View allAll Photos Tagged capable
Almost ALL the sample photos of this camera do not capture what it is capable of. I took these photos on program mode. Sharpness for the majority of the images is bumped up one notch, but with a sensor this size, it does a nice job of in camera sharpening. This was with the kit lens. Saturation and contrast were both left at default. There may be one or two where I bumped up contrast on the humming bird feeder, but the rest are regular photos strait from program mode. I am convinced that the majority of photos of this camera posted to flickr have HDR set to ON which is the camera default. So it is set to OFF on all the photos which may account for why there is more observed contrast.
This camera is fast. Ive owned the the Epm2, the canon t1i, the GF6 and this is by far my favorite camera. My camera search has after all these years officially ended. This is it.
I will say that when I first looked at the pictures, I looked at them on a dell laptop with a poor Intel graphics card. Even with a nice monitor viewed in windows viewer I was not all moved by the photos. Then I hooked that same external monitor (a dell s2340mc set on movie mode default) on a laptop with a good graphics card.... It looks fantastic. And Im positive its not just the monitor making the pictures look nice. Ive compared the pictures against other cameras. The sensor on this camera is outstanding. Ive compared the Nikon 3200, and several other DSLRs and still prefer this. it keeps good contrast and the black/contrast ratio in my opinion is one of the larger factors in bringing photos to life.
And THANK YOU Sony for NOT programming auto focus to fix on the nearest subject like canon does. I once used a Canon T1i, and that thing focused on everything CLOSE to the subject. It also overexposed everything. In fact that was one of the reasons I looked at this camera. The whole rebel series...even the upper rebels over all these years tend to overexpose everything on almost every mode with the ones Ive used. This one has a very very good metering system. Just overall very impressed. Fast speed. fast autofocus, good contrast ratio (OFF HDR MODE unlike the majority of uploads of this camera to flickr), defiantly a great camera. AND as an added bonus, there are hundreds of INEXPENSIVE lenses, including all the non-MD Minoltas
Type: Space heavy fighter-bomber
Crew: 1
Length/wingspan: 28 studs/22 studs
Engine(s): 1 Tiren Broad T-34 ion engine
Speed:
Service ceiling: Unlimited
Range:
Weaponry: 4x 0.7in laser cannons and 4 hard points capable of numerous weapons (though usually 4x 2.5 in laser cannons)
The T-57 Stalker is Ranter Tec’s winning entry in the HBC (Heavy Bomber Challenge) issued by the Trynin military as a direct response to the Boeing B-100 Boomerang. Technically the T-57 is fighter-bomber, not a heavy bomber. This break in the rules didn’t matter to the Trynin military who saw great potential in the versatile, heavily armored, single pilot, “heavy” fighter-bomber.
The T-57 was created immediately after the Trynin military issued the HBC and went from schematics to prototype in six month time. It was the first official entry in the HBC but was the last to go through military trials due to problems with the weight and engines. It took the T-57 almost two more years to go into mass production.
When the first T-57 squadrons were first flown in 2076 during the battle of [], they saw little success which was mainly due to their operators not correctly arming the T-57s. For the next year the T-57s would only claim two warships and only a hundred fighter-craft, with a loss of over seven-hundred T-57s. It wasn’t until [general] armed the T-57s with three inch beam cannons did they become success.
The T-57 is heavily armored with eight inch trendmite armor on the sides a two inch coating on the body. It does however lack a shield generator.
The Tiren Broad T-34 ion engines provide the T-57 with over [] pounds of thrust but its heavy armor plating reduce its top speed to [] mph. The broad emplacement (thus the name) of the engines across the whole rear end allows the T-57 to maneuver efficiently but again, its weight reduces its maneuverability. Although it does have two anti-gravity generators to allow atmospheric flight and increase its maneuverability. It also features an experimental magnetic thrust vectoring system to boost maneuverability and speed.
Most anti-aircraft T-57s are armed with the normal four .7 inch laser cannons in the nose and four 2.5 laser cannons in the roots. This gave the T-57 enough stopping power to down a small transport if necessary, and a light enough airframe to maneuver correctly and maintain high enough speeds.
Many of the bomber variants were armed with two .7 inch laser cannons in the upper nose, two 1 inch plasma cannons in the lower nose, and two 3 inch beam cannons in the roots. This arrangement of weapons gave the T-57 almost as much firepower as the Boeing B-100 Boomerang but greatly hinders the maneuverability and speed.
During the end of the Agronomic war the T-57 began to operate more and more as a fighter craft. This was due to the massive amounts of real fighters lost in battle and the arrival of the U-2 Bomber.
The T-57s destroyed twenty-seven warships and over twenty-thousand fighter-craft during the Agronomic War. Today T-57s are the hottest fighter-craft on the market and all but the U.E.C (United Earth Confederation) have at least one squad of T-57s.
The Rolls-Royce Griffon engine was designed in answer to Royal Naval specifications for an engine capable of generating good power at low altitudes. Concepts for adapting the Spitfire to take the new engine had begun as far back as October 1939; Joseph Smith felt that "The good big 'un will eventually beat the good little 'un." and Ernest Hives of Rolls-Royce thought that the Griffon would be "a second power string for the Spitfire". The first of the Griffon-engined Spitfires flew on 27 November 1941.
Although the Griffon-engined Spitfires were never produced in the large numbers of the Merlin-engined variants they were an important part of the Spitfire family, and in their later versions kept the Spitfire at the forefront of piston-engined fighter development. This article describes the Griffon-powered Spitfire variants.
The majority of Spitfires from the Mk VIII used C, D and E wing types. Unless otherwise noted, all Griffon-engined Spitfire variants used the strengthened Dunlop AH10019 "four spoke" pattern mainwheels. With the increasing use of hard-surfaced runways in the post-war years, many Spitfires were either manufactured or re-fitted with, larger mainwheels which were of a "three spoke" pattern. These were used on modified undercarriage legs which had reduced "toe-in" for the axles, which reduced tyre scrub.
Also known as the "Universal wing" the new design was standard on the majority of Spitfires built from mid-1942. This wing was structurally modified to reduce labour and manufacturing time plus it was designed to allow mixed armament options, A type, B type or four 20 mm Hispano cannon.
The undercarriage mountings were redesigned and the undercarriage doors were bowed in cross section allowing the legs to sit lower in the wells, eliminating the upper-wing blisters over the wheel wells and landing gear pivot points. Stronger undercarriage legs were raked 2 inches (5.08 cm) forward, making the Spitfire more stable on the ground and reducing the likelihood of the aircraft tipping onto its nose.[2] During production of the Mk VIII and Mk IX, a new undercarriage leg was introduced which had external v-shaped "scissor-links" fitted to the front of the leg; this also led to small changes in the shape of the undercarriage bay and leg fairings. Several versions of the Spitfire, including Mk XIV and Mk XVIII had extra 13 gallon integral fuel tanks in the wing leading edges, between the wing-root and the inboard cannon bay.
The Hispano Mk.II cannons were now belt fed from box magazines allowing for 120 rpg (the Chattelleraul system). The fairings over the Hispano barrels were shorter and there was usually a short rubber stub covering the outer cannon port. Redesigned upper wing gun bay doors incorporated "teardrop" shaped blisters to clear the cannon feed motors and the lower wings no longer had the gun bay heating vents outboard of the gunbays. To provide room for the belt feed system of the cannon, the inner machine gun bays were moved outboard between ribs 13 and 14. As the Spitfire was no longer to be used as a night fighter, the retractable landing lights were no longer fitted.
D Type
These were specifically made for the Photo-Reconnaissance Spitfires, including the PR XIX; no armament was fitted and the "D" shaped leading edges of the wings ahead of the main spar, were converted into integral fuel tanks, each carrying 66 gallons. To avoid the expansion of fuel in hot weather damaging the wing, pressure relief valves, incorporating small external vent pipes, were fitted near the wing tips.
Harrier GR9
The Harrier, informally referred to as the Jump Jet, is the famous family of British-designed military jet aircraft capable of vertical/short take-off and landing (V/STOL) operations. The Harrier family is the only truly successful design of this type from the many that arose in the 1960s.
There are four main versions of the Harrier family: Hawker Siddeley Harrier, British Aerospace Sea Harrier, Boeing/BAE Systems AV-8B Harrier II, and BAE Systems/Boeing Harrier II. The Hawker Siddeley Harrier is the first generation-version and is also known as the AV-8A Harrier. The Sea Harrier is a naval strike/air defence fighter. The AV-8B and BAE Harrier II are the US and British variants respectively of the second generation Harrier aircraft. Between 1969 and 2003, 824 Harrier variants were delivered, including remanufactured aircraft.
Historically the Harrier was developed to operate from ad-hoc facilities such as car parks or forest clearings, avoiding the need for large air bases vulnerable to tactical nuclear weapons. Later the design was adapted for use from aircraft carriers.
Following an approach by the Bristol Engine Company in 1957 that they were planning a directed thrust engine, Hawker Aircraft came up with a design for an aeroplane that could meet the NATO specification for a "Light Tactical Support Fighter". The resultant Hawker P.1127 was ordered as a prototype and flew in 1960.
Development continued with nine evaluation aircraft, the Hawker Siddeley Kestrel; These started flying in 1964 and were assessed by the "Tri-partite Evaluation Squadron" which consisted of British, US and German pilots, and several flew and are preserved in the United States. The RAF ordered a modified P.1127/Kestrel as the Harrier GR.1 in 1966, with most converted to GR.1A and ultimately GR.3 status in the 1970s with more powerful engines. These and new-build GR3s operated with the RAF until 1994, and a number survive in museums around the world as well as frequent use as 'gate guards' at MoD establishments.
The British Aerospace Sea Harrier is a naval V/STOL jet fighter, reconnaissance and attack aircraft, a development of the Hawker Siddeley Harrier. The first version entered service with the Royal Navy's Fleet Air Arm in April 1980 as the Sea Harrier FRS.1, and was informally known as the 'Shar'. The upgraded Sea Harrier FA2 entered service in 1993. It was withdrawn from Royal Navy service in March 2006. The Sea Harrier FRS Mk.51 remains in active service with the Indian Navy.
The Harrier was extensively redeveloped by McDonnell Douglas and British Aerospace (now parts of Boeing and BAE Systems respectively), leading to the Boeing/BAE Systems AV-8B Harrier II. This is a family of second-generation V/STOL jet multi-role aircraft, including the British Aerospace-built Harrier GR5/GR7/GR9, which entered service in the mid-1980s. The AV-8B is primarily used for light attack or multi-role tasks, typically operated from small aircraft carriers. Versions are used by several NATO countries, including the Spanish and Italian Navies, and the United States.
The BAE Systems/Boeing Harrier II is a modified version of the AV-8B Harrier II that was used by the RAF and the Royal Navy until December 2010, when they were all retired from operational service due to defence cuts in favour of maintaining the remaining Tornado fleet, and stored serviceable at RAF Cottesmore. At the end of November 2011, the UK Government announced the sale of 72 remaining Harrier Airframes to the US Marine Corps for spares to support their AV-8B fleet, with the remaining two others being allocated to museums.
The rise of the Sforza Castle
Originally from Romagna, Francesco Sforza was an immensely capable military leader as well as an astute politician. Having previously been hired to defend the city by Filippo Maria Visconti, he successfully laid siege to Milan and was welcomed by the populace as a liberator. On the 25th March 1450, Sforza and his wife Bianca Maria Visconti were hailed as the rulers of Milan.
Once in power, Francesco Sforza immediately set to work building additions to the Visconti Castle. Knowing the hatred the Milanese had for the building, he justified its reconstruction on the basis of a desire to beautify the city while defending it from outside enemies.
Coherently with this line of reasoning, in 1452, he set a civil engineer, the Florentine Antonio Averulino, known as il Filarete, to work alongside the military engineers, Giovanni da Milano, Jacopo da Cortona and Marcoleone da Nogolarolo. Averulino was tasked with designing the façade on the side of the city and the high central tower that rose above the castle gate. The Tuscan architect, however, was soon dismissed and the project was headed by Bartolomeo Gadio, a military architect who had the trust of the Sforzas and who had taken up the post of fortress commissioner for the duchy in the same year. The original plans for the façade were modified by Gadio to include two massive round corner towers covered in diamond shaped Serizzo stone that was more resistant to the artillery of the time. On the other side of the castle he also fortified and extended the “Ghirlanda”, a pre-existing Visconti era wall, which together with its two corner towers and a covered road, constituted the northern defences.
The efforts to complete and embellish the castle were intensified under the rule of Francesco Sforza's successor. In 1468 Galeazzo Maria, the first in line to the title, moved into the castle together with his court and spouse, Bona di Savoia, the sister-in-law of King Louis XI of France. In a matter of just a few years the Rocchetta Keep and the Ducal Courtyard were completed, the castle rooms frescoed and the Ducal Chapel decorated.
At this time the Castle was composed of the buildings that surrounded the capacious Courtyard of Arms on the side of the city, and the Ducal Apartments and fortified Rocchetta Keep towards the park.
From Edmunds (http://www.edmunds.com/lexus/gx470/2007/review.html) -
Pros
Rugged and capable off-road, comprehensively equipped interior, luxurious cabin furnishings.
Cons
Very tight quarters in optional third-row seat, side-hinged cargo door impedes curbside loading.
What's New for 2007
A few detail changes to onboard entertainment systems mark this midsize luxury SUV's transition into the 2007 model year. The optional navigation system has been upgraded with "fifth-generation" technology that includes voice activation for many functions, an improved display and an input jack for plumbing in devices like an iPod. The Mark Levinson Premium Audio System that resides alongside the navigation system can now play DVDs while displaying video on the navigation screen when the vehicle is parked. Additionally, the optional rear-seat entertainment system's video screen has been expanded to 9 inches wide.
Introduction
Entering its fifth year of production, the 2007 Lexus GX 470 remains the brand's middle SUV offering, sandwiched between the car-based RX 350 crossover and full-size LX 470. While it's not much larger than the RX, it's built more like the LX with a full ladder frame, a stout suspension and an all-wheel-drive system that includes a dual-range transfer case. In fact, the GX shares its 263-horsepower, 4.7-liter, DOHC, 32-valve V8 and five-speed automatic transmission with the more expensive LX.
The GX 470 is based on Toyota's Land Cruiser Prado platform: the same structural and mechanical base upon which the 4Runner and FJ Cruiser are erected. It's an exceptionally capable and rugged platform that manages the neat trick of supplying excellent on-road comfort and solid off-road performance.
But just because the 2007 Lexus GX 470 shares much of its engineering with the 4Runner and FJ Cruiser doesn't mean it feels like either of them. This is a truly luxurious machine that packs all the creature comforts expected of a Lexus into its body and covers most anything any human might touch in supple, perfectly stitched leather. In fact, it's so overstuffed with luxury equipment that the dashboard can seem overrun with buttons and switches to those who encounter it for the first time. Fortunately that sense of being overwhelmed fades rapidly once the ignition key is turned, the "Optitron" electroluminescent instrument panel fires to life and the engine settles into a barely audible idle.
While the GX packs in all the gee-whiz overkill elements expected of a 21st-century luxury machine, its most impressive technology is really only apparent off-road. The dual-range all-wheel-drive system is among the very best available (the center differential is a Torsen limited-slip unit) and it's complemented by the shockingly effective Downhill Assist Control (DAC), Hill-start Assist Control (HAC) and Active-TRAC (A-TRAC) traction control systems. Throw in excellent four-wheel disc brakes with both ABS and brake assist systems and it takes real effort to get into trouble with a GX 470.
Like other Prado-based vehicles, the GX 470 is a little narrow compared to some of its competition, and the styling is disappointingly generic, but this is otherwise a solid choice for the buyer who wants (or better, needs) the ability of a traditional SUV.
Bacteria capable of living in extremely harsh conditions are known as extremophilic. Chroococcidiopsis is one of the most primitive of the blue-green algae, now properly referred to as cyanobacteria, that can survive in very low and very high temperatures, in high salinity and in high levels of ionizing radiation. This bacterium, or something very like it, was present on the early Earth more than 2.5 billion years ago and, by performing photosynthesis, was a contributor to the oxygenation of the atmosphere that transformed our planet.
The bacterium employs several strategies to avoid desiccation in very arid environments. In the dry valley floors in Antarctica, it is found coating the undersides of translucent rocks (e.g. quartz pebbles) which allow enough light through to drive photosynthesis while retaining some moisture. In the very driest parts of the Atacama desert in northern Chile, the bacterium is found growing within the halite (rock salt) a few mm below the surface. Although these coastal regions west of the Andes receive only about 1mm of rain every four years, there is occasionally a great enough atmospheric humidity (70% or so) for the hygroscopic property of the halite to trigger the absorption of sufficient water to allow the chroococcidiopsis to flourish.
Samples of surface halite were collected from the Salar Llamara (Lat: -21.357841Long: -69.598869) in northern Chile by Armando Azua and Michael Sterzik who used them to study a number of properties including the effect of the chirality of molecules within the cyanobacterium on the circular polarization of reflected/scattered light (See: Sterzik et al. 2010, www.eso.org/sci/publications/messenger/archive/no.142-dec... ).
We have used one of these samples (the photograph in the lower panel - the piece is about the size of a fist - to investigate the possibilities for the detection of these cyanobacteria from in situ spectroscopic measurements (i.e. from the organisms remaining within the halite rock). By illuminating the greenish band seen near the top of the sample with UV (365nm LED) light, the chlorophyll fluorescence between about 640 and 780nm is seen very clearly (red line*) with the main peak at 678nm. As a comparison, we show the in vivo fluorescence of a green leaf (Ginkgo) excited at 404nm (thin orange line).
Seeing the chlorophyll reflectance or transmission directly from the rock is more problematic due to the low volume- (and exposed surface-) density of the bacterial clusters within the rock. We failed to see the main (680nm) absorption band of chlorophyll in the reflection spectrum from the same 'green band' which yielded the clear fluorescence signal. However, by cutting an approximately 1mm thick slice, we were able to see the signature of chlorophyll absorption clearly in transmission (dark blue line). This is compared with the transmission spectrum of the ginkgo leaf (thin light blue line).
The measurements were made with an Ocean Optics JAZ spectrometer (350-1020nm) using appropriate UV and visible light sources.
The fact that we can detect the chlorophyll from these cyanobacteria within the halite raises the possibility of detecting chroococcidiopsis remotely using spectroscopic techniques. It is clear to us that this would be a far from trivial task - especially for transmission or reflection. The possibility of detecting a sunlight-excited fluorescence signal - as is done for assessing planetary vegetation production from remote sensing Earth orbiting satellites (See e.g.: Meroni et al. 2009, www.sciencedirect.com/science/article/pii/S003442570900162X) - may, however, be worth pursuing.
NASA have suggested the possibility of using this bacterium - or one derived from it - to create soil on Mars and hence to 'green' the planet (See: science1.nasa.gov/science-news/science-at-nasa/2001/ast26... ).
Bob Fosbury and Michael Sterzik, April 2014.
* This is the fluorescence spectrum of the green band with the fluorescence spectrum of the pure white halite subtracted.
By the late 1950s, the US Navy had successfully made operational a carrier-based nuclear bomber, the North American AJ Savage, and were fielding supercarriers capable of carrying large numbers of nuclear-capable aircraft. The slow speed of the Savage meant that it was obsolete, however, while nuclear weapons had grown smaller. As a result, North American privately suggested to the Navy a supersonic jet nuclear bomber that could be operated from Forrestal-class carriers as a Savage replacement and as a supplement to the subsonic A3D Skywarrior. The Navy liked the idea and ordered a prototype, the XA3J-1 Vigilante, in 1956, with the first aircraft flying two years later.
The Vigilante was far ahead of its time. It was the first operational aircraft to use a primitive fly-by-wire microprocessor system, an all-moving tail that replaced the ailerons of more conventional aircraft, a heads-up display, inertial navigation, an undernose television camera system (TCS), bombing computer, and extensive use of titanium to lighten weight. The bomb delivery system was also unique: a nuclear weapon would be carried in a mid-fuselage tunnel, and ejected out the back of the aircraft over the target along with used fuel cells. The first A3J-1s entered service in 1961
Because of this new technology, the Vigilante’s early years were fraught with maintenance problems, posting the worst operational capability in the Navy for its first few years in service. The nuclear delivery system never worked correctly, and operational use of spare fuel cells in the tunnel led to the loss of one aircraft and several deck fires: the shock of a catapult launch would send the cells flying out the rear of the aircraft. In any case, the Navy was moving away from dedicated nuclear bombers: nuclear weapons had gotten small enough that even diminutive aircraft like the A-4 Skyhawk could carry them, and the development of the Polaris submarine-launched ballistic missile made something like the Vigilante largely unnecessary.
Pilots reported the aircraft—redesignated A-5A in 1962—was difficult to bring back aboard a carrier due to its high landing speed, but that its handling was excellent, and manueverability was also very good: Vigilantes had proven capable of manuevering with F-8 Crusaders. As a result, the Navy decided to convert its A-5s to RA-5C fast reconnaissance aircraft. The RA-5C kept most of the advances of the A-5A (including using fuel cells in the tunnel bay, despite the possibility of fire) along with that of the prototype-stage A-5B, which added a dorsal “hump” with additional fuel. The RA-5C would have a larger wing and a slew of new electronics, including cameras, side-looking radar and infrared sensors. The first RA-5Cs entered service in 1963 with former nuclear-attack “heavy” squadrons.
The RA-5C soon found itself in action over North Vietnam, beginning in 1964. These aircraft proved invaluable: their speed made them virtually immune to MiG interceptors, and even surface-to-air missile batteries found it a tough target to bring down. Because of its speed, the normal F-4 Phantom II fighter escort left the RA-5C at the shoreline and waited for its return. However, since it operated at low level, the Vigilante was vulnerable to ground fire, and the North Vietnamese were well aware that Vigilantes would soon arrive over a target recently struck by Navy aircraft, and would set up ambushes. 18 RA-5Cs were lost in combat over North Vietnam, all but four to antiaircraft guns, and another nine in accidents; because there had not been that many Vigilantes built, North American reopened the production line to replace these losses. This was still a better loss ratio than the RF-8s that supplemented the RA-5Cs. “Vigis” would be one of the few aircraft to serve from the first day of the Vietnam War until the very end.
Following the end of the Vietnam War, the RA-5C’s sheer size and continued maintenance headaches led to it leaving carrier air groups by 1975. The development of the TARPS reconnaissance pod for the F-14 Tomcat spelled the end of the Vigilante, which was deemed no longer necessary. The last RA-5C flight took place in November 1979. Of 156 built, 13 survive today as gate guards and museum pieces.
156641 was one of the second batch of purpose-built RA-5Cs, built to replace losses over Vietnam, and may have been one of the last ever built: it was not delivered to RVAH-3 ("Seadragons") until 1970, at NAS Albany, Georgia. When Albany closed in 1978, 156641 was transferred to RVAH-7 ("Peacemakers") at NAS Key West, Florida. It was among the last Vigilantes to be retired (and one of the few to never see combat in Vietnam), and was flown to NAS China Lake, California to serve as a target. Amazingly, it survived, and in 2004, 156641 was donated to the USS Midway Museum in San Diego and restored for display.
Like most of the aircraft aboard the Midway, 156641 carries two squadron markings: on this side, it wears RVAH-12 ("Speartips") colors; on the right, it wears RVAH-7 colors. This was the third of four Vigilantes I got to see on our May 2021 trip, including aircraft at Pueblo Weisbrod, Pima, the Midway, and Castle. As the RA-5C has always been one of my favorite aircraft, this was definitely fun.
Aeroscopia est un musée aéronautique français implanté à Blagnac (Haute-Garonne), près du site AéroConstellation, et accueille notamment deux exemplaires du Concorde, dont l'ouverture a eu lieu le 14 janvier 2015
Le tarmac Sud du musée n'est capable d'accueillir que trois gros appareils. L'installation des appareils fut définitivement terminée après que le premier prototype de l'A400M-180 y fut arrivé le 16 juillet 2015, en dépit de la possibilité de 360 000 euros de TVA.
Concorde, F-BVFC, MSN209 aux couleurs d'Air France
Caravelle 12, F-BTOE, MSN280 aux couleurs d'Air Inter, dernier exemplaire construit
A400M-180, F-WWMT, MSN001 stationné depuis le 16 juillet 2015
La réalisation en 2019 du nouveau tarmac au Nord du musée permet l'accueil d'appareils supplémentaires issus des entreprises locales Airbus et ATR. Le transfert des avions entre le site Airbus "Lagardère" et le musée a lieu sur une semaine, à raison d'un appareil par jour :
ATR 72-600, F-WWEY, MSN098 aux couleurs d'ATR, transféré sur site le 26 août 2019, premier exemplaire du 72 dans sa version 600
Airbus A340-600, F-WWCA, MSN360 aux couleurs d'Airbus, transféré sur site le 27 août 2019, premier exemplaire de l'A340 dans sa version 600
Airbus A320-111, F-WWAI, MSN001 aux anciennes couleurs d'Airbus, transféré sur site le 28 août 2019, premier exemplaire de l'A320 : inauguration le 14 février 1987 en présence de Lady Diana et du Prince Charles, premier vol le 22 février 1987
Airbus A380-800, F-WXXL, MSN002 aux couleurs d'Airbus, transféré sur site le 29 août 2019, second exemplaire de l'A380. Les deux ponts de cet appareil sont visitables, ainsi que le cockpit.
ATR 42-300, F-WEGC, MSN003 aux anciennes couleurs d'ATR, transféré sur site le 30 août 2019, troisième exemplaire du 42. Cet exemplaire est décoré aux couleurs du MSN001 et porte l'immatriculation F-WEGA
Concorde, F-WTSB, MSN201 (ANAE), il s'agit d'un appareil de présérie qui a servi entre autres à transporter plusieurs présidents de la République française.
Airbus A300B4-203, F-WUAB, MSN238 (Airbus Heritage), décoré aux couleurs du prototype, au lieu de MSN001 démantelé. L'intérieur est visitable. Dans la première section des vitrages transparents permettent de voir la structure et les systèmes de l'avion, tandis que dans les sections suivantes sont représentés des aménagements de première classe et VIP.
Super Guppy de l'association Ailes Anciennes Toulouse, l'appareil qui servait au transport des tronçons d'Airbus est exposé porte ouverte, et une passerelle permet l'accès à la soute où un film est projeté. L'ouverture n'a pas été une mince affaire, l'appareil n'ayant pas été ouvert pendant 15 ans. L'aide des anciens mécaniciens de l'avion a été primordiale pour permettre une ouverture en toute sécurité.
