View allAll Photos Tagged divemaster
Blackbird Cay Resort is a fine scuba destination. Comfortable cabins a few steps from the water, good food for all 3 meals per day. Very short boat rides to a variety of reefs, and a day trip to The Blue Hole and Half Moon Caye. Pelicans diving all day.
We went for a night dive right off the resort, and I was beside the reef, getting ready to photograph a sleeping parrotfish, when I got about 6 whacks in 1.5 seconds. Bonefish (fast predacious fish about 2 feet long) had been confused by my light, and they swam right at it. About 6 hit me, but most slammed into the reef, knocking themselves silly. About a dozen were on the sand beside the reef, but within 20 seconds they revived and moved away. The divemaster was about 15 feet above me, and he saw the whole thing--he said he had never seen anything like it.
We were drifting over a seamount area in about 100 feet of water. The dive had been fairly boring and I was down to about 25% of my air supply. I heard the divemaster start hooting and hollering and pointing off into the blue. I looked and could make out a giant manta.
At first I was elated. I had seen a few mantas but never one of the true giants. This one was coming straight at me. As it drew closer I noticed the nets.
I realized this would be a valuable photo to illustrate the problems of abandoned nets and took a few photos.
My picture taking was interrupted when I noticed the Manta was making incredibly close passes. Finally, it swam just in front of and below me and just stopped!
It clearly seemed to be trying to get my attention! The Manta was obviosly in trouble so I stopped taking photos and settled down on it's back. The Manta slowed almost to a stop and began to slowly circle with me resting on it's back.
I moved my camera to the crook of my arm and got out my little dive knife clipped to by bouyancy compensator. I started to work on cutting away the net.
My knife was small and not especially sharp. I had to saw through the net strand by strand. Soon I had the first section off and it fell away!
The net had adhered to the leading edge of the Manta. It was basically in four sections. Three remained.
I looked around to see if any of the other divers from my boat were coming to help. They were all just watching. I glanced at my air and saw that I was getting low.
I returned to work on the net and was able to free the second section, Now the entire left wing of the Manta was freed. I began working on the right side.
The Manta continued making slow circles and was descending. This was not good as I was low on air and had little remaining time before I went into decompression status.
I finally got the top right section off and removed it. The lower section that remained was going to be harder because of the severe adhesions to the cephalic lobe and the body of the Manta.
I cut a few strands of net away before glancing at my dive computer. The manta had carried me down to over 100 feet. I was out of bottom time (actually in deco status) and almost out of air. I had to go or risk running out of air and or getting the bends.
Reluctantly, I lifted off the Manta and swam straight to Ingo, the German divemaster who was with me. I indicated I needed to share air so I could do a safety stop. Ingo gave me his spare second stage and I began my safety stop with one eye on my computer and one on the Manta that continued to circle us.
I was still hoping another diver would finish removing the net. When my computer indicated I was in the clear I gestured to Ingo that he should try and cut away the remaining section. He decided to give it a try.
Ingo approached the Manta and grabbed the remaining section of net. The net became taught and pulled on the Manta's injured flesh. The Manta recoiled in pain and flapped its wings. Ingo was struck by a wingtip and dropped the net. That was enough for him and he did not approach the Manta again.
I bobbed on the surface hoping one of the remaining divers would help. Sadly no one else attempted anything. The Manta made a few more passes then gave up and swam off into the gloom.
This was a very strange experience. I felt good that I was able to help but was bitterly dissapointed that I could not finish the job. I think of that Manta often and wonder if he made it.
One thing I am sure of is that the Manta approached us with the intent of getting help. It swam straight to us and presented itself to us as if it were at a cleaning station. It actually presented it's back to me. This is very unusual.
To me these were clear signs of intelligence and rational behavior. I had always loved Mantas but had never considered that they could be so intelligent. Now there is considerable new information showing that Mantas are extremely intelligent. They can remember divers from year to year and can reognize human faces.
It makes it even more sad when we see tham slaughtered senslessly or caught in some abandoned net. I had always dreamed of riding a giant Manta. When my chance came, I couldn't really enjoy it because I had a task to focus on and safety concerns as well. It was no joyride but I will never forget that day.
Sorry about the length but I thought this was an interesting story.
Currently listed as the most interesting photo tagged with "Manta"
the title is a lyric from the songUnderwater by Emma Stevens on the Enchanted album. Inspired by that song I worked with Emma to do an underwater shoot.
Photographer and post processing: me
Credits: Divemaster and first assistant Bernard Yeoh
Make up artist: Jutheanne Cruz
Hair by Ann-Marie Lawson
This poor turtle was missing its right front flipper, probably as the result of an encounter with a Tiger Shark. We did not see any big sharks, but they are out there. Even as a tripod, the turtle seemed healthy. He was unusually trusting, and came up to our divemaster, Mike, for some TLC.
Seahorses are always an amazing sight on dives here in Grenada. This one was hidden pretty well, tucked back into some coral. I was grateful to the divemaster on the boat for pointing it out, or I would have just passed right on by.
Scientific Name: Hippocampus erectus
The third of three for this evening. Taken at the end of the dive where I took this shot, I went for an ambiance photo of the divemaster. This should be Pauline Fiene at Mike Severns Diving (I could be wrong, but I thought we surfaced at the same time on that dive).
Say hello to Pauline (if it is her)!
Personally, I like the feeling that the B&W darkness in the water gives. There's something ominous to it.
Look closely & you can see the boat, too.
Pterois is a genus of venomous marine fish, commonly known as lionfish, native to the Indo-Pacific. It is characterized by conspicuous warning coloration with red or black bands, and ostentatious dorsal fins tipped with venomous spines. Pterois radiata, Pterois volitans, and Pterois miles are the most commonly studied species in the genus. Pterois species are popular aquarium fish. P. volitans and P. miles are recent and significant invasive species in the west Atlantic, Caribbean Sea and Mediterranean Sea.
Taxonomy
Pterois was described as a genus in 1817 by German naturalist, botanist, biologist, and ornithologist Lorenz Oken. In 1856 the French naturalist Eugène Anselme Sébastien Léon Desmarest designated Scorpaena volitans, which had been named by Bloch in 1787 and which was the same as Linnaeus's 1758 Gasterosteus volitans, as the type species of the genus. This genus is classified within the tribe Pteroini of the subfamily Scorpaeninae within the family Scorpaenidae. The genus name Pterois is based on Georges Cuvier's 1816 French name, “Les Pterois”, meaning "fins" which is an allusion to the high dorsal and long pectoral fins.
Description
According to the National Oceanic and Atmospheric Administration (NOAA), “lionfish have distinctive brown or maroon, and white stripes or bands covering the head and body. They have fleshy tentacles above their eyes and below the mouth; fan-like pectoral fins; long, separated dorsal spines; 13 dorsal spines; 10-11 dorsal soft rays; 3 anal spines; and 6-7 anal soft rays. An adult lionfish can grow as large as 18 inches.”
Juvenile lionfish have a unique tentacle located above their eye sockets that varies in phenotype between species. The evolution of this tentacle is suggested to serve to continually attract new prey; studies also suggest it plays a role in sexual selection.
Ecology and behavior
Pterois species can live from 5 to 15 years and have complex courtship and mating behaviors. Females frequently release two mucus-filled egg clusters, which can contain as many as 15,000 eggs.
All species are aposematic; they have conspicuous coloration with boldly contrasting stripes and wide fans of projecting spines, advertising their ability to defend themselves.
Prey
Pterois prey mostly on small fish, invertebrates, and mollusks, with up to six different species of prey found in the gastrointestinal tracts of some specimens. Lionfish feed most actively in the morning. Lionfish are skilled hunters, using specialized swim bladder muscles to provide precise control of their location in the water column, allowing them to alter their center of gravity to better attack prey. They blow jets of water while approaching prey, which serves to confuse them and alter the orientation of the prey so that the smaller fish is facing the lionfish. This results in a higher degree of predatory efficiency as head-first capture is easier for the lionfish. The lionfish then spreads its large pectoral fins and swallows its prey in a single motion.
Predators and parasites
Aside from instances of larger lionfish individuals engaging in cannibalism on smaller individuals, adult lionfish have few identified natural predators, likely due to the effectiveness of their venomous spines: when threatened, a lionfish will orient its body to keep its dorsal fin pointed at the predator, even if this means swimming upsidedown. This does not always save it, however: Moray eels, bluespotted cornetfish, barracuda and large groupers have been observed preying on lionfish. Sharks are also believed to be capable of preying on lionfish with no ill effects from their spines. Park officials of the Roatan Marine Park in Honduras have attempted to train sharks to feed on lionfish to control the invasive populations in the Caribbean. The Bobbit worm, an ambush predator, has been filmed preying upon lionfish in Indonesia.[31] Predators of larvae and juvenile lionfish remain unknown, but may prove to be the primary limiting factor of lionfish populations in their native range.
Parasites of lionfish have rarely been observed, and are assumed to be infrequent. They include isopods and leeches.
Interaction with humans
Lionfish are known for their venomous fin rays, which makes them hazardous to other marine animals, as well as humans. Pterois venom produced negative inotropic and chronotropic effects when tested in both frog and clam hearts and has a depressive effect on rabbit blood pressure. These results are thought to be due to nitric oxide release. In humans, Pterois venom can cause systemic effects such as pain, nausea, vomiting, fever, headache, numbness, paresthesia, diarrhea, sweating, temporary paralysis of the limbs, respiratory insufficiency, heart failure, convulsions, and even death. Fatalities are more common in very young children, the elderly, or those who are allergic to the venom. The venom is rarely fatal to healthy adults, but some species have enough venom to produce extreme discomfort for a period of several days. Moreover, Pterois venom poses a danger to allergic victims as they may experience anaphylaxis, a serious and often life-threatening condition that requires immediate emergency medical treatment. Severe allergic reactions to Pterois venom include chest pain, severe breathing difficulties, a drop in blood pressure, swelling of the tongue, sweating, or slurred speech. Such reactions can be fatal if not treated.
Native range and habitat
The lionfish is native to the Indian Ocean and Western Pacific Ocean. They can be found around the seaward edge of shallow coral reefs, lagoons, rocky substrates, and on mesophotic reefs, and can live in areas of varying salinity, temperature, and depth. They are also frequently found in turbid inshore areas and harbors, and have a generally hostile attitude and are territorial toward other reef fish. They are commonly found from shallow waters down to past 100 m (330 ft) depth, and have in several locations been recorded to 300 m depth. Many universities in the Indo-Pacific have documented reports of Pterois aggression toward divers and researchers. P. volitans and P. miles are native to subtropical and tropical regions from southern Japan and southern Korea to the east coast of Australia, Indonesia, Micronesia, French Polynesia, and the South Pacific Ocean. P. miles is also found in the Indian Ocean, from Sumatra to Sri Lanka and the Red Sea.
Invasive introduction and range
Two of the 12 species of Pterois, the red lionfish (P. volitans) and the common lionfish (P. miles), have established themselves as significant invasive species off the East Coast of the United States and in the Caribbean. About 93% of the invasive population in the Western Atlantic is P. volitans.
The red lionfish is found off the East Coast and Gulf Coast of the United States and in the Caribbean Sea, and was likely first introduced off the Florida coast by the early to mid-1980s. This introduction may have occurred in 1992 when Hurricane Andrew destroyed an aquarium in southern Florida, releasing six lionfish into Biscayne Bay. A lionfish was discovered off the coast of Dania Beach, south Florida, as early as 1985, before Hurricane Andrew. The lionfish resemble those of the Philippines, implicating the aquarium trade, suggesting individuals may have been purposely discarded by dissatisfied aquarium enthusiasts. This is in part because lionfish require an experienced aquarist, but are often sold to novices who find their care too difficult. In 2001, the National Oceanic and Atmospheric Administration (NOAA) documented several sightings of lionfish off the coast of Florida, Georgia, South Carolina, North Carolina, Bermuda, and Delaware. In August 2014, when the Gulf Stream was discharging into the mouth of the Delaware Bay, two lionfish were caught by a surf fisherman off the ocean side shore of Cape Henlopen State Park: a red lionfish that weighed 1 pound 4+1⁄2 ounces (580 g) and a common lionfish that weighed 1 pound 2 ounces (510 g). Three days later, a 1-pound-3-ounce (540 g) red lionfish was caught off the shore of Broadkill Beach which is in the Delaware Bay approximately 15 miles (24 km) north of Cape Henlopen State Park. Lionfish were first detected in the Bahamas in 2004. In June 2013 lionfish were discovered as far east as Barbados, and as far south as the Los Roques Archipelago and many Venezuelan continental beaches. Lionfish were first sighted in Brazilian waters in late 2014. Genetic testing on a single captured individual revealed that it was related to the populations found in the Caribbean, suggesting larval dispersal rather than an intentional release.
P. volitans is the most abundant species of the invasive lionfish population in the Atlantic and Caribbean.
Adult lionfish specimens are now found along the United States East Coast from Cape Hatteras, North Carolina, to Florida, and along the Gulf Coast to Texas. They are also found off Bermuda, the Bahamas, and throughout the Caribbean, including the Turks and Caicos, Haiti, Cuba, the Dominican Republic, the Cayman Islands, Aruba, Curacao, Trinidad and Tobago, Bonaire, Puerto Rico, St. Croix, Belize, Honduras, Colombia and Mexico. Population densities continue to increase in the invaded areas, resulting in a population boom of up to 700% in some areas between 2004 and 2008.
Pterois species are known for devouring many other aquarium fishes, unusual in that they are among the few fish species to successfully establish populations in open marine systems.
Pelagic larval dispersion is assumed to occur through oceanic currents, including the Gulf Stream and the Caribbean Current. Ballast water can also contribute to the dispersal.
Extreme temperatures present geographical constraints in the distribution of aquatic species, indicating temperature tolerance plays a role in the lionfish's survival, reproduction, and range of distribution. The abrupt differences in water temperatures north and south of Cape Hatteras directly correlate with the abundance and distribution of Pterois. Pterois expanded along the southeastern coast of the United States and occupied thermal-appropriate zones within 10 years, and the shoreward expansion of this thermally appropriate habitat is expected in coming decades as winter water temperatures warm in response to anthropogenic climate change. Although the timeline of observations points to the east coast of Florida as the initial source of the western Atlantic invasion, the relationship of the United States East Coast and Bahamian lionfish invasion is uncertain. Lionfish can tolerate a minimum salinity of 5 ppt (0.5%) and even withstand pulses of fresh water, which means they can also be found in estuaries of freshwater rivers.
The lionfish invasion is considered to be one of the most serious recent threats to Caribbean and Florida coral reef ecosystems. To help address the pervasive problem, in 2015, the NOAA partnered with the Gulf and Caribbean Fisheries Institute to set up a lionfish portal to provide scientifically accurate information on the invasion and its impacts. The lionfish web portal is aimed at all those involved and affected, including coastal managers, educators, and the public, and the portal was designed as a source of training videos, fact sheets, examples of management plans, and guidelines for monitoring. The web portal draws on the expertise of NOAA's own scientists, as well as that of other scientists and policy makers from academia or NGOs, and managers.
Mediterranean
Lionfish have also established themselves in parts of the Mediterranean - with records down to 110 m depth. Lionfish have been found in Maltese waters and waters of other Mediterranean countires, as well as Croatia. Warming sea temperatures may be allowing lionfish to further expand their range in the Mediterranean.
Long-term effects of invasion
Lionfish have successfully pioneered the coastal waters of the Atlantic in less than a decade, and pose a major threat to reef ecological systems in these areas. A study comparing their abundance from Florida to North Carolina with several species of groupers found they were second only to the native scamp grouper and equally abundant to the graysby, gag, and rock hind. This could be due to a surplus of resource availability resulting from the overfishing of lionfish predators like grouper. Although the lionfish has not expanded to a population size currently causing major ecological problems, their invasion in the United States coastal waters could lead to serious problems in the future. One likely ecological impact caused by Pterois could be their impact on prey population numbers by directly affecting food web relationships. This could ultimately lead to reef deterioration and could negatively influence Atlantic trophic cascade. Lionfish have already been shown to overpopulate reef areas and display aggressive tendencies, forcing native species to move to waters where conditions might be less than favorable.
Lionfish could be reducing Atlantic reef diversity by up to 80%. In July 2011, lionfish were reported for the first time in the Flower Garden Banks National Marine Sanctuary off the coast of Louisiana. Sanctuary officials said they believe the species will be a permanent fixture, but hope to monitor and possibly limit their presence.
Since lionfish thrive so well in the Atlantic and the Caribbean due to nutrient-rich waters and lack of predators, the species has spread tremendously. A single lionfish, located on a reef, reduced young juvenile reef fish populations by 79%.
Control and eradication efforts
Red lionfish are an invasive species, yet relatively little is known about them. NOAA research foci include investigating biotechnical solutions for control of the population, and understanding how the larvae are dispersed. Another important area of study is what controls the population in its native area. Researchers hope to discover what moderates lionfish populations in the Indo-Pacific and apply this information to control the invasive populations, without introducing additional invasive species.
Two new trap designs have been introduced to help with deep-water control of the lionfish. The traps are low and vertical and remain open the entire time of deployment. The vertical relief of the trap attracts lionfish, which makes catching them easier. These new traps are good for catching lionfish without affecting the native species that are ecologically, recreationally, and commercially important to the surrounding areas. These traps are more beneficial than older traps because they limit the potential of catching noninvasive creatures, they have bait that is only appealing to lionfish, they guarantee a catch, and they are easy to transport.
Remotely Operated Vehicles (ROVs) are being developed to help hunt the lionfish. The Reefsweeper ROV uses a harpoon gun to snag it's target. The vehicle is able to hunt fish that may not otherwise be obtainable through human intervention alone.
Rigorous and repeated removal of lionfish from invaded waters could potentially control the exponential expansion of the lionfish in invaded waters. A 2010 study showed effective maintenance would require the monthly harvest of at least 27% of the adult population. Because lionfish are able to reproduce monthly, this effort must be maintained throughout the entire year.
Even to accomplish these numbers seems unlikely, but as populations of lionfish continue to grow throughout the Caribbean and Western Atlantic, actions are being taken to attempt to control the quickly growing numbers. In November 2010, for the first time the Florida Keys National Marine Sanctuary began licensing divers to kill lionfish inside the sanctuary in an attempt to eradicate the fish
Conservation groups and community organizations in the Eastern United States have organized hunting expeditions for Pterois such as the Environment Education Foundation's 'lionfish derby' held annually in Florida. Divemasters from Cozumel to the Honduran Bay Islands and at Reef Conservation International which operates in the Sapodilla Cayes Marine Reserve off Punta Gorda, Belize, now routinely spear them during dives.[citation needed] While diver culling removes lionfish from shallow reefs reducing their densities, lionfish have widely been reported on mesophotic coral ecosystems (reefs from 30 to 150 m) in the western Atlantic and even in deep-sea habitats (greater than 200 m depth). Recent studies have suggested that the effects of culling are likely to be depth-specific, and so have limited impacts on these deeper reef populations. Therefore, other approaches such as trapping are advocated for removing lionfish from deeper reef habitats.
Long-term culling has also been recorded to cause behavior changes in lionfish populations. For example, in the Bahamas, lionfish on heavily culled reefs have become more wary of divers and hide more within the reef structure during the day when culling occurs. Similar lionfish responses to divers have been observed when comparing culled sites and sites without culling in Honduras, including altered lionfish behaviour on reefs too deep for regular culling, but adjacent to heavily culled sites potentially implying movement of individuals between depths.
While culling by marine protection agencies and volunteer divers is an important element of control efforts, development of market-based approaches, which create commercial incentives for removals, has been seen as a means to sustain control efforts. The foremost of these market approaches is the promotion of lionfish as a food item. Another is the use of lionfish spines, fins, and tails for jewelry and other decorative items. Lionfish jewelry production initiatives are underway in Belize, the Bahamas, St. Vincent, and the Grenadines.
In 2014 at Jardines de la Reina National Marine Park in Cuba, a diver experimented with spearing and feeding lionfish to sharks in an effort to teach them to seek out the fish as prey. By 2016, Cuba was finding it more effective to fish for lionfish as food.
"Lionfish as Food" campaign
In 2010, NOAA (which also encourages people to report lionfish sightings, to help track lionfish population dispersal) began a campaign to encourage the consumption of the fish. The "Lionfish as Food" campaign encourages human hunting of the fish as the only form of control known to date. Increasing the catch of lionfish could not only help maintain a reasonable population density, but also provide an alternative fishing source to overfished populations, such as grouper and snapper. The taste is described as "buttery and tender". To promote the campaign, the Roman Catholic Church in Colombia agreed to have their clergy's sermons suggest to their parishioners (84% of the population) eating lionfish on Fridays, Lent, and Easter, which proved highly successful in decreasing the invasive fish problem.
When properly filleted, the naturally venomous fish is safe to eat. Some concern exists about the risk of ciguatera food poisoning (CFP) from the consumption of lionfish, and the FDA included lionfish on the list of species at risk for CFP when lionfish are harvested in some areas tested positive for ciguatera. No cases of CFP from the consumption of lionfish have been verified, and published research has found that the toxins in lionfish venom may be causing false positives in tests for the presence of ciguatera. The Reef Environmental Education Foundation provides advice to restaurant chefs on how they can incorporate the fish into their menus. The NOAA calls the lionfish a "delicious, delicately flavored fish" similar in texture to grouper. Cooking techniques and preparations for lionfish include deep-frying, ceviche, jerky, grilling, and sashimi.
Another initiative is centered around the production of leather from lionfish hides. It seeks to establish a production chain and market for high-quality leather produced from the hides. The goal is to control invasive lionfish populations while providing economic benefits to local fishing communities.
While working in Tobago as a Divemaster this wonderful beautiful wild dog found me at the beach where I was working. The locals told me to be aware of this dog, that he was a monster and a killer etc. They beat him with brooms and sticks, even throwing stones at him. Upset and determined to prove them wrong and enlighten them regarding animals and their behaviour, I became friends with this dog. He came back to visit me every day for a week. He then started to walk with me after I finished work every day. A little bit longer each day he finally had built up the courage to go all the way home with me. I let him inside, leaving all doors and gates open in case he wanted to leave. After a while of scoping the place out we both realized he wasn´t going to leave. He found a place next to my bed and just fell asleep (really crashed) I left him alone and he slept comfortably for 16 hours straight. I felt humbled and honored beeing chosen and trusted by this wild creature. Since that moment we have been inseparable. Even the locals grew to like him or accept him. After a year of Carribbean Paradise it was time for me to go back to Sweden. Obviously I could or would never leave him behind to a cruel destiny and a certain death, never in my life. So this is him DJANGO in Sweden, giving all of us so much love and laughter, a true original that dog ;-)
I offered him comfort, security and a home. What he gave me back was the best friend I could ever ask for. We have been through so much together since that first night, traveling different continents, lots of adventures, riding scooter together haha, the looks we got was priceless :D and we have so much more to do..
Divemaster Lisa Macchio assists the diver in tethered SCUBA. Note the 19 cubic foot emergency gas supply used for this shallow work, as well as the face mask mounted camera (diver's right), to allow hands free photos during the dive. Photo by Sean Sheldrake, USEPA.
For more information about EPA diving, see: www.facebook.com/EPADivers
EPA divers work to assist the Washington State Department of Ecology to sample estuaries--a vital part of our ecosystem. For more information, see: www.epa.gov/region10/pdf/diveteam/coastal_estuary_instrum...
Pterois is a genus of venomous marine fish, commonly known as lionfish, native to the Indo-Pacific. It is characterized by conspicuous warning coloration with red or black bands, and ostentatious dorsal fins tipped with venomous spines. Pterois radiata, Pterois volitans, and Pterois miles are the most commonly studied species in the genus. Pterois species are popular aquarium fish. P. volitans and P. miles are recent and significant invasive species in the west Atlantic, Caribbean Sea and Mediterranean Sea.
Taxonomy
Pterois was described as a genus in 1817 by German naturalist, botanist, biologist, and ornithologist Lorenz Oken. In 1856 the French naturalist Eugène Anselme Sébastien Léon Desmarest designated Scorpaena volitans, which had been named by Bloch in 1787 and which was the same as Linnaeus's 1758 Gasterosteus volitans, as the type species of the genus. This genus is classified within the tribe Pteroini of the subfamily Scorpaeninae within the family Scorpaenidae. The genus name Pterois is based on Georges Cuvier's 1816 French name, “Les Pterois”, meaning "fins" which is an allusion to the high dorsal and long pectoral fins.
Description
According to the National Oceanic and Atmospheric Administration (NOAA), “lionfish have distinctive brown or maroon, and white stripes or bands covering the head and body. They have fleshy tentacles above their eyes and below the mouth; fan-like pectoral fins; long, separated dorsal spines; 13 dorsal spines; 10-11 dorsal soft rays; 3 anal spines; and 6-7 anal soft rays. An adult lionfish can grow as large as 18 inches.”
Juvenile lionfish have a unique tentacle located above their eye sockets that varies in phenotype between species. The evolution of this tentacle is suggested to serve to continually attract new prey; studies also suggest it plays a role in sexual selection.
Ecology and behavior
Pterois species can live from 5 to 15 years and have complex courtship and mating behaviors. Females frequently release two mucus-filled egg clusters, which can contain as many as 15,000 eggs.
All species are aposematic; they have conspicuous coloration with boldly contrasting stripes and wide fans of projecting spines, advertising their ability to defend themselves.
Prey
Pterois prey mostly on small fish, invertebrates, and mollusks, with up to six different species of prey found in the gastrointestinal tracts of some specimens. Lionfish feed most actively in the morning. Lionfish are skilled hunters, using specialized swim bladder muscles to provide precise control of their location in the water column, allowing them to alter their center of gravity to better attack prey. They blow jets of water while approaching prey, which serves to confuse them and alter the orientation of the prey so that the smaller fish is facing the lionfish. This results in a higher degree of predatory efficiency as head-first capture is easier for the lionfish. The lionfish then spreads its large pectoral fins and swallows its prey in a single motion.
