten, Diabetes, Bluthochdruck, etc. Der Verzicht auf Kohlenhydrate könnte also durchaus helfen, diese Krankheiten zu lindern oder sogar zu heilen.
Kohlenhydratreduzierte Diäten helfen nachgewiesenermaßen für
Diabetes
Risiko kardiovaskulärer Krankheiten
Epilepsie
Gewichtsabnahme
Erste Hinweise in Studien gibt es auf eine Wirksamkeit bei
Akne
PCOS
Neurologischen Krankheiten
Krebs
Außerdem gibt es weitere Anwendungsfelder, die wohl erst in den nächsten Jahren wissenschaftlich nachgewiesen werden, aber schon von Ketanern in Foren diskutiert werden. Einfach mal bei reddit unter /keto suchen.
b) ketogene Diäten zu Ablagerungen an den Gefäßen führen mit der Folge von Schlaganfällen oder Herzinfarkten
(„Es besteht die Gefahr, dass eine nur fettreiche Ernährung zu Ablagerungen an den Gefäßen führt. Die Folge davon können Schlaganfall oder Herzinfarkt sein.“)
Dies beruht auf Ernährungsempfehlungen aus den 60er / 70er Jahren. Es wurde damals angenommen, dass Fett und Cholesterin zuständig ist für eine Verengung der Gefäße. Selbst groß angelegte Studien konnten dies nicht wirklich nachweisen.
Was man jedoch nachweisen konnte, ist, dass der Verzehr von vielen Kohlenhydraten zu mehr ungesunden Cholesterinpartikeln führt. Cholesterin ist nicht gleich Cholesterin. Es gibt unterschiedliche Partikel. Die fiesen kleinen dichten, die zu Ablagerungen an den Gefäßen führen, werden von der Leber aus Kohlenhydraten gebaut.
Genauer gesagt macht die Leber große Fetttropfen, wenn viele Kohlenhydrate gegessen werden. Diese großen Fetttropfen werden in Transportblasen gesteckt. Zusammen bilden Fetttropfen und Transportblase dann die sogenannten LDL Partikel. Diese wandern durch den Körper und geben einen Teil des Fetts ab als Energie an die Zellen. Was übrig bleibt, sind kleine dichte LDL Partikel. Fiese kleine dichte LDL Partikel, die bevorzugt in Gefäßen rumhängen und da Ablagerungen machen.
Wenn wenig Kohlenhydrate da sind, baut die Leber mittelgroße Fetttropfen und legt diese ab in der Transportblase. Dies sind ebenfalls LDL Partikel. Diese mittelgroßen werden aber nie zu kleinen dichten LDL Partikeln, sondern bleiben fluffig. Fluffige LDL Partikel sind unheimlich nett und kuschelig und machen keine Ablagerungen in den Gefäßen.
Kurz gesagt:
Wenig Kohlenhydrate = wenig kleine dichte LDL Partikel
Es sind also Kohlenhydrate, nicht Fett, die Schlaganfälle und Herzinfarkte verursachen.
(Lieber Herr Prof. Wechsler, kennen Sie das Buch „Good Calories Bad Calories“? Wenn Sie mir mehr Studien zeigen können, die darauf hinweisen, dass eine ketogene Ernährungsweise zu Ablagerungen an den Gefäßen führt als Herr Taubes Studien aufführt dazu, dass Kohlenhydrate zu Ablagerungen an den Gefäßen – dann haben Sie hiermit eine persönliche Entschuldigung via Skype und ein persönliches Interview zur Gegendarstellung gewonnen.
Sorry, den Kommentar konnte ich mir nicht verkneifen. Vielleicht weil ich beeindruckt bin, dass Sie einen Professortitel haben. Das heißt, dass Sie viel geforscht und gelesen haben, so einen Titel bekommt man nicht einfach so. Ich wünschte nur, die Forschungsergebnisse zu Low Carb würden zu mehr Ärzten und Professoren durchdringen. Dann würden Menschen wie meine Mama vielleicht nicht fast an Herzproblemen sterben. Oder übergewichtig sein mit Diabetes. Oder mit Erwachsenen-Akne kämpfen. Oder mit Alzheimer. Oder Migräne. Das macht mich wahrscheinlich etwas wütend und daher mein fieser Kommentar. Über ein Interview mit Ihnen würde ich mich trotzdem freuen Herr Professor Wechsler.)
c) Ketogene Diät führt zu einer erhöhten Harnsäureproduktion und kann somit zu Gicht führen
Das ist zum Teil richtig. Bei einer Umstellung von einer Ernährung mit vielen Kohlenhydraten zur ketogenen Ernährung produziert der Körper für mehrere Tage bis Wochen mehr Harnsäure. Danach produziert der Körper genauso viel Harnsäure wie vorher, wenn nicht sogar weniger.
Was genau die zwischenzeitliche Erhöhung der Harnsäure auslöst, ist noch unklar. Es hängt in jedem Fall mit der Umstellung der Energieversorgung des Körpers von Glukose auf Ketone zusammen. Möglicherweise ist das Hirn (braucht am meisten Energie aller Organe im Körper, selbst bei Doofen) verzweifelt, weil es erstmal keine Energie in der gewohnten Form mehr bekommt. Dann baut der Körper etwas Muskelmasse ab und baut die Proteine zu Glukose um. In diesem Prozess entsteht wahrscheinlich die Harnsäure.
Wenn der Körper eine Weile lang nur Ketone als Nahrung hat, gewöhnt er sich daran. Dann funktioniert das Hirn wieder super und ist sogar glücklicher als zuvor, denn es Ketone liefern eine hochwertigere Energie als Glukose.
(Wer jetzt Angst um seine hart trainierten Muskeln hat: auch die leiden nur kurzfristig. Studien haben gezeigt, dass nach kurzer Zeit wieder alles dran ist. Und ja, man kann auf Ketose auch Muskeln aufbauen. Dauert „optisch“ nur länger, weil es reine Muskelmasse ist und keine Fettschicht darauf ist wie beim Muskelaufbau mit Kohlenhydraten.)
Bei den meisten Menschen ist eine vorübergehende Erhöhung der Harnsäure kein Grund zur Beunruhigung. Menschen, die zu Gicht neigen, sollten sich für eine Umstellung auf jeden Fall ärztliche Unterstützung holen.
Wenn du selbst bisher keine Probleme mit Gicht hattest, aber Verwandte von dir, lieber auch auf Nummer sicher gehen. Eine Begleitung von einem Arzt, der sich mit Ketose auskennt bei der Umstellung ist nie verkehrt.
„Wer sich ketogen ernährt, sollte daher regelmäßig die Harnsäure kontrollieren lassen.“
Damit stimme ich überein. Sicher ist sicher!
Man sollte am besten auch andere Werte messen lassen. Damit man mit eigenen Augen sehen kann, wie Entzündungswerte nach unten gehen, weniger fiese dichte LDL Partikel im Körper sind, der Blutdruck sich normalisiert,… mit anderen Worten: damit du mit eigenen Augen sehen kannst, wie du durch Ketose gesünder und fitter wirst.
Im Gegensatz zum Spiegel, der völlig ohne wissenschaftliche Quellen ausgekommen ist um gegen Ketose zu wettern – hier ein kleiner Auszug von Studien zu Ketose. Die Studien erklären, wie Ketose bei Übergewicht, (Markern für) Herzkrankheiten, Diabetes, Akne, Krebs, PCOS und neurologischen Krankheiten hilft:
Appelberg KS, Hovda DA, Prins ML. The effects of a ketogenic diet on behavioral outcome after controlled cortical impact injury in the juvenile and adult rat. J Neurotrauma 2009; 26: 497–506.
Baranano KW, Hartman AL. The ketogenic diet: uses in epilepsy and other neurologic illnesses. Curr Treat Options Neurol 2008; 10: 410–419.
Basu S, Yoffe P, Hills N, Lustig RH. The relationship of sugar to population-level diabetes prevalence: An econometric analysis of repeated cross-sectional data. PLoS One 2013; 8: e57873.
Beck SA, Tisdale MJ. Effect of insulin on weight loss and tumour growth in a cachexia model. Br J Cancer 1989; 59: 677–681.
Bistrian BR, Blackburn GL, Flatt JP, Sizer J, Scrimshaw NS, Sherman M. Nitrogen metabolism and insulin requirements in obese diabetic adults on a protein-sparing modified fast. Diabetes 1976; 25: 494–504.
Blackburn GL, Phillips JC, Morreale S. Physician’s guide to popular low-carbohydrate weight-loss diets. Cleve Clin J Med 2001; 68: 761–766. 768–9, 773–4.
Blank SK, McCartney CR, Chhabra S, Helm KD, Eagleson CA, Chang RJ et al. Modulation of gonadotropin-releasing hormone pulse generator sensitivity to progesterone inhibition in hyperandrogenic adolescent girls–implications for regulation of pubertal maturation. J Clin Endocrinol Metab 2009; 94: 2360–2366.
Boden G, Sargrad K, Homko C, Mozzoli M, Stein TP. Effect of a low-carbohydrate diet on appetite, blood glucose levels, and insulin resistance in obese patients with type 2 diabetes. Ann Intern Med 2005; 142: 403–411.
Bough KJ, Rho JM. Anticonvulsant mechanisms of the ketogenic diet. Epilepsia 2007; 48: 43–58.
Brehm BJ, Seeley RJ, Daniels SR, D’Alessio DA. A randomized trial comparing a very low carbohydrate diet and a calorie-restricted low fat diet on body weight and cardiovascular risk factors in healthy women. J Clin Endocrinol Metab 2003; 88: 1617–1623.
Cahill GFJr. Fuel metabolism in starvation. Annu Rev Nutr 2006; 26: 1–22.
Cordain L, Eaton SB, Sebastian A, Mann N, Lindeberg S, Watkins BA et al. Origins and evolution of the western diet: health implications for the 21st century. Am J Clin Nutr 2005; 81: 341–354.
Cordain L. Implications for the role of diet in acne. Semin Cutan Med Surg 2005; 24: 84–91.
Dashti HM, Al-Zaid NS, Mathew TC, Al-Mousawi M, Talib H, Asfar SK et al. Long term effects of ketogenic diet in obese subjects with high cholesterol level. Mol Cell Biochem 2006; 286: 1–9.
Denley A, Carroll JM, Brierley GV, Cosgrove L, Wallace J, Forbes B et al. Differential activation of insulin receptor substrates 1 and 2 by insulin-like growth factor-activated insulin receptors. Mol Cell Biol 2007; 27: 3569–3577.
DeUgarte CM, Bartolucci AA, Azziz R. Prevalence of insulin resistance in the polycystic ovary syndrome using the homeostasis model assessment. Fertil Steril 2005; 83: 1454–1460.
Eisenstein J, Roberts SB, Dallal G, Saltzman E. High-protein weight-loss diets: are they safe and do they work? A review of the experimental and epidemiologic data. Nutr Rev 2002; 60: 189–200.
Fauser BC, Tarlatzis BC, Rebar RW, Legro RS, Balen AH, Lobo R et al. Consensus on women’s health aspects of polycystic ovary syndrome (PCOS): the amsterdam ESHRE/ASRM-sponsored 3rd PCOS consensus workshop group. Fertil Steril 2012; 97: 28–38. . e25.
Feinman RD, Fine EJ. Nonequilibrium thermodynamics and energy efficiency in weight loss diets. Theor Biol Med Model 2007; 4: 27.
Fine EJ, Feinman RD. Thermodynamics of weight loss diets. Nutr Metab (Lond) 2004; 1: 15.
Fine EJ, Segal-Isaacson CJ, Feinman RD, Herszkopf S, Romano MC, Tomuta N et al. Targeting insulin inhibition as a metabolic therapy in advanced cancer: a pilot safety and feasibility dietary trial in 10 patients. Nutrition 2012; 28: 1028–1035.
Freedman MR, King J, Kennedy E. Popular diets: A scientific review. Obes Res 2001; 9 (Suppl 1), 1S–40S.
Fukao T, Lopaschuk GD, Mitchell GA. Pathways and control of ketone body metabolism: on the fringe of lipid biochemistry. Prostaglandins Leukot Essent Fatty Acids 2004; 70: 243–251.
Gardner CD, Kiazand A, Alhassan S, Kim S, Stafford RS, Balise RR et al. Comparison of the atkins, zone, ornish, and LEARN diets for change in weight and related risk factors among overweight premenopausal women: The A TO Z weight loss study: a randomized trial. JAMA 2007; 297: 969–977.
Garriga-Canut M, Schoenike B, Qazi R, Bergendahl K, Daley TJ, Pfender RM et al. 2-deoxy-D-glucose reduces epilepsy progression by NRSF-CtBP-dependent metabolic regulation of chromatin structure. Nat Neurosci 2006; 9: 1382–1387.
Giovannucci E, Harlan DM, Archer MC, Bergenstal RM, Gapstur SM, Habel LA et al. Diabetes and cancer: a consensus report. CA Cancer J Clin 2010; 60: 207–221.
Goodman-Gruen D, Barrett-Connor E. Sex hormone-binding globulin and glucose tolerance in postmenopausal women. the rancho bernardo study. Diabetes Care 1997; 20: 645–649.
Gumbiner B, Wendel JA, McDermott MP. Effects of diet composition and ketosis on glycemia during very-low-energy-diet therapy in obese patients with non-insulin-dependent diabetes mellitus. Am J Clin Nutr 1996; 63: 110–115.
Halton TL, Hu FB. The effects of high protein diets on thermogenesis, satiety and weight loss: a critical review. J Am Coll Nutr 2004; 23: 373–385.
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.
Hartman AL, Gasior M, Vining EP, Rogawski MA. The neuropharmacology of the ketogenic diet. Pediatr Neurol 2007; 36: 281–292.
Hartman AL, Lyle M, Rogawski MA, Gasior M. Efficacy of the ketogenic diet in the 6-hz seizure test. Epilepsia 2008; 49: 334–339.
Hellerstein MK. De novo lipogenesis in humans: Metabolic and regulatory aspects. Eur J Clin Nutr 1999; 53 (Suppl 1), S53–S65.
Henderson ST, Vogel JL, Barr LJ, Garvin F, Jones JJ, Costantini LC. Study of the ketogenic agent AC-1202 in mild to moderate alzheimer’s disease: A randomized, double-blind, placebo-controlled, multicenter trial. Nutr Metab (Lond) 2009; 6: 31.
Ho VW, Leung K, Hsu A, Luk B, Lai J, Shen SY et al. A low carbohydrate, high protein diet slows tumor growth and prevents cancer initiation. Cancer Res 2011; 71: 4484–4493.
Huffman J, Kossoff EH. State of the ketogenic diet(s) in epilepsy. Curr Neurol Neurosci Rep 2006; 6: 332–340.
Jia Y, Hwang SY, House JD, Ogborn MR, Weiler HA, O K et al. Long-term high intake of whole proteins results in renal damage in pigs. J Nutr 2010; 140: 1646–1652.
Johnstone AM, Horgan GW, Murison SD, Bremner DM, Lobley GE. Effects of a high-protein ketogenic diet on hunger, appetite, and weight loss in obese men feeding ad libitum. Am J Clin Nutr 2008; 87: 44–55.
Jornayvaz FR, Samuel VT, Shulman GI. The role of muscle insulin resistance in the pathogenesis of atherogenic dyslipidemia and nonalcoholic fatty liver disease associated with the metabolic syndrome. Annu Rev Nutr 2010; 30: 273–290.
Kapogiannis D, Mattson MP. Disrupted energy metabolism and neuronal circuit dysfunction in cognitive impairment and alzheimer’s disease. Lancet Neurol 2011; 10: 187–198.
Kashiwaya Y, Takeshima T, Mori N, Nakashima K, Clarke K, Veech RL. D-beta-hydroxybutyrate protects neurons in models of Alzheimer’s and Parkinson’s disease. Proc Natl Acad Sci USA 2000; 97: 5440–5444.
Kessler SK, Neal EG, Camfield CS, Kossoff EH. Dietary therapies for epilepsy: future research. Epilepsy Behav 2011; 22: 17–22.
Klement RJ, Kammerer U. Is there a role for carbohydrate restriction in the treatment and prevention of cancer? Nutr Metab (Lond) 2011; 8: 75.
Kossoff E. The fat is in the fire: ketogenic diet for refractory status epilepticus. Epilepsy Curr 2011; 11: 88–89.
Krebs HA. The regulation of the release of ketone bodies by the liver. Adv Enzyme Regul 1966; 4: 339–354.
Kristiansen SB, Endoh A, Casson PR, Buster JE, Hornsby PJ. Induction of steroidogenic enzyme genes by insulin and IGF-I in cultured adult human adrenocortical cells. Steroids 1997; 62: 258–265.
Maalouf M, Rho JM, Mattson MP. The neuroprotective properties of calorie restriction, the ketogenic diet, and ketone bodies. Brain Res Rev 2009; 59: 293–315.
Martin WF, Armstrong LE, Rodriguez NR. Dietary protein intake and renal function. Nutr Metab (Lond) 2005; 2: 25.
Mavropoulos JC, Yancy WS, Hepburn J, Westman EC. The effects of a low-carbohydrate, ketogenic diet on the polycystic ovary syndrome: a pilot study. Nutr Metab (Lond) 2005; 2: 35.
McDaniel SS, Rensing NR, Thio LL, Yamada KA, Wong M. The ketogenic diet inhibits the mammalian target of rapamycin (mTOR) pathway. Epilepsia 2011; 52: e7–e11.
Moghetti P, Castello R, Negri C, Tosi F, Spiazzi GG, Brun E et al. Insulin infusion amplifies 17 alpha-hydroxycorticosteroid intermediates response to adrenocorticotropin in hyperandrogenic women: apparent relative impairment of 17,20-lyase activity. J Clin Endocrinol Metab 1996; 81: 881–886.
Nebeling LC, Lerner E. Implementing a ketogenic diet based on medium-chain triglyceride oil in pediatric patients with cancer. J Am Diet Assoc 1995; 95: 693–697.
Nebeling LC, Miraldi F, Shurin SB, Lerner E. Effects of a ketogenic diet on tumor metabolism and nutritional status in pediatric oncology patients: Two case reports. J Am Coll Nutr 1995; 14: 202–208.
Nielsen JV, Joensson EA. Low-carbohydrate diet in type 2 diabetes: Stable improvement of bodyweight and glycemic control during 44 months follow-up. Nutr Metab (Lond) 2008; 5: 14.
