View allAll Photos Tagged chandraxrayobservatory

In the year 1181 a rare supernova explosion appeared in the night sky, staying visible for 185 consecutive days. Historical records show that the supernova looked like a temporary 'star' in the constellation Cassiopeia shining as bright as Saturn.

 

Ever since, scientists have tried to find the supernova's remnant. At first it was thought that this could be the nebula around the pulsar — the dense core of a collapse star — named 3C 58. However closer investigations revealed that the pulsar is older than supernova 1181.

 

In the last decade, another contender was discovered; Pa 30 is a nearly circular nebula with a central star in the constellation Cassiopeia. It is pictured here combining images from several telescopes. This composite image uses data across the electromagnetic spectrum and shows a spectacular new view of the supernova remnant. This allows us to marvel at the same object that appeared in our ancestors' night sky more than 800 years ago.

 

X-ray observations by ESA's XMM-Newton (blue) show the full extent of the nebula and NASA's Chandra X-ray Observatory (cyan) pinpoints its central source. The nebula is barely visible in optical light but shines bright in infrared light, collected by NASA's Wide-field Infrared Space Explorer (red and pink). Interestingly, the radial structure in the image consists of heated sulfur that glows in visible light, observed with the ground-based Hiltner 2.4 m telescope at the MDM Observatory (green) in Arizona, USA, as do the stars in the background by Pan-STARRS (white) in Hawaii, USA.

 

Credit: X-ray: (Chandra) NASA/CXC/U. Manitoba/C. Treturik, (XMM-Newton) ESA/C. Treturik; Optical: (Pan-STARRS) NOIRLab/MDM/Dartmouth/R. Fesen; Infrared: (WISE) NASA/JPL/Caltech/; Image Processing: Univ. of Manitoba/Gilles Ferrand and Jayanne English

 

#NASAMarshall #NASA #astrophysics #NASAChandra #NASA #supernova

 

Read more

 

Read more about the Chandra X-ray Observatory

 

NASA Media Usage Guidelines

 

This composite image shows the distribution of dark matter, galaxies, and hot gas in the core of the merging galaxy cluster Abell 520, formed from a violent collision of massive galaxy clusters that is located about 2.4 billion light years from Earth.

 

Data from NASA's Chandra X-ray Observatory show the hot gas in the colliding clusters colored in green. The gas provides evidence that a collision took place. Optical data from NASA's Hubble Space Telescope and the Canada-France-Hawaii Telescope (CFHT) in Hawaii are shown in red, green, and blue. Starlight from galaxies within the clusters, derived from observations by the CFHT and smoothed to show the location of most of the galaxies, is colored orange.

 

The blue-colored areas pinpoint the location of most of the mass in the cluster, which is dominated by dark matter. Dark matter is an invisible substance that makes up most of the universe's mass. The dark-matter map was derived from the Hubble observations, by detecting how light from distant objects is distorted by the cluster galaxies, an effect called gravitational lensing. The blend of blue and green in the center of the image reveals that a clump of dark matter (which can be seen by mousing over the image) resides near most of the hot gas, where very few galaxies are found.

 

This finding confirms previous observations of a dark-matter core in the cluster announced in 2007. The result could present a challenge to basic theories of dark matter, which predict that galaxies should be anchored to dark matter, even during the shock of a powerful collision.

 

Credit: NASA, ESA, CFHT, CXO, M.J. Jee (University of California, Davis), and A. Mahdavi (San Francisco State University)

 

Read entire caption/view more images: www.chandra.harvard.edu/photo/2012/a520/

 

Caption credit: Harvard-Smithsonian Center for Astrophysics

 

Read more about Chandra:

www.nasa.gov/chandra

 

p.s. You can see all of our Chandra photos in the Chandra Group in Flickr at: www.flickr.com/groups/chandranasa/ We'd love to have you as a member!

  

_____________________________________________

These official NASA photographs are being made available for publication by news organizations and/or for personal use printing by the subject(s) of the photographs. The photographs may not be used in materials, advertisements, products, or promotions that in any way suggest approval or endorsement by NASA. All Images used must be credited. For information on usage rights please visit: www.nasa.gov/audience/formedia/features/MP_Photo_Guidelin...

One of the most complicated and dramatic collisions between galaxy clusters ever seen is captured in this new composite image. This collision site, known officially as Abell 2744, has been dubbed "Pandora's Cluster" because of the wide variety of different structures seen. Data from NASA's Chandra X-ray Observatory are colored red, showing gas with temperatures of millions of degrees. In blue is a map showing the total mass concentration (mostly dark matter) based on data from the Hubble Space Telescope (HST), the European Southern Observatory's Very Large Telescope (VLT), and the Japanese Subaru telescope. Optical data from HST and VLT also show the constituent galaxies of the clusters.

 

The "core" region shows a bullet-shaped structure in the X-ray emitting hot gas and a separation between the hot gas and the dark matter. (As a guide, local peaks in the distribution of hot gas and overall matter in the different regions are shown with red and blue circles respectively). This separation occurs because electric forces between colliding particles in the clouds of hot gas create a friction that slows them down, while dark matter is unaffected by such forces.

 

In the Northwest ("NW") region, a much larger separation is seen between the hot gas and the dark matter. Surprisingly, the hot gas leads the "dark" clump (mostly dark matter) by about 500,000 light years. This unusual configuration may require a slingshot scenario, as suggested previously by scientists, to fling the hot gas ahead of the dark matter during an earlier interaction. In the North ("N") and the West ("W") two additional examples of hot gas separated from dark matter may be visible. The latter appears to exhibit the largest separation seen to date between hot gas and dark matter.

 

The authors of this study retraced the details of the collision, and deduce that at least four different galaxy clusters coming from a variety of directions were involved. To understand this history, it was crucial to map the positions of all three types of matter in Abell 2744. Although the galaxies are bright, they make up less than 5% of the mass in Abell 2744. The rest is hot gas (around 20%) visible only in X-rays, and dark matter (around 75%), which is completely invisible.

 

Dark matter is particularly elusive as it does not emit, absorb or reflect light, but only makes itself apparent through its gravitational attraction. To pinpoint the location of this mysterious substance the team used a phenomenon known as gravitational lensing. This is the bending of light rays from distant galaxies as they pass through the gravitational field present in the cluster. The result is a series of telltale distortions in the images of galaxies in the background of optical observations. By carefully plotting the way that these images are distorted, a map is constructed of where the mass -- and hence the dark matter -- actually lies (shown in blue).

 

Galaxy clusters are the largest gravitationally bound objects in the Universe and have become powerful tools in cosmology studies. Further studies of Abell 2744 may provide a deeper understanding of the way that these important objects grow and provide new insight into the properties of dark matter.

 

Credit: Credit: X-ray: NASA/CXC/ITA/INAF/J. Merten et al. Lensing: NASA/STScI; NAOJ/Subaru; ESO/VLT Optical: NASA/STScI/R. Dupke

 

Read entire caption/view more images: chandra.harvard.edu/photo/2011/a2744/

 

Caption credit: Harvard-Smithsonian Center for Astrophysics

 

Read more about Chandra:

www.nasa.gov/chandra

 

p.s. You can see all of our Chandra photos in the Chandra Group in Flickr at: www.flickr.com/groups/chandranasa/ We'd love to have you as a member!

To celebrate the 25th anniversary of its launch, NASA’s Chandra X-ray Observatory is releasing 25 never-before-seen views of a wide range of cosmic objects.

 

These images, which all include data from Chandra, demonstrate how X-ray astronomy explores all corners of the universe. By combining X-rays from Chandra with other space-based observatories and telescopes on the ground, as many of these images do, astronomers can tackle the biggest questions and investigate long-standing mysteries across the cosmos.

 

On July 23, 1999, the space shuttle Columbia launched into orbit carrying Chandra, which was then the heaviest payload ever carried by the shuttle. With Commander Eileen Collins at the helm, the astronauts aboard Columbia successfully deployed Chandra into its highly elliptical orbit that takes it nearly one-third of the distance to the Moon.

 

The Cat’s Paw is a nebula where stars are forming in the Milky Way galaxy. X-rays from Chandra show populations of young stars. X-rays from Chandra (purple); optical and H-alpha from ESO/MPG (red, green, and blue); infrared from Spitzer (red, green, and blue)

 

Credit: X-ray: NASA/SAO/CXC; Optical and H-alpha: ESO/MPG; Infrared: NASA/JPL-CalTech/Spitzer; Image Processing: J. Major

 

#NASAMarshall #NASA #astrophysics #NASAChandra #NASA #ESA #nebula

 

Read more

 

Read more about NASA’s Chandra X-ray Observatory

 

NASA Media Usage Guidelines

 

Editor's Note: We have an unofficial Flickr movement afoot to rename this "Hope Nebula." :) What do YOU think?

 

This colorful creation was made by combining data from two of NASA's Great Observatories. Optical data of SNR 0509-67.5 and its accompanying star field, taken with the Hubble Space Telescope, are composited with X-ray energies from the Chandra X-ray Observatory. The result shows soft green and blue hues of heated material from the X-ray data surrounded by the glowing pink optical shell which shows the ambient gas being shocked by the expanding blast wave from the supernova. Ripples in the shell's appearance coincide with brighter areas of the X-ray data.

 

The Type 1a supernova that resulted in the creation of SNR 0509-67.5 occurred nearly 400 years ago for Earth viewers. The supernova remnant, and its progenitor star reside in the Large Magellanic Cloud (LMC), a small galaxy about 160,000 light-years from Earth. The bubble-shaped shroud of gas is 23 light-years across and is expanding at more than 11 million miles per hour (5,000 kilometers per second).

 

Data from Hubble's Advanced Camera for Surveys, taken in 2006 with a filter that isolates light from glowing hydrogen were combined with visible-light images of the surrounding star field that were imaged with Hubble's Wide Field Camera 3 in 2010. These data were then merged with X-ray data from the Chandra X-ray Observatory taken with the Advanced CCD Imaging Spectrometer (ACIS) in 2000 and 2007.

 

Credits: X-ray: NASA/CXC/SAO/J.Hughes et al, Optical: NASA/ESA/Hubble Heritage Team (STScI/AURA)

 

Read entire caption/view more images: chandra.harvard.edu/photo/2010/snr0509/

 

Caption credit: Harvard-Smithsonian Center for Astrophysics

 

Read more about Chandra:

www.nasa.gov/chandra

 

p.s. You can see all of our Chandra photos in the Chandra Group in Flickr at: www.flickr.com/groups/chandranasa/ We'd love to have you as a member!

Chandra Celebrates the International Year of Light

 

This galaxy, nicknamed the “Whirlpool,” is a spiral galaxy, like our Milky Way, located about 30 million light years from Earth. This composite image combines data collected at X-ray wavelengths by Chandra (purple), ultraviolet by the Galaxy Evolution Explorer (GALEX, blue); visible light by Hubble (green), and infrared by Spitzer (red).

