View allAll Photos Tagged capable

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based on authentic facts. BEWARE!

  

Some background:

The English Electric Skyspark was a British fighter aircraft that served as an interceptor during the 1960s, the 1970s and into the late 1980s. It remains the only UK-designed-and-built fighter capable of Mach 2. The Skyspark was designed, developed, and manufactured by English Electric, which was later merged into the newly-formed British Aircraft Corporation. Later the type was marketed as the BAC Skyspark.

 

The specification for the aircraft followed the cancellation of the Air Ministry's 1942 E.24/43 supersonic research aircraft specification which had resulted in the Miles M.52 program. W.E.W. "Teddy" Petter, formerly chief designer at Westland Aircraft, was a keen early proponent of Britain's need to develop a supersonic fighter aircraft. In 1947, Petter approached the Ministry of Supply (MoS) with his proposal, and in response Specification ER.103 was issued for a single research aircraft, which was to be capable of flight at Mach 1.5 (1,593 km/h) and 50,000 ft (15,000 m).

 

Petter initiated a design proposal with F W "Freddie" Page leading the design and Ray Creasey responsible for the aerodynamics. As it was designed for Mach 1.5, it had a 40° swept wing to keep the leading edge clear of the Mach cone. To mount enough power into the airframe, two engines were installed, in an unusual, stacked layout and with a high tailplane This proposal was submitted in November 1948, and in January 1949 the project was designated P.1 by English Electric. On 29 March 1949 MoS granted approval to start the detailed design, develop wind tunnel models and build a full-size mock-up.

 

The design that had developed during 1948 evolved further during 1949 to further improve performance. To achieve Mach 2 the wing sweep was increased to 60° with the ailerons moved to the wingtips. In late 1949, low-speed wind tunnel tests showed that a vortex was generated by the wing which caused a large downwash on the initial high tailplane; this issue was solved by lowering the tail below the wing. Following the resignation of Petter, Page took over as design team leader for the P.1. In 1949, the Ministry of Supply had issued Specification F23/49, which expanded upon the scope of ER103 to include fighter-level manoeuvring. On 1 April 1950, English Electric received a contract for two flying airframes, as well as one static airframe, designated P.1.

 

The Royal Aircraft Establishment disagreed with Petter's choice of sweep angle (60 degrees) and the stacked engine layout, as well as the low tailplane position, was considered to be dangerous, too. To assess the effects of wing sweep and tailplane position on the stability and control of Petter's design Short Brothers were issued a contract, by the Ministry of Supply, to produce the Short SB.5 in mid-1950. This was a low-speed research aircraft that could test sweep angles from 50 to 69 degrees and tailplane positions high or low. Testing with the wings and tail set to the P.1 configuration started in January 1954 and confirmed this combination as the correct one. The proposed 60-degree wing sweep was retained, but the stacked engines had to give way to a more conventional configuration with two engines placed side-by-side in the tail, but still breathing through a mutual nose air intake.

 

From 1953 onward, the first three prototype aircraft were hand-built at Samlesbury. These aircraft had been assigned the aircraft serials WG760, WG763, and WG765 (the structural test airframe). The prototypes were powered by un-reheated Armstrong Siddeley Sapphire turbojets, as the selected Rolls-Royce Avon engines had fallen behind schedule due to their own development problems. Since there was not much space in the fuselage for fuel, the thin wings became the primary fuel tanks and since they also provided space for the stowed main undercarriage the fuel capacity was relatively small, giving the prototypes an extremely limited endurance. The narrow tires housed in the thin wings rapidly wore out if there was any crosswind component during take-off or landing. Outwardly, the prototypes looked very much like the production series, but they were distinguished by the rounded-triangular air intake with no center-body at the nose, short fin, and lack of operational equipment.

 

On 9 June 1952, it was decided that there would be a second phase of prototypes built to develop the aircraft toward achieving Mach 2.0 (2,450 km/h); these were designated P.1B while the initial three prototypes were retroactively reclassified as P.1A. P.1B was a significant improvement on P.1A. While it was similar in aerodynamics, structure and control systems, it incorporated extensive alterations to the forward fuselage, reheated Rolls Royce Avon R24R engines, a conical center body inlet cone, variable nozzle reheat and provision for weapons systems integrated with the ADC and AI.23 radar. Three P.1B prototypes were built, assigned serials XA847, XA853 and XA856.

 

In May 1954, WG760 and its support equipment were moved to RAF Boscombe Down for pre-flight ground taxi trials; on the morning of 4 August 1954, WG760 flew for the first time from Boscombe Down. One week later, WG760 officially achieved supersonic flight for the first time, having exceeded the speed of sound during its third flight. While WG760 had proven the P.1 design to be viable, it was plagued by directional stability problems and a dismal performance: Transonic drag was much higher than expected, and the aircraft was limited to Mach 0.98 (i.e. subsonic), with a ceiling of just 48,000 ft (14,630 m), far below the requirements.

 

To solve the problem and save the P.1, Petter embarked on a major redesign, incorporating the recently discovered area rule, while at the same time simplifying production and maintenance. The redesign entailed a new, narrower canopy, a revised air intake, a pair of stabilizing fins under the rear fuselage, and a shallow ventral fairing at the wings’ trailing edge that not only reduced the drag coefficient along the wing/fuselage intersection, it also provided space for additional fuel.

On 4 April 1957 the modified P.1B (XA847) made the first flight, immediately exceeding Mach 1. During the early flight trials of the P.1B, speeds in excess of 1,000 mph were achieved daily.

In late October 1958, the plane was officially presented. The event was celebrated in traditional style in a hangar at Royal Aircraft Establishment (RAE) Farnborough, with the prototype XA847 having the name ‘Skyspark’ freshly painted on the nose in front of the RAF Roundel, which almost covered it. A bottle of champagne was put beside the nose on a special rig which allowed the bottle to safely be smashed against the side of the aircraft.

On 25 November 1958 the P.1B XA847 reached Mach 2 for the first time. This made it the second Western European aircraft to reach Mach 2, the first one being the French Dassault Mirage III just over a month earlier on 24 October 1958

 

The first operational Skyspark, designated Skyspark F.1, was designed as a pure interceptor to defend the V Force airfields in conjunction with the "last ditch" Bristol Bloodhound missiles located either at the bomber airfield, e.g. at RAF Marham, or at dedicated missile sites near to the airfield, e.g. at RAF Woodhall Spa near the Vulcan station RAF Coningsby. The bomber airfields, along with the dispersal airfields, would be the highest priority targets in the UK for enemy nuclear weapons. To best perform this intercept mission, emphasis was placed on rate-of-climb, acceleration, and speed, rather than range – originally a radius of operation of only 150 miles (240 km) from the V bomber airfields was specified – and endurance. Armament consisted of a pair of 30 mm ADEN cannon in front of the cockpit, and two pylons for IR-guided de Havilland Firestreak air-to-air missiles were added to the lower fuselage flanks. These hardpoints could, alternatively, carry pods with unguided 55 mm air-to-air rockets. The Ferranti AI.23 onboard radar provided missile guidance and ranging, as well as search and track functions.

 

The next two Skyspark variants, the Skyspark F.1A and F.2, incorporated relatively minor design changes, but for the next variant, the Skyspark F.3, they were more extensive: The F.3 had higher thrust Rolls-Royce Avon 301R engines, a larger squared-off fin that improved directional stability at high speed further and a strengthened inlet cone allowing a service clearance to Mach 2.0 (2,450 km/h; the F.1, F.1A and F.2 were all limited to Mach 1.7 (2,083 km/h). An upgraded A.I.23B radar and new, radar-guided Red Top missiles offered a forward hemisphere attack capability, even though additional electronics meant that the ADEN guns had to be deleted – but they were not popular in their position in front of the windscreen, because the muzzle flash blinded the pilot upon firing. The new engines and fin made the F.3 the highest performance Skyspark yet, but this came at a steep price: higher fuel consumption, resulting in even shorter range. From this basis, a conversion trainer with a side-by-side cockpit, the T.4, was created.

 

The next interceptor variant was already in development, but there was a need for an interim solution to partially address the F.3's shortcomings, the F.3A. The F.3A introduced two major improvements: a larger, non-jettisonable, 610-imperial-gallon (2,800 L) ventral fuel tank, resulting in a much deeper and longer belly fairing, and a new, kinked, conically cambered wing leading edge. The conically cambered wing improved manoeuvrability, especially at higher altitudes, and it offered space for a slightly larger leading edge fuel tank, raising the total usable internal fuel by 716 imperial gallons (3,260 L). The enlarged ventral tank not only nearly doubled available fuel, it also provided space at its front end for a re-instated pair of 30 mm ADEN cannon with 120 RPG. Alternatively, a retractable pack with unguided 55 mm air-to-air rockets could be installed, or a set of cameras for reconnaissance missions. The F.3A also introduced an improved A.I.23B radar and the new IR-guided Red Top missile, which was much faster and had greater range and manoeuvrability than the Firestreak. Its improved infrared seeker enabled a wider range of engagement angles and offered a forward hemisphere attack capability that would allow the Skyspark to attack even faster bombers (like the new, supersonic Tupolev T-22 Blinder) through a collision-course approach.

Wings and the new belly tank were also immediately incorporated in a second trainer variant, the T.5.

 

The ultimate variant, the Skyspark F.6, was nearly identical to the F.3A, with the exception that it could carry two additional 260-imperial-gallon (1,200 L) ferry tanks on pylons over the wings. These tanks were jettisonable in an emergency and gave the F.6 a substantially improved deployment capability, even though their supersonic drag was so high that the extra fuel would only marginally raise the aircraft’s range when flying beyond the sound barrier for extended periods.

 

Finally, there was the Skyspark F.2A; it was an early production F.2 upgraded with the new cambered wing, the squared fin, and the 610 imperial gallons (2,800 L) ventral tank. However, the F.2A retained the old AI.23 radar, the IR-guided Firestreak missile and the earlier Avon 211R engines. Although the F.2A lacked the thrust of the later Skysparks, it had the longest tactical range of all variants, and was used for low-altitude interception over West Germany.

 

The first Skysparks to enter service with the RAF, three pre-production P.1Bs, arrived at RAF Coltishall in Norfolk on 23 December 1959, joining the Air Fighting Development Squadron (AFDS) of the Central Fighter Establishment, where they were used to clear the Skyspark for entry into service. The production Skyspark F.1 entered service with the AFDS in May 1960, allowing the unit to take part in the air defence exercise "Yeoman" later that month. The Skyspark F.1 entered frontline squadron service with 74 Squadron at Coltishall from 11 July 1960. This made the Skyspark the second Western European-built combat aircraft with true supersonic capability to enter service and the second fully supersonic aircraft to be deployed in Western Europe (the first one in both categories being the Swedish Saab 35 Draken on 8 March 1960 four months earlier).

 

The aircraft's radar and missiles proved to be effective, and pilots reported that the Skyspark was easy to fly. However, in the first few months of operation the aircraft's serviceability was extremely poor. This was due to the complexity of the aircraft systems and shortages of spares and ground support equipment. Even when the Skyspark was not grounded by technical faults, the RAF initially struggled to get more than 20 flying hours per aircraft per month compared with the 40 flying hours that English Electric believed could be achieved with proper support. In spite of these concerns, within six months of the Skyspark entering service, 74 Squadron was able to achieve 100 flying hours per aircraft.

 

Deliveries of the slightly improved Skyspark F.1A, with revised avionics and provision for an air-to-air refueling probe, allowed two more squadrons, 56 and 111 Squadron, both based at RAF Wattisham, to convert to the Skyspark in 1960–1961. The Skyspark F.1 was only ordered in limited numbers and served only for a short time; nonetheless, it was viewed as a significant step forward in Britain's air defence capabilities. Following their replacement from frontline duties by the introduction of successively improved Skyspark variants, the remaining F.1 aircraft were employed by the Skyspark Conversion Squadron.

The improved F.2 entered service with 19 Squadron at the end of 1962 and 92 Squadron in early 1963. Conversion of these two squadrons was aided by the of the two-seat T.4 and T.5 trainers (based on the F.3 and F.3A/F.6 fighters), which entered service with the Skyspark Conversion Squadron (later renamed 226 Operational Conversion Unit) in June 1962. While the OCU was the major user of the two-seater, small numbers were also allocated to the front-line fighter squadrons. More F.2s were produced than there were available squadron slots, so later production aircraft were stored for years before being used operationally; some of these Skyspark F.2s were converted to F.2As.

 

The F.3, with more powerful engines and the new Red Top missile was expected to be the definitive Skyspark, and at one time it was planned to equip ten squadrons, with the remaining two squadrons retaining the F.2. However, the F.3 also had only a short operational life and was withdrawn from service early due to defence cutbacks and the introduction of the even more capable and longer-range F.6, some of which were converted F.3s.

 

The introduction of the F.3 and F.6 allowed the RAF to progressively reequip squadrons operating aircraft such as the subsonic Gloster Javelin and retire these types during the mid-1960s. During the 1960s, as strategic awareness increased and a multitude of alternative fighter designs were developed by Warsaw Pact and NATO members, the Skyspark's range and firepower shortcomings became increasingly apparent. The transfer of McDonnell Douglas F-4 Phantom IIs from Royal Navy service enabled these much longer-ranged aircraft to be added to the RAF's interceptor force, alongside those withdrawn from Germany as they were replaced by SEPECAT Jaguars in the ground attack role.

The Skyspark's direct replacement was the Tornado F.3, an interceptor variant of the Panavia Tornado. The Tornado featured several advantages over the Skyspark, including far larger weapons load and considerably more advanced avionics. Skysparks were slowly phased out of service between 1974 and 1988, even though they lasted longer than expected because the definitive Tornado F.3 went through serious teething troubles and its service introduction was delayed several times. In their final years, the Skysparks’ airframes required considerable maintenance to keep them airworthy due to the sheer number of accumulated flight hours.

  

General characteristics:

Crew: 1

Length: 51 ft 2 in (15,62 m) fuselage only

57 ft 3½ in (17,50 m) including pitot

Wingspan: 34 ft 10 in (10.62 m)

Height: 17 ft 6¾ in (5.36 m)

Wing area: 474.5 sq ft (44.08 m²)

Empty weight: 31,068 lb (14,092 kg) with armament and no fuel

Gross weight: 41,076 lb (18,632 kg) with two Red Tops, ammunition, and internal fuel

Max. takeoff weight: 45,750 lb (20,752 kg)

 

Powerplant:

2× Rolls-Royce Avon 301R afterburning turbojet engines,

12,690 lbf (56.4 kN) thrust each dry, 16,360 lbf (72.8 kN) with afterburner

 

Performance:

Maximum speed: Mach 2.27 (1,500 mph+ at 40,000 ft)

Range: 738 nmi (849 mi, 1,367 km)

Combat range: 135 nmi (155 mi, 250 km) supersonic intercept radius

Range: 800 nmi (920 mi, 1,500 km) with internal fuel

1,100 nmi (1,300 mi; 2,000 km) with external overwing tanks

Service ceiling: 60,000 ft (18,000 m)

Zoom ceiling: 70,000 ft (21,000 m)

Rate of climb: 20,000 ft/min (100 m/s) sustained to 30,000 ft (9,100 m)

Zoom climb: 50,000 ft/min

Time to altitude: 2.8 min to 36,000 ft (11,000 m)

Wing loading: 76 lb/sq ft (370 kg/m²) with two AIM-9 and 1/2 fuel

Thrust/weight: 0.78 (1.03 empty)

 

Armament:

2× 30 mm (1.181 in) ADEN cannon with 120 RPG in the lower fuselage

2× forward fuselage hardpoints for a single Firestreak or Red Top AAM each

2× overwing pylon stations for 2.000 lb (907 kg each)

for 260 imp gal (310 US gal; 1,200 l) ferry tanks

  

The kit and its assembly:

This build was a submission to the “Hunter, Lightning, Canberra” group build at whatifmodellers.com, and one of my personal ultimate challenges – a project that you think about very often, but the you put the thought back into its box when you realize that turning this idea into hardware will be a VERY tedious, complex and work-intensive task. But the thematic group build was the perfect occasion to eventually tackle the idea of a model of a “side-by-side engine BAC Lightning”, a.k.a. “Flatning”, as a rather conservative alternative to the real aircraft’s unique and unusual design with stacked engines in the fuselage, which brought a multitude of other design consequences that led to a really unique aircraft.

 

And it sound so simple: take a Lightning, just change the tail section. But it’s not that simple, because the whole fuselage shape would be different, resulting in less depth, the wings have to be attached somewhere and somehow, the landing gear might have to be adjusted/shortened, and how the fuselage diameter shape changes along the hull, so that you get a more or less smooth shape, was also totally uncertain!

 

Initially I considered a MiG Ye-152 as a body donor, but that was rejected due to the sheer price of the only available kit (ModelSvit). A Chinese Shenyang J-8I would also have been ideal – but there’s not 1:72 kit of this aircraft around, just of its successor with side intakes, a 1:72 J-8II from trumpeter.

I eventually decided to keep costs low, and I settled for the shaggy PM Model Su-15 (marketed as Su-21) “Flagon” as main body donor: it’s cheap, the engines have a good size for Avons and the pen nib fairing has a certain retro touch that goes well with the Lightning’s Fifties design.

The rest of this "Flatning" came from a Hasegawa 1:72 BAC Lightning F.6 (Revell re-boxing).

 

Massive modifications were necessary and lots of PSR. In an initial step the Flagon lost its lower wing halves, which are an integral part of the lower fuselage half. The cockpit section was cut away where the intake ducts begin. The Lightning had its belly tank removed (set aside for a potential later re-installation), and dry-fitting and crude measures suggested that only the cockpit section from the Lightning, its spine and the separate fin would make it onto the new fuselage.

 

Integrating the parts was tough, though! The problem that caused the biggest headaches: how to create a "smooth" fuselage from the Lightning's rounded front end with a single nose intake that originally develops into a narrow, vertical hull, combined with the boxy and rather wide Flagon fuselage with large Phantom-esque intakes? My solution: taking out deep wedges from all (rather massive) hull parts along the intake ducts, bend the leftover side walls inwards and glue them into place, so that the width becomes equal with the Lightning's cockpit section. VERY crude and massive body work!

 

However, the Lightning's cockpit section for the following hull with stacked engines is much deeper than the Flagon's side-by-side layout. My initial idea was to place the cockpit section higher, but I would have had to transplant a part of the Lightning's upper fuselage (with the spine on top, too!) onto the "flat" Flagon’s back. But this would have looked VERY weird, and I'd have had to bridge the round ventral shape of the Lightning into the boxy Flagon underside, too. This was no viable option, so that the cockpit section had to be further modified; I cut away the whole ventral cockpit section, at the height of the lower intake lip. Similar to my former Austrian Hasegawa Lightning, I also cut away the vertical bulkhead directly behind the intake opening - even though I did not improve the cockpit with a better tub with side consoles. At the back end, the Flagon's jet exhausts were opened and received afterburner dummies inside as a cosmetic upgrade.

 

Massive PSR work followed all around the hull. The now-open area under the cockpit was filled with lead beads to keep the front wheel down, and I implanted a landing gear well (IIRC, it's from an Xtrakit Swift). With the fuselage literally taking shape, the wings were glued together and the locator holes for the overwing tanks filled, because they would not be mounted.

 

To mount the wings to the new hull, crude measurements suggested that wedges had to be cut away from the Lightning's wing roots to match the weird fuselage shape. They were then glued to the shoulders, right behind the cockpit due to the reduced fuselage depth. At this stage, the Lightning’s stabilizer attachment points were transplanted, so that they end up in a similar low position on the rounded Su-15 tail. Again, lots of PSR…

 

At this stage I contemplated the next essential step: belly tank or not? The “Flatning” would have worked without it, but its profile would look rather un-Lightning-ish and rather “flat”. On the other side, a conformal tank would probably look quite strange on the new wide and flat ventral fuselage...? Only experiments could yield an answer, so I glued together the leftover belly bulge parts from the Hasegawa kit and played around with it. I considered a new, wider belly tank, but I guess that this would have looked too ugly. I eventually settled upon the narrow F.6 tank and also used the section behind it with the arrestor hook. I just reduced its depth by ~2 mm, with a slight slope towards the rear because I felt (righteously) that the higher wing position would lower the model’s stance. More massive PSR followed….

 

Due to the expected poor ground clearance, the Lightning’s stabilizing ventral fins were mounted directly under the fuselage edges rather than on the belly tank. Missile pylons for Red Tops were mounted to the lower front fuselage, similar to the real arrangement, and cable fairings, scratched from styrene profiles, were added to the lower flanks, stretching the hull optically and giving more structure to the hull.

 

To my surprise, I did not have to shorten the landing gear’s main legs! The wings ended up a little higher on the fuselage than on the original Lightning, and the front wheel sits a bit further back and deeper inside of its donor well, too, so that the fuselage comes probably 2 mm closer to the ground than an OOB Lightning model. Just like on the real aircraft, ground clearance is marginal, but when the main wheels were finally in place, the model turned out to have a low but proper stance, a little F8U-ish.

  

Painting and markings:

I was uncertain about the livery for a long time – I just had already settled upon an RAF aircraft. But the model would not receive a late low-viz scheme (the Levin, my mono-engine Lightning build already had one), and no NMF, either. I was torn between an RAF Germany all-green over NMF undersides livery, but eventually went for a pretty standard RAF livery in Dark Sea Grey/Dark Green over NMF undersides, with toned-down post-war roundels.

A factor that spoke in favor of this route was a complete set of markings for an RAF 11 Squadron Lightning F.6 in such a guise on an Xtradecal set, which also featured dayglo orange makings on fin, wings and stabilizers – quite unusual, and a nice contrast detail on the otherwise very conservative livery. All stencils were taken from the OOB Revell sheet for the Lightning. Just the tactical code “F” on the tail was procured elsewhere, it comes from a Matchbox BAC Lightning’s sheet.

 

After basic painting the model received the usual black ink washing, some post-panel-shading and also a light treatment with graphite to create soot strains around the jet exhausts and the gun ports, and to emphasize the raised panel lines on the Hasegawa parts.

 

Finally, the model was sealed with matt acrylic varnish and final bits and pieces like the landing gear and the Red Tops (taken OOB) were mounted.

  

A major effort, and I have seriously depleted my putty stocks for this build! However, the result looks less spectacular than it actually is: changing a Lightning from its literally original stacked engine layout into a more conservative side-by-side arrangement turned out to be possible, even though the outcome is not really pretty. But it works and is feasible!

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!

  

Some background:

The Douglas A-4 Skyhawk was a single seat subsonic carrier-capable attack aircraft developed for the United States Navy and United States Marine Corps in the early 1950s. The delta winged, single turbojet engined Skyhawk was designed and produced by Douglas Aircraft Company, and later by McDonnell Douglas. It was originally designated A4D under the U.S. Navy's pre-1962 designation system.

 

The Skyhawk was a relatively lightweight aircraft with a maximum takeoff weight of 24,500 pounds (11,100 kg) in its late versions and had a top speed of more than 670 miles per hour (1,080 km/h). The aircrafts supported a variety of missiles, bombs and other munitions, and late versions were capable of carrying a bomb load equivalent to that of a World War II-era Boeing B-17 bomber.

 

The type saw an intensive career with the US Navy and the US Marine Corps, and is still in frontline use in several countries, e. g. Brazil and Argentina.

Another potential user was France. The story began with two different design requirements in the early 1950s for land-based, light fighters, one for the French Air Force and the other for NATO air forces. French manufacturer Dassault responded and used the same basic design for both these specifications, designated as the Étendard II and Étendard VI respectively, neither of which received any orders, though. The company also developed a larger and more powerful variant, which was called the Mystère XXIV, simultaneously as a private venture.

 

The French Navy, the Aéronavale, showed interest in the more powerful aircraft, and this interest in a lulti-purpose fighter for carrier operations led to a public competition which was opened to foreign submissions, too. Dassault constructed a prototype navalized version of the Mystère XXIV, now designated Étendard IVM, and the first prototype conducted its first flight on 24 July 1956. As contenders, Douglas offered a modified A4D-2 Skyhawk and from Great Britain the Supermarine Scimitar was proposed, but immediately rejected as being much too large and complex for the Aéronavale's needs.

 

In order to compare the potential contenders, the Étendard IVM was to be pitted against the Skyhawk, and so a total of six so-called A4D-2Fs, modified to French specifications, took part in an extensive field test over the course of the next 15 months against a total of seven Étendard prototypes (the last being a prototype for the Étendard IVP photo reconnaissance variant), which differed by engines and equipment details.

 

The French Skyhawk variant had, compared with the standard A4D-2 of the US Navy, improved navigation and flight control systems. The A4D-2F also featured a strengthened airframe and had air-to-air refueling capabilities. Specific to these machines were a TACAN receiver and a braking parachute under the tail for land operations.

 

Internal armament was, upon the potential customer’s request, changed from the original pair of American 20 mm (0.79 in) Colt Mk 12 cannon with 200 RPG in the wing roots to a pair of 30mm DEFA cannon with 150 RPG. As a marketing measure, the A4D-2F was equipped with guidance avionics for the American AGM-12 Bullpup missile, in hope that France would procure this weapon together with the aircraft as a package and open the door for further weapon exports. Other ordnance included rocket pods, bombs, and drop tanks, carried on five external pylons (two more under the outer wings than the standard A4D-2).

 

Not being convinced of the AGM-12 and political preference of domestic equipment, French officials insisted on additional avionics for indigenous guided weapons like the Nord AA-20 air-to-air or the AS-20 air-to-ground missiles, as well as for the bigger, newly developed AS-30. Since the internal space of the AD4 airframe was limited, these additional components had to be housed in a long, spinal fairing that extended from the fin root forward, almost up to the cockpit. Another consequence of the scarce internal space was the need to provide radio-guidance for the French missiles through an external antenna pod, which was to be carried under the outer starboard pylon, together with two missiles on the inner pylons and an SNEB unguided missile pod (frequently empty) under the port outer pylon as aerodynamic counterbalance.

 

Trials between the contenders started in summer 1957, at first from land bases (primarily Landviseau in Brittany), but later, after its reconstruction with a four degree angled flight deck and a mirror landing sight, also aboard of the revamped French carrier ‘Arromanches’ (R 95, former HMS Colossus). The A4D-2F turned out to be the more effective fighter bomber, especially concerning the almost twice as high weapon load as the Étendard’s. On the other side, the Étendard benefitted from its Aida radar (the A4D-2F only had an AN/APN-141 radar altimeter and a state-of-the-art AN/ASN-19A navigation computer) and from strong supporters from both military and political deciders. Dassault kept lobbying for the indigenous aircraft, too, and, despite many shortcomings and limitations, the Étendard was chosen as the winning design. Even a proposed radar upgrade (just introduced with the A4D-3/A-4C for the US Navy) was during the late evaluation stages in 1958 would not change the French officials’ minds.

 

“Sufficiently satisfied” with its performance, the French Navy would procure for 69 Étendard IVM fighters and 21 Étendard IVP reconnaissance versions. The sextet of test Skyhawks was returned in late 1961 to the United States, where the airframes were at first stored and later underwent modifications at Lockheed Service Co. to become A-4Ps for the Argentine Air Force, delivered in 1966.

 

From 1962, the winning Étendard IVM was being deployed aboard the service's newly built Clemenceau-class aircraft carriers, the Clemenceau and Foch. Later, in 1972, the Skyhawk (in the form of a modified A-4M) made a return to France as an alternative to the stillborn Jaguar M, a navalized variant of the Anglo-French SEPECAT Jaguar, which was intended to become the Étendard's replacement. But this effort was once more derailed by political lobbying by Dassault, who favored their own proposed upgraded version of the aircraft, which would later enter service as the Super Étendard.

  

General characteristics:

Crew: one

Length: 39' 4" (12 m)

Wingspan: 26 ft 6 in (8.38 m)

Height: 15 ft (4.57 m)

Wing area: 259 ft² (24.15 m²)

Airfoil: NACA 0008-1.1-25 root, NACA 0005-0.825-50 tip

Empty weight: 9,146 lb (4,152 kg)

Loaded weight: 18,300 lb (8,318 kg)

Max. takeoff weight: 24,500 lb (11,136 kg)

 

Powerplant:

1× Curtiss-Wright J65-W-16A turbojet with 7,700 lbf (34 kN)

 

Performance:

Maximum speed: 575 kn (661 mph, 1,064 km/h)

Range: 1,700 nmi (2,000 mi, 3,220 km)

Combat radius: 625 nmi, 1,158 km

Service ceiling: 42,250 ft (12,880 m)

Rate of climb: 8,440 ft/min (43 m/s)

Wing loading: 70.7 lb/ft² (344.4 kg/m²)

Thrust/weight: 0.51

g-limit: +8/-3 g

 

Armament:

2× 30 mm (1.18 in) DEFA cannon, 150 RPG, in the wing roots

Total effective payload of up to 5,000 lbs (2,268 kg) on five hardpoints

- 1× Centerline: 3,500 lbs capability

- 2× Inboard wing: 2,200 lbs capability each

- 2× Outboard wing: 1,000 lbs capability each

   

The kit and its assembly:

This is another contribution to the “In the Navy” Group Build at whatifmodelers.com. The idea of a French Navy Skyhawk is not new and has been tackled before (in the form of CG renditions and model hardware alike), and I had been wanting to build one, too, for a long time – and the current GB was a good occasion to tackle a build.

 

The Skyhawk was actually tested by the Aéronavale, but, as described in the background, not until the early 1970s and together with the LTV A-7, when the Jaguar M came to nothing, not in the late 1950ies where this fictional model is rooted.

Anyway, I liked the Fifties idea much and spun a story around the Étendard’s introduction and a fictional competition for the Aéronavale’s next carrier-borne fighter bomber. The idea was further fueled by the relatively new Airfix model of the early A-4B, which would fit well into the project’s time frame. And I already had a respective kit stashed away for this project...

 

The Airfix kit is very nice, fit and detail (including, for instance a complete air intake section with a jet fan dummy, and it features a very good pilot figure, too) are excellent, even though some things like very thick sprue attachment points here and there and the waxy, rather soft styrene are a bit dubious. But it’s a good kit, nevertheless, and cleverly constructed: many seams disappear between natural panel lines, it’s a pleasant build.

 

Since this model was to be a kind of pre-production machine based on a relatively new standard aircraft, not much was changed. Most visible additions are the dorsal spine (a simple piece of sprue, blended onto the back and into the fin fillet) and the ordnance.

But there are minor changes, too: The cannon installation was also modified, from the original wing root position into slightly lower, bulged fairings for the more voluminous DEFA cannon. The fairings were carved from styrene profiles and outfitted with the OOB barrels. IDF Skyhawks/Ahit with 30mm cannons were the design benchmark, blending the fairings into the curved wing roots and hiding the original gun openings was actually the most challenging part of the build.

 

Some pitots and blade antennae were replaced or changed, too. Lead was cramped into the space between the cockpit and the air intake installation for a proper stance. The Airfix kit is in so far nice as this compartment is easily accessible from below, as long as the wings have not been mounted yet.

The cockpit, together with the pilot figure, were taken OOB, just the pilot’s head was modified to look sideways and an ejection trigger handle was added to the seat.

 

The pair of AS-30 once were AS-30Ls from an Italeri Mirage 2000 kit, slightly modified with a simple, conical tip and booster rocket nozzles on the tail. The corresponding underwing radar pod is a drop tank from a vintage Airfix Kaman Seasprite, while the other outer pylon carries a scratched camera pod, IIRC it once was a belly tank from a 1:144 F-16.

  

Painting and markings:

On purpose, relatively simple. The early French Étendard IVM was the benchmark with its blue-gray/white livery. Biggest challenges were actually to find an appropriate tone for the upper gray, which appears, much like the British Extra Dark Sea Gray, between anything from dark blue to medium gray, depending on light and surroundings, esp. with a glossy finish.

I could not find any definitive or convincing paint suggestions, what I found ranges between FS 36270 (Medium Gray, much too light) and FS 36118 (Gunship Gray, much too violet) and Humbrol 77 (Navy Blue, much too green) to a mix of Humbrol 57 and 33 (Sky Blue + Black!). Really weird… And to make matters worse, some Étendards were furthermore painted in a lighter blue-gray for operations over the Mediterranean Sea!

 

Since I wanted a unique tone, I settled upon Revell 79 (RAL 7031, Blaugrau) for the upper surfaces, a dark, petrol blue gray. The undersides were painted in an off-white tone (a grayish Volkswagen color from the Seventies!) with acrylic paint from the rattle can – with the benefit that the whole landing gear could be primed in the same turn, even though it was later painted over with pure white (Humbrol 130), which was also used on/in the air intakes. The cockpit interior was painted in bluish gray (FS 35237), the interior of the air brakes, slats and edges of the landing gear covers became bright red (Humbrol 60). The red markings around the air intakes were created with paint and decals. Another eye-catcher are the bright orange AS-30 test rounds.

 

A thin, black ink wash was applied to the kit in order to emphasize the engraved panel lines. Only light shading was added to the panels through dry-brushing, more for presentation drama than true weathering.

 

Most Aéronavale-specific markings come from an Academy Super Étendard decal sheet, most stencils come from the OOB Skyhawk sheet. As a kind of prototype and part of Douglas’ fictional marketing effort for the machine, I placed the French roundels in six positions and also added French flags ( the Étendard prototypes were similarly decorated, by the way). Finally, everything was sealed under a coat of matt varnish with a slight, sheen finish.

  

A relatively simple whif project, and a nice distraction from the many recent kitbashes and major conversions. The Aéronavale livery suits the Scooter well, and what I personally like a lot about this one is that it “tells the story” behind it – it’s more than a generic Skyhawk in French colors.

 

And, as a final twist of history, nowadays the Skyhawk actually IS in use on board of a French carrier: in the form of the Brazilian Naval Aviation’s AF-1, former Kuwaiti A-4KU airframes, from CV Sao Paulo, former French Navy carrier Foch! :D

 

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!

  

Some background:

The Waffenträger (Weapon Carrier) VTS3 “Diana” was a prototype for a wheeled tank destroyer. It was developed by Thyssen-Henschel (later Rheinmetall) in Kassel, Germany, in the late Seventies, in response to a German Army requirement for a highly mobile tank destroyer with the firepower of the Leopard 1 main battle tank then in service and about to be replaced with the more capable Leopard 2 MBT, but less complex and costly. The main mission of the Diana was light to medium territorial defense, protection of infantry units and other, lighter, elements of the cavalry as well as tactical reconnaissance. Instead of heavy armor it would rather use its good power-to-weight ratio, excellent range and cross-country ability (despite the wheeled design) for defense and a computerized fire control system to accomplish this mission.

 

In order to save development cost and time, the vehicle was heavily based on the Spähpanzer Luchs (Lynx), a new German 8x8 amphibious reconnaissance armored fighting vehicle that had just entered Bundeswehr service in 1975. The all-wheel drive Luchs made was well armored against light weapons, had a full NBC protection system and was characterized by its extremely low-noise running. The eight large low-pressure tires had run-flat properties, and, at speeds up to about 50 km/h, all four axles could be steered, giving the relatively large vehicle a surprising agility and very good off-road performance. As a special feature, the vehicle was equipped with a rear-facing driver with his own driving position (normally the radio operator), so that the vehicle could be driven at full speed into both directions – a heritage from German WWII designs, and a tactical advantage when the vehicle had to quickly retreat from tactical position after having been detected. The original Luchs weighed less than 20 tons, was fully amphibious and could surmount water obstacles quickly and independently using propellers at the rear and the fold back trim vane at the front. Its armament was relatively light, though, a 20 mm Rheinmetall MK 20 Rh 202 gun in the turret that was effective against both ground and air targets.

 

The Waffenträger “Diana” used the Luchs’ hull and dynamic components as basis, and Thyssen-Henschel solved the challenge to mount a large and heavy 105 mm L7 gun with its mount on the light chassis through a minimalistic, unmanned mount and an autoloader. Avoiding a traditional manned and heavy, armored turret, a lot of weight and internal volume that had to be protected could be saved, and crew safety was indirectly improved, too. This concept had concurrently been tested in the form of the VTS1 (“Versuchsträger Scheitellafette #1) experimental tank in 1976 for the Kampfpanzer 3 development, which eventually led to the Leopard 2 MBT (which retained a traditional turret, though).

 

For the “Diana” test vehicle, Thyssen-Henschel developed a new low-profile turret with a very small frontal area. Two crew members, the commander (on the right side) and the gunner (to the left), were seated in/under the gun mount, completely inside of the vehicle’s hull. The turret was a very innovative construction for its time, fully stabilized and mounted the proven 105mm L7 rifled cannon with a smoke discharger. Its autoloader contained 8 rounds in a carousel magazine. 16 more rounds could be carried in the hull, but they had to be manually re-loaded into the magazine, which was only externally accessible. A light, co-axial 7,62mm machine gun against soft targets was available, too, as well as eight defensive smoke grenade mortars.

 

The automated L7 had a rate of fire of ten rounds per minute and could fire four types of ammunition: a kinetic energy penetrator to destroy armored vehicles; a high explosive anti-tank round to destroy thin-skinned vehicles and provide anti-personnel fragmentation; a high explosive plastic round to destroy bunkers, machine gun and sniper positions, and create openings in walls for infantry to access; and a canister shot for use against dismounted infantry in the open or for smoke charges. The rounds to be fired could be pre-selected, so that the gun was able to automatically fire a certain ammunition sequence, but manual round selection was possible at any time, too.

 

In order to take the new turret, the Luchs hull had to be modified. Early calculations had revealed that a simple replacement of the Luchs’ turret with the new L7 mount would have unfavorably shifted the vehicle’s center of gravity up- and forward, making it very nose-heavy and hard to handle in rough terrain or at high speed, and the long barrel would have markedly overhung the front end, impairing handling further. It was also clear that the additional weight and the rise of the CoG made amphibious operations impossible - a fate that met the upgraded Luchs recce tanks in the Eighties, too, after several accidents with overturned vehicles during wading and drowned crews. With this insight the decision was made to omit the vehicle’s amphibious capability, save weight and complexity, and to modify the vehicle’s layout considerably to optimize the weight distribution.

 

Taking advantage of the fact that the Luchs already had two complete driver stations at both ends, a pair of late-production hulls were set aside in 1977 and their internal layout reversed. The engine bay was now in the vehicle’s front, the secured ammunition storage was placed next to it, behind the separate driver compartment, and the combat section with the turret mechanism was located behind it. Since the VTS3s were only prototypes, only minimal adaptations were made. This meant that the driver was now located on the right side of the vehicle, while and the now-rear-facing secondary driver/radio operator station ended up on the left side – much like a RHD vehicle – but this was easily accepted in the light of cost and time savings. As a result, the gun and its long, heavy barrel were now located above the vehicle’s hull, so that the overall weight distribution was almost neutral and overall dimensions remained compact.

 

Both test vehicles were completed in early 1978 and field trials immediately started. While the overall mobility was on par with the Luchs and the Diana’s high speed and low noise profile was highly appreciated, the armament was and remained a source of constant concern. Shooting in motion from the Diana turned out to be very problematic, and even firing from a standstill was troublesome. The gun mount and the vehicle’s complex suspension were able to "hold" the recoil of the full-fledged 105-mm tank gun, which had always been famous for its rather large muzzle energy. But when fired, even in the longitudinal plane, the vehicle body fell heavily towards the stern, so that the target was frequently lost and aiming had to be resumed – effectively negating the benefit from the autoloader’s high rate of fire and exposing the vehicle to potential target retaliation. Firing to the side was even worse. Several attempts were made to mend this flaw, but neither the addition of a muzzle brake, stronger shock absorbers and even hydro-pneumatic suspension elements did not solve the problem. In addition, the high muzzle flames and the resulting significant shockwave required the infantry to stay away from the vehicle intended to support them. The Bundeswehr also criticized the too small ammunition load, as well as the fact that the autoloader magazine could not be re-filled under armor protection, so that the vehicle had to retreat to safe areas to re-arm and/or to adapt to a new mission profile. This inherent flaw not only put the crew under the hazards of enemy fire, it also negated the vehicle’s NBC protection – a serious issue and likely Cold War scenario. Another weak point was the Diana’s weight: even though the net gain of weight compared with the Luchs was less than 3 tons after the conversion, this became another serious problem that led to the Diana’s demise: during trials the Bundeswehr considered the possibility to airlift the Diana, but its weight (even that of the Luchs, BTW) was too much for the Luftwaffe’s biggest own transport aircraft, the C-160 Transall. Even aircraft from other NATO members, e.g. the common C-130 Hercules, could hardly carry the vehicle. In theory, equipment had to be removed, including the cannon and parts of its mount.

 

Since the tactical value of the vehicle was doubtful and other light anti-tank weapons in the form of the HOT anti-tank missile had reached operational status, so that very light vehicles and even small infantry groups could now effectively fight against full-fledged enemy battle tanks from a safe distance, the Diana’s development was stopped in 1988. Both VTS3 prototypes were mothballed, stored at the Bundeswehr Munster Training Area camp and are still waiting to be revamped as historic exhibits alongside other prototypes like the Kampfpanzer 70 in the German Tank Museum located there, too.

  

Specifications:

Crew: 4 (commander, driver, gunner, radio operator/second driver)

Weight: 22.6 t

Length: 7.74 m (25 ft 4 ¼ in)

Width: 2.98 m ( 9 ft 9 in)

Height: XXX

Ground clearance: 440 mm (1 ft 4 in)

Suspension: hydraulic all-wheel drive and steering

 

Armor:

Unknown, but sufficient to withstand 14.5 mm AP rounds

 

Performance:

Speed: 90 km/h (56 mph) on roads

Operational range: 720 km (445 mi)

Power/weight: 13,3 hp/ton with petrol, 17,3 hp/ton with diesel

 

Engine:

1× Daimler Benz OM 403A turbocharged 10-cylinder 4-stroke multi-fuel engine,

delivering 300 hp with petrol, 390 hp with diesel

 

Armament:

1× 105 mm L7 rifled gun with autoloader (8 rounds ready, plus 16 in reserve)

1× co-axial 7.92 mm M3 machine gun with 2.000 rounds

Two groups of four Wegmann 76 mm smoke mortars

  

The kit and its assembly:

I have been a big Luchs fan since I witnessed one in action during a public Bundeswehr demo day when I was around 10 years old: a huge, boxy and futuristic vehicle with strange proportions, gigantic wheels, water propellers, a mind-boggling mobility and all of this utterly silent. Today you’d assume that this vehicle had an electric engine – spooky! So I always had a soft spot for it, and now it was time and a neat occasion to build a what-if model around it.

 

This fictional wheeled tank prototype model was spawned by a leftover Revell 1:72 Luchs kit, which I had bought some time ago primarily for the turret, used in a fictional post-WWII SdKfz. 234 “Puma” conversion. With just the chassis left I wondered what other use or equipment it might take, and, after several weeks with the idea in the back of my mind, I stumbled at Silesian Models over an M1128 resin conversion set for the Trumpeter M1126 “Stryker” 8x8 APC model. From this set as potential donor for a conversion the prototype idea with an unmanned turret was born.

 

Originally I just planned to mount the new turret onto the OOB hull, but when playing with the parts I found the look with an overhanging gun barrel and the bigger turret placed well forward on the hull goofy and unbalanced. I was about to shelf the idea again, until I recognized that the Luchs’ hull is almost symmetrical – the upper hull half could be easily reversed on the chassis tub (at least on the kit…), and this would allow much better proportions. From this conceptual change the build went straightforward, reversing the upper hull only took some minor PSR. The resin turret was taken mostly OOB, it only needed a scratched adapter to fit into the respective hull opening. I just added a co-axial machine gun fairing, antenna bases (from the Luchs kit, since they could, due to the long gun barrel, not be attached to the hull anymore) and smoke grenade mortars (also taken from the Luchs).

 

An unnerving challenge became the Luchs kit’s suspension and drive train – it took two days to assemble the vehicle’s underside alone! While this area is very accurate and delicate, the fact that almost EVERY lever and stabilizer is a separate piece on four(!) axles made the assembly a very slow process. Just for reference: the kit comes with three and a half sprues. A full one for the wheels (each consists of three parts, and more than another one for suspension and drivetrain!

Furthermore, the many hull surface details like tools or handles – these are more than a dozen bits and pieces – are separate, very fragile and small (tiny!), too. Cutting all these wee parts out and cleaning them was a tedious affair, too, plus painting them separately.

Otherwise the model went together well, but it’s certainly not good for quick builders and those with big fingers and/or poor sight.

  

Painting and markings:

The paint scheme was a conservative choice; it is a faithful adaptation of the Bundeswehr’s NATO standard camouflage for the European theatre of operations that was introduced in the Eighties. It was adopted by many armies to confuse potential aggressors from the East, so that observers could not easily identify a vehicle and its nationality. It consists of a green base with red-brown and black blotches, in Germany it was executed with RAL tones, namely 6031 (Bronze Green), 8027 (Leather Brown) and 9021 (Tar Black). The pattern was standardized for each vehicle type and I stuck to the official Luchs pattern, trying to adapt it to the new/bigger turret. I used Revell acrylic paints, since the authentic RAL tones are readily available in this product range (namely the tones 06, 65 and 84). The big tires were painted with Revell 09 (Anthracite).

 

Next the model was treated with a highly thinned washing with black and red-brown acrylic paint, before decals were applied, taken from the OOB sheet and without unit markings, since the Diana would represent a test vehicle. After sealing them with a thin coat of clear varnish the model was furthermore treated with lightly dry-brushed Revell 45 and 75 to emphasize edges and surface details, and the separately painted hull equipment was mounted. The following step was a cloudy treatment with watercolors (from a typical school paintbox, it’s great stuff for weathering!), simulating dust residue all over the hull. After a final protective coat with matt acrylic varnish I finally added some mineral artist pigments to the lower hull areas and created mud crusts on the wheels through light wet varnish traces into which pigments were “dusted”.

  

Basically a simple project, but the complex Luchs kit with its zillion of wee bits and pieces took time and cost some nerves. However, the result looks pretty good, and the Stryker turret blends well into the overall package. Not certain how realistic the swap of the Luchs’ internal layout would have been, but I think that the turret moved to the rear makes more sense than the original forward position? After all, the model is supposed to be a prototype, so there’s certainly room for creative freedom. And in classic Bundeswehr colors, the whole thing even looks pretty convincing.

 

The swallows and martins are a group of passerine birds in the family Hirundinidae which are characterised by their adaptation to aerial feeding. Swallow is used colloquially in Europe as a synonym for the Barn Swallow.The swallows have a cosmopolitan distribution across the world and breed on all the continents except Antarctica. The swallows and martins have an evolutionary conservative body shape which is similar across the family but is unlike that of other passerines.Swallows have adapted to hunting insects on the wing by developing a slender streamlined body and long pointed wings, which allow great maneuverability and endurance, as well as frequent periods of gliding. Their body shape allows for very efficient flight, which costs 50-75% less for swallows than equivalent passerines of the same size. Swallows usually forage at around 30–40 km/h, although they are capable of reaching speeds of between 50–65 km/h when traveling.The bill of the Sand Martin is typical for the family, being short and wide.Like the unrelated swifts and nightjars, which hunt in a similar way, they have short bills, but strong jaws and a wide gape. Their body length ranges from about 10–24 cm (3.9–9.4 in) and their weight from about 10–60 g (0.35–2.1 oz). The wings are long, pointed, and have nine primary feathers. The tail has 12 feathers and may be deeply forked, somewhat indented, or square-ended. A long tail increases maneuverability, and may also function as a sexual adornment, since the tail is frequently longer in males.In Barn Swallows the tail of the male is 18% longer than the females, and females will select mates on the basis of tail length.

The legs are short, and their feet are adapted for perching rather than walking, as the front toes are partially joined at the base. Swallows are capable of walking and even running, but they do so with a shuffling, waddling gait. The leg muscles of the river martins (Pseudochelidon) are stronger and more robust than those of other swallows.The most common hirundine plumage is glossy dark blue or green above and plain or streaked underparts, often white or rufous. Species which burrow or live in dry or mountainous areas are often matte brown above (e.g. Sand Martin and Crag Martin). The sexes show limited or no sexual dimorphism, with longer outer tail feathers in the adult male probably being the most common distinction.The chicks hatch naked and with closed eyes. Fledged juveniles usually appear as duller versions of the adult.The swallows and martins have a worldwide cosmopolitan distribution, occurring on every continent except Antarctica. One species, the Pacific Swallow, occurs as a breeding bird on a number of oceanic islands in the Pacific Ocean,[5] the Mascarene Martin breeds on Reunion and Mauritius in the Indian Ocean,[6] and a number of migratory species are common vagrants to other isolated islands and even to some sub-Antarctic islands. Many species have enormous worldwide ranges, particularly the Barn Swallow, which breeds over most of the Northern Hemisphere and winters over most of the Southern Hemisphere.The Lesser Striped Swallow is a partial migrant within AfricaThe family uses a wide range of habitats. They are dependent on flying insects and as these are common over waterways and lakes they will frequently feed over these, but they can be found in any open habitat including grasslands, open woodland, savanna, marshes, mangroves and scrubland, from sea level to high alpine areas.Many species inhabit human-altered landscapes including agricultural land and even urban areas. Land use changes have also caused some species to expand their range, most impressively the Welcome Swallow which began to colonise New Zealand in the 1920s, started breeding in the 1950s and is now a common landbird there.

 

La rondine comune (Hirundo rustica) è un piccolo uccello migratore dell'ordine dei passeri presente in Europa, in Asia, in Africa e nelle Americhe. È spesso chiamata solamente con il nome di rondine, che non è sbagliato, ma indica più ampiamente tutta la famiglia Hirundinidae.

La rondine comune, è un uccello piccolo e agile, lungo circa 18-19,5 cm; ala 12-13 cm; becco 11-13 mm; Questo uccello presenta una coda lunga e biforcuta, ali curve e aguzze e un piccolo becco diritto di color grigio scuro.La sottospecie europea H. r. rustica è di colore blu scuro (quasi nero) sul dorso, grigiastro sul ventre ed ha una striscia rossa sulla gola, separata dal ventre da una fascia blu-grigia. È diffusa in Europa e nella Russia europea (fino al Circolo polare artico) e migra in Africa durante l'inverno.La sottospecie nordamericana H. r. erythrogaster differisce dalla sottospecie europea nel ventre, più rossastro, e nella fascia scura tra petto e ventre, più stretta e più scura. È diffusa nelll'America del Nord e migra nell'America del Sud durante l'inverno.

La sottospecie mediorientale H. r. transitiva e la sottospecie egiziana H. r. savignii hanno il petto di color rosso-arancione e la fascia tra petto e ventre nera.Le sottospecie asiatiche H. r. gutturalis, H. r. mandschurica, H. r. saturata e H. r. tytleri sono simili alla sottospecie nordamericana, con il petto rosso-arancione e la fascia scura petto-ventre più stretta. Sono diffuse in Asia orientale e migrano in Asia del sud ed in Australia del nord durante l'inverno.La rondine comune è simile nelle abitudini agli altri uccelli insettivori, comprese le altre rondini e il rondone (ordine Apodiformes).Questo uccello si nutre di mosche, zanzare (ed infatti è proprio per la sua utilità per l'uomo di mangiatrice di zanzare durante l'estate che la sua scomparsa sta preoccupando; di solito le rondini arrivano da noi intorno al 21 marzo e restano fino ai primi di ottobre), libellule e di altri insetti volanti e anche vermi,e scarafaggi ; non necessita quindi di grande velocità (circa 50 km/h), ma ha un'agilità e una capacità di cambiare direzione in modo incredibilmente veloce, utilissima per il suo scopo.La rondine comune costruisce accuratamente un nido concavo, fatto di fango, trasportato nel becco. La parte interna del nido è composta di erba, piume ed altri materiali morbidi. Annida normalmente sotto costruzioni dell'uomo, quali tetti di case, fienili, stalle. Prima che questi tipi di luoghi diventassero comuni, le rondini comuni annidavano sulle scogliere o nelle caverne. È solita nidificare in tutti gli spazi adatti fino un'altitudine di 1600 m. La rondine nidifica 2 volte all'anno, ogni volta deponendo 4 o 5 uova, che vengono covate dalla femmina per 16 giorni. Entrambi i genitori costruiscono il nido e nutrono i pulcini.La popolazione di rondini comuni, in America del Nord, è notevolmente aumentata durante il ventesimo secolo con la crescente disponibilità dei luoghi di riproduzione artificiali.

Negli ultimi anni, si è avuto un declino graduale di rondini nelle zone europee e nordamericane, dovuto all'intensificazione agricola e all'uso di pesticidi che riduce il numero di insetti, e quindi anche il numero di rondini. Tuttavia, rimane un uccello molto diffuso e piuttosto comune in tutto il mondo.La rondine, e più specificatamente la rondine comune, è diventata l'uccello-simbolo dell'Estonia dal 23 giugno 1960; per gli estoni, la rondine rappresenta il cielo blu, sinonimo di libertà e di felicità eterna. Secondo le credenze estoni, se qualcuno uccide una rondine diventerà cieco. Quando in primavera le rondini tornano al nido, salutano gli umani della casa con acrobazie e canti.

 

Font : Wikipedia

Some background:

The VF-1 was developed by Stonewell/Bellcom/Shinnakasu for the U.N. Spacy by using alien Overtechnology obtained from the SDF-1 Macross alien spaceship. The space-capable VF-1's combat debut was on February 7, 2009, during the Battle of South Ataria Island - the first battle of Space War I - and remained the mainstay fighter of the U.N. Spacy for the entire conflict. Introduced in 2008, the VF-1 would be out of frontline service just five years later, though.

 

The VF-1 proved to be an extremely capable craft, successfully combating a variety of Zentraedi mecha even in most sorties which saw UN Spacy forces significantly outnumbered. The versatility of the Valkyrie design enabled the variable fighter to act as both large-scale infantry and as air/space superiority fighter. The basic VF-1 was built and deployed in four minor variants (designated A, J, and S single-seater and the D two-seater/trainer) and its success was increased by continued development of various enhancements including the GBP-1S "Armored" Valkyrie exoskeleton with enhanced protection and integrated missile launchers, the so-called FAST (“Fuel And Sensor Tray”) packs that created the fully space-capable "Super" Valkyries and the additional RÖ-X2 heavy cannon pack weapon system for the VF-1S “Super Valkyrie”.

 

After the end of Space War I, the VF-1 continued to be manufactured both in the Sol system and throughout the UNG space colonies. At the end of 2015 the final rollout of the VF-1 was celebrated at a special ceremony, commemorating this most famous of variable fighters. The VF-1 Valkryie was built from 2006 to 2013 with a total production of 5,459 VF-1 variable fighters with several original variants (VF-1A = 5,093, VF-1D = 85, VF-1J = 49, VF-1S = 30, VF-1G = 12, VE-1 = 122, VT-1 = 68), even though these machines were frequently updated and modified during their career, leading to a wide range of sub-variants and different standards.

 

Although the VF-1 would be replaced in 2020 as the primary Variable Fighter of the U.N. Spacy, a long service record and continued production after the war proved the lasting worth of the design. One of these post-war designs became the VF-1EX, a replica variant of the VF-1J with up-to-date avionics and instrumentation. It was only built in small numbers in the late 2040s and was a dedicated variant for advanced training with dissimilar mock aerial and ground fighting.

 

The only operator of this type was Xaos (sometimes spelled as Chaos), a private and independent military and civilian contractor. Xaos was originally a fold navigation business that began venturing into fold wave communication and information, expanding rapidly during the 2050s and entering new business fields like flight tests and providing aggressor aircraft for military training. They were almost entirely independent from the New United Nations Spacy (NUNS) and was led by the mysterious Lady M. During the Vár Syndrome outbreak, Echo Squadron and Delta Flight and the tactical sound unit Thrones and Walküre were formed to counteract its effects in the Brísingr Globular Cluster.

 

The VF-1EX was restricted to its primary objective and never saw real combat. The replica unit retained the overall basic performance of the original VF-1 Valkyrie, the specifications being more than sufficient for training and mock combat. The only difference was the addition of the contemporary military EG-01M/MP EX-Gear system for the pilot as an emergency standard, an exoskeleton unit with personal inner-wear, two variable geometry wings, two hybrid jet/rocket engines, mechanical hardware for the head, torso, arms and legs. This feature gave the VF-1EX its new designation.

Furthermore, the VF-1EX was also outfitted with other electronic contingency functions like AI-assisted flight and remote override controls. Some of these features could be disabled according to necessity or pilot preferences. The gun pod unit was retained but was usually only loaded with paintball rounds for mock combat. For the same purpose, one of the original Mauler RÖV-20 anti-aircraft laser cannon in the "head unit" was replaced by a long-range laser target designator. AMM-1 missiles with dummy warheads or other training ordnance could be added to the wing hardpoints, but the VF-1EX was never seen being equipped this way - it remained an agile dogfighter.