Predators and parasites
Aside from instances of larger lionfish individuals engaging in cannibalism on smaller individuals, adult lionfish have few identified natural predators, likely due to the effectiveness of their venomous spines: when threatened, a lionfish will orient its body to keep its dorsal fin pointed at the predator, even if this means swimming upsidedown. This does not always save it, however: Moray eels, bluespotted cornetfish, barracuda and large groupers have been observed preying on lionfish. Sharks are also believed to be capable of preying on lionfish with no ill effects from their spines. Park officials of the Roatan Marine Park in Honduras have attempted to train sharks to feed on lionfish to control the invasive populations in the Caribbean. The Bobbit worm, an ambush predator, has been filmed preying upon lionfish in Indonesia.[31] Predators of larvae and juvenile lionfish remain unknown, but may prove to be the primary limiting factor of lionfish populations in their native range.
Parasites of lionfish have rarely been observed, and are assumed to be infrequent. They include isopods and leeches.
Interaction with humans
Lionfish are known for their venomous fin rays, which makes them hazardous to other marine animals, as well as humans. Pterois venom produced negative inotropic and chronotropic effects when tested in both frog and clam hearts and has a depressive effect on rabbit blood pressure. These results are thought to be due to nitric oxide release. In humans, Pterois venom can cause systemic effects such as pain, nausea, vomiting, fever, headache, numbness, paresthesia, diarrhea, sweating, temporary paralysis of the limbs, respiratory insufficiency, heart failure, convulsions, and even death. Fatalities are more common in very young children, the elderly, or those who are allergic to the venom. The venom is rarely fatal to healthy adults, but some species have enough venom to produce extreme discomfort for a period of several days. Moreover, Pterois venom poses a danger to allergic victims as they may experience anaphylaxis, a serious and often life-threatening condition that requires immediate emergency medical treatment. Severe allergic reactions to Pterois venom include chest pain, severe breathing difficulties, a drop in blood pressure, swelling of the tongue, sweating, or slurred speech. Such reactions can be fatal if not treated.
Native range and habitat
The lionfish is native to the Indian Ocean and Western Pacific Ocean. They can be found around the seaward edge of shallow coral reefs, lagoons, rocky substrates, and on mesophotic reefs, and can live in areas of varying salinity, temperature, and depth. They are also frequently found in turbid inshore areas and harbors, and have a generally hostile attitude and are territorial toward other reef fish. They are commonly found from shallow waters down to past 100 m (330 ft) depth, and have in several locations been recorded to 300 m depth. Many universities in the Indo-Pacific have documented reports of Pterois aggression toward divers and researchers. P. volitans and P. miles are native to subtropical and tropical regions from southern Japan and southern Korea to the east coast of Australia, Indonesia, Micronesia, French Polynesia, and the South Pacific Ocean. P. miles is also found in the Indian Ocean, from Sumatra to Sri Lanka and the Red Sea.
Invasive introduction and range
Two of the 12 species of Pterois, the red lionfish (P. volitans) and the common lionfish (P. miles), have established themselves as significant invasive species off the East Coast of the United States and in the Caribbean. About 93% of the invasive population in the Western Atlantic is P. volitans.
The red lionfish is found off the East Coast and Gulf Coast of the United States and in the Caribbean Sea, and was likely first introduced off the Florida coast by the early to mid-1980s. This introduction may have occurred in 1992 when Hurricane Andrew destroyed an aquarium in southern Florida, releasing six lionfish into Biscayne Bay. A lionfish was discovered off the coast of Dania Beach, south Florida, as early as 1985, before Hurricane Andrew. The lionfish resemble those of the Philippines, implicating the aquarium trade, suggesting individuals may have been purposely discarded by dissatisfied aquarium enthusiasts. This is in part because lionfish require an experienced aquarist, but are often sold to novices who find their care too difficult. In 2001, the National Oceanic and Atmospheric Administration (NOAA) documented several sightings of lionfish off the coast of Florida, Georgia, South Carolina, North Carolina, Bermuda, and Delaware. In August 2014, when the Gulf Stream was discharging into the mouth of the Delaware Bay, two lionfish were caught by a surf fisherman off the ocean side shore of Cape Henlopen State Park: a red lionfish that weighed 1 pound 4+1⁄2 ounces (580 g) and a common lionfish that weighed 1 pound 2 ounces (510 g). Three days later, a 1-pound-3-ounce (540 g) red lionfish was caught off the shore of Broadkill Beach which is in the Delaware Bay approximately 15 miles (24 km) north of Cape Henlopen State Park. Lionfish were first detected in the Bahamas in 2004. In June 2013 lionfish were discovered as far east as Barbados, and as far south as the Los Roques Archipelago and many Venezuelan continental beaches. Lionfish were first sighted in Brazilian waters in late 2014. Genetic testing on a single captured individual revealed that it was related to the populations found in the Caribbean, suggesting larval dispersal rather than an intentional release.
P. volitans is the most abundant species of the invasive lionfish population in the Atlantic and Caribbean.
Adult lionfish specimens are now found along the United States East Coast from Cape Hatteras, North Carolina, to Florida, and along the Gulf Coast to Texas. They are also found off Bermuda, the Bahamas, and throughout the Caribbean, including the Turks and Caicos, Haiti, Cuba, the Dominican Republic, the Cayman Islands, Aruba, Curacao, Trinidad and Tobago, Bonaire, Puerto Rico, St. Croix, Belize, Honduras, Colombia and Mexico. Population densities continue to increase in the invaded areas, resulting in a population boom of up to 700% in some areas between 2004 and 2008.
Pterois species are known for devouring many other aquarium fishes, unusual in that they are among the few fish species to successfully establish populations in open marine systems.
Pelagic larval dispersion is assumed to occur through oceanic currents, including the Gulf Stream and the Caribbean Current. Ballast water can also contribute to the dispersal.
Extreme temperatures present geographical constraints in the distribution of aquatic species, indicating temperature tolerance plays a role in the lionfish's survival, reproduction, and range of distribution. The abrupt differences in water temperatures north and south of Cape Hatteras directly correlate with the abundance and distribution of Pterois. Pterois expanded along the southeastern coast of the United States and occupied thermal-appropriate zones within 10 years, and the shoreward expansion of this thermally appropriate habitat is expected in coming decades as winter water temperatures warm in response to anthropogenic climate change. Although the timeline of observations points to the east coast of Florida as the initial source of the western Atlantic invasion, the relationship of the United States East Coast and Bahamian lionfish invasion is uncertain. Lionfish can tolerate a minimum salinity of 5 ppt (0.5%) and even withstand pulses of fresh water, which means they can also be found in estuaries of freshwater rivers.
The lionfish invasion is considered to be one of the most serious recent threats to Caribbean and Florida coral reef ecosystems. To help address the pervasive problem, in 2015, the NOAA partnered with the Gulf and Caribbean Fisheries Institute to set up a lionfish portal to provide scientifically accurate information on the invasion and its impacts. The lionfish web portal is aimed at all those involved and affected, including coastal managers, educators, and the public, and the portal was designed as a source of training videos, fact sheets, examples of management plans, and guidelines for monitoring. The web portal draws on the expertise of NOAA's own scientists, as well as that of other scientists and policy makers from academia or NGOs, and managers.
Mediterranean
Lionfish have also established themselves in parts of the Mediterranean - with records down to 110 m depth. Lionfish have been found in Maltese waters and waters of other Mediterranean countires, as well as Croatia. Warming sea temperatures may be allowing lionfish to further expand their range in the Mediterranean.
Long-term effects of invasion
Lionfish have successfully pioneered the coastal waters of the Atlantic in less than a decade, and pose a major threat to reef ecological systems in these areas. A study comparing their abundance from Florida to North Carolina with several species of groupers found they were second only to the native scamp grouper and equally abundant to the graysby, gag, and rock hind. This could be due to a surplus of resource availability resulting from the overfishing of lionfish predators like grouper. Although the lionfish has not expanded to a population size currently causing major ecological problems, their invasion in the United States coastal waters could lead to serious problems in the future. One likely ecological impact caused by Pterois could be their impact on prey population numbers by directly affecting food web relationships. This could ultimately lead to reef deterioration and could negatively influence Atlantic trophic cascade. Lionfish have already been shown to overpopulate reef areas and display aggressive tendencies, forcing native species to move to waters where conditions might be less than favorable.
Lionfish could be reducing Atlantic reef diversity by up to 80%. In July 2011, lionfish were reported for the first time in the Flower Garden Banks National Marine Sanctuary off the coast of Louisiana. Sanctuary officials said they believe the species will be a permanent fixture, but hope to monitor and possibly limit their presence.
Since lionfish thrive so well in the Atlantic and the Caribbean due to nutrient-rich waters and lack of predators, the species has spread tremendously. A single lionfish, located on a reef, reduced young juvenile reef fish populations by 79%.
Control and eradication efforts
Red lionfish are an invasive species, yet relatively little is known about them. NOAA research foci include investigating biotechnical solutions for control of the population, and understanding how the larvae are dispersed. Another important area of study is what controls the population in its native area. Researchers hope to discover what moderates lionfish populations in the Indo-Pacific and apply this information to control the invasive populations, without introducing additional invasive species.
Two new trap designs have been introduced to help with deep-water control of the lionfish. The traps are low and vertical and remain open the entire time of deployment. The vertical relief of the trap attracts lionfish, which makes catching them easier. These new traps are good for catching lionfish without affecting the native species that are ecologically, recreationally, and commercially important to the surrounding areas. These traps are more beneficial than older traps because they limit the potential of catching noninvasive creatures, they have bait that is only appealing to lionfish, they guarantee a catch, and they are easy to transport.
Remotely Operated Vehicles (ROVs) are being developed to help hunt the lionfish. The Reefsweeper ROV uses a harpoon gun to snag it's target. The vehicle is able to hunt fish that may not otherwise be obtainable through human intervention alone.
Rigorous and repeated removal of lionfish from invaded waters could potentially control the exponential expansion of the lionfish in invaded waters. A 2010 study showed effective maintenance would require the monthly harvest of at least 27% of the adult population. Because lionfish are able to reproduce monthly, this effort must be maintained throughout the entire year.
Even to accomplish these numbers seems unlikely, but as populations of lionfish continue to grow throughout the Caribbean and Western Atlantic, actions are being taken to attempt to control the quickly growing numbers. In November 2010, for the first time the Florida Keys National Marine Sanctuary began licensing divers to kill lionfish inside the sanctuary in an attempt to eradicate the fish
Conservation groups and community organizations in the Eastern United States have organized hunting expeditions for Pterois such as the Environment Education Foundation's 'lionfish derby' held annually in Florida. Divemasters from Cozumel to the Honduran Bay Islands and at Reef Conservation International which operates in the Sapodilla Cayes Marine Reserve off Punta Gorda, Belize, now routinely spear them during dives.[citation needed] While diver culling removes lionfish from shallow reefs reducing their densities, lionfish have widely been reported on mesophotic coral ecosystems (reefs from 30 to 150 m) in the western Atlantic and even in deep-sea habitats (greater than 200 m depth). Recent studies have suggested that the effects of culling are likely to be depth-specific, and so have limited impacts on these deeper reef populations. Therefore, other approaches such as trapping are advocated for removing lionfish from deeper reef habitats.
Long-term culling has also been recorded to cause behavior changes in lionfish populations. For example, in the Bahamas, lionfish on heavily culled reefs have become more wary of divers and hide more within the reef structure during the day when culling occurs. Similar lionfish responses to divers have been observed when comparing culled sites and sites without culling in Honduras, including altered lionfish behaviour on reefs too deep for regular culling, but adjacent to heavily culled sites potentially implying movement of individuals between depths.
While culling by marine protection agencies and volunteer divers is an important element of control efforts, development of market-based approaches, which create commercial incentives for removals, has been seen as a means to sustain control efforts. The foremost of these market approaches is the promotion of lionfish as a food item. Another is the use of lionfish spines, fins, and tails for jewelry and other decorative items. Lionfish jewelry production initiatives are underway in Belize, the Bahamas, St. Vincent, and the Grenadines.
In 2014 at Jardines de la Reina National Marine Park in Cuba, a diver experimented with spearing and feeding lionfish to sharks in an effort to teach them to seek out the fish as prey. By 2016, Cuba was finding it more effective to fish for lionfish as food.
"Lionfish as Food" campaign
In 2010, NOAA (which also encourages people to report lionfish sightings, to help track lionfish population dispersal) began a campaign to encourage the consumption of the fish. The "Lionfish as Food" campaign encourages human hunting of the fish as the only form of control known to date. Increasing the catch of lionfish could not only help maintain a reasonable population density, but also provide an alternative fishing source to overfished populations, such as grouper and snapper. The taste is described as "buttery and tender". To promote the campaign, the Roman Catholic Church in Colombia agreed to have their clergy's sermons suggest to their parishioners (84% of the population) eating lionfish on Fridays, Lent, and Easter, which proved highly successful in decreasing the invasive fish problem.
When properly filleted, the naturally venomous fish is safe to eat. Some concern exists about the risk of ciguatera food poisoning (CFP) from the consumption of lionfish, and the FDA included lionfish on the list of species at risk for CFP when lionfish are harvested in some areas tested positive for ciguatera. No cases of CFP from the consumption of lionfish have been verified, and published research has found that the toxins in lionfish venom may be causing false positives in tests for the presence of ciguatera. The Reef Environmental Education Foundation provides advice to restaurant chefs on how they can incorporate the fish into their menus. The NOAA calls the lionfish a "delicious, delicately flavored fish" similar in texture to grouper. Cooking techniques and preparations for lionfish include deep-frying, ceviche, jerky, grilling, and sashimi.
Another initiative is centered around the production of leather from lionfish hides. It seeks to establish a production chain and market for high-quality leather produced from the hides. The goal is to control invasive lionfish populations while providing economic benefits to local fishing communities.
Pterois is a genus of venomous marine fish, commonly known as lionfish, native to the Indo-Pacific. It is characterized by conspicuous warning coloration with red or black bands, and ostentatious dorsal fins tipped with venomous spines. Pterois radiata, Pterois volitans, and Pterois miles are the most commonly studied species in the genus. Pterois species are popular aquarium fish. P. volitans and P. miles are recent and significant invasive species in the west Atlantic, Caribbean Sea and Mediterranean Sea.
Taxonomy
Pterois was described as a genus in 1817 by German naturalist, botanist, biologist, and ornithologist Lorenz Oken. In 1856 the French naturalist Eugène Anselme Sébastien Léon Desmarest designated Scorpaena volitans, which had been named by Bloch in 1787 and which was the same as Linnaeus's 1758 Gasterosteus volitans, as the type species of the genus. This genus is classified within the tribe Pteroini of the subfamily Scorpaeninae within the family Scorpaenidae. The genus name Pterois is based on Georges Cuvier's 1816 French name, “Les Pterois”, meaning "fins" which is an allusion to the high dorsal and long pectoral fins.
Description
According to the National Oceanic and Atmospheric Administration (NOAA), “lionfish have distinctive brown or maroon, and white stripes or bands covering the head and body. They have fleshy tentacles above their eyes and below the mouth; fan-like pectoral fins; long, separated dorsal spines; 13 dorsal spines; 10-11 dorsal soft rays; 3 anal spines; and 6-7 anal soft rays. An adult lionfish can grow as large as 18 inches.”
Juvenile lionfish have a unique tentacle located above their eye sockets that varies in phenotype between species. The evolution of this tentacle is suggested to serve to continually attract new prey; studies also suggest it plays a role in sexual selection.
Ecology and behavior
Pterois species can live from 5 to 15 years and have complex courtship and mating behaviors. Females frequently release two mucus-filled egg clusters, which can contain as many as 15,000 eggs.
All species are aposematic; they have conspicuous coloration with boldly contrasting stripes and wide fans of projecting spines, advertising their ability to defend themselves.
Prey
Pterois prey mostly on small fish, invertebrates, and mollusks, with up to six different species of prey found in the gastrointestinal tracts of some specimens. Lionfish feed most actively in the morning. Lionfish are skilled hunters, using specialized swim bladder muscles to provide precise control of their location in the water column, allowing them to alter their center of gravity to better attack prey. They blow jets of water while approaching prey, which serves to confuse them and alter the orientation of the prey so that the smaller fish is facing the lionfish. This results in a higher degree of predatory efficiency as head-first capture is easier for the lionfish. The lionfish then spreads its large pectoral fins and swallows its prey in a single motion.
Predators and parasites
Aside from instances of larger lionfish individuals engaging in cannibalism on smaller individuals, adult lionfish have few identified natural predators, likely due to the effectiveness of their venomous spines: when threatened, a lionfish will orient its body to keep its dorsal fin pointed at the predator, even if this means swimming upsidedown. This does not always save it, however: Moray eels, bluespotted cornetfish, barracuda and large groupers have been observed preying on lionfish. Sharks are also believed to be capable of preying on lionfish with no ill effects from their spines. Park officials of the Roatan Marine Park in Honduras have attempted to train sharks to feed on lionfish to control the invasive populations in the Caribbean. The Bobbit worm, an ambush predator, has been filmed preying upon lionfish in Indonesia.[31] Predators of larvae and juvenile lionfish remain unknown, but may prove to be the primary limiting factor of lionfish populations in their native range.
Parasites of lionfish have rarely been observed, and are assumed to be infrequent. They include isopods and leeches.
Interaction with humans
Lionfish are known for their venomous fin rays, which makes them hazardous to other marine animals, as well as humans. Pterois venom produced negative inotropic and chronotropic effects when tested in both frog and clam hearts and has a depressive effect on rabbit blood pressure. These results are thought to be due to nitric oxide release. In humans, Pterois venom can cause systemic effects such as pain, nausea, vomiting, fever, headache, numbness, paresthesia, diarrhea, sweating, temporary paralysis of the limbs, respiratory insufficiency, heart failure, convulsions, and even death. Fatalities are more common in very young children, the elderly, or those who are allergic to the venom. The venom is rarely fatal to healthy adults, but some species have enough venom to produce extreme discomfort for a period of several days. Moreover, Pterois venom poses a danger to allergic victims as they may experience anaphylaxis, a serious and often life-threatening condition that requires immediate emergency medical treatment. Severe allergic reactions to Pterois venom include chest pain, severe breathing difficulties, a drop in blood pressure, swelling of the tongue, sweating, or slurred speech. Such reactions can be fatal if not treated.
Native range and habitat
The lionfish is native to the Indian Ocean and Western Pacific Ocean. They can be found around the seaward edge of shallow coral reefs, lagoons, rocky substrates, and on mesophotic reefs, and can live in areas of varying salinity, temperature, and depth. They are also frequently found in turbid inshore areas and harbors, and have a generally hostile attitude and are territorial toward other reef fish. They are commonly found from shallow waters down to past 100 m (330 ft) depth, and have in several locations been recorded to 300 m depth. Many universities in the Indo-Pacific have documented reports of Pterois aggression toward divers and researchers. P. volitans and P. miles are native to subtropical and tropical regions from southern Japan and southern Korea to the east coast of Australia, Indonesia, Micronesia, French Polynesia, and the South Pacific Ocean. P. miles is also found in the Indian Ocean, from Sumatra to Sri Lanka and the Red Sea.
Invasive introduction and range
Two of the 12 species of Pterois, the red lionfish (P. volitans) and the common lionfish (P. miles), have established themselves as significant invasive species off the East Coast of the United States and in the Caribbean. About 93% of the invasive population in the Western Atlantic is P. volitans.
The red lionfish is found off the East Coast and Gulf Coast of the United States and in the Caribbean Sea, and was likely first introduced off the Florida coast by the early to mid-1980s. This introduction may have occurred in 1992 when Hurricane Andrew destroyed an aquarium in southern Florida, releasing six lionfish into Biscayne Bay. A lionfish was discovered off the coast of Dania Beach, south Florida, as early as 1985, before Hurricane Andrew. The lionfish resemble those of the Philippines, implicating the aquarium trade, suggesting individuals may have been purposely discarded by dissatisfied aquarium enthusiasts. This is in part because lionfish require an experienced aquarist, but are often sold to novices who find their care too difficult. In 2001, the National Oceanic and Atmospheric Administration (NOAA) documented several sightings of lionfish off the coast of Florida, Georgia, South Carolina, North Carolina, Bermuda, and Delaware. In August 2014, when the Gulf Stream was discharging into the mouth of the Delaware Bay, two lionfish were caught by a surf fisherman off the ocean side shore of Cape Henlopen State Park: a red lionfish that weighed 1 pound 4+1⁄2 ounces (580 g) and a common lionfish that weighed 1 pound 2 ounces (510 g). Three days later, a 1-pound-3-ounce (540 g) red lionfish was caught off the shore of Broadkill Beach which is in the Delaware Bay approximately 15 miles (24 km) north of Cape Henlopen State Park. Lionfish were first detected in the Bahamas in 2004. In June 2013 lionfish were discovered as far east as Barbados, and as far south as the Los Roques Archipelago and many Venezuelan continental beaches. Lionfish were first sighted in Brazilian waters in late 2014. Genetic testing on a single captured individual revealed that it was related to the populations found in the Caribbean, suggesting larval dispersal rather than an intentional release.
P. volitans is the most abundant species of the invasive lionfish population in the Atlantic and Caribbean.
Adult lionfish specimens are now found along the United States East Coast from Cape Hatteras, North Carolina, to Florida, and along the Gulf Coast to Texas. They are also found off Bermuda, the Bahamas, and throughout the Caribbean, including the Turks and Caicos, Haiti, Cuba, the Dominican Republic, the Cayman Islands, Aruba, Curacao, Trinidad and Tobago, Bonaire, Puerto Rico, St. Croix, Belize, Honduras, Colombia and Mexico. Population densities continue to increase in the invaded areas, resulting in a population boom of up to 700% in some areas between 2004 and 2008.
Pterois species are known for devouring many other aquarium fishes, unusual in that they are among the few fish species to successfully establish populations in open marine systems.
Pelagic larval dispersion is assumed to occur through oceanic currents, including the Gulf Stream and the Caribbean Current. Ballast water can also contribute to the dispersal.
Extreme temperatures present geographical constraints in the distribution of aquatic species, indicating temperature tolerance plays a role in the lionfish's survival, reproduction, and range of distribution. The abrupt differences in water temperatures north and south of Cape Hatteras directly correlate with the abundance and distribution of Pterois. Pterois expanded along the southeastern coast of the United States and occupied thermal-appropriate zones within 10 years, and the shoreward expansion of this thermally appropriate habitat is expected in coming decades as winter water temperatures warm in response to anthropogenic climate change. Although the timeline of observations points to the east coast of Florida as the initial source of the western Atlantic invasion, the relationship of the United States East Coast and Bahamian lionfish invasion is uncertain. Lionfish can tolerate a minimum salinity of 5 ppt (0.5%) and even withstand pulses of fresh water, which means they can also be found in estuaries of freshwater rivers.
The lionfish invasion is considered to be one of the most serious recent threats to Caribbean and Florida coral reef ecosystems. To help address the pervasive problem, in 2015, the NOAA partnered with the Gulf and Caribbean Fisheries Institute to set up a lionfish portal to provide scientifically accurate information on the invasion and its impacts. The lionfish web portal is aimed at all those involved and affected, including coastal managers, educators, and the public, and the portal was designed as a source of training videos, fact sheets, examples of management plans, and guidelines for monitoring. The web portal draws on the expertise of NOAA's own scientists, as well as that of other scientists and policy makers from academia or NGOs, and managers.
Mediterranean
Lionfish have also established themselves in parts of the Mediterranean - with records down to 110 m depth. Lionfish have been found in Maltese waters and waters of other Mediterranean countires, as well as Croatia. Warming sea temperatures may be allowing lionfish to further expand their range in the Mediterranean.
Long-term effects of invasion
Lionfish have successfully pioneered the coastal waters of the Atlantic in less than a decade, and pose a major threat to reef ecological systems in these areas. A study comparing their abundance from Florida to North Carolina with several species of groupers found they were second only to the native scamp grouper and equally abundant to the graysby, gag, and rock hind. This could be due to a surplus of resource availability resulting from the overfishing of lionfish predators like grouper. Although the lionfish has not expanded to a population size currently causing major ecological problems, their invasion in the United States coastal waters could lead to serious problems in the future. One likely ecological impact caused by Pterois could be their impact on prey population numbers by directly affecting food web relationships. This could ultimately lead to reef deterioration and could negatively influence Atlantic trophic cascade. Lionfish have already been shown to overpopulate reef areas and display aggressive tendencies, forcing native species to move to waters where conditions might be less than favorable.
Lionfish could be reducing Atlantic reef diversity by up to 80%. In July 2011, lionfish were reported for the first time in the Flower Garden Banks National Marine Sanctuary off the coast of Louisiana. Sanctuary officials said they believe the species will be a permanent fixture, but hope to monitor and possibly limit their presence.
Since lionfish thrive so well in the Atlantic and the Caribbean due to nutrient-rich waters and lack of predators, the species has spread tremendously. A single lionfish, located on a reef, reduced young juvenile reef fish populations by 79%.
Control and eradication efforts
Red lionfish are an invasive species, yet relatively little is known about them. NOAA research foci include investigating biotechnical solutions for control of the population, and understanding how the larvae are dispersed. Another important area of study is what controls the population in its native area. Researchers hope to discover what moderates lionfish populations in the Indo-Pacific and apply this information to control the invasive populations, without introducing additional invasive species.
Two new trap designs have been introduced to help with deep-water control of the lionfish. The traps are low and vertical and remain open the entire time of deployment. The vertical relief of the trap attracts lionfish, which makes catching them easier. These new traps are good for catching lionfish without affecting the native species that are ecologically, recreationally, and commercially important to the surrounding areas. These traps are more beneficial than older traps because they limit the potential of catching noninvasive creatures, they have bait that is only appealing to lionfish, they guarantee a catch, and they are easy to transport.
Remotely Operated Vehicles (ROVs) are being developed to help hunt the lionfish. The Reefsweeper ROV uses a harpoon gun to snag it's target. The vehicle is able to hunt fish that may not otherwise be obtainable through human intervention alone.
Rigorous and repeated removal of lionfish from invaded waters could potentially control the exponential expansion of the lionfish in invaded waters. A 2010 study showed effective maintenance would require the monthly harvest of at least 27% of the adult population. Because lionfish are able to reproduce monthly, this effort must be maintained throughout the entire year.