 

Image Credit: NASA/CXC/SAO

 

Read full article:

www.nasa.gov/mission_pages/chandra/celebrate-intl-year-of-light.html

 

This Chandra image shows the Carina Nebula, a star-forming region in the Sagittarius-Carina arm of the Milky Way a mere 7,500 light years from Earth. Chandra's sharp X-ray vision has detected over 14,000 stars in this region, revealed a diffuse X-ray glow, and provided strong evidence that massive stars have already self-destructed in this nearby supernova factory.

 

The lower energy X-rays in this image are red, the medium energy X-rays are green, and the highest energy X-rays are blue. The Chandra survey has a large field of 1.4 square degrees, made of a mosaic of 22 individual Chandra pointings. In total, this image represents 1.2 million seconds -- or nearly two weeks -- of Chandra observing time. A great deal of multi-wavelength data has been used in combination with this new Chandra campaign, including infrared observations from the Spitzer Space Telescope and the Very Large Telescope (VLT).

 

Several pieces of evidence support the idea that supernova production has already begun in this star-forming region. Firstly, there is an observed deficit of bright X-ray sources in Trumpler 15, suggesting that some of the massive stars in this cluster were already destroyed in supernova explosions. Trumpler 15 is located in the northern part of the image, as shown in a labeled version, and is one of ten star clusters in the Carina complex. Several other well known clusters are shown in the labeled image.

 

The detection of six possible neutron stars, the dense cores often left behind after stars explode in supernovas, provides additional evidence that supernova activity is ramping up in Carina. Previous observations had only detected one neutron star in Carina. These six neutron star candidates are too faint to be easily picked out in this large-scale image of Carina.

 

Credit: NASA/CXC/Penn State/L. Townsley et al.

 

Read entire caption/view more images: chandra.harvard.edu/photo/2011/carina/

 

Caption credit: Harvard-Smithsonian Center for Astrophysics

 

Read more about Chandra:

www.nasa.gov/chandra

 

p.s. You can see all of our Chandra photos in the Chandra Group in Flickr at: www.flickr.com/groups/chandranasa/ We'd love to have you as a member!

This composite X-ray (red/white) and optical (green/blue) image reveals an elongated cloud, or cocoon, of high-energy particles flowing behind the rapidly rotating pulsar, B1957+20 (white point-like source). The pulsar, a.k.a. the "Black Widow" pulsar, is moving through the galaxy at a speed of almost a million kilometers per hour. A bow shock wave due to this motion is visible to optical telescopes, shown in this image as the greenish crescent shape. The pressure behind the bow shock creates a second shock wave that sweeps the cloud of high-energy particles back from the pulsar to form the cocoon.

 

The Black Widow pulsar is emitting intense high-energy radiation that appears to be destroying a companion star through evaporation. It is one of a class of extremely rapid rotating neutron stars called millisecond pulsars.

 

These objects are thought to be very old neutron stars that have been spun up to rapid rotation rates with millisecond periods by pulling material off their companions. The steady push of the infalling matter on the neutron star spins it up in much the same way as pushing on a merry-go-round causes it to rotate faster.

 

The advanced age, very rapid rotation rate, and relatively low magnetic field of millisecond pulsars put them in a separate class from young pulsars, such as the Crab Nebula. Yet the Chandra data show that this billion-year-old rejuvenated pulsar is an extremely efficient generator of matter and antimatter particles, just like its younger cousins.

 

The key is the rapid rotation of B1957+20. The Chandra result confirms the theory that even a relatively weakly magnetized neutron star can generate intense electromagnetic forces and accelerate particles to high energies to create a pulsar wind, if it is rotating rapidly enough.

 

Image credit: X-ray: NASA/CXC/ASTRON/B.Stappers et al.; Optical: AAO/J.Bland-Hawthorn & H.Jones

 

#NASA #MarshallSpaceFlightCenter #MSFC #Marshall #chandraxrayobservatory #ChandraXRay #cxo #chandra #astronomy #space #astrophysics #nasamarshallspaceflightcenter #solarsystemandbeyond #pulsar

 

Read more

 

More about the Chandra X-ray Observatory

 

NASA Media Usage Guidelines

 

This 2000 Chandra image shows a giant football-shaped cavity (yellow/light orange inner region) within X-ray emitting hot gas surrounding the galaxy Cygnus A. The cavity in the hot gas has been created by two powerful jets emitted from the central black hole region in the nucleus of Cygnus A. Hot gas is steadily being piled up around the cavity as it continuously expands, creating a bright rim of X-ray emission (bright orange outer area).

 

Cygnus A is not alone in its galactic neighborhood, but is a member of a large cluster containing many galaxies. Extremely hot (tens of millions of degrees Celsius) gas is spread between the galaxies. Although it has a very low density, this gas provides enough resistance to slow down the outward advancement of the particle jets from Cygnus A. The jets themselves terminate in radio and X-ray emitting "hot spots" some 300,000 light years from the center of the galaxy. Scientists believe that fast atomic particles and magnetic fields from the jets spill out into the region, providing pressure that continuously inflates the cavity.

 

Image credit: X-ray: NASA/CXC/SAO/G.Schellenberger et al.; Optical:SDSS

 

Read more

 

More about the Chandra X-ray Observatory

 

NASA Media Usage Guidelines

Editor's note: this pretty image is a rotated and cropped version of the original, located here: chandra.harvard.edu/photo/2012/m83/. A nice one from Chandra!

 

NASA's Chandra X-ray Observatory has discovered an extraordinary outburst by a black hole in the spiral galaxy M83, located about 15 million light years from Earth. Using Chandra, astronomers found a new ultraluminous X-ray source (ULX), objects that give off more X-rays than most "normal" binary systems in which a companion star is in orbit around a neutron star or black hole.

 

On the left is an optical image of M83 from the Very Large Telescope in Chile, operated by the European Southern Observatory. On the right is a composite image showing X-ray data from Chandra in pink and optical data from the Hubble Space Telescope in blue and yellow. The ULX is located near the bottom of the composite image.

 

In Chandra observations that spanned several years, the ULX in M83 increased in X-ray brightness by at least 3,000 times. This sudden brightening is one of the largest changes in X-rays ever seen for this type of object, which do not usually show dormant periods.

 

Optical images reveal a bright blue source at the position of the ULX during the X-ray outburst. Before the outburst the blue source is not seen. These results imply that the companion to the black hole in M83 is a red giant star, more than about 500 million years old, with a mass less than about four times the Sun's. According to theoretical models for the evolution of stars, the black hole should be almost as old as its companion.

 

Astronomers think that the bright, blue optical emission seen during the X-ray outburst must have been caused by a disk surrounding the black hole that brightened dramatically as it gained more material from the companion star.

 

Another highly variable ULX with an old, red star as a companion to a black hole was found recently in M31. The new ULXs in M83 and M31 provide direct evidence for a population of black holes that are much older and more volatile than those usually considered to be found in these objects.

 

The researchers estimate a mass range for the M83 ULX from 40 to 100 times that of the Sun. Lower masses of about 15 times the mass of the Sun are possible, but only if the ULX is producing more X-rays than predicted by standard models of how material falls onto black holes.

 

Evidence was also found that the black hole in this system may have formed from a star surprisingly rich in "metals", as astronomers call elements heavier than helium. The ULX is located in a region that is known, from previous observations, to be rich with metals.

 

Large numbers of metals increase the mass-loss rate for massive stars, decreasing their mass before they collapse. This, in turn, decreases the mass of the resulting black hole. Theoretical models suggest that with a high metal content only black holes with masses less than about 15 times that of the Sun should form. Therefore, these results may challenge these models.

 

This surprisingly rich "recipe" for a black hole is not the only possible explanation. It may also be that the black hole is so old that it formed at a time when heavy elements were much less abundant in M83, before seeding by later generations of supernovas. Another explanation is that the mass of the black hole is only about 15 times that of the sun.

 

Read entire caption/view more images: chandra.harvard.edu/photo/2012/m83/

 

Credit: Left image - Optical: ESO/VLT; Close-up - X-ray: NASA/CXC/Curtin University/R.Soria et al., Optical: NASA/STScI/Middlebury College/F.Winkler et al.

 

Read entire caption/view more images: chandra.harvard.edu/photo/2012/m83/

 

Caption credit: Harvard-Smithsonian Center for Astrophysics

 

Read more about Chandra:

www.nasa.gov/chandra

 

p.s. You can see all of our Chandra photos in the Chandra Group in Flickr at: www.flickr.com/groups/chandranasa/ We'd love to have you as a member!

  

_____________________________________________

These official NASA photographs are being made available for publication by news organizations and/or for personal use printing by the subject(s) of the photographs. The photographs may not be used in materials, advertisements, products, or promotions that in any way suggest approval or endorsement by NASA. All Images used must be credited. For information on usage rights please visit: www.nasa.gov/audience/formedia/features/MP_Photo_Guidelin...

This computer-simulated image shows gas from a star that is ripped apart by tidal forces as it falls into a black hole. Some of the gas also is being ejected at high speeds into space.

 

Using observations from telescopes in space and on the ground, astronomers have gathered the most direct evidence yet for this violent process: a supermassive black hole shredding a star that wandered too close. NASA's orbiting Galaxy Evolution Explorer (GALEX) and the Pan-STARRS1 telescope on the summit of Haleakala in Hawaii were used to help to identify the stellar remains.

 

A flare in ultraviolet and optical light revealed gas falling into the black hole as well as helium-rich gas that was expelled from the system. When the star is torn apart, some of the material falls into the black hole, while the rest is ejected at high speeds. The flare and its properties provide a signature of this scenario and give unprecedented details about the stellar victim.

 

To completely rule out the possibility of an active nucleus flaring up in the galaxy instead of a star being torn apart, the team used NASA's Chandra X-ray Observatory to study the hot gas. Chandra showed that the characteristics of the gas didn't match those from an active galactic nucleus.

 

The galaxy where the supermassive black hole ripped apart the passing star in known as PS1-10jh and is located about 2.7 billion light years from Earth. Astronomers estimate the black hole in PS1-10jh has a mass of several million suns, which is comparable to the supermassive black hole in our own Milky Way galaxy.

 

Read entire caption/view more images: www.chandra.si.edu/photo/2012/ps1/

 

Credit: NASA, S. Gezari (The Johns Hopkins University), and J. Guillochon (University of California, Santa Cruz)

 

Read entire caption/view more images: www.chandra.si.edu/photo/2012/ps1/

 

Caption credit: Harvard-Smithsonian Center for Astrophysics

 

Read more about Chandra:

www.nasa.gov/chandra

 

p.s. You can see all of our Chandra photos in the Chandra Group in Flickr at: www.flickr.com/groups/chandranasa/ We'd love to have you as a member!

  

_____________________________________________

These official NASA photographs are being made available for publication by news organizations and/or for personal use printing by the subject(s) of the photographs. The photographs may not be used in materials, advertisements, products, or promotions that in any way suggest approval or endorsement by NASA. All Images used must be credited. For information on usage rights please visit: www.nasa.gov/audience/formedia/features/MP_Photo_Guidelin...