Noebels J. A perfect storm: converging paths of epilepsy and alzheimer’s dementia intersect in the hippocampal formation. Epilepsia 2011; 52 (Suppl 1), 39–46.
Nordmann AJ, Nordmann A, Briel M, Keller U, Yancy WSJr, Brehm BJ et al. Effects of low-carbohydrate vs low-fat diets on weight loss and cardiovascular risk factors: a meta-analysis of randomized controlled trials. Arch Intern Med 2006; 166: 285–293.
Otto C, Kaemmerer U, Illert B, Muehling B, Pfetzer N, Wittig R et al. Growth of human gastric cancer cells in nude mice is delayed by a ketogenic diet supplemented with omega-3 fatty acids and medium-chain triglycerides. BMC Cancer 2008; 8: 122.
Owen OE, Morgan AP, Kemp HG, Sullivan JM, Herrera MG, Cahill GFJr. Brain metabolism during fasting. J Clin Invest 1967; 46: 1589–1595.
Palop JJ, Mucke L. Epilepsy and cognitive impairments in alzheimer disease. Arch Neurol 2009; 66: 435–440.
Paoli A, Canato M, Toniolo L, Bargossi AM, Neri M, Mediati M et al. The ketogenic diet: an underappreciated therapeutic option? Clin Ter 2011; 162: e145–e153.
Paoli A, Cenci L, Fancelli M, Parmagnani A, Fratter A, Cucchi A et al. Ketogenic diet and phytoextracts comparison of the efficacy of mediterranean, zone and tisanoreica diet on some health risk factors. Agro Food Ind Hi-Tech 2010; 21: 24.
Paoli A, Grimaldi K, Bianco A, Lodi A, Cenci L, Parmagnani A. Medium term effects of a ketogenic diet and a mediterranean diet on resting energy expenditure and respiratory ratio. BMC Proceedings 2012; 6, (Suppl 3): P37.
Paoli A, Grimaldi K, Toniolo L, Canato M, Bianco A, Fratter A. Nutrition and acne: therapeutic potential of ketogenic diets. Skin Pharmacol Physiol 2012; 25: 111–117.
Pelicano H, Xu RH, Du M, Feng L, Sasaki R, Carew JS et al. Mitochondrial respiration defects in cancer cells cause activation of akt survival pathway through a redox-mediated mechanism. J Cell Biol 2006; 175: 913–923.
Pijls LT, de Vries H, Donker AJ, van Eijk JT. The effect of protein restriction on albuminuria in patients with type 2 diabetes mellitus: A randomized trial. Nephrol Dial Transplant 1999; 14: 1445–1453.
Pijls LT, de Vries H, van Eijk JT, Donker AJ. Protein restriction, glomerular filtration rate and albuminuria in patients with type 2 diabetes mellitus: a randomized trial. Eur J Clin Nutr 2002; 56: 1200–1207.
Poplawski MM, Mastaitis JW, Isoda F, Grosjean F, Zheng F, Mobbs CV. Reversal of diabetic nephropathy by a ketogenic diet. PLoS One 2011; 6: e18604.
Powell DR, Suwanichkul A, Cubbage ML, DePaolis LA, Snuggs MB, Lee PD. Insulin inhibits transcription of the human gene for insulin-like growth factor-binding protein-1. J Biol Chem 1991; 266: 18868–18876.
Praga M. Synergy of low nephron number and obesity: A new focus on hyperfiltration nephropathy. Nephrol Dial Transplant 2005; 20: 2594–2597.
Prins ML, Fujima LS, Hovda DA. Age-dependent reduction of cortical contusion volume by ketones after traumatic brain injury. J Neurosci Res 2005; 82: 413–420.
Renehan AG, Frystyk J, Flyvbjerg A. Obesity and cancer risk: the role of the insulin-IGF axis. Trends Endocrinol Metab 2006; 17: 328–336.
Roberson ED, Halabisky B, Yoo JW, Yao J, Chin J, Yan F et al. Amyloid-beta/fyn-induced synaptic, network, and cognitive impairments depend on tau levels in multiple mouse models of alzheimer’s disease. J Neurosci 2011; 31: 700–711.
Rose DP, Vona-Davis L. The cellular and molecular mechanisms by which insulin influences breast cancer risk and progression. Endocr Relat Cancer 2012; 19: R225–R241.
Sabapathy S, Morris NR, Schneider DA. Ventilatory and gas-exchange responses to incremental exercise performed with reduced muscle glycogen content. J Sci Med Sport 2006; 9: 267–273.
Sandri M, Barberi L, Bijlsma AY, Blaauw B, Dyar KA, Milan G et al. Signalling pathways regulating muscle mass in ageing skeletal muscle. the role of the IGF1-akt-mTOR-FoxO pathway. Biogerontology 2013;, e-pub ahead of print 19 May 2013.
Schmidt M, Pfetzer N, Schwab M, Strauss I, Kammerer U. Effects of a ketogenic diet on the quality of life in 16 patients with advanced cancer: a pilot trial. Nutr Metab (Lond) 2011; 8: 54.
Schwartzkroin PA, Wenzel HJ, Lyeth BG, Poon CC, Delance A, Van KC et al. Does ketogenic diet alter seizure sensitivity and cell loss following fluid percussion injury? Epilepsy Res 2010; 92: 74–84.
Schwertfeger KL, McManaman JL, Palmer CA, Neville MC, Anderson SM. Expression of constitutively activated akt in the mammary gland leads to excess lipid synthesis during pregnancy and lactation. J Lipid Res 2003; 44: 1100–1112.
Seyfried BT, Kiebish M, Marsh J, Mukherjee P. Targeting energy metabolism in brain cancer through calorie restriction and the ketogenic diet. J Cancer Res Ther 2009; 5 (Suppl 1), S7–S15.
Shai I, Schwarzfuchs D, Henkin Y, Shahar DR, Witkow S, Greenberget al. Weight loss with a low-carbohydrate, mediterranean, or low-fat diet. N Engl J Med 2008; 359: 229–241.
Sharman MJ, Kraemer WJ, Love DM, Avery NG, Gomez AL, Scheett TP et al. A ketogenic diet favorably affects serum biomarkers for cardiovascular disease in normal-weight men. J Nutr 2002; 132: 1879–1885.
Siva N. Can ketogenic diet slow progression of ALS? Lancet Neurol 2006; 5: 476.
Skov AR, Haulrik N, Toubro S, Molgaard C, Astrup A. Effect of protein intake on bone mineralization during weight loss: A 6-month trial. Obes Res 2002; 10: 432–438.
Smith R, Mann N. Acne in adolescence: a role for nutrition? Nutr Diet 2007; 64: S147–S149.
Smith RN, Mann NJ, Braue A, Makelainen H, Varigos GA. The effect of a high-protein, low glycemic-load diet versus a conventional, high glycemic-load diet on biochemical parameters associated with acne vulgaris: A randomized, investigator-masked, controlled trial. J Am Acad Dermatol 2007; 57: 247–256.
Stafstrom CE, Rho JM. The ketogenic diet as a treatment paradigm for diverse neurological disorders. Front Pharmacol 2012; 3: 59.
Sumithran P, Prendergast LA, Delbridge E, Purcell K, Shulkes A, Kriketos A et al. Ketosis and appetite-mediating nutrients and hormones after weight loss. Eur J Clin Nutr 2013;, e-pub ahead of print 1 May 2013; doi:10.1038/ejcn.2013.90.
Tagliabue A, Bertoli S, Trentani C, Borrelli P, Veggiotti P. Effects of the ketogenic diet on nutritional status, resting energy expenditure, and substrate oxidation in patients with medically refractory epilepsy: A 6-month prospective observational study. Clin Nutr 2012; 31: 246–249.
Tisdale MJ, Brennan RA, Fearon KC. Reduction of weight loss and tumour size in a cachexia model by a high fat diet. Br J Cancer 1987; 56: 39–43.
Tosi F, Negri C, Perrone F, Dorizzi R, Castello R, Bonora E et al. Hyperinsulinemia amplifies GnRH agonist stimulated ovarian steroid secretion in women with polycystic ovary syndrome. J Clin Endocrinol Metab 2012; 97: 1712–1719.
Van der Auwera I, Wera S, Van Leuven F, Henderson ST. A ketogenic diet reduces amyloid beta 40 and 42 in a mouse model of alzheimer’s disease. Nutr Metab (Lond) 2005; 2: 28.
Vanitallie TB, Nonas C, Di Rocco A, Boyar K, Hyams K, Heymsfield SB. Treatment of parkinson disease with diet-induced hyperketonemia: a feasibility study. Neurology 2005; 64: 728–730.
Veech RL. The therapeutic implications of ketone bodies: The effects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. Prostaglandins Leukot Essent Fatty Acids 2004; 70: 309–319.