Corvette (Airbus)
Falcon 10 no 02, prototype ayant servi aux essais du turboréacteur Larzac (Ailes Anciennes Toulouse)
Fouga Magister (AAT)
Gazelle prototype (AAT)
Mirage III C (AAT)
Nord 1100 (AAT)
Lockheed F-104G (AAT)
MiG-15 (AAT)
MS.760 Paris (AAT)
Vought F-8E(FN) Crusader et son réacteur (AAT)
Alouette II Marine (AAT)
Cessna Skymaster (AAT)
Fairchild Metro, ancien avion de Météo-France (AAT)
HM-293, de Rodolphe Grunberg
Chagnes MicroStar, avion de construction amateur, version biréacteur de Rutan VariViggen (AAT)
Saab J35OE Draken (AAT)
Aeroscopia is a French aeronautical museum located in Blagnac (Haute-Garonne), near the AéroConstellation site, and notably hosts two copies of the Concorde, which opened on January 14, 2015
The south tarmac of the museum can only accommodate three large aircraft. The installation of the devices was definitively finished after the first prototype of the A400M-180 arrived there on July 16, 2015, despite the possibility of 360,000 euros in VAT.
Concorde, F-BVFC, MSN209 in Air France colors
Caravelle 12, F-BTOE, MSN280 in Air Inter colors, last model built
A400M-180, F-WWMT, MSN001 parked since July 16, 2015
The construction in 2019 of the new tarmac north of the museum will accommodate additional aircraft from local Airbus and ATR companies. The transfer of planes between the Airbus "Lagardère" site and the museum takes place over a week, at the rate of one aircraft per day:
ATR 72-600, F-WWEY, MSN098 in ATR colors, transferred to site on August 26, 2019, first copy of the 72 in its 600 version
Airbus A340-600, F-WWCA, MSN360 in Airbus colors, transferred to site on August 27, 2019, first copy of the A340 in its 600 version
Airbus A320-111, F-WWAI, MSN001 in the old Airbus colors, transferred to site on August 28, 2019, first copy of the A320: inauguration on February 14, 1987 in the presence of Lady Diana and Prince Charles, first flight on February 22, 1987
Airbus A380-800, F-WXXL, MSN002 in Airbus colors, transferred to site on August 29, 2019, second copy of the A380. The two decks of this aircraft can be visited, as well as the cockpit.
ATR 42-300, F-WEGC, MSN003 in the old ATR colors, transferred to the site on August 30, 2019, third specimen of the 42. This specimen is decorated in the colors of the MSN001 and bears the registration F-WEGA
Concorde, F-WTSB, MSN201 (ANAE), this is a pre-production aircraft which was used, among other things, to transport several presidents of the French Republic.
Airbus A300B4-203, F-WUAB, MSN238 (Airbus Heritage), decorated in the colors of the prototype, instead of dismantled MSN001. The interior can be visited. In the first section transparent glazing allows to see the structure and systems of the aircraft, while in the following sections are shown first class and VIP fittings.
Super Guppy from the Ailes Anciennes Toulouse association, the aircraft which was used to transport the Airbus sections is on display with the door open, and a gangway allows access to the hold where a film is shown. Opening was no small feat, as the device has not been opened for 15 years. The help of the former mechanics of the aircraft was essential to allow a safe opening.
Corvette (Airbus)
Falcon 10 no 02, prototype used for testing the Larzac turbojet engine (Ailes Anciennes Toulouse)
Fouga Magister (AAT)
Prototype Gazelle (AAT)
Mirage III C (AAT)
North 1100 (AAT)
Lockheed F-104G (AAT)
MiG-15 (AAT)
MS.760 Paris (AAT)
Vought F-8E (FN) Crusader and its engine (AAT)
Alouette II Marine (AAT)
Cessna Skymaster (AAT)
Fairchild Metro, former Météo-France (AAT) aircraft
HM-293, by Rodolphe Grunberg
Chagnes MicroStar, amateur-built aircraft, twin-jet version of Rutan VariViggen (AAT)
Saab J35OE Draken (AAT)
The Theresian Military Academy was under Maria Theresa on 14 December 1751 with the mission "Make he me thereof capable officers and righteous men" to the first commander Field Marshal Leopold Joseph of Daun founded and is, thus, the oldest active uninterruptedly the officer training dedicated Military Academy of the World. Memorable is that the building since 1752 - except for the years of occupation, war and destruction due to the Third Reich - uninterruptedly hosted the Military Academy, while the Royal Military Academy Woolwich, founded in 1741, was closed in 1939. The Royal Military Academy Sandhurst, founded in 1947, only from a sentimental point of view continues the tradition of its predecessor academy. In Wiener Neustadt, in contrast, were admitted since 1752 almost without interruption per year 100 nobles and 100 commoners. The officers of the Austria-Hungarian army as well were to 1918 formed here.
The term military academy it wears since the unification with the nursery of Cadets in 1769. Already in 1771 appeared a by local director lieutenant field marshal Johann Georg Carl Freiherr von Hannig elaborated regulated curriculum and 1775 the by Maria Theresa sanctioned Academy Regulations. The training period at that time was eleven years and was gradually reduced to three years.
The famous Styrian Archduke Johann of Austria was 44 years (1805-1849) Chief Executive Officer of Theresian Military Academy.
In the First Republic, the training was to 1934 performed in Enns (Upper Austria) and then again in Wiener Neustadt. A special feature in the time between the Austrofascism and the Annexation is the refusal of Major General Rudolf Towarek (1933-1938 Commander of the Military Academy), to hand over the castle to German Wehrmacht which had just invated Austria. He had the guard paraded with fixed bayonet and so refused the Wehrmacht several days admission to the castle. This act had until his retirement no negative impacts on Major General Towarek, he even obtained permission to continue to wear the Austrian uniform after his retirement.
By Colonel Erwin Rommel, later Field Marshal, immediately after the Annexation a training school for officer training was set up which he at the beginning also directed himself. To the school the Daun barracks was added.
Towards the end of World War II, the castle was almost completely destroyed by bombs, fires and looting. It burned in April and May 1945 within almost 14 days completely down. The remaining ruins were in the reconstruction in the years 1946 to 1959 restored to its historical form, the interior, however, adapted to current requirements. So the military academy was able to resume operations in the year 1958.
Main portal of the Theresian Military Academy
After the founding of the Armed Forces in 1955, the Military Academy was housed again until 1958 in Enns, from where it subsequently moved back to the castle of Wiener Neustadt, that after the damages caused by the Second World War had been repaired.
In Vienna Museum of Military History, the campaign streamer of the first flag of the military academy is set up. It was donated by Maria Theresia just before her death in 1780 for the first flag, supposedly she should have embroidered it personally. Under the banner ribbon there are two paintings (gouaches) of Bernhard Albrecht (1758-1822). Albrecht was an art teacher at the Military Academy and he also depicted the pupils in their military and athletic exercises. So show the images scenes as "target practice with mortars" and "balancing exercises of cadets at the high balance beam". The sheets have emerged 1785-1793.
The current commander is Brigadier Karl Pronhagl.
Die Theresianische Militärakademie wurde unter Maria Theresia am 14. Dezember 1751 mit dem Auftrag „Mach’ er mir tüchtige Offiziere und rechtschaffene Männer darauß“ an den ersten Kommandanten Feldmarschall Leopold Joseph von Daun gegründet und ist somit die älteste aktive, durchgängig der Offiziersausbildung gewidmete Militärakademie der Welt. Denkwürdig ist, dass das Gebäude seit 1752 – mit Ausnahme der Okkupations- Kriegs- und Zerstörungsjahre in Folge des Dritten Reiches durchgängig die Militärakademie beherbergte, wogegen die 1741 gegründete Royal Military Academy Woolwich 1939 geschlossen wurde. Die Royal Military Academy Sandhurst, gegründet 1947, setzt nur in ideeller Hinsicht die Tradition ihrer Vorgängerakademie fort. In Wiener Neustadt wurden dagegen seit 1752 fast durchgängig pro Jahr je 100 Adelige und 100 Bürgerliche aufgenommen. Auch die Offiziere der Österreich-Ungarischen Armee wurden bis 1918 hier ausgebildet.
Die Bezeichnung Militärakademie trägt sie seit der Vereinigung mit der Pflanzschule für Kadetten im Jahr 1769. Bereits 1771 erschien ein vom Lokaldirektor Feldmarschalleutnant Johann Georg Carl Freiherr von Hannig ausgearbeiteter geregelter Studienplan und 1775 das von Maria Theresia sanktionierte Akademie-Reglement. Die Ausbildungszeit betrug damals elf Jahre und wurde schrittweise auf drei Jahre verkürzt.
Der berühmte steirische Erzherzog Johann von Österreich war 44 Jahre (von 1805 bis 1849) Oberdirektor der Theresianischen Militär-Akademie.
In der ersten Republik wurde die Ausbildung bis 1934 in Enns durchgeführt und anschließend wieder in Wiener Neustadt. Eine Besonderheit in der Zeit zwischen dem Austrofaschismus und dem Anschluss ist die Weigerung des Generalmajors Rudolf Towarek (1933–1938 Kommandant der Militärakademie), die Burg der in Österreich einmarschierten deutschen Wehrmacht zu übergeben. Er ließ die Wache mit aufgepflanzten Bajonett aufmarschieren und verweigerte so der Wehrmacht mehrere Tage den Zutritt zur Burg. Diese Tat hatte bis auf seine Pensionierung keine negativen Auswirkungen auf Generalmajor Towarek, er erhielt sogar die Erlaubnis, nach seiner Pensionierung weiterhin die österreichische Uniform zu tragen.
Von Oberst Erwin Rommel, dem späteren Generalfeldmarschall, wurde unmittelbar nach dem Anschluss eine Kriegsschule für die Offiziersausbildung eingerichtet, die er anfangs auch selbst leitete. Zu der Schule kam auch die Daun-Kaserne dazu.
Gegen Ende des Zweiten Weltkriegs wurde die Burg durch Fliegerbomben, Brände und Plünderungen fast vollkommen zerstört. Sie brannte im April und Mai 1945 innerhalb von fast 14 Tagen restlos aus. Die übrig gebliebene Ruine wurde beim Wiederaufbau in den Jahren 1946 bis 1959 in ihrer historischen Form wiederhergestellt, das Innere jedoch den zeitlichen Erfordernissen angepasst. So konnte die Militärakademie im Jahr 1958 ihren Betrieb wieder aufnehmen.
Hauptportal der Theresianischen Militärakademie
Nach der Gründung des Bundesheeres im Jahr 1955 war die Militärakademie nochmals bis 1958 in Enns untergebracht, von wo sie anschließend wieder in die Burg von Wiener Neustadt übersiedelte, nachdem die Beschädigungen durch den Zweiten Weltkrieg behoben worden waren.
Im Wiener Heeresgeschichtlichen Museum ist das Fahnenband der ersten Fahne der Militärakademie ausgestellt. Es wurde von Maria Theresia knapp vor ihrem Tod 1780 für die erste Fahne gestiftet, angeblich soll sie es persönlich bestickt haben. Unter dem Fahnenband befinden sich zwei Bilder (Gouachen) von Bernhard Albrecht (1758–1822). Albrecht war Zeichenlehrer der Militärakademie und schilderte auch die Zöglinge bei ihren militärischen und sportlichen Übungen. So zeigen die Bilder Szenen wie „Übungsschießen mit Mörsern“ und „Balancierübungen der Kadetten auf dem hohen Balkensteg“. Die Blätter sind zwischen 1785 und 1793 entstanden.
Der aktuelle Kommandant ist Brigadier Karl Pronhagl.
The F-105 Thunderchief, which would become a legend in the history of the Vietnam War, started out very modestly as a proposal for a large, supersonic replacement for the RF-84F Thunderflash tactical reconnaissance fighter in 1951. Later this was expanded by Republic’s famous chief designer, Alexander Kartveli, to a nuclear-capable, high-speed, low-altitude penetration tactical fighter-bomber which could also replace the F-84 Thunderstreak.
The USAF liked the idea, as the F-84 had shown itself to be at a disadvantage against Chinese and Soviet-flown MiG-15s over Korea, and ordered 200 of the new design before it was even finalized. This order was reduced to only 37 aircraft with the end of the Korean War, but nonetheless the first YF-105A Thunderchief flew in October 1955. Although it was equipped with an interim J57 engine and had drag problems, it still achieved supersonic speed. When the design was further refined as the YF-105B, with the J75 engine and area ruling, it went over Mach 2. This was in spite of the fact that the design had mushroomed in size from Kartveli’s initial idea to one of the largest and heaviest fighter ever to serve with the USAF: fully loaded, the F-105 was heavier than a B-17 bomber. The USAF ordered 1800 F-105s, though this would be reduced to 830 examples.
Almost immediately, the F-105 began to be plagued with problems. Some of the trouble could be traced to the normal teething problems of any new aircraft, but for awhile it seemed the Thunderchief was too hot to handle, with a catastrophically high accident rate. This led to the aircraft getting the nickname of “Thud,” supposedly for the sound it made when hitting the ground, along with other not-so-affectionate monikers such as “Ultra Hog” and “Squat Bomber.” Despite its immense size and bad reputation, however, the F-105 was superb at high speeds, especially at low level, was difficult to stall, and its cockpit was commended for its ergonomic layout. Earlier “narrow-nose” F-105Bs were replaced by wider-nosed, radar-equipped F-105Ds, the mainline version of the Thunderchief, while two-seat F-105Fs were built as conversion trainers.
Had it not been for the Vietnam War, however, the F-105 might have gone down in history as simply another mildly successful 1950s era design. Deployed to Vietnam at the beginning of the American involvement there in 1964, the Thunderchief was soon heading to North Vietnam to attack targets there in the opening rounds of Operation Rolling Thunder; this was in spite of the fact that the F-105 was designed primarily as a low-level (and, as its pilots insisted, one-way) tactical nuclear bomber. Instead, F-105s were heading north festooned with conventional bombs.
As Rolling Thunder gradually expanded to all of North Vietnam, now-camouflaged Thuds “going Downtown” became iconic, fighting their way through the densest concentration of antiaircraft fire in history, along with SAMs and MiG fighters. The F-105 now gained a reputation for something else: toughness, a Republic hallmark. Nor were they defenseless: unlike the USAF’s primary fighter, the F-4 Phantom II, the F-105 retained an internal 20mm gatling cannon, and MiG-17s which engaged F-105s was far from a foregone conclusion, as 27 MiGs were shot down by F-105s for the loss of about 20. If nothing else, Thud pilots no longer burdened with bombs could simply elect to head home at Mach 2 and two thousand feet, outdistancing any MiG defenders.
If the Thud had any weakness, it was its hydraulic system, which was found to be extremely vulnerable to damage. However, it was likely more due to poor tactics and the restrictive Rules of Engagement, which sent F-105s into battle on predictable routes, unable to return fire on SAM sites until missiles were launched at them, and their F-4 escorts hamstrung by being forced to wait until MiGs were on attack runs before the MiGs could be engaged. The tropical climate also took a toll on man and machine, with the end result that 382 F-105s were lost over Vietnam, nearly half of all Thuds ever produced and the highest loss rate of any USAF aircraft.
The combination of a high loss rate and the fact that the F-105 really was not designed to be used in the fashion it was over Vietnam led to the type’s gradual withdrawal after 1968 in favor of more F-4s and a USAF version of the USN’s A-7 Corsair II. An improved all-weather bombing system, Thunderstick II, was given to a few of the F-105D survivors, but this was not used operationally.
The Thud soldiered on another decade in Air National Guard and Reserve units until February 1984, when the type was finally retired in favor of the F-16, and its spiritual successor, the A-10 Thunderbolt II.
60-0508 was one of the few F-105D models that did not go to Vietnam--its entire career was spent in Europe, first with the 36th Tactical Fighter Wing at Bitburg, then the 49th TFW at Spangdahlem. As the 49th returned to the United States and reequipped with F-4 Phantom IIs, 60-0508 was retired from active service in 1966 and redesignated as a GF-105D ground instruction trainer at Lowry AFB, Colorado. When Lowry closed, it was turned over to the Wings Over the Rockies for restoration and display.
As Thuds go, 60-0508 is kind of plain. These markings were those used immediately before (and in the first year of) the Vietnam War: under Project Lookalike, F-105s were given overall silver finishes, often with no unit markings besides a tail stripe, but retaining fuselage buzz numbers. This aircraft lacks any unit markings at all; the gray finish is much easier to maintain than the silver or bare metal. The open port and device on the nose is the ram-air generator for if the F-105 lost power--which it would inevitably do if the hydraulic system was hit.
The object in front of 60-0508 is an Igloo White sensor, dropped across the DMZ and the Ho Chi Minh Trail to detect North Vietnamese movements. They were hit or miss in effectiveness; Thuds didn't drop Igloo White sensors, but might be called in to strike targets detected by them.
Northrop Grumman E-2 Hawkeye, an American all-weather, carrier-capable tactical airborne early warning (AEW) aircraft. This twin-turboprop aircraft was designed and developed during the late 1950s and early 1960s by the Grumman Aircraft Company for the United States Navy as a replacement for the earlier E-1 Tracer, which was rapidly becoming obsolete. The aircraft's performance has been upgraded with the E-2B, and E-2C versions, where most of the changes were made to the radar and radio communications due to advances in electronic integrated circuits and other electronics. The fourth version of the Hawkeye is the E-2D, which first flew in 2007. The E-2 was the first aircraft designed to be an AEW aircraft from the outset, as opposed to a modification of an existing airframe, such as the E-3. Variants of the Hawkeye have been in continuous production since 1960, giving it the longest production run of any carrier based aircraft. The E-2 also received the nickname Super Fudd because it replaced the E-1 Tracer Willy Fudd. In recent decades, the E-2 has been commonly referred to as the Hummer because of the distinctive sounds of its turboprop engines, quite unlike that of turbojet and turbofan jet engines. The E-2 and its sister, the C-2 Greyhound, are currently the only propeller airplanes that operate from aircraft carriers. In addition to U.S. Navy service, smaller numbers of E-2s have been sold to the armed forces of Egypt, France, Israel, Japan, Mexico, Singapore and Taiwan.
AMARG (or the Boneyard) is the world's largest aircraft and missile storage and maintenance facility in Tucson, Arizona. I took these pictures during a bus tour in June 2008.
A világ legnagyobb repülőgép és rakéta tároló és karbantartó létesítménye az Arizona állambeli Tucson-ban. A hely csak idegenvezetett autóbuszos túrán tekinthető meg, mi is így jártunk itt 2008. júniusban.
The 309th Aerospace Maintenance and Regeneration Group (AMARG), often called The Boneyard, is a United States Air Force aircraft and missile storage and maintenance facility in Tucson, Arizona, located on Davis-Monthan Air Force Base. AMARG takes care of more than 4,400 aircraft on 11 km2, which makes it the largest aircraft storage and preservation facility in the world. AMARG holds aircarft for future use, sales to friendly governments, or parts reclamation. Stored aircraft go through the following treatments: removing guns, ejection seat charges, or classified hardware. Draining its fuel system. Sealing it from dust, sunlight, and high temperatures by using high tech vinyl plastic compounds, Spraying an opaque white color on it, or using simple garbage bags. AMARG is a controlled-access site, and is off-limits to anyone not employed there without the proper clearance. The only access to AMARG for non-cleared individuals is via a bus tour.
***UPDATE*** Tamara and Josh have really been working hard to get their new home up to snuff. They snared this great table for their library sitting area.
A small teddy bear is CAPABLE of anything in my imagination and on the page (including crossing the Egyptian desert on a camel)
is a weekly illustration challenge. A topic is posted every Friday and then participants have all week to come up with their own interpretation
The all new Yuzu Emulator update is now capable of fulling running and playing Pokemon Shield game without any issue and problem. It is full playable with the new DLC, so try it out now.
Pokemon SWSH XCI/NSP ROM: bit.ly/pokeswshyuzupc
Official Yuzu Emulator: yuzu-emu.org/
System Requirements:
CPU: Atleast 4 cores (Higher Core count = better performance)
GPU: atleast GTX 1060 or amd equivalent
RAM: 8GB RAM (16GB is recommended)
Storage: atleast 1TB since Switch games are large in file size
Related Tags:
pokemon sword and shield
pokemon sword and shield the isle of armor
pokemon sword and shield expansion pass
pokemon sword and shield gameplay
pokemon sword and shield yuzu emulator
pokemon sword and shield pc gameplay
pokemon sword and shield dlc download
pokémon sword and shield expansion pass download
pokémon sword and shield pc
pokémon sword and shield the isle of armor download
pokémon sword usa version download xci
pokémon shield usa version download xci
how to download pokemon sword and shield on pc
how to setup pokemon sword and shield on pc
how to play pokemon sword and shield on pc
how to install pokemon sword and shield on pc
how to get pokemon sword and shield on pc
#pokemonswordandshield #pokemonswshexpansionpass #pokemonswordandshielddlc
The Dominion Post photo of the livestock carrier Nada at the Port of Timaru loading some 50,000 sheep and 3000 head of cattle for shipment to Mexico. The ship is capable of holding some 110,000 head of livestock.
LARGEST LIVESTOCK SHIPMENT EVER REMAINS SHROUDED IN MYSTERY
The largest shipment of livestock ever to leave New Zealand remains shrouded in mystery.
While a livestock carrier arrived off Timaru on Tuesday, PrimePort Timaru, livestock brokers and shipping agents refused to discuss the shipment.
The carrier Nada has since docked at the port to begin loading 50,000 sheep and 3000 cattle destined for Mexico for breeding purposes. The number of animals involved supercedes the 35,000 shipped by the Daneb Prima to Mexico in 2007. At the time that was considered the largest shipment ever from New Zealand.
The ship's arrival was not listed in PrimePort's online shipping list. Independent livestock brokers Peter Walsh and Associates refused to speak on the issue but did not deny they were involved in the shipment. Shipping agent Matt Mayo said he was the agent for the Nada but initially claimed it was a passenger ship before refusing to comment further.
It was not until the Ministry of Primary Industries (MPI) was approached details of the shipment were obtained.
It is understood the animals have been held on Rangitata Island, 50km north of Timaru, for several weeks, in preparation for being transported to the port.
New Zealand does not export livestock for slaughter and has not done so since a Customs Export Prohibition Order was put in place in 2007. Livestock can be exported for breeding, but there are strict animal welfare standards in place.
A spokesperson for the MPI said it received an application for the export of around 50,000 sheep and 3000 cattle tor Mexico.
"Strict animal welfare requirements will need to be met before and during each shipment. These include requirements around water, food, space and facilities and having export-approved stockmen and veterinarians with the animals.
"Before the animals are transported they will be inspected at the port by an MPI veterinarian to make sure they are fit to travel and their transport is sufficient."
New Zealand Meat and Related Trade Workers Union Canterbury branch secretary Bill Watts said it was assumed the lambs were being shipped for breeding stock as it was illegal to ship livestock from New Zealand for slaughter.
"Any live sheep shipment is taking work away from the local freezing works and taking money from the local economy.
"Smithfield (meatworks in Timaru) kill 35,000 lambs a week; those sheep equate to over a week's work for those people. It's disappointing these sheep are going out of New Zealand - it's exporting jobs." - Stuff, June 10, 2015
NZ NEEDS TO STOP PUTTING ANIMALS IN FLOATING PRISONS
Opinion by Catriona MacLennan
What is the point of animal protection laws when they are so ineffective at ensuring animal welfare?
Some 53,000 New Zealand animals are now crammed together aboard a floating prison. They will spend the 16 days travelling from a southern hemisphere winter to Mexico, where the current temperature ranges between 25 and 33 degrees.
New Zealand has had a ban on live sheep exports in place since 2003, following international shock and revulsion at the suffering and deaths of thousands of Australian sheep on the Cormo Express.
However, our prohibition applies only to animals exported for slaughter. The law does not prevent live animals being sent overseas for breeding.
With little public awareness, hundreds of thousands of New Zealand animals are regularly shipped and air-freighted to other nations. This includes 35,000 sheep sent to Mexico in 2007, around 80,000 cattle transported to Mexico, cows exported to China, and sheep air-lifted to Saudi Arabia.
The Animal Welfare Act requires owners and people in charge of animals to take all reasonable steps to ensure that the animals' physical, health and behavioural needs are met in accordance with good practice and scientific knowledge.
What this means is that animals should have access to:
- proper food and water
- adequate shelter
- the opportunity to display normal patterns of behaviour
- physical handling in a manner which minimises the likelihood of unreasonable or unnecessary pain or distress
- protection from and rapid diagnosis of, any significant injury or disease
Shipping live animals half-way across the world fails those tests on a number of grounds. 53,000 animals crammed together on a multi-storey vessel cannot display normal patterns of behaviour. Shockingly, there is only one vet on board to care for the animals. How can one person properly monitor and treat so many animals?
Even if the vet on the Nada worked 24 hours a day and looked at each animal only once during the voyage, literally seconds would be able to be spent with each.
Many of the animals will be so distressed at being at sea that they will refuse to eat. We know this because tens of thousands of Australasian animals have already died at sea in the past two decades.
The fact that the Ministry for Primary Industries - which is the main agency charged with policing animal welfare - is permitting this, shows yet again that it is far more focused on promoting economic benefits than on protecting animal welfare.
There is a clear conflict between the ministry's responsibility to promote New Zealand's exports, and its animal welfare responsibilities. The only way to resolve this is to create an Independent Commissioner of Animal Welfare, with sole responsibility for promoting and monitoring animal welfare and a properly-resourced office to ensure this happens.
The ministry says it has statutory declarations that the animals going to Mexico are strictly for breeding purposes, and not for slaughter.
Will ministry staff be permanently stationed in Mexico to monitor this on an ongoing basis ?
And what of the animals bred from the New Zealand animals? The pregnant ewes already air-freighted from New Zealand to Saudi Arabia will give birth to lambs – will those animals not be slaughtered in a way considered unacceptable in New Zealand ?
If this country had effective animal welfare laws, this would not be permitted. But what we have is a toothless law with so many exceptions that the act's basic protections are all but worthless.
New Zealand animals living in factory farms do not enjoy the fundamental protections set out in the Animal Welfare Act because the law is interpreted to allow for huge loopholes.
These mean millions of pigs and hens continue to suffer agonising lives in cramped conditions, with no opportunity to display normal patterns of behaviour.
We should tear up our Animal Welfare Act and start afresh to write a proper law which guarantees real protections to animals. And we should ban live exports.
Catriona MacLennan is a barrister and the co-ordinator of Animal Agenda Aotearoa. - The Dominion Post, June 12, 2015
After Adolf Hitler took power in Germany in 1933, the nation’s secret rearmament after World War I could come out into the open. The Luftwaffe quickly announced a competition for a single-seat point defense interceptor, able to reach 250 mph at 20,000 feet, be capable of reaching 15,000 feet in 17 minutes or less, and have heavy cannon armament. Production aircraft would need to use either the Junkers Jumo 210 or Daimler-Benz 600 series inline piston engines. Arado, Heinkel, and the Bayerische Flugzeugwerke, headed by its chief designer Willy Messerschmitt, all submitted entries. The Ar 80 was rejected, but both Heinkel’s He 112 and BFW’s Bf 109 were highly competitive.
To ensure he had enough aircraft for the competition, Messerschmitt’s first Bf 109V1s were equipped with borrowed Rolls-Royce Kestrel engines. During the competition, it looked as if the He 112 would win it: the Bf 109 was disliked by test pilots because of poor visibility forward on the ground, unreliable narrow-track landing gear, sideways-closing canopy, and heaviness on the controls. However, the Bf 109 was lighter and cheaper than the He 112, and it had better manueverability, thanks to the then novel inclusion of leading-edge slats; it was also faster. The Reich Air Ministry chose the Bf 109, noting that Messerschmitt needed to put it in full production as soon as possible: the British were testing a similar high-performance fighter, the Supermarine Spitfire.