Astronomers have found evidence for a faded electron cloud “coming back to life,” much like the mythical phoenix, after two galaxy clusters collided. This “radio phoenix,” so-called because the high-energy electrons radiate primarily at radio frequencies, is found in Abell 1033. The system is located about 1.6 billion light years from Earth.

 

By combining data from NASA’s Chandra X-ray Observatory, the Westerbork Synthesis Radio Telescope in the Netherlands, NSF’s Karl Jansky Very Large Array (VLA), and the Sloan Digital Sky Survey (SDSS), astronomers were able to recreate the scientific narrative behind this intriguing cosmic story of the radio phoenix.

 

Galaxy clusters are the largest structures in the Universe held together by gravity. They consist of hundreds or even thousands of individual galaxies, unseen dark matter, and huge reservoirs of hot gas that glow in X-ray light. Understanding how clusters grow is critical to tracking how the Universe itself evolves over time.

 

Astronomers think that the supermassive black hole close to the center of Abell 1033 erupted in the past. Streams of high-energy electrons filled a region hundreds of thousands of light years across and produced a cloud of bright radio emission. This cloud faded over a period of millions of years as the electrons lost energy and the cloud expanded.

 

The radio phoenix emerged when another cluster of galaxies slammed into the original cluster, sending shock waves through the system. These shock waves, similar to sonic booms produced by supersonic jets, passed through the dormant cloud of electrons. The shock waves compressed the cloud and re-energized the electrons, which caused the cloud to once again shine at radio frequencies.

 

A new portrait of this radio phoenix is captured in this multiwavelength image of Abell 1033. X-rays from Chandra are in pink and radio data from the VLA are colored green. The background image shows optical observations from the SDSS. A map of the density of galaxies, made from the analysis of optical data, is seen in blue. Mouse over the image to see the location of the radio phoenix.

 

The Chandra data show hot gas in the clusters, which seems to have been disturbed during the same collision that caused the re-ignition of radio emission in the system. The peak of the X-ray emission is seen to the south (bottom) of the cluster, perhaps because the dense core of gas in the south is being stripped away by surrounding gas as it moves. The cluster in the north may not have entered the collision with a dense core, or perhaps its core was significantly disrupted during the merger. On the left side of the image, a so-called wide-angle tail radio galaxy shines in the radio. The lobes of plasma ejected by the supermassive black hole in its center are bent by the interaction with the cluster gas as the galaxy moves through it.

 

Astronomers think they are seeing the radio phoenix soon after it had reborn, since these sources fade very quickly when located close to the center of the cluster, as this one is in Abell 1033. Because of the intense density, pressure, and magnetic fields near the center of Abell 1033; a radio phoenix is only expected to last a few tens of millions of years.

 

A paper describing these results was published in a recent issue of the Monthly Notices of the Royal Astronomical Society and a preprint is available online. The authors are Francesco de Gasperin from the University of Hamburg, Germany; Georgiana Ogrean and Reinout van Weeren from the Harvard-Smithsonian Center for Astrophysics; William Dawson from the Lawrence Livermore National Lab in Livermore, California; Marcus Brüggen and Annalisa Bonafede from the University of Hamburg, Germany, and Aurora Simionescu from the Japan Aerospace Exploration Agency in Sagamihara, Japan.

 

NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, controls Chandra's science and flight operations.

 

Image credit: X-ray: NASA/CXC/Univ of Hamburg/F. de Gasperin et al; Optical: SDSS; Radio: NRAO/VLA

 

Read More from NASA's Chandra X-ray Observatory.

 

For more Chandra images, multimedia and related materials, visit:

 

www.nasa.gov/chandra

The highly distorted supernova remnant shown in this image may contain the most recent black hole formed in the Milky Way galaxy. The image combines X-rays from NASA's Chandra X-ray Observatory in blue and green, radio data from the NSF's Very Large Array in pink, and infrared data from Caltech's Palomar Observatory in yellow.

 

The remnant, called W49B, is about a thousand years old, as seen from Earth, and is at a distance about 26,000 light years away. The supernova explosions that destroy massive stars are generally symmetrical, with the stellar material blasting away more or less evenly in all directions. However, in the W49B supernova, material near the poles of the doomed rotating star was ejected at a much higher speed than material emanating from its equator. Jets shooting away from the star's poles mainly shaped the supernova explosion and its aftermath.

 

By tracing the distribution and amounts of different elements in the stellar debris field, researchers were able to compare the Chandra data to theoretical models of how a star explodes. For example, they found iron in only half of the remnant while other elements such as sulfur and silicon were spread throughout. This matches predictions for an asymmetric explosion. Also, W49B is much more barrel-shaped than most other remnants in X-rays and several other wavelengths, pointing to an unusual demise for this star.

 

The authors also examined what sort of compact object the supernova explosion left behind. Most of the time, massive stars that collapse into supernovas leave a dense spinning core called a neutron star. Astronomers can often detect these neutron stars through their X-ray or radio pulses, although sometimes an X-ray source is seen without pulsations. A careful search of the Chandra data revealed no evidence for a neutron star, implying an even more exotic object might have formed in the explosion, that is, a black hole.

 

This may be the youngest black hole formed in the Milky Way galaxy, with an age of only about a thousand years, as viewed from Earth (i.e., not including the light travel time). A well-known example of a supernova remnant in our galaxy that likely contains a black hole is SS433. This

remnant is thought to have an age between 17,000 and 21,000 years, as seen from Earth, making it much older than W49B.

 

The new results on W49B, which were based on about two-and-a-half days of Chandra observing time, appear in a paper in the Feb. 10, 2013 issue of the Astrophysical Journal. The authors of the paper are Laura Lopez, from the Massachusetts Institute of Technology (MIT), Enrico Ramirez-Ruiz

from the University of California at Santa Cruz, Daniel Castro, also of MIT, and Sarah Pearson from the University of Copenhagen in Denmark.

 

Read entire caption/view more images: chandra.harvard.edu/photo/2013/w49b/

 

Image credit: X-ray: NASA/CXC/MIT/L.Lopez et al.; Infrared: Palomar; Radio: NSF/NRAO/VLA

 

Caption credit: Harvard-Smithsonian Center for Astrophysics

 

Read more about Chandra:

www.nasa.gov/chandra

 

p.s. You can see all of our Chandra photos in the Chandra Group in Flickr at: www.flickr.com/groups/chandranasa/ We'd love to have you as a member!

  

_____________________________________________

These official NASA photographs are being made available for publication by news organizations and/or for personal use printing by the subject(s) of the photographs. The photographs may not be used in materials, advertisements, products, or promotions that in any way suggest approval or

endorsement by NASA. All Images used must be credited. For information on usage rights please visit: www.nasa.gov/audience/formedia/features/MP_Photo_Guidelin...

M51 is a spiral galaxy, about 30 million light years away, that is in the process of merging with a smaller galaxy seen to its upper left.

 

This image is part of a "quarter of galaxies" collaboration of professional and amateur astronomers that combines optical data from amateur telescopes with data from the archives of NASA missions.

 

NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory in Cambridge, Mass., controls Chandra's science and flight operations.

 

Original caption/more images: chandra.harvard.edu/photo/2014/proam/more.html

 

Image credit: X-ray: NASA/CXC/SAO; Optical: Detlef Hartmann; Infrared: NASA/JPL-Caltech

 

Read more about Chandra:

www.nasa.gov/chandra

 

p.s. You can see all of our Chandra photos in the Chandra Group in Flickr at: www.flickr.com/groups/chandranasa/ We'd love to have you as a member!

 

_____________________________________________

These official NASA photographs are being made available for publication by news organizations and/or for personal use printing by the subject(s) of the photographs. The photographs may not be used in materials, advertisements, products, or promotions that in any way suggest approval or endorsement by NASA. All Images used must be credited. For information on usage rights please visit: www.nasa.gov/audience/formedia/features/MP_Photo_Guidelin...

When three galaxies collide, what happens to the huge black holes at the centers of each? A new study using NASA’s Chandra X-ray Observatory and several other telescopes reveals new information about how many black holes are furiously growing after these galactic smash ups.

 

Astronomers want to learn more about galactic collisions because the subsequent mergers are a key way that galaxies and the giant black holes in their cores grow over cosmic time.

 

“There have been many studies of what happens to supermassive black holes when two galaxies merge,” said Adi Foord of Stanford University, who led the study. “Ours is one of the first to systematically look at what happens to black holes when three galaxies come together.”

 

She and her colleagues identified triple galaxy merger systems by cross-matching the archives – containing data that is now publicly available – of NASA’s WISE mission and the Sloan Digital Sky Survey (SDSS) to the Chandra archive. Using this method they found seven triple galaxy mergers located between 370 million and one billion light years from Earth.

 

Using specialized software Foord developed for her Ph.D. at the University of Michigan in Ann Arbor, the team went through Chandra data targeting these systems to detect X-ray sources marking the location of growing supermassive black holes. As material falls toward a black hole, it gets heated to millions of degrees and produces X-rays.

 

Chandra, with its sharp X-ray vision, is ideal for detecting growing supermassive black holes in mergers. The associated X-ray sources are challenging to detect because they are usually close together in images and are often faint. Foord’s software was developed specifically to find such sources. Data from other telescopes was then used to rule out other possible origins of the X-ray emission unrelated to supermassive black holes.

 

The results from Foord and the team show that out of seven triple galaxy mergers there is one with a single growing supermassive black hole, four with double growing supermassive black holes, and one that is a triple. The final triple merger they studied seems to have struck out with no X-ray emission detected from the supermassive black holes. In the systems with multiple black holes, the separations between them range between about 10,000 and 30,000 light years.

 

Image credit: X-ray: NASA/CXC/Univ. of Michigan/A. Foord et al.; Optical: SDSS & NASA/STScI

 

#NASA #MarshallSpaceFlightCenter #MSFC #Marshall #chandraxrayobservatory #ChandraXRay #cxo #chandra #astronomy #space #astrophysics #nasamarshallspaceflightcenter #solarsystemandbeyond #galaxy #supermassiveblackhole #blackhole #Goddard #GSFC #GoddardSpaceFlightCenter #HST #Hubble #HubbleSpaceTelescope #STScI

 

Read more

 

More about the Chandra X-ray Observatory

 

NASA Media Usage Guidelines

 

This galaxy cluster comes from a sample of over 200 that were studied to determine how giant black holes at their centers affect the growth and evolution of their host galaxy.

 

Image Credit: NASA/CXC/Michigan State Univ/M.Voit et al

 

Read Full Article: www.nasa.gov/mission_pages/chandra/

 

Read more about Chandra:

www.nasa.gov/chandra

 

p.s. You can see all of our Chandra photos in the Chandra Group in Flickr at: www.flickr.com/groups/chandranasa/ We'd love to have you as a member!

_____________________________________________

These official NASA photographs are being made available for publication by news organizations and/or for personal use printing by the subject(s) of the photographs. The photographs may not be used in materials, advertisements, products, or promotions that in any way suggest approval or endorsement by NASA. All Images used must be credited. For information on usage rights please visit: www.nasa.gov/audience/formedia/features/MP_Photo_Guidelin...