Veldhorst M, Smeets A, Soenen S, Hochstenbach-Waelen A, Hursel R, Diepvens K et al. Protein-induced satiety: effects and mechanisms of different proteins. Physiol Behav 2008; 94: 300–307.
Veldhorst MA, Westerterp-Plantenga MS, Westerterp KR. Gluconeogenesis and energy expenditure after a high-protein, carbohydrate-free diet. Am J Clin Nutr 2009; 90: 519–526.
Volek JS, Phinney SD, Forsythe CE, Quann EE, Wood RJ, Puglisi MJ et al. Carbohydrate restriction has a more favorable impact on the metabolic syndrome than a low fat diet. Lipids 2009; 44: 297–309.
Volek JS, Sharman MJ, Forsythe CE. Modification of lipoproteins by very low-carbohydrate diets. J Nutr 2005; 135: 1339–1342.
Wakefield AP, House JD, Ogborn MR, Weiler HA, Aukema HM. A diet with 35% of energy from protein leads to kidney damage in female sprague-dawley rats. Br J Nutr 2011; 1–8.
Warburg O, Wind F, Negelein E. The metabolism of tumors in the body. J Gen Physiol 1927; 8: 519–530.
Warburg O. On respiratory impairment in cancer cells. Science 1956; 124: 269–270.
Welle S, Nair KS. Relationship of resting metabolic rate to body composition and protein turnover. Am J Physiol 1990; 258: E990–E998.
Westerterp-Plantenga MS, Nieuwenhuizen A, Tome D, Soenen S, Westerterp KR. Dietary protein, weight loss, and weight maintenance. Annu Rev Nutr 2009; 29: 21–41.
Westerterp-Plantenga MS. How are normal, high- or low-protein diets defined? Br J Nutr 2007; 97: 217–218.
Yancy WSJr, Foy M, Chalecki AM, Vernon MC, Westman EC. A low-carbohydrate, ketogenic diet to treat type 2 diabetes. Nutr Metab (Lond) 2005; 2: 34.
Zhao Z, Lange DJ, Voustianiouk A, MacGrogan D, Ho L, Suh J et al. A ketogenic diet as a potential novel therapeutic intervention in amyotrophic lateral sclerosis. BMC Neurosci 2006; 7: 29.
Zhou W, Mukherjee P, Kiebish MA, Markis WT, Mantis JG, Seyfried TN. The calorically restricted ketogenic diet, an effective alternative therapy for malignant brain cancer. Nutr Metab (Lond) 2007; 4: 5.
Der Beitrag “Ketogene Diäten. Vorsicht bei Verzicht auf Kohlenhydrate“ – eine Klarstellung erschien zuerst auf Ketoseportal.
àÇRa=ÿ×þ`Ü-Þ
'®®BQãw?\~G~^9^§+QM¼£åÞÇ3\7«þWhúåÆ,Zf
ÀLw·c3qèjßÒ_õxÿ.kõz¼P5#êòstðÉÂH§.4m";9§7·óõ8©ã¹HÔÂ%§Ù¯úÙÏjurÍ.è¦.fB!\úWóU$}1<I%Ý´öSXÞFb¸·c¨{üÝsY(}j2¶ Î$601ð]ÇO´ß²íöþÎt<=ÏígËSFO÷ÒI|¹cmj¾t¹CRÔ° êjïñTÌ÷G¥ÔSð¥wz%örmoWtb©(ûFû«)ÿXn?g*1ؽ®Wñâú_æ¡ôH ´¯rI$ª~ÉU ÿ:Èl¾WÀù®1«,GñFÓz?Þ2Í.o¼¹åfÜ:ÜÃàÉEʵ;ôåÓ.ÃÊp$oÅú$ó¥#æúlXmÆÉ«ö¥ÔÿS¹
ä/ê's÷1/9Û»³7yÚ¿óÈïúÎkuCÔ=ßî^²gXå|£!þÍîóz<3ZÚêEjl-ÁBzîS÷/3þËIVö:|fzÜ?äöüöOdÖ.£H$/öVúXú,GY×á6&ÞÕkêmϾÞ/
dS½ìÂcf/ÃßÞl½3±iF¥Êdçp±<w¢×}²\x²ã{Çé$Ê
uø:üd¡L§Þ^Ðé+3Së(ì¢öI§Ë#60Kô//hº/%¸´µ
u®\}³×áæ®_oåÊ«×ýg/Kñcÿð¹ÿÄÊ?ìÓ<þ_Ѫ"Y?ZòuQñ|ܪæ^(®ÌA y¬ü£}:}dhKÕ-¸n2( :c6mTî)syuN[c+¨üÌ&MÉôZnu$þϧµr.G7¥=©VJ¡Ø©,ArØ©4×ÀÞçÐ,¯ÉZÇèÝJÚúÜüp·÷FÙ¿ÉÓåà!£W¥|RƲþz-´/k"éc[¸ý-e$URdB~Ý%Rôÿ/:ÈFÁ/LÏó¥8óC/n®¥Q,±0ûAÕÀÛæJ8¸ö
Ú]wå²q§øÿªòË}NmFGmà¾Z½¾C`xLO>1þÉèeªÆ5È¢X%./èãâ&
4Þ}òøò×)i}oK*CÃc~EHàuþ\È£/ÌÊϧ9¿3Çþ~JùÞ4+ËG
ä}Dè)ÒúòÌäóóì{7ÅþÇþ<ÆõoÈÏ4ϯéöí*d·ºîãGDrT$F¼~)9|?ê6U9ñHy[IáÂBïÇýÔ%<¨yoÉöÚ/o¨ÈKÝA ZÆÊ8ª³+
Á«ûYDÐîsñb2þ9q2ûÈDJNîäðÆN¦D¥ËVSE_Äu1B@¡;töËA®M36
{}ke¬úD
Ä|MzÉpoiã¡IsÙÎÜ
ZTS$B[*ÒþæÄ¬VÊÎÕ;ô~
+µeq¦ZF
zw'åé+j÷VRÚ[^ÀR;Ë9å#Þ W«ïXAÎ$þo©ÉÒÌq§$L?ßCþF)§Þ¼Ü¼Ñ¹oyK#G~a_HòÞ¥4f¬¦z91j]÷ùàJ9÷&5ßs°Þ¾£±Å6Æ0|Ååo/ùfçRóÅdVâY¥`xÇþvñýµöq5[òg½ùËÍÚ5¹5+Æ<B¬p_FÚ:£¯r«·í?,À¯Ül¿ÿÑ.Ñ}1ùÚFÓlìmõyŵ¼ÒñþÓ|_kùg1à¤,WK'â1!,ó¦.ùå{8Ö)§å:¼À"eëÒã¿íä²àIÊ@ÿ7ýË,TI-c7W?»`y}¿m~XQïv°7º[æ2Á£Ø\j<=yØÛ½Y©Ð¿i²í.å!ü_ÕjË_Ux\KOP¨2ÔÔó`P®ÄPú
1åºMæ»6¼òÖ©-^⿯ü0ÉégÁ'¸µæ·äÏô½
ÚmZc
ôh/ÙFY_ùTÐðYØoú:ÈÔ½=_CÚÈ «PAî2ÈbEs`:6Ú#jî=-B'($P+ f§þ`[üÂ×âñ¡öwW9¼1¾9_ý8¼·C¸¤/x.1û}Ø-
è]áHF^øA(#|É£®¤WæbÒY[LkTOØt+¹§ü6oû?_^uô¼´â\x§8?ùÍhÞróÒ"Ò./d¸Ó¤~-Ç(SÈqvøÆþ':müÖk£ëÉÝöl´aüÙFo£øæ+î=p«ÕÖíná¹hSį¾ÇlÇ"ËeÒiEhÀë¸ü2Þ¨jUï
Õ|=Å÷©o}ÄÜ"»íN^>3h¤»XòÞ¡§ÇxØ,PWÆâ_öX"{ÒE2ß-é®Ëò:Ä1èo%x:§Q¨}£ß[B1§©U£~É4ë
FÃ^Ghtù´ù3é5¡£ó!R'Þä0ó}?ñ?ì\®ÐY<AË0ñÎ÷ô³
4ë[ø-4§+Gm$$h;±
O§Å?ùÇÍ÷-oqêèvÐiHµPP<ÝO&«ñÿ¾øælk£ÐyõÊY¿ÿÒ~Xùx<Õ¦Éq+2¬éË9þéüÀÅ"&´pÇÁôdßóúÖç-ÞÙÈ©sies*;'¨âø*9|5Í]Åt¿í¯æ²}9!ü$HÛ;Ì9 ê£D½{òOÏÛÅ/5{±VVÒZfØ«}¸Cñ"ö?gôþè1_Ä?ܪ~okfïYJ
¿s§RjÒ
ÿÂ'üK5Ý¡åÃÐ=³º>G!ú¦}?Ôü{ýËæêkJÙ¬z[!¨ö¾c oÛ^ËdÄ%ãúñÂ?ïøÜ¨#ÿ¥È~ÒsYh;üszMñ_Âé56¾³»´êWÖ±Þ£*µ?d^½sUÚb¶ =w³0ýÜîªR{ÿ¼ü×YkÕõ5z§Ø@)UmÇÅö³æâë´ãcý(Í7Ï]Ï6Îd½Yǵ÷?V$y8ô9ªÍ%µàIíJ×.á ãÙ%.x:«l3}ÔǶZìÖÓ2¨~¼kR;dãi
ÂÑç·U¯Îª´4A^»÷#ݳ¨ß][¥×9.»ô ãºü+ÉæoÙÉF"6Û½0(c7f¼Þâ[Å,ª¡T½A§*PW%àAAæHmµæýäħîÚêB+ÈR¿i[þIæ8OúÃýË1ñé{ΰËÿ?÷iÇæZtI$ºÆÄªÛ±%É]¨#OânËe®0ÒJ\ûÕ3ùÞÐE#\ÙTv
í^åJÿ²ÈþkÉ·ò5üOüÛüâó^³=ÖozmtKè9ôèxE$µdãê~÷áæ¼¸ñøqñÉÍRÄ"vÝäc©ÊдثÿÓãú%¬*Þ,¾q)bò©@Ûl÷jýÖÕêµæú·æÚëÞxò$²©¨Ùzë7ÿfn¦º2Íây²Ó$Ñ4½*ÂÇN¹¼²iдQÎ
B¨(K}
øsÔf&dµáÄD Æ u÷ÊXïYTÑTPa¦6¸ÔkTäV$Ñ@IÂ"^)ùæ
?ZÕcKÎ0Ê×t§¨ægü
¦ÙÔönxãêç/áþkÏHìÆæD^.Z³j
8ä2_0e÷&FTôïüM^´û>§Úþ~YªÏ¤¹Có?ââ^³;nX*=XÿüÔÜsTE=Ô&$,4È1´©ñ¡Û
µÕ*ÆefTP]Ø
EPKzç\uÍëÿr¸[Ï0E¬:x4ØíY´ýMR©KÒ?ÙÇ^Gµ½¢ØãÃþvOø¯óò±¼`ÚîßiÑmwjç¶ê¤«Ä¿µ·4ÿW:k+ÝóÙé,ì}/+°kÛëCéÅÅĦ0ѨGÜ3]¬$#¹.÷±óÇ;Gg½é¶±YÚEmxÆÜÔýùXgÌrLÈõEM]B`HÅTS2psE*FH½KÝ:iÞ"XFÆ"H so^¹q
²
SÖLK»¯®Ì^_ÞºÏV
Úµ 9Íé<ü]GIDÝAì
ùßäÿÙð®±×ëk#¨so3ÜÆhåGpª¶4âÇ$¢lýCùÌ+Î:v¤@÷Ò\4ÓÝÕaó,(YºñøkJäD3}ss¸Ã1Çý¿Î`?×÷:¾°¹çFiųÊYeæ7ÊÄóGH"ü·ùæMKVÞð[²Q#*Õ§í5>ìÀ=ú_6Øê¤õK{ë+E¹
Ív¨=ÁÎ>X§Ã'23ß0köº}Êà Âs ò/2ùÊòþ) [?÷ÿ'ýOøtº.ÏýRú¹¸¶º=2ïöìÊvþ³näU6Òõ)-DÇÔ«'Óü¾ÙV§B2o¯ýÓ·ì®ÛB3&XéõâY4°ÜÛ¸æÙCª¸*J°¨`cÌ
Eô->¦cÅ'çE¸me¹;{xÚiåCüºEE¿ÔQeÔÜT«?²¿å3fãG¡¯\þ¯áó?ãÿî^¶;hæÇ«4¶8$"cjÃqÍ´·¡½NßFfa1õ!î¾%+Üì)¾ZvjM¬4ÛlmbXÊñVg®Ô-#¤Í6ÖÁ1LM>Ì\HáB0.Ç`«ÜøÞ0Bä¥Ñ}Næî"X·¦ÀÖªU5ú2Qè°fNqð -ñoJ4mìóS¬h;I-n@¨æ6CÄ÷£q4ÈÊ&¹=gò¦æë[±Õno#
I¨ æÝ5ø+˨[!2907j·W:
Ä,ÃÐI\Dµâ¬BÖ¤øcEfâ×,¤ócHÕ²;xæX×k¤G½~ì@\~ÉöÃJëUá(*T
UÅTÕHÊ%ÓdgûÐ+üµÝbuÓ,å¨DÊ*DqÈz³ÆHÏÙFË eGÕý/ø¯÷¬&#!cÓýѧ4=bÛê·öi<J(¼
6§ÀÃâCþ©Áf*BÛtú¬¸%ÅF*Ò<å)}kRHERÒÜ\7#csF=u9Erâÿܹº¾ØÏ¨ÎÃù¾/ë2T£WBXUHÜ{Ëp²¦(¤£Ì~eÓ<·`o¯ä55öËýäüª?Q¨ÔÇßó\ÝgäÔÏ#úÒþkÄu¯=kÞ¬/îä("jÚÛ¡!a_âX}²GÅê%)ñ¿ûÐô}/!/¯øÙç})VWhXý®JJóZæ|5$%{¡éöä: ÿß²Q¾áöFd»¸Â!ñ}zC_Ùwì1¿üâ[HøËm#º^^
*§~ù#ÞèÇ«ðf%FQþ¸%ÄÑÅåÐTàµ'ì2¹
È9"ylõõ
WYÕnD{¸¬©V¶âd~¼î*¯áO³çT?¥ÿæÇOm¾IDOþTËÕÂÊ4ëèVÎIâàÓ¦Ûeö]D£[)kZªÂ!ud5ïó %ÍaÃÊüÙå}rÅ6Öò][xHc±zôíypÛQßÈ|÷m¨Úêéì
o)W,µa\bbæ°ÈMÆÖ²ØÉÀøúrî?Ჯ§'õÇû(¹Ç÷Oé`ý+ËÿA¿ÄþOáX¥L
ìU£¿ÿÖÇbÝÍ=³%©
ñùÈMÓLÖ|Öc×t«ÇòؾUol¢Èçàù"w$öoQ:@¯û$É.üÖò=µÞ³`t{hΌf¸D
üJñvû5j<²WMD<~úÊþÎîKkËy!¸$N
Yj
©Ü|$6H%@G#=Dnh)öOôÉÞëjÖæM2=ÛáýtÂP/èÍÚÚÝÑÒX^Pvª'CÖîc9úI¥ÿ.]!·V%Ýj
+^çÍÌ0Jã»)åtÚÔm
åÅ¡üºó&¥yV«¹CÉo,áyHâ3³'íñ?ù_g:MSovþ85&0Ú2|?Íâþöþâ9¡¹Kk¾J=8Ý P¡¥2ñ.Ý7§êö×¶ËèÍÂ\:T«PW2á<u"6Òá9xàªüRoæy:}½¸§4 ø*Ó§Óià%*.N«,±ã2áú~i/«ÇnP3i#égå3Ç)N_ÄwñVÞFÌøx®`æ¢ï4çÐ=ÉÆç9ܧ 6f]ÒQMüÙ×¼¼c§¨Êäë(
âàxKüųò^½h¶·5ÝêõKf,DõøèGÝ_áÁàq§Åáyk~WßXX^Ü%êOBÞ¤
=àV®bjôF1ãø=Nײ5bY)l3ÇÂÿ?üû'Þ[ÝZKè^A%´£ö$R¤Ó½r¢+¡×q
´°¥ÿ×)'½|ºØR¢ÑFÝþü¯$ÿ
GÒt[Ö$t%câþ·û@H$|ãa¢Ü^h÷ò!½eÚF ½2³¡8ÿ«Y¦y¢Í5·ÖlËSì8øÐû1
ßë*åj =)0#«Ù/æ(º
¹j*ʧÚEÿÇ6å86ÿ(Süýòªoµ9¯-TÉq2¥wõ§ÊµÈLLx;~IÛjºþ¡{s¨J »»x!¶éË+8Ï_æý
ør±R?Íû&C)îz·¼åý3N¶%ºÕdEQV=ýF5w'ÜåÐÓB=,ÿIl }_Î@ëß¾RÔÒ#¦\Ói-¶JûÄ~ø9³qO ÿEè4~Ñêqm#ãGý³êÿOõ&?éEë´=¹§Ôm~ÿ?÷²þ&0hêW¹Ì:w¿â}²OûxW5ü¬óDÚN³:Ï+~¹ý"!¸==%Ígf1¿¥æ½¦Åâú¯£úÇþõì]´¾Ëo*ËxÍõrxiuÄnkG`=L¶
¼ë*wûåJðja_qðø$c¸c8
"Â%ÁÝɦË"©ðCdÇU7Z'øÝ!vòzH?FFdËvÈDDPäª,¬%ÝáÿuÊemá¢ZKËÒI%(©=¶®ØYnG¥ÅU¨ñ=s*%Ç1E¥(EUÉöXÈÄ96gey¦
FÞ;¯ª3[J(¡>ÉjÛ«²Ìm0'~GüOû?´
eñ#ôæ4ÏúÿÒäãÿ,¼óNcþëÕ>
VdÎÎÍ.÷
yçBoôøÔ¥²¿©j:þêO@=øýö9ÏD9Øåq´K7ÿдt&½·ËXoXïR?ÉÄàTÍ^UÌvg|¡Ä±%YYvê7èpÚmç?·Ó\±¶Õ"Õâ²ÂÎÔ=¶u®<OPò®4="菉xê}y6;ñsÅg|¸ll3κÅä×)6lܽP*7cNleN&HnÄy©;@ìãÏÖHcÊ_³^ìËbX²¦²¦àE{÷Ô*\òñ#yádÒÑæõO&K¨ÛD÷6¦$E
«ÊIÚÌsúCv3\@}Rëá_Ü¡ê)¿àãoö8F2yÚ%èk29\+Öµ$Ö¿<¶1"!ãa¿¹&TÒFbbÑ15ö8+*Ao÷=°&d¡ ÷ÅR¿/ùvêà\\é²Î7¼HZ¿:eÁ1åã×gáçÿX±]Oò¿Ér8f·NLR¹ÁX¥g0ç¡ÄzS²ÃÛú¨W¨KúÑbúiRËi0YsjPá ßnýsÃôy5Ìxäx¤¯¦^_Ø] r«]Ç_Ã'%!Eè7ë}dªÖFødQÙõëLSº¸øe]ÙUi'ÄÝth{I7ÉõV,n5=ð
#¹tf29.Ç£
Áúr@°¦Ü¨Á$
'ᬨT
6@;cÂmuµ"+è¹z°ìwþgüʸrùdìáÿÿrçø_é`ý*Íÿþ&@M6ÛÇ2øoÉÿ=t¨ô~¯¢ÖÖàÕOÇ'Øòì³YNVôyØæ½ÈÿÑUûT'ç°T³¶[mFê»Õýxi½AÛáû©CnPkáýqBßB7B®
Z/óoµt×%µÒ!i`j:6ʨz3
²¹gá5ÕÁÈ4Ñ?'%¸ã.±ró»[Ûõ¦=çÉÐé§ÿþécÐSÒ4O'é\+KxbVÝxWýiÆßð¹n=<c¿3üéz¤Ø1õç2:TÞØci¦¸¦qµoõÅ]J}8¥¢LUa:tð8¡a¡ö>J_3¹âõàHíòØ·D<Ø?à¹KïÂHi@Ü:æh+Ç[¨²,k;A!
