View allAll Photos Tagged ectoderm

Age: 330–329 Ma

Serpukhovian Age

Late Mississippian Epoch

Carboniferous Period – Giant arthropods and amphibians, early reptiles, most plants fern or lycophyte-like, known for tropical forests and seas

Paleozoic Era – pre-Dinosaurs

 

Location: Southeast Holy Island

Lindisfarne

Northumberland

England

 

Rock Type: Alston Formation limestone

 

Species:

Siphonodendron junceum is an extinct species of colonial rugose coral that flourished during the Carboniferous period, being among the most common corals found from this period. Belonging to the family Lithostrotiidae, these corals were significant reef-builders, contributing to the development of carbonate platforms in warm, tropical seas.

 

Colonies of Siphonodendron junceum are distinguished by their branching, cylindrical corallites, which often formed dense, bush-like structures, and are compared to spaghetti. Each individual corallite rarely measured much more than 6 millimetres in diameter, with internal septa arranged in a radial pattern to support the coral’s skeletal framework, though septa are often hard to make out and seem absent in this species. Its preferred environment consisted of shallow, clear, and warm marine settings

 

Note: Anthozoa is sometimes considered a subphylum, with its major consituents making up the classes. These being Class Ceriantharia, Hexacorallia (including Scleractinia and Rugosa), Octocorallia, and Tabulata. These will all be included in this collection, but ordered by their type above the usual ordering by level of taxonomic precision and alphabetically.

 

Cnidaria is a phylum of simple aquatic animals, best known for their radial symmetry, nematocysts (stinging cells), and a body plan organised around a central cavity. The phylum includes organisms like jellyfish, sea anemones, hydras, and corals. Most cnidarians have two basic body forms: the free-swimming medusa (as seen in jellyfish) and the sessile polyp (typical of corals and sea anemones). Cnidarians exhibit a diploblastic structure, meaning they possess two primary cell layers, the ectoderm and endoderm, with a gelatinous layer called the mesoglea in between. While many cnidarians are carnivorous, using their stinging cells to capture prey, some, particularly corals, have developed symbiotic relationships with photosynthetic organisms like zooxanthellae, which assist in nutrient production.

 

Within this diverse phylum, Class Anthozoa includes organisms that exist exclusively in the polyp form and lack a medusa stage. Anthozoans are primarily sessile, attached to the substrate, and include groups like corals and sea anemones. Among anthozoans, corals are the most significant from a geological and palaeontological perspective due to their capacity to build massive reef structures over geological time. Coral polyps typically secrete calcium carbonate to form exoskeletons, which fossilise readily, making them important indicators in the fossil record. Anthozoa is further divided into orders such as Hexacorallia, which includes the modern reef-building corals, and Octocorallia, which comprises soft corals and sea fans.

 

The fossil record of corals is particularly rich, with three major types standing out: tabulate corals, rugose corals, and scleractinian corals, each representing different eras of coral dominance in Earth's history.

 

Tabulate corals were dominant during the Palaeozoic era, especially from the Ordovician to the Permian. These corals are characterised by their colonial nature and the presence of horizontal internal divisions known as tabulae. Unlike later corals, tabulate corals lacked septa (vertical internal walls) and often formed large, tightly packed colonies. They contributed significantly to reef ecosystems in shallow tropical seas during the Silurian and Devonian periods. However, they became extinct at the end of the Permian, during the Permian-Triassic mass extinction. Their decline mirrored broader ecological upheavals that affected much of marine life at that time.

 

Rugose corals, also known as horn corals, coexisted with tabulate corals and appeared in the Ordovician, flourishing through the Devonian and into the Carboniferous. These corals could be either solitary or colonial, and their most distinctive feature is the presence of septal divisions within the coral skeleton, radiating from a central point. The solitary forms often resembled a horn in shape, giving them their common name. Rugose corals also contributed to Palaeozoic reef systems and are frequently found as fossils in limestone formations from these periods. Like the tabulate corals, rugose corals were wiped out during the Permian-Triassic extinction, marking the end of their dominance in marine ecosystems.

 

Following the extinction of tabulate and rugose corals, the Scleractinian corals (modern corals) emerged in the Triassic and have been the primary reef-builders ever since. Scleractinian corals also possess calcareous skeletons but differ from their predecessors in their skeletal microstructure, which is composed of aragonite rather than calcite. These corals are notable for their ability to form both solitary and colonial structures, with colonial forms building the vast coral reefs seen in modern oceans. Reef-building scleractinians rely heavily on symbiotic zooxanthellae, which enable them to thrive in nutrient-poor, sunlit waters by performing photosynthesis. Scleractinians became the dominant corals from the Jurassic onwards, and they continue to dominate coral reef ecosystems today, making them critical components of modern marine biodiversity.

Species:

Siphonodendron junceum is an extinct species of colonial rugose coral that flourished during the Carboniferous period, being among the most common corals found from this period. Belonging to the family Lithostrotiidae, these corals were significant reef-builders, contributing to the development of carbonate platforms in warm, tropical seas.

 

Colonies of Siphonodendron junceum are distinguished by their branching, cylindrical corallites, which often formed dense, bush-like structures, and are compared to spaghetti. Each individual corallite rarely measured much more than 6 millimetres in diameter, with internal septa arranged in a radial pattern to support the coral’s skeletal framework, though septa are often hard to make out and seem absent in this species. Its preferred environment consisted of shallow, clear, and warm marine settings

 

Note: Anthozoa is sometimes considered a subphylum, with its major consituents making up the classes. These being Class Ceriantharia, Hexacorallia (including Scleractinia and Rugosa), Octocorallia, and Tabulata. These will all be included in this collection, but ordered by their type above the usual ordering by level of taxonomic precision and alphabetically.

 

Cnidaria is a phylum of simple aquatic animals, best known for their radial symmetry, nematocysts (stinging cells), and a body plan organised around a central cavity. The phylum includes organisms like jellyfish, sea anemones, hydras, and corals. Most cnidarians have two basic body forms: the free-swimming medusa (as seen in jellyfish) and the sessile polyp (typical of corals and sea anemones). Cnidarians exhibit a diploblastic structure, meaning they possess two primary cell layers, the ectoderm and endoderm, with a gelatinous layer called the mesoglea in between. While many cnidarians are carnivorous, using their stinging cells to capture prey, some, particularly corals, have developed symbiotic relationships with photosynthetic organisms like zooxanthellae, which assist in nutrient production.

 

Within this diverse phylum, Class Anthozoa includes organisms that exist exclusively in the polyp form and lack a medusa stage. Anthozoans are primarily sessile, attached to the substrate, and include groups like corals and sea anemones. Among anthozoans, corals are the most significant from a geological and palaeontological perspective due to their capacity to build massive reef structures over geological time. Coral polyps typically secrete calcium carbonate to form exoskeletons, which fossilise readily, making them important indicators in the fossil record. Anthozoa is further divided into orders such as Hexacorallia, which includes the modern reef-building corals, and Octocorallia, which comprises soft corals and sea fans.

 

The fossil record of corals is particularly rich, with three major types standing out: tabulate corals, rugose corals, and scleractinian corals, each representing different eras of coral dominance in Earth's history.

 

Tabulate corals were dominant during the Palaeozoic era, especially from the Ordovician to the Permian. These corals are characterised by their colonial nature and the presence of horizontal internal divisions known as tabulae. Unlike later corals, tabulate corals lacked septa (vertical internal walls) and often formed large, tightly packed colonies. They contributed significantly to reef ecosystems in shallow tropical seas during the Silurian and Devonian periods. However, they became extinct at the end of the Permian, during the Permian-Triassic mass extinction. Their decline mirrored broader ecological upheavals that affected much of marine life at that time.

 

Rugose corals, also known as horn corals, coexisted with tabulate corals and appeared in the Ordovician, flourishing through the Devonian and into the Carboniferous. These corals could be either solitary or colonial, and their most distinctive feature is the presence of septal divisions within the coral skeleton, radiating from a central point. The solitary forms often resembled a horn in shape, giving them their common name. Rugose corals also contributed to Palaeozoic reef systems and are frequently found as fossils in limestone formations from these periods. Like the tabulate corals, rugose corals were wiped out during the Permian-Triassic extinction, marking the end of their dominance in marine ecosystems.

 

Following the extinction of tabulate and rugose corals, the Scleractinian corals (modern corals) emerged in the Triassic and have been the primary reef-builders ever since. Scleractinian corals also possess calcareous skeletons but differ from their predecessors in their skeletal microstructure, which is composed of aragonite rather than calcite. These corals are notable for their ability to form both solitary and colonial structures, with colonial forms building the vast coral reefs seen in modern oceans. Reef-building scleractinians rely heavily on symbiotic zooxanthellae, which enable them to thrive in nutrient-poor, sunlit waters by performing photosynthesis. Scleractinians became the dominant corals from the Jurassic onwards, and they continue to dominate coral reef ecosystems today, making them critical components of modern marine biodiversity.

Location: River Rothay, near the Sewage Works

Ambleside

Cumbria

 

Specimen:

A confusing and intriguing one as this sort of fossiliferous rock isn't mapped this high in the catchment as far as I'm aware.

 

Species:

Siphonodendron junceum is an extinct species of colonial rugose coral that flourished during the Carboniferous period, being among the most common corals found from this period. Belonging to the family Lithostrotiidae, these corals were significant reef-builders, contributing to the development of carbonate platforms in warm, tropical seas.

 

Colonies of Siphonodendron junceum are distinguished by their branching, cylindrical corallites, which often formed dense, bush-like structures, and are compared to spaghetti. Each individual corallite rarely measured much more than 6 millimetres in diameter, with internal septa arranged in a radial pattern to support the coral’s skeletal framework, though septa are often hard to make out and seem absent in this species. Its preferred environment consisted of shallow, clear, and warm marine settings

 

Note: Anthozoa is sometimes considered a subphylum, with its major consituents making up the classes. These being Class Ceriantharia, Hexacorallia (including Scleractinia and Rugosa), Octocorallia, and Tabulata. These will all be included in this collection, but ordered by their type above the usual ordering by level of taxonomic precision and alphabetically.

 

Cnidaria is a phylum of simple aquatic animals, best known for their radial symmetry, nematocysts (stinging cells), and a body plan organised around a central cavity. The phylum includes organisms like jellyfish, sea anemones, hydras, and corals. Most cnidarians have two basic body forms: the free-swimming medusa (as seen in jellyfish) and the sessile polyp (typical of corals and sea anemones). Cnidarians exhibit a diploblastic structure, meaning they possess two primary cell layers, the ectoderm and endoderm, with a gelatinous layer called the mesoglea in between. While many cnidarians are carnivorous, using their stinging cells to capture prey, some, particularly corals, have developed symbiotic relationships with photosynthetic organisms like zooxanthellae, which assist in nutrient production.

 

Within this diverse phylum, Class Anthozoa includes organisms that exist exclusively in the polyp form and lack a medusa stage. Anthozoans are primarily sessile, attached to the substrate, and include groups like corals and sea anemones. Among anthozoans, corals are the most significant from a geological and palaeontological perspective due to their capacity to build massive reef structures over geological time. Coral polyps typically secrete calcium carbonate to form exoskeletons, which fossilise readily, making them important indicators in the fossil record. Anthozoa is further divided into orders such as Hexacorallia, which includes the modern reef-building corals, and Octocorallia, which comprises soft corals and sea fans.

 

The fossil record of corals is particularly rich, with three major types standing out: tabulate corals, rugose corals, and scleractinian corals, each representing different eras of coral dominance in Earth's history.

 

Tabulate corals were dominant during the Palaeozoic era, especially from the Ordovician to the Permian. These corals are characterised by their colonial nature and the presence of horizontal internal divisions known as tabulae. Unlike later corals, tabulate corals lacked septa (vertical internal walls) and often formed large, tightly packed colonies. They contributed significantly to reef ecosystems in shallow tropical seas during the Silurian and Devonian periods. However, they became extinct at the end of the Permian, during the Permian-Triassic mass extinction. Their decline mirrored broader ecological upheavals that affected much of marine life at that time.

 

Rugose corals, also known as horn corals, coexisted with tabulate corals and appeared in the Ordovician, flourishing through the Devonian and into the Carboniferous. These corals could be either solitary or colonial, and their most distinctive feature is the presence of septal divisions within the coral skeleton, radiating from a central point. The solitary forms often resembled a horn in shape, giving them their common name. Rugose corals also contributed to Palaeozoic reef systems and are frequently found as fossils in limestone formations from these periods. Like the tabulate corals, rugose corals were wiped out during the Permian-Triassic extinction, marking the end of their dominance in marine ecosystems.

 

Following the extinction of tabulate and rugose corals, the Scleractinian corals (modern corals) emerged in the Triassic and have been the primary reef-builders ever since. Scleractinian corals also possess calcareous skeletons but differ from their predecessors in their skeletal microstructure, which is composed of aragonite rather than calcite. These corals are notable for their ability to form both solitary and colonial structures, with colonial forms building the vast coral reefs seen in modern oceans. Reef-building scleractinians rely heavily on symbiotic zooxanthellae, which enable them to thrive in nutrient-poor, sunlit waters by performing photosynthesis. Scleractinians became the dominant corals from the Jurassic onwards, and they continue to dominate coral reef ecosystems today, making them critical components of modern marine biodiversity.

Age: 337–330 Ma

Viséan Age

Middle Mississippian Epoch

Carboniferous Period – Giant arthropods and amphibians, early reptiles, most plants fern or lycophyte-like, known for tropical forests and seas

Paleozoic Era – pre-Dinosaurs

 

Location: Jack Scout

Silverdale

Lancashire

 

Rock Type: Urswick Limestone Formation

 

Species:

Siphonodendron junceum is an extinct species of colonial rugose coral that flourished during the Carboniferous period, being among the most common corals found from this period. Belonging to the family Lithostrotiidae, these corals were significant reef-builders, contributing to the development of carbonate platforms in warm, tropical seas.

 

Colonies of Siphonodendron junceum are distinguished by their branching, cylindrical corallites, which often formed dense, bush-like structures, and are compared to spaghetti. Each individual corallite rarely measured much more than 6 millimetres in diameter, with internal septa arranged in a radial pattern to support the coral’s skeletal framework, though septa are often hard to make out and seem absent in this species. Its preferred environment consisted of shallow, clear, and warm marine settings

 

Note: Anthozoa is sometimes considered a subphylum, with its major consituents making up the classes. These being Class Ceriantharia, Hexacorallia (including Scleractinia and Rugosa), Octocorallia, and Tabulata. These will all be included in this collection, but ordered by their type above the usual ordering by level of taxonomic precision and alphabetically.

 

Cnidaria is a phylum of simple aquatic animals, best known for their radial symmetry, nematocysts (stinging cells), and a body plan organised around a central cavity. The phylum includes organisms like jellyfish, sea anemones, hydras, and corals. Most cnidarians have two basic body forms: the free-swimming medusa (as seen in jellyfish) and the sessile polyp (typical of corals and sea anemones). Cnidarians exhibit a diploblastic structure, meaning they possess two primary cell layers, the ectoderm and endoderm, with a gelatinous layer called the mesoglea in between. While many cnidarians are carnivorous, using their stinging cells to capture prey, some, particularly corals, have developed symbiotic relationships with photosynthetic organisms like zooxanthellae, which assist in nutrient production.

 

Within this diverse phylum, Class Anthozoa includes organisms that exist exclusively in the polyp form and lack a medusa stage. Anthozoans are primarily sessile, attached to the substrate, and include groups like corals and sea anemones. Among anthozoans, corals are the most significant from a geological and palaeontological perspective due to their capacity to build massive reef structures over geological time. Coral polyps typically secrete calcium carbonate to form exoskeletons, which fossilise readily, making them important indicators in the fossil record. Anthozoa is further divided into orders such as Hexacorallia, which includes the modern reef-building corals, and Octocorallia, which comprises soft corals and sea fans.

 

The fossil record of corals is particularly rich, with three major types standing out: tabulate corals, rugose corals, and scleractinian corals, each representing different eras of coral dominance in Earth's history.

 

Tabulate corals were dominant during the Palaeozoic era, especially from the Ordovician to the Permian. These corals are characterised by their colonial nature and the presence of horizontal internal divisions known as tabulae. Unlike later corals, tabulate corals lacked septa (vertical internal walls) and often formed large, tightly packed colonies. They contributed significantly to reef ecosystems in shallow tropical seas during the Silurian and Devonian periods. However, they became extinct at the end of the Permian, during the Permian-Triassic mass extinction. Their decline mirrored broader ecological upheavals that affected much of marine life at that time.

 

Rugose corals, also known as horn corals, coexisted with tabulate corals and appeared in the Ordovician, flourishing through the Devonian and into the Carboniferous. These corals could be either solitary or colonial, and their most distinctive feature is the presence of septal divisions within the coral skeleton, radiating from a central point. The solitary forms often resembled a horn in shape, giving them their common name. Rugose corals also contributed to Palaeozoic reef systems and are frequently found as fossils in limestone formations from these periods. Like the tabulate corals, rugose corals were wiped out during the Permian-Triassic extinction, marking the end of their dominance in marine ecosystems.

 

Following the extinction of tabulate and rugose corals, the Scleractinian corals (modern corals) emerged in the Triassic and have been the primary reef-builders ever since. Scleractinian corals also possess calcareous skeletons but differ from their predecessors in their skeletal microstructure, which is composed of aragonite rather than calcite. These corals are notable for their ability to form both solitary and colonial structures, with colonial forms building the vast coral reefs seen in modern oceans. Reef-building scleractinians rely heavily on symbiotic zooxanthellae, which enable them to thrive in nutrient-poor, sunlit waters by performing photosynthesis. Scleractinians became the dominant corals from the Jurassic onwards, and they continue to dominate coral reef ecosystems today, making them critical components of modern marine biodiversity.

Age: 337–330 Ma

Viséan Age

Middle Mississippian Epoch

Carboniferous Period – Giant arthropods and amphibians, early reptiles, most plants fern or lycophyte-like, known for tropical forests and seas

Paleozoic Era – pre-Dinosaurs

 

Location: Jack Scout

Silverdale

Lancashire

 

Rock Type: Urswick Limestone Formation

 

Species:

Siphonodendron junceum is an extinct species of colonial rugose coral that flourished during the Carboniferous period, being among the most common corals found from this period. Belonging to the family Lithostrotiidae, these corals were significant reef-builders, contributing to the development of carbonate platforms in warm, tropical seas.