  

General characteristics:

All-environment variable fighter and tactical combat Battroid. 3-mode variable transformation; variable geometry wing; vertical take-off and landing; control-configurable vehicle; single-axis thrust vectoring; three "magic hand" manipulators for maintenance use; retractable canopy shield for Battroid mode and atmospheric reentry; EG-01M/MP EX-Gear system; option of GBP-1S system, atmospheric-escape booster, or FAST Pack system.

 

Accommodation:

Single pilot in Marty & Beck Mk-7 zero/zero ejection seat

 

Dimensions:

Battroid Mode:

Height 12.68 meters

Width 7.3 meters

Length 4.0 meters

Fighter Mode:

Length 14.23 meters

Wingspan 14.78 meters (at 20° minimum sweep)

Height 3.84 meters

 

Empty weight: 13.25 metric tons

Standard take-off mass: 18.5 metric tons

MTOW: 37.0 metric tons

 

Power Plant:

2x Shinnakasu Heavy Industry/P&W/Roice FF-2001 thermonuclear reaction turbine engines, output 650 MW each, rated at 11,500 kg in standard or in overboost (225.63 kN x 2);

4x Shinnakasu Heavy Industry NBS-1 high-thrust vernier thrusters (1 x counter reverse vernier thruster nozzle mounted on the side of each leg nacelle/air intake, 1 x wing thruster roll control system on each wingtip);

18x P&W LHP04 low-thrust vernier thrusters beneath multipurpose hook/handles

 

Performance:

Battroid Mode: maximum walking speed 160 km/h

Fighter Mode: at 10,000 m Mach 2.71; at 30,000+ m Mach 3.87

g limit: in space +7

Thrust-to-weight ratio: empty 3.47; standard TOW 2.49; maximum TOW 1.24

 

Transformation:

Standard time from Fighter to Battroid (automated): under 5 sec.

Min. time from Fighter to Battroid (manual): 0.9 sec.

 

Armament:

1x Mauler RÖV-20 anti-aircraft laser cannon in the "head" unit, firing 6,000 pulses per minute

1x Howard GU-11 55 mm three-barrel Gatling gun pod with 200 RPG, fired at 1,200 rpm

4x underwing hardpoints for a wide variety of ordnance

  

The kit and its assembly:

The VF-1EX Valkyrie is a Variable Fighter introduced in the Macross Δ television series, and it's, as described above, a replica training variant that resembles outwardly the VF-1J. There's even a Hasegawa 1:72 kit from 2016 of this obscure variant.

However, what I tried to recreate is a virtual (and purely fictional/non-canonical) VF-1EX, re-skinned by someone called David L. on the basis of a virtual VF-1S 3D model with a 2 m wing span (sounds like ~1:8 scale) for the Phoenix R/C simulator software. Check this for reference: www.supermotoxl.com/projects-articles/ready-to-drive-fly-...). How bizarre can things be/become? And how sick is a hardware model of it, though...?

 

I found the complex livery very attractive and had the plan to build a 1:100 model for some years now. But it took this long to gather enough mojo to tackle this project, due to the tricolor paint scheme's complex nature...

The "canvas" for this stunt is a vintage Arii 1:100 VF-1 kit, built OOB except for some standard mods. The kit was actually a VF-1A, but I had a spare VF-1J head unit in store as a suitable replacement. Externally, some dorsal blade aerials and vanes on the nose were added, the attachment points under the wings for the pylons were PSRed away. A pilot figure was added to the cockpit because this model would be displayed in flight. As a consequence, the ventral gun pod received an adapter at its tail and I added one of my home-brew wire displays, created on the basis of the kit's OOB plastic base.

  

Painting and markings:

As mentioned above, this VF-1 is based on a re-skinned virtual R/C model, and its creator apparently took inspiration from a canonical VF fighter, namely a VF-31C "Siegfried", and specifically the "Mirage Farina Jenius Custom" version from the Macross Δ series that plays around 2051. Screenshots from the demo flight video under the link above provided various perspectives as painting reference, but the actual implementation on the tiny model caused serious headaches.

The VF-1's shapes are rather round and curvy, the model's jagged surface and small size prohibited masking. The kit is IMHO also best built and painted in single sub-assemblies, but upon closer inspection the screenshots revealed some marking inconsistencies (apparently edited from various videos?), and certain areas were left uncertain, e .g. the inside of the legs or the whole belly area. Therefore, this model is just a personal interpretation of the design, and as such I also deviated in the markings.

 

The paints became Humbrol 20 (Crimson) and 58 (Magenta), plus Revell 301 (Semi-gloss White), and they were applied with brushes. To replicate the edgy and rather fragmented pattern I initially laid down the two reds in a rather rough and thin fashion and painted the white dorsal and ventral areas. Once thoroughly dry, the white edges were quasi-masked with white decal material, either with stripes of various widths or tailored from sheet material, e. g. for the "wedges" on the wings and fins and the dorsal "swallow tail". This went more smoothly than expected, with a very convincing and clean result that i'd never had achieved with brushes alone, even with masking attempts, which would probably have led to chaos and too much paint on the model.

 

Other details like the grey leading edges or the air intakes were created with grey and black decal material, too.

No weathering was done, since the aircraft would be clean and in pristine condition, but I used a soft pencil to emphasize the engraved panel lines, esp. on white background. The gun pod became grey and the exhausts, painted in Revell 91 (Iron), were treated with graphite for a darker shade and a more metallic look.

 

Stencils came from the kit's OOB sheet, but only a few, since there was already a lot "going on" on the VF-1's hull. The flash-shaped Xaos insignia and the NUNS markings on legs and wings were printed at home - as well as the small black vernier thrusters all around the hull, for a uniform look. The USN style Modex and the small letter code on the fins came from an Colorado Decals F-5 sheet, for an aggressor aircraft.

 

Finally, the kit was sealed overall with semi-gloss acrlyic varnish (which turned out glossier than expected...) and position lights etc. added with translucent paint on top of a silver base.

  

Well, while the VF-1 was built OOB with no major mods and just some cosmetical upgrades, the paint scheme and its finish were more demanding - and I am happy that the "decal masking" trick worked so fine. The paint scheme surely is attractive, even though it IMHO does not really takes the VF-1's lines into account. Nevertheless, I am certain that there are not many models that are actually based on a virtual 1:8 scale 3D model of an iconic SF fighter, so that this VF-1EX might be unique.

 

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!

 

Some background

The Focke Wulf Ta 338 originated as a response of request by the RLM in mid 1943 for an aircraft capable of vertical takeoff and landing (VTOL), optimized for the interceptor and point defense role and without a hazardous liquid rocket engine as means of propulsion. In the course of the year, several German manufacturers responded with a multitude of highly innovative if not unusual design, including Heinkel with the ducted fan project "Lerche", Rheinmetall-Borsig with a jet-powered tailsitter, and Focke Wulf. This company’s engineering teams submitted two designs: the revolutionary "Triebflügel" concept and the more conservative, yet still futuristic "P.03.10338" tail sitter proposal, conceived by Focke Wulf’s leading engineer Kurt Tank and Walter Kappus from BMW, responsible for the engine development.

 

The P.03.10338 was based on the proven Fw 190 fighter, but the similarities were only superficial. Only the wings and a part of the fuselage structure around the cockpit would be used, but Tank assumed that using existing parts and tools would appreciably reduce development and production time.

A great part of the fuselage structure had to be re-designed to accommodate a powerful BMW 803 engine and its integral gearbox for an eight-bladed contraprop.

 

The BMW 803 was BMW's attempt to build a high-output aircraft engine, primarily for heavy bombers, by basically "coupling" two BMW 801 engines back-to-back into a single and very compact power unit. The result was a 28-cylinder, four-row radial engine, each comprising a multiple-bank in-line engine with two cylinders in each bank, which, due to cooling concerns, were liquid cooled.

 

This arrangement was from the start intended to drive independent contra-rotating propellers, in order to avoid stiffness problems with the whole engine driving just a single crankshaft and also to simply convert the raw power of this unit into propulsion. The front half of the engine drove the front propeller directly, while the rear engine drove a number of smaller shafts that passed between the cylinders of the front engine before being geared back together to drive the rear prop. This complex layout resulted in a rather large and heavy gearbox on the front of the engine, and the front engine needing an extended shaft to "clear" that gearbox. The four-row 803 engine weighed 2,950 kg (6,490 lb) dry and 4,130 kg (9,086 lb) fully loaded, and initial versions delivered 3,900 PS (3,847 hp; 2,868 kW).

 

While the engine was heavy and there were alternatives with a better weight/output ratio (e. g. the Jumo 222), the BMW 803 was favored for this project because it was the most powerful engine available, and it was relatively compact so that it could be fitted into a fighter's airframe. On the P.03.10338 it drove an all-metal, eight-blade contraprop with a diameter of 4,25 m (13 ft 11 in).

 

In order to accept this massive engine, the P.03.10338’s structure had to be stiffened and the load-bearing structures re-arranged. The aircraft kept the Fw 190's wing structure and surface, but the attachment points at the fuselage had to be moved for the new engine mount, so that they ended up in mid position. The original space for the Fw 190's landing gear was used for a pair of radiator baths in the wings' inner leading edge, the port radiator catering to the front engine half while the radiator on starboard was connected with the rear half. An additional annular oil and sodium cooler for the gearbox and the valve train, respectively, was mounted in the fuselage nose.

 

The tail section was completely re-designed. Instead of the Fw 190's standard tail with fin and stabilizers the P.03.10338’s tail surfaces were a reflected cruciform v-tail (forming an x) that extended above and below the fuselage. On the four fin tips, aerodynamic bodies carried landing pads while the fuselage end contained an extendable landing damper. The pilot sat in a standard Fw 190 cockpit, and the aircraft was supposed to start and land vertically from a mobile launch pad. In the case of an emergency landing, the lower stabilizers could be jettisoned. Nor internal armament was carried, instead any weaponry was to be mounted under the outer wings or the fuselage, in the form of various “Rüstsätze” packages.

 

Among the many exotic proposals to the VTOL fighter request, Kurt Tank's design appeared as one of the most simple options, and the type received the official RLM designation Ta 338. In a rush of urgency (and maybe blinded by clever Wunderwaffen marketing from Focke Wulf’s side), a series of pre-production aircraft was ordered instead of a dedicated prototype, which was to equip an Erprobungskommando (test unit, abbreviated “EK”) that would evaluate the type and develop tactics and procedures for the new fighter.

 

Fueled by a growing number of bomber raids over Germany, the “EK338” was formed as a part of JG300 in August 1944 in Schönwalde near Berlin, but it took until November 1944 that the first Ta 338 A-0 machines were delivered and made operational. These initial eight machines immediately revealed several flaws and operational problems, even though the VTOL concept basically worked and the aircraft flew well – once it was in the air and cruising at speeds exceeding 300 km/h (186 mph).

 

Beyond the many difficulties concerning the aircraft’s handling (esp. the landing was hazardous), the lack of a landing gear hampered ground mobility and servicing. Output of the BMW 803 was sufficient, even though the aircraft had clear limits concerning the take-off weight, so that ordnance was limited to only 500 kg (1.100 lb). Furthermore, the noise and the dust kicked up by starting or landing aircraft was immense, and servicing the engine or the weapons was more complicated than expected through the high position of many vital and frequently tended parts.

 

After three Ta 338 A-0 were lost in accidents until December 1944, a modified version was ordered for a second group of the EK 338. This led to the Ta 338 A-1, which now had shorter but more sharply swept tail fins that carried single wheels and an improved suspension under enlarged aerodynamic bodies.

This machine was now driven by an improved BMW 803 A-2 that delivered more power and was, with an MW-50 injection system, able to produce a temporary emergency output of 4.500 hp (3.308 kW).

 

Vertical start was further assisted by optional RATO units, mounted in racks at the rear fuselage flanks: either four Schmidding SG 34 solid fuel booster rockets, 4.9 kN (1,100 lbf) thrust each, or two larger 9.8 kN (2,203 lbf) solid fuel booster rockets, could be used. These improvements now allowed a wider range of weapons and equipment to be mounted, including underwing pods with unguided rockets against bomber pulks and also a conformal pod with two cameras for tactical reconnaissance.

 

The hazardous handling and the complicated maintenance remained the Ta 338’s Achilles heel, and the tactical benefit of VTOL operations could not outbalance these flaws. Furthermore, the Ta 338’s range remained very limited, as well as the potential firepower. Four 20mm or two 30mm cannons were deemed unsatisfactory for an interceptor of this class and power. And while bundles of unguided missiles proved to be very effective against large groups of bombers, it was more efficient to bring these weapons with simple and cheap vehicles like the Bachem Ba 349 Natter VTOL rocket fighter into target range, since these were effectively “one-shot” weapons. Once the Ta 338 fired its weapons it had to retreat unarmed.

 

In mid 1945, in the advent of defeat, further tests of the Ta 338 were stopped. I./EK338 was disbanded in March 1945 and all machines retreated from the Eastern front, while II./EK338 kept defending the Ruhrgebiet industrial complex until the Allied invasion in April 1945. Being circled by Allied forces, it was not possible to evacuate or destroy all remaining Ta 338s, so that at least two more or less intact airframes were captured by the U.S. Army and later brought to the United States for further studies.

  

General characteristics:

Crew: 1

Length/height on the ground: 10.40 m (34 ft 2 in)

Wingspan: 10.50 m (34 ft 5 in)

Fin span: 4:07 m (13 ft 4 in)

Wing area: 18.30 m² (196.99 ft²)

Empty weight: 11,599 lb (5,261 kg)

Loaded weight: 16,221 lb (7,358 kg)

Max. takeoff weight: 16,221 lb (7,358 kg)

 

Powerplant:

1× BMW 803 A-2 28-cylinder, liquid-cooled four-row radial engine,

rated at 4.100 hp (2.950 kW) and at 4.500 hp (3.308 kW) with emergency boost.

4x Schmidding SG 34 solid fuel booster rockets, 4.9 kN (1,100 lbf) thrust each, or

2x 9.8 kN (2,203 lbf) solid fuel booster rockets

 

Performance:

Maximum speed: 860 km/h (534 mph)

Cruise speed: 650 km/h (403 mph)

Range: 750 km (465 ml)

Service ceiling: 43,300 ft (13,100 m)

Rate of climb: 10,820 ft/min (3,300 m/min)

Wing loading: 65.9 lb/ft² (322 kg/m²)

 

Armament:

No internal armament, any weapons were to be mounted on three hardpoints (one under the fuselage for up to 1.000 kg (2.200 lb) and two under the outer wings, 500 kg (1.100 lb) each. Total ordnance was limited to 1.000 kg (2.200 lb).

 

Various armament and equipment sets (Rüstsätze) were tested:

R1 with 4× 20 mm (.79 in) MG 151/20 cannons

R2 with 2x 30 mm (1.18 in) MK 213C cannons

R3 with 48x 73 mm (2.874 in) Henschel Hs 297 Föhn rocket shells

R4 with 66x 55 mm (2.165 in) R4M rocket shells

R5 with a single 1.000 kg (2.200 lb) bomb under the fuselage

R6 with an underfuselage pod with one Rb 20/20 and one Rb 75/30 topographic camera

  

The kit and its assembly:

This purely fictional kitbashing is a hardware tribute to a highly inspiring line drawing of a Fw 190 VTOL tailsitter – actually an idea for an operational RC model! I found the idea, that reminded a lot of the Lockheed XFV-1 ‘Salmon’ prototype, just with Fw 190 components and some adaptations, very sexy, and so I decided on short notice to follow the urge and build a 1:72 version of the so far unnamed concept.

 

What looks simple (“Heh, it’s just a Fw 190 with a different tail, isn’t it?”) turned out to become a major kitbashing. The basis was a simple Hobby Boss Fw 190 D-9, chose because of the longer tail section, and the engine would be changed, anyway. Lots of work followed, though.

 

The wings were sliced off and moved upwards on the flanks. The original tail was cut off, and the cruciform fins are two pairs of MiG-21F stabilizers (from an Academy and Hasegawa kit), outfitted with reversed Mk. 84 bombs as aerodynamic fairings that carry four small wheels (from an 1:144 T-22M bomber) on scratched struts (made from wire).

 

The cockpit was taken OOB, only a pilot figure was cramped into the seat in order to conceal the poor interior detail. The engine is a bash from a Ju 188’s BMW 801 cowling and the original Fw 190 D-9’s annular radiator as well as a part of its Jumo 213 cowling. BMW 801 exhaust stubs were inserted, too, and the propeller comes from a 1:100 VEB Plasticart Tu-20/95 bomber.

 

Since the BMW 803 had liquid cooling, radiators had to go somewhere. The annular radiator would certainly not have been enough, so I used the space in the wings that became available through the deleted Fw 190 landing gear (the wells were closed) for additional radiators in the wings’ leading edges. Again, these were scratched with styrene profiles, putty and some very fine styrene mesh.

 

As ordnance I settled for a pair of gun pods – in this case these are slipper tanks from a Hobby Boss MiG-15, blended into the wings and outfitted with hollow steel needles as barrels.

  

Painting and markings:

Several design options were possible: all NMF with some colorful markings or an overall RLM76 finish with added camouflage. But I definitively went for a semi-finished look, inspired by late WWII Fw 190 fighters.

 

For instance, the wings’ undersides were partly left in bare metal, but the rudders painted in RLM76 while the leading edges became RLM75. This color was also taken on the wings’ upper sides, with RLM82 thinly painted over. The fuselage is standard RLM76, with RLM82 and 83 on the upper side and speckles on the flanks. The engine cowling became NMF, but with a flashy ‘Hartmann Tulpe’ decoration.

 

Further highlights are the red fuselage band (from JG300 in early 1945) and the propeller spinner, which received a red tip and segments in black and white on both moving propeller parts. Large red “X”s were used as individual aircraft code – an unusual Luftwaffe practice but taken over from some Me 262s.

 

After a light black ink wash some panel shading and light weathering (e.g. exhaust soot, leaked oil, leading edges) was done, and the kit sealed under matt acrylic varnish.

  

Building this “thing” on the basis of a line drawing was real fun, even though challenging and more work than expected. I tried to stay close to the drawing, the biggest difference is the tail – the MiG-21 stabilizers were the best option (and what I had at hand as donation parts), maybe four fins from a Hawker Harrier or an LTV A-7 had been “better”, but now the aircraft looks even faster. ;)

Besides, the Ta 338 is so utterly Luft ’46 – I am curious how many people might take this for real or as a Hydra prop from a contemporary Captain America movie…

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!

  

Some background:

The Waffenträger (Weapon Carrier) VTS3 “Diana” was a prototype for a wheeled tank destroyer. It was developed by Thyssen-Henschel (later Rheinmetall) in Kassel, Germany, in the late Seventies, in response to a German Army requirement for a highly mobile tank destroyer with the firepower of the Leopard 1 main battle tank then in service and about to be replaced with the more capable Leopard 2 MBT, but less complex and costly. The main mission of the Diana was light to medium territorial defense, protection of infantry units and other, lighter, elements of the cavalry as well as tactical reconnaissance. Instead of heavy armor it would rather use its good power-to-weight ratio, excellent range and cross-country ability (despite the wheeled design) for defense and a computerized fire control system to accomplish this mission.

 

In order to save development cost and time, the vehicle was heavily based on the Spähpanzer Luchs (Lynx), a new German 8x8 amphibious reconnaissance armored fighting vehicle that had just entered Bundeswehr service in 1975. The all-wheel drive Luchs made was well armored against light weapons, had a full NBC protection system and was characterized by its extremely low-noise running. The eight large low-pressure tires had run-flat properties, and, at speeds up to about 50 km/h, all four axles could be steered, giving the relatively large vehicle a surprising agility and very good off-road performance. As a special feature, the vehicle was equipped with a rear-facing driver with his own driving position (normally the radio operator), so that the vehicle could be driven at full speed into both directions – a heritage from German WWII designs, and a tactical advantage when the vehicle had to quickly retreat from tactical position after having been detected. The original Luchs weighed less than 20 tons, was fully amphibious and could surmount water obstacles quickly and independently using propellers at the rear and the fold back trim vane at the front. Its armament was relatively light, though, a 20 mm Rheinmetall MK 20 Rh 202 gun in the turret that was effective against both ground and air targets.

 

The Waffenträger “Diana” used the Luchs’ hull and dynamic components as basis, and Thyssen-Henschel solved the challenge to mount a large and heavy 105 mm L7 gun with its mount on the light chassis through a minimalistic, unmanned mount and an autoloader. Avoiding a traditional manned and heavy, armored turret, a lot of weight and internal volume that had to be protected could be saved, and crew safety was indirectly improved, too. This concept had concurrently been tested in the form of the VTS1 (“Versuchsträger Scheitellafette #1) experimental tank in 1976 for the Kampfpanzer 3 development, which eventually led to the Leopard 2 MBT (which retained a traditional turret, though).

 

For the “Diana” test vehicle, Thyssen-Henschel developed a new low-profile turret with a very small frontal area. Two crew members, the commander (on the right side) and the gunner (to the left), were seated in/under the gun mount, completely inside of the vehicle’s hull. The turret was a very innovative construction for its time, fully stabilized and mounted the proven 105mm L7 rifled cannon with a smoke discharger. Its autoloader contained 8 rounds in a carousel magazine. 16 more rounds could be carried in the hull, but they had to be manually re-loaded into the magazine, which was only externally accessible. A light, co-axial 7,62mm machine gun against soft targets was available, too, as well as eight defensive smoke grenade mortars.

 

The automated L7 had a rate of fire of ten rounds per minute and could fire four types of ammunition: a kinetic energy penetrator to destroy armored vehicles; a high explosive anti-tank round to destroy thin-skinned vehicles and provide anti-personnel fragmentation; a high explosive plastic round to destroy bunkers, machine gun and sniper positions, and create openings in walls for infantry to access; and a canister shot for use against dismounted infantry in the open or for smoke charges. The rounds to be fired could be pre-selected, so that the gun was able to automatically fire a certain ammunition sequence, but manual round selection was possible at any time, too.

 

In order to take the new turret, the Luchs hull had to be modified. Early calculations had revealed that a simple replacement of the Luchs’ turret with the new L7 mount would have unfavorably shifted the vehicle’s center of gravity up- and forward, making it very nose-heavy and hard to handle in rough terrain or at high speed, and the long barrel would have markedly overhung the front end, impairing handling further. It was also clear that the additional weight and the rise of the CoG made amphibious operations impossible - a fate that met the upgraded Luchs recce tanks in the Eighties, too, after several accidents with overturned vehicles during wading and drowned crews. With this insight the decision was made to omit the vehicle’s amphibious capability, save weight and complexity, and to modify the vehicle’s layout considerably to optimize the weight distribution.

 

Taking advantage of the fact that the Luchs already had two complete driver stations at both ends, a pair of late-production hulls were set aside in 1977 and their internal layout reversed. The engine bay was now in the vehicle’s front, the secured ammunition storage was placed next to it, behind the separate driver compartment, and the combat section with the turret mechanism was located behind it. Since the VTS3s were only prototypes, only minimal adaptations were made. This meant that the driver was now located on the right side of the vehicle, while and the now-rear-facing secondary driver/radio operator station ended up on the left side – much like a RHD vehicle – but this was easily accepted in the light of cost and time savings. As a result, the gun and its long, heavy barrel were now located above the vehicle’s hull, so that the overall weight distribution was almost neutral and overall dimensions remained compact.

 

Both test vehicles were completed in early 1978 and field trials immediately started. While the overall mobility was on par with the Luchs and the Diana’s high speed and low noise profile was highly appreciated, the armament was and remained a source of constant concern. Shooting in motion from the Diana turned out to be very problematic, and even firing from a standstill was troublesome. The gun mount and the vehicle’s complex suspension were able to "hold" the recoil of the full-fledged 105-mm tank gun, which had always been famous for its rather large muzzle energy. But when fired, even in the longitudinal plane, the vehicle body fell heavily towards the stern, so that the target was frequently lost and aiming had to be resumed – effectively negating the benefit from the autoloader’s high rate of fire and exposing the vehicle to potential target retaliation. Firing to the side was even worse. Several attempts were made to mend this flaw, but neither the addition of a muzzle brake, stronger shock absorbers and even hydro-pneumatic suspension elements did not solve the problem. In addition, the high muzzle flames and the resulting significant shockwave required the infantry to stay away from the vehicle intended to support them. The Bundeswehr also criticized the too small ammunition load, as well as the fact that the autoloader magazine could not be re-filled under armor protection, so that the vehicle had to retreat to safe areas to re-arm and/or to adapt to a new mission profile. This inherent flaw not only put the crew under the hazards of enemy fire, it also negated the vehicle’s NBC protection – a serious issue and likely Cold War scenario. Another weak point was the Diana’s weight: even though the net gain of weight compared with the Luchs was less than 3 tons after the conversion, this became another serious problem that led to the Diana’s demise: during trials the Bundeswehr considered the possibility to airlift the Diana, but its weight (even that of the Luchs, BTW) was too much for the Luftwaffe’s biggest own transport aircraft, the C-160 Transall. Even aircraft from other NATO members, e.g. the common C-130 Hercules, could hardly carry the vehicle. In theory, equipment had to be removed, including the cannon and parts of its mount.

 

Since the tactical value of the vehicle was doubtful and other light anti-tank weapons in the form of the HOT anti-tank missile had reached operational status, so that very light vehicles and even small infantry groups could now effectively fight against full-fledged enemy battle tanks from a safe distance, the Diana’s development was stopped in 1988. Both VTS3 prototypes were mothballed, stored at the Bundeswehr Munster Training Area camp and are still waiting to be revamped as historic exhibits alongside other prototypes like the Kampfpanzer 70 in the German Tank Museum located there, too.

  

Specifications:

Crew: 4 (commander, driver, gunner, radio operator/second driver)

Weight: 22.6 t

Length: 7.74 m (25 ft 4 ¼ in)

Width: 2.98 m ( 9 ft 9 in)

Height: XXX

Ground clearance: 440 mm (1 ft 4 in)

Suspension: hydraulic all-wheel drive and steering

 

Armor:

Unknown, but sufficient to withstand 14.5 mm AP rounds

 

Performance:

Speed: 90 km/h (56 mph) on roads

Operational range: 720 km (445 mi)

Power/weight: 13,3 hp/ton with petrol, 17,3 hp/ton with diesel

 

Engine:

1× Daimler Benz OM 403A turbocharged 10-cylinder 4-stroke multi-fuel engine,

delivering 300 hp with petrol, 390 hp with diesel

 

Armament:

1× 105 mm L7 rifled gun with autoloader (8 rounds ready, plus 16 in reserve)

1× co-axial 7.92 mm M3 machine gun with 2.000 rounds

Two groups of four Wegmann 76 mm smoke mortars

  

The kit and its assembly:

I have been a big Luchs fan since I witnessed one in action during a public Bundeswehr demo day when I was around 10 years old: a huge, boxy and futuristic vehicle with strange proportions, gigantic wheels, water propellers, a mind-boggling mobility and all of this utterly silent. Today you’d assume that this vehicle had an electric engine – spooky! So I always had a soft spot for it, and now it was time and a neat occasion to build a what-if model around it.

 

This fictional wheeled tank prototype model was spawned by a leftover Revell 1:72 Luchs kit, which I had bought some time ago primarily for the turret, used in a fictional post-WWII SdKfz. 234 “Puma” conversion. With just the chassis left I wondered what other use or equipment it might take, and, after several weeks with the idea in the back of my mind, I stumbled at Silesian Models over an M1128 resin conversion set for the Trumpeter M1126 “Stryker” 8x8 APC model. From this set as potential donor for a conversion the prototype idea with an unmanned turret was born.

 

Originally I just planned to mount the new turret onto the OOB hull, but when playing with the parts I found the look with an overhanging gun barrel and the bigger turret placed well forward on the hull goofy and unbalanced. I was about to shelf the idea again, until I recognized that the Luchs’ hull is almost symmetrical – the upper hull half could be easily reversed on the chassis tub (at least on the kit…), and this would allow much better proportions. From this conceptual change the build went straightforward, reversing the upper hull only took some minor PSR. The resin turret was taken mostly OOB, it only needed a scratched adapter to fit into the respective hull opening. I just added a co-axial machine gun fairing, antenna bases (from the Luchs kit, since they could, due to the long gun barrel, not be attached to the hull anymore) and smoke grenade mortars (also taken from the Luchs).

 

An unnerving challenge became the Luchs kit’s suspension and drive train – it took two days to assemble the vehicle’s underside alone! While this area is very accurate and delicate, the fact that almost EVERY lever and stabilizer is a separate piece on four(!) axles made the assembly a very slow process. Just for reference: the kit comes with three and a half sprues. A full one for the wheels (each consists of three parts, and more than another one for suspension and drivetrain!

Furthermore, the many hull surface details like tools or handles – these are more than a dozen bits and pieces – are separate, very fragile and small (tiny!), too. Cutting all these wee parts out and cleaning them was a tedious affair, too, plus painting them separately.

Otherwise the model went together well, but it’s certainly not good for quick builders and those with big fingers and/or poor sight.

  

Painting and markings:

The paint scheme was a conservative choice; it is a faithful adaptation of the Bundeswehr’s NATO standard camouflage for the European theatre of operations that was introduced in the Eighties. It was adopted by many armies to confuse potential aggressors from the East, so that observers could not easily identify a vehicle and its nationality. It consists of a green base with red-brown and black blotches, in Germany it was executed with RAL tones, namely 6031 (Bronze Green), 8027 (Leather Brown) and 9021 (Tar Black). The pattern was standardized for each vehicle type and I stuck to the official Luchs pattern, trying to adapt it to the new/bigger turret. I used Revell acrylic paints, since the authentic RAL tones are readily available in this product range (namely the tones 06, 65 and 84). The big tires were painted with Revell 09 (Anthracite).

 

Next the model was treated with a highly thinned washing with black and red-brown acrylic paint, before decals were applied, taken from the OOB sheet and without unit markings, since the Diana would represent a test vehicle. After sealing them with a thin coat of clear varnish the model was furthermore treated with lightly dry-brushed Revell 45 and 75 to emphasize edges and surface details, and the separately painted hull equipment was mounted. The following step was a cloudy treatment with watercolors (from a typical school paintbox, it’s great stuff for weathering!), simulating dust residue all over the hull. After a final protective coat with matt acrylic varnish I finally added some mineral artist pigments to the lower hull areas and created mud crusts on the wheels through light wet varnish traces into which pigments were “dusted”.

  

Basically a simple project, but the complex Luchs kit with its zillion of wee bits and pieces took time and cost some nerves. However, the result looks pretty good, and the Stryker turret blends well into the overall package. Not certain how realistic the swap of the Luchs’ internal layout would have been, but I think that the turret moved to the rear makes more sense than the original forward position? After all, the model is supposed to be a prototype, so there’s certainly room for creative freedom. And in classic Bundeswehr colors, the whole thing even looks pretty convincing.

 

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!

 

The English Electric Lightning was a supersonic jet fighter aircraft of the Cold War era, noted for its great speed. It was the only all-British Mach 2 fighter aircraft and the first aircraft in the world capable of supercruise. The Lightning was renowned for its capabilities as an interceptor; pilots commonly described it as "being saddled to a skyrocket". Following English Electric's integration into the unified British Aircraft Corporation, the aircraft was marketed as the BAC Lightning.

 

The Lightning was prominently used by the Royal Air Force, but also by Saudi Arabia, Kuwait and Singapore. The first aircraft to enter service with the RAF, three pre-production P.1Bs, arrived at RAF Coltishall in Norfolk on 23 December 1959, and from there the aircraft was permanently developed further.

 

The F.6 was the ultimate Lightning version to see British service. Originally, it was nearly identical to the former F.3A (which introduced a large ventral tank and new cambered wings), with the exception that it had provisions to carry 260 gal (1,180 l) ferry tanks on pylons over the wings. These tanks were jettisonable in an emergency, and gave the F.6 a substantially improved deployment capability. The Ferranti A.I.23B radar supported autonomous search, automatic target tracking, and ranging for all weapons, while the pilot attack sight provided gyroscopically derived lead angle and backup stadiametric ranging for gun firing. The radar and gunsight were collectively designated the AIRPASS: Airborne Interception Radar and Pilot Attack Sight System. Combined with the Red Top missile, the system offered a limited forward hemisphere attack capability.

 

There remained one glaring shortcoming of the late Lightning versions, though: the lack of cannon. This was finally rectified in the form of a modified ventral tank with two ADEN cannon mounted in the front. The addition of the cannon and their ammunition decreased the tank's fuel capacity from 610 gal to 535 gal (2,430 l), but the cannon made the F.6 a 'real fighter' again.

 

Singapore's Lightnings came as a bargain, as they had been taken over directly from RAF stocks. In 1967 No. 74 'Tiger' Squadron was moved to RAF Tengah in Singapore to take over the air defense role from the Gloster Javelin equipped 64 Squadron. When 74 Squadron was disbanded in September 1971, following the withdrawal of British forces from Singapore (in the course of the "East of Suez" campaign, which already started in 1968), Tengah Air Base and many other RAF sites like Seletar, Sembawang and Changi as well as the RAF air defense radar station and Bloodhound II surface-to-air missiles were handed over to the SADC, Singapore’s Air Defense Command, which was suddenly entrusted with a huge responsibility and resources.

 

Anyway, in order to fulfill its aerial defense role, Singapore's air force lacked a potent interceptor, and so it was agreed with the RAF that 74 Squadron would leave fourteen Lightnings (twelve F.6 fighters and two T.5 trainers behind, while the rest was transferred to Akrotiri, Cyprus, where the RAF aircraft were integrated into 56 Squadron.

 

The ex-RAF Lightnings, however, immediately formed the small country's quick alert interceptor backbone and were grouped into the newly established 139th Squadron, “Swifts”. The small squadron kept its base at Tengah, as a sister unit to 140th Squadron which operated the Hawker Hunter FGA.74 in the fighter role since 1971.

 

Singapore's Lightnings differed slightly from the RAF F.6: In order to minimize the maintenance costs of this specialized aircraft, the SADC decided to drop the Red Top missile armament. The Red Top gave all-weather capability, but operating this standalone system for just a dozen of aircraft was deemed cost-inefficient. Keeping the high-performance Lightnings airworthy was already costly and demanding enough.

 

As a cost-effective measure, all SADC Lightnings were modified to carry four AIM-9B and later E Sidewinder AAMs on special, Y-shaped pylons, not unlike those used on the US Navy's F-8 Crusader. In order to enhance all-weather capability, an AAS-15 IRST sensor was added, located in a fairing in front of the wind shield. Its electronics used the space of the omitted, fuselage-mounted cannons of the F.6 variant.

 

Long range and loitering time were only of secondary relevance, so that the Singaporean Lightnings typically carried two 30 mm ADEN cannons with 120 RPG in the lower fuselage, which reduced the internal fuel capacity slightly but made the Lightning a true close combat fighter with high agility, speed and rate of climb. Since the RSAF interceptors would only engage in combat after direct visual contact and target identification, the Sidewinders' short range was no operational problem - and because that missile type was also in use with RSAF's Hawker Hunters, this solution was very cost-efficient.

 

The F.6's ability to carry the overwing ferry tanks (the so-called 'Overburgers') was retained, though, as well as the refueling probe and, and with its modified/updated avionics the RSAF Lightnings received the local designations of F.6S and T.5S. They were exclusively used in the interceptor role and retained their natural metal finish all though their service career.

 

In 1975, the SADC was eventually renamed into ‘Republic of Singapore Air Force’ (RSAF), and the aircraft received appropriate markings.

 

The RSAF Lightnings saw an uneventful career. One aircraft was lost due to hydraulic failure in August 1979 (the pilot ejected safely), and when in 1983 RSAF's F-5S fighters took over the duties of airborne interception from the Royal Australian Air Force's Mirage IIIOs detachment stationed at Tengah, all remaining RSAF Lightnings were retired and phased out of service in March 1984 and scrapped. The type's global career did not last much longer: the last RAF Lightnings were retired in 1988 and replaced by the Panavia Tornado ADV.

  

BAE Lightning F.6S general characteristics

Crew: 1

Length: 55 ft 3 in (16.8 m)

Wingspan: 34 ft 10 in (10.6 m)

Height: 19 ft 7 in (5.97 m)

Wing area: 474.5 ft² (44.08 m²)

Empty weight: 31,068 lb (14.092 kg)

Max. take-off weight: 45,750 lb (20.752 kg)

 

Powerplant:

2× Rolls-Royce Avon 301R afterburning turbojets with 12,530 lbf (55.74 kN) dry thrust each and 16,000 lbf (71.17 kN) with afterburner

 

Performance:

Maximum speed: Mach 2.0 (1.300 mph/2.100 km/h) at 36.000 ft.

Range: 850 mi (1.370 km) Supersonic intercept radius: 155 mi (250 km)

Ferry range: 920 mi (800 NM/ 1.660 km) 1,270 mi (1.100 NM/ 2.040 km) with ferry tanks

Service ceiling: 54.000 ft (16.000 m); zoom ceiling >70.000 ft

Rate of climb: 20.000 ft/min (100 m/s)

Wing loading: 76 lb/ft² (370 kg/m²)

Thrust/weight: 0.78

 

Armament:

2× under-fuselage hardpoints for mounting air-to-air missiles (2 or 4 AIM-9 Sidewinder)

Optional, but typically fitted: 2× 30 mm (1.18 in) ADEN cannons with 120 RPG in the lower fuselage, reducing the ventral tank's fuel capacity from 610 gal to 535 gal (2,430 l)

2× overwing pylon stations for 260 gal ferry tanks

    

The kit and its assembly

The inspiration to this whiffy Lightning came through fellow user Nick at whatifmodelers.com (credits go to him), who brought up the idea of EE/BAC Lightnings in Singapore use: such a small country would be the ideal user of this fast interceptor with its limited range. I found the idea very convincing and plausible, and since I like the Lightning and its unique design very much, I (too) had to make one for the 2013 group build "Asiarama" - even if a respective model would potentially be built twice. But it's always fun to see how the same theme is interpreted by different modelers, I am looking forward to my creation's sister ship.

 

The kit is the Matchbox Lightning F.2A/F.6 (PK-114) from 1976, and only little was changed. Fit is O.K., building the model poses no real problems. But the kit needs some putty work at the fuselage seams, and the many raised panel lines (esp. at the belly tank) and other relatively fine and many details for a Matchbox kit make sanding rather hazardous. Nevertheless, it's a solid kit. A bit toy-like, yes, but good value for the relatively little money. What's saved might be well invested into an extra decal sheet (see below).

 

Internal mods include some added details inside of the cockpit and the landing gear wells, but these were just enhancements to the original parts. The Avons' afterburners were simulated with implanted sprocket wheels from a 1:72 Panzer IV - not intended to be realistic at all, but IMO better than the kit's original, plain end caps!

 

Externally…

· the flaps were lowered

· some antennae and a finer pitot added

· about a dozen small air intakes/outlets were added (cut from styrene) or drilled open

· the IRST sensor fairing added, sculpted from a simple piece of sprue

· a pair of 30mm barrels mounted in the lower fuselage (hollow steel needles)

· the scratch-built quadruple Sidewinder rails are worth mentioning

 

The AIM-9E missiles come from the scrap heap, I was lucky to find a matching set of four. The optional overwing fuel tanks were not fitted, as this was supposed to become a "standard RSAF aircraft". I also did not opt for (popular) weapons mounted above the wings, since this would have called for modifications of the F.6 which did not appear worthwhile to me in context with the envisaged RSAF use. Switching to four Sidewinders on the fuselage hardpoints was IMHO enough.

  

Painting and markings

More effort went into this project part. The end of RAF's 74 Squadron at Tengah and the return of the Lightnings to Europe opened a nice historical window for my whif. Since the Tiger Squadron's aircraft sported a natural metal finish, partly with black fins (accidentally, the Matchbox kit offers just the correct decal/painting option), I decided that the RSAF would keep their aircraft this way: without camouflage, just RSAF markings, with some bold and highly visible colors added.

A SEA scheme (as on the RSAF Hunters, Strikemasters of Skyhawks) would have been another serious option and certainly look weird on a Lightning, as well as a three-tone gray wraparound low-viz scheme as used on the F-5E/S fighters, plausible in the 80ies onwards.

 

Testors Aluminum Metallizer was used as basic color, but several other shades including Steel and Titanium Metallizer, Testors normal Aluminum enamel paint, Humbrol 11 and 56 as well as Revell Aqua Color Aluminum were used for selected surface portions or panels all around the hull.

 

The spine including the cockpit frame was painted black. Using RSAF's 140 Squadron's colors as a benchmark, the fin received a checkered decoration in black and red, reminiscent of RAF 56 Squadron Lightnings. This was created through a black, painted base, onto which decals - every red field was cut from a red surface sheet from TL Modellbau - were transferred. Sounds horrible, but it was easier and more exact than expected. A very convenient solution with sharp edges and good contrast. A red trim line, 1mm wide, was added as a decal along the spine in a similar fashion.

 

The squadron emblem on the Lightning's nose was created through the same scratch method: from colored 1.5mm wide stripes, 3mm pieces were cut and applied one by one to form the checkered bar. The swift emblem comes from a 1:48 sheet for French WWI aircraft, made by Peddinghaus Decals from Germany. The overall look was supposed to be similar to the (real) 140 Squadron badge.

 

As a consequence, this created a logical problem: where to put the national roundel? Lightnings usually wore them on the nose, but unlike RAF style (where a bar was added around the roundel), I used RSAF Hunters as benchmark.

The RSAF roundels were a challenge. In order not to cramp the nose section too much I decided to place the roundels behind the wings. Not the must prominent position, but plausible. I originally wanted to use decals from the current 1:72 Airfix BAC Strikemaster kit, but they turned out to be too small.

After long search I was happy to find a 1:48 aftermarket decal sheet from Morgan Decals for an A-4S, with full color yin-yang roundels - in Canada! It took three weeks to wait for these parts, though, even though work had to wait for this final but vital detail !

 

As a side not, AFAIK any RSAF aircraft only carried and carries these roundels on the fuselage sides, not on the wings' upper or lower surfaces? It leaves the model a bit naked, so I decided to add 'RSAF' letters and the tactical code '237' to the wings' upper and lower sides. But the fin is surely bold enough to compensate ;)

 

The cockpit interior was painted in Medium Sea Gray (Humbrol 27), the landing gear and the wells in a mix of Humbrol 56 and 34, for a light gray with a metallic shimmer.

 

Other details include the white area behind the cockpit, which contained an AVPIN/isopropyl nitrate tank for the Lightning's start engine. Hazardous stuff - the light color was to prevent excessive heating in the sun, a common detail for Lightnings used in Cyprus. Another piece that took some effort was the shaggy nose cone, which was painted in a mix of Humbrol 56 and 86 and received some serious dry painting in light gray and ochre.

 

Stencils etc. were taken from an extensive aftermarket sheet for Lightnings from Xtradecal (X72096). The Matchbox decal sheet of PK-114 just offers the ejection seat warning triangles - that's all! The later T.55 kit is much better in this regard, but still far from being complete.

 

After decal application and to enhance the metallic look, the kit received a careful rubbing with finely grinded graphite, which, as a side effect, also emphasized the raised panel lines. A little dry painting was done around some exhaust openings, but nothing to make the aircraft look really old. This is supposed to be a bright and well-maintained interceptor!

 

Finally, the kit received a thin coat with glossy acrylic varnish, the spine and fin received a semi-matt coat and the black glare shield in front of the cockpit became matt.

   

A pretty straightforward build for the Asiarama group build, and with best regards and credits to Nick who came up with the original idea. Most work went into the decals and the NMF finish. I like the bold colors, and despite being flamboyant, they do not make the Lightning look too far out of place?

 

As a final note: XR773 never ended up in Singapore service, just like any BAC Lightning. In real life, the aircraft (first flight was in February 1966 with Roly Beamont at the controls) was transferred from 74 Squadron at RAF Tengah to Akrotiri in late 1971 and had a pretty long life, further serving with 56, 5 and 11 Squadrons as well as the Lightning Training Flight. And even then it’s life was far from over: XR773 is one of the Lightning survivors; in South Africa it flew in private hands as ZU-BEW until 2010, when it was grounded and the airframe put up to sale.

Center Healthy and balanced Diet Idea

 

Weight control and regular physical exercise are actually vital for maintaining your heart in shape-- yet the food items you eat might matter equally very much. A heart-healthy nutrition can lower your threat of heart problem or stroke by 80 %. By recognizing which foods items together with the techniques of cooking are actually healthiest for your center, you might be actually capable to prevent or handle cardiovascular disease and hypertension, and take higher management over the top quality as well as length of your lifestyle.

In This Write-up:.

 

You can easily protect against cardiovascular disease.

Minimize out filled and also trans fats.

Choose foods items that decrease cholesterol levels.

Avoid salt and also processed foods.

Rekindle residence food preparation.

Focus on high-fiber foods items.

Control section measurements-- and also your weight.

 

Print this! Ordinary Text SizeLarger Content SizeLargest Words Measurements.

You can easily go through measures to avoid center illness.

 

Heart problem might be actually the leading great of guys and also ladies, however that doesn't imply you can not defend on your own. Aside from exercise, being actually careful pertaining to just what you consume-- as well as just what you do not eat-- can assist you reduced blood cholesterol, control blood tension and blood glucose degrees, together with the sustain a healthy mass. If you've presently been actually recognized using heart problem or perhaps have high cholesterol levels or blood stress, a heart-smart diet plan can aid you much better take care of these disorders, lowering your hazard for heart attack.

 

Improving your eating plan is a significant action towards avoiding cardiovascular disease, however you may sense uncertain where to start. Enjoy an appearance at the large photo: your total consuming designs are more vital compared to consuming over one-on-one foods. No single food items could make you amazingly healthy and balanced, therefore your goal could be to combine a selection of well-balanced foods items cooked in healthy and balanced techniques in to your nutrition, together with the create these routines your new lifestyle.

Consume Far more.

 

Consume Much less.

 

Well-balanced fatty tissues: raw nuts, tawny oil, fish oils, flax seeds, or perhaps avocados.

 

Trans fatty tissues from somewhat hydrogenated or deep-fried foods; filled fatty tissues through whole-fat dairy products or reddish meat.

 

Nutrients: vibrant fruits as well as vegetables-- fresh or perhaps frozen, well prepared without butter.

 

Packaged foods of any kind, primarily those extreme in salt.

 

Nutrient: grains, breadstuffs, and also pasta created from whole pellets or vegetables.

 

White or even egg cell breads, granola-type cereals, fine-tuned pastas or even rice.

 

Omega 3 together with the protein: fish together with the seafood, poultry.

 

Reddish food, bacon, sausage, seared chicken.

 

Calcium mineral together with the healthy protein: Egg whites, egg cell replacements, skim or perhaps 1 % milk, nonfat or perhaps low-fat cheeses or even yogurt.

 

Egg cell yolk sacs, whole or 2 percent milk, entire milk goods like cheese or natural yogurt.

Heart healthy and balanced diet regimen tips: Reduce saturated and trans fats.

 

Of all the achievable improvements you could make to your eating plan, confining saturated fatty tissues and removing trans fatty tissues entirely is actually perhaps the best significant. Both kinds of fatty tissue raise your LDL, or perhaps "bad" blood cholesterol degree, which can raise your hazard for cardiovascular disease and stroke. The good news is, there are actually several techniques to regulate how very much filled and also trans fatty tissues you consume. Try to keep these causes in mind since you create and prepare meals options-- and also find out tips on how to avoid all of them.

 

Reduce the volume of strong fatty tissues like butter, margarine, or reducing you incorporate to food items when food preparation or serving. You can additionally restrict strong fatty tissue by trimming down fatty tissue off your meat or even selecting leaner proteins.

Swap out high-fat meals for their lower-fat counterparts. Top your baked potato, for example, using salsa or perhaps low-fat yogurt somewhat compared to butter, or utilize low-sugar fruit array on your toast rather of margarine.

Be actually label-savvy. Inspect food items marks on any sort of prepared foods. Many snacks, perhaps even those labeled "minimized fat," might be actually made along with oils containing trans fatty tissues. One clue that a food gets some trans fatty tissue is the expression "somewhat hydrogenated." As well as appear for hidden fat; refried beans might include lard, or perhaps breakfast cereals could possess substantial volumes of fat.

Replace your practices. The most effective method to steer clear of filled or trans fats is actually to modify your way of living strategies. Rather than flakes, snack on fruit or vegetables. Difficulty your own self to prepare along with a limited amount of butter. At restaurants, ask that dressings or even dressings be applied the side-- or ended altogether.

 

Not all fats misbehave for your heart.

 

While filled and trans fats are actually obstructions to a healthy soul, unsaturated fats are actually essential permanently health. You simply need to recognize the difference. "Great" fats consist of:.

 

Omega 3 Fatty Acids. Greasy fish like fish, trout, or even herring together with the flax seed, canola oil, and also walnuts all contain polyunsaturated fats that are crucial for the physical body.

Omega 6 Fatty Acids. Vegetable oils, soy nuts, together with the several sorts of seeds all contain healthy fatty tissues.

Monounsaturated fatty tissues. Almonds, cashews, peanuts, pecans, as well as butters made because of these nuts, in addition to avocadoes, are all wonderful origins of "excellent" fatty tissue.

 

Heart well-balanced diet plan pointers: Decide on foods items that decrease cholesterol.

 

Unwell cholesterol levels boost your danger for heart problem, so always keeping yours reduced is crucial to a healthier core. Your eating plan is main to managing your cholesterol. Some meals can in fact lower your cholesterol levels, while others simply create matters worse.

 

Foods having high levels of saturated fats or trans fats-- such as spud chips together with the packaged cookies-- can easily increase your cholesterol levels a lot a lot more drastically compared to blood cholesterol- having foods such since eggs. Filled fat together with the trans fat each rise LDL ("poor") blood cholesterol.

Pick meals rich in unsaturated fatty tissues, fiber, and healthy protein. The best foods for reducing cholesterol levels are actually slow cooked oatmeal, fish, walnuts (and additional nuts), olive oil, as well as foods fortified along with sterols or even stanols-- materials located in plants that assist block the absorption of cholesterol.

Bear in mind that labels could be deceiving. Browsing meals tags could frequently be actually complexed because packaged foods with marks like "cholesterol levels free" or even "reasonable cholesterol" typically aren't always heart-healthy; they might perhaps even have cholesterol that's heart-risky. Stick to nitty-gritties whenever achievable: fruit, veggies, nuts, and lean healthy proteins.

 

Reducing your cholesterol along with fish or perhaps fish oil supplements.

 

By incorporating fish like or herring to your diet regimen two times a full week, you could substantially reduce your blood cholesterol, together with the thereby your threat for cardiovascular system attack. Fish contain omega-3 fatty acids, which operate like superheroes, performing great acts for your heart-- and your entire body.

Cardiovascular system well-balanced diet regimen ideas: Stay away from salt and processed foods items.

 

Minimizing the salt in your food is a big component of a heart-healthy diet. The American Cardiovascular system Organization highly recommends no even more than concerning a teaspoon of salt a time for a grownup.

 

Lessen tinned or procedured foods. Much of the sodium you consume comes through tinned or processed foods items like soups or frozen suppers-- also chicken or even various meats usually have actually sodium incorporated during the course of processing. Consuming fresh foods, trying to find unsalted foods, and also making your personal soups or even soups could greatly lessen your sodium intake.

Chef at house, utilizing seasonings for flavor. Make usage of the a lot of tasty choices to salt.

Substitute lowered salt models, or even sodium alternatives. Choose your dressings as well as packaged foods carefully, searching for meals tagged sodium free of cost, reduced salt, or even saltless. Better yet, make use of wholesome ingredients and also prepare without salt.

 

The SPRINKLE eating plan for decreasing blood tension.

 

The Dietary Approaches to Quit Hypertension, or even DASH diet regimen, is actually a particularly fashioned eating program to help you lower your blood pressure, which is actually a major root cause of hypertension and also stroke. To learn far more, download the pamphlet through the National Heart, Breathing, and Blood Principle discovered in the Funds as well as References section beneath.

Cardiovascular system healthy and balanced diet regimen suggestions: Revive home food preparation.

 

It's very challenging to eat right for your heart when you're eating out a great deal, purchasing in, or consuming microwave dinners and also other procedured foods. Fortunately is that you could learn to create quick, core meals in your home. This's much easier and much less taxing than you might think.

Heart-healthy grocery store buying and also keeping.

 

Developing a heart-friendly nutrition begins along with equipping your fridge along with healthy and balanced together with the obtainable foods items. Prep a list before you go to the outlet or even agriculturalist's market, together with the leave a little precious time after your vacation to establish on your own game success during the full week.

Check out marks.

 

While scanning the aisles of a supermarket in the UNITED STATE, search for foods items featuring the American Soul Association's heart-check scar to find heart-healthy foods. This company logo signifies that the food items has actually been accredited to fulfill the United states Soul Association's criteria for saturated fatty tissue together with the blood cholesterol. In Australia, seek the Center Foundation Tick.

 

American Center Affiliation.

 

United states Center Affiliation.

 

Australian Soul Groundwork.

 

Australian Soul Foundation.

 

Make well-balanced substitutions. Decide on substitutions like 1 % or even shaved milk rather of entire milk, limp margarine for butter, and also lean foods like chick together with the fish in area of ribs or area food. These replacements can easily conserve you a whole day's well worth of saturated fat.

Make foods items ready-to-eat. You are actually even more probably to remain heart-healthy when you make healthy meals simple to get hold of throughout your swamped week. When you come residence through grocery buying, cut up vegetables and also fruits and save all of them in the refrigerator, ready for the upcoming food or perhaps when you are seeking a ready-to-eat treat.

Usage your refrigerator. Make healthy and balanced consuming simpler by cold heart-healthy meals in various sections. Freeze fruits for example, bananas, grapes, as well as orange slices to make all of them more fun to eat for little ones. Beware using part dimensions: the highly recommended providing of prepared food is regarding the size of a deck of cards, while an offering of noodles needs to be actually regarding the dimension of a ball.

 

Heart-healthy food preparation recommendations.

Healthy and balanced Recipes Could Save Funds.

 

When you prep and prepare meals in your home, you get far better management over the dietary content and also the overall healthfulness of the meals you eat. An extrad bonus offer: you can easily additionally save funds.

 

Produce a public library of heart-healthy dishes. Stockpile on heart-healthy recipe books and also formulas for food preparation concepts. The web is actually complete of food blogs together with the websites alloted to well-balanced cooking methods as well as formulas, as well as a community library may be an excellent origin for recipe books.

Use heart-healthy cooking methods. Equally as vital as deciding on healthy meals at the food store is actually how you cook those foods items into healthy foods. Make use of low-fat procedures: you can easily cook, broil, microwave, roast, heavy steam, poach, softly rouse fry, or even sauté-- utilizing a percentage of veggie or even tawny oil, minimized salt broth, together with the spices.

Prepare merely twice a week and also make food for the entire week. When you're cooking healthful foods, produce extra assistings. Store since meals in multiple-use vessels-- or straight on plates-- for uncomplicated reheating and ready-to-eat food the rest of the full week. Cooking well-balanced food ahead through this is maybe the best convenient, money-saving, and also heart-saving approach accessible.

 

Heart well-balanced eating plan tips: Concentrate on high-fiber foods items.

 

A diet regimen high in fiber can reduce "poor" cholesterol and also give nutrients that can assist guard from heart disease. Through filling out on entire grains, veggies, as well as fruits, you can easily establish most of the nutrient you'll require, which indicates you'll also be reducing your danger of cardiovascular disease.

Choose entire grains.

 

Processed or perhaps procedured foods are actually lesser in nutrient information, therefore create whole grains an integral aspect of your diet regimen. There are several straightforward techniques to add whole grains to your foods.

 

Breakfast more efficiently. For breakfast pick a high-fiber breakfast grain-- one along with 5 or even more grams of nutrient each offering. Or incorporate a handful of tablespoons of unrefined wheat or grain bran to your beloved grain.

Attempt a brand-new grain. Tryout along with wild rice, wild rice, barley, whole-wheat noodles, and also bulgur. These alternatives are greater in fiber than their additional mainstream counterparts-- together with the you could discover you love their preferences.

Majority your baking. When baking in the house, alternative whole-grain flour for fifty percent or even all of the white flour, given that whole-grain flour is heavier than white colored flour. In yeast breadstuffs, use a little bit far more yeast or even let the dough growth longer. Try including crushed wheat bran grain or even unrefined grain bran to buns, cakes, together with the desserts.

Extra flaxseed. Flaxseeds are actually minor brownish seeds that are high in fiber and also omega-3 fatty acids, which may lower your absolute blood cholesterol. You may grind the seeds in a coffee mill or mixer and stir a tsp of all of them in to yogurt, applesauce, or perhaps in demand cereal.