d¨Ú¿~Ùl³Ém8¼
òDfØo~ËÒų¬Ë$u
²n{¶lm¬1/}Î×Ä¥Tõ͵7Å׺£¯
ÂGÏÛ%h¤ãP®ac@ü[ù[cÓIGí¤[5¼yIa"Ü
+´ã|£P}<C=_ñ_ì\îίã?Nh_õOþp®#æA f@¸&Â|òÖ=Ô»Ô[Hû¯Ì7ÞµÈdõ
ïLj;:¨GPzæµÉÿÒRzö}5Úõ;Ôïà;aB¥MõÅ[we,zo%IõH 4 ;ü_?%Ýÿár±)¤¦ôÿÇ^àúî§xJ@P÷}ûÿÆÙ/¨ÿ¥ôÿÇ)sM-´ËhB_Qúû}QrÈB1
Lqâñð'¦ZÊÇVÀ¡¨úp«{
Æ*ïo»
µ±ùáC¶?¿~
^öÑy!Yý)}sA·~U(xg|ÞmåæM
¥°×ÜÍg4¿¸º.^í@M~ÊH{~ÃáÆØ±¬ÚýZþÊ
Mï¯fTXHÜ>××jfW£ò4áäÁãZÁWÔ'¸?J+XÓ±4üsQ)Hì1JÃÿÓÖµg%©Þ=³!©tÀ$v=©?Ëøårt'ñþ§]
æ½v#e=ÚÿËgýÓY3>H«K[V²MG#û¸-OwmÿàBå¹ÿ²XºÏGITc]и4>õ5?ì²Öb(ý>#Ó§
mÇ¥>R©Û|UzJ¥Õ5Âê|0«U8PêÕÂTøb®©ðÂÝG\U Oq¾-gn»øöÀRÚN¿¡ì>CB¥ùz÷'PePjÔ'°®+»gµ°É1TíjS|Ui`JHê++$XÚ4nÕØàKHfÓwõ=F-!¼l)J.iÉ4sMò@1%ùÐ˺ÕÀRÝý;m5QBFVIbzð»Öºô¦ú¸´oSíÒ´«}sGûÝùÿI
-E¢%áA*ä/ÜvÃa#KgÿÙÿâXICC_PROFILEHLinomntrRGB XYZ Î1acspMSFTIEC sRGBöÖÓ-HP cprtP3desclwtptðbkptrXYZgXYZ,bXYZ@dmndTpdmddÄvuedLviewÔ$lumiømeas$tech0rTRC<gTRC<bTRCELRY`gnu|¡©±¹ÁÉÑÙáéòú&/8AKT]gqz¢¬¶ÁËÕàëõ!-8COZfr~¢®ºÇÓàìù -;HUcq~¨¶ÄÓáðþ
+:IXgw¦µÅÕåö'7HYj{¯ÀÑãõ+=Oat¬¿Òåø2FZnª¾Òçû%:Ody¤ºÏåû
'
=
T
j
®
Å
Ü
ó"9Qi°Èáù*C\u§ÀÙó
&
@
Z
t
©
Ã
Þ
ø.Id¶Òî%A^z³Ïì&Ca~¹×õ1OmªÉè&Ed£Ãã#Cc¤Åå'IjÎð4Vx½à&Il²ÖúAe®Ò÷@e¯Õú Ek·Ý*QwÅì;c²Ú*R{£ÌõGpÃì@j¾é>i¿ê A l Ä ð!!H!u!¡!Î!û"'"U""¯"Ý#
#8#f##Â#ð$$M$|$«$Ú%%8%h%%Ç%÷&'&W&&·&è''I'z'«'Ü(
(?(q(¢(Ô))8)k))Ð**5*h**Ï++6+i++Ñ,,9,n,¢,×--A-v-«-á..L..·.î/$/Z//Ç/þ050l0¤0Û11J11º1ò2*2c22Ô3
3F33¸3ñ4+4e44Ø55M55Â5ý676r6®6é7$7`77×88P88È99B99¼9ù:6:t:²:ï;-;k;ª;è<'<e<¤ >`> >à?!?a?¢?â@#@d@¦@çA)AjA¬AîB0BrBµB÷C:C}CÀDDGDDÎEEUEEÞF"FgF«FðG5G{GÀHHKHH×IIcI©IðJ7J}JÄKKSKKâL*LrLºMMJMMÜN%NnN·OOIOOÝP'PqP»QQPQQæR1R|RÇSS_SªSöTBTTÛU(UuUÂVV\V©V÷WDWWàX/X}XËYYiY¸ZZVZ¦Zõ[E[[å\5\\Ö]']x]É^^l^½__a_³``W`ª`üaOa¢aõbIbbðcCccëd@ddée=eeçf=ffèg=ggéh?hhìiCiiñjHjj÷kOk§kÿlWl¯mm`m¹nnknÄooxoÑp+ppàq:qqðrKr¦ss]s¸ttptÌu(u
uáv>vvøwVw³xxnxÌy*yyçzFz¥{{c{Â|!||á}A}¡~~b~Â#åG¨
kÍ0ôWºã
G
«r×;iÎ3þdÊ0ücÊ1ÿfÎ6nÖ?¨zãM¶ ô_É4
uàL¸$ühÕB¯÷dÒ@®ú i Ø¡G¡¶¢&¢££v£æ¤V¤Ç¥8¥©¦¦¦ý§n§à¨R¨Ä©7©©ªª««u«é¬\¬ÐD¸®-®¡¯¯°°u°ê±`±Ö²K²Â³8³®´%´µµ¶¶y¶ð·h·à¸Y¸Ñ¹J¹Âº;ºµ».»§¼!¼½½¾
¾¾ÿ¿z¿õÀpÀìÁgÁãÂ_ÂÛÃXÃÔÄQÄÎÅKÅÈÆFÆÃÇAÇ¿È=ȼÉ:ɹÊ8Ê·Ë6˶Ì5̵Í5͵Î6ζÏ7ϸÐ9кÑ<ѾÒ?ÒÁÓDÓÆÔIÔËÕNÕÑÖUÖØ×\×àØdØèÙlÙñÚvÚûÛÜÜÝÝÞÞ¢ß)߯à6à½áDáÌâSâÛãcãëäsäüåæ
æçç©è2è¼éFéÐê[êåëpëûìííî(î´ï@ïÌðXðåñrñÿòóó§ô4ôÂõPõÞömöû÷øø¨ù8ùÇúWúçûwüüý)ýºþKþÜÿmÿÿÿá¯http://ns.adobe.com/xap/1.0/
ÿîAdobed@ÿÛÿÀèÿÝ}ÿÄ¢
u!"1A2#QBa$3Rqb%C¡±ð&4r
ÁÑ5'áS6ñ¢DTsEF7Gc(UVW²ÂÒâòdte£³ÃÓã)8fóu*9:HIJXYZghijvwxyz
¤¥¦§¨©ª´µ¶·¸¹ºÄÅÆÇÈÉÊÔÕÖרÙÚäåæçèéêôõö÷øùúm!1"AQ2aqB#R¡b3±$ÁÑCrðá4%ScDñ¢²&5T6Ed'
sFtÂÒâòUeuV7
£³ÃÓãó)¤´ÄÔäô¥µÅÕåõ(GWf8v¦¶ÆÖæögw§·Ç×ç÷HXhx¨¸ÈØèø9IYiy©¹ÉÙéù*:JZjzªºÊÚêúÿÚ?ßFßâ?Û_ý
Ô{w¢~»ßìGûß¿u¾¹\¨·úÿëÿ¼{×[¯¯]Ûëaô¿ÓþFy÷ïϯ`g¯Yn?K~~¿Óýo~ëc]aýGüWóï]{Îp#ñõKÿÄ~}ìu£öuâí¿§ÐÿÄû÷Z§ºÒ/ÿã{Ýzõ:ñAÇý^½¦¹ëÚOúüscïUëTë«øü}Oô÷î·×v?ï÷¾½×¬§ø[ÿ·½ù>ý½N¼GÓþ+þ$}n}ë¯uïéþøÖ÷î½×ô·ÔÿûnÔ·÷î½×|Àqþúþ?¨÷ïϯPuÞþénú{÷^ 뢿[Åÿâ¿_~ëtëÚì>ÿ¶þý^½§¯âã}ú½jqÓÿþ?ëÉ÷¿:õªS¯h°çð>ëÿ¯ïÕëtëÁØÞ×?ïõש×Vþ¿_÷Üsïuë]{MÿÛ~=û¯S¯iàOøõú~¯^§^ÒÞ8·ûßÔ{õzõ:ëOâÃýoõ¿Ø~ûzõ:îÜÿ¯oöÿKÞãñïØÈëÔ뢨?£( õö#óëÔóê¸ÊøKýO0y?N?ëïM¥ÿ´@ÃæÿéÅTø$aùäÛ8/jfYþM%ëííöñZ%~U_ðÒ¿»JRZý¹é¾]Jna©29´¨¯ø¯
ý¤}Åþ"´ðÿ>®í8øãSüº&ÓªKå§ßK¿Ö³ãúûJûw"¿0GóéJîÑí"#ìê#à«àå©\ëYG?ðF&ÖÿÏ´Rl×Ê{T0ù0ÿ`ô¡/íñÓíqJy¢á¼þÒêËÍùáÿ|=£{[¨Iñ"uûA§JRHàp>¦ÆÓÉaôühû¨gÍ:¾AêbK'ÔXßëþ9öâ»b u:²¡"êGãè? ÷q óê¥Xu!|mnnÇ.ÆþîOÕMFëÄ
äÛ?ÿ¼öüZh
ñáÓCCQ÷úäOTUxªaaôxjL±°àý}ù]´8óéÓBºU=]áꪱÍG[²$V¢hÃKL·æ:©Ð iú5µ9¿µÖm$³èôüÏˤ«ÇEçÙëÒ£øÂiéLpIQWËKu°© òÓ¡»H².¢?MÅíîîíÍ»f
hj=zªitWñWÈ×üÝr.³+M4Ì2䦤«B°¸O¯ä~Y§ü^@GËý½@ÀéØÝf²*µûÊuDà4ùO¦¢¬Tplyµ¿§³;µè}øGùzEyjÞ£?¶O
òý
íÇÔ÷¯kr0z*¡wk±ú_Íÿ×÷î½N½aÏ·Ô_üß¿uïËzß^?Ûøß¿uüÿ¾Ç÷ß~ëÔëü½þ}û¯z㮬>_¨¿ûà}û¯S®ôÛþ)ôàû÷^å×ôú¯nmÇ>ýÖúõ¾¿úÿÏô?ë{÷^§Ë®íñãñÿéïÝ{IëÁOôýJõ°:öôÿÇÓþ#~ôëÔë½?à?äCýbx¿¿S¯Põí?ãoéõÿ[úÿAïÝzvWéý9þÿCÏ¿uºuÝ¿ßí¿¯ø¨ÿoïÝnÏ®ì×è>¼øß¿uêuëéb-ý8ÿÿ½õêuëâ?ägߺÝ:õì?Æßë{÷^òë¾¿ÓøÙÿ_ߺõ8uÖëþ°ÿcþßè=ûÐõÞo¨°üÿz÷õØS~mþ½¿Ö·¿S¯S¯X~yú°çéïÔÇ[Ó×Þ÷ýQ׺õ¿ß¯øÿïU{®íþûýøß¿WÓ 7{W}ÎZHÐ1¶c~#´`ðb¤ÿ±öo%a´µ|L5Ïý_ˤQSO 4åàÿ¥Àõ·ø[ÛÖã·çÓ2·ë´ÿÔÇ'ðÿaìÉG¯E²+¦%ÂÞþÉ'òÖñíZ
ÒGcLui·ÐÿA`-þÆ÷·µ@ötÒêDQ9±µíoêOõüÄ{Ùéº CÇóþýë{O)t¢5Sÿ*~áë2[bR¥
uÛ´»H¤ü[nj¢m
©)LËÅì¿Ockí£y`ÅyOÈOôNÿã,¢«½¶g&[2q!\}áÊè½SæãØ,µÕ´ÓÅ$22KÄèÑȤHÝRH9¸kGºKo4$Ðcæ>ÞÞ'VÐÒ8(kéôæð¦¦¢¢òÅ"è´ô0àH¿´¤wz¶¬¼b´aöiÔNÈkN´ÏHt·}½IìZ»W]5MQG^ÄqI
ÿI´uH¦çðãý«Þ¤H4ríéùB«»fùúpòþyé)µªV<v9YÍ
*»oP!úy¸-þ¿²ÝD.iÕmÕ¼²@5SQU.«ZSþ-îûuåïp
Cøý5ôÆä$JSö¡²%¤]TXÈ"¸7«É³=@Ò-hP©[O>Ä6ÑQÒȬoîj°Û3Pt½Û½òCIíí\úNÀÇ%ÉÜRRµÍ¥D´Ob~§UçÛrïüñÓëËÛª°×ýr:2[Wù\üùÞ~6¤+öäR¦}ßÛ¸UkY
aWóx®@ú{Dûݲþ0hkùc¥'e¡×qxk4ѪÙ?Èäþu¢}óÙ[°éKTC1»«Òÿ:Ze¡øïkþ}¦>voZSü=m6kxÍ_pj!æÅã½½üúæ8}|ßù©A
Xèi ¤@àñÆ õ½£i%5Vo´þÍ]É?2OS>ÙÕÿ\ÿ±ÿcí½Cªø_g]_êÃýçßµuïç×j?-þñïÚ¾]o½wö©ùfÿaǽjùuï}zìSGþÔÆÿñ¯~Ôzßtb¨ú³ÛýÔ{Ñzq#¯xié×ÿÐßLèl~¿_ÁÿyöçEzÇþEaqÀ÷~ëÜzìZüGü@ü}-ïÝlußúöñ_¯úÞýÖëû:îÿãÈýëñïÝk®ôüÜø¯çý~ëduà?ãoößï_~ëÝwÁÿcaôãýõà{÷^¥<ºõû×Öà~-oñ÷îµ×v°þ¶ÿý@'üO¿ujuãþÂàÿ_Éãñùãߺõ<]
äÞöçýxþ¿áïÝn^Ñÿ¿üO¿uªuÕþ°úóý=û¯ë&ÿOé{Çש÷ç®ÕOçëõÿQÿ÷î¼Aë?¯øqôà~?÷î½N=z×çüÐ~?Û{÷^§^µõ¿#úÿÄOð÷î={_ýèý=û¯iùõí'ñöäñôÿ~ëT=u§r?Óé~G>ýVÓ¯XÿNAþ¿×ðç~nx{ÿ¯Ïûyÿ{÷^¡ ëÚI¹úÿçý¿uï,õÕ¿ß}??ïߺõ:ñÞÇüGøð<sïÝzv«ù?ëßý~ÏZ§^Ób?Çý`-Çä~-ïÝn®~Þ~}û¯S¯ZÇO7ÿÿ}o~ùuêuÝâ~¿_~ëÔùu⡨°7Äöãóï`°àzØpê+ÐR¹ÿèü ÐGû·õþÚx!$*!þ=ÑIµY¸Â?#þC^&ãrj0û:Ø©YZß'ý¾ ÛûFû1ÿB§úBÌW¥)ºôHû3Ö£0o? \~>
u{Hûmìu¤zú&¿ìô©omßöã®1B]ô.Õ?Ð"ÇmÃis,¡Ä×^KcOië],ñ,jÆ%b¦m@é°»XÜe~}ÞîÒ{h4:+^µÑ\1ÒHQòéj*ÄD³ÅI
Å*¢Y(rÈLH(ÑÁI¡1¢:µ¾¾Å(Øø%ÒE*¥=ü>]^T¹Õ¬Kzöó%§Æå¶
[Ô>*«9¯/ñµ¯OOB÷Rª0²%MÆ¢ACÈXoÝçíÎyO·¨§I
ÄhÂÚ@Éü&¡¨qu
úñ)*ÏIXc¦F+UE÷ÔãëM\þZ*餫1VÒêW½²Ík(î×!hàÃÖ>:¢ìðÍ4à]'üª~y¾½()jbÇÑDôt92¼×cÒ!â5F)Y*c°õ¼lÊöÖçÛ2E¦ºôøHôôâ=:~'iXã&AùÛÀúô¬ µÑ-DÏ_I¸úHý>ÓLyô²(Æ¢.¸º®¦{+2Ï
Ä_éîÞ]6ê0:ã§é¯?ëOñ÷î©§ç×Amùï\ÿOϽuà:åaþÄþõÏ¿uººÓȿ﾿_¯½ã¯S®Â§ûÁú¼O½uºuÝü~ãýïmïxëÔëÚOûâÃéïÝ{®ÿ6ï<_ýoö'ߺõ§ßµ·N½oø§ûïöÞõ^½N»Òß_mÀþý_^¡ë½ü8çÓׯÿZãý??ï~ýùõêuÞêúqþpÉüû÷^§]ªþ ¿ãè}ûåÖÈê5d¢¢ óâ
Ür9!lÿÁÜ?h¢ÿ?MÊÞnþþ+¢Ý[/Ü×M)%¢¢ãëcn/ìÎêA%ËéøFåÒH×D+ÝÇ=b°#óù??Û[ü=·Pé¿>²¨°_ ã÷¾}¯L.LpO¥¯ôNAõò}¬ZôÏõÌ`Çü-qýxÿoíð)Ǧ¦ÃØÞókÝ[Y
\y£P7ûZaÿÚÑ¿£Ò9v*³Y\>HE$ûáoÊú=RbìÞØ\TóRWaë¢7dhÙ'¥PPÈuì¶ú!m\Wý\}:F^7o*PMCq¨ÿgóé-¿*¶÷xtÝ^óÆÆg®§¸©"`+1ù*64õWbÒÔ(èA
ÈöÙdQ"ÐSGפ¶Kp|{}:"Vi¨ÚH# úuS#¸êè·^ÆÅíºôÃÉ¢Z¦¯*¢ÃSO-MG¢ð®)Y¦õ½QîEºfá\¸±¹¶XKLP1>|@9üCÏÇLÚwÎê'CÉÒcöÔk®ð´9iéÝ#'}fó0°Ó©
ùö¾¸î[¢µTùаtºMsÃ:kPu`} cò=Y'bm¦¯Çà6-:TAG,Y*øu¤Õ0©|ÈË ¤í%¹!ì×ܼvêµw>xôý¿àé\R;1PTçþt¤}5w^lü;ÎÁY®¢ÅÅ·ð2UÑTWÔCK®xÚãÔªÀ«míÞ`8
¤ÙSÑ©ÇÐbqjc
8Ô-çÖ²UÊH6ì¦Üðc+m®ÂÌ+×'©¥?/öz(¸ÜîîÁ(ÿ"ÌNÐæqÔRHÕ[~#O%ðàìÍîcÐ@ ÿW§HaFYJê:àþß>³¾åTUº¡åN¡p}?HXÛò=¤kÅÒÀàôco=k^>cý2¡
P?$épM¬IöÇ×*×\§å¶rÄ~x¡ûzesXU¥¨ªbEóÊE´¯$BÍÁú~mí,û
¡m+óÀéÕÛîn]b&yÏÕä`é{·zø÷»ªmN§ìÝÅ#°^ÍÜu6 ,D±Pø/oÉ6·çÙL¼Ó¶ÄH7±ù0'ö
cä~bjmªåF2ècµô&Öþ^¿97±67 ·n.AaS¹¤Äí¨ÀbfZè'@/{höW/7Údâ·ù@Ï£y>ôbòþÎ
Ädÿ¼ÆÎßË£¶?¿Ì}ÄcqeºËe$©k÷5fb¦0À\½>W:Ûè$_hßçjøVLõ ½:µ³G¨Üóÿ
E+ÿ7Xý½-§ü³åßÿ#)áOhì餰ãZ¥^[)ÕÇ×Ãoðö¹r?
F ñ©-ÿ@ôãmü´3,׳Â8Gó3õpèÖläñ+o4snüÿfoùÆHòA!$l%;§ÿ¯í»ã/Çy¤z*¨ÿ£üú}&ÙÅ-¶%cë4²IüÁSù©èÙìïåÇðc´2bºb×TÁ§M^åZ½Í9e øåmlL÷ê=¤7q%ÛµÏø+Nýótú[KXiÃà Gûb¬ÿñ®&ßë.ÚqÅרoÇ$Âí|<Æi4tQ°°ÿu¢áfì=&qÜîI3ÞLÕõf§ì:]«ÄP,©ñ`«`=èÌ%?éV9<zåä
ÿÿÄïÞ*ú7ì?æëZOËöºòÄRùGýËï^/¤mû?Ï×´ÿHuÇË/âÿؼ@ÐäûÑü oÚ£ü½{Hþ1üÿÍÔJJÚ§«V£ð-,ÿn¯$êÂv®Ìªë©öÄRO%Êb¢6ÓRE &®@$Ó=9,"/²©kâ¾µ¦oRÏÜÿd@?àÍ#½*û|$OÚÍÕ2gû=qUùðF7½ø&`?Þ=ëügÕäOùG^ý?é/özïÇP~µÁa_÷Lãß´ÎxÌ?ÞÙëÕOá?·ý¸&6ÿ,Ác§õÈû¯1ÿ'òUÿ1ëuO÷ßó=pû7?ª²°ÿ" ÿa¢5·º$©ªÚÿêªç·û`à~}ûéÁSþØðS¯x¯ìÿ?^þITEÿàòÊ÷?ò}ëèàâuóv?åëÞ+ùýüÝv1ô+ô¤ýjOûÈ>ü,A¯¤þÞ½ãKügüÿÑßVÖüsÿ#ÿ¾ÿ_Ýú*§]é?Ïõãþ5ï}zëÚIüZßOõÿì=û¯S¯i·üWý·¿ujuÞõµÿÛþ/þ±·¿cë× >±ü}.ãmô÷î¶]éíþñ[}-ïÝzqÑôÿyÿõæ÷âÃߺõ:ïIú~>§ñÏûÏ¿uêuâ-Éü~7ÿ{ûß[§]
ÿoþò?ÿ¯o~ëÔë»OÈÿ§½uêu×û÷¯Ï×ý
úþ÷ÖÇ^#׿õ?ïw¿½uî»°ú÷¿÷»ý}û¯uâ>¿^×·üG¿uî½k_ö?íÿÃüÃß¼º÷å×oÁþ¿×úÿ½{÷^§^+þÃòÿž¶÷¾¼G]àÿCùúOø§½uê¹üÛýæâþ÷Öôº·õü}8ëý>÷î½C×þ·?ëÿ½ð÷îµ×ý?ãFüò>Aï]zzÆÀÆ¿â¿O~ëÝwcõ?íû÷{§[§^·õúÿ×ú\þ9÷®µ×ùÓéoùÒÞýש×VÿõÿØýØXÿ¯ï~z:è9ÿ_ü/õãóõ÷®½O]Ø[ëøÿÿ_{ë]xõÿ}ý-þõשòë«[þ+õùú¿uî½§¡ÿaÏûâ=ïÓ®À'ñoÈ·ûï§½uêW®¬ÿ¡ÿ[ýçüx÷¾½C×-?áðüþmoðÿzëtëÖú\øúõþÓÞúõ]éÿ÷»ÿ¯oöýרi×&âß×ü~¿â?¥¿uê1×-'þ$ÿ¯ôÿÇ¿~]{O]XOûcÿ"°¿¿S¯iëÐÌ
Írö´V#ý¸³]j+-hÁÁVþÆ
köWåÓ
eLGï45X¤ºxáhÃ3ÃT³ê`
:U¯qôöËÑCøµáU?á¥E?gJ`W-Z=ÂgçC_JW®Ux¦
¼$byI51Å`Uiâ@tÉ{·ªæâ÷ö¨Å.ß#éó.%
åÑY28´úôakrÑî5ÄG¢¨óÁSOR`ñÓº56qLó)¹XX.= ¼º½vUW$W?O[YÂ5