 

Colonies of Siphonodendron junceum are distinguished by their branching, cylindrical corallites, which often formed dense, bush-like structures, and are compared to spaghetti. Each individual corallite rarely measured much more than 6 millimetres in diameter, with internal septa arranged in a radial pattern to support the coral’s skeletal framework, though septa are often hard to make out and seem absent in this species. Its preferred environment consisted of shallow, clear, and warm marine settings

 

Note: Anthozoa is sometimes considered a subphylum, with its major consituents making up the classes. These being Class Ceriantharia, Hexacorallia (including Scleractinia and Rugosa), Octocorallia, and Tabulata. These will all be included in this collection, but ordered by their type above the usual ordering by level of taxonomic precision and alphabetically.

 

Cnidaria is a phylum of simple aquatic animals, best known for their radial symmetry, nematocysts (stinging cells), and a body plan organised around a central cavity. The phylum includes organisms like jellyfish, sea anemones, hydras, and corals. Most cnidarians have two basic body forms: the free-swimming medusa (as seen in jellyfish) and the sessile polyp (typical of corals and sea anemones). Cnidarians exhibit a diploblastic structure, meaning they possess two primary cell layers, the ectoderm and endoderm, with a gelatinous layer called the mesoglea in between. While many cnidarians are carnivorous, using their stinging cells to capture prey, some, particularly corals, have developed symbiotic relationships with photosynthetic organisms like zooxanthellae, which assist in nutrient production.

 

Within this diverse phylum, Class Anthozoa includes organisms that exist exclusively in the polyp form and lack a medusa stage. Anthozoans are primarily sessile, attached to the substrate, and include groups like corals and sea anemones. Among anthozoans, corals are the most significant from a geological and palaeontological perspective due to their capacity to build massive reef structures over geological time. Coral polyps typically secrete calcium carbonate to form exoskeletons, which fossilise readily, making them important indicators in the fossil record. Anthozoa is further divided into orders such as Hexacorallia, which includes the modern reef-building corals, and Octocorallia, which comprises soft corals and sea fans.

 

The fossil record of corals is particularly rich, with three major types standing out: tabulate corals, rugose corals, and scleractinian corals, each representing different eras of coral dominance in Earth's history.

 

Tabulate corals were dominant during the Palaeozoic era, especially from the Ordovician to the Permian. These corals are characterised by their colonial nature and the presence of horizontal internal divisions known as tabulae. Unlike later corals, tabulate corals lacked septa (vertical internal walls) and often formed large, tightly packed colonies. They contributed significantly to reef ecosystems in shallow tropical seas during the Silurian and Devonian periods. However, they became extinct at the end of the Permian, during the Permian-Triassic mass extinction. Their decline mirrored broader ecological upheavals that affected much of marine life at that time.

 

Rugose corals, also known as horn corals, coexisted with tabulate corals and appeared in the Ordovician, flourishing through the Devonian and into the Carboniferous. These corals could be either solitary or colonial, and their most distinctive feature is the presence of septal divisions within the coral skeleton, radiating from a central point. The solitary forms often resembled a horn in shape, giving them their common name. Rugose corals also contributed to Palaeozoic reef systems and are frequently found as fossils in limestone formations from these periods. Like the tabulate corals, rugose corals were wiped out during the Permian-Triassic extinction, marking the end of their dominance in marine ecosystems.

 

Following the extinction of tabulate and rugose corals, the Scleractinian corals (modern corals) emerged in the Triassic and have been the primary reef-builders ever since. Scleractinian corals also possess calcareous skeletons but differ from their predecessors in their skeletal microstructure, which is composed of aragonite rather than calcite. These corals are notable for their ability to form both solitary and colonial structures, with colonial forms building the vast coral reefs seen in modern oceans. Reef-building scleractinians rely heavily on symbiotic zooxanthellae, which enable them to thrive in nutrient-poor, sunlit waters by performing photosynthesis. Scleractinians became the dominant corals from the Jurassic onwards, and they continue to dominate coral reef ecosystems today, making them critical components of modern marine biodiversity.

Age: 330–329 Ma

Serpukhovian Age

Late Mississippian Epoch

Carboniferous Period – Giant arthropods and amphibians, early reptiles, most plants fern or lycophyte-like, known for tropical forests and seas

Paleozoic Era – pre-Dinosaurs

 

Location: Southeast Holy Island

Lindisfarne

Northumberland

England

 

Rock Type: Alston Formation limestone

 

Species:

Siphonodendron junceum is an extinct species of colonial rugose coral that flourished during the Carboniferous period, being among the most common corals found from this period. Belonging to the family Lithostrotiidae, these corals were significant reef-builders, contributing to the development of carbonate platforms in warm, tropical seas.

 

Colonies of Siphonodendron junceum are distinguished by their branching, cylindrical corallites, which often formed dense, bush-like structures, and are compared to spaghetti. Each individual corallite rarely measured much more than 6 millimetres in diameter, with internal septa arranged in a radial pattern to support the coral’s skeletal framework, though septa are often hard to make out and seem absent in this species. Its preferred environment consisted of shallow, clear, and warm marine settings

 

Note: Anthozoa is sometimes considered a subphylum, with its major consituents making up the classes. These being Class Ceriantharia, Hexacorallia (including Scleractinia and Rugosa), Octocorallia, and Tabulata. These will all be included in this collection, but ordered by their type above the usual ordering by level of taxonomic precision and alphabetically.

 

Cnidaria is a phylum of simple aquatic animals, best known for their radial symmetry, nematocysts (stinging cells), and a body plan organised around a central cavity. The phylum includes organisms like jellyfish, sea anemones, hydras, and corals. Most cnidarians have two basic body forms: the free-swimming medusa (as seen in jellyfish) and the sessile polyp (typical of corals and sea anemones). Cnidarians exhibit a diploblastic structure, meaning they possess two primary cell layers, the ectoderm and endoderm, with a gelatinous layer called the mesoglea in between. While many cnidarians are carnivorous, using their stinging cells to capture prey, some, particularly corals, have developed symbiotic relationships with photosynthetic organisms like zooxanthellae, which assist in nutrient production.

 

Within this diverse phylum, Class Anthozoa includes organisms that exist exclusively in the polyp form and lack a medusa stage. Anthozoans are primarily sessile, attached to the substrate, and include groups like corals and sea anemones. Among anthozoans, corals are the most significant from a geological and palaeontological perspective due to their capacity to build massive reef structures over geological time. Coral polyps typically secrete calcium carbonate to form exoskeletons, which fossilise readily, making them important indicators in the fossil record. Anthozoa is further divided into orders such as Hexacorallia, which includes the modern reef-building corals, and Octocorallia, which comprises soft corals and sea fans.

 

The fossil record of corals is particularly rich, with three major types standing out: tabulate corals, rugose corals, and scleractinian corals, each representing different eras of coral dominance in Earth's history.

 

Tabulate corals were dominant during the Palaeozoic era, especially from the Ordovician to the Permian. These corals are characterised by their colonial nature and the presence of horizontal internal divisions known as tabulae. Unlike later corals, tabulate corals lacked septa (vertical internal walls) and often formed large, tightly packed colonies. They contributed significantly to reef ecosystems in shallow tropical seas during the Silurian and Devonian periods. However, they became extinct at the end of the Permian, during the Permian-Triassic mass extinction. Their decline mirrored broader ecological upheavals that affected much of marine life at that time.

 

Rugose corals, also known as horn corals, coexisted with tabulate corals and appeared in the Ordovician, flourishing through the Devonian and into the Carboniferous. These corals could be either solitary or colonial, and their most distinctive feature is the presence of septal divisions within the coral skeleton, radiating from a central point. The solitary forms often resembled a horn in shape, giving them their common name. Rugose corals also contributed to Palaeozoic reef systems and are frequently found as fossils in limestone formations from these periods. Like the tabulate corals, rugose corals were wiped out during the Permian-Triassic extinction, marking the end of their dominance in marine ecosystems.

 

Following the extinction of tabulate and rugose corals, the Scleractinian corals (modern corals) emerged in the Triassic and have been the primary reef-builders ever since. Scleractinian corals also possess calcareous skeletons but differ from their predecessors in their skeletal microstructure, which is composed of aragonite rather than calcite. These corals are notable for their ability to form both solitary and colonial structures, with colonial forms building the vast coral reefs seen in modern oceans. Reef-building scleractinians rely heavily on symbiotic zooxanthellae, which enable them to thrive in nutrient-poor, sunlit waters by performing photosynthesis. Scleractinians became the dominant corals from the Jurassic onwards, and they continue to dominate coral reef ecosystems today, making them critical components of modern marine biodiversity.

Age: 344–343 Ma

Viséan

Middle Mississippian Epoch

Carboniferous Period - Giant arthropods and amphibians, early reptiles, most plants fern or lycophyte-like, known for tropical forests and seas

Paleozoic Era - pre-Dinosaurs

 

Location: Arnside and Silverdale AONB

Lancashire

 

Rock Type: Dalton Formation – limestone

 

Species:

Canina cylindrica is an extinct species of coral that lived during the Carboniferous period, approximately 344 to 343 million years ago. This solitary rugose coral belongs to the subclass Rugosa, known for its calcitic skeletons and distinctive cylindrical or horn-shaped growth forms.

 

As its name suggests, Canina cylindrica is recognised by its cylindrical coral structure, typically measuring between 3 and 8 centimetres in length and over 2 centimetres in diameter. Its smooth external surface contrasts with the intricate internal structure, which includes well-defined septa (radial plates) arranged in a characteristic pattern, as well as tabulae (horizontal partitions) that divide the coral's internal cavity into chambers.

 

Ecologically, Canina cylindrica thrived in the warm, shallow marine environments of the Middle Mississippian epoch, often growing in isolation on the seafloor. It was a sessile animal, relying on its tentacle-bearing polyp to capture microscopic plankton and organic particles from the surrounding water.

 

The presence of Canina cylindrica in the Carboniferous marine ecosystems highlights the importance of rugose corals during this period, as they contributed to reef-building and acted as habitat for various marine organisms. However, rugose corals, including Canina cylindrica, would eventually decline and become extinct by the end of the Permian, during the largest mass extinction in Earth’s history.

 

Note: Anthozoa is sometimes considered a subphylum, with its major consituents making up the classes. These being Class Ceriantharia, Hexacorallia (including Scleractinia and Rugosa), Octocorallia, and Tabulata. These will all be included in this collection, but ordered by their type above the usual ordering by level of taxonomic precision and alphabetically.

 

Cnidaria is a phylum of simple aquatic animals, best known for their radial symmetry, nematocysts (stinging cells), and a body plan organised around a central cavity. The phylum includes organisms like jellyfish, sea anemones, hydras, and corals. Most cnidarians have two basic body forms: the free-swimming medusa (as seen in jellyfish) and the sessile polyp (typical of corals and sea anemones). Cnidarians exhibit a diploblastic structure, meaning they possess two primary cell layers, the ectoderm and endoderm, with a gelatinous layer called the mesoglea in between. While many cnidarians are carnivorous, using their stinging cells to capture prey, some, particularly corals, have developed symbiotic relationships with photosynthetic organisms like zooxanthellae, which assist in nutrient production.

 

Within this diverse phylum, Class Anthozoa includes organisms that exist exclusively in the polyp form and lack a medusa stage. Anthozoans are primarily sessile, attached to the substrate, and include groups like corals and sea anemones. Among anthozoans, corals are the most significant from a geological and palaeontological perspective due to their capacity to build massive reef structures over geological time. Coral polyps typically secrete calcium carbonate to form exoskeletons, which fossilise readily, making them important indicators in the fossil record. Anthozoa is further divided into orders such as Hexacorallia, which includes the modern reef-building corals, and Octocorallia, which comprises soft corals and sea fans.

 

The fossil record of corals is particularly rich, with three major types standing out: tabulate corals, rugose corals, and scleractinian corals, each representing different eras of coral dominance in Earth's history.

 

Tabulate corals were dominant during the Palaeozoic era, especially from the Ordovician to the Permian. These corals are characterised by their colonial nature and the presence of horizontal internal divisions known as tabulae. Unlike later corals, tabulate corals lacked septa (vertical internal walls) and often formed large, tightly packed colonies. They contributed significantly to reef ecosystems in shallow tropical seas during the Silurian and Devonian periods. However, they became extinct at the end of the Permian, during the Permian-Triassic mass extinction. Their decline mirrored broader ecological upheavals that affected much of marine life at that time.

 

Rugose corals, also known as horn corals, coexisted with tabulate corals and appeared in the Ordovician, flourishing through the Devonian and into the Carboniferous. These corals could be either solitary or colonial, and their most distinctive feature is the presence of septal divisions within the coral skeleton, radiating from a central point. The solitary forms often resembled a horn in shape, giving them their common name. Rugose corals also contributed to Palaeozoic reef systems and are frequently found as fossils in limestone formations from these periods. Like the tabulate corals, rugose corals were wiped out during the Permian-Triassic extinction, marking the end of their dominance in marine ecosystems.

 

Following the extinction of tabulate and rugose corals, the Scleractinian corals (modern corals) emerged in the Triassic and have been the primary reef-builders ever since. Scleractinian corals also possess calcareous skeletons but differ from their predecessors in their skeletal microstructure, which is composed of aragonite rather than calcite. These corals are notable for their ability to form both solitary and colonial structures, with colonial forms building the vast coral reefs seen in modern oceans. Reef-building scleractinians rely heavily on symbiotic zooxanthellae, which enable them to thrive in nutrient-poor, sunlit waters by performing photosynthesis. Scleractinians became the dominant corals from the Jurassic onwards, and they continue to dominate coral reef ecosystems today, making them critical components of modern marine biodiversity.

Age: 337–319 Ma

Viséan to Bashkirian Age

Middle Mississippian to Early Pennsylvanian Epoch

Carboniferous Period – Giant arthropods and amphibians, early reptiles, most plants fern or lycophyte-like, known for tropical forests and seas

Paleozoic Era – pre-Dinosaurs

 

Location: Notts II Cave

Yorkshire

 

Rock Type: limestone

 

Species:

Siphonodendron junceum is an extinct species of colonial rugose coral that flourished during the Carboniferous period, being among the most common corals found from this period. Belonging to the family Lithostrotiidae, these corals were significant reef-builders, contributing to the development of carbonate platforms in warm, tropical seas.

 

Colonies of Siphonodendron junceum are distinguished by their branching, cylindrical corallites, which often formed dense, bush-like structures, and are compared to spaghetti. Each individual corallite rarely measured much more than 6 millimetres in diameter, with internal septa arranged in a radial pattern to support the coral’s skeletal framework, though septa are often hard to make out and seem absent in this species. Its preferred environment consisted of shallow, clear, and warm marine settings

 

Note: Anthozoa is sometimes considered a subphylum, with its major consituents making up the classes. These being Class Ceriantharia, Hexacorallia (including Scleractinia and Rugosa), Octocorallia, and Tabulata. These will all be included in this collection, but ordered by their type above the usual ordering by level of taxonomic precision and alphabetically.

 

Cnidaria is a phylum of simple aquatic animals, best known for their radial symmetry, nematocysts (stinging cells), and a body plan organised around a central cavity. The phylum includes organisms like jellyfish, sea anemones, hydras, and corals. Most cnidarians have two basic body forms: the free-swimming medusa (as seen in jellyfish) and the sessile polyp (typical of corals and sea anemones). Cnidarians exhibit a diploblastic structure, meaning they possess two primary cell layers, the ectoderm and endoderm, with a gelatinous layer called the mesoglea in between. While many cnidarians are carnivorous, using their stinging cells to capture prey, some, particularly corals, have developed symbiotic relationships with photosynthetic organisms like zooxanthellae, which assist in nutrient production.

 

Within this diverse phylum, Class Anthozoa includes organisms that exist exclusively in the polyp form and lack a medusa stage. Anthozoans are primarily sessile, attached to the substrate, and include groups like corals and sea anemones. Among anthozoans, corals are the most significant from a geological and palaeontological perspective due to their capacity to build massive reef structures over geological time. Coral polyps typically secrete calcium carbonate to form exoskeletons, which fossilise readily, making them important indicators in the fossil record. Anthozoa is further divided into orders such as Hexacorallia, which includes the modern reef-building corals, and Octocorallia, which comprises soft corals and sea fans.

 

The fossil record of corals is particularly rich, with three major types standing out: tabulate corals, rugose corals, and scleractinian corals, each representing different eras of coral dominance in Earth's history.

 

Tabulate corals were dominant during the Palaeozoic era, especially from the Ordovician to the Permian. These corals are characterised by their colonial nature and the presence of horizontal internal divisions known as tabulae. Unlike later corals, tabulate corals lacked septa (vertical internal walls) and often formed large, tightly packed colonies. They contributed significantly to reef ecosystems in shallow tropical seas during the Silurian and Devonian periods. However, they became extinct at the end of the Permian, during the Permian-Triassic mass extinction. Their decline mirrored broader ecological upheavals that affected much of marine life at that time.

 

Rugose corals, also known as horn corals, coexisted with tabulate corals and appeared in the Ordovician, flourishing through the Devonian and into the Carboniferous. These corals could be either solitary or colonial, and their most distinctive feature is the presence of septal divisions within the coral skeleton, radiating from a central point. The solitary forms often resembled a horn in shape, giving them their common name. Rugose corals also contributed to Palaeozoic reef systems and are frequently found as fossils in limestone formations from these periods. Like the tabulate corals, rugose corals were wiped out during the Permian-Triassic extinction, marking the end of their dominance in marine ecosystems.