 

Eat a variety of vegetables and fruits.

 

Many vegetables together with the fruits are reduced in gram calories as well as higher in fiber, making all of them center healthy. You can easily utilize several of the observing methods to create consuming fruits together with the veggies aspect of your diet daily.

 

Try to keep fruit and veggies at your fingertips. Cleaning as well as slashed fruit and veggies and also place them in your refrigerator for healthy and also speedy snacks. Select recipes that feature these high-fiber elements, like veggie stir-fries or fruit salad.

Integrate veggies into your food preparation. Include pre-cut fresh or even frozen veggies to sauces and also soups. Mix cut frosted broccoli into prepared pastas sauce or even toss fresh infant carrots into mishmashes.

Consume more peas, beans, together with the lentils. Extra renal grains to prerecorded soup or even a green salad.

Make snacks count. Wholesome as well as dried fruit, raw vegetables, and also whole-grain crackers are all excellent ways to incorporate fiber at snack precious time. A random handful of nuts is additionally a well-balanced, high-fiber treat.

 

Center healthy diet recommendations: Control section size-- and your mass.

 

Gaining or perhaps bring excess weight means that your heart ought to work harder, and this commonly leads to high blood stress-- a significant source of center illness. Reaching a healthy body mass is actually vital to lowering your hazard of heart disease.

 

Understand serving dimensions. An offering dimension is actually a particular amount of food, specified by typical measurements like mugs, ounces, or perhaps pieces-- as well as a well-balanced offering dimension could be actually a lot more compact compared to you're made use of to. The encouraged offering size for noodles is 1/2 cup, while an offering of meat, chick, or even fish is actually 2 to 3 ozs (57-85 grams). Judging providing dimension is actually a found out skill-set, therefore you might must make use of gauging cups, spoons, as well as a food items size to assist.

Eyeball this. The moment you have a far better concept of exactly what an offering must be, you may predict your portion. You can easily make use of popular things for recommendation; as an example, an offering of pasta ought to be regarding the dimension of a ball (a little smaller than a cricket ball), while an offering of meat, fish, or chick has to do with the size as well as density of a deck of playing cards.

Be cautious of dining establishment portions. Portions provided in restaurants are commonly greater than anyone necessities. Crack an entrée with your eating buddy, or perhaps have half your meal home for tomorrow's lunch.

 

No solitary food may make you like magic healthy, therefore your target may be to incorporate a variety of healthy and balanced foods cooked in well-balanced means in to your diet regimen, and create these practices your fresh lifestyle.

The best meals for lowering blood cholesterol are oat meal, fish, pines (and also additional nuts), tawny oil, and meals reinforced along with sterols or stanols-- compounds located in flowers that help obstruct the absorption of blood cholesterol.

Browsing food items labels may often be actually complicated because packaged meals along with labels like "blood cholesterol free of charge" or perhaps "reasonable cholesterol levels" may not be automatically heart-healthy; they might perhaps even consist of cholesterol levels that is actually heart-risky. While browsing the alleys of a grocery shop in the U.S., appeal for foods items presenting the United states Soul Organization's heart-check scar to detect heart-healthy meals. Only as important since picking healthy and balanced foods items at the grocery store is just how you prepare those foods items into well-balanced meals.

U.S. Army National Guard Soldiers with the 1-178th Field Artillery Battalion, South Carolina National Guard, conduct a live fire training exercise May 1, 2021, at Fort Stewart, Georgia. The training consisted of artillery firing tables and direct fire lanes during their annual training. The unit is required to successfully accomplish all tables in order to be fully mission capable and ready to deploy. (U.S. Army National Guard photo by Spc. Josiah Lining, 108th Public Affairs Detachment)

A fast moving vehicle capable of reaching 400mph. It is the prefered vehicle of the dreadful Void Guards. Used mainly for ground and mob control, the nebulon speedbike is, however, the perfect message carrier. Extremely silent and fast, it can outrun most of its enemies in a matter of seconds - and its small size makes it hard to hit, even for the fastest crafts. Very little is known concerning the mechanics involved in this machine but the red laser beam mounted on the front gives you a fair warning that there's really only one thing you should be concerned about - can you run THAT fast?

In the past few days I established that my new Nikon 1 camera is a capable device in its own right. Today I added the functionality for more field of view reach with my current array of Nikkor F-mount lenses (adding the 2.7x magnification in the Nikon 1 thanks to a just delivered FT1 adapter). My Nikon 1 presents the unique combination of a small compact camera body, compatibility with F-mount Nikkor lenses - and a big 2.7x crop factor.

 

When Nikon entered the mirrorless interchangeable lens digital market in October 2011, they chose the road less traveled, at least in terms of sensor size. Everyone in the market up to that point packed sensor sizes straight out of a APS-c DSLR (w/ a 1.5x crop), Nikon chose to go in the other direction. More than a few eyebrows were raised as the the Nikon 1 system carried a sensor with the Nikon designation "CX" along with a 2.7x crop factor.

 

Nikon held the resolution down to 10.1 megapixels which gave hope that the overall small sensor size might still deliver some decent high ISO noise performance (but skeptics noted that Nikon seemed to be bypassing larger sized sensors that, generally, would provide the better noise performance that was one of the major selling points for this new class of camera).

 

Almost overlooked in all the hoopla surrounding the introduction of the Nikon 1 in 2011 was this single sentence, buried deep in the press release: "Additionally, the FT1 F-mount adapter for legacy Nikkor lenses will be available in the future, so that photographers can utilize their collection of quality Nikkor lenses." The available FT1 F-mount adapter along with a camera bag full of Nikkor F-mount glass was my catalyst for the Nikon 1 purchase.

 

Equipping my Nikon1 with the FT1 adapter alone didn't change much in the way of weight and balance initially; the Nikon 1 10-30mm zoom weighs in at about 4.6 ounces and extends a minimum about 2.5 inches forward from the camera body. The FT1 adapter weighs in at 6 ounces and extends about 1.5 inches in front of the camera; the foot of the FT-1 is metal and threaded with the industry-standard 3/8 inch fitting to accept a tripod or ball head stud.

 

After I attached some F mount glass things start to get interesting. Currently, Nikon lists 65 current F-mount lenses that function with the FT1 on a Nikon 1, and without exception these lenses do not share the compact size and light weight of the Nikon 1 lens. Nevertheless, the Nikkor (and Sigma for Nikon) lenses I attached were surprisingly comfortable when hand held on the Nikon 1. Ease of handling is directly related to the barrel length of lens being used - shorter lenses handle easy attached to the Nikon 1, while longer lenses, particularly my 28-300mm (which when fully extended is about 12 inches) takes a bit more attention when balancing in my hand for shooting.

 

I have done some sample captures on this Nikon 1 with a Nikkor 28-300mm (75.6-810mm w/ the 2.7x crop), a Nikkor 35mm (94.5mm w/ the 2.7x crop), a Sigma 24-70mm (64.8- 89mm w/ the 2.7x crop) and a Sigma 15mm Fisheye (40.5mm w/ the 2.7 crop), a Nikkor 14-24mm (33.6-64.8mm w/ the 2.7x crop), and a Rikonon 8mm Fisheye (21.6mm w/ the 2.7x crop).

 

www.facebook.com/media/set/?set=a.10200549294630188.10737...

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!

 

The Indian HAL HG-30 Bāja (‘Hawk’) had been designed and manufactured by Hindustan Aeronautics Ltd. in the early 60ies, when it became clear that the Indian Air Force was left without a capable and rather simple aircraft for these roles - the “jet age” had been in full development, but fast and large aircraft like the Su-7 or Hawker Hunter were just not suited for low-altitude missions against day and night visible ground targets in a broad area.

 

Indian military planners assumed that potential aggressor will first disable airfields, so the Bāja was designed to take-off from short unprepared runways, and it was readily available to be loaded with weapons and supplied through a flexible system of auxiliary airfields that required no special preparations, especially in mountainous regions.

 

The resulting HG-30 Bāja was a light, single-engine, low-wing single-seat aircraft with a metal airframe, capable of performing close air support, counter insurgency (COIN), and reconnaissance missions. The type featured a license-built Rolls Royce Dart turboprop engine and a reinforced, retractable tricycle landing gear for operations on rugged terrain. The unpressurized cockpit was placed as far forward and high as possible, offering the pilot an excellent view. The ejection seat was armored and the cockpit lined with nylon flak curtains.

The first HG-30 prototype flew in February 1962, and a total of 89 examples of the Bāja were built between 1963 and 1965, including two pre-production aircraft. These introduced some improvements like fixed wingtip tanks, a bulged canopy which improved the rear view or self-sealing and foam-filled fuselage tanks.

 

Armament consisted of four fixed 20mm cannons in the wings, plus unguided missiles, unguided bombs or napalm tanks under the wings and the fuselage on a total of 11 hardpoints. The inner pair under the wings as well as the centerline pylon were able to carry 1.000 lbs each and were ‘wet’ for optional drop tanks. The next pair could carry 500 lbs each, and the outer six attachment points were reserved for missile rails or single bombs of up to 200 lbs caliber. A total external ordnance load of up to 4.500 lbs could be carried, even though this was rarely practiced since it severely hampered handling.

 

The Bāja was exclusively used by the Indian Air Force, serving with 3rd (‘Cobras’) and 5th (‘Tuskers’) Squadrons in the Eastern and Western regions, alongside Toofani and Ajeet fighter bombers. Even though there was some foreign interest (e .g. from Israel and Yugoslavia,) no export sales came to fruition.

A tandem-seated trainer version was envisaged, but never left the drawing board, since Hindustan had already developed the HJT-16 Kiran jet trainer for the IAF which was more suitable, esp. with its side-by-side cockpit. Even a maritime version with foldable outer wings, arresting hook and structural reinforcements was considered for the Indian Navy.

 

The HG-30 did not make it in time into service for the five-week Indo-Pakistani war of 1965, but later saw serious action in the course of the Bangladesh Liberation War and the ensuing next clash between India and Pakistan in December 1971, when all aircraft (originally delivered in a natural metal finish) quickly received improvised camouflage schemes.

 

The 1971 campaign settled down to series of daylight anti-airfield, anti-radar and close-support attacks by fighters, with night attacks against airfields and strategic targets, into which the HG-30s were heavily involved. Sporadic raids by the IAF continued against Pakistan's forward air bases in the West until the end of the war, and large scale interdiction and close-support operations were maintained.

The HG-30 excelled at close air support. Its straight wings allowed it to engage targets 150 MPH slower than swept-wing jet fighters. This slower speed improved shooting and bombing accuracy, enabling pilots to achieve an average accuracy of less than 40 feet, and the turboprop engine offered a much better fuel consumption than the jet engines of that era.

While it was not a fast aircraft and its pilots were a bit looked down upon by their jet pilot colleagues, the HG-30 was well liked by its crews because of its agility, stability at low speed, ease of service under field conditions and the crucial ability to absorb a lot of punishment with its rigid and simple structure.

 

After the 1971 conflict the Bāja served with the IAF without any further warfare duty until 1993, when, after the loss of about two dozen aircraft due to enemy fire and (only three) accidents, the type was completely retired and its COIN duties taken over by Mi-25 and Mi-35 helicopters, which had been gradually introduced into IAF service since 1984.

  

General characteristics

Crew: 1

Length: 10.23 m (33 ft 6¼ in)

Wingspan: 12.38 m (40 ft 7¼ in) incl. wing tip tanks

Height: 3.95 m (12 ft 11¼ in)

Empty weight: 7,689 lb (3,488 kg)

Max. take-off weight: Loaded weight: 11,652 lb (5,285 kg)

 

Powerplant:

1× Rolls Royce Dart RDa.7 turboprop engine, with 1.815 ehp (1.354 kW)/1.630 shp (1.220 kW) at 15,000 rpm

 

Performance

Maximum speed: 469 mph (755 km/h) at sea level and in clean configuration

Stall speed: 88 km/h (48 knots 55 mph)

Service ceiling: 34,000 ft (10,363 m)

Rate of climb: 5,020 ft/min (25.5 m/s)

Range: 1,385 miles (2,228 km) at max. take-off weight

 

Armament:

4× 20mm cannons (2 per wing) with 250 RPG

A total of 11 underwing and fuselage hardpoints with a capacity of 4.500 lbs (2.034 kg); provisions to carry combinations of general purpose or cluster bombs, machine gun pods, unguided missiles, air-to-ground rocket pods, fuel drop tanks, and napalm tanks.

     

The kit and its assembly

This fictional COIN aircraft came to be when I stumbled across the vintage Heller Breguet Alizé kit in 1:100 scale. I did some math and came to the conclusion that the kit would make a pretty plausible single-seat propeller aircraft in 1:72...

 

Finding a story and a potential user was more of a challenge. I finally settled on India – not only because the country had and has a potent aircraft industry, a COIN aircraft (apart from obsolete WWII types) would have matched well into the IAF in the early 70ies. Brazil was another manufacturer candidate – but then I had the vision of Indian Su-7 and their unique camouflage scheme, and this was what the kit was to evolve to! Muahahah!

 

What started as a simple adaptation idea turned into a true Frankenstein job, because only little was left from the Heller Alizé – the kit is SO crappy…

 

What was thrown into the mix:

• Fuselage, rudder and front wheel doors from the Heller Alizé

• Horizontal stabilizers from an Airfix P-51 Mustang

• Wings are the outer parts from an Airfix Fw 189, clipped and with new landing gear wells

• Landing gear comes from a Hobby Boss F-86, the main wheels from the scrap box

• Cockpit tub comes from a Heller Alpha Jet, seat and pilot from the scrap box

• The canopy comes from a Hobby Boss F4U Corsair

• Ordnance hardpoints were cut from styrene strips

• Propeller consists of a spinner from a Matchbox Mitsubishi Zero and blades from two AH-1 tail rotors

• Ordnance was puzzled together from the scrap box; the six retarder bombs appeared appropriate, the four missile pods were built from Matchbox parts. The wingtip tanks are streamlines 1.000 lbs bombs.

 

The only major sculpting work was done around the nose, in order to make the bigger propeller fiat and to simulate an appropriate air intake for the engine. Overall this thing looks pretty goofy, rather jet-like, with the slightly swept wings. On the other side, the Bāja does not look bad at all, and it has that “Small man’s A-10” aura to it.

 

Putting the parts together only posed two trouble zones: the canopy and the wings. The Corsair canopy would more or less fit, getting it in place and shaping the spine intersection was more demanding than expected. Still not perfect, but this was a “quick and dirty” project with a poor basis, anyway, so I don’t bother much.

Another tricky thing were the wings and getting them on the fuselage. That the Fw 189 wings ended up here has a reason: the original kit provided two pairs of upper wing halves, the lower halves were lacking! Here these obsolete parts finally found a good use, even though the resulting wing is pretty thick and called for some serious putty work on the belly side… Anyway, this was still easier than trying to modify the Alizé wings into something useful, and a thick wing ain’t bad for low altitude and bigger external loads.

  

Painting and markings

As mentioned before, the garish paint scheme is inspired by IAF Su-7 fighter bombers during/after the India-Pakistani confrontation of 1971. It’s almost surreal, reason enough to use it. Since a 1:72 Su-7 takes up so much shelf space I was happy to find this smaller aircraft as a suitable placebo.

 

I used Su-7 pictures as benchmarks, and settled for the following enamels as basic tones for the upper grey, brown and green:

• Humbrol 176 (Neutral Grey, out of production), for a dull and bluish medium grey

• Testors 1583 (Rubber), a very dark, reddish brown

• Humbrol 114 (Russian Green, out of production)

 

For the lower sides I used Testors 2123 (Russian Underside Blue). The kit received a black ink wash and some dry painting for weathering/more depth. Judging real life aircraft pics of IAF Su-7 and MiG-21, the original underside tone is hardly different from the upper blue grey and it seems on some aircraft as if the upper tone had been wrapped around. The aircraft do not appear very uniform at all, anyway.

 

Together with the bright IAF roundels the result looks a bit as if that thing had been designed by 6 year old, but the livery has its charm - the thing looks VERY unique! The roundels come from a generic TL Modellbau aftermarket sheet, the tactical codes are single white letters from the same manufacturer. Other stencils, warning signs and the squadron emblem come from the scrap box – Indian aircraft tend to look rather bleak and purposeful, except when wearing war game markings...

   

In the end, a small and quick project. The model was assembled in just two days, basic painting done on the third day and decals plus some weathering and detail work on the forth – including pics. A new record, even though this one was not built for perfectionism, rather as a recycling kit with lots of stock material at hand. But overall the Bāja looks exotic and somehow quite convincing?

Some background:

The VF-1 was developed by Stonewell/Bellcom/Shinnakasu for the U.N. Spacy by using alien Overtechnology obtained from the SDF-1 Macross alien spaceship. The space-capable VF-1's combat debut was on February 7, 2009, during the Battle of South Ataria Island - the first battle of Space War I - and remained the mainstay fighter of the U.N. Spacy for the entire conflict. Introduced in 2008, the VF-1 would be out of frontline service just five years later, though.

 

The VF-1 proved to be an extremely capable craft, successfully combating a variety of Zentraedi mecha even in most sorties which saw UN Spacy forces significantly outnumbered. The versatility of the Valkyrie design enabled the variable fighter to act as both large-scale infantry and as air/space superiority fighter. The basic VF-1 was built and deployed in four minor variants (designated A, J, and S single-seater and the D two-seater/trainer) and its success was increased by continued development of various enhancements including the GBP-1S "Armored" Valkyrie exoskeleton with enhanced protection and integrated missile launchers, the so-called FAST (“Fuel And Sensor Tray”) packs that created the fully space-capable "Super" Valkyries and the additional RÖ-X2 heavy cannon pack weapon system for the VF-1S “Super Valkyrie”.

 

After the end of Space War I, the VF-1 continued to be manufactured both in the Sol system and throughout the UNG space colonies. At the end of 2015 the final rollout of the VF-1 was celebrated at a special ceremony, commemorating this most famous of variable fighters. The VF-1 Valkryie was built from 2006 to 2013 with a total production of 5,459 VF-1 variable fighters with several original variants (VF-1A = 5,093, VF-1D = 85, VF-1J = 49, VF-1S = 30, VF-1G = 12, VE-1 = 122, VT-1 = 68), even though these machines were frequently updated and modified during their career, leading to a wide range of sub-variants and different standards.

 

Although the VF-1 would be replaced in 2020 as the primary Variable Fighter of the U.N. Spacy, a long service record and continued production after the war proved the lasting worth of the design. One of these post-war designs became the VF-1EX, a replica variant of the VF-1J with up-to-date avionics and instrumentation. It was only built in small numbers in the late 2040s and was a dedicated variant for advanced training with dissimilar mock aerial and ground fighting.

 

The only operator of this type was Xaos (sometimes spelled as Chaos), a private and independent military and civilian contractor. Xaos was originally a fold navigation business that began venturing into fold wave communication and information, expanding rapidly during the 2050s and entering new business fields like flight tests and providing aggressor aircraft for military training. They were almost entirely independent from the New United Nations Spacy (NUNS) and was led by the mysterious Lady M. During the Vár Syndrome outbreak, Echo Squadron and Delta Flight and the tactical sound unit Thrones and Walküre were formed to counteract its effects in the Brísingr Globular Cluster.

 

The VF-1EX was restricted to its primary objective and never saw real combat. The replica unit retained the overall basic performance of the original VF-1 Valkyrie, the specifications being more than sufficient for training and mock combat. The only difference was the addition of the contemporary military EG-01M/MP EX-Gear system for the pilot as an emergency standard, an exoskeleton unit with personal inner-wear, two variable geometry wings, two hybrid jet/rocket engines, mechanical hardware for the head, torso, arms and legs. This feature gave the VF-1EX its new designation.

Furthermore, the VF-1EX was also outfitted with other electronic contingency functions like AI-assisted flight and remote override controls. Some of these features could be disabled according to necessity or pilot preferences. The gun pod unit was retained but was usually only loaded with paintball rounds for mock combat. For the same purpose, one of the original Mauler RÖV-20 anti-aircraft laser cannon in the "head unit" was replaced by a long-range laser target designator. AMM-1 missiles with dummy warheads or other training ordnance could be added to the wing hardpoints, but the VF-1EX was never seen being equipped this way - it remained an agile dogfighter.

  

General characteristics:

All-environment variable fighter and tactical combat Battroid. 3-mode variable transformation; variable geometry wing; vertical take-off and landing; control-configurable vehicle; single-axis thrust vectoring; three "magic hand" manipulators for maintenance use; retractable canopy shield for Battroid mode and atmospheric reentry; EG-01M/MP EX-Gear system; option of GBP-1S system, atmospheric-escape booster, or FAST Pack system.

 

Accommodation:

Single pilot in Marty & Beck Mk-7 zero/zero ejection seat

 

Dimensions:

Battroid Mode:

Height 12.68 meters

Width 7.3 meters

Length 4.0 meters

Fighter Mode:

Length 14.23 meters

Wingspan 14.78 meters (at 20° minimum sweep)

Height 3.84 meters

 

Empty weight: 13.25 metric tons

Standard take-off mass: 18.5 metric tons

MTOW: 37.0 metric tons

 

Power Plant:

2x Shinnakasu Heavy Industry/P&W/Roice FF-2001 thermonuclear reaction turbine engines, output 650 MW each, rated at 11,500 kg in standard or in overboost (225.63 kN x 2);

4x Shinnakasu Heavy Industry NBS-1 high-thrust vernier thrusters (1 x counter reverse vernier thruster nozzle mounted on the side of each leg nacelle/air intake, 1 x wing thruster roll control system on each wingtip);

18x P&W LHP04 low-thrust vernier thrusters beneath multipurpose hook/handles

 

Performance:

Battroid Mode: maximum walking speed 160 km/h

Fighter Mode: at 10,000 m Mach 2.71; at 30,000+ m Mach 3.87

g limit: in space +7

Thrust-to-weight ratio: empty 3.47; standard TOW 2.49; maximum TOW 1.24

 

Transformation:

Standard time from Fighter to Battroid (automated): under 5 sec.

Min. time from Fighter to Battroid (manual): 0.9 sec.

 

Armament:

1x Mauler RÖV-20 anti-aircraft laser cannon in the "head" unit, firing 6,000 pulses per minute

1x Howard GU-11 55 mm three-barrel Gatling gun pod with 200 RPG, fired at 1,200 rpm

4x underwing hardpoints for a wide variety of ordnance

  

The kit and its assembly:

The VF-1EX Valkyrie is a Variable Fighter introduced in the Macross Δ television series, and it's, as described above, a replica training variant that resembles outwardly the VF-1J. There's even a Hasegawa 1:72 kit from 2016 of this obscure variant.

However, what I tried to recreate is a virtual (and purely fictional/non-canonical) VF-1EX, re-skinned by someone called David L. on the basis of a virtual VF-1S 3D model with a 2 m wing span (sounds like ~1:8 scale) for the Phoenix R/C simulator software. Check this for reference: www.supermotoxl.com/projects-articles/ready-to-drive-fly-...). How bizarre can things be/become? And how sick is a hardware model of it, though...?

 

I found the complex livery very attractive and had the plan to build a 1:100 model for some years now. But it took this long to gather enough mojo to tackle this project, due to the tricolor paint scheme's complex nature...

The "canvas" for this stunt is a vintage Arii 1:100 VF-1 kit, built OOB except for some standard mods. The kit was actually a VF-1A, but I had a spare VF-1J head unit in store as a suitable replacement. Externally, some dorsal blade aerials and vanes on the nose were added, the attachment points under the wings for the pylons were PSRed away. A pilot figure was added to the cockpit because this model would be displayed in flight. As a consequence, the ventral gun pod received an adapter at its tail and I added one of my home-brew wire displays, created on the basis of the kit's OOB plastic base.

  

Painting and markings:

As mentioned above, this VF-1 is based on a re-skinned virtual R/C model, and its creator apparently took inspiration from a canonical VF fighter, namely a VF-31C "Siegfried", and specifically the "Mirage Farina Jenius Custom" version from the Macross Δ series that plays around 2051. Screenshots from the demo flight video under the link above provided various perspectives as painting reference, but the actual implementation on the tiny model caused serious headaches.

The VF-1's shapes are rather round and curvy, the model's jagged surface and small size prohibited masking. The kit is IMHO also best built and painted in single sub-assemblies, but upon closer inspection the screenshots revealed some marking inconsistencies (apparently edited from various videos?), and certain areas were left uncertain, e .g. the inside of the legs or the whole belly area. Therefore, this model is just a personal interpretation of the design, and as such I also deviated in the markings.

 

The paints became Humbrol 20 (Crimson) and 58 (Magenta), plus Revell 301 (Semi-gloss White), and they were applied with brushes. To replicate the edgy and rather fragmented pattern I initially laid down the two reds in a rather rough and thin fashion and painted the white dorsal and ventral areas. Once thoroughly dry, the white edges were quasi-masked with white decal material, either with stripes of various widths or tailored from sheet material, e. g. for the "wedges" on the wings and fins and the dorsal "swallow tail". This went more smoothly than expected, with a very convincing and clean result that i'd never had achieved with brushes alone, even with masking attempts, which would probably have led to chaos and too much paint on the model.

 

Other details like the grey leading edges or the air intakes were created with grey and black decal material, too.

No weathering was done, since the aircraft would be clean and in pristine condition, but I used a soft pencil to emphasize the engraved panel lines, esp. on white background. The gun pod became grey and the exhausts, painted in Revell 91 (Iron), were treated with graphite for a darker shade and a more metallic look.

 

Stencils came from the kit's OOB sheet, but only a few, since there was already a lot "going on" on the VF-1's hull. The flash-shaped Xaos insignia and the NUNS markings on legs and wings were printed at home - as well as the small black vernier thrusters all around the hull, for a uniform look. The USN style Modex and the small letter code on the fins came from an Colorado Decals F-5 sheet, for an aggressor aircraft.

 

Finally, the kit was sealed overall with semi-gloss acrlyic varnish (which turned out glossier than expected...) and position lights etc. added with translucent paint on top of a silver base.

  

Well, while the VF-1 was built OOB with no major mods and just some cosmetical upgrades, the paint scheme and its finish were more demanding - and I am happy that the "decal masking" trick worked so fine. The paint scheme surely is attractive, even though it IMHO does not really takes the VF-1's lines into account. Nevertheless, I am certain that there are not many models that are actually based on a virtual 1:8 scale 3D model of an iconic SF fighter, so that this VF-1EX might be unique.

 

Colosseum

Following, a text, in english, from the Wikipedia the Free Encyclopedia:

The Colosseum, or the Coliseum, originally the Flavian Amphitheatre (Latin: Amphitheatrum Flavium, Italian Anfiteatro Flavio or Colosseo), is an elliptical amphitheatre in the centre of the city of Rome, Italy, the largest ever built in the Roman Empire. It is considered one of the greatest works of Roman architecture and Roman engineering.

Occupying a site just east of the Roman Forum, its construction started between 70 and 72 AD[1] under the emperor Vespasian and was completed in 80 AD under Titus,[2] with further modifications being made during Domitian's reign (81–96).[3] The name "Amphitheatrum Flavium" derives from both Vespasian's and Titus's family name (Flavius, from the gens Flavia).

Capable of seating 50,000 spectators,[1][4][5] the Colosseum was used for gladiatorial contests and public spectacles such as mock sea battles, animal hunts, executions, re-enactments of famous battles, and dramas based on Classical mythology. The building ceased to be used for entertainment in the early medieval era. It was later reused for such purposes as housing, workshops, quarters for a religious order, a fortress, a quarry, and a Christian shrine.

Although in the 21st century it stays partially ruined because of damage caused by devastating earthquakes and stone-robbers, the Colosseum is an iconic symbol of Imperial Rome. It is one of Rome's most popular tourist attractions and still has close connections with the Roman Catholic Church, as each Good Friday the Pope leads a torchlit "Way of the Cross" procession that starts in the area around the Colosseum.[6]

The Colosseum is also depicted on the Italian version of the five-cent euro coin.

The Colosseum's original Latin name was Amphitheatrum Flavium, often anglicized as Flavian Amphitheater. The building was constructed by emperors of the Flavian dynasty, hence its original name, after the reign of Emperor Nero.[7] This name is still used in modern English, but generally the structure is better known as the Colosseum. In antiquity, Romans may have referred to the Colosseum by the unofficial name Amphitheatrum Caesareum; this name could have been strictly poetic.[8][9] This name was not exclusive to the Colosseum; Vespasian and Titus, builders of the Colosseum, also constructed an amphitheater of the same name in Puteoli (modern Pozzuoli).[10]

The name Colosseum has long been believed to be derived from a colossal statue of Nero nearby.[3] (the statue of Nero itself being named after one of the original ancient wonders, the Colossus of Rhodes[citation needed]. This statue was later remodeled by Nero's successors into the likeness of Helios (Sol) or Apollo, the sun god, by adding the appropriate solar crown. Nero's head was also replaced several times with the heads of succeeding emperors. Despite its pagan links, the statue remained standing well into the medieval era and was credited with magical powers. It came to be seen as an iconic symbol of the permanence of Rome.

In the 8th century, a famous epigram attributed to the Venerable Bede celebrated the symbolic significance of the statue in a prophecy that is variously quoted: Quamdiu stat Colisæus, stat et Roma; quando cadet colisæus, cadet et Roma; quando cadet Roma, cadet et mundus ("as long as the Colossus stands, so shall Rome; when the Colossus falls, Rome shall fall; when Rome falls, so falls the world").[11] This is often mistranslated to refer to the Colosseum rather than the Colossus (as in, for instance, Byron's poem Childe Harold's Pilgrimage). However, at the time that the Pseudo-Bede wrote, the masculine noun coliseus was applied to the statue rather than to what was still known as the Flavian amphitheatre.

The Colossus did eventually fall, possibly being pulled down to reuse its bronze. By the year 1000 the name "Colosseum" had been coined to refer to the amphitheatre. The statue itself was largely forgotten and only its base survives, situated between the Colosseum and the nearby Temple of Venus and Roma.[12]

The name further evolved to Coliseum during the Middle Ages. In Italy, the amphitheatre is still known as il Colosseo, and other Romance languages have come to use similar forms such as le Colisée (French), el Coliseo (Spanish) and o Coliseu (Portuguese).

Construction of the Colosseum began under the rule of the Emperor Vespasian[3] in around 70–72AD. The site chosen was a flat area on the floor of a low valley between the Caelian, Esquiline and Palatine Hills, through which a canalised stream ran. By the 2nd century BC the area was densely inhabited. It was devastated by the Great Fire of Rome in AD 64, following which Nero seized much of the area to add to his personal domain. He built the grandiose Domus Aurea on the site, in front of which he created an artificial lake surrounded by pavilions, gardens and porticoes. The existing Aqua Claudia aqueduct was extended to supply water to the area and the gigantic bronze Colossus of Nero was set up nearby at the entrance to the Domus Aurea.[12]

Although the Colossus was preserved, much of the Domus Aurea was torn down. The lake was filled in and the land reused as the location for the new Flavian Amphitheatre. Gladiatorial schools and other support buildings were constructed nearby within the former grounds of the Domus Aurea. According to a reconstructed inscription found on the site, "the emperor Vespasian ordered this new amphitheatre to be erected from his general's share of the booty." This is thought to refer to the vast quantity of treasure seized by the Romans following their victory in the Great Jewish Revolt in 70AD. The Colosseum can be thus interpreted as a great triumphal monument built in the Roman tradition of celebrating great victories[12], placating the Roman people instead of returning soldiers. Vespasian's decision to build the Colosseum on the site of Nero's lake can also be seen as a populist gesture of returning to the people an area of the city which Nero had appropriated for his own use. In contrast to many other amphitheatres, which were located on the outskirts of a city, the Colosseum was constructed in the city centre; in effect, placing it both literally and symbolically at the heart of Rome.

The Colosseum had been completed up to the third story by the time of Vespasian's death in 79. The top level was finished and the building inaugurated by his son, Titus, in 80.[3] Dio Cassius recounts that over 9,000 wild animals were killed during the inaugural games of the amphitheatre. The building was remodelled further under Vespasian's younger son, the newly designated Emperor Domitian, who constructed the hypogeum, a series of underground tunnels used to house animals and slaves. He also added a gallery to the top of the Colosseum to increase its seating capacity.

In 217, the Colosseum was badly damaged by a major fire (caused by lightning, according to Dio Cassius[13]) which destroyed the wooden upper levels of the amphitheatre's interior. It was not fully repaired until about 240 and underwent further repairs in 250 or 252 and again in 320. An inscription records the restoration of various parts of the Colosseum under Theodosius II and Valentinian III (reigned 425–455), possibly to repair damage caused by a major earthquake in 443; more work followed in 484[14] and 508. The arena continued to be used for contests well into the 6th century, with gladiatorial fights last mentioned around 435. Animal hunts continued until at least 523, when Anicius Maximus celebrated his consulship with some venationes, criticised by King Theodoric the Great for their high cost.

The Colosseum underwent several radical changes of use during the medieval period. By the late 6th century a small church had been built into the structure of the amphitheatre, though this apparently did not confer any particular religious significance on the building as a whole. The arena was converted into a cemetery. The numerous vaulted spaces in the arcades under the seating were converted into housing and workshops, and are recorded as still being rented out as late as the 12th century. Around 1200 the Frangipani family took over the Colosseum and fortified it, apparently using it as a castle.

Severe damage was inflicted on the Colosseum by the great earthquake in 1349, causing the outer south side, lying on a less stable alluvional terrain, to collapse. Much of the tumbled stone was reused to build palaces, churches, hospitals and other buildings elsewhere in Rome. A religious order moved into the northern third of the Colosseum in the mid-14th century and continued to inhabit it until as late as the early 19th century. The interior of the amphitheatre was extensively stripped of stone, which was reused elsewhere, or (in the case of the marble façade) was burned to make quicklime.[12] The bronze clamps which held the stonework together were pried or hacked out of the walls, leaving numerous pockmarks which still scar the building today.

During the 16th and 17th century, Church officials sought a productive role for the vast derelict hulk of the Colosseum. Pope Sixtus V (1585–1590) planned to turn the building into a wool factory to provide employment for Rome's prostitutes, though this proposal fell through with his premature death.[15] In 1671 Cardinal Altieri authorized its use for bullfights; a public outcry caused the idea to be hastily abandoned.

In 1749, Pope Benedict XIV endorsed as official Church policy the view that the Colosseum was a sacred site where early Christians had been martyred. He forbade the use of the Colosseum as a quarry and consecrated the building to the Passion of Christ and installed Stations of the Cross, declaring it sanctified by the blood of the Christian martyrs who perished there (see Christians and the Colosseum). However there is no historical evidence to support Benedict's claim, nor is there even any evidence that anyone prior to the 16th century suggested this might be the case; the Catholic Encyclopedia concludes that there are no historical grounds for the supposition. Later popes initiated various stabilization and restoration projects, removing the extensive vegetation which had overgrown the structure and threatened to damage it further. The façade was reinforced with triangular brick wedges in 1807 and 1827, and the interior was repaired in 1831, 1846 and in the 1930s. The arena substructure was partly excavated in 1810–1814 and 1874 and was fully exposed under Benito Mussolini in the 1930s.

The Colosseum is today one of Rome's most popular tourist attractions, receiving millions of visitors annually. The effects of pollution and general deterioration over time prompted a major restoration programme carried out between 1993 and 2000, at a cost of 40 billion Italian lire ($19.3m / €20.6m at 2000 prices). In recent years it has become a symbol of the international campaign against capital punishment, which was abolished in Italy in 1948. Several anti–death penalty demonstrations took place in front of the Colosseum in 2000. Since that time, as a gesture against the death penalty, the local authorities of Rome change the color of the Colosseum's night time illumination from white to gold whenever a person condemned to the death penalty anywhere in the world gets their sentence commuted or is released,[16] or if a jurisdiction abolishes the death penalty. Most recently, the Colosseum was illuminated in gold when capital punishment was abolished in the American state of New Mexico in April 2009.

Because of the ruined state of the interior, it is impractical to use the Colosseum to host large events; only a few hundred spectators can be accommodated in temporary seating. However, much larger concerts have been held just outside, using the Colosseum as a backdrop. Performers who have played at the Colosseum in recent years have included Ray Charles (May 2002),[18] Paul McCartney (May 2003),[19] Elton John (September 2005),[20] and Billy Joel (July 2006).

Exterior

Unlike earlier Greek theatres that were built into hillsides, the Colosseum is an entirely free-standing structure. It derives its basic exterior and interior architecture from that of two Roman theatres back to back. It is elliptical in plan and is 189 meters (615 ft / 640 Roman feet) long, and 156 meters (510 ft / 528 Roman feet) wide, with a base area of 6 acres (24,000 m2). The height of the outer wall is 48 meters (157 ft / 165 Roman feet). The perimeter originally measured 545 meters (1,788 ft / 1,835 Roman feet). The central arena is an oval 87 m (287 ft) long and 55 m (180 ft) wide, surrounded by a wall 5 m (15 ft) high, above which rose tiers of seating.

The outer wall is estimated to have required over 100,000 cubic meters (131,000 cu yd) of travertine stone which were set without mortar held together by 300 tons of iron clamps.[12] However, it has suffered extensive damage over the centuries, with large segments having collapsed following earthquakes. The north side of the perimeter wall is still standing; the distinctive triangular brick wedges at each end are modern additions, having been constructed in the early 19th century to shore up the wall. The remainder of the present-day exterior of the Colosseum is in fact the original interior wall.

The surviving part of the outer wall's monumental façade comprises three stories of superimposed arcades surmounted by a podium on which stands a tall attic, both of which are pierced by windows interspersed at regular intervals. The arcades are framed by half-columns of the Tuscan, Ionic, and Corinthian orders, while the attic is decorated with Corinthian pilasters.[21] Each of the arches in the second- and third-floor arcades framed statues, probably honoring divinities and other figures from Classical mythology.

Two hundred and forty mast corbels were positioned around the top of the attic. They originally supported a retractable awning, known as the velarium, that kept the sun and rain off spectators. This consisted of a canvas-covered, net-like structure made of ropes, with a hole in the center.[3] It covered two-thirds of the arena, and sloped down towards the center to catch the wind and provide a breeze for the audience. Sailors, specially enlisted from the Roman naval headquarters at Misenum and housed in the nearby Castra Misenatium, were used to work the velarium.[22]

The Colosseum's huge crowd capacity made it essential that the venue could be filled or evacuated quickly. Its architects adopted solutions very similar to those used in modern stadiums to deal with the same problem. The amphitheatre was ringed by eighty entrances at ground level, 76 of which were used by ordinary spectators.[3] Each entrance and exit was numbered, as was each staircase. The northern main entrance was reserved for the Roman Emperor and his aides, whilst the other three axial entrances were most likely used by the elite. All four axial entrances were richly decorated with painted stucco reliefs, of which fragments survive. Many of the original outer entrances have disappeared with the collapse of the perimeter wall, but entrances XXIII (23) to LIV (54) still survive.[12]

Spectators were given tickets in the form of numbered pottery shards, which directed them to the appropriate section and row. They accessed their seats via vomitoria (singular vomitorium), passageways that opened into a tier of seats from below or behind. These quickly dispersed people into their seats and, upon conclusion of the event or in an emergency evacuation, could permit their exit within only a few minutes. The name vomitoria derived from the Latin word for a rapid discharge, from which English derives the word vomit.

Interior

According to the Codex-Calendar of 354, the Colosseum could accommodate 87,000 people, although modern estimates put the figure at around 50,000. They were seated in a tiered arrangement that reflected the rigidly stratified nature of Roman society. Special boxes were provided at the north and south ends respectively for the Emperor and the Vestal Virgins, providing the best views of the arena. Flanking them at the same level was a broad platform or podium for the senatorial class, who were allowed to bring their own chairs. The names of some 5th century senators can still be seen carved into the stonework, presumably reserving areas for their use.

The tier above the senators, known as the maenianum primum, was occupied by the non-senatorial noble class or knights (equites). The next level up, the maenianum secundum, was originally reserved for ordinary Roman citizens (plebians) and was divided into two sections. The lower part (the immum) was for wealthy citizens, while the upper part (the summum) was for poor citizens. Specific sectors were provided for other social groups: for instance, boys with their tutors, soldiers on leave, foreign dignitaries, scribes, heralds, priests and so on. Stone (and later marble) seating was provided for the citizens and nobles, who presumably would have brought their own cushions with them. Inscriptions identified the areas reserved for specific groups.

Another level, the maenianum secundum in legneis, was added at the very top of the building during the reign of Domitian. This comprised a gallery for the common poor, slaves and women. It would have been either standing room only, or would have had very steep wooden benches. Some groups were banned altogether from the Colosseum, notably gravediggers, actors and former gladiators.

Each tier was divided into sections (maeniana) by curved passages and low walls (praecinctiones or baltei), and were subdivided into cunei, or wedges, by the steps and aisles from the vomitoria. Each row (gradus) of seats was numbered, permitting each individual seat to be exactly designated by its gradus, cuneus, and number.

The arena itself was 83 meters by 48 meters (272 ft by 157 ft / 280 by 163 Roman feet).[12] It comprised a wooden floor covered by sand (the Latin word for sand is harena or arena), covering an elaborate underground structure called the hypogeum (literally meaning "underground"). Little now remains of the original arena floor, but the hypogeum is still clearly visible. It consisted of a two-level subterranean network of tunnels and cages beneath the arena where gladiators and animals were held before contests began. Eighty vertical shafts provided instant access to the arena for caged animals and scenery pieces concealed underneath; larger hinged platforms, called hegmata, provided access for elephants and the like. It was restructured on numerous occasions; at least twelve different phases of construction can be seen.[12]

The hypogeum was connected by underground tunnels to a number of points outside the Colosseum. Animals and performers were brought through the tunnel from nearby stables, with the gladiators' barracks at the Ludus Magnus to the east also being connected by tunnels. Separate tunnels were provided for the Emperor and the Vestal Virgins to permit them to enter and exit the Colosseum without needing to pass through the crowds.[12]

Substantial quantities of machinery also existed in the hypogeum. Elevators and pulleys raised and lowered scenery and props, as well as lifting caged animals to the surface for release. There is evidence for the existence of major hydraulic mechanisms[12] and according to ancient accounts, it was possible to flood the arena rapidly, presumably via a connection to a nearby aqueduct.

The Colosseum and its activities supported a substantial industry in the area. In addition to the amphitheatre itself, many other buildings nearby were linked to the games. Immediately to the east is the remains of the Ludus Magnus, a training school for gladiators. This was connected to the Colosseum by an underground passage, to allow easy access for the gladiators. The Ludus Magnus had its own miniature training arena, which was itself a popular attraction for Roman spectators. Other training schools were in the same area, including the Ludus Matutinus (Morning School), where fighters of animals were trained, plus the Dacian and Gallic Schools.

Also nearby were the Armamentarium, comprising an armory to store weapons; the Summum Choragium, where machinery was stored; the Sanitarium, which had facilities to treat wounded gladiators; and the Spoliarium, where bodies of dead gladiators were stripped of their armor and disposed of.

Around the perimeter of the Colosseum, at a distance of 18 m (59 ft) from the perimeter, was a series of tall stone posts, with five remaining on the eastern side. Various explanations have been advanced for their presence; they may have been a religious boundary, or an outer boundary for ticket checks, or an anchor for the velarium or awning.

Right next to the Colosseum is also the Arch of Constantine.

he Colosseum was used to host gladiatorial shows as well as a variety of other events. The shows, called munera, were always given by private individuals rather than the state. They had a strong religious element but were also demonstrations of power and family prestige, and were immensely popular with the population. Another popular type of show was the animal hunt, or venatio. This utilized a great variety of wild beasts, mainly imported from Africa and the Middle East, and included creatures such as rhinoceros, hippopotamuses, elephants, giraffes, aurochs, wisents, barbary lions, panthers, leopards, bears, caspian tigers, crocodiles and ostriches. Battles and hunts were often staged amid elaborate sets with movable trees and buildings. Such events were occasionally on a huge scale; Trajan is said to have celebrated his victories in Dacia in 107 with contests involving 11,000 animals and 10,000 gladiators over the course of 123 days.

During the early days of the Colosseum, ancient writers recorded that the building was used for naumachiae (more properly known as navalia proelia) or simulated sea battles. Accounts of the inaugural games held by Titus in AD 80 describe it being filled with water for a display of specially trained swimming horses and bulls. There is also an account of a re-enactment of a famous sea battle between the Corcyrean (Corfiot) Greeks and the Corinthians. This has been the subject of some debate among historians; although providing the water would not have been a problem, it is unclear how the arena could have been waterproofed, nor would there have been enough space in the arena for the warships to move around. It has been suggested that the reports either have the location wrong, or that the Colosseum originally featured a wide floodable channel down its central axis (which would later have been replaced by the hypogeum).[12]

Sylvae or recreations of natural scenes were also held in the arena. Painters, technicians and architects would construct a simulation of a forest with real trees and bushes planted in the arena's floor. Animals would be introduced to populate the scene for the delight of the crowd. Such scenes might be used simply to display a natural environment for the urban population, or could otherwise be used as the backdrop for hunts or dramas depicting episodes from mythology. They were also occasionally used for executions in which the hero of the story — played by a condemned person — was killed in one of various gruesome but mythologically authentic ways, such as being mauled by beasts or burned to death.

The Colosseum today is now a major tourist attraction in Rome with thousands of tourists each year paying to view the interior arena, though entrance for EU citizens is partially subsidised, and under-18 and over-65 EU citizens' entrances are free.[24] There is now a museum dedicated to Eros located in the upper floor of the outer wall of the building. Part of the arena floor has been re-floored. Beneath the Colosseum, a network of subterranean passageways once used to transport wild animals and gladiators to the arena opened to the public in summer 2010.[25]

The Colosseum is also the site of Roman Catholic ceremonies in the 20th and 21st centuries. For instance, Pope Benedict XVI leads the Stations of the Cross called the Scriptural Way of the Cross (which calls for more meditation) at the Colosseum[26][27] on Good Fridays.

In the Middle Ages, the Colosseum was clearly not regarded as a sacred site. Its use as a fortress and then a quarry demonstrates how little spiritual importance was attached to it, at a time when sites associated with martyrs were highly venerated. It was not included in the itineraries compiled for the use of pilgrims nor in works such as the 12th century Mirabilia Urbis Romae ("Marvels of the City of Rome"), which claims the Circus Flaminius — but not the Colosseum — as the site of martyrdoms. Part of the structure was inhabited by a Christian order, but apparently not for any particular religious reason.

It appears to have been only in the 16th and 17th centuries that the Colosseum came to be regarded as a Christian site. Pope Pius V (1566–1572) is said to have recommended that pilgrims gather sand from the arena of the Colosseum to serve as a relic, on the grounds that it was impregnated with the blood of martyrs. This seems to have been a minority view until it was popularised nearly a century later by Fioravante Martinelli, who listed the Colosseum at the head of a list of places sacred to the martyrs in his 1653 book Roma ex ethnica sacra.

Martinelli's book evidently had an effect on public opinion; in response to Cardinal Altieri's proposal some years later to turn the Colosseum into a bullring, Carlo Tomassi published a pamphlet in protest against what he regarded as an act of desecration. The ensuing controversy persuaded Pope Clement X to close the Colosseum's external arcades and declare it a sanctuary, though quarrying continued for some time.

At the instance of St. Leonard of Port Maurice, Pope Benedict XIV (1740–1758) forbade the quarrying of the Colosseum and erected Stations of the Cross around the arena, which remained until February 1874. St. Benedict Joseph Labre spent the later years of his life within the walls of the Colosseum, living on alms, prior to his death in 1783. Several 19th century popes funded repair and restoration work on the Colosseum, and it still retains a Christian connection today. Crosses stand in several points around the arena and every Good Friday the Pope leads a Via Crucis procession to the amphitheatre.

 

Coliseu (Colosseo)

A seguir, um texto, em português, da Wikipédia, a enciclopédia livre:

 

O Coliseu, também conhecido como Anfiteatro Flaviano, deve seu nome à expressão latina Colosseum (ou Coliseus, no latim tardio), devido à estátua colossal de Nero, que ficava perto a edificação. Localizado no centro de Roma, é uma excepção de entre os anfiteatros pelo seu volume e relevo arquitectónico. Originalmente capaz de albergar perto de 50 000 pessoas, e com 48 metros de altura, era usado para variados espetáculos. Foi construído a leste do fórum romano e demorou entre 8 a 10 anos a ser construído.

O Coliseu foi utilizado durante aproximadamente 500 anos, tendo sido o último registro efetuado no século VI da nossa era, bastante depois da queda de Roma em 476. O edifício deixou de ser usado para entretenimento no começo da era medieval, mas foi mais tarde usado como habitação, oficina, forte, pedreira, sede de ordens religiosas e templo cristão.

Embora esteja agora em ruínas devido a terremotos e pilhagens, o Coliseu sempre foi visto como símbolo do Império Romano, sendo um dos melhores exemplos da sua arquitectura. Actualmente é uma das maiores atrações turísticas em Roma e em 7 de julho de 2007 foi eleita umas das "Sete maravilhas do mundo moderno". Além disso, o Coliseu ainda tem ligações à igreja, com o Papa a liderar a procissão da Via Sacra até ao Coliseu todas as Sextas-feiras Santas.

O coliseu era um local onde seriam exibidos toda uma série de espectáculos, inseridos nos vários tipos de jogos realizados na urbe. Os combates entre gladiadores, chamados muneras, eram sempre pagos por pessoas individuais em busca de prestígio e poder em vez do estado. A arena (87,5 m por 55 m) possuía um piso de madeira, normalmente coberto de areia para absorver o sangue dos combates (certa vez foi colocada água na representação de uma batalha naval), sob o qual existia um nível subterrâneo com celas e jaulas que tinham acessos diretos para a arena; Alguns detalhes dessa construção, como a cobertura removível que poupava os espectadores do sol, são bastante interessantes, e mostram o refinamento atingido pelos construtores romanos. Formado por cinco anéis concêntricos de arcos e abóbadas, o Coliseu representa bem o avanço introduzido pelos romanos à engenharia de estruturas. Esses arcos são de concreto (de cimento natural) revestidos por alvenaria. Na verdade, a alvenaria era construída simultaneamente e já servia de forma para a concretagem. Outro tipo de espetáculos era a caça de animais, ou venatio, onde eram utilizados animais selvagens importados de África. Os animais mais utilizados eram os grandes felinos como leões, leopardos e panteras, mas animais como rinocerontes, hipopótamos, elefantes, girafas, crocodilos e avestruzes eram também utilizados. As caçadas, tal como as representações de batalhas famosas, eram efetuadas em elaborados cenários onde constavam árvores e edifícios amovíveis.

Estas últimas eram por vezes representadas numa escala gigante; Trajano celebrou a sua vitória em Dácia no ano 107 com concursos envolvendo 11 000 animais e 10 000 gladiadores no decorrer de 123 dias.

Segundo o documentário produzido pelo canal televisivo fechado, History Channel, o Coliseu também era utilizado para a realização de naumaquias, ou batalhas navais. O coliseu era inundado por dutos subterrâneos alimentados pelos aquedutos que traziam água de longe. Passada esta fase, foi construída uma estrutura, que é a que podemos ver hoje nas ruínas do Coliseu, com altura de um prédio de dois andares, onde no passado se concentravam os gladiadores, feras e todo o pessoal que organizava os duelos que ocorreriam na arena. A arena era como um grande palco, feito de madeira, e se chama arena, que em italiano significa areia, porque era jogada areia sob a estrutura de madeira para esconder as imperfeições. Os animais podiam ser inseridos nos duelos a qualquer momento por um esquema de elevadores que surgiam em alguns pontos da arena; o filme "Gladiador" retrata muito bem esta questão dos elevadores. Os estudiosos, há pouco tempo, descobriram uma rede de dutos inundados por baixo da arena do Coliseu. Acredita-se que o Coliseu foi construído onde, outrora, foi o lago do Palácio Dourado de Nero; O imperador Vespasiano escolheu o local da construção para que o mal causado por Nero fosse esquecido por uma construção gloriosa.

Sylvae, ou recreações de cenas naturais eram também realizadas no Coliseu. Pintores, técnicos e arquitectos construiriam simulações de florestas com árvores e arbustos reais plantados no chão da arena. Animais seriam então introduzidos para dar vida à simulação. Esses cenários podiam servir só para agrado do público ou como pano de fundo para caçadas ou dramas representando episódios da mitologia romana, tão autênticos quanto possível, ao ponto de pessoas condenadas fazerem o papel de heróis onde eram mortos de maneiras horríveis mas mitologicamente autênticas, como mutilados por animais ou queimados vivos.

Embora o Coliseu tenha funcionado até ao século VI da nossa Era, foram proibidos os jogos com mortes humanas desde 404, sendo apenas massacrados animais como elefantes, panteras ou leões.

O Coliseu era sobretudo um enorme instrumento de propaganda e difusão da filosofia de toda uma civilização, e tal como era já profetizado pelo monge e historiador inglês Beda na sua obra do século VII "De temporibus liber": "Enquanto o Coliseu se mantiver de pé, Roma permanecerá; quando o Coliseu ruir, Roma ruirá e quando Roma cair, o mundo cairá".

A construção do Coliseu foi iniciada por Vespasiano, nos anos 70 da nossa era. O edifício foi inaugurado por Tito, em 80, embora apenas tivesse sido finalizado poucos anos depois. Empresa colossal, este edifício, inicialmente, poderia sustentar no seu interior cerca de 50 000 espectadores, constando de três andares. Aquando do reinado de Alexandre Severo e Gordiano III, é ampliado com um quarto andar, podendo suster agora cerca de 90 000 espectadores. A grandiosidade deste monumento testemunha verdadeiramente o poder e esplendor de Roma na época dos Flávios.

Os jogos inaugurais do Coliseu tiveram lugar ano 80, sob o mandato de Tito, para celebrar a finalização da construção. Depois do curto reinado de Tito começar com vários meses de desastres, incluindo a erupção do Monte Vesúvio, um incêndio em Roma, e um surto de peste, o mesmo imperador inaugurou o edifício com uns jogos pródigos que duraram mais de cem dias, talvez para tentar apaziguar o público romano e os deuses. Nesses jogos de cem dias terão ocorrido combates de gladiadores, venationes (lutas de animais), execuções, batalhas navais, caçadas e outros divertimentos numa escala sem precedentes.

O Coliseu, como não se encontrava inserido numa zona de encosta, enterrado, tal como normalmente sucede com a generalidade dos teatros e anfiteatros romanos, possuía um “anel” artificial de rocha à sua volta, para garantir sustentação e, ao mesmo tempo, esta substrutura serve como ornamento ao edifício e como condicionador da entrada dos espectadores. Tal como foi referido anteriormente, possuía três pisos, sendo mais tarde adicionado um outro. É construído em mármore, pedra travertina, ladrilho e tufo (pedra calcária com grandes poros). A sua planta elíptica mede dois eixos que se estendem aproximadamente de 190 m por 155 m. A fachada compõe-se de arcadas decoradas com colunas dóricas, jónicas e coríntias, de acordo com o pavimento em que se encontravam. Esta subdivisão deve-se ao facto de ser uma construção essencialmente vertical, criando assim uma diversificação do espaço.

 

Os assentos eram em mármore e a cavea, escadaria ou arquibancada, dividia-se em três partes, correspondentes às diferentes classes sociais: o podium, para as classes altas; as maeniana, sector destinado à classe média; e os portici, ou pórticos, construídos em madeira, para a plebe e as mulheres. O pulvinar, a tribuna imperial, encontrava-se situada no podium e era balizada pelos assentos reservados aos senadores e magistrados. Rampas no interior do edifício facilitavam o acesso às várias zonas de onde podiam visualizar o espectáculo, sendo protegidos por uma barreira e por uma série de arqueiros posicionados numa passagem de madeira, para o caso de algum acidente. Por cima dos muros ainda são visíveis as mísulas, que sustentavam o velarium, enorme cobertura de lona destinada a proteger do sol os espectadores e, nos subterrâneos, ficavam as jaulas dos animais, bem como todas as celas e galerias necessárias aos serviços do anfiteatro.

O monumento permaneceu como sede principal dos espetáculos da urbe romana até ao período do imperador Honorius, no século V. Danificado por um terremoto no começo do mesmo século, foi alvo de uma extensiva restauração na época de Valentinianus III. Em meados do século XIII, a família Frangipani transformou-o em fortaleza e, ao longo dos séculos XV e XVI, foi por diversas vezes saqueado, perdendo grande parte dos materiais nobres com os quais tinha sido construído.

Os relatos romanos referem-se a cristãos sendo martirizados em locais de Roma descritos pouco pormenorizadamente (no anfiteatro, na arena...), quando Roma tinha numerosos anfiteatros e arenas. Apesar de muito provavelmente o Coliseu não ter sido utilizado para martírios, o Papa Bento XIV consagrou-o no século XVII à Paixão de Cristo e declarou-o lugar sagrado. Os trabalhos de consolidação e restauração parcial do monumento, já há muito em ruínas, foram feitos sobretudo pelos pontífices Gregório XVI e Pio IX, no século XIX.