IÇú½<ÏKZ:ÕYE°ÖµM>dztÅÄq&¹c¹
)CJüµg?.HÕ)`U¬A!$ù=rÒÿß~?>õN½§®Ê©×üOû~ëzzõÔý/o¥¿ä^ý½N»Ò?Ãý÷üSß¼ºðqÓôÿmùý·úÞ÷N½A×-<[ý÷ÓýõÖé×ýÞÃè~¾÷½×¬?ß}}ë¯×ï¿ß¶÷¾½×vÿÏûoñÿx÷ªõêuâûßûø×½Tu¾½§þ7Ïõ¿øñïÕzëÖ?Óëþóþ·û~¯^§]éÿ}ÿãß³Öé×zmþð¯¿dõêuÞn~_éïÙõëÔë_ͬÿ|~¾õ^½§®Z??_¯ÿ¿ÆÞ÷ùõê~Þ»~Þ¾þ~ýÖé×aÖçýrÛõ½ûnzÜÿ¾·õü}¿uî½§úñ?áþ÷ø÷î½×v·'úýæßì?#߫׺õ¯÷Ä~?Ö¿½W¯uëqž·×ýä~G½×¯uëAþ¿ôçëùúXÿ¯ïUë}{I·çúßümøúÈ÷î½¹h?@ûkßú×߫ר}:ïÆÖ¼ûÕzöôé%½*Zêx3¸_ê±Vü¯³´,³Àþgçé-Ú±DJ|L:£Råý¯õÏûǻĺާé©4.²qn9ÿoþÃϳxE²äqë2ɱÿ[ÇSþ·µ±¯åÒ<OR}/ù°äpà\ÛÚ±Àtxùõ!òøþõýãÛ¢´ÏªqÀu:I¸^Gãy¸7âÃúû«8õe$Ó=+p4þZ¸QþúÛd[Þ-Ó£¶-sÆá
d
B&«Ü(ÿû
%AÉëÇÖßì[÷Ü{õ~ε¥zã®~²D/ýd_øþôdQÅÇ[Ò=:ãæ£îêÏû²3øçû_ÓÝLñôUý£«h'Ù×F¢ßç# Üz¯{Üp
ÿÖ÷_©¿Û/íëaS°×ì=ï?ËããÇÉÜvBl=¼ê¢&îÚÔO%L¬¤ã8Ä(²Oêbk}Ù;Ü®bêxÖ¦¿OGQî+úù_så]7Ð(ýX©3ÅE_Äñë@*ĨÀÖýoNåïÊÍÓ8üÆg?¼óyéöäpAWM_>8\Ù*Ùâ¤J¨¢ ò4ºUDt¹·´_!¸ií÷5E1çëÑ$öÏ8\@iäE>Uêîz? i~+õG?ÆI.×Àå÷RE"I2Ù:
W-0RÔÕR¡V Ò [g;iðéZdþuûHf±U¬ÁNk¦(~yè£mµóäB×â6èM»c#_M°¶ã®®|~]_Ð{ò쫨òqI££ÛòË©S\åmgPIµýÒd³2#¤JÚíFø´Óó¯Ï¥òUò)îæÎÜé§u̾T§åÑê¿
?#;W¸£é1üknßâù\VLç2¾zLøD«%÷c¿É"Ó
ñ5¬loìSyÌ×)j/lÀ°P£4ê4ÔÓ=7.ÙY_¶òøFõ©*<AB5j@Ô °x»f!½Ã¦Mýò&&
ôûWgËPËÇ©b«ËWÓkðL_ì=¿2s£ôá·ífÚ ?·£´Û9:£½ýÃE?µ§#öthö¿òCøÑX½çµ7s _2®+O1_ÛÇãZhÇã/oÏ´O¸sÕ2n¨§úÐLÝ*ú]BÛòÐ$yÉ<_´F"í§ü«~í!'MPî)á!¾ãwfsû
¬Éý¡ú}í3ÉGìZuQ»GÓo³ØÆ+ÑW#óHF»gü~éN¿(vWUuæ×X,M
ÙreqþR¸Ö¨cþ%ÉößÒøå-öÂ[Ýä~¾UøU/ûÊi_åÐp¨HâAk$"(S?LQ {¸=>ZGø¢Çäbòw7©$æzçöÈ~²T7úõúÀ÷¿§rÉþôÉÕ5ÿAg^ûH?*íÿfÿ{sïßMsþÙ¿Ï×µAûùºìRS÷JõƯ÷»û×ÒÁç~ÒOøO^ñ×®BÒ
¿æÚÅ=ÜAÿB_Ø:Ö·þ3Ö@8
ýëÝ à~]kQ<Ië»R:×^÷î½×½û¯uï~ëÝa¨H H¡j6dU¥`.±«9¥F¦¦P@²ZóE$¥Þ5_Ò?Ka1ºnÖwÖö±×g«"ı ¼<ñN=ËeÛµÚßÄQ@s¬ÐÓçÒ®
-CøãrYH×kòÊaýÖâ&mæ´ûz)eeÁêw·º¯]{Õ:÷^÷î·×½ú{¯{õ:×^÷êuî»÷î½×ÿÒßlaõúnt]Nzßáþ?àÞ-Ͻõêå׬mÏûëÆ¿Þ½ëÓϯ[ê?ýרzïOúÿï÷ºuêuëCÇûÙ¹æÿKû÷ËÓ¯iÿëý9ÿïÔϽ§®ôÿûëÿÅO¿uí=tVßï®ÛïÝ{O]éÿ}sþÓÇ¿Ó×®ôÿþ÷ÿý=ûóëÔëÖüÿÆÇøÿO~óëÔ{Hÿ|?Ûßß±×´½o~§^§^Òçߺõ:îÃý÷úßì=ûn®ÇûcÇûë{ß^§^·ú×·úßKý=ê¯Pußûk~õëÔëÞýÖúõ×üâ?Öú{÷ZëÖüýxúqþßÞúõ^·N9øzüú÷^·ûï÷Ü~}û¯S¯þûëqþ·õ÷î½Nº·ûïÇà~,?ý^½× ?Öÿ}þÃú{ñëtë«ZÿìoÿñïÕëTë¢?ÛKOýû¯S¯[ý÷üð}û¯P½§ýïýçý¿uêuàûïù÷ìuêuí<Å8¿øAô÷¼uêuÝ¿ï¿ä~õQïS¯¾ÿ}ý=ûz{ý÷ûïÏ¿W¯uëÄÿȽú½nwïÕë]zÖüqý}û{¯[þ7ïÕëÔ뫾úñþÇß«N½Nº·ôÿ}ô[ýo~¯½½e±½¿¡èGÓúsÿ÷ﳯPyõÖ¦ên¿Çôñôú¯~¯Z¡:YKMT
H^ÿ©èu"ÄëB.¦÷tx_´õ}½Ygðûq§Ð~^êt4ðÓÅEnd:¥ÔÆâà±7-fí²ñR ×¥ßRíS¦¥,tøo· ËT"$ueWÎZEÕbÈOàÀ_Úl§QSO/#þÏ:`ݳR2{+³ý\+Ò+scw%VᨢiªÌôU)]#맪) åoÛh¦G"Ö·ãk
Ûu+«5¯çåæN8ôîv0¡¡üüþxé¯3¼rûr³§j³Æc+0c,2¢VãõÓ:Å$ÞY"³t¹"ÞÞ
ìäO¨¬ZM4zùüºnk[Äi7uAmd6ýSN·N»õÿÿ¾¿ÐñïYëÔë½þ#ñþýÖé×ÿÅ-þ7þ£éô÷¾·N¹ÿðÿñ§¿`u8á×z×
yçék
¿Ø{÷VÒ}:ä#¦oõ¿§ãþ)ïÕ½oAôëøôÏúÂÜ_ê6÷ªüúöôë±ÚÖüò.?ß~=ú¿>·¡ºì@ß·½Ïûo~ÕÖô½à{rÃñô¿ûkp=꣯xg×®üߨ~mÅì8ÿ{õz÷óëú·ûÇøÿ¯ÇÓß«Öü1ë×¼
>¬l?Ãýñ÷ªõïzõØ8å¿ä¥ÿ>ý^·á»ñF9$ÿ± Ï?~:ðEë0«'û½u.¾l:Þé×t£ýÙýL_ëÇ¿¯ºø±ÿ¿öáÿ@õï-(þÒõoõøû÷ûðu¿ÿòëÞh?Ïüÿxzñà1ýüÝ{Aþ¹yñ§þH?ÞÔ{÷§oØÍ×´íuç?yÏüÿC:û×ÿsùéùÛ×¼Ò¥,ßOË@?ë±÷Aoåþ~½§úcùÿ®&ZÅ!ÿ¦ÐºýëÄÊûGùúöücùÿ®õÕ¥ÅÈJòABþ4hÓS,nd[½ñ§$X}=[ÉÅ$©à|éÒªÓ§µV¿· Î4b¿ìEíùÿÀú½{Wn¡ëÒjĹXb{6JPTô[/Ô½ÅÈú}GÐöÞÖÆ¾¢ùIæHýoþqõÿ_éíRê5©8ëôUXp
üøto°\\Zo{MÅ´¬-Ät*H?¯ð¨#Ìc¯vÈ¢Þ]ßûCµöÎÚ¹6®Ai28çeö\«D¯I÷ôLÞ9]'ÆàJíRhÄLj£ìûzCÌiõWã%Ô¸$5hÔPð" upÛf·¬~ywïAülm¯¾ñýCØ;ÐÕö¶'_CÜUoÈî
-£AIêÃÿÜÐ}ü¨T½On¯(dU¾½ÄÛRS
hÔb¡©¥°O[Ââ6¾ßÚRnm5ÂÑañ8Ì},4°PcqÔQÑQÆ¡)©¡TëíØÙÙmO²Çä4¥3O?Sëý]ÕÕÌoqpîÕüLOì©=*Çè³qHz¢ßÓÖ0íï^)á×qvUbÀ1JÊué1G"ýu1öíå~ÈÜnV`W?àêÛâë5Õ$æH+ùõz~Ûê½{ߺ÷^÷î½×½û¯uï~ëÝ{ߺ÷]\^×µíù·õ·ô÷êÓϯuß¿uî½ïÝ{¯{÷^ëÞý׺÷¿uî½ïÝ{¨!UgVêªëêRÌ~¥äÛóí3\ªHce4¨ÏÛÕÊú§ûREpxuN¢½%<ïö$ÍþíØZ³x.ï´Ê¨Ô°Ã÷bEûyÆËªþ¤7¸&ÆÀÿ¼ûÔ1GãÈá)N½×ÿÓß~ÃýõÿÛ{w¤4ë»ôÿ}þúÞýåÖé׬?§çëøÿ_úûö:õ:ñï¿Ö÷®½N½o¯øÿ±÷ºõ¾»ÿÿ¼Ûú{õG^ëÖÿ{þ¿ï¸÷êõêuë¶·ôü^ßñ>õ^½N½oðÿ÷êõêuݿ۶ÿ_¥½ûW^뫾ÿaþßßëÔë°¼OéÇý^·N»·û× ÿQsþñïYëÔëÖÿoþàÿ¼ñïÕòëÔá×´Üÿ·þï_~©ëÔõëÚooÇà¯ûï§½þ}zx¨ãý÷çý~Ï^§^Ñý?Öú}?ÃÿO~ëtëÚGûïõ¾¼sþñïÝj{Iÿ}þµÏáïYëÔë½ý½N½§óøçñï~_>·N¹ÿ?Û\ÿ¼{×^§]i¿ç÷¾8ÿb}îzw§÷£Í¿§ûß¿uêuë¯ø½ÿ¨çú}=û¯S¯iãëÅþ¿×ü}êzu¦ÿN7ãþ5o~#¯iëÚoþÇèyþ¿ï|{õ>}z{Hÿxü¯kýMÿÖ÷ïðuêuÞ>¿NEìÃý·¿uêuí"ãþGÇÖüsïÜkש×E×ÿöç¡÷¾½§®ôñýû¯6úð=êzvGç÷êü[ߺõ4Ñ=Vûî>Zo%\ã¶B6© m54ÑÃfVh¤!Y(Á#Ùí¿-_ÌÔLøI©ü©SÐfãíTØÙÏrá(½a¨"¾`çêÞðªß8jÉ)vF÷ë
u¯îfßR¬Ê
S×gªjÀqfõ"XG³(ù^Ì
˽§Ø¨çùE9F>X!IÒ¿ï1?//ACþqÓÍNñW²e¬2(g7¶Í
ã¿îÞd¥i4ò¡¨\{¹Ø6¥ËînV¿
+OÚËüLï
vrý¢·ôç`ì²´üº2ÿ
løEÙ¹ZDlªJÍccèë²Í]Ç-rÂÕ"§#UI
[Ó
iÒ#¸ý óì¢m¢êu],@
ò©üFó´Ko:)âLO¥Ó0/çùtw±ëiåi ®ÄghrÔUTÐÕÓÏ@ÿuôÕa¨§É,2FAR8#ýä½-¥«óñ}¸,Aô¨Õ¹%TË;)Vz`ÖàØ%²Ø~/Ç·
Î t/N]´µOåÔw2D¤
¬lª¿Ù_Sð?Þ}¾véÒ#|áRWÐãùõ=7E3°uBl\²1_nÄ{¡Û'âR>¶74Ô
õ¨ÿ^q
ÔaP·ò¼e¿¨ÐÐqþ¿½¦Û#ü«þ^«&妥=Iäÿ/M¯»?_ØD
¸iÉ7?ùj?t*eoÙÒc»8ãáοåê3ï4Þ»êdCoöó}Eýë÷tÇö׿yÌjC¥>@ÿ¬poz_¸Ë¡#"ù0RzU½$ÿOmKij¹YF <ا ¾¥UY*+E<?gBY\Ϻ¸xcö+ðð~?0:ïïGöikOýS2ÖÂü.TðO÷þQ×¼3ê¿´¯}Ô§ôÐÕõÍ2÷ÿ¼{ßOöþ×´MoûróU¥ø<ðúÉïÞ$¾VíûWüý{Jÿ¿óÿ7^×Z~ð/ü¥ÏûÂÓûö¹ÏúüÛüÀõê'ñÿ/ø®»ÿ-?Uÿ¥ú&?{Çð üÏùºõøìÿg®AjÖXüûÜþ÷I¿aÿ?ZìùõÓ%F"uÔhEµXÛÍù÷â²Ðþ ýìõᦿ§ÛþÇMfÈUcẳUC´áÌCvY¤D
¬²°²(½É¹önæêÕ'Pø@@ã_!Ó×R²FQN'@tëácõsþÅþ
{_á·ü¿ÍÓ5À?ùúïÀ¶±yý>½0÷ïÕÛöõí_ÑpjH_õyOýTOoö#Écî¦õ÷m*8ת}zïÞú×^÷î½×½û¯uï~ëÝ{ߺ÷^÷î½×D]
MR.Hçoõçúþµñ¯:E#õ© ·çëõOjW¦
+©ÇëÇ×OÖÖÿ\[Þõ¥ËcNÐ(fQÏ$§Ô_öûG3P1ôéTy g=¸q:[Óñ»ssþ¸>ÁWâ\±ôèii
nNý§éG\ u°á¯åÛQë_ÝK¨eB{h>Î=nÓ®~íÖº÷¿uî½ïÝ{¯{÷^è=í°§ªû(8V_îîÔ¶
óê¿.Ûq°dbL?í_9¾ÃÛxýÁ_üK7¤LkM5e?8»,"O&¦aô·>ë¡j 3NîéÝ¥]¸ygä1ÑÌþU»¯ec~pô!\©y¦Ü²ÇP¤ªqèæ÷*ä)ã?×éøöþâu
jSëJÜ£h¥tíñ8Æ~Úÿ.·×tI«ñ¸¸aÁǵÎ4l*:}X©§=F®éà2FP0u[½ÊnMÀ#ð?¯½±!qòëhº:¤&cåÆùÏÕÔETÉØu¦e¾¨Ì4N·¹Q,®è/Ê}«ÝvØ
øÄþb7Çå^»&]ÞîWS¨ù
!ù¯+Ún×½û¯uï~ëÝ{ߺ÷^÷î½×½û¯uëáD¯ö§_öÙöÿ¹ª?áGþ¿Ïý׺êßë~>þmø¿ã߱שׯùë÷÷~¯^ë¾/ý,§ûëÜûÕz÷^ÿoõúØqÏÒÿOϽõî½ksþ?íù6¿{Õz÷^úóùçäC߫׺õ¿Þþëð?¯Ó{¯^ëÖü¥¿Ø~o~oþ÷ïUë}{úñÇ×ék~mëïÕë]w{¯ù¸úÿOÍøÿy÷î½×\`Ðþ½ï~¯^ë³o÷ÜÜþ9þ¦þý׺ëý`oþµì,=û={¯}yü·âöþÿ¼{õz÷]ÇûÇø[ëý/Çõ÷î·×+?üÿ·úÛqïÕët=w¥àÏñO ú}}û¯PúußúO×éÏûkûõzÞôë¢ ¦Âß@oɵ¬
Ï¿Wç×µ8uÅÒB#";F«jUú±{·ñzÔµ¡a^´ÑÈW·ÿ.»:Ò4iRr)?¸
n·6*×^}ì *Õ>}yc¤9ò§YüPú}9ú{ûÕzsÃùõߪÿaoÍþ¿_¯¿W¯x>»ð/Öçý~ÿ§ûÕz÷=O^h¢³[úÝÿ}ô÷íTëz¬
-
_]D×Tñ¨ÿ]
¿¯¶Ìñ¯Å"´¶½C¬Í`1ôÕµùle%SUUU]O
5=Ú7¶£ÌuÿL?ÏÖÙZ|¢9»wµóÙª+£ªÇâñyJ³¶ð°!¦ÇÑím½5&¶Ë¡Ö¥ED&!ãK>¡D´(¼¦8Á?çùtH6*Éwº¼¥ÍGüÂÅÿjüú¬,öïÉåªzìELÌ×-,1<±<ÊîMÉ7ÝÒçQþ},k%45ùtþ%Éy'pnyR×[r¶oñöÒÎô,8ôñ){]
iåL}éé3QKIâZæoê`5}
Xÿ½qîâNêCòé¿§ý"ª ý¼ÁÓl¹WpÈáÐÙ%Õê<ýn,ÜvK£·MÃi4%
æ(zRá{uáF;;¥¤J¾Ú¢jWc³Ó355D°ÜègFelEϽ¬Ãä«åÕe²·mD Y}sþ~¯wùÿ4ÏÝ)²*+i·±w#øî/sînåèi·F¦¨Uh²ÅRI}º
GWqFn£XgS¤éÅ|`qóªÓν-#дò U~á©0 |
Uã,¦¾GÏúå"q0oî²ÝÛ{°64ôL6Õj,~áÄWY>ñ±UrV³ªyù;UC5Õ«8ÐCíºnÖ÷Öî1Ó£?:?³£·mw6íwevÏ4¥=A*0~Ú~]ü^z5K
U.v¢h'F5M±Ì
a&WÊ>ÕûÒ(g#ì¤il
Ì·ùúyjp
ê©qp¾ºÊ«\Þþm${×ÕÝ·¯ÛOðtßÒÛQn²¿å롦?©5Þ÷×$¨É,çý}×Çtò½óõq*qcý¨ÿ7]%
5Å$ ý92M¿ÇO¶{?iëÁ´¥@`ÿ7S#§EÖ(ÿÙª> þÜÛßq¶Å{±Ô[5
ü}xúû±ALÎK±ùÜlZZb'OQÈ@¶ :0(Ûm<A¼oQÓ+£
7B;æ5x°¼±:¯Ò©<{0O¡? ñomkª.7qã´üúZQdèr¦)nÐ5¥SùYÔõ½Ø:N
èxôúº·ÂÀõ?Ýú·^÷î½×½û¯uï~ëÝ{ߺ÷]¡ÿ[ߺ÷Mø¤hèX"IÍ ¤<üû-ÚÉUÁ;ñÇãn]fb=øN?^GÓÙIú÷¿uî½ïÝ{¯{÷^ëÞý׺÷¿uî½ïÝ{¬PÌ)t½¼fÿ·Óñqí¨¥Yk@Ä~`ÐõfRèíë/·z¯^÷î½×½û¯uï~ëÝ{ߺ÷I-˨ G(èegnÚ0Q¾ªÜëþ··-PË{ØOåÓ7cRüdÐ~}çc,Ò=ùf$ÜÉzÖõõúoý?>Êï¤ðáv¯FvQø³F´Åz¨£ñÀÖ¸úà{×Qfõ=©@à:ï}{¨RÿÀê?ùeUÿ\}¤ý˵ÿJÿäéåþÆ_µËÔßjúg¯{÷^ëÞý׺÷¿uî·>ÜÅîý·Ú¸æ
¹0ùV*z¨ç¤²8j©Þ9éäzyF¤Ü{Ó
JV¤Tyqéû[´¹·ºU7
©*kBÁîzú|xÛÚ³%º&vI$Ð,SÒ¶à½&Ýkg?6ÿ'åÑÍî÷r×/5´Ã¨E@H¨SéRiÑàøíðßâÞÞ©¤ß¸^ëÌnëÆå2ÊR`)àO1¦RP¯û
¡;jÜûf}ºÒââ5*Â+ÛR5(4oο>ýù¹f¦Z±ËhMyO§PaXx£gD}*?R,=¼ÐÅ%UûHvà¤ôËhb¢«JHfT$:)Ù#$ÝÂ,=Ñ®!:$Råõéè#s"¤³ªQþ]dMò;xÈ ÚxÕH&ÍcE<R(++
kÛ÷¿<{Y»È¾&Ѧ
ZY)N?w?æÍzG2È7mª@Õ®3«Ë«ÊWWFVØ ØÿN/϶)
zs®^÷׺÷¿uî½ïÝ{¯{÷^ëÞý׺¼ä¤ÿi£ÉSJèiûß(üxôñÿqÓý9ÿêwµ}3×½û¯uï~ëÝ{ߺ÷^÷î½×½û¯t¬°üÿÇÒÁûqoeþt¡þÿJ:£}JÈÄ\^Ä)ä{Yc¨êh£¢RY|ÌwbåkÉãúeÛM¬6á`Z°ÔI$Ö§?ìtõÔÒ<òÇÙÓE@ïÍ
Pé1$äõß½õ®½ïÝ{¯{÷^ëÞý׺÷¿uî½ïÝ{¯{÷^ëÿÕߣëýyÿ¼}oíÊô®¬ãýã÷ø'ޫ׸õÝÓú}môà~msïÝo=uþ¿Óëaoõÿ½ õØ
¿Ãýcoø§½þ}oAë¿}nþ¿ïCúÚÃß«óëÚ¯]ø9ý\ïïUëz>}v!OüGÓúßú{õzö]T~Oûïëý}ú½o@ëÞ8÷ ss©ÿzÔO^нc2R/êÏÑ¥O¯úŽ´g
~)~c«ÉàõÇîhÇÒXÛþ
Kÿ¼.«ûlßZ7)ûAÿWIþú?³®ÅU?öVSøºÓNÃê#÷_®¶Ú]ÀÓ·ú«½Ò5>ÁÿAtÎ×fñÑG5MF"Jhã*YÞ©kª&z¥¡æÂ*
Èàû#Ü÷-ÒÈ+MqB5+@Æ¿:üºYoom3iYdiJ(¯çSLz3ÐOÖ{ÏnîÁì,.~%´ñsµÛAÄcbÈ.F<We§jjÌ*´ÓS®
Colostrum milk powder (9% sữa non) - 350g
COLOSTRUM MILK POWDER
Trạng thái: Dạng bột
Màu sắc: Màu kem
Mùi vị: Đặc trưng của sản phẩm
THÀNH PHẦN: Bột sữa non của bò (9%) và sữa tách kem(91%). Thông tin dinh dưỡng: Xem trên nhãn chính sản phẩm
CÔNG DỤNG:
Tăng cường sức đề kháng, cung cấp kháng thể tự nhiên(IgG, IgA, IgM, IgF1), hỗ trợ hệ miễn dịch, giúp tiêu hóa và hấp thu thức ăn tốt hơn.