 

Following the extinction of tabulate and rugose corals, the Scleractinian corals (modern corals) emerged in the Triassic and have been the primary reef-builders ever since. Scleractinian corals also possess calcareous skeletons but differ from their predecessors in their skeletal microstructure, which is composed of aragonite rather than calcite. These corals are notable for their ability to form both solitary and colonial structures, with colonial forms building the vast coral reefs seen in modern oceans. Reef-building scleractinians rely heavily on symbiotic zooxanthellae, which enable them to thrive in nutrient-poor, sunlit waters by performing photosynthesis. Scleractinians became the dominant corals from the Jurassic onwards, and they continue to dominate coral reef ecosystems today, making them critical components of modern marine biodiversity.

Age: 337–319 Ma

Viséan to Bashkirian Age

Middle Mississippian to Early Pennsylvanian Epoch

Carboniferous Period – Giant arthropods and amphibians, early reptiles, most plants fern or lycophyte-like, known for tropical forests and seas

Paleozoic Era – pre-Dinosaurs

 

Location: Fell Beck, near Gaping Ghyll

Ingleborough

Clapham

Yorkshire

 

Rock Type: Alston Formation or Yoredale Group limestone

 

Species:

Siphonodendron junceum is an extinct species of colonial rugose coral that flourished during the Carboniferous period, being among the most common corals found from this period. Belonging to the family Lithostrotiidae, these corals were significant reef-builders, contributing to the development of carbonate platforms in warm, tropical seas.

 

Colonies of Siphonodendron junceum are distinguished by their branching, cylindrical corallites, which often formed dense, bush-like structures, and are compared to spaghetti. Each individual corallite rarely measured much more than 6 millimetres in diameter, with internal septa arranged in a radial pattern to support the coral’s skeletal framework, though septa are often hard to make out and seem absent in this species. Its preferred environment consisted of shallow, clear, and warm marine settings

 

Note: Anthozoa is sometimes considered a subphylum, with its major consituents making up the classes. These being Class Ceriantharia, Hexacorallia (including Scleractinia and Rugosa), Octocorallia, and Tabulata. These will all be included in this collection, but ordered by their type above the usual ordering by level of taxonomic precision and alphabetically.

 

Cnidaria is a phylum of simple aquatic animals, best known for their radial symmetry, nematocysts (stinging cells), and a body plan organised around a central cavity. The phylum includes organisms like jellyfish, sea anemones, hydras, and corals. Most cnidarians have two basic body forms: the free-swimming medusa (as seen in jellyfish) and the sessile polyp (typical of corals and sea anemones). Cnidarians exhibit a diploblastic structure, meaning they possess two primary cell layers, the ectoderm and endoderm, with a gelatinous layer called the mesoglea in between. While many cnidarians are carnivorous, using their stinging cells to capture prey, some, particularly corals, have developed symbiotic relationships with photosynthetic organisms like zooxanthellae, which assist in nutrient production.

 

Within this diverse phylum, Class Anthozoa includes organisms that exist exclusively in the polyp form and lack a medusa stage. Anthozoans are primarily sessile, attached to the substrate, and include groups like corals and sea anemones. Among anthozoans, corals are the most significant from a geological and palaeontological perspective due to their capacity to build massive reef structures over geological time. Coral polyps typically secrete calcium carbonate to form exoskeletons, which fossilise readily, making them important indicators in the fossil record. Anthozoa is further divided into orders such as Hexacorallia, which includes the modern reef-building corals, and Octocorallia, which comprises soft corals and sea fans.

 

The fossil record of corals is particularly rich, with three major types standing out: tabulate corals, rugose corals, and scleractinian corals, each representing different eras of coral dominance in Earth's history.

 

Tabulate corals were dominant during the Palaeozoic era, especially from the Ordovician to the Permian. These corals are characterised by their colonial nature and the presence of horizontal internal divisions known as tabulae. Unlike later corals, tabulate corals lacked septa (vertical internal walls) and often formed large, tightly packed colonies. They contributed significantly to reef ecosystems in shallow tropical seas during the Silurian and Devonian periods. However, they became extinct at the end of the Permian, during the Permian-Triassic mass extinction. Their decline mirrored broader ecological upheavals that affected much of marine life at that time.

 

Rugose corals, also known as horn corals, coexisted with tabulate corals and appeared in the Ordovician, flourishing through the Devonian and into the Carboniferous. These corals could be either solitary or colonial, and their most distinctive feature is the presence of septal divisions within the coral skeleton, radiating from a central point. The solitary forms often resembled a horn in shape, giving them their common name. Rugose corals also contributed to Palaeozoic reef systems and are frequently found as fossils in limestone formations from these periods. Like the tabulate corals, rugose corals were wiped out during the Permian-Triassic extinction, marking the end of their dominance in marine ecosystems.

 

Following the extinction of tabulate and rugose corals, the Scleractinian corals (modern corals) emerged in the Triassic and have been the primary reef-builders ever since. Scleractinian corals also possess calcareous skeletons but differ from their predecessors in their skeletal microstructure, which is composed of aragonite rather than calcite. These corals are notable for their ability to form both solitary and colonial structures, with colonial forms building the vast coral reefs seen in modern oceans. Reef-building scleractinians rely heavily on symbiotic zooxanthellae, which enable them to thrive in nutrient-poor, sunlit waters by performing photosynthesis. Scleractinians became the dominant corals from the Jurassic onwards, and they continue to dominate coral reef ecosystems today, making them critical components of modern marine biodiversity.

Age: 330–329 Ma

Serpukhovian Age

Late Mississippian Epoch

Carboniferous Period – Giant arthropods and amphibians, early reptiles, most plants fern or lycophyte-like, known for tropical forests and seas

Paleozoic Era – pre-Dinosaurs

 

Location: Southeast Holy Island

Lindisfarne

Northumberland

England

 

Rock Type: Alston Formation limestone

 

Species:

Siphonodendron junceum is an extinct species of colonial rugose coral that flourished during the Carboniferous period, being among the most common corals found from this period. Belonging to the family Lithostrotiidae, these corals were significant reef-builders, contributing to the development of carbonate platforms in warm, tropical seas.

 

Colonies of Siphonodendron junceum are distinguished by their branching, cylindrical corallites, which often formed dense, bush-like structures, and are compared to spaghetti. Each individual corallite rarely measured much more than 6 millimetres in diameter, with internal septa arranged in a radial pattern to support the coral’s skeletal framework, though septa are often hard to make out and seem absent in this species. Its preferred environment consisted of shallow, clear, and warm marine settings

 

Note: Anthozoa is sometimes considered a subphylum, with its major consituents making up the classes. These being Class Ceriantharia, Hexacorallia (including Scleractinia and Rugosa), Octocorallia, and Tabulata. These will all be included in this collection, but ordered by their type above the usual ordering by level of taxonomic precision and alphabetically.

 

Cnidaria is a phylum of simple aquatic animals, best known for their radial symmetry, nematocysts (stinging cells), and a body plan organised around a central cavity. The phylum includes organisms like jellyfish, sea anemones, hydras, and corals. Most cnidarians have two basic body forms: the free-swimming medusa (as seen in jellyfish) and the sessile polyp (typical of corals and sea anemones). Cnidarians exhibit a diploblastic structure, meaning they possess two primary cell layers, the ectoderm and endoderm, with a gelatinous layer called the mesoglea in between. While many cnidarians are carnivorous, using their stinging cells to capture prey, some, particularly corals, have developed symbiotic relationships with photosynthetic organisms like zooxanthellae, which assist in nutrient production.

 

Within this diverse phylum, Class Anthozoa includes organisms that exist exclusively in the polyp form and lack a medusa stage. Anthozoans are primarily sessile, attached to the substrate, and include groups like corals and sea anemones. Among anthozoans, corals are the most significant from a geological and palaeontological perspective due to their capacity to build massive reef structures over geological time. Coral polyps typically secrete calcium carbonate to form exoskeletons, which fossilise readily, making them important indicators in the fossil record. Anthozoa is further divided into orders such as Hexacorallia, which includes the modern reef-building corals, and Octocorallia, which comprises soft corals and sea fans.

 

The fossil record of corals is particularly rich, with three major types standing out: tabulate corals, rugose corals, and scleractinian corals, each representing different eras of coral dominance in Earth's history.

 

Tabulate corals were dominant during the Palaeozoic era, especially from the Ordovician to the Permian. These corals are characterised by their colonial nature and the presence of horizontal internal divisions known as tabulae. Unlike later corals, tabulate corals lacked septa (vertical internal walls) and often formed large, tightly packed colonies. They contributed significantly to reef ecosystems in shallow tropical seas during the Silurian and Devonian periods. However, they became extinct at the end of the Permian, during the Permian-Triassic mass extinction. Their decline mirrored broader ecological upheavals that affected much of marine life at that time.

 

Rugose corals, also known as horn corals, coexisted with tabulate corals and appeared in the Ordovician, flourishing through the Devonian and into the Carboniferous. These corals could be either solitary or colonial, and their most distinctive feature is the presence of septal divisions within the coral skeleton, radiating from a central point. The solitary forms often resembled a horn in shape, giving them their common name. Rugose corals also contributed to Palaeozoic reef systems and are frequently found as fossils in limestone formations from these periods. Like the tabulate corals, rugose corals were wiped out during the Permian-Triassic extinction, marking the end of their dominance in marine ecosystems.

 

Following the extinction of tabulate and rugose corals, the Scleractinian corals (modern corals) emerged in the Triassic and have been the primary reef-builders ever since. Scleractinian corals also possess calcareous skeletons but differ from their predecessors in their skeletal microstructure, which is composed of aragonite rather than calcite. These corals are notable for their ability to form both solitary and colonial structures, with colonial forms building the vast coral reefs seen in modern oceans. Reef-building scleractinians rely heavily on symbiotic zooxanthellae, which enable them to thrive in nutrient-poor, sunlit waters by performing photosynthesis. Scleractinians became the dominant corals from the Jurassic onwards, and they continue to dominate coral reef ecosystems today, making them critical components of modern marine biodiversity.

Location: River Rothay, near the Sewage Works

Ambleside

Cumbria

 

Specimen:

A confusing and intriguing one as this sort of fossiliferous rock isn't mapped this high in the catchment as far as I'm aware.

 

Species:

Siphonodendron junceum is an extinct species of colonial rugose coral that flourished during the Carboniferous period, being among the most common corals found from this period. Belonging to the family Lithostrotiidae, these corals were significant reef-builders, contributing to the development of carbonate platforms in warm, tropical seas.

 

Colonies of Siphonodendron junceum are distinguished by their branching, cylindrical corallites, which often formed dense, bush-like structures, and are compared to spaghetti. Each individual corallite rarely measured much more than 6 millimetres in diameter, with internal septa arranged in a radial pattern to support the coral’s skeletal framework, though septa are often hard to make out and seem absent in this species. Its preferred environment consisted of shallow, clear, and warm marine settings

 

Note: Anthozoa is sometimes considered a subphylum, with its major consituents making up the classes. These being Class Ceriantharia, Hexacorallia (including Scleractinia and Rugosa), Octocorallia, and Tabulata. These will all be included in this collection, but ordered by their type above the usual ordering by level of taxonomic precision and alphabetically.

 

Cnidaria is a phylum of simple aquatic animals, best known for their radial symmetry, nematocysts (stinging cells), and a body plan organised around a central cavity. The phylum includes organisms like jellyfish, sea anemones, hydras, and corals. Most cnidarians have two basic body forms: the free-swimming medusa (as seen in jellyfish) and the sessile polyp (typical of corals and sea anemones). Cnidarians exhibit a diploblastic structure, meaning they possess two primary cell layers, the ectoderm and endoderm, with a gelatinous layer called the mesoglea in between. While many cnidarians are carnivorous, using their stinging cells to capture prey, some, particularly corals, have developed symbiotic relationships with photosynthetic organisms like zooxanthellae, which assist in nutrient production.

 

Within this diverse phylum, Class Anthozoa includes organisms that exist exclusively in the polyp form and lack a medusa stage. Anthozoans are primarily sessile, attached to the substrate, and include groups like corals and sea anemones. Among anthozoans, corals are the most significant from a geological and palaeontological perspective due to their capacity to build massive reef structures over geological time. Coral polyps typically secrete calcium carbonate to form exoskeletons, which fossilise readily, making them important indicators in the fossil record. Anthozoa is further divided into orders such as Hexacorallia, which includes the modern reef-building corals, and Octocorallia, which comprises soft corals and sea fans.

 

The fossil record of corals is particularly rich, with three major types standing out: tabulate corals, rugose corals, and scleractinian corals, each representing different eras of coral dominance in Earth's history.

 

Tabulate corals were dominant during the Palaeozoic era, especially from the Ordovician to the Permian. These corals are characterised by their colonial nature and the presence of horizontal internal divisions known as tabulae. Unlike later corals, tabulate corals lacked septa (vertical internal walls) and often formed large, tightly packed colonies. They contributed significantly to reef ecosystems in shallow tropical seas during the Silurian and Devonian periods. However, they became extinct at the end of the Permian, during the Permian-Triassic mass extinction. Their decline mirrored broader ecological upheavals that affected much of marine life at that time.

 

Rugose corals, also known as horn corals, coexisted with tabulate corals and appeared in the Ordovician, flourishing through the Devonian and into the Carboniferous. These corals could be either solitary or colonial, and their most distinctive feature is the presence of septal divisions within the coral skeleton, radiating from a central point. The solitary forms often resembled a horn in shape, giving them their common name. Rugose corals also contributed to Palaeozoic reef systems and are frequently found as fossils in limestone formations from these periods. Like the tabulate corals, rugose corals were wiped out during the Permian-Triassic extinction, marking the end of their dominance in marine ecosystems.

 

Following the extinction of tabulate and rugose corals, the Scleractinian corals (modern corals) emerged in the Triassic and have been the primary reef-builders ever since. Scleractinian corals also possess calcareous skeletons but differ from their predecessors in their skeletal microstructure, which is composed of aragonite rather than calcite. These corals are notable for their ability to form both solitary and colonial structures, with colonial forms building the vast coral reefs seen in modern oceans. Reef-building scleractinians rely heavily on symbiotic zooxanthellae, which enable them to thrive in nutrient-poor, sunlit waters by performing photosynthesis. Scleractinians became the dominant corals from the Jurassic onwards, and they continue to dominate coral reef ecosystems today, making them critical components of modern marine biodiversity.

via WordPress ift.tt/o5ve3t6

 

En esta fase, tu bebé aparece del tamaño de un grano de naranja en la primera fase:

 

¿Cuáles son los síntomas de un embarazo de 5 semanas?

 

Muchas mujeres embarazadas comienzan a sentir signos de embarazo, aunque sean leves, a partir de la cuarta semana de embarazo. Estos síntomas solo pueden ser mareos ocasionales, así como muchos síntomas diferentes, como náuseas, presión arterial baja, sensibilidad al olfato. Con la entrada en la semana 5, estos síntomas pueden aumentar un poco. Las madres que no han sentido ninguna diferencia en las semanas anteriores suelen presentar los primeros síntomas juntas esta semana. Las mujeres embarazadas que comienzan a investigar los precios de los paquetes de maternidad desde el primer momento del embarazo suelen querer sentirse cómodas durante el período en que los síntomas del primer trimestre son muy intensos, por lo general reciben un servicio integral de embarazo, especialmente en la quinta y sexta semana. Entre los síntomas del embarazo de 5 semanas que se presentan a menudo durante este período, los más comunes

 

son:

 

Náuseas y vómitos

 

Fatiga

 

Llenura y dolor en el pecho

 

Secreción del embarazo de color blanco lechoso

 

Sabor metálico en la boca

 

Manchas cercanas a marrones en la cara y la superficie de la piel

 

Dolores en la ingle similares a los dolores menstruales

 

Engrosamiento y aumento del brillo del cabello

 

Micción frecuente por motivos normales

 

Desarrolló sensibilidad a los olores

 

Aumento del apetito

 

¿En la prueba sale un embarazo de 5 semanas?

 

Los futuros padres esperan con impaciencia un momento favorable para hacerse las pruebas, especialmente en los embarazos planificados. 5 semanas de embarazo es un momento favorable para los análisis de orina y sangre. Durante esta semana, el nivel de la hormona beta-HCG aumentó significativamente y alcanzó el rango de 18 a 7 340 mU/ml. Si también se ha producido el retraso en la menstruación, es útil hacer una prueba de embarazo. Las mujeres embarazadas pueden optar por hacerse las pruebas de embarazo en orina o en sangre. Por lo general, la primera opción es a favor de los análisis de orina, porque son fáciles de obtener y se pueden hacer en casa. La precisión de estas pruebas es muy alta, pero aun así es útil no considerarlas estrictamente un análisis de sangre. Por lo tanto, independientemente del resultado del análisis de orina, si hay un retraso en la menstruación, te recomendamos que te hagas una prueba de embarazo contactando con las organizaciones de salud.

 

¿El embarazo de 5 semanas es evidente en la ecografía?

 

Después de las pruebas de embarazo con la medición de la hormona beta-HCG, normalmente se hace una cita con una ecografía durante 5 o 6 semanas. Esta ecografía también es muy importante para poder diagnosticar si hay problemas de embarazo poco saludables que den lugar a resultados falsos positivos, como un embarazo ectópico. Sin embargo, en este examen también se puede entender si hay un aborto espontáneo, especialmente en los embarazos que se aprenden demasiado pronto con análisis de orina tempranos. El examen en cuestión se realiza normalmente a las 5 o 6 semanas. Con una ecografía hecha por vía vaginal con 4,5 o 5 semanas de embarazo, normalmente se puede ver el saco gestacional. Las mujeres embarazadas que quieran hacerse una ecografía abdominal deben esperar hasta la sexta semana. Si todo está en orden durante la ecografía, tu médico verá el saco gestacional y escuchará los latidos del corazón del bebé. Se puede responder a la pregunta de cuántos mm debe tener el saco gestacional de 5 semanas: «esta bolsa es el primer síntoma que podemos ver en la ecografía del bebé y, a partir de la semana 5, tiene unos 20 mm de diámetro». En un embarazo sano, aparece un embrión en forma de ampolla dentro del saco. Si se encuentra el saco gestacional y no se ve al bebé, se denomina embarazo vacío. En las primeras semanas de embarazo, es posible que el desarrollo del embrión se detenga y, en ese caso, el embrión no pueda mostrarse dentro del saco gestacional. El hecho de que el embrión aparezca en forma de ampolla y se puedan extraer los latidos del corazón es una señal de que todo está en

 

orden.