Colosseum

Following, a text, in english, from the Wikipedia the Free Encyclopedia:

The Colosseum, or the Coliseum, originally the Flavian Amphitheatre (Latin: Amphitheatrum Flavium, Italian Anfiteatro Flavio or Colosseo), is an elliptical amphitheatre in the centre of the city of Rome, Italy, the largest ever built in the Roman Empire. It is considered one of the greatest works of Roman architecture and Roman engineering.

Occupying a site just east of the Roman Forum, its construction started between 70 and 72 AD[1] under the emperor Vespasian and was completed in 80 AD under Titus,[2] with further modifications being made during Domitian's reign (81–96).[3] The name "Amphitheatrum Flavium" derives from both Vespasian's and Titus's family name (Flavius, from the gens Flavia).

Capable of seating 50,000 spectators,[1][4][5] the Colosseum was used for gladiatorial contests and public spectacles such as mock sea battles, animal hunts, executions, re-enactments of famous battles, and dramas based on Classical mythology. The building ceased to be used for entertainment in the early medieval era. It was later reused for such purposes as housing, workshops, quarters for a religious order, a fortress, a quarry, and a Christian shrine.

Although in the 21st century it stays partially ruined because of damage caused by devastating earthquakes and stone-robbers, the Colosseum is an iconic symbol of Imperial Rome. It is one of Rome's most popular tourist attractions and still has close connections with the Roman Catholic Church, as each Good Friday the Pope leads a torchlit "Way of the Cross" procession that starts in the area around the Colosseum.[6]

The Colosseum is also depicted on the Italian version of the five-cent euro coin.

The Colosseum's original Latin name was Amphitheatrum Flavium, often anglicized as Flavian Amphitheater. The building was constructed by emperors of the Flavian dynasty, hence its original name, after the reign of Emperor Nero.[7] This name is still used in modern English, but generally the structure is better known as the Colosseum. In antiquity, Romans may have referred to the Colosseum by the unofficial name Amphitheatrum Caesareum; this name could have been strictly poetic.[8][9] This name was not exclusive to the Colosseum; Vespasian and Titus, builders of the Colosseum, also constructed an amphitheater of the same name in Puteoli (modern Pozzuoli).[10]

The name Colosseum has long been believed to be derived from a colossal statue of Nero nearby.[3] (the statue of Nero itself being named after one of the original ancient wonders, the Colossus of Rhodes[citation needed]. This statue was later remodeled by Nero's successors into the likeness of Helios (Sol) or Apollo, the sun god, by adding the appropriate solar crown. Nero's head was also replaced several times with the heads of succeeding emperors. Despite its pagan links, the statue remained standing well into the medieval era and was credited with magical powers. It came to be seen as an iconic symbol of the permanence of Rome.

In the 8th century, a famous epigram attributed to the Venerable Bede celebrated the symbolic significance of the statue in a prophecy that is variously quoted: Quamdiu stat Colisæus, stat et Roma; quando cadet colisæus, cadet et Roma; quando cadet Roma, cadet et mundus ("as long as the Colossus stands, so shall Rome; when the Colossus falls, Rome shall fall; when Rome falls, so falls the world").[11] This is often mistranslated to refer to the Colosseum rather than the Colossus (as in, for instance, Byron's poem Childe Harold's Pilgrimage). However, at the time that the Pseudo-Bede wrote, the masculine noun coliseus was applied to the statue rather than to what was still known as the Flavian amphitheatre.

The Colossus did eventually fall, possibly being pulled down to reuse its bronze. By the year 1000 the name "Colosseum" had been coined to refer to the amphitheatre. The statue itself was largely forgotten and only its base survives, situated between the Colosseum and the nearby Temple of Venus and Roma.[12]

The name further evolved to Coliseum during the Middle Ages. In Italy, the amphitheatre is still known as il Colosseo, and other Romance languages have come to use similar forms such as le Colisée (French), el Coliseo (Spanish) and o Coliseu (Portuguese).

Construction of the Colosseum began under the rule of the Emperor Vespasian[3] in around 70–72AD. The site chosen was a flat area on the floor of a low valley between the Caelian, Esquiline and Palatine Hills, through which a canalised stream ran. By the 2nd century BC the area was densely inhabited. It was devastated by the Great Fire of Rome in AD 64, following which Nero seized much of the area to add to his personal domain. He built the grandiose Domus Aurea on the site, in front of which he created an artificial lake surrounded by pavilions, gardens and porticoes. The existing Aqua Claudia aqueduct was extended to supply water to the area and the gigantic bronze Colossus of Nero was set up nearby at the entrance to the Domus Aurea.[12]

Although the Colossus was preserved, much of the Domus Aurea was torn down. The lake was filled in and the land reused as the location for the new Flavian Amphitheatre. Gladiatorial schools and other support buildings were constructed nearby within the former grounds of the Domus Aurea. According to a reconstructed inscription found on the site, "the emperor Vespasian ordered this new amphitheatre to be erected from his general's share of the booty." This is thought to refer to the vast quantity of treasure seized by the Romans following their victory in the Great Jewish Revolt in 70AD. The Colosseum can be thus interpreted as a great triumphal monument built in the Roman tradition of celebrating great victories[12], placating the Roman people instead of returning soldiers. Vespasian's decision to build the Colosseum on the site of Nero's lake can also be seen as a populist gesture of returning to the people an area of the city which Nero had appropriated for his own use. In contrast to many other amphitheatres, which were located on the outskirts of a city, the Colosseum was constructed in the city centre; in effect, placing it both literally and symbolically at the heart of Rome.

The Colosseum had been completed up to the third story by the time of Vespasian's death in 79. The top level was finished and the building inaugurated by his son, Titus, in 80.[3] Dio Cassius recounts that over 9,000 wild animals were killed during the inaugural games of the amphitheatre. The building was remodelled further under Vespasian's younger son, the newly designated Emperor Domitian, who constructed the hypogeum, a series of underground tunnels used to house animals and slaves. He also added a gallery to the top of the Colosseum to increase its seating capacity.

In 217, the Colosseum was badly damaged by a major fire (caused by lightning, according to Dio Cassius[13]) which destroyed the wooden upper levels of the amphitheatre's interior. It was not fully repaired until about 240 and underwent further repairs in 250 or 252 and again in 320. An inscription records the restoration of various parts of the Colosseum under Theodosius II and Valentinian III (reigned 425–455), possibly to repair damage caused by a major earthquake in 443; more work followed in 484[14] and 508. The arena continued to be used for contests well into the 6th century, with gladiatorial fights last mentioned around 435. Animal hunts continued until at least 523, when Anicius Maximus celebrated his consulship with some venationes, criticised by King Theodoric the Great for their high cost.

The Colosseum underwent several radical changes of use during the medieval period. By the late 6th century a small church had been built into the structure of the amphitheatre, though this apparently did not confer any particular religious significance on the building as a whole. The arena was converted into a cemetery. The numerous vaulted spaces in the arcades under the seating were converted into housing and workshops, and are recorded as still being rented out as late as the 12th century. Around 1200 the Frangipani family took over the Colosseum and fortified it, apparently using it as a castle.

Severe damage was inflicted on the Colosseum by the great earthquake in 1349, causing the outer south side, lying on a less stable alluvional terrain, to collapse. Much of the tumbled stone was reused to build palaces, churches, hospitals and other buildings elsewhere in Rome. A religious order moved into the northern third of the Colosseum in the mid-14th century and continued to inhabit it until as late as the early 19th century. The interior of the amphitheatre was extensively stripped of stone, which was reused elsewhere, or (in the case of the marble façade) was burned to make quicklime.[12] The bronze clamps which held the stonework together were pried or hacked out of the walls, leaving numerous pockmarks which still scar the building today.

During the 16th and 17th century, Church officials sought a productive role for the vast derelict hulk of the Colosseum. Pope Sixtus V (1585–1590) planned to turn the building into a wool factory to provide employment for Rome's prostitutes, though this proposal fell through with his premature death.[15] In 1671 Cardinal Altieri authorized its use for bullfights; a public outcry caused the idea to be hastily abandoned.

In 1749, Pope Benedict XIV endorsed as official Church policy the view that the Colosseum was a sacred site where early Christians had been martyred. He forbade the use of the Colosseum as a quarry and consecrated the building to the Passion of Christ and installed Stations of the Cross, declaring it sanctified by the blood of the Christian martyrs who perished there (see Christians and the Colosseum). However there is no historical evidence to support Benedict's claim, nor is there even any evidence that anyone prior to the 16th century suggested this might be the case; the Catholic Encyclopedia concludes that there are no historical grounds for the supposition. Later popes initiated various stabilization and restoration projects, removing the extensive vegetation which had overgrown the structure and threatened to damage it further. The façade was reinforced with triangular brick wedges in 1807 and 1827, and the interior was repaired in 1831, 1846 and in the 1930s. The arena substructure was partly excavated in 1810–1814 and 1874 and was fully exposed under Benito Mussolini in the 1930s.

The Colosseum is today one of Rome's most popular tourist attractions, receiving millions of visitors annually. The effects of pollution and general deterioration over time prompted a major restoration programme carried out between 1993 and 2000, at a cost of 40 billion Italian lire ($19.3m / €20.6m at 2000 prices). In recent years it has become a symbol of the international campaign against capital punishment, which was abolished in Italy in 1948. Several anti–death penalty demonstrations took place in front of the Colosseum in 2000. Since that time, as a gesture against the death penalty, the local authorities of Rome change the color of the Colosseum's night time illumination from white to gold whenever a person condemned to the death penalty anywhere in the world gets their sentence commuted or is released,[16] or if a jurisdiction abolishes the death penalty. Most recently, the Colosseum was illuminated in gold when capital punishment was abolished in the American state of New Mexico in April 2009.

Because of the ruined state of the interior, it is impractical to use the Colosseum to host large events; only a few hundred spectators can be accommodated in temporary seating. However, much larger concerts have been held just outside, using the Colosseum as a backdrop. Performers who have played at the Colosseum in recent years have included Ray Charles (May 2002),[18] Paul McCartney (May 2003),[19] Elton John (September 2005),[20] and Billy Joel (July 2006).

Exterior

Unlike earlier Greek theatres that were built into hillsides, the Colosseum is an entirely free-standing structure. It derives its basic exterior and interior architecture from that of two Roman theatres back to back. It is elliptical in plan and is 189 meters (615 ft / 640 Roman feet) long, and 156 meters (510 ft / 528 Roman feet) wide, with a base area of 6 acres (24,000 m2). The height of the outer wall is 48 meters (157 ft / 165 Roman feet). The perimeter originally measured 545 meters (1,788 ft / 1,835 Roman feet). The central arena is an oval 87 m (287 ft) long and 55 m (180 ft) wide, surrounded by a wall 5 m (15 ft) high, above which rose tiers of seating.

The outer wall is estimated to have required over 100,000 cubic meters (131,000 cu yd) of travertine stone which were set without mortar held together by 300 tons of iron clamps.[12] However, it has suffered extensive damage over the centuries, with large segments having collapsed following earthquakes. The north side of the perimeter wall is still standing; the distinctive triangular brick wedges at each end are modern additions, having been constructed in the early 19th century to shore up the wall. The remainder of the present-day exterior of the Colosseum is in fact the original interior wall.

The surviving part of the outer wall's monumental façade comprises three stories of superimposed arcades surmounted by a podium on which stands a tall attic, both of which are pierced by windows interspersed at regular intervals. The arcades are framed by half-columns of the Tuscan, Ionic, and Corinthian orders, while the attic is decorated with Corinthian pilasters.[21] Each of the arches in the second- and third-floor arcades framed statues, probably honoring divinities and other figures from Classical mythology.

Two hundred and forty mast corbels were positioned around the top of the attic. They originally supported a retractable awning, known as the velarium, that kept the sun and rain off spectators. This consisted of a canvas-covered, net-like structure made of ropes, with a hole in the center.[3] It covered two-thirds of the arena, and sloped down towards the center to catch the wind and provide a breeze for the audience. Sailors, specially enlisted from the Roman naval headquarters at Misenum and housed in the nearby Castra Misenatium, were used to work the velarium.[22]

The Colosseum's huge crowd capacity made it essential that the venue could be filled or evacuated quickly. Its architects adopted solutions very similar to those used in modern stadiums to deal with the same problem. The amphitheatre was ringed by eighty entrances at ground level, 76 of which were used by ordinary spectators.[3] Each entrance and exit was numbered, as was each staircase. The northern main entrance was reserved for the Roman Emperor and his aides, whilst the other three axial entrances were most likely used by the elite. All four axial entrances were richly decorated with painted stucco reliefs, of which fragments survive. Many of the original outer entrances have disappeared with the collapse of the perimeter wall, but entrances XXIII (23) to LIV (54) still survive.[12]

Spectators were given tickets in the form of numbered pottery shards, which directed them to the appropriate section and row. They accessed their seats via vomitoria (singular vomitorium), passageways that opened into a tier of seats from below or behind. These quickly dispersed people into their seats and, upon conclusion of the event or in an emergency evacuation, could permit their exit within only a few minutes. The name vomitoria derived from the Latin word for a rapid discharge, from which English derives the word vomit.

Interior

According to the Codex-Calendar of 354, the Colosseum could accommodate 87,000 people, although modern estimates put the figure at around 50,000. They were seated in a tiered arrangement that reflected the rigidly stratified nature of Roman society. Special boxes were provided at the north and south ends respectively for the Emperor and the Vestal Virgins, providing the best views of the arena. Flanking them at the same level was a broad platform or podium for the senatorial class, who were allowed to bring their own chairs. The names of some 5th century senators can still be seen carved into the stonework, presumably reserving areas for their use.

The tier above the senators, known as the maenianum primum, was occupied by the non-senatorial noble class or knights (equites). The next level up, the maenianum secundum, was originally reserved for ordinary Roman citizens (plebians) and was divided into two sections. The lower part (the immum) was for wealthy citizens, while the upper part (the summum) was for poor citizens. Specific sectors were provided for other social groups: for instance, boys with their tutors, soldiers on leave, foreign dignitaries, scribes, heralds, priests and so on. Stone (and later marble) seating was provided for the citizens and nobles, who presumably would have brought their own cushions with them. Inscriptions identified the areas reserved for specific groups.

Another level, the maenianum secundum in legneis, was added at the very top of the building during the reign of Domitian. This comprised a gallery for the common poor, slaves and women. It would have been either standing room only, or would have had very steep wooden benches. Some groups were banned altogether from the Colosseum, notably gravediggers, actors and former gladiators.

Each tier was divided into sections (maeniana) by curved passages and low walls (praecinctiones or baltei), and were subdivided into cunei, or wedges, by the steps and aisles from the vomitoria. Each row (gradus) of seats was numbered, permitting each individual seat to be exactly designated by its gradus, cuneus, and number.

The arena itself was 83 meters by 48 meters (272 ft by 157 ft / 280 by 163 Roman feet).[12] It comprised a wooden floor covered by sand (the Latin word for sand is harena or arena), covering an elaborate underground structure called the hypogeum (literally meaning "underground"). Little now remains of the original arena floor, but the hypogeum is still clearly visible. It consisted of a two-level subterranean network of tunnels and cages beneath the arena where gladiators and animals were held before contests began. Eighty vertical shafts provided instant access to the arena for caged animals and scenery pieces concealed underneath; larger hinged platforms, called hegmata, provided access for elephants and the like. It was restructured on numerous occasions; at least twelve different phases of construction can be seen.[12]

The hypogeum was connected by underground tunnels to a number of points outside the Colosseum. Animals and performers were brought through the tunnel from nearby stables, with the gladiators' barracks at the Ludus Magnus to the east also being connected by tunnels. Separate tunnels were provided for the Emperor and the Vestal Virgins to permit them to enter and exit the Colosseum without needing to pass through the crowds.[12]

Substantial quantities of machinery also existed in the hypogeum. Elevators and pulleys raised and lowered scenery and props, as well as lifting caged animals to the surface for release. There is evidence for the existence of major hydraulic mechanisms[12] and according to ancient accounts, it was possible to flood the arena rapidly, presumably via a connection to a nearby aqueduct.

The Colosseum and its activities supported a substantial industry in the area. In addition to the amphitheatre itself, many other buildings nearby were linked to the games. Immediately to the east is the remains of the Ludus Magnus, a training school for gladiators. This was connected to the Colosseum by an underground passage, to allow easy access for the gladiators. The Ludus Magnus had its own miniature training arena, which was itself a popular attraction for Roman spectators. Other training schools were in the same area, including the Ludus Matutinus (Morning School), where fighters of animals were trained, plus the Dacian and Gallic Schools.

Also nearby were the Armamentarium, comprising an armory to store weapons; the Summum Choragium, where machinery was stored; the Sanitarium, which had facilities to treat wounded gladiators; and the Spoliarium, where bodies of dead gladiators were stripped of their armor and disposed of.

Around the perimeter of the Colosseum, at a distance of 18 m (59 ft) from the perimeter, was a series of tall stone posts, with five remaining on the eastern side. Various explanations have been advanced for their presence; they may have been a religious boundary, or an outer boundary for ticket checks, or an anchor for the velarium or awning.

Right next to the Colosseum is also the Arch of Constantine.

he Colosseum was used to host gladiatorial shows as well as a variety of other events. The shows, called munera, were always given by private individuals rather than the state. They had a strong religious element but were also demonstrations of power and family prestige, and were immensely popular with the population. Another popular type of show was the animal hunt, or venatio. This utilized a great variety of wild beasts, mainly imported from Africa and the Middle East, and included creatures such as rhinoceros, hippopotamuses, elephants, giraffes, aurochs, wisents, barbary lions, panthers, leopards, bears, caspian tigers, crocodiles and ostriches. Battles and hunts were often staged amid elaborate sets with movable trees and buildings. Such events were occasionally on a huge scale; Trajan is said to have celebrated his victories in Dacia in 107 with contests involving 11,000 animals and 10,000 gladiators over the course of 123 days.

During the early days of the Colosseum, ancient writers recorded that the building was used for naumachiae (more properly known as navalia proelia) or simulated sea battles. Accounts of the inaugural games held by Titus in AD 80 describe it being filled with water for a display of specially trained swimming horses and bulls. There is also an account of a re-enactment of a famous sea battle between the Corcyrean (Corfiot) Greeks and the Corinthians. This has been the subject of some debate among historians; although providing the water would not have been a problem, it is unclear how the arena could have been waterproofed, nor would there have been enough space in the arena for the warships to move around. It has been suggested that the reports either have the location wrong, or that the Colosseum originally featured a wide floodable channel down its central axis (which would later have been replaced by the hypogeum).[12]

Sylvae or recreations of natural scenes were also held in the arena. Painters, technicians and architects would construct a simulation of a forest with real trees and bushes planted in the arena's floor. Animals would be introduced to populate the scene for the delight of the crowd. Such scenes might be used simply to display a natural environment for the urban population, or could otherwise be used as the backdrop for hunts or dramas depicting episodes from mythology. They were also occasionally used for executions in which the hero of the story — played by a condemned person — was killed in one of various gruesome but mythologically authentic ways, such as being mauled by beasts or burned to death.

The Colosseum today is now a major tourist attraction in Rome with thousands of tourists each year paying to view the interior arena, though entrance for EU citizens is partially subsidised, and under-18 and over-65 EU citizens' entrances are free.[24] There is now a museum dedicated to Eros located in the upper floor of the outer wall of the building. Part of the arena floor has been re-floored. Beneath the Colosseum, a network of subterranean passageways once used to transport wild animals and gladiators to the arena opened to the public in summer 2010.[25]

The Colosseum is also the site of Roman Catholic ceremonies in the 20th and 21st centuries. For instance, Pope Benedict XVI leads the Stations of the Cross called the Scriptural Way of the Cross (which calls for more meditation) at the Colosseum[26][27] on Good Fridays.

In the Middle Ages, the Colosseum was clearly not regarded as a sacred site. Its use as a fortress and then a quarry demonstrates how little spiritual importance was attached to it, at a time when sites associated with martyrs were highly venerated. It was not included in the itineraries compiled for the use of pilgrims nor in works such as the 12th century Mirabilia Urbis Romae ("Marvels of the City of Rome"), which claims the Circus Flaminius — but not the Colosseum — as the site of martyrdoms. Part of the structure was inhabited by a Christian order, but apparently not for any particular religious reason.

It appears to have been only in the 16th and 17th centuries that the Colosseum came to be regarded as a Christian site. Pope Pius V (1566–1572) is said to have recommended that pilgrims gather sand from the arena of the Colosseum to serve as a relic, on the grounds that it was impregnated with the blood of martyrs. This seems to have been a minority view until it was popularised nearly a century later by Fioravante Martinelli, who listed the Colosseum at the head of a list of places sacred to the martyrs in his 1653 book Roma ex ethnica sacra.

Martinelli's book evidently had an effect on public opinion; in response to Cardinal Altieri's proposal some years later to turn the Colosseum into a bullring, Carlo Tomassi published a pamphlet in protest against what he regarded as an act of desecration. The ensuing controversy persuaded Pope Clement X to close the Colosseum's external arcades and declare it a sanctuary, though quarrying continued for some time.

At the instance of St. Leonard of Port Maurice, Pope Benedict XIV (1740–1758) forbade the quarrying of the Colosseum and erected Stations of the Cross around the arena, which remained until February 1874. St. Benedict Joseph Labre spent the later years of his life within the walls of the Colosseum, living on alms, prior to his death in 1783. Several 19th century popes funded repair and restoration work on the Colosseum, and it still retains a Christian connection today. Crosses stand in several points around the arena and every Good Friday the Pope leads a Via Crucis procession to the amphitheatre.

 

Coliseu (Colosseo)

A seguir, um texto, em português, da Wikipédia, a enciclopédia livre:

 

O Coliseu, também conhecido como Anfiteatro Flaviano, deve seu nome à expressão latina Colosseum (ou Coliseus, no latim tardio), devido à estátua colossal de Nero, que ficava perto a edificação. Localizado no centro de Roma, é uma excepção de entre os anfiteatros pelo seu volume e relevo arquitectónico. Originalmente capaz de albergar perto de 50 000 pessoas, e com 48 metros de altura, era usado para variados espetáculos. Foi construído a leste do fórum romano e demorou entre 8 a 10 anos a ser construído.

O Coliseu foi utilizado durante aproximadamente 500 anos, tendo sido o último registro efetuado no século VI da nossa era, bastante depois da queda de Roma em 476. O edifício deixou de ser usado para entretenimento no começo da era medieval, mas foi mais tarde usado como habitação, oficina, forte, pedreira, sede de ordens religiosas e templo cristão.

Embora esteja agora em ruínas devido a terremotos e pilhagens, o Coliseu sempre foi visto como símbolo do Império Romano, sendo um dos melhores exemplos da sua arquitectura. Actualmente é uma das maiores atrações turísticas em Roma e em 7 de julho de 2007 foi eleita umas das "Sete maravilhas do mundo moderno". Além disso, o Coliseu ainda tem ligações à igreja, com o Papa a liderar a procissão da Via Sacra até ao Coliseu todas as Sextas-feiras Santas.

O coliseu era um local onde seriam exibidos toda uma série de espectáculos, inseridos nos vários tipos de jogos realizados na urbe. Os combates entre gladiadores, chamados muneras, eram sempre pagos por pessoas individuais em busca de prestígio e poder em vez do estado. A arena (87,5 m por 55 m) possuía um piso de madeira, normalmente coberto de areia para absorver o sangue dos combates (certa vez foi colocada água na representação de uma batalha naval), sob o qual existia um nível subterrâneo com celas e jaulas que tinham acessos diretos para a arena; Alguns detalhes dessa construção, como a cobertura removível que poupava os espectadores do sol, são bastante interessantes, e mostram o refinamento atingido pelos construtores romanos. Formado por cinco anéis concêntricos de arcos e abóbadas, o Coliseu representa bem o avanço introduzido pelos romanos à engenharia de estruturas. Esses arcos são de concreto (de cimento natural) revestidos por alvenaria. Na verdade, a alvenaria era construída simultaneamente e já servia de forma para a concretagem. Outro tipo de espetáculos era a caça de animais, ou venatio, onde eram utilizados animais selvagens importados de África. Os animais mais utilizados eram os grandes felinos como leões, leopardos e panteras, mas animais como rinocerontes, hipopótamos, elefantes, girafas, crocodilos e avestruzes eram também utilizados. As caçadas, tal como as representações de batalhas famosas, eram efetuadas em elaborados cenários onde constavam árvores e edifícios amovíveis.

Estas últimas eram por vezes representadas numa escala gigante; Trajano celebrou a sua vitória em Dácia no ano 107 com concursos envolvendo 11 000 animais e 10 000 gladiadores no decorrer de 123 dias.

Segundo o documentário produzido pelo canal televisivo fechado, History Channel, o Coliseu também era utilizado para a realização de naumaquias, ou batalhas navais. O coliseu era inundado por dutos subterrâneos alimentados pelos aquedutos que traziam água de longe. Passada esta fase, foi construída uma estrutura, que é a que podemos ver hoje nas ruínas do Coliseu, com altura de um prédio de dois andares, onde no passado se concentravam os gladiadores, feras e todo o pessoal que organizava os duelos que ocorreriam na arena. A arena era como um grande palco, feito de madeira, e se chama arena, que em italiano significa areia, porque era jogada areia sob a estrutura de madeira para esconder as imperfeições. Os animais podiam ser inseridos nos duelos a qualquer momento por um esquema de elevadores que surgiam em alguns pontos da arena; o filme "Gladiador" retrata muito bem esta questão dos elevadores. Os estudiosos, há pouco tempo, descobriram uma rede de dutos inundados por baixo da arena do Coliseu. Acredita-se que o Coliseu foi construído onde, outrora, foi o lago do Palácio Dourado de Nero; O imperador Vespasiano escolheu o local da construção para que o mal causado por Nero fosse esquecido por uma construção gloriosa.

Sylvae, ou recreações de cenas naturais eram também realizadas no Coliseu. Pintores, técnicos e arquitectos construiriam simulações de florestas com árvores e arbustos reais plantados no chão da arena. Animais seriam então introduzidos para dar vida à simulação. Esses cenários podiam servir só para agrado do público ou como pano de fundo para caçadas ou dramas representando episódios da mitologia romana, tão autênticos quanto possível, ao ponto de pessoas condenadas fazerem o papel de heróis onde eram mortos de maneiras horríveis mas mitologicamente autênticas, como mutilados por animais ou queimados vivos.

Embora o Coliseu tenha funcionado até ao século VI da nossa Era, foram proibidos os jogos com mortes humanas desde 404, sendo apenas massacrados animais como elefantes, panteras ou leões.

O Coliseu era sobretudo um enorme instrumento de propaganda e difusão da filosofia de toda uma civilização, e tal como era já profetizado pelo monge e historiador inglês Beda na sua obra do século VII "De temporibus liber": "Enquanto o Coliseu se mantiver de pé, Roma permanecerá; quando o Coliseu ruir, Roma ruirá e quando Roma cair, o mundo cairá".

A construção do Coliseu foi iniciada por Vespasiano, nos anos 70 da nossa era. O edifício foi inaugurado por Tito, em 80, embora apenas tivesse sido finalizado poucos anos depois. Empresa colossal, este edifício, inicialmente, poderia sustentar no seu interior cerca de 50 000 espectadores, constando de três andares. Aquando do reinado de Alexandre Severo e Gordiano III, é ampliado com um quarto andar, podendo suster agora cerca de 90 000 espectadores. A grandiosidade deste monumento testemunha verdadeiramente o poder e esplendor de Roma na época dos Flávios.

Os jogos inaugurais do Coliseu tiveram lugar ano 80, sob o mandato de Tito, para celebrar a finalização da construção. Depois do curto reinado de Tito começar com vários meses de desastres, incluindo a erupção do Monte Vesúvio, um incêndio em Roma, e um surto de peste, o mesmo imperador inaugurou o edifício com uns jogos pródigos que duraram mais de cem dias, talvez para tentar apaziguar o público romano e os deuses. Nesses jogos de cem dias terão ocorrido combates de gladiadores, venationes (lutas de animais), execuções, batalhas navais, caçadas e outros divertimentos numa escala sem precedentes.

O Coliseu, como não se encontrava inserido numa zona de encosta, enterrado, tal como normalmente sucede com a generalidade dos teatros e anfiteatros romanos, possuía um “anel” artificial de rocha à sua volta, para garantir sustentação e, ao mesmo tempo, esta substrutura serve como ornamento ao edifício e como condicionador da entrada dos espectadores. Tal como foi referido anteriormente, possuía três pisos, sendo mais tarde adicionado um outro. É construído em mármore, pedra travertina, ladrilho e tufo (pedra calcária com grandes poros). A sua planta elíptica mede dois eixos que se estendem aproximadamente de 190 m por 155 m. A fachada compõe-se de arcadas decoradas com colunas dóricas, jónicas e coríntias, de acordo com o pavimento em que se encontravam. Esta subdivisão deve-se ao facto de ser uma construção essencialmente vertical, criando assim uma diversificação do espaço.

 

Os assentos eram em mármore e a cavea, escadaria ou arquibancada, dividia-se em três partes, correspondentes às diferentes classes sociais: o podium, para as classes altas; as maeniana, sector destinado à classe média; e os portici, ou pórticos, construídos em madeira, para a plebe e as mulheres. O pulvinar, a tribuna imperial, encontrava-se situada no podium e era balizada pelos assentos reservados aos senadores e magistrados. Rampas no interior do edifício facilitavam o acesso às várias zonas de onde podiam visualizar o espectáculo, sendo protegidos por uma barreira e por uma série de arqueiros posicionados numa passagem de madeira, para o caso de algum acidente. Por cima dos muros ainda são visíveis as mísulas, que sustentavam o velarium, enorme cobertura de lona destinada a proteger do sol os espectadores e, nos subterrâneos, ficavam as jaulas dos animais, bem como todas as celas e galerias necessárias aos serviços do anfiteatro.

O monumento permaneceu como sede principal dos espetáculos da urbe romana até ao período do imperador Honorius, no século V. Danificado por um terremoto no começo do mesmo século, foi alvo de uma extensiva restauração na época de Valentinianus III. Em meados do século XIII, a família Frangipani transformou-o em fortaleza e, ao longo dos séculos XV e XVI, foi por diversas vezes saqueado, perdendo grande parte dos materiais nobres com os quais tinha sido construído.

Os relatos romanos referem-se a cristãos sendo martirizados em locais de Roma descritos pouco pormenorizadamente (no anfiteatro, na arena...), quando Roma tinha numerosos anfiteatros e arenas. Apesar de muito provavelmente o Coliseu não ter sido utilizado para martírios, o Papa Bento XIV consagrou-o no século XVII à Paixão de Cristo e declarou-o lugar sagrado. Os trabalhos de consolidação e restauração parcial do monumento, já há muito em ruínas, foram feitos sobretudo pelos pontífices Gregório XVI e Pio IX, no século XIX.

French Air Force personnel unfold photo voltaic solar panels connected to a “green to grid” portable trailer that can be deployed rapidly at the NATO Smart Energy Training and Assessment Camp (SETAC), at the Drawsko Pomorskie training area in Poland. The SETAC concept is deployed as part of the multinational Exercise Capable Logistician 2019, a regular exercise for NATO and Partner nations to test interoperability and assess NATO standards.

I love to write from this self-imposed quarantine. My quarantine is perhaps less extreme than yours. I have ‘him indoors’, who apparently can forgive me anything, whilst you have your beloved four-legged companions, who are also unconditional in their devotion to you, so both of us seem to be somewhat capable of doing this, managing seclusion that is.

 

Of course, I would never put pressure on you to visit. That would be more than hypocritical. We have chosen not to fly for 11 years now, so I would never encourage anyone else to, not anymore at least. The Netherlands might turn out to be somewhat of a disappointment anyway, not being as ‘liberal’ or as ‘free’ as people universally imagine. It is probably better than most places, but the rot has set in universally, I am afraid.

 

I do sort of understand you choosing dogs over people though. The last few years have been a period of cutting off, of self-quarantining. That’s had more to do with coming to terms with the sexual abuse in my childhood than anything else. I am afraid I might have traversed every possible boundary with people, friends I mean, so I decided to remove myself. What followed after that proved to be more fruitful, and I have been happier since then too. I suspect this might reverberate for you too. I see it as somewhat of an ‘Irish Problem’, that might also mean something to you, given your saying to me that you would have real problems returning there. I will never go back there again. My last trip there, with ‘Him Indoors’, was my last visit there, or anywhere. He wanted to see it, so we went to a family wedding (since divorced). At least they do have divorce there now.

 

So now I am writing it all down to the best of my ability, fading memory allowing. Making art has fallen away mainly due to the incredible expense. I had one large show here, in Amsterdam, some ten years ago, and stopped making after that. I nearly bankrupted us! Was it not always so? I have no trouble bankrupting myself, but the idea of bankrupting ‘Hi’ (my acronym for ‘him indoors’) as well was not really tenable. Now I write, and it uses all of the same muscles, and the only expense is the external hard-drive, attached to my computer. Storage is no real problem. I have also written all my life, why they even gave me a doctorate for it, so I am now trying to work that into a ‘fiction’, embracing two pandemics, from HIV to Covid, though the way things are going, I might have to include Monkeypox too, and a possible World War 3. Trying to write about these with some humour, and ‘Hope’ even, is proving to be quite a challenge.

 

You know I traverse boundaries, sometimes unfairly, but I fear that this is the nature of the beast (something I am struggling to contain). We even started off that way, with you so instantly agreeing to pose for the very first Icon. It was a very extreme beginning, that asking you to stand naked, holding one object you thought defined you, whilst also holding a prophylactic, something I defined as our only ‘suit of armour’ in a time of that sexually generated plague. I said that I, in turn, would mount you in 24 carat Gold, acknowledging both your ‘sainthood’ and ‘godlike’ status. You were the first. I want to thank you for trusting me. I sort of knew what I was doing. It seemed very clear to me that we had to be acknowledged, by we, I mean us transgressors, us people living outside the norm. I don’t mean choosing to live outside that norm either, I mean more their finding themselves there simply because of who they were. There was no choice, none at all. Regardless of the choices we think we make, I see us just as being ourselves reacting to our environment and attempting to ensure our own continuance, a real ‘survival of the un-fittest’, if there ever was one. Even the unfittest survive until they don’t, and their demise, that slinking off, is deserving of description, perhaps as an adjunct to Mr. Darwin’s thesis. We watched each other fall. I won’t go as far as saying that the best fell, some did, and some survived, ditto some of the 'worst' did one or the other. We watched, we struggled to survive, and described as best we could.

 

I will probably generate acronyms for all involved, living breathing cyphers. Then there are other made up names: Rack is Rack, and I am, of course, Ruin, rampaging Rack and Ruin even, so there is possibly room for those types of names, non-specific, but possibly tribal, identifiers: Rack, Ruin, Sorcha (meaning Light, as you know), Hi (Him indoors, of course), and whatever. Perhaps you can be your 'Do(g)nut'. I haven’t quite worked that one out yet, though I do have 400,000 words approximately to hang these names on. One could be Dream, even. Aisling is the Gaelic name derived from Dream. But the words are more or less already there, generated by 20 years of writing emails. Initially I was trying to write something built out of these emails and responses, but now I sort of realise that I cannot use the responses, that I have to somehow generate the ‘characters’ through my responses to them.

 

It's like trying to create characters out of a vacuum, but then, if the truth be told, that is exactly what ‘fiction’ is.

 

So here we are, you are now very much included, at the beginning of this ‘story’. I won’t use what you reply, what you write, but I will use what you provoke in me, what you cause me to remember and there will be a picture built of you, another one.

 

This time you can keep all your clothes on.

 

There’s a strange ‘Hope’ in bothering to try to make art or to write, and both are very easy to be cynical about. Cynicism is possibly the easiest route to take, and the saddest too. I see that it always demands a slightly religious fervour, the making process, so I understand why this cynicism is generated. We are awash in plagues, some of us have been for the last 40 years, even, and longer. There are also, of course, wars and rumours of wars, and the tyranny imposed by dictators, including those Fortune 500 companies, so the very idea that there might be a future where people might read, or choose to even look at art, or simply that there might be even people, at all, there to indulge in both ‘rarified luxuries’ seems to be in that balance, or lack of balance. Nadezhda Mandelstam described it, in her memoir ‘Hope Against Hope’, as the obligation that each of us has to scream out against injustice, so that it might echo out there, even if the universe is busily, with our help, emptying itself.

 

But then one has to chuckle to oneself at the idea that we could empty infinity, that arrogance is sublimely human. Hope, perhaps, resides in that chuckle too.

 

There it is, that double-mask of comedy and tragedy combined.

 

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!

 

The Indian HAL HG-30 Bāja (‘Hawk’) had been designed and manufactured by Hindustan Aeronautics Ltd. in the early 60ies, when it became clear that the Indian Air Force was left without a capable and rather simple aircraft for these roles - the “jet age” had been in full development, but fast and large aircraft like the Su-7 or Hawker Hunter were just not suited for low-altitude missions against day and night visible ground targets in a broad area.

 

Indian military planners assumed that potential aggressor will first disable airfields, so the Bāja was designed to take-off from short unprepared runways, and it was readily available to be loaded with weapons and supplied through a flexible system of auxiliary airfields that required no special preparations, especially in mountainous regions.

 

The resulting HG-30 Bāja was a light, single-engine, low-wing single-seat aircraft with a metal airframe, capable of performing close air support, counter insurgency (COIN), and reconnaissance missions. The type featured a license-built Rolls Royce Dart turboprop engine and a reinforced, retractable tricycle landing gear for operations on rugged terrain. The unpressurized cockpit was placed as far forward and high as possible, offering the pilot an excellent view. The ejection seat was armored and the cockpit lined with nylon flak curtains.

The first HG-30 prototype flew in February 1962, and a total of 89 examples of the Bāja were built between 1963 and 1965, including two pre-production aircraft. These introduced some improvements like fixed wingtip tanks, a bulged canopy which improved the rear view or self-sealing and foam-filled fuselage tanks.

 

Armament consisted of four fixed 20mm cannons in the wings, plus unguided missiles, unguided bombs or napalm tanks under the wings and the fuselage on a total of 11 hardpoints. The inner pair under the wings as well as the centerline pylon were able to carry 1.000 lbs each and were ‘wet’ for optional drop tanks. The next pair could carry 500 lbs each, and the outer six attachment points were reserved for missile rails or single bombs of up to 200 lbs caliber. A total external ordnance load of up to 4.500 lbs could be carried, even though this was rarely practiced since it severely hampered handling.

 

The Bāja was exclusively used by the Indian Air Force, serving with 3rd (‘Cobras’) and 5th (‘Tuskers’) Squadrons in the Eastern and Western regions, alongside Toofani and Ajeet fighter bombers. Even though there was some foreign interest (e .g. from Israel and Yugoslavia,) no export sales came to fruition.

A tandem-seated trainer version was envisaged, but never left the drawing board, since Hindustan had already developed the HJT-16 Kiran jet trainer for the IAF which was more suitable, esp. with its side-by-side cockpit. Even a maritime version with foldable outer wings, arresting hook and structural reinforcements was considered for the Indian Navy.

 

The HG-30 did not make it in time into service for the five-week Indo-Pakistani war of 1965, but later saw serious action in the course of the Bangladesh Liberation War and the ensuing next clash between India and Pakistan in December 1971, when all aircraft (originally delivered in a natural metal finish) quickly received improvised camouflage schemes.

 

The 1971 campaign settled down to series of daylight anti-airfield, anti-radar and close-support attacks by fighters, with night attacks against airfields and strategic targets, into which the HG-30s were heavily involved. Sporadic raids by the IAF continued against Pakistan's forward air bases in the West until the end of the war, and large scale interdiction and close-support operations were maintained.

The HG-30 excelled at close air support. Its straight wings allowed it to engage targets 150 MPH slower than swept-wing jet fighters. This slower speed improved shooting and bombing accuracy, enabling pilots to achieve an average accuracy of less than 40 feet, and the turboprop engine offered a much better fuel consumption than the jet engines of that era.

While it was not a fast aircraft and its pilots were a bit looked down upon by their jet pilot colleagues, the HG-30 was well liked by its crews because of its agility, stability at low speed, ease of service under field conditions and the crucial ability to absorb a lot of punishment with its rigid and simple structure.

 

After the 1971 conflict the Bāja served with the IAF without any further warfare duty until 1993, when, after the loss of about two dozen aircraft due to enemy fire and (only three) accidents, the type was completely retired and its COIN duties taken over by Mi-25 and Mi-35 helicopters, which had been gradually introduced into IAF service since 1984.

  

General characteristics

Crew: 1

Length: 10.23 m (33 ft 6¼ in)

Wingspan: 12.38 m (40 ft 7¼ in) incl. wing tip tanks

Height: 3.95 m (12 ft 11¼ in)

Empty weight: 7,689 lb (3,488 kg)

Max. take-off weight: Loaded weight: 11,652 lb (5,285 kg)

 

Powerplant:

1× Rolls Royce Dart RDa.7 turboprop engine, with 1.815 ehp (1.354 kW)/1.630 shp (1.220 kW) at 15,000 rpm

 

Performance

Maximum speed: 469 mph (755 km/h) at sea level and in clean configuration

Stall speed: 88 km/h (48 knots 55 mph)

Service ceiling: 34,000 ft (10,363 m)

Rate of climb: 5,020 ft/min (25.5 m/s)

Range: 1,385 miles (2,228 km) at max. take-off weight

 

Armament:

4× 20mm cannons (2 per wing) with 250 RPG

A total of 11 underwing and fuselage hardpoints with a capacity of 4.500 lbs (2.034 kg); provisions to carry combinations of general purpose or cluster bombs, machine gun pods, unguided missiles, air-to-ground rocket pods, fuel drop tanks, and napalm tanks.

     

The kit and its assembly

This fictional COIN aircraft came to be when I stumbled across the vintage Heller Breguet Alizé kit in 1:100 scale. I did some math and came to the conclusion that the kit would make a pretty plausible single-seat propeller aircraft in 1:72...

 

Finding a story and a potential user was more of a challenge. I finally settled on India – not only because the country had and has a potent aircraft industry, a COIN aircraft (apart from obsolete WWII types) would have matched well into the IAF in the early 70ies. Brazil was another manufacturer candidate – but then I had the vision of Indian Su-7 and their unique camouflage scheme, and this was what the kit was to evolve to! Muahahah!

 

What started as a simple adaptation idea turned into a true Frankenstein job, because only little was left from the Heller Alizé – the kit is SO crappy…

 

What was thrown into the mix:

• Fuselage, rudder and front wheel doors from the Heller Alizé

• Horizontal stabilizers from an Airfix P-51 Mustang

• Wings are the outer parts from an Airfix Fw 189, clipped and with new landing gear wells

• Landing gear comes from a Hobby Boss F-86, the main wheels from the scrap box

• Cockpit tub comes from a Heller Alpha Jet, seat and pilot from the scrap box

• The canopy comes from a Hobby Boss F4U Corsair

• Ordnance hardpoints were cut from styrene strips

• Propeller consists of a spinner from a Matchbox Mitsubishi Zero and blades from two AH-1 tail rotors

• Ordnance was puzzled together from the scrap box; the six retarder bombs appeared appropriate, the four missile pods were built from Matchbox parts. The wingtip tanks are streamlines 1.000 lbs bombs.

 

The only major sculpting work was done around the nose, in order to make the bigger propeller fiat and to simulate an appropriate air intake for the engine. Overall this thing looks pretty goofy, rather jet-like, with the slightly swept wings. On the other side, the Bāja does not look bad at all, and it has that “Small man’s A-10” aura to it.

 

Putting the parts together only posed two trouble zones: the canopy and the wings. The Corsair canopy would more or less fit, getting it in place and shaping the spine intersection was more demanding than expected. Still not perfect, but this was a “quick and dirty” project with a poor basis, anyway, so I don’t bother much.

Another tricky thing were the wings and getting them on the fuselage. That the Fw 189 wings ended up here has a reason: the original kit provided two pairs of upper wing halves, the lower halves were lacking! Here these obsolete parts finally found a good use, even though the resulting wing is pretty thick and called for some serious putty work on the belly side… Anyway, this was still easier than trying to modify the Alizé wings into something useful, and a thick wing ain’t bad for low altitude and bigger external loads.

  

Painting and markings

As mentioned before, the garish paint scheme is inspired by IAF Su-7 fighter bombers during/after the India-Pakistani confrontation of 1971. It’s almost surreal, reason enough to use it. Since a 1:72 Su-7 takes up so much shelf space I was happy to find this smaller aircraft as a suitable placebo.

 

I used Su-7 pictures as benchmarks, and settled for the following enamels as basic tones for the upper grey, brown and green:

• Humbrol 176 (Neutral Grey, out of production), for a dull and bluish medium grey

• Testors 1583 (Rubber), a very dark, reddish brown

• Humbrol 114 (Russian Green, out of production)

 

For the lower sides I used Testors 2123 (Russian Underside Blue). The kit received a black ink wash and some dry painting for weathering/more depth. Judging real life aircraft pics of IAF Su-7 and MiG-21, the original underside tone is hardly different from the upper blue grey and it seems on some aircraft as if the upper tone had been wrapped around. The aircraft do not appear very uniform at all, anyway.

 

Together with the bright IAF roundels the result looks a bit as if that thing had been designed by 6 year old, but the livery has its charm - the thing looks VERY unique! The roundels come from a generic TL Modellbau aftermarket sheet, the tactical codes are single white letters from the same manufacturer. Other stencils, warning signs and the squadron emblem come from the scrap box – Indian aircraft tend to look rather bleak and purposeful, except when wearing war game markings...

   

In the end, a small and quick project. The model was assembled in just two days, basic painting done on the third day and decals plus some weathering and detail work on the forth – including pics. A new record, even though this one was not built for perfectionism, rather as a recycling kit with lots of stock material at hand. But overall the Bāja looks exotic and somehow quite convincing?

See more photos of this, and the Wikipedia article.

 

Details, quoting from Smithsonian National Air and Space Museum | Lockheed SR-71 Blackbird:

 

No reconnaissance aircraft in history has operated globally in more hostile airspace or with such complete impunity than the SR-71, the world's fastest jet-propelled aircraft. The Blackbird's performance and operational achievements placed it at the pinnacle of aviation technology developments during the Cold War.

 

This Blackbird accrued about 2,800 hours of flight time during 24 years of active service with the U.S. Air Force. On its last flight, March 6, 1990, Lt. Col. Ed Yielding and Lt. Col. Joseph Vida set a speed record by flying from Los Angeles to Washington, D.C., in 1 hour, 4 minutes, and 20 seconds, averaging 3,418 kilometers (2,124 miles) per hour. At the flight's conclusion, they landed at Washington-Dulles International Airport and turned the airplane over to the Smithsonian.

 

Transferred from the United States Air Force.

 

Manufacturer:

Lockheed Aircraft Corporation

 

Designer:

Clarence L. "Kelly" Johnson

 

Date:

1964

 

Country of Origin:

United States of America

 

Dimensions:

Overall: 18ft 5 15/16in. x 55ft 7in. x 107ft 5in., 169998.5lb. (5.638m x 16.942m x 32.741m, 77110.8kg)

Other: 18ft 5 15/16in. x 107ft 5in. x 55ft 7in. (5.638m x 32.741m x 16.942m)

 

Materials:

Titanium

 

Physical Description:

Twin-engine, two-seat, supersonic strategic reconnaissance aircraft; airframe constructed largley of titanium and its alloys; vertical tail fins are constructed of a composite (laminated plastic-type material) to reduce radar cross-section; Pratt and Whitney J58 (JT11D-20B) turbojet engines feature large inlet shock cones.

 

Long Description:

No reconnaissance aircraft in history has operated in more hostile airspace or with such complete impunity than the SR-71 Blackbird. It is the fastest aircraft propelled by air-breathing engines. The Blackbird's performance and operational achievements placed it at the pinnacle of aviation technology developments during the Cold War. The airplane was conceived when tensions with communist Eastern Europe reached levels approaching a full-blown crisis in the mid-1950s. U.S. military commanders desperately needed accurate assessments of Soviet worldwide military deployments, particularly near the Iron Curtain. Lockheed Aircraft Corporation's subsonic U-2 (see NASM collection) reconnaissance aircraft was an able platform but the U. S. Air Force recognized that this relatively slow aircraft was already vulnerable to Soviet interceptors. They also understood that the rapid development of surface-to-air missile systems could put U-2 pilots at grave risk. The danger proved reality when a U-2 was shot down by a surface to air missile over the Soviet Union in 1960.

 

Lockheed's first proposal for a new high speed, high altitude, reconnaissance aircraft, to be capable of avoiding interceptors and missiles, centered on a design propelled by liquid hydrogen. This proved to be impracticable because of considerable fuel consumption. Lockheed then reconfigured the design for conventional fuels. This was feasible and the Central Intelligence Agency (CIA), already flying the Lockheed U-2, issued a production contract for an aircraft designated the A-12. Lockheed's clandestine 'Skunk Works' division (headed by the gifted design engineer Clarence L. "Kelly" Johnson) designed the A-12 to cruise at Mach 3.2 and fly well above 18,288 m (60,000 feet). To meet these challenging requirements, Lockheed engineers overcame many daunting technical challenges. Flying more than three times the speed of sound generates 316° C (600° F) temperatures on external aircraft surfaces, which are enough to melt conventional aluminum airframes. The design team chose to make the jet's external skin of titanium alloy to which shielded the internal aluminum airframe. Two conventional, but very powerful, afterburning turbine engines propelled this remarkable aircraft. These power plants had to operate across a huge speed envelope in flight, from a takeoff speed of 334 kph (207 mph) to more than 3,540 kph (2,200 mph). To prevent supersonic shock waves from moving inside the engine intake causing flameouts, Johnson's team had to design a complex air intake and bypass system for the engines.

 

Skunk Works engineers also optimized the A-12 cross-section design to exhibit a low radar profile. Lockheed hoped to achieve this by carefully shaping the airframe to reflect as little transmitted radar energy (radio waves) as possible, and by application of special paint designed to absorb, rather than reflect, those waves. This treatment became one of the first applications of stealth technology, but it never completely met the design goals.

 

Test pilot Lou Schalk flew the single-seat A-12 on April 24, 1962, after he became airborne accidentally during high-speed taxi trials. The airplane showed great promise but it needed considerable technical refinement before the CIA could fly the first operational sortie on May 31, 1967 - a surveillance flight over North Vietnam. A-12s, flown by CIA pilots, operated as part of the Air Force's 1129th Special Activities Squadron under the "Oxcart" program. While Lockheed continued to refine the A-12, the U. S. Air Force ordered an interceptor version of the aircraft designated the YF-12A. The Skunk Works, however, proposed a "specific mission" version configured to conduct post-nuclear strike reconnaissance. This system evolved into the USAF's familiar SR-71.

 

Lockheed built fifteen A-12s, including a special two-seat trainer version. Two A-12s were modified to carry a special reconnaissance drone, designated D-21. The modified A-12s were redesignated M-21s. These were designed to take off with the D-21 drone, powered by a Marquart ramjet engine mounted on a pylon between the rudders. The M-21 then hauled the drone aloft and launched it at speeds high enough to ignite the drone's ramjet motor. Lockheed also built three YF-12As but this type never went into production. Two of the YF-12As crashed during testing. Only one survives and is on display at the USAF Museum in Dayton, Ohio. The aft section of one of the "written off" YF-12As which was later used along with an SR-71A static test airframe to manufacture the sole SR-71C trainer. One SR-71 was lent to NASA and designated YF-12C. Including the SR-71C and two SR-71B pilot trainers, Lockheed constructed thirty-two Blackbirds. The first SR-71 flew on December 22, 1964. Because of extreme operational costs, military strategists decided that the more capable USAF SR-71s should replace the CIA's A-12s. These were retired in 1968 after only one year of operational missions, mostly over southeast Asia. The Air Force's 1st Strategic Reconnaissance Squadron (part of the 9th Strategic Reconnaissance Wing) took over the missions, flying the SR-71 beginning in the spring of 1968.

 

After the Air Force began to operate the SR-71, it acquired the official name Blackbird-- for the special black paint that covered the airplane. This paint was formulated to absorb radar signals, to radiate some of the tremendous airframe heat generated by air friction, and to camouflage the aircraft against the dark sky at high altitudes.

 

Experience gained from the A-12 program convinced the Air Force that flying the SR-71 safely required two crew members, a pilot and a Reconnaissance Systems Officer (RSO). The RSO operated with the wide array of monitoring and defensive systems installed on the airplane. This equipment included a sophisticated Electronic Counter Measures (ECM) system that could jam most acquisition and targeting radar. In addition to an array of advanced, high-resolution cameras, the aircraft could also carry equipment designed to record the strength, frequency, and wavelength of signals emitted by communications and sensor devices such as radar. The SR-71 was designed to fly deep into hostile territory, avoiding interception with its tremendous speed and high altitude. It could operate safely at a maximum speed of Mach 3.3 at an altitude more than sixteen miles, or 25,908 m (85,000 ft), above the earth. The crew had to wear pressure suits similar to those worn by astronauts. These suits were required to protect the crew in the event of sudden cabin pressure loss while at operating altitudes.

 

To climb and cruise at supersonic speeds, the Blackbird's Pratt & Whitney J-58 engines were designed to operate continuously in afterburner. While this would appear to dictate high fuel flows, the Blackbird actually achieved its best "gas mileage," in terms of air nautical miles per pound of fuel burned, during the Mach 3+ cruise. A typical Blackbird reconnaissance flight might require several aerial refueling operations from an airborne tanker. Each time the SR-71 refueled, the crew had to descend to the tanker's altitude, usually about 6,000 m to 9,000 m (20,000 to 30,000 ft), and slow the airplane to subsonic speeds. As velocity decreased, so did frictional heat. This cooling effect caused the aircraft's skin panels to shrink considerably, and those covering the fuel tanks contracted so much that fuel leaked, forming a distinctive vapor trail as the tanker topped off the Blackbird. As soon as the tanks were filled, the jet's crew disconnected from the tanker, relit the afterburners, and again climbed to high altitude.

 

Air Force pilots flew the SR-71 from Kadena AB, Japan, throughout its operational career but other bases hosted Blackbird operations, too. The 9th SRW occasionally deployed from Beale AFB, California, to other locations to carryout operational missions. Cuban missions were flown directly from Beale. The SR-71 did not begin to operate in Europe until 1974, and then only temporarily. In 1982, when the U.S. Air Force based two aircraft at Royal Air Force Base Mildenhall to fly monitoring mission in Eastern Europe.

 

When the SR-71 became operational, orbiting reconnaissance satellites had already replaced manned aircraft to gather intelligence from sites deep within Soviet territory. Satellites could not cover every geopolitical hotspot so the Blackbird remained a vital tool for global intelligence gathering. On many occasions, pilots and RSOs flying the SR-71 provided information that proved vital in formulating successful U. S. foreign policy. Blackbird crews provided important intelligence about the 1973 Yom Kippur War, the Israeli invasion of Lebanon and its aftermath, and pre- and post-strike imagery of the 1986 raid conducted by American air forces on Libya. In 1987, Kadena-based SR-71 crews flew a number of missions over the Persian Gulf, revealing Iranian Silkworm missile batteries that threatened commercial shipping and American escort vessels.

 

As the performance of space-based surveillance systems grew, along with the effectiveness of ground-based air defense networks, the Air Force started to lose enthusiasm for the expensive program and the 9th SRW ceased SR-71 operations in January 1990. Despite protests by military leaders, Congress revived the program in 1995. Continued wrangling over operating budgets, however, soon led to final termination. The National Aeronautics and Space Administration retained two SR-71As and the one SR-71B for high-speed research projects and flew these airplanes until 1999.

 

On March 6, 1990, the service career of one Lockheed SR-71A Blackbird ended with a record-setting flight. This special airplane bore Air Force serial number 64-17972. Lt. Col. Ed Yeilding and his RSO, Lieutenant Colonel Joseph Vida, flew this aircraft from Los Angeles to Washington D.C. in 1 hour, 4 minutes, and 20 seconds, averaging a speed of 3,418 kph (2,124 mph). At the conclusion of the flight, '972 landed at Dulles International Airport and taxied into the custody of the Smithsonian's National Air and Space Museum. At that time, Lt. Col. Vida had logged 1,392.7 hours of flight time in Blackbirds, more than that of any other crewman.

 

This particular SR-71 was also flown by Tom Alison, a former National Air and Space Museum's Chief of Collections Management. Flying with Detachment 1 at Kadena Air Force Base, Okinawa, Alison logged more than a dozen '972 operational sorties. The aircraft spent twenty-four years in active Air Force service and accrued a total of 2,801.1 hours of flight time.