Initially, production Bf 109s (from the A through D variants) used the less powerful Jumo engine. These aircraft provided valuable experience in the type, however: several Bf 109Ds were deployed with the German “volunteer” Condor Legion during the Spanish Civil War, where it proved to be superior to anything in either the Spanish Republican or Nationalist air forces. By the beginning of World War II in September 1939, however, the majority of German fighter units had been equipped with the Daimler-Benz DB 601 powered Bf 109E, which was an even better aircraft with plenty of power. “Emils” obliterated the obsolescent air forces of Poland, Norway, and the Low Countries, and did well against more contemporary aircraft such as the Hawker Hurricane and Dewoltine D.520 over France. Only against the Spitfire, which the Bf 109 met for the first time during the Dunkirk evacuation, did it meet its match.
This was to continue during the Battle of Britain. German pilots such as Werner Molders and Adolf Galland learned that the Spitfire could turn inside the Bf 109, but that their fighter was better in the vertical; the only limit to the Bf 109’s performance was its lack of range, which limited it to 15 minutes combat time over England—the 109 had simply never been designed as an escort fighter. Pilots liked the stable gun platform of the Bf 109, which concentrated its main armament in the nose, consisting of two machine guns in the cowl and a single cannon firing through the propeller hub.
Messerschmitt listened to Battle of Britain veterans and produced the Bf 109F, which was more aerodynamically clean, as it eliminated tailplane bracing and the wing cannon, which had been added before the Battle of France but impacted the 109’s manueverability. The “Fritz” was the equal of the Spitfire and superior to the P-40 Warhawk, which it began to fight in North Africa in early 1941, and far and away better than anything the Soviet Air Force could field when Hitler invaded Russia in June 1941. German veteran pilots began to rack up incredible kill ratios, with Molders and Galland topping the 100 mark in early 1941; Hans-Joachim Marseille would clear the 150 kill mark by 1942.
Yet the situation in Europe changed, and changed too rapidly for Messerschmitt to react. By 1943, when the Bf 109G was introduced, the tide was beginning to turn; by 1944, when 109 production hit its peak, the fighter was clearly outclassed by newer Allied fighters. The Bf 109 was not as manueverable as the P-51 Mustang and was outlcassed above 15,000 feet by the P-47 Thunderbolt; on the Eastern Front, the Russians began fielding the powerful Lavochkin La-5 and the nimble Yakovlev Yak-3. German pilot quality kept the Bf 109 very competitive in the East, where several Luftwaffe pilots now surpassed the 200 victory mark, but in the West, where Allied pilots were every bit as good as their German counterparts, attrition began to set in. German pilot training could not keep up with losses, and German pilot quality began to degrade.
By 1944, the 109 was obsolete and hunted down by American fighters ranging all over the shrinking Reich: even the best pilot could do little when he was attacked the moment he took off by P-51s superior to his aircraft and in far greater numbers. The “Gustav” had introduced the more powerful DB 605 engine, which had needed so many adaptations and cooling vents that the Bf 109G was referred to by pilots as the “pickle”: the Bf 109K returned to a more aerodynamic finish, but the “Kara” was nearly obsolete before it entered service. Luftwaffe pilots and RLM officials had wanted Messerschmitt to end Bf 109 production in favor of the jet-powered Me 262, but this was not practical due to the lack of jet engines; Willy Messerschmitt himself also distrusted the new technology and kept the 109 in production far longer than it should have been. Whatever the case, the Bf 109 was still in production when its factories were destroyed or overrun in 1945.
Despite its shortcomings—more 109s were destroyed in landing accidents on the Eastern Front than by Russian fighters—it had proven a deadly opponent. Over a hundred Luftwaffe pilots scored more than a hundred kills in the aircraft; a few, such as Molders, Galland, and Marseille had done so against Allied pilots their equal in skill and training. Kill ratios against the Soviets were as high as 25 to 1. Bf 109s were also flown by the top ace of Finland, Ilmari Juutilainen, and Romania, Alexandru Serbanescu; it was also briefly flown by Italy’s top ace, Adriano Visconti.
After the end of World War II, most surviving Bf 109s were scrapped by the victorious Allies, but it remained in limited production in Czechslovakia, as the Avia S.199, and in Spain, as the Hispano HA-1112 Buchon. Due to a lack of Daimler-Benz engines, the S.199 was equipped with later model Jumo engines, which impacted their performance, leading Czech pilots to call them “Mules.” Ironically, they would be supplied to the nascent Israeli Air Force as the Sherut Avir’s first operational fighter, where they were used effectively. Buchons, refitted with Rolls-Royce Merlin engines, those used by the Bf 109’s principal foes, would stay in Spanish service until 1967. 33,984 Bf 109s were produced during World War II, making it the most widely produced fighter in history. Today, only 70 remain, with a mere seven original or restored examples airworthy.
This is a Bf 109E-7 "Emil" variant, the main type used in the early part of the war; Werknummer 3523 was delivered to the Luftwaffe just after the invasion of Poland in 1939, and took part in both the Battle of France and the Battle of Britain. In 1942, 3523 was transferred to Jagdgeschwader 5, based at Petsamo, Finland, a somewhat forgotten front during World War II. On 4 April 1942, Oberleutnant Wulf-Dietrich Widowitz was flying 3523--coded Red 6 on that day--when he was jumped by a Soviet Hawker Hurricane. Widowitz was shot down, but managed to belly land on a frozen lake. The pilot escaped and would survive the war with 36 kills; Red 6 broke through the ice and sank into the lake.
It would remain there, forgotten, until 2003, when it was found by an American warbird collector. The very cold, fresh water of the lake had remarkably preserved Red 6, enough that some of its paint was still intact. The aircraft was recovered and brought back to Planes of Fame in Chino, California, for eventual restoration to flyable status.
For an aircraft that spent 61 years underwater, 3523/Red 6 is in excellent condition; vestiges of the yellow paint used to denote an Eastern Front aircraft on the nose and wingtips can still be made out, along with the blue-gray underside color of the aircraft. A lot will need to be done to restore this aircraft to the skies, and for now, it is displayed in its unrestored state.
Io Aircraft - www.ioaircraft.com
Drew Blair
www.linkedin.com/in/drew-b-25485312/
io aircraft, phantom express, phantom works, boeing phantom works, lockheed skunk works, hypersonic weapon, hypersonic missile, scramjet missile, scramjet engineering, scramjet physics, boost glide, tactical glide vehicle, Boeing XS-1, htv, Air-Launched Rapid Response Weapon, (ARRW), hypersonic tactical vehicle, hypersonic plane, hypersonic aircraft, space plane, scramjet, turbine based combined cycle, ramjet, dual mode ramjet, darpa, onr, navair, afrl, air force research lab, defense science, missile defense agency, aerospike,
Advanced Additive Manufacturing for Hypersonic Aircraft
Utilizing new methods of fabrication and construction, make it possible to use additive manufacturing, dramatically reducing the time and costs of producing hypersonic platforms from missiles, aircraft, and space capable craft. Instead of aircraft being produced in piece, then bolted together; small platforms can be produced as a single unit and large platforms can be produces in large section and mated without bolting. These techniques include using exotic materials and advanced assembly processes, with an end result of streamlining the production costs and time for hypersonic aircraft; reducing months of assembly to weeks. Overall, this process greatly reduced the cost for producing hypersonic platforms. Even to such an extent that a Hellfire missile costs apx $100,000 but by utilizing our technologies, replacing it with a Mach 8-10 hypersonic missile of our physics/engineering and that missile would cost roughly $75,000 each delivered.
Materials used for these manufacturing processes are not disclosed, but overall, provides a foundation for extremely high stresses and thermodynamics, ideal for hypersonic platforms. This specific methodology and materials applications is many decades ahead of all known programs. Even to the extend of normalized space flight and re-entry, without concern of thermodynamic failure.
*Note, most entities that are experimenting with additive manufacturing for hypersonic aircraft, this makes it mainstream and standardized processes, which also applies for mass production.
What would normally be measured in years and perhaps a decade to go from drawing board to test flights, is reduced to singular months and ready for production within a year maximum.
Unified Turbine Based Combined Cycle (U-TBCC)
To date, the closest that NASA and industry have achieved for turbine based aircraft to fly at hypersonic velocities is by mounting a turbine into an aircraft and sharing the inlet with a scramjet or rocket based motor. Reaction Engines Sabre is not able to achieve hypersonic velocities and can only transition into a non air breathing rocket for beyond Mach 4.5
However, utilizing Unified Turbine Based Combine Cycle also known as U-TBCC, the two separate platforms are able to share a common inlet and the dual mode ramjet/scramjet is contained within the engine itself, which allows for a much smaller airframe footprint, thus engingeers are able to then design much higher performance aerial platforms for hypersonic flight, including the ability for constructing true single stage to orbit aircraft by utilizing a modification/version that allows for transition to outside atmosphere propulsion without any other propulsion platforms within the aircraft. By transitioning and developing aircraft to use Unified Turbine Based Combined Cycle, this propulsion system opens up new options to replace that airframe deficit for increased fuel capacity and/or payload.
Enhanced Dynamic Cavitation
Dramatically Increasing the efficiency of fuel air mixture for combustion processes at hypersonic velocities within scramjet propulsion platforms. The aspects of these processes are non disclosable.
Dynamic Scramjet Ignition Processes
For optimal scramjet ignition, a process known as Self Start is sought after, but in many cases if the platform becomes out of attitude, the scramjet will ignite. We have already solved this problem which as a result, a scramjet propulsion system can ignite at lower velocities, high velocities, at optimal attitude or not optimal attitude. It doesn't matter, it will ignite anyways at the proper point for maximum thrust capabilities at hypersonic velocities.
Hydrogen vs Kerosene Fuel Sources
Kerosene is an easy fuel to work with, and most western nations developing scramjet platforms use Kerosene for that fact. However, while kerosene has better thermal properties then Hydrogen, Hydrogen is a far superior fuel source in scramjet propulsion flight, do it having a much higher efficiency capability. Because of this aspect, in conjunction with our developments, it allows for a MUCH increased fuel to air mixture, combustion, thrust; and ability for higher speeds; instead of very low hypersonic velocities in the Mach 5-6 range. Instead, Mach 8-10 range, while we have begun developing hypersonic capabilities to exceed 15 in atmosphere within less then 5 years.
Conforming High Pressure Tank Technology for CNG and H2.
As most know in hypersonics, Hydrogen is a superior fuel source, but due to the storage abilities, can only be stored in cylinders thus much less fuel supply. Not anymore, we developed conforming high pressure storage technology for use in aerospace, automotive sectors, maritime, etc; which means any overall shape required for 8,000+ PSI CNG or Hydrogen. For hypersonic platforms, this means the ability to store a much larger volume of hydrogen vs cylinders.
As an example, X-43 flown by Nasa which flew at Mach 9.97. The fuel source was Hydrogen, which is extremely more volatile and combustible then kerosene (JP-7), via a cylinder in the main body. If it had used our technology, that entire section of the airframe would had been an 8,000 PSI H2 tank, which would had yielded 5-6 times the capacity. While the X-43 flew 11 seconds under power at Mach 9.97, at 6 times the fuel capacity would had yielded apx 66 seconds of fuel under power at Mach 9.97. If it had flew slower, around Mach 6, same principles applied would had yielded apx 500 seconds of fuel supply under power (slower speeds required less energy to maintain).
Enhanced Fuel Mixture During Shock Train Interaction
Normally, fuel injection is conducted at the correct insertion point within the shock train for maximum burn/combustion. Our methodologies differ, since almost half the fuel injection is conducted PRE shock train within the isolator, so at the point of isolator injection the fuel enhances the combustion process, which then requires less fuel injection to reach the same level of thrust capabilities.
Improved Bow Shock Interaction
Smoother interaction at hypersonic velocities and mitigating heat/stresses for beyond Mach 6 thermodynamics, which extraordinarily improves Type 3, 4, and 5 shock interaction.
6,000+ Fahrenheit Thermal Resistance
To date, the maximum thermal resistance was tested at AFRL in the spring of 2018, which resulted in a 3,200F thermal resistance for a short duration. This technology, allows for normalized hypersonic thermal resistance of 3,000-3,500F sustained, and up to 6,500F resistance for short endurance, ie 90 seconds or less. 10-20 minute resistance estimate approximately 4,500F +/- 200F.
*** This technology advancement also applies to Aerospike rocket engines, in which it is common for Aerospike's to exceed 4,500-5,000F temperatures, which results in the melting of the reversed bell housing. That melting no longer ocurrs, providing for stable combustion to ocurr for the entire flight envelope
Scramjet Propulsion Side Wall Cooling
With old technologies, side wall cooling is required for hypersonic flight and scramjet propulsion systems, otherwise the isolator and combustion regions of a scramjet would melt, even using advanced ablatives and ceramics, due to their inability to cope with very high temperatures. Using technology we have developed for very high thermodynamics and high stresses, side wall cooling is no longer required, thus removing that variable from the design process and focusing on improved ignition processes and increasing net thrust values.
Lower Threshold for Hypersonic Ignition
Active and adaptive flight dynamics, resulting in the ability for scramjet ignition at a much lower velocity, ie within ramjet envelope, between Mach 2-4, and seamless transition from supersonic to hypersonic flight, ie supersonic ramjet (scramjet). This active and dynamic aspect, has a wide variety of parameters for many flight dynamics, velocities, and altitudes; which means platforms no longer need to be engineered for specific altitude ranges or preset velocities, but those parameters can then be selected during launch configuration and are able to adapt actively in flight.
Dramatically Improved Maneuvering Capabilities at Hypersonic Velocities
Hypersonic vehicles, like their less technologically advanced brethren, use large actuator and the developers hope those controls surfaces do not disintegrate in flight. In reality, it is like rolling the dice, they may or may not survive, hence another reason why the attempt to keep velocities to Mach 6 or below. We have shrunken down control actuators while almost doubling torque and response capabilities specifically for hypersonic dynamics and extreme stresses involved, which makes it possible for maximum input authority for Mach 10 and beyond.
Paradigm Shift in Control Surface Methodologies, Increasing Control Authority (Internal Mechanical Applications)
To date, most control surfaces for hypersonic missile platforms still use fins, similar to lower speed conventional missiles, and some using ducted fins. This is mostly due to lack of comprehension of hypersonic velocities in their own favor. Instead, the body itself incorporates those control surfaces, greatly enhancing the airframe strength, opening up more space for hardware and fuel capacity; while simultaneously enhancing the platforms maneuvering capabilities.
A scramjet missile can then fly like conventional missile platforms, and not straight and level at high altitudes, losing velocity on it's decent trajectory to target. Another added benefit to this aspect, is the ability to extend range greatly, so if anyone elses hypersonic missile platform were developed for 400 mile range, falling out of the sky due to lack of glide capabilities; our platforms can easily reach 600+ miles, with minimal glide deceleration.
Northrop Grumman E-2 Hawkeye, an American all-weather, carrier-capable tactical airborne early warning (AEW) aircraft. This twin-turboprop aircraft was designed and developed during the late 1950s and early 1960s by the Grumman Aircraft Company for the United States Navy as a replacement for the earlier E-1 Tracer, which was rapidly becoming obsolete. The aircraft's performance has been upgraded with the E-2B, and E-2C versions, where most of the changes were made to the radar and radio communications due to advances in electronic integrated circuits and other electronics. The fourth version of the Hawkeye is the E-2D, which first flew in 2007. The E-2 was the first aircraft designed to be an AEW aircraft from the outset, as opposed to a modification of an existing airframe, such as the E-3. Variants of the Hawkeye have been in continuous production since 1960, giving it the longest production run of any carrier based aircraft. The E-2 also received the nickname Super Fudd because it replaced the E-1 Tracer Willy Fudd. In recent decades, the E-2 has been commonly referred to as the Hummer because of the distinctive sounds of its turboprop engines, quite unlike that of turbojet and turbofan jet engines. The E-2 and its sister, the C-2 Greyhound, are currently the only propeller airplanes that operate from aircraft carriers. In addition to U.S. Navy service, smaller numbers of E-2s have been sold to the armed forces of Egypt, France, Israel, Japan, Mexico, Singapore and Taiwan.
AMARG (or the Boneyard) is the world's largest aircraft and missile storage and maintenance facility in Tucson, Arizona. I took these pictures during a bus tour in June 2008.
A világ legnagyobb repülőgép és rakéta tároló és karbantartó létesítménye az Arizona állambeli Tucson-ban. A hely csak idegenvezetett autóbuszos túrán tekinthető meg, mi is így jártunk itt 2008. júniusban.
The 309th Aerospace Maintenance and Regeneration Group (AMARG), often called The Boneyard, is a United States Air Force aircraft and missile storage and maintenance facility in Tucson, Arizona, located on Davis-Monthan Air Force Base. AMARG takes care of more than 4,400 aircraft on 11 km2, which makes it the largest aircraft storage and preservation facility in the world. AMARG holds aircarft for future use, sales to friendly governments, or parts reclamation. Stored aircraft go through the following treatments: removing guns, ejection seat charges, or classified hardware. Draining its fuel system. Sealing it from dust, sunlight, and high temperatures by using high tech vinyl plastic compounds, Spraying an opaque white color on it, or using simple garbage bags. AMARG is a controlled-access site, and is off-limits to anyone not employed there without the proper clearance. The only access to AMARG for non-cleared individuals is via a bus tour.
Our Nikonos lens capable PiratePro underwater housing for the Olympus E-P1, viewed from the rear. We posed an actual Nikonos next to it for a size comparison.
Land Rover has a long history of delivering capable and premium offroad vehicles. The Range Rover has set the benchmark for premium offroad (now known as SUV) vehicle types. And, the original Land Rover (recently known as 'Defender') has set the benchmark for capable offroad attributes since its inception in 1948.
One thing the Defender isn't is comfortable, stylish, safe or pretty much anything you would use to describe a newly engineered car. Problem is, Land Rover has not been able to identify and produce a replacement vehicle design.
A few years ago Land Rover produced a series of concepts, under the title DC 100 (Defender Concept 100) looking at a modern interpretation of the core Land Rover values: offroad capability & robustness.
The version shown here was a followup concept, based on the three door DC 100 design.
The production version of this vehicle had been due in 2016/17, but at this stage there is no confirmation regarding the vehicle or the production date.
What we are left with are some interesting concepts glimpsing the thoughts of one of the original offroad capable product companies.
More info can be found at the following wikipedia link:
en.wikipedia.org/wiki/Land_Rover_DC100
This Lego miniland-scale Land Rover DC 100 Concept - has been created for Flickr LUGNuts' 105th Build Challenge, titled - 'The Great Outdoors!' - a challenge for any vehicle designed for outdoor adventuring.
Nenthead in the county of Cumbria is one of England's highest villages, at around 1,437 feet (438 m). It was not built until the middle of the 18th century and was one of the earliest purpose-built industrial villages in Britain.
Nenthead was a major centre for lead and silver mining in the North Pennines of Britain. The first smelt mill was built at Nenthead in 1737 by George Liddle, and this was subsequently expanded by the London Lead Company. By 1882 the smelt mill was capable of smelting 8,000 bings, i.e., 64,000 long hundredweight (3,300 t), of ore per annum.
Nenthead village in 1861 had 2,000 people, mostly Methodist and employed by the Quaker-owned London Lead Company in the Nenthead Mines - some of the most productive in the country. The Quakers built housing, a school, a reading room, public baths and a wash-house for the miners and their families.
Nenthead has accessible mines remaining, horse whims and a 260 feet (79 m) engine shaft in Rampghill. The mines closed in 1961 and there is a heritage centre displaying their history.
The economy of the village relies on tourism. A long distance cycle route, the C2C, passes through Nenthead. The Grade 2 listed Wesleyan Methodist chapel has not been used since 2002 but benefitted from a Heritage Lottery Grant of £134,500. The post office and community shop occupies the building which was once a reading room for the miners.
Nenthead is around 4.4 miles (7.1 km) east of Alston, 44.3 miles (71.3 km) west of Newcastle upon Tyne, 34.4 miles (55.4 km) south east of Carlisle, 24 miles (38.6 km) east of Penrith, and 20.5 miles (33.0 km) west of Hexham.
County Council subsidies have maintained limited bus services to Alston and beyond. However, in 2014 cuts to these subsidies were being discussed, threatening the existence of bus services for the village.
Nenthead is in the parliamentary constituency of Penrith and The Border. Neil Hudson (Conservative) was elected as Member of Parliament at the 2019 General Election, replacing Rory Stewart.
For Local Government purposes it is in the Alston Moor Ward of Eden District Council and the Alston and East Fellside Division of Cumbria County Council. Nenthead does not have its own parish council, instead it is part of Alston Moor Parish Council.
Before Brexit, its residents were covered by the North West England European Parliamentary Constituency.
In 2013 the Canadian mining company Minco sank 1,640 feet (500 m) deep boreholes in an effort to discover the extent of zinc deposits beneath Nenthead. Although test drilling could go on for several years, the company believes that the village may be sited on huge deposits of the chemical element. The zinc is 490 feet (149 m) below the surface and was previously too deep to reach by old mining techniques.
With a northernly latitude of 55° N and altitude of 1,434 feet (437 m) Amsl, Nenthead has one of the coldest and snowiest climates in England, yielding a borderline subpolar oceanic climate (Cfc) and cool oceanic climate (Cfb). The average annual temperature in Nenthead is 6.5 °C; 1,095 mm of precipitation falls annually, chiefly in winter as heavy snowfall, and in autumn.
Cumbria is a ceremonial county in North West England. It borders the Scottish council areas of Dumfries and Galloway and Scottish Borders to the north, Northumberland and County Durham to the east, North Yorkshire to the south-east, Lancashire to the south, and the Irish Sea to the west. Its largest settlement is the city of Carlisle.
The county is predominantly rural, with an area of 6,769 km2 (2,614 sq mi) and a population of 500,012; this makes it the third largest ceremonial county in England by area but the eighth-smallest by population. After Carlisle (74,281), the largest settlements are Barrow-in-Furness (56,745), Kendal (29,593), and Whitehaven (23,986). For local government purposes the county comprises two unitary authority areas, Westmorland and Furness and Cumberland. Cumbria was created in 1974 from the historic counties of Cumberland and Westmorland, the Furness area of Lancashire, and a small part of Yorkshire.
Cumbria is well-known for its natural beauty and much of its landscape is protected; the county contains the Lake District National Park and Solway Coast AONB, and parts of the Yorkshire Dales National Park, Arnside and Silverdale AONB, and North Pennines AONB. Together these protect the county's mountains, lakes, and coastline, including Scafell Pike, at 3,209 feet (978 m) England's highest mountain, and Windermere, its largest lake by volume.
The county contains several Neolithic monuments, such as Mayburgh Henge. The region was on the border of Roman Britain, and Hadrian's Wall runs through the north of the county. In the Early Middle Ages parts of the region successively belonged to Rheged, Northumbria, and Strathclyde, and there was also a Viking presence. It became the border between England and Scotland, and was unsettled until the Union of the Crowns in 1603. During the Industrial Revolution mining took place on the Cumberland coalfield and Barrow-in-Furness became a shipbuilding centre, but the county was not heavily industrialised and the Lake District became valued for its sublime and picturesque qualities, notably by the Lake Poets.
Flexible, bending with the wind but never breaking. Capable of adapting to any circumstance. It suggests resilience, meaning that we have the ability to bounce back even from the most difficult times.
Our ability to thrive depends, in the end, on our attitude to our life circumstances. It reminds me to take everything in stride with grace, putting forth energy when it is needed, yet always staying calm inwardly. Like everything else worthwhile in life, the seed of a bamboo tree needs to be planted, fertilized and watered. Nothing happens for the first year. There´s no sign of growth. Not even a hint. The same thing happens - or doesn´t happen - the second year. And then the third year. The tree is carefully watered and fertilized each year, but nothing shows. No growth. No anything. For eight years it can continue. Eight years! Then - after the eight years of fertilizing and watering have passed, with nothing to show for it - the bamboo tree suddently sprouts and grows thirty feet in three months!!! :)
I admire people who are capable of creating wonderful things with their hands. Like my best friend Josefin, you can give a her a sewing machine, some thread, a little cloth and she'll turn it into an absolute beauty! I have never been one of those (that's probably why I admire them), you can give me a sewing machine, some thread and a little cloth and I'll turn it into an absolute mess! ;-D
Admiro a la gente que es capaz de crear cosas geniales con sus manos. Como mi amiga Josefin, le puedes dar una máquina de coser, un poco de hilo y un trapo y lo convertirá en una belleza! Yo nunca he sido una de esas personas, dame una máquina de coser, un poco de hilo y un trapo y lo convertiré en un autentico lío! ;)
photo by violeta minnick - szasza szoom
in the picture - me
view large & View On Black
Aeroscopia est un musée aéronautique français implanté à Blagnac (Haute-Garonne), près du site AéroConstellation, et accueille notamment deux exemplaires du Concorde, dont l'ouverture a eu lieu le 14 janvier 2015
Le tarmac Sud du musée n'est capable d'accueillir que trois gros appareils. L'installation des appareils fut définitivement terminée après que le premier prototype de l'A400M-180 y fut arrivé le 16 juillet 2015, en dépit de la possibilité de 360 000 euros de TVA.
Concorde, F-BVFC, MSN209 aux couleurs d'Air France
Caravelle 12, F-BTOE, MSN280 aux couleurs d'Air Inter, dernier exemplaire construit
A400M-180, F-WWMT, MSN001 stationné depuis le 16 juillet 2015
La réalisation en 2019 du nouveau tarmac au Nord du musée permet l'accueil d'appareils supplémentaires issus des entreprises locales Airbus et ATR. Le transfert des avions entre le site Airbus "Lagardère" et le musée a lieu sur une semaine, à raison d'un appareil par jour :
ATR 72-600, F-WWEY, MSN098 aux couleurs d'ATR, transféré sur site le 26 août 2019, premier exemplaire du 72 dans sa version 600
Airbus A340-600, F-WWCA, MSN360 aux couleurs d'Airbus, transféré sur site le 27 août 2019, premier exemplaire de l'A340 dans sa version 600
Airbus A320-111, F-WWAI, MSN001 aux anciennes couleurs d'Airbus, transféré sur site le 28 août 2019, premier exemplaire de l'A320 : inauguration le 14 février 1987 en présence de Lady Diana et du Prince Charles, premier vol le 22 février 1987
Airbus A380-800, F-WXXL, MSN002 aux couleurs d'Airbus, transféré sur site le 29 août 2019, second exemplaire de l'A380. Les deux ponts de cet appareil sont visitables, ainsi que le cockpit.