ĐỐI TƯỢNG SỬ DỤNG: Không hạn chế lứa tuổi
CÁCH DÙNG
+ Trẻ em và người lớn: Dùng 1-2 thìa/lần, ngày 1-2 lần, pha 1 thìa với 30ml nước ấm (khoảng 40°C) hoặc pha với sữa công thức, bột ăn dặm...
+ Chú ý: Sản phẩm này không phải là thuốc và không có tác dụng thay thế thuốc chữa bệnh
BẢO QUẢN: Để nơi khô ráo, thoáng mát (nhiệt độ < 30°C).
At the Cluny Museum, medieval culture showcases its ancestral knowledge. It took five centuries to discover that the thymus and the genitals are connected, as seen in this statue of the first man to experience desire, through a dream about a mythical serpent.....
Within the thymus, regulation of the cellular crosstalk directing T cell development depends on spatial interactions within specialized niches. To create a spatially defined map of tissue niches guiding human postnatal T cell development, we employed the multidimensional imaging platform co-detection by indexing (CODEX) as well as cellular indexing of transcriptomes and epitopes sequencing (CITE-seq) and assay for transposase accessible chromatin sequencing (ATAC-seq). We generated age-matched 4- to 5-month-old human postnatal thymus datasets for male and female donors, identifying significant sex differences in both T cell and thymus biology. We demonstrate a possible role for JAG ligands in directing thymic-like dendritic cell development, identify important functions of a population of extracellular matrix (ECM)− fibroblasts, and characterize the medullary niches surrounding Hassall’s corpuscles. Together, these data represent an age-matched spatial multiomic resource to investigate how sex-based differences in thymus regulation and T cell development arise, providing an essential resource to understand the mechanisms underlying immune function and dysfunction in males and females.
The thymus is the primary organ responsible for the generation and selection of mature, functional, and self-tolerant T cells.1 Effective T cell development is a critical component of our immune system’s ability to accurately and exclusively identify and kill foreign entities such as pathogens. During early postnatal T cell development—the period in life when T cell development is most active2—thymic seeding progenitors migrate to the thymus and mature into thymocytes. Thymic architecture is highly organized to provide spatially defined, stage-specific signaling cues to migrating thymocytes that guide development toward functional mature T cells.3,4,5,6
Recent single-cell sequencing resources demonstrating the diversity of human thymus tissue are incongruous with our current framework of thymus structure and organization,7,8,9,10,11,12,13,14,15,16,17,18,19 which describe a general migratory path thymocytes take through the cortex and medulla during conventional αβT cell development. Spatial transcriptomic sequencing of human thymus has demonstrated a deeper granularity of thymic niches and their evolution during fetal development to support different waves of non-conventional T cells.19,20 However, our understanding of how human postnatal thymus niches support conventional and non-conventional T cell development, T-lineage branching, and alternative lineage development remains limited.3,4,6 T cells generated at this stage of postnatal human development will become the foundation of our immune system, patrolling the body for decades.21 Thus, insights into early postnatal thymus niche biology are crucial to understand how our adaptive immune system is built and how perturbations in postnatal T cell development may emerge as immune dysfunction later in life.
To create a spatially defined map of tissue niches guiding human postnatal T and alternative lineage cell development, we employed multi-dimensional spatial proteomic imaging using co-detection by indexing (CODEX),22,23 single-cell transcriptomic-proteomic profiling using cellular indexing of transcriptomes and epitopes sequencing (CITE-seq),24 and single-cell assay for transposase accessible chromatin sequencing (ATAC-seq).25 Given the emerging recognition of sex differences in thymus gene expression and function,26,27,28,29,30,31 we collected and analyzed samples from male and female donors. Our analysis identifies significant sex differences during early postnatal development that affect T cell and thymus biology through common and cell type-specific mechanisms. Additionally, we highlight key cell types contributing to thymic involution that exhibit sex-based differences in thymic growth and early transition toward adipogenesis. These data suggest that kinetic differences in thymic involution are present between sexes and, importantly, that mechanisms driving thymic involution begin early in life. Altogether, these data represent a powerful age-matched spatial multiomic resource to investigate how sex-based differences in thymus biology and T cell development arise, and how they contribute to sex differences in diseases caused by immune dysfunction.
Results
Spatial multiomic profiling of human postnatal thymus identifies sex-based differences in T cells and thymus biology
We performed single-cell CITE-seq, ATAC-seq, and CODEX imaging on 4–33 months human postnatal thymuses, including 6 (3 female and 3 male) 4- to 5-month-old age-matched samples (Table S1). Each donor sample was processed simultaneously for CODEX imaging and sequencing (Figure 1A). We included a comprehensive 137 antibody panel (Data S1), allowing us to compare epigenomic, transcriptomic, and proteomic expression kinetics across developing thymocytes and enabling direct comparison of cells identified via phenotypic expression in CODEX with cells captured via CITE-seq. Prior to sequencing, we enriched CD45− non-hematopoietic cells and CD25+CD8− regulatory T (Treg) cells to ensure coverage of low-abundance cell types. After quality control and computational merging of individually sequenced patient datasets, we obtained a total of 74,334 cells with CITE-seq, including 19,434 non-T-lineage cells, and captured 25,717 nuclei with ATAC-seq. Importantly, cell proximity in CODEX tissue niches was used to screen predicted receptor-ligand interactions.
Figure 1 Spatial multiomic analysis identifies sex-biased characteristics of thymic niches
Show full captionFigure viewer
CITE-seq cells were clustered based on transcriptional expression and annotated based on marker gene and surface protein expression (Figure S1A; Table S2).7,8 ATAC-seq clusters were computationally labeled using CITE-seq reference cluster labels, which identified 34 ATAC-seq cluster transfer labels for dataset integration (Figures 1B and S1B). We captured 54,900 thymocytes spanning development from early thymic progenitors (ETPs) to mature single positive (SP) T cells, immature innate cells, innate-like cells, and Tregs. We identified three Treg populations expressing canonical lineage markers, namely Treg progenitors (Pro-Tregs), thymic Tregs (tTregs), and recirculating/resident Tregs (rrTregs).32 We also identified antigen-presenting cells, including B cells, mast cells, monocytes, and six populations of dendritic cells (DCs).33 In addition to the activated DCs (aDCs), plasmacytoid DCs (pDCs), DC1, and DC2/3 populations described by Park et al.,7 we found proliferating populations of pDCs and DC1. We also captured 7,093 epithelial cells, including cortical epithelial cells (cTECs), medullary epithelial cells (mTECs), activated mTECs, and mimetic TECs.
Importantly, we captured 7,721 mesenchymal cells, which contribute to negative selection and thymic involution.9,19,34,35,36 Subclustering identifies important mesenchymal cell types, including two populations of endothelial cells (ECs) defined by differential expression of Notch ligands (ECs, ECs (Notch)). Additionally, we identified lymphatic ECs (LECs), pericytes, vascular smooth muscle cells (VSMCs), and five distinct fibroblast cell types, including DPP4+ capsular fibroblasts (DPP4+ capFibs), capsule fibroblasts (capFibs), medullary fibroblasts (mFibs), KRT+ fibroblasts (KRT+ Fibs), and proliferating fibroblasts (Fibs (P)).
We imaged each tissue sample with a custom 48 antibody CODEX panel to study the architecture and function of niches guiding thymocyte development, aiming to define the niche characteristics guiding T-lineage branch points. Stage-specific thymocyte phenotyping markers (CD62L, CCR7, CD1A, CD5, CD7, CD4, CD8, CD3, CD45RO, CD45RA, FOXP3, and SATB1) identified CD3+ double positive cells (DPs) undergoing T-lineage commitment toward CD4 or CD8 T cells. Phenotyping markers for non-T-lineage hematopoietic cells (CD19, CD11c, CD11b, and CD68), epithelial cells (EPCAM and KRT5/8), mural cells (MCAM and SMA), ECs (CD31), and fibroblasts (PDGFRA) identified the remaining major cell types defining thymic niche architecture. Finally, we included functional markers to define patterns of antigen presentation (CD86), human leukocyte antigen (HLA) class I and II expression (HLA-ABC and HLA-DR,DP,DQ), adhesion ligands (ICAM and VCAM), Notch ligands (DLL1, DLL4, JAG1, and JAG2), T cell activation (PD-1), self-tolerance (PD-L1), proliferation (Ki67), and enzymatic regulation (15-PDGH). In sum, our CODEX panel enabled investigation of spatially regulated mechanisms directing human T cell development.
Using neural-network-driven cell segmentation and Leiden-based clustering,23 we identified individual cells within thymic tissue for each sample (Figure S1C). We annotated cell types based on tissue location and phenotypic expression compared with CITE-seq clusters (Figure 1C), performed proximity-based neighborhood clustering to identify niches,23 and annotated niches based on location and cell type composition (Figure 1D; Figure S1D). This analysis quantified proximity-based cell-cell interactions (Figure S1E) and served as a platform to interrogate spatially defined thymic niche biology via integrated sequencing-imaging analysis.
Because of known sex differences in thymus and T cell gene expression,31 we compared our age-matched male and female samples separately. In line with prior reports of sex-biased gene expression on autosomes,37,38,39,40 only 2% of male differentially expressed genes (DEGs) were found on the Y chromosome and 0.3% of female DEGs were found on the X chromosome (Tables S3 and S4). Gene set enrichment analysis (GSEA) on male vs. female cells for each cell type identified pathways commonly upregulated in either sex (Figure 1E; Data S1). Pathways differentially regulated across hematopoietic, epithelial, and stromal cells represent cell-intrinsic sex-based differences. Female cells have higher gene expression of transcription, energy regulation, and antigen presentation. Male cells, by contrast, have increased gene expression of proinflammatory signaling, amino acid metabolism, and G protein-coupled receptors (GPCR) signaling. The top differentially expressed energy regulation and metabolism pathways were similarly sex-biased in human kidney,41 suggesting multiple organs show consistent sex-biased enrichment of pathways linked to metabolism and energy production. Our data align with sex-biased trends identified in human induced pluripotent stem cell (iPSC) lines42 and other human organs,43 indicating these pathways often differ between male and female cells across various cell types.
By contrast, some pathways showed cell type-specific sex-biased enrichment. Female T and hematopoietic cells showed enrichment of interferon signaling, and female fibroblast and perivascular cells were enriched in extracellular matrix (ECM)-centric pathways (Figure 1E). Our dataset also identified differential sex-specific pathway enrichment between cell types. Gene expression indicated higher cytokine signaling in T cells and hematopoietic cells in females and in epithelial and mesenchymal cells in males (Figure 1E). These data show significant gene expression differences in male and female thymic cells. To demonstrate sex differences at the proteomic level, we identified genes with a log fold change greater than 1 that contributed to increased chemokine signaling in male T cells. CXCR4, an important chemokine receptor in thymocyte migration and development, had increased expression in male progenitor T (pro-T) cells, which we confirmed via flow cytometry (3 male, 3 female; p = 0.03; Figure S1F). As higher levels of cytokine and interferon signaling have been previously shown to influence thymus and T cell biology,44,45 our data suggest male and female T cells develop in different signaling environments and may respond differently to cytokine stimuli.
Next, we quantified cell type abundance within male and female tissues, demonstrating differences in cortical and medullary cell distributions between sexes. When normalized to the total number of cells per lobe, female thymus lobes contained significantly more DPs (p = 0.011) and cTECs (p = 0.0023). In males, we found significantly more SPs (p = 4.2 × 10−4), CD3+ DPs (p = 9.9 × 10−4), activated mTECs (p = 0.0014), and VSMCs (p = 2.4 × 10−6) (Figure 1F). Given that thymus lobules with more DPs and cTECs would have a greater proportion of cells undergoing positive selection and lobules with more medullary cells would have more cells undergoing negative selection, these data suggest that sex differences in cell type abundance may influence the resources directed toward specific stages of thymocyte selection. Alternatively, these results may suggest that male and female thymuses are developmentally asynchronous, with males exhibiting faster growth and involution kinetics, resulting in decreased cortical-to-medullary ratios even in early neonatal stages. We focused further analyses on sequential developmental niches, including analysis of sex differences in cell types and niches at each stage.
JAG1 skews ETP development toward thymic DCs
We first analyzed the cortico-medullary junction (CMJ) where cells home to the thymus (Figure 2A). This region recruits and supports ETPs10 and is composed of ECs, VSMCs, and pericytes expressing the Notch ligand JAG1 (Figures 2B and 2C). CITE-seq demonstrated that the cell adhesion molecule used by ETPs to enter the thymus, CD62L, is quickly downregulated upon CMJ entrance through the vasculature (Figure S2A). However, recently immigrated CD62L+ double negative cells are frequently located in the subcapsular zone (Figure S2B), suggesting that ETPs enter the thymus and rapidly migrate to a subcapsular niche where DLL4, a more potent Notch ligand, is highly expressed on fibroblasts and subcapsular epithelial cells (Figures 2D and S2C). However, the concentrated presence of JAG1 at the entry point indicates that ETPs are first exposed to this Notch ligand.
Figure 2 Thymic progenitors entering via the corticomedullary junction are exposed to a gradient of Notch ligands, which influence lineage specification
Show full captionFigure viewer
CellChat46 pathway analysis showed that JAG1-NOTCH1 interactions between endothelial and perivascular cells are enriched with ETPs (Figure 2E), while JAG1-NOTCH2 and JAG1-NOTCH3 interactions are enriched with DC1, DC1 (P), DC2/3, and aDCs (Figures 2E–2G). These data suggest that JAG1 could induce commitment toward other hematopoietic lineages, such as pDCs, conventional DCs (cDCs), or macrophages, which are known to develop within the thymus.10 As JAG ligands induce weaker Notch induction,47,48,49,50 we hypothesized that early contact with ETPs could maintain T-lineage potential while cells migrate toward DLL4 in the subcapsular niche.
We first analyzed the ability of the four thymic Notch ligands to induce T-lineage commitment or alternative lineage development from cord-blood-derived CD34+ hematopoietic stem and progenitor cells (HSPCs) in a defined, feeder-free culture system44 (Figure 2H). We included titrated concentrations of granulocyte-macrophage colony-stimulating factor (GM-CSF), which is produced by mast cells at the CMJ, to support DC development.51 We found that only DLL1 and DLL4 ligands induce T-lineage commitment, whereas JAG ligands or no ligand controls supported myeloid cell development and did not induce T-lineage commitment (Figure S2D). Specifically, JAG ligands with GM-CSF skewed CD68+ DC development toward CD14− DC1 cells, while no ligand controls skewed CD68+ DC development toward CD14+ DC2/3 cells (Figures 2I and S2E).