 

Wingspan: 55'7"

Length: 107'5"

Height: 18'6"

Weight: 170,000 Lbs

 

Reference and Further Reading:

 

Crickmore, Paul F. Lockheed SR-71: The Secret Missions Exposed. Oxford: Osprey Publishing, 1996.

 

Francillon, Rene J. Lockheed Aircraft Since 1913. Annapolis, Md.: Naval Institute Press, 1987.

 

Johnson, Clarence L. Kelly: More Than My Share of It All. Washington D.C.: Smithsonian Institution Press, 1985.

 

Miller, Jay. Lockheed Martin's Skunk Works. Leicester, U.K.: Midland Counties Publishing Ltd., 1995.

 

Lockheed SR-71 Blackbird curatorial file, Aeronautics Division, National Air and Space Museum.

 

DAD, 11-11-01

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!

  

Some background:

The Fiat G.91 was an Italian jet fighter aircraft designed and built by Fiat Aviazione, which later merged into Aeritalia. The G.91 had its origins in the NATO-organized NBMR-1 competition in 1953, which sought a light fighter-bomber "Light Weight Strike Fighter" to be adopted as standard equipment across the air forces of the various NATO nations. The competition was intended to produce an aircraft that was light, small, expendable, equipped with basic weapons and avionics and capable of operating with minimal ground support. These specifications were developed for two reasons: the first was the nuclear threat to large air bases, many cheaper aircraft could be better dispersed, and the other was to counter the trend towards larger and more expensive aircraft. After reviewing multiple submissions, the G.91 was picked as the winning design of the NBMR-1 competition.

 

The G.91 entered into operational service with the Italian Air Force in 1961, and with the West German Luftwaffe in the following year. Various other nations adopted it, such as the Portuguese Air Force, who made extensive use of the type during the Portuguese Colonial War in Africa. The G.91 remained in production for 19 years, during which a total of 756 aircraft were completed, including the prototypes and pre-production models. The assembly lines were finally closed in 1977, and the original G.91 enjoyed a long service life that extended over 35 years.

 

The G.91 was also used as a basis for a two-seat trainer variant with a stretched fuselage and further developments, based on this bigger airframe: the twin-engine development G.91Y, which was originally ordered by the Italian Air Force and Switzerland (as G.91YS) and later also operated by Poland, as well as the simpler, single-engine G-91X, a dedicated export alternative.

 

Like the G.91Y, the G.91X was an increased-performance version of the nimble baseline Fiat G.91, but unlike the G.91Y it was not funded by the Italian government but rather a private venture of Fiat. Like the G.91Y, it was based on the G.91T two-seat trainer variant. Structural modifications to reduce airframe weight increased performance and an additional fuel tank occupying the space of the G.91T's rear seat provided extra range. Combat manoeuvrability was improved with the addition of automatic leading-edge slats. While the G.91Y and X had a very similar appearance, their internal structure behind the cockpit section differed considerably and their tail section was visibly different, while the aerodynamic surfaces as well as the nose section (including the radar-less nose housing three cameras) were identical.

 

Instead of being powered by the G.91Y’s pair of small afterburning General Electric J85 turbojets, the G.91X only carried a single Pratt & Whitney J52 axial-flow dual-spool turbojet engine without reheat, a proven engine that was used in a number of successful aircraft, most of all the late Douglas A-4 Skyhawk versions. The bigger engine increased thrust by 60% over the original, earlier Orpheus-powered single-engine variants, and made the light G.91 a very agile aircraft. However, the J52 was considerably heavier than the small J85s, and despite less complex auxiliary installations, the G.91X weighed roughly 1.000 lb more than the G.91Y.

 

Performance-wise, the G.91X was, despite its conservative and heavier J52 powerplant, on par with the G.91Y, even though range, acceleration and rate of climb were not as good, the G.91Y’s afterburners gave the “Yankee Gina” a significant extra punch. On the other side, the G.91X was more robust, technically simpler and therefore easier to maintain and even better suited to operations from unprepared frontline airfields with minimal infrastructure.

Basically, the G.91X was designed to carry the same sophisticated avionics equipment as the G.91Y, which had been considerably upgraded with many of the American, British and Canadian systems being license-manufactured in Italy, but for the intended export customers in small countries with a limited budget, only a rather basic avionics package was offered, making the G.91X a simple daylight attack aircraft without any smart weapon or guided AAM capability (which the G.91Y lacked, too, only the YS for Switzerland could deploy weapons like the AIM-9 or the AGM-65).

 

Flight testing of two prototypes aircraft ran in July 1968 in parallel to the G.91Y program and was successful, with one aircraft reaching a maximum speed of Mach 0.95 in level flight, slightly less than its two-engine sibling. Airframe buffeting was noted and was rectified in production aircraft by raising the position of the tailplane slightly, and canted fins - similar to the G.91Y, but smaller - were added under the lower rear fuselage to improve directional stability. Unlike the G.91Y, which had been designed to NATO specifications, the G.91X did not feature an arrester hook, just a tail bumper.

 

The initial order of 55 G.91Y aircraft for the Italian Air Force was completed by Fiat in March 1971, by which time the company had changed its name to Aeritalia (from 1969, when Fiat Aviazione joined the Aerfer). The order was increased to 75 aircraft with 67 eventually being delivered.

In contrast to this success, the G.91X did not find immediate takers, though, because the potential market of Western-oriented countries was in the Seventies largely dominated by US American military support programs, which aggressively marketed the supersonic Northrop F-5 as a counterpart to MiG-17 and MiG-21 fighters, which had been provided to many countries by the USSR.

 

One large potential customer had been Israel, but the G.91X was declined in favor of the bigger and more sophisticated A-4N Skyhawk. Turkey and Greece also showed interest, but both eventually procured F-5 variants, heavily promoted by the USA. In the end, only a small number of the G.91X were built and sold to rather small and obscure air forces.

 

One of these few G.91X operators became Honduras. After the so-called Football War with El Salvador in 1969, the Honduran Air Force (HAF) entered the jet era in 1971 and started a re-organization and modernization program. This included the procurement of 10 old, ex-Yugoslav Canadair CL-13 Mk.4 Sabre. Later, in 1974 and as a result of an institutional growth of the Honduran Air Force, the "Coronel Hernán Acosta Mejía" Air Base, the "Coronel Armando Escalón Espinal" Base as well as the General Command of the Air Force and General Air Force General Staff were created.

 

Between 1976 and 1978 sixteen other Israeli aircraft were acquired, of the IAI \ Dassault Super-Mystere B.2 \ J-52 S'aar type, six new Cessna A-37 Dragonfly COIN aircraft and fifty UH-1 Iroquois helicopters. By then, the Sabres were in such a poor condition and deteriorated quickly under the harsh local climate, that a replacement was soon needed. The choice fell on the G.91X, not only because of the aircraft’s simplicity and ruggedness, but also because of its (though limited) reconnaissance capability as well as the engine and ammunition commonality with the ex-Israeli Sa’ars. A total of twelve G.91X were procured in 1977 and delivered until late 1979, and they were immediately put into action during the 1980s confrontation with the Sandinista government of Nicaragua, with heavy involvements in bombing raids and COIN missions. The Honduran G.91Xs flew frequent attack and reconnaissance missions, and even though they were no fighters the Ginas downed several Sandinista helicopters, including a Mil Mi-24 Hind (rather accidently shot down, though, through a salvo of unguided 5” FFARs which crossed the helicopter's flight path).

 

After the hostilities with Nicaragua had ended in 1990, the Honduran G.91Xs became actively involved in fighting drug trafficking and flew frequent reconnaissance and attack missions over home soil. By that time, the Honduran aircraft fleet was augmented or replaced (three G.91Xs had been lost through accidents or enemy fire by 1991) with 11 ex-USAF OA/A-37B Dragonflies, 12 ex-USAF Northrop F-5E/F Tiger II interceptors, 12 new Embraer T-27 Tucano armed trainers and four new CASA 101BB-02 attack airplanes.

By 1996, all eight remaining Honduran G.91Xs were, together with the Super Mystères, retired. The surviving aircraft were put up for sale as surplus, and one, already grounded G.91X airframe has been preserved at the Honduras Air Museum.

  

General characteristics:

Crew: one

Length: 11.67 m (38 ft 3.5 in)

Wingspan: 9.01 m (29 ft 6.5 in)

Height: 4.43 m (14 ft 6.3 in)

Wing area: 18.13 m² (195.149 ft²)

Empty weight: 4,400 kg (9,692 lb)

Loaded weight: 8,100 kg (17,842 lb)

Max. takeoff weight: 9,000 kg (19,823 lb)

 

Powerplant:

1× Pratt & Whitney J52-P6A turbojet with 8,500 lbf (38,000 N) of thrust

 

Performance:

Maximum speed: 1,110 km/h (600 kn, 690 mph, Mach 0.95) at 10,000 m (33,000 ft)

Range: 1,100 km (594 nmi, 683 mi)

Max. ferry range with drop tanks: 3,200 km (1,988 mls)

Service ceiling: 12,500 m (41,000 ft)

Rate of climb: 58 m/s (11.400 ft/min)

Wing loading: max. 480 kg/m² (98.3 lb/ft²)

Thrust/weight: 0.47 at maximum loading

 

Armament:

2× 30 mm (1.18 in) DEFA cannons with 120 RPG

4× under-wing pylon stations with a capacity of 1,814 kg (4,000 lb)

  

The kit and its assembly:

This build is my submission the 2020 "One week” group build at whatifmodellers.com. I had originally earmarked my Thai Navy A-4 for this event, but already built it for the “In the navy” GB that ran a couple of weeks earlier, since it was a perfect thematic match.

 

While searching for an alternative I found a Matchbox G.91Y in the stash and wondered about a single engine alternative, a simpler aircraft in the spirit of the original G.91R variants. Since I had some surplus fuselages from G.91R Revell kits in the donor bank, the G.91X was born.

 

The basis is the Matchbox G.91Y kit, a basic affair with mediocre fit and only few details. It was mostly built OOB, except for lowered flaps (easy to realize on this kit) and a completely new lower rear fuselage from a smaller G.91R section with only a single exhaust. This feat was a little more challenging than it seems, since the G.91R is considerably smaller and shorter than the G.91Y – a lot of improvisation and PSR went into this cosmetic stunt. For instance, the seams between the parts had to be reinforced from the inside, bridging the different fuselage shapes, and a 2-3mm gap between the fuselage halves had to be filled. In order to emphasize the new engine arrangement, the G.91Y’s dorsal air scoops were sanded away and a new jet exhaust had to be found for the new, rather oval tail orifice. I eventually settled upon a protective cap from y syringe needle.

 

Furthermore, the cast-on guns were replaced with hollow steel needles, and some blade antennae (styrene sheet) as well as gun nozzle protectors (thin wire) were added. The cockpit was also slightly pimped with styrene profiles and some wire (on the ejection seat and for some side consoles), the pilot figure – even though the Matchbox figures are among the best I know – was replaced by a pilot from an Airfix A-4 Skyhawk (left over from the recent Thai Navy A-4LT build). However, the canopy remained closed, since opening it would require more fuselage cutting.

 

The ordnance was kept simple, reflecting the attack/COIN role of this aircraft: a pair of LAU-19 unguided missile pods and two Mk. 82 bombs; these came from an Italeri NATO weapon set and an Airfix A-4 kit, respectively.

  

Painting and markings:

Another inspiration for this build were pictures from a PC-7 trainer of the Guatemala Air Force, which carried a livery in three murky shades of green. I found this paint scheme pretty interesting, esp. as an alternative to the ubiquitous SEA scheme (that Honduran A-37s carried). For the G.91X I adapted the scheme with slightly more contrasty tones of two shades of green and a more brownish hue: Faded Olive Drab (Modelmaster #2051), Olive Drab (Humbrol 155) and Dark Green (Humbrol 30). The undersides were painted in a light grey (Humbrol 166). I initially considered a wrap-around scheme, but eventually found it to look too boring – also with a look at the potential markings, because aircraft of the Honduran Air Force typically only carried and carry minimal markings. Instead of the Guatemalan PC-7’s apparently symmetrical scheme I rather went for a more disruptive pattern, though.

 

The model was seriously weathered with a black ink washing and post panel shading, simulating constant use and the influence of tropical climate conditions. The decals were puzzled together from various sources and improvised. Most stencils come from the OOB sheet, the roundels on the fuselage and the flags on the fin were printed at home on clear sheet, with a white decal base added underneath. Quite complicated, but the alternative white decal paper as printing base would not yield sufficiently opaque markings. In order to add some eye-catchers I gave the Gina roundels on the fuselage and on the wings, too – these are rather modern markings, but just with the flags on the fin I found the model to look quite murky and boring. Artistic freedom… The “FAH” abbreviations were created with single USAF 45° letters.

 

Finally, after some soot stains around the guns and the exhaust with grinded graphite, the aircraft was sealed with matt Italeri acrylic varnish.

  

A relatively simple project – chosen with the perspective of just a week (well, eight days, to be honest) to tackle and finish it, despite the major fuselage surgery and the photo shooting and editing on top.

[14:49] Amara turned the corner, walking into the restaurant and passing Leigh and Ayr as she moved to the counter. "Afternoon you two. Nick, I'd like a medium pie with broccoli, ham, olives, and extra cheese. To go."

 

[14:50] Leigh Parx (Kayleigh Jigsaw) just cracked up laughing. "That ain't a man. An' if you're bein' nice 'nuff ta listen, don't see why I can't do somethin' nice in return. Do you?" Leigh wasn't counting on Ayr fixing her problems, but she did know he usually managed to at least make things seem better. "Aight." Her attention shifted to the NPC waiter for a moment. "One pie with whatever meats ya'll got and a water. Plus whatever he wants despite what he says." She'd jerk her head slightly in Ayr's direction at the words. Amara got a nod. "Hey, boss. Lost your tail?"

 

[14:52] Ayr Bosatsu looks over to Amara when she walks in, chewing on the thoughts Leigh had given him. "I wanted to pick a Better time to do this, and it seems a bit abrupt to do it here and now. But," he'd clear his throat, "Amara I'd like you to Be Beta for a while. Since gage has surrendered her position we've been in need of a new one and few have stepped forward to offer their names. More than a few people have mentioned -your- name though. I'd like you to give it a try for a month and a bit, see how you feel with it." Looking down at his boots he'd huff slightly, "I'm getting too old for these lil heart-string moments."

 

[14:58] Amara was caught between blushing and crying at the announcement. She really had her heart set on just being the lead medic, but she felt rather humbled that others though her a capable Beta. "I'd be honored, Ayr, and I'll do my best. Count on it." She leaned against the counter for support as she smiled at Leigh. "My tails are fine thanks. Are you alright though after what happened yesterday?"

 

[15:07] Leigh Parx (Kayleigh Jigsaw) nodded. "Whatcha mean what happened? Only thing that rankled me any was when it seemed like you were undermining my doing my job." She'd shrug a bit. "Might wanna buy that lady a strap-on and some therapy though? She was compensatin' pretty hard for somethin'. You're welcome to join us." She'd think for a moment before pulling a business card from her pocket and holding it out to Amara.

 

[15:09] Ayr Bosatsu looks at Amara a long moment, even as Leigh speaks to her. His head nodded somewhat, mind scratching back like a broken record to his younger years. Lolling his head forward he'd plant his chin on the desk, stifling proud tears as his heart strings got plucked and played - so much so he could only manage a nod in return to her comment. Quickly standing up to try and shake himself out of it he'd make for the counter and order himself a drink with a lump in his throat, "Cola."

 

[15:14] Amara took the business card and read it over, taking a seat at the table while she waited for her pie to be made. "I do apologize for Lana; Ashagi's been going through some difficult times. Several employees have been attacked or mauled, and we have no idea who's behind them." She sighed, putting the card away knowing it would be useful later. "Her lover was attacked. Arwen was shot...and Adagio..." Amara bit her lip, stopping the sentence short. "She just didn't want someone else to be hurt on her watch. Nothing more."

 

[15:17] Mitka Dover walks in quietly stopping at the table nodding to the pack and leigh"you all been served?"

 

[15:21] Leigh Parx (Kayleigh Jigsaw) shrugged as the NPC put her water on the table. She'd keep her attention mostly focused on those she was with, for now. "Still, yer my boss. I'd rather see ya have someone competent if ya need someone. The way she was actin' ain't gonna do nothin' but end up gettin the people she's tryin' ta protect hurt." Her attention would then shift back to Ayr as she watched him. "So first thing I wanna ask ya is this. Am I a lady?" Yup, true Leigh fashion had the question seeming like it came out of nowhere.

 

[15:24] Ayr Bosatsu nods when Mitka comes in, pulling out his phone quietly. "Well," he scratched behind his ear. "Sometimes I wonder. You seem to be pretty much immune to any guy coming onto you," his eyes drifted to the left and the child outside. The one who gave him birthday cake, "...!" Scrabbling up quickly he'd look at Mitka then point at the child, screaming at the top of his lungs - "Get that child -whatever- she wants to eat, 'cause I'm frontin' the bill!" As his finger pointed at her it wiggled, so much tension and sincerity in his tone that it could not be misunderstood for a sudden paroxysm of drug-fuelled insanity. "...Yes, though, I think you fall under the class of things known as 'woman'." Sinking back down to the table he'd look about bashfully. "..She bought me cake...and i blew her off, sorta..So i feel hella bad."

 

[15:27] Amara nods. "Just waiting on my pizza to be made, Mitka. I'd like a glass of water though." She folded her arms just above her stomach and sighed. "I will look into a personal bodyguard, don't worry. Can't exactly afford injuries right now, but I need to stay close to the city more often than at ho-" She jumped back when Ayr suddenly proclaimed free food for a random child outside, eyes widened in surprise. "Woah...Ayr, don't scare me like that...please."

 

[15:29] Sally-Jean almost jumped when she heard someone yell at the top of their lungs.. OOhhh it was Mister Ayr! She'd look around to see if there was any other child he could be talking about.. didn't look like it so she'd sheepishly walk into the resturant, giving the adults a shy smile and a wave before going to the counter, smiling at Nick. " can I try some spaghetti and meatballs?" she'd ask quietly before glancing at the adults once more and taking her seat in one of the booths.

 

[15:29] Leigh Parx (Kayleigh Jigsaw) tilted her head curiously considering the words. "So you'd say I'm a woman, but not a lady? Explain, please." She glanced over her shoulder to see the child he'd indicated.

 

[15:31] Ayr Bosatsu nods profusely when the child wanders in, "AHHH! You can have it all! Will make sure I pay you back for the cake i didn't give you on your birthday!" Standing up again he'd knock over his chair, pointing at the NPC dude to chop chop to it. "...Food..Whatever she wants, all of it paid by me." Thumbing his chest he'd nod sharply and pick up his chair, "I mean. Women generally tend to respond to sexual advances. You don't from what I've seen. You got boobs and probably a ...you know," he made finger gestures akin to scissors, "..but uhm...You don' got the personality of a lady. You're a tom-boy, unashamedly so." Torn between Leigh, Amara and the kid he'd nod and point a techno viking-esque finger at Nick.

 

[15:33] Mitka Dover reaches into her top to grab her vibrating phone o ut , reads the message, and sets the phone down.She would grab a peice of paper and chucks it at Ayr's head mumbling

 

[15:35] Mitka Dover would also grab Amara the glass of water and walsk over setting it downi nfront of her.She sees the pizza done and brings it too over at the same time"there ya go, eat up Mara...your eating for two."

 

[15:37] Amara didn't know which to laugh at first - Ayr's eccentric manner as far as feeding a child, his definition of what it means to be a lady, or his inability to proper refer to female genitalia. "A lot of things define a lady, Ayr, not just her physical attributes or her response to sexual advances. It's how she carries herself." She smiled at the food and drink being delivered and handed Mitka payment. "Oh don't remind me - I don't even like olives, but that's all I've been craving for three days straight."

 

[15:39] Mitka Dover swats Ayr upside the head mumnbling something under her breath"told you i'd swat you for that ayr..."she closes her phone after sending a text back.She loosk at amara"it's been red meat for me.....and skittles"

 

[15:39] Sally-Jean blinked widely at the highly animated Ayr. She'd tilt her head even, blinking a few more times before speaking up. " Are.. are you okay Mister Ayr?" she'd tap her fingers against her bottom lip. " Maybe there was too much sugar in the cake.." She'd say softly before covering her mouth in a giggle when paper is thrown at him. She'd then widen her eyes as he dashed off like the flash.. she'd look to the adults and shrug her shoulders. " Maybe he needs a nap.. they used to make the younger kids take naps when they got all sugar crazy." she'd nod her head once before staring at her table.

 

[15:40] Leigh Parx (Kayleigh Jigsaw) just blinked. "So that makes me not a lady?" She'd consider this for a few moments before leaning back in her chair and putting her boots up on the edge of the table in Ayr's direction. If he looked, he'd get a nice view of the silky black panties barely covering her. "Alright, so where would you say I rank in the food chain? And feel free to contribute any of your thoughts to this, Amara. It would be welcomed." Her ankles crossed after a moment as an NPC brought out the pie she'd ordered right behind Mitka bringing Amara's. She fished her credits from her pocket and passed them to the guy delivering her meal.

  

[15:45] Amara shook her head at the young girl. "No dear, in all honestly, he's like that naturally sometimes. No sugar required." She nibbled on a slice of the cheesy pizza before gesturing for Leigh to help herself if she wanted a bite. "I think you're one of the more honest with yourself females on this island. It doesn't seem like you care what others think of you as long as you're at peace with yourself. You aren't walking around in heels or anything, but I'm not sure tomboy is the right term."

 

[15:45] Nikolay Fedoseev had turned around deciding he needed a slice and a moments break before heading back out on patrol.. he was in a significantly better mood since fighting with eli last night.. Heading in he just hears leighs comments glancing in her direction to see her sitting with ehr legs up and not crossed in a skirt half her ass hanging out... though he missed the panty shot... Trying to keep his face straight he cant help a small smirk... thank god she's not his daughter.

 

[15:47] Sally-Jean nodded slowly. " Ohhhh.." She'd say before smiling. She'd sit quietly as she waiting for Sam to cook up her spaghetti and meat balls. kind of listening to the grown ups, but at the same time trying to hide it.. as to not get into trouble for eavesdropping.

 

[15:52] Leigh Parx (Kayleigh Jigsaw) dropped her right hand to her lap lightly playing with the edge of her skirt as she continued to leave her feet on the table. "But lady isn't either?" Her left hand snagged a slice of pizza and she took a bite. She'd chew before studying Amara curiously. "But lady isn't the right term, either?" Her tongue ran over her teeth in thought before she took a second bite curiously waiting to see what the response would be.

  

[15:59] Amara nodded to Nik as he strolled in, giving him an acknowledging nod while she ate. "How's the leg fairing, Mr Fedoseev?" Moving on to her second slice, she thought about how to answer. "There are too many definitions for lady, Leigh. It could be a female of high society. To some it's just a proper woman. To others it's any female that looks like she bathes and uses makeup. Feminine is not a term I'd use in your case, but I see you are a lady purely due to your confidence. You don't help to get your shit done." She took one more bite of the pizza. "Not sure a 'lady' would flash her knickers though..." she winked.

 

[16:03] Ayr Bosatsu Clatters back into the restauraunt with a crash. "I needed my hat," he muttered and looked to LEigh and Amara, leaving them to talk as he sunk down into the booth next to lil Sally. "You eating properly?"

 

[16:05] Nikolay Fedoseev turned away form nick after ordering a coffee to glance at amara and then to ayr wondering what the man will do after the shit al stired up last night.. Watching him walk back in tosit with another girl he looks to amara.. "its doing good... this is the second one i've had put on... " he'd glance to leigh arching a brow as he is now in the right position to see her flicking her skirt up with ehr fingers.. giving a half amused snort he shakes his head.. "I'm not even going to touch that one... "

 

[16:06] Sally-Jean looked up. she was about to tell him she was still waiting for her food when Nick brought a medium sized plate of spaghetti and meatballs. Her eyes would widen and she'd smile " I'm about to!" she'd smile at N ick and give him thanks before leaning towards Ayr. " never had Meatballs and Spaghetti before.. so Imma try it." she'd stab a meatball with her fork, about to take a bite before asking. " Did you like your cake? I didn't know what kind you liked.. so I got cheesecake.. because everyone likes cheesecake.. I think.. and the toy fox and toy leopard where new, all clean and stuff."

 

[16:11] Leigh Parx (Kayleigh Jigsaw) just flashed the Judge a sweet smile. "Touch what?" She'd tilt her head back and look at Ayr upside down. "You gonna help me eat this pizza and finish our talk?" Her head was righted as she finished the slice in her hand. "So where would you say I rank on the food chain, all things considered?" Leigh wasn't sure who would know how much about her, even her boss. Well, she knew Ayr would know, but he seemed occupied with the other kid. A smirk crossed her features as she considered Amara's comment on the panty flashing. "I'm wearing knickers?"

 

[16:19] Ayr Bosatsu ((posts since it's been 8 mins and he fig's P.O don't matter here. )) leans over when she does to listen attentively. "Mm..I like meatballs and spaghetti, though I don't make a very good one." His head tilted towards Leigh, realizing he'd almost seen her underwear before scrabbling off. "..Battle Axe is calling," he muttered to Sally and pressed his hands onto the table. "Sáte do.." Dusting off his hands he'd bow to the child, "I really appreciate the Cake. Thank you for thinking of me and giving me it. I'll set up a tab here for you so you can get free nomz whenever you need it. Feel I owe you that much, 'N here's my number if you get a phone and you need some help cha," and thus he did meander back to his chair with a thunk, leaving behind his calling card. A piece of paper with a goofy looking Fox and his number.

 

[16:20] Amara giggled at Ayr. "All that commotion for a hat?" She knew she probably should not sound so surprised; it's Ayr after all. "It's your second leg? Maybe you should see Imrie or the folks at Straylight for a stronger limb, Nik." She glanced back to Leigh, leaned over to check, then asked, "Black...silk or satin I think. Are my eyes mistaken then?" Amara had seen Leigh in less so this hardly bugged her. "You're closer to the tomboy side of the scale than the overly girl side, Leigh. Still wearing skirts and other feminine attire, so calling you a tomboy outright isn't correct, but you aren't walking about half nude."

Overview

Minolta is a company with long experience in the world of film, and extensive digital expertise that has so far been applied primarily in the areas of office electronics and imaging (copiers & printers). Recently though, they've been making significant waves in the digital camera and scanner markets, with their highly capable (and expandable!) Dimage EX 1500 Zoom digital camera, and a whole line of film scanners covering everything from APS to 35mm, to medium-format photography. We'll be reviewing the full range of the Dimage scanners, beginning with the Dimage Scan Speed that's the subject of this review.

The Minolta Dimage Scan Speed film scanner is quite a bit more capable than some of the "personal" film scanners we've reviewed in the past, positioned at the upper end of the "enthusiast" market with a list price as of this writing of $1,299. In many respects, its capabilities reach into the lower end of the "professional" market. We see it fitting the needs of users ranging from well-heeled photo enthusiasts, to businesses and professional photographers looking for top performance on a budget. In support of this market, we found the Dimage software did a particularly good job of providing the power demanded by pros, while remaining very approachable for the amateur.

  

"High Points" Overview

 

* 12-bit digitization, 3.6 Dmax

* 2820 dpi resolution

* User interface accommodates both beginners and experienced users

* "Preview" function can pre-scan entire APS film roll

* Cold-cathode light source for long bulb life

  

EZ-Print Page

In response to reader requests, we now provide copies of all reviews stripped of all their formatting, to faciliate printing. Click here to go to the EZ-Print page.

The Basics

The Dimage Scan Speed is a desktop device about the size of a hefty novel standing on edge. (The long side down.) It measures 3.6 x 6.3 x 10.7 inches (90.5 x 160.5 x 272 mm), and weighs about 4.4 pounds (2 kg). Interface to the host computer is via a high-speed SCSI-2 interface, meaning you'll need to have such a port installed in your computer to use it. (Macs typically come equipped with SCSI connections: On a Windows machine, you'll need to have an interface card installed. Appropriate cards range from $100 to $300 in price. The manual lists a number of Adaptec SCSI cards from the 1500 and 2900 series that are suitable. The only restriction seems to be that the 1500-series boards don't work with NEC PC98xx computers.) The standard unit can scan 35mm negatives or slides, in either black and white or color. An optional APS adapter is available for scanning that film type.

The software CD shipped with the unit supports both Mac and Windows platforms. Standalone scanning applications are provided for both platforms, as well as a Photoshop acquire plug-in for the Mac, and TWAIN drivers for the PC. (NOTE: Minolta specifies that the scanner requires either Windows '95 release 2 (OSR2), or Windows '98. If you're running Windows '95, be sure to check the revision level you have installed.)

Scanning resolution can be as high as 2820 dpi (a 2700-element CCD covering the width of a 35mm slide or negative). This produces maximum image sizes of 2688x4032 pixels for 35mm (32.5 megabytes), or 1920x3328 for APS (19.2 megabytes).

A note about scanner resolution, as compared to that of digital cameras: The 10.8 megapixel resolution of the Dimage Scan Speed is even higher than you might expect, when compared to the resolution of a digital camera. Because the scanner's CCD samples each pixel in all three red, green, and blue color channels, it's really equivalent to a digital camera with a 32 megapixel sensor and "striped" color filters. Thus, the first thing most people notice about images scanned from negatives and slides is the extraordinary level of detail captured. That said, the Dimage Scan Speed's scan resolution of 2820 dpi is at the top of the field for 35mm/APS scanners.

Another important scanning parameter is "bit depth," a measure of both color accuracy and the maximum density range the scanner can recognize. (8 bits per channel is good, 10 better, and 12 the best you'll commonly find in desktop scanners.) The Dimage Scan Speed captures a full 12 bits per pixel.

Scanner Optics & Light Path

Film scanners tend to take one of two approaches in their optical design, providing either fixed or adjustable focus. The Dimage Scan Speed employs fixed-focus optics. Given the extreme resolution of most film scanners, we're surprised that the lenses can be designed with enough depth of field to insure sharp focus in the face of minor variations in the film plane position. We're surprised, but the fixed-focus approach nonetheless seems to work quite well, as evidenced by the performance of the Dimage Scan Speed. The upside of fixed-focus designs of course, is that you don't have to worry about focusing, either in the form of twiddling a thumbwheel, or by waiting while the scanner adjusts its focus for every scan. In our testing, the Dimage Scan Speed produced sharp images every time, the sole exclusion being one orientation of our unusual "USAF 1951" resolution target, which is a glass slide with the pattern deposited on one side of it. With the pattern facing one way, we got sharp results, but decidedly blurry ones with it facing the other. We saw no evident focus deficiencies while scanning normal slides or negatives.

The Dimage Scan Speed uses a special fluorescent light source, producing strong spectral peaks in the red, green, and blue portions of the spectrum. We observed that this diffuse illumination source produced somewhat "softer" scans than some other scanners. The resulting scans had less of a razors-edge on fine detail, but were also much more forgiving of film defects and film grain. A good analogy (for those old darkroom aficionados out there) would be the difference between condenser and diffusion enlargers: The condenser optics tend to produce sharper images, but at the cost of greatly enhanced grain, while diffusion enlargers create a softer look. Note in this though, that while the scans produced by the Dimage Scan Speed have a somewhat "softer" appearance to them, they in fact appear to carry an extremely high level of detail, as evidenced by the results from our WG-18 (ISO-12233) resolution target scans.

Film Handling

The Dimage Scan Speed uses plastic slide- and filmstrip-holders to carry the film to the scanner: You first place the media to be scanned into the holder, then insert the holder into the scanner. The holders have detent notches on them that provide repeatable film positioning, and yet allow for manual advance of the film between frames. During scanning, the holder and film is moved past a fixed CCD array. The filmstrip holder can accommodate strips of 35mm film up to six frames in length, and the slide holder up to four slides. Both holders are reversible, a necessary feature for their use: Inserted into the scanner, you can access half of the total film frames by sliding the adapter in or out. To reach the remaining frames, you remove the adapter, flip it end for end, and reinsert it.

We found both the slide and film holders to be quite effective and easy to use. The film adapter is hinged, but only to the extent that a plate flips up to expose the recess into which the film is laid. (Unlike many "clamshell" designs, the slot holding the film is a fixed structure.) The back pressure plate then hinges back down and latches, clamping the film flat. This arrangement did a particularly good job of handling curled or damaged film, regardless of whether the film was curled side-to-side, or along its length. The film-holding slot is about a half-millimeter wider than the film itself, doing a good job of constraining the film position, yet still allowing minor adjustments to be made for fine alignment relative to the limits of the scanning area. We did find that the filmstrip holder crops the 35mm frame very slightly, about 3% in both vertical and horizontal directions by our reckoning. (For some reason, this appears to be a common characteristic of strip-film holders.)

The slide holder is also constructed of plastic, with four slots along the top edge into which the slides may be loaded. The edges of each slot set absolute limits for the horizontal position of the slide mount, but there's a bit more play (about a full millimeter side-to-side) with slides than is present in the filmstrip adapter. This is probably a good thing, as it allows you to correct for film misaligned in its mount: You can manually tweak the slides to achieve about two degrees of rotation in either direction, as needed. (Despite this looseness, we had no difficulty aligning slides square to the holder, as the edges of the "windows" in the holder provided good reference surfaces to align to, and simply "bottoming out" the slide in the slot yielded good alignment if the film was properly positioned in the slide mount.) The slide holder is also a little unusual in the way that the slides "float" between two sets of spring-loaded fingers. This seemed to do a good job of keeping the film plane well-centered about the point of optimum focus. The centering fingers gripped a particularly thick plastic-and-glass slide mount quite a bit more firmly than they did standard cardboard ones, but handled a wide range of mounts well. System Interface and Included Software

The Dimage Scan Speed uses a SCSI-2 connection to the host computer, providing the high speed data transfer necessary to handle the large amounts of data the scanner can generate. No SCSI card is included with the unit, but Minolta lists several models of Adaptec cards that the unit can be used with. (Adaptec is pretty much the standard for SCSI cards: You can find cheaper ones, but the Adaptec models are more likely to be compatible with a wide range of equipment. Note in particular, that some scanners, CD-ROM drives, and other equipment ships with low-cost SCSI cards included. In many cases, these are "dedicated" cards, that will only run the particular device they're shipped with. If you're buying a card to support the Dimage Scan Speed, take our advice and get a "name brand" Adaptec unit. The hassle you'll save will be more than worth it!)

Once connected to the computer, the Dimage Scan Speed is controlled through an excellent software interface that we'll describe in greater detail below. As noted earlier, the scanner-control software takes the form of standalone applications on both the Mac and PC, as well as a Photoshop plug-in on the Mac, and a TWAIN component on the PC. A particular strength of the Dimage software is the extent to which it provides powerful controls for experienced users, while at the same time offering a simple interface for novices.

A nice touch in the Dimage Scan Speed package was the inclusion of Adobe's Photoshop LE, for both Mac and Windows. Photoshop LE is a slightly trimmed-down version of the full Photoshop package, the primary omissions being support for color spaces other than RGB (such as CMYK, for commercial offset printing), and less in the way of color management. At one time, it was quite common to find Photoshop LE or even a full version of Photoshop bundled with many scanning devices. The combination of policy changes at Adobe (implemented in the form of radically higher prices to their bundling partners), and ever-tightening margins and declining retail prices in the scanner market have all but eliminated Photoshop from the "bundle" market. We applaud Minolta's inclusion of this program with the Dimage Scan Speed though: We suspect that many potential purchasers of the Scan Speed will be upgrading their imaging capability with the acquisition, and won't already have a copy of Photoshop. While trimmed-down somewhat from the capabilities of the full version, Photoshop LE is a dramatic step up from the "dumbed-down" interface and capabilities of Adobe's PhotoDeluxe, a much more common software bundle component these days. Don't get us wrong, PhotoDeluxe is an excellent program, but is clearly targeted at the casual user. Even at that though, we've long felt that removing key features such as the "levels" control is no gift to the end-user. While it may make the program easier to use, such simplification ultimately leaves users at a dead end, with nowhere to go as their skills and abilities improve. Photoshop LE is adequate to the needs of most semi-pro users, and will provide the full range of capabilities that most users will need to achieve the best results. Flame off for now, but repeated kudos to Minolta for taking the cost hit and including Photoshop LE with the scanner. One parting shot: You can't buy Photoshop LE, only the full version of Photoshop, which routinely sells for well over $500. Given that the LE version will be enough for the majority of users, the argument could be made that its inclusion in the Dimage Scan Speed bundle will save many people $500 or more. This fact alone is a significant differentiator for the Minolta's product.

Speeds and Feeds

As its name suggests, the Dimage Scan Speed is intended to be a fast scanner. In our testing, we found that it did indeed zip along pretty quickly. This appeared to be due partly to the basic mechanism and electronics (which moves the film and digests the data rapidly), and partly to the fixed-focus optics: When you tell the unit to begin scanning, there's no delay for focus adjustment before the scan starts. The unit does make one pass over the negative or slide first though, to determine an autoexposure level, a process that takes 4-5 seconds. Scanning throughput was quite good with the unit, helped by the flexible, easy-to-use software, but also by the fast scan times themselves. (We haven't in the past explicitly measured preview and scan times, so won't have comparable numbers for many scanners we've previously tested. From this point on though, we'll begin measuring these throughput-related timings on a routine basis...) Running the Dimage Scan Speed from an Adaptec SCSI card on our 350 MHz Pentium-II Windows machine, we measured the following scan times:

  

Preview/Scan Times:

 

Preview w/autoexposure:

20 seconds

 

Preview w/o autoexposure:

16 seconds

 

Low res (~600dpi) full-frame scan:

21 seconds

 

Full res (2820 dpi) full-frame scan:

44 seconds

     

Operation and User Interface

Other than the actual scans themselves, most of the story to be told about a film scanner has to do with the software that drives it, and to what extent the combination of hardware and software makes it easy to produce good-quality scans. Accordingly, we'll devote a sizable of this review to talking about the software that drives Minolta's Dimage family of scanners, and the Dimage Scan Speed in particular.

As noted several times already, we feel that Minolta has done a particularly good job of balancing capability with ease-of-use. This is a difficult equation to optimize, as the needs of "beginners" and "experts" can vary so widely. At the same time, the goal should be to provide a smooth gradation of capability, not introducing any abrupt hurdles to overcome as the users advance in their sophistication. Minolta has accomplished this difficult design goal by providing very basic, visually-oriented contrast/brightness adjustments for neophytes, while at the same time offering fairly sophisticated histogram and tone curve controls for those comfortable with more complex adjustments, and who need the control they provide.

As we write this, we're still searching for our "formula" that works best for scanner reviews, but are generally settling on a format in which we step through the scanner controls in the approximate order that a user would encounter them. (For a more complete walk-through of scanner operation, check out Minolta's excellent web site for their scanners: They've put together a comprehensive "on-line demo" of how the software works.)

The Preview Screen and Command Window

The most basic options and functions of the Dimage Scan Speed scanner are controlled via the Command window, shown below. The Command window contains two list boxes, two status displays, and a total of ten buttons, which we describe below, moving from left to right, top to bottom in the screen shot: (NOTE: This and all screen shots following have been scaled-down to better fit the 'web page -- The actual screens are larger and much more readable!)

   

* Film Format (List Box) - Options are 35mm or APS

* Film Type (List Box) - Options are Slide Film, Color Negative, B/W Negative, B/W Positive

* Current Job Selection (Display window) - Displays currently-chosen "job type", combining both input and output resolutions. (Translating input resolution (at the film) to output resolution (in the file and on paper when printed) is a tough process to make understandable: Minolta's "Job Type" approach does as good a job of this as any approach we've seen thus far.)

* Job Selection Button - Click for a pop-up menu of currently-defined job types, or create your own.

* Status Bar (Display field) - Displays descriptions of controls as your mouse rolls over them, and gives status information during the scan process. (Very handy for interpreting the sometimes-cryptic button icons, before you get used to them.)

* Index Scan Button (APS Only) - Creates thumbnail-sized index scans of an entire APS film roll.

* Prescan Button (APS or 35mm) - Generates a preview scan of the current film frame or slide. Preview scan sizes can be set to large, small, or automatic. Auto fits the scan resolution to the size screen you're working on. Generally, you'll want the largest preview scan you can get, to help in accurately setting white and black points and in adjusting the tone curves.

* Scan Settings Button - Brings up the Scan Settings window (shown at right), where you can manually adjust the input and output scan resolutions and set the units you want to work in (pixels, inches, or cm). NOTE that you can't set the resolution values when your units are set to pixels, as in the screenshot at right.

* Save Index Scan Button - To save time on subsequent scans (as well as provide a useful index of images on your APS rolls), you can save APS index scans to disk.

* Save Job Button - If you've created a custom Scan Settings configuration, you can save it under its own "job type," for immediate recall later.

* Preferences Button - Brings up the Preferences window, described later.

* Rewind Button (APS Only) - Rewinds APS film back into its canister.

* Help - (If you need us to explain what this button does, you probably shouldn't buy the scanner! ;-)

 

Preferences Window

The preferences window (not shown) controls a number of overall settings governing scanner operation. Most people will rarely need to visit this screen, as the default settings will suffice for many applications. About the only control you're likely to need to change with any regularity is the one for Color Depth, and even then, the non-default settings are likely to be useful to only a small cadre of advanced users. Herewith the Preferences functions:

 

* Auto Expose for Slides - This appears to be an overall exposure compensation adjustment for scanning very dense transparencies. It made no perceptible difference with our "train" slide though, perhaps because that slide also includes some very light areas.

* Close Driver After Scanning - This will be most useful when using either a TWAIN or Photoshop acquire module for scanning. It will close the scanning window after each scan, returning you to the host application. (Or to the desktop, if you're running standalone.)

* Prescan Size (Options are Small, Large, or Auto) - You can preset the size of the prescan window, or allow the scanning software to size it to your screen automatically. The last is the easiest, the fixed sizes perhaps being useful if you want to be able to see other windows on your desktop while the scanning software is running.

* Color Depth (Options are 8-bit, 16-bit, and 16-bit linear) - As mentioned earlier, the Dimage Scan Speed is a 12-bit per channel scanner. Since computer displays and most programs can only accept 8 bits per channel, what happens to the rest? Normally (in 8-bit mode), the scanner and scanning software translate the 12-bit data down to the 8-bit final data size, in effect "choosing the best 8 bits." For most uses, this is the easiest and most direct thing to do. For difficult subjects with particularly wide dynamic ranges though, you may want to employ some unusual tonal mapping, to preserve both shadow and highlight detail, or experiment with different approaches after the scan is complete. For these situations, Minolta provides the ability to capture all 12 bits per channel, and store them in a file. Since the TIFF file format only recognizes either 8 or 16 bits per channel, the option which preserves the full 12 bits of original data is labeled "16-bit," even though only 12 bits per channel are actually being stored. It's a little harder to understand the need for the "16-bit linear" option, but perhaps it has some use in scientific applications. What it appears to do is to turn off the analog "gamma" adjustment that takes place prior to the digitization of the image data. The same raw data is being captured, but the distribution of bits across the tone curve is very different. (In general, dark areas look VERY dark with the 16-bit linear option enabled.) As we said, this doesn't appear to be terribly useful for general photographic applications, but could find some use in photogrammetry.

   

APS Settings - not having had the APS attachment to play with, we didn't have an opportunity to experiment with these, and the main manual offered no description. Below are our "best guesses" as to what they do:

 

o Index Scroll Direction (Options are Horizontal or Vertical) - APS pre-scans produce arrays of thumbnail images. This option simply selects whether the display is set to scroll horizontally or vertically as you move through the array of images.

o Index Scan Priority (Options are Speed or Quality) - With up to 40 frames on a roll, you may sometimes prefer a "quick and dirty" pre-scan in order to view all your images quickly. At other times, you may want a higher-quality prescan, to facilitate image adjustments prior to the high-resolution scans themselves. (Note that you don't have to pre-scan the entire roll, if you know which image you're interested in, based on your APS index print: The software apparently displays blank thumbnails as soon as the roll is loaded, allowing you to choose the image you're interested in, based on frame number.)

o Max # of Frames - We're not sure what this control is for, unless it's to restrict the pre-scan operation to the first few frames of a roll

o Auto Film Rewind - Apparently an option to rewind the film back into the cartridge after the scanning is completed.

o Rotate All Frames 180 degrees - Depending on how the APS cartridge loads into the camera, rolls from some models could come out "upside down." This checkbox avoids the need to laboriously flip every individual frame separately.

   

Prescan Window

This window (shown below) is "home base" for the scanning process. From here, you'll launch off into other functions within the software, to adjust color balance, contrast, or tonal range. Controls here also adjust preview orientation, data readout, and exposure parameters for sequential scans. See the text following the screen shot for a description of the individual buttons and controls.

The Douglas A-4 Skyhawk is a single seat subsonic carrier-capable attack aircraft developed for the United States Navy and United States Marine Corps in the early 1950s. The delta winged, single turbojet engined Skyhawk was designed and produced by Douglas Aircraft Company, and later by McDonnell Douglas. It was originally designated A4D under the U.S. Navy's pre-1962 designation system.

 

The Skyhawk is a relatively lightweight aircraft with a maximum takeoff weight of 24,500 pounds (11,100 kg) and has a top speed of more than 670 miles per hour (1,080 km/h). The aircraft's five hardpoints support a variety of missiles, bombs and other munitions. It was capable of carrying a bomb load equivalent to that of a World War II-era Boeing B-17 bomber, and could deliver nuclear weapons using a low-altitude bombing system and a "loft" delivery technique. The A-4 was originally powered by the Wright J65 turbojet engine; from the A-4E onwards, the Pratt & Whitney J52 was used.

 

Skyhawks played key roles in the Vietnam War, the Yom Kippur War, and the Falklands War. Sixty years after the aircraft's first flight in 1954, some of the 2,960 produced (through February 1979) remain in service with several air arms around the world.

 

The USS Midway Museum is a maritime museum located in downtown San Diego, California at Navy Pier. The museum consists of the aircraft carrier Midway. The ship houses an extensive collection of aircraft, many of which were built in Southern California

 

For the video; youtu.be/xQdAifKkz_k

Completely covered as i like it & looks best.

 

Heavy Weather

Toa Mazeka is fully capable of conjuring normal, heavy and even bizarre weather patterns with his Storm Ruler lance.

 

Gather friends, listen to a tale that has never been told, the Red Star, a mystery old as time, always seen flying high in the sky, unknown & full of wonder for far too long, beings known as the kestora, primary residents on board, alien to us as we are are to them. Who knew the stars purpose and that a race of beings were up far in the heavens, as you know, Makuta has taken over the Great Spirit, as a precaution to the ruler of shadow's actions and new stolen power, the Kestora have been busy planning & building Titans that would serve as gods and stop Makuta if he ever attempted to seize the Red Star, resurrect his servants he used and traveled to the rest of the matoran universe and alternate dimensions

one of four trusted and selected warriors were.. Mazeka

  

Before his days as a toa and the makuta's invasion in Karda Nui, mazeka was a brilliant matoran, keeping his spirits and hopes high, mazeka worked hard to be the greatest inventor, creating the proto jets and the machines the toa would pilot, the brave matoran would lead his fellow matoran to new heights, however the makuta attacked while he was away on a scouting flight in a uncharted area that would be a nest, mazeka went missing but avoided having the light drained from him, lost and fallen mid flight from a unknown makuta, meeting his end in a raging storm that raged up into the sky, carried away by powerful winds and striked with a flash of lightning, assumed and dead, mazeka was beamed up to the red star, there he would be reborn and avenge his fallen matoran

 

Toa Mazeka

Alias: Sky God

Kanohi: Zeus

Allows the user to instantly clear the skies to shine light, reform thick clouds and conjure a storm of strong wind, freezing rain, acid rain and violent lighting strikes.

Element: Air

Powers: Master of weather

Weapon: Storm Ruler

 

Abilities:

Full control over the Air and Weather

Normal Weather like rain storms, snow storms, wind storms, lightning and thunder storms.

or Heavy Weather by making it rain dangerous rahi, acid/fiery rain. Hail hard and thick as rocks. or weird as mutating Matoran, Makuta and Toa into Ussal's

  

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!

  

Some background:

The Supermarine Seafire was a naval version of the Supermarine Spitfire adapted for operation from aircraft carriers. It was analogous in concept to the Hawker Sea Hurricane, a navalized version of the Spitfire's stablemate, the Hawker Hurricane. The name Seafire was derived from the abbreviation of the longer name Sea Spitfire.

 

The idea of adopting a navalized, carrier-capable version of the Supermarine Spitfire had been mooted by the Admiralty as early as May 1938. Despite a pressing need to replace various types of obsolete aircraft that were still in operation with the Fleet Air Arm (FAA), some opposed the notion, such as Winston Churchill, although these disputes were often a result of an overriding priority being placed on maximizing production of land-based Spitfires instead. During 1941 and early 1942, the concept was again pushed for by the Admiralty, culminating in an initial batch of Seafire Mk Ib fighters being provided in late 1941, which were mainly used for pilots to gain experience operating the type at sea. While there were concerns over the low strength of its undercarriage, which had not been strengthened like many naval aircraft would have been, its performance was found to be acceptable.

 

From 1942 onwards, further Seafire models were quickly ordered, including the first operationally-viable Seafire F Mk III variant. This led to the type rapidly spreading throughout the FAA. In November 1942, the first combat use of the Seafire occurred during Operation Torch, the Allied landings in North Africa. In July 1943, the Seafire was used to provide air cover for the Allied invasion of Sicily; and reprised this role in September 1943 during the subsequent Allied invasion of Italy. During 1944, the type was again used in quantity to provide aerial support to Allied ground forces during the Normandy landings and Operation Dragoon in Southern France. During the latter half of 1944, the Seafire became a part of the aerial component of the British Pacific Fleet, where it quickly proved to be a capable interceptor against the feared kamikaze attacks by Japanese pilots which had become increasingly common during the final years of the Pacific War. Several Seafire variants were produced during WWII, more or less mirroring the development of its land-based ancestor.

 

The Seafire continued to be used for some time after the end of the war, and new, dedicated versions were developed and exported. The FAA opted to promptly withdraw all of its Merlin-powered Seafires and replace them with Griffon-powered counterparts. The type saw further active combat use during the Korean War, in which FAA Seafires performed hundreds of missions in the ground attack and combat air patrol roles against North Korean forces during 1950. The Seafire was withdrawn from FAA service during the 1950s and was replaced by the newer Hawker Sea Fury, the last piston engine fighter to be used by the service, along with the first generation of jet-propelled naval fighters, such as the de Havilland Vampire, Supermarine Attacker, and Hawker Sea Hawk.

 

After WWII, the Royal Canadian Navy and French Aviation Navale also obtained Seafires to operate from ex-Royal Navy aircraft carriers. France received a total of 140 Seafires of various versions from 1946 on, including 114 Seafire Mk IIIs in two tranches (35 of them were set aside for spare part) until 1948, and these were followed in 1949 by fifteen Mk. 15 fighters and twelve FR Mk. 23 armed photo reconnaissance aircraft. Additionally, twenty land-based Mk. IXs were delivered to Naval Air Station Cuers-Pierrefeu as trainers.

 

The Seafire Mk. 23 was a dedicated post-war export version. It combined several old and new features and was the final “new” Spitfire variant to be powered by a Merlin engine, namely a Rolls-Royce Merlin 66M with 1,720 hp (1,283 kW) that drove a four-blade propeller. The Mk. 23 was originally built as a fighter (as Seafire F Mk. 23), but most machines were delivered or later converted with provisions for being fitted with two F24 cameras in the rear fuselage and received the service designation FR Mk. 23 (or just FR.23). Only 32 of this interim post-war version were built by Cunliffe-Owen, and all of them were sold to foreign customers.

 

Like the Seafire 17, the 23 had a cut-down rear fuselage and teardrop canopy, which afforded a better all-round field of view than the original cockpit. The windscreen was modified, too, to a rounded section, with narrow quarter windows, rather than the flat windscreen used on land-based Spitfires. As a novel feature the Seafire 23 featured a "sting" arrestor hook instead of the previous V-shaped ventral arrangement.

The fuel capacity was 120 gal (545 l) distributed in two main forward fuselage tanks: the lower tank carried 48 gal (218 l) while the upper tank carried 36 gal (163 l), plus two fuel tanks built into the leading edges of the wings with capacities of 12.5 (57 l) and 5.5 gal (25 l) respectively. It featured a reinforced main undercarriage with longer oleos and a lower rebound ratio, a measure to tame the deck behavior of the Mk. 15 and reducing the propensity of the propeller tips "pecking" the deck during an arrested landing. The softer oleos also stopped the aircraft from occasionally bouncing over the arrestor wires and into the crash barrier.

The wings were taken over from the contemporary Spitfire 21 and therefore not foldable. However, this saved weight and complexity, and the Seafire’s compact dimensions made this flaw acceptable for its operators. The wings were furthermore reinforced, with a stronger main spar necessitated by the new undercarriage, and as a bonus they were able to carry heavier underwing loads than previous Seafire variants. This made the type not only suitable for classic dogfighting (basic armament consisted of four short-barreled 20 mm Hispano V cannon in the outer wings), but also for attack missions with bombs and unguided rockets.

 

The Seafire’s Aéronavale service was quite short, even though they saw hot battle duty. 24 Mk. IIIs were deployed on the carrier Arromanches in 1948 when it sailed for Vietnam to fight in the First Indochina War. The French Seafires operated from land bases and from Arromanches on ground attack missions against the Viet Minh before being withdrawn from combat operations in January 1949.

After returning to European waters, the Aéronavale’s Seafire frontline units were re-equipped with the more modern and capable Seafire 15s and FR 23s, but these were also quickly replaced by Grumman F6F Hellcats from American surplus stock, starting already in 1950. The fighters were retired from carrier operations and soon relegated to training and liaison duties, and eventually scrapped. However, the FR.23s were at this time the only carrier-capable photo reconnaissance aircraft in the Aéronavale’s ranks, so that these machines remained active with Flottille 1.F until 1955, but their career was rather short, too, and immediately ended when the first naval jets became available and raised the performance bar.

  

General characteristics:

Crew: 1

Length: 31 ft 10 in (9.70 m)

Wingspan: 36 ft 10 in (11.23 m)

Height: 12 ft 9 in (3.89 m) tail down with propeller blade vertical

Wing area: 242.1 ft² (22.5 m²)

Empty weight: 5,564 lb (2,524 kg)

Gross weight: 7,415 lb (3,363 kg)

 

Powerplant:

1× Rolls-Royce Merlin 66M V-12 liquid-cooled piston engine,

delivering 1,720 hp (1,283 kW) at 11,000 ft and driving a 4-bladed constant-speed propeller

 

Performance:

Maximum speed: 404 mph (650 km/h) at 21,000 ft (6,400 m)

Cruise speed: 272 mph (438 km/h, 236 kn)

Range: 493 mi (793 km) on internal fuel at cruising speed

965 mi (1,553 km) with 90 gal drop tank

Service ceiling: 42,500 ft (12,954 m)

Rate of climb: 4,745 ft/min (24.1 m/s) at 10,000 ft (3,048 m)

Time to altitude: 20,000 ft (6,096 m) in 8 minutes 6 seconds

 

Armament:

4× 20 mm Hispano V cannon; 175 rpg inboard, 150 rpg outboard

Hardpoints for up to 2× 250 lb (110 kg) bombs (outer wings), plus 1× 500 lb (230 kg) bomb

(ventral hardpoint) or drop tanks, or up to 8× "60 lb" RP-3 rockets on zero-length launchers

  

The kit and its assembly:

This build was another attempt to reduce The Stash. The basis was a Special Hobby FR Mk. 47, which I had originally bought as a donor kit: the engine housing bulges of its Griffon engine were transplanted onto a racing P-51D Mustang. Most of the kit was still there, and from this basis I decided to create a fictional post-WWII Seafire/Spitfire variant.

 

With the Griffon fairings gone a Merlin engine was settled, and the rest developed spontaneously. The propeller was improvised, with a P-51D spinner (Academy kit) and blades from the OOB 5-blade propeller, which are slightly deeper than the blades from the Spitfire Mk. IX/XVI prop. In order to attach it to the hull and keep it movable, I implanted my standard metal axis/styrene tube arrangement.