 

¿Cuáles son los cambios en la madre a las 5 semanas de gestación?

 

En las mujeres que están embarazadas de 5 semanas, se producen cambios muy importantes debido a la preparación del cuerpo para el embarazo. La pregunta de si hay hemorragia a las 5 semanas de embarazo es una pregunta que se hacen a menudo las mujeres embarazadas. Una vez que el bebé se adhiera al útero de la madre, puede producirse una hemorragia leve llamada hemorragia de implantación que puede durar de 1 a 2 días. Sin embargo, dado que la hemorragia después de haber visto al bebé en la ecografía puede indicar un problema de embarazo, se debe consultar al médico en esos casos. Algunas mujeres embarazadas dicen que tienen hemorragias mensuales durante el primer trimestre del embarazo, igual que la menstruación. Ante estas situaciones, hay que ponerse en contacto con el médico para averiguar la causa de la hemorragia y hacerle una ecografía al bebé. El dolor inguinal a las 5 semanas de gestación también es otro signo esperado del embarazo. El dolor que se siente en la ingle puede considerarse un síntoma relacionado con el embarazo si no es intenso o prolongado. Los dolores en cuestión se sienten de forma similar a los calambres que se sienten durante la menstruación o antes de la menstruación. Debido a las intensas hormonas del embarazo que afectan a todo el cuerpo, las mujeres embarazadas pueden experimentar cambios emocionales esta semana, estar muy felices o muy nerviosas o incluso empezar a llorar innecesariamente. Estos síntomas suelen desaparecer y disminuyen a medida que el cuerpo empieza a acostumbrarse al embarazo.

 

¿Cómo se desarrolla un bebé de 5 semanas?

 

El bebé de 5 semanas en el útero ha alcanzado un tamaño de aproximadamente 2 mm. Así que sigue siendo tanto como un grano de arroz. Sin embargo, esta semana se han establecido las bases de órganos como la nariz y los ojos. El cerebro, el corazón y la médula espinal se desarrollan rápidamente, mientras que el cordón umbilical y la placenta comienzan a formarse. En las semanas siguientes, la necesidad del bebé de nutrientes y oxígeno empezará a transmitirse al bebé a través del cordón umbilical a través de la placenta desde el cuerpo de la madre. La aparición de una cabeza grande con el tronco se debe al desarrollo del tubo neural, este tubo neural formará la forma desarrollada del cerebro y la médula espinal en las próximas semanas. Los suplementos de ácido fólico deben iniciarse desde el momento en que se sepa el embarazo para eliminar el riesgo de desarrollar una enfermedad congénita llamada defecto del tubo neural, ya que el ácido fólico es muy necesario para el desarrollo del tubo neural. En los embarazos planificados, este suplemento ya se ha empezado a tomar 3 meses antes del plan de embarazo. Desde el ectodermo, que es la capa externa de la estructura embrionaria, el sistema nervioso, el sistema circulatorio, desde el mesodermo, la capa media, los huesos, los músculos y los riñones, y desde el endodermo, la capa interna, comenzará el desarrollo de los pulmones, el hígado y los intestinos del bebé.

 

¿Qué hay que tener en cuenta en la quinta semana de embarazo?

 

A la quinta semana de embarazo, la gran mayoría de las mujeres embarazadas se enteran de su embarazo. Hay algunas cuestiones a las que las mujeres embarazadas deben prestar atención para que el proceso pueda llevarse a cabo de forma sana. Entre ellos cabe destacar:

 

Debes mantenerte alejado de la radiación y no someterte a procedimientos de diagnóstico por imágenes, como tomografías, radiografías que emiten radiación al cuerpo.

 

En todos los controles de salud, se debe dar información sobre el embarazo al médico, no se debe tomar absolutamente ningún medicamento sin consultar al médico en términos de uso durante el embarazo.

 

Si hay abuso de tabaco y alcohol, estos hábitos deberían abandonarse inmediatamente.

 

Debe ser una dieta sana y equilibrada.

 

No se deben consumir alimentos ni bebidas de contenido desconocido.

 

No se debe hacer un trabajo demasiado pesado.

 

Como el consumo de fármacos no será posible en la mayoría de los casos, hay que tener cuidado con las infecciones y la higiene debe tomarse con el máximo cuidado.

 

Es necesario ir a los exámenes de control a tiempo.

 

Si crees que tú también puedes estar embarazada y tu menstruación se retrasa, te pueden examinar poniéndote en contacto con un ginecólogo, pero también hacerte una prueba de embarazo. Si te diagnostican un embarazo, puedes obtener información de tu médico sobre la planificación de los exámenes de seguimiento del embarazo.

Age: 330–329 Ma

Serpukhovian Age

Late Mississippian Epoch

Carboniferous Period – Giant arthropods and amphibians, early reptiles, most plants fern or lycophyte-like, known for tropical forests and seas

Paleozoic Era – pre-Dinosaurs

 

Location: Southeast Holy Island

Lindisfarne

Northumberland

England

 

Rock Type: Alston Formation limestone

 

Species:

Siphonodendron junceum is an extinct species of colonial rugose coral that flourished during the Carboniferous period, being among the most common corals found from this period. Belonging to the family Lithostrotiidae, these corals were significant reef-builders, contributing to the development of carbonate platforms in warm, tropical seas.

 

Colonies of Siphonodendron junceum are distinguished by their branching, cylindrical corallites, which often formed dense, bush-like structures, and are compared to spaghetti. Each individual corallite rarely measured much more than 6 millimetres in diameter, with internal septa arranged in a radial pattern to support the coral’s skeletal framework, though septa are often hard to make out and seem absent in this species. Its preferred environment consisted of shallow, clear, and warm marine settings

 

Note: Anthozoa is sometimes considered a subphylum, with its major consituents making up the classes. These being Class Ceriantharia, Hexacorallia (including Scleractinia and Rugosa), Octocorallia, and Tabulata. These will all be included in this collection, but ordered by their type above the usual ordering by level of taxonomic precision and alphabetically.

 

Cnidaria is a phylum of simple aquatic animals, best known for their radial symmetry, nematocysts (stinging cells), and a body plan organised around a central cavity. The phylum includes organisms like jellyfish, sea anemones, hydras, and corals. Most cnidarians have two basic body forms: the free-swimming medusa (as seen in jellyfish) and the sessile polyp (typical of corals and sea anemones). Cnidarians exhibit a diploblastic structure, meaning they possess two primary cell layers, the ectoderm and endoderm, with a gelatinous layer called the mesoglea in between. While many cnidarians are carnivorous, using their stinging cells to capture prey, some, particularly corals, have developed symbiotic relationships with photosynthetic organisms like zooxanthellae, which assist in nutrient production.

 

Within this diverse phylum, Class Anthozoa includes organisms that exist exclusively in the polyp form and lack a medusa stage. Anthozoans are primarily sessile, attached to the substrate, and include groups like corals and sea anemones. Among anthozoans, corals are the most significant from a geological and palaeontological perspective due to their capacity to build massive reef structures over geological time. Coral polyps typically secrete calcium carbonate to form exoskeletons, which fossilise readily, making them important indicators in the fossil record. Anthozoa is further divided into orders such as Hexacorallia, which includes the modern reef-building corals, and Octocorallia, which comprises soft corals and sea fans.

 

The fossil record of corals is particularly rich, with three major types standing out: tabulate corals, rugose corals, and scleractinian corals, each representing different eras of coral dominance in Earth's history.

 

Tabulate corals were dominant during the Palaeozoic era, especially from the Ordovician to the Permian. These corals are characterised by their colonial nature and the presence of horizontal internal divisions known as tabulae. Unlike later corals, tabulate corals lacked septa (vertical internal walls) and often formed large, tightly packed colonies. They contributed significantly to reef ecosystems in shallow tropical seas during the Silurian and Devonian periods. However, they became extinct at the end of the Permian, during the Permian-Triassic mass extinction. Their decline mirrored broader ecological upheavals that affected much of marine life at that time.

 

Rugose corals, also known as horn corals, coexisted with tabulate corals and appeared in the Ordovician, flourishing through the Devonian and into the Carboniferous. These corals could be either solitary or colonial, and their most distinctive feature is the presence of septal divisions within the coral skeleton, radiating from a central point. The solitary forms often resembled a horn in shape, giving them their common name. Rugose corals also contributed to Palaeozoic reef systems and are frequently found as fossils in limestone formations from these periods. Like the tabulate corals, rugose corals were wiped out during the Permian-Triassic extinction, marking the end of their dominance in marine ecosystems.

 

Following the extinction of tabulate and rugose corals, the Scleractinian corals (modern corals) emerged in the Triassic and have been the primary reef-builders ever since. Scleractinian corals also possess calcareous skeletons but differ from their predecessors in their skeletal microstructure, which is composed of aragonite rather than calcite. These corals are notable for their ability to form both solitary and colonial structures, with colonial forms building the vast coral reefs seen in modern oceans. Reef-building scleractinians rely heavily on symbiotic zooxanthellae, which enable them to thrive in nutrient-poor, sunlit waters by performing photosynthesis. Scleractinians became the dominant corals from the Jurassic onwards, and they continue to dominate coral reef ecosystems today, making them critical components of modern marine biodiversity.

Species:

Siphonodendron junceum is an extinct species of colonial rugose coral that flourished during the Carboniferous period, being among the most common corals found from this period. Belonging to the family Lithostrotiidae, these corals were significant reef-builders, contributing to the development of carbonate platforms in warm, tropical seas.

 

Colonies of Siphonodendron junceum are distinguished by their branching, cylindrical corallites, which often formed dense, bush-like structures, and are compared to spaghetti. Each individual corallite rarely measured much more than 6 millimetres in diameter, with internal septa arranged in a radial pattern to support the coral’s skeletal framework, though septa are often hard to make out and seem absent in this species. Its preferred environment consisted of shallow, clear, and warm marine settings

 

Note: Anthozoa is sometimes considered a subphylum, with its major consituents making up the classes. These being Class Ceriantharia, Hexacorallia (including Scleractinia and Rugosa), Octocorallia, and Tabulata. These will all be included in this collection, but ordered by their type above the usual ordering by level of taxonomic precision and alphabetically.

 

Cnidaria is a phylum of simple aquatic animals, best known for their radial symmetry, nematocysts (stinging cells), and a body plan organised around a central cavity. The phylum includes organisms like jellyfish, sea anemones, hydras, and corals. Most cnidarians have two basic body forms: the free-swimming medusa (as seen in jellyfish) and the sessile polyp (typical of corals and sea anemones). Cnidarians exhibit a diploblastic structure, meaning they possess two primary cell layers, the ectoderm and endoderm, with a gelatinous layer called the mesoglea in between. While many cnidarians are carnivorous, using their stinging cells to capture prey, some, particularly corals, have developed symbiotic relationships with photosynthetic organisms like zooxanthellae, which assist in nutrient production.

 

Within this diverse phylum, Class Anthozoa includes organisms that exist exclusively in the polyp form and lack a medusa stage. Anthozoans are primarily sessile, attached to the substrate, and include groups like corals and sea anemones. Among anthozoans, corals are the most significant from a geological and palaeontological perspective due to their capacity to build massive reef structures over geological time. Coral polyps typically secrete calcium carbonate to form exoskeletons, which fossilise readily, making them important indicators in the fossil record. Anthozoa is further divided into orders such as Hexacorallia, which includes the modern reef-building corals, and Octocorallia, which comprises soft corals and sea fans.

 

The fossil record of corals is particularly rich, with three major types standing out: tabulate corals, rugose corals, and scleractinian corals, each representing different eras of coral dominance in Earth's history.

 

Tabulate corals were dominant during the Palaeozoic era, especially from the Ordovician to the Permian. These corals are characterised by their colonial nature and the presence of horizontal internal divisions known as tabulae. Unlike later corals, tabulate corals lacked septa (vertical internal walls) and often formed large, tightly packed colonies. They contributed significantly to reef ecosystems in shallow tropical seas during the Silurian and Devonian periods. However, they became extinct at the end of the Permian, during the Permian-Triassic mass extinction. Their decline mirrored broader ecological upheavals that affected much of marine life at that time.

 

Rugose corals, also known as horn corals, coexisted with tabulate corals and appeared in the Ordovician, flourishing through the Devonian and into the Carboniferous. These corals could be either solitary or colonial, and their most distinctive feature is the presence of septal divisions within the coral skeleton, radiating from a central point. The solitary forms often resembled a horn in shape, giving them their common name. Rugose corals also contributed to Palaeozoic reef systems and are frequently found as fossils in limestone formations from these periods. Like the tabulate corals, rugose corals were wiped out during the Permian-Triassic extinction, marking the end of their dominance in marine ecosystems.

 

Following the extinction of tabulate and rugose corals, the Scleractinian corals (modern corals) emerged in the Triassic and have been the primary reef-builders ever since. Scleractinian corals also possess calcareous skeletons but differ from their predecessors in their skeletal microstructure, which is composed of aragonite rather than calcite. These corals are notable for their ability to form both solitary and colonial structures, with colonial forms building the vast coral reefs seen in modern oceans. Reef-building scleractinians rely heavily on symbiotic zooxanthellae, which enable them to thrive in nutrient-poor, sunlit waters by performing photosynthesis. Scleractinians became the dominant corals from the Jurassic onwards, and they continue to dominate coral reef ecosystems today, making them critical components of modern marine biodiversity.

Species:

Siphonodendron junceum is an extinct species of colonial rugose coral that flourished during the Carboniferous period, being among the most common corals found from this period. Belonging to the family Lithostrotiidae, these corals were significant reef-builders, contributing to the development of carbonate platforms in warm, tropical seas.

 

Colonies of Siphonodendron junceum are distinguished by their branching, cylindrical corallites, which often formed dense, bush-like structures, and are compared to spaghetti. Each individual corallite rarely measured much more than 6 millimetres in diameter, with internal septa arranged in a radial pattern to support the coral’s skeletal framework, though septa are often hard to make out and seem absent in this species. Its preferred environment consisted of shallow, clear, and warm marine settings

 

Note: Anthozoa is sometimes considered a subphylum, with its major consituents making up the classes. These being Class Ceriantharia, Hexacorallia (including Scleractinia and Rugosa), Octocorallia, and Tabulata. These will all be included in this collection, but ordered by their type above the usual ordering by level of taxonomic precision and alphabetically.

 

Cnidaria is a phylum of simple aquatic animals, best known for their radial symmetry, nematocysts (stinging cells), and a body plan organised around a central cavity. The phylum includes organisms like jellyfish, sea anemones, hydras, and corals. Most cnidarians have two basic body forms: the free-swimming medusa (as seen in jellyfish) and the sessile polyp (typical of corals and sea anemones). Cnidarians exhibit a diploblastic structure, meaning they possess two primary cell layers, the ectoderm and endoderm, with a gelatinous layer called the mesoglea in between. While many cnidarians are carnivorous, using their stinging cells to capture prey, some, particularly corals, have developed symbiotic relationships with photosynthetic organisms like zooxanthellae, which assist in nutrient production.

 

Within this diverse phylum, Class Anthozoa includes organisms that exist exclusively in the polyp form and lack a medusa stage. Anthozoans are primarily sessile, attached to the substrate, and include groups like corals and sea anemones. Among anthozoans, corals are the most significant from a geological and palaeontological perspective due to their capacity to build massive reef structures over geological time. Coral polyps typically secrete calcium carbonate to form exoskeletons, which fossilise readily, making them important indicators in the fossil record. Anthozoa is further divided into orders such as Hexacorallia, which includes the modern reef-building corals, and Octocorallia, which comprises soft corals and sea fans.

 

The fossil record of corals is particularly rich, with three major types standing out: tabulate corals, rugose corals, and scleractinian corals, each representing different eras of coral dominance in Earth's history.

 

Tabulate corals were dominant during the Palaeozoic era, especially from the Ordovician to the Permian. These corals are characterised by their colonial nature and the presence of horizontal internal divisions known as tabulae. Unlike later corals, tabulate corals lacked septa (vertical internal walls) and often formed large, tightly packed colonies. They contributed significantly to reef ecosystems in shallow tropical seas during the Silurian and Devonian periods. However, they became extinct at the end of the Permian, during the Permian-Triassic mass extinction. Their decline mirrored broader ecological upheavals that affected much of marine life at that time.

 

Rugose corals, also known as horn corals, coexisted with tabulate corals and appeared in the Ordovician, flourishing through the Devonian and into the Carboniferous. These corals could be either solitary or colonial, and their most distinctive feature is the presence of septal divisions within the coral skeleton, radiating from a central point. The solitary forms often resembled a horn in shape, giving them their common name. Rugose corals also contributed to Palaeozoic reef systems and are frequently found as fossils in limestone formations from these periods. Like the tabulate corals, rugose corals were wiped out during the Permian-Triassic extinction, marking the end of their dominance in marine ecosystems.

 

Following the extinction of tabulate and rugose corals, the Scleractinian corals (modern corals) emerged in the Triassic and have been the primary reef-builders ever since. Scleractinian corals also possess calcareous skeletons but differ from their predecessors in their skeletal microstructure, which is composed of aragonite rather than calcite. These corals are notable for their ability to form both solitary and colonial structures, with colonial forms building the vast coral reefs seen in modern oceans. Reef-building scleractinians rely heavily on symbiotic zooxanthellae, which enable them to thrive in nutrient-poor, sunlit waters by performing photosynthesis. Scleractinians became the dominant corals from the Jurassic onwards, and they continue to dominate coral reef ecosystems today, making them critical components of modern marine biodiversity.

Species:

Siphonodendron junceum is an extinct species of colonial rugose coral that flourished during the Carboniferous period, being among the most common corals found from this period. Belonging to the family Lithostrotiidae, these corals were significant reef-builders, contributing to the development of carbonate platforms in warm, tropical seas.