 

Evidence for powerful blasts produced by a giant black hole has been discovered using NASA’s Chandra X-ray Observatory. This is one of the nearest supermassive black holes to Earth that is currently undergoing such violent outbursts.

 

Astronomers found this outburst in the supermassive black hole centered in the small galaxy NGC 5195. This companion galaxy is merging with a large spiral galaxy NGC 5194, also known as “The Whirlpool.” Both of these galaxies are in the Messier 51 galaxy system, located about 26 million light years from Earth.

 

“For an analogy, astronomers often refer to black holes as 'eating' stars and gas. Apparently, black holes can also burp after their meal,” said Eric Schlegel of The University of Texas in San Antonio, who led the study. “Our observation is important because this behavior would likely happen very often in the early universe, altering the evolution of galaxies. It is common for big black holes to expel gas outward, but rare to have such a close, resolved view of these events.”

 

In the Chandra data, Schlegel and his colleagues detect two arcs of X-ray emission close to the center of NGC 5195.

 

“We think these arcs represent fossils from two enormous blasts when the black hole expelled material outward into the galaxy,” said co-author Christine Jones of the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Mass. “This activity is likely to have had a big effect on the galactic landscape.”

 

Just outside the outer X-ray arc, the researchers detected a slender region of emission of relatively cool hydrogen gas in an optical image from the Kitt Peak National Observatory 0.9-meter telescope. This suggests that the hotter, X-ray emitting gas has “snow-plowed,” or swept up, the hydrogen gas from the center of the galaxy. This is a clear case where a supermassive black hole is affecting its host galaxy in a phenomenon that astronomers call “feedback.”

 

In NGC 5195, the properties of the gas around the X-ray-glowing arcs suggest that the outer arc has plowed up enough material to trigger the formation of new stars.

 

“We think that feedback keeps galaxies from becoming too large,” said co-author Marie Machacek of CfA. “But at the same time, it can be responsible for how some stars form. This shows that black holes can create, not just destroy.”

 

The astronomers think the outbursts of the supermassive black hole in NGC 5195 may have been triggered by the interaction of this smaller galaxy with its large spiral companion, causing gas to be funneled in towards the black hole. The energy generated by this infalling matter would produce the outbursts. The team estimates that it took about one to three million years for the inner arc to reach its current position, and three to six million years for the outer arc.

 

The arcs are also significant because of their location in the galaxy. They are well outside the region where rapid outflow, or winds, have been detected from active supermassive black holes in other galaxies, yet inside the much larger cavities and filaments observed in the hot gas around many massive galaxies. As such they may represent a rare view an intermediate stage in the feedback process operating between the interstellar gas and the black hole.

 

These results were presented in January 2016 at the 227th meeting of the American Astronomical Society meeting in Kissimmee, FL, and have been submitted in a paper to The Astrophysical Journal. Laura Vega, of the Fisk University and Vanderbilt University Bridge Program, in Nashville, Tennessee was also a co-author of the paper. NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, controls Chandra's science and flight operations.

 

Read More from NASA's Chandra X-ray Observatory.

 

For more Chandra images, multimedia and related materials, visit:

 

www.nasa.gov/chandra

(Editor's Note: This is an archive image from 2006)

 

W3 is a region where many massive stars are forming in a string of stellar clusters, located about 6,000 light years from Earth in the Perseus arm of the Milky Way galaxy. W3 is part of a vast molecular cloud complex that also contains the W4 superbubble (not seen in this image). Scientists believe that the extraordinary amount of star formation in W3 has possibly been influenced by neighboring W4, an inflating bubble of gas over 100 light years across. W4 may directly trigger the birth of W3's massive stellar clusters as it expands and sweeps up molecular gas into a high-density layer at its edge, within which stars can form. Another possible scenario is that W4's expansion has caused a domino effect of star formation, forming the cluster IC 1795 (seen as a clump of X-ray sources in the bottom left corner of this image) which in turn triggered formation of the young, massive clusters in W3.

 

In this composite image of one of the many star-forming complexes of W3, called W3 Main, green and blue represent lower and higher-energy X-rays, respectively, while red shows optical emission. Hundreds of X-ray sources are revealed in this central region of W3 Main. These bright point-like objects are an extensive population of several hundred young stars, many of which were not found in earlier infrared studies. These Chandra data show that W3 Main is the dominant star formation region of W3. Because its X-ray sources are all at the same distance, yet span a range of masses, ages, and other properties, W3 is an ideal laboratory for understanding recent and ongoing star formation in one of the Milky Way's spiral arms.

 

Read entire caption/view more images: chandra.harvard.edu/photo/2006/w3/

 

Image credit: X-ray: NASA/CXC/Penn State/L.Townsley et al.; Optical: Pal Obs. DSS

 

Caption credit: Harvard-Smithsonian Center for Astrophysics

 

Read more about Chandra:

www.nasa.gov/chandra

 

p.s. You can see all of our Chandra photos in the Chandra Group in Flickr at: www.flickr.com/groups/chandranasa/ We'd love to have you as a member!

NASA researchers have discovered a perplexing case of a black hole that appears to be “tipped over,” rotating in an unexpected direction relative to the galaxy surrounding it. That galaxy, called NGC 5084, has been known for years, but the sideways secret of its central black hole lay hidden in old data archives. The discovery was made possible by new image analysis techniques developed at NASA’s Ames Research Center in California’s Silicon Valley to take a fresh look at archival data from the agency’s Chandra X-ray Observatory.

 

Using the new methods, astronomers at Ames unexpectedly found four long plumes of plasma – hot, charged gas – emanating from NGC 5084. One pair of plumes extends above and below the plane of the galaxy. A surprising second pair, forming an “X” shape with the first, lies in the galaxy plane itself. Hot gas plumes are not often spotted in galaxies, and typically only one or two are present.

 

The method revealing such unexpected characteristics for galaxy NGC 5084 was developed by Ames research scientist Alejandro Serrano Borlaff and colleagues to detect low-brightness X-ray emissions in data from the world’s most powerful X-ray telescope. What they saw in the Chandra data seemed so strange that they immediately looked to confirm it, digging into the data archives of other telescopes and requesting new observations from two powerful ground-based observatories.

 

This image shows the structure of galaxy NGC 5084, with data from the Chandra X-ray Observatory overlaid on a visible-light image of the galaxy. Chandra’s data, shown in purple, revealed four plumes of hot gas emanating from a supermassive black hole rotating “tipped over” at the galaxy’s core.

 

Credit: X-ray: NASA/CXC, A. S. Borlaff, P. Marcum et al.; Optical full image: M. Pugh, B. Diaz; Image Processing: NASA/USRA/L. Proudfit

 

#NASAMarshall #NASA #astrophysics #NASAChandra #NASA #galaxy #blackhole #SupermassiveBlackHole

 

Read more

 

Read more about the Chandra X-ray Observatory

 

NASA Media Usage Guidelines

 

A colorful, festive image shows different types of light containing the remains of not one, but at least two, exploded stars. This supernova remnant is known as 30 Doradus B (30 Dor B for short) and is part of a larger region of space where stars have been continuously forming for the past 8 to 10 million years. It is a complex landscape of dark clouds of gas, young stars, high-energy shocks, and superheated gas, located 160,000 light-years away from Earth in the Large Magellanic Cloud, a small satellite galaxy of the Milky Way.

 

The new image of 30 Dor B was made by combining X-ray data from NASA’s Chandra X-ray Observatory (purple), optical data from the Blanco 4-meter telescope in Chile (orange and cyan), and infrared data from NASA’s Spitzer Space Telescope (red). Optical data from NASA’s Hubble Space Telescope was also added in black and white to highlight sharp features in the image.

 

Credit: X-ray: NASA/CXC/Penn State Univ./L. Townsley et al.; Optical: NASA/STScI/HST; Infrared: NASA/JPL/CalTech/SST; Image Processing: NASA/CXC/SAO/J. Schmidt, N. Wolk, K. Arcand

 

#NASAMarshall #NASA #astrophysics #NASAChandra #NASA #NASAHubble #NASASpitzer #supernova #pulsar

 

Read more

 

NASA Media Usage Guidelines

Happy "Supernova Sunday" for those watching the Superbowl!

 

Read more about Chandra:

www.nasa.gov/chandra

 

p.s. You can see all of our Chandra photos in the Chandra Group in Flickr at: www.flickr.com/groups/chandranasa/ We'd love to have you as a member!

 

_____________________________________________

These official NASA photographs are being made available for publication by news organizations and/or for personal use printing by the subject(s) of the photographs. The photographs may not be used in materials, advertisements, products, or promotions that in any way suggest approval or endorsement by NASA. All Images used must be credited. For information on usage rights please visit: www.nasa.gov/audience/formedia/features/MP_Photo_Guidelin...

The combined image from the Chandra and XMM-Newton X-ray observatories of RCW 86 shows the expanding ring of debris that was created after a massive star in the Milky Way collapsed onto itself and exploded. Both the Chandra and XMM images show low energy X-rays in red, medium energies in green and high energies in blue. The Chandra observations focused on the northeast (left-hand) side of RCW 86, and show that X-ray radiation is produced both by high-energy electrons accelerated in a magnetic field (blue) as well as heat from the blast itself (red).

 

Properties of the shell in the Chandra image, along with the remnant's size and a basic understanding of how supernovas expand, were used to help determine the age of RCW 86. The new data revealed that RCW 86 was created by a star that exploded about 2,000 years ago. This age matches observations of a new bright star by Chinese astronomers in 185 A.D. (and possibly Romans as well) and may be the oldest known recordings of a supernova. Supernova explosions in galaxies like ours are rare, and none have been recorded in hundreds of years.

 

Image credit: NASA/CXC/Univ. of Utrecht/J.Vink et al. XMM-Newton: ESA/Univ. of Utrecht/J.Vink et al.

 

#NASA #NASAMarshall #chandraxrayobservatory #ChandraXRay #cxo #astronomy #space #astrophysics #starcluster

 

Read more

 

More about the Chandra X-ray Observatory

 

NASA Media Usage Guidelines

A 2003 Chandra observation revealed X-rays produced by TWA 5B, a brown dwarf orbiting a young binary star system known as TWA 5A. The star system is 180 light years from the Earth and a member of a group of about a dozen young stars in the constellation Hydra. The brown dwarf orbits the binary star system at a distance about 2.75 times that of Pluto's orbit around the Sun.

 

The sizes of the sources in the image are due to an instrumental effect that causes the spreading of pointlike sources. For a comparison of the actual size of TWA 5B to the Sun and the planet Jupiter, see the illustration below.

 

Brown dwarfs are often referred to as "failed stars" because they are under the mass limit (about 80 Jupiter masses, or 8 percent of the mass of the Sun) needed to spark the nuclear fusion of hydrogen to helium which supplies the energy for stars such as the Sun. Lacking any central energy source, brown dwarfs are intrinsically faint and draw their energy from a very gradual shrinkage or collapse.