Even to accomplish these numbers seems unlikely, but as populations of lionfish continue to grow throughout the Caribbean and Western Atlantic, actions are being taken to attempt to control the quickly growing numbers. In November 2010, for the first time the Florida Keys National Marine Sanctuary began licensing divers to kill lionfish inside the sanctuary in an attempt to eradicate the fish
Conservation groups and community organizations in the Eastern United States have organized hunting expeditions for Pterois such as the Environment Education Foundation's 'lionfish derby' held annually in Florida. Divemasters from Cozumel to the Honduran Bay Islands and at Reef Conservation International which operates in the Sapodilla Cayes Marine Reserve off Punta Gorda, Belize, now routinely spear them during dives.[citation needed] While diver culling removes lionfish from shallow reefs reducing their densities, lionfish have widely been reported on mesophotic coral ecosystems (reefs from 30 to 150 m) in the western Atlantic and even in deep-sea habitats (greater than 200 m depth). Recent studies have suggested that the effects of culling are likely to be depth-specific, and so have limited impacts on these deeper reef populations. Therefore, other approaches such as trapping are advocated for removing lionfish from deeper reef habitats.
Long-term culling has also been recorded to cause behavior changes in lionfish populations. For example, in the Bahamas, lionfish on heavily culled reefs have become more wary of divers and hide more within the reef structure during the day when culling occurs. Similar lionfish responses to divers have been observed when comparing culled sites and sites without culling in Honduras, including altered lionfish behaviour on reefs too deep for regular culling, but adjacent to heavily culled sites potentially implying movement of individuals between depths.
While culling by marine protection agencies and volunteer divers is an important element of control efforts, development of market-based approaches, which create commercial incentives for removals, has been seen as a means to sustain control efforts. The foremost of these market approaches is the promotion of lionfish as a food item. Another is the use of lionfish spines, fins, and tails for jewelry and other decorative items. Lionfish jewelry production initiatives are underway in Belize, the Bahamas, St. Vincent, and the Grenadines.
In 2014 at Jardines de la Reina National Marine Park in Cuba, a diver experimented with spearing and feeding lionfish to sharks in an effort to teach them to seek out the fish as prey. By 2016, Cuba was finding it more effective to fish for lionfish as food.
"Lionfish as Food" campaign
In 2010, NOAA (which also encourages people to report lionfish sightings, to help track lionfish population dispersal) began a campaign to encourage the consumption of the fish. The "Lionfish as Food" campaign encourages human hunting of the fish as the only form of control known to date. Increasing the catch of lionfish could not only help maintain a reasonable population density, but also provide an alternative fishing source to overfished populations, such as grouper and snapper. The taste is described as "buttery and tender". To promote the campaign, the Roman Catholic Church in Colombia agreed to have their clergy's sermons suggest to their parishioners (84% of the population) eating lionfish on Fridays, Lent, and Easter, which proved highly successful in decreasing the invasive fish problem.
When properly filleted, the naturally venomous fish is safe to eat. Some concern exists about the risk of ciguatera food poisoning (CFP) from the consumption of lionfish, and the FDA included lionfish on the list of species at risk for CFP when lionfish are harvested in some areas tested positive for ciguatera. No cases of CFP from the consumption of lionfish have been verified, and published research has found that the toxins in lionfish venom may be causing false positives in tests for the presence of ciguatera. The Reef Environmental Education Foundation provides advice to restaurant chefs on how they can incorporate the fish into their menus. The NOAA calls the lionfish a "delicious, delicately flavored fish" similar in texture to grouper. Cooking techniques and preparations for lionfish include deep-frying, ceviche, jerky, grilling, and sashimi.
Another initiative is centered around the production of leather from lionfish hides. It seeks to establish a production chain and market for high-quality leather produced from the hides. The goal is to control invasive lionfish populations while providing economic benefits to local fishing communities.
While doing my divemaster, I also took an underwater photography course last week and this was one of the pictures I took on one of my dives…
Pterois is a genus of venomous marine fish, commonly known as lionfish, native to the Indo-Pacific. It is characterized by conspicuous warning coloration with red or black bands, and ostentatious dorsal fins tipped with venomous spines. Pterois radiata, Pterois volitans, and Pterois miles are the most commonly studied species in the genus. Pterois species are popular aquarium fish. P. volitans and P. miles are recent and significant invasive species in the west Atlantic, Caribbean Sea and Mediterranean Sea.
Taxonomy
Pterois was described as a genus in 1817 by German naturalist, botanist, biologist, and ornithologist Lorenz Oken. In 1856 the French naturalist Eugène Anselme Sébastien Léon Desmarest designated Scorpaena volitans, which had been named by Bloch in 1787 and which was the same as Linnaeus's 1758 Gasterosteus volitans, as the type species of the genus. This genus is classified within the tribe Pteroini of the subfamily Scorpaeninae within the family Scorpaenidae. The genus name Pterois is based on Georges Cuvier's 1816 French name, “Les Pterois”, meaning "fins" which is an allusion to the high dorsal and long pectoral fins.
Description
According to the National Oceanic and Atmospheric Administration (NOAA), “lionfish have distinctive brown or maroon, and white stripes or bands covering the head and body. They have fleshy tentacles above their eyes and below the mouth; fan-like pectoral fins; long, separated dorsal spines; 13 dorsal spines; 10-11 dorsal soft rays; 3 anal spines; and 6-7 anal soft rays. An adult lionfish can grow as large as 18 inches.”
Juvenile lionfish have a unique tentacle located above their eye sockets that varies in phenotype between species. The evolution of this tentacle is suggested to serve to continually attract new prey; studies also suggest it plays a role in sexual selection.
Ecology and behavior
Pterois species can live from 5 to 15 years and have complex courtship and mating behaviors. Females frequently release two mucus-filled egg clusters, which can contain as many as 15,000 eggs.
All species are aposematic; they have conspicuous coloration with boldly contrasting stripes and wide fans of projecting spines, advertising their ability to defend themselves.
Prey
Pterois prey mostly on small fish, invertebrates, and mollusks, with up to six different species of prey found in the gastrointestinal tracts of some specimens. Lionfish feed most actively in the morning. Lionfish are skilled hunters, using specialized swim bladder muscles to provide precise control of their location in the water column, allowing them to alter their center of gravity to better attack prey. They blow jets of water while approaching prey, which serves to confuse them and alter the orientation of the prey so that the smaller fish is facing the lionfish. This results in a higher degree of predatory efficiency as head-first capture is easier for the lionfish. The lionfish then spreads its large pectoral fins and swallows its prey in a single motion.
Predators and parasites
Aside from instances of larger lionfish individuals engaging in cannibalism on smaller individuals, adult lionfish have few identified natural predators, likely due to the effectiveness of their venomous spines: when threatened, a lionfish will orient its body to keep its dorsal fin pointed at the predator, even if this means swimming upsidedown. This does not always save it, however: Moray eels, bluespotted cornetfish, barracuda and large groupers have been observed preying on lionfish. Sharks are also believed to be capable of preying on lionfish with no ill effects from their spines. Park officials of the Roatan Marine Park in Honduras have attempted to train sharks to feed on lionfish to control the invasive populations in the Caribbean. The Bobbit worm, an ambush predator, has been filmed preying upon lionfish in Indonesia.[31] Predators of larvae and juvenile lionfish remain unknown, but may prove to be the primary limiting factor of lionfish populations in their native range.
Parasites of lionfish have rarely been observed, and are assumed to be infrequent. They include isopods and leeches.
Interaction with humans
Lionfish are known for their venomous fin rays, which makes them hazardous to other marine animals, as well as humans. Pterois venom produced negative inotropic and chronotropic effects when tested in both frog and clam hearts and has a depressive effect on rabbit blood pressure. These results are thought to be due to nitric oxide release. In humans, Pterois venom can cause systemic effects such as pain, nausea, vomiting, fever, headache, numbness, paresthesia, diarrhea, sweating, temporary paralysis of the limbs, respiratory insufficiency, heart failure, convulsions, and even death. Fatalities are more common in very young children, the elderly, or those who are allergic to the venom. The venom is rarely fatal to healthy adults, but some species have enough venom to produce extreme discomfort for a period of several days. Moreover, Pterois venom poses a danger to allergic victims as they may experience anaphylaxis, a serious and often life-threatening condition that requires immediate emergency medical treatment. Severe allergic reactions to Pterois venom include chest pain, severe breathing difficulties, a drop in blood pressure, swelling of the tongue, sweating, or slurred speech. Such reactions can be fatal if not treated.
Native range and habitat
The lionfish is native to the Indian Ocean and Western Pacific Ocean. They can be found around the seaward edge of shallow coral reefs, lagoons, rocky substrates, and on mesophotic reefs, and can live in areas of varying salinity, temperature, and depth. They are also frequently found in turbid inshore areas and harbors, and have a generally hostile attitude and are territorial toward other reef fish. They are commonly found from shallow waters down to past 100 m (330 ft) depth, and have in several locations been recorded to 300 m depth. Many universities in the Indo-Pacific have documented reports of Pterois aggression toward divers and researchers. P. volitans and P. miles are native to subtropical and tropical regions from southern Japan and southern Korea to the east coast of Australia, Indonesia, Micronesia, French Polynesia, and the South Pacific Ocean. P. miles is also found in the Indian Ocean, from Sumatra to Sri Lanka and the Red Sea.
Invasive introduction and range
Two of the 12 species of Pterois, the red lionfish (P. volitans) and the common lionfish (P. miles), have established themselves as significant invasive species off the East Coast of the United States and in the Caribbean. About 93% of the invasive population in the Western Atlantic is P. volitans.
The red lionfish is found off the East Coast and Gulf Coast of the United States and in the Caribbean Sea, and was likely first introduced off the Florida coast by the early to mid-1980s. This introduction may have occurred in 1992 when Hurricane Andrew destroyed an aquarium in southern Florida, releasing six lionfish into Biscayne Bay. A lionfish was discovered off the coast of Dania Beach, south Florida, as early as 1985, before Hurricane Andrew. The lionfish resemble those of the Philippines, implicating the aquarium trade, suggesting individuals may have been purposely discarded by dissatisfied aquarium enthusiasts. This is in part because lionfish require an experienced aquarist, but are often sold to novices who find their care too difficult. In 2001, the National Oceanic and Atmospheric Administration (NOAA) documented several sightings of lionfish off the coast of Florida, Georgia, South Carolina, North Carolina, Bermuda, and Delaware. In August 2014, when the Gulf Stream was discharging into the mouth of the Delaware Bay, two lionfish were caught by a surf fisherman off the ocean side shore of Cape Henlopen State Park: a red lionfish that weighed 1 pound 4+1⁄2 ounces (580 g) and a common lionfish that weighed 1 pound 2 ounces (510 g). Three days later, a 1-pound-3-ounce (540 g) red lionfish was caught off the shore of Broadkill Beach which is in the Delaware Bay approximately 15 miles (24 km) north of Cape Henlopen State Park. Lionfish were first detected in the Bahamas in 2004. In June 2013 lionfish were discovered as far east as Barbados, and as far south as the Los Roques Archipelago and many Venezuelan continental beaches. Lionfish were first sighted in Brazilian waters in late 2014. Genetic testing on a single captured individual revealed that it was related to the populations found in the Caribbean, suggesting larval dispersal rather than an intentional release.
P. volitans is the most abundant species of the invasive lionfish population in the Atlantic and Caribbean.
Adult lionfish specimens are now found along the United States East Coast from Cape Hatteras, North Carolina, to Florida, and along the Gulf Coast to Texas. They are also found off Bermuda, the Bahamas, and throughout the Caribbean, including the Turks and Caicos, Haiti, Cuba, the Dominican Republic, the Cayman Islands, Aruba, Curacao, Trinidad and Tobago, Bonaire, Puerto Rico, St. Croix, Belize, Honduras, Colombia and Mexico. Population densities continue to increase in the invaded areas, resulting in a population boom of up to 700% in some areas between 2004 and 2008.
Pterois species are known for devouring many other aquarium fishes, unusual in that they are among the few fish species to successfully establish populations in open marine systems.
Pelagic larval dispersion is assumed to occur through oceanic currents, including the Gulf Stream and the Caribbean Current. Ballast water can also contribute to the dispersal.
Extreme temperatures present geographical constraints in the distribution of aquatic species, indicating temperature tolerance plays a role in the lionfish's survival, reproduction, and range of distribution. The abrupt differences in water temperatures north and south of Cape Hatteras directly correlate with the abundance and distribution of Pterois. Pterois expanded along the southeastern coast of the United States and occupied thermal-appropriate zones within 10 years, and the shoreward expansion of this thermally appropriate habitat is expected in coming decades as winter water temperatures warm in response to anthropogenic climate change. Although the timeline of observations points to the east coast of Florida as the initial source of the western Atlantic invasion, the relationship of the United States East Coast and Bahamian lionfish invasion is uncertain. Lionfish can tolerate a minimum salinity of 5 ppt (0.5%) and even withstand pulses of fresh water, which means they can also be found in estuaries of freshwater rivers.
The lionfish invasion is considered to be one of the most serious recent threats to Caribbean and Florida coral reef ecosystems. To help address the pervasive problem, in 2015, the NOAA partnered with the Gulf and Caribbean Fisheries Institute to set up a lionfish portal to provide scientifically accurate information on the invasion and its impacts. The lionfish web portal is aimed at all those involved and affected, including coastal managers, educators, and the public, and the portal was designed as a source of training videos, fact sheets, examples of management plans, and guidelines for monitoring. The web portal draws on the expertise of NOAA's own scientists, as well as that of other scientists and policy makers from academia or NGOs, and managers.
Mediterranean
Lionfish have also established themselves in parts of the Mediterranean - with records down to 110 m depth. Lionfish have been found in Maltese waters and waters of other Mediterranean countires, as well as Croatia. Warming sea temperatures may be allowing lionfish to further expand their range in the Mediterranean.
Long-term effects of invasion
Lionfish have successfully pioneered the coastal waters of the Atlantic in less than a decade, and pose a major threat to reef ecological systems in these areas. A study comparing their abundance from Florida to North Carolina with several species of groupers found they were second only to the native scamp grouper and equally abundant to the graysby, gag, and rock hind. This could be due to a surplus of resource availability resulting from the overfishing of lionfish predators like grouper. Although the lionfish has not expanded to a population size currently causing major ecological problems, their invasion in the United States coastal waters could lead to serious problems in the future. One likely ecological impact caused by Pterois could be their impact on prey population numbers by directly affecting food web relationships. This could ultimately lead to reef deterioration and could negatively influence Atlantic trophic cascade. Lionfish have already been shown to overpopulate reef areas and display aggressive tendencies, forcing native species to move to waters where conditions might be less than favorable.
Lionfish could be reducing Atlantic reef diversity by up to 80%. In July 2011, lionfish were reported for the first time in the Flower Garden Banks National Marine Sanctuary off the coast of Louisiana. Sanctuary officials said they believe the species will be a permanent fixture, but hope to monitor and possibly limit their presence.
Since lionfish thrive so well in the Atlantic and the Caribbean due to nutrient-rich waters and lack of predators, the species has spread tremendously. A single lionfish, located on a reef, reduced young juvenile reef fish populations by 79%.
Control and eradication efforts
Red lionfish are an invasive species, yet relatively little is known about them. NOAA research foci include investigating biotechnical solutions for control of the population, and understanding how the larvae are dispersed. Another important area of study is what controls the population in its native area. Researchers hope to discover what moderates lionfish populations in the Indo-Pacific and apply this information to control the invasive populations, without introducing additional invasive species.
Two new trap designs have been introduced to help with deep-water control of the lionfish. The traps are low and vertical and remain open the entire time of deployment. The vertical relief of the trap attracts lionfish, which makes catching them easier. These new traps are good for catching lionfish without affecting the native species that are ecologically, recreationally, and commercially important to the surrounding areas. These traps are more beneficial than older traps because they limit the potential of catching noninvasive creatures, they have bait that is only appealing to lionfish, they guarantee a catch, and they are easy to transport.
Remotely Operated Vehicles (ROVs) are being developed to help hunt the lionfish. The Reefsweeper ROV uses a harpoon gun to snag it's target. The vehicle is able to hunt fish that may not otherwise be obtainable through human intervention alone.
Rigorous and repeated removal of lionfish from invaded waters could potentially control the exponential expansion of the lionfish in invaded waters. A 2010 study showed effective maintenance would require the monthly harvest of at least 27% of the adult population. Because lionfish are able to reproduce monthly, this effort must be maintained throughout the entire year.
Even to accomplish these numbers seems unlikely, but as populations of lionfish continue to grow throughout the Caribbean and Western Atlantic, actions are being taken to attempt to control the quickly growing numbers. In November 2010, for the first time the Florida Keys National Marine Sanctuary began licensing divers to kill lionfish inside the sanctuary in an attempt to eradicate the fish
Conservation groups and community organizations in the Eastern United States have organized hunting expeditions for Pterois such as the Environment Education Foundation's 'lionfish derby' held annually in Florida. Divemasters from Cozumel to the Honduran Bay Islands and at Reef Conservation International which operates in the Sapodilla Cayes Marine Reserve off Punta Gorda, Belize, now routinely spear them during dives.[citation needed] While diver culling removes lionfish from shallow reefs reducing their densities, lionfish have widely been reported on mesophotic coral ecosystems (reefs from 30 to 150 m) in the western Atlantic and even in deep-sea habitats (greater than 200 m depth). Recent studies have suggested that the effects of culling are likely to be depth-specific, and so have limited impacts on these deeper reef populations. Therefore, other approaches such as trapping are advocated for removing lionfish from deeper reef habitats.
Long-term culling has also been recorded to cause behavior changes in lionfish populations. For example, in the Bahamas, lionfish on heavily culled reefs have become more wary of divers and hide more within the reef structure during the day when culling occurs. Similar lionfish responses to divers have been observed when comparing culled sites and sites without culling in Honduras, including altered lionfish behaviour on reefs too deep for regular culling, but adjacent to heavily culled sites potentially implying movement of individuals between depths.
While culling by marine protection agencies and volunteer divers is an important element of control efforts, development of market-based approaches, which create commercial incentives for removals, has been seen as a means to sustain control efforts. The foremost of these market approaches is the promotion of lionfish as a food item. Another is the use of lionfish spines, fins, and tails for jewelry and other decorative items. Lionfish jewelry production initiatives are underway in Belize, the Bahamas, St. Vincent, and the Grenadines.
In 2014 at Jardines de la Reina National Marine Park in Cuba, a diver experimented with spearing and feeding lionfish to sharks in an effort to teach them to seek out the fish as prey. By 2016, Cuba was finding it more effective to fish for lionfish as food.
"Lionfish as Food" campaign
In 2010, NOAA (which also encourages people to report lionfish sightings, to help track lionfish population dispersal) began a campaign to encourage the consumption of the fish. The "Lionfish as Food" campaign encourages human hunting of the fish as the only form of control known to date. Increasing the catch of lionfish could not only help maintain a reasonable population density, but also provide an alternative fishing source to overfished populations, such as grouper and snapper. The taste is described as "buttery and tender". To promote the campaign, the Roman Catholic Church in Colombia agreed to have their clergy's sermons suggest to their parishioners (84% of the population) eating lionfish on Fridays, Lent, and Easter, which proved highly successful in decreasing the invasive fish problem.
When properly filleted, the naturally venomous fish is safe to eat. Some concern exists about the risk of ciguatera food poisoning (CFP) from the consumption of lionfish, and the FDA included lionfish on the list of species at risk for CFP when lionfish are harvested in some areas tested positive for ciguatera. No cases of CFP from the consumption of lionfish have been verified, and published research has found that the toxins in lionfish venom may be causing false positives in tests for the presence of ciguatera. The Reef Environmental Education Foundation provides advice to restaurant chefs on how they can incorporate the fish into their menus. The NOAA calls the lionfish a "delicious, delicately flavored fish" similar in texture to grouper. Cooking techniques and preparations for lionfish include deep-frying, ceviche, jerky, grilling, and sashimi.
Another initiative is centered around the production of leather from lionfish hides. It seeks to establish a production chain and market for high-quality leather produced from the hides. The goal is to control invasive lionfish populations while providing economic benefits to local fishing communities.
Pterois is a genus of venomous marine fish, commonly known as lionfish, native to the Indo-Pacific. It is characterized by conspicuous warning coloration with red or black bands, and ostentatious dorsal fins tipped with venomous spines. Pterois radiata, Pterois volitans, and Pterois miles are the most commonly studied species in the genus. Pterois species are popular aquarium fish. P. volitans and P. miles are recent and significant invasive species in the west Atlantic, Caribbean Sea and Mediterranean Sea.
Taxonomy
Pterois was described as a genus in 1817 by German naturalist, botanist, biologist, and ornithologist Lorenz Oken. In 1856 the French naturalist Eugène Anselme Sébastien Léon Desmarest designated Scorpaena volitans, which had been named by Bloch in 1787 and which was the same as Linnaeus's 1758 Gasterosteus volitans, as the type species of the genus. This genus is classified within the tribe Pteroini of the subfamily Scorpaeninae within the family Scorpaenidae. The genus name Pterois is based on Georges Cuvier's 1816 French name, “Les Pterois”, meaning "fins" which is an allusion to the high dorsal and long pectoral fins.
Description
According to the National Oceanic and Atmospheric Administration (NOAA), “lionfish have distinctive brown or maroon, and white stripes or bands covering the head and body. They have fleshy tentacles above their eyes and below the mouth; fan-like pectoral fins; long, separated dorsal spines; 13 dorsal spines; 10-11 dorsal soft rays; 3 anal spines; and 6-7 anal soft rays. An adult lionfish can grow as large as 18 inches.”
Juvenile lionfish have a unique tentacle located above their eye sockets that varies in phenotype between species. The evolution of this tentacle is suggested to serve to continually attract new prey; studies also suggest it plays a role in sexual selection.
Ecology and behavior
Pterois species can live from 5 to 15 years and have complex courtship and mating behaviors. Females frequently release two mucus-filled egg clusters, which can contain as many as 15,000 eggs.
All species are aposematic; they have conspicuous coloration with boldly contrasting stripes and wide fans of projecting spines, advertising their ability to defend themselves.
Prey
Pterois prey mostly on small fish, invertebrates, and mollusks, with up to six different species of prey found in the gastrointestinal tracts of some specimens. Lionfish feed most actively in the morning. Lionfish are skilled hunters, using specialized swim bladder muscles to provide precise control of their location in the water column, allowing them to alter their center of gravity to better attack prey. They blow jets of water while approaching prey, which serves to confuse them and alter the orientation of the prey so that the smaller fish is facing the lionfish. This results in a higher degree of predatory efficiency as head-first capture is easier for the lionfish. The lionfish then spreads its large pectoral fins and swallows its prey in a single motion.
Predators and parasites
Aside from instances of larger lionfish individuals engaging in cannibalism on smaller individuals, adult lionfish have few identified natural predators, likely due to the effectiveness of their venomous spines: when threatened, a lionfish will orient its body to keep its dorsal fin pointed at the predator, even if this means swimming upsidedown. This does not always save it, however: Moray eels, bluespotted cornetfish, barracuda and large groupers have been observed preying on lionfish. Sharks are also believed to be capable of preying on lionfish with no ill effects from their spines. Park officials of the Roatan Marine Park in Honduras have attempted to train sharks to feed on lionfish to control the invasive populations in the Caribbean. The Bobbit worm, an ambush predator, has been filmed preying upon lionfish in Indonesia.[31] Predators of larvae and juvenile lionfish remain unknown, but may prove to be the primary limiting factor of lionfish populations in their native range.
Parasites of lionfish have rarely been observed, and are assumed to be infrequent. They include isopods and leeches.
Interaction with humans
Lionfish are known for their venomous fin rays, which makes them hazardous to other marine animals, as well as humans. Pterois venom produced negative inotropic and chronotropic effects when tested in both frog and clam hearts and has a depressive effect on rabbit blood pressure. These results are thought to be due to nitric oxide release. In humans, Pterois venom can cause systemic effects such as pain, nausea, vomiting, fever, headache, numbness, paresthesia, diarrhea, sweating, temporary paralysis of the limbs, respiratory insufficiency, heart failure, convulsions, and even death. Fatalities are more common in very young children, the elderly, or those who are allergic to the venom. The venom is rarely fatal to healthy adults, but some species have enough venom to produce extreme discomfort for a period of several days. Moreover, Pterois venom poses a danger to allergic victims as they may experience anaphylaxis, a serious and often life-threatening condition that requires immediate emergency medical treatment. Severe allergic reactions to Pterois venom include chest pain, severe breathing difficulties, a drop in blood pressure, swelling of the tongue, sweating, or slurred speech. Such reactions can be fatal if not treated.
Native range and habitat
The lionfish is native to the Indian Ocean and Western Pacific Ocean. They can be found around the seaward edge of shallow coral reefs, lagoons, rocky substrates, and on mesophotic reefs, and can live in areas of varying salinity, temperature, and depth. They are also frequently found in turbid inshore areas and harbors, and have a generally hostile attitude and are territorial toward other reef fish. They are commonly found from shallow waters down to past 100 m (330 ft) depth, and have in several locations been recorded to 300 m depth. Many universities in the Indo-Pacific have documented reports of Pterois aggression toward divers and researchers. P. volitans and P. miles are native to subtropical and tropical regions from southern Japan and southern Korea to the east coast of Australia, Indonesia, Micronesia, French Polynesia, and the South Pacific Ocean. P. miles is also found in the Indian Ocean, from Sumatra to Sri Lanka and the Red Sea.
Invasive introduction and range
Two of the 12 species of Pterois, the red lionfish (P. volitans) and the common lionfish (P. miles), have established themselves as significant invasive species off the East Coast of the United States and in the Caribbean. About 93% of the invasive population in the Western Atlantic is P. volitans.
The red lionfish is found off the East Coast and Gulf Coast of the United States and in the Caribbean Sea, and was likely first introduced off the Florida coast by the early to mid-1980s. This introduction may have occurred in 1992 when Hurricane Andrew destroyed an aquarium in southern Florida, releasing six lionfish into Biscayne Bay. A lionfish was discovered off the coast of Dania Beach, south Florida, as early as 1985, before Hurricane Andrew. The lionfish resemble those of the Philippines, implicating the aquarium trade, suggesting individuals may have been purposely discarded by dissatisfied aquarium enthusiasts. This is in part because lionfish require an experienced aquarist, but are often sold to novices who find their care too difficult. In 2001, the National Oceanic and Atmospheric Administration (NOAA) documented several sightings of lionfish off the coast of Florida, Georgia, South Carolina, North Carolina, Bermuda, and Delaware. In August 2014, when the Gulf Stream was discharging into the mouth of the Delaware Bay, two lionfish were caught by a surf fisherman off the ocean side shore of Cape Henlopen State Park: a red lionfish that weighed 1 pound 4+1⁄2 ounces (580 g) and a common lionfish that weighed 1 pound 2 ounces (510 g). Three days later, a 1-pound-3-ounce (540 g) red lionfish was caught off the shore of Broadkill Beach which is in the Delaware Bay approximately 15 miles (24 km) north of Cape Henlopen State Park. Lionfish were first detected in the Bahamas in 2004. In June 2013 lionfish were discovered as far east as Barbados, and as far south as the Los Roques Archipelago and many Venezuelan continental beaches. Lionfish were first sighted in Brazilian waters in late 2014. Genetic testing on a single captured individual revealed that it was related to the populations found in the Caribbean, suggesting larval dispersal rather than an intentional release.