ATR 42-300, F-WEGC, MSN003 aux anciennes couleurs d'ATR, transféré sur site le 30 août 2019, troisième exemplaire du 42. Cet exemplaire est décoré aux couleurs du MSN001 et porte l'immatriculation F-WEGA
Concorde, F-WTSB, MSN201 (ANAE), il s'agit d'un appareil de présérie qui a servi entre autres à transporter plusieurs présidents de la République française.
Airbus A300B4-203, F-WUAB, MSN238 (Airbus Heritage), décoré aux couleurs du prototype, au lieu de MSN001 démantelé. L'intérieur est visitable. Dans la première section des vitrages transparents permettent de voir la structure et les systèmes de l'avion, tandis que dans les sections suivantes sont représentés des aménagements de première classe et VIP.
Super Guppy de l'association Ailes Anciennes Toulouse, l'appareil qui servait au transport des tronçons d'Airbus est exposé porte ouverte, et une passerelle permet l'accès à la soute où un film est projeté. L'ouverture n'a pas été une mince affaire, l'appareil n'ayant pas été ouvert pendant 15 ans. L'aide des anciens mécaniciens de l'avion a été primordiale pour permettre une ouverture en toute sécurité.
Corvette (Airbus)
Falcon 10 no 02, prototype ayant servi aux essais du turboréacteur Larzac (Ailes Anciennes Toulouse)
Fouga Magister (AAT)
Gazelle prototype (AAT)
Mirage III C (AAT)
Nord 1100 (AAT)
Lockheed F-104G (AAT)
MiG-15 (AAT)
MS.760 Paris (AAT)
Vought F-8E(FN) Crusader et son réacteur (AAT)
Alouette II Marine (AAT)
Cessna Skymaster (AAT)
Fairchild Metro, ancien avion de Météo-France (AAT)
HM-293, de Rodolphe Grunberg
Chagnes MicroStar, avion de construction amateur, version biréacteur de Rutan VariViggen (AAT)
Saab J35OE Draken (AAT)
Aeroscopia is a French aeronautical museum located in Blagnac (Haute-Garonne), near the AéroConstellation site, and notably hosts two copies of the Concorde, which opened on January 14, 2015
The south tarmac of the museum can only accommodate three large aircraft. The installation of the devices was definitively finished after the first prototype of the A400M-180 arrived there on July 16, 2015, despite the possibility of 360,000 euros in VAT.
Concorde, F-BVFC, MSN209 in Air France colors
Caravelle 12, F-BTOE, MSN280 in Air Inter colors, last model built
A400M-180, F-WWMT, MSN001 parked since July 16, 2015
The construction in 2019 of the new tarmac north of the museum will accommodate additional aircraft from local Airbus and ATR companies. The transfer of planes between the Airbus "Lagardère" site and the museum takes place over a week, at the rate of one aircraft per day:
ATR 72-600, F-WWEY, MSN098 in ATR colors, transferred to site on August 26, 2019, first copy of the 72 in its 600 version
Airbus A340-600, F-WWCA, MSN360 in Airbus colors, transferred to site on August 27, 2019, first copy of the A340 in its 600 version
Airbus A320-111, F-WWAI, MSN001 in the old Airbus colors, transferred to site on August 28, 2019, first copy of the A320: inauguration on February 14, 1987 in the presence of Lady Diana and Prince Charles, first flight on February 22, 1987
Airbus A380-800, F-WXXL, MSN002 in Airbus colors, transferred to site on August 29, 2019, second copy of the A380. The two decks of this aircraft can be visited, as well as the cockpit.
ATR 42-300, F-WEGC, MSN003 in the old ATR colors, transferred to the site on August 30, 2019, third specimen of the 42. This specimen is decorated in the colors of the MSN001 and bears the registration F-WEGA
Concorde, F-WTSB, MSN201 (ANAE), this is a pre-production aircraft which was used, among other things, to transport several presidents of the French Republic.
Airbus A300B4-203, F-WUAB, MSN238 (Airbus Heritage), decorated in the colors of the prototype, instead of dismantled MSN001. The interior can be visited. In the first section transparent glazing allows to see the structure and systems of the aircraft, while in the following sections are shown first class and VIP fittings.
Super Guppy from the Ailes Anciennes Toulouse association, the aircraft which was used to transport the Airbus sections is on display with the door open, and a gangway allows access to the hold where a film is shown. Opening was no small feat, as the device has not been opened for 15 years. The help of the former mechanics of the aircraft was essential to allow a safe opening.
Corvette (Airbus)
Falcon 10 no 02, prototype used for testing the Larzac turbojet engine (Ailes Anciennes Toulouse)
Fouga Magister (AAT)
Prototype Gazelle (AAT)
Mirage III C (AAT)
North 1100 (AAT)
Lockheed F-104G (AAT)
MiG-15 (AAT)
MS.760 Paris (AAT)
Vought F-8E (FN) Crusader and its engine (AAT)
Alouette II Marine (AAT)
Cessna Skymaster (AAT)
Fairchild Metro, former Météo-France (AAT) aircraft
HM-293, by Rodolphe Grunberg
Chagnes MicroStar, amateur-built aircraft, twin-jet version of Rutan VariViggen (AAT)
Saab J35OE Draken (AAT)
FOUR STARS
Now, here's a simple little who done it mystery, at least I thought so when I first picked up this little story. Now, here a little book with a little romance to add a bit of dash, a bit of sweet and of course a dead body to add a bit of chill, a bit of spice to my day spent in the joy of reading.
I soon found I was very much mistaken.
In fact I was fooled big time, I never saw it coming, I was unexpectedly surprized.
The formula part one, take one busy beautiful woman, Belinda then add a mysterious letter from long time no see Great Aunt Jane with a unexpected invitation to visit, a vacation if you please, and some important news that must be told, a secret, then mix real good. The formula part two, Now add curiosity. Belinda Lawrence quickly schedules a leave from her successful but stressful job and decides a trip to Bath might be restful and informative, two benefits for the price of a train ticket.
Next expected event naturally finds Belinda's expected quiet travel plans unexpectantly interrupted by a bumbling but handsome fellow passenger, Jacob, who is also her coincidentally her new neighbor, but I get ahead of myself, sorry : )
They meet/collide and we get the expected fireworks.
Last, in this mystery/romance formula we need a dead body, got to have a body . . . right: ) Old Great Aunt Jane, is found very dead and now Belinda finds she is unexpectedly a very wealthy woman,with a very old house and a much desired piece of property and family murder to solve.
Simple . . . not : ) I found this simple mystery very mysterious. I was completed fooled, I never fingered the murderer or the mystery. In fact I not sure even after finishing this short book.
I think I will go back and see what I missed . . . the clues, I highly recommend you try to see if you can guess who done it.
I'm willing to bet if you read this book you will be unexpectedly surprised too.
Copyright © 2000 Linda Nelson All Rights Reserved
Aeroscopia est un musée aéronautique français implanté à Blagnac (Haute-Garonne), près du site AéroConstellation, et accueille notamment deux exemplaires du Concorde, dont l'ouverture a eu lieu le 14 janvier 2015
Le tarmac Sud du musée n'est capable d'accueillir que trois gros appareils. L'installation des appareils fut définitivement terminée après que le premier prototype de l'A400M-180 y fut arrivé le 16 juillet 2015, en dépit de la possibilité de 360 000 euros de TVA.
Concorde, F-BVFC, MSN209 aux couleurs d'Air France
Caravelle 12, F-BTOE, MSN280 aux couleurs d'Air Inter, dernier exemplaire construit
A400M-180, F-WWMT, MSN001 stationné depuis le 16 juillet 2015
La réalisation en 2019 du nouveau tarmac au Nord du musée permet l'accueil d'appareils supplémentaires issus des entreprises locales Airbus et ATR. Le transfert des avions entre le site Airbus "Lagardère" et le musée a lieu sur une semaine, à raison d'un appareil par jour :
ATR 72-600, F-WWEY, MSN098 aux couleurs d'ATR, transféré sur site le 26 août 2019, premier exemplaire du 72 dans sa version 600
Airbus A340-600, F-WWCA, MSN360 aux couleurs d'Airbus, transféré sur site le 27 août 2019, premier exemplaire de l'A340 dans sa version 600
Airbus A320-111, F-WWAI, MSN001 aux anciennes couleurs d'Airbus, transféré sur site le 28 août 2019, premier exemplaire de l'A320 : inauguration le 14 février 1987 en présence de Lady Diana et du Prince Charles, premier vol le 22 février 1987
Airbus A380-800, F-WXXL, MSN002 aux couleurs d'Airbus, transféré sur site le 29 août 2019, second exemplaire de l'A380. Les deux ponts de cet appareil sont visitables, ainsi que le cockpit.
ATR 42-300, F-WEGC, MSN003 aux anciennes couleurs d'ATR, transféré sur site le 30 août 2019, troisième exemplaire du 42. Cet exemplaire est décoré aux couleurs du MSN001 et porte l'immatriculation F-WEGA
Concorde, F-WTSB, MSN201 (ANAE), il s'agit d'un appareil de présérie qui a servi entre autres à transporter plusieurs présidents de la République française.
Airbus A300B4-203, F-WUAB, MSN238 (Airbus Heritage), décoré aux couleurs du prototype, au lieu de MSN001 démantelé. L'intérieur est visitable. Dans la première section des vitrages transparents permettent de voir la structure et les systèmes de l'avion, tandis que dans les sections suivantes sont représentés des aménagements de première classe et VIP.
Super Guppy de l'association Ailes Anciennes Toulouse, l'appareil qui servait au transport des tronçons d'Airbus est exposé porte ouverte, et une passerelle permet l'accès à la soute où un film est projeté. L'ouverture n'a pas été une mince affaire, l'appareil n'ayant pas été ouvert pendant 15 ans. L'aide des anciens mécaniciens de l'avion a été primordiale pour permettre une ouverture en toute sécurité.
Corvette (Airbus)
Falcon 10 no 02, prototype ayant servi aux essais du turboréacteur Larzac (Ailes Anciennes Toulouse)
Fouga Magister (AAT)
Gazelle prototype (AAT)
Mirage III C (AAT)
Nord 1100 (AAT)
Lockheed F-104G (AAT)
MiG-15 (AAT)
MS.760 Paris (AAT)
Vought F-8E(FN) Crusader et son réacteur (AAT)
Alouette II Marine (AAT)
Cessna Skymaster (AAT)
Fairchild Metro, ancien avion de Météo-France (AAT)
HM-293, de Rodolphe Grunberg
Chagnes MicroStar, avion de construction amateur, version biréacteur de Rutan VariViggen (AAT)
Saab J35OE Draken (AAT)
Aeroscopia is a French aeronautical museum located in Blagnac (Haute-Garonne), near the AéroConstellation site, and notably hosts two copies of the Concorde, which opened on January 14, 2015
The south tarmac of the museum can only accommodate three large aircraft. The installation of the devices was definitively finished after the first prototype of the A400M-180 arrived there on July 16, 2015, despite the possibility of 360,000 euros in VAT.
Concorde, F-BVFC, MSN209 in Air France colors
Caravelle 12, F-BTOE, MSN280 in Air Inter colors, last model built
A400M-180, F-WWMT, MSN001 parked since July 16, 2015
The construction in 2019 of the new tarmac north of the museum will accommodate additional aircraft from local Airbus and ATR companies. The transfer of planes between the Airbus "Lagardère" site and the museum takes place over a week, at the rate of one aircraft per day:
ATR 72-600, F-WWEY, MSN098 in ATR colors, transferred to site on August 26, 2019, first copy of the 72 in its 600 version
Airbus A340-600, F-WWCA, MSN360 in Airbus colors, transferred to site on August 27, 2019, first copy of the A340 in its 600 version
Airbus A320-111, F-WWAI, MSN001 in the old Airbus colors, transferred to site on August 28, 2019, first copy of the A320: inauguration on February 14, 1987 in the presence of Lady Diana and Prince Charles, first flight on February 22, 1987
Airbus A380-800, F-WXXL, MSN002 in Airbus colors, transferred to site on August 29, 2019, second copy of the A380. The two decks of this aircraft can be visited, as well as the cockpit.
ATR 42-300, F-WEGC, MSN003 in the old ATR colors, transferred to the site on August 30, 2019, third specimen of the 42. This specimen is decorated in the colors of the MSN001 and bears the registration F-WEGA
Concorde, F-WTSB, MSN201 (ANAE), this is a pre-production aircraft which was used, among other things, to transport several presidents of the French Republic.
Airbus A300B4-203, F-WUAB, MSN238 (Airbus Heritage), decorated in the colors of the prototype, instead of dismantled MSN001. The interior can be visited. In the first section transparent glazing allows to see the structure and systems of the aircraft, while in the following sections are shown first class and VIP fittings.
Super Guppy from the Ailes Anciennes Toulouse association, the aircraft which was used to transport the Airbus sections is on display with the door open, and a gangway allows access to the hold where a film is shown. Opening was no small feat, as the device has not been opened for 15 years. The help of the former mechanics of the aircraft was essential to allow a safe opening.
Corvette (Airbus)
Falcon 10 no 02, prototype used for testing the Larzac turbojet engine (Ailes Anciennes Toulouse)
Fouga Magister (AAT)
Prototype Gazelle (AAT)
Mirage III C (AAT)
North 1100 (AAT)
Lockheed F-104G (AAT)
MiG-15 (AAT)
MS.760 Paris (AAT)
Vought F-8E (FN) Crusader and its engine (AAT)
Alouette II Marine (AAT)
Cessna Skymaster (AAT)
Fairchild Metro, former Météo-France (AAT) aircraft
HM-293, by Rodolphe Grunberg
Chagnes MicroStar, amateur-built aircraft, twin-jet version of Rutan VariViggen (AAT)
Saab J35OE Draken (AAT)
Aeroscopia est un musée aéronautique français implanté à Blagnac (Haute-Garonne), près du site AéroConstellation, et accueille notamment deux exemplaires du Concorde, dont l'ouverture a eu lieu le 14 janvier 2015
Le tarmac Sud du musée n'est capable d'accueillir que trois gros appareils. L'installation des appareils fut définitivement terminée après que le premier prototype de l'A400M-180 y fut arrivé le 16 juillet 2015, en dépit de la possibilité de 360 000 euros de TVA.
Concorde, F-BVFC, MSN209 aux couleurs d'Air France
Caravelle 12, F-BTOE, MSN280 aux couleurs d'Air Inter, dernier exemplaire construit
A400M-180, F-WWMT, MSN001 stationné depuis le 16 juillet 2015
La réalisation en 2019 du nouveau tarmac au Nord du musée permet l'accueil d'appareils supplémentaires issus des entreprises locales Airbus et ATR. Le transfert des avions entre le site Airbus "Lagardère" et le musée a lieu sur une semaine, à raison d'un appareil par jour :
ATR 72-600, F-WWEY, MSN098 aux couleurs d'ATR, transféré sur site le 26 août 2019, premier exemplaire du 72 dans sa version 600
Airbus A340-600, F-WWCA, MSN360 aux couleurs d'Airbus, transféré sur site le 27 août 2019, premier exemplaire de l'A340 dans sa version 600
Airbus A320-111, F-WWAI, MSN001 aux anciennes couleurs d'Airbus, transféré sur site le 28 août 2019, premier exemplaire de l'A320 : inauguration le 14 février 1987 en présence de Lady Diana et du Prince Charles, premier vol le 22 février 1987
Airbus A380-800, F-WXXL, MSN002 aux couleurs d'Airbus, transféré sur site le 29 août 2019, second exemplaire de l'A380. Les deux ponts de cet appareil sont visitables, ainsi que le cockpit.
ATR 42-300, F-WEGC, MSN003 aux anciennes couleurs d'ATR, transféré sur site le 30 août 2019, troisième exemplaire du 42. Cet exemplaire est décoré aux couleurs du MSN001 et porte l'immatriculation F-WEGA
Concorde, F-WTSB, MSN201 (ANAE), il s'agit d'un appareil de présérie qui a servi entre autres à transporter plusieurs présidents de la République française.
Airbus A300B4-203, F-WUAB, MSN238 (Airbus Heritage), décoré aux couleurs du prototype, au lieu de MSN001 démantelé. L'intérieur est visitable. Dans la première section des vitrages transparents permettent de voir la structure et les systèmes de l'avion, tandis que dans les sections suivantes sont représentés des aménagements de première classe et VIP.
Super Guppy de l'association Ailes Anciennes Toulouse, l'appareil qui servait au transport des tronçons d'Airbus est exposé porte ouverte, et une passerelle permet l'accès à la soute où un film est projeté. L'ouverture n'a pas été une mince affaire, l'appareil n'ayant pas été ouvert pendant 15 ans. L'aide des anciens mécaniciens de l'avion a été primordiale pour permettre une ouverture en toute sécurité.
Corvette (Airbus)
Falcon 10 no 02, prototype ayant servi aux essais du turboréacteur Larzac (Ailes Anciennes Toulouse)
Fouga Magister (AAT)
Gazelle prototype (AAT)
Mirage III C (AAT)
Nord 1100 (AAT)
Lockheed F-104G (AAT)
MiG-15 (AAT)
MS.760 Paris (AAT)
Vought F-8E(FN) Crusader et son réacteur (AAT)
Alouette II Marine (AAT)
Cessna Skymaster (AAT)
Fairchild Metro, ancien avion de Météo-France (AAT)
HM-293, de Rodolphe Grunberg
Chagnes MicroStar, avion de construction amateur, version biréacteur de Rutan VariViggen (AAT)
Saab J35OE Draken (AAT)
Aeroscopia is a French aeronautical museum located in Blagnac (Haute-Garonne), near the AéroConstellation site, and notably hosts two copies of the Concorde, which opened on January 14, 2015
The south tarmac of the museum can only accommodate three large aircraft. The installation of the devices was definitively finished after the first prototype of the A400M-180 arrived there on July 16, 2015, despite the possibility of 360,000 euros in VAT.
Concorde, F-BVFC, MSN209 in Air France colors
Caravelle 12, F-BTOE, MSN280 in Air Inter colors, last model built
A400M-180, F-WWMT, MSN001 parked since July 16, 2015
The construction in 2019 of the new tarmac north of the museum will accommodate additional aircraft from local Airbus and ATR companies. The transfer of planes between the Airbus "Lagardère" site and the museum takes place over a week, at the rate of one aircraft per day:
ATR 72-600, F-WWEY, MSN098 in ATR colors, transferred to site on August 26, 2019, first copy of the 72 in its 600 version
Airbus A340-600, F-WWCA, MSN360 in Airbus colors, transferred to site on August 27, 2019, first copy of the A340 in its 600 version
Airbus A320-111, F-WWAI, MSN001 in the old Airbus colors, transferred to site on August 28, 2019, first copy of the A320: inauguration on February 14, 1987 in the presence of Lady Diana and Prince Charles, first flight on February 22, 1987
Airbus A380-800, F-WXXL, MSN002 in Airbus colors, transferred to site on August 29, 2019, second copy of the A380. The two decks of this aircraft can be visited, as well as the cockpit.
ATR 42-300, F-WEGC, MSN003 in the old ATR colors, transferred to the site on August 30, 2019, third specimen of the 42. This specimen is decorated in the colors of the MSN001 and bears the registration F-WEGA
Concorde, F-WTSB, MSN201 (ANAE), this is a pre-production aircraft which was used, among other things, to transport several presidents of the French Republic.
Airbus A300B4-203, F-WUAB, MSN238 (Airbus Heritage), decorated in the colors of the prototype, instead of dismantled MSN001. The interior can be visited. In the first section transparent glazing allows to see the structure and systems of the aircraft, while in the following sections are shown first class and VIP fittings.
Super Guppy from the Ailes Anciennes Toulouse association, the aircraft which was used to transport the Airbus sections is on display with the door open, and a gangway allows access to the hold where a film is shown. Opening was no small feat, as the device has not been opened for 15 years. The help of the former mechanics of the aircraft was essential to allow a safe opening.
Corvette (Airbus)
Falcon 10 no 02, prototype used for testing the Larzac turbojet engine (Ailes Anciennes Toulouse)
Fouga Magister (AAT)
Prototype Gazelle (AAT)
Mirage III C (AAT)
North 1100 (AAT)
Lockheed F-104G (AAT)
MiG-15 (AAT)
MS.760 Paris (AAT)
Vought F-8E (FN) Crusader and its engine (AAT)
Alouette II Marine (AAT)
Cessna Skymaster (AAT)
Fairchild Metro, former Météo-France (AAT) aircraft
HM-293, by Rodolphe Grunberg
Chagnes MicroStar, amateur-built aircraft, twin-jet version of Rutan VariViggen (AAT)
Saab J35OE Draken (AAT)
NEOBALLS / ZEN MAGNETS - Neodymium Magnetic Balls (@4205) - Starcraft II's Massive Thor
This is my most complex and largest build to date.
It was designed in parts: Cockpit body, then legs, then arms, then rear guns. Then I had to redesign parts when it came time to assemble it together because of incorrect bonding assumptions and misalignment of magnet fields.
Experimented with x-beam coupled bonds to get the maximum lateral strength with reinforcements on the sides. This proved to be very string. Created a X-Beam using similar methods producing a very strong leg structure. It was capable of support the entire weight of the cockpit body w/o a problem. Had to redesign the leg to cockpit body mount point from the earlier concept because the bond was not completely coupled.
Next up were the arm/guns ... the weight was too much for the cockpit body to support so I fashioned a pair of lego-platforms for them to rest on and take the weight off of the central body.
Finally ... the rear guns ... these were a challenge in that their original mount point design had to be reworked also to make them fit correctly into the rear of the cockpit body. I changed the mount points on the guns to fit the space on both sides and added a few support balls to improve the mount point bonds. I was very surprised how they were balanced and supported only by two point sections to the body. The guns stayed in place for a small series of photos.
The design flaw was in the side bonds of the beam to the legs. The coupled field held nicely for a short amount of time and would have held if it didn't have the weight of the rear guns to support. When they were standing upright and straight, all was good. As soon as I attempted to move the platform forward (to take a video), the rear guns tilted slightly backwards and and that was the end of the leg to body support bonds ... and created the dreaded implosion.
The rear gun weight caused the entire central body section to rotate backwards and fall back on the rear guns ... taking the arms in the process. Perhaps I should have created a Lego-support structure for the rear guns to remove the pendulum force backwards ... but that would have created another view blocker like the side Lego-platforms obstructed the view of the legs and feet. Not sure if I can recreate it for a rotational video ... this took over a week (on/off to design and assemble).
Overall ... I was very happy with the result ... hope I captured enough detail to warrant some visual recognition as a Starcraft II Thor reproduction/interpretation.
This was design and built for the Zen Magnets Contest 26: The Massive Thor
www.zenmagnets.com/blog/26-the-massive-thor/
I tried to document the info for this super complex build (below) accompanied by associated pics in this set
www.flickr.com/photos/tend2it/sets/72157632920071597/
Starcraft II Thor Magnet Count and Detail Talley
======+================
Cockpit Body bottom section: (@0520)
(@0217) - Main shape middle core = (2x108) + 1
(@0095) - central bottom layer 1 = (47x2) + 1 w/black parameter
(@0078) - Sides Bottom layer 2 = (2x(22 parallel pair frnt2bck support + 3 red + 4 gold + 10 ring outside black))
(@0028) - Central bottom layer 3 = (2x14) rectangle
(@0032) - Sides bottom layer 3 = (2x((2x5 parallel bridge rectangle to ring) + (6 ring outside))
(@0010) - Central bottom layer 4 = (10 ring) leg waist w/gold
(@0020) - Sides bottom layer 4 = (2x10 ring) coupled over parallel bridge for perpendicular underside support
(@0040) - Central rear Barrel = (4x8 ring w2 red rings) + (2x4 sqr end)
------
Cockpit Body top section (from center out): (@0371)
(@0166) - top layer 1 = (2x83) w/black missle cover + middle sect separator
(@0105) - top layer 2 = ((2x52) + 1) w/black separator, red trim, gold cockpit
(@0083) - top layer 3 = ((2x41) + 1) w/black separator, red trim, gold cockpit
(@0037) - top layer 4 = ((2x18) + 1) w/black separator trim
(@0010) - top layer 5 = (2x5) w/red/black
------
(@0891)
Leg section x2 (@0640 - 12 removed from bottom of @ leg for foot contact pt)
leg internal structure:
(@0384) - columns = 2 x (4x((2x12) + ((2x11) + 2))) top/bottom coupled bonds w/parallel bonds stacked x 4))
(@0096) - side reinforcements = 2x((2x11) + 2) coupled pair along outside edge centers)
(@0032) - ball reinforcements = 2x(2x4 balls are two balls added to 4 ball in 2, 4, 6, 8th positions) - (12 @ bottom)
leg arch structure (connected to one flat leg top face:
(@0128) - (4x4 parallel sqr) + (2x(6 + 2)) pointy rings) + (4x4 parallel sqr) + (2x(6 + 2)) pointy rings)
Place the two leg arch structures together to form the leg arch
-------
(@1519) = 1531-12
Leg side panels (@0384)
(@0344) - (2 each leg x (2x(2x43 each side))) w/black outside trim
Knees + Leg detail
(@0040) - (2x(2x(6 + 2) knee w/red sqr) + 2x(4 red sqr top of leg))
-------
(@1903)
Feet x2 (@0242)
(@0184) - (2x((2x7 + 2 1st mid layer) + (2x(2x10 + 1) 2nd mid layer) + ((2x(2x8 + 1) outside layer))
(@0034) - (2x(2x(2x3 + 1 top of toe 2 leg)) + (1 center rear foot 2 leg conn) + (2 x 1 outer rear foot sides 2 leg
conn))
(@0024) - (2x(2x6 rings rear foot heel))
-------
(@2145)
X-Beam waist platform - (@0233 - 19) this part is placed across the center perpendicular to the x-beam leg arch
(@0214) - (2x(2x(18 + 17 + 6 + 3)) + (2x(7 + 2)) + ((8 + 1 front side) + (2x9 rear side)) + ((2 x 3 red front center) +
(2 x 2 red front sides) + (2 red rear)) - (19 removed under rear panel side to fold)
Arm Guns (2 pair per arm w/red + black accents)
(@0380) - (4x((4x9 center core) + (3x((2x7) + 1)) top/sides) + (2x7) middle join))
Shoulder to elbow core w/o reinforcements ((@0174)per arm)
(@0348) - (2 x (top((2x5)+2) + (4x8+2 parallel) + ((2x5)+2) + (2x5) + (2x(2x5)+1) + (2x(2x6)+1) + ((4x7)+2 parallel
mount2gun) + (1 ball center to bridge below 2 ball center to 1 ball) + ((2x6)+1) + ((2x4)+2)bottom)
Shoulder to elbow (per arm, per side)
(@0248) - (2 x (2 x (top 3 + 5 + 5 + 5 + 4 + 5 + 4 + 4 + 5 + (2x7arm2shoulder bridge) + (5 + 3 bottom))
Elbow to gun support (per arm, per side) (@0140 - 18 for outside facing side revamp)
(@0122) - (2 x (2 x (((2x9)+1) + (2x8)) -
Revamp outside facing sides for Z bracket (remove 2x(4 top/4 bottom/2 middle/move center ball down, add 1 ball)
Revamp 2 rear centerballs with red
(@028) - add red design outside facing shoulder 2 elbow
------
(@3485)
Rear Guns x2
Large cannon (@0112 each)
(@0224) - 2 x ((2x(2x15) + (4x(5+2)) + (4x(6 ring)))
Smaller cannon (@0092 each)
(@0184) - 2 x ((2x(2x13) + (4x(4+2)) + (4x(4 ring)))
Gun bridges (@0010 each)
(@0020) - (2 x (4 ring + 6 ring across two cannons)
Gun mounts x2
(@0104) - (2 x ((top (2x4+2) + (2x5+2) parallel to existing + (2x4+2) + (2x5 parallel) + (2x4+2) bottom)
Gun panel x 2 (@0102 each)
(@0204) - (2 x (2x(11 + 10 + 9 + 8 + 7 + 6))
-------
Revamp base
(@4221) subtotal b4 assembly
Assembly mods
-------------
Moved the (@0040) - Central rear Barrel = (4x8 ring w2 red rings) + (2x4 sqr end) below the rear of the body between
the leg mount and cockpit body. Actually used the barrel as a mount point for the rear guns.