 

Young brown dwarfs, like young stars, have turbulent interiors. When combined with rapid rotation, this turbulent motion can lead to a tangled magnetic field that can heat their upper atmospheres, or coronas, to a few million degrees Celsius. The X-rays from both TWA 5A and TWA 5B are from their hot coronas.

 

TWA 5B is estimated to be only between 15 and 40 times the mass of Jupiter, making it one of the least massive brown dwarfs known. Its mass is rather near the boundary (about 12 Jupiter masses) between planets and brown dwarfs, so these results could have implications for the possible X-ray detection of very massive planets around stars.

 

Image credit: NASA/CXC/Chuo U./Y.Tsuboi et al.

 

#NASA #MarshallSpaceFlightCenter #MSFC #Marshall #chandraxrayobservatory #ChandraXRay #cxo #chandra #astronomy #space #astrophysics #nasamarshallspaceflightcenter #solarsystemandbeyond #browndwarf #binarystarsystem

 

Read more

 

More about the Chandra X-ray Observatory

 

NASA Media Usage Guidelines

Most stars form in collections, called clusters or associations, that include very massive stars. These giant stars send out large amounts of high-energy radiation, which can disrupt relatively fragile disks of dust and gas that are in the process of coalescing to form new planets.

 

A team of astronomers used NASA's Chandra X-ray Observatory, in combination with ultraviolet, optical, and infrared data, to show where some of the most treacherous places in a star cluster may be, where planets' chances to form are diminished.

 

The target of the observations was Cygnus OB2, which is the nearest large cluster of stars to our Sun — at a distance of about 4,600 light-years. The cluster contains hundreds of massive stars as well as thousands of lower-mass stars. The team used long Chandra observations pointing at different regions of Cygnus OB2, and the resulting set of images were then stitched together into one large image.

 

Credit: X-ray: NASA/CXC/SAO/J. Drake et al, IR: NASA/JPL-Caltech/Spitzer; Image Processing: NASA/CXC/SAO/N. Wolk

 

#NASAMarshall #NASA #astrophysics #NASAChandra #NASA #ESA #starcluster

 

Read more

 

Read more about NASA’s Chandra X-ray Observatory

 

NASA Media Usage Guidelines

This composite image shows a superbubble in the Large Magellanic Cloud (LMC), a small satellite galaxy of the Milky Way located about 160,000 light years from Earth. Many new stars, some of them very massive, are forming in the star cluster NGC 1929, which is embedded in the nebula N44, so named because it is the 44th nebula in a catalog of such objects in the Magellanic Clouds. The massive stars produce intense radiation, expel matter at high speeds, and race through their evolution to explode as supernovas. The winds and supernova shock waves carve out huge cavities called superbubbles in the surrounding gas. X-rays from NASA's Chandra X-ray Observatory (blue) show hot regions created by these winds and shocks, while infrared data from NASA's Spitzer Space Telescope (red) outline where the dust and cooler gas are found. The optical light from the 2.2-m Max-Planck-ESO telescope (yellow) in Chile shows where ultraviolet radiation from hot, young stars is causing gas in the nebula to glow.

 

A long-running problem in high-energy astrophysics has been that some superbubbles in the LMC, including N44, give off a lot more X-rays than expected from models of their structure. These models assume that hot, X-ray emitting gas has been produced by winds from massive stars and the remains of several supernovas. A Chandra study published in 2011 showed that there are two extra sources of N44’s X-ray emission not included in these models: supernova shock waves striking the walls of the cavities, and hot material evaporating from the cavity walls. The Chandra observations also show no evidence for an enhancement of elements heavier than hydrogen and helium in the cavities, thus ruling out this possibility as a third explanation for the bright X-ray emission. Only with long observations making full use of the capabilities of Chandra has it now become possible to distinguish between different sources of the X-rays produced by superbubbles.

 

The Chandra study of N44 and another superbubble in the LMC was led by Anne Jaskot from the University of Michigan in Ann Arbor. The co-authors were Dave Strickland from Johns Hopkins University in Baltimore, MD, Sally Oey from University of Michigan, You-Hua Chu from University of Illinois and Guillermo Garcia-Segura from Instituto de Astronomia-UNAM in Ensenada, Mexico.

 

NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass.

 

Read entire caption/view more images: chandra.harvard.edu/photo/2012/n1929/

 

Image credit: X-ray: NASA/CXC/U.Mich./S.Oey, IR: NASA/JPL, Optical: ESO/WFI/2.2-m

 

Caption credit: Harvard-Smithsonian Center for Astrophysics

 

Read more about Chandra:

www.nasa.gov/chandra

 

p.s. You can see all of our Chandra photos in the Chandra Group in Flickr at: www.flickr.com/groups/chandranasa/ We'd love to have you as a member!

  

_____________________________________________

These official NASA photographs are being made available for publication by news organizations and/or for personal use printing by the subject(s) of the photographs. The photographs may not be used in materials, advertisements, products, or promotions that in any way suggest approval or endorsement by NASA. All Images used must be credited. For information on usage rights please visit: www.nasa.gov/audience/formedia/features/MP_Photo_Guidelin...

This image comes from a very deep Chandra observation of the Tycho supernova remnant, produced by the explosion of a white dwarf star in our Galaxy. Low-energy X-rays (red) in the image show expanding debris from the supernova explosion and high energy X-rays (blue) show the blast wave, a shell of extremely energetic electrons . These high-energy X-rays show a pattern of X-ray "stripes" never previously seen in a supernova remnant. Some of the brightest stripes can also directly be seen in the full color image, on the right side of the remnant pointing from the outer rim to the interior. The stellar background is from the Digitized Sky Survey and only shows stars outside the remnant.

 

These stripes may provide the first direct evidence that supernova remnants can accelerate particles to energies a hundred times higher than achieved by the most powerful particle accelerator on Earth, the Large Hadron Collider. The results could explain how some of the extremely energetic particles bombarding the Earth, called cosmic rays, are produced, and they provide support for a theory about how magnetic fields can be dramatically amplified in such blast waves.

 

The X-ray stripes are thought to be regions where the turbulence is greater and the magnetic fields more tangled than surrounding areas. Electrons become trapped in these regions and emit X-rays as they spiral around the magnetic field lines. Regions with enhanced turbulence and magnetic fields were expected in supernova remnants, but the motion of the most energetic particles -- mostly protons -- was predicted to leave a messy network of holes and dense walls corresponding to weak and strong regions of magnetic fields, respectively. Therefore, the detection of stripes was a surprise.

 

The size of the holes was expected to correspond to the radius of the spiraling motion of the highest energy protons in the supernova remnant. These energies equal the highest energies of cosmic rays thought to be produced in our Galaxy. The spacing between the stripes corresponds to this size, providing evidence for the existence of these extremely energetic protons.

 

The Tycho supernova remnant is named for the famous Danish astronomer Tycho Brahe, who reported observing the supernova in 1572. It is located in the Milky Way, about 13,000 light years from Earth. Because of its proximity and intrinsic brightness, the supernova was so bright that it could be seen during the daytime with the naked eye.

 

Credit: X-ray: NASA/CXC/Rutgers/K.Eriksen et al.; Optical: DSS

 

Read entire caption/view more images: chandra.harvard.edu/photo/2011/tycho/

 

Caption credit: Harvard-Smithsonian Center for Astrophysics

 

Read more about Chandra:

www.nasa.gov/chandra

 

p.s. You can see all of our Chandra photos in the Chandra Group in Flickr at: www.flickr.com/groups/chandranasa/ We'd love to have you as a member!

NGC 3532 (also called the “Wishing Well Cluster”) is a cluster of middle-aged stars — about 300 million years old — that covers nearly twice the size of the full Moon in the sky. X-rays from Chandra (purple and white); optical from ESO/MPG 2.2m (red, green, and blue)

 

Visual Description:

This image of the NGC 3532 star cluster resembles a black canvas stippled with thousands of drops of colorful paint, flicked from an artist’s brush. From this vantage point, the stars range from minuscule to merely tiny. They range in color from white and golden yellow, to oranges, reds, blues and purples. Some of the stars have white cores with colorful outlines, while others gleam and have large, translucent, outer glows. The purple and white stars are those detected in X-rays by Chandra. A faint, hazy, brick orange cloud streaks across the middle of the image.

 

Credit: X-ray: NASA/CXC/SAO; Optical: ESO; Image Processing: NASA/CXC/SAO/J. Major

 

#NASAMarshall #NASA #astrophysics #NASAChandra #NASA #StarCluster

 

Read more

 

Read more about NASA’s Chandra X-ray Observatory

 

NASA Media Usage Guidelines

 

Today marks the 15th anniversary of the launch of the Chandra X-ray Observatory. Launched aboard the Space Shuttle Columbia from Kennedy Space Center on July 23, 1999, Chandra took its place among NASA’s “Great Observatories” and with its unique capability for producing sub-arcsecond X-ray images, it has revealed stunning discovery after stunning discovery. The Chandra program is managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama and is operated by the Smithsonian's Astrophysical Observatory in Cambridge, Massachusetts.

 

Image credit: NASA

 

More about Marshall Center history:

www.nasa.gov/centers/marshall/history/index.html

 

Marshall History Album on Flickr:

www.flickr.com/photos/nasamarshall/sets/72157636868630444/

 

_____________________________________________

These official NASA photographs are being made available for publication by news organizations and/or for personal use printing by the subject(s) of the photographs. The photographs may not be used in materials, advertisements, products, or promotions that in any way suggest approval or endorsement by NASA. All Images used must be credited. For information on usage rights please visit: www.nasa.gov/audience/formedia/features/MP_Photo_Guidelin...

Spiral galaxy revealed! This is a beauty from the 2007 archives. Original release date: April 10, 2007)

 

A combination of space and ground-based observations, including X-ray data from Chandra, has helped reveal the nature of the so-called anomalous arms in the spiral galaxy NGC 4258 (also known as M106). These arms have been known for decades, but their origin remained mysterious to astronomers.

 

In visible (shown in gold) and infrared (red) light, two prominent arms emanate from the bright nucleus and spiral outward. These arms are dominated by young, bright stars, which light up the gas within the arms. But in radio (purple) and Chandra's X-ray (blue) images, two additional spiral arms are seen.

 

By analyzing data from XMM-Newton, Spitzer, and Chandra, scientists have confirmed earlier suspicions that the ghostly arms represent regions of gas that are being violently heated by shock waves. Previously, some astronomers had suggested that the anomalous arms are jets of particles being ejected by a supermassive black hole in nucleus of NGC 4258. But radio observations at the Very Large Array later identified another pair of jets originating in the core.

 

However, the jets do heat the gas in their line of travel, forming an expanding cocoon. Because the jets lie close to M106's disk, the cocoon generates shock waves and heat the gas in the disk to millions of degrees, causing it to radiate brightly in X-rays and other wavelengths.