P. volitans is the most abundant species of the invasive lionfish population in the Atlantic and Caribbean.
Adult lionfish specimens are now found along the United States East Coast from Cape Hatteras, North Carolina, to Florida, and along the Gulf Coast to Texas. They are also found off Bermuda, the Bahamas, and throughout the Caribbean, including the Turks and Caicos, Haiti, Cuba, the Dominican Republic, the Cayman Islands, Aruba, Curacao, Trinidad and Tobago, Bonaire, Puerto Rico, St. Croix, Belize, Honduras, Colombia and Mexico. Population densities continue to increase in the invaded areas, resulting in a population boom of up to 700% in some areas between 2004 and 2008.
Pterois species are known for devouring many other aquarium fishes, unusual in that they are among the few fish species to successfully establish populations in open marine systems.
Pelagic larval dispersion is assumed to occur through oceanic currents, including the Gulf Stream and the Caribbean Current. Ballast water can also contribute to the dispersal.
Extreme temperatures present geographical constraints in the distribution of aquatic species, indicating temperature tolerance plays a role in the lionfish's survival, reproduction, and range of distribution. The abrupt differences in water temperatures north and south of Cape Hatteras directly correlate with the abundance and distribution of Pterois. Pterois expanded along the southeastern coast of the United States and occupied thermal-appropriate zones within 10 years, and the shoreward expansion of this thermally appropriate habitat is expected in coming decades as winter water temperatures warm in response to anthropogenic climate change. Although the timeline of observations points to the east coast of Florida as the initial source of the western Atlantic invasion, the relationship of the United States East Coast and Bahamian lionfish invasion is uncertain. Lionfish can tolerate a minimum salinity of 5 ppt (0.5%) and even withstand pulses of fresh water, which means they can also be found in estuaries of freshwater rivers.
The lionfish invasion is considered to be one of the most serious recent threats to Caribbean and Florida coral reef ecosystems. To help address the pervasive problem, in 2015, the NOAA partnered with the Gulf and Caribbean Fisheries Institute to set up a lionfish portal to provide scientifically accurate information on the invasion and its impacts. The lionfish web portal is aimed at all those involved and affected, including coastal managers, educators, and the public, and the portal was designed as a source of training videos, fact sheets, examples of management plans, and guidelines for monitoring. The web portal draws on the expertise of NOAA's own scientists, as well as that of other scientists and policy makers from academia or NGOs, and managers.
Mediterranean
Lionfish have also established themselves in parts of the Mediterranean - with records down to 110 m depth. Lionfish have been found in Maltese waters and waters of other Mediterranean countires, as well as Croatia. Warming sea temperatures may be allowing lionfish to further expand their range in the Mediterranean.
Long-term effects of invasion
Lionfish have successfully pioneered the coastal waters of the Atlantic in less than a decade, and pose a major threat to reef ecological systems in these areas. A study comparing their abundance from Florida to North Carolina with several species of groupers found they were second only to the native scamp grouper and equally abundant to the graysby, gag, and rock hind. This could be due to a surplus of resource availability resulting from the overfishing of lionfish predators like grouper. Although the lionfish has not expanded to a population size currently causing major ecological problems, their invasion in the United States coastal waters could lead to serious problems in the future. One likely ecological impact caused by Pterois could be their impact on prey population numbers by directly affecting food web relationships. This could ultimately lead to reef deterioration and could negatively influence Atlantic trophic cascade. Lionfish have already been shown to overpopulate reef areas and display aggressive tendencies, forcing native species to move to waters where conditions might be less than favorable.
Lionfish could be reducing Atlantic reef diversity by up to 80%. In July 2011, lionfish were reported for the first time in the Flower Garden Banks National Marine Sanctuary off the coast of Louisiana. Sanctuary officials said they believe the species will be a permanent fixture, but hope to monitor and possibly limit their presence.
Since lionfish thrive so well in the Atlantic and the Caribbean due to nutrient-rich waters and lack of predators, the species has spread tremendously. A single lionfish, located on a reef, reduced young juvenile reef fish populations by 79%.
Control and eradication efforts
Red lionfish are an invasive species, yet relatively little is known about them. NOAA research foci include investigating biotechnical solutions for control of the population, and understanding how the larvae are dispersed. Another important area of study is what controls the population in its native area. Researchers hope to discover what moderates lionfish populations in the Indo-Pacific and apply this information to control the invasive populations, without introducing additional invasive species.
Two new trap designs have been introduced to help with deep-water control of the lionfish. The traps are low and vertical and remain open the entire time of deployment. The vertical relief of the trap attracts lionfish, which makes catching them easier. These new traps are good for catching lionfish without affecting the native species that are ecologically, recreationally, and commercially important to the surrounding areas. These traps are more beneficial than older traps because they limit the potential of catching noninvasive creatures, they have bait that is only appealing to lionfish, they guarantee a catch, and they are easy to transport.
Remotely Operated Vehicles (ROVs) are being developed to help hunt the lionfish. The Reefsweeper ROV uses a harpoon gun to snag it's target. The vehicle is able to hunt fish that may not otherwise be obtainable through human intervention alone.
Rigorous and repeated removal of lionfish from invaded waters could potentially control the exponential expansion of the lionfish in invaded waters. A 2010 study showed effective maintenance would require the monthly harvest of at least 27% of the adult population. Because lionfish are able to reproduce monthly, this effort must be maintained throughout the entire year.
Even to accomplish these numbers seems unlikely, but as populations of lionfish continue to grow throughout the Caribbean and Western Atlantic, actions are being taken to attempt to control the quickly growing numbers. In November 2010, for the first time the Florida Keys National Marine Sanctuary began licensing divers to kill lionfish inside the sanctuary in an attempt to eradicate the fish
Conservation groups and community organizations in the Eastern United States have organized hunting expeditions for Pterois such as the Environment Education Foundation's 'lionfish derby' held annually in Florida. Divemasters from Cozumel to the Honduran Bay Islands and at Reef Conservation International which operates in the Sapodilla Cayes Marine Reserve off Punta Gorda, Belize, now routinely spear them during dives.[citation needed] While diver culling removes lionfish from shallow reefs reducing their densities, lionfish have widely been reported on mesophotic coral ecosystems (reefs from 30 to 150 m) in the western Atlantic and even in deep-sea habitats (greater than 200 m depth). Recent studies have suggested that the effects of culling are likely to be depth-specific, and so have limited impacts on these deeper reef populations. Therefore, other approaches such as trapping are advocated for removing lionfish from deeper reef habitats.
Long-term culling has also been recorded to cause behavior changes in lionfish populations. For example, in the Bahamas, lionfish on heavily culled reefs have become more wary of divers and hide more within the reef structure during the day when culling occurs. Similar lionfish responses to divers have been observed when comparing culled sites and sites without culling in Honduras, including altered lionfish behaviour on reefs too deep for regular culling, but adjacent to heavily culled sites potentially implying movement of individuals between depths.
While culling by marine protection agencies and volunteer divers is an important element of control efforts, development of market-based approaches, which create commercial incentives for removals, has been seen as a means to sustain control efforts. The foremost of these market approaches is the promotion of lionfish as a food item. Another is the use of lionfish spines, fins, and tails for jewelry and other decorative items. Lionfish jewelry production initiatives are underway in Belize, the Bahamas, St. Vincent, and the Grenadines.
In 2014 at Jardines de la Reina National Marine Park in Cuba, a diver experimented with spearing and feeding lionfish to sharks in an effort to teach them to seek out the fish as prey. By 2016, Cuba was finding it more effective to fish for lionfish as food.
"Lionfish as Food" campaign
In 2010, NOAA (which also encourages people to report lionfish sightings, to help track lionfish population dispersal) began a campaign to encourage the consumption of the fish. The "Lionfish as Food" campaign encourages human hunting of the fish as the only form of control known to date. Increasing the catch of lionfish could not only help maintain a reasonable population density, but also provide an alternative fishing source to overfished populations, such as grouper and snapper. The taste is described as "buttery and tender". To promote the campaign, the Roman Catholic Church in Colombia agreed to have their clergy's sermons suggest to their parishioners (84% of the population) eating lionfish on Fridays, Lent, and Easter, which proved highly successful in decreasing the invasive fish problem.
When properly filleted, the naturally venomous fish is safe to eat. Some concern exists about the risk of ciguatera food poisoning (CFP) from the consumption of lionfish, and the FDA included lionfish on the list of species at risk for CFP when lionfish are harvested in some areas tested positive for ciguatera. No cases of CFP from the consumption of lionfish have been verified, and published research has found that the toxins in lionfish venom may be causing false positives in tests for the presence of ciguatera. The Reef Environmental Education Foundation provides advice to restaurant chefs on how they can incorporate the fish into their menus. The NOAA calls the lionfish a "delicious, delicately flavored fish" similar in texture to grouper. Cooking techniques and preparations for lionfish include deep-frying, ceviche, jerky, grilling, and sashimi.
Another initiative is centered around the production of leather from lionfish hides. It seeks to establish a production chain and market for high-quality leather produced from the hides. The goal is to control invasive lionfish populations while providing economic benefits to local fishing communities.
Pterois is a genus of venomous marine fish, commonly known as lionfish, native to the Indo-Pacific. It is characterized by conspicuous warning coloration with red or black bands, and ostentatious dorsal fins tipped with venomous spines. Pterois radiata, Pterois volitans, and Pterois miles are the most commonly studied species in the genus. Pterois species are popular aquarium fish. P. volitans and P. miles are recent and significant invasive species in the west Atlantic, Caribbean Sea and Mediterranean Sea.
Taxonomy
Pterois was described as a genus in 1817 by German naturalist, botanist, biologist, and ornithologist Lorenz Oken. In 1856 the French naturalist Eugène Anselme Sébastien Léon Desmarest designated Scorpaena volitans, which had been named by Bloch in 1787 and which was the same as Linnaeus's 1758 Gasterosteus volitans, as the type species of the genus. This genus is classified within the tribe Pteroini of the subfamily Scorpaeninae within the family Scorpaenidae. The genus name Pterois is based on Georges Cuvier's 1816 French name, “Les Pterois”, meaning "fins" which is an allusion to the high dorsal and long pectoral fins.
Description
According to the National Oceanic and Atmospheric Administration (NOAA), “lionfish have distinctive brown or maroon, and white stripes or bands covering the head and body. They have fleshy tentacles above their eyes and below the mouth; fan-like pectoral fins; long, separated dorsal spines; 13 dorsal spines; 10-11 dorsal soft rays; 3 anal spines; and 6-7 anal soft rays. An adult lionfish can grow as large as 18 inches.”
Juvenile lionfish have a unique tentacle located above their eye sockets that varies in phenotype between species. The evolution of this tentacle is suggested to serve to continually attract new prey; studies also suggest it plays a role in sexual selection.
Ecology and behavior
Pterois species can live from 5 to 15 years and have complex courtship and mating behaviors. Females frequently release two mucus-filled egg clusters, which can contain as many as 15,000 eggs.
All species are aposematic; they have conspicuous coloration with boldly contrasting stripes and wide fans of projecting spines, advertising their ability to defend themselves.
Prey
Pterois prey mostly on small fish, invertebrates, and mollusks, with up to six different species of prey found in the gastrointestinal tracts of some specimens. Lionfish feed most actively in the morning. Lionfish are skilled hunters, using specialized swim bladder muscles to provide precise control of their location in the water column, allowing them to alter their center of gravity to better attack prey. They blow jets of water while approaching prey, which serves to confuse them and alter the orientation of the prey so that the smaller fish is facing the lionfish. This results in a higher degree of predatory efficiency as head-first capture is easier for the lionfish. The lionfish then spreads its large pectoral fins and swallows its prey in a single motion.
Predators and parasites
Aside from instances of larger lionfish individuals engaging in cannibalism on smaller individuals, adult lionfish have few identified natural predators, likely due to the effectiveness of their venomous spines: when threatened, a lionfish will orient its body to keep its dorsal fin pointed at the predator, even if this means swimming upsidedown. This does not always save it, however: Moray eels, bluespotted cornetfish, barracuda and large groupers have been observed preying on lionfish. Sharks are also believed to be capable of preying on lionfish with no ill effects from their spines. Park officials of the Roatan Marine Park in Honduras have attempted to train sharks to feed on lionfish to control the invasive populations in the Caribbean. The Bobbit worm, an ambush predator, has been filmed preying upon lionfish in Indonesia.[31] Predators of larvae and juvenile lionfish remain unknown, but may prove to be the primary limiting factor of lionfish populations in their native range.
Parasites of lionfish have rarely been observed, and are assumed to be infrequent. They include isopods and leeches.
Interaction with humans
Lionfish are known for their venomous fin rays, which makes them hazardous to other marine animals, as well as humans. Pterois venom produced negative inotropic and chronotropic effects when tested in both frog and clam hearts and has a depressive effect on rabbit blood pressure. These results are thought to be due to nitric oxide release. In humans, Pterois venom can cause systemic effects such as pain, nausea, vomiting, fever, headache, numbness, paresthesia, diarrhea, sweating, temporary paralysis of the limbs, respiratory insufficiency, heart failure, convulsions, and even death. Fatalities are more common in very young children, the elderly, or those who are allergic to the venom. The venom is rarely fatal to healthy adults, but some species have enough venom to produce extreme discomfort for a period of several days. Moreover, Pterois venom poses a danger to allergic victims as they may experience anaphylaxis, a serious and often life-threatening condition that requires immediate emergency medical treatment. Severe allergic reactions to Pterois venom include chest pain, severe breathing difficulties, a drop in blood pressure, swelling of the tongue, sweating, or slurred speech. Such reactions can be fatal if not treated.
Native range and habitat
The lionfish is native to the Indian Ocean and Western Pacific Ocean. They can be found around the seaward edge of shallow coral reefs, lagoons, rocky substrates, and on mesophotic reefs, and can live in areas of varying salinity, temperature, and depth. They are also frequently found in turbid inshore areas and harbors, and have a generally hostile attitude and are territorial toward other reef fish. They are commonly found from shallow waters down to past 100 m (330 ft) depth, and have in several locations been recorded to 300 m depth. Many universities in the Indo-Pacific have documented reports of Pterois aggression toward divers and researchers. P. volitans and P. miles are native to subtropical and tropical regions from southern Japan and southern Korea to the east coast of Australia, Indonesia, Micronesia, French Polynesia, and the South Pacific Ocean. P. miles is also found in the Indian Ocean, from Sumatra to Sri Lanka and the Red Sea.
Invasive introduction and range
Two of the 12 species of Pterois, the red lionfish (P. volitans) and the common lionfish (P. miles), have established themselves as significant invasive species off the East Coast of the United States and in the Caribbean. About 93% of the invasive population in the Western Atlantic is P. volitans.
The red lionfish is found off the East Coast and Gulf Coast of the United States and in the Caribbean Sea, and was likely first introduced off the Florida coast by the early to mid-1980s. This introduction may have occurred in 1992 when Hurricane Andrew destroyed an aquarium in southern Florida, releasing six lionfish into Biscayne Bay. A lionfish was discovered off the coast of Dania Beach, south Florida, as early as 1985, before Hurricane Andrew. The lionfish resemble those of the Philippines, implicating the aquarium trade, suggesting individuals may have been purposely discarded by dissatisfied aquarium enthusiasts. This is in part because lionfish require an experienced aquarist, but are often sold to novices who find their care too difficult. In 2001, the National Oceanic and Atmospheric Administration (NOAA) documented several sightings of lionfish off the coast of Florida, Georgia, South Carolina, North Carolina, Bermuda, and Delaware. In August 2014, when the Gulf Stream was discharging into the mouth of the Delaware Bay, two lionfish were caught by a surf fisherman off the ocean side shore of Cape Henlopen State Park: a red lionfish that weighed 1 pound 4+1⁄2 ounces (580 g) and a common lionfish that weighed 1 pound 2 ounces (510 g). Three days later, a 1-pound-3-ounce (540 g) red lionfish was caught off the shore of Broadkill Beach which is in the Delaware Bay approximately 15 miles (24 km) north of Cape Henlopen State Park. Lionfish were first detected in the Bahamas in 2004. In June 2013 lionfish were discovered as far east as Barbados, and as far south as the Los Roques Archipelago and many Venezuelan continental beaches. Lionfish were first sighted in Brazilian waters in late 2014. Genetic testing on a single captured individual revealed that it was related to the populations found in the Caribbean, suggesting larval dispersal rather than an intentional release.
P. volitans is the most abundant species of the invasive lionfish population in the Atlantic and Caribbean.
Adult lionfish specimens are now found along the United States East Coast from Cape Hatteras, North Carolina, to Florida, and along the Gulf Coast to Texas. They are also found off Bermuda, the Bahamas, and throughout the Caribbean, including the Turks and Caicos, Haiti, Cuba, the Dominican Republic, the Cayman Islands, Aruba, Curacao, Trinidad and Tobago, Bonaire, Puerto Rico, St. Croix, Belize, Honduras, Colombia and Mexico. Population densities continue to increase in the invaded areas, resulting in a population boom of up to 700% in some areas between 2004 and 2008.
Pterois species are known for devouring many other aquarium fishes, unusual in that they are among the few fish species to successfully establish populations in open marine systems.
Pelagic larval dispersion is assumed to occur through oceanic currents, including the Gulf Stream and the Caribbean Current. Ballast water can also contribute to the dispersal.
Extreme temperatures present geographical constraints in the distribution of aquatic species, indicating temperature tolerance plays a role in the lionfish's survival, reproduction, and range of distribution. The abrupt differences in water temperatures north and south of Cape Hatteras directly correlate with the abundance and distribution of Pterois. Pterois expanded along the southeastern coast of the United States and occupied thermal-appropriate zones within 10 years, and the shoreward expansion of this thermally appropriate habitat is expected in coming decades as winter water temperatures warm in response to anthropogenic climate change. Although the timeline of observations points to the east coast of Florida as the initial source of the western Atlantic invasion, the relationship of the United States East Coast and Bahamian lionfish invasion is uncertain. Lionfish can tolerate a minimum salinity of 5 ppt (0.5%) and even withstand pulses of fresh water, which means they can also be found in estuaries of freshwater rivers.
The lionfish invasion is considered to be one of the most serious recent threats to Caribbean and Florida coral reef ecosystems. To help address the pervasive problem, in 2015, the NOAA partnered with the Gulf and Caribbean Fisheries Institute to set up a lionfish portal to provide scientifically accurate information on the invasion and its impacts. The lionfish web portal is aimed at all those involved and affected, including coastal managers, educators, and the public, and the portal was designed as a source of training videos, fact sheets, examples of management plans, and guidelines for monitoring. The web portal draws on the expertise of NOAA's own scientists, as well as that of other scientists and policy makers from academia or NGOs, and managers.
Mediterranean
Lionfish have also established themselves in parts of the Mediterranean - with records down to 110 m depth. Lionfish have been found in Maltese waters and waters of other Mediterranean countires, as well as Croatia. Warming sea temperatures may be allowing lionfish to further expand their range in the Mediterranean.
Long-term effects of invasion
Lionfish have successfully pioneered the coastal waters of the Atlantic in less than a decade, and pose a major threat to reef ecological systems in these areas. A study comparing their abundance from Florida to North Carolina with several species of groupers found they were second only to the native scamp grouper and equally abundant to the graysby, gag, and rock hind. This could be due to a surplus of resource availability resulting from the overfishing of lionfish predators like grouper. Although the lionfish has not expanded to a population size currently causing major ecological problems, their invasion in the United States coastal waters could lead to serious problems in the future. One likely ecological impact caused by Pterois could be their impact on prey population numbers by directly affecting food web relationships. This could ultimately lead to reef deterioration and could negatively influence Atlantic trophic cascade. Lionfish have already been shown to overpopulate reef areas and display aggressive tendencies, forcing native species to move to waters where conditions might be less than favorable.
Lionfish could be reducing Atlantic reef diversity by up to 80%. In July 2011, lionfish were reported for the first time in the Flower Garden Banks National Marine Sanctuary off the coast of Louisiana. Sanctuary officials said they believe the species will be a permanent fixture, but hope to monitor and possibly limit their presence.
Since lionfish thrive so well in the Atlantic and the Caribbean due to nutrient-rich waters and lack of predators, the species has spread tremendously. A single lionfish, located on a reef, reduced young juvenile reef fish populations by 79%.
Control and eradication efforts
Red lionfish are an invasive species, yet relatively little is known about them. NOAA research foci include investigating biotechnical solutions for control of the population, and understanding how the larvae are dispersed. Another important area of study is what controls the population in its native area. Researchers hope to discover what moderates lionfish populations in the Indo-Pacific and apply this information to control the invasive populations, without introducing additional invasive species.
Two new trap designs have been introduced to help with deep-water control of the lionfish. The traps are low and vertical and remain open the entire time of deployment. The vertical relief of the trap attracts lionfish, which makes catching them easier. These new traps are good for catching lionfish without affecting the native species that are ecologically, recreationally, and commercially important to the surrounding areas. These traps are more beneficial than older traps because they limit the potential of catching noninvasive creatures, they have bait that is only appealing to lionfish, they guarantee a catch, and they are easy to transport.
Remotely Operated Vehicles (ROVs) are being developed to help hunt the lionfish. The Reefsweeper ROV uses a harpoon gun to snag it's target. The vehicle is able to hunt fish that may not otherwise be obtainable through human intervention alone.
Rigorous and repeated removal of lionfish from invaded waters could potentially control the exponential expansion of the lionfish in invaded waters. A 2010 study showed effective maintenance would require the monthly harvest of at least 27% of the adult population. Because lionfish are able to reproduce monthly, this effort must be maintained throughout the entire year.
Even to accomplish these numbers seems unlikely, but as populations of lionfish continue to grow throughout the Caribbean and Western Atlantic, actions are being taken to attempt to control the quickly growing numbers. In November 2010, for the first time the Florida Keys National Marine Sanctuary began licensing divers to kill lionfish inside the sanctuary in an attempt to eradicate the fish
Conservation groups and community organizations in the Eastern United States have organized hunting expeditions for Pterois such as the Environment Education Foundation's 'lionfish derby' held annually in Florida. Divemasters from Cozumel to the Honduran Bay Islands and at Reef Conservation International which operates in the Sapodilla Cayes Marine Reserve off Punta Gorda, Belize, now routinely spear them during dives.[citation needed] While diver culling removes lionfish from shallow reefs reducing their densities, lionfish have widely been reported on mesophotic coral ecosystems (reefs from 30 to 150 m) in the western Atlantic and even in deep-sea habitats (greater than 200 m depth). Recent studies have suggested that the effects of culling are likely to be depth-specific, and so have limited impacts on these deeper reef populations. Therefore, other approaches such as trapping are advocated for removing lionfish from deeper reef habitats.
Long-term culling has also been recorded to cause behavior changes in lionfish populations. For example, in the Bahamas, lionfish on heavily culled reefs have become more wary of divers and hide more within the reef structure during the day when culling occurs. Similar lionfish responses to divers have been observed when comparing culled sites and sites without culling in Honduras, including altered lionfish behaviour on reefs too deep for regular culling, but adjacent to heavily culled sites potentially implying movement of individuals between depths.
While culling by marine protection agencies and volunteer divers is an important element of control efforts, development of market-based approaches, which create commercial incentives for removals, has been seen as a means to sustain control efforts. The foremost of these market approaches is the promotion of lionfish as a food item. Another is the use of lionfish spines, fins, and tails for jewelry and other decorative items. Lionfish jewelry production initiatives are underway in Belize, the Bahamas, St. Vincent, and the Grenadines.
In 2014 at Jardines de la Reina National Marine Park in Cuba, a diver experimented with spearing and feeding lionfish to sharks in an effort to teach them to seek out the fish as prey. By 2016, Cuba was finding it more effective to fish for lionfish as food.
"Lionfish as Food" campaign
In 2010, NOAA (which also encourages people to report lionfish sightings, to help track lionfish population dispersal) began a campaign to encourage the consumption of the fish. The "Lionfish as Food" campaign encourages human hunting of the fish as the only form of control known to date. Increasing the catch of lionfish could not only help maintain a reasonable population density, but also provide an alternative fishing source to overfished populations, such as grouper and snapper. The taste is described as "buttery and tender". To promote the campaign, the Roman Catholic Church in Colombia agreed to have their clergy's sermons suggest to their parishioners (84% of the population) eating lionfish on Fridays, Lent, and Easter, which proved highly successful in decreasing the invasive fish problem.
When properly filleted, the naturally venomous fish is safe to eat. Some concern exists about the risk of ciguatera food poisoning (CFP) from the consumption of lionfish, and the FDA included lionfish on the list of species at risk for CFP when lionfish are harvested in some areas tested positive for ciguatera. No cases of CFP from the consumption of lionfish have been verified, and published research has found that the toxins in lionfish venom may be causing false positives in tests for the presence of ciguatera. The Reef Environmental Education Foundation provides advice to restaurant chefs on how they can incorporate the fish into their menus. The NOAA calls the lionfish a "delicious, delicately flavored fish" similar in texture to grouper. Cooking techniques and preparations for lionfish include deep-frying, ceviche, jerky, grilling, and sashimi.
Another initiative is centered around the production of leather from lionfish hides. It seeks to establish a production chain and market for high-quality leather produced from the hides. The goal is to control invasive lionfish populations while providing economic benefits to local fishing communities.