Next, to test our hypothesis that Notch signals via JAG1 ligands could act as a bridge toward later DLL4 interactions, we analyzed cells grown on JAG1 for 3, 5, or 7 days prior to DLL4 transfer (Figure 2J). We found that cells cultured on JAG ligands or no ligands for 3 days maintained reduced T-lineage commitment compared with DLL1 or DLL4 cells (pJAG1 = 0.033; pJAG2 = 0.017), whereas cells cultured on JAG ligands for longer than 3 days lost T-lineage potential (Figure 2K), indicating that JAG ligands could not support T-lineage potential.
We next analyzed the contribution of different Notch ligands to the development of male and female ETPs (Figures S2F and S2G). Our data suggest that JAG ligand interactions are more abundant and diverse in females, with JAG1-NOTCH1 interactions enriched in female ETPs and DLL4 interactions enriched in male ETPs.
Together, these data suggest that timely migration from the CMJ to DLL4 ligands at the subcapsular zone is critical for T-lineage commitment, and exposure to JAG ligands at the CMJ can guide alternative lineage development toward thymic-derived DCs. Our data further demonstrate previously unrecognized sex-biased regulation by Notch ligands.
Analysis of the subcapsular zone identifies sex-based differences in fibroblast regulation of DP development and thymus growth
From the CMJ, ETPs migrate to the subcapsular zone via a CCL25-CCR9 chemokine gradient established by cTECs and directed to pro-T, DP (P), and DP2 (Q), but not DP1 (Q) cells (Figure 3A; Figure S3A). The subcapsular niche consists of JAG1+ VCAM1+ DCs, cTECs, capsular fibroblasts, DPP4+ capsular fibroblasts, and proliferating fibroblasts, which secrete and maintain spatially regulated ECM ligands to support sequential thymocyte development (Figures 3B and 3C; Figure S3B and S3C).
Figure 3 Fibroblasts in the subcapsular zone contribute to regulation of thymus biology and T cell progenitor development
Show full captionFigure viewer
GSEA showed that DPP4+ capsule fibroblasts were enriched in HSP90 chaperone cycle for steroid hormone receptors (padjusted = 0.0065; 18/52 pathway genes significantly upregulated) (Data S1), suggesting an enhanced response to steroid hormones and supporting their role in sex hormone-based thymic involution.9 By contrast, capFibs were enriched for genes related to cytokine (interleukin [IL]-33, padjusted = 1.50 × 10−6; IL-34, padjusted = 3.56 × 10−7) and chemokine signaling (CCL2, padjusted = 5.10 × 10−40; CXCL3, padjusted = 0.020; CXCL12, padjusted = 1.78 × 10−8; CXCL14, padjusted = 3.63 × 10−15), functions previously attributed to TECs. Furthermore, CellChat identified cortical fibroblasts as major contributors to insulin growth factor (IGF) signaling through predicted signaling to cTECs, which are found in close proximity in the cortex (Figure S3D), via IGF2-IGF1R and IGF1-IGF1R axes, and to ETPs and β-selection cells, which were found under the capsule (Figure S2B), via an IGF2-IGF2R axis (Figures 3D–3F).
We next explored the role of proliferating fibroblasts. GSEA comparisons between capFibs and Fibs (P) showed marked differences in signal transduction pathways. CapFibs resembled traditional fibroblasts, which upregulate tyrosine kinase, angiogenesis, and ECM regulation and deposition pathways, whereas Fib (P) upregulates WNT signaling and cell sensing pathways, including genes involved in transient receptor potential (TRP) channels in the stimuli sensing channels pathway and taste receptors (TASRs) (Figure 3G; Data S1). Interestingly, CODEX images identified ECM− PDGFRa+ fibroblasts lacking extra domain A fibronectin (EDA-FN) expression, indicating that Fibs (P) are not involved in fibrotic matrix deposition unlike capFibs (Figure 3H; Figure S3B). Fibs (P) form a network of PDGFRa+ cells throughout the cortex that does not overlap with the cTEC network, yet maintain cell-cell contact in specific niches and often localize near cortical capillaries (Figure S3D).
We found sex-specific differences in vascular endothelial growth factor A (VEGFA) signaling within ECM− fibroblasts (Fib (P)) and other mesenchymal cells. Although all thymic fibroblasts produce the angiogenesis growth factor VEGFA, male fibroblasts express more than female cells (Fibs (P): padjusted = 0.0306; DPP4+ capFibs: padjusted = 0.0318; mFibs: padjusted = 1.85 × 10−6) (Figure 3I). Given that postnatal male thymuses are larger than female thymuses in humans and primates26 (Figure S3E), male fibroblasts may provide increased VEGFA to support angiogenesis and rapid thymic growth observed during postnatal development.52 Additionally, male mFibs have higher expression of FGF7 (padjusted = 0.0154), which regulates thymus size.53 CellChat predicts that male Fibs (P) are enriched in FGF10 compared with females, which supports cTEC proliferation and vascular growth,53,54 and only male VSMCs express FGF18 (Figures S3F–S3H). These sex biases in fibroblast growth factor (FGF) gene expression may contribute to the larger size of early postnatal male thymuses by stimulating epithelial and EC growth and proliferation.
Comparison of DEGs between male and female mesenchymal cells found increased expression of adipogenesis, cytokine, and GPCR signaling pathways in DPP4+ capFibs (Figure 3J). We also found increased expression of APOD, a gene associated with androgen, estrogen, progesterone, and glucocorticoid signaling,55,56 across male fibroblast populations (Fibs (P): padjusted = 2.18 × 10−26, mFibs: padjusted = 8.45 × 10−32) (Figure S3I). Given the association of hormone signaling with thymic involution,29,52,57 these findings suggest early initiation of thymic involution in postnatal males.
In sum, we identified three roles for fibroblasts within the subcapsular niche: maintaining tissue structure and organization via ECM and chemokine signaling, directly regulating cTEC maintenance and expansion, and potentially coordinating T cell development directly through growth factors and cell-cell interactions.
Human postnatal thymocytes may self-select in the cortex to support positive selection of conventional αβT cells
Upon exiting the subcapsular zone, DPs migrate into the inner cortex toward the medulla, where they receive positive selection signals that guide T-lineage branching toward CD4 or CD8 SP cells (Figure 4A). For DPs to transition toward the CD4 lineage, cells must receive T cell receptor (TCR) stimulation through HLA class II interactions, yet previous mouse studies have shown transcriptional downregulation of HLA class I and II in DPs.58,59 Low transcriptional expression is hypothesized to prevent thymocyte-thymocyte self-selection during positive selection, necessitating DP interactions with cTECs to receive positive selection signals.
Figure 4 HLA class I and II interactions may support thymocyte positive selection in the inner cortical zone
Show full captionFigure viewer
Analogous to mouse literature, quiescent human DPs do not express HLA class II transcripts and have closed CIITA promoters (Figures 4B and 4C). Despite the lack of class II mRNA, thymocytes express low levels of HLA class II protein throughout development (Figure 4B). Additionally, in contrast to mouse data, we observe constitutive class I mRNA expression, which increased as cells transitioned toward SPs (Figure 4D). This is consistent with ATAC-seq data demonstrating that the B2M promoter is open throughout thymocyte development (Figure 4E). We confirmed HLA expression via flow cytometry and found that approximately 25% of DPs express both class I and II, and over 65% of DPs are class I+ (Figure S4A). Thus, thymocyte self-selection within the cortex could support positive selection. In support of this notion, CODEX enabled us to identify locations within the cortex devoid of epithelial, fibroblast, endothelial, or DCs but packed with DPs expressing class II+ molecules concentrated at cell junctions (Figure 4F). We confirmed the absence of spindle-like cTEC projections in this niche via confocal imaging (Figure 4G). Additionally, we quantified cell-cell interactions and identified a niche (positive selection niche 1) consisting of class II+ DPs and CD3+ DPs and a niche (self-selection niche) containing mainly class II+ DPs (Figure 1D). Finally, we sorted thymocytes to isolate immature DPs (CD4+CD8+CD3−TCR−) and mature DPs (CD4+CD8+CD3+TCR+) from three donors and cultured them for 7 days in a feeder-free assay. In the absence of epithelial cells, both immature and mature DPs upregulate HLA class II proteins (Figure 4H), and immature DPs continue to mature along their developmental pathway, as indicated by increased percentage of CD27+ DPs in culture after 7 days (Figure 4I).
Next, we identified a niche that directs T-lineage commitment toward CD4 or CD8SPs. We performed differential gene expression analysis on clusters representing this lineage branch point to identify markers for our CODEX panel (Figure S4B). We found SATB1 expression increased as DPs transitioned toward SPs (Figure S4C), and compared with CD8SP transition cells, CD4SP transition cells had higher expression of this master transcription factor60 (Figures S4D and S4E). Imaging analysis confirmed increased SATB1 expression coincides with CD3 upregulation, consistent with a role in late DP development and lineage branching (Figure 4J).7 Neighborhood analysis identified a niche enriched for mature CD3+ DPs in the inner cortex, suggesting that there either exists a niche specifically for late DP development and CD4 lineage transition or that cells are pre-disposed to CD4 lineage development through their TCR and migrate as clonal populations after proliferation at the outer cortex.
We compared cortical niche organization between sexes and found differences in niche organization supporting conventional T cell development, self-selection, and cross presentation. Females showed increased neighborhood interactions between the cortical DC niche containing JAG1+ VCAM+ DCs and the mature DP niche containing CD3+ DPs, the positive selection niche 1 containing class II+ DP cells and CD3+ DP cells, and the positive selection niche 3 containing DCs and DPs (Figure S4F) as well as increased cell-cell interactions between cTECs and class II+ DPs (Figures S4G and S4H). Conversely, males had increased cell-cell interactions between cTECs and CD3+ DPs (Figures S4G and S4H). These data suggest that the proportionally larger female cortex could increase cross presentation from DCs and cTECs to class II+ DPs, possibly facilitating greater use of self-selection as an alternative mechanism for positive selection.
Taken together, spatial multiomic analysis of the inner cortex identified cortical niches supporting specific stages of DP development, including three positive selection niches, a specialized niche for self-selection, and a mature DP niche thymocytes migrate through prior to entering the medulla.
Spatial multiomics identifies key mechanisms regulating negative selection niches in the medulla
Mature DPs enter the medulla, an environment specialized for negative selection, and transition toward CD4 or CD8 lineages (Figure 5A). Within the medulla, cells specialized for negative selection localize around keratinized structures called Hassall’s corpuscles (HCs).61 HCs appear during late prenatal development and are abundant in human postnatal thymuses but rare in mice.62 Here, we demonstrate that HCs can be divided into three major components: an external epithelial border of highly keratinized cells, an inner border of cells expressing prostaglandin-degrading enzyme 15-PGDH (HPGD), and a central PDGFRa+ mass (Figure 5B). HCs produce thymic stromal lymphopoietin (TSLP),61 an analog of IL-7, which activates DCs to increase expression of class II and co-stimulatory molecules CD80 and CD86. Importantly, subclustering stromal populations identified a population of KRT+ fibroblasts resembling cells undergoing epithelial-to-mesenchymal transition (EMT)63 (Figures S5A and S5B). CITE-seq identified TSLP and 15-PGDH mRNA expression in KRT+ Fibs, mFibs, mTECs, activated mTECs, and aDCs (Figure 5C), implicating these cell types as potential contributors to the function of HCs. Finally, given the inner layer of 15-PGDH+ cells, we explored the role of prostaglandin signaling regulation within the medulla. We found that DC1 cells express high levels of PGE2, whereas DC2/3 cells and monocytes express the PTGER2 and PTGER4 receptors, and aDCs express the PTGER3 receptor (Figure 5C), suggesting prostaglandin signaling is a major regulator of DC activity near HCs.
Figure 5 HCs represent scalable organizing centers for negative selection in the neonatal thymic medulla
Show full captionFigure viewer
CODEX imaging suggests HCs act as sub-medullary organizational centers to segregate the inner medulla into specialized niches for negative selection. CD86+ APCs, a subset of which express the co-stimulatory ligand CD40, localize near HCs and in direct contact with CD45RA+ mature SPs (Figure 5D; Figure S5C). In addition, approximately 30% of medullary area is composed of CD19+ B cells,64 which cluster into niches surrounding HCs (Figure S5D). These B cells are found in close contact with—and are often enveloped within—mTECs, potentially facilitating cross presentation with epithelial cells (Figure 5E). These results suggest thymic B cells may comprise an important source of antigen presentation for negative selection.64,65 We quantified medullary neighborhoods and identified six niches, including an mTEC maturation niche, a cross-presentation niche, and four niches specialized for negative selection, which vary in relative location to HCs or the CMJ, as well as their composition of APCs, epithelial, and T cells (Figure 1D; Figure S1D).
Negative selection niches surrounding HCs play a key role in conventional T cell and tTreg development.61 We enriched CD25+ cells for sequencing and found a population of CD25hi pro-Tregs expressing canonical Treg markers CTLA-4, TNFRSF1B (TNFR2), and TNFRSF4 (OX40); positive/negative selection markers (ITM2A, RANBP1, NCL, NME1, MIF, and ATP5G1); Treg developmental long non-coding RNA (MIR155HG)66,67,68,69; and other markers described in mice (Figure S5E). Whereas pro-Tregs expressed high levels of pro-apoptotic gene BCL2L11, mature tTreg subsets expressed the anti-apoptotic gene BCL2. Gene network reconstruction via SCENIC70 identified transcription factor networks activated during pro-Treg to tTreg transition (Figure 5F).
The thymus also contains mature, highly activated Tregs, labeled as rrTregs, believed to have recirculated from the periphery.71,72 rrTregs lack expression of CCR7 or thymic egress markers (KLF2 and S1PR1) but express IL1R2 (Figure S5F), which sequesters the inflammatory cytokine IL-1β to reduce local concentrations.73 CODEX imaging identified tTregs and rrTregs dispersed throughout the medulla, with rrTregs primarily adjacent to CD68+ DCs (Figure 5G). CellChat supported the potential of rrTregs to sequester inflammatory cytokines through interactions with DC2/3 via an IL-1β-IL-1R2 axis (Figure S5G). rrTregs also exhibited a tissue resident Treg phenotype (BATFhigh CCR8+) associated with wound healing and tissue regeneration function,74 and expressed remodeling and tissue repair-related genes such as matrix metalloproteinase enzymes (MMP25 and ADAM19) (Figure S5H). Overall, these findings illustrate Treg diversity in the thymus with their developmental trajectories and functions yet to be elucidated.
Comparisons of male and female rrTregs showed that male rrTregs had higher expression of IL-4 and IL-13, heat shock factor protein 1 (HSF1), and IL-1 signaling pathways (Figure 5H), suggesting rrTreg-mediated regulation of IL-1R2-mediated anti-inflammatory feedback checkpoints is a more prominent mechanism in male tTreg development in early postnatal thymus. Notably, male-activated mTECs have higher expression of CD40 and tumor necrosis factor (TNF) inflammatory pathways than females, possibly resulting in higher rrTreg activity (Figure S5I).
Finally, as Tregs have been shown in mouse to contribute to thymic involution through JAG1,75 we explored sex-based differences in tTreg gene expression. GSEA showed male rrTregs and tTregs have higher expression of adipogenesis pathways (Figures 5H and 5I). Given the presence of cells undergoing EMT, our data underlie the aggressive timeline of thymic involution and suggest that sex-based differences in thymus functional decline begin early in life.
Our detailed examination of the medulla identifies several niches specialized for negative selection, cross presentation, and mTEC maturation around HCs and demonstrates sex biases in inflammatory pathways and thymic involution kinetics within these niches.
Discussion
We performed spatial multiomics to construct a tissue atlas of niches guiding T cell development in early human postnatal thymus. These datasets characterize how key developmental niches drive lineage branch decisions, identify a possible mechanism for conventional αβT cell development through self-selection, and suggest additional functions for mesenchymal cell types governing thymus biology. Furthermore, we discovered several sex-specific differences in thymus cell and niche biology. As T cell development is a dynamic migratory process, knowledge of cell position in combination with proteomic, transcriptomic, and epigenomic sequencing data provides an invaluable resource to predict niche-specific signaling cues directing T cell development, and mechanisms responsible for maintaining tissue structure and directing thymic involution.
We describe an approach to sequencing analysis using multidimensional imaging to establish benchmarks for the location, ligand expression, and composition of key niches in T cell development. This enables us to analyze cell-cell interactions guided by niche composition, identifying physiologically relevant ligand-receptor interactions based on cell proximity within the tissue. Ultimately, this approach maps epigenomic, transcriptomic, and proteomic data to distinct tissue niches at single-cell resolution. Furthermore, we included equal numbers of male and female age-matched thymus samples, enabling comparison between sexes across platform modalities. Our analysis of sex-matched human early postnatal thymus demonstrates the highly plastic nature of thymus lobule organization and resource dedication. Each niche responds to sex-biased developmental kinetics, supporting robust T cell development to ultimately produce functional immune systems in different manners (Figure 6). The findings herein describe only a subset of the data, and we encourage the community to capitalize on this resource to provide further insight into sex differences and targeted niche-specific inquiries.