 

Image credit:

X-ray: NASA/CXC/Univ. of Maryland/A.S. Wilson et al.; Optical: Pal.Obs. DSS; IR: NASA/JPL-Caltech; VLA: NRAO/AUI/NSF

 

Read more about this image:

www.chandra.harvard.edu/photo/2007/ngc4258/

 

Read more about Chandra:

www.nasa.gov/chandra

 

p.s. You can see all of our Chandra photos in the Chandra Group in Flickr at: www.flickr.com/groups/chandranasa/ We'd love to have you as a member!

Planetary nebula HB 5, an end phase of a Sun-like star, was discovered by famous astronomer Edwin Hubble. X-rays from hot gas in HB 5 are detected by Chandra. X-rays from Chandra (blue and white); optical from Hubble (red, purple, blue); radio image from ALMA (yellow and white)

 

Visual Description:

This composite image of the planetary nebula HB 5 resembles a bulbous bow tie in mottled purples. This is a Sun-like star towards the end of its life. At the heart of the nebula, or the brilliant golden white knot of the bow tie, is a recent mass ejection from the dying star. To its right and left are matching bulbous spheres of churning purple gas. Each sphere of gas is several times larger than the exploding knot between them. Also present in the nebula are faint clouds in neon blue and mustard yellow. The blue cloud, most prominent at our upper left, represents X-rays observed by Chandra. The mustard yellow cloud, which highlights the star’s recent mass ejection, represents carbon monoxide gas observed in radio waves by ALMA.

 

Credit: X-ray: NASA/CXC/SAO; Optical: NASA/ESA/STScI; Radio: NSF/ESO/NRAO/ALMA/RIT (P. Moraga Baez, J. Kastner); Image Processing: NASA/CXC/SAO/K. Arcand, J. Major

 

#NASAMarshall #NASA #astrophysics #NASAChandra #NASA #nebula #PlanetaryNebula

 

Read more

 

Read more about NASA’s Chandra X-ray Observatory

 

NASA Media Usage Guidelines

 

Chandra's unique ability to precisely locate and resolve individual X-ray sources in 12 globular clusters in our Galaxy has given astronomers a crucial clue as to the origin of these sources. Two clusters, known as NGC 6266 (or M62) and NGC 7099 (or M30), are shown here in this 2003 image.

 

A globular cluster is a spherical collection of hundreds of thousands and even millions of stars buzzing around each other in a gravitationally bound stellar beehive that is about a hundred light years in diameter. The stars in a globular cluster are often only about a tenth of a light year apart. For comparison, the nearest star to the Sun, Proxima Centauri, is 4.2 light years away.

 

Most of the point-like sources in these images are binary star systems containing a collapsed star, such as a neutron star or a white dwarf star, that is pulling matter off a normal companion star. While direct, head-on collisions between stars are rare even in these crowded circumstances, close encounters occur and can lead to the formation of binary star systems containing a collapsed star.

 

The images illustrate a general trend observed for globular clusters. Clusters such as M62 where the stars are packed very closely together and the rate of close encounters is high have more X-ray binaries than those such as M30 in which close encounters occur less often. This is strong evidence that the X-ray binaries in globular clusters are formed by close encounters.

 

Image credit: NASA/CXC/MIT/D.Pooley et al.

 

#NASA #MarshallSpaceFlightCenter #MSFC #Marshall #chandraxrayobservatory #ChandraXRay #cxo #chandra #astronomy #space #astrophysics #nasamarshallspaceflightcenter #solarsystemandbeyond #globularcluster

 

Read more

 

More about the Chandra X-ray Observatory

 

NASA Media Usage Guidelines

 

The planetary nebula Abell 30, (a.k.a. A30), is located about 5,500 light years from Earth. Close-up views of A30 show X-ray data from NASA's Chandra X-ray Observatory and optical data from the Hubble Space Telescope. A planetary nebula is formed in the late stage of the evolution of a sun-like star, after it expands to become a red giant. In the case of A30, a planetary nebula formed but then the star briefly reverted to being a red giant. The evolution of the planetary nebula then restarted, making it reborn, a special phase of evolution that is rarely seen.

 

Credit: X-ray (NASA/CXC/IAA-CSIC/M.Guerrero et al); Inset Optical (NASA/STScI)

 

#NASAMarshall #NASA #astrophysics #NASAChandra #NASA #nebula #PlanetaryNebula

 

Read more

 

Read more about the Chandra X-ray Observatory

 

NASA Media Usage Guidelines

On the edge of the universe 🌌

 

Astronomers nicknamed this region of star formation the “Cosmic Cliffs,” which is found in the nearby Carina Nebula located about 7,600 light-years from Earth. This image combines X-ray light from Chandra with infrared light from Webb, and was released as part of the #Chandra25 celebration.

 

Visual Description:

This composite image features two star clusters, viewed through a churning tunnel of golden cloud. The cloud creates a border around the entire image, like a thick swirling smoke ring. Beyond it, in the open center, is a vast field of neon purple specks. These specks are young stars observed by Chandra. Within the central field, two cluster groupings are suggested by separate swirls of faint, steel blue mist. One sits near our upper right. The other is near the bottom left, partially obscured by the golden yellow ring cloud.

 

Credit: X-ray: NASA/CXC/Ludwig Maximilian Univ./T. Preibisch et al.; Infrared: NASA/ESA/CSA/STScI; Image processing: NASA/CXC/SAO/N. Wolk

 

#NASA #NASAMarshall #Chandra #NASAChandra #ChandraXRayObservatory #Telescopes #Space #Universe

NASA’s Hubble Space Telescope has taken its first new images since changing to an alternate operating mode that uses one gyro.

 

The spacecraft returned to science operations June 14 after being offline for several weeks due to an issue with one of its gyroscopes (gyros), which help control and orient the telescope.

 

This new image features NGC 1546, a nearby galaxy in the constellation Dorado. The galaxy’s orientation gives us a good view of dust lanes from slightly above and backlit by the galaxy’s core. This dust absorbs light from the core, reddening it and making the dust appear rusty-brown. The core itself glows brightly in a yellowish light indicating an older population of stars. Brilliant-blue regions of active star formation sparkle through the dust. Several background galaxies also are visible, including an edge-on spiral just to the left of NGC 1546.

 

Credit: NASA, ESA, STScI, David Thilker (JHU)

 

#NASAMarshall #NASA #astrophysics #NASAChandra #NASA #galaxy

 

Read more

 

Read more about NASA’s Hubble Space Telescope

 

NASA Media Usage Guidelines

 

Editor's Note: this is a variant of this composite image: www.flickr.com/photos/28634332@N05/5474156466/, showing Cas A in all its glory minus the illustration inset.

 

This composite image shows a beautiful X-ray and optical view of Cassiopeia A (Cas A), a supernova remnant located in our Galaxy about 11,000 light years away. These are the remains of a massive star that exploded about 330 years ago, as measured in Earth's time frame. X-rays from Chandra are shown in red, green and blue along with optical data from Hubble in gold.

 

At the center of the image is a neutron star, an ultra-dense star created by the supernova. Ten years of observations with Chandra have revealed a 4% decline in the temperature of this neutron star, an unexpectedly rapid cooling. Two new papers by independent research teams show that this cooling is likely caused by a neutron superfluid forming in its central regions, the first direct evidence for this bizarre state of matter in the core of a neutron star.

 

This new research has allowed the teams to place the first observational constraints on a range of properties of superfluid material in neutron stars. The critical temperature was constrained to between one half a billion to just under a billion degrees Celsius. A wide region of the neutron star is expected to be forming a neutron superfluid as observed now, and to fully explain the rapid cooling, the protons in the neutron star must have formed a superfluid even earlier after the explosion. Because they are charged particles, the protons also form a superconductor.

 

Using a model that has been constrained by the Chandra observations, the future behavior of the neutron star has been predicted . The rapid cooling is expected to continue for a few decades and then it should slow down.

 

Credit: X-ray: NASA/CXC/xx; Optical: NASA/STScI; Illustration: NASA/CXC/M.Weiss

 

Read entire caption/view more images: chandra.harvard.edu/photo/2011/casa/

 

Caption credit: Harvard-Smithsonian Center for Astrophysics

 

Read more about Chandra:

www.nasa.gov/chandra

 

p.s. You can see all of our Chandra photos in the Chandra Group in Flickr at: www.flickr.com/groups/chandranasa/ We'd love to have you as a member!

Isolated for billions of years, a galaxy with more dark matter packed into its core than expected has been identified by astronomers using data from NASA’s Chandra X-ray Observatory.

 

The galaxy, known as Markarian 1216 (abbreviated as Mrk 1216), contains stars that are within 10% the age of the universe – that is, almost as old as the universe itself. Scientists have found that it has gone through a different evolution than typical galaxies, both in terms of its stars and the invisible dark matter that, through gravity, holds the galaxy together. Dark matter accounts for about 85% of the matter in the universe, although it has only been detected indirectly.

 

Mrk 1216 belongs to a family of elliptically shaped galaxies that are more densely packed with stars in their centers than most other galaxies. Astronomers think they have descended from reddish, compact galaxies called “red nuggets” that formed about a billion years after the big bang, but then stalled in their growth about 10 billion years ago.

 

If this explanation is correct, then the dark matter in Mark 1216 and its galactic cousins should also be tightly packed. To test this idea for the first time, a pair of astronomers studied the X-ray brightness and temperature of hot gas at different distances from Mrk 1216’s center, so they could “weigh” how much dark matter exists in the middle of the galaxy.

 

Image credit: X-ray: NASA/CXC/Univ. of CA Irvine/D. Buote; Optical: NASA/STScI

 

Read more

 

More about the Chandra X-ray Observatory

 

NASA Media Usage Guidelines

The star-forming region, 30 Doradus, is one of the largest located close to the Milky Way and is found in the neighboring galaxy Large Magellanic Cloud. About 2,400 massive stars in the center of 30 Doradus, also known as the Tarantula Nebula, are producing intense radiation and powerful winds as they blow off material.

 

Multimillion-degree gas detected in X-rays (blue) by the Chandra X-ray Observatory comes from shock fronts -- similar to sonic booms --formed by these stellar winds and by supernova explosions. This hot gas carves out gigantic bubbles in the surrounding cooler gas and dust shown here in infrared emission from the Spitzer Space Telescope (orange).

 

30 Doradus is also known as an HII (pronounced "H-two") region, created when the radiation from hot, young stars strips away the electrons from neutral hydrogen atoms (HI) to form clouds of ionized hydrogen (HII). It is the most massive and largest HII region in the Local Group of galaxies, which contains the Milky Way, Andromeda and about 30 other smaller galaxies including the two Magellanic Clouds. Because of its proximity and size, 30 Doradus is an excellent target for studying the effects of massive stars on the evolution of an HII region.

 

The Tarantula Nebula is expanding, and researchers have recently published two studies that attempt to determine what drives this growth. The most recent study concluded that the evolution and the large-scale structure of 30 Doradus is determined by the bubbles of hot, X-ray bright gas confined by surrounding gas, and that pressure from radiation generated by massive stars does not currently play an important role in shaping the overall structure. A study published earlier in 2011 came to the opposite conclusion and argued that radiation pressure is more important than pressure from hot gas in driving the evolution of 30 Doradus, especially in the central regions near the massive stars. More detailed analysis and deeper Chandra observations of 30 Doradus may help decide between these different ideas.