Modded Cockpit Body bottom section (mount point):
(@0020) = (2 x (7 + 6 + 5)) = Changed = (@0028) - Central bottom layer 3 = (2x14) rectangle to covert parallel
rectangle to hex parallel center, coupled sides
-------
(@4213) = (@4221 - 8)
Moved central bottom layer x-beam
(@0018) = (2x09 ring) = Changed = (@0020) - Sides bottom layer 4 = shifted it down one row, removed 1 ball on end to form point and pinched outside end fit in center of 6 ball side.
(@4211) = (@4213 - 2)
Removed gold 10 ball ring mount
Changed = (@0010) = Central bottom layer 4 = (10 ring) leg waist w/gold
-------
(@4201) = (@4213 - 10)
Modded Rear Guns
(@0100) = Changed = Rear Gun mounts x2 - removed +2 from top/bottom mount point (2x4+2)=>(2x4)
(@4197) = (@4201-4)
Added extra mount point support bwtween rear gun mounts and rear cockpit body
(@4205) = (@4201+8)
Grand Total! = (@4205)
Capable of crossing the Atlantic in under three hours, Concorde cruised at over twice the speed of sound and reached an altitude of 60,000ft. Her passengers would marvel at the curvature of the Earth and look up at a blue-black sky, as they travelled at 1320mph and sipped Champagne on the edge of space.
Cheaspeake Lighthouse ship, Baltimore.
Lightship 116 Chesapeake
When Lightship 116 "Chesapeake" was completed in 1930, she was among the most modern and capable ships in use with the US Lighthouse Service. Part of the vessel class of Lightship No.100, Lightship 116 was constructed from a standard design and boasted the best in stability, signaling capacity, living accommodations, and engineering efficiency then available.
Lightship 116 was built in South Carolina at the Charleston Machine and Drydock Company at a cost of $274,424. The new vessel featured an efficient diesel-electric power-plant (superseding earlier steam powered designs), all-steel construction, and impressive signaling equipment capable of marking her station in all kinds of weather and light conditions. Electricity for the ship's propulsion motor, lighting and machinery was supplied by four 75-kilowatt diesel engine/generator units located in the engine room. Her signaling apparatus consisted of a 13,000 candlepower electric beacon lamp atop each mast (later consolidated on the aft mast), an electric foghorn (later replaced with a compressed-air diaphone), radio beacon, and fog bell mounted on the main deck. The ship was equipped with two 5,000-pound mushroom anchors (one main and a spare) designed to hold her on station in all but the roughest weather.
Lightship 116 was designed for a crew of up to 16 - though normally several were away on shore leave at any given time. Crew accommodations included two-man staterooms for the enlisted men, a crew's mess, and an electrically powered galley and refrigerator unit (a major advancement for 1930). Officers (1st and 2nd Officer, Engineer and Assistant Engineer) had their own staterooms adjacent to their mess (dining room), and the Captain, or Master as he was called in the Lighthouse Service, occupied his own stateroom immediately behind the pilothouse.
The US Lighthouse Service first assigned Lightship 116 to the Fenwick Island Shoal (DE) Station from 1930-33; after that assignment she marked the entrance to Chesapeake Bay until the beginning of World War II. During the war most coastal lightships were withdrawn for security reasons and were often converted for wartime duties. During 1942-45 Lightship 116 was painted battleship gray, armed with two 20mm cannons, and used as a patrol/inspection vessel near the entrance to the Cape Cod Canal. In 1945, Lightship 116 returned to the waters off Cape Henry (VA) where her bright red hull, beacon light and "Chesapeake" station designation guided maritime traffic in and out of the Chesapeake Bay for the next 20 years.
On two occasions (1936 and 1962) while marking the entrance to the Chesapeake Bay, Lightship 116 rode out hurricanes so powerful that the ship's anchor chain broke, forcing the crew to drop the spare anchor and run full ahead into the wind for many hours in vain attempts to remain on station.
Despite some equipment upgrades, such as radar, technology began to overtake Lightship 116 by the 1960s. In 1965, the Chesapeake Lightship Station was replaced by a Coast Guard offshore light tower built on stout pilings strong enough to withstand the roughest seas. Manned by a crew of just four, the light tower was cheaper to run and had a more powerful beacon visible for a distance of 17 miles. After being relieved at the mouth of the Chesapeake Bay, Lightship 116's final duty station was marking the approaches to Delaware Bay until replaced there by a large automated light buoy in 1970.
In 1971, Lightship 116 was acquired by the National Park Service and was open to the public on the Potomac River. Since 1982, the ship has been part of the Baltimore Maritime Museum, now Historic Ships in Baltimore, and has continued to serve as an important link with the history of American aids to navigation.
RAF Museum, Cosford.
BAe Harrier GR9A, ZG477.
The Harrier, informally referred to as the Jump Jet, is the famous family of British-designed military jet aircraft capable of vertical/short take-off and landing (V/STOL) operations. The Harrier family is the only truly successful design of this type from the many that arose in the 1960s.
There are four main versions of the Harrier family: Hawker Siddeley Harrier, British Aerospace Sea Harrier, Boeing/BAE Systems AV-8B Harrier II, and BAE Systems/Boeing Harrier II. The Hawker Siddeley Harrier is the first generation-version and is also known as the AV-8A Harrier. The Sea Harrier is a naval strike/air defence fighter. The AV-8B and BAE Harrier II are the US and British variants respectively of the second generation Harrier aircraft. Between 1969 and 2003, 824 Harrier variants were delivered, including remanufactured aircraft.
Historically the Harrier was developed to operate from ad-hoc facilities such as car parks or forest clearings, avoiding the need for large air bases vulnerable to tactical nuclear weapons. Later the design was adapted for use from aircraft carriers.
Following an approach by the Bristol Engine Company in 1957 that they were planning a directed thrust engine, Hawker Aircraft came up with a design for an aeroplane that could meet the NATO specification for a "Light Tactical Support Fighter". The resultant Hawker P.1127 was ordered as a prototype and flew in 1960.
Development continued with nine evaluation aircraft, the Hawker Siddeley Kestrel; These started flying in 1964 and were assessed by the "Tri-partite Evaluation Squadron" which consisted of British, US and German pilots, and several flew-and are preserved- in the United States. The RAF ordered a modified P.1127/Kestrel as the Harrier GR.1 in 1966, with most converted to uprated GR.1A and ultimately GR.3 status in the 1970s with more powerful engines. These and new-build GR3s operated with the RAF until 1994, and a number survive in museums around the world as well as frequent use as 'gate guards' at MoD establishments.
The British Aerospace Sea Harrier is a naval V/STOL jet fightof the Hawker Siddeley Harrier. The first version entered service with the Royal Navy's Fleet Air Arm in April 1980 as the Sea Harrier FRS.1, and was informally known as the 'Shar'. The upgraded Sea Harrier FA2 entered service in 1993. It was withdrawn from Royal Navy service in March 2006. The Sea Harrier FRS Mk.51 remains in active service with the Indian Navy.
The Harrier was extensively redeveloped by McDonnell Douglas and British Aerospace (now parts of Boeing and BAE Systems respectively), leading to the Boeing/BAE Systems AV-8B Harrier II. This is a family of second-generation V/STOL jet multi-role aircraft, including the British Aerospace-built Harrier GR5/GR7/GR9, which entered service in the mid-1980s. The AV-8B is primarily used for light attack or multi-role tasks, typically operated from small aircraft carriers. Versions are used by several NATO countries, including the Spanish and Italian Navies, and the United States.
The BAE Systems/Boeing Harrier II is a modified version of the AV-8B Harrier II that was used by the RAF and the Royal Navy until December 2010, when they were all retired from operational service due to defence cuts in favour of maintaining the remaining Tornado fleet, and stored serviceable at RAF Cottesmore. At the end of November 2011, the UK Government announced the sale of 72 remaining Harrier Airframes to the US Marine Corps for spares to support their AV-8B fleet, with the remaining two others being allocated to museums, including the airframe now at Cosford.
The RAF Museum is fortunate to hold a number of Harrier family airframes; the original P.1127 prototype (on loan to the Science Museum, South Kensington), a Kestrel also at RAFM Cosford, a Falklands veteran GR.3 in the Milestones building at RAFM Hendon, and the GR.9 illustrated here.
Aeroscopia est un musée aéronautique français implanté à Blagnac (Haute-Garonne), près du site AéroConstellation, et accueille notamment deux exemplaires du Concorde, dont l'ouverture a eu lieu le 14 janvier 2015
Le tarmac Sud du musée n'est capable d'accueillir que trois gros appareils. L'installation des appareils fut définitivement terminée après que le premier prototype de l'A400M-180 y fut arrivé le 16 juillet 2015, en dépit de la possibilité de 360 000 euros de TVA.
Concorde, F-BVFC, MSN209 aux couleurs d'Air France
Caravelle 12, F-BTOE, MSN280 aux couleurs d'Air Inter, dernier exemplaire construit
A400M-180, F-WWMT, MSN001 stationné depuis le 16 juillet 2015
La réalisation en 2019 du nouveau tarmac au Nord du musée permet l'accueil d'appareils supplémentaires issus des entreprises locales Airbus et ATR. Le transfert des avions entre le site Airbus "Lagardère" et le musée a lieu sur une semaine, à raison d'un appareil par jour :
ATR 72-600, F-WWEY, MSN098 aux couleurs d'ATR, transféré sur site le 26 août 2019, premier exemplaire du 72 dans sa version 600
Airbus A340-600, F-WWCA, MSN360 aux couleurs d'Airbus, transféré sur site le 27 août 2019, premier exemplaire de l'A340 dans sa version 600
Airbus A320-111, F-WWAI, MSN001 aux anciennes couleurs d'Airbus, transféré sur site le 28 août 2019, premier exemplaire de l'A320 : inauguration le 14 février 1987 en présence de Lady Diana et du Prince Charles, premier vol le 22 février 1987
Airbus A380-800, F-WXXL, MSN002 aux couleurs d'Airbus, transféré sur site le 29 août 2019, second exemplaire de l'A380. Les deux ponts de cet appareil sont visitables, ainsi que le cockpit.
ATR 42-300, F-WEGC, MSN003 aux anciennes couleurs d'ATR, transféré sur site le 30 août 2019, troisième exemplaire du 42. Cet exemplaire est décoré aux couleurs du MSN001 et porte l'immatriculation F-WEGA
Concorde, F-WTSB, MSN201 (ANAE), il s'agit d'un appareil de présérie qui a servi entre autres à transporter plusieurs présidents de la République française.
Airbus A300B4-203, F-WUAB, MSN238 (Airbus Heritage), décoré aux couleurs du prototype, au lieu de MSN001 démantelé. L'intérieur est visitable. Dans la première section des vitrages transparents permettent de voir la structure et les systèmes de l'avion, tandis que dans les sections suivantes sont représentés des aménagements de première classe et VIP.
Super Guppy de l'association Ailes Anciennes Toulouse, l'appareil qui servait au transport des tronçons d'Airbus est exposé porte ouverte, et une passerelle permet l'accès à la soute où un film est projeté. L'ouverture n'a pas été une mince affaire, l'appareil n'ayant pas été ouvert pendant 15 ans. L'aide des anciens mécaniciens de l'avion a été primordiale pour permettre une ouverture en toute sécurité.
Corvette (Airbus)
Falcon 10 no 02, prototype ayant servi aux essais du turboréacteur Larzac (Ailes Anciennes Toulouse)
Fouga Magister (AAT)
Gazelle prototype (AAT)
Mirage III C (AAT)
Nord 1100 (AAT)
Lockheed F-104G (AAT)
MiG-15 (AAT)
MS.760 Paris (AAT)
Vought F-8E(FN) Crusader et son réacteur (AAT)
Alouette II Marine (AAT)
Cessna Skymaster (AAT)
Fairchild Metro, ancien avion de Météo-France (AAT)
HM-293, de Rodolphe Grunberg
Chagnes MicroStar, avion de construction amateur, version biréacteur de Rutan VariViggen (AAT)
Saab J35OE Draken (AAT)
Aeroscopia is a French aeronautical museum located in Blagnac (Haute-Garonne), near the AéroConstellation site, and notably hosts two copies of the Concorde, which opened on January 14, 2015
The south tarmac of the museum can only accommodate three large aircraft. The installation of the devices was definitively finished after the first prototype of the A400M-180 arrived there on July 16, 2015, despite the possibility of 360,000 euros in VAT.
Concorde, F-BVFC, MSN209 in Air France colors
Caravelle 12, F-BTOE, MSN280 in Air Inter colors, last model built
A400M-180, F-WWMT, MSN001 parked since July 16, 2015
The construction in 2019 of the new tarmac north of the museum will accommodate additional aircraft from local Airbus and ATR companies. The transfer of planes between the Airbus "Lagardère" site and the museum takes place over a week, at the rate of one aircraft per day:
ATR 72-600, F-WWEY, MSN098 in ATR colors, transferred to site on August 26, 2019, first copy of the 72 in its 600 version
Airbus A340-600, F-WWCA, MSN360 in Airbus colors, transferred to site on August 27, 2019, first copy of the A340 in its 600 version
Airbus A320-111, F-WWAI, MSN001 in the old Airbus colors, transferred to site on August 28, 2019, first copy of the A320: inauguration on February 14, 1987 in the presence of Lady Diana and Prince Charles, first flight on February 22, 1987
Airbus A380-800, F-WXXL, MSN002 in Airbus colors, transferred to site on August 29, 2019, second copy of the A380. The two decks of this aircraft can be visited, as well as the cockpit.
ATR 42-300, F-WEGC, MSN003 in the old ATR colors, transferred to the site on August 30, 2019, third specimen of the 42. This specimen is decorated in the colors of the MSN001 and bears the registration F-WEGA
Concorde, F-WTSB, MSN201 (ANAE), this is a pre-production aircraft which was used, among other things, to transport several presidents of the French Republic.
Airbus A300B4-203, F-WUAB, MSN238 (Airbus Heritage), decorated in the colors of the prototype, instead of dismantled MSN001. The interior can be visited. In the first section transparent glazing allows to see the structure and systems of the aircraft, while in the following sections are shown first class and VIP fittings.
Super Guppy from the Ailes Anciennes Toulouse association, the aircraft which was used to transport the Airbus sections is on display with the door open, and a gangway allows access to the hold where a film is shown. Opening was no small feat, as the device has not been opened for 15 years. The help of the former mechanics of the aircraft was essential to allow a safe opening.
Corvette (Airbus)
Falcon 10 no 02, prototype used for testing the Larzac turbojet engine (Ailes Anciennes Toulouse)
Fouga Magister (AAT)
Prototype Gazelle (AAT)
Mirage III C (AAT)
North 1100 (AAT)
Lockheed F-104G (AAT)
MiG-15 (AAT)
MS.760 Paris (AAT)
Vought F-8E (FN) Crusader and its engine (AAT)
Alouette II Marine (AAT)
Cessna Skymaster (AAT)
Fairchild Metro, former Météo-France (AAT) aircraft
HM-293, by Rodolphe Grunberg
Chagnes MicroStar, amateur-built aircraft, twin-jet version of Rutan VariViggen (AAT)
Saab J35OE Draken (AAT)
en.wikipedia.org/wiki/Blackburn_Buccaneer
en.wikipedia.org/wiki/Yorkshire_Air_Museum#Collection
The Blackburn Buccaneer is a British carrier-capable attack aircraft designed in the 1950s for the Royal Navy (RN). Designed and initially produced by Blackburn Aircraft at Brough, it was later officially known as the Hawker Siddeley Buccaneer when Blackburn became a part of the Hawker Siddeley Group, but this name is rarely used.
The Buccaneer was originally designed in response to the Soviet Union introducing the Sverdlov class of light cruisers. Instead of building a new class of its own cruisers, the Royal Navy decided that it could address the threat posed via low-level attack runs performed by Buccaneers, so low as to exploit the ship's radar horizon to minimise the opportunity for being fired upon. The Buccaneer could attack using nuclear weapons or conventional munitions. During its service life, it would be modified to carry anti-ship missiles, allowing it to attack vessels from a stand-off distance and thus improve its survivability against modern ship-based anti-aircraft weapons. The Buccaneer performed its maiden flight in April 1958 and entered Royal Navy service during July 1962.
Initial production aircraft suffered a series of accidents, largely due to insufficient engine power; this shortfall would be quickly addressed via the introduction of the Buccaneer S.2, equipped with more powerful Rolls-Royce Spey jet engines, in 1965. The Buccaneer S.2 would be the first Fleet Air Arm (FAA) aircraft to make a non-stop, unrefuelled crossing of the Atlantic Ocean. During the 1960s and 1970s, the Royal Navy standardised the air wings operating from their carriers around the Buccaneer, Phantom, and the Fairey Gannet. The Buccaneer was also offered as a possible solution for the Royal Air Force (RAF) requirement for a supersonic interdictor carrying nuclear weapons. It was rejected as not meeting the specification in favour of the more advanced BAC TSR-2 bomber, but this aircraft would be cancelled largely due to its high cost, then its selected replacement, the General Dynamics F-111K, would also be cancelled. The Buccaneer was purchased as a TSR-2 substitute and entered RAF service during October 1969.
The Royal Navy retired the last of its large aircraft carriers in February 1979; as a result, the Buccaneer's strike role was transferred to the British Aerospace Sea Harrier and the Buccaneers were transferred to the RAF. After a crash in 1980 revealed metal fatigue problems, the RAF's fleet was reduced to 60 aircraft while the rest were withdrawn. The ending of the Cold War in the 1990s led to military cutbacks that accelerated the retirement of Britain's remaining Buccaneers; the last of the RAF's Buccaneers were retired in March 1994 in favour of the more modern Panavia Tornado. The South African Air Force (SAAF) was the only export customer for the type. Buccaneers saw combat action in the first Gulf War of 1991, and the lengthy South African Border War.
Following the end of the Second World War, the Royal Navy soon needed to respond to the threat posed by the rapid expansion of the Soviet Navy. Chief amongst Soviet naval developments in the early 1950s was the Sverdlov-class cruiser; these vessels were classifiable as light cruisers, being fast, effectively armed, and numerous. Like the German "pocket battleships" during the Second World War, these new Soviet cruisers presented a serious threat to the merchant fleets in the Atlantic. To counter this threat, the Royal Navy decided not to use a new ship class of its own, but instead introduce a specialised strike aircraft employing conventional or nuclear weapons. Operating from the Navy's fleet carriers, and attacking at high speed and low level, it would offer a solution to the Sverdlov problem.
A detailed specification was issued in June 1952 as Naval Staff Requirement NA.39, calling for a two-seat aircraft with folding wings, capable of flying at 550 knots (1,020 km/h; 630 mph) at sea level, with a combat radius of 400 nautical miles (740 km; 460 mi) at low altitude, and 800 nautical miles (1,500 km; 920 mi) at higher cruising altitudes. A weapons load of 8,000 pounds (3,600 kg) was required, including conventional bombs, the Red Beard free-fall nuclear bomb, or the Green Cheese anti-ship missile. Based on the requirement, the Ministry of Supply issued specification M.148T in August 1952, and the first responses were returned in February 1953. Blackburn's design by Barry P. Laight, Project B-103, won the tender in July 1955. For reasons of secrecy, the aircraft was called BNA (Blackburn Naval Aircraft) or BANA (Blackburn Advanced Naval Aircraft) in documents, leading to the nickname of "Banana Jet". The first prototype made its maiden flight from RAE Bedford on 30 April 1958.
The first production Buccaneer model, the Buccaneer S.1, entered squadron service with the Fleet Air Arm (FAA) in January 1963. It was powered by a pair of de Havilland Gyron Junior turbojets, producing 7,100 pounds-force (32,000 N) of thrust. This mark was somewhat underpowered, and as a consequence, could not achieve take off if fully laden with both fuel and armament. A temporary solution to this problem was the "buddy system": aircraft took off with a full load of weaponry and minimal fuel, and would subsequently rendezvous with a Supermarine Scimitar that would deliver the full load of fuel by aerial refuelling. The lack of power meant, however, that the loss of an engine during take-off, or landing at full load, when the aircraft was dependent on flap blowing, could be catastrophic.
The long-term solution to the underpowered S.1 was the development of the Buccaneer S.2, fitted with the Rolls-Royce Spey engine, which provided 40% more thrust. The turbofan Spey also had significantly lower fuel consumption than the pure-jet Gyron, which provided improved range. The engine nacelles had to be enlarged to accommodate the Spey, and the wing required minor aerodynamic modifications as a result. Hawker Siddeley announced the production order for the S.2 in January 1962. All Royal Navy squadrons had converted to the improved S.2 by the end of 1966. However, 736 Naval Air Squadron also used eight S.1 aircraft taken from storage to meet an extra training demand for RAF crews until December 1970.
Blackburn's first attempt to sell the Buccaneer to the Royal Air Force (RAF) occurred in 1957–1958, in response to the Air Ministry Operational Requirement OR.339, for a replacement for the RAF's English Electric Canberra light bombers, with supersonic speed, and a 1,000-nautical-mile (1,900 km; 1,200 mi) combat radius; asking for an all-weather aircraft that could deliver nuclear weapons over a long range, operate at high level at Mach 2+ or low level at Mach 1.2, with STOL performance. Blackburn proposed two designs, the B.103A, a simple modification of the Buccaneer S.1 with more fuel, and the B.108, a more extensively modified aircraft with more sophisticated avionics. Against a background of inter-service distrust, political issues, and the 1957 Defence White Paper, both types were rejected by the RAF; as being firmly subsonic, and incapable of meeting the RAF's range requirements; while the B.108, which retained Gyron Junior engines while being 10,000 pounds (4,500 kg) heavier than the S.1, would have been severely underpowered, giving poor short-take off performance. The BAC TSR-2 was eventually selected in 1959.
After the cancellation of the TSR-2, and then the substitute American General Dynamics F-111K, the Royal Air Force still required a replacement for its Canberras in the low-level strike role, while the planned retirement for the Royal Navy's aircraft carriers meant that the RAF would also need to add a maritime strike capability. It was therefore decided in 1968 that the RAF would adopt the Buccaneer, both by the purchase of new-build aircraft, and by taking over the Fleet Air Arm's Buccaneers as the carriers were retired. A total of 46 new-build aircraft for the RAF were built by Blackburn's successor, Hawker Siddeley, designated S.2B. These had RAF-type communications and avionics equipment, Martel air-to-surface missile capability, and could be equipped with a bulged bomb-bay door containing an extra fuel tank.
Some Fleet Air Arm Buccaneers were modified in-service to also carry the Martel anti-ship missile. Martel-capable FAA aircraft were later redesignated S.2D. The remaining aircraft became S.2C. RAF aircraft were given various upgrades. Self-defence was improved by the addition of the AN/ALQ-101 electronic countermeasures (ECM) pod (also found on RAF's SEPECAT Jaguar GR.3), chaff and flare dispensers, and AIM-9 Sidewinder capability. RAF low-level strike Buccaneers could carry out what was known as 'retard defence'; four 1,000-pound (450 kg) retarded bombs carried internally could be dropped to provide an effective deterrent against any following aircraft. In 1979, the RAF obtained the American AN/AVQ-23E Pave Spike laser designator pod for Paveway II laser-guided bombs; allowing the aircraft to act as target designators for further Buccaneers, Jaguars, and other strike aircraft. From 1986, No. 208 Squadron RAF, then No. 12 (B) Squadron, replaced the Martel ASM with the Sea Eagle missile.
The Yorkshire Air Museum & Allied Air Forces Memorial is an aviation museum in Elvington, York on the site of the former RAF Elvington airfield, a Second World War RAF Bomber Command station. The museum was founded, and first opened to the public, in the mid 1980s.
The museum is one of the largest independent air museums in Britain. It is also the only Allied Air Forces Memorial in Europe. The museum is an accredited museum under Arts Council accreditation scheme. It is a Member of Friends of the Few (Battle of Britain Memorial), the Royal Aeronautical Society, the Museums Association and the Association of Independent Museums.
The Museum is a registered charity (No. 516766) dedicated to the history of aviation and was also set up as a Memorial to all allied air forces personnel, particularly those who served in the Royal Air Force during the Second World War.
Site
Further information: RAF Elvington
The 20-acre (81,000 m2) parkland site includes buildings and hangars, some of which are listed. It incorporates a 7-acre (28,000 m2) managed environment area and a DEFRA and Environment Agency supported self sustainability project called "Nature of Flight". The museum is situated next to a 10,000 ft runway, which is privately owned.
History
Whilst the Royal Air Force carried on using the runway for aircraft landing and take off training until 1992, the buildings and hangars had long been abandoned. In 1980 Rachel Semlyen approached the owners of "what was then an abandoned and derelict wartime site, with the idea of restoring the buildings and creating a museum". In 1983, a group started clearing the undergrowth and the site was ready to be unveiled as the Yorkshire Air Museum in 1986.
Events
The Museum undertakes several annual events each year within the general attraction / entertainment area as well as educational / academic events for specific audiences, plus several corporate events in association with companies such as Bentley, Porsche, banking, government agencies etc. The unique annual Allied Air Forces Memorial Day takes place in September.
Exhibits
The Museum has over 50 aircraft spanning the development of aviation from 1853 up to the latest GR4 Tornado. Several aircraft including Victor, Nimrod, Buccaneer, Sea Devon, SE5a, Eastchurch Kitten, DC3 Dakota are kept live and operated on special "Thunder Days" during the year. Over 20 historic vehicles and a Registered Archive containing over 500,000 historic artefacts and documents are also preserved at the Museum, which is also the Official Archive for the National Aircrew Association and National Air Gunners Association. It is nationally registered and accredited through DCMS/Arts Council England and is a registered charity.
A permanent exhibition on RAF Bomber Command was opened at the museum by life member, Sir David Jason. In 2010 a new exhibition called "Pioneers of Aviation", and funded by the Heritage Lottery Fund, was opened featuring the lives and achievements of Sir George Cayley, Sir Barnes Wallis, Robert Blackburn, Nevil Shute and Amy Johnson.
