View allAll Photos Tagged commandmodule

Tom R. Chambers edited/enhanced Apollo images and provided text to produce a series for classroom teaching. It is in book and slide show format. Images and text courtesy of NASA.

 

Chambers was a research analyst at the Lunar Receiving Laboratory during Project Apollo, 1969-1972.

Fernbank Science Center

 

Before you is the Command Module of the Apollo 6. If you look under the capsule you will see a series of holes. These holes were drilled to investigate how the heat shield held up after this capsule re-entered the Earth's atmosphere.

 

The Apollo 6 mission provided a second rehearsal for launching the massive Saturn V rocket. Scientists and engineers were testing the "staging" of a giant rocket to be sure each section would work properly. An important mission objective was to check out all systems before sending astronauts into space. The vehicle carried a full payload, including a mock-up lunar module, and was to test the capsule's heat shield to see if it could withstand re-entry speeds.

 

Initially, the launch seemed to be fine. But approximately two minutes into the flight, the first stage's five F-1 engines developed serious thrust fluctuations that caused the rocket to bounce like a pogo stick for 30 seconds. These oscillations were so intense that an airborne chase plane's cameras recorded pieces of the adapter stage (housing the lunar module) falling off of the vehicle. Such low-frequency vibrations (known as "pogo effect") exceeded the engineering/safety design criteria of the Apollo 6 Command Module. Had astronauts been onboard the spacecraft, the mission would have been aborted by jettisoning the capsule away from the failing rocket.

 

Although the oscillations stopped once the first stage was discarded, the vehicles second stage performance was also less than perfect. Two of the stage's five J-2 engines failed, causing the remaining three engines to burn for a longer period of time than planned. As a result, the second stage ran out of fuel before reaching the desired 100 mile circular orbit.

 

To compensate the Saturn's third stage burned longer and placed the spacecraft into an unplanned 110 by 230 mile elliptical orbit. NASA engineers left Apollo 6 in this "parking orbit for two revolutions around the Earth to assess the situation and perform various system checks. When flight controllers attempted to fire the third stage again, to simulate the flight to the Moon, the J-2 engine failed to restart.

 

The issues with the Saturn V's three stages altered the mission, and it was decided that after separation from the third stage, the Service Module's engine would burn for seven minutes, pushing the Apollo 6 capsule to an altitude of almost 14,000 miles. At such an altitude, enough re-entry speed could then be acquired to simulate an Apollo spacecraft returning from the Moon. The capsule's heat shield withstood the fireball created by a 22,000 mile per hour plunge into the Earth's atmosphere. Apollo 6 splashed down in the Pacific Ocean, completing its 10 hour perilous space odyssey, and was recovered by the crew of the U.S.S. Okinawa.

To open this hatch, it takes a bit more than simply turning a door knob. This is not a replica, but the actual command module flown around the moon in December of 1968.

 

The Museum of Science and Industry is a science museum located in Chicago, Illinois, in Jackson Park, in the Hyde Park neighborhood between Lake Michigan and The University of Chicago. It is housed in the Palace of Fine Arts from the 1893 World's Columbian Exposition.

Saturn V Rocket with Apollo CSV at KSC

Tom R. Chambers edited/enhanced Apollo images and provided text to produce a series for classroom teaching. It is in book and slide show format. Images and text courtesy of NASA.

 

Chambers was a research analyst at the Lunar Receiving Laboratory during Project Apollo, 1969-1972.

Fernbank Science Center

 

Before you is the Command Module of the Apollo 6. If you look under the capsule you will see a series of holes. These holes were drilled to investigate how the heat shield held up after this capsule re-entered the Earth's atmosphere.

 

The Apollo 6 mission provided a second rehearsal for launching the massive Saturn V rocket. Scientists and engineers were testing the "staging" of a giant rocket to be sure each section would work properly. An important mission objective was to check out all systems before sending astronauts into space. The vehicle carried a full payload, including a mock-up lunar module, and was to test the capsule's heat shield to see if it could withstand re-entry speeds.

 

Initially, the launch seemed to be fine. But approximately two minutes into the flight, the first stage's five F-1 engines developed serious thrust fluctuations that caused the rocket to bounce like a pogo stick for 30 seconds. These oscillations were so intense that an airborne chase plane's cameras recorded pieces of the adapter stage (housing the lunar module) falling off of the vehicle. Such low-frequency vibrations (known as "pogo effect") exceeded the engineering/safety design criteria of the Apollo 6 Command Module. Had astronauts been onboard the spacecraft, the mission would have been aborted by jettisoning the capsule away from the failing rocket.

 

Although the oscillations stopped once the first stage was discarded, the vehicles second stage performance was also less than perfect. Two of the stage's five J-2 engines failed, causing the remaining three engines to burn for a longer period of time than planned. As a result, the second stage ran out of fuel before reaching the desired 100 mile circular orbit.