Video taken a while back in 2014. We went snorkeling at Looe Key reef in the Florida Keys. After snorkeling at the beaches in a couple of state parks, we decided to try taking one of the many dive/snorkeling boats offered in the area. Glad we chose the boat company that operates out of Bahia Honda State Park. The boat is named "Sundance". We went on two trips, the first with Captain P.T., the second with Captain Jack. The first mate and Divemaster was Brian. All were great and made the trip very enjoyable and safe. The reef is about 5 to 7 miles out and takes around 40 minutes to reach. We snorkeled for about an hour and a half each time, which was plenty. Took the 1:30 trips both times. I’ve read the water is calmer/clearer on the trip they offer earlier in the day, but it was pretty fantastic on both of our trips. We saw lots of tropical fish, barracudas, a huge goliath grouper and even sharks (which totally ignored the snorkelers). Have to say, it was incredible and we are looking forward to going back. Music from www.jewelbeat.com titled "Rhythmic Feet". Video copyright Clif Bosler 2014.
Pterois is a genus of venomous marine fish, commonly known as lionfish, native to the Indo-Pacific. It is characterized by conspicuous warning coloration with red or black bands, and ostentatious dorsal fins tipped with venomous spines. Pterois radiata, Pterois volitans, and Pterois miles are the most commonly studied species in the genus. Pterois species are popular aquarium fish. P. volitans and P. miles are recent and significant invasive species in the west Atlantic, Caribbean Sea and Mediterranean Sea.
Taxonomy
Pterois was described as a genus in 1817 by German naturalist, botanist, biologist, and ornithologist Lorenz Oken. In 1856 the French naturalist Eugène Anselme Sébastien Léon Desmarest designated Scorpaena volitans, which had been named by Bloch in 1787 and which was the same as Linnaeus's 1758 Gasterosteus volitans, as the type species of the genus. This genus is classified within the tribe Pteroini of the subfamily Scorpaeninae within the family Scorpaenidae. The genus name Pterois is based on Georges Cuvier's 1816 French name, “Les Pterois”, meaning "fins" which is an allusion to the high dorsal and long pectoral fins.
Description
According to the National Oceanic and Atmospheric Administration (NOAA), “lionfish have distinctive brown or maroon, and white stripes or bands covering the head and body. They have fleshy tentacles above their eyes and below the mouth; fan-like pectoral fins; long, separated dorsal spines; 13 dorsal spines; 10-11 dorsal soft rays; 3 anal spines; and 6-7 anal soft rays. An adult lionfish can grow as large as 18 inches.”
Juvenile lionfish have a unique tentacle located above their eye sockets that varies in phenotype between species. The evolution of this tentacle is suggested to serve to continually attract new prey; studies also suggest it plays a role in sexual selection.
Ecology and behavior
Pterois species can live from 5 to 15 years and have complex courtship and mating behaviors. Females frequently release two mucus-filled egg clusters, which can contain as many as 15,000 eggs.
All species are aposematic; they have conspicuous coloration with boldly contrasting stripes and wide fans of projecting spines, advertising their ability to defend themselves.
Prey
Pterois prey mostly on small fish, invertebrates, and mollusks, with up to six different species of prey found in the gastrointestinal tracts of some specimens. Lionfish feed most actively in the morning. Lionfish are skilled hunters, using specialized swim bladder muscles to provide precise control of their location in the water column, allowing them to alter their center of gravity to better attack prey. They blow jets of water while approaching prey, which serves to confuse them and alter the orientation of the prey so that the smaller fish is facing the lionfish. This results in a higher degree of predatory efficiency as head-first capture is easier for the lionfish. The lionfish then spreads its large pectoral fins and swallows its prey in a single motion.
Predators and parasites
Aside from instances of larger lionfish individuals engaging in cannibalism on smaller individuals, adult lionfish have few identified natural predators, likely due to the effectiveness of their venomous spines: when threatened, a lionfish will orient its body to keep its dorsal fin pointed at the predator, even if this means swimming upsidedown. This does not always save it, however: Moray eels, bluespotted cornetfish, barracuda and large groupers have been observed preying on lionfish. Sharks are also believed to be capable of preying on lionfish with no ill effects from their spines. Park officials of the Roatan Marine Park in Honduras have attempted to train sharks to feed on lionfish to control the invasive populations in the Caribbean. The Bobbit worm, an ambush predator, has been filmed preying upon lionfish in Indonesia.[31] Predators of larvae and juvenile lionfish remain unknown, but may prove to be the primary limiting factor of lionfish populations in their native range.
Parasites of lionfish have rarely been observed, and are assumed to be infrequent. They include isopods and leeches.
Interaction with humans
Lionfish are known for their venomous fin rays, which makes them hazardous to other marine animals, as well as humans. Pterois venom produced negative inotropic and chronotropic effects when tested in both frog and clam hearts and has a depressive effect on rabbit blood pressure. These results are thought to be due to nitric oxide release. In humans, Pterois venom can cause systemic effects such as pain, nausea, vomiting, fever, headache, numbness, paresthesia, diarrhea, sweating, temporary paralysis of the limbs, respiratory insufficiency, heart failure, convulsions, and even death. Fatalities are more common in very young children, the elderly, or those who are allergic to the venom. The venom is rarely fatal to healthy adults, but some species have enough venom to produce extreme discomfort for a period of several days. Moreover, Pterois venom poses a danger to allergic victims as they may experience anaphylaxis, a serious and often life-threatening condition that requires immediate emergency medical treatment. Severe allergic reactions to Pterois venom include chest pain, severe breathing difficulties, a drop in blood pressure, swelling of the tongue, sweating, or slurred speech. Such reactions can be fatal if not treated.
Native range and habitat
The lionfish is native to the Indian Ocean and Western Pacific Ocean. They can be found around the seaward edge of shallow coral reefs, lagoons, rocky substrates, and on mesophotic reefs, and can live in areas of varying salinity, temperature, and depth. They are also frequently found in turbid inshore areas and harbors, and have a generally hostile attitude and are territorial toward other reef fish. They are commonly found from shallow waters down to past 100 m (330 ft) depth, and have in several locations been recorded to 300 m depth. Many universities in the Indo-Pacific have documented reports of Pterois aggression toward divers and researchers. P. volitans and P. miles are native to subtropical and tropical regions from southern Japan and southern Korea to the east coast of Australia, Indonesia, Micronesia, French Polynesia, and the South Pacific Ocean. P. miles is also found in the Indian Ocean, from Sumatra to Sri Lanka and the Red Sea.
Invasive introduction and range
Two of the 12 species of Pterois, the red lionfish (P. volitans) and the common lionfish (P. miles), have established themselves as significant invasive species off the East Coast of the United States and in the Caribbean. About 93% of the invasive population in the Western Atlantic is P. volitans.
The red lionfish is found off the East Coast and Gulf Coast of the United States and in the Caribbean Sea, and was likely first introduced off the Florida coast by the early to mid-1980s. This introduction may have occurred in 1992 when Hurricane Andrew destroyed an aquarium in southern Florida, releasing six lionfish into Biscayne Bay. A lionfish was discovered off the coast of Dania Beach, south Florida, as early as 1985, before Hurricane Andrew. The lionfish resemble those of the Philippines, implicating the aquarium trade, suggesting individuals may have been purposely discarded by dissatisfied aquarium enthusiasts. This is in part because lionfish require an experienced aquarist, but are often sold to novices who find their care too difficult. In 2001, the National Oceanic and Atmospheric Administration (NOAA) documented several sightings of lionfish off the coast of Florida, Georgia, South Carolina, North Carolina, Bermuda, and Delaware. In August 2014, when the Gulf Stream was discharging into the mouth of the Delaware Bay, two lionfish were caught by a surf fisherman off the ocean side shore of Cape Henlopen State Park: a red lionfish that weighed 1 pound 4+1⁄2 ounces (580 g) and a common lionfish that weighed 1 pound 2 ounces (510 g). Three days later, a 1-pound-3-ounce (540 g) red lionfish was caught off the shore of Broadkill Beach which is in the Delaware Bay approximately 15 miles (24 km) north of Cape Henlopen State Park. Lionfish were first detected in the Bahamas in 2004. In June 2013 lionfish were discovered as far east as Barbados, and as far south as the Los Roques Archipelago and many Venezuelan continental beaches. Lionfish were first sighted in Brazilian waters in late 2014. Genetic testing on a single captured individual revealed that it was related to the populations found in the Caribbean, suggesting larval dispersal rather than an intentional release.
P. volitans is the most abundant species of the invasive lionfish population in the Atlantic and Caribbean.
Adult lionfish specimens are now found along the United States East Coast from Cape Hatteras, North Carolina, to Florida, and along the Gulf Coast to Texas. They are also found off Bermuda, the Bahamas, and throughout the Caribbean, including the Turks and Caicos, Haiti, Cuba, the Dominican Republic, the Cayman Islands, Aruba, Curacao, Trinidad and Tobago, Bonaire, Puerto Rico, St. Croix, Belize, Honduras, Colombia and Mexico. Population densities continue to increase in the invaded areas, resulting in a population boom of up to 700% in some areas between 2004 and 2008.
Pterois species are known for devouring many other aquarium fishes, unusual in that they are among the few fish species to successfully establish populations in open marine systems.
Pelagic larval dispersion is assumed to occur through oceanic currents, including the Gulf Stream and the Caribbean Current. Ballast water can also contribute to the dispersal.
Extreme temperatures present geographical constraints in the distribution of aquatic species, indicating temperature tolerance plays a role in the lionfish's survival, reproduction, and range of distribution. The abrupt differences in water temperatures north and south of Cape Hatteras directly correlate with the abundance and distribution of Pterois. Pterois expanded along the southeastern coast of the United States and occupied thermal-appropriate zones within 10 years, and the shoreward expansion of this thermally appropriate habitat is expected in coming decades as winter water temperatures warm in response to anthropogenic climate change. Although the timeline of observations points to the east coast of Florida as the initial source of the western Atlantic invasion, the relationship of the United States East Coast and Bahamian lionfish invasion is uncertain. Lionfish can tolerate a minimum salinity of 5 ppt (0.5%) and even withstand pulses of fresh water, which means they can also be found in estuaries of freshwater rivers.
The lionfish invasion is considered to be one of the most serious recent threats to Caribbean and Florida coral reef ecosystems. To help address the pervasive problem, in 2015, the NOAA partnered with the Gulf and Caribbean Fisheries Institute to set up a lionfish portal to provide scientifically accurate information on the invasion and its impacts. The lionfish web portal is aimed at all those involved and affected, including coastal managers, educators, and the public, and the portal was designed as a source of training videos, fact sheets, examples of management plans, and guidelines for monitoring. The web portal draws on the expertise of NOAA's own scientists, as well as that of other scientists and policy makers from academia or NGOs, and managers.
Mediterranean
Lionfish have also established themselves in parts of the Mediterranean - with records down to 110 m depth. Lionfish have been found in Maltese waters and waters of other Mediterranean countires, as well as Croatia. Warming sea temperatures may be allowing lionfish to further expand their range in the Mediterranean.
Long-term effects of invasion
Lionfish have successfully pioneered the coastal waters of the Atlantic in less than a decade, and pose a major threat to reef ecological systems in these areas. A study comparing their abundance from Florida to North Carolina with several species of groupers found they were second only to the native scamp grouper and equally abundant to the graysby, gag, and rock hind. This could be due to a surplus of resource availability resulting from the overfishing of lionfish predators like grouper. Although the lionfish has not expanded to a population size currently causing major ecological problems, their invasion in the United States coastal waters could lead to serious problems in the future. One likely ecological impact caused by Pterois could be their impact on prey population numbers by directly affecting food web relationships. This could ultimately lead to reef deterioration and could negatively influence Atlantic trophic cascade. Lionfish have already been shown to overpopulate reef areas and display aggressive tendencies, forcing native species to move to waters where conditions might be less than favorable.
Lionfish could be reducing Atlantic reef diversity by up to 80%. In July 2011, lionfish were reported for the first time in the Flower Garden Banks National Marine Sanctuary off the coast of Louisiana. Sanctuary officials said they believe the species will be a permanent fixture, but hope to monitor and possibly limit their presence.
Since lionfish thrive so well in the Atlantic and the Caribbean due to nutrient-rich waters and lack of predators, the species has spread tremendously. A single lionfish, located on a reef, reduced young juvenile reef fish populations by 79%.
Control and eradication efforts
Red lionfish are an invasive species, yet relatively little is known about them. NOAA research foci include investigating biotechnical solutions for control of the population, and understanding how the larvae are dispersed. Another important area of study is what controls the population in its native area. Researchers hope to discover what moderates lionfish populations in the Indo-Pacific and apply this information to control the invasive populations, without introducing additional invasive species.
Two new trap designs have been introduced to help with deep-water control of the lionfish. The traps are low and vertical and remain open the entire time of deployment. The vertical relief of the trap attracts lionfish, which makes catching them easier. These new traps are good for catching lionfish without affecting the native species that are ecologically, recreationally, and commercially important to the surrounding areas. These traps are more beneficial than older traps because they limit the potential of catching noninvasive creatures, they have bait that is only appealing to lionfish, they guarantee a catch, and they are easy to transport.
Remotely Operated Vehicles (ROVs) are being developed to help hunt the lionfish. The Reefsweeper ROV uses a harpoon gun to snag it's target. The vehicle is able to hunt fish that may not otherwise be obtainable through human intervention alone.
Rigorous and repeated removal of lionfish from invaded waters could potentially control the exponential expansion of the lionfish in invaded waters. A 2010 study showed effective maintenance would require the monthly harvest of at least 27% of the adult population. Because lionfish are able to reproduce monthly, this effort must be maintained throughout the entire year.
Even to accomplish these numbers seems unlikely, but as populations of lionfish continue to grow throughout the Caribbean and Western Atlantic, actions are being taken to attempt to control the quickly growing numbers. In November 2010, for the first time the Florida Keys National Marine Sanctuary began licensing divers to kill lionfish inside the sanctuary in an attempt to eradicate the fish
Conservation groups and community organizations in the Eastern United States have organized hunting expeditions for Pterois such as the Environment Education Foundation's 'lionfish derby' held annually in Florida. Divemasters from Cozumel to the Honduran Bay Islands and at Reef Conservation International which operates in the Sapodilla Cayes Marine Reserve off Punta Gorda, Belize, now routinely spear them during dives.[citation needed] While diver culling removes lionfish from shallow reefs reducing their densities, lionfish have widely been reported on mesophotic coral ecosystems (reefs from 30 to 150 m) in the western Atlantic and even in deep-sea habitats (greater than 200 m depth). Recent studies have suggested that the effects of culling are likely to be depth-specific, and so have limited impacts on these deeper reef populations. Therefore, other approaches such as trapping are advocated for removing lionfish from deeper reef habitats.
Long-term culling has also been recorded to cause behavior changes in lionfish populations. For example, in the Bahamas, lionfish on heavily culled reefs have become more wary of divers and hide more within the reef structure during the day when culling occurs. Similar lionfish responses to divers have been observed when comparing culled sites and sites without culling in Honduras, including altered lionfish behaviour on reefs too deep for regular culling, but adjacent to heavily culled sites potentially implying movement of individuals between depths.
While culling by marine protection agencies and volunteer divers is an important element of control efforts, development of market-based approaches, which create commercial incentives for removals, has been seen as a means to sustain control efforts. The foremost of these market approaches is the promotion of lionfish as a food item. Another is the use of lionfish spines, fins, and tails for jewelry and other decorative items. Lionfish jewelry production initiatives are underway in Belize, the Bahamas, St. Vincent, and the Grenadines.
In 2014 at Jardines de la Reina National Marine Park in Cuba, a diver experimented with spearing and feeding lionfish to sharks in an effort to teach them to seek out the fish as prey. By 2016, Cuba was finding it more effective to fish for lionfish as food.
"Lionfish as Food" campaign
In 2010, NOAA (which also encourages people to report lionfish sightings, to help track lionfish population dispersal) began a campaign to encourage the consumption of the fish. The "Lionfish as Food" campaign encourages human hunting of the fish as the only form of control known to date. Increasing the catch of lionfish could not only help maintain a reasonable population density, but also provide an alternative fishing source to overfished populations, such as grouper and snapper. The taste is described as "buttery and tender". To promote the campaign, the Roman Catholic Church in Colombia agreed to have their clergy's sermons suggest to their parishioners (84% of the population) eating lionfish on Fridays, Lent, and Easter, which proved highly successful in decreasing the invasive fish problem.
When properly filleted, the naturally venomous fish is safe to eat. Some concern exists about the risk of ciguatera food poisoning (CFP) from the consumption of lionfish, and the FDA included lionfish on the list of species at risk for CFP when lionfish are harvested in some areas tested positive for ciguatera. No cases of CFP from the consumption of lionfish have been verified, and published research has found that the toxins in lionfish venom may be causing false positives in tests for the presence of ciguatera. The Reef Environmental Education Foundation provides advice to restaurant chefs on how they can incorporate the fish into their menus. The NOAA calls the lionfish a "delicious, delicately flavored fish" similar in texture to grouper. Cooking techniques and preparations for lionfish include deep-frying, ceviche, jerky, grilling, and sashimi.
Another initiative is centered around the production of leather from lionfish hides. It seeks to establish a production chain and market for high-quality leather produced from the hides. The goal is to control invasive lionfish populations while providing economic benefits to local fishing communities.
One of the most exhilarating experiences is to be able to feed the fishes when diving! Photo credit to my divemaster Conrad Quintanilla
Pterois is a genus of venomous marine fish, commonly known as lionfish, native to the Indo-Pacific. It is characterized by conspicuous warning coloration with red or black bands, and ostentatious dorsal fins tipped with venomous spines. Pterois radiata, Pterois volitans, and Pterois miles are the most commonly studied species in the genus. Pterois species are popular aquarium fish. P. volitans and P. miles are recent and significant invasive species in the west Atlantic, Caribbean Sea and Mediterranean Sea.
Taxonomy
Pterois was described as a genus in 1817 by German naturalist, botanist, biologist, and ornithologist Lorenz Oken. In 1856 the French naturalist Eugène Anselme Sébastien Léon Desmarest designated Scorpaena volitans, which had been named by Bloch in 1787 and which was the same as Linnaeus's 1758 Gasterosteus volitans, as the type species of the genus. This genus is classified within the tribe Pteroini of the subfamily Scorpaeninae within the family Scorpaenidae. The genus name Pterois is based on Georges Cuvier's 1816 French name, “Les Pterois”, meaning "fins" which is an allusion to the high dorsal and long pectoral fins.
Description
According to the National Oceanic and Atmospheric Administration (NOAA), “lionfish have distinctive brown or maroon, and white stripes or bands covering the head and body. They have fleshy tentacles above their eyes and below the mouth; fan-like pectoral fins; long, separated dorsal spines; 13 dorsal spines; 10-11 dorsal soft rays; 3 anal spines; and 6-7 anal soft rays. An adult lionfish can grow as large as 18 inches.”
Juvenile lionfish have a unique tentacle located above their eye sockets that varies in phenotype between species. The evolution of this tentacle is suggested to serve to continually attract new prey; studies also suggest it plays a role in sexual selection.
Ecology and behavior
Pterois species can live from 5 to 15 years and have complex courtship and mating behaviors. Females frequently release two mucus-filled egg clusters, which can contain as many as 15,000 eggs.
All species are aposematic; they have conspicuous coloration with boldly contrasting stripes and wide fans of projecting spines, advertising their ability to defend themselves.
Prey
Pterois prey mostly on small fish, invertebrates, and mollusks, with up to six different species of prey found in the gastrointestinal tracts of some specimens. Lionfish feed most actively in the morning. Lionfish are skilled hunters, using specialized swim bladder muscles to provide precise control of their location in the water column, allowing them to alter their center of gravity to better attack prey. They blow jets of water while approaching prey, which serves to confuse them and alter the orientation of the prey so that the smaller fish is facing the lionfish. This results in a higher degree of predatory efficiency as head-first capture is easier for the lionfish. The lionfish then spreads its large pectoral fins and swallows its prey in a single motion.
Predators and parasites
Aside from instances of larger lionfish individuals engaging in cannibalism on smaller individuals, adult lionfish have few identified natural predators, likely due to the effectiveness of their venomous spines: when threatened, a lionfish will orient its body to keep its dorsal fin pointed at the predator, even if this means swimming upsidedown. This does not always save it, however: Moray eels, bluespotted cornetfish, barracuda and large groupers have been observed preying on lionfish. Sharks are also believed to be capable of preying on lionfish with no ill effects from their spines. Park officials of the Roatan Marine Park in Honduras have attempted to train sharks to feed on lionfish to control the invasive populations in the Caribbean. The Bobbit worm, an ambush predator, has been filmed preying upon lionfish in Indonesia.[31] Predators of larvae and juvenile lionfish remain unknown, but may prove to be the primary limiting factor of lionfish populations in their native range.
Parasites of lionfish have rarely been observed, and are assumed to be infrequent. They include isopods and leeches.
Interaction with humans
Lionfish are known for their venomous fin rays, which makes them hazardous to other marine animals, as well as humans. Pterois venom produced negative inotropic and chronotropic effects when tested in both frog and clam hearts and has a depressive effect on rabbit blood pressure. These results are thought to be due to nitric oxide release. In humans, Pterois venom can cause systemic effects such as pain, nausea, vomiting, fever, headache, numbness, paresthesia, diarrhea, sweating, temporary paralysis of the limbs, respiratory insufficiency, heart failure, convulsions, and even death. Fatalities are more common in very young children, the elderly, or those who are allergic to the venom. The venom is rarely fatal to healthy adults, but some species have enough venom to produce extreme discomfort for a period of several days. Moreover, Pterois venom poses a danger to allergic victims as they may experience anaphylaxis, a serious and often life-threatening condition that requires immediate emergency medical treatment. Severe allergic reactions to Pterois venom include chest pain, severe breathing difficulties, a drop in blood pressure, swelling of the tongue, sweating, or slurred speech. Such reactions can be fatal if not treated.
Native range and habitat
The lionfish is native to the Indian Ocean and Western Pacific Ocean. They can be found around the seaward edge of shallow coral reefs, lagoons, rocky substrates, and on mesophotic reefs, and can live in areas of varying salinity, temperature, and depth. They are also frequently found in turbid inshore areas and harbors, and have a generally hostile attitude and are territorial toward other reef fish. They are commonly found from shallow waters down to past 100 m (330 ft) depth, and have in several locations been recorded to 300 m depth. Many universities in the Indo-Pacific have documented reports of Pterois aggression toward divers and researchers. P. volitans and P. miles are native to subtropical and tropical regions from southern Japan and southern Korea to the east coast of Australia, Indonesia, Micronesia, French Polynesia, and the South Pacific Ocean. P. miles is also found in the Indian Ocean, from Sumatra to Sri Lanka and the Red Sea.
Invasive introduction and range
Two of the 12 species of Pterois, the red lionfish (P. volitans) and the common lionfish (P. miles), have established themselves as significant invasive species off the East Coast of the United States and in the Caribbean. About 93% of the invasive population in the Western Atlantic is P. volitans.
The red lionfish is found off the East Coast and Gulf Coast of the United States and in the Caribbean Sea, and was likely first introduced off the Florida coast by the early to mid-1980s. This introduction may have occurred in 1992 when Hurricane Andrew destroyed an aquarium in southern Florida, releasing six lionfish into Biscayne Bay. A lionfish was discovered off the coast of Dania Beach, south Florida, as early as 1985, before Hurricane Andrew. The lionfish resemble those of the Philippines, implicating the aquarium trade, suggesting individuals may have been purposely discarded by dissatisfied aquarium enthusiasts. This is in part because lionfish require an experienced aquarist, but are often sold to novices who find their care too difficult. In 2001, the National Oceanic and Atmospheric Administration (NOAA) documented several sightings of lionfish off the coast of Florida, Georgia, South Carolina, North Carolina, Bermuda, and Delaware. In August 2014, when the Gulf Stream was discharging into the mouth of the Delaware Bay, two lionfish were caught by a surf fisherman off the ocean side shore of Cape Henlopen State Park: a red lionfish that weighed 1 pound 4+1⁄2 ounces (580 g) and a common lionfish that weighed 1 pound 2 ounces (510 g). Three days later, a 1-pound-3-ounce (540 g) red lionfish was caught off the shore of Broadkill Beach which is in the Delaware Bay approximately 15 miles (24 km) north of Cape Henlopen State Park. Lionfish were first detected in the Bahamas in 2004. In June 2013 lionfish were discovered as far east as Barbados, and as far south as the Los Roques Archipelago and many Venezuelan continental beaches. Lionfish were first sighted in Brazilian waters in late 2014. Genetic testing on a single captured individual revealed that it was related to the populations found in the Caribbean, suggesting larval dispersal rather than an intentional release.
P. volitans is the most abundant species of the invasive lionfish population in the Atlantic and Caribbean.
Adult lionfish specimens are now found along the United States East Coast from Cape Hatteras, North Carolina, to Florida, and along the Gulf Coast to Texas. They are also found off Bermuda, the Bahamas, and throughout the Caribbean, including the Turks and Caicos, Haiti, Cuba, the Dominican Republic, the Cayman Islands, Aruba, Curacao, Trinidad and Tobago, Bonaire, Puerto Rico, St. Croix, Belize, Honduras, Colombia and Mexico. Population densities continue to increase in the invaded areas, resulting in a population boom of up to 700% in some areas between 2004 and 2008.
Pterois species are known for devouring many other aquarium fishes, unusual in that they are among the few fish species to successfully establish populations in open marine systems.
Pelagic larval dispersion is assumed to occur through oceanic currents, including the Gulf Stream and the Caribbean Current. Ballast water can also contribute to the dispersal.
Extreme temperatures present geographical constraints in the distribution of aquatic species, indicating temperature tolerance plays a role in the lionfish's survival, reproduction, and range of distribution. The abrupt differences in water temperatures north and south of Cape Hatteras directly correlate with the abundance and distribution of Pterois. Pterois expanded along the southeastern coast of the United States and occupied thermal-appropriate zones within 10 years, and the shoreward expansion of this thermally appropriate habitat is expected in coming decades as winter water temperatures warm in response to anthropogenic climate change. Although the timeline of observations points to the east coast of Florida as the initial source of the western Atlantic invasion, the relationship of the United States East Coast and Bahamian lionfish invasion is uncertain. Lionfish can tolerate a minimum salinity of 5 ppt (0.5%) and even withstand pulses of fresh water, which means they can also be found in estuaries of freshwater rivers.
The lionfish invasion is considered to be one of the most serious recent threats to Caribbean and Florida coral reef ecosystems. To help address the pervasive problem, in 2015, the NOAA partnered with the Gulf and Caribbean Fisheries Institute to set up a lionfish portal to provide scientifically accurate information on the invasion and its impacts. The lionfish web portal is aimed at all those involved and affected, including coastal managers, educators, and the public, and the portal was designed as a source of training videos, fact sheets, examples of management plans, and guidelines for monitoring. The web portal draws on the expertise of NOAA's own scientists, as well as that of other scientists and policy makers from academia or NGOs, and managers.