Figure 6 The human early postnatal thymus lobule is spatially organized into sex-biased niches to support stage-specific T cell development
Show full captionFigure viewer
In our analysis of Notch ligands, we complemented our in silico approach with in vitro analysis. Our analysis suggests that JAG1 at the CMJ cannot support T-lineage commitment as cells migrate toward the subcapsular zone but instead skew alternative lineage development toward a CD14− DC1 subset (Figure 6). CD14 expression on DCs is linked with increased inflammatory cytokine production,76 suggesting that JAG ligands promote non-inflammatory DC phenotypes. These results highlight the importance of precise Notch signaling strength and timing in the thymus and emphasize the need for strict spatial control of different Notch ligands within thymic niches. Our observation of high JAG1 expression in the medulla and decreased DLL4 expression on cTECs outside the subcapsular zone aligns with previous studies on human postnatal thymus.77
In the subcapsular zone, we characterize the important roles of specialized fibroblasts. DPP4+ capFibs, described in mouse as cells with progenitor and anti-fibrotic potential,78,79,80,81,82 are observed as a fibroblast subset responsive to changes in systemic hormone levels. Since thymic function and involution are regulated by sex hormone levels,57,83,84,85 DPP4+ capFibs likely control these processes and are potential targets for addressing age-related thymic involution.86 Previously, only medullary fibroblasts were linked to thymocyte development and selection in the medulla.82 We demonstrate that capFibs may directly support thymocyte development in the cortex by producing growth factors like IGF2 (Figure 6). Blocking IGF2 signaling arrests thymocytes at the double negative stage,87 and our data identify capFibs as the IGF2 source, suggesting capFibs as an additional cell source of cytokines and growth factors for in vitro developmental systems. Finally, we demonstrate that ECM profiles of thymic fibroblasts are tightly regulated based on spatial localization. Future work should characterize how tissue stiffness changes as thymocytes migrate through developmental thymic niches to improve biomaterial strategies for in vitro T cell development.88
Furthermore, we identify a population of ECM− cortical fibroblasts that are enriched in cell sensing pathways, such as TASRs and TRP channels. Interestingly, TASRs regulate cell responses to local soluble substances, such as glucose, modulating release of hormones and other signaling molecules.89 Similarly, TRP channels play roles in cell sensing, such as pheromone signaling, nociception, temperature sensation, and osmoregulation.90 Given the proximity of these cells to vasculature in the cortex, Fibs (P) may play a critical role as regulatory cells by sensing environmental changes and modulating thymus size (Figure 6). Their lack of ECM production and network-like structure resemble fibroblast reticular cells (FRCs) in the lymph node, which rapidly proliferate and remodel the cortex during infection.91 Our data are generated from early postnatal thymus samples, an age with active T cell development, suggesting these fibroblasts expand the thymic cortex similarly to FRCs during infection, signaling through FGF and IGF to stromal and epithelial cells to orchestrate remodeling.
While the dogma in thymocyte positive selection suggests that DPs downregulate class II RNA to prevent self-selection and force interactions with cTECs,58,59 several studies suggest that T-lineage cells can select off each other to support CD4 T cell development.20,92,93,94 Here, we describe an inner cortical niche where class II+ DPs reside that may support positive selection via DP-DP self-selection (Figure 6). We show that immature DPs cultured without epithelial cells upregulate HLA class II and continue to mature and receive positive selection signals. Additionally, upregulated SATB1 expression identifies mature DPs in an inner cortical niche and the CD4 branch of their progeny, suggesting it may determine early lineage specificity. Future work should investigate critical features of this niche and SATB1’s role in thymocyte development.
Within the medulla, we identified a niche adjacent to HCs specialized for negative selection and highlighted the role of rrTregs in modulating the medullary inflammatory environment (Figure 6). The abundance of HCs in human but not mouse, and their proximity to negative selection niches, suggests these structures evolved to provide niche-level organization within the larger human medulla or to regulate negative selection more stringently in longer-lived species.
Comparing male and female tissue showed sex differences in both T cell and thymus biology. Studies on post-pubertal males and females show that sex hormones differentially regulate thymic involution between sexes,26,27,28,29,30,52,57,84,86 and that androgen blockers increase FOXN1 expression, thymic involution, and increased rejuvenation.29,30,52,84,86 Additionally, older males produce fewer recent thymic emigrants and have smaller thymuses compared with females.26,28 Some studies describe decreased numbers of AIRE+ mTECs with age and in females,95 potentially predisposing females who maintain greater thymic function later in life to autoimmune disease.29 These studies also observe less interlobular fat in young female thymus,26 suggesting differences in thymic involution kinetics begin pre-puberty. However, current literature has not addressed transcript-level sex differences underlying functional differences in thymic and immune function. Our analysis uncovers that female thymic cells upregulate energy regulation, transcription, and antigen-presentation pathways, whereas male cells increase proinflammatory signaling, amino acid metabolism, and GPCR signaling. These cell metabolic differences align with transcript-level sex differences in other organs41,42,43 and highlight the need for sex-based cell culture optimization in in vitro T cell culture systems.
In addition to changes common to other organs,40,41 we identify thymus-specific differences affecting key processes in thymocyte development and training. Females have a larger proportion of cortical cells per lobule, aligning with lower thymic involution rates and a larger cortex/medulla ratio.26,27,52 ETPs have enriched interactions with JAG1 as they migrate away from the CMJ, suggesting increased JAG1 interactions could skew ETP lineage commitment toward less inflammatory DC phenotypes (Figure 6). In the female cortex, we observe increased cTEC and class II+ DP interactions and increased interactions between cortical DC and positive selection niches, suggesting thymocyte self-selection may play a larger role during positive selection (Figure 6). Conversely, the female medulla shows decreased inflammatory pathway activation and fewer medullary cells. These data suggest females prioritize generating a larger repertoire of DPs over deleting autoreactive cells through negative selection, potentially contributing to sex differences in autoimmune disease prevalence in females.96
In males, we observe enriched DLL4 interactions with ETPs, which aligns with previous data demonstrating that androgen levels positively correlate with DLL4 on cTECs.29 The male cortex shows increased interactions with mature CD3+ DPs and cTECs, suggesting male thymocytes may have lower proliferation rates post β-selection, allowing sufficient space for positive selection. In the medulla, male-activated mTECs exhibit increased inflammatory pathway markers, and male Tregs exhibit higher inflammatory modulation and activate thymic involution pathways.75 Upregulation of inflammatory modulation by male rrTregs may regulate the higher proinflammatory signaling in male cells (Figure 6). Interestingly, post-pubertal males have more Tregs and fewer CD4 T cells than females, possibly due to a more inflammatory medullary environment skewing CD4 development toward the Treg lineage.31
We further explore sex differences in thymus size control mechanisms. Among fibroblast populations, we find significant differences in expression of growth and angiogenesis factors, such as VEGFA and FGFs, potentially contributing to the size difference in male and female thymuses at this age (Figure 6). These data align with and extend known sex differences in growth factor expression, including sex-biased expression of growth hormone and IGF-1 in regulating size of different tissues.97,98 Importantly, these results indicate sex-specific differences in early thymus structure maintenance and growth, which could skew T cell development. We also establish an early transition toward an adipogenic environment in males. These observations align with findings in model organisms, where young male rats exhibit higher rates of thymic involution52 and early postnatal male primates have a larger interlobular fat area.26 Together, these factors define two possible mechanisms contributing to a male-female difference in thymus size and involution kinetics.
Future studies should test how sex differences at the transcript, niche, and organ level impact differential T cell production and quality as well as explore how sex differences in other organs contribute to known differences in immune responses. Defined in vitro and organoid culture systems replicating the thymic microenvironment present powerful platforms to test if the cell type-specific and sex-specific differences identified here lead to increased autoimmune disease incidence among females and increased infection susceptibility in males. Furthermore, given the surprising sex-based differences at this early postnatal stage, future work should examine aged thymus to investigate how cellular level differences in thymic involution kinetics may translate to larger impacts on our immune system later in life.
Limitations of the study
Our analysis of intra-sex variation is limited by access to patient samples as well as the inability to conduct mechanistic experiments in the context of a whole organism. There is an opportunity for future work to further validate and expand on predicted ligand-receptor interactions.
The thymic epithelium is responsible for the secretion of thymic peptides, which intervene in some steps of intra- and extrathymic T cell differentiation. Recent data suggest that thymic hormone secretion is modulated by the neuroendocrine network, comprising thyroid, adrenals, and gonads. However, the role of the pituitary gland in this regulation is still poorly understood. In the present paper we studied the in vivo and in vitro influences of PRL on the secretion of thymulin, one of the chemically defined thymic hormones, by thymic epithelial cells (TEC). When injected daily (20-100 micrograms/20 g) in young or old C57BL/6 mice, PRL induced a specific increase in thymulin synthesis and secretion, respectively, measured by the number of thymulin-producing cells in the thymus and the peripheral levels of the hormone. This stimulation was dose dependent and reversible after the end of treatment. Similar findings have been made in animals with pituitary dwarfism, known to have low levels of circulating thymulin. This stimulatory effect was also observed in primary cultures of human and mouse TEC when PRL (10(-7) to 10(-8) M) was applied to culture supernatants, thus suggesting that PRL could act directly on TEC. In addition, we induced in vivo experimental hypoprolactinemia, treating mice with bromocriptine, a dopamine receptor agonist that inhibits pituitary PRL secretion. Bromocriptine treatment (100-200 micrograms/20 g) yielded a significant decrease in thymulin secretion that could be reversed by coincident treatment with PRL. In the light of previous observations that bovine GH can also increase thymulin production in aged dogs, we performed a series of experiments in vitro to evaluate whether GH has a direct effect on TEC. We observed that only human GH preparations that are known to have a PRL-like effect were efficient in stimulating thymulin biosynthesis and release into the culture supernatants. The effects of PRL on TEC were not restricted to thymic hormone production. We observed that TEC proliferation, as well as the numbers of a TEC subset defined by the expression of cytokeratins 3 and 10, could also be increased by PRL treatment. All these findings show that the pituitary gland directly affects TEC in terms of cytoskeletal and secretory protein expression as well as cell cycle.. This paper reviews the mechanism of sex hormone actions on the thymus, presenting mainly our data obtained at the cellular and molecular levels. First, data supporting the "genomic" action via the nuclear sex hormone receptor complexes are as follows: 1) sex hormone receptors and the thymic factor (thymulin) are co-localized in thymic epithelial cells, but not in T cells; 2) production/expression of thymic factors (thymulin, thymosin alpha 1) are remarkably inhibited by sex hormone treatment; 3) sex hormones cause changes in T cell subpopulations in the thymus; and 4) sex hormones strongly influence the development of thymus tumors in spontaneous thymoma BUF/Mna rats through their receptor within the tumor cells. Secondly, data indicating the "non-genomic" action of sex hormones via a membrane signal-generating mechanism are as follows: 1) the proliferation/maturation of thymic epithelial cells is mediated through protein kinase C activity introduced by sex hormones; 2) sex hormones directly influence DNA synthesis and cdc2 kinase (cell cycle-promoting factor) activity..
pubmed.ncbi.nlm.nih.gov/2737149/
www.cell.com/developmental-cell/fulltext/S1534-5807(24)00539-2
A meeting on Vlieland island beach.
Some dogs don’t know their own size. This one didn’t. He had a real big attitude for such a small dog. Many dogs don’t feel small or big, even when they are a tiny Jack R. or a big Dane. Size don’t seem to matter to them, they won’t let it bother them.
Recent canine research by Elaine Ostrander of the ‘National Human Genome Research Institute’ proved that dogs have the largest variation in body size of any land animal group on earth. It’s a genetic thing. Elaine found that it all has to with ‘dog chromosome 15’ and a gene named ‘IGF1’: “in small dog it breeds a mutation in the sequence next to this gene that keeps the dogs from growing larger”.
Elaine and other humans believe this is an important discovery. It can improve the understanding of cancer and other diseases. Dogs and humans are very much alike, they share 85 percent of their genetic makeup.
Interesting stuff, huh?
Have a fine Easter!
-Anna
Fellows receive mentoring throughout their internship, both from their specific supervisors in their office, as well as from the program staff. Both will be working closely together with the Fellows, to ensure a fulfilling and rewarding internship experience.
Silberhorn Sportsvel Velvet antler capsules are superior quality natural velvet antler supplement made from whole stick New Zealand Velvet antler which is used by 100,000's of men and women all over the world to support joint health and mobility, for today's active life styles please visit us at www.silberhorn.co.nz and keep in touch so remember to restore and maintain with Silberhorn Sportsvel.
#velvetantler #silberhorn #sportsvel #jointpain #velvetantlercapsules #jointhealthsupplements #jointhealthproducts #jointpainsupplements #deervelvet #deervelvetcapsules #deerantlervelvet #nzdeervelvet #igf1 #igf-1
Silberhorn Sportsvel Velvet antler capsules are superior quality natural velvet antler supplement made from whole stick New Zealand Velvet antler which is used by 100,000's of men and women all over the world to support joint health and mobility, for today's active life styles please visit us at www.silberhorn.co.nz and keep in touch so remember to restore and maintain with Silberhorn Sportsvel.
#velvetantler #silberhorn #sportsvel #jointpain #velvetantlercapsules #jointhealthsupplements #jointhealthproducts #jointpainsupplements #deervelvet #deervelvetcapsules #deerantlervelvet #nzdeervelvet #igf1 #igf-1
Info pemesanan dan konsultasi, silahkan hubungi :
CS Nia
Pin BB : 5D6A2D9C
WA 0857 2656 3429
Line : cantikputihalami
Instagram : cantikputihalami16
Stem C'rum HL Anti-hair Loss Solution
Melembabkan, memelihara dan meningkatkan kondisi rambut dan kulit kepala. Meningkatkan sirkulasi darah di kulit kepala dan revitalisasi folikel rambut. Menginduksi pertumbuhan rambut dengan meningkatkan ukuran folikel rambut dan menghentikan kerontokan rambut.
Isi 10 vial
Presentasi :
- Lyophilized Powder 100mg X 5 Vials
- Stem C'rum HL Solution 5ml x 5 vials
Bahan aktif :
Human Adipocyte Conditioned Media Extract, Biotin, Copper Tripeptide-1, sh-Oligopeptide-2 (CG-IGF1), sh-Polypeptide-1 (CG-bFGF), sh-Polypeptide-9 (CG-VEGF)
CONCENTRATION OF GROWTH FACTORS
10 ppm of each Growth Factor / vial
APLIKASI
1 atau 2 sesi per minggu 1 vial untuk 1 sesi
Untuk info lebih lanjut mengenai produk dan cara penggunaan, silahkan hubungi Customer Service kami.
IGF1-LR3 is one of the research peptides we offer on our website. This research peptide is used in laboratories all over the country. Researchers use it to explore and investigate skeletal muscles, bone growth, cardiovascular condition, aging, insulin resistance, and body weight regulation. You can keep it for about 90 days at room temperature and you can prolong its shelf life in your laboratory by keeping it on a temperature of -8C. Research peptides can damage your health. This product isn’t any sort of medication, cosmetic, or food.
Feel free to visit us at : www.uselitepeptides.com/igf1-lr3/
IGF1-LR3 is one of the research peptides we offer on our website. This research peptide is used in laboratories all over the country. Researchers use it to explore and investigate skeletal muscles, bone growth, cardiovascular condition, aging, insulin resistance, and body weight regulation. You can keep it for about 90 days at room temperature and you can prolong its shelf life in your laboratory by keeping it on a temperature of -8C. Research peptides can damage your health. This product isn’t any sort of medication, cosmetic, or food.
For Further Details Click Here : www.uselitepeptides.com/tb-500/
IGF1-LR3 is one of the research peptides we offer on our website. This research peptide is used in laboratories all over the country. Researchers use it to explore and investigate skeletal muscles, bone growth, cardiovascular condition, aging, insulin resistance, and body weight regulation. You can keep it for about 90 days at room temperature and you can prolong its shelf life in your laboratory by keeping it on a temperature of -8C. Research peptides can damage your health. This product isn’t any sort of medication, cosmetic, or food.
To know more about them just click www.uselitepeptides.com/shop/
Want to get rid of depression or anxiety? Visit Alpha Helica Peptides and buy Igf1-des that will increase the levels of the antioxidant levels, ultimately decreasing inflammation. It serves as anti depression treatment. For more information click here www.alphahelicapeptides.com/igf-1-des
Глюкокортикоидните стероиди обикновено се предписват за много възпалителни състояния, но хроничната ежедневна употреба води до неблагоприятни ефекти, включително загуба на мускули и слабост. Обратно, по-кратките глюкокортикоидни импулси могат да подобрят спортните постижения, въпреки че механизмите остават неясни. Мускулите са сексуално диморфни и сравнително малко се знае за това как мъжките и женските мускули реагират на глюкокортикоидите. Изследвахме въздействието на експозицията на глюкокортикоиди веднъж седмично върху работата на скелетните мускули, сравнявайки мъжки и женски мишки. Един месец дозиране на глюкокортикоид веднъж седмично подобри мускулната специфична сила както при мъже, така и при жени. Транскриптомичното профилиране на изолирани миофибри идентифицира поразителен сексуално диморфичен отговор към седмичните глюкокортикоиди. Мъжките миофибри имат повишена експресия на гени в IGF1/PI3K пътя и обработката на калций, докато женските миофибри имат дълбока регулация на гените на липидния метаболизъм. Мускулите от мъже, лекувани веднъж седмично с преднизон, са подобрили обработката на калция, докато сравнително лекуваните женски мускули са намалили интрамускулните триглицериди. В съответствие с променения липиден метаболизъм, седмично лекуваните с преднизон женски мишки имат по-голяма издръжливост в сравнение с контролите. Използвайки хроматинова имунопреципитация, ние дефинирахме сексуално диморфен хроматинов пейзаж след седмичен преднизон.
training.petarnizamov.com/kak-prednizolon-povishava-silat...
👉 Explore now at ift.tt/s2UdNG6
ift.tt/hDKtHUs The Purrfect Slumber Why
Kittens Sleep So MuchAs any
cat lover knows kittens are
notorious for their love of
sleep Its not uncommon to see
a little ball of fluff curled
up in a cozy ball snoozing
away the day But have you ever
wondered why kittens sleep so
much Is it just because theyre
naturally lazy or is there
something more at playThe
answer lies in the realm of
science Research has shown
that during deep sleep a
growth hormone called
somatomedin C also known as
insulinlike growth factor1 or
IGF1 is released into the
bloodstream This hormone plays
a crucial role in regulating
growth and development in
kittensWhen kittens are born
theyre tiny and helpless They
rely on their mothers for
warmth nutrition and
protection As they grow and
develop their bodies need to
produce this growth hormone to
fuel their rapid growth and
physical changes The impetus
for this growth spurt comes
from the release of
somatomedin C during sleepIn
other words when kittens sleep
their bodies are hard at work
producing the necessary
hormones to drive growth and
development This is why you
may notice your kitten
sleeping more than usual
during certain periods of
their life such as Right after
birth Newborn kittens need
plenty of sleep to help their
bodies produce the growth
hormone that will fuel their
rapid growth During
adolescence As kittens enter
adolescence around 612 months
old they experience a growth
spurt that requires even more
somatomedin C production This
is why you may notice your
kitten sleeping more during
this stage After injuries or
illnesses When kittens are
injured or ill their bodies
need to focus on recovery and
healing Sleep plays a critical
role in this process allowing
the body to produce the
necessary hormones for
repairSo there you have it The
next time you catch your
kitten snoozing away the day
remember that theyre not just
being lazy their bodies are
hard at work producing the
growth hormone that will help
them grow into strong and
healthy adult cats www.youtube.com/watch?v=62cOUCONfLQ