 

To compensate the Saturn's third stage burned longer and placed the spacecraft into an unplanned 110 by 230 mile elliptical orbit. NASA engineers left Apollo 6 in this "parking orbit for two revolutions around the Earth to assess the situation and perform various system checks. When flight controllers attempted to fire the third stage again, to simulate the flight to the Moon, the J-2 engine failed to restart.

 

The issues with the Saturn V's three stages altered the mission, and it was decided that after separation from the third stage, the Service Module's engine would burn for seven minutes, pushing the Apollo 6 capsule to an altitude of almost 14,000 miles. At such an altitude, enough re-entry speed could then be acquired to simulate an Apollo spacecraft returning from the Moon. The capsule's heat shield withstood the fireball created by a 22,000 mile per hour plunge into the Earth's atmosphere. Apollo 6 splashed down in the Pacific Ocean, completing its 10 hour perilous space odyssey, and was recovered by the crew of the U.S.S. Okinawa.

Sights around the Smithsonian Institute's National Air and Space Museum in Washington, DC.

Fernbank Science Center

 

Before you is the Command Module of the Apollo 6. If you look under the capsule you will see a series of holes. These holes were drilled to investigate how the heat shield held up after this capsule re-entered the Earth's atmosphere.

 

The Apollo 6 mission provided a second rehearsal for launching the massive Saturn V rocket. Scientists and engineers were testing the "staging" of a giant rocket to be sure each section would work properly. An important mission objective was to check out all systems before sending astronauts into space. The vehicle carried a full payload, including a mock-up lunar module, and was to test the capsule's heat shield to see if it could withstand re-entry speeds.

 

Initially, the launch seemed to be fine. But approximately two minutes into the flight, the first stage's five F-1 engines developed serious thrust fluctuations that caused the rocket to bounce like a pogo stick for 30 seconds. These oscillations were so intense that an airborne chase plane's cameras recorded pieces of the adapter stage (housing the lunar module) falling off of the vehicle. Such low-frequency vibrations (known as "pogo effect") exceeded the engineering/safety design criteria of the Apollo 6 Command Module. Had astronauts been onboard the spacecraft, the mission would have been aborted by jettisoning the capsule away from the failing rocket.

 

Although the oscillations stopped once the first stage was discarded, the vehicles second stage performance was also less than perfect. Two of the stage's five J-2 engines failed, causing the remaining three engines to burn for a longer period of time than planned. As a result, the second stage ran out of fuel before reaching the desired 100 mile circular orbit.

 

To compensate the Saturn's third stage burned longer and placed the spacecraft into an unplanned 110 by 230 mile elliptical orbit. NASA engineers left Apollo 6 in this "parking orbit for two revolutions around the Earth to assess the situation and perform various system checks. When flight controllers attempted to fire the third stage again, to simulate the flight to the Moon, the J-2 engine failed to restart.

 

The issues with the Saturn V's three stages altered the mission, and it was decided that after separation from the third stage, the Service Module's engine would burn for seven minutes, pushing the Apollo 6 capsule to an altitude of almost 14,000 miles. At such an altitude, enough re-entry speed could then be acquired to simulate an Apollo spacecraft returning from the Moon. The capsule's heat shield withstood the fireball created by a 22,000 mile per hour plunge into the Earth's atmosphere. Apollo 6 splashed down in the Pacific Ocean, completing its 10 hour perilous space odyssey, and was recovered by the crew of the U.S.S. Okinawa.

Tom R. Chambers edited/enhanced Apollo images and provided text to produce a series for classroom teaching. It is in book and slide show format. Images and text courtesy of NASA.

 

Chambers was a research analyst at the Lunar Receiving Laboratory during Project Apollo, 1969-1972.

Apollo Service Module with Command Module at KSC

Fernbank Science Center

 

Before you is the Command Module of the Apollo 6. If you look under the capsule you will see a series of holes. These holes were drilled to investigate how the heat shield held up after this capsule re-entered the Earth's atmosphere.

 

The Apollo 6 mission provided a second rehearsal for launching the massive Saturn V rocket. Scientists and engineers were testing the "staging" of a giant rocket to be sure each section would work properly. An important mission objective was to check out all systems before sending astronauts into space. The vehicle carried a full payload, including a mock-up lunar module, and was to test the capsule's heat shield to see if it could withstand re-entry speeds.

 

Initially, the launch seemed to be fine. But approximately two minutes into the flight, the first stage's five F-1 engines developed serious thrust fluctuations that caused the rocket to bounce like a pogo stick for 30 seconds. These oscillations were so intense that an airborne chase plane's cameras recorded pieces of the adapter stage (housing the lunar module) falling off of the vehicle. Such low-frequency vibrations (known as "pogo effect") exceeded the engineering/safety design criteria of the Apollo 6 Command Module. Had astronauts been onboard the spacecraft, the mission would have been aborted by jettisoning the capsule away from the failing rocket.