 

With the smaller Merlin engine, I used the original, smaller Spitfire stabilizers but had to use the big, late rudder, due to the taller fin of the post-ware Spit-/Seafire models. The four-spoke wheels also belong to an earlier Seafire variant. Since it was an option in the kit, I went for a fuselage with camera openings (the kit comes with two alternative fuselages as well as a vast range of optional parts for probably ANY late Spit- and Seafire variant – and also for many fictional hybrids!), resulting in a low spine and a bubble canopy, what gives the aircraft IMHO very sleek and elegant lines. In order to maintain this impression I also used the short cannon barrels from the kit. For extended range on recce missions I furthermore gave the model the exotic underwing slipper tanks instead of the optional missile launch rail stubs under the outer wing sections. Another mod is the re-installment of the small oil cooler under the left wing root from a Spitfire Mk. V instead of the symmetrical standard radiator pair – just another subtle sign that “something’s not right” here.

  

Painting and markings:

The decision to build this model as a French aircraft was inspired by a Caracal Decals set with an Aéronavale Seafire III from the Vietnam tour of duty in 1948, an aircraft with interesting roundels that still carried British FAA WWII colors (Dark Slate Grey/Dark Sea Grey, Sky). Later liveries of the type remain a little obscure, though, and information about them is contradictive. Some profiles show French Seafires in British colors, with uniform (Extra) Dark Sea Grey upper and Sky lower surfaces, combined with a high waterline – much like contemporary FAA aircraft like the Sea Fury. However, I am a bit in doubt concerning the Sky, because French naval aircraft of that era, esp. recce types like the Shorts Sunderland or PBY Catalina, were rather painted in white or very light grey, just with uniform dark grey upper surfaces, reminding of British Coastal Command WWII aircraft.

 

Since this model would be a whif, anyway, and for a pretty look, I adopted the latter design, backed by an undated profile of a contemporary Seafire Mk. XV from Flottille S.54, a training unit, probably from the Fifties - not any valid guarantee for authenticity, but it looks good, if not elegant!

Another option from that era would have been an all-blue USN style livery, which should look great on a Spitfire, too. But I wanted something more elegant and odd, underpinning the bubbletop Seafire’s clean lines.

 

I settled for Extra Dark Sea Grey (Humbrol 123) and Light Grey (FS. 36495, Humbrol 147) as basic tones, with a very high waterline. The spinner was painted yellow, the only colorful marking. Being a post-war aircraft of British origin, the cockpit interior was painted in black (Revell 09, anthracite). The landing gear wells became RAF Cockpit Green (Humbrol 78), while the inside of the respective covers became Sky (Humbrol 90) – reflecting the RAF/FAA’s post-war practice of applying the external camouflage paint on these surfaces on Spit-/Seafires, too. On this specific aircraft the model displays, just the exterior had been painted over by the new operator. Looks weird, but it’s a nice detail.

 

The roundels came from the aforementioned 1948 Seafire Mk. III, and their odd design – esp. the large ones on the wings, and only the fuselage roundels carry the Aéronavale’s anchor icon and a yellow border – creates a slightly confusing look. Unfortunately, the roundels were not 100% opaque, this became only apparent after their application, and they did not adhere well, either.

The tactical code had to be improvised with single, black letters of various sizes – they come from a Hobby Boss F4F USN pre-WWII Wildcat, but were completely re-arrenged into the French format. The fin flash on the rudder had to be painted, with red and blue paint, in an attempt to match the decals’ tones, and separated by a white decal stripe. The anchor icon on the rudder had to be printed by myself, unfortunately the decal on the bow side partly disintegrated. Stencils were taken from the Special Hobby kit’s OOB sheet.

 

The model received a light black ink washing, post-panel shading with dry-brushing and some soot stains around the exhausts, but not too much weathering, since it would be relatively new. Finally, everything was sealed with matt acrylic varnish.

  

A relatively quick and simple build, and the Special Hobby kit went together with little problems – a very nice and versatile offering. The mods are subtle, but I like the slender look of this late Spitfire model, coupled with the elegant Merlin engine – combined into the fictional Mk. 23. The elegant livery just underlines the aircraft’s sleek lines. Not spectacular, but a pretty result.

 

DISCLAIMER

Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!

 

The English Electric Lightning was a supersonic jet fighter aircraft of the Cold War era, noted for its great speed. It was the only all-British Mach 2 fighter aircraft and the first aircraft in the world capable of supercruise. The Lightning was renowned for its capabilities as an interceptor; pilots commonly described it as "being saddled to a skyrocket". Following English Electric's integration into the unified British Aircraft Corporation, the aircraft was marketed as the BAC Lightning.

 

The Lightning was prominently used by the Royal Air Force, but also by Saudi Arabia, Kuwait and Singapore. The first aircraft to enter service with the RAF, three pre-production P.1Bs, arrived at RAF Coltishall in Norfolk on 23 December 1959, and from there the aircraft was permanently developed further.

 

The F.6 was the ultimate Lightning version to see British service. Originally, it was nearly identical to the former F.3A (which introduced a large ventral tank and new cambered wings), with the exception that it had provisions to carry 260 gal (1,180 l) ferry tanks on pylons over the wings. These tanks were jettisonable in an emergency, and gave the F.6 a substantially improved deployment capability. The Ferranti A.I.23B radar supported autonomous search, automatic target tracking, and ranging for all weapons, while the pilot attack sight provided gyroscopically derived lead angle and backup stadiametric ranging for gun firing. The radar and gunsight were collectively designated the AIRPASS: Airborne Interception Radar and Pilot Attack Sight System. Combined with the Red Top missile, the system offered a limited forward hemisphere attack capability.

 

There remained one glaring shortcoming of the late Lightning versions, though: the lack of cannon. This was finally rectified in the form of a modified ventral tank with two ADEN cannon mounted in the front. The addition of the cannon and their ammunition decreased the tank's fuel capacity from 610 gal to 535 gal (2,430 l), but the cannon made the F.6 a 'real fighter' again.

 

Singapore's Lightnings came as a bargain, as they had been taken over directly from RAF stocks. In 1967 No. 74 'Tiger' Squadron was moved to RAF Tengah in Singapore to take over the air defense role from the Gloster Javelin equipped 64 Squadron. When 74 Squadron was disbanded in September 1971, following the withdrawal of British forces from Singapore (in the course of the "East of Suez" campaign, which already started in 1968), Tengah Air Base and many other RAF sites like Seletar, Sembawang and Changi as well as the RAF air defense radar station and Bloodhound II surface-to-air missiles were handed over to the SADC, Singapore’s Air Defense Command, which was suddenly entrusted with a huge responsibility and resources.

 

Anyway, in order to fulfill its aerial defense role, Singapore's air force lacked a potent interceptor, and so it was agreed with the RAF that 74 Squadron would leave fourteen Lightnings (twelve F.6 fighters and two T.5 trainers behind, while the rest was transferred to Akrotiri, Cyprus, where the RAF aircraft were integrated into 56 Squadron.

 

The ex-RAF Lightnings, however, immediately formed the small country's quick alert interceptor backbone and were grouped into the newly established 139th Squadron, “Swifts”. The small squadron kept its base at Tengah, as a sister unit to 140th Squadron which operated the Hawker Hunter FGA.74 in the fighter role since 1971.

 

Singapore's Lightnings differed slightly from the RAF F.6: In order to minimize the maintenance costs of this specialized aircraft, the SADC decided to drop the Red Top missile armament. The Red Top gave all-weather capability, but operating this standalone system for just a dozen of aircraft was deemed cost-inefficient. Keeping the high-performance Lightnings airworthy was already costly and demanding enough.

 

As a cost-effective measure, all SADC Lightnings were modified to carry four AIM-9B and later E Sidewinder AAMs on special, Y-shaped pylons, not unlike those used on the US Navy's F-8 Crusader. In order to enhance all-weather capability, an AAS-15 IRST sensor was added, located in a fairing in front of the wind shield. Its electronics used the space of the omitted, fuselage-mounted cannons of the F.6 variant.

 

Long range and loitering time were only of secondary relevance, so that the Singaporean Lightnings typically carried two 30 mm ADEN cannons with 120 RPG in the lower fuselage, which reduced the internal fuel capacity slightly but made the Lightning a true close combat fighter with high agility, speed and rate of climb. Since the RSAF interceptors would only engage in combat after direct visual contact and target identification, the Sidewinders' short range was no operational problem - and because that missile type was also in use with RSAF's Hawker Hunters, this solution was very cost-efficient.

 

The F.6's ability to carry the overwing ferry tanks (the so-called 'Overburgers') was retained, though, as well as the refueling probe and, and with its modified/updated avionics the RSAF Lightnings received the local designations of F.6S and T.5S. They were exclusively used in the interceptor role and retained their natural metal finish all though their service career.

 

In 1975, the SADC was eventually renamed into ‘Republic of Singapore Air Force’ (RSAF), and the aircraft received appropriate markings.

 

The RSAF Lightnings saw an uneventful career. One aircraft was lost due to hydraulic failure in August 1979 (the pilot ejected safely), and when in 1983 RSAF's F-5S fighters took over the duties of airborne interception from the Royal Australian Air Force's Mirage IIIOs detachment stationed at Tengah, all remaining RSAF Lightnings were retired and phased out of service in March 1984 and scrapped. The type's global career did not last much longer: the last RAF Lightnings were retired in 1988 and replaced by the Panavia Tornado ADV.

  

BAE Lightning F.6S general characteristics

Crew: 1

Length: 55 ft 3 in (16.8 m)

Wingspan: 34 ft 10 in (10.6 m)

Height: 19 ft 7 in (5.97 m)

Wing area: 474.5 ft² (44.08 m²)

Empty weight: 31,068 lb (14.092 kg)

Max. take-off weight: 45,750 lb (20.752 kg)

 

Powerplant:

2× Rolls-Royce Avon 301R afterburning turbojets with 12,530 lbf (55.74 kN) dry thrust each and 16,000 lbf (71.17 kN) with afterburner

 

Performance:

Maximum speed: Mach 2.0 (1.300 mph/2.100 km/h) at 36.000 ft.

Range: 850 mi (1.370 km) Supersonic intercept radius: 155 mi (250 km)

Ferry range: 920 mi (800 NM/ 1.660 km) 1,270 mi (1.100 NM/ 2.040 km) with ferry tanks

Service ceiling: 54.000 ft (16.000 m); zoom ceiling >70.000 ft

Rate of climb: 20.000 ft/min (100 m/s)

Wing loading: 76 lb/ft² (370 kg/m²)

Thrust/weight: 0.78

 

Armament:

2× under-fuselage hardpoints for mounting air-to-air missiles (2 or 4 AIM-9 Sidewinder)

Optional, but typically fitted: 2× 30 mm (1.18 in) ADEN cannons with 120 RPG in the lower fuselage, reducing the ventral tank's fuel capacity from 610 gal to 535 gal (2,430 l)

2× overwing pylon stations for 260 gal ferry tanks

    

The kit and its assembly

The inspiration to this whiffy Lightning came through fellow user Nick at whatifmodelers.com (credits go to him), who brought up the idea of EE/BAC Lightnings in Singapore use: such a small country would be the ideal user of this fast interceptor with its limited range. I found the idea very convincing and plausible, and since I like the Lightning and its unique design very much, I (too) had to make one for the 2013 group build "Asiarama" - even if a respective model would potentially be built twice. But it's always fun to see how the same theme is interpreted by different modelers, I am looking forward to my creation's sister ship.

 

The kit is the Matchbox Lightning F.2A/F.6 (PK-114) from 1976, and only little was changed. Fit is O.K., building the model poses no real problems. But the kit needs some putty work at the fuselage seams, and the many raised panel lines (esp. at the belly tank) and other relatively fine and many details for a Matchbox kit make sanding rather hazardous. Nevertheless, it's a solid kit. A bit toy-like, yes, but good value for the relatively little money. What's saved might be well invested into an extra decal sheet (see below).

 

Internal mods include some added details inside of the cockpit and the landing gear wells, but these were just enhancements to the original parts. The Avons' afterburners were simulated with implanted sprocket wheels from a 1:72 Panzer IV - not intended to be realistic at all, but IMO better than the kit's original, plain end caps!

 

Externally…

· the flaps were lowered

· some antennae and a finer pitot added

· about a dozen small air intakes/outlets were added (cut from styrene) or drilled open

· the IRST sensor fairing added, sculpted from a simple piece of sprue

· a pair of 30mm barrels mounted in the lower fuselage (hollow steel needles)

· the scratch-built quadruple Sidewinder rails are worth mentioning

 

The AIM-9E missiles come from the scrap heap, I was lucky to find a matching set of four. The optional overwing fuel tanks were not fitted, as this was supposed to become a "standard RSAF aircraft". I also did not opt for (popular) weapons mounted above the wings, since this would have called for modifications of the F.6 which did not appear worthwhile to me in context with the envisaged RSAF use. Switching to four Sidewinders on the fuselage hardpoints was IMHO enough.

  

Painting and markings

More effort went into this project part. The end of RAF's 74 Squadron at Tengah and the return of the Lightnings to Europe opened a nice historical window for my whif. Since the Tiger Squadron's aircraft sported a natural metal finish, partly with black fins (accidentally, the Matchbox kit offers just the correct decal/painting option), I decided that the RSAF would keep their aircraft this way: without camouflage, just RSAF markings, with some bold and highly visible colors added.

A SEA scheme (as on the RSAF Hunters, Strikemasters of Skyhawks) would have been another serious option and certainly look weird on a Lightning, as well as a three-tone gray wraparound low-viz scheme as used on the F-5E/S fighters, plausible in the 80ies onwards.

 

Testors Aluminum Metallizer was used as basic color, but several other shades including Steel and Titanium Metallizer, Testors normal Aluminum enamel paint, Humbrol 11 and 56 as well as Revell Aqua Color Aluminum were used for selected surface portions or panels all around the hull.

 

The spine including the cockpit frame was painted black. Using RSAF's 140 Squadron's colors as a benchmark, the fin received a checkered decoration in black and red, reminiscent of RAF 56 Squadron Lightnings. This was created through a black, painted base, onto which decals - every red field was cut from a red surface sheet from TL Modellbau - were transferred. Sounds horrible, but it was easier and more exact than expected. A very convenient solution with sharp edges and good contrast. A red trim line, 1mm wide, was added as a decal along the spine in a similar fashion.

 

The squadron emblem on the Lightning's nose was created through the same scratch method: from colored 1.5mm wide stripes, 3mm pieces were cut and applied one by one to form the checkered bar. The swift emblem comes from a 1:48 sheet for French WWI aircraft, made by Peddinghaus Decals from Germany. The overall look was supposed to be similar to the (real) 140 Squadron badge.

 

As a consequence, this created a logical problem: where to put the national roundel? Lightnings usually wore them on the nose, but unlike RAF style (where a bar was added around the roundel), I used RSAF Hunters as benchmark.

The RSAF roundels were a challenge. In order not to cramp the nose section too much I decided to place the roundels behind the wings. Not the must prominent position, but plausible. I originally wanted to use decals from the current 1:72 Airfix BAC Strikemaster kit, but they turned out to be too small.

After long search I was happy to find a 1:48 aftermarket decal sheet from Morgan Decals for an A-4S, with full color yin-yang roundels - in Canada! It took three weeks to wait for these parts, though, even though work had to wait for this final but vital detail !

 

As a side not, AFAIK any RSAF aircraft only carried and carries these roundels on the fuselage sides, not on the wings' upper or lower surfaces? It leaves the model a bit naked, so I decided to add 'RSAF' letters and the tactical code '237' to the wings' upper and lower sides. But the fin is surely bold enough to compensate ;)

 

The cockpit interior was painted in Medium Sea Gray (Humbrol 27), the landing gear and the wells in a mix of Humbrol 56 and 34, for a light gray with a metallic shimmer.

 

Other details include the white area behind the cockpit, which contained an AVPIN/isopropyl nitrate tank for the Lightning's start engine. Hazardous stuff - the light color was to prevent excessive heating in the sun, a common detail for Lightnings used in Cyprus. Another piece that took some effort was the shaggy nose cone, which was painted in a mix of Humbrol 56 and 86 and received some serious dry painting in light gray and ochre.

 

Stencils etc. were taken from an extensive aftermarket sheet for Lightnings from Xtradecal (X72096). The Matchbox decal sheet of PK-114 just offers the ejection seat warning triangles - that's all! The later T.55 kit is much better in this regard, but still far from being complete.

 

After decal application and to enhance the metallic look, the kit received a careful rubbing with finely grinded graphite, which, as a side effect, also emphasized the raised panel lines. A little dry painting was done around some exhaust openings, but nothing to make the aircraft look really old. This is supposed to be a bright and well-maintained interceptor!

 

Finally, the kit received a thin coat with glossy acrylic varnish, the spine and fin received a semi-matt coat and the black glare shield in front of the cockpit became matt.

   

A pretty straightforward build for the Asiarama group build, and with best regards and credits to Nick who came up with the original idea. Most work went into the decals and the NMF finish. I like the bold colors, and despite being flamboyant, they do not make the Lightning look too far out of place?

 

As a final note: XR773 never ended up in Singapore service, just like any BAC Lightning. In real life, the aircraft (first flight was in February 1966 with Roly Beamont at the controls) was transferred from 74 Squadron at RAF Tengah to Akrotiri in late 1971 and had a pretty long life, further serving with 56, 5 and 11 Squadrons as well as the Lightning Training Flight. And even then it’s life was far from over: XR773 is one of the Lightning survivors; in South Africa it flew in private hands as ZU-BEW until 2010, when it was grounded and the airframe put up to sale.

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!

  

Some background:

The North American FJ-4 Fury was a swept-wing carrier-capable fighter-bomber for the United States Navy and Marine Corps. The final development in a lineage that included the Air Force's F-86 Sabre, the FJ-4 shared its general layout and engine with the earlier FJ-3, but, compared to that of the FJ-3, the FJ-4's new wing was much thinner, with a six percent thickness-to-chord ratio, and featured skin panels milled from solid alloy plates. It also had an increased area and tapered more sharply towards the tips. Slight camber behind the leading edge improved low speed characteristics. The main landing gear design had to be considerably modified to fold wheel and strut within the contours of the new wing. The track of the main wheels was increased, and because they were closer to the center of gravity, there was less weight on the nosewheel. Wing folding was limited to the outer wing panels.

 

The FJ-4 was intended as an all-weather interceptor, a role that required considerable range on internal fuel. The FJ-4 had 50% more fuel capacity than the FJ-3 and was lightened by omitting armor and reducing ammunition capacity. The new wing was "wet"; that is, it provided for integral fuel tankage. The fuselage was deepened to add more fuel and had a distinctive "razorback" rear deck. A modified cockpit made the pilot more comfortable during the longer missions. The tail surfaces were also extensively modified, had a thinner profile and featured an extended, taller fin. The overall changes resulted in an aircraft that had little in common with the earlier models, although a family resemblance was still present.

 

The FJ-4 was developed into a family of aircraft. Of the original order for 221 FJ-4 day fighters, the last 71 were modified into the FJ-4B fighter-bomber version. This had a stronger wing with six instead of four underwing stations and stronger landing gear. Additional aerodynamic brakes under the aft fuselage made landing safer by allowing pilots to use higher thrust settings and were also useful for dive attacks. External load was doubled. The most important characteristic of the FJ-4B was, since the Navy was eager to maintain a nuclear role in its rivalry with the Air Force, that it was capable of carrying a nuclear weapon on the inboard port station. For the delivery of nuclear weapons, the FJ-4B was equipped with the Low-Altitude Bombing System (LABS), and with this capability it replaced the carrier-based A-3 Skywarrior bombers, which were not suited well for the new low-level approach tactics.

 

In April 1956, the Navy ordered 151 more FJ-4Bs, 10 US Navy squadrons became equipped with the FJ-4B, and the type was also flown by three Marine squadrons. At the same time, the Navy requested a carrier-borne fighter with all-weather capability, radar-guided missiles and a higher performance. This new type was to replace several 1st generation US Navy jets, including the ponderous and heavy Douglas F3D Skyknight, the lackluster Vought F7U as well as the Grumman F9F-8 Cougar. This requirement led to the Douglas F4D Skyray and North American’s FJ-5, another thorough modification of the Fury’s basic design and its eventual final evolution stage.

 

North American’s FJ-5 was designed with compact dimensions in mind, so that the type could be operated on older Essex Class carriers, which offered rather limited storage and lift space. At the time of the FJ-5’s conception, several of these carriers were still in service – and this argument led to an order for the FJ-5 in addition to the F4D.

 

For the FJ-5, the FJ-4’s aerodynamic surfaces were retained, but the fuselage had to be modified considerably in order to accept an APQ-50A radar with a parabolic 24 inches diameter antenna in the nose. The radome was placed above the air intake, similar to the F-86D, and coupled with an Aero 13F fire-control system, which together provided full all-weather capability and information on automatic firing of rockets.

A deeper rear fuselage became necessary, too, because the FJ-5 was powered by a reheated J65-W-18 engine (a development of the Armstrong Siddeley Sapphire turbojet, optimized for a naval environment), which delivered up to 10,500 lbf (47 kN) at full power instead of the FJ-4’s original 7,700 lbf (34 kN). This upgrade had, limited by the airframe’s aerodynamics, only marginal impact on the aircraft’s top speed, but the extra power almost doubled its initial rate of climb, slightly raised the service ceiling and markedly improved acceleration and carrier operations handling through a better response to throttle input and a higher margin of power reserves.

 

Internal armament still consisted of four 20mm cannon. These had to be placed lower in the nose now, flanking the air intake underneath the radome. The FJ-4B’s six underwing hardpoints were retained and could carry AIM-9 Sidewinders (both the IR-guided AIM-9B as well as the Semi-Active Radar Homing (SARH) AIM-9C) as well as the new radar-guided medium-range AIM-7C Sparrow, even though the latter only on the outer pylons, limiting their number to four. Up to six pods with nineteen unguided 70 mm/2.75” unguided Mk 4/Mk 40 Folding-Fin Aerial Rocket (Mighty Mouse FFARs) were another armament option.

 

Beyond these air-to-air weapons, a wide range of other ordnance could be carried. This included the AGM-12 “Bullpup” guided missile (which necessitated a guidance pod on the right inner wing hardpoint), bombs or napalm tanks of up to 1.000 lb caliber, missile pods, drop tanks and ECM pods. The FJ-4B’s strike capabilities were mostly retained, even though the dedicated fighter lost the ability to carry and deliver nuclear weapons in order to save weight and internal space for the radar equipment.

 

The first FJ-5, a converted early FJ-4, made its maiden flight in April 1958. After a short and successful test phase, the type was quickly put into production and introduced to service with US Navy and US Marine Corps units. The new fighter was quickly nicknamed “Fury Dog” by its crews, a reminiscence of the USAF’s F-86D “Sabre Dog” and its characteristic nose section, even though the FJ-5 was officially still just called “Fury”, like its many quite different predecessors.

 

With the new unified designation system adopted in 1962, the FJ-4 became the F-1E, the FJ-4B the AF-1E and the FJ-5 the F-1F. From the prolific Fury family, only the FJ-5/F-1F became involved in a hot conflict: in late 1966, the USMC deployed F-1Fs to Vietnam, where they primarily flew escort and top cover missions for fighter bombers (esp. A-4 Skyhawks) from Da Nang AB, South Vietnam, plus occasional close air support missions (CAS) on their own. The Marines’ F-1Fs remained in Vietnam until 1970, with a single air-to-air victory (a North-Vietnamese MiG-17 was shot down with a Sidewinder missile), no losses and only one aircraft seriously damaged by anti-aircraft artillery (AAA) fire.

 

After this frontline experience, a radar upgrade with an AN/APQ-124 was briefly considered but never carried out, since the F-1F showed the age of the original Fifties design – the type already lacked overall performance for an all-weather fighter that could effectively engage supersonic bomber targets or low flying attack aircraft. However, the aircraft was still popular because of its ruggedness, good handling characteristics and compact dimensions.

Other upgrades that would improve the F-1F’s strike capability, e. g. additional avionics to deploy the AGM-62 Walleye glide bomb or the new AGM-65 Maverick, esp. the USMC’s laser-guided AGM-65E variant, were also rejected, because more capable types for both interceptor and attack roles, namely the Mach 2 Douglas F-4 Phantom II and the LTV A-7 Corsair II, had been introduced in the meantime.

Another factor that denied any updates were military budget cuts. Furthermore, the contemporary F-8 Crusader offered a better performance and was therefore selected in favor of the F-1F to be updated to the H-L variants. In the wake of this decision, all F-1Fs still in Navy service were, together with the decommission of the last Essex Class carriers, in 1975 handed over to the USMC in order to purge the Navy’s inventory and simplify maintenance and logistics.

 

FJ-4 and FJ-4B Fury fighter bombers served with United States Naval Reserve units until the late 1960s, while the F-1F soldiered on with the USMC until the early Eighties, even though only in reserve units. A considerable number had the heavy radar equipment removed and replaced by ballast in the late Seventies, and they were used as fighter-bombers, for dissimilar air combat training (simulating Soviet fighter types like the MiG-17 and -19), as high-speed target tugs or as in-flight refueling tankers, since the FJ-5 inherited this capability from the FJ-4, with up to two buddy packs under the wings. A few machines survived long enough to receive a new low-visibility livery.

 

However, even in the USMC reserve units, the FJ-5 was soon replaced by A-4 Skyhawks, due to the age of the airframes and further fleet reduction measures. The last F-1F was retired in 1982, ending the long career of North American’s F-86 design in US service.

 

A total of 1,196 Furies of all variants were received by the Navy and Marine Corps over the course of its production life, including 152 FJ-4s, 222 FJ-4Bs and 102 FJ-5s.

  

General characteristics:

Crew: 1

Length: 40 ft 3 in (12.27 m)

Wingspan: 39 ft 1 in (11.9 m)

Height: 13 ft 11 in (4.2 m)

Wing area: 338.66 ft² (31.46 m²)

Empty weight: 13,518 lb (6,132 kg)

Gross weight: 19,975 lb (9,060 kg)

Max. takeoff weight: 25,880 lb (11,750 kg)

 

Powerplant:

1× Wright J65-W-18 turbojet with 7,400 lbf (32.9 kN) dry thrust

and 10,500 lbf (46.7 kN) with afterburner

 

Performance:

Maximum speed: 708 mph (1,139 km/h, 615 kn) at sea level,

737 mph (1,188 km/h/Mach 0.96) at height

Range: 2,020 mi (3,250 km) with 2× 200 gal (760 l) drop tanks and 2× AIM-9 missiles

Service ceiling: 49,750 ft (15,163 m)

Rate of climb: 12,150 ft/min (61.7 m/s)

Wing loading: 69.9 lb/ft² (341.7 kg/m²)

 

Armament:

4× 20 mm (0.787 in) Colt Mk 12 cannon (144 RPG, 578 rounds in total)

6× underwing hardpoints for 3,000 lb (1,400 kg) of ordnance, including AIM-9 and AIM-7 missiles

  

The kit and its assembly:

A project I had on the agenda for a long time. But, due to the major surgeries involved, I have been pushing it away – until the “In the navy” group build at whatifmolders.com came along in early 2020. So I collected my courage, dusted off the donor kits that had already been stashed away for years, and eventually started work.

 

The original inspiration was the F-8 Crusader’s career: I really like the look of the late RF-8s, which were kept long enough in service to receive the Eighties’ Low-Viz USN “Compass Ghost” livery. This looks cool, but also a little wrong. And what if the FJ-4B had been kept in service long enough to receive a similar treatment…?

 

In order to justify a career extension, I made up an all-weather development of the FJ-4B with a radar and a more powerful engine, a kind of light alternative to the Vought A-7. A plausible solution was a mix of FJ-4B and F-86D parts – this sounds easy, but both aircraft and their respective model kits actually have only VERY little in common.

 

At its core, the FJ-5 model is a kitbashing of parts from an Emhar FJ-4B (Revell re-boxing) and an Airfix F-86D. The FJ-4B provided the raised cockpit section with the canopy, spine and fin in the form of a complete transplant, which furthermore had to be extended by about 1cm/0.5” because the F-86D is longer than the Fury. The FJ-4B also provided its wings, stabilizers and the landing gear. The Fury’s ventral arrester hook section, a separate part, was also transferred into the F-86D’s lower rear fuselage, under the openings for the air brakes.

For a more lively look, the (thick!) Fury canopy was sawed into two pieces for open display and the flaps were lowered, too.

 

The cockpit was taken from the Airfix kit, since it would fit well into the lower fuselage and it looked much better than their respective counterparts from the relatively basic Emhar kit, which just comes with a narrow board with a strange, bulky seat-thing. As an extra, the cockpit received side consoles, a scratched gunsight and a different ejection seat that raised the pilot’s position into the Fury’s higher canopy.

 

Since the F-1F was supposed to be a fighter, still equipped with the radar set, I retained the OOB pylons from the Fury with its four launch rails. For an aircraft late in the career, I gave it a reduced ordnance, though, just a pair of drop tanks (left over from a Matchbox F3D Skyknight; I wanted something more slender than the stubby OOB drop tanks from the Emhar Fury kit), plus a better Sidewinder training round (hence its blue body) and a single red ACMI data pod on the outer pylons, as an aerial combat training outfit and nice color highlights on the otherwise dull/grey aircraft.

  

Painting and markings:

As mentioned above, the idea for livery was a vintage aircraft in modern, subdued markings. So I adapted the early USN Compass Ghost scheme, and the F-1F received a two-tone livery in FS 36320 and 36375 (Dark and Light Compass Ghost Grey, Humbrol 128 and 127, respectively) with a high, wavy waterline and a light fin. In front of the cockpit, a slightly darker anti-glare panel in Humbrol 145 (FS 35237) was added, inspired by early USN F-14s in Compass Ghost camouflage.

The radome was painted with Humbrol 156, for a slightly darker/different shade of grey than the aircraft’s upper surfaces – I considered a black or a beige (unpainted glass fiber) radome first, but that would have been a very harsh contrast to the rest.

 

The landing gear as well as the air intake duct were painted glossy white (Humbrol 22), the cockpit became medium grey (Humbrol 140, Dark Gull Gray). The inside of the air brakes as well es the edges of the flaps, normally concealed when they are retracted, were painted in bright red (Humbrol 174). The same tone was also used to highlight the edges of the land gear covers.

 

The grey leading edges on the wings the stabilizers were created with decal sheet strips (generic material from TL Modellbau), the gun blast plates were made with silver decal material.

In order to give the model a worn look, I applied a black ink wash, an overall, light treatment with graphite and some post shading. Some extra graphite was applied around the exhaust and the gun nozzles.

 

The markings were taken for an USMC A-4E/F from a Revell kit (which turned out to be a bit bluish). I wanted a consequent dull/toned-down look, typical for early Compass Ghost aircraft. Later, colored highlights, roundels and squadron markings crept back onto the aircraft, but in the early Eighties many USN/USMC machines were consequently finished in a grey-in-grey livery.

 

Finally, the model was sealed with matt acrylic varnish (Italeri) and the ordnance added.

  

Well, the end result looks simple, but creating this kitbashed Fury all-weather fighter was pretty demanding. Even though both the Fury and the F-86D are based on the same aircraft, they are completely different, and the same is also true for the model kits. It took major surgeries and body sculpting to weld the parts together. But I am quite happy with the outcome, the fictional F-1F looks pretty conclusive and natural, also in the (for this aircraft) unusual low-viz livery.

 

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!

  

Some background:

The Supermarine Seafire was a naval version of the Supermarine Spitfire adapted for operation from aircraft carriers. It was analogous in concept to the Hawker Sea Hurricane, a navalized version of the Spitfire's stablemate, the Hawker Hurricane. The name Seafire was derived from the abbreviation of the longer name Sea Spitfire.

 

The idea of adopting a navalized, carrier-capable version of the Supermarine Spitfire had been mooted by the Admiralty as early as May 1938. Despite a pressing need to replace various types of obsolete aircraft that were still in operation with the Fleet Air Arm (FAA), some opposed the notion, such as Winston Churchill, although these disputes were often a result of an overriding priority being placed on maximizing production of land-based Spitfires instead. During 1941 and early 1942, the concept was again pushed for by the Admiralty, culminating in an initial batch of Seafire Mk Ib fighters being provided in late 1941, which were mainly used for pilots to gain experience operating the type at sea. While there were concerns over the low strength of its undercarriage, which had not been strengthened like many naval aircraft would have been, its performance was found to be acceptable.

 

From 1942 onwards, further Seafire models were quickly ordered, including the first operationally-viable Seafire F Mk III variant. This led to the type rapidly spreading throughout the FAA. In November 1942, the first combat use of the Seafire occurred during Operation Torch, the Allied landings in North Africa. In July 1943, the Seafire was used to provide air cover for the Allied invasion of Sicily; and reprised this role in September 1943 during the subsequent Allied invasion of Italy. During 1944, the type was again used in quantity to provide aerial support to Allied ground forces during the Normandy landings and Operation Dragoon in Southern France. During the latter half of 1944, the Seafire became a part of the aerial component of the British Pacific Fleet, where it quickly proved to be a capable interceptor against the feared kamikaze attacks by Japanese pilots which had become increasingly common during the final years of the Pacific War. Several Seafire variants were produced during WWII, more or less mirroring the development of its land-based ancestor.

 

The Seafire continued to be used for some time after the end of the war, and new, dedicated versions were developed and exported. The FAA opted to promptly withdraw all of its Merlin-powered Seafires and replace them with Griffon-powered counterparts. The type saw further active combat use during the Korean War, in which FAA Seafires performed hundreds of missions in the ground attack and combat air patrol roles against North Korean forces during 1950. The Seafire was withdrawn from FAA service during the 1950s and was replaced by the newer Hawker Sea Fury, the last piston engine fighter to be used by the service, along with the first generation of jet-propelled naval fighters, such as the de Havilland Vampire, Supermarine Attacker, and Hawker Sea Hawk.

 

After WWII, the Royal Canadian Navy and French Aviation Navale also obtained Seafires to operate from ex-Royal Navy aircraft carriers. France received a total of 140 Seafires of various versions from 1946 on, including 114 Seafire Mk IIIs in two tranches (35 of them were set aside for spare part) until 1948, and these were followed in 1949 by fifteen Mk. 15 fighters and twelve FR Mk. 23 armed photo reconnaissance aircraft. Additionally, twenty land-based Mk. IXs were delivered to Naval Air Station Cuers-Pierrefeu as trainers.

 

The Seafire Mk. 23 was a dedicated post-war export version. It combined several old and new features and was the final “new” Spitfire variant to be powered by a Merlin engine, namely a Rolls-Royce Merlin 66M with 1,720 hp (1,283 kW) that drove a four-blade propeller. The Mk. 23 was originally built as a fighter (as Seafire F Mk. 23), but most machines were delivered or later converted with provisions for being fitted with two F24 cameras in the rear fuselage and received the service designation FR Mk. 23 (or just FR.23). Only 32 of this interim post-war version were built by Cunliffe-Owen, and all of them were sold to foreign customers.

 

Like the Seafire 17, the 23 had a cut-down rear fuselage and teardrop canopy, which afforded a better all-round field of view than the original cockpit. The windscreen was modified, too, to a rounded section, with narrow quarter windows, rather than the flat windscreen used on land-based Spitfires. As a novel feature the Seafire 23 featured a "sting" arrestor hook instead of the previous V-shaped ventral arrangement.

The fuel capacity was 120 gal (545 l) distributed in two main forward fuselage tanks: the lower tank carried 48 gal (218 l) while the upper tank carried 36 gal (163 l), plus two fuel tanks built into the leading edges of the wings with capacities of 12.5 (57 l) and 5.5 gal (25 l) respectively. It featured a reinforced main undercarriage with longer oleos and a lower rebound ratio, a measure to tame the deck behavior of the Mk. 15 and reducing the propensity of the propeller tips "pecking" the deck during an arrested landing. The softer oleos also stopped the aircraft from occasionally bouncing over the arrestor wires and into the crash barrier.

The wings were taken over from the contemporary Spitfire 21 and therefore not foldable. However, this saved weight and complexity, and the Seafire’s compact dimensions made this flaw acceptable for its operators. The wings were furthermore reinforced, with a stronger main spar necessitated by the new undercarriage, and as a bonus they were able to carry heavier underwing loads than previous Seafire variants. This made the type not only suitable for classic dogfighting (basic armament consisted of four short-barreled 20 mm Hispano V cannon in the outer wings), but also for attack missions with bombs and unguided rockets.

 

The Seafire’s Aéronavale service was quite short, even though they saw hot battle duty. 24 Mk. IIIs were deployed on the carrier Arromanches in 1948 when it sailed for Vietnam to fight in the First Indochina War. The French Seafires operated from land bases and from Arromanches on ground attack missions against the Viet Minh before being withdrawn from combat operations in January 1949.

After returning to European waters, the Aéronavale’s Seafire frontline units were re-equipped with the more modern and capable Seafire 15s and FR 23s, but these were also quickly replaced by Grumman F6F Hellcats from American surplus stock, starting already in 1950. The fighters were retired from carrier operations and soon relegated to training and liaison duties, and eventually scrapped. However, the FR.23s were at this time the only carrier-capable photo reconnaissance aircraft in the Aéronavale’s ranks, so that these machines remained active with Flottille 1.F until 1955, but their career was rather short, too, and immediately ended when the first naval jets became available and raised the performance bar.

  

General characteristics:

Crew: 1

Length: 31 ft 10 in (9.70 m)

Wingspan: 36 ft 10 in (11.23 m)

Height: 12 ft 9 in (3.89 m) tail down with propeller blade vertical

Wing area: 242.1 ft² (22.5 m²)

Empty weight: 5,564 lb (2,524 kg)

Gross weight: 7,415 lb (3,363 kg)

 

Powerplant:

1× Rolls-Royce Merlin 66M V-12 liquid-cooled piston engine,

delivering 1,720 hp (1,283 kW) at 11,000 ft and driving a 4-bladed constant-speed propeller

 

Performance:

Maximum speed: 404 mph (650 km/h) at 21,000 ft (6,400 m)

Cruise speed: 272 mph (438 km/h, 236 kn)

Range: 493 mi (793 km) on internal fuel at cruising speed

965 mi (1,553 km) with 90 gal drop tank

Service ceiling: 42,500 ft (12,954 m)

Rate of climb: 4,745 ft/min (24.1 m/s) at 10,000 ft (3,048 m)

Time to altitude: 20,000 ft (6,096 m) in 8 minutes 6 seconds

 

Armament:

4× 20 mm Hispano V cannon; 175 rpg inboard, 150 rpg outboard

Hardpoints for up to 2× 250 lb (110 kg) bombs (outer wings), plus 1× 500 lb (230 kg) bomb

(ventral hardpoint) or drop tanks, or up to 8× "60 lb" RP-3 rockets on zero-length launchers

  

The kit and its assembly:

This build was another attempt to reduce The Stash. The basis was a Special Hobby FR Mk. 47, which I had originally bought as a donor kit: the engine housing bulges of its Griffon engine were transplanted onto a racing P-51D Mustang. Most of the kit was still there, and from this basis I decided to create a fictional post-WWII Seafire/Spitfire variant.

 

With the Griffon fairings gone a Merlin engine was settled, and the rest developed spontaneously. The propeller was improvised, with a P-51D spinner (Academy kit) and blades from the OOB 5-blade propeller, which are slightly deeper than the blades from the Spitfire Mk. IX/XVI prop. In order to attach it to the hull and keep it movable, I implanted my standard metal axis/styrene tube arrangement.

 

With the smaller Merlin engine, I used the original, smaller Spitfire stabilizers but had to use the big, late rudder, due to the taller fin of the post-ware Spit-/Seafire models. The four-spoke wheels also belong to an earlier Seafire variant. Since it was an option in the kit, I went for a fuselage with camera openings (the kit comes with two alternative fuselages as well as a vast range of optional parts for probably ANY late Spit- and Seafire variant – and also for many fictional hybrids!), resulting in a low spine and a bubble canopy, what gives the aircraft IMHO very sleek and elegant lines. In order to maintain this impression I also used the short cannon barrels from the kit. For extended range on recce missions I furthermore gave the model the exotic underwing slipper tanks instead of the optional missile launch rail stubs under the outer wing sections. Another mod is the re-installment of the small oil cooler under the left wing root from a Spitfire Mk. V instead of the symmetrical standard radiator pair – just another subtle sign that “something’s not right” here.

  

Painting and markings:

The decision to build this model as a French aircraft was inspired by a Caracal Decals set with an Aéronavale Seafire III from the Vietnam tour of duty in 1948, an aircraft with interesting roundels that still carried British FAA WWII colors (Dark Slate Grey/Dark Sea Grey, Sky). Later liveries of the type remain a little obscure, though, and information about them is contradictive. Some profiles show French Seafires in British colors, with uniform (Extra) Dark Sea Grey upper and Sky lower surfaces, combined with a high waterline – much like contemporary FAA aircraft like the Sea Fury. However, I am a bit in doubt concerning the Sky, because French naval aircraft of that era, esp. recce types like the Shorts Sunderland or PBY Catalina, were rather painted in white or very light grey, just with uniform dark grey upper surfaces, reminding of British Coastal Command WWII aircraft.

 

Since this model would be a whif, anyway, and for a pretty look, I adopted the latter design, backed by an undated profile of a contemporary Seafire Mk. XV from Flottille S.54, a training unit, probably from the Fifties - not any valid guarantee for authenticity, but it looks good, if not elegant!

Another option from that era would have been an all-blue USN style livery, which should look great on a Spitfire, too. But I wanted something more elegant and odd, underpinning the bubbletop Seafire’s clean lines.

 

I settled for Extra Dark Sea Grey (Humbrol 123) and Light Grey (FS. 36495, Humbrol 147) as basic tones, with a very high waterline. The spinner was painted yellow, the only colorful marking. Being a post-war aircraft of British origin, the cockpit interior was painted in black (Revell 09, anthracite). The landing gear wells became RAF Cockpit Green (Humbrol 78), while the inside of the respective covers became Sky (Humbrol 90) – reflecting the RAF/FAA’s post-war practice of applying the external camouflage paint on these surfaces on Spit-/Seafires, too. On this specific aircraft the model displays, just the exterior had been painted over by the new operator. Looks weird, but it’s a nice detail.

 

The roundels came from the aforementioned 1948 Seafire Mk. III, and their odd design – esp. the large ones on the wings, and only the fuselage roundels carry the Aéronavale’s anchor icon and a yellow border – creates a slightly confusing look. Unfortunately, the roundels were not 100% opaque, this became only apparent after their application, and they did not adhere well, either.

The tactical code had to be improvised with single, black letters of various sizes – they come from a Hobby Boss F4F USN pre-WWII Wildcat, but were completely re-arrenged into the French format. The fin flash on the rudder had to be painted, with red and blue paint, in an attempt to match the decals’ tones, and separated by a white decal stripe. The anchor icon on the rudder had to be printed by myself, unfortunately the decal on the bow side partly disintegrated. Stencils were taken from the Special Hobby kit’s OOB sheet.

 

The model received a light black ink washing, post-panel shading with dry-brushing and some soot stains around the exhausts, but not too much weathering, since it would be relatively new. Finally, everything was sealed with matt acrylic varnish.

  

A relatively quick and simple build, and the Special Hobby kit went together with little problems – a very nice and versatile offering. The mods are subtle, but I like the slender look of this late Spitfire model, coupled with the elegant Merlin engine – combined into the fictional Mk. 23. The elegant livery just underlines the aircraft’s sleek lines. Not spectacular, but a pretty result.

 

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!

  

Some background:

The Fiat G.91 was an Italian jet fighter aircraft designed and built by Fiat Aviazione, which later merged into Aeritalia. The G.91 had its origins in the NATO-organized NBMR-1 competition in 1953, which sought a light fighter-bomber "Light Weight Strike Fighter" to be adopted as standard equipment across the air forces of the various NATO nations. The competition was intended to produce an aircraft that was light, small, expendable, equipped with basic weapons and avionics and capable of operating with minimal ground support. These specifications were developed for two reasons: the first was the nuclear threat to large air bases, many cheaper aircraft could be better dispersed, and the other was to counter the trend towards larger and more expensive aircraft. After reviewing multiple submissions, the G.91 was picked as the winning design of the NBMR-1 competition.

 

The G.91 entered into operational service with the Italian Air Force in 1961, and with the West German Luftwaffe in the following year. Various other nations adopted it, such as the Portuguese Air Force, who made extensive use of the type during the Portuguese Colonial War in Africa. The G.91 remained in production for 19 years, during which a total of 756 aircraft were completed, including the prototypes and pre-production models. The assembly lines were finally closed in 1977, and the original G.91 enjoyed a long service life that extended over 35 years.

 

The G.91 was also used as a basis for a two-seat trainer variant with a stretched fuselage and further developments, based on this bigger airframe: the twin-engine development G.91Y, which was originally ordered by the Italian Air Force and Switzerland (as G.91YS) and later also operated by Poland, as well as the simpler, single-engine G-91X, a dedicated export alternative.

 

Like the G.91Y, the G.91X was an increased-performance version of the nimble baseline Fiat G.91, but unlike the G.91Y it was not funded by the Italian government but rather a private venture of Fiat. Like the G.91Y, it was based on the G.91T two-seat trainer variant. Structural modifications to reduce airframe weight increased performance and an additional fuel tank occupying the space of the G.91T's rear seat provided extra range. Combat manoeuvrability was improved with the addition of automatic leading-edge slats. While the G.91Y and X had a very similar appearance, their internal structure behind the cockpit section differed considerably and their tail section was visibly different, while the aerodynamic surfaces as well as the nose section (including the radar-less nose housing three cameras) were identical.

 

Instead of being powered by the G.91Y’s pair of small afterburning General Electric J85 turbojets, the G.91X only carried a single Pratt & Whitney J52 axial-flow dual-spool turbojet engine without reheat, a proven engine that was used in a number of successful aircraft, most of all the late Douglas A-4 Skyhawk versions. The bigger engine increased thrust by 60% over the original, earlier Orpheus-powered single-engine variants, and made the light G.91 a very agile aircraft. However, the J52 was considerably heavier than the small J85s, and despite less complex auxiliary installations, the G.91X weighed roughly 1.000 lb more than the G.91Y.

 

Performance-wise, the G.91X was, despite its conservative and heavier J52 powerplant, on par with the G.91Y, even though range, acceleration and rate of climb were not as good, the G.91Y’s afterburners gave the “Yankee Gina” a significant extra punch. On the other side, the G.91X was more robust, technically simpler and therefore easier to maintain and even better suited to operations from unprepared frontline airfields with minimal infrastructure.

Basically, the G.91X was designed to carry the same sophisticated avionics equipment as the G.91Y, which had been considerably upgraded with many of the American, British and Canadian systems being license-manufactured in Italy, but for the intended export customers in small countries with a limited budget, only a rather basic avionics package was offered, making the G.91X a simple daylight attack aircraft without any smart weapon or guided AAM capability (which the G.91Y lacked, too, only the YS for Switzerland could deploy weapons like the AIM-9 or the AGM-65).

 

Flight testing of two prototypes aircraft ran in July 1968 in parallel to the G.91Y program and was successful, with one aircraft reaching a maximum speed of Mach 0.95 in level flight, slightly less than its two-engine sibling. Airframe buffeting was noted and was rectified in production aircraft by raising the position of the tailplane slightly, and canted fins - similar to the G.91Y, but smaller - were added under the lower rear fuselage to improve directional stability. Unlike the G.91Y, which had been designed to NATO specifications, the G.91X did not feature an arrester hook, just a tail bumper.

 

The initial order of 55 G.91Y aircraft for the Italian Air Force was completed by Fiat in March 1971, by which time the company had changed its name to Aeritalia (from 1969, when Fiat Aviazione joined the Aerfer). The order was increased to 75 aircraft with 67 eventually being delivered.

In contrast to this success, the G.91X did not find immediate takers, though, because the potential market of Western-oriented countries was in the Seventies largely dominated by US American military support programs, which aggressively marketed the supersonic Northrop F-5 as a counterpart to MiG-17 and MiG-21 fighters, which had been provided to many countries by the USSR.

 

One large potential customer had been Israel, but the G.91X was declined in favor of the bigger and more sophisticated A-4N Skyhawk. Turkey and Greece also showed interest, but both eventually procured F-5 variants, heavily promoted by the USA. In the end, only a small number of the G.91X were built and sold to rather small and obscure air forces.

 

One of these few G.91X operators became Honduras. After the so-called Football War with El Salvador in 1969, the Honduran Air Force (HAF) entered the jet era in 1971 and started a re-organization and modernization program. This included the procurement of 10 old, ex-Yugoslav Canadair CL-13 Mk.4 Sabre. Later, in 1974 and as a result of an institutional growth of the Honduran Air Force, the "Coronel Hernán Acosta Mejía" Air Base, the "Coronel Armando Escalón Espinal" Base as well as the General Command of the Air Force and General Air Force General Staff were created.

 

Between 1976 and 1978 sixteen other Israeli aircraft were acquired, of the IAI \ Dassault Super-Mystere B.2 \ J-52 S'aar type, six new Cessna A-37 Dragonfly COIN aircraft and fifty UH-1 Iroquois helicopters. By then, the Sabres were in such a poor condition and deteriorated quickly under the harsh local climate, that a replacement was soon needed. The choice fell on the G.91X, not only because of the aircraft’s simplicity and ruggedness, but also because of its (though limited) reconnaissance capability as well as the engine and ammunition commonality with the ex-Israeli Sa’ars. A total of twelve G.91X were procured in 1977 and delivered until late 1979, and they were immediately put into action during the 1980s confrontation with the Sandinista government of Nicaragua, with heavy involvements in bombing raids and COIN missions. The Honduran G.91Xs flew frequent attack and reconnaissance missions, and even though they were no fighters the Ginas downed several Sandinista helicopters, including a Mil Mi-24 Hind (rather accidently shot down, though, through a salvo of unguided 5” FFARs which crossed the helicopter's flight path).

 

After the hostilities with Nicaragua had ended in 1990, the Honduran G.91Xs became actively involved in fighting drug trafficking and flew frequent reconnaissance and attack missions over home soil. By that time, the Honduran aircraft fleet was augmented or replaced (three G.91Xs had been lost through accidents or enemy fire by 1991) with 11 ex-USAF OA/A-37B Dragonflies, 12 ex-USAF Northrop F-5E/F Tiger II interceptors, 12 new Embraer T-27 Tucano armed trainers and four new CASA 101BB-02 attack airplanes.

By 1996, all eight remaining Honduran G.91Xs were, together with the Super Mystères, retired. The surviving aircraft were put up for sale as surplus, and one, already grounded G.91X airframe has been preserved at the Honduras Air Museum.

  

General characteristics:

Crew: one

Length: 11.67 m (38 ft 3.5 in)

Wingspan: 9.01 m (29 ft 6.5 in)

Height: 4.43 m (14 ft 6.3 in)

Wing area: 18.13 m² (195.149 ft²)

Empty weight: 4,400 kg (9,692 lb)

Loaded weight: 8,100 kg (17,842 lb)

Max. takeoff weight: 9,000 kg (19,823 lb)

 

Powerplant:

1× Pratt & Whitney J52-P6A turbojet with 8,500 lbf (38,000 N) of thrust

 

Performance:

Maximum speed: 1,110 km/h (600 kn, 690 mph, Mach 0.95) at 10,000 m (33,000 ft)

Range: 1,100 km (594 nmi, 683 mi)

Max. ferry range with drop tanks: 3,200 km (1,988 mls)

Service ceiling: 12,500 m (41,000 ft)

Rate of climb: 58 m/s (11.400 ft/min)

Wing loading: max. 480 kg/m² (98.3 lb/ft²)

Thrust/weight: 0.47 at maximum loading

 

Armament:

2× 30 mm (1.18 in) DEFA cannons with 120 RPG

4× under-wing pylon stations with a capacity of 1,814 kg (4,000 lb)

  

The kit and its assembly:

This build is my submission the 2020 "One week” group build at whatifmodellers.com. I had originally earmarked my Thai Navy A-4 for this event, but already built it for the “In the navy” GB that ran a couple of weeks earlier, since it was a perfect thematic match.

 

While searching for an alternative I found a Matchbox G.91Y in the stash and wondered about a single engine alternative, a simpler aircraft in the spirit of the original G.91R variants. Since I had some surplus fuselages from G.91R Revell kits in the donor bank, the G.91X was born.

 

The basis is the Matchbox G.91Y kit, a basic affair with mediocre fit and only few details. It was mostly built OOB, except for lowered flaps (easy to realize on this kit) and a completely new lower rear fuselage from a smaller G.91R section with only a single exhaust. This feat was a little more challenging than it seems, since the G.91R is considerably smaller and shorter than the G.91Y – a lot of improvisation and PSR went into this cosmetic stunt. For instance, the seams between the parts had to be reinforced from the inside, bridging the different fuselage shapes, and a 2-3mm gap between the fuselage halves had to be filled. In order to emphasize the new engine arrangement, the G.91Y’s dorsal air scoops were sanded away and a new jet exhaust had to be found for the new, rather oval tail orifice. I eventually settled upon a protective cap from y syringe needle.

 

Furthermore, the cast-on guns were replaced with hollow steel needles, and some blade antennae (styrene sheet) as well as gun nozzle protectors (thin wire) were added. The cockpit was also slightly pimped with styrene profiles and some wire (on the ejection seat and for some side consoles), the pilot figure – even though the Matchbox figures are among the best I know – was replaced by a pilot from an Airfix A-4 Skyhawk (left over from the recent Thai Navy A-4LT build). However, the canopy remained closed, since opening it would require more fuselage cutting.

 

The ordnance was kept simple, reflecting the attack/COIN role of this aircraft: a pair of LAU-19 unguided missile pods and two Mk. 82 bombs; these came from an Italeri NATO weapon set and an Airfix A-4 kit, respectively.

  

Painting and markings:

Another inspiration for this build were pictures from a PC-7 trainer of the Guatemala Air Force, which carried a livery in three murky shades of green. I found this paint scheme pretty interesting, esp. as an alternative to the ubiquitous SEA scheme (that Honduran A-37s carried). For the G.91X I adapted the scheme with slightly more contrasty tones of two shades of green and a more brownish hue: Faded Olive Drab (Modelmaster #2051), Olive Drab (Humbrol 155) and Dark Green (Humbrol 30). The undersides were painted in a light grey (Humbrol 166). I initially considered a wrap-around scheme, but eventually found it to look too boring – also with a look at the potential markings, because aircraft of the Honduran Air Force typically only carried and carry minimal markings. Instead of the Guatemalan PC-7’s apparently symmetrical scheme I rather went for a more disruptive pattern, though.

 

The model was seriously weathered with a black ink washing and post panel shading, simulating constant use and the influence of tropical climate conditions. The decals were puzzled together from various sources and improvised. Most stencils come from the OOB sheet, the roundels on the fuselage and the flags on the fin were printed at home on clear sheet, with a white decal base added underneath. Quite complicated, but the alternative white decal paper as printing base would not yield sufficiently opaque markings. In order to add some eye-catchers I gave the Gina roundels on the fuselage and on the wings, too – these are rather modern markings, but just with the flags on the fin I found the model to look quite murky and boring. Artistic freedom… The “FAH” abbreviations were created with single USAF 45° letters.

 

Finally, after some soot stains around the guns and the exhaust with grinded graphite, the aircraft was sealed with matt Italeri acrylic varnish.

  

A relatively simple project – chosen with the perspective of just a week (well, eight days, to be honest) to tackle and finish it, despite the major fuselage surgery and the photo shooting and editing on top.

The REPPS is a lightweight, portable power system capable of recharging Army batteries and/or acting as a continuous power source which provides power to remote locations, and is silent and environmentally friendly. In Africa, Hassan Azzam, science and technology advisor for U.S. Army Africa, said it’s not easy to send a generator and to fuel it all the time because USARAF does not have forward operating bases nor does it have big stationary forces like in Afghanistan. “When we go to Africa to train with different nations we find one of the problems we encounter while in the desert is figuring out where to find a generator and where to find fuel for the generator; that’s not easy in Africa. So, now we have a power supply based on solar energy, which is easy to obtain in Africa. REPPS is very soft, yet durable, foldable, and you put it in your rucksack. It can charge military batteries, a laptop, iPhone and an iPad. Depending on the sun, the angle and if your battery is totally depleted or halfway, within a couple of hours a person can get enough power to talk on a cell phone or charge an Army battery,” Azzam said.(U.S. Army Africa photo by Sgt. Terysa M. King)

 

To learn more about U.S. Army Africa visit our official website at www.usaraf.army.mil

 

Official Twitter Feed: www.twitter.com/usarmyafrica

 

Official Vimeo video channel: www.vimeo.com/usarmyafrica

 

Join the U.S. Army Africa conversation on Facebook: www.facebook.com/ArmyAfrica

 

12th October 1980 Hawker Siddeley Harrier GR.3, Construction Number: 712204 / Registration Number: XZ968 / Alternative Code: 9222M.

 

Famous throughout the world as the first jet fighter capable of vertical take off and landing, the Harrier was utilised by the Royal Air Force as a ground attack and reconnaissance aircraft in the Close Air Support role (CAS).