Mediterranean
Lionfish have also established themselves in parts of the Mediterranean - with records down to 110 m depth. Lionfish have been found in Maltese waters and waters of other Mediterranean countires, as well as Croatia. Warming sea temperatures may be allowing lionfish to further expand their range in the Mediterranean.
Long-term effects of invasion
Lionfish have successfully pioneered the coastal waters of the Atlantic in less than a decade, and pose a major threat to reef ecological systems in these areas. A study comparing their abundance from Florida to North Carolina with several species of groupers found they were second only to the native scamp grouper and equally abundant to the graysby, gag, and rock hind. This could be due to a surplus of resource availability resulting from the overfishing of lionfish predators like grouper. Although the lionfish has not expanded to a population size currently causing major ecological problems, their invasion in the United States coastal waters could lead to serious problems in the future. One likely ecological impact caused by Pterois could be their impact on prey population numbers by directly affecting food web relationships. This could ultimately lead to reef deterioration and could negatively influence Atlantic trophic cascade. Lionfish have already been shown to overpopulate reef areas and display aggressive tendencies, forcing native species to move to waters where conditions might be less than favorable.
Lionfish could be reducing Atlantic reef diversity by up to 80%. In July 2011, lionfish were reported for the first time in the Flower Garden Banks National Marine Sanctuary off the coast of Louisiana. Sanctuary officials said they believe the species will be a permanent fixture, but hope to monitor and possibly limit their presence.
Since lionfish thrive so well in the Atlantic and the Caribbean due to nutrient-rich waters and lack of predators, the species has spread tremendously. A single lionfish, located on a reef, reduced young juvenile reef fish populations by 79%.
Control and eradication efforts
Red lionfish are an invasive species, yet relatively little is known about them. NOAA research foci include investigating biotechnical solutions for control of the population, and understanding how the larvae are dispersed. Another important area of study is what controls the population in its native area. Researchers hope to discover what moderates lionfish populations in the Indo-Pacific and apply this information to control the invasive populations, without introducing additional invasive species.
Two new trap designs have been introduced to help with deep-water control of the lionfish. The traps are low and vertical and remain open the entire time of deployment. The vertical relief of the trap attracts lionfish, which makes catching them easier. These new traps are good for catching lionfish without affecting the native species that are ecologically, recreationally, and commercially important to the surrounding areas. These traps are more beneficial than older traps because they limit the potential of catching noninvasive creatures, they have bait that is only appealing to lionfish, they guarantee a catch, and they are easy to transport.
Remotely Operated Vehicles (ROVs) are being developed to help hunt the lionfish. The Reefsweeper ROV uses a harpoon gun to snag it's target. The vehicle is able to hunt fish that may not otherwise be obtainable through human intervention alone.
Rigorous and repeated removal of lionfish from invaded waters could potentially control the exponential expansion of the lionfish in invaded waters. A 2010 study showed effective maintenance would require the monthly harvest of at least 27% of the adult population. Because lionfish are able to reproduce monthly, this effort must be maintained throughout the entire year.
Even to accomplish these numbers seems unlikely, but as populations of lionfish continue to grow throughout the Caribbean and Western Atlantic, actions are being taken to attempt to control the quickly growing numbers. In November 2010, for the first time the Florida Keys National Marine Sanctuary began licensing divers to kill lionfish inside the sanctuary in an attempt to eradicate the fish
Conservation groups and community organizations in the Eastern United States have organized hunting expeditions for Pterois such as the Environment Education Foundation's 'lionfish derby' held annually in Florida. Divemasters from Cozumel to the Honduran Bay Islands and at Reef Conservation International which operates in the Sapodilla Cayes Marine Reserve off Punta Gorda, Belize, now routinely spear them during dives.[citation needed] While diver culling removes lionfish from shallow reefs reducing their densities, lionfish have widely been reported on mesophotic coral ecosystems (reefs from 30 to 150 m) in the western Atlantic and even in deep-sea habitats (greater than 200 m depth). Recent studies have suggested that the effects of culling are likely to be depth-specific, and so have limited impacts on these deeper reef populations. Therefore, other approaches such as trapping are advocated for removing lionfish from deeper reef habitats.
Long-term culling has also been recorded to cause behavior changes in lionfish populations. For example, in the Bahamas, lionfish on heavily culled reefs have become more wary of divers and hide more within the reef structure during the day when culling occurs. Similar lionfish responses to divers have been observed when comparing culled sites and sites without culling in Honduras, including altered lionfish behaviour on reefs too deep for regular culling, but adjacent to heavily culled sites potentially implying movement of individuals between depths.
While culling by marine protection agencies and volunteer divers is an important element of control efforts, development of market-based approaches, which create commercial incentives for removals, has been seen as a means to sustain control efforts. The foremost of these market approaches is the promotion of lionfish as a food item. Another is the use of lionfish spines, fins, and tails for jewelry and other decorative items. Lionfish jewelry production initiatives are underway in Belize, the Bahamas, St. Vincent, and the Grenadines.
In 2014 at Jardines de la Reina National Marine Park in Cuba, a diver experimented with spearing and feeding lionfish to sharks in an effort to teach them to seek out the fish as prey. By 2016, Cuba was finding it more effective to fish for lionfish as food.
"Lionfish as Food" campaign
In 2010, NOAA (which also encourages people to report lionfish sightings, to help track lionfish population dispersal) began a campaign to encourage the consumption of the fish. The "Lionfish as Food" campaign encourages human hunting of the fish as the only form of control known to date. Increasing the catch of lionfish could not only help maintain a reasonable population density, but also provide an alternative fishing source to overfished populations, such as grouper and snapper. The taste is described as "buttery and tender". To promote the campaign, the Roman Catholic Church in Colombia agreed to have their clergy's sermons suggest to their parishioners (84% of the population) eating lionfish on Fridays, Lent, and Easter, which proved highly successful in decreasing the invasive fish problem.
When properly filleted, the naturally venomous fish is safe to eat. Some concern exists about the risk of ciguatera food poisoning (CFP) from the consumption of lionfish, and the FDA included lionfish on the list of species at risk for CFP when lionfish are harvested in some areas tested positive for ciguatera. No cases of CFP from the consumption of lionfish have been verified, and published research has found that the toxins in lionfish venom may be causing false positives in tests for the presence of ciguatera. The Reef Environmental Education Foundation provides advice to restaurant chefs on how they can incorporate the fish into their menus. The NOAA calls the lionfish a "delicious, delicately flavored fish" similar in texture to grouper. Cooking techniques and preparations for lionfish include deep-frying, ceviche, jerky, grilling, and sashimi.
Another initiative is centered around the production of leather from lionfish hides. It seeks to establish a production chain and market for high-quality leather produced from the hides. The goal is to control invasive lionfish populations while providing economic benefits to local fishing communities.
Pterois is a genus of venomous marine fish, commonly known as lionfish, native to the Indo-Pacific. It is characterized by conspicuous warning coloration with red or black bands, and ostentatious dorsal fins tipped with venomous spines. Pterois radiata, Pterois volitans, and Pterois miles are the most commonly studied species in the genus. Pterois species are popular aquarium fish. P. volitans and P. miles are recent and significant invasive species in the west Atlantic, Caribbean Sea and Mediterranean Sea.
Taxonomy
Pterois was described as a genus in 1817 by German naturalist, botanist, biologist, and ornithologist Lorenz Oken. In 1856 the French naturalist Eugène Anselme Sébastien Léon Desmarest designated Scorpaena volitans, which had been named by Bloch in 1787 and which was the same as Linnaeus's 1758 Gasterosteus volitans, as the type species of the genus. This genus is classified within the tribe Pteroini of the subfamily Scorpaeninae within the family Scorpaenidae. The genus name Pterois is based on Georges Cuvier's 1816 French name, “Les Pterois”, meaning "fins" which is an allusion to the high dorsal and long pectoral fins.
Description
According to the National Oceanic and Atmospheric Administration (NOAA), “lionfish have distinctive brown or maroon, and white stripes or bands covering the head and body. They have fleshy tentacles above their eyes and below the mouth; fan-like pectoral fins; long, separated dorsal spines; 13 dorsal spines; 10-11 dorsal soft rays; 3 anal spines; and 6-7 anal soft rays. An adult lionfish can grow as large as 18 inches.”
Juvenile lionfish have a unique tentacle located above their eye sockets that varies in phenotype between species. The evolution of this tentacle is suggested to serve to continually attract new prey; studies also suggest it plays a role in sexual selection.
Ecology and behavior
Pterois species can live from 5 to 15 years and have complex courtship and mating behaviors. Females frequently release two mucus-filled egg clusters, which can contain as many as 15,000 eggs.
All species are aposematic; they have conspicuous coloration with boldly contrasting stripes and wide fans of projecting spines, advertising their ability to defend themselves.
Prey
Pterois prey mostly on small fish, invertebrates, and mollusks, with up to six different species of prey found in the gastrointestinal tracts of some specimens. Lionfish feed most actively in the morning. Lionfish are skilled hunters, using specialized swim bladder muscles to provide precise control of their location in the water column, allowing them to alter their center of gravity to better attack prey. They blow jets of water while approaching prey, which serves to confuse them and alter the orientation of the prey so that the smaller fish is facing the lionfish. This results in a higher degree of predatory efficiency as head-first capture is easier for the lionfish. The lionfish then spreads its large pectoral fins and swallows its prey in a single motion.
Predators and parasites
Aside from instances of larger lionfish individuals engaging in cannibalism on smaller individuals, adult lionfish have few identified natural predators, likely due to the effectiveness of their venomous spines: when threatened, a lionfish will orient its body to keep its dorsal fin pointed at the predator, even if this means swimming upsidedown. This does not always save it, however: Moray eels, bluespotted cornetfish, barracuda and large groupers have been observed preying on lionfish. Sharks are also believed to be capable of preying on lionfish with no ill effects from their spines. Park officials of the Roatan Marine Park in Honduras have attempted to train sharks to feed on lionfish to control the invasive populations in the Caribbean. The Bobbit worm, an ambush predator, has been filmed preying upon lionfish in Indonesia.[31] Predators of larvae and juvenile lionfish remain unknown, but may prove to be the primary limiting factor of lionfish populations in their native range.
Parasites of lionfish have rarely been observed, and are assumed to be infrequent. They include isopods and leeches.
Interaction with humans
Lionfish are known for their venomous fin rays, which makes them hazardous to other marine animals, as well as humans. Pterois venom produced negative inotropic and chronotropic effects when tested in both frog and clam hearts and has a depressive effect on rabbit blood pressure. These results are thought to be due to nitric oxide release. In humans, Pterois venom can cause systemic effects such as pain, nausea, vomiting, fever, headache, numbness, paresthesia, diarrhea, sweating, temporary paralysis of the limbs, respiratory insufficiency, heart failure, convulsions, and even death. Fatalities are more common in very young children, the elderly, or those who are allergic to the venom. The venom is rarely fatal to healthy adults, but some species have enough venom to produce extreme discomfort for a period of several days. Moreover, Pterois venom poses a danger to allergic victims as they may experience anaphylaxis, a serious and often life-threatening condition that requires immediate emergency medical treatment. Severe allergic reactions to Pterois venom include chest pain, severe breathing difficulties, a drop in blood pressure, swelling of the tongue, sweating, or slurred speech. Such reactions can be fatal if not treated.
Native range and habitat
The lionfish is native to the Indian Ocean and Western Pacific Ocean. They can be found around the seaward edge of shallow coral reefs, lagoons, rocky substrates, and on mesophotic reefs, and can live in areas of varying salinity, temperature, and depth. They are also frequently found in turbid inshore areas and harbors, and have a generally hostile attitude and are territorial toward other reef fish. They are commonly found from shallow waters down to past 100 m (330 ft) depth, and have in several locations been recorded to 300 m depth. Many universities in the Indo-Pacific have documented reports of Pterois aggression toward divers and researchers. P. volitans and P. miles are native to subtropical and tropical regions from southern Japan and southern Korea to the east coast of Australia, Indonesia, Micronesia, French Polynesia, and the South Pacific Ocean. P. miles is also found in the Indian Ocean, from Sumatra to Sri Lanka and the Red Sea.
Invasive introduction and range
Two of the 12 species of Pterois, the red lionfish (P. volitans) and the common lionfish (P. miles), have established themselves as significant invasive species off the East Coast of the United States and in the Caribbean. About 93% of the invasive population in the Western Atlantic is P. volitans.
The red lionfish is found off the East Coast and Gulf Coast of the United States and in the Caribbean Sea, and was likely first introduced off the Florida coast by the early to mid-1980s. This introduction may have occurred in 1992 when Hurricane Andrew destroyed an aquarium in southern Florida, releasing six lionfish into Biscayne Bay. A lionfish was discovered off the coast of Dania Beach, south Florida, as early as 1985, before Hurricane Andrew. The lionfish resemble those of the Philippines, implicating the aquarium trade, suggesting individuals may have been purposely discarded by dissatisfied aquarium enthusiasts. This is in part because lionfish require an experienced aquarist, but are often sold to novices who find their care too difficult. In 2001, the National Oceanic and Atmospheric Administration (NOAA) documented several sightings of lionfish off the coast of Florida, Georgia, South Carolina, North Carolina, Bermuda, and Delaware. In August 2014, when the Gulf Stream was discharging into the mouth of the Delaware Bay, two lionfish were caught by a surf fisherman off the ocean side shore of Cape Henlopen State Park: a red lionfish that weighed 1 pound 4+1⁄2 ounces (580 g) and a common lionfish that weighed 1 pound 2 ounces (510 g). Three days later, a 1-pound-3-ounce (540 g) red lionfish was caught off the shore of Broadkill Beach which is in the Delaware Bay approximately 15 miles (24 km) north of Cape Henlopen State Park. Lionfish were first detected in the Bahamas in 2004. In June 2013 lionfish were discovered as far east as Barbados, and as far south as the Los Roques Archipelago and many Venezuelan continental beaches. Lionfish were first sighted in Brazilian waters in late 2014. Genetic testing on a single captured individual revealed that it was related to the populations found in the Caribbean, suggesting larval dispersal rather than an intentional release.
P. volitans is the most abundant species of the invasive lionfish population in the Atlantic and Caribbean.
Adult lionfish specimens are now found along the United States East Coast from Cape Hatteras, North Carolina, to Florida, and along the Gulf Coast to Texas. They are also found off Bermuda, the Bahamas, and throughout the Caribbean, including the Turks and Caicos, Haiti, Cuba, the Dominican Republic, the Cayman Islands, Aruba, Curacao, Trinidad and Tobago, Bonaire, Puerto Rico, St. Croix, Belize, Honduras, Colombia and Mexico. Population densities continue to increase in the invaded areas, resulting in a population boom of up to 700% in some areas between 2004 and 2008.
Pterois species are known for devouring many other aquarium fishes, unusual in that they are among the few fish species to successfully establish populations in open marine systems.
Pelagic larval dispersion is assumed to occur through oceanic currents, including the Gulf Stream and the Caribbean Current. Ballast water can also contribute to the dispersal.
Extreme temperatures present geographical constraints in the distribution of aquatic species, indicating temperature tolerance plays a role in the lionfish's survival, reproduction, and range of distribution. The abrupt differences in water temperatures north and south of Cape Hatteras directly correlate with the abundance and distribution of Pterois. Pterois expanded along the southeastern coast of the United States and occupied thermal-appropriate zones within 10 years, and the shoreward expansion of this thermally appropriate habitat is expected in coming decades as winter water temperatures warm in response to anthropogenic climate change. Although the timeline of observations points to the east coast of Florida as the initial source of the western Atlantic invasion, the relationship of the United States East Coast and Bahamian lionfish invasion is uncertain. Lionfish can tolerate a minimum salinity of 5 ppt (0.5%) and even withstand pulses of fresh water, which means they can also be found in estuaries of freshwater rivers.
The lionfish invasion is considered to be one of the most serious recent threats to Caribbean and Florida coral reef ecosystems. To help address the pervasive problem, in 2015, the NOAA partnered with the Gulf and Caribbean Fisheries Institute to set up a lionfish portal to provide scientifically accurate information on the invasion and its impacts. The lionfish web portal is aimed at all those involved and affected, including coastal managers, educators, and the public, and the portal was designed as a source of training videos, fact sheets, examples of management plans, and guidelines for monitoring. The web portal draws on the expertise of NOAA's own scientists, as well as that of other scientists and policy makers from academia or NGOs, and managers.
Mediterranean
Lionfish have also established themselves in parts of the Mediterranean - with records down to 110 m depth. Lionfish have been found in Maltese waters and waters of other Mediterranean countires, as well as Croatia. Warming sea temperatures may be allowing lionfish to further expand their range in the Mediterranean.
Long-term effects of invasion
Lionfish have successfully pioneered the coastal waters of the Atlantic in less than a decade, and pose a major threat to reef ecological systems in these areas. A study comparing their abundance from Florida to North Carolina with several species of groupers found they were second only to the native scamp grouper and equally abundant to the graysby, gag, and rock hind. This could be due to a surplus of resource availability resulting from the overfishing of lionfish predators like grouper. Although the lionfish has not expanded to a population size currently causing major ecological problems, their invasion in the United States coastal waters could lead to serious problems in the future. One likely ecological impact caused by Pterois could be their impact on prey population numbers by directly affecting food web relationships. This could ultimately lead to reef deterioration and could negatively influence Atlantic trophic cascade. Lionfish have already been shown to overpopulate reef areas and display aggressive tendencies, forcing native species to move to waters where conditions might be less than favorable.
Lionfish could be reducing Atlantic reef diversity by up to 80%. In July 2011, lionfish were reported for the first time in the Flower Garden Banks National Marine Sanctuary off the coast of Louisiana. Sanctuary officials said they believe the species will be a permanent fixture, but hope to monitor and possibly limit their presence.
Since lionfish thrive so well in the Atlantic and the Caribbean due to nutrient-rich waters and lack of predators, the species has spread tremendously. A single lionfish, located on a reef, reduced young juvenile reef fish populations by 79%.
Control and eradication efforts
Red lionfish are an invasive species, yet relatively little is known about them. NOAA research foci include investigating biotechnical solutions for control of the population, and understanding how the larvae are dispersed. Another important area of study is what controls the population in its native area. Researchers hope to discover what moderates lionfish populations in the Indo-Pacific and apply this information to control the invasive populations, without introducing additional invasive species.
Two new trap designs have been introduced to help with deep-water control of the lionfish. The traps are low and vertical and remain open the entire time of deployment. The vertical relief of the trap attracts lionfish, which makes catching them easier. These new traps are good for catching lionfish without affecting the native species that are ecologically, recreationally, and commercially important to the surrounding areas. These traps are more beneficial than older traps because they limit the potential of catching noninvasive creatures, they have bait that is only appealing to lionfish, they guarantee a catch, and they are easy to transport.
Remotely Operated Vehicles (ROVs) are being developed to help hunt the lionfish. The Reefsweeper ROV uses a harpoon gun to snag it's target. The vehicle is able to hunt fish that may not otherwise be obtainable through human intervention alone.
Rigorous and repeated removal of lionfish from invaded waters could potentially control the exponential expansion of the lionfish in invaded waters. A 2010 study showed effective maintenance would require the monthly harvest of at least 27% of the adult population. Because lionfish are able to reproduce monthly, this effort must be maintained throughout the entire year.
Even to accomplish these numbers seems unlikely, but as populations of lionfish continue to grow throughout the Caribbean and Western Atlantic, actions are being taken to attempt to control the quickly growing numbers. In November 2010, for the first time the Florida Keys National Marine Sanctuary began licensing divers to kill lionfish inside the sanctuary in an attempt to eradicate the fish
Conservation groups and community organizations in the Eastern United States have organized hunting expeditions for Pterois such as the Environment Education Foundation's 'lionfish derby' held annually in Florida. Divemasters from Cozumel to the Honduran Bay Islands and at Reef Conservation International which operates in the Sapodilla Cayes Marine Reserve off Punta Gorda, Belize, now routinely spear them during dives.[citation needed] While diver culling removes lionfish from shallow reefs reducing their densities, lionfish have widely been reported on mesophotic coral ecosystems (reefs from 30 to 150 m) in the western Atlantic and even in deep-sea habitats (greater than 200 m depth). Recent studies have suggested that the effects of culling are likely to be depth-specific, and so have limited impacts on these deeper reef populations. Therefore, other approaches such as trapping are advocated for removing lionfish from deeper reef habitats.
Long-term culling has also been recorded to cause behavior changes in lionfish populations. For example, in the Bahamas, lionfish on heavily culled reefs have become more wary of divers and hide more within the reef structure during the day when culling occurs. Similar lionfish responses to divers have been observed when comparing culled sites and sites without culling in Honduras, including altered lionfish behaviour on reefs too deep for regular culling, but adjacent to heavily culled sites potentially implying movement of individuals between depths.
While culling by marine protection agencies and volunteer divers is an important element of control efforts, development of market-based approaches, which create commercial incentives for removals, has been seen as a means to sustain control efforts. The foremost of these market approaches is the promotion of lionfish as a food item. Another is the use of lionfish spines, fins, and tails for jewelry and other decorative items. Lionfish jewelry production initiatives are underway in Belize, the Bahamas, St. Vincent, and the Grenadines.
In 2014 at Jardines de la Reina National Marine Park in Cuba, a diver experimented with spearing and feeding lionfish to sharks in an effort to teach them to seek out the fish as prey. By 2016, Cuba was finding it more effective to fish for lionfish as food.
"Lionfish as Food" campaign
In 2010, NOAA (which also encourages people to report lionfish sightings, to help track lionfish population dispersal) began a campaign to encourage the consumption of the fish. The "Lionfish as Food" campaign encourages human hunting of the fish as the only form of control known to date. Increasing the catch of lionfish could not only help maintain a reasonable population density, but also provide an alternative fishing source to overfished populations, such as grouper and snapper. The taste is described as "buttery and tender". To promote the campaign, the Roman Catholic Church in Colombia agreed to have their clergy's sermons suggest to their parishioners (84% of the population) eating lionfish on Fridays, Lent, and Easter, which proved highly successful in decreasing the invasive fish problem.
When properly filleted, the naturally venomous fish is safe to eat. Some concern exists about the risk of ciguatera food poisoning (CFP) from the consumption of lionfish, and the FDA included lionfish on the list of species at risk for CFP when lionfish are harvested in some areas tested positive for ciguatera. No cases of CFP from the consumption of lionfish have been verified, and published research has found that the toxins in lionfish venom may be causing false positives in tests for the presence of ciguatera. The Reef Environmental Education Foundation provides advice to restaurant chefs on how they can incorporate the fish into their menus. The NOAA calls the lionfish a "delicious, delicately flavored fish" similar in texture to grouper. Cooking techniques and preparations for lionfish include deep-frying, ceviche, jerky, grilling, and sashimi.
Another initiative is centered around the production of leather from lionfish hides. It seeks to establish a production chain and market for high-quality leather produced from the hides. The goal is to control invasive lionfish populations while providing economic benefits to local fishing communities.
Pterois is a genus of venomous marine fish, commonly known as lionfish, native to the Indo-Pacific. It is characterized by conspicuous warning coloration with red or black bands, and ostentatious dorsal fins tipped with venomous spines. Pterois radiata, Pterois volitans, and Pterois miles are the most commonly studied species in the genus. Pterois species are popular aquarium fish. P. volitans and P. miles are recent and significant invasive species in the west Atlantic, Caribbean Sea and Mediterranean Sea.
Taxonomy
Pterois was described as a genus in 1817 by German naturalist, botanist, biologist, and ornithologist Lorenz Oken. In 1856 the French naturalist Eugène Anselme Sébastien Léon Desmarest designated Scorpaena volitans, which had been named by Bloch in 1787 and which was the same as Linnaeus's 1758 Gasterosteus volitans, as the type species of the genus. This genus is classified within the tribe Pteroini of the subfamily Scorpaeninae within the family Scorpaenidae. The genus name Pterois is based on Georges Cuvier's 1816 French name, “Les Pterois”, meaning "fins" which is an allusion to the high dorsal and long pectoral fins.
Description
According to the National Oceanic and Atmospheric Administration (NOAA), “lionfish have distinctive brown or maroon, and white stripes or bands covering the head and body. They have fleshy tentacles above their eyes and below the mouth; fan-like pectoral fins; long, separated dorsal spines; 13 dorsal spines; 10-11 dorsal soft rays; 3 anal spines; and 6-7 anal soft rays. An adult lionfish can grow as large as 18 inches.”
Juvenile lionfish have a unique tentacle located above their eye sockets that varies in phenotype between species. The evolution of this tentacle is suggested to serve to continually attract new prey; studies also suggest it plays a role in sexual selection.
Ecology and behavior
Pterois species can live from 5 to 15 years and have complex courtship and mating behaviors. Females frequently release two mucus-filled egg clusters, which can contain as many as 15,000 eggs.
All species are aposematic; they have conspicuous coloration with boldly contrasting stripes and wide fans of projecting spines, advertising their ability to defend themselves.
Prey
Pterois prey mostly on small fish, invertebrates, and mollusks, with up to six different species of prey found in the gastrointestinal tracts of some specimens. Lionfish feed most actively in the morning. Lionfish are skilled hunters, using specialized swim bladder muscles to provide precise control of their location in the water column, allowing them to alter their center of gravity to better attack prey. They blow jets of water while approaching prey, which serves to confuse them and alter the orientation of the prey so that the smaller fish is facing the lionfish. This results in a higher degree of predatory efficiency as head-first capture is easier for the lionfish. The lionfish then spreads its large pectoral fins and swallows its prey in a single motion.
Predators and parasites
Aside from instances of larger lionfish individuals engaging in cannibalism on smaller individuals, adult lionfish have few identified natural predators, likely due to the effectiveness of their venomous spines: when threatened, a lionfish will orient its body to keep its dorsal fin pointed at the predator, even if this means swimming upsidedown. This does not always save it, however: Moray eels, bluespotted cornetfish, barracuda and large groupers have been observed preying on lionfish. Sharks are also believed to be capable of preying on lionfish with no ill effects from their spines. Park officials of the Roatan Marine Park in Honduras have attempted to train sharks to feed on lionfish to control the invasive populations in the Caribbean. The Bobbit worm, an ambush predator, has been filmed preying upon lionfish in Indonesia.[31] Predators of larvae and juvenile lionfish remain unknown, but may prove to be the primary limiting factor of lionfish populations in their native range.