 

Colonies of Siphonodendron junceum are distinguished by their branching, cylindrical corallites, which often formed dense, bush-like structures, and are compared to spaghetti. Each individual corallite rarely measured much more than 6 millimetres in diameter, with internal septa arranged in a radial pattern to support the coral’s skeletal framework, though septa are often hard to make out and seem absent in this species. Its preferred environment consisted of shallow, clear, and warm marine settings

 

Note: Anthozoa is sometimes considered a subphylum, with its major consituents making up the classes. These being Class Ceriantharia, Hexacorallia (including Scleractinia and Rugosa), Octocorallia, and Tabulata. These will all be included in this collection, but ordered by their type above the usual ordering by level of taxonomic precision and alphabetically.

 

Cnidaria is a phylum of simple aquatic animals, best known for their radial symmetry, nematocysts (stinging cells), and a body plan organised around a central cavity. The phylum includes organisms like jellyfish, sea anemones, hydras, and corals. Most cnidarians have two basic body forms: the free-swimming medusa (as seen in jellyfish) and the sessile polyp (typical of corals and sea anemones). Cnidarians exhibit a diploblastic structure, meaning they possess two primary cell layers, the ectoderm and endoderm, with a gelatinous layer called the mesoglea in between. While many cnidarians are carnivorous, using their stinging cells to capture prey, some, particularly corals, have developed symbiotic relationships with photosynthetic organisms like zooxanthellae, which assist in nutrient production.

 

Within this diverse phylum, Class Anthozoa includes organisms that exist exclusively in the polyp form and lack a medusa stage. Anthozoans are primarily sessile, attached to the substrate, and include groups like corals and sea anemones. Among anthozoans, corals are the most significant from a geological and palaeontological perspective due to their capacity to build massive reef structures over geological time. Coral polyps typically secrete calcium carbonate to form exoskeletons, which fossilise readily, making them important indicators in the fossil record. Anthozoa is further divided into orders such as Hexacorallia, which includes the modern reef-building corals, and Octocorallia, which comprises soft corals and sea fans.

 

The fossil record of corals is particularly rich, with three major types standing out: tabulate corals, rugose corals, and scleractinian corals, each representing different eras of coral dominance in Earth's history.

 

Tabulate corals were dominant during the Palaeozoic era, especially from the Ordovician to the Permian. These corals are characterised by their colonial nature and the presence of horizontal internal divisions known as tabulae. Unlike later corals, tabulate corals lacked septa (vertical internal walls) and often formed large, tightly packed colonies. They contributed significantly to reef ecosystems in shallow tropical seas during the Silurian and Devonian periods. However, they became extinct at the end of the Permian, during the Permian-Triassic mass extinction. Their decline mirrored broader ecological upheavals that affected much of marine life at that time.

 

Rugose corals, also known as horn corals, coexisted with tabulate corals and appeared in the Ordovician, flourishing through the Devonian and into the Carboniferous. These corals could be either solitary or colonial, and their most distinctive feature is the presence of septal divisions within the coral skeleton, radiating from a central point. The solitary forms often resembled a horn in shape, giving them their common name. Rugose corals also contributed to Palaeozoic reef systems and are frequently found as fossils in limestone formations from these periods. Like the tabulate corals, rugose corals were wiped out during the Permian-Triassic extinction, marking the end of their dominance in marine ecosystems.

 

Following the extinction of tabulate and rugose corals, the Scleractinian corals (modern corals) emerged in the Triassic and have been the primary reef-builders ever since. Scleractinian corals also possess calcareous skeletons but differ from their predecessors in their skeletal microstructure, which is composed of aragonite rather than calcite. These corals are notable for their ability to form both solitary and colonial structures, with colonial forms building the vast coral reefs seen in modern oceans. Reef-building scleractinians rely heavily on symbiotic zooxanthellae, which enable them to thrive in nutrient-poor, sunlit waters by performing photosynthesis. Scleractinians became the dominant corals from the Jurassic onwards, and they continue to dominate coral reef ecosystems today, making them critical components of modern marine biodiversity.

Species:

Siphonodendron junceum is an extinct species of colonial rugose coral that flourished during the Carboniferous period, being among the most common corals found from this period. Belonging to the family Lithostrotiidae, these corals were significant reef-builders, contributing to the development of carbonate platforms in warm, tropical seas.

 

Colonies of Siphonodendron junceum are distinguished by their branching, cylindrical corallites, which often formed dense, bush-like structures, and are compared to spaghetti. Each individual corallite rarely measured much more than 6 millimetres in diameter, with internal septa arranged in a radial pattern to support the coral’s skeletal framework, though septa are often hard to make out and seem absent in this species. Its preferred environment consisted of shallow, clear, and warm marine settings

 

Note: Anthozoa is sometimes considered a subphylum, with its major consituents making up the classes. These being Class Ceriantharia, Hexacorallia (including Scleractinia and Rugosa), Octocorallia, and Tabulata. These will all be included in this collection, but ordered by their type above the usual ordering by level of taxonomic precision and alphabetically.

 

Cnidaria is a phylum of simple aquatic animals, best known for their radial symmetry, nematocysts (stinging cells), and a body plan organised around a central cavity. The phylum includes organisms like jellyfish, sea anemones, hydras, and corals. Most cnidarians have two basic body forms: the free-swimming medusa (as seen in jellyfish) and the sessile polyp (typical of corals and sea anemones). Cnidarians exhibit a diploblastic structure, meaning they possess two primary cell layers, the ectoderm and endoderm, with a gelatinous layer called the mesoglea in between. While many cnidarians are carnivorous, using their stinging cells to capture prey, some, particularly corals, have developed symbiotic relationships with photosynthetic organisms like zooxanthellae, which assist in nutrient production.

 

Within this diverse phylum, Class Anthozoa includes organisms that exist exclusively in the polyp form and lack a medusa stage. Anthozoans are primarily sessile, attached to the substrate, and include groups like corals and sea anemones. Among anthozoans, corals are the most significant from a geological and palaeontological perspective due to their capacity to build massive reef structures over geological time. Coral polyps typically secrete calcium carbonate to form exoskeletons, which fossilise readily, making them important indicators in the fossil record. Anthozoa is further divided into orders such as Hexacorallia, which includes the modern reef-building corals, and Octocorallia, which comprises soft corals and sea fans.

 

The fossil record of corals is particularly rich, with three major types standing out: tabulate corals, rugose corals, and scleractinian corals, each representing different eras of coral dominance in Earth's history.

 

Tabulate corals were dominant during the Palaeozoic era, especially from the Ordovician to the Permian. These corals are characterised by their colonial nature and the presence of horizontal internal divisions known as tabulae. Unlike later corals, tabulate corals lacked septa (vertical internal walls) and often formed large, tightly packed colonies. They contributed significantly to reef ecosystems in shallow tropical seas during the Silurian and Devonian periods. However, they became extinct at the end of the Permian, during the Permian-Triassic mass extinction. Their decline mirrored broader ecological upheavals that affected much of marine life at that time.

 

Rugose corals, also known as horn corals, coexisted with tabulate corals and appeared in the Ordovician, flourishing through the Devonian and into the Carboniferous. These corals could be either solitary or colonial, and their most distinctive feature is the presence of septal divisions within the coral skeleton, radiating from a central point. The solitary forms often resembled a horn in shape, giving them their common name. Rugose corals also contributed to Palaeozoic reef systems and are frequently found as fossils in limestone formations from these periods. Like the tabulate corals, rugose corals were wiped out during the Permian-Triassic extinction, marking the end of their dominance in marine ecosystems.

 

Following the extinction of tabulate and rugose corals, the Scleractinian corals (modern corals) emerged in the Triassic and have been the primary reef-builders ever since. Scleractinian corals also possess calcareous skeletons but differ from their predecessors in their skeletal microstructure, which is composed of aragonite rather than calcite. These corals are notable for their ability to form both solitary and colonial structures, with colonial forms building the vast coral reefs seen in modern oceans. Reef-building scleractinians rely heavily on symbiotic zooxanthellae, which enable them to thrive in nutrient-poor, sunlit waters by performing photosynthesis. Scleractinians became the dominant corals from the Jurassic onwards, and they continue to dominate coral reef ecosystems today, making them critical components of modern marine biodiversity.

Note: Anthozoa is sometimes considered a subphylum, with its major consituents making up the classes. These being Class Ceriantharia, Hexacorallia (including Scleractinia and Rugosa), Octocorallia, and Tabulata. These will all be included in this collection, but ordered by their type above the usual ordering by level of taxonomic precision and alphabetically.

 

Cnidaria is a phylum of simple aquatic animals, best known for their radial symmetry, nematocysts (stinging cells), and a body plan organised around a central cavity. The phylum includes organisms like jellyfish, sea anemones, hydras, and corals. Most cnidarians have two basic body forms: the free-swimming medusa (as seen in jellyfish) and the sessile polyp (typical of corals and sea anemones). Cnidarians exhibit a diploblastic structure, meaning they possess two primary cell layers, the ectoderm and endoderm, with a gelatinous layer called the mesoglea in between. While many cnidarians are carnivorous, using their stinging cells to capture prey, some, particularly corals, have developed symbiotic relationships with photosynthetic organisms like zooxanthellae, which assist in nutrient production.

 

Within this diverse phylum, Class Anthozoa includes organisms that exist exclusively in the polyp form and lack a medusa stage. Anthozoans are primarily sessile, attached to the substrate, and include groups like corals and sea anemones. Among anthozoans, corals are the most significant from a geological and palaeontological perspective due to their capacity to build massive reef structures over geological time. Coral polyps typically secrete calcium carbonate to form exoskeletons, which fossilise readily, making them important indicators in the fossil record. Anthozoa is further divided into orders such as Hexacorallia, which includes the modern reef-building corals, and Octocorallia, which comprises soft corals and sea fans.

 

The fossil record of corals is particularly rich, with three major types standing out: tabulate corals, rugose corals, and scleractinian corals, each representing different eras of coral dominance in Earth's history.

 

Tabulate corals were dominant during the Palaeozoic era, especially from the Ordovician to the Permian. These corals are characterised by their colonial nature and the presence of horizontal internal divisions known as tabulae. Unlike later corals, tabulate corals lacked septa (vertical internal walls) and often formed large, tightly packed colonies. They contributed significantly to reef ecosystems in shallow tropical seas during the Silurian and Devonian periods. However, they became extinct at the end of the Permian, during the Permian-Triassic mass extinction. Their decline mirrored broader ecological upheavals that affected much of marine life at that time.

 

Rugose corals, also known as horn corals, coexisted with tabulate corals and appeared in the Ordovician, flourishing through the Devonian and into the Carboniferous. These corals could be either solitary or colonial, and their most distinctive feature is the presence of septal divisions within the coral skeleton, radiating from a central point. The solitary forms often resembled a horn in shape, giving them their common name. Rugose corals also contributed to Palaeozoic reef systems and are frequently found as fossils in limestone formations from these periods. Like the tabulate corals, rugose corals were wiped out during the Permian-Triassic extinction, marking the end of their dominance in marine ecosystems.

 

Following the extinction of tabulate and rugose corals, the Scleractinian corals (modern corals) emerged in the Triassic and have been the primary reef-builders ever since. Scleractinian corals also possess calcareous skeletons but differ from their predecessors in their skeletal microstructure, which is composed of aragonite rather than calcite. These corals are notable for their ability to form both solitary and colonial structures, with colonial forms building the vast coral reefs seen in modern oceans. Reef-building scleractinians rely heavily on symbiotic zooxanthellae, which enable them to thrive in nutrient-poor, sunlit waters by performing photosynthesis. Scleractinians became the dominant corals from the Jurassic onwards, and they continue to dominate coral reef ecosystems today, making them critical components of modern marine biodiversity.

 

Note: Anthozoa is sometimes considered a subphylum, with its major consituents making up the classes. These being Class Ceriantharia, Hexacorallia (including Scleractinia and Rugosa), Octocorallia, and Tabulata. These will all be included in this collection, but ordered by their type above the usual ordering by level of taxonomic precision and alphabetically.

 

Cnidaria is a phylum of simple aquatic animals, best known for their radial symmetry, nematocysts (stinging cells), and a body plan organised around a central cavity. The phylum includes organisms like jellyfish, sea anemones, hydras, and corals. Most cnidarians have two basic body forms: the free-swimming medusa (as seen in jellyfish) and the sessile polyp (typical of corals and sea anemones). Cnidarians exhibit a diploblastic structure, meaning they possess two primary cell layers, the ectoderm and endoderm, with a gelatinous layer called the mesoglea in between. While many cnidarians are carnivorous, using their stinging cells to capture prey, some, particularly corals, have developed symbiotic relationships with photosynthetic organisms like zooxanthellae, which assist in nutrient production.

 

Within this diverse phylum, Class Anthozoa includes organisms that exist exclusively in the polyp form and lack a medusa stage. Anthozoans are primarily sessile, attached to the substrate, and include groups like corals and sea anemones. Among anthozoans, corals are the most significant from a geological and palaeontological perspective due to their capacity to build massive reef structures over geological time. Coral polyps typically secrete calcium carbonate to form exoskeletons, which fossilise readily, making them important indicators in the fossil record. Anthozoa is further divided into orders such as Hexacorallia, which includes the modern reef-building corals, and Octocorallia, which comprises soft corals and sea fans.

 

The fossil record of corals is particularly rich, with three major types standing out: tabulate corals, rugose corals, and scleractinian corals, each representing different eras of coral dominance in Earth's history.

 

Tabulate corals were dominant during the Palaeozoic era, especially from the Ordovician to the Permian. These corals are characterised by their colonial nature and the presence of horizontal internal divisions known as tabulae. Unlike later corals, tabulate corals lacked septa (vertical internal walls) and often formed large, tightly packed colonies. They contributed significantly to reef ecosystems in shallow tropical seas during the Silurian and Devonian periods. However, they became extinct at the end of the Permian, during the Permian-Triassic mass extinction. Their decline mirrored broader ecological upheavals that affected much of marine life at that time.

 

Rugose corals, also known as horn corals, coexisted with tabulate corals and appeared in the Ordovician, flourishing through the Devonian and into the Carboniferous. These corals could be either solitary or colonial, and their most distinctive feature is the presence of septal divisions within the coral skeleton, radiating from a central point. The solitary forms often resembled a horn in shape, giving them their common name. Rugose corals also contributed to Palaeozoic reef systems and are frequently found as fossils in limestone formations from these periods. Like the tabulate corals, rugose corals were wiped out during the Permian-Triassic extinction, marking the end of their dominance in marine ecosystems.

 

Following the extinction of tabulate and rugose corals, the Scleractinian corals (modern corals) emerged in the Triassic and have been the primary reef-builders ever since. Scleractinian corals also possess calcareous skeletons but differ from their predecessors in their skeletal microstructure, which is composed of aragonite rather than calcite. These corals are notable for their ability to form both solitary and colonial structures, with colonial forms building the vast coral reefs seen in modern oceans. Reef-building scleractinians rely heavily on symbiotic zooxanthellae, which enable them to thrive in nutrient-poor, sunlit waters by performing photosynthesis. Scleractinians became the dominant corals from the Jurassic onwards, and they continue to dominate coral reef ecosystems today, making them critical components of modern marine biodiversity.

 

Note: Anthozoa is sometimes considered a subphylum, with its major consituents making up the classes. These being Class Ceriantharia, Hexacorallia (including Scleractinia and Rugosa), Octocorallia, and Tabulata. These will all be included in this collection, but ordered by their type above the usual ordering by level of taxonomic precision and alphabetically.

 

Cnidaria is a phylum of simple aquatic animals, best known for their radial symmetry, nematocysts (stinging cells), and a body plan organised around a central cavity. The phylum includes organisms like jellyfish, sea anemones, hydras, and corals. Most cnidarians have two basic body forms: the free-swimming medusa (as seen in jellyfish) and the sessile polyp (typical of corals and sea anemones). Cnidarians exhibit a diploblastic structure, meaning they possess two primary cell layers, the ectoderm and endoderm, with a gelatinous layer called the mesoglea in between. While many cnidarians are carnivorous, using their stinging cells to capture prey, some, particularly corals, have developed symbiotic relationships with photosynthetic organisms like zooxanthellae, which assist in nutrient production.

 

Within this diverse phylum, Class Anthozoa includes organisms that exist exclusively in the polyp form and lack a medusa stage. Anthozoans are primarily sessile, attached to the substrate, and include groups like corals and sea anemones. Among anthozoans, corals are the most significant from a geological and palaeontological perspective due to their capacity to build massive reef structures over geological time. Coral polyps typically secrete calcium carbonate to form exoskeletons, which fossilise readily, making them important indicators in the fossil record. Anthozoa is further divided into orders such as Hexacorallia, which includes the modern reef-building corals, and Octocorallia, which comprises soft corals and sea fans.

 

The fossil record of corals is particularly rich, with three major types standing out: tabulate corals, rugose corals, and scleractinian corals, each representing different eras of coral dominance in Earth's history.

 

Tabulate corals were dominant during the Palaeozoic era, especially from the Ordovician to the Permian. These corals are characterised by their colonial nature and the presence of horizontal internal divisions known as tabulae. Unlike later corals, tabulate corals lacked septa (vertical internal walls) and often formed large, tightly packed colonies. They contributed significantly to reef ecosystems in shallow tropical seas during the Silurian and Devonian periods. However, they became extinct at the end of the Permian, during the Permian-Triassic mass extinction. Their decline mirrored broader ecological upheavals that affected much of marine life at that time.

 

Rugose corals, also known as horn corals, coexisted with tabulate corals and appeared in the Ordovician, flourishing through the Devonian and into the Carboniferous. These corals could be either solitary or colonial, and their most distinctive feature is the presence of septal divisions within the coral skeleton, radiating from a central point. The solitary forms often resembled a horn in shape, giving them their common name. Rugose corals also contributed to Palaeozoic reef systems and are frequently found as fossils in limestone formations from these periods. Like the tabulate corals, rugose corals were wiped out during the Permian-Triassic extinction, marking the end of their dominance in marine ecosystems.

 

Following the extinction of tabulate and rugose corals, the Scleractinian corals (modern corals) emerged in the Triassic and have been the primary reef-builders ever since. Scleractinian corals also possess calcareous skeletons but differ from their predecessors in their skeletal microstructure, which is composed of aragonite rather than calcite. These corals are notable for their ability to form both solitary and colonial structures, with colonial forms building the vast coral reefs seen in modern oceans. Reef-building scleractinians rely heavily on symbiotic zooxanthellae, which enable them to thrive in nutrient-poor, sunlit waters by performing photosynthesis. Scleractinians became the dominant corals from the Jurassic onwards, and they continue to dominate coral reef ecosystems today, making them critical components of modern marine biodiversity.