Principal on-site businesses include: Restaurant, Retail Shop, Events, Aircraft Operation Engineering Workshops, Archives and Corporate Business Suite. The museum is also a location for TV and film companies.
Building 1 – Airborne Forces Display & No. 609 Squadron RAF Room
Building 2 – Uniform Display
Building 3 – Air Gunners' Exhibition
Building 4 – Archives & Reference Library
Building 5 – Museum Shop
Building 7 – Memorial Garden
Building 8 – Museum HQ, Main Entrance
Building 9 – Against the Odds
Building 10 – Elvington Corporate Room
Building 11 – Museum NAAFI Restaurant
Building 12 – Control Tower
Building 13 – French Officers' Mess
Building 14 – Airmens Billet and Station MT Display
Building 15 – Royal Observer Corp
Building 16 – Signal Square
Building 17 – Hangar T2 Main Aircraft exhibition
Building 18 – Archive & Collections Building
Building 19 – Handley Page Aircraft Workshop
Building 20 – Pioneer of Aviation Exhibition
Collection
Aircraft on display
Pre-World War II
Avro 504K – Replica
Blackburn Mercury – Replica
Cayley Glider – Replica
Mignet HM.14 Pou-du-Ciel
Port Victoria P.V.8 Eastchurch Kitten Replica
Royal Aircraft Factory BE.2c – Replica
Royal Aircraft Factory SE.5a – Replica
Wright Flyer – Replica
World War II
Avro Anson T.21 VV901
Douglas Dakota IV KN353
Fairchild Argus II FK338
Gloster Meteor F.8 WL168
Gloster Meteor NF.14 WS788
Handley Page Halifax III LV907
Hawker Hurricane I – Replica
Messerschmitt Bf 109 G-6 – Replica
Slingsby T.7 Kirby Cadet RA854
Supermarine Spitfire I – Replica
Waco Hadrian 237123
Post World War II
Air Command Commander Elite
Beagle Terrier 2 TJ704
Canadair CT-133 Silver Star 133417
de Havilland Devon C.2 VP967
de Havilland Vampire T.11 XH278
Europa Prototype 001
Mainair Demon
Saunders-Roe Skeeter AOP.12 XM553
Westland Dragonfly HR.5 WH991
Cold War
BAC Jet Provost T.4 XP640
Blackburn Buccaneer S.2 XN974
Blackburn Buccaneer S.2B XX901
British Aerospace Harrier GR.3 XV748
British Aerospace Nimrod MR.2 XV250
Dassault Mirage IIIE 538
Dassault Mirage IVA 45/BR
English Electric Canberra T.4 WH846
English Electric Lightning F.6 XS903 which arrived during June 1988.
Fairey Gannet AEW.3 XL502
Gloster Javelin FAW.9 XH767
Handley Page Victor K.2 XL231
Hawker Hunter FGA.78 QA10
Hawker Hunter T.7 XL572
Panavia Tornado GR.1 ZA354
Panavia Tornado GR.4 XZ631
Ground vehicles
Second World War
Thompson Brothers Aircraft Refueller
1938 Ford Model E
1940 "Tilly" Standard 12 hp Mkl RAF Utility Vehicle
1941 Chevrolet 4x4 CMP
1942 Austin K2 NAAFI Wagon
1942 Thornycroft ‘Amazon’ Coles Crane
Cold War
1947 Commer one and a half deck airport coach
1949 Citroen 11BL
1948 David Brown VIG.2 Aircraft Tractor
1949 David Brown VIG.3 Aircraft Tractor
1951 David Brown GP Airfield Tractor
1953 Alvis Saracen 12ton APC
1953 Austin Champ Cargo 4x4 General Purpose Vehicle
1956 Green Goddess Self Propelled Pump
1958 Commer Q4 Bikini Fire Pump Unit
1958 Lansing Aircraft Carrier Type Tug
1959 Daimler Ferret ASC MK.2/3/7
1966 Chieftain Main Battle Tank
1970 Douglas P3 nuclear aircraft 25 tonne tug
1971 Pathfinder Fire Engine 35ton (ex. Manchester Airport)
1972 TACR2 Range Rover - 6 wheeled fast response fire unit
1974 GMC 6 wheeled fast response airfield fire truck
1976 Dennis Mercury 17.5 tonne aircraft tug
Pathfinder Fire Engine
The Birken is a “table car” capable of seating 56 passengers at 14 tables. With warming ovens and refrigerators behind the bar and buffet area, the Birken is an excellent venue for a cocktail hour. Alternately, the Birken can be used with a dining car or another passenger car with a full kitchen to seat your guests for a full meal while rolling down the railroad. It is the perfect companion to any other private passenger car on the market, allowing you the extra space to expand your event. The tables are also removable, making the Birken into an excellent open space. The car features two restrooms, a generator for power, and heat & air conditioning throughout. The Birken is fully certified by Amtrak, the FRA, and NJ Transit to operate anywhere the rails lead it.
The Birken was the first in an order of 218 identical 72-seat coaches built by Canadian Car & Foundry in 1954 for the Canadian National Railway. Numbered #5437, the car served on CN until 1978, when CN split off its passenger service into VIA Rail (the Canadian equivalent of Amtrak). The #5437 continued to serve VIA until it was sold to the British Columbia Railway in 1990, where it was rebuilt into a 14-table, 56-seat “table car” for use as a bar car and extra dining space on their Royal Hudson trains. It was during this time that the Birken was named for a location along the railroad’s mainline in British Columbia. After a decade of further service, the Birken was sold into private ownership in 2002. The car was upgraded to full Amtrak and FRA standards and repainted into colors once worn by the New York Central’s famous 20th Century Limited train.
Photos, text and plan - Morristown & Erie Railway
The Lockheed C-130 Hercules was designed as a troop and freight carrying aircraft capable of operating from unprepared surfaces. Because it was designed from the outset as a military cargo aircraft, the C-130 featured a rear ramp for ease of loading. At the time this was an innovation. The rear ramp also allows air-dropping of supplies.
The first prototype flew in 1954 and deliveries of the aircraft to the United States Air Force began in 1956.
The RAF ordered sixty-six Hercules, and the first of these was delivered in 1966.
This example is one of thirty of the original order that were lengthened, because some regular loads were filling the cargo bay while weighing much less than the aircraft could lift ("bulking out"). Extra length was achieved by inserting additional fuselage sections fore and aft of the wings.
More than 2300 Hercules have been built and there are more than forty variants of the type. The Hercules is used by more than 60 countries and has been in service with its original operator the United States Air Force for more than 50 years.
Type : Medium range tactical transport.
In Service : 1967 - 2011 (new C130Js introduced 1999)
Engines : Four 4,900hp Allison T-56 Turboprops.
Maximum Speed : 600kph (375mph)
Max. Altitude : 10,000m (33,000ft)
Airframe : All metal stressed-skin.
Wingspan : 40.5m (133ft)
Length : 34.6m (113ft 6ins)
Max Loaded Weight : 45,000kg (99,000Ib)
Empty Weight : 34,300kg (75,600Ib)
Capacity : 128 passengers /96 stretchers
64 paratroops
8 pallets
3 Land Rovers or an armoured personnel carrier.
Hercules C.3 XV202 history.
Manufacturers number 382-4226.
Built at Lockheed Marietta, Georgia as a C-130H-130-LM Hercules.
Given USAF serial number 66-8552 this aircraft was one of 66 C-130K Hercules aquired for the RAF between December 1966 and May 1968.
August 1967 : Delivered to the RAF as Hercules C.Mk.1 following painting and fitting out by Marshalls of Cambridge.
1981 : Converted to C.Mk.3, with fuselage lengthened by 15ft/4.57m by Marshalls as one of 30 conversions carried out between 1980 and 1985 using additional Lockheed-supplied fuselage sections fore and aft of the wing.
Used mainly on longer routes and for paratrooping.
To RAF Lyneham Transport Wing, Wiltshire (comprising Nos. 24, 30, 47 and 70 Squadrons and 242 O.C.U, all part of No. 38 Group.
1986 : Retrofitted with in-flight refuelling probe above cockpit, designated C.3P.
1994 : Displayed at international Air Tattoo, RAF Fairford, Gloustershire, as part of the Hercules' 40th anniversary and was serving as part of the Lyneham Transport wing.
1st January 2009 : To Marshalls, Cambridge for storage.
March 2011 : Took part in Operation ELLAMY from Malta in support of the Libyan conflict. Subsequently with No.47 Squadron, RAF Brize Norton (the last four Hercules left Lyneham on 1st July 2011, prior to that station's planned closure in late 2012).
12th August 2011 : Flown from RAF Brize Norton to RAFM Cosford. This is thought to be the final landing of the last RAF C.3.
Image copyright D.J.Ralley 2016.
Not to be used without prior permission.
Aeroscopia est un musée aéronautique français implanté à Blagnac (Haute-Garonne), près du site AéroConstellation, et accueille notamment deux exemplaires du Concorde, dont l'ouverture a eu lieu le 14 janvier 2015
Le tarmac Sud du musée n'est capable d'accueillir que trois gros appareils. L'installation des appareils fut définitivement terminée après que le premier prototype de l'A400M-180 y fut arrivé le 16 juillet 2015, en dépit de la possibilité de 360 000 euros de TVA.
Concorde, F-BVFC, MSN209 aux couleurs d'Air France
Caravelle 12, F-BTOE, MSN280 aux couleurs d'Air Inter, dernier exemplaire construit
A400M-180, F-WWMT, MSN001 stationné depuis le 16 juillet 2015
La réalisation en 2019 du nouveau tarmac au Nord du musée permet l'accueil d'appareils supplémentaires issus des entreprises locales Airbus et ATR. Le transfert des avions entre le site Airbus "Lagardère" et le musée a lieu sur une semaine, à raison d'un appareil par jour :
ATR 72-600, F-WWEY, MSN098 aux couleurs d'ATR, transféré sur site le 26 août 2019, premier exemplaire du 72 dans sa version 600
Airbus A340-600, F-WWCA, MSN360 aux couleurs d'Airbus, transféré sur site le 27 août 2019, premier exemplaire de l'A340 dans sa version 600
Airbus A320-111, F-WWAI, MSN001 aux anciennes couleurs d'Airbus, transféré sur site le 28 août 2019, premier exemplaire de l'A320 : inauguration le 14 février 1987 en présence de Lady Diana et du Prince Charles, premier vol le 22 février 1987
Airbus A380-800, F-WXXL, MSN002 aux couleurs d'Airbus, transféré sur site le 29 août 2019, second exemplaire de l'A380. Les deux ponts de cet appareil sont visitables, ainsi que le cockpit.
ATR 42-300, F-WEGC, MSN003 aux anciennes couleurs d'ATR, transféré sur site le 30 août 2019, troisième exemplaire du 42. Cet exemplaire est décoré aux couleurs du MSN001 et porte l'immatriculation F-WEGA
Concorde, F-WTSB, MSN201 (ANAE), il s'agit d'un appareil de présérie qui a servi entre autres à transporter plusieurs présidents de la République française.
Airbus A300B4-203, F-WUAB, MSN238 (Airbus Heritage), décoré aux couleurs du prototype, au lieu de MSN001 démantelé. L'intérieur est visitable. Dans la première section des vitrages transparents permettent de voir la structure et les systèmes de l'avion, tandis que dans les sections suivantes sont représentés des aménagements de première classe et VIP.
Super Guppy de l'association Ailes Anciennes Toulouse, l'appareil qui servait au transport des tronçons d'Airbus est exposé porte ouverte, et une passerelle permet l'accès à la soute où un film est projeté. L'ouverture n'a pas été une mince affaire, l'appareil n'ayant pas été ouvert pendant 15 ans. L'aide des anciens mécaniciens de l'avion a été primordiale pour permettre une ouverture en toute sécurité.
Corvette (Airbus)
Falcon 10 no 02, prototype ayant servi aux essais du turboréacteur Larzac (Ailes Anciennes Toulouse)
Fouga Magister (AAT)
Gazelle prototype (AAT)
Mirage III C (AAT)
Nord 1100 (AAT)
Lockheed F-104G (AAT)
MiG-15 (AAT)
MS.760 Paris (AAT)
Vought F-8E(FN) Crusader et son réacteur (AAT)
Alouette II Marine (AAT)
Cessna Skymaster (AAT)
Fairchild Metro, ancien avion de Météo-France (AAT)
HM-293, de Rodolphe Grunberg
Chagnes MicroStar, avion de construction amateur, version biréacteur de Rutan VariViggen (AAT)
Saab J35OE Draken (AAT)
Aeroscopia is a French aeronautical museum located in Blagnac (Haute-Garonne), near the AéroConstellation site, and notably hosts two copies of the Concorde, which opened on January 14, 2015
The south tarmac of the museum can only accommodate three large aircraft. The installation of the devices was definitively finished after the first prototype of the A400M-180 arrived there on July 16, 2015, despite the possibility of 360,000 euros in VAT.
Concorde, F-BVFC, MSN209 in Air France colors
Caravelle 12, F-BTOE, MSN280 in Air Inter colors, last model built
A400M-180, F-WWMT, MSN001 parked since July 16, 2015
The construction in 2019 of the new tarmac north of the museum will accommodate additional aircraft from local Airbus and ATR companies. The transfer of planes between the Airbus "Lagardère" site and the museum takes place over a week, at the rate of one aircraft per day:
ATR 72-600, F-WWEY, MSN098 in ATR colors, transferred to site on August 26, 2019, first copy of the 72 in its 600 version
Airbus A340-600, F-WWCA, MSN360 in Airbus colors, transferred to site on August 27, 2019, first copy of the A340 in its 600 version
Airbus A320-111, F-WWAI, MSN001 in the old Airbus colors, transferred to site on August 28, 2019, first copy of the A320: inauguration on February 14, 1987 in the presence of Lady Diana and Prince Charles, first flight on February 22, 1987
Airbus A380-800, F-WXXL, MSN002 in Airbus colors, transferred to site on August 29, 2019, second copy of the A380. The two decks of this aircraft can be visited, as well as the cockpit.
ATR 42-300, F-WEGC, MSN003 in the old ATR colors, transferred to the site on August 30, 2019, third specimen of the 42. This specimen is decorated in the colors of the MSN001 and bears the registration F-WEGA
Concorde, F-WTSB, MSN201 (ANAE), this is a pre-production aircraft which was used, among other things, to transport several presidents of the French Republic.
Airbus A300B4-203, F-WUAB, MSN238 (Airbus Heritage), decorated in the colors of the prototype, instead of dismantled MSN001. The interior can be visited. In the first section transparent glazing allows to see the structure and systems of the aircraft, while in the following sections are shown first class and VIP fittings.
Super Guppy from the Ailes Anciennes Toulouse association, the aircraft which was used to transport the Airbus sections is on display with the door open, and a gangway allows access to the hold where a film is shown. Opening was no small feat, as the device has not been opened for 15 years. The help of the former mechanics of the aircraft was essential to allow a safe opening.
Corvette (Airbus)
Falcon 10 no 02, prototype used for testing the Larzac turbojet engine (Ailes Anciennes Toulouse)
Fouga Magister (AAT)
Prototype Gazelle (AAT)
Mirage III C (AAT)
North 1100 (AAT)
Lockheed F-104G (AAT)
MiG-15 (AAT)
MS.760 Paris (AAT)
Vought F-8E (FN) Crusader and its engine (AAT)
Alouette II Marine (AAT)
Cessna Skymaster (AAT)
Fairchild Metro, former Météo-France (AAT) aircraft
HM-293, by Rodolphe Grunberg
Chagnes MicroStar, amateur-built aircraft, twin-jet version of Rutan VariViggen (AAT)
Saab J35OE Draken (AAT)
defay
The world’s top female surfers proved by pairing up grace, strength and talent, that they are capable of taking the sport to new heights.
The 2nd SWATCH GIRLS PRO France 2011 in Hossegor delivered a firework of spectacular surfing! Moving through the rounds, the ladies faced strong currents and fast crashing waves. Heat after heat they tackled the rough challenge by laying down outstanding performances with technical, smooth and stylish surfing. Unfortunately last year’s winner and 4-time World Champion Stephanie Gilmore (AUS) and top favourite Coco Ho (HAW) were already eliminated in the early rounds.
In the end Sally Fitzgibbons (AUS) defeated Sage Erickson (USA) on an epic final day of competition to win the SWATCH GIRLS PRO France at Seignosse in Hossegor.
Both Fitzgibbons and Erickson surfed at their limit on the final day of competition in front of the packed holiday crowd who flocked to the beach to support some of the world’s finest women’s surfers, but it was Fitzgibbons who found the scores needed to take the victory over the American surfer.
Fitzgibbons, who is currently rated No. 2 on the elite ASP Women’s World Title Series, competed in her second consecutive SWATCH GIRLS PRO France event and her victory marks her third major ASP win this year.
Erickson was impressive throughout the entire competition, eventually defeating Sarah Baum (ZAF) in the Semifinals, but was unable to surpass Fitzgibbons for the win.
Sarah Mason Wins 2-Star Swatch Girls Pro Junior France
Sarah Mason (Gisbourne, NZL) 16, today took out the ASP 2-Star Swatch Girls Pro Junior France over Dimity Stoyle (Sunshine Coast QLD, AUS) 19, it a closely contested 35-minute final that went down to the wire in tricky 3ft (1m) waves at Les Bourdaines.
Europe’s finest under-21 athletes faced some of the world’s best up-and-comers in the Swatch Girls Pro Junior France in their attempt to qualify for the ASP World Junior Series which starts October 3, in Bali, Indonesia.
Mason, who impressed the entire event with her precise and stylish forehand attack, left little to chance in the 35-minute final getting off to a quick start to open her account and then built on her two-wave total to claim victory with 11.73 out of 20. The quietly spoken goofy-footer was a standout performer in the ASP 6-Star Swatch Girls Pro France and backed it up with a commanding performance against her fellow Pro Junior members.
“It is amazing. I am so happy and it is one of my best results for sure. It was tricky to try and pick the good ones but I picked a couple so it was great. All the girls are definitely ripping so you have to step up the level to get through your heats so I am stoked with the win. It has been super fun and I have enjoyed the entire event so to win is just amazing.”
Dimity Stoyle was unable to bridge the gap over her opponent in the final finishing second despite holding priority several times in the later stages of the encounter. The Swatch Girls Pro Junior France has proved the perfect training ground for Stoyle to continue with her excellent results already obtained this season on the ASP Australasia Pro Junior series where she is currently ranked nº2.
“I am still happy with second and I really wanted to win here but I tried my best. This is the best event I have been in so far it is really good the set up, the waves and everyone loves it. I can’t believe how good the French crowd are. They love surfing and they love us all so I am definitely going to come back.”
Felicity Palmateer (Perth WA, AUS) 18, ranked nº9 on the ASP Women’s Star Tour, finished equal 3rd in a low scoring tactical heat against Stoyle where positioning and priority tactics towards the final part played a major role as the frequency of set waves dropped.
“When I first paddled out I thought it was breaking more out the back but as the tide started to change it moved in and became a little inconsistent. At the start of the heat there were heaps of waves but then it went slow and priority came into play and I kept trying to get one. I am not really fussed because I am travelling with Dimity (Stoyle) and stoked that she has made the final.”
Palmateer has used the Swatch Girls Pro Junior France as a building block towards her ultimate goal of being full-time on the ASP Women’s World Tour. Her objectives are clear and 2011 is an extremely important year.
“I would love to get a World Junior title but at the moment my goal is to qualify for the World Tour through the Star events. If I can get more practice without that much pressure on me like this year and then if I qualify it will be even better for 2012.”
Bianca Buitendag (ZAF) 17, placed 3rd in the Swatch Girls Pro Junior France after failing to oust eventual event winner Sarah Mason in semi-final nº1. Buitendag looked dangerous throughout the final day of competition and was unlucky not to find any quality scoring waves in a slow heat. Trailing for the majority of the encounter, Buitendag secured her best ride in the final moments which proved not enough to advance.
“The swell definitely dropped and although the conditions were quite nice I didn’t get any good scoring waves. I have a Pro Junior event coming up in South Africa and it is very important to get a result there to qualify for the World Juniors.”
Maud Le Car (St Martin, FRA) 19, claimed the best result of the European contingent finishing equal 5th to jump to nº1 position on the ASP Women’s European Pro Junior series. Le Car led a low scoring quarter-final bout against Bianca Buitendag until losing priority in a tactical error which allowed her opponent to sneak under her guard and claim the modest score required to win.
“I didn’t surf really well in that heat and I am a little bit disappointed because it is for the selection to the World Juniors with the other European girls. The waves were not the best and it was difficult to catch some good waves and unfortunately I didn’t make it. It is really good to be at the top but I have some other contests to improve and to do some good results and to make it to the World Juniors.”
The Swatch Time to Tear Expression Session was won by the team composed of Swatch Girls Pro France finalists Sally Fitzgibbons (AUS), Sage Erickson (USA) and equal 3rd placed Courtney Conlogue (USA) in a dynamic display of modern progressive surfing in the punchy 3ft peaks in front of a packed surf hungry audience lining the shore.
The Swatch Girls Pro is webcast LIVE on www.swatchgirlspro.com
For all results, videos, daily highlights, photos and news log-on to www.swatchgirlsproor www.aspeurope.com
Swatch Girls Pro Junior France Final Result
Sarah Mason (NZL) 11.73 Def. Dimity Stoyle (AUS) 10.27
Swatch Girls Pro Junior France Semi-Final Results
Heat 1: Sarah Mason (NZL) 14.00 Def. Bianca Buitendag (ZAF) 9.60
Heat 2: Dimity Stoyle (AUS) 10.67 Def. Felicity Palmateer (AUS) 9.57
Swatch Girls Pro Junior France Quarter-Final Results
Heat 1: Sarah Mason (NZL) 12.75 Def. Lakey Peterson (USA) 6.25
Heat 2: Bianca Buitendag (ZAF) 8.95 Def. Maud Le Car (FRA) 8.50
Heat 3: Dimity Stoyle (AUS) 11.00 Def. Georgia Fish (AUS) 4.50
Heat 4: Felicity Palmateer (AUS) 17.00 Def. Nao Omura (JPN) 8.75
Swatch Girls Pro Junior France Round Three Results
Heat 1: Sarah Mason (NZL) 15.25, Maud Le Car (FRA) 11.00, Marie Dejean (FRA) 9.35, Camille Davila (FRA) 4.90
Heat 2: Bianca Buitendag (ZAF) 14.50, Lakey Peterson (USA) 11.50, Justine Dupont (FRA) 10.75, Phillipa Anderson (AUS) 5.10
Heat 3: Georgia Fish (AUS) 12.50, Felicity Palmateer (AUS) 9.15, Joanne Defay (FRA) 7.15, Loiola Canales (EUK) 2.90
Heat 4: Nao Omura (JPN) 10.00, Dimity Stoyle (AUS) 9.50, Barbara Segatto (BRA) 3.90, Ana Morau (FRA) 3.05
Photos Aquashot/ASPEurope - Swatch
Countless ideas, concepts, artworks, comics, movies and stories, a lot of different minds have tried to capture the essence of who the batman is and what he’s capable of. Some of them have succeeded in making the Batman a legend and an example for other storytellers to capture an immensely inspiring figure into their own fictional characters.
And that’s what makes me the most curious about what the Batman stands for. He doesn’t wear the mask and go out at night to make the city a better place, he doesn’t do it because he cares about the people of Gotham and he surely doesn’t do it because there are a handful of people who actually care about what he does with his life.
He does it because he just wants to fight crime. Batman doesn’t care what the outcome is, whether he wins or loses, if he gets to live or not, the only driving force in his mind is to wage war on the criminals of Gotham.
We all know how the reason for Batman’s psychotic purpose is simultaneously simple and complex. The pain of losing his parents has taken such a toll on his mind that he’s unable to shake it or come out of it. He’s unable to quit the war because it’s his drug and he needs more of it every night to relieve the pain that makes him suffer every day.
He’s consciously putting out a challenge to his arch nemesis like the Joker and the Riddler.
All of this psychological madness made me wonder if there’s another way for Batman to somehow treat his psychological war without putting on the cape and the cowl of the batman. The answer I came up with is no! After countless hours of going through brilliantly written and conceptualized material on the Batman, the matter is concluded that there is no other possible way for Batman to cure his psychological pain.
While sketching out Batman’s psyche in the initial phase of the character’s development, Batman’s creators Bob Kane and Bill Finger agreed that perhaps there could be nothing more traumatic than a child witnessing his parents getting murdered in front of his eyes.
A few Batman stories tell the narrative of Bruce Wayne finally finding it in himself to leave the mantle of the Batman, but these very same stories continue the arc by highlighting how Bruce Wayne is the mask and Batman is the real person which leads Bruce Wayne back into the action and resuming his mission to continue his reign of terror on every criminal he can get his hands on.
Christopher Nolan came the closest to giving us a believable way for Bruce Wayne to retire the mantle of Batman in 2008’s The Dark Knight, but this only drives him into further mental torture and so he somehow finds another reason to get back into the game.
Superman once called Batman the most dangerous man on earth with one of the greatest minds ever and Batman perhaps subconsciously acknowledges this which continuously leads him to be in peak human condition and acquire countless skill sets to help in his endeavor as a vigilante. He refuses to find love, settle down or let his mind calm away so that the pain he bears can continuously drive him to work on the promise he made.
Batman is not just a fictional comic book character…, he’s actually the embodiment of a question mark and the question he’s trying to ask, is why don’t you embrace the most intense pain in your life, leave your boring day jobs and wreak havoc in the field of your passion. Revolutionize your thoughts, inspire the future generations to be inspiring figures and in the process of it all…, become an unforgettable legend…, like The Dark Knight.
Official Website - zeeconstory.com/
The Harrier, informally referred to as the Jump Jet, is the famous family of British-designed military jet aircraft capable of vertical/short take-off and landing (V/STOL) operations. The Harrier family is the only truly successful design of this type from the many that arose in the 1960s.
There are four main versions of the Harrier family: Hawker Siddeley Harrier, British Aerospace Sea Harrier, Boeing/BAE Systems AV-8B Harrier II, and BAE Systems/Boeing Harrier II. The Hawker Siddeley Harrier is the first generation-version and is also known as the AV-8A Harrier. The Sea Harrier is a naval strike/air defence fighter. The AV-8B and BAE Harrier II are the US and British variants respectively of the second generation Harrier aircraft. Between 1969 and 2003, 824 Harrier variants were delivered, including remanufactured aircraft.
Historically the Harrier was developed to operate from ad-hoc facilities such as car parks or forest clearings, avoiding the need for large air bases vulnerable to tactical nuclear weapons. Later the design was adapted for use from aircraft carriers.
Following an approach by the Bristol Engine Company in 1957 that they were planning a directed thrust engine, Hawker Aircraft came up with a design for an aeroplane that could meet the NATO specification for a "Light Tactical Support Fighter". The resultant Hawker P.1127 was ordered as a prototype and flew in 1960.