 

The Harrier GR.3 was a development of the Harrier GR.1, being fitted with improved attack sensors, electronic countermeasures and a more powerful engine over the GR1. The simplicity and flexibility inherent in the Harrier design proved their worth in service in Germany. In time of war the Harrier was to be deployed away from established airfields, which were vulnerable to attack. Instead it was to be operated from short, rough strips of ground and hidden in camouflaged ‘hides’, from which it would attack the enemy’s approaching armoured formations.

 

These qualities came into their own during the Falklands War, RAF Harriers were deployed to the Royal Navy aircraft carrier H.M.S Hermes, as part of the Task Force sent to recapture the Falklands Islands. The Harrier GR.3 performed attack sorties from the aircraft carrier, and later from basic landing strips on the islands, often in conditions that would have grounded conventional aircraft.

 

In addition to operations with RAF Germany, the Harrier GR.3 has also seen service with the Royal Air Force in Norway and Belize. The concept of a high performance fighter aircraft being able to take off and land vertically was almost unbelievable until the Harrier was developed. The scientific, technological and engineering challenges which were overcome in order to achieve the remarkable performance enjoyed by this aircraft marks it out as one of the most special machines.

 

General characteristics -

 

▪︎Role: V/STOL Ground-attack Aircraft

▪︎National Origin: United Kingdom

▪︎Manufacturer: Hawker Siddeley

▪︎First Flight: 28th December 1967

▪︎Introduction: 1st April 1969

▪︎Retired: 2006

▪︎Status: Retired

▪︎Primary Users: Royal Air Force / United States Marine Corps / Spanish Navy / Royal Thai Navy ▪︎Produced: 1967 to the 1970's

▪︎Number Built: 278

▪︎Developed From: Hawker Siddeley P.1127/Kestrel

▪︎Developed Into: British Aerospace Sea Harrier / McDonnell Douglas AV-8B Harrier II / British ▪︎Aerospace Harrier II

▪︎Crew: 1

▪︎Length: 46 ft 10 in

▪︎Wingspan: 25 ft 5 in / 29 ft 8 in with ferry tips fitted

▪︎Height: 11 ft 11 in

▪︎Wing area: 201.1 sq ft / 216 sq ft with ferry tips fitted

▪︎Aspect Ratio: 3.175 / 4.08 with ferry tips fitted

▪︎Empty Weight: 13,535 lb

▪︎Maximum Takeoff Weight: 25,200 lb

▪︎Fuel Capacity: 5,060 lb internal / 2 x 100 imp gal, 790 lb drop-tanks for combat / 2 x 330 imp gal, 2,608 lb drop-tanks for ferry

▪︎Powerplant: 1 x Rolls-Royce Pegasus 103 vectored-thrust high-bypass turbofan engine, 21,500 lbf thrust with water injection

▪︎Maximum Speed: 731 mph, at sea level

▪︎Maximum Diving Speed: Mach 1.3

▪︎Combat Range: 360 nmi - 410 mi, ho-lo-hi with 4,400 lb payload / 200 nmi - 230 mi, lo-lo with 4,400 lb payload

▪︎Ferry Range: 1,850 nmi - 2,130 mi, with 330 imp gal drop-tanks / 3,000 nmi - 3,500 mi, with one AAR

▪︎Endurance: 1 hour 30 minutes combat air patrol 100 nmi - 120 mi, from base / 7 hours plus with one AAR

▪︎Service Ceiling: 51,200 ft

G Limits: +7.8 −4.2

Time to Altitude: 40,000 ft in 2 minutes 23 seconds from a vertical take-off

Take-off Run CTOL: 1,000 ft at max. TO weight

 

▪︎ARMAMENT -

 

▪︎Guns: 2 x 1.18 in ADEN cannon pods under the fuselage

▪︎Hardpoints: 4 x under-wing & 1 x under-fuselage pylon stations with a capacity of 5,000 lb, with provisions to carry combinations of -

▪︎Rockets: 4 x Matra rocket pods with 18 x SNEB 68mm rockets each

▪︎Missiles: 2 x AIM-9 Sidewinders Air-to-air missiles

▪︎Bombs: A variety of unguided iron bombs, BL755 cluster bombs or laser-guided bombs

▪︎1 x Reconnaissance pod

▪︎2 x drop tanks for extended range/loitering time.

 

Information sourced from -

en.m.wikipedia.org/wiki/Hawker_Siddeley_Harrier

www.rafmuseum.org.uk/research/collections/hawker-siddeley...

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!

 

Some background:

The Mikoyan-Gurevich MiG-19 (Russian: Микоян и Гуревич МиГ-19) (NATO reporting name: "Farmer") was a Soviet second-generation, single-seat, twin jet-engined fighter aircraft. It was the first Soviet production aircraft capable of supersonic speeds in level flight. It was, more oe less, the counterpart of the North American F-100 Super Sabre, although the MiG-19 would primarily oppose the more modern McDonnell Douglas F-4 Phantom II and Republic F-105 Thunderchief over North Vietnam.

 

On 20 April 1951, OKB-155 was given the order to develop the MiG-17 into a new fighter called "I-340", which was to be powered by two Mikulin AM-5 non-afterburning jet engines (a scaled-down version of the Mikulin AM-3) with 19.6 kN (4,410 lbf) of thrust. The I-340 was supposed to attain 1,160 km/h (725 mph, Mach 1) at 2,000 m (6,562 ft), 1,080 km/h (675 mph, Mach 0.97) at 10,000 m (32,808 ft), climb to 10,000 m (32,808 ft) in 2.9 minutes, and have a service ceiling of no less than 17,500 m (57,415 ft).

The new fighter, internally designated "SM-1", was designed around the "SI-02" airframe (a MiG-17 prototype) modified to accept two engines in a side-by-side arrangement and was completed in March 1952.

 

Initial enthusiasm for the aircraft was dampened by several problems. The most alarming of these was the danger of a midair explosion due to overheating of the fuselage fuel tanks located between the engines. Deployment of airbrakes at high speeds caused a high-g pitch-up. Elevators lacked authority at supersonic speeds. The high landing speed of 230 km/h (145 mph) (compared to 160 km/h (100 mph) in the MiG-15), combined with absence of a two-seat trainer version, slowed pilot transition to the type. Handling problems were addressed with the second prototype, "SM-9/2", which added a third ventral airbrake and introduced all-moving tailplanes with a damper to prevent pilot-induced oscillations at subsonic speeds. It flew on 16 September 1954, and entered production as the MiG-19S.

 

Approximately 5.500 MiG-19s were produced, first in the USSR and in Czechoslovakia as the Avia S-105, but mainly in the People's Republic of China as the Shenyang J-6. The aircraft saw service with a number of other national air forces, including those of Cuba, North Vietnam, Egypt, Pakistan, and North Korea. The aircraft saw combat during the Vietnam War, the 1967 Six Day War, and the 1971 Bangladesh War.

 

All Soviet-built MiG-19 variants were single-seaters only, although the Chinese later developed the JJ-6 trainer version of the Shenyang J-6. Among the original "Farmer" variants were also several radar-equipped all-weather fighters and the MiG-19R, a reconnaissance version of the MiG-19S with cameras replacing the nose cannon in a canoe-shaped fairing under the forward fuselage and powered by uprated RD-9BF-1 engines with about 10% more dry thrust and an improved afterburner system.

 

The MiG19R was intended for low/medium altitude photo reconnaissance. Four AFA-39 daylight cameras (one facing forward, one vertical and two obliquely mounted) were carried. Nighttime operations were only enabled through flare bombs, up to four could be carried on four hardpoints under the wings, even though the outer "wet" pylons were frequently occupied by a pair of 800l drop tanks.

 

The MiG-19R was not produced in large numbers and only a few were operated outside of the Soviet Union. The NATO reporting name remained unchanged (Farmer C). A recon variant of the MiG-19 stayed on many air forces' agendas, even though only the original, Soviet type was actually produced. Czechoslovakia developed an indigenous reconnaissance variant, but it did not enter series production, as well as Chinese J-6 variants, which only reached the prototype stage.

 

One of the MiG-19R's few foreign operators was the Polish Navy. The Polish Air Force had received a total of 22 MiG-19P and 14 MiG-19PM interceptors in 1957 (locally dubbed Lim-7), and at that time photo reconnaissance for both Air Force and Navy was covered by a version of the MiG-17 (Lim-5R). Especially the Polish Navy was interested in a faster aircraft for quick identification missions over the Baltic Sea, and so six MiG-19R from Soviet stock were bought in 1960 for the Polish Navy air arm.

 

Anyway, Poland generally regarded the MiG-19 family only as an interim solution until more potent types like the MiG-21 became available. Therefore, most of the fighters were already sold to Bulgaria in 1965/66, and any remaining Farmer fighters in Polish Air Force Service were phased out by 1974.

 

The Polish Navy MiG-19R were kept in service until 1982 through the 3rd Group of the 7th Polish Naval Squadron (PLS), even though only a quartet remained since two Lim-7R, how the type was called in Poland, had been lost through accidents during the early 70ies. Ironically, the older Lim6R (a domestic photo reconnaissance variant of the license-built MiG-17 fighter bomber) was even kept in service until the late 80ies, but eventually all these aircraft were replaced by MiG-21R and Su-22M4R.

  

General characteristics:

Crew: One

Length: 12.54 m (41 ft)

Wingspan: 9.0 m (29 ft 6 in)

Height: 3.9 m (12 ft 10 in)

Wing area: 25.0 m² (270 ft²)

Empty weight: 5,447 kg (11,983 lb)

Max. take-off weight: 7,560 kg (16,632 lb)

 

Powerplant:

2× Tumansky RD-9BF-1 afterburning turbojets, 31.9 kN (7,178 lbf) each

 

Performance:

Maximum speed: 1.500 km/h (930 mph)

Range: 1,390 km (860 mi) 2,200 km with external tanks

Service ceiling: 17,500 m (57,400 ft)

Rate of climb: 180 m/s (35,425 ft/min)

Wing loading: 302.4 kg/m² (61.6 lb/ft²)

Thrust/weight: 0.86

 

Armament:

2x 30 mm NR-30 cannons in the wing roots with 75 RPG

4x underwing pylons, with a maximum load of 1.000 kg (2.205 lb);

typically only 2 drop tanks were carried, or pods with flare missiles

  

The kit and its assembly:

Again, a rather subtle whif. The MiG-19R existed, but was only produced in small numbers and AFAIK only operated by the Soviet Union. Conversions of license-built machines in Czechoslovakia and China never went it beyond prototype stage.

 

Beyond that, there’s no kit of the recon variant, even pictures of real aircraft are hard to find for refefence – so I decided to convert a vintage Kovozavody/KP Models MiG-19S fighter from the pile into this exotic Farmer variant.

 

Overall, the old KP kit is not bad at all, even though you get raised details, lots of flash and mediocre fit, the pilot's seat is rather funny. Yes, today’s standards are different, but anything you could ask for is there. The kit is more complete than a lot of more modern offerings and the resulting representation of a MiG-19 is IMHO good.

 

Mods I made are minimal. Most prominent feature is the camera fairing in place of the fuselage cannon, scratched from a massive weapon pylon (Academy F-104G). Probably turned out a bit too large and pronounced, but it’s whifworld, after all!

 

Other detail changes include new main wheels (from a Revell G.91), some added/scratched details in the cockpit with an opened canopy, and extra air scoops on the fuselage for the uprated engines. The drop tanks are OOB, I just added the small stabilizer pylons from styrene sheet.

 

Other pimp additions are scratched cannons (made from Q-Tips!), and inside of the exhausts the rear wall was drilled up and afterburner dummies (wheels from a Panzer IV) inserted - even though you can hardly see that at all...

  

Painting and markings:

This is where the fun actually begins. ANY of the few MiG-19 in Polish service I have ever seen was left in a bare metal finish, and the Polish Navy actually never operated the type.

 

Anyway, the naval forces make a good excuse for a camouflaged machine – and the fact that the naval service used rather complex patterns with weird colors on its machines (e. g. on MiG-17, MiG-15 UTI or PZL Iskras and An-2) made this topic even more interesting, and colorful.

 

My paint scheme is a mix of various real world aircraft “designs”. Four(!) upper colors were typical. I ended up with:

• Dark Grey (FS 36118, Modelmaster)

• Dark Green (RAF Dark Green, Modelmaster)

• Blue-Green-Grey (Fulcrum Green-Grey, Modelmaster)

• Greenish Ochre (a mix of Humbrol 84 and Zinc Chromate Green, Modelmaster)

 

Plus…

• Light Blue undersides (FS 35414, Modelmaster, also taken into the air intake)

  

The pattern was basically lent from an Iskra trainer and translated onto the swept wing MiG. The scheme is in so far noteworthy because the stabilizers carry the upper camo scheme on the undersides, too!?

 

I only did light shading and weathering, since all Polish Navy service aircraft I found had a arther clean and pristine look. A light black ink wash helped to emphasize the many fine raised panel lines, as well as some final overall dry painting with light grey.

 

The cockpit interior was painted in the notorious “Russian Cockpit Blue-Green” (Modelmaster), dashboard and are behind the seat were painted medium grey (FS 36231). The landing gear wells were kept in Aluminum (Humbrol 56), while the struts received a lighter acrylic Aluminum from Revell.

The wheel discs were painted bright green (Humbrol 131), but with the other shocking colors around that does not stand out at all…! The engine nozzles were treated with Modelmaster Metallizer, including Steel, Gun Metal and Titanium, plus some grinded graphite which adds an extra metallic shine.

 

The national “checkerboard” markings were puzzled together from various old decal sheets; the red tactical code was made with single digit decals (from a Begemot MiG-29 sheet); the squadron marking on the fin is fictional, the bird scaring eyes are a strange but als typical addition and I added some few stencils.

 

Finally, all was sealed under a coat of matt acrylic varnish (Revell).

  

In the end, not a simple whif with only little conversion surgery. But the paint scheme is rather original, if not psychedelic – this MiG looks as if a six-year-old had painted it, but it’s pretty true to reality and I can imagine that it is even very effective in an environment like the Baltic Sea.

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!

  

Some background:

The North American FJ-4 Fury was a swept-wing carrier-capable fighter-bomber, originally developed for the United States Navy and Marine Corps. It was the final development in a lineage that included the Air Force's F-86 Sabre. The FJ-4 shared its general layout and engine with the earlier FJ-3, but featured an entirely new wing design. And it was, as a kind of final embodiment with the FJ-4B, a very different aircraft from the F-86 .

 

The first FJ-4 flew on 28 October 1954 and delivery began in February 1955. Of the original order for 221 FJ-4 fighters, the last 71 were modified into the FJ-4B fighter-bomber version, of which the Netherlands received 16 aircraft under the designation FJ-4B from the USA in the course of NATO support. Even though the main roles of the MLD were maritime patrol, anti-submarine warfare and search and rescue, the FJ-4B was a dedicated fighter-bomber, and these aircraft were to be used with the Dutch Navy’s Colossus-Class carrier HNLMS Karel Doorman (R81).

 

Compared to the lighter FJ-4 interceptor, the FJ-4B had a stronger wing with six instead of four underwing stations, a stronger landing gear and additional aerodynamic brakes under the aft fuselage. The latter made landing safer by allowing pilots to use higher thrust settings, and were also useful for dive attacks. Compared to the FJ-4, external load was doubled, and the US FJ-4Bs were capable of carrying a nuclear weapon on the inboard port station, a feature the MLD Furies lacked. The MLD aircraft were still equipped with the corresponding LABS or Low-Altitude Bombing System for accurate delivery of ordnance.

The Dutch Furies were primarily intended for anti-ship missions (toting up to five of the newly developed ASM-N-7 missiles - renamed in AGM-12B Bullpup after 1962 - plus a guidance pod) and CAS duties against coastal targets, as well as for precision strikes. In a secondary role, the FJ-4B could carry Sidewinder AAMs for interception purposes.

 

The MLD's FJ-4B became operational in 1956, just in time to enhance the firepower of the Karel Doorman, which just had its 24 WW-II era propeller driven Fairey Firefly strike fighters and Hawker Sea Fury fighter/anti-ship aircraft backed up with 14 TBF Avenger ASW/torpedo bombers and 10 Hawker Sea Hawk fighters (the MLD owned 22 of these) for an ASW/Strike profile. The Furies joined the carrier in late 1957 and replaced the piston-engined attack aircraft.

 

In 1960, during the Dutch decolonization and planned independence of Western New Guinea, a territory which was also claimed by Indonesia, the Karel Doorman set sail along with two destroyers and a modified oil tanker to 'show the flag'. In order to avoid possible problems with Indonesia's ally Egypt at the Suez Canal, the carrier instead sailed around the horn of Africa. She arrived in Fremantle, Australia, where the local seamen's union struck in sympathy with Indonesia; the crew used the propeller thrust of aircraft chained down on deck to nudge the carrier into dock without tugs! In addition to her air wing, she was ferrying twelve Hawker Hunter fighters to bolster the local Dutch defense forces, which the Karel Doorman delivered when she arrived at Hollandia, New Guinea.

 

During the 1960 crisis, Indonesia prepared for a military action named Operation Trikora (in the Indonesian language, "Tri Komando Rakyat" means "The Three Commands of the People"). In addition to planning for an invasion, the TNI-AU (Indonesian Air Forces) hoped to sink the Karel Doorman with Soviet-supplied Tupolev Tu-16KS-1 Badger naval bombers using AS-1 Kennel/KS-1 Kometa anti-ship missiles. This bomber-launched missile strike mission was cancelled on short notice, though, because of the implementation of the cease-fire between Indonesia and the Netherlands. This led to a Dutch withdrawal and temporary UN peacekeeping administration, followed by occupation and annexation through Indonesia. While the Dutch aircraft served actively during this conflict, flying patrols and demonstrating presence, visibly armed and in alert condition, no 'hot' sortie or casualty occured, even though one aircraft, 10-18, was lost in a start accident. The pilot ejected safely.

 

The MLD FJ-4Bs only served on the carrier until its overhaul in 1964, after which the carrier-borne attack role was eliminated and all aircraft were transferred to land bases (Valkenburg) or in reserve storage. The Seahawks were retired from service by the end of the 1960s after the sale of the Karel Doorman to Argentina, and the FJ-4Bs were returned to the United States, where they were re-integrated into the USMC until the end of the 1960ies, when all FJ-4 aircraft were phased out.

  

General characteristics:

Crew: 1

Length: 36 ft 4 in (11.1 m)

Wingspan: 39 ft 1 in (11.9 m)

Height: 13 ft 11 in (4.2 m)

Wing area: 338.66 ft² (31.46 m²)

Empty weight: 13,210 lb (6,000 kg)

Loaded weight: 20,130 lb (9,200 kg)

Max. take-off weight: 23,700 lb (10,750 kg)

Powerplant: 1 × Wright J65-W-16A turbojet, 7,700 lbf (34 kN)

 

Performance:

Maximum speed: 680 mph (1,090 km/h) at 35,000 ft (10,670 m)

Range: 2,020 mi (3,250 km) with 2× 200 gal (760 l) drop tanks and 2× AIM-9 missiles

Service ceiling: 46,800 ft (14,300 m)

Rate of climb: 7,660 ft/min (38.9 m/s)

Wing loading: 69.9 lb/ft² (341.7 kg/m²)

Thrust/weight: .325

 

Armament:

4× 20 mm (0.787 in) cannon

6× pylons under the wings for 3,000 lb (1,400 kg) external ordnance, including up to 6× AIM-9 Sidewinder AAMs, bombs and guided/unguided ASM, e .g. ASM-N-7 (AGM-12B Bullpup) missiles.

  

The kit and its assembly

Originally, this model project was inspired by a (whiffy) Dutch F3H Demon profile, designed by fellow user Darth Panda at whatifmodelers.com. I found the idea of a foreign/NATO user of one of these early carrier-borne jet fighters very inspiring – not only because of the strange design of many of these aircraft, but also since the USN and USMC had been the only real world users of many of these types.

 

Initially, I planned to convert a F3H accordingly. But with limited storage/display space at home I decided to apply the MLD idea to another smaller, but maybe even more exotic, type: the North American FJ-4B Fury, which was in 1962 recoded into AF-1E.

I like the beefy Sabre cousin very much. It’s one of those aircraft that received little attention, even from model kit manufacturers. In fact, in 1:72 scale there are only vintage vacu kits or the very basic Emhar kit available. Th Emhar kit, which I used here and which is a kind donation of a fellow modeler (Thanks a lot, André!), a rather rough thing with raised panel lines and much room for improvements. As a side note, there's also a FJ-4B from Revell, but it's just a 1996 re-issue with no improvements, whatsoever.

 

Another facet of the model: When I did legwork concerning a possible background story, I was surprised to find out that the Netherlands actually operated aircraft carriers in the 1950s, including carrier-borne, fixed-wing aircraft, even jets in the form of Hawker Sea Hawks. The real life FJ-4Bs service introduction, the naissance of NATO and the Indonesian conflict as well as the corresponding intervention of the Karel Doorman carrier all fell into a very plausible time frame – and so there’s a very good and plausible story why the MLD could actually have used the Fury fighter bomber!

 

The Emhar kit was not modified structurally, but saw some changes in detail. These include a scratch-built cockpit with side walls, side consoles and a new ejection seat, plus a Matchbox pilot figure, a new front wheel (from a Kangnam Yak-38, I believe), plus a lot of added blade aerials and a finer pitot.

The flaps were lowered, for a more lively look- Another new feature is the opened air intake, which features a central splitter - in fact a vertically placed piece of a Vicker Wellesley bomb container from Matchbox. At the rear end, the exhaust pipe was opened and lengthened internally.

 

The six weapon hardpoints were taken from the original kit, but I did not use the four Sidewinder AAMs and the rather bulky drop tanks. So, all ordnance is new: the Bullpups come from the Hasegawa air-to-ground missile set, the drop tanks are leftover pieces from a Hobby Boss F-86. They are much more 'delicate', and make the Fury look less stout and cumbersome. The guidance pod for the Bullpups (a typical FJ-4B feature with these weapons) is a WWII drop tank, shaped with the help of benchmark pictures. Certainly not perfect, but, hey - it's just a MODEL!

  

Painting and markings

I used mid-1950ies MLD Sea Furys and Sea Hawks as a design benchmark, but this Fury is placed just into the time frame around 1960 when the MLD introduced a new 3-digit code system. Before that, a code "6-XX" with the XX somewhere in the 70 region would have been appropriate, and I actually painted the fuselage sides a bit darker so as if the old code had recently been painted over.

 

Dutch MLD aircraft tended to keep their former users’ liveries, but in the FJ-4B’s case I thought that a light grey and white aircraft (USN style) with Dutch roundels would look a bit odd. So I settled for early NATO style with Extra Dark Sea Grey upper sides (Humbrol 123) and Sky from below (Testors 2049 from their Authentic Line).

 

I also went for an early design style with a low waterline - early Hawker Sea Furies were painted this way, and a high waterline would probably be more typical. But in the face of potential seriosu action, who knows...? Things tend to be toned down quickly, just remember the RN Harriers during the Falkland conflict. I'll admit that the aircraft looks a bit simple and dull now, but this IMHO just adds to the plausible look of this whif. I prefer such subtleties to garish designs.

 

The surfaces were weathered with dry-brushed lighter shades of the basic tones (mostly Humbrol 79, but also some 140 and 67, and Humbrol 90 and 166 below), including overpainted old codes in a slightly darker tone of EDSG, done with Revell 77. A light wash with black ink emphasizes edges and some details - the machine was not to look worn.

 

The interior was painted in medium grey (Humbrol 140), the landing gear is white (Humbrol 130), and some details like the air intake rim, the edges of the landing gear covers, the flaps or the tips of the wing fences were painted in bright red (Humbrol 174), for some contrast to the overall grey upper sides.

 

The MLD markings were puzzled together. The roundels come from an Xtradecal sheet for various Hawker Sea Furies, the '202' code comes, among others, from a Grumman Bearcat aftermarket sheet. The 'KON. MARINE' line is hand-made, letter by letter, from a TL Modellbau aftremarket sheet.

Most stencils and warning sign decals come from the original decal sheet, as well as from a FJ-4 Xtradecal aftermarket sheet, from F-86 kits and the scrap box. I wanted these details to provide the color to the aircraft, so that it would not look too uniform, but still without flashy decorations and like a rather utilarian military item.

 

finally, the model received a coat of semi-matt varnish (Tamiya Acryllic), since MLD aircraft had a pretty glossy finish. No dirt or soot stains were added - the Dutch kept their (few) shipborne aircraft very clean and tidy!

  

So, all in all, a simple looking aircraft, but this Dutch Fury has IMHO a certain, subtle charm - probably also because it is a rather rare and unpopular aircraft, which in itself has a certain whiffy aura.

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!

 

Some background

The Focke Wulf Ta 338 originated as a response of request by the RLM in mid 1943 for an aircraft capable of vertical takeoff and landing (VTOL), optimized for the interceptor and point defense role and without a hazardous liquid rocket engine as means of propulsion. In the course of the year, several German manufacturers responded with a multitude of highly innovative if not unusual design, including Heinkel with the ducted fan project "Lerche", Rheinmetall-Borsig with a jet-powered tailsitter, and Focke Wulf. This company’s engineering teams submitted two designs: the revolutionary "Triebflügel" concept and the more conservative, yet still futuristic "P.03.10338" tail sitter proposal, conceived by Focke Wulf’s leading engineer Kurt Tank and Walter Kappus from BMW, responsible for the engine development.

 

The P.03.10338 was based on the proven Fw 190 fighter, but the similarities were only superficial. Only the wings and a part of the fuselage structure around the cockpit would be used, but Tank assumed that using existing parts and tools would appreciably reduce development and production time.

A great part of the fuselage structure had to be re-designed to accommodate a powerful BMW 803 engine and its integral gearbox for an eight-bladed contraprop.

 

The BMW 803 was BMW's attempt to build a high-output aircraft engine, primarily for heavy bombers, by basically "coupling" two BMW 801 engines back-to-back into a single and very compact power unit. The result was a 28-cylinder, four-row radial engine, each comprising a multiple-bank in-line engine with two cylinders in each bank, which, due to cooling concerns, were liquid cooled.

 

This arrangement was from the start intended to drive independent contra-rotating propellers, in order to avoid stiffness problems with the whole engine driving just a single crankshaft and also to simply convert the raw power of this unit into propulsion. The front half of the engine drove the front propeller directly, while the rear engine drove a number of smaller shafts that passed between the cylinders of the front engine before being geared back together to drive the rear prop. This complex layout resulted in a rather large and heavy gearbox on the front of the engine, and the front engine needing an extended shaft to "clear" that gearbox. The four-row 803 engine weighed 2,950 kg (6,490 lb) dry and 4,130 kg (9,086 lb) fully loaded, and initial versions delivered 3,900 PS (3,847 hp; 2,868 kW).

 

While the engine was heavy and there were alternatives with a better weight/output ratio (e. g. the Jumo 222), the BMW 803 was favored for this project because it was the most powerful engine available, and it was relatively compact so that it could be fitted into a fighter's airframe. On the P.03.10338 it drove an all-metal, eight-blade contraprop with a diameter of 4,25 m (13 ft 11 in).

 

In order to accept this massive engine, the P.03.10338’s structure had to be stiffened and the load-bearing structures re-arranged. The aircraft kept the Fw 190's wing structure and surface, but the attachment points at the fuselage had to be moved for the new engine mount, so that they ended up in mid position. The original space for the Fw 190's landing gear was used for a pair of radiator baths in the wings' inner leading edge, the port radiator catering to the front engine half while the radiator on starboard was connected with the rear half. An additional annular oil and sodium cooler for the gearbox and the valve train, respectively, was mounted in the fuselage nose.

 

The tail section was completely re-designed. Instead of the Fw 190's standard tail with fin and stabilizers the P.03.10338’s tail surfaces were a reflected cruciform v-tail (forming an x) that extended above and below the fuselage. On the four fin tips, aerodynamic bodies carried landing pads while the fuselage end contained an extendable landing damper. The pilot sat in a standard Fw 190 cockpit, and the aircraft was supposed to start and land vertically from a mobile launch pad. In the case of an emergency landing, the lower stabilizers could be jettisoned. Nor internal armament was carried, instead any weaponry was to be mounted under the outer wings or the fuselage, in the form of various “Rüstsätze” packages.

 

Among the many exotic proposals to the VTOL fighter request, Kurt Tank's design appeared as one of the most simple options, and the type received the official RLM designation Ta 338. In a rush of urgency (and maybe blinded by clever Wunderwaffen marketing from Focke Wulf’s side), a series of pre-production aircraft was ordered instead of a dedicated prototype, which was to equip an Erprobungskommando (test unit, abbreviated “EK”) that would evaluate the type and develop tactics and procedures for the new fighter.

 

Fueled by a growing number of bomber raids over Germany, the “EK338” was formed as a part of JG300 in August 1944 in Schönwalde near Berlin, but it took until November 1944 that the first Ta 338 A-0 machines were delivered and made operational. These initial eight machines immediately revealed several flaws and operational problems, even though the VTOL concept basically worked and the aircraft flew well – once it was in the air and cruising at speeds exceeding 300 km/h (186 mph).

 

Beyond the many difficulties concerning the aircraft’s handling (esp. the landing was hazardous), the lack of a landing gear hampered ground mobility and servicing. Output of the BMW 803 was sufficient, even though the aircraft had clear limits concerning the take-off weight, so that ordnance was limited to only 500 kg (1.100 lb). Furthermore, the noise and the dust kicked up by starting or landing aircraft was immense, and servicing the engine or the weapons was more complicated than expected through the high position of many vital and frequently tended parts.

 

After three Ta 338 A-0 were lost in accidents until December 1944, a modified version was ordered for a second group of the EK 338. This led to the Ta 338 A-1, which now had shorter but more sharply swept tail fins that carried single wheels and an improved suspension under enlarged aerodynamic bodies.

This machine was now driven by an improved BMW 803 A-2 that delivered more power and was, with an MW-50 injection system, able to produce a temporary emergency output of 4.500 hp (3.308 kW).

 

Vertical start was further assisted by optional RATO units, mounted in racks at the rear fuselage flanks: either four Schmidding SG 34 solid fuel booster rockets, 4.9 kN (1,100 lbf) thrust each, or two larger 9.8 kN (2,203 lbf) solid fuel booster rockets, could be used. These improvements now allowed a wider range of weapons and equipment to be mounted, including underwing pods with unguided rockets against bomber pulks and also a conformal pod with two cameras for tactical reconnaissance.

 

The hazardous handling and the complicated maintenance remained the Ta 338’s Achilles heel, and the tactical benefit of VTOL operations could not outbalance these flaws. Furthermore, the Ta 338’s range remained very limited, as well as the potential firepower. Four 20mm or two 30mm cannons were deemed unsatisfactory for an interceptor of this class and power. And while bundles of unguided missiles proved to be very effective against large groups of bombers, it was more efficient to bring these weapons with simple and cheap vehicles like the Bachem Ba 349 Natter VTOL rocket fighter into target range, since these were effectively “one-shot” weapons. Once the Ta 338 fired its weapons it had to retreat unarmed.

 

In mid 1945, in the advent of defeat, further tests of the Ta 338 were stopped. I./EK338 was disbanded in March 1945 and all machines retreated from the Eastern front, while II./EK338 kept defending the Ruhrgebiet industrial complex until the Allied invasion in April 1945. Being circled by Allied forces, it was not possible to evacuate or destroy all remaining Ta 338s, so that at least two more or less intact airframes were captured by the U.S. Army and later brought to the United States for further studies.

  

General characteristics:

Crew: 1

Length/height on the ground: 10.40 m (34 ft 2 in)

Wingspan: 10.50 m (34 ft 5 in)

Fin span: 4:07 m (13 ft 4 in)

Wing area: 18.30 m² (196.99 ft²)

Empty weight: 11,599 lb (5,261 kg)

Loaded weight: 16,221 lb (7,358 kg)

Max. takeoff weight: 16,221 lb (7,358 kg)

 

Powerplant:

1× BMW 803 A-2 28-cylinder, liquid-cooled four-row radial engine,

rated at 4.100 hp (2.950 kW) and at 4.500 hp (3.308 kW) with emergency boost.

4x Schmidding SG 34 solid fuel booster rockets, 4.9 kN (1,100 lbf) thrust each, or

2x 9.8 kN (2,203 lbf) solid fuel booster rockets

 

Performance:

Maximum speed: 860 km/h (534 mph)

Cruise speed: 650 km/h (403 mph)

Range: 750 km (465 ml)

Service ceiling: 43,300 ft (13,100 m)

Rate of climb: 10,820 ft/min (3,300 m/min)

Wing loading: 65.9 lb/ft² (322 kg/m²)

 

Armament:

No internal armament, any weapons were to be mounted on three hardpoints (one under the fuselage for up to 1.000 kg (2.200 lb) and two under the outer wings, 500 kg (1.100 lb) each. Total ordnance was limited to 1.000 kg (2.200 lb).

 

Various armament and equipment sets (Rüstsätze) were tested:

R1 with 4× 20 mm (.79 in) MG 151/20 cannons

R2 with 2x 30 mm (1.18 in) MK 213C cannons

R3 with 48x 73 mm (2.874 in) Henschel Hs 297 Föhn rocket shells

R4 with 66x 55 mm (2.165 in) R4M rocket shells

R5 with a single 1.000 kg (2.200 lb) bomb under the fuselage

R6 with an underfuselage pod with one Rb 20/20 and one Rb 75/30 topographic camera

  

The kit and its assembly:

This purely fictional kitbashing is a hardware tribute to a highly inspiring line drawing of a Fw 190 VTOL tailsitter – actually an idea for an operational RC model! I found the idea, that reminded a lot of the Lockheed XFV-1 ‘Salmon’ prototype, just with Fw 190 components and some adaptations, very sexy, and so I decided on short notice to follow the urge and build a 1:72 version of the so far unnamed concept.

 

What looks simple (“Heh, it’s just a Fw 190 with a different tail, isn’t it?”) turned out to become a major kitbashing. The basis was a simple Hobby Boss Fw 190 D-9, chose because of the longer tail section, and the engine would be changed, anyway. Lots of work followed, though.

 

The wings were sliced off and moved upwards on the flanks. The original tail was cut off, and the cruciform fins are two pairs of MiG-21F stabilizers (from an Academy and Hasegawa kit), outfitted with reversed Mk. 84 bombs as aerodynamic fairings that carry four small wheels (from an 1:144 T-22M bomber) on scratched struts (made from wire).

 

The cockpit was taken OOB, only a pilot figure was cramped into the seat in order to conceal the poor interior detail. The engine is a bash from a Ju 188’s BMW 801 cowling and the original Fw 190 D-9’s annular radiator as well as a part of its Jumo 213 cowling. BMW 801 exhaust stubs were inserted, too, and the propeller comes from a 1:100 VEB Plasticart Tu-20/95 bomber.

 

Since the BMW 803 had liquid cooling, radiators had to go somewhere. The annular radiator would certainly not have been enough, so I used the space in the wings that became available through the deleted Fw 190 landing gear (the wells were closed) for additional radiators in the wings’ leading edges. Again, these were scratched with styrene profiles, putty and some very fine styrene mesh.

 

As ordnance I settled for a pair of gun pods – in this case these are slipper tanks from a Hobby Boss MiG-15, blended into the wings and outfitted with hollow steel needles as barrels.

  

Painting and markings:

Several design options were possible: all NMF with some colorful markings or an overall RLM76 finish with added camouflage. But I definitively went for a semi-finished look, inspired by late WWII Fw 190 fighters.

 

For instance, the wings’ undersides were partly left in bare metal, but the rudders painted in RLM76 while the leading edges became RLM75. This color was also taken on the wings’ upper sides, with RLM82 thinly painted over. The fuselage is standard RLM76, with RLM82 and 83 on the upper side and speckles on the flanks. The engine cowling became NMF, but with a flashy ‘Hartmann Tulpe’ decoration.

 

Further highlights are the red fuselage band (from JG300 in early 1945) and the propeller spinner, which received a red tip and segments in black and white on both moving propeller parts. Large red “X”s were used as individual aircraft code – an unusual Luftwaffe practice but taken over from some Me 262s.

 

After a light black ink wash some panel shading and light weathering (e.g. exhaust soot, leaked oil, leading edges) was done, and the kit sealed under matt acrylic varnish.

  

Building this “thing” on the basis of a line drawing was real fun, even though challenging and more work than expected. I tried to stay close to the drawing, the biggest difference is the tail – the MiG-21 stabilizers were the best option (and what I had at hand as donation parts), maybe four fins from a Hawker Harrier or an LTV A-7 had been “better”, but now the aircraft looks even faster. ;)

Besides, the Ta 338 is so utterly Luft ’46 – I am curious how many people might take this for real or as a Hydra prop from a contemporary Captain America movie…

It is easily crumbled to be added to a lit coal in an incense burner. There are a lot of other scents stored elsewhere.

The frankincense was of good quality.

 

Incense is aromatic biotic material that releases fragrant smoke when burned. The term refers to the material itself, rather than to the aroma that it produces. Incense is used for aesthetic reasons, and in therapy, meditation, and ceremony. It may also be used as a simple deodorant or insectifuge.

 

Incense is composed of aromatic plant materials, often combined with essential oils. The forms taken by incense differ with the underlying culture, and have changed with advances in technology and increasing number of uses.

 

Incense can generally be separated into two main types: "indirect-burning" and "direct-burning". Indirect-burning incense (or "non-combustible incense") is not capable of burning on its own, and requires a separate heat source. Direct-burning incense (or "combustible incense") is lit directly by a flame and then fanned or blown out, leaving a glowing ember that smoulders and releases a smoky fragrance. Direct-burning incense is either a paste formed around a bamboo stick, or a paste that is extruded into a stick or cone shape.

 

A variety of incense cones which thankfully were not overly sweet. I am sad to have likely lost this annual Toronto ON sconce of incense cones.

 

Incense is aromatic biotic material that releases fragrant smoke when burned. The term refers to the material itself, rather than to the aroma that it produces. Incense is used for aesthetic reasons, and in therapy, meditation, and ceremony. It may also be used as a simple deodorant or insectifuge.

 

Incense is composed of aromatic plant materials, often combined with essential oils. The forms taken by incense differ with the underlying culture, and have changed with advances in technology and increasing number of uses.

 

Incense can generally be separated into two main types: "indirect-burning" and "direct-burning". Indirect-burning incense (or "non-combustible incense") is not capable of burning on its own, and requires a separate heat source. Direct-burning incense (or "combustible incense") is lit directly by a flame and then fanned or blown out, leaving a glowing ember that smoulders and releases a smoky fragrance. Direct-burning incense is either a paste formed around a bamboo stick, or a paste that is extruded into a stick or cone shape.

 

HISTORY:

 

The word incense comes from Latin incendere meaning "to burn".

 

Combustible bouquets were used by the ancient Egyptians, who employed incense in both pragmatic and mystical capacities. Incense was burnt to counteract or obscure malodorous products of human habitation, but was widely perceived to also deter malevolent demons and appease the gods with its pleasant aroma. Resin balls were found in many prehistoric Egyptian tombs in El Mahasna, giving evidence for the prominence of incense and related compounds in Egyptian antiquity. One of the oldest extant incense burners originates from the 5th dynasty. The Temple of Deir-el-Bahari in Egypt contains a series of carvings that depict an expedition for incense.

 

The Babylonians used incense while offering prayers to divining oracles. Incense spread from there to Greece and Rome.

 

Incense burners have been found in the Indus Civilization (3300–1300 BCE). Evidence suggests oils were used mainly for their aroma. India also adopted techniques from East Asia, adapting the formulation to encompass aromatic roots and other indigenous flora. This was the first usage of subterranean plant parts in incense. New herbs like Sarsaparilla seeds, frankincense, and cypress were used by Indians.

 

At around 2000 BCE, Ancient China began the use of incense in the religious sense, namely for worship. Incense was used by Chinese cultures from Neolithic times and became more widespread in the Xia, Shang, and Zhou dynasties. The earliest documented use of incense comes from the ancient Chinese, who employed incense composed of herbs and plant products (such as cassia, cinnamon, styrax, and sandalwood) as a component of numerous formalized ceremonial rites. Incense usage reached its peak during the Song dynasty with numerous buildings erected specifically for incense ceremonies.

 

Brought to Japan in the 6th century by Korean Buddhist monks, who used the mystical aromas in their purification rites, the delicate scents of Koh (high-quality Japanese incense) became a source of amusement and entertainment with nobles in the Imperial Court during the Heian Era 200 years later. During the 14th-century Ashikaga shogunate, a samurai warrior might perfume his helmet and armor with incense to achieve an aura of invincibility (as well as to make a noble gesture to whoever might take his head in battle). It wasn't until the Muromachi period during the 15th and 16th century that incense appreciation (kōdō) spread to the upper and middle classes of Japanese society.

 

COMPOSITION:

 

A variety of materials have been used in making incense. Historically there has been a preference for using locally available ingredients. For example, sage and cedar were used by the indigenous peoples of North America. Trading in incense materials comprised a major part of commerce along the Silk Road and other trade routes, one notably called the Incense Route.

 

Local knowledge and tools were extremely influential on the style, but methods were also influenced by migrations of foreigners, such as clergy and physicians.

 

COMBUSTIBLE BASE:

 

The combustible base of a direct burning incense mixture not only binds the fragrant material together but also allows the produced incense to burn with a self-sustained ember, which propagates slowly and evenly through an entire piece of incense with such regularity that it can be used to mark time. The base is chosen such that it does not produce a perceptible smell. Commercially, two types of incense base predominate:

 

Fuel and oxidizer mixtures: Charcoal or wood powder provides the fuel for combustion while an oxidizer such as sodium nitrate or potassium nitrate sustains the burning of the incense. Fragrant materials are added to the base prior to shaping, as in the case of powdered incense materials, or after, as in the case of essential oils. The formula for charcoal-based incense is superficially similar to black powder, though it lacks the sulfur.

Natural plant-based binders: Gums such as Gum Arabic or Gum Tragacanth are used to bind the mixture together. Mucilaginous material, which can be derived from many botanical sources, is mixed with fragrant materials and water. The mucilage from the wet binding powder holds the fragrant material together while the cellulose in the powder combusts to form a stable ember when lit. The dry binding powder usually comprises about 10% of the dry weight in the finished incense. These include:

Makko (incense powder) made from the bark of various trees in the genus Persea (such as Persea thunbergii) Xiangnan pi (made from the bark of trees of genus Phoebe such as Phoebe nanmu or Persea zuihoensis.

 

Jigit: a resin based binder used in India

Laha or Dar: bark based powders used in Nepal, Tibet, and other East Asian countries.

 

Typical compositions burn at a temperature between 220 °C and 260 °C.

 

TYPES:

 

Incense is available in various forms and degrees of processing. They can generally be separated into "direct-burning" and "indirect-burning" types. Preference for one form or another varies with culture, tradition, and personal taste. The two differ in their composition due to the former's requirement for even, stable, and sustained burning.

 

INDIRECT-BURNING:

 

Indirect-burning incense, also called "non-combustible incense", is an aromatic material or combination of materials, such as resins, that does not contain combustible material and so requires a separate heat source. Finer forms tend to burn more rapidly, while coarsely ground or whole chunks may be consumed very gradually, having less surface area. Heat is traditionally provided by charcoal or glowing embers. In the West, the best known incense materials of this type are the resins frankincense and myrrh, likely due to their numerous mentions in the Bible. Frankincense means "pure incense", though in common usage refers specifically to the resin of the boswellia tree.

 

Whole: The incense material is burned directly in raw form on top of coal embers.

Powdered or granulated: Incense broken into smaller pieces burns quickly and provides brief but intense odour.

 

Paste: Powdered or granulated incense material is mixed with a sticky incombustible binder, such as dried fruit, honey, or a soft resin and then formed to balls or small pastilles. These may then be allowed to mature in a controlled environment where the fragrances can commingle and unite. Much Arabian incense, also called "Bukhoor" or "Bakhoor", is of this type, and Japan has a history of kneaded incense, called nerikō or awasekō, made using this method. Within the Eastern Orthodox Christian tradition, raw frankincense is ground into a fine powder and then mixed with various sweet-smelling essential oils.

 

DIRECT-BURNING:

 

Direct-burning incense, also called "combustible incense", is lit directly by a flame. The glowing ember on the incense will continue to smoulder and burn the rest of the incense without further application of external heat or flame. Direct-burning incense is either extruded, pressed into forms, or coated onto a supporting material. This class of incense is made from a moldable substrate of fragrant finely ground (or liquid) incense materials and odourless binder. The composition must be adjusted to provide fragrance in the proper concentration and to ensure even burning. The following types are commonly encountered, though direct-burning incense can take nearly any form, whether for expedience or whimsy.

 

Coil: Extruded and shaped into a coil without a core, coil incense can burn for an extended period, from hours to days, and is commonly produced and used in Chinese cultures.

 

Cone: Incense in this form burns relatively quickly. Incense cones were invented in Japan in the 1800s.

Cored stick: A supporting core of bamboo is coated with a thick layer of incense material that burns away with the core. Higher-quality variations have fragrant sandalwood cores. This type of incense is commonly produced in India and China. When used in Chinese folk religion, these are sometimes known as "joss sticks".

 

Dhoop or solid stick: With no bamboo core, dhoop incense is easily broken for portion control. This is the most commonly produced form of incense in Japan and Tibet.

Powder: The loose incense powder used for making indirect burning incense is sometimes burned without further processing. Powder incense is typically packed into long trails on top of wood ash using a stencil and burned in special censers or incense clocks.

Paper: Paper infused with incense, folded accordion style, is lit and blown out. Examples include Carta d'Armenia and Papier d'Arménie.

Rope: The incense powder is rolled into paper sheets, which are then rolled into ropes, twisted tightly, then doubled over and twisted again, yielding a two-strand rope. The larger end is the bight, and may be stood vertically, in a shallow dish of sand or pebbles. The smaller (pointed) end is lit. This type of incense is easily transported and stays fresh for extremely long periods. It has been used for centuries in Tibet and Nepal.

 

Moxa tablets, which are disks of powdered mugwort used in Traditional Chinese medicine for moxibustion, are not incenses; the treatment is by heat rather than fragrance.

Incense sticks may be termed joss sticks, especially in parts of East Asia, South Asia and Southeast Asia. Among ethnic Chinese and Chinese-influenced communities these are traditionally burned at temples, before the threshold of a home or business, before an image of a religious divinity or local spirit, or in shrines, large and small, found at the main entrance of every village. Here the earth god is propitiated in the hope of bringing wealth and health to the village. They can also be burned in front of a door or open window as an offering to heaven, or the devas. The word "joss" is derived from the Latin deus (god) via the Portuguese deos through the Javanese dejos, through Chinese pidgin English.

 

PRODUCTION:

 

The raw materials are powdered and then mixed together with a binder to form a paste, which, for direct burning incense, is then cut and dried into pellets. Incense of the Athonite Orthodox Christian tradition is made by powdering frankincense or fir resin, mixing it with essential oils. Floral fragrances are the most common, but citrus such as lemon is not uncommon. The incense mixture is then rolled out into a slab approximately 1 cm thick and left until the slab has firmed. It is then cut into small cubes, coated with clay powder to prevent adhesion, and allowed to fully harden and dry. In Greece this rolled incense resin is called 'Moskolibano', and generally comes in either a pink or green colour denoting the fragrance, with pink being rose and green being jasmine.

 

Certain proportions are necessary for direct-burning incense:

 

Oil content: an excess of oils may prevent incense from smoldering effectively. Resinous materials such as myrrh and frankincense are typically balanced with "dry" materials such as wood, bark and leaf powders.

Oxidizer quantity: Too little oxidizer in gum-bound incense may prevent the incense from igniting, while too much will cause the incense to burn too quickly, without producing fragrant smoke.

Binder: Water-soluble binders such as "makko" ensure that the incense mixture does not crumble when dry, dilute the mixture.

Mixture density: Incense mixtures made with natural binders must not be combined with too much water in mixing, or over-compressed while being formed, which would result in either uneven air distribution or undesirable density in the mixture, causing the incense to burn unevenly, too slowly, or too quickly.

Particulate size: The incense mixture has to be well pulverized with similarly sized particulates. Uneven and large particulates result in uneven burning and inconsistent aroma production when burned.

 

"Dipped" or "hand-dipped" direct-burning incense is created by dipping "incense blanks" made of unscented combustible dust into any suitable kind of essential or fragrance oil. These are often sold in the United States by flea-market and sidewalk vendors who have developed their own styles. This form of incense requires the least skill and equipment to manufacture, since the blanks are pre-formed in China or South East Asia.

 

Incense mixtures can be extruded or pressed into shapes. Small quantities of water are combined with the fragrance and incense base mixture and kneaded into a hard dough. The incense dough is then pressed into shaped forms to create cone and smaller coiled incense, or forced through a hydraulic press for solid stick incense. The formed incense is then trimmed and slowly dried. Incense produced in this fashion has a tendency to warp or become misshapen when improperly dried, and as such must be placed in climate-controlled rooms and rotated several times through the drying process.

 

Traditionally, the bamboo core of cored stick incense is prepared by hand from Phyllostachys heterocycla cv. pubescens since this species produces thick wood and easily burns to ashes in the incense stick. In a process known as "splitting the foot of the incense stick", the bamboo is trimmed to length, soaked, peeled, and split in halves until the thin sticks of bamboo have square cross sections of less than 3mm. This process has been largely replaced by machines in modern incense production.

 

In the case of cored incensed sticks, several methods are employed to coat the sticks cores with incense mixture:

 

Paste rolling: A wet, malleable paste of incense mixture is first rolled into a long, thin coil, using a paddle. Then, a thin stick is put next to the coil and the stick and paste are rolled together until the stick is centered in the mixture and the desired thickness is achieved. The stick is then cut to the desired length and dried.

 

Powder-coating: Powder-coating is used mainly to produce cored incense of either larger coil (up to 1 meter in diameter) or cored stick forms. A bundle of the supporting material (typically thin bamboo or sandalwood slivers) is soaked in water or a thin water/glue mixture for a short time. The thin sticks are evenly separated, then dipped into a tray of incense powder consisting of fragrance materials and occasionally a plant-based binder. The dry incense powder is then tossed and piled over the sticks while they are spread apart. The sticks are then gently rolled and packed to maintain roundness while more incense powder is repeatedly tossed onto the sticks. Three to four layers of powder are coated onto the sticks, forming a 2 mm thick layer of incense material on the stick. The coated incense is then allowed to dry in open air. Additional coatings of incense mixture can be applied after each period of successive drying. Incense sticks produced in this fashion and burned in temples of Chinese folk religion can have a thickness between 2 and 4 millimeters.

Compression: A damp powder is mechanically formed around a cored stick by compression, similar to the way uncored sticks are formed. This form is becoming more common due to the higher labor cost of producing powder-coated or paste-rolled sticks.

 

BURNING INCENSE:

 

Indirect-burning incense burned directly on top of a heat source or on a hot metal plate in a censer or thurible.

 

In Japan a similar censer called a egōro (柄香炉) is used by several Buddhist sects. The egōro is usually made of brass, with a long handle and no chain. Instead of charcoal, makkō powder is poured into a depression made in a bed of ash. The makkō is lit and the incense mixture is burned on top. This method is known as sonae-kō (religious burning).

 

For direct-burning incense, the tip or end of the incense is ignited with a flame or other heat source until the incense begins to turn into ash at the burning end. The flame is then fanned or blown out, leaving the incense to smolder.

 

CULTURAL VARIATIONS:

 

ARABIAN:

 

In most Arab countries, incense is burned in the form of scented chips or blocks called bakhoor (Arabic: بخور‎ [bɑˈxuːɾ, bʊ-]. Incense is used on special occasions like weddings or on Fridays or generally to perfume the house. The bakhoor is usually burned in a mabkhara, a traditional incense burner (censer) similar to the Somali Dabqaad. It is customary in many Arab countries to pass bakhoor among the guests in the majlis ('congregation'). This is done as a gesture of hospitality.

 

CHINESE:

 

For over two thousand years, the Chinese have used incense in religious ceremonies, ancestor veneration, Traditional Chinese medicine, and daily life. Agarwood (chénxiāng) and sandalwood (tánxiāng) are the two most important ingredients in Chinese incense.

 

Along with the introduction of Buddhism in China came calibrated incense sticks and incense clocks. The first known record is by poet Yu Jianwu (487-551): "By burning incense we know the o'clock of the night, With graduated candles we confirm the tally of the watches." The use of these incense timekeeping devices spread from Buddhist monasteries into Chinese secular society.

Incense-stick burning is an everyday practice in traditional Chinese religion. There are many different types of stick used for different purposes or on different festive days. Many of them are long and thin. Sticks are mostly coloured yellow, red, or more rarely, black. Thick sticks are used for special ceremonies, such as funerals. Spiral incense, with exceedingly long burn times, is often hung from temple ceilings. In some states, such as Taiwan,

 

Singapore, or Malaysia, where they celebrate the Ghost Festival, large, pillar-like dragon incense sticks are sometimes used. These generate so much smoke and heat that they are only burned outside.

 

Chinese incense sticks for use in popular religion are generally odorless or only use the slightest trace of jasmine or rose, since it is the smoke, not the scent, which is important in conveying the prayers of the faithful to heaven. They are composed of the dried powdered bark of a non-scented species of cinnamon native to Cambodia, Cinnamomum cambodianum. Inexpensive packs of 300 are often found for sale in Chinese supermarkets. Though they contain no sandalwood, they often include the Chinese character for sandalwood on the label, as a generic term for incense.

 

Highly scented Chinese incense sticks are used by some Buddhists. These are often quite expensive due to the use of large amounts of sandalwood, agarwood, or floral scents used. The sandalwood used in Chinese incenses does not come from India, its native home, but rather from groves planted within Chinese territory. Sites belonging to Tzu Chi, Chung Tai Shan, Dharma Drum Mountain, Xingtian Temple, or City of Ten Thousand Buddhas do not use incense.

 

INDIAN:

 

Incense sticks, also known as agarbathi (or agarbatti) and joss sticks, in which an incense paste is rolled or moulded around a bamboo stick, are the main forms of incense in India. The bamboo method originated in India, and is distinct from the Nepali/Tibetan and Japanese methods of stick making without bamboo cores. Though the method is also used in the west, it is strongly associated with India.

 

The basic ingredients are the bamboo stick, the paste (generally made of charcoal dust and joss/jiggit/gum/tabu powder – an adhesive made from the bark of litsea glutinosa and other trees), and the perfume ingredients - which would be a masala (spice mix) powder of ground ingredients into which the stick would be rolled, or a perfume liquid sometimes consisting of synthetic ingredients into which the stick would be dipped. Perfume is sometimes sprayed on the coated sticks. Stick machines are sometimes used, which coat the stick with paste and perfume, though the bulk of production is done by hand rolling at home. There are about 5,000 incense companies in India that take raw unperfumed sticks hand-rolled by approximately 200,000 women working part-time at home, and then apply their own brand of perfume, and package the sticks for sale. An experienced home-worker can produce 4,000 raw sticks a day. There are about 50 large companies that together account for up to 30% of the market, and around 500 of the companies, including a significant number of the main ones, including Moksh Agarbatti and Cycle Pure, are based in Mysore.

 

JEWISH TEMPLE IN JERUSALEM:

 

KETORET:

 

Ketoret was the incense offered in the Temple in Jerusalem and is stated in the Book of Exodus to be a mixture of stacte, onycha, galbanum and frankincense.

 

TIBETAN:

 

Tibetan incense refers to a common style of incense found in Tibet, Nepal, and Bhutan. These incenses have a characteristic "earthy" scent to them. Ingredients vary from cinnamon, clove, and juniper, to kusum flower, ashvagandha, and sahi jeera.

 

Many Tibetan incenses are thought to have medicinal properties. Their recipes come from ancient Vedic texts that are based on even older Ayurvedic medical texts. The recipes have remained unchanged for centuries.

 

JAPANESE:

 

In Japan incense appreciation folklore includes art, culture, history, and ceremony. It can be compared to and has some of the same qualities as music, art, or literature. Incense burning may occasionally take place within the tea ceremony, just like calligraphy, ikebana, and scroll arrangement. The art of incense appreciation, or koh-do, is generally practiced as a separate art form from the tea ceremony, and usually within a tea room of traditional Zen design.

 

Agarwood (沈香 Jinkō) and sandalwood (白檀 byakudan) are the two most important ingredients in Japanese incense. Agarwood is known as "jinkō" in Japan, which translates as "incense that sinks in water", due to the weight of the resin in the wood. Sandalwood is one of the most calming incense ingredients and lends itself well to meditation. It is also used in the Japanese tea ceremony. The most valued Sandalwood comes from Mysore in the state of Karnataka in India.