 

Note: Anthozoa is sometimes considered a subphylum, with its major consituents making up the classes. These being Class Ceriantharia, Hexacorallia (including Scleractinia and Rugosa), Octocorallia, and Tabulata. These will all be included in this collection, but ordered by their type above the usual ordering by level of taxonomic precision and alphabetically.

 

Cnidaria is a phylum of simple aquatic animals, best known for their radial symmetry, nematocysts (stinging cells), and a body plan organised around a central cavity. The phylum includes organisms like jellyfish, sea anemones, hydras, and corals. Most cnidarians have two basic body forms: the free-swimming medusa (as seen in jellyfish) and the sessile polyp (typical of corals and sea anemones). Cnidarians exhibit a diploblastic structure, meaning they possess two primary cell layers, the ectoderm and endoderm, with a gelatinous layer called the mesoglea in between. While many cnidarians are carnivorous, using their stinging cells to capture prey, some, particularly corals, have developed symbiotic relationships with photosynthetic organisms like zooxanthellae, which assist in nutrient production.

 

Within this diverse phylum, Class Anthozoa includes organisms that exist exclusively in the polyp form and lack a medusa stage. Anthozoans are primarily sessile, attached to the substrate, and include groups like corals and sea anemones. Among anthozoans, corals are the most significant from a geological and palaeontological perspective due to their capacity to build massive reef structures over geological time. Coral polyps typically secrete calcium carbonate to form exoskeletons, which fossilise readily, making them important indicators in the fossil record. Anthozoa is further divided into orders such as Hexacorallia, which includes the modern reef-building corals, and Octocorallia, which comprises soft corals and sea fans.

 

The fossil record of corals is particularly rich, with three major types standing out: tabulate corals, rugose corals, and scleractinian corals, each representing different eras of coral dominance in Earth's history.

 

Tabulate corals were dominant during the Palaeozoic era, especially from the Ordovician to the Permian. These corals are characterised by their colonial nature and the presence of horizontal internal divisions known as tabulae. Unlike later corals, tabulate corals lacked septa (vertical internal walls) and often formed large, tightly packed colonies. They contributed significantly to reef ecosystems in shallow tropical seas during the Silurian and Devonian periods. However, they became extinct at the end of the Permian, during the Permian-Triassic mass extinction. Their decline mirrored broader ecological upheavals that affected much of marine life at that time.

 

Rugose corals, also known as horn corals, coexisted with tabulate corals and appeared in the Ordovician, flourishing through the Devonian and into the Carboniferous. These corals could be either solitary or colonial, and their most distinctive feature is the presence of septal divisions within the coral skeleton, radiating from a central point. The solitary forms often resembled a horn in shape, giving them their common name. Rugose corals also contributed to Palaeozoic reef systems and are frequently found as fossils in limestone formations from these periods. Like the tabulate corals, rugose corals were wiped out during the Permian-Triassic extinction, marking the end of their dominance in marine ecosystems.

 

Following the extinction of tabulate and rugose corals, the Scleractinian corals (modern corals) emerged in the Triassic and have been the primary reef-builders ever since. Scleractinian corals also possess calcareous skeletons but differ from their predecessors in their skeletal microstructure, which is composed of aragonite rather than calcite. These corals are notable for their ability to form both solitary and colonial structures, with colonial forms building the vast coral reefs seen in modern oceans. Reef-building scleractinians rely heavily on symbiotic zooxanthellae, which enable them to thrive in nutrient-poor, sunlit waters by performing photosynthesis. Scleractinians became the dominant corals from the Jurassic onwards, and they continue to dominate coral reef ecosystems today, making them critical components of modern marine biodiversity.

 

Note: Anthozoa is sometimes considered a subphylum, with its major consituents making up the classes. These being Class Ceriantharia, Hexacorallia (including Scleractinia and Rugosa), Octocorallia, and Tabulata. These will all be included in this collection, but ordered by their type above the usual ordering by level of taxonomic precision and alphabetically.

 

Cnidaria is a phylum of simple aquatic animals, best known for their radial symmetry, nematocysts (stinging cells), and a body plan organised around a central cavity. The phylum includes organisms like jellyfish, sea anemones, hydras, and corals. Most cnidarians have two basic body forms: the free-swimming medusa (as seen in jellyfish) and the sessile polyp (typical of corals and sea anemones). Cnidarians exhibit a diploblastic structure, meaning they possess two primary cell layers, the ectoderm and endoderm, with a gelatinous layer called the mesoglea in between. While many cnidarians are carnivorous, using their stinging cells to capture prey, some, particularly corals, have developed symbiotic relationships with photosynthetic organisms like zooxanthellae, which assist in nutrient production.

 

Within this diverse phylum, Class Anthozoa includes organisms that exist exclusively in the polyp form and lack a medusa stage. Anthozoans are primarily sessile, attached to the substrate, and include groups like corals and sea anemones. Among anthozoans, corals are the most significant from a geological and palaeontological perspective due to their capacity to build massive reef structures over geological time. Coral polyps typically secrete calcium carbonate to form exoskeletons, which fossilise readily, making them important indicators in the fossil record. Anthozoa is further divided into orders such as Hexacorallia, which includes the modern reef-building corals, and Octocorallia, which comprises soft corals and sea fans.

 

The fossil record of corals is particularly rich, with three major types standing out: tabulate corals, rugose corals, and scleractinian corals, each representing different eras of coral dominance in Earth's history.

 

Tabulate corals were dominant during the Palaeozoic era, especially from the Ordovician to the Permian. These corals are characterised by their colonial nature and the presence of horizontal internal divisions known as tabulae. Unlike later corals, tabulate corals lacked septa (vertical internal walls) and often formed large, tightly packed colonies. They contributed significantly to reef ecosystems in shallow tropical seas during the Silurian and Devonian periods. However, they became extinct at the end of the Permian, during the Permian-Triassic mass extinction. Their decline mirrored broader ecological upheavals that affected much of marine life at that time.

 

Rugose corals, also known as horn corals, coexisted with tabulate corals and appeared in the Ordovician, flourishing through the Devonian and into the Carboniferous. These corals could be either solitary or colonial, and their most distinctive feature is the presence of septal divisions within the coral skeleton, radiating from a central point. The solitary forms often resembled a horn in shape, giving them their common name. Rugose corals also contributed to Palaeozoic reef systems and are frequently found as fossils in limestone formations from these periods. Like the tabulate corals, rugose corals were wiped out during the Permian-Triassic extinction, marking the end of their dominance in marine ecosystems.

 

Following the extinction of tabulate and rugose corals, the Scleractinian corals (modern corals) emerged in the Triassic and have been the primary reef-builders ever since. Scleractinian corals also possess calcareous skeletons but differ from their predecessors in their skeletal microstructure, which is composed of aragonite rather than calcite. These corals are notable for their ability to form both solitary and colonial structures, with colonial forms building the vast coral reefs seen in modern oceans. Reef-building scleractinians rely heavily on symbiotic zooxanthellae, which enable them to thrive in nutrient-poor, sunlit waters by performing photosynthesis. Scleractinians became the dominant corals from the Jurassic onwards, and they continue to dominate coral reef ecosystems today, making them critical components of modern marine biodiversity.

 

Note: Anthozoa is sometimes considered a subphylum, with its major consituents making up the classes. These being Class Ceriantharia, Hexacorallia (including Scleractinia and Rugosa), Octocorallia, and Tabulata. These will all be included in this collection, but ordered by their type above the usual ordering by level of taxonomic precision and alphabetically.

 

Cnidaria is a phylum of simple aquatic animals, best known for their radial symmetry, nematocysts (stinging cells), and a body plan organised around a central cavity. The phylum includes organisms like jellyfish, sea anemones, hydras, and corals. Most cnidarians have two basic body forms: the free-swimming medusa (as seen in jellyfish) and the sessile polyp (typical of corals and sea anemones). Cnidarians exhibit a diploblastic structure, meaning they possess two primary cell layers, the ectoderm and endoderm, with a gelatinous layer called the mesoglea in between. While many cnidarians are carnivorous, using their stinging cells to capture prey, some, particularly corals, have developed symbiotic relationships with photosynthetic organisms like zooxanthellae, which assist in nutrient production.

 

Within this diverse phylum, Class Anthozoa includes organisms that exist exclusively in the polyp form and lack a medusa stage. Anthozoans are primarily sessile, attached to the substrate, and include groups like corals and sea anemones. Among anthozoans, corals are the most significant from a geological and palaeontological perspective due to their capacity to build massive reef structures over geological time. Coral polyps typically secrete calcium carbonate to form exoskeletons, which fossilise readily, making them important indicators in the fossil record. Anthozoa is further divided into orders such as Hexacorallia, which includes the modern reef-building corals, and Octocorallia, which comprises soft corals and sea fans.

 

The fossil record of corals is particularly rich, with three major types standing out: tabulate corals, rugose corals, and scleractinian corals, each representing different eras of coral dominance in Earth's history.

 

Tabulate corals were dominant during the Palaeozoic era, especially from the Ordovician to the Permian. These corals are characterised by their colonial nature and the presence of horizontal internal divisions known as tabulae. Unlike later corals, tabulate corals lacked septa (vertical internal walls) and often formed large, tightly packed colonies. They contributed significantly to reef ecosystems in shallow tropical seas during the Silurian and Devonian periods. However, they became extinct at the end of the Permian, during the Permian-Triassic mass extinction. Their decline mirrored broader ecological upheavals that affected much of marine life at that time.

 

Rugose corals, also known as horn corals, coexisted with tabulate corals and appeared in the Ordovician, flourishing through the Devonian and into the Carboniferous. These corals could be either solitary or colonial, and their most distinctive feature is the presence of septal divisions within the coral skeleton, radiating from a central point. The solitary forms often resembled a horn in shape, giving them their common name. Rugose corals also contributed to Palaeozoic reef systems and are frequently found as fossils in limestone formations from these periods. Like the tabulate corals, rugose corals were wiped out during the Permian-Triassic extinction, marking the end of their dominance in marine ecosystems.

 

Following the extinction of tabulate and rugose corals, the Scleractinian corals (modern corals) emerged in the Triassic and have been the primary reef-builders ever since. Scleractinian corals also possess calcareous skeletons but differ from their predecessors in their skeletal microstructure, which is composed of aragonite rather than calcite. These corals are notable for their ability to form both solitary and colonial structures, with colonial forms building the vast coral reefs seen in modern oceans. Reef-building scleractinians rely heavily on symbiotic zooxanthellae, which enable them to thrive in nutrient-poor, sunlit waters by performing photosynthesis. Scleractinians became the dominant corals from the Jurassic onwards, and they continue to dominate coral reef ecosystems today, making them critical components of modern marine biodiversity.

 

Note: Anthozoa is sometimes considered a subphylum, with its major consituents making up the classes. These being Class Ceriantharia, Hexacorallia (including Scleractinia and Rugosa), Octocorallia, and Tabulata. These will all be included in this collection, but ordered by their type above the usual ordering by level of taxonomic precision and alphabetically.

 

Cnidaria is a phylum of simple aquatic animals, best known for their radial symmetry, nematocysts (stinging cells), and a body plan organised around a central cavity. The phylum includes organisms like jellyfish, sea anemones, hydras, and corals. Most cnidarians have two basic body forms: the free-swimming medusa (as seen in jellyfish) and the sessile polyp (typical of corals and sea anemones). Cnidarians exhibit a diploblastic structure, meaning they possess two primary cell layers, the ectoderm and endoderm, with a gelatinous layer called the mesoglea in between. While many cnidarians are carnivorous, using their stinging cells to capture prey, some, particularly corals, have developed symbiotic relationships with photosynthetic organisms like zooxanthellae, which assist in nutrient production.

 

Within this diverse phylum, Class Anthozoa includes organisms that exist exclusively in the polyp form and lack a medusa stage. Anthozoans are primarily sessile, attached to the substrate, and include groups like corals and sea anemones. Among anthozoans, corals are the most significant from a geological and palaeontological perspective due to their capacity to build massive reef structures over geological time. Coral polyps typically secrete calcium carbonate to form exoskeletons, which fossilise readily, making them important indicators in the fossil record. Anthozoa is further divided into orders such as Hexacorallia, which includes the modern reef-building corals, and Octocorallia, which comprises soft corals and sea fans.

 

The fossil record of corals is particularly rich, with three major types standing out: tabulate corals, rugose corals, and scleractinian corals, each representing different eras of coral dominance in Earth's history.

 

Tabulate corals were dominant during the Palaeozoic era, especially from the Ordovician to the Permian. These corals are characterised by their colonial nature and the presence of horizontal internal divisions known as tabulae. Unlike later corals, tabulate corals lacked septa (vertical internal walls) and often formed large, tightly packed colonies. They contributed significantly to reef ecosystems in shallow tropical seas during the Silurian and Devonian periods. However, they became extinct at the end of the Permian, during the Permian-Triassic mass extinction. Their decline mirrored broader ecological upheavals that affected much of marine life at that time.

 

Rugose corals, also known as horn corals, coexisted with tabulate corals and appeared in the Ordovician, flourishing through the Devonian and into the Carboniferous. These corals could be either solitary or colonial, and their most distinctive feature is the presence of septal divisions within the coral skeleton, radiating from a central point. The solitary forms often resembled a horn in shape, giving them their common name. Rugose corals also contributed to Palaeozoic reef systems and are frequently found as fossils in limestone formations from these periods. Like the tabulate corals, rugose corals were wiped out during the Permian-Triassic extinction, marking the end of their dominance in marine ecosystems.

 

Following the extinction of tabulate and rugose corals, the Scleractinian corals (modern corals) emerged in the Triassic and have been the primary reef-builders ever since. Scleractinian corals also possess calcareous skeletons but differ from their predecessors in their skeletal microstructure, which is composed of aragonite rather than calcite. These corals are notable for their ability to form both solitary and colonial structures, with colonial forms building the vast coral reefs seen in modern oceans. Reef-building scleractinians rely heavily on symbiotic zooxanthellae, which enable them to thrive in nutrient-poor, sunlit waters by performing photosynthesis. Scleractinians became the dominant corals from the Jurassic onwards, and they continue to dominate coral reef ecosystems today, making them critical components of modern marine biodiversity.

 

Note: Anthozoa is sometimes considered a subphylum, with its major consituents making up the classes. These being Class Ceriantharia, Hexacorallia (including Scleractinia and Rugosa), Octocorallia, and Tabulata. These will all be included in this collection, but ordered by their type above the usual ordering by level of taxonomic precision and alphabetically.

 

Cnidaria is a phylum of simple aquatic animals, best known for their radial symmetry, nematocysts (stinging cells), and a body plan organised around a central cavity. The phylum includes organisms like jellyfish, sea anemones, hydras, and corals. Most cnidarians have two basic body forms: the free-swimming medusa (as seen in jellyfish) and the sessile polyp (typical of corals and sea anemones). Cnidarians exhibit a diploblastic structure, meaning they possess two primary cell layers, the ectoderm and endoderm, with a gelatinous layer called the mesoglea in between. While many cnidarians are carnivorous, using their stinging cells to capture prey, some, particularly corals, have developed symbiotic relationships with photosynthetic organisms like zooxanthellae, which assist in nutrient production.

 

Within this diverse phylum, Class Anthozoa includes organisms that exist exclusively in the polyp form and lack a medusa stage. Anthozoans are primarily sessile, attached to the substrate, and include groups like corals and sea anemones. Among anthozoans, corals are the most significant from a geological and palaeontological perspective due to their capacity to build massive reef structures over geological time. Coral polyps typically secrete calcium carbonate to form exoskeletons, which fossilise readily, making them important indicators in the fossil record. Anthozoa is further divided into orders such as Hexacorallia, which includes the modern reef-building corals, and Octocorallia, which comprises soft corals and sea fans.

 

The fossil record of corals is particularly rich, with three major types standing out: tabulate corals, rugose corals, and scleractinian corals, each representing different eras of coral dominance in Earth's history.

 

Tabulate corals were dominant during the Palaeozoic era, especially from the Ordovician to the Permian. These corals are characterised by their colonial nature and the presence of horizontal internal divisions known as tabulae. Unlike later corals, tabulate corals lacked septa (vertical internal walls) and often formed large, tightly packed colonies. They contributed significantly to reef ecosystems in shallow tropical seas during the Silurian and Devonian periods. However, they became extinct at the end of the Permian, during the Permian-Triassic mass extinction. Their decline mirrored broader ecological upheavals that affected much of marine life at that time.

 

Rugose corals, also known as horn corals, coexisted with tabulate corals and appeared in the Ordovician, flourishing through the Devonian and into the Carboniferous. These corals could be either solitary or colonial, and their most distinctive feature is the presence of septal divisions within the coral skeleton, radiating from a central point. The solitary forms often resembled a horn in shape, giving them their common name. Rugose corals also contributed to Palaeozoic reef systems and are frequently found as fossils in limestone formations from these periods. Like the tabulate corals, rugose corals were wiped out during the Permian-Triassic extinction, marking the end of their dominance in marine ecosystems.

 

Following the extinction of tabulate and rugose corals, the Scleractinian corals (modern corals) emerged in the Triassic and have been the primary reef-builders ever since. Scleractinian corals also possess calcareous skeletons but differ from their predecessors in their skeletal microstructure, which is composed of aragonite rather than calcite. These corals are notable for their ability to form both solitary and colonial structures, with colonial forms building the vast coral reefs seen in modern oceans. Reef-building scleractinians rely heavily on symbiotic zooxanthellae, which enable them to thrive in nutrient-poor, sunlit waters by performing photosynthesis. Scleractinians became the dominant corals from the Jurassic onwards, and they continue to dominate coral reef ecosystems today, making them critical components of modern marine biodiversity.