Development continued with nine evaluation aircraft, the Hawker Siddeley Kestrel; These started flying in 1964 and were assessed by the "Tri-partite Evaluation Squadron" which consisted of British, US and German pilots, and several flew and are preserved in the United States. The RAF ordered a modified P.1127/Kestrel as the Harrier GR.1 in 1966, with most converted to GR.1A and ultimately GR.3 status in the 1970s with more powerful engines. These and new-build GR3s operated with the RAF until 1994, and a number survive in museums around the world as well as frequent use as 'gate guards' at MoD establishments.
The British Aerospace Sea Harrier is a naval V/STOL jet fighter, reconnaissance and attack aircraft, a development of the Hawker Siddeley Harrier. The first version entered service with the Royal Navy's Fleet Air Arm in April 1980 as the Sea Harrier FRS.1, and was informally known as the 'Shar'. The upgraded Sea Harrier FA2 entered service in 1993. It was withdrawn from Royal Navy service in March 2006. The Sea Harrier FRS Mk.51 remains in active service with the Indian Navy.
The Harrier was extensively redeveloped by McDonnell Douglas and British Aerospace (now parts of Boeing and BAE Systems respectively), leading to the Boeing/BAE Systems AV-8B Harrier II. This is a family of second-generation V/STOL jet multi-role aircraft, including the British Aerospace-built Harrier GR5/GR7/GR9, which entered service in the mid-1980s. The AV-8B is primarily used for light attack or multi-role tasks, typically operated from small aircraft carriers. Versions are used by several NATO countries, including the Spanish and Italian Navies, and the United States.
The BAE Systems/Boeing Harrier II is a modified version of the AV-8B Harrier II that was used by the RAF and the Royal Navy until December 2010, when they were all retired from operational service due to defence cuts in favour of maintaining the remaining Tornado fleet, and stored serviceable at RAF Cottesmore. At the end of November 2011, the UK Government announced the sale of 72 remaining Harrier Airframes to the US Marine Corps for spares to support their AV-8B fleet, with the remaining two others being allocated to museums, including the airframe now at Cosford.
The RAF Museum is fortunate to hold a number of Harrier family airframes; the original P.1127 prototype (on loan to the Science Museum, South Kensington), a Kestrel awaiting restoration at RAFM Cosford, a Falklands veteran GR.3 in the Milestones building at RAFM Hendon, and the GR.9 illustrated here, also at RAFM Cosford.
en.wikipedia.org/wiki/Supermarine_Spitfire_
en.wikipedia.org/wiki/Yorkshire_Air_Museum#Collection
Supermarine Spitfire variants powered by early model Rolls-Royce Merlin engines mostly utilised single-speed, single-stage superchargers. The British Supermarine Spitfire was the only Allied fighter aircraft of the Second World War to fight in front line service from the beginnings of the conflict, in September 1939, through to the end in August 1945. Post-war, the Spitfire's service career continued into the 1950s. The basic airframe proved to be extremely adaptable, capable of taking far more powerful engines and far greater loads than its original role as a short-range interceptor had called for. This would lead to 19 marks of Spitfire and 52 sub-variants being produced throughout the Second World War, and beyond. The many changes were made in order to fulfil Royal Air Force requirements and to successfully engage in combat with ever-improving enemy aircraft. With the death of the original designer, Reginald J. Mitchell, in June 1937, all variants of the Spitfire were designed by his successor, Joseph Smith, and a team of engineers and draftsmen.
In 1936, before the first flight of the prototype, the Air Ministry placed an order for 310 Spitfires. However, in spite of the promises made by the Chairman of Vickers-Armstrongs (the parent company of Supermarine) that the company would be able to deliver Spitfire at a rate of five a week, it soon became clear that this would not happen. In 1936 the Supermarine company employed 500 people and was already engaged in fulfilling orders for 48 Walrus amphibian reconnaissance aircraft and 17 Stranraer patrol flying boats. In addition the small design staff, which would have to draft the blueprints for the production aircraft, was already working at full stretch. Although it was obvious that most of the work would have to be sub-contracted to outside sources, the Vickers-Armstrongs board was reluctant to allow this to happen. When other companies were able to start building Spitfire components there were continual delays because either parts provided to them would not fit, or the blueprints were inadequate; the sub-contractors themselves faced numerous problems building components which in many cases were more advanced and complicated than anything they had faced before.
As a consequence of the delays, the RAF received the first two Spitfires off the production line in July 1938, while the first Spitfire to enter squadron service was received by 19 Squadron in early August. For a time the future of the Spitfire was in serious doubt, with the Air Ministry suggesting that the programme be abandoned and that Supermarine change over to building the Bristol Beaufighter under licence. The managements of Supermarine and Vickers were eventually able to convince the Air Ministry that production would be sorted out and, in 1938, an order was placed with Morris Motors Limited for an additional 1,000 Spitfires to be built at huge new factory which was to be built at Castle Bromwich. This was followed in 1939 by an order for another 200 from Woolston and, only a few months later, another 450. This brought the total to 2,160, making it one of the largest orders in RAF history. Over the next three years a large number of modifications were made, most as a result of wartime experience.
Early in the Spitfire's operational life a major problem became apparent; at altitudes above about 15,000 ft (4,572 m), any condensation could freeze in the guns. Because of this the system of gun heating first fitted to K5054 was introduced on the 61st production Mk I. At the outset of World War II, the flash-hiders on the gun muzzles were removed and the practice of sealing the gun ports with fabric patches was instituted. The patches kept the gun barrels free of dirt and debris and allowed the hot air to heat the guns more efficiently. Early production aircraft were fitted with a ring and bead gunsight, although provision had been made for a reflector sight to be fitted once one had been selected. In July 1938, the Barr and Stroud GM 2 was selected as the standard RAF reflector gunsight and was fitted to the Spitfire from late 1938. These first production Mk Is were able to reach a maximum speed of 362 mph (583 km/h) at 18,500 ft (5,600 m), with a maximum rate of climb of 2,490 ft/min at 10,000 ft (3,000 m). The service ceiling (where the climb rate drops to 100 ft/min) was 31,900 ft (9,700 m).
All Merlin I to III series engines relied on external electric power to start; a well known sight on RAF fighter airfields was the "trolley acc" (trolley accumulator) which was a set of powerful batteries which could be wheeled up to aircraft. The lead from the "Trolley Acc" was plugged into a small recess on the starboard side cowling of the Spitfire. On Supermarine-built aircraft a small brass instruction plate was secured to the side cowling, just beneath the starboard exhausts.
The early Mk Is were powered by the 1,030 hp (768 kW) Merlin Mk II engine driving an Aero-Products "Watts" 10 ft 8 in (3.3 m) diameter two-blade wooden fixed-pitch propeller, weighing 83 lb (38 kg). From the 78th production airframe, the Aero Products propeller was replaced by a 350 lb (183 kg) de Havilland 9 ft 8 in (2.97 m) diameter, three-bladed, two-position, metal propeller, which greatly improved take-off performance, maximum speed and the service ceiling. From the 175th production aircraft, the Merlin Mk III, with a "universal" propeller shaft able to take a de Havilland or Rotol propeller, was fitted. Following complaints from pilots a new form of "blown" canopy was manufactured and started replacing the original "flat" version in early 1939. This canopy improved headroom and enabled better vision laterally, and to the rear. At the same time the manual hand-pump for operating the undercarriage was replaced by a hydraulic system driven by a pump mounted in the engine bay. Spitfire Is incorporating these modifications were able to achieve a maximum speed of 367 mph (591 km/h) at 18,600 ft (5,700 m), with a maximum rate of climb of 2,150 ft/min at 10,000 ft (3,000 m). The service ceiling was 34,400 ft (10,500 m).
A voltage regulator under a black, cylindrical cover was mounted low on the back of frame 11, directly behind the pilot's seat:[nb 3]starting in the N30xx series this was repositioned higher, appearing low in the rear transparency. From N32xx the regulator was mounted directly behind the pilot's headrest on frame 11. Other changes were made later in 1939 when a simplified design of pitot tube was introduced and the "rod" aerial mast was replaced by a streamlined, tapered design. To improve protection for the pilot and fuel tanks a thick laminated glass bulletproof plate was fitted to the curved, one piece windscreen and a 3 mm thick cover of light alloy, capable of deflecting small calibre rounds, was fitted over the top of the two fuel tanks. From about mid-1940, 73 pounds (33 kg) of armoured steel plating was provided in the form of head and back protection on the seat bulkhead and covering the forward face of the glycol header tank. In addition, the lower petrol tank was fitted with a fire-resistant covering called "Linatex", which was later replaced with a layer of self-sealing rubber.
In June 1940 de Havilland began manufacturing a kit to convert their two pitch propeller unit to a constant speed propeller. Although this propeller was a great deal heavier than the earlier types (500 lb (227 kg) compared with 350 lb (183 kg)) it provided another substantial improvement in take-off distance and climb rate. Starting on 24 June de Havilland engineers began fitting all Spitfires with these units and by 16 August every Spitfire and Hurricane had been modified. "Two step" rudder pedals were fitted to all frontline Spitfires; these allowed the pilot to lift his feet and legs higher during combat, improving his "blackout" threshold and allowing him to pull tighter sustained turns. Another modification was the small rear view mirror which was added to the top of the windscreen: an early "shrouded" style was later replaced by a simplified, rectangular, adjustable type.
Starting in September 1940, IFF equipment was installed. This weighed about 40 lb (18 kg) and could be identified by wire aerials strung between the tailplane tips and rear fuselage. Although the added weight and the aerials reduced maximum speed by about two mph (three km/h), it allowed the aircraft to be identified as "friendly" on radar: lack of such equipment was a factor leading to the Battle of Barking Creek. At about the same time new VHF T/R Type 1133 radios started replacing the HF TR9 sets. These had first been fitted to Spitfires of 54 and 66 Squadrons in May 1940, but ensuing production delays meant the bulk of Spitfires and Hurricanes were not fitted for another five months. The pilots enjoyed a much clearer reception which was a big advantage with the adoption of Wing formations throughout the RAF in 1941. The new installation meant that the wire running between the aerial mast and rudder could be removed, as could the triangular "prong" on the mast.
Weight increases and aerodynamic changes led to later Spitfire Is having a lower maximum speed than the early production versions. This was more than offset by the improvements in take-off distance and rate of climb brought about by the constant speed propeller units. During the Battle of Britain Spitfire Is equipped with constant-speed propellers had a maximum speed of 353 mph (568 km/h) at 20,000 ft (6,100 m), with a maximum rate of climb of 2,895 ft/min at 10,000 ft (3,000 m).
Although the Merlin III engine of Spitfire Is had a power rating of 1,030 hp (768 kW), supplies of 100 octane fuel from the United States started reaching Britain in early 1940. This meant that an "emergency boost" of +12 pounds per square inch was available for five minutes, with pilots able to call on 1,310 hp (977 kW) at 3,000 rpm at 9,000 feet (2,743 m). This boosted the maximum speed by 25 mph (40 km/h) at sea level and 34 mph (55 km/h) at 10,000 ft (3,000 m) and improved the climbing performance between sea level and full throttle height. The extra boost wasn't damaging as long as the limitations set forth in the pilot's notes were followed. As a precaution if the pilot had resorted to emergency boost, he had to report this on landing and it had to be noted in the engine log book. There was a wire 'gate' fitted, which the pilot had to break to set the engine to emergency power, this acted as an indicator that emergency power had been used and would be replaced by mechanics on the ground. The extra boost was also available for the Merlin XII fitted to the Spitfire II.
Late in 1940, a Martin-Baker designed quick-release canopy mechanism began to be retroactively fitted to all Spitfires. The system employed unlocking pins, actuated by cables operated by the pilot pulling a small, red rubber ball mounted on the canopy arch. When freed, the canopy was taken away by the slipstream. One of the most important modifications to the Spitfire was to replace the machine gun armament with wing mounted Hispano 20 mm cannon. In December 1938, Joseph Smith was instructed to prepare a scheme to equip a Spitfire with a single Hispano mounted under each wing. Smith objected to the idea and designed an installation in which the cannon were mounted on their sides within the wing, with only small external blisters on the upper and lower wing surfaces covering the 60 round drum magazine. The first Spitfire armed with a single Hispano in each wing was L1007 which was posted to Drem in January 1940 for squadron trials. On 13 January, this aircraft, piloted by Plt Off Proudman of 602 Squadron took part in an engagement when a Heinkel He 111 was shot down. Soon after this Supermarine was contracted to convert 30 Spitfires to take the cannon armed wing; 19 Squadron received the first of these in June 1940 and by 16 August 24 cannon armed Spitfires had been delivered. These were known as the Mk Ib: Mk Is armed with eight Brownings were retrospectively called the Mk Ia. With the early cannon installation, jamming was a serious problem. In one engagement, only two of the 12 aircraft had been able to fire off all of their ammunition. Further cannon-armed Spitfires, with improvements to the cannon mounts, were later issued to 92 Squadron, but due to the limited magazine capacity it was eventually decided the best armament mix was two cannon and four machine guns (most of these were later converted to the first Mk Vbs).
Sergeant Jennings in September 1940. The absence of a triangular prong on the rear of the mast indicates that VHF radio was fitted. The voltage regulator can be seen under the rear transparency. This photo makes a good comparison with K9795.
From November 1940, a decision was taken that Supermarine would start producing light-alloy covered ailerons which would replace the original fabric covered versions. However, seven months after the decision was taken to install them on all marks, Spitfires were still being delivered with the original fabric covered ailerons. From May 1941 metal ailerons were fitted to all Spitfires coming off the production lines.
The Yorkshire Air Museum & Allied Air Forces Memorial is an aviation museum in Elvington, York on the site of the former RAF Elvington airfield, a Second World War RAF Bomber Command station. The museum was founded, and first opened to the public, in the mid 1980s.
The museum is one of the largest independent air museums in Britain. It is also the only Allied Air Forces Memorial in Europe. The museum is an accredited museum under Arts Council accreditation scheme. It is a Member of Friends of the Few (Battle of Britain Memorial), the Royal Aeronautical Society, the Museums Association and the Association of Independent Museums.
The Museum is a registered charity (No. 516766) dedicated to the history of aviation and was also set up as a Memorial to all allied air forces personnel, particularly those who served in the Royal Air Force during the Second World War.
Site
Further information: RAF Elvington
The 20-acre (81,000 m2) parkland site includes buildings and hangars, some of which are listed. It incorporates a 7-acre (28,000 m2) managed environment area and a DEFRA and Environment Agency supported self sustainability project called "Nature of Flight". The museum is situated next to a 10,000 ft runway, which is privately owned.
History
Whilst the Royal Air Force carried on using the runway for aircraft landing and take off training until 1992, the buildings and hangars had long been abandoned. In 1980 Rachel Semlyen approached the owners of "what was then an abandoned and derelict wartime site, with the idea of restoring the buildings and creating a museum". In 1983, a group started clearing the undergrowth and the site was ready to be unveiled as the Yorkshire Air Museum in 1986.
Events
The Museum undertakes several annual events each year within the general attraction / entertainment area as well as educational / academic events for specific audiences, plus several corporate events in association with companies such as Bentley, Porsche, banking, government agencies etc. The unique annual Allied Air Forces Memorial Day takes place in September.
Exhibits
The Museum has over 50 aircraft spanning the development of aviation from 1853 up to the latest GR4 Tornado. Several aircraft including Victor, Nimrod, Buccaneer, Sea Devon, SE5a, Eastchurch Kitten, DC3 Dakota are kept live and operated on special "Thunder Days" during the year. Over 20 historic vehicles and a Registered Archive containing over 500,000 historic artefacts and documents are also preserved at the Museum, which is also the Official Archive for the National Aircrew Association and National Air Gunners Association. It is nationally registered and accredited through DCMS/Arts Council England and is a registered charity.
A permanent exhibition on RAF Bomber Command was opened at the museum by life member, Sir David Jason. In 2010 a new exhibition called "Pioneers of Aviation", and funded by the Heritage Lottery Fund, was opened featuring the lives and achievements of Sir George Cayley, Sir Barnes Wallis, Robert Blackburn, Nevil Shute and Amy Johnson.
Principal on-site businesses include: Restaurant, Retail Shop, Events, Aircraft Operation Engineering Workshops, Archives and Corporate Business Suite. The museum is also a location for TV and film companies.
Building 1 – Airborne Forces Display & No. 609 Squadron RAF Room
Building 2 – Uniform Display
Building 3 – Air Gunners' Exhibition
Building 4 – Archives & Reference Library
Building 5 – Museum Shop
Building 7 – Memorial Garden
Building 8 – Museum HQ, Main Entrance
Building 9 – Against the Odds
Building 10 – Elvington Corporate Room
Building 11 – Museum NAAFI Restaurant
Building 12 – Control Tower
Building 13 – French Officers' Mess
Building 14 – Airmens Billet and Station MT Display
Building 15 – Royal Observer Corp
Building 16 – Signal Square
Building 17 – Hangar T2 Main Aircraft exhibition
Building 18 – Archive & Collections Building
Building 19 – Handley Page Aircraft Workshop
Building 20 – Pioneer of Aviation Exhibition
Collection
Aircraft on display
Pre-World War II
Avro 504K – Replica
Blackburn Mercury – Replica
Cayley Glider – Replica
Mignet HM.14 Pou-du-Ciel
Port Victoria P.V.8 Eastchurch Kitten Replica
Royal Aircraft Factory BE.2c – Replica
Royal Aircraft Factory SE.5a – Replica
Wright Flyer – Replica
World War II
Avro Anson T.21 VV901
Douglas Dakota IV KN353
Fairchild Argus II FK338
Gloster Meteor F.8 WL168
Gloster Meteor NF.14 WS788
Handley Page Halifax III LV907
Hawker Hurricane I – Replica
Messerschmitt Bf 109 G-6 – Replica
Slingsby T.7 Kirby Cadet RA854
Supermarine Spitfire I – Replica
Waco Hadrian 237123
Post World War II
Air Command Commander Elite
Beagle Terrier 2 TJ704
Canadair CT-133 Silver Star 133417
de Havilland Devon C.2 VP967
de Havilland Vampire T.11 XH278
Europa Prototype 001
Mainair Demon
Saunders-Roe Skeeter AOP.12 XM553
Westland Dragonfly HR.5 WH991
Cold War
BAC Jet Provost T.4 XP640
Blackburn Buccaneer S.2 XN974
Blackburn Buccaneer S.2B XX901
British Aerospace Harrier GR.3 XV748
British Aerospace Nimrod MR.2 XV250
Dassault Mirage IIIE 538
Dassault Mirage IVA 45/BR
English Electric Canberra T.4 WH846
English Electric Lightning F.6 XS903 which arrived during June 1988.
Fairey Gannet AEW.3 XL502
Gloster Javelin FAW.9 XH767
Handley Page Victor K.2 XL231
Hawker Hunter FGA.78 QA10
Hawker Hunter T.7 XL572
Panavia Tornado GR.1 ZA354
Panavia Tornado GR.4 XZ631
Ground vehicles
Second World War
Thompson Brothers Aircraft Refueller
1938 Ford Model E
1940 "Tilly" Standard 12 hp Mkl RAF Utility Vehicle
1941 Chevrolet 4x4 CMP
1942 Austin K2 NAAFI Wagon
1942 Thornycroft ‘Amazon’ Coles Crane
Cold War
1947 Commer one and a half deck airport coach
1949 Citroen 11BL
1948 David Brown VIG.2 Aircraft Tractor
1949 David Brown VIG.3 Aircraft Tractor
1951 David Brown GP Airfield Tractor
1953 Alvis Saracen 12ton APC
1953 Austin Champ Cargo 4x4 General Purpose Vehicle
1956 Green Goddess Self Propelled Pump
1958 Commer Q4 Bikini Fire Pump Unit
1958 Lansing Aircraft Carrier Type Tug
1959 Daimler Ferret ASC MK.2/3/7
1966 Chieftain Main Battle Tank
1970 Douglas P3 nuclear aircraft 25 tonne tug
1971 Pathfinder Fire Engine 35ton (ex. Manchester Airport)
1972 TACR2 Range Rover - 6 wheeled fast response fire unit
1974 GMC 6 wheeled fast response airfield fire truck
1976 Dennis Mercury 17.5 tonne aircraft tug
Pathfinder Fire Engine
The NATO Research Vessel ALLIANCE is one of the most capable undersea research platforms at sea today and possibly the most quietest motor vessel afloat. She is unique in being one of only two ships owned jointly by member nations of the North Atlantic Treaty Organisation. NRV ALLIANCE has the status of a public vessel of the Federal Republic of Germany and flies the German republic flag. The vessel is assigned to the NATO Undersea Research Centre under the Allied Command Transformation, located at La Spezia, Italy.
ALLIANCE enables scientists from the Centre to conduct a wide range of experiments in all the oceans of importance to NATO. Particular care has been taken to minimise the noise generated by the ship in order to reduce interference with the environmental measurements and acoustic experiments which form an important basis for Centre research. The vessel has been designed for eight different noise states, the quietest one operating on batteries. An auxiliary gas turbine generator provides the lowest noise propulsion option, leading up to the full complement of diesel electric generators allowing the vessel to tow twenty tonnes at twelve knots. The gas turbine and diesel electric generators are mounted on individual vibration isolating rafts and enclosed within acoustic booths to reduce hull and airborne noise transmission.
ALLIANCE has 400 m² of open deck working area as well as 370 m² of enclosed laboratory spaces. There is an additional 500 m³ of scientific storage. The vessel is equipped with an extensive suite of winches and other deck handling gear for deploying and towing systems and instrumentation needed for acoustic and oceanographic research. A sophisticated Windows based integrated navigation system, which utilizes DGPS, includes the ARCS (electronic chart system) and ensures that the ship's position is logged with great precision to provide precise time tagged navigation strings to other fixed vessel sensors such as the Swathe Mapping System and the Acoustic Doppler Current Profiler.
ALLIANCE is operated by a commercial ship manager. When not engaged in NATO research, the vessel is available for charter to NATO nations and international organisations with NATO nation membership.
Gateway M285-E specifications
General
Platform Technology Intel Centrino Duo
Windows Vista Certification Windows Vista Capable
Built-in Devices Wireless LAN antenna , Stereo speakers
Embedded Security Trusted Platform Module (TPM 1.2) Security Chip
Width 13.6 in
Depth 11.1 in
Height 1.4 in
Weight 6.8 lbs
Notebook type Tablet
Wireless capabilities 802.11g , 802.11b , 802.11a
Processor
Processor Intel Core 2 Duo T5500 / 1.66 GHz
Data Bus Speed 667.0 MHz
Features Intel Dynamic Bus Parking , Intel Advanced Smart Cache , Execute Disable Bit capability , Intel 64 Technology , Intel Smart Memory Access , Intel Dynamic Power Coordination , Intel Advanced Digital Media Boost , Intel Intelligent Power Capability , Intel Wide Dynamic Execution , Enhanced Intel Deeper Sleep with Dynamic Cache Sizing
Chipset Type Mobile Intel 945GM Express
Cache Memory
Type L2 cache
Installed Size 2.0 MB
RAM
Installed Size 512.0 MB / 4.0 GB (max)
Technology DDR2 SDRAM - 533.0 MHz
Memory Specification Compliance PC2-4200
Form Factor SO DIMM 200-pin
Configuration Features 2 x 256 MB
Environmental Parameters
Min Operating Temperature 50.0 �F
Max Operating Temperature 89.6 �F
Storage Controller
Storage controller type Serial ATA
Storage Controller / Serial ATA Interface Serial ATA-150
Storage
Floppy Drive None
Hard Drive 60.0 GB - Serial ATA-150 - 5400.0 rpm
Storage Removable None
Optical Storage (2nd)
2nd optical storage type None
Optical Storage
Type CD-ROM - Integrated
Read Speed 24x
Card Reader
Card reader type 7 in 1 card reader
Supported flash memory cards RS-MMC , SD Memory Card , xD-Picture Card , MultiMediaCard , miniSD , Memory Stick , Memory Stick PRO
Display
Display Type 14.0 in TFT active matrix
Max Resolution 1280 x 768 ( WXGA )
Widescreen Display Yes
Color Support 24-bit (16.7 million colors)
Video
Graphics Processor / Vendor Intel GMA 950 Dynamic Video Memory Technology 3.0
Max Allocated RAM Size 128.0 MB
Audio
Audio Output Sound card
Compliant Standards AC '97 , General MIDI , Sound Blaster Pro , Microsoft WSS 1.0/2.0
Audio Input Microphone
Input Device(s)
Input device type Digitizer , EZ Pad , Digital pen , Keyboard
Telecom
Modem Fax / modem
Max Transfer Rate 56.0 Kbps
Protocols & Specifications ITU V.92
Networking
Networking Network adapter
Wireless LAN Supported Yes
Wireless NIC Intel PRO/Wireless 3945ABG
Data Link Protocol Ethernet , IEEE 802.11b , IEEE 802.11a , Fast Ethernet , Gigabit Ethernet , IEEE 802.11g
Remote Management Protocol DMI 2.3
Compliant Standards IEEE 802.11b , IEEE 802.11g , IEEE 802.11a , Wi-Fi CERTIFIED
Expansion / Connectivity
Expansion Slot(s) 2.0 (total) / 1.0 (free) x Memory - SO DIMM 200-pin , 1.0 (total) / 0.0 (free) x PC Card - Type II
Interfaces 1.0 x Network - Input - RJ-11 , 1.0 x IEEE 1394 (FireWire) - Ethernet 10Base-T/100Base-TX/1000Base-T - 4 pin FireWire , 1.0 x Docking / port replicator - VGA - 4 pin USB Type A , 1.0 x Microphone - Phone line - 15 pin HD D-Sub (HD-15) , 3.0 x Headphones - Output - Mini-phone 3.5 mm , 1.0 x Modem - RJ-45 , 1.0 x Display / video - Mini-phone stereo 3.5 mm , 1.0 x Hi-Speed USB
Miscellaneous
Features Power-on password , Hard drive password , Security lock slot (cable lock sold separately)
Compliant Standards ACPI 2.0
Power
Power Device External
Voltage Required AC 120/230 V ( 50/60 Hz )
Battery
Technology 8-cell Lithium ion
Installed Qty 1.0
Capacity 77.0 Wh
Operating System / Software
OS Provided Microsoft Windows XP Tablet PC Edition 2005
Software Microsoft Office 2003 Small Business Edition , McAfee Internet Security Suite , Adobe Acrobat Reader 7 , Drivers & Utilities , Google Toolbar
Built by the Schiffswerks Rieherst company in Hamburg, the Umbria was launched on December 30th 1911 with the name of Bahia Blanca. It was a large freighter by that time, 150 meters long, with a power capable of providing a speed of 14 knots that could carry 9,000 tons of cargo and up to 2,000 passengers. In 1912 it began operating the Hamburg-America line doing different jobs between Europe and Argentina until the outbreak of World War I, when it was based in Buenos Aires. In 1918 the ship was acquired by the Argentinian government and it was not until 1935 when the ship was taken over by the Italian government and renamed again: the Umbria. From that moment its trips were to transport troops and during the following two years carried several thousand soldiers to the Italian colonies in East Africa.