 

Credit: X-ray: NASA/CXC/PSU/L. Townsley et al.; Infrared: NASA/JPL/PSU/L. Townsley et al.

 

Read entire caption/view more images: chandra.harvard.edu/photo/2011/30dor/

 

Caption credit: Harvard-Smithsonian Center for Astrophysics

 

Read more about Chandra:

www.nasa.gov/chandra

 

p.s. You can see all of our Chandra photos in the Chandra Group in Flickr at: www.flickr.com/groups/chandranasa/ We'd love to have you as a member!

  

_____________________________________________

These official NASA photographs are being made available for publication by news organizations and/or for personal use printing by the subject(s) of the photographs. The photographs may not be used in materials, advertisements, products, or promotions that in any way suggest approval or endorsement by NASA. All Images used must be credited. For information on usage rights please visit: www.nasa.gov/audience/formedia/features/MP_Photo_Guidelin...

Centaurus A is the fifth brightest galaxy in the sky -- making it an ideal target for amateur astronomers -- and is famous for the dust lane across its middle and a giant jet blasting away from the supermassive black hole at its center. Cen A is an active galaxy about 12 million light years from Earth.

 

This image is part of a "quartet of galaxies" collaboration of professional and amateur astronomers that combines optical data from amateur telescopes with data from the archives of NASA missions. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory in Cambridge, Mass., controls Chandra's science and flight operations.

 

Original caption/more images: chandra.harvard.edu/photo/2014/proam/more.html

 

Image credit: X-ray: NASA/CXC/SAO; Optical: Rolf Olsen; Infrared: NASA/JPL-Caltech

 

Read more about Chandra:

www.nasa.gov/chandra

 

p.s. You can see all of our Chandra photos in the Chandra Group in Flickr at: www.flickr.com/groups/chandranasa/ We'd love to have you as a member!

 

_____________________________________________

These official NASA photographs are being made available for publication by news organizations and/or for personal use printing by the subject(s) of the photographs. The photographs may not be used in materials, advertisements, products, or promotions that in any way suggest approval or endorsement by NASA. All Images used must be credited. For information on usage rights please visit: www.nasa.gov/audience/formedia/features/MP_Photo_Guidelin...

This image of NGC 6240 contains new X-ray data from Chandra (shown in red, orange, and yellow) that has been combined with an optical image from the Hubble Space Telescope originally released in 2008. In 2002, the discovery of two merging black holes was announced based on Chandra data in this galaxy. The two black holes are a mere 3,000 light years apart and are seen as the bright point-like sources in the middle of the image.

 

Scientists think these black holes are in such close proximity because they are in the midst of spiraling toward each other -- a process that began about 30 million years ago. It is estimated that the two black holes will eventually drift together and merge into a larger black hole some tens or hundreds of millions of years from now.

 

Finding and studying merging black holes has become a very active field of research in astrophysics. Since 2002, there has been intense interest in follow-up observations of NGC 6240 by Chandra and other telescopes, as well as a search for similar systems. Understanding what happens when these exotic objects interact with one another remains an intriguing question for scientists.

 

The formation of multiple systems of supermassive black holes should be common in the Universe, since many galaxies undergo collisions and mergers with other galaxies, most of which contain supermassive black holes. It is thought that pairs of massive black holes can explain some of the unusual behavior seen by rapidly growing supermassive black holes, such as the distortion and bending seen in the powerful jets they produce. Also, pairs of massive black holes in the process of merging are expected to be the most powerful sources of gravitational waves in the Universe.

 

Read entire caption/view more images: chandra.harvard.edu/photo/2009/ngc6240/

 

Image credit: X-ray: NASA/CXC/MIT/ C.Canizares, M.Nowak; Optical: NASA/STScI

 

Caption credit: Harvard-Smithsonian Center for Astrophysics

 

Read more about Chandra:

www.nasa.gov/chandra

 

p.s. You can see all of our Chandra photos in the Chandra Group in Flickr at: www.flickr.com/groups/chandranasa/ We'd love to have you as a member!

 

You can also get Twitter updates whenever there's a new image:

www.twitter.com/nasa1fan

This artist's impression shows a binary system containing a stellar-mass black hole called IGR J17091-3624, or IGR J17091 for short. The strong gravity of the black hole, on the left, is pulling gas away from a companion star on the right. This gas forms a disk of hot gas around the black hole, and the wind is driven off this disk.

 

New observations with NASA's Chandra X-ray Observatory have clocked the fastest wind ever seen blowing off a disk around this stellar-mass black hole. Stellar-mass black holes are born when extremely massive stars collapse and typically weigh between five and 10 times the mass of the Sun.

 

The record-breaking wind is moving about twenty million miles per hour, or about three percent the speed of light. This is nearly ten times faster than had ever been seen from a stellar-mass black hole, and matches some of the fastest winds generated by supermassive black holes, objects millions or billions of times more massive.

 

Another unanticipated finding is that the wind, which comes from a disk of gas surrounding the black hole, may be carrying away much more material than the black hole is capturing.

 

The high speed for the wind was estimated from a spectrum made by Chandra in 2011. A spectrum shows how intense the X-rays are at different energies. Ions emit and absorb distinct features in spectra, which allow scientists to monitor them and their behavior. A Chandra spectrum of iron ions made two months earlier showed no evidence of the high-speed wind, meaning the wind likely turns on and off over time.

 

Credit: Illustration: NASA/CXC/M.Weiss

 

Read entire caption/view more images: www.chandra.harvard.edu/photo/2012/igr/index.html

 

Caption credit: Harvard-Smithsonian Center for Astrophysics

 

Read more about Chandra:

www.nasa.gov/chandra

 

p.s. You can see all of our Chandra photos in the Chandra Group in Flickr at: www.flickr.com/groups/chandranasa/ We'd love to have you as a member!

  

_____________________________________________

These official NASA photographs are being made available for publication by news organizations and/or for personal use printing by the subject(s) of the photographs. The photographs may not be used in materials, advertisements, products, or promotions that in any way suggest approval or endorsement by NASA. All Images used must be credited. For information on usage rights please visit: www.nasa.gov/audience/formedia/features/MP_Photo_Guidelin...

This supernova remnant, the debris from an exploded star, shows a bright nebula in the center surrounded by a much larger diffuse cloud of X-rays. X-rays from Chandra (purple and orange); infrared from Spitzer (yellow); radio from VLA (yellow)

 

Visual Description:

This composite image depicts a supernova remnant, which has a bright nebula at its core, surrounded by a cloud of X-rays detected with Chandra. Here, the nebula is represented by a small golden yellow dot at the center of the image. The dot appears to hover inside a tangle of light blue veins, which resemble a lightning cluster. Enveloping the nebula is the massive x-ray cloud, which occupies much of the image. Round in shape, the diffuse X-ray cloud is shown here in mottled neon purple. It represents the debris from the star destroyed in the supernova explosion.

 

Credit: X-ray: NASA/CXC/SAO; Infrared: NASA/JPL/CalTech/Spitzer; Radio: NSF/NRAO/VLA; Image Processing: NASA/CXC/SAO/L. Frattare

 

#NASAMarshall #NASA #astrophysics #NASAChandra #NASA #ESA

 

Read more

 

Read more about NASA’s Chandra X-ray Observatory

 

NASA Media Usage Guidelines

A spinning neutron star is tied to a mysterious tail -- or so it seems. Astronomers using NASA's Chandra X-ray Observatory have found that this pulsar, known as PSR J0357+3205 (or PSR J0357 for short), apparently has a long, X-ray bright tail streaming away from it.

 

This composite image shows Chandra data in blue and Digitized Sky Survey data in yellow. The position of the pulsar at the upper right end of the tail is seen by mousing over the image. The two bright sources lying near the lower left end of the tail are both thought to be unrelated background objects located outside our galaxy.

 

PSR J0357 was originally discovered by the Fermi Gamma Ray Space Telescope in 2009. Astronomers calculate that the pulsar lies about 1,600 light years from Earth and is about half a million years old, which makes it roughly middle-aged for this type of object.

 

If the tail is at the same distance as the pulsar then it stretches for 4.2 light years in length. This would make it one of the the longest X-ray tails ever associated with a so-called "rotation-powered" pulsar, a class of pulsar that get its power from the energy lost as the rotation of the pulsar slows down. (Other types of pulsars include those driven by strong magnetic fields and still others that are powered by material falling onto the neutron star.)

 

The Chandra data indicate that the X-ray tail may be produced by emission from energetic particles in a pulsar wind, with the particles produced by the pulsar spiraling around magnetic field lines. Other X-ray tails around pulsars have been interpreted as bow-shocks generated by the supersonic motion of pulsars through space, with the wind trailing behind as its particles are swept back by the pulsar's interaction with the interstellar gas it encounters.

 

However, this bow-shock interpretation may or may not be correct for PSR J0357, with several issues that need to be explained. For example, the Fermi data show that PSR J0357 is losing a very small amount of energy as its spin slows down with time. This energy loss is important, because it is converted into radiation and powering a particle wind from the pulsar. This places limits on the amount of energy that particles in the wind can attain, and so might not account for the quantity of X-rays seen by Chandra in the tail.

 

Another challenge to this explanation is that other pulsars with bow-shocks show bright X-ray emission surrounding the pulsar, and this is not seen for PSR J0357. Also, the brightest portion of the tail is well away from the pulsar and this differs from what has been seen for other pulsars with bow-shocks.

 

Further observations with Chandra could help test this bow-shock interpretation. If the pulsar is seen moving in the opposite direction from that of the tail, this would support the bow-shock idea.

 

These results were published in the June 1st, 2011 issue of The Astrophysical Journal. The first author is Andrea De Luca of Institute of Advanced Study in Pavia, Italy (IUSS), the National Institute of Nuclear Physics (INFN) in Rome, and the National Institute for Astrophysics (INAF) in Milano.

 

The co-authors are M. Marelli of INAF, Milano and the University of Insubria in Italy; R. Mignani of University College London, UK and University of Zielona Gora, Poland; P. Caraveo of INAF, Milano; W. Hummel of ESO, Germany; S. Collins and A. Shearer of National University of Ireland; P. Saz Parkinson of University of California at Santa Cruz; A. Belfiore of University of California at Santa Cruz and University of Pavia; and, G. Bignami of IUSS, Pavia and INAF, Milano.

 

Credit: X-ray: NASA/CXC/IUSS/A.De Luca et al; Optical: DSS

 

Read entire caption/view more images: chandra.harvard.edu/photo/2011/psrj0357/

 

Caption credit: Harvard-Smithsonian Center for Astrophysics

Astronomers using data from NASA’s Chandra X-ray Observatory and other telescopes have put together a detailed map of a rare collision between four galaxy clusters. Eventually all four clusters – each with a mass of at least several hundred trillion times that of the Sun -- will merge to form one of the most massive objects in the universe.