 

Note: Anthozoa is sometimes considered a subphylum, with its major consituents making up the classes. These being Class Ceriantharia, Hexacorallia (including Scleractinia and Rugosa), Octocorallia, and Tabulata. These will all be included in this collection, but ordered by their type above the usual ordering by level of taxonomic precision and alphabetically.

 

Cnidaria is a phylum of simple aquatic animals, best known for their radial symmetry, nematocysts (stinging cells), and a body plan organised around a central cavity. The phylum includes organisms like jellyfish, sea anemones, hydras, and corals. Most cnidarians have two basic body forms: the free-swimming medusa (as seen in jellyfish) and the sessile polyp (typical of corals and sea anemones). Cnidarians exhibit a diploblastic structure, meaning they possess two primary cell layers, the ectoderm and endoderm, with a gelatinous layer called the mesoglea in between. While many cnidarians are carnivorous, using their stinging cells to capture prey, some, particularly corals, have developed symbiotic relationships with photosynthetic organisms like zooxanthellae, which assist in nutrient production.

 

Within this diverse phylum, Class Anthozoa includes organisms that exist exclusively in the polyp form and lack a medusa stage. Anthozoans are primarily sessile, attached to the substrate, and include groups like corals and sea anemones. Among anthozoans, corals are the most significant from a geological and palaeontological perspective due to their capacity to build massive reef structures over geological time. Coral polyps typically secrete calcium carbonate to form exoskeletons, which fossilise readily, making them important indicators in the fossil record. Anthozoa is further divided into orders such as Hexacorallia, which includes the modern reef-building corals, and Octocorallia, which comprises soft corals and sea fans.

 

The fossil record of corals is particularly rich, with three major types standing out: tabulate corals, rugose corals, and scleractinian corals, each representing different eras of coral dominance in Earth's history.

 

Tabulate corals were dominant during the Palaeozoic era, especially from the Ordovician to the Permian. These corals are characterised by their colonial nature and the presence of horizontal internal divisions known as tabulae. Unlike later corals, tabulate corals lacked septa (vertical internal walls) and often formed large, tightly packed colonies. They contributed significantly to reef ecosystems in shallow tropical seas during the Silurian and Devonian periods. However, they became extinct at the end of the Permian, during the Permian-Triassic mass extinction. Their decline mirrored broader ecological upheavals that affected much of marine life at that time.

 

Rugose corals, also known as horn corals, coexisted with tabulate corals and appeared in the Ordovician, flourishing through the Devonian and into the Carboniferous. These corals could be either solitary or colonial, and their most distinctive feature is the presence of septal divisions within the coral skeleton, radiating from a central point. The solitary forms often resembled a horn in shape, giving them their common name. Rugose corals also contributed to Palaeozoic reef systems and are frequently found as fossils in limestone formations from these periods. Like the tabulate corals, rugose corals were wiped out during the Permian-Triassic extinction, marking the end of their dominance in marine ecosystems.

 

Following the extinction of tabulate and rugose corals, the Scleractinian corals (modern corals) emerged in the Triassic and have been the primary reef-builders ever since. Scleractinian corals also possess calcareous skeletons but differ from their predecessors in their skeletal microstructure, which is composed of aragonite rather than calcite. These corals are notable for their ability to form both solitary and colonial structures, with colonial forms building the vast coral reefs seen in modern oceans. Reef-building scleractinians rely heavily on symbiotic zooxanthellae, which enable them to thrive in nutrient-poor, sunlit waters by performing photosynthesis. Scleractinians became the dominant corals from the Jurassic onwards, and they continue to dominate coral reef ecosystems today, making them critical components of modern marine biodiversity.

 

Note: Anthozoa is sometimes considered a subphylum, with its major consituents making up the classes. These being Class Ceriantharia, Hexacorallia (including Scleractinia and Rugosa), Octocorallia, and Tabulata. These will all be included in this collection, but ordered by their type above the usual ordering by level of taxonomic precision and alphabetically.

 

Cnidaria is a phylum of simple aquatic animals, best known for their radial symmetry, nematocysts (stinging cells), and a body plan organised around a central cavity. The phylum includes organisms like jellyfish, sea anemones, hydras, and corals. Most cnidarians have two basic body forms: the free-swimming medusa (as seen in jellyfish) and the sessile polyp (typical of corals and sea anemones). Cnidarians exhibit a diploblastic structure, meaning they possess two primary cell layers, the ectoderm and endoderm, with a gelatinous layer called the mesoglea in between. While many cnidarians are carnivorous, using their stinging cells to capture prey, some, particularly corals, have developed symbiotic relationships with photosynthetic organisms like zooxanthellae, which assist in nutrient production.

 

Within this diverse phylum, Class Anthozoa includes organisms that exist exclusively in the polyp form and lack a medusa stage. Anthozoans are primarily sessile, attached to the substrate, and include groups like corals and sea anemones. Among anthozoans, corals are the most significant from a geological and palaeontological perspective due to their capacity to build massive reef structures over geological time. Coral polyps typically secrete calcium carbonate to form exoskeletons, which fossilise readily, making them important indicators in the fossil record. Anthozoa is further divided into orders such as Hexacorallia, which includes the modern reef-building corals, and Octocorallia, which comprises soft corals and sea fans.

 

The fossil record of corals is particularly rich, with three major types standing out: tabulate corals, rugose corals, and scleractinian corals, each representing different eras of coral dominance in Earth's history.

 

Tabulate corals were dominant during the Palaeozoic era, especially from the Ordovician to the Permian. These corals are characterised by their colonial nature and the presence of horizontal internal divisions known as tabulae. Unlike later corals, tabulate corals lacked septa (vertical internal walls) and often formed large, tightly packed colonies. They contributed significantly to reef ecosystems in shallow tropical seas during the Silurian and Devonian periods. However, they became extinct at the end of the Permian, during the Permian-Triassic mass extinction. Their decline mirrored broader ecological upheavals that affected much of marine life at that time.

 

Rugose corals, also known as horn corals, coexisted with tabulate corals and appeared in the Ordovician, flourishing through the Devonian and into the Carboniferous. These corals could be either solitary or colonial, and their most distinctive feature is the presence of septal divisions within the coral skeleton, radiating from a central point. The solitary forms often resembled a horn in shape, giving them their common name. Rugose corals also contributed to Palaeozoic reef systems and are frequently found as fossils in limestone formations from these periods. Like the tabulate corals, rugose corals were wiped out during the Permian-Triassic extinction, marking the end of their dominance in marine ecosystems.

 

Following the extinction of tabulate and rugose corals, the Scleractinian corals (modern corals) emerged in the Triassic and have been the primary reef-builders ever since. Scleractinian corals also possess calcareous skeletons but differ from their predecessors in their skeletal microstructure, which is composed of aragonite rather than calcite. These corals are notable for their ability to form both solitary and colonial structures, with colonial forms building the vast coral reefs seen in modern oceans. Reef-building scleractinians rely heavily on symbiotic zooxanthellae, which enable them to thrive in nutrient-poor, sunlit waters by performing photosynthesis. Scleractinians became the dominant corals from the Jurassic onwards, and they continue to dominate coral reef ecosystems today, making them critical components of modern marine biodiversity.

 

Note: Anthozoa is sometimes considered a subphylum, with its major consituents making up the classes. These being Class Ceriantharia, Hexacorallia (including Scleractinia and Rugosa), Octocorallia, and Tabulata. These will all be included in this collection, but ordered by their type above the usual ordering by level of taxonomic precision and alphabetically.

 

Cnidaria is a phylum of simple aquatic animals, best known for their radial symmetry, nematocysts (stinging cells), and a body plan organised around a central cavity. The phylum includes organisms like jellyfish, sea anemones, hydras, and corals. Most cnidarians have two basic body forms: the free-swimming medusa (as seen in jellyfish) and the sessile polyp (typical of corals and sea anemones). Cnidarians exhibit a diploblastic structure, meaning they possess two primary cell layers, the ectoderm and endoderm, with a gelatinous layer called the mesoglea in between. While many cnidarians are carnivorous, using their stinging cells to capture prey, some, particularly corals, have developed symbiotic relationships with photosynthetic organisms like zooxanthellae, which assist in nutrient production.

 

Within this diverse phylum, Class Anthozoa includes organisms that exist exclusively in the polyp form and lack a medusa stage. Anthozoans are primarily sessile, attached to the substrate, and include groups like corals and sea anemones. Among anthozoans, corals are the most significant from a geological and palaeontological perspective due to their capacity to build massive reef structures over geological time. Coral polyps typically secrete calcium carbonate to form exoskeletons, which fossilise readily, making them important indicators in the fossil record. Anthozoa is further divided into orders such as Hexacorallia, which includes the modern reef-building corals, and Octocorallia, which comprises soft corals and sea fans.

 

The fossil record of corals is particularly rich, with three major types standing out: tabulate corals, rugose corals, and scleractinian corals, each representing different eras of coral dominance in Earth's history.

 

Tabulate corals were dominant during the Palaeozoic era, especially from the Ordovician to the Permian. These corals are characterised by their colonial nature and the presence of horizontal internal divisions known as tabulae. Unlike later corals, tabulate corals lacked septa (vertical internal walls) and often formed large, tightly packed colonies. They contributed significantly to reef ecosystems in shallow tropical seas during the Silurian and Devonian periods. However, they became extinct at the end of the Permian, during the Permian-Triassic mass extinction. Their decline mirrored broader ecological upheavals that affected much of marine life at that time.

 

Rugose corals, also known as horn corals, coexisted with tabulate corals and appeared in the Ordovician, flourishing through the Devonian and into the Carboniferous. These corals could be either solitary or colonial, and their most distinctive feature is the presence of septal divisions within the coral skeleton, radiating from a central point. The solitary forms often resembled a horn in shape, giving them their common name. Rugose corals also contributed to Palaeozoic reef systems and are frequently found as fossils in limestone formations from these periods. Like the tabulate corals, rugose corals were wiped out during the Permian-Triassic extinction, marking the end of their dominance in marine ecosystems.

 

Following the extinction of tabulate and rugose corals, the Scleractinian corals (modern corals) emerged in the Triassic and have been the primary reef-builders ever since. Scleractinian corals also possess calcareous skeletons but differ from their predecessors in their skeletal microstructure, which is composed of aragonite rather than calcite. These corals are notable for their ability to form both solitary and colonial structures, with colonial forms building the vast coral reefs seen in modern oceans. Reef-building scleractinians rely heavily on symbiotic zooxanthellae, which enable them to thrive in nutrient-poor, sunlit waters by performing photosynthesis. Scleractinians became the dominant corals from the Jurassic onwards, and they continue to dominate coral reef ecosystems today, making them critical components of modern marine biodiversity.

 

Note: Anthozoa is sometimes considered a subphylum, with its major consituents making up the classes. These being Class Ceriantharia, Hexacorallia (including Scleractinia and Rugosa), Octocorallia, and Tabulata. These will all be included in this collection, but ordered by their type above the usual ordering by level of taxonomic precision and alphabetically.

 

Cnidaria is a phylum of simple aquatic animals, best known for their radial symmetry, nematocysts (stinging cells), and a body plan organised around a central cavity. The phylum includes organisms like jellyfish, sea anemones, hydras, and corals. Most cnidarians have two basic body forms: the free-swimming medusa (as seen in jellyfish) and the sessile polyp (typical of corals and sea anemones). Cnidarians exhibit a diploblastic structure, meaning they possess two primary cell layers, the ectoderm and endoderm, with a gelatinous layer called the mesoglea in between. While many cnidarians are carnivorous, using their stinging cells to capture prey, some, particularly corals, have developed symbiotic relationships with photosynthetic organisms like zooxanthellae, which assist in nutrient production.

 

Within this diverse phylum, Class Anthozoa includes organisms that exist exclusively in the polyp form and lack a medusa stage. Anthozoans are primarily sessile, attached to the substrate, and include groups like corals and sea anemones. Among anthozoans, corals are the most significant from a geological and palaeontological perspective due to their capacity to build massive reef structures over geological time. Coral polyps typically secrete calcium carbonate to form exoskeletons, which fossilise readily, making them important indicators in the fossil record. Anthozoa is further divided into orders such as Hexacorallia, which includes the modern reef-building corals, and Octocorallia, which comprises soft corals and sea fans.

 

The fossil record of corals is particularly rich, with three major types standing out: tabulate corals, rugose corals, and scleractinian corals, each representing different eras of coral dominance in Earth's history.

 

Tabulate corals were dominant during the Palaeozoic era, especially from the Ordovician to the Permian. These corals are characterised by their colonial nature and the presence of horizontal internal divisions known as tabulae. Unlike later corals, tabulate corals lacked septa (vertical internal walls) and often formed large, tightly packed colonies. They contributed significantly to reef ecosystems in shallow tropical seas during the Silurian and Devonian periods. However, they became extinct at the end of the Permian, during the Permian-Triassic mass extinction. Their decline mirrored broader ecological upheavals that affected much of marine life at that time.

 

Rugose corals, also known as horn corals, coexisted with tabulate corals and appeared in the Ordovician, flourishing through the Devonian and into the Carboniferous. These corals could be either solitary or colonial, and their most distinctive feature is the presence of septal divisions within the coral skeleton, radiating from a central point. The solitary forms often resembled a horn in shape, giving them their common name. Rugose corals also contributed to Palaeozoic reef systems and are frequently found as fossils in limestone formations from these periods. Like the tabulate corals, rugose corals were wiped out during the Permian-Triassic extinction, marking the end of their dominance in marine ecosystems.

 

Following the extinction of tabulate and rugose corals, the Scleractinian corals (modern corals) emerged in the Triassic and have been the primary reef-builders ever since. Scleractinian corals also possess calcareous skeletons but differ from their predecessors in their skeletal microstructure, which is composed of aragonite rather than calcite. These corals are notable for their ability to form both solitary and colonial structures, with colonial forms building the vast coral reefs seen in modern oceans. Reef-building scleractinians rely heavily on symbiotic zooxanthellae, which enable them to thrive in nutrient-poor, sunlit waters by performing photosynthesis. Scleractinians became the dominant corals from the Jurassic onwards, and they continue to dominate coral reef ecosystems today, making them critical components of modern marine biodiversity.

 

Species:

Siphonodendron junceum is an extinct species of colonial rugose coral that flourished during the Carboniferous period, being among the most common corals found from this period. Belonging to the family Lithostrotiidae, these corals were significant reef-builders, contributing to the development of carbonate platforms in warm, tropical seas.

 

Colonies of Siphonodendron junceum are distinguished by their branching, cylindrical corallites, which often formed dense, bush-like structures, and are compared to spaghetti. Each individual corallite rarely measured much more than 6 millimetres in diameter, with internal septa arranged in a radial pattern to support the coral’s skeletal framework, though septa are often hard to make out and seem absent in this species. Its preferred environment consisted of shallow, clear, and warm marine settings

 

Note: Anthozoa is sometimes considered a subphylum, with its major consituents making up the classes. These being Class Ceriantharia, Hexacorallia (including Scleractinia and Rugosa), Octocorallia, and Tabulata. These will all be included in this collection, but ordered by their type above the usual ordering by level of taxonomic precision and alphabetically.

 

Cnidaria is a phylum of simple aquatic animals, best known for their radial symmetry, nematocysts (stinging cells), and a body plan organised around a central cavity. The phylum includes organisms like jellyfish, sea anemones, hydras, and corals. Most cnidarians have two basic body forms: the free-swimming medusa (as seen in jellyfish) and the sessile polyp (typical of corals and sea anemones). Cnidarians exhibit a diploblastic structure, meaning they possess two primary cell layers, the ectoderm and endoderm, with a gelatinous layer called the mesoglea in between. While many cnidarians are carnivorous, using their stinging cells to capture prey, some, particularly corals, have developed symbiotic relationships with photosynthetic organisms like zooxanthellae, which assist in nutrient production.

 

Within this diverse phylum, Class Anthozoa includes organisms that exist exclusively in the polyp form and lack a medusa stage. Anthozoans are primarily sessile, attached to the substrate, and include groups like corals and sea anemones. Among anthozoans, corals are the most significant from a geological and palaeontological perspective due to their capacity to build massive reef structures over geological time. Coral polyps typically secrete calcium carbonate to form exoskeletons, which fossilise readily, making them important indicators in the fossil record. Anthozoa is further divided into orders such as Hexacorallia, which includes the modern reef-building corals, and Octocorallia, which comprises soft corals and sea fans.

 

The fossil record of corals is particularly rich, with three major types standing out: tabulate corals, rugose corals, and scleractinian corals, each representing different eras of coral dominance in Earth's history.

 

Tabulate corals were dominant during the Palaeozoic era, especially from the Ordovician to the Permian. These corals are characterised by their colonial nature and the presence of horizontal internal divisions known as tabulae. Unlike later corals, tabulate corals lacked septa (vertical internal walls) and often formed large, tightly packed colonies. They contributed significantly to reef ecosystems in shallow tropical seas during the Silurian and Devonian periods. However, they became extinct at the end of the Permian, during the Permian-Triassic mass extinction. Their decline mirrored broader ecological upheavals that affected much of marine life at that time.

 

Rugose corals, also known as horn corals, coexisted with tabulate corals and appeared in the Ordovician, flourishing through the Devonian and into the Carboniferous. These corals could be either solitary or colonial, and their most distinctive feature is the presence of septal divisions within the coral skeleton, radiating from a central point. The solitary forms often resembled a horn in shape, giving them their common name. Rugose corals also contributed to Palaeozoic reef systems and are frequently found as fossils in limestone formations from these periods. Like the tabulate corals, rugose corals were wiped out during the Permian-Triassic extinction, marking the end of their dominance in marine ecosystems.

 

Following the extinction of tabulate and rugose corals, the Scleractinian corals (modern corals) emerged in the Triassic and have been the primary reef-builders ever since. Scleractinian corals also possess calcareous skeletons but differ from their predecessors in their skeletal microstructure, which is composed of aragonite rather than calcite. These corals are notable for their ability to form both solitary and colonial structures, with colonial forms building the vast coral reefs seen in modern oceans. Reef-building scleractinians rely heavily on symbiotic zooxanthellae, which enable them to thrive in nutrient-poor, sunlit waters by performing photosynthesis. Scleractinians became the dominant corals from the Jurassic onwards, and they continue to dominate coral reef ecosystems today, making them critical components of modern marine biodiversity.