The loss of the Umbria
In May 1940, when Italy was still neutral in World War II, the Umbria was secretly loaded with 360,000 bombs between 15 kg and 100 kg, 60 boxes of detonators, building materials and three Fiat Lunga cars, carrying a total 8,600 tons of weapons towards the East Africa. The explosives had destination Massawa and Assab, Eritrea, that was Italian colony by then, and the rest of the cargo was heading different locations in Asia. Italy's entry into the war was imminent and this shipment was destined to the defense of the colonies against the Allies and to the possible expansion of its African territories.
On 3rd June 1940 the Umbria reached Port Said, northern Egypt, where loaded with 1,000 tons of coal and water in a movement to fool the Allies, trying to look like a harmless freighter. The port, controlled by the Royal Navy, and its authorities allowed the ship enter on the Red Sea three days after arrival. The British delayed the departure of the Umbria knowing that Italy's entry into the war was imminent and that the cargo of Umbria had devastating power that sooner or later would be used against the Allies and why not, to get a great load to fight fascism. But Italy, as a neutral country that it was, had every right to transport weapons much like any other cargo to its colonies.
Having met the deadline to be retained, the Umbria crossed the Suez Canal on June 6th but with the escort of the HMS Grimsby. The importance and destructive capacity of the cargo required it. Three days later the Umbria entered in Sudan waters and the HMS Grimsby ordered the Umbria captain to anchor on Wingate Reef under the pretext of searching for contraband. Moments later the British warship HMS Leander arrived with a group of 20 sailors who boarded the Umbria. After thoroughly searching the ship and finding nothing, the captain ordered the British troops to remain the night aboard the Umbria.
The next morning Lorenzo Muiesan, Umbria captain, was in his cabin listening to the radio when Mussolini announced the entry of Italy into the World War II. Hostilities would begin at midnight of that day. Muiesan, a very patriotic captain with long experience, was the only one in the area who had heard the news and knew immediately that both Umbria and the burden would be used by the Allies against their own country. He had no option to disable both. In a move of extraordinary intelligence, as the hours passed retained by the British who did not yet know that Italy was officially the enemy, the captain ordered his crew conducting a rescue simulation... that was more real than the British thought. This maneuver, which the English soldiers agreed as they believed it would serve to further delay the departure of the Umbria. While the Italians occupied the lifeboats, the chief engineers, following Muiesan´s orders, opened all the valves and drown the ship to the bottom of the reef. With the crew safe, the British only had time to get on their ship and watch the freighter slid slowly.
When the captain of HMS Grimsby asked why he had done that Muiesan confirmed the declaration of war from Italy to Britain. The next day Muiesan and the rest of Umbria crew departed detainees to India, where they spent four years in prison.
CARGO:
The Umbria was carrying 360,000 individual aircraft bombs ranging in size from 15, 50 and 100 kg. The vessel also carried a large quantity of fuses, ammunition and detonators as well as other traditional cargo. The captain knew these bombs would be confiscated and used by the enemy against his country should they ever discover them which was why he made the call to sink the ship.
The Umbria had sailed in June 1940 with 6,000 tons of bombs, 60 boxes detonators, explosives, weapons and three Fiat 1100 Lunga from Genoa via Livorno and Naples in the Suez Canal and on the way via Massaua and Assab to Calcutta.
In the late 1940s, the newly independent US Air Force faced a number of challenges, two of which were paramount: developing a reliable strategic nuclear bomber, and developing interceptors capable of defending the United States from the Soviet Union’s strategic nuclear bombers. The USAF had a plan in mind—the so-called “1954 Interceptor” that would evolve into the F-102 Delta Dagger and F-106 Delta Dart—but these were still some years away. To bridge the gap, Northrop was developing the F-89 Scorpion, but delays to the Scorpion project meant that the United States was theoretically defenseless until it entered service. The USAF then called for interceptors that could be converted quickly from existing aircraft. This would evolve into two aircraft: the F-94 Starfire and F-86D Sabre Dog.
The F-86D started life as the F-95A. Unlike the F-94, which was a fairly straightforward conversion of the T-33A Shooting Star trainer into an interceptor, the F-95 was designed to be flown by one man. In previous dedicated interceptors, a two-man crew was deemed optimum, as the second man would operate the complicated radars of the day. A single-seat interceptor was unheard of, but as the 1954 Interceptor was also going to be a single-seat aircraft, the F-95 would provide valuable research into the concept. To achieve this, however, the fire control system would have to have advanced computers assisting the pilot.
Though it was based on the F-86 Sabre day fighter, the F-95 had less than 30 percent commonality with its parent design: the fuselage was deeper, wider, and longer; the intake had to be redesigned to accommodate the nose radar; the tail was larger; the engine was upgraded with an afterburner for quick takeoffs and climbs; and the canopy was changed to a hinged type rather than the sliding model on the F-86. The latter’s machine gun armament was deleted in favor of an underfuselage tray of 24 Mighty Mouse folding-fin aerial rockets (FFARs).
As the F-95 prototype neared completion, there was some thought that Congress might cancel the aircraft: it was redundant with the F-89 and F-94 also entering service. The F-95 did have the Sabre’s remarkable combat record behind it, and in a funding dodge, North American changed the designation from F-95 to F-86D, making it seem like just another Sabre variant, rather than the nearly entirely new aircraft that it was. This also earned the aircraft its informal nickname: Sabre Dog, based on the old phonetic alphabet for D.
Some pilots, however, claimed the Dog stood for the way the F-86D flew. While it did not have the same propensity to go into uncontrollable pitchups like the F-86 (which was known as the “Sabre Dance”), it could easily be overcorrected, with much the same fatal results. It was not as easy to fly as the “standard” F-86, and the fire control computer, as could be expected for an early 1950s aircraft, was not very reliable. An optical sight was provided for the pilot if the computer went down, which was frequently. Moreover, North American, operating in “emergency” mode, could turn out F-86Ds before Hughes could complete the fire control system. At one point, over 300 F-86Ds sat idle at the North American plant, waiting for computers. Because of the balky computer and the flying characteristics of the Sabre Dog, it was considered the most complicated aircraft to fly in the USAF, requiring a training syllabus matched only by the B-47 Stratojet.
The United States was not the only nation that needed interceptors, and several NATO nations requested F-86Ds of their own. The fire control system was considered too advanced for export, however, and instead it was downgraded to a simper version, the rocket tray was removed and replaced with four 20mm cannon, and it was supplied to friendly nations as the F-86K. While still not the easiest aircraft to fly, the pilot had a better chance of scoring a kill with the more accurate cannon, and the F-86K was successful in NATO service. Subsequently, a number of F-86Ds were returned to North American, undergoing an avionics upgrade, a simpler cockpit layout, and extended wingtips. This resulted in the F-86L, which was used by several Air National Guard interceptor units into the mid-1960s. While American Sabre Dogs only carried rockets, foreign aircraft were modified to carry AIM-9 Sidewinders later. 16 foreign air forces flew Sabre Dogs.
2847 F-86D and associated variants were built, and were the most prolific interceptor in the West during the late 1950s and early 1960s. Most were replaced by more advanced aircraft beginning in the mid-1960s, but a few Yugoslavian F-86Ks soldiered on into the early 1980s. None were ever involved in combat. Today, a handful remain in museums.
Virtually nothing can be found about this F-86L, 53-0568, other than it was built as a F-86D and delivered to the USAF around 1954. However, given that the 152nd Fighter-Interceptor Group (Nevada ANG) flew the F-86L from Reno International Airport from 1958 to 1961, there's a good chance 53-0568 flew with that unit. It was retired in the mid-1960s and initially put on display at a city park in Winnemucca proper, but in 1992, 53-0568 was moved to Veterans Memorial Park north of town.
53-0568 could use a new coat of paint and some rehabilitation; it wears rather plain USAF markings, with no unit identifiers. A pair of nesting doves have taken up residence in the starboard wheelwell, and no amount of encouragement made them leave so that we could get pictures. Oh well--it is their home, after all.
In the late 1940s, the newly independent US Air Force faced a number of challenges, two of which were paramount: developing a reliable strategic nuclear bomber, and developing interceptors capable of defending the United States from the Soviet Union’s strategic nuclear bombers. The USAF had a plan in mind—the so-called “1954 Interceptor” that would evolve into the F-102 Delta Dagger and F-106 Delta Dart—but these were still some years away. To bridge the gap, Northrop was developing the F-89 Scorpion, but delays to the Scorpion project meant that the United States was theoretically defenseless until it entered service. The USAF then called for interceptors that could be converted quickly from existing aircraft. This would evolve into two aircraft: the F-94 Starfire and F-86D Sabre Dog.
The F-86D started life as the F-95A. Unlike the F-94, which was a fairly straightforward conversion of the T-33A Shooting Star trainer into an interceptor, the F-95 was designed to be flown by one man. In previous dedicated interceptors, a two-man crew was deemed optimum, as the second man would operate the complicated radars of the day. A single-seat interceptor was unheard of, but as the 1954 Interceptor was also going to be a single-seat aircraft, the F-95 would provide valuable research into the concept. To achieve this, however, the fire control system would have to have advanced computers assisting the pilot.
Though it was based on the F-86 Sabre day fighter, the F-95 had less than 30 percent commonality with its parent design: the fuselage was deeper, wider, and longer; the intake had to be redesigned to accommodate the nose radar; the tail was larger; the engine was upgraded with an afterburner for quick takeoffs and climbs; and the canopy was changed to a hinged type rather than the sliding model on the F-86. The latter’s machine gun armament was deleted in favor of an underfuselage tray of 24 Mighty Mouse folding-fin aerial rockets (FFARs).
As the F-95 prototype neared completion, there was some thought that Congress might cancel the aircraft: it was redundant with the F-89 and F-94 also entering service. The F-95 did have the Sabre’s remarkable combat record behind it, and in a funding dodge, North American changed the designation from F-95 to F-86D, making it seem like just another Sabre variant, rather than the nearly entirely new aircraft that it was. This also earned the aircraft its informal nickname: Sabre Dog, based on the old phonetic alphabet for D.
Some pilots, however, claimed the Dog stood for the way the F-86D flew. While it did not have the same propensity to go into uncontrollable pitchups like the F-86 (which was known as the “Sabre Dance”), it could easily be overcorrected, with much the same fatal results. It was not as easy to fly as the “standard” F-86, and the fire control computer, as could be expected for an early 1950s aircraft, was not very reliable. An optical sight was provided for the pilot if the computer went down, which was frequently. Moreover, North American, operating in “emergency” mode, could turn out F-86Ds before Hughes could complete the fire control system. At one point, over 300 F-86Ds sat idle at the North American plant, waiting for computers. Because of the balky computer and the flying characteristics of the Sabre Dog, it was considered the most complicated aircraft to fly in the USAF, requiring a training syllabus matched only by the B-47 Stratojet.
The United States was not the only nation that needed interceptors, and several NATO nations requested F-86Ds of their own. The fire control system was considered too advanced for export, however, and instead it was downgraded to a simper version, the rocket tray was removed and replaced with four 20mm cannon, and it was supplied to friendly nations as the F-86K. While still not the easiest aircraft to fly, the pilot had a better chance of scoring a kill with the more accurate cannon, and the F-86K was successful in NATO service. Subsequently, a number of F-86Ds were returned to North American, undergoing an avionics upgrade, a simpler cockpit layout, and extended wingtips. This resulted in the F-86L, which was used by several Air National Guard interceptor units into the mid-1960s. While American Sabre Dogs only carried rockets, foreign aircraft were modified to carry AIM-9 Sidewinders later. 16 foreign air forces flew Sabre Dogs.
2847 F-86D and associated variants were built, and were the most prolific interceptor in the West during the late 1950s and early 1960s. Most were replaced by more advanced aircraft beginning in the mid-1960s, but a few Yugoslavian F-86Ks soldiered on into the early 1980s. None were ever involved in combat. Today, a handful remain in museums.
52-3653 joined the USAF in 1953, serving with the 465th Fighter-Interceptor Squadron at McChord AFB, Washington. In 1956, it was reassigned to the 14th FIS at Sioux City, Iowa. As the F-86D was retired from active duty, 52-3653 was then sent to the 173rd FIS (Nebraska ANG) at Lincoln, and finally to the 154th Tactical Reconnaissance Squadron (Arkansas ANG) at Little Rock AFB in 1960; this last stop was odd, since the 154th was operating RB-57A Canberras at the time. Probably for this reason, 52-3653 was quickly retired, and it was placed on display as a gate guard at Camp Robinson, just north of Little Rock.
52-3653 remained at Camp Robinson until 2016, when it was donated to the Pueblo Weisbrod Museum, which had been looking for a F-86D for its collection. It was restored in the colors of 140th Fighter-Interceptor Wing of the Colorado ANG, based at Buckley ANGB--indicative of the bright colors carried by USAF units before Vietnam. Displayed in front of 52-3653 is a 2.75-inch rocket that was carried in the undernose rocket pack.
This is a beautiful restoration, and I can't believe I forgot to post it!
Aeroscopia est un musée aéronautique français implanté à Blagnac (Haute-Garonne), près du site AéroConstellation, et accueille notamment deux exemplaires du Concorde, dont l'ouverture a eu lieu le 14 janvier 2015
Le tarmac Sud du musée n'est capable d'accueillir que trois gros appareils. L'installation des appareils fut définitivement terminée après que le premier prototype de l'A400M-180 y fut arrivé le 16 juillet 2015, en dépit de la possibilité de 360 000 euros de TVA.
Concorde, F-BVFC, MSN209 aux couleurs d'Air France
Caravelle 12, F-BTOE, MSN280 aux couleurs d'Air Inter, dernier exemplaire construit
A400M-180, F-WWMT, MSN001 stationné depuis le 16 juillet 2015
La réalisation en 2019 du nouveau tarmac au Nord du musée permet l'accueil d'appareils supplémentaires issus des entreprises locales Airbus et ATR. Le transfert des avions entre le site Airbus "Lagardère" et le musée a lieu sur une semaine, à raison d'un appareil par jour :
ATR 72-600, F-WWEY, MSN098 aux couleurs d'ATR, transféré sur site le 26 août 2019, premier exemplaire du 72 dans sa version 600
Airbus A340-600, F-WWCA, MSN360 aux couleurs d'Airbus, transféré sur site le 27 août 2019, premier exemplaire de l'A340 dans sa version 600
Airbus A320-111, F-WWAI, MSN001 aux anciennes couleurs d'Airbus, transféré sur site le 28 août 2019, premier exemplaire de l'A320 : inauguration le 14 février 1987 en présence de Lady Diana et du Prince Charles, premier vol le 22 février 1987
Airbus A380-800, F-WXXL, MSN002 aux couleurs d'Airbus, transféré sur site le 29 août 2019, second exemplaire de l'A380. Les deux ponts de cet appareil sont visitables, ainsi que le cockpit.
ATR 42-300, F-WEGC, MSN003 aux anciennes couleurs d'ATR, transféré sur site le 30 août 2019, troisième exemplaire du 42. Cet exemplaire est décoré aux couleurs du MSN001 et porte l'immatriculation F-WEGA
Concorde, F-WTSB, MSN201 (ANAE), il s'agit d'un appareil de présérie qui a servi entre autres à transporter plusieurs présidents de la République française.
Airbus A300B4-203, F-WUAB, MSN238 (Airbus Heritage), décoré aux couleurs du prototype, au lieu de MSN001 démantelé. L'intérieur est visitable. Dans la première section des vitrages transparents permettent de voir la structure et les systèmes de l'avion, tandis que dans les sections suivantes sont représentés des aménagements de première classe et VIP.
Super Guppy de l'association Ailes Anciennes Toulouse, l'appareil qui servait au transport des tronçons d'Airbus est exposé porte ouverte, et une passerelle permet l'accès à la soute où un film est projeté. L'ouverture n'a pas été une mince affaire, l'appareil n'ayant pas été ouvert pendant 15 ans. L'aide des anciens mécaniciens de l'avion a été primordiale pour permettre une ouverture en toute sécurité.
Corvette (Airbus)
Falcon 10 no 02, prototype ayant servi aux essais du turboréacteur Larzac (Ailes Anciennes Toulouse)
Fouga Magister (AAT)
Gazelle prototype (AAT)
Mirage III C (AAT)
Nord 1100 (AAT)
Lockheed F-104G (AAT)
MiG-15 (AAT)
MS.760 Paris (AAT)
Vought F-8E(FN) Crusader et son réacteur (AAT)
Alouette II Marine (AAT)
Cessna Skymaster (AAT)
Fairchild Metro, ancien avion de Météo-France (AAT)
HM-293, de Rodolphe Grunberg
Chagnes MicroStar, avion de construction amateur, version biréacteur de Rutan VariViggen (AAT)
Saab J35OE Draken (AAT)
Aeroscopia is a French aeronautical museum located in Blagnac (Haute-Garonne), near the AéroConstellation site, and notably hosts two copies of the Concorde, which opened on January 14, 2015
The south tarmac of the museum can only accommodate three large aircraft. The installation of the devices was definitively finished after the first prototype of the A400M-180 arrived there on July 16, 2015, despite the possibility of 360,000 euros in VAT.
Concorde, F-BVFC, MSN209 in Air France colors
Caravelle 12, F-BTOE, MSN280 in Air Inter colors, last model built
A400M-180, F-WWMT, MSN001 parked since July 16, 2015
The construction in 2019 of the new tarmac north of the museum will accommodate additional aircraft from local Airbus and ATR companies. The transfer of planes between the Airbus "Lagardère" site and the museum takes place over a week, at the rate of one aircraft per day:
ATR 72-600, F-WWEY, MSN098 in ATR colors, transferred to site on August 26, 2019, first copy of the 72 in its 600 version
Airbus A340-600, F-WWCA, MSN360 in Airbus colors, transferred to site on August 27, 2019, first copy of the A340 in its 600 version
Airbus A320-111, F-WWAI, MSN001 in the old Airbus colors, transferred to site on August 28, 2019, first copy of the A320: inauguration on February 14, 1987 in the presence of Lady Diana and Prince Charles, first flight on February 22, 1987
Airbus A380-800, F-WXXL, MSN002 in Airbus colors, transferred to site on August 29, 2019, second copy of the A380. The two decks of this aircraft can be visited, as well as the cockpit.
ATR 42-300, F-WEGC, MSN003 in the old ATR colors, transferred to the site on August 30, 2019, third specimen of the 42. This specimen is decorated in the colors of the MSN001 and bears the registration F-WEGA
Concorde, F-WTSB, MSN201 (ANAE), this is a pre-production aircraft which was used, among other things, to transport several presidents of the French Republic.
Airbus A300B4-203, F-WUAB, MSN238 (Airbus Heritage), decorated in the colors of the prototype, instead of dismantled MSN001. The interior can be visited. In the first section transparent glazing allows to see the structure and systems of the aircraft, while in the following sections are shown first class and VIP fittings.
Super Guppy from the Ailes Anciennes Toulouse association, the aircraft which was used to transport the Airbus sections is on display with the door open, and a gangway allows access to the hold where a film is shown. Opening was no small feat, as the device has not been opened for 15 years. The help of the former mechanics of the aircraft was essential to allow a safe opening.
Corvette (Airbus)
Falcon 10 no 02, prototype used for testing the Larzac turbojet engine (Ailes Anciennes Toulouse)
Fouga Magister (AAT)
Prototype Gazelle (AAT)
Mirage III C (AAT)
North 1100 (AAT)
Lockheed F-104G (AAT)
MiG-15 (AAT)
MS.760 Paris (AAT)
Vought F-8E (FN) Crusader and its engine (AAT)
Alouette II Marine (AAT)
Cessna Skymaster (AAT)
Fairchild Metro, former Météo-France (AAT) aircraft
HM-293, by Rodolphe Grunberg
Chagnes MicroStar, amateur-built aircraft, twin-jet version of Rutan VariViggen (AAT)
Saab J35OE Draken (AAT)
The SLS AMG is capable of accelerating from 0 to 100 km/h (62 mph) in 3.8 seconds, and can reach an electronically limited top speed of 197 mph (317 km/h) (figures are provisional). In a Car and Driver test, the SLS recorded a quarter mile time of 11.7 seconds @ 125 mph (201 km/h).
More info here
Aeroscopia est un musée aéronautique français implanté à Blagnac (Haute-Garonne), près du site AéroConstellation, et accueille notamment deux exemplaires du Concorde, dont l'ouverture a eu lieu le 14 janvier 2015
Le tarmac Sud du musée n'est capable d'accueillir que trois gros appareils. L'installation des appareils fut définitivement terminée après que le premier prototype de l'A400M-180 y fut arrivé le 16 juillet 2015, en dépit de la possibilité de 360 000 euros de TVA.
Concorde, F-BVFC, MSN209 aux couleurs d'Air France
Caravelle 12, F-BTOE, MSN280 aux couleurs d'Air Inter, dernier exemplaire construit
A400M-180, F-WWMT, MSN001 stationné depuis le 16 juillet 2015
La réalisation en 2019 du nouveau tarmac au Nord du musée permet l'accueil d'appareils supplémentaires issus des entreprises locales Airbus et ATR. Le transfert des avions entre le site Airbus "Lagardère" et le musée a lieu sur une semaine, à raison d'un appareil par jour :
ATR 72-600, F-WWEY, MSN098 aux couleurs d'ATR, transféré sur site le 26 août 2019, premier exemplaire du 72 dans sa version 600
Airbus A340-600, F-WWCA, MSN360 aux couleurs d'Airbus, transféré sur site le 27 août 2019, premier exemplaire de l'A340 dans sa version 600
Airbus A320-111, F-WWAI, MSN001 aux anciennes couleurs d'Airbus, transféré sur site le 28 août 2019, premier exemplaire de l'A320 : inauguration le 14 février 1987 en présence de Lady Diana et du Prince Charles, premier vol le 22 février 1987
Airbus A380-800, F-WXXL, MSN002 aux couleurs d'Airbus, transféré sur site le 29 août 2019, second exemplaire de l'A380. Les deux ponts de cet appareil sont visitables, ainsi que le cockpit.
ATR 42-300, F-WEGC, MSN003 aux anciennes couleurs d'ATR, transféré sur site le 30 août 2019, troisième exemplaire du 42. Cet exemplaire est décoré aux couleurs du MSN001 et porte l'immatriculation F-WEGA
Concorde, F-WTSB, MSN201 (ANAE), il s'agit d'un appareil de présérie qui a servi entre autres à transporter plusieurs présidents de la République française.
Airbus A300B4-203, F-WUAB, MSN238 (Airbus Heritage), décoré aux couleurs du prototype, au lieu de MSN001 démantelé. L'intérieur est visitable. Dans la première section des vitrages transparents permettent de voir la structure et les systèmes de l'avion, tandis que dans les sections suivantes sont représentés des aménagements de première classe et VIP.
Super Guppy de l'association Ailes Anciennes Toulouse, l'appareil qui servait au transport des tronçons d'Airbus est exposé porte ouverte, et une passerelle permet l'accès à la soute où un film est projeté. L'ouverture n'a pas été une mince affaire, l'appareil n'ayant pas été ouvert pendant 15 ans. L'aide des anciens mécaniciens de l'avion a été primordiale pour permettre une ouverture en toute sécurité.
Corvette (Airbus)
Falcon 10 no 02, prototype ayant servi aux essais du turboréacteur Larzac (Ailes Anciennes Toulouse)
Fouga Magister (AAT)
Gazelle prototype (AAT)
Mirage III C (AAT)
Nord 1100 (AAT)
Lockheed F-104G (AAT)
MiG-15 (AAT)
MS.760 Paris (AAT)
Vought F-8E(FN) Crusader et son réacteur (AAT)
Alouette II Marine (AAT)
Cessna Skymaster (AAT)
Fairchild Metro, ancien avion de Météo-France (AAT)
HM-293, de Rodolphe Grunberg
Chagnes MicroStar, avion de construction amateur, version biréacteur de Rutan VariViggen (AAT)
Saab J35OE Draken (AAT)
Aeroscopia is a French aeronautical museum located in Blagnac (Haute-Garonne), near the AéroConstellation site, and notably hosts two copies of the Concorde, which opened on January 14, 2015
The south tarmac of the museum can only accommodate three large aircraft. The installation of the devices was definitively finished after the first prototype of the A400M-180 arrived there on July 16, 2015, despite the possibility of 360,000 euros in VAT.
Concorde, F-BVFC, MSN209 in Air France colors
Caravelle 12, F-BTOE, MSN280 in Air Inter colors, last model built
A400M-180, F-WWMT, MSN001 parked since July 16, 2015
The construction in 2019 of the new tarmac north of the museum will accommodate additional aircraft from local Airbus and ATR companies. The transfer of planes between the Airbus "Lagardère" site and the museum takes place over a week, at the rate of one aircraft per day:
ATR 72-600, F-WWEY, MSN098 in ATR colors, transferred to site on August 26, 2019, first copy of the 72 in its 600 version
Airbus A340-600, F-WWCA, MSN360 in Airbus colors, transferred to site on August 27, 2019, first copy of the A340 in its 600 version
Airbus A320-111, F-WWAI, MSN001 in the old Airbus colors, transferred to site on August 28, 2019, first copy of the A320: inauguration on February 14, 1987 in the presence of Lady Diana and Prince Charles, first flight on February 22, 1987
Airbus A380-800, F-WXXL, MSN002 in Airbus colors, transferred to site on August 29, 2019, second copy of the A380. The two decks of this aircraft can be visited, as well as the cockpit.
ATR 42-300, F-WEGC, MSN003 in the old ATR colors, transferred to the site on August 30, 2019, third specimen of the 42. This specimen is decorated in the colors of the MSN001 and bears the registration F-WEGA
Concorde, F-WTSB, MSN201 (ANAE), this is a pre-production aircraft which was used, among other things, to transport several presidents of the French Republic.
Airbus A300B4-203, F-WUAB, MSN238 (Airbus Heritage), decorated in the colors of the prototype, instead of dismantled MSN001. The interior can be visited. In the first section transparent glazing allows to see the structure and systems of the aircraft, while in the following sections are shown first class and VIP fittings.
Super Guppy from the Ailes Anciennes Toulouse association, the aircraft which was used to transport the Airbus sections is on display with the door open, and a gangway allows access to the hold where a film is shown. Opening was no small feat, as the device has not been opened for 15 years. The help of the former mechanics of the aircraft was essential to allow a safe opening.
Corvette (Airbus)
Falcon 10 no 02, prototype used for testing the Larzac turbojet engine (Ailes Anciennes Toulouse)
Fouga Magister (AAT)
Prototype Gazelle (AAT)
Mirage III C (AAT)
North 1100 (AAT)
Lockheed F-104G (AAT)
MiG-15 (AAT)
MS.760 Paris (AAT)
Vought F-8E (FN) Crusader and its engine (AAT)
Alouette II Marine (AAT)
Cessna Skymaster (AAT)
Fairchild Metro, former Météo-France (AAT) aircraft
HM-293, by Rodolphe Grunberg
Chagnes MicroStar, amateur-built aircraft, twin-jet version of Rutan VariViggen (AAT)
Saab J35OE Draken (AAT)