Parasites of lionfish have rarely been observed, and are assumed to be infrequent. They include isopods and leeches.
Interaction with humans
Lionfish are known for their venomous fin rays, which makes them hazardous to other marine animals, as well as humans. Pterois venom produced negative inotropic and chronotropic effects when tested in both frog and clam hearts and has a depressive effect on rabbit blood pressure. These results are thought to be due to nitric oxide release. In humans, Pterois venom can cause systemic effects such as pain, nausea, vomiting, fever, headache, numbness, paresthesia, diarrhea, sweating, temporary paralysis of the limbs, respiratory insufficiency, heart failure, convulsions, and even death. Fatalities are more common in very young children, the elderly, or those who are allergic to the venom. The venom is rarely fatal to healthy adults, but some species have enough venom to produce extreme discomfort for a period of several days. Moreover, Pterois venom poses a danger to allergic victims as they may experience anaphylaxis, a serious and often life-threatening condition that requires immediate emergency medical treatment. Severe allergic reactions to Pterois venom include chest pain, severe breathing difficulties, a drop in blood pressure, swelling of the tongue, sweating, or slurred speech. Such reactions can be fatal if not treated.
Native range and habitat
The lionfish is native to the Indian Ocean and Western Pacific Ocean. They can be found around the seaward edge of shallow coral reefs, lagoons, rocky substrates, and on mesophotic reefs, and can live in areas of varying salinity, temperature, and depth. They are also frequently found in turbid inshore areas and harbors, and have a generally hostile attitude and are territorial toward other reef fish. They are commonly found from shallow waters down to past 100 m (330 ft) depth, and have in several locations been recorded to 300 m depth. Many universities in the Indo-Pacific have documented reports of Pterois aggression toward divers and researchers. P. volitans and P. miles are native to subtropical and tropical regions from southern Japan and southern Korea to the east coast of Australia, Indonesia, Micronesia, French Polynesia, and the South Pacific Ocean. P. miles is also found in the Indian Ocean, from Sumatra to Sri Lanka and the Red Sea.
Invasive introduction and range
Two of the 12 species of Pterois, the red lionfish (P. volitans) and the common lionfish (P. miles), have established themselves as significant invasive species off the East Coast of the United States and in the Caribbean. About 93% of the invasive population in the Western Atlantic is P. volitans.
The red lionfish is found off the East Coast and Gulf Coast of the United States and in the Caribbean Sea, and was likely first introduced off the Florida coast by the early to mid-1980s. This introduction may have occurred in 1992 when Hurricane Andrew destroyed an aquarium in southern Florida, releasing six lionfish into Biscayne Bay. A lionfish was discovered off the coast of Dania Beach, south Florida, as early as 1985, before Hurricane Andrew. The lionfish resemble those of the Philippines, implicating the aquarium trade, suggesting individuals may have been purposely discarded by dissatisfied aquarium enthusiasts. This is in part because lionfish require an experienced aquarist, but are often sold to novices who find their care too difficult. In 2001, the National Oceanic and Atmospheric Administration (NOAA) documented several sightings of lionfish off the coast of Florida, Georgia, South Carolina, North Carolina, Bermuda, and Delaware. In August 2014, when the Gulf Stream was discharging into the mouth of the Delaware Bay, two lionfish were caught by a surf fisherman off the ocean side shore of Cape Henlopen State Park: a red lionfish that weighed 1 pound 4+1⁄2 ounces (580 g) and a common lionfish that weighed 1 pound 2 ounces (510 g). Three days later, a 1-pound-3-ounce (540 g) red lionfish was caught off the shore of Broadkill Beach which is in the Delaware Bay approximately 15 miles (24 km) north of Cape Henlopen State Park. Lionfish were first detected in the Bahamas in 2004. In June 2013 lionfish were discovered as far east as Barbados, and as far south as the Los Roques Archipelago and many Venezuelan continental beaches. Lionfish were first sighted in Brazilian waters in late 2014. Genetic testing on a single captured individual revealed that it was related to the populations found in the Caribbean, suggesting larval dispersal rather than an intentional release.
P. volitans is the most abundant species of the invasive lionfish population in the Atlantic and Caribbean.
Adult lionfish specimens are now found along the United States East Coast from Cape Hatteras, North Carolina, to Florida, and along the Gulf Coast to Texas. They are also found off Bermuda, the Bahamas, and throughout the Caribbean, including the Turks and Caicos, Haiti, Cuba, the Dominican Republic, the Cayman Islands, Aruba, Curacao, Trinidad and Tobago, Bonaire, Puerto Rico, St. Croix, Belize, Honduras, Colombia and Mexico. Population densities continue to increase in the invaded areas, resulting in a population boom of up to 700% in some areas between 2004 and 2008.
Pterois species are known for devouring many other aquarium fishes, unusual in that they are among the few fish species to successfully establish populations in open marine systems.
Pelagic larval dispersion is assumed to occur through oceanic currents, including the Gulf Stream and the Caribbean Current. Ballast water can also contribute to the dispersal.
Extreme temperatures present geographical constraints in the distribution of aquatic species, indicating temperature tolerance plays a role in the lionfish's survival, reproduction, and range of distribution. The abrupt differences in water temperatures north and south of Cape Hatteras directly correlate with the abundance and distribution of Pterois. Pterois expanded along the southeastern coast of the United States and occupied thermal-appropriate zones within 10 years, and the shoreward expansion of this thermally appropriate habitat is expected in coming decades as winter water temperatures warm in response to anthropogenic climate change. Although the timeline of observations points to the east coast of Florida as the initial source of the western Atlantic invasion, the relationship of the United States East Coast and Bahamian lionfish invasion is uncertain. Lionfish can tolerate a minimum salinity of 5 ppt (0.5%) and even withstand pulses of fresh water, which means they can also be found in estuaries of freshwater rivers.
The lionfish invasion is considered to be one of the most serious recent threats to Caribbean and Florida coral reef ecosystems. To help address the pervasive problem, in 2015, the NOAA partnered with the Gulf and Caribbean Fisheries Institute to set up a lionfish portal to provide scientifically accurate information on the invasion and its impacts. The lionfish web portal is aimed at all those involved and affected, including coastal managers, educators, and the public, and the portal was designed as a source of training videos, fact sheets, examples of management plans, and guidelines for monitoring. The web portal draws on the expertise of NOAA's own scientists, as well as that of other scientists and policy makers from academia or NGOs, and managers.
Mediterranean
Lionfish have also established themselves in parts of the Mediterranean - with records down to 110 m depth. Lionfish have been found in Maltese waters and waters of other Mediterranean countires, as well as Croatia. Warming sea temperatures may be allowing lionfish to further expand their range in the Mediterranean.
Long-term effects of invasion
Lionfish have successfully pioneered the coastal waters of the Atlantic in less than a decade, and pose a major threat to reef ecological systems in these areas. A study comparing their abundance from Florida to North Carolina with several species of groupers found they were second only to the native scamp grouper and equally abundant to the graysby, gag, and rock hind. This could be due to a surplus of resource availability resulting from the overfishing of lionfish predators like grouper. Although the lionfish has not expanded to a population size currently causing major ecological problems, their invasion in the United States coastal waters could lead to serious problems in the future. One likely ecological impact caused by Pterois could be their impact on prey population numbers by directly affecting food web relationships. This could ultimately lead to reef deterioration and could negatively influence Atlantic trophic cascade. Lionfish have already been shown to overpopulate reef areas and display aggressive tendencies, forcing native species to move to waters where conditions might be less than favorable.
Lionfish could be reducing Atlantic reef diversity by up to 80%. In July 2011, lionfish were reported for the first time in the Flower Garden Banks National Marine Sanctuary off the coast of Louisiana. Sanctuary officials said they believe the species will be a permanent fixture, but hope to monitor and possibly limit their presence.
Since lionfish thrive so well in the Atlantic and the Caribbean due to nutrient-rich waters and lack of predators, the species has spread tremendously. A single lionfish, located on a reef, reduced young juvenile reef fish populations by 79%.
Control and eradication efforts
Red lionfish are an invasive species, yet relatively little is known about them. NOAA research foci include investigating biotechnical solutions for control of the population, and understanding how the larvae are dispersed. Another important area of study is what controls the population in its native area. Researchers hope to discover what moderates lionfish populations in the Indo-Pacific and apply this information to control the invasive populations, without introducing additional invasive species.
Two new trap designs have been introduced to help with deep-water control of the lionfish. The traps are low and vertical and remain open the entire time of deployment. The vertical relief of the trap attracts lionfish, which makes catching them easier. These new traps are good for catching lionfish without affecting the native species that are ecologically, recreationally, and commercially important to the surrounding areas. These traps are more beneficial than older traps because they limit the potential of catching noninvasive creatures, they have bait that is only appealing to lionfish, they guarantee a catch, and they are easy to transport.
Remotely Operated Vehicles (ROVs) are being developed to help hunt the lionfish. The Reefsweeper ROV uses a harpoon gun to snag it's target. The vehicle is able to hunt fish that may not otherwise be obtainable through human intervention alone.
Rigorous and repeated removal of lionfish from invaded waters could potentially control the exponential expansion of the lionfish in invaded waters. A 2010 study showed effective maintenance would require the monthly harvest of at least 27% of the adult population. Because lionfish are able to reproduce monthly, this effort must be maintained throughout the entire year.
Even to accomplish these numbers seems unlikely, but as populations of lionfish continue to grow throughout the Caribbean and Western Atlantic, actions are being taken to attempt to control the quickly growing numbers. In November 2010, for the first time the Florida Keys National Marine Sanctuary began licensing divers to kill lionfish inside the sanctuary in an attempt to eradicate the fish
Conservation groups and community organizations in the Eastern United States have organized hunting expeditions for Pterois such as the Environment Education Foundation's 'lionfish derby' held annually in Florida. Divemasters from Cozumel to the Honduran Bay Islands and at Reef Conservation International which operates in the Sapodilla Cayes Marine Reserve off Punta Gorda, Belize, now routinely spear them during dives.[citation needed] While diver culling removes lionfish from shallow reefs reducing their densities, lionfish have widely been reported on mesophotic coral ecosystems (reefs from 30 to 150 m) in the western Atlantic and even in deep-sea habitats (greater than 200 m depth). Recent studies have suggested that the effects of culling are likely to be depth-specific, and so have limited impacts on these deeper reef populations. Therefore, other approaches such as trapping are advocated for removing lionfish from deeper reef habitats.
Long-term culling has also been recorded to cause behavior changes in lionfish populations. For example, in the Bahamas, lionfish on heavily culled reefs have become more wary of divers and hide more within the reef structure during the day when culling occurs. Similar lionfish responses to divers have been observed when comparing culled sites and sites without culling in Honduras, including altered lionfish behaviour on reefs too deep for regular culling, but adjacent to heavily culled sites potentially implying movement of individuals between depths.
While culling by marine protection agencies and volunteer divers is an important element of control efforts, development of market-based approaches, which create commercial incentives for removals, has been seen as a means to sustain control efforts. The foremost of these market approaches is the promotion of lionfish as a food item. Another is the use of lionfish spines, fins, and tails for jewelry and other decorative items. Lionfish jewelry production initiatives are underway in Belize, the Bahamas, St. Vincent, and the Grenadines.
In 2014 at Jardines de la Reina National Marine Park in Cuba, a diver experimented with spearing and feeding lionfish to sharks in an effort to teach them to seek out the fish as prey. By 2016, Cuba was finding it more effective to fish for lionfish as food.
"Lionfish as Food" campaign
In 2010, NOAA (which also encourages people to report lionfish sightings, to help track lionfish population dispersal) began a campaign to encourage the consumption of the fish. The "Lionfish as Food" campaign encourages human hunting of the fish as the only form of control known to date. Increasing the catch of lionfish could not only help maintain a reasonable population density, but also provide an alternative fishing source to overfished populations, such as grouper and snapper. The taste is described as "buttery and tender". To promote the campaign, the Roman Catholic Church in Colombia agreed to have their clergy's sermons suggest to their parishioners (84% of the population) eating lionfish on Fridays, Lent, and Easter, which proved highly successful in decreasing the invasive fish problem.
When properly filleted, the naturally venomous fish is safe to eat. Some concern exists about the risk of ciguatera food poisoning (CFP) from the consumption of lionfish, and the FDA included lionfish on the list of species at risk for CFP when lionfish are harvested in some areas tested positive for ciguatera. No cases of CFP from the consumption of lionfish have been verified, and published research has found that the toxins in lionfish venom may be causing false positives in tests for the presence of ciguatera. The Reef Environmental Education Foundation provides advice to restaurant chefs on how they can incorporate the fish into their menus. The NOAA calls the lionfish a "delicious, delicately flavored fish" similar in texture to grouper. Cooking techniques and preparations for lionfish include deep-frying, ceviche, jerky, grilling, and sashimi.
Another initiative is centered around the production of leather from lionfish hides. It seeks to establish a production chain and market for high-quality leather produced from the hides. The goal is to control invasive lionfish populations while providing economic benefits to local fishing communities.
Her name is Erika Rae Ahlstrom. She knows 5 languages, can run really far and is a Divemaster. Pretty much the opposite of me - a prodigy - and I lub her very much.
Pterois is a genus of venomous marine fish, commonly known as lionfish, native to the Indo-Pacific. It is characterized by conspicuous warning coloration with red or black bands, and ostentatious dorsal fins tipped with venomous spines. Pterois radiata, Pterois volitans, and Pterois miles are the most commonly studied species in the genus. Pterois species are popular aquarium fish. P. volitans and P. miles are recent and significant invasive species in the west Atlantic, Caribbean Sea and Mediterranean Sea.
Taxonomy
Pterois was described as a genus in 1817 by German naturalist, botanist, biologist, and ornithologist Lorenz Oken. In 1856 the French naturalist Eugène Anselme Sébastien Léon Desmarest designated Scorpaena volitans, which had been named by Bloch in 1787 and which was the same as Linnaeus's 1758 Gasterosteus volitans, as the type species of the genus. This genus is classified within the tribe Pteroini of the subfamily Scorpaeninae within the family Scorpaenidae. The genus name Pterois is based on Georges Cuvier's 1816 French name, “Les Pterois”, meaning "fins" which is an allusion to the high dorsal and long pectoral fins.
Description
According to the National Oceanic and Atmospheric Administration (NOAA), “lionfish have distinctive brown or maroon, and white stripes or bands covering the head and body. They have fleshy tentacles above their eyes and below the mouth; fan-like pectoral fins; long, separated dorsal spines; 13 dorsal spines; 10-11 dorsal soft rays; 3 anal spines; and 6-7 anal soft rays. An adult lionfish can grow as large as 18 inches.”
Juvenile lionfish have a unique tentacle located above their eye sockets that varies in phenotype between species. The evolution of this tentacle is suggested to serve to continually attract new prey; studies also suggest it plays a role in sexual selection.
Ecology and behavior
Pterois species can live from 5 to 15 years and have complex courtship and mating behaviors. Females frequently release two mucus-filled egg clusters, which can contain as many as 15,000 eggs.
All species are aposematic; they have conspicuous coloration with boldly contrasting stripes and wide fans of projecting spines, advertising their ability to defend themselves.
Prey
Pterois prey mostly on small fish, invertebrates, and mollusks, with up to six different species of prey found in the gastrointestinal tracts of some specimens. Lionfish feed most actively in the morning. Lionfish are skilled hunters, using specialized swim bladder muscles to provide precise control of their location in the water column, allowing them to alter their center of gravity to better attack prey. They blow jets of water while approaching prey, which serves to confuse them and alter the orientation of the prey so that the smaller fish is facing the lionfish. This results in a higher degree of predatory efficiency as head-first capture is easier for the lionfish. The lionfish then spreads its large pectoral fins and swallows its prey in a single motion.
Predators and parasites
Aside from instances of larger lionfish individuals engaging in cannibalism on smaller individuals, adult lionfish have few identified natural predators, likely due to the effectiveness of their venomous spines: when threatened, a lionfish will orient its body to keep its dorsal fin pointed at the predator, even if this means swimming upsidedown. This does not always save it, however: Moray eels, bluespotted cornetfish, barracuda and large groupers have been observed preying on lionfish. Sharks are also believed to be capable of preying on lionfish with no ill effects from their spines. Park officials of the Roatan Marine Park in Honduras have attempted to train sharks to feed on lionfish to control the invasive populations in the Caribbean. The Bobbit worm, an ambush predator, has been filmed preying upon lionfish in Indonesia.[31] Predators of larvae and juvenile lionfish remain unknown, but may prove to be the primary limiting factor of lionfish populations in their native range.
Parasites of lionfish have rarely been observed, and are assumed to be infrequent. They include isopods and leeches.
Interaction with humans
Lionfish are known for their venomous fin rays, which makes them hazardous to other marine animals, as well as humans. Pterois venom produced negative inotropic and chronotropic effects when tested in both frog and clam hearts and has a depressive effect on rabbit blood pressure. These results are thought to be due to nitric oxide release. In humans, Pterois venom can cause systemic effects such as pain, nausea, vomiting, fever, headache, numbness, paresthesia, diarrhea, sweating, temporary paralysis of the limbs, respiratory insufficiency, heart failure, convulsions, and even death. Fatalities are more common in very young children, the elderly, or those who are allergic to the venom. The venom is rarely fatal to healthy adults, but some species have enough venom to produce extreme discomfort for a period of several days. Moreover, Pterois venom poses a danger to allergic victims as they may experience anaphylaxis, a serious and often life-threatening condition that requires immediate emergency medical treatment. Severe allergic reactions to Pterois venom include chest pain, severe breathing difficulties, a drop in blood pressure, swelling of the tongue, sweating, or slurred speech. Such reactions can be fatal if not treated.
Native range and habitat
The lionfish is native to the Indian Ocean and Western Pacific Ocean. They can be found around the seaward edge of shallow coral reefs, lagoons, rocky substrates, and on mesophotic reefs, and can live in areas of varying salinity, temperature, and depth. They are also frequently found in turbid inshore areas and harbors, and have a generally hostile attitude and are territorial toward other reef fish. They are commonly found from shallow waters down to past 100 m (330 ft) depth, and have in several locations been recorded to 300 m depth. Many universities in the Indo-Pacific have documented reports of Pterois aggression toward divers and researchers. P. volitans and P. miles are native to subtropical and tropical regions from southern Japan and southern Korea to the east coast of Australia, Indonesia, Micronesia, French Polynesia, and the South Pacific Ocean. P. miles is also found in the Indian Ocean, from Sumatra to Sri Lanka and the Red Sea.
Invasive introduction and range
Two of the 12 species of Pterois, the red lionfish (P. volitans) and the common lionfish (P. miles), have established themselves as significant invasive species off the East Coast of the United States and in the Caribbean. About 93% of the invasive population in the Western Atlantic is P. volitans.
The red lionfish is found off the East Coast and Gulf Coast of the United States and in the Caribbean Sea, and was likely first introduced off the Florida coast by the early to mid-1980s. This introduction may have occurred in 1992 when Hurricane Andrew destroyed an aquarium in southern Florida, releasing six lionfish into Biscayne Bay. A lionfish was discovered off the coast of Dania Beach, south Florida, as early as 1985, before Hurricane Andrew. The lionfish resemble those of the Philippines, implicating the aquarium trade, suggesting individuals may have been purposely discarded by dissatisfied aquarium enthusiasts. This is in part because lionfish require an experienced aquarist, but are often sold to novices who find their care too difficult. In 2001, the National Oceanic and Atmospheric Administration (NOAA) documented several sightings of lionfish off the coast of Florida, Georgia, South Carolina, North Carolina, Bermuda, and Delaware. In August 2014, when the Gulf Stream was discharging into the mouth of the Delaware Bay, two lionfish were caught by a surf fisherman off the ocean side shore of Cape Henlopen State Park: a red lionfish that weighed 1 pound 4+1⁄2 ounces (580 g) and a common lionfish that weighed 1 pound 2 ounces (510 g). Three days later, a 1-pound-3-ounce (540 g) red lionfish was caught off the shore of Broadkill Beach which is in the Delaware Bay approximately 15 miles (24 km) north of Cape Henlopen State Park. Lionfish were first detected in the Bahamas in 2004. In June 2013 lionfish were discovered as far east as Barbados, and as far south as the Los Roques Archipelago and many Venezuelan continental beaches. Lionfish were first sighted in Brazilian waters in late 2014. Genetic testing on a single captured individual revealed that it was related to the populations found in the Caribbean, suggesting larval dispersal rather than an intentional release.
P. volitans is the most abundant species of the invasive lionfish population in the Atlantic and Caribbean.
Adult lionfish specimens are now found along the United States East Coast from Cape Hatteras, North Carolina, to Florida, and along the Gulf Coast to Texas. They are also found off Bermuda, the Bahamas, and throughout the Caribbean, including the Turks and Caicos, Haiti, Cuba, the Dominican Republic, the Cayman Islands, Aruba, Curacao, Trinidad and Tobago, Bonaire, Puerto Rico, St. Croix, Belize, Honduras, Colombia and Mexico. Population densities continue to increase in the invaded areas, resulting in a population boom of up to 700% in some areas between 2004 and 2008.
Pterois species are known for devouring many other aquarium fishes, unusual in that they are among the few fish species to successfully establish populations in open marine systems.
Pelagic larval dispersion is assumed to occur through oceanic currents, including the Gulf Stream and the Caribbean Current. Ballast water can also contribute to the dispersal.
Extreme temperatures present geographical constraints in the distribution of aquatic species, indicating temperature tolerance plays a role in the lionfish's survival, reproduction, and range of distribution. The abrupt differences in water temperatures north and south of Cape Hatteras directly correlate with the abundance and distribution of Pterois. Pterois expanded along the southeastern coast of the United States and occupied thermal-appropriate zones within 10 years, and the shoreward expansion of this thermally appropriate habitat is expected in coming decades as winter water temperatures warm in response to anthropogenic climate change. Although the timeline of observations points to the east coast of Florida as the initial source of the western Atlantic invasion, the relationship of the United States East Coast and Bahamian lionfish invasion is uncertain. Lionfish can tolerate a minimum salinity of 5 ppt (0.5%) and even withstand pulses of fresh water, which means they can also be found in estuaries of freshwater rivers.
The lionfish invasion is considered to be one of the most serious recent threats to Caribbean and Florida coral reef ecosystems. To help address the pervasive problem, in 2015, the NOAA partnered with the Gulf and Caribbean Fisheries Institute to set up a lionfish portal to provide scientifically accurate information on the invasion and its impacts. The lionfish web portal is aimed at all those involved and affected, including coastal managers, educators, and the public, and the portal was designed as a source of training videos, fact sheets, examples of management plans, and guidelines for monitoring. The web portal draws on the expertise of NOAA's own scientists, as well as that of other scientists and policy makers from academia or NGOs, and managers.
Mediterranean
Lionfish have also established themselves in parts of the Mediterranean - with records down to 110 m depth. Lionfish have been found in Maltese waters and waters of other Mediterranean countires, as well as Croatia. Warming sea temperatures may be allowing lionfish to further expand their range in the Mediterranean.
Long-term effects of invasion
Lionfish have successfully pioneered the coastal waters of the Atlantic in less than a decade, and pose a major threat to reef ecological systems in these areas. A study comparing their abundance from Florida to North Carolina with several species of groupers found they were second only to the native scamp grouper and equally abundant to the graysby, gag, and rock hind. This could be due to a surplus of resource availability resulting from the overfishing of lionfish predators like grouper. Although the lionfish has not expanded to a population size currently causing major ecological problems, their invasion in the United States coastal waters could lead to serious problems in the future. One likely ecological impact caused by Pterois could be their impact on prey population numbers by directly affecting food web relationships. This could ultimately lead to reef deterioration and could negatively influence Atlantic trophic cascade. Lionfish have already been shown to overpopulate reef areas and display aggressive tendencies, forcing native species to move to waters where conditions might be less than favorable.
Lionfish could be reducing Atlantic reef diversity by up to 80%. In July 2011, lionfish were reported for the first time in the Flower Garden Banks National Marine Sanctuary off the coast of Louisiana. Sanctuary officials said they believe the species will be a permanent fixture, but hope to monitor and possibly limit their presence.
Since lionfish thrive so well in the Atlantic and the Caribbean due to nutrient-rich waters and lack of predators, the species has spread tremendously. A single lionfish, located on a reef, reduced young juvenile reef fish populations by 79%.
Control and eradication efforts
Red lionfish are an invasive species, yet relatively little is known about them. NOAA research foci include investigating biotechnical solutions for control of the population, and understanding how the larvae are dispersed. Another important area of study is what controls the population in its native area. Researchers hope to discover what moderates lionfish populations in the Indo-Pacific and apply this information to control the invasive populations, without introducing additional invasive species.
Two new trap designs have been introduced to help with deep-water control of the lionfish. The traps are low and vertical and remain open the entire time of deployment. The vertical relief of the trap attracts lionfish, which makes catching them easier. These new traps are good for catching lionfish without affecting the native species that are ecologically, recreationally, and commercially important to the surrounding areas. These traps are more beneficial than older traps because they limit the potential of catching noninvasive creatures, they have bait that is only appealing to lionfish, they guarantee a catch, and they are easy to transport.
Remotely Operated Vehicles (ROVs) are being developed to help hunt the lionfish. The Reefsweeper ROV uses a harpoon gun to snag it's target. The vehicle is able to hunt fish that may not otherwise be obtainable through human intervention alone.
Rigorous and repeated removal of lionfish from invaded waters could potentially control the exponential expansion of the lionfish in invaded waters. A 2010 study showed effective maintenance would require the monthly harvest of at least 27% of the adult population. Because lionfish are able to reproduce monthly, this effort must be maintained throughout the entire year.