Note: Anthozoa is sometimes considered a subphylum, with its major consituents making up the classes. These being Class Ceriantharia, Hexacorallia (including Scleractinia and Rugosa), Octocorallia, and Tabulata. These will all be included in this collection, but ordered by their type above the usual ordering by level of taxonomic precision and alphabetically.

 

Cnidaria is a phylum of simple aquatic animals, best known for their radial symmetry, nematocysts (stinging cells), and a body plan organised around a central cavity. The phylum includes organisms like jellyfish, sea anemones, hydras, and corals. Most cnidarians have two basic body forms: the free-swimming medusa (as seen in jellyfish) and the sessile polyp (typical of corals and sea anemones). Cnidarians exhibit a diploblastic structure, meaning they possess two primary cell layers, the ectoderm and endoderm, with a gelatinous layer called the mesoglea in between. While many cnidarians are carnivorous, using their stinging cells to capture prey, some, particularly corals, have developed symbiotic relationships with photosynthetic organisms like zooxanthellae, which assist in nutrient production.

 

Within this diverse phylum, Class Anthozoa includes organisms that exist exclusively in the polyp form and lack a medusa stage. Anthozoans are primarily sessile, attached to the substrate, and include groups like corals and sea anemones. Among anthozoans, corals are the most significant from a geological and palaeontological perspective due to their capacity to build massive reef structures over geological time. Coral polyps typically secrete calcium carbonate to form exoskeletons, which fossilise readily, making them important indicators in the fossil record. Anthozoa is further divided into orders such as Hexacorallia, which includes the modern reef-building corals, and Octocorallia, which comprises soft corals and sea fans.

 

The fossil record of corals is particularly rich, with three major types standing out: tabulate corals, rugose corals, and scleractinian corals, each representing different eras of coral dominance in Earth's history.

 

Tabulate corals were dominant during the Palaeozoic era, especially from the Ordovician to the Permian. These corals are characterised by their colonial nature and the presence of horizontal internal divisions known as tabulae. Unlike later corals, tabulate corals lacked septa (vertical internal walls) and often formed large, tightly packed colonies. They contributed significantly to reef ecosystems in shallow tropical seas during the Silurian and Devonian periods. However, they became extinct at the end of the Permian, during the Permian-Triassic mass extinction. Their decline mirrored broader ecological upheavals that affected much of marine life at that time.

 

Rugose corals, also known as horn corals, coexisted with tabulate corals and appeared in the Ordovician, flourishing through the Devonian and into the Carboniferous. These corals could be either solitary or colonial, and their most distinctive feature is the presence of septal divisions within the coral skeleton, radiating from a central point. The solitary forms often resembled a horn in shape, giving them their common name. Rugose corals also contributed to Palaeozoic reef systems and are frequently found as fossils in limestone formations from these periods. Like the tabulate corals, rugose corals were wiped out during the Permian-Triassic extinction, marking the end of their dominance in marine ecosystems.

 

Following the extinction of tabulate and rugose corals, the Scleractinian corals (modern corals) emerged in the Triassic and have been the primary reef-builders ever since. Scleractinian corals also possess calcareous skeletons but differ from their predecessors in their skeletal microstructure, which is composed of aragonite rather than calcite. These corals are notable for their ability to form both solitary and colonial structures, with colonial forms building the vast coral reefs seen in modern oceans. Reef-building scleractinians rely heavily on symbiotic zooxanthellae, which enable them to thrive in nutrient-poor, sunlit waters by performing photosynthesis. Scleractinians became the dominant corals from the Jurassic onwards, and they continue to dominate coral reef ecosystems today, making them critical components of modern marine biodiversity.

 

Note: Anthozoa is sometimes considered a subphylum, with its major consituents making up the classes. These being Class Ceriantharia, Hexacorallia (including Scleractinia and Rugosa), Octocorallia, and Tabulata. These will all be included in this collection, but ordered by their type above the usual ordering by level of taxonomic precision and alphabetically.

 

Cnidaria is a phylum of simple aquatic animals, best known for their radial symmetry, nematocysts (stinging cells), and a body plan organised around a central cavity. The phylum includes organisms like jellyfish, sea anemones, hydras, and corals. Most cnidarians have two basic body forms: the free-swimming medusa (as seen in jellyfish) and the sessile polyp (typical of corals and sea anemones). Cnidarians exhibit a diploblastic structure, meaning they possess two primary cell layers, the ectoderm and endoderm, with a gelatinous layer called the mesoglea in between. While many cnidarians are carnivorous, using their stinging cells to capture prey, some, particularly corals, have developed symbiotic relationships with photosynthetic organisms like zooxanthellae, which assist in nutrient production.

 

Within this diverse phylum, Class Anthozoa includes organisms that exist exclusively in the polyp form and lack a medusa stage. Anthozoans are primarily sessile, attached to the substrate, and include groups like corals and sea anemones. Among anthozoans, corals are the most significant from a geological and palaeontological perspective due to their capacity to build massive reef structures over geological time. Coral polyps typically secrete calcium carbonate to form exoskeletons, which fossilise readily, making them important indicators in the fossil record. Anthozoa is further divided into orders such as Hexacorallia, which includes the modern reef-building corals, and Octocorallia, which comprises soft corals and sea fans.

 

The fossil record of corals is particularly rich, with three major types standing out: tabulate corals, rugose corals, and scleractinian corals, each representing different eras of coral dominance in Earth's history.

 

Tabulate corals were dominant during the Palaeozoic era, especially from the Ordovician to the Permian. These corals are characterised by their colonial nature and the presence of horizontal internal divisions known as tabulae. Unlike later corals, tabulate corals lacked septa (vertical internal walls) and often formed large, tightly packed colonies. They contributed significantly to reef ecosystems in shallow tropical seas during the Silurian and Devonian periods. However, they became extinct at the end of the Permian, during the Permian-Triassic mass extinction. Their decline mirrored broader ecological upheavals that affected much of marine life at that time.

 

Rugose corals, also known as horn corals, coexisted with tabulate corals and appeared in the Ordovician, flourishing through the Devonian and into the Carboniferous. These corals could be either solitary or colonial, and their most distinctive feature is the presence of septal divisions within the coral skeleton, radiating from a central point. The solitary forms often resembled a horn in shape, giving them their common name. Rugose corals also contributed to Palaeozoic reef systems and are frequently found as fossils in limestone formations from these periods. Like the tabulate corals, rugose corals were wiped out during the Permian-Triassic extinction, marking the end of their dominance in marine ecosystems.

 

Following the extinction of tabulate and rugose corals, the Scleractinian corals (modern corals) emerged in the Triassic and have been the primary reef-builders ever since. Scleractinian corals also possess calcareous skeletons but differ from their predecessors in their skeletal microstructure, which is composed of aragonite rather than calcite. These corals are notable for their ability to form both solitary and colonial structures, with colonial forms building the vast coral reefs seen in modern oceans. Reef-building scleractinians rely heavily on symbiotic zooxanthellae, which enable them to thrive in nutrient-poor, sunlit waters by performing photosynthesis. Scleractinians became the dominant corals from the Jurassic onwards, and they continue to dominate coral reef ecosystems today, making them critical components of modern marine biodiversity.

 

Note: Anthozoa is sometimes considered a subphylum, with its major consituents making up the classes. These being Class Ceriantharia, Hexacorallia (including Scleractinia and Rugosa), Octocorallia, and Tabulata. These will all be included in this collection, but ordered by their type above the usual ordering by level of taxonomic precision and alphabetically.

 

Cnidaria is a phylum of simple aquatic animals, best known for their radial symmetry, nematocysts (stinging cells), and a body plan organised around a central cavity. The phylum includes organisms like jellyfish, sea anemones, hydras, and corals. Most cnidarians have two basic body forms: the free-swimming medusa (as seen in jellyfish) and the sessile polyp (typical of corals and sea anemones). Cnidarians exhibit a diploblastic structure, meaning they possess two primary cell layers, the ectoderm and endoderm, with a gelatinous layer called the mesoglea in between. While many cnidarians are carnivorous, using their stinging cells to capture prey, some, particularly corals, have developed symbiotic relationships with photosynthetic organisms like zooxanthellae, which assist in nutrient production.

 

Within this diverse phylum, Class Anthozoa includes organisms that exist exclusively in the polyp form and lack a medusa stage. Anthozoans are primarily sessile, attached to the substrate, and include groups like corals and sea anemones. Among anthozoans, corals are the most significant from a geological and palaeontological perspective due to their capacity to build massive reef structures over geological time. Coral polyps typically secrete calcium carbonate to form exoskeletons, which fossilise readily, making them important indicators in the fossil record. Anthozoa is further divided into orders such as Hexacorallia, which includes the modern reef-building corals, and Octocorallia, which comprises soft corals and sea fans.

 

The fossil record of corals is particularly rich, with three major types standing out: tabulate corals, rugose corals, and scleractinian corals, each representing different eras of coral dominance in Earth's history.

 

Tabulate corals were dominant during the Palaeozoic era, especially from the Ordovician to the Permian. These corals are characterised by their colonial nature and the presence of horizontal internal divisions known as tabulae. Unlike later corals, tabulate corals lacked septa (vertical internal walls) and often formed large, tightly packed colonies. They contributed significantly to reef ecosystems in shallow tropical seas during the Silurian and Devonian periods. However, they became extinct at the end of the Permian, during the Permian-Triassic mass extinction. Their decline mirrored broader ecological upheavals that affected much of marine life at that time.

 

Rugose corals, also known as horn corals, coexisted with tabulate corals and appeared in the Ordovician, flourishing through the Devonian and into the Carboniferous. These corals could be either solitary or colonial, and their most distinctive feature is the presence of septal divisions within the coral skeleton, radiating from a central point. The solitary forms often resembled a horn in shape, giving them their common name. Rugose corals also contributed to Palaeozoic reef systems and are frequently found as fossils in limestone formations from these periods. Like the tabulate corals, rugose corals were wiped out during the Permian-Triassic extinction, marking the end of their dominance in marine ecosystems.

 

Following the extinction of tabulate and rugose corals, the Scleractinian corals (modern corals) emerged in the Triassic and have been the primary reef-builders ever since. Scleractinian corals also possess calcareous skeletons but differ from their predecessors in their skeletal microstructure, which is composed of aragonite rather than calcite. These corals are notable for their ability to form both solitary and colonial structures, with colonial forms building the vast coral reefs seen in modern oceans. Reef-building scleractinians rely heavily on symbiotic zooxanthellae, which enable them to thrive in nutrient-poor, sunlit waters by performing photosynthesis. Scleractinians became the dominant corals from the Jurassic onwards, and they continue to dominate coral reef ecosystems today, making them critical components of modern marine biodiversity.

 

Note: Anthozoa is sometimes considered a subphylum, with its major consituents making up the classes. These being Class Ceriantharia, Hexacorallia (including Scleractinia and Rugosa), Octocorallia, and Tabulata. These will all be included in this collection, but ordered by their type above the usual ordering by level of taxonomic precision and alphabetically.

 

Cnidaria is a phylum of simple aquatic animals, best known for their radial symmetry, nematocysts (stinging cells), and a body plan organised around a central cavity. The phylum includes organisms like jellyfish, sea anemones, hydras, and corals. Most cnidarians have two basic body forms: the free-swimming medusa (as seen in jellyfish) and the sessile polyp (typical of corals and sea anemones). Cnidarians exhibit a diploblastic structure, meaning they possess two primary cell layers, the ectoderm and endoderm, with a gelatinous layer called the mesoglea in between. While many cnidarians are carnivorous, using their stinging cells to capture prey, some, particularly corals, have developed symbiotic relationships with photosynthetic organisms like zooxanthellae, which assist in nutrient production.

 

Within this diverse phylum, Class Anthozoa includes organisms that exist exclusively in the polyp form and lack a medusa stage. Anthozoans are primarily sessile, attached to the substrate, and include groups like corals and sea anemones. Among anthozoans, corals are the most significant from a geological and palaeontological perspective due to their capacity to build massive reef structures over geological time. Coral polyps typically secrete calcium carbonate to form exoskeletons, which fossilise readily, making them important indicators in the fossil record. Anthozoa is further divided into orders such as Hexacorallia, which includes the modern reef-building corals, and Octocorallia, which comprises soft corals and sea fans.

 

The fossil record of corals is particularly rich, with three major types standing out: tabulate corals, rugose corals, and scleractinian corals, each representing different eras of coral dominance in Earth's history.

 

Tabulate corals were dominant during the Palaeozoic era, especially from the Ordovician to the Permian. These corals are characterised by their colonial nature and the presence of horizontal internal divisions known as tabulae. Unlike later corals, tabulate corals lacked septa (vertical internal walls) and often formed large, tightly packed colonies. They contributed significantly to reef ecosystems in shallow tropical seas during the Silurian and Devonian periods. However, they became extinct at the end of the Permian, during the Permian-Triassic mass extinction. Their decline mirrored broader ecological upheavals that affected much of marine life at that time.

 

Rugose corals, also known as horn corals, coexisted with tabulate corals and appeared in the Ordovician, flourishing through the Devonian and into the Carboniferous. These corals could be either solitary or colonial, and their most distinctive feature is the presence of septal divisions within the coral skeleton, radiating from a central point. The solitary forms often resembled a horn in shape, giving them their common name. Rugose corals also contributed to Palaeozoic reef systems and are frequently found as fossils in limestone formations from these periods. Like the tabulate corals, rugose corals were wiped out during the Permian-Triassic extinction, marking the end of their dominance in marine ecosystems.

 

Following the extinction of tabulate and rugose corals, the Scleractinian corals (modern corals) emerged in the Triassic and have been the primary reef-builders ever since. Scleractinian corals also possess calcareous skeletons but differ from their predecessors in their skeletal microstructure, which is composed of aragonite rather than calcite. These corals are notable for their ability to form both solitary and colonial structures, with colonial forms building the vast coral reefs seen in modern oceans. Reef-building scleractinians rely heavily on symbiotic zooxanthellae, which enable them to thrive in nutrient-poor, sunlit waters by performing photosynthesis. Scleractinians became the dominant corals from the Jurassic onwards, and they continue to dominate coral reef ecosystems today, making them critical components of modern marine biodiversity.

 

Note: Anthozoa is sometimes considered a subphylum, with its major consituents making up the classes. These being Class Ceriantharia, Hexacorallia (including Scleractinia and Rugosa), Octocorallia, and Tabulata. These will all be included in this collection, but ordered by their type above the usual ordering by level of taxonomic precision and alphabetically.

 

Cnidaria is a phylum of simple aquatic animals, best known for their radial symmetry, nematocysts (stinging cells), and a body plan organised around a central cavity. The phylum includes organisms like jellyfish, sea anemones, hydras, and corals. Most cnidarians have two basic body forms: the free-swimming medusa (as seen in jellyfish) and the sessile polyp (typical of corals and sea anemones). Cnidarians exhibit a diploblastic structure, meaning they possess two primary cell layers, the ectoderm and endoderm, with a gelatinous layer called the mesoglea in between. While many cnidarians are carnivorous, using their stinging cells to capture prey, some, particularly corals, have developed symbiotic relationships with photosynthetic organisms like zooxanthellae, which assist in nutrient production.

 

Within this diverse phylum, Class Anthozoa includes organisms that exist exclusively in the polyp form and lack a medusa stage. Anthozoans are primarily sessile, attached to the substrate, and include groups like corals and sea anemones. Among anthozoans, corals are the most significant from a geological and palaeontological perspective due to their capacity to build massive reef structures over geological time. Coral polyps typically secrete calcium carbonate to form exoskeletons, which fossilise readily, making them important indicators in the fossil record. Anthozoa is further divided into orders such as Hexacorallia, which includes the modern reef-building corals, and Octocorallia, which comprises soft corals and sea fans.

 

The fossil record of corals is particularly rich, with three major types standing out: tabulate corals, rugose corals, and scleractinian corals, each representing different eras of coral dominance in Earth's history.

 

Tabulate corals were dominant during the Palaeozoic era, especially from the Ordovician to the Permian. These corals are characterised by their colonial nature and the presence of horizontal internal divisions known as tabulae. Unlike later corals, tabulate corals lacked septa (vertical internal walls) and often formed large, tightly packed colonies. They contributed significantly to reef ecosystems in shallow tropical seas during the Silurian and Devonian periods. However, they became extinct at the end of the Permian, during the Permian-Triassic mass extinction. Their decline mirrored broader ecological upheavals that affected much of marine life at that time.

 

Rugose corals, also known as horn corals, coexisted with tabulate corals and appeared in the Ordovician, flourishing through the Devonian and into the Carboniferous. These corals could be either solitary or colonial, and their most distinctive feature is the presence of septal divisions within the coral skeleton, radiating from a central point. The solitary forms often resembled a horn in shape, giving them their common name. Rugose corals also contributed to Palaeozoic reef systems and are frequently found as fossils in limestone formations from these periods. Like the tabulate corals, rugose corals were wiped out during the Permian-Triassic extinction, marking the end of their dominance in marine ecosystems.

 

Following the extinction of tabulate and rugose corals, the Scleractinian corals (modern corals) emerged in the Triassic and have been the primary reef-builders ever since. Scleractinian corals also possess calcareous skeletons but differ from their predecessors in their skeletal microstructure, which is composed of aragonite rather than calcite. These corals are notable for their ability to form both solitary and colonial structures, with colonial forms building the vast coral reefs seen in modern oceans. Reef-building scleractinians rely heavily on symbiotic zooxanthellae, which enable them to thrive in nutrient-poor, sunlit waters by performing photosynthesis. Scleractinians became the dominant corals from the Jurassic onwards, and they continue to dominate coral reef ecosystems today, making them critical components of modern marine biodiversity.

 

This photo was taken at the Aquarium of the Bay in San Fransisco California. This photo is showing a group of jellyfish floating around. Jellyfish are diploblastic meaning that they only have two germ layers which are the ectoderm and endoderm. Jellies are cnidarians and they have very simple tissues, nerves, and are radially symmetric. Jellies are apart of the ancient lineage. Photo credit: Brianna Adams

1 2 4