 

Although the oscillations stopped once the first stage was discarded, the vehicles second stage performance was also less than perfect. Two of the stage's five J-2 engines failed, causing the remaining three engines to burn for a longer period of time than planned. As a result, the second stage ran out of fuel before reaching the desired 100 mile circular orbit.

 

To compensate the Saturn's third stage burned longer and placed the spacecraft into an unplanned 110 by 230 mile elliptical orbit. NASA engineers left Apollo 6 in this "parking orbit for two revolutions around the Earth to assess the situation and perform various system checks. When flight controllers attempted to fire the third stage again, to simulate the flight to the Moon, the J-2 engine failed to restart.

 

The issues with the Saturn V's three stages altered the mission, and it was decided that after separation from the third stage, the Service Module's engine would burn for seven minutes, pushing the Apollo 6 capsule to an altitude of almost 14,000 miles. At such an altitude, enough re-entry speed could then be acquired to simulate an Apollo spacecraft returning from the Moon. The capsule's heat shield withstood the fireball created by a 22,000 mile per hour plunge into the Earth's atmosphere. Apollo 6 splashed down in the Pacific Ocean, completing its 10 hour perilous space odyssey, and was recovered by the crew of the U.S.S. Okinawa.

Fernbank Science Center

 

Before you is the Command Module of the Apollo 6. If you look under the capsule you will see a series of holes. These holes were drilled to investigate how the heat shield held up after this capsule re-entered the Earth's atmosphere.

 

The Apollo 6 mission provided a second rehearsal for launching the massive Saturn V rocket. Scientists and engineers were testing the "staging" of a giant rocket to be sure each section would work properly. An important mission objective was to check out all systems before sending astronauts into space. The vehicle carried a full payload, including a mock-up lunar module, and was to test the capsule's heat shield to see if it could withstand re-entry speeds.

 

Initially, the launch seemed to be fine. But approximately two minutes into the flight, the first stage's five F-1 engines developed serious thrust fluctuations that caused the rocket to bounce like a pogo stick for 30 seconds. These oscillations were so intense that an airborne chase plane's cameras recorded pieces of the adapter stage (housing the lunar module) falling off of the vehicle. Such low-frequency vibrations (known as "pogo effect") exceeded the engineering/safety design criteria of the Apollo 6 Command Module. Had astronauts been onboard the spacecraft, the mission would have been aborted by jettisoning the capsule away from the failing rocket.

 

Although the oscillations stopped once the first stage was discarded, the vehicles second stage performance was also less than perfect. Two of the stage's five J-2 engines failed, causing the remaining three engines to burn for a longer period of time than planned. As a result, the second stage ran out of fuel before reaching the desired 100 mile circular orbit.

 

To compensate the Saturn's third stage burned longer and placed the spacecraft into an unplanned 110 by 230 mile elliptical orbit. NASA engineers left Apollo 6 in this "parking orbit for two revolutions around the Earth to assess the situation and perform various system checks. When flight controllers attempted to fire the third stage again, to simulate the flight to the Moon, the J-2 engine failed to restart.

 

The issues with the Saturn V's three stages altered the mission, and it was decided that after separation from the third stage, the Service Module's engine would burn for seven minutes, pushing the Apollo 6 capsule to an altitude of almost 14,000 miles. At such an altitude, enough re-entry speed could then be acquired to simulate an Apollo spacecraft returning from the Moon. The capsule's heat shield withstood the fireball created by a 22,000 mile per hour plunge into the Earth's atmosphere. Apollo 6 splashed down in the Pacific Ocean, completing its 10 hour perilous space odyssey, and was recovered by the crew of the U.S.S. Okinawa.

Apollo Service Module with Command Module at KSC

Collection Name: MS346 Whitey Owens Photograph Collection

 

Photographer/Studio: Whitey Owens

 

Description: Mrs. Betty Hearnes and Missouri Gov. Warren E. Hearnes exit NASA's Command Module and moon rock exhibit on the Capitol grounds. An unidentified photographer follows closely at their heels. The man behind the photographer in a suit and glasses is State Treasurer William E. Robinson.

 

Coverage: United States – Missouri – Cole County – Jefferson City

 

Date: 07/17/1970

 

Rights: permission granted

 

Credit: Courtesy of Missouri State Archives

 

Image Number: MS346_Apollo06.tif

 

Institution: Missouri State Archives

This view provides some sense of how small and cramped the Apollo craft were.

1 2 ••• 32 33 35 37 38 ••• 48 49