Even to accomplish these numbers seems unlikely, but as populations of lionfish continue to grow throughout the Caribbean and Western Atlantic, actions are being taken to attempt to control the quickly growing numbers. In November 2010, for the first time the Florida Keys National Marine Sanctuary began licensing divers to kill lionfish inside the sanctuary in an attempt to eradicate the fish
Conservation groups and community organizations in the Eastern United States have organized hunting expeditions for Pterois such as the Environment Education Foundation's 'lionfish derby' held annually in Florida. Divemasters from Cozumel to the Honduran Bay Islands and at Reef Conservation International which operates in the Sapodilla Cayes Marine Reserve off Punta Gorda, Belize, now routinely spear them during dives.[citation needed] While diver culling removes lionfish from shallow reefs reducing their densities, lionfish have widely been reported on mesophotic coral ecosystems (reefs from 30 to 150 m) in the western Atlantic and even in deep-sea habitats (greater than 200 m depth). Recent studies have suggested that the effects of culling are likely to be depth-specific, and so have limited impacts on these deeper reef populations. Therefore, other approaches such as trapping are advocated for removing lionfish from deeper reef habitats.
Long-term culling has also been recorded to cause behavior changes in lionfish populations. For example, in the Bahamas, lionfish on heavily culled reefs have become more wary of divers and hide more within the reef structure during the day when culling occurs. Similar lionfish responses to divers have been observed when comparing culled sites and sites without culling in Honduras, including altered lionfish behaviour on reefs too deep for regular culling, but adjacent to heavily culled sites potentially implying movement of individuals between depths.
While culling by marine protection agencies and volunteer divers is an important element of control efforts, development of market-based approaches, which create commercial incentives for removals, has been seen as a means to sustain control efforts. The foremost of these market approaches is the promotion of lionfish as a food item. Another is the use of lionfish spines, fins, and tails for jewelry and other decorative items. Lionfish jewelry production initiatives are underway in Belize, the Bahamas, St. Vincent, and the Grenadines.
In 2014 at Jardines de la Reina National Marine Park in Cuba, a diver experimented with spearing and feeding lionfish to sharks in an effort to teach them to seek out the fish as prey. By 2016, Cuba was finding it more effective to fish for lionfish as food.
"Lionfish as Food" campaign
In 2010, NOAA (which also encourages people to report lionfish sightings, to help track lionfish population dispersal) began a campaign to encourage the consumption of the fish. The "Lionfish as Food" campaign encourages human hunting of the fish as the only form of control known to date. Increasing the catch of lionfish could not only help maintain a reasonable population density, but also provide an alternative fishing source to overfished populations, such as grouper and snapper. The taste is described as "buttery and tender". To promote the campaign, the Roman Catholic Church in Colombia agreed to have their clergy's sermons suggest to their parishioners (84% of the population) eating lionfish on Fridays, Lent, and Easter, which proved highly successful in decreasing the invasive fish problem.
When properly filleted, the naturally venomous fish is safe to eat. Some concern exists about the risk of ciguatera food poisoning (CFP) from the consumption of lionfish, and the FDA included lionfish on the list of species at risk for CFP when lionfish are harvested in some areas tested positive for ciguatera. No cases of CFP from the consumption of lionfish have been verified, and published research has found that the toxins in lionfish venom may be causing false positives in tests for the presence of ciguatera. The Reef Environmental Education Foundation provides advice to restaurant chefs on how they can incorporate the fish into their menus. The NOAA calls the lionfish a "delicious, delicately flavored fish" similar in texture to grouper. Cooking techniques and preparations for lionfish include deep-frying, ceviche, jerky, grilling, and sashimi.
Another initiative is centered around the production of leather from lionfish hides. It seeks to establish a production chain and market for high-quality leather produced from the hides. The goal is to control invasive lionfish populations while providing economic benefits to local fishing communities.
Scuba Diving in Hurghada - FUN for whole family all year around with www.newsonbijou.com :)
Family NEW SON BIJOU Diving Center since 1987 is THE PLACE in Red Sea for scuba diving and snorkeling with your family! Best Prices & Quality! FUN for whole family ALL YEAR AROUND :) Safe, friendly & professional! Our experienced PADI, CMAS and SDI Instructors speak English, German and Arabic.
We offer: daily diving (kids dive, family scuba dive, introduction dive, night dive, wreck dive), all PADI and CMAS courses (from Open Water course to Divemaster). Make Diving a Family Activity & share unforgettable underwater memories together with your children :)
DO NOT GET LOST IN THE CROWD, come to our family New Son Bijou Diving Center and experience true Egyptian hospitality, great diving and personal individual approach.
Mark Healey Is the Greatest Athlete You've Never Heard Of - by Thayer Walker
He surfs sixty-foot waves, performs Hollywood stunts, and can hold his breath underwater for six—six!—minutes. Now he's freediving to tag hammerhead sharks for science.
The island of Mikomoto is a barren, windswept, wave-battered chunk of basalt infested with sharks and scoured by current, and looks as if it erupted from the fever dream of a malarial sea captain. Six miles offshore of Japan’s quiet port town of Minami-Izu, its waters are so treacherous that the 25-acre uninhabited island was chosen in 1870 as the site of one of the country’s first stone lighthouses, a 75-foot tower wrapped with black stripes. For Mark Healey, these are all the ingredients of a good time.
“This should be fun,” he says as the Otomaru, our 40-foot chartered fishing boat, pulls into a rocky cove.
Clad head to toe in a three-millimeter camouflage wetsuit with fins to match, he looks like he just swam out of a Special Forces unit. He has a black GoPro camera (one of his many sponsors) strapped to his head; it’s an accessory so common in his daily life that it may as well be a permanent appendage. A knife is cinched at the hip to his weight belt, along with a trio of two-pound lead weights, custom-made to reduce drag in the water. A black glove protects his left hand. In his naked right he holds a four-foot teakwood Riffe speargun.
Healey takes a giant stride off the Otomaru into the 80-degree water. After a few minutes of deliberate breathing, he bends at the waist and dives. His fins—three and a half feet long for freediving—break the water with a gentle splash, then slide beneath the surface. One, two, seven long, smooth kicks take him down to 30 feet, at which point the lead weights take over, pulling him deeper. One minute in—a point when even strong divers would head up—Healey scans the depths and glides down to 80 feet.
A 34-year-old professional big-wave surfer, Healey has built a career chasing down the dangerous and nearly impossible. He’s a perennial finalist in the World Surf League’s Big Wave Awards—the discipline’s equivalent of the Oscars—having won the top prize in the Biggest Tube category in 2009 for a barrel in Oregon and the Biggest Paddle-In Wave in 2014 for a 60-foot monster at Jaws, on Maui’s north shore. He once won the Surfer magazine poll for Worst Wipeout, crashing on a punishing wave at Teahupoo, in Tahiti, that would have vaporized most surfers. But Healey isn’t in Japan to ride waves—he’s here to swim with sharks.
As a member of a six-person scientific expedition, he has come to Japan for two weeks to tag an endangered population of scalloped hammerheads that congregate around Mikomoto. The sharks have plummeted in numbers by as much as 90 percent, largely due to overfishing and an insatiable appetite in Asia for fin soup. The scientists hope that the data they record, such as population sizes and migratory patterns, will improve conservation policies regionally and globally.
Between Austin Gallagher, the 30-year-old marine ecologist and founder of the conservation nonprofit Beneath the Waves who assembled the group, and the other scientists, there are enough degrees on board to rival a thermometer. Yet Healey, a man whose traditional schooling ended after the seventh grade, is the linchpin of the project. He’s a champion spearfisherman and freediver who can hold his breath for an astounding six minutes underwater, and the scientists can’t tag these notoriously hypersensitive sharks without him.
“Hammerheads are nearly impossible to catch on a line without killing them,” Gallagher says. “They need to be tagged on their turf, underwater. Because they’re so skittish, they stay away from the noise and bubbles created by scuba divers.”
Battling a heavy swell and strong currents, Healey will dive as deep as 135 feet, sneak into a school of up to 100 sharks, shoot a few with satellite or acoustic radio tags in the noninvasive area behind the dorsal fin, and then swim back to the surface—all on a single breath of air.
The hammerheads the team is after, which can grow to eight feet and 200 pounds, are small fry compared with the beasts Healey has previously pursued. In 2011, he traveled to Mexico’s Guadalupe Island to dive with great white sharks for a National Geographic television shoot. On the first day, after 30 minutes watching a trio of the one-ton animals arc through the water, Healey swam away from the safety of the boat and joined them. The biggest shark in the group interrupted its meander and made toward Healey like a guided missile. Is this a bad idea? he wondered, all the while holding his ground. As the shark swam beneath him, Healey extended his arm in a terrifying handshake and grabbed its dorsal fin.
The shark didn’t flinch any more than if Healey had been a remora. He wasn’t prey—he’d become an object for the sharks to use in competition for dominance. When he was paired off with one shark, the others stayed away. When a shark began to dive, Healey would let go. “The last place you want to be is kicking 70 feet back up through the water column. That’s when they eat you,” he told me.
During one ride, Healey was piggybacking on a shark as it approached a floating tuna head. He could feel the beast begin to open its giant mouth. Alarmed at what a feeding great white might do if it felt his full weight when it broke the surface, he slid off.
But after hours in the water in Japan, Healey hasn’t yet seen a shark. “It’s a numbers game,” he says during a post-dive recovery float. “The more time I’m underwater, the more likely we are to find hammerheads.” He takes a few more long breaths and disappears beneath the surface.
Scalloped hammerheads are famous for congregating in huge schools around seamounts. Thought to be attracted to the magnetism of volcanic islands like Cocos and the Galápagos, in the eastern Pacific, and Mikomoto, they may use underwater rock formations as resting and social centers during the day and as points of reference for nocturnal hunting. Their distinctive heads could help them detect the electromagnetic signals of the earth and other animals.
The scientists aboard the Otomaru want to understand the very basics of these hammerheads. Why do they come to Mikomoto, what are they doing here, how long do they stay, and where do they go next? By identifying their habits and highways, the scientists can maximize conservation efforts.
Gallagher has put together an international group for the expedition. David Jacoby, a postdoctorate at the Zoological Society of London, studies shark social networks and once bred 1,000 cat sharks in captivity. Yannis Papastamatiou, also from the UK, is a jujitsu black belt who specializes in using underwater acoustics to study shark movement as an assistant professor at Florida International University. Yuuki Watanabe, an associate professor at Japan’s National Institute of Polar Research, is our local lead. Tre’ Packard, executive director of a Hawaii-based art and conservation nonprofit called the PangeaSeed Foundation, suggested the expedition to Gallagher in the first place, having dived at Mikomoto before with one of only a handful of commercial operators that run trips here.
Our plan makes the long, hot August days on a small fishing boat almost civilized. At night we stay at a traditional Japanese guesthouse in Minami-Izu, eating delicious local fare as we sit on tatami-mat floors. Each morning we board the Otomaru by 8 a.m. and hit the water 30 minutes later. As an experienced freediver myself, I often follow Healey down but have no illusions of keeping pace.
Healey’s been on a previous research expedition, in 2014 in the Philippines, where he tagged nine thresher sharks. On this trip, he’ll use two kinds of tags. Satellite tags will record the sharks’ seasonal migration, then pop off after six to twelve months, sending GPS data of the animal’s path from the surface. Smaller acoustic tags will stay on for up to a year and transmit local data when the shark comes within a few hundred feet of an underwater receiver, which the scientists will moor to the seafloor. The team plans to return annually to swap out the receivers, collect a year’s worth of acoustic data, and tag more sharks.
Studying these animals is not simply an academic exercise. Healthy hammerhead populations help maintain healthy oceans and economies. A 2007 study in the journal Science correlated a more than 90 percent decline in hammerheads and other sharks along the eastern seaboard of the U.S. with an explosion in the population of their prey, cow-nosed rays. The rays then consumed enough bay scallops to collapse North Carolina’s century-old fishery. “People get so riled up about sharks for the same reasons they get riled up about politics and religion,” Healey says. “It’s all about power and control.”
Which we don’t seem to have a lot of thus far. Though we’ve been casting Healey over the side each day like a fishing lure, we still haven’t seen any hammerheads. To make matters more difficult, two Category 4 typhoons are spinning our way, threatening to cut our trip a week short, and the conditions at Mikomoto are deteriorating, bringing wind, rain, and seasickness. On the bow, one of the scientists heaves into the pitching waves, a fluorescent yellow blend of miso soup and stomach bile. Healey, astern and at ease, pulls out a tin of chewing tobacco, packs a dip, and awaits marching orders.
The four-person Japanese crew of the Otomaru—a captain, two sailors, and a divemaster—are eager to return to harbor as the boat gets nailed from all sides by the growing swell. But the team needs a win and decides on setting a receiver.
Gallagher, Jacoby, and Papastamatiou clamber into scuba gear. They plan to set the receiver a few hundred yards from shore. Once it’s secured, they’ll fire a float to the surface, where the boat can take a GPS reading to mark it. The captain, however, doesn’t want to risk bringing the boat that close to the island. “I’ll do it,” says Healey, volunteering to swim to the float with his handheld GPS. “Back into wardrobe.”
The float pops up 20 minutes later, and Healey swims a quick 400 yards out and back. Wind and rain lash the deck and our faces; the black ocean is colored with whitecaps. Gallagher, Jacoby, and Papastamatiou surface and are swept toward a jagged house-size rock shaped, appropriately, like a shark fin. Inching toward them, the Otomaru gets pounded by waves.
“This is bad,” Papastamatiou says in the water.
Gallagher looks concerned. “Are we going to be OK?” he asks.
A deckhand throws a rope to the divers as the captain slams the boat in reverse to avoid hitting the rock. The Otomaru pitches like a rocking chair. One moment the gunwale is ten feet in the air, the next it’s slamming into the water. Healey helps haul the divers in one by one, a tumble of fins, tanks, and regulators.
“That was an education,” Papastamatiou says. The scientists are shell-shocked, and the crew is angry. The captain cranks the throttle to head back to shore. Healey throws his arms toward the heavens triumphantly, a grin stretching from here to the mainland.
Standing just five foot nine and 153 pounds, with ginger freckles, narrow-set eyes, and a chiseled jaw, Healey looks like a blend of Richie Cunningham and Aquaman. Though new to field biology, he’s been turning heads in the surf world for two decades. At the age of 14, he made a splash riding 30-foot waves at Waimea Bay. He cashed his first paycheck as a professional three years later and has been a fixture in the world’s scariest lineups ever since.
“As a waterman, Mark is unrivaled,” says big-wave icon Laird Hamilton. “When it comes to riding giant waves, diving deep, and hunting fish, he’s the total package—unique even among us.”
A knack for doing the right thing in the wrong place has landed Healey stuntman gigs on Chasing Mavericks and the reboots of Hawaii 5-0 and Point Break. About a year after walking away from his longtime sponsor Quiksilver, he helped launch the surf-apparel company Depactus in February 2015 as a minority partner and the face of the brand. But despite his success on a surfboard, it’s not his first love. “People always think of Mark as a professional surfer,” says spearfishing record holder Cameron Kirkconnell, “but the truth is, he surfs to support his diving habit.”
Healey learned to swim before he could walk and estimates that he’s spent “a third of the year with a dive mask on since the age of 12.” He was born and raised and still resides in Haleiwa, on Oahu’s North Shore. His father, Andy, is an avid waterman who would wrap his tiny toddler in a life vest, give him a mask and snorkel, and pull him through the water clinging to a fishing buoy. “He took to it immediately,” Andy recalls.
Fishing was a way of life in the Healey household, a passion born from a love of the ocean and the need to eat. On calm evenings, they would paddle a half-mile out to a lonely rock in the Pacific and cast lines until sunrise. “There always had to be some element of misery to it,” Healey remembers fondly.
Money was tight. Andy was a carpenter who pounded nails for a living and a boxing bag for fun. Healey’s mother, Bitsy, cleaned houses so she could keep an eye on him while she worked. “It was hard to find a babysitter who could keep up with him,” she says. They shared a three-bedroom house with termites and holes in the floor. Bitsy would cover the latter with throw rugs, which Mark turned into traps, baiting friends into a chase and laughing as they fell into the mud below. Mark and his brother, Mikey, bounced between public and private school until Bitsy began homeschooling them in 1994.
Pale, blond, freckled, and undersize, Healey suffered a phenotype cursed in his poor, rural neighborhood. He didn’t crack 100 pounds until long after he’d gotten his driver’s license. Bloody noses and black eyes weren’t uncommon. He would never be able to fight all the bullies, despite boxing training from his father and martial-arts classes. “If you didn’t confront a situation, it would fester for years,” Healey recalls. “The only way to get any respect was to do things in the ocean that other people couldn’t.”
North Shore lifeguard Dave Wassel heard stories of this bobble-headed young gun who was riding giants. One day, while surfing at Pipeline, he noticed Healey “just owning it” in surf two stories tall, breaking in water two feet deep. In the parking lot afterward, Healey did something else Wassel had never seen. He pulled out a stack of phone books and put them on the driver’s seat. “He couldn’t see over the steering wheel!” Wassel says. “The kid was 17 years old, charging the heaviest waves in the world, and he needed a booster seat to drive home!”
By day five, we are in desperate need of some of that Healey magic. Photographer Kanoa Zimmerman and I float on the surface, watching Healey dive. Four stories down, he swings into a hover, scanning the murk for shadows. A stiff current nudges him off-axis, but he levels himself with a twitch of the left fin. His movements are balletic, part of a subtle dance in which the slightest shifts are made with the greatest intention. “Most people have the ability to be calm sometimes,” Laird Hamilton told me, “but Mark’s calm all the time. That’s very useful in high-risk situations, whether riding giant waves or diving with sharks.”
From below, a shadow appears. Two more arrive, then five, then dozens. Healey stirred up a school of Galapagos sharks loitering in a cloud of fish spawn.
Six feet long and too curious for my taste, they approach from all directions, darting within inches of me, probing for weakness like a pack of street punks in a dark alley. One of the biggest sharks has a distinctive wrinkle on its tail fin and approaches with its gills puffing and dorsal fins down, a display of aggression. All I see is toothy biomass, but Healey’s reading the fine print. “The dominant ones are usually highest in the water column,” he explains later. “They’re the ones that will test you. If you can trick them into thinking you’re the boss, the rest generally fall in line.”
The key word is trick; Healey’s well aware of what even sharks like these can do to a femoral artery. Still, he doesn’t pass up the opportunity for play. Seeing that one of the sharks has a fishhook and line in its mouth, he takes the opportunity for a little benevolent dentistry, swimming down and yanking it out.
On the boat, preparing for another round of diving, I ask Gallagher if it makes sense to start tagging the Galapagos sharks. Water temperatures are hovering around the low eighties, which makes for easier diving but a challenging hammerhead hunt. When the ocean is this warm, the sharks stay deep to stay cool. The boat has a fish finder, but it doesn’t do much good tracking the fast-moving schools. Gallagher’s assurance at the beginning of the trip that we were heading to Mikomoto during a “miracle season,” when schools of 100 hammerheads are common, was starting to feel more like a taunt than encouragement. But the recent Galapagos sighting fuels optimism. “Save the tags for the hammers,” he says.
The crew of the Otomaru don’t share Gallagher’s enthusiasm. “Storm coming,” says the captain, swinging the boat back toward the mainland.
We’ve been in Japan nearly a week and haven’t tagged a single hammerhead, and the conditions will likely continue to worsen because of the impending typhoons. “There’s a very good chance that if we don’t get a tag on a shark in the next 48 hours,” Healey says, “this whole thing is a bust.”
At the guesthouse after dinner, Jacoby and Papastamatiou sit on the floor preparing mooring lines for more receivers. The materials should last years, Jacoby explains, “but that depends on the waves.”
“Forty feet deep should be fine,” Healey says. “The biggest wave I’ve ever seen broke in 60 feet of water.”
“Where was that?” I ask.
Healey, who’s constantly tracking storms and taking last-minute flights in search of the world’s biggest swells, pauses, weighing how much of this hard-won information to share. “Africa,” he replies.
I press. “Is that your cagey way of saying, ‘I’m not going to tell you, because that’s where I might find a 100-foot wave’?” He considers a reply, then thinks better of it, shaking his head as he walks away.
Healey knows each giant ride is a life or death proposition, and he’s seen the high cost of this obsession. In December 2005, pro surfer Malik Joyeux took an awkward wipeout at Pipeline and didn’t surface. Healey ran into the water, swimming laps through the lineup until he finally helped pull Joyeux’s body off the reef. “His brother watched the whole thing,” Healey recalls. “I’d run back up the beach, and when I passed him, I could see his expression changing from confusion to shock. I was probably the last person to shake Malik’s hand.” Five years later, after Hawaiian surfer Sion Milosky drowned at Maverick’s, Healey accompanied his widow to California to retrieve his friend’s body.
“There are a lot of things working against people in this sport” Healey says. “It’s becoming apparent that those odds are coming up around me. I take my preparation very seriously, but there are so many factors to longevity besides the odds of surviving something bad. There’s the mental aspect. Once you’ve seen one of your friends die, can you keep going? Once you’ve helped their families and have seen the grief it causes, do you still want to do it? You have to be born with a certain personality type to keep coming back. But it will never be safe. And the day that it is, I won’t want to do it anymore.”
Healey trains by surfing and diving most days, doing a variety of workouts on the beach and in the pool, and hiking and bow hunting in the mountains. He recently started doing a program a few times a week called Ginástica Natural, a hybrid of yoga and jujitsu focusing on movement and breath. Still, he’s no stranger to carnage, having split his kneecap in half, broken his heel, and ruptured his right eardrum four times, which left him disoriented underwater, nearly causing him to drown. Despite the dangers, he calls life as a professional surfer “the greatest scam on earth.” But he knows the ride won’t last. Now in his thirties, he has entered the decade that most pros call retirement. “The surf industry will bro you into bankruptcy,” he says. “I would rather light myself on fire than go begging for pennies as a grown man.” Instead of doubling down on contests and sponsorships, Healey is venturing into waters most surfers don’t: building businesses.
In addition to Depactus, in 2014 he launched Healey Water Ops (HWO), an operation that gives high-paying and high-profile clients the chance to explore the ocean like, well, Mark Healey. Two-week guided experiences start at $100,000 and have Healey teaching clients how to swim with sharks, surf waves far beyond their comfort zone, spear giant tuna, or partake of any other saltwater adventure conceivable. From tech moguls to Arab royalty, his client roster is a Fortune 500 list of ocean enthusiasts. (Thanks to HWO’s nondisclosure agreement, Healey is as tight-lipped with names as he is about surf breaks.)
Volunteering for expeditions is also part of his expanded career plan. Remote seas are expensive to explore, and trips like this are a way to scout locations for other adventures and deploy his skills for a commendable purpose. “I love having the opportunity to incorporate old knowledge like spearfishing into modern conservation and scientific discovery,” he says.
The sky brightened the next morning. “Mark, it would be great if we could get some data on their behavior and get close to these animals,” says Jacoby, the expert on shark social networks. Healey taps the GoPro on his forehead in affirmation.
We plunge into the ocean, which is still and blue, with 50-foot visibility and little current. The bathymetry is spectacular, a jigsaw of basalt domes, craggy ridgelines, and wide channels. The water explodes with life—there’s so much to see that it’s hard to focus. Thick schools of seven-inch-long fusiliers, blue with sunburst yellow racing stripes down their backs, swim in tight formation appropriate to their military namesake. Two pilot fish, the size of thumbnails and dressed in the black and white stripes of a convict, choose me as their escort.
Suddenly, a cry comes from the Otomaru. “Mark!” Gallagher yells. The unmistakable falcate dorsal fin of a hammerhead cuts the surface, but it’s a football field upcurrent from Healey. He’s got no chance.
Healey climbs back aboard. Gallagher and Papastamatiou, staring down a shutout, finally tell him to start targeting Galapagos sharks, too. “It’s valid data,” Papastamatiou says with a hint of desperation. “No one’s ever done that out here.”
We motor toward the fin sighting, but the shark is long gone. We drop Healey into the water at the mouth of the cove where we moored the receiver a few days ago. Fifteen minutes later, he’s swimming back to the boat. “Got a hammer,” he says quietly. The boat erupts in cheer.
While the scientists slap backs and high-five, Healey sits alone on a far edge of the gunwale. He’s all business now, hunched over, elbows on his knees, hands cradling his chin. He doesn’t even bother to take off his mask between dives. Usually verbose, he replies curtly when asked what he’s seen down there: “Sharks and darkness.”
We head to the east side of the island. Zimmerman, Healey, and I jump in near an exposed rock and begin our drift. Zimmerman probes down to 40 feet where, beneath the layer of murk, he sees the spectral outlines of hammerheads. He follows the sharks and signals us to follow him. Healey’s only halfway through his rest cycle, but the current will blow us off the school if we don’t move now. He dives, pauses to scan the water column four stories down, and continues toward the bottom. I trail, a minute behind and 30 feet above him, straight into a school hundreds thick.
They’re beautiful animals of inspired design—slate gray with a white underbelly, sleek and powerful, and wonderfully freakish. Their long, undulating brow is broken by right angles—they have a “divergent body plan,” as Gallagher describes it in one of his papers. The term hammerhead, if evocative branding, seems a misnomer. Flat and wide, the shark’s cephalofoil is more reminiscent of a chisel. Its mouth, usually the focus of hysterical phobia, is comparatively small and set downward, just north of its stomach, in the perfect place to feast on squid.
They move in concert, swaying through the water with silent grace. They are creatures that want to swim together and be left alone. Toward the center of the school, one of the larger females rolls on her side, flashing her pale underbelly in a mating display. Healey glides into the back of the school, takes aim at a seven-footer, and fires.
It’s a direct hit, right behind the dorsal fin, but it bounces off. With a few quick flicks of the tail, the shark disappears into the crowd. Healey grabs the tag as it sinks toward the bottom, then heads to the surface. He’d fixed the tag to the tip of the gun with a rubber band, which didn’t break. The setup needs tweaking, but Healey gets a second hammerhead before the afternoon wraps.
The last two days are an exercise in target practice. Healey tags Galapagos and hammerheads with both acoustic and satellite transmitters. The scientists set three more receivers, and by the time the typhoons wash Mikomoto in surge, we’ve tagged ten sharks and set five receivers—a successful tally for a year-one expedition being cut short by nearly a week.
The scientists’ plan for their remaining time in Japan: temples in Kyoto, ramen and skyscrapers in Tokyo. Healey’s got other ideas. Just about every big-wave surfer in the western Pacific has been watching the buoys, and tomorrow is calling for 30-foot surf near Chiba, about 40 miles southeast of Tokyo. Healey has a friend flying in from Hawaii with an extra nine-six. There’s a train leaving in an hour. His hair isn’t even dry from diving, but if he hurries he’ll be in Chiba by midnight. It’s the biggest swell Japan has seen in five years.