 

Galaxy clusters are the largest structures in the cosmos that are held together by gravity. Clusters consist of hundreds or even thousands of galaxies embedded in hot gas, and contain an even larger amount of invisible dark matter. Sometimes two galaxy clusters collide, as in the case of the Bullet Cluster, and occasionally more than two will collide at the same time.

 

The new observations show a mega-structure being assembled in a system called Abell 1758, located about 3 billion light-years from Earth. It contains two pairs of colliding galaxy clusters that are heading toward one another. Scientists first recognized Abell 1758 as a quadruple galaxy cluster system in 2004 using data from Chandra and XMM-Newton, a satellite operated by the European Space Agency (ESA).

 

Each pair in the system contains two galaxy clusters that are well on their way to merging. In the northern (top) pair seen in the composite image, the centers of each cluster have already passed by each other once, about 300 to 400 million years ago, and will eventually swing back around. The southern pair at the bottom of the image has two clusters that are close to approaching each other for the first time.

 

X-rays from Chandra are shown as blue and white, depicting fainter and brighter diffuse emission, respectively. This new composite image also includes an optical image from the Sloan Digital Sky Survey. The Chandra data revealed for the first time a shock wave -- similar to the sonic boom from a supersonic aircraft -- in hot gas visible with Chandra in the northern pair's collision. From this shock wave, researchers estimate two clusters are moving about 2 million to 3 million miles per hour (3 million to 5 million kilometers per hour), relative to each other.

 

This year, NASA's Chandra X-ray Observatory celebrates its 20th year in space exploring the extreme universe.

 

Image credit: X-ray: NASA/CXC/SAO/G.Schellenberger et al.; Optical:SDSS

 

Read more

 

More about Chandra's 20th Anniversary

 

More about the Chandra X-ray Observatory

 

NASA Media Usage Guidelines

Like whirlpools in the ocean, spinning black holes in space create a swirling torrent around them. However, black holes do not create eddies of wind or water. Rather, they generate disks of gas and dust heated to hundreds of millions of degrees that glow in X-ray light.

 

Using data from NASA’s Chandra X-ray Observatory and chance alignments across billions of light years, astronomers have deployed a new technique to measure the spin of five supermassive black holes. The matter in one of these cosmic vortices is swirling around its black hole at greater than about 70% of the speed of light.

 

The astronomers took advantage of a natural phenomenon called a gravitational lens. With just the right alignment, the bending of space-time by a massive object, such as a large galaxy, can magnify and produce multiple images of a distant object, as predicted by Einstein.

 

In this latest research, astronomers used Chandra and gravitational lensing to study six quasars, each consisting of a supermassive black hole rapidly consuming matter from a surrounding accretion disk. Gravitational lensing of the light from each of these quasars by an intervening galaxy has created multiple images of each quasar, as shown by these Chandra images of four of the targets. The sharp imaging ability of Chandra is needed to separate the multiple, lensed images of each quasar.

 

Image credit: NASA/CXC/Univ. of Oklahoma/X. Dai et al.

 

Read more

 

More about the Chandra X-ray Observatory

 

NASA Media Usage Guidelines

Observed by @NASAChandraXray since 2001, pulsar wind nebula MSH 15-52 is formed by particles flung away from a rapidly spinning stellar corpse. More recently, our IXPE telescope stared at this creepy sight for about 17 days. IXPE mapped the nebula’s magnetic field, helping us learn more about the “bones” that form its basic shape and the pulsar swirling at its core.

 

Want this ghoulish image to haunt your lock screen? Check out today’s story or the Wallpapers highlight on @NASAUniverse!

 

Credits: X-ray: NASA/CXC/Stanford Univ./R. Romani et al. (Chandra); NASA/MSFC (IXPE); Infrared: NASA/JPL-Caltech/DECaPS; Image Processing: NASA/CXC/SAO/J. Schmidt

 

Music: “Castle of Doom,” Richard Breakspear [BMI], Universal Production Music

 

Video description: This video layers X-ray data from NASA’s Chandra and IXPE telescopes, revealing the eerie shape of pulsar wind nebula MSH 15-52. First, we see a starfield glittering with countless blue-white objects, courtesy of infrared data from the Dark Energy Camera Plane Survey (DECaPS2). Next, a wispy purple hand appears, captured by IXPE (purple) and Chandra (blue-white). The bright region at the base of the palm is the pulsar. The fingers are reaching toward orange clouds in the surrounding supernova remnant, revealed by Chandra’s low-energy X-ray data. Finally, IXPE’s polarization measurements add small colorful lines mapping the direction of the local magnetic field — orange bars mark the most precise measurements, followed by cyan and blue bars. The “hand” fades out, and the sequence repeats.

 

#NASA #NASAMarshall #NASAHalloween #NASAIXPE #NASAChandra #Nebula #Pulsar #Xrays #Halloween #astrophysics #pulsar

 

Read more

 

Read more about NASA’s Chandra X-ray Observatory

 

NASA Media Usage Guidelines

 

In honor of #BlackFriday, check out this amazing Chandra Black Hole artist concept. This artist's impression shows a binary system containing a stellar-mass black hole known as IGR J17091 for short. Observations with Chandra have clocked the fastest wind ever seen blowing off a disk around this stellar-mass black hole at about 20 million miles per hour. The wind, which comes from a disk of gas surrounding the black hole, may be carrying away much more material than the black hole is capturing and could be variable over time. This result has important implications for understanding how this class of black hole, which typically weighs between 5 and 10 solar masses, can behav

Just in time for Valentine's Day comes a new image of a ring -- not of jewels -- but of black holes. This composite image of Arp 147, a pair of interacting galaxies located about 430 million light years from Earth, shows X-rays from the NASA's Chandra X-ray Observatory (pink) and optical data from the Hubble Space Telescope (red, green, blue) produced by the Space Telescope Science Institute (STScI) in Baltimore, Md.

 

Arp 147 contains the remnant of a spiral galaxy (right) that collided with the elliptical galaxy on the left. This collision has produced an expanding wave of star formation that shows up as a blue ring containing in abundance of massive young stars. These stars race through their evolution in a few million years or less and explode as supernovas, leaving behind neutron stars and black holes.

 

A fraction of the neutron stars and black holes will have companion stars, and may become bright X-ray sources as they pull in matter from their companions. The nine X-ray sources scattered around the ring in Arp 147 are so bright that they must be black holes, with masses that are likely ten to twenty times that of the Sun.

 

An X-ray source is also detected in the nucleus of the red galaxy on the left and may be powered by a poorly-fed supermassive black hole. This source is not obvious in the composite image but can easily be seen in the X-ray image. Other objects unrelated to Arp 147 are also visible: a foreground star in the lower left of the image and a background quasar as the pink source above and to the left of the red galaxy.

 

Infrared observations with NASA's Spitzer Space Telescope and ultraviolet observations with NASA's Galaxy Evolution Explorer (GALEX) have allowed estimates of the rate of star formation in the ring. These estimates, combined with the use of models for the evolution of binary stars have allowed the authors to conclude that the most intense star formation may have ended some 15 million years ago, in Earth's time frame.

 

These results were published in the October 1st, 2010 issue of The Astrophysical Journal. The authors were Saul Rappaport and Alan Levine from the Massachusetts Institute of Technology, David Pooley from Eureka Scientific and Benjamin Steinhorn, also from MIT.

 

NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass.

 

Credits: X-ray: NASA/CXC/MIT/S.Rappaport et al, Optical: NASA/STScI

 

Read entire caption/view more images: chandra.harvard.edu/photo/2011/arp147/

 

Caption credit: Harvard-Smithsonian Center for Astrophysics

 

Read more about Chandra:

www.nasa.gov/chandra

 

p.s. You can see all of our Chandra photos in the Chandra Group in Flickr at: www.flickr.com/groups/chandranasa/ We'd love to have you as a member!

This NASA/ESA Hubble Space Telescope image shows the jewel-bright spiral galaxy NGC 4689, which lies 54 million light-years from Earth in the constellation Coma Berenices. This constellation has the distinction of being the only one of the 88 constellations officially recognized by the International Astronomical Union (IAU) as one named after the historical figure, Queen Berenice II of Egypt. The Latin word ‘coma’ references her hair, which means that NGC 4689 lies in the hair of a queen. Some people of Berenice’s time would have meant this quite literally, as the story goes that her court astronomer thought that a missing lock of Berenice’s hair had been catasterised (a word meaning ‘placed amongst the stars’) by the gods: hence the name of the constellation, Coma Berenices.

 

Credit: ESA/Hubble & NASA, D. Thilker, J. Lee, and the PHANGS-HST Team

 

#NASAMarshall #NASA #astrophysics #NASAChandra #NASA #galaxy

 

Read more

 

Read more about the Chandra X-ray Observatory

 

NASA Media Usage Guidelines

This image from the NASA/ESA Hubble Space Telescope shows the broad and sweeping spiral galaxy NGC 4731. It lies in the constellation Virgo and is located 43 million light-years from Earth. This highly detailed image uses data collected from six different filters. The abundance of color illustrates the galaxy's billowing clouds of gas, dark dust bands, bright pink star-forming regions and, most obviously, the long, glowing bar with trailing arms.

 

Barred spiral galaxies outnumber both regular spirals and elliptical galaxies put together, numbering around 60% of all galaxies. The visible bar structure is a result of orbits of stars and gas in the galaxy lining up, forming a dense region that individual stars move in and out of over time. This is the same process that maintains a galaxy's spiral arms, but it is somewhat more mysterious for bars: spiral galaxies seem to form bars in their centers as they mature, which helps explain the large number of bars we see today, but they can also lose them if the accumulated mass along the bar grows unstable. The orbital patterns and the gravitational interactions within a galaxy that sustain the bar also transport matter and energy into it, fueling star formation. Indeed, the observing program studying NGC 4731 seeks to investigate this flow of matter in galaxies.

 

Beyond the bar, the spiral arms of NGC 4731 stretch out far past the confines of this close-in Hubble view. Astronomers think the galaxy’s elongated arms are the result of gravitational interactions with other, nearby galaxies in the Virgo cluster.

 

Credit: ESA/Hubble & NASA, D. Thilker

 

#NASAMarshall #NASA #astrophysics #NASAChandra #NASA #galaxy

 

Read more

 

Read more about the Chandra X-ray Observatory

 

NASA Media Usage Guidelines

This image of the supernova RCW 86 shows X-ray data from NASA's Chandra X-ray Observatory. Astronomers used these data to determine that a Type Ia supernova explosion, which was witnessed nearly 2,000 years ago by Chinese astronomers, was the source of the RCW 86 remnant seen today. Type Ia supernovas are created when an otherwise stable white dwarf is pushed beyond the brink of stability when a companion star dumps material onto it.

 

Credit: NASA/CXC/SAO & ESA

 

#NASAMarshall #NASA #astrophysics #NASAChandra #NASA #supernova

 

Read more

 

Read more about the Chandra X-ray Observatory

 

NASA Media Usage Guidelines

1 2 ••• 5 6 8 10 11 ••• 17 18