 

Another important ingredient in Japanese incense is kyara (伽羅). Kyara is one kind of agarwood (Japanese incense companies divide agarwood into 6 categories depending on the region obtained and properties of the agarwood). Kyara is currently worth more than its weight in gold.

 

Some terms used in Japanese incense culture include:

 

Incense arts: [香道, kodo]

Agarwood: [ 沈香 ] – from heartwood from Aquilaria trees, unique, the incense wood most used in incense ceremony, other names are: lignum aloes or aloeswood, gaharu, jinko, or oud.

Censer/Incense burner: [香爐] – usually small and used for heating incense not burning, or larger and used for burning

Charcoal: [木炭] – only the odorless kind is used.

Incense woods: [ 香木 ] – a naturally fragrant resinous wood.

 

USAGE:

 

PRACTICAL:

 

Incense fragrances can be of such great strength that they obscure other less desirable odours. This utility led to the use of incense in funerary ceremonies because the incense could smother the scent of decay. An example, as well as of religious use, is the giant Botafumeiro thurible that swings from the ceiling of the Cathedral of Santiago de Compostela. It is used in part to mask the scent of the many tired, unwashed pilgrims huddled together in the Cathedral of Santiago de Compostela.

 

A similar utilitarian use of incense can be found in the post-Reformation Church of England. Although the ceremonial use of incense was abandoned until the Oxford Movement, it was common to have incense (typically frankincense) burned before grand occasions, when the church would be crowded. The frankincense was carried about by a member of the vestry before the service in a vessel called a 'perfuming pan'. In iconography of the day, this vessel is shown to be elongated and flat, with a single long handle on one side. The perfuming pan was used instead of the thurible, as the latter would have likely offended the Protestant sensibilities of the 17th and 18th centuries.

 

The regular burning of direct-burning incense has been used for chronological measurement in incense clocks. These devices can range from a simple trail of incense material calibrated to burn in a specific time period, to elaborate and ornate instruments with bells or gongs, designed to involve multiple senses.

 

Incense made from materials such as citronella can repel mosquitoes and other irritating, distracting, or pestilential insects. This use has been deployed in concert with religious uses by Zen Buddhists who claim that the incense that is part of their meditative practice is designed to keep bothersome insects from distracting the practitioner. Currently, more effective pyrethroid-based mosquito repellent incense is widely available in Asia.

 

Papier d'Arménie was originally sold as a disinfectant as well as for the fragrance.

 

Incense is also used often by people who smoke indoors and do not want the smell to linger.

 

AESTHETIC:

 

Many people burn incense to appreciate its smell, without assigning any other specific significance to it, in the same way that the foregoing items can be produced or consumed solely for the contemplation or enjoyment of the aroma. An example is the kōdō (香道), where (frequently costly) raw incense materials such as agarwood are appreciated in a formal setting.

 

RELIGIOUS:

 

Religious use of incense is prevalent in many cultures and may have roots in the practical and aesthetic uses, considering that many of these religions have little else in common. One common motif is incense as a form of sacrificial offering to a deity. Such use was common in Judaic worship and remains in use for example in the Catholic, Orthodox, and Anglican churches, Taoist and Buddhist Chinese jingxiang (敬香 "offer incense), etc.

 

Aphrodisiac Incense has been used as an aphrodisiac in some cultures. Both ancient Greek and ancient Egyptian mythology suggest the usage of incense by goddesses and nymphs. Incense is thought to heighten sexual desires and sexual attraction.

 

Time-keeper Incense clocks are used to time social, medical and religious practices in parts of eastern Asia. They are primarily used in Buddhism as a timer of mediation and prayer. Different types of incense burn at different rates; therefore, different incense are used for different practices. The duration of burning ranges from minutes to months.

 

Healing stone cleanser Incense is claimed to cleanse and restore energy in healing stones. The technique used is called “smudging” and is done by holding a healing stone over the smoke of burning incense for 20 to 30 seconds. Some people believe that this process not only restores energy but eliminates negative energy.

 

HEALTH RISK FROM INCENSE SMOKE:

 

Incense smoke contains various contaminants including gaseous pollutants, such as carbon monoxide (CO), nitrogen oxides (NOx), sulfur oxides (SOx), volatile organic compounds (VOCs), and adsorbed toxic pollutants (polycyclic aromatic hydrocarbons and toxic metals). The solid particles range between ~10 and 500 nm. In a comparison, Indian sandalwood was found to have the highest emission rate, followed by Japanese aloeswood, then Taiwanese aloeswood, while Chinese smokeless sandalwood had the least.

 

Research carried out in Taiwan in 2001 linked the burning of incense sticks to the slow accumulation of potential carcinogens in a poorly ventilated environment by measuring the levels of polycyclic aromatic hydrocarbons (including benzopyrene) within Buddhist temples. The study found gaseous aliphatic aldehydes, which are carcinogenic and mutagenic, in incense smoke.

 

A survey of risk factors for lung cancer, also conducted in Taiwan, noted an inverse association between incense burning and adenocarcinoma of the lung, though the finding was not deemed significant.

 

In contrast, epidemiologists at the Hong Kong Anti-Cancer Society, Aichi Cancer Center in Nagoya, and several other centers found: "No association was found between exposure to incense burning and respiratory symptoms like chronic cough, chronic sputum, chronic bronchitis, runny nose, wheezing, asthma, allergic rhinitis, or pneumonia among the three populations studied: i.e. primary school children, their non-smoking mothers, or a group of older non-smoking female controls. Incense burning did not affect lung cancer risk among non-smokers, but it significantly reduced risk among smokers, even after adjusting for lifetime smoking amount." However, the researchers qualified their findings by noting that incense burning in the studied population was associated with certain low-cancer-risk dietary habits, and concluded that "diet can be a significant confounder of epidemiological studies on air pollution and respiratory health."

 

Although several studies have not shown a link between incense and lung cancer, many other types of cancer have been directly linked to burning incense. A study published in 2008 in the medical journal Cancer found that incense use is associated with a statistically significant higher risk of cancers of the upper respiratory tract, with the exception of nasopharyngeal cancer. Those who used incense heavily also were 80% more likely to develop squamous-cell carcinomas. The link between incense use and increased cancer risk held when the researchers weighed other factors, including cigarette smoking, diet and drinking habits. The research team noted that "This association is consistent with a large number of studies identifying carcinogens in incense smoke, and given the widespread and sometimes involuntary exposure to smoke from burning incense, these findings carry significant public health implications."

 

In 2015, the South China University of Technology found toxicity of incense to Chinese hamsters' ovarian cells to be even higher than cigarettes.

 

Incensole acetate, a component of Frankincense, has been shown to have anxiolytic-like and antidepressive-like effects in mice, mediated by activation of poorly-understood TRPV3 ion channels in the brain.

Colosseum

Following, a text, in english, from the Wikipedia the Free Encyclopedia:

The Colosseum, or the Coliseum, originally the Flavian Amphitheatre (Latin: Amphitheatrum Flavium, Italian Anfiteatro Flavio or Colosseo), is an elliptical amphitheatre in the centre of the city of Rome, Italy, the largest ever built in the Roman Empire. It is considered one of the greatest works of Roman architecture and Roman engineering.

Occupying a site just east of the Roman Forum, its construction started between 70 and 72 AD[1] under the emperor Vespasian and was completed in 80 AD under Titus,[2] with further modifications being made during Domitian's reign (81–96).[3] The name "Amphitheatrum Flavium" derives from both Vespasian's and Titus's family name (Flavius, from the gens Flavia).

Capable of seating 50,000 spectators,[1][4][5] the Colosseum was used for gladiatorial contests and public spectacles such as mock sea battles, animal hunts, executions, re-enactments of famous battles, and dramas based on Classical mythology. The building ceased to be used for entertainment in the early medieval era. It was later reused for such purposes as housing, workshops, quarters for a religious order, a fortress, a quarry, and a Christian shrine.

Although in the 21st century it stays partially ruined because of damage caused by devastating earthquakes and stone-robbers, the Colosseum is an iconic symbol of Imperial Rome. It is one of Rome's most popular tourist attractions and still has close connections with the Roman Catholic Church, as each Good Friday the Pope leads a torchlit "Way of the Cross" procession that starts in the area around the Colosseum.[6]

The Colosseum is also depicted on the Italian version of the five-cent euro coin.

The Colosseum's original Latin name was Amphitheatrum Flavium, often anglicized as Flavian Amphitheater. The building was constructed by emperors of the Flavian dynasty, hence its original name, after the reign of Emperor Nero.[7] This name is still used in modern English, but generally the structure is better known as the Colosseum. In antiquity, Romans may have referred to the Colosseum by the unofficial name Amphitheatrum Caesareum; this name could have been strictly poetic.[8][9] This name was not exclusive to the Colosseum; Vespasian and Titus, builders of the Colosseum, also constructed an amphitheater of the same name in Puteoli (modern Pozzuoli).[10]

The name Colosseum has long been believed to be derived from a colossal statue of Nero nearby.[3] (the statue of Nero itself being named after one of the original ancient wonders, the Colossus of Rhodes[citation needed]. This statue was later remodeled by Nero's successors into the likeness of Helios (Sol) or Apollo, the sun god, by adding the appropriate solar crown. Nero's head was also replaced several times with the heads of succeeding emperors. Despite its pagan links, the statue remained standing well into the medieval era and was credited with magical powers. It came to be seen as an iconic symbol of the permanence of Rome.

In the 8th century, a famous epigram attributed to the Venerable Bede celebrated the symbolic significance of the statue in a prophecy that is variously quoted: Quamdiu stat Colisæus, stat et Roma; quando cadet colisæus, cadet et Roma; quando cadet Roma, cadet et mundus ("as long as the Colossus stands, so shall Rome; when the Colossus falls, Rome shall fall; when Rome falls, so falls the world").[11] This is often mistranslated to refer to the Colosseum rather than the Colossus (as in, for instance, Byron's poem Childe Harold's Pilgrimage). However, at the time that the Pseudo-Bede wrote, the masculine noun coliseus was applied to the statue rather than to what was still known as the Flavian amphitheatre.

The Colossus did eventually fall, possibly being pulled down to reuse its bronze. By the year 1000 the name "Colosseum" had been coined to refer to the amphitheatre. The statue itself was largely forgotten and only its base survives, situated between the Colosseum and the nearby Temple of Venus and Roma.[12]

The name further evolved to Coliseum during the Middle Ages. In Italy, the amphitheatre is still known as il Colosseo, and other Romance languages have come to use similar forms such as le Colisée (French), el Coliseo (Spanish) and o Coliseu (Portuguese).

Construction of the Colosseum began under the rule of the Emperor Vespasian[3] in around 70–72AD. The site chosen was a flat area on the floor of a low valley between the Caelian, Esquiline and Palatine Hills, through which a canalised stream ran. By the 2nd century BC the area was densely inhabited. It was devastated by the Great Fire of Rome in AD 64, following which Nero seized much of the area to add to his personal domain. He built the grandiose Domus Aurea on the site, in front of which he created an artificial lake surrounded by pavilions, gardens and porticoes. The existing Aqua Claudia aqueduct was extended to supply water to the area and the gigantic bronze Colossus of Nero was set up nearby at the entrance to the Domus Aurea.[12]

Although the Colossus was preserved, much of the Domus Aurea was torn down. The lake was filled in and the land reused as the location for the new Flavian Amphitheatre. Gladiatorial schools and other support buildings were constructed nearby within the former grounds of the Domus Aurea. According to a reconstructed inscription found on the site, "the emperor Vespasian ordered this new amphitheatre to be erected from his general's share of the booty." This is thought to refer to the vast quantity of treasure seized by the Romans following their victory in the Great Jewish Revolt in 70AD. The Colosseum can be thus interpreted as a great triumphal monument built in the Roman tradition of celebrating great victories[12], placating the Roman people instead of returning soldiers. Vespasian's decision to build the Colosseum on the site of Nero's lake can also be seen as a populist gesture of returning to the people an area of the city which Nero had appropriated for his own use. In contrast to many other amphitheatres, which were located on the outskirts of a city, the Colosseum was constructed in the city centre; in effect, placing it both literally and symbolically at the heart of Rome.

The Colosseum had been completed up to the third story by the time of Vespasian's death in 79. The top level was finished and the building inaugurated by his son, Titus, in 80.[3] Dio Cassius recounts that over 9,000 wild animals were killed during the inaugural games of the amphitheatre. The building was remodelled further under Vespasian's younger son, the newly designated Emperor Domitian, who constructed the hypogeum, a series of underground tunnels used to house animals and slaves. He also added a gallery to the top of the Colosseum to increase its seating capacity.

In 217, the Colosseum was badly damaged by a major fire (caused by lightning, according to Dio Cassius[13]) which destroyed the wooden upper levels of the amphitheatre's interior. It was not fully repaired until about 240 and underwent further repairs in 250 or 252 and again in 320. An inscription records the restoration of various parts of the Colosseum under Theodosius II and Valentinian III (reigned 425–455), possibly to repair damage caused by a major earthquake in 443; more work followed in 484[14] and 508. The arena continued to be used for contests well into the 6th century, with gladiatorial fights last mentioned around 435. Animal hunts continued until at least 523, when Anicius Maximus celebrated his consulship with some venationes, criticised by King Theodoric the Great for their high cost.

The Colosseum underwent several radical changes of use during the medieval period. By the late 6th century a small church had been built into the structure of the amphitheatre, though this apparently did not confer any particular religious significance on the building as a whole. The arena was converted into a cemetery. The numerous vaulted spaces in the arcades under the seating were converted into housing and workshops, and are recorded as still being rented out as late as the 12th century. Around 1200 the Frangipani family took over the Colosseum and fortified it, apparently using it as a castle.

Severe damage was inflicted on the Colosseum by the great earthquake in 1349, causing the outer south side, lying on a less stable alluvional terrain, to collapse. Much of the tumbled stone was reused to build palaces, churches, hospitals and other buildings elsewhere in Rome. A religious order moved into the northern third of the Colosseum in the mid-14th century and continued to inhabit it until as late as the early 19th century. The interior of the amphitheatre was extensively stripped of stone, which was reused elsewhere, or (in the case of the marble façade) was burned to make quicklime.[12] The bronze clamps which held the stonework together were pried or hacked out of the walls, leaving numerous pockmarks which still scar the building today.

During the 16th and 17th century, Church officials sought a productive role for the vast derelict hulk of the Colosseum. Pope Sixtus V (1585–1590) planned to turn the building into a wool factory to provide employment for Rome's prostitutes, though this proposal fell through with his premature death.[15] In 1671 Cardinal Altieri authorized its use for bullfights; a public outcry caused the idea to be hastily abandoned.

In 1749, Pope Benedict XIV endorsed as official Church policy the view that the Colosseum was a sacred site where early Christians had been martyred. He forbade the use of the Colosseum as a quarry and consecrated the building to the Passion of Christ and installed Stations of the Cross, declaring it sanctified by the blood of the Christian martyrs who perished there (see Christians and the Colosseum). However there is no historical evidence to support Benedict's claim, nor is there even any evidence that anyone prior to the 16th century suggested this might be the case; the Catholic Encyclopedia concludes that there are no historical grounds for the supposition. Later popes initiated various stabilization and restoration projects, removing the extensive vegetation which had overgrown the structure and threatened to damage it further. The façade was reinforced with triangular brick wedges in 1807 and 1827, and the interior was repaired in 1831, 1846 and in the 1930s. The arena substructure was partly excavated in 1810–1814 and 1874 and was fully exposed under Benito Mussolini in the 1930s.

The Colosseum is today one of Rome's most popular tourist attractions, receiving millions of visitors annually. The effects of pollution and general deterioration over time prompted a major restoration programme carried out between 1993 and 2000, at a cost of 40 billion Italian lire ($19.3m / €20.6m at 2000 prices). In recent years it has become a symbol of the international campaign against capital punishment, which was abolished in Italy in 1948. Several anti–death penalty demonstrations took place in front of the Colosseum in 2000. Since that time, as a gesture against the death penalty, the local authorities of Rome change the color of the Colosseum's night time illumination from white to gold whenever a person condemned to the death penalty anywhere in the world gets their sentence commuted or is released,[16] or if a jurisdiction abolishes the death penalty. Most recently, the Colosseum was illuminated in gold when capital punishment was abolished in the American state of New Mexico in April 2009.

Because of the ruined state of the interior, it is impractical to use the Colosseum to host large events; only a few hundred spectators can be accommodated in temporary seating. However, much larger concerts have been held just outside, using the Colosseum as a backdrop. Performers who have played at the Colosseum in recent years have included Ray Charles (May 2002),[18] Paul McCartney (May 2003),[19] Elton John (September 2005),[20] and Billy Joel (July 2006).

Exterior

Unlike earlier Greek theatres that were built into hillsides, the Colosseum is an entirely free-standing structure. It derives its basic exterior and interior architecture from that of two Roman theatres back to back. It is elliptical in plan and is 189 meters (615 ft / 640 Roman feet) long, and 156 meters (510 ft / 528 Roman feet) wide, with a base area of 6 acres (24,000 m2). The height of the outer wall is 48 meters (157 ft / 165 Roman feet). The perimeter originally measured 545 meters (1,788 ft / 1,835 Roman feet). The central arena is an oval 87 m (287 ft) long and 55 m (180 ft) wide, surrounded by a wall 5 m (15 ft) high, above which rose tiers of seating.

The outer wall is estimated to have required over 100,000 cubic meters (131,000 cu yd) of travertine stone which were set without mortar held together by 300 tons of iron clamps.[12] However, it has suffered extensive damage over the centuries, with large segments having collapsed following earthquakes. The north side of the perimeter wall is still standing; the distinctive triangular brick wedges at each end are modern additions, having been constructed in the early 19th century to shore up the wall. The remainder of the present-day exterior of the Colosseum is in fact the original interior wall.

The surviving part of the outer wall's monumental façade comprises three stories of superimposed arcades surmounted by a podium on which stands a tall attic, both of which are pierced by windows interspersed at regular intervals. The arcades are framed by half-columns of the Tuscan, Ionic, and Corinthian orders, while the attic is decorated with Corinthian pilasters.[21] Each of the arches in the second- and third-floor arcades framed statues, probably honoring divinities and other figures from Classical mythology.

Two hundred and forty mast corbels were positioned around the top of the attic. They originally supported a retractable awning, known as the velarium, that kept the sun and rain off spectators. This consisted of a canvas-covered, net-like structure made of ropes, with a hole in the center.[3] It covered two-thirds of the arena, and sloped down towards the center to catch the wind and provide a breeze for the audience. Sailors, specially enlisted from the Roman naval headquarters at Misenum and housed in the nearby Castra Misenatium, were used to work the velarium.[22]

The Colosseum's huge crowd capacity made it essential that the venue could be filled or evacuated quickly. Its architects adopted solutions very similar to those used in modern stadiums to deal with the same problem. The amphitheatre was ringed by eighty entrances at ground level, 76 of which were used by ordinary spectators.[3] Each entrance and exit was numbered, as was each staircase. The northern main entrance was reserved for the Roman Emperor and his aides, whilst the other three axial entrances were most likely used by the elite. All four axial entrances were richly decorated with painted stucco reliefs, of which fragments survive. Many of the original outer entrances have disappeared with the collapse of the perimeter wall, but entrances XXIII (23) to LIV (54) still survive.[12]

Spectators were given tickets in the form of numbered pottery shards, which directed them to the appropriate section and row. They accessed their seats via vomitoria (singular vomitorium), passageways that opened into a tier of seats from below or behind. These quickly dispersed people into their seats and, upon conclusion of the event or in an emergency evacuation, could permit their exit within only a few minutes. The name vomitoria derived from the Latin word for a rapid discharge, from which English derives the word vomit.

Interior

According to the Codex-Calendar of 354, the Colosseum could accommodate 87,000 people, although modern estimates put the figure at around 50,000. They were seated in a tiered arrangement that reflected the rigidly stratified nature of Roman society. Special boxes were provided at the north and south ends respectively for the Emperor and the Vestal Virgins, providing the best views of the arena. Flanking them at the same level was a broad platform or podium for the senatorial class, who were allowed to bring their own chairs. The names of some 5th century senators can still be seen carved into the stonework, presumably reserving areas for their use.

The tier above the senators, known as the maenianum primum, was occupied by the non-senatorial noble class or knights (equites). The next level up, the maenianum secundum, was originally reserved for ordinary Roman citizens (plebians) and was divided into two sections. The lower part (the immum) was for wealthy citizens, while the upper part (the summum) was for poor citizens. Specific sectors were provided for other social groups: for instance, boys with their tutors, soldiers on leave, foreign dignitaries, scribes, heralds, priests and so on. Stone (and later marble) seating was provided for the citizens and nobles, who presumably would have brought their own cushions with them. Inscriptions identified the areas reserved for specific groups.

Another level, the maenianum secundum in legneis, was added at the very top of the building during the reign of Domitian. This comprised a gallery for the common poor, slaves and women. It would have been either standing room only, or would have had very steep wooden benches. Some groups were banned altogether from the Colosseum, notably gravediggers, actors and former gladiators.

Each tier was divided into sections (maeniana) by curved passages and low walls (praecinctiones or baltei), and were subdivided into cunei, or wedges, by the steps and aisles from the vomitoria. Each row (gradus) of seats was numbered, permitting each individual seat to be exactly designated by its gradus, cuneus, and number.

The arena itself was 83 meters by 48 meters (272 ft by 157 ft / 280 by 163 Roman feet).[12] It comprised a wooden floor covered by sand (the Latin word for sand is harena or arena), covering an elaborate underground structure called the hypogeum (literally meaning "underground"). Little now remains of the original arena floor, but the hypogeum is still clearly visible. It consisted of a two-level subterranean network of tunnels and cages beneath the arena where gladiators and animals were held before contests began. Eighty vertical shafts provided instant access to the arena for caged animals and scenery pieces concealed underneath; larger hinged platforms, called hegmata, provided access for elephants and the like. It was restructured on numerous occasions; at least twelve different phases of construction can be seen.[12]

The hypogeum was connected by underground tunnels to a number of points outside the Colosseum. Animals and performers were brought through the tunnel from nearby stables, with the gladiators' barracks at the Ludus Magnus to the east also being connected by tunnels. Separate tunnels were provided for the Emperor and the Vestal Virgins to permit them to enter and exit the Colosseum without needing to pass through the crowds.[12]

Substantial quantities of machinery also existed in the hypogeum. Elevators and pulleys raised and lowered scenery and props, as well as lifting caged animals to the surface for release. There is evidence for the existence of major hydraulic mechanisms[12] and according to ancient accounts, it was possible to flood the arena rapidly, presumably via a connection to a nearby aqueduct.

The Colosseum and its activities supported a substantial industry in the area. In addition to the amphitheatre itself, many other buildings nearby were linked to the games. Immediately to the east is the remains of the Ludus Magnus, a training school for gladiators. This was connected to the Colosseum by an underground passage, to allow easy access for the gladiators. The Ludus Magnus had its own miniature training arena, which was itself a popular attraction for Roman spectators. Other training schools were in the same area, including the Ludus Matutinus (Morning School), where fighters of animals were trained, plus the Dacian and Gallic Schools.

Also nearby were the Armamentarium, comprising an armory to store weapons; the Summum Choragium, where machinery was stored; the Sanitarium, which had facilities to treat wounded gladiators; and the Spoliarium, where bodies of dead gladiators were stripped of their armor and disposed of.

Around the perimeter of the Colosseum, at a distance of 18 m (59 ft) from the perimeter, was a series of tall stone posts, with five remaining on the eastern side. Various explanations have been advanced for their presence; they may have been a religious boundary, or an outer boundary for ticket checks, or an anchor for the velarium or awning.

Right next to the Colosseum is also the Arch of Constantine.

he Colosseum was used to host gladiatorial shows as well as a variety of other events. The shows, called munera, were always given by private individuals rather than the state. They had a strong religious element but were also demonstrations of power and family prestige, and were immensely popular with the population. Another popular type of show was the animal hunt, or venatio. This utilized a great variety of wild beasts, mainly imported from Africa and the Middle East, and included creatures such as rhinoceros, hippopotamuses, elephants, giraffes, aurochs, wisents, barbary lions, panthers, leopards, bears, caspian tigers, crocodiles and ostriches. Battles and hunts were often staged amid elaborate sets with movable trees and buildings. Such events were occasionally on a huge scale; Trajan is said to have celebrated his victories in Dacia in 107 with contests involving 11,000 animals and 10,000 gladiators over the course of 123 days.

During the early days of the Colosseum, ancient writers recorded that the building was used for naumachiae (more properly known as navalia proelia) or simulated sea battles. Accounts of the inaugural games held by Titus in AD 80 describe it being filled with water for a display of specially trained swimming horses and bulls. There is also an account of a re-enactment of a famous sea battle between the Corcyrean (Corfiot) Greeks and the Corinthians. This has been the subject of some debate among historians; although providing the water would not have been a problem, it is unclear how the arena could have been waterproofed, nor would there have been enough space in the arena for the warships to move around. It has been suggested that the reports either have the location wrong, or that the Colosseum originally featured a wide floodable channel down its central axis (which would later have been replaced by the hypogeum).[12]

Sylvae or recreations of natural scenes were also held in the arena. Painters, technicians and architects would construct a simulation of a forest with real trees and bushes planted in the arena's floor. Animals would be introduced to populate the scene for the delight of the crowd. Such scenes might be used simply to display a natural environment for the urban population, or could otherwise be used as the backdrop for hunts or dramas depicting episodes from mythology. They were also occasionally used for executions in which the hero of the story — played by a condemned person — was killed in one of various gruesome but mythologically authentic ways, such as being mauled by beasts or burned to death.

The Colosseum today is now a major tourist attraction in Rome with thousands of tourists each year paying to view the interior arena, though entrance for EU citizens is partially subsidised, and under-18 and over-65 EU citizens' entrances are free.[24] There is now a museum dedicated to Eros located in the upper floor of the outer wall of the building. Part of the arena floor has been re-floored. Beneath the Colosseum, a network of subterranean passageways once used to transport wild animals and gladiators to the arena opened to the public in summer 2010.[25]

The Colosseum is also the site of Roman Catholic ceremonies in the 20th and 21st centuries. For instance, Pope Benedict XVI leads the Stations of the Cross called the Scriptural Way of the Cross (which calls for more meditation) at the Colosseum[26][27] on Good Fridays.

In the Middle Ages, the Colosseum was clearly not regarded as a sacred site. Its use as a fortress and then a quarry demonstrates how little spiritual importance was attached to it, at a time when sites associated with martyrs were highly venerated. It was not included in the itineraries compiled for the use of pilgrims nor in works such as the 12th century Mirabilia Urbis Romae ("Marvels of the City of Rome"), which claims the Circus Flaminius — but not the Colosseum — as the site of martyrdoms. Part of the structure was inhabited by a Christian order, but apparently not for any particular religious reason.

It appears to have been only in the 16th and 17th centuries that the Colosseum came to be regarded as a Christian site. Pope Pius V (1566–1572) is said to have recommended that pilgrims gather sand from the arena of the Colosseum to serve as a relic, on the grounds that it was impregnated with the blood of martyrs. This seems to have been a minority view until it was popularised nearly a century later by Fioravante Martinelli, who listed the Colosseum at the head of a list of places sacred to the martyrs in his 1653 book Roma ex ethnica sacra.

Martinelli's book evidently had an effect on public opinion; in response to Cardinal Altieri's proposal some years later to turn the Colosseum into a bullring, Carlo Tomassi published a pamphlet in protest against what he regarded as an act of desecration. The ensuing controversy persuaded Pope Clement X to close the Colosseum's external arcades and declare it a sanctuary, though quarrying continued for some time.

At the instance of St. Leonard of Port Maurice, Pope Benedict XIV (1740–1758) forbade the quarrying of the Colosseum and erected Stations of the Cross around the arena, which remained until February 1874. St. Benedict Joseph Labre spent the later years of his life within the walls of the Colosseum, living on alms, prior to his death in 1783. Several 19th century popes funded repair and restoration work on the Colosseum, and it still retains a Christian connection today. Crosses stand in several points around the arena and every Good Friday the Pope leads a Via Crucis procession to the amphitheatre.

 

Coliseu (Colosseo)

A seguir, um texto, em português, da Wikipédia, a enciclopédia livre:

 

O Coliseu, também conhecido como Anfiteatro Flaviano, deve seu nome à expressão latina Colosseum (ou Coliseus, no latim tardio), devido à estátua colossal de Nero, que ficava perto a edificação. Localizado no centro de Roma, é uma excepção de entre os anfiteatros pelo seu volume e relevo arquitectónico. Originalmente capaz de albergar perto de 50 000 pessoas, e com 48 metros de altura, era usado para variados espetáculos. Foi construído a leste do fórum romano e demorou entre 8 a 10 anos a ser construído.

O Coliseu foi utilizado durante aproximadamente 500 anos, tendo sido o último registro efetuado no século VI da nossa era, bastante depois da queda de Roma em 476. O edifício deixou de ser usado para entretenimento no começo da era medieval, mas foi mais tarde usado como habitação, oficina, forte, pedreira, sede de ordens religiosas e templo cristão.

Embora esteja agora em ruínas devido a terremotos e pilhagens, o Coliseu sempre foi visto como símbolo do Império Romano, sendo um dos melhores exemplos da sua arquitectura. Actualmente é uma das maiores atrações turísticas em Roma e em 7 de julho de 2007 foi eleita umas das "Sete maravilhas do mundo moderno". Além disso, o Coliseu ainda tem ligações à igreja, com o Papa a liderar a procissão da Via Sacra até ao Coliseu todas as Sextas-feiras Santas.

O coliseu era um local onde seriam exibidos toda uma série de espectáculos, inseridos nos vários tipos de jogos realizados na urbe. Os combates entre gladiadores, chamados muneras, eram sempre pagos por pessoas individuais em busca de prestígio e poder em vez do estado. A arena (87,5 m por 55 m) possuía um piso de madeira, normalmente coberto de areia para absorver o sangue dos combates (certa vez foi colocada água na representação de uma batalha naval), sob o qual existia um nível subterrâneo com celas e jaulas que tinham acessos diretos para a arena; Alguns detalhes dessa construção, como a cobertura removível que poupava os espectadores do sol, são bastante interessantes, e mostram o refinamento atingido pelos construtores romanos. Formado por cinco anéis concêntricos de arcos e abóbadas, o Coliseu representa bem o avanço introduzido pelos romanos à engenharia de estruturas. Esses arcos são de concreto (de cimento natural) revestidos por alvenaria. Na verdade, a alvenaria era construída simultaneamente e já servia de forma para a concretagem. Outro tipo de espetáculos era a caça de animais, ou venatio, onde eram utilizados animais selvagens importados de África. Os animais mais utilizados eram os grandes felinos como leões, leopardos e panteras, mas animais como rinocerontes, hipopótamos, elefantes, girafas, crocodilos e avestruzes eram também utilizados. As caçadas, tal como as representações de batalhas famosas, eram efetuadas em elaborados cenários onde constavam árvores e edifícios amovíveis.

Estas últimas eram por vezes representadas numa escala gigante; Trajano celebrou a sua vitória em Dácia no ano 107 com concursos envolvendo 11 000 animais e 10 000 gladiadores no decorrer de 123 dias.

Segundo o documentário produzido pelo canal televisivo fechado, History Channel, o Coliseu também era utilizado para a realização de naumaquias, ou batalhas navais. O coliseu era inundado por dutos subterrâneos alimentados pelos aquedutos que traziam água de longe. Passada esta fase, foi construída uma estrutura, que é a que podemos ver hoje nas ruínas do Coliseu, com altura de um prédio de dois andares, onde no passado se concentravam os gladiadores, feras e todo o pessoal que organizava os duelos que ocorreriam na arena. A arena era como um grande palco, feito de madeira, e se chama arena, que em italiano significa areia, porque era jogada areia sob a estrutura de madeira para esconder as imperfeições. Os animais podiam ser inseridos nos duelos a qualquer momento por um esquema de elevadores que surgiam em alguns pontos da arena; o filme "Gladiador" retrata muito bem esta questão dos elevadores. Os estudiosos, há pouco tempo, descobriram uma rede de dutos inundados por baixo da arena do Coliseu. Acredita-se que o Coliseu foi construído onde, outrora, foi o lago do Palácio Dourado de Nero; O imperador Vespasiano escolheu o local da construção para que o mal causado por Nero fosse esquecido por uma construção gloriosa.

Sylvae, ou recreações de cenas naturais eram também realizadas no Coliseu. Pintores, técnicos e arquitectos construiriam simulações de florestas com árvores e arbustos reais plantados no chão da arena. Animais seriam então introduzidos para dar vida à simulação. Esses cenários podiam servir só para agrado do público ou como pano de fundo para caçadas ou dramas representando episódios da mitologia romana, tão autênticos quanto possível, ao ponto de pessoas condenadas fazerem o papel de heróis onde eram mortos de maneiras horríveis mas mitologicamente autênticas, como mutilados por animais ou queimados vivos.

Embora o Coliseu tenha funcionado até ao século VI da nossa Era, foram proibidos os jogos com mortes humanas desde 404, sendo apenas massacrados animais como elefantes, panteras ou leões.

O Coliseu era sobretudo um enorme instrumento de propaganda e difusão da filosofia de toda uma civilização, e tal como era já profetizado pelo monge e historiador inglês Beda na sua obra do século VII "De temporibus liber": "Enquanto o Coliseu se mantiver de pé, Roma permanecerá; quando o Coliseu ruir, Roma ruirá e quando Roma cair, o mundo cairá".

A construção do Coliseu foi iniciada por Vespasiano, nos anos 70 da nossa era. O edifício foi inaugurado por Tito, em 80, embora apenas tivesse sido finalizado poucos anos depois. Empresa colossal, este edifício, inicialmente, poderia sustentar no seu interior cerca de 50 000 espectadores, constando de três andares. Aquando do reinado de Alexandre Severo e Gordiano III, é ampliado com um quarto andar, podendo suster agora cerca de 90 000 espectadores. A grandiosidade deste monumento testemunha verdadeiramente o poder e esplendor de Roma na época dos Flávios.

Os jogos inaugurais do Coliseu tiveram lugar ano 80, sob o mandato de Tito, para celebrar a finalização da construção. Depois do curto reinado de Tito começar com vários meses de desastres, incluindo a erupção do Monte Vesúvio, um incêndio em Roma, e um surto de peste, o mesmo imperador inaugurou o edifício com uns jogos pródigos que duraram mais de cem dias, talvez para tentar apaziguar o público romano e os deuses. Nesses jogos de cem dias terão ocorrido combates de gladiadores, venationes (lutas de animais), execuções, batalhas navais, caçadas e outros divertimentos numa escala sem precedentes.

O Coliseu, como não se encontrava inserido numa zona de encosta, enterrado, tal como normalmente sucede com a generalidade dos teatros e anfiteatros romanos, possuía um “anel” artificial de rocha à sua volta, para garantir sustentação e, ao mesmo tempo, esta substrutura serve como ornamento ao edifício e como condicionador da entrada dos espectadores. Tal como foi referido anteriormente, possuía três pisos, sendo mais tarde adicionado um outro. É construído em mármore, pedra travertina, ladrilho e tufo (pedra calcária com grandes poros). A sua planta elíptica mede dois eixos que se estendem aproximadamente de 190 m por 155 m. A fachada compõe-se de arcadas decoradas com colunas dóricas, jónicas e coríntias, de acordo com o pavimento em que se encontravam. Esta subdivisão deve-se ao facto de ser uma construção essencialmente vertical, criando assim uma diversificação do espaço.

 

Os assentos eram em mármore e a cavea, escadaria ou arquibancada, dividia-se em três partes, correspondentes às diferentes classes sociais: o podium, para as classes altas; as maeniana, sector destinado à classe média; e os portici, ou pórticos, construídos em madeira, para a plebe e as mulheres. O pulvinar, a tribuna imperial, encontrava-se situada no podium e era balizada pelos assentos reservados aos senadores e magistrados. Rampas no interior do edifício facilitavam o acesso às várias zonas de onde podiam visualizar o espectáculo, sendo protegidos por uma barreira e por uma série de arqueiros posicionados numa passagem de madeira, para o caso de algum acidente. Por cima dos muros ainda são visíveis as mísulas, que sustentavam o velarium, enorme cobertura de lona destinada a proteger do sol os espectadores e, nos subterrâneos, ficavam as jaulas dos animais, bem como todas as celas e galerias necessárias aos serviços do anfiteatro.

O monumento permaneceu como sede principal dos espetáculos da urbe romana até ao período do imperador Honorius, no século V. Danificado por um terremoto no começo do mesmo século, foi alvo de uma extensiva restauração na época de Valentinianus III. Em meados do século XIII, a família Frangipani transformou-o em fortaleza e, ao longo dos séculos XV e XVI, foi por diversas vezes saqueado, perdendo grande parte dos materiais nobres com os quais tinha sido construído.

Os relatos romanos referem-se a cristãos sendo martirizados em locais de Roma descritos pouco pormenorizadamente (no anfiteatro, na arena...), quando Roma tinha numerosos anfiteatros e arenas. Apesar de muito provavelmente o Coliseu não ter sido utilizado para martírios, o Papa Bento XIV consagrou-o no século XVII à Paixão de Cristo e declarou-o lugar sagrado. Os trabalhos de consolidação e restauração parcial do monumento, já há muito em ruínas, foram feitos sobretudo pelos pontífices Gregório XVI e Pio IX, no século XIX.

Colosseum

Following, a text, in english, from the Wikipedia the Free Encyclopedia:

The Colosseum, or the Coliseum, originally the Flavian Amphitheatre (Latin: Amphitheatrum Flavium, Italian Anfiteatro Flavio or Colosseo), is an elliptical amphitheatre in the centre of the city of Rome, Italy, the largest ever built in the Roman Empire. It is considered one of the greatest works of Roman architecture and Roman engineering.

Occupying a site just east of the Roman Forum, its construction started between 70 and 72 AD[1] under the emperor Vespasian and was completed in 80 AD under Titus,[2] with further modifications being made during Domitian's reign (81–96).[3] The name "Amphitheatrum Flavium" derives from both Vespasian's and Titus's family name (Flavius, from the gens Flavia).

Capable of seating 50,000 spectators,[1][4][5] the Colosseum was used for gladiatorial contests and public spectacles such as mock sea battles, animal hunts, executions, re-enactments of famous battles, and dramas based on Classical mythology. The building ceased to be used for entertainment in the early medieval era. It was later reused for such purposes as housing, workshops, quarters for a religious order, a fortress, a quarry, and a Christian shrine.

Although in the 21st century it stays partially ruined because of damage caused by devastating earthquakes and stone-robbers, the Colosseum is an iconic symbol of Imperial Rome. It is one of Rome's most popular tourist attractions and still has close connections with the Roman Catholic Church, as each Good Friday the Pope leads a torchlit "Way of the Cross" procession that starts in the area around the Colosseum.[6]

The Colosseum is also depicted on the Italian version of the five-cent euro coin.

The Colosseum's original Latin name was Amphitheatrum Flavium, often anglicized as Flavian Amphitheater. The building was constructed by emperors of the Flavian dynasty, hence its original name, after the reign of Emperor Nero.[7] This name is still used in modern English, but generally the structure is better known as the Colosseum. In antiquity, Romans may have referred to the Colosseum by the unofficial name Amphitheatrum Caesareum; this name could have been strictly poetic.[8][9] This name was not exclusive to the Colosseum; Vespasian and Titus, builders of the Colosseum, also constructed an amphitheater of the same name in Puteoli (modern Pozzuoli).[10]

The name Colosseum has long been believed to be derived from a colossal statue of Nero nearby.[3] (the statue of Nero itself being named after one of the original ancient wonders, the Colossus of Rhodes[citation needed]. This statue was later remodeled by Nero's successors into the likeness of Helios (Sol) or Apollo, the sun god, by adding the appropriate solar crown. Nero's head was also replaced several times with the heads of succeeding emperors. Despite its pagan links, the statue remained standing well into the medieval era and was credited with magical powers. It came to be seen as an iconic symbol of the permanence of Rome.

In the 8th century, a famous epigram attributed to the Venerable Bede celebrated the symbolic significance of the statue in a prophecy that is variously quoted: Quamdiu stat Colisæus, stat et Roma; quando cadet colisæus, cadet et Roma; quando cadet Roma, cadet et mundus ("as long as the Colossus stands, so shall Rome; when the Colossus falls, Rome shall fall; when Rome falls, so falls the world").[11] This is often mistranslated to refer to the Colosseum rather than the Colossus (as in, for instance, Byron's poem Childe Harold's Pilgrimage). However, at the time that the Pseudo-Bede wrote, the masculine noun coliseus was applied to the statue rather than to what was still known as the Flavian amphitheatre.

The Colossus did eventually fall, possibly being pulled down to reuse its bronze. By the year 1000 the name "Colosseum" had been coined to refer to the amphitheatre. The statue itself was largely forgotten and only its base survives, situated between the Colosseum and the nearby Temple of Venus and Roma.[12]

The name further evolved to Coliseum during the Middle Ages. In Italy, the amphitheatre is still known as il Colosseo, and other Romance languages have come to use similar forms such as le Colisée (French), el Coliseo (Spanish) and o Coliseu (Portuguese).

Construction of the Colosseum began under the rule of the Emperor Vespasian[3] in around 70–72AD. The site chosen was a flat area on the floor of a low valley between the Caelian, Esquiline and Palatine Hills, through which a canalised stream ran. By the 2nd century BC the area was densely inhabited. It was devastated by the Great Fire of Rome in AD 64, following which Nero seized much of the area to add to his personal domain. He built the grandiose Domus Aurea on the site, in front of which he created an artificial lake surrounded by pavilions, gardens and porticoes. The existing Aqua Claudia aqueduct was extended to supply water to the area and the gigantic bronze Colossus of Nero was set up nearby at the entrance to the Domus Aurea.[12]

Although the Colossus was preserved, much of the Domus Aurea was torn down. The lake was filled in and the land reused as the location for the new Flavian Amphitheatre. Gladiatorial schools and other support buildings were constructed nearby within the former grounds of the Domus Aurea. According to a reconstructed inscription found on the site, "the emperor Vespasian ordered this new amphitheatre to be erected from his general's share of the booty." This is thought to refer to the vast quantity of treasure seized by the Romans following their victory in the Great Jewish Revolt in 70AD. The Colosseum can be thus interpreted as a great triumphal monument built in the Roman tradition of celebrating great victories[12], placating the Roman people instead of returning soldiers. Vespasian's decision to build the Colosseum on the site of Nero's lake can also be seen as a populist gesture of returning to the people an area of the city which Nero had appropriated for his own use. In contrast to many other amphitheatres, which were located on the outskirts of a city, the Colosseum was constructed in the city centre; in effect, placing it both literally and symbolically at the heart of Rome.

The Colosseum had been completed up to the third story by the time of Vespasian's death in 79. The top level was finished and the building inaugurated by his son, Titus, in 80.[3] Dio Cassius recounts that over 9,000 wild animals were killed during the inaugural games of the amphitheatre. The building was remodelled further under Vespasian's younger son, the newly designated Emperor Domitian, who constructed the hypogeum, a series of underground tunnels used to house animals and slaves. He also added a gallery to the top of the Colosseum to increase its seating capacity.

In 217, the Colosseum was badly damaged by a major fire (caused by lightning, according to Dio Cassius[13]) which destroyed the wooden upper levels of the amphitheatre's interior. It was not fully repaired until about 240 and underwent further repairs in 250 or 252 and again in 320. An inscription records the restoration of various parts of the Colosseum under Theodosius II and Valentinian III (reigned 425–455), possibly to repair damage caused by a major earthquake in 443; more work followed in 484[14] and 508. The arena continued to be used for contests well into the 6th century, with gladiatorial fights last mentioned around 435. Animal hunts continued until at least 523, when Anicius Maximus celebrated his consulship with some venationes, criticised by King Theodoric the Great for their high cost.

The Colosseum underwent several radical changes of use during the medieval period. By the late 6th century a small church had been built into the structure of the amphitheatre, though this apparently did not confer any particular religious significance on the building as a whole. The arena was converted into a cemetery. The numerous vaulted spaces in the arcades under the seating were converted into housing and workshops, and are recorded as still being rented out as late as the 12th century. Around 1200 the Frangipani family took over the Colosseum and fortified it, apparently using it as a castle.

Severe damage was inflicted on the Colosseum by the great earthquake in 1349, causing the outer south side, lying on a less stable alluvional terrain, to collapse. Much of the tumbled stone was reused to build palaces, churches, hospitals and other buildings elsewhere in Rome. A religious order moved into the northern third of the Colosseum in the mid-14th century and continued to inhabit it until as late as the early 19th century. The interior of the amphitheatre was extensively stripped of stone, which was reused elsewhere, or (in the case of the marble façade) was burned to make quicklime.[12] The bronze clamps which held the stonework together were pried or hacked out of the walls, leaving numerous pockmarks which still scar the building today.

During the 16th and 17th century, Church officials sought a productive role for the vast derelict hulk of the Colosseum. Pope Sixtus V (1585–1590) planned to turn the building into a wool factory to provide employment for Rome's prostitutes, though this proposal fell through with his premature death.[15] In 1671 Cardinal Altieri authorized its use for bullfights; a public outcry caused the idea to be hastily abandoned.

In 1749, Pope Benedict XIV endorsed as official Church policy the view that the Colosseum was a sacred site where early Christians had been martyred. He forbade the use of the Colosseum as a quarry and consecrated the building to the Passion of Christ and installed Stations of the Cross, declaring it sanctified by the blood of the Christian martyrs who perished there (see Christians and the Colosseum). However there is no historical evidence to support Benedict's claim, nor is there even any evidence that anyone prior to the 16th century suggested this might be the case; the Catholic Encyclopedia concludes that there are no historical grounds for the supposition. Later popes initiated various stabilization and restoration projects, removing the extensive vegetation which had overgrown the structure and threatened to damage it further. The façade was reinforced with triangular brick wedges in 1807 and 1827, and the interior was repaired in 1831, 1846 and in the 1930s. The arena substructure was partly excavated in 1810–1814 and 1874 and was fully exposed under Benito Mussolini in the 1930s.

The Colosseum is today one of Rome's most popular tourist attractions, receiving millions of visitors annually. The effects of pollution and general deterioration over time prompted a major restoration programme carried out between 1993 and 2000, at a cost of 40 billion Italian lire ($19.3m / €20.6m at 2000 prices). In recent years it has become a symbol of the international campaign against capital punishment, which was abolished in Italy in 1948. Several anti–death penalty demonstrations took place in front of the Colosseum in 2000. Since that time, as a gesture against the death penalty, the local authorities of Rome change the color of the Colosseum's night time illumination from white to gold whenever a person condemned to the death penalty anywhere in the world gets their sentence commuted or is released,[16] or if a jurisdiction abolishes the death penalty. Most recently, the Colosseum was illuminated in gold when capital punishment was abolished in the American state of New Mexico in April 2009.

Because of the ruined state of the interior, it is impractical to use the Colosseum to host large events; only a few hundred spectators can be accommodated in temporary seating. However, much larger concerts have been held just outside, using the Colosseum as a backdrop. Performers who have played at the Colosseum in recent years have included Ray Charles (May 2002),[18] Paul McCartney (May 2003),[19] Elton John (September 2005),[20] and Billy Joel (July 2006).

Exterior

Unlike earlier Greek theatres that were built into hillsides, the Colosseum is an entirely free-standing structure. It derives its basic exterior and interior architecture from that of two Roman theatres back to back. It is elliptical in plan and is 189 meters (615 ft / 640 Roman feet) long, and 156 meters (510 ft / 528 Roman feet) wide, with a base area of 6 acres (24,000 m2). The height of the outer wall is 48 meters (157 ft / 165 Roman feet). The perimeter originally measured 545 meters (1,788 ft / 1,835 Roman feet). The central arena is an oval 87 m (287 ft) long and 55 m (180 ft) wide, surrounded by a wall 5 m (15 ft) high, above which rose tiers of seating.

The outer wall is estimated to have required over 100,000 cubic meters (131,000 cu yd) of travertine stone which were set without mortar held together by 300 tons of iron clamps.[12] However, it has suffered extensive damage over the centuries, with large segments having collapsed following earthquakes. The north side of the perimeter wall is still standing; the distinctive triangular brick wedges at each end are modern additions, having been constructed in the early 19th century to shore up the wall. The remainder of the present-day exterior of the Colosseum is in fact the original interior wall.

The surviving part of the outer wall's monumental façade comprises three stories of superimposed arcades surmounted by a podium on which stands a tall attic, both of which are pierced by windows interspersed at regular intervals. The arcades are framed by half-columns of the Tuscan, Ionic, and Corinthian orders, while the attic is decorated with Corinthian pilasters.[21] Each of the arches in the second- and third-floor arcades framed statues, probably honoring divinities and other figures from Classical mythology.

Two hundred and forty mast corbels were positioned around the top of the attic. They originally supported a retractable awning, known as the velarium, that kept the sun and rain off spectators. This consisted of a canvas-covered, net-like structure made of ropes, with a hole in the center.[3] It covered two-thirds of the arena, and sloped down towards the center to catch the wind and provide a breeze for the audience. Sailors, specially enlisted from the Roman naval headquarters at Misenum and housed in the nearby Castra Misenatium, were used to work the velarium.[22]

The Colosseum's huge crowd capacity made it essential that the venue could be filled or evacuated quickly. Its architects adopted solutions very similar to those used in modern stadiums to deal with the same problem. The amphitheatre was ringed by eighty entrances at ground level, 76 of which were used by ordinary spectators.[3] Each entrance and exit was numbered, as was each staircase. The northern main entrance was reserved for the Roman Emperor and his aides, whilst the other three axial entrances were most likely used by the elite. All four axial entrances were richly decorated with painted stucco reliefs, of which fragments survive. Many of the original outer entrances have disappeared with the collapse of the perimeter wall, but entrances XXIII (23) to LIV (54) still survive.[12]

Spectators were given tickets in the form of numbered pottery shards, which directed them to the appropriate section and row. They accessed their seats via vomitoria (singular vomitorium), passageways that opened into a tier of seats from below or behind. These quickly dispersed people into their seats and, upon conclusion of the event or in an emergency evacuation, could permit their exit within only a few minutes. The name vomitoria derived from the Latin word for a rapid discharge, from which English derives the word vomit.

Interior

According to the Codex-Calendar of 354, the Colosseum could accommodate 87,000 people, although modern estimates put the figure at around 50,000. They were seated in a tiered arrangement that reflected the rigidly stratified nature of Roman society. Special boxes were provided at the north and south ends respectively for the Emperor and the Vestal Virgins, providing the best views of the arena. Flanking them at the same level was a broad platform or podium for the senatorial class, who were allowed to bring their own chairs. The names of some 5th century senators can still be seen carved into the stonework, presumably reserving areas for their use.

The tier above the senators, known as the maenianum primum, was occupied by the non-senatorial noble class or knights (equites). The next level up, the maenianum secundum, was originally reserved for ordinary Roman citizens (plebians) and was divided into two sections. The lower part (the immum) was for wealthy citizens, while the upper part (the summum) was for poor citizens. Specific sectors were provided for other social groups: for instance, boys with their tutors, soldiers on leave, foreign dignitaries, scribes, heralds, priests and so on. Stone (and later marble) seating was provided for the citizens and nobles, who presumably would have brought their own cushions with them. Inscriptions identified the areas reserved for specific groups.

Another level, the maenianum secundum in legneis, was added at the very top of the building during the reign of Domitian. This comprised a gallery for the common poor, slaves and women. It would have been either standing room only, or would have had very steep wooden benches. Some groups were banned altogether from the Colosseum, notably gravediggers, actors and former gladiators.

Each tier was divided into sections (maeniana) by curved passages and low walls (praecinctiones or baltei), and were subdivided into cunei, or wedges, by the steps and aisles from the vomitoria. Each row (gradus) of seats was numbered, permitting each individual seat to be exactly designated by its gradus, cuneus, and number.

The arena itself was 83 meters by 48 meters (272 ft by 157 ft / 280 by 163 Roman feet).[12] It comprised a wooden floor covered by sand (the Latin word for sand is harena or arena), covering an elaborate underground structure called the hypogeum (literally meaning "underground"). Little now remains of the original arena floor, but the hypogeum is still clearly visible. It consisted of a two-level subterranean network of tunnels and cages beneath the arena where gladiators and animals were held before contests began. Eighty vertical shafts provided instant access to the arena for caged animals and scenery pieces concealed underneath; larger hinged platforms, called hegmata, provided access for elephants and the like. It was restructured on numerous occasions; at least twelve different phases of construction can be seen.[12]

The hypogeum was connected by underground tunnels to a number of points outside the Colosseum. Animals and performers were brought through the tunnel from nearby stables, with the gladiators' barracks at the Ludus Magnus to the east also being connected by tunnels. Separate tunnels were provided for the Emperor and the Vestal Virgins to permit them to enter and exit the Colosseum without needing to pass through the crowds.[12]

Substantial quantities of machinery also existed in the hypogeum. Elevators and pulleys raised and lowered scenery and props, as well as lifting caged animals to the surface for release. There is evidence for the existence of major hydraulic mechanisms[12] and according to ancient accounts, it was possible to flood the arena rapidly, presumably via a connection to a nearby aqueduct.

The Colosseum and its activities supported a substantial industry in the area. In addition to the amphitheatre itself, many other buildings nearby were linked to the games. Immediately to the east is the remains of the Ludus Magnus, a training school for gladiators. This was connected to the Colosseum by an underground passage, to allow easy access for the gladiators. The Ludus Magnus had its own miniature training arena, which was itself a popular attraction for Roman spectators. Other training schools were in the same area, including the Ludus Matutinus (Morning School), where fighters of animals were trained, plus the Dacian and Gallic Schools.

Also nearby were the Armamentarium, comprising an armory to store weapons; the Summum Choragium, where machinery was stored; the Sanitarium, which had facilities to treat wounded gladiators; and the Spoliarium, where bodies of dead gladiators were stripped of their armor and disposed of.

Around the perimeter of the Colosseum, at a distance of 18 m (59 ft) from the perimeter, was a series of tall stone posts, with five remaining on the eastern side. Various explanations have been advanced for their presence; they may have been a religious boundary, or an outer boundary for ticket checks, or an anchor for the velarium or awning.

Right next to the Colosseum is also the Arch of Constantine.

he Colosseum was used to host gladiatorial shows as well as a variety of other events. The shows, called munera, were always given by private individuals rather than the state. They had a strong religious element but were also demonstrations of power and family prestige, and were immensely popular with the population. Another popular type of show was the animal hunt, or venatio. This utilized a great variety of wild beasts, mainly imported from Africa and the Middle East, and included creatures such as rhinoceros, hippopotamuses, elephants, giraffes, aurochs, wisents, barbary lions, panthers, leopards, bears, caspian tigers, crocodiles and ostriches. Battles and hunts were often staged amid elaborate sets with movable trees and buildings. Such events were occasionally on a huge scale; Trajan is said to have celebrated his victories in Dacia in 107 with contests involving 11,000 animals and 10,000 gladiators over the course of 123 days.

During the early days of the Colosseum, ancient writers recorded that the building was used for naumachiae (more properly known as navalia proelia) or simulated sea battles. Accounts of the inaugural games held by Titus in AD 80 describe it being filled with water for a display of specially trained swimming horses and bulls. There is also an account of a re-enactment of a famous sea battle between the Corcyrean (Corfiot) Greeks and the Corinthians. This has been the subject of some debate among historians; although providing the water would not have been a problem, it is unclear how the arena could have been waterproofed, nor would there have been enough space in the arena for the warships to move around. It has been suggested that the reports either have the location wrong, or that the Colosseum originally featured a wide floodable channel down its central axis (which would later have been replaced by the hypogeum).[12]

Sylvae or recreations of natural scenes were also held in the arena. Painters, technicians and architects would construct a simulation of a forest with real trees and bushes planted in the arena's floor. Animals would be introduced to populate the scene for the delight of the crowd. Such scenes might be used simply to display a natural environment for the urban population, or could otherwise be used as the backdrop for hunts or dramas depicting episodes from mythology. They were also occasionally used for executions in which the hero of the story — played by a condemned person — was killed in one of various gruesome but mythologically authentic ways, such as being mauled by beasts or burned to death.

The Colosseum today is now a major tourist attraction in Rome with thousands of tourists each year paying to view the interior arena, though entrance for EU citizens is partially subsidised, and under-18 and over-65 EU citizens' entrances are free.[24] There is now a museum dedicated to Eros located in the upper floor of the outer wall of the building. Part of the arena floor has been re-floored. Beneath the Colosseum, a network of subterranean passageways once used to transport wild animals and gladiators to the arena opened to the public in summer 2010.[25]

The Colosseum is also the site of Roman Catholic ceremonies in the 20th and 21st centuries. For instance, Pope Benedict XVI leads the Stations of the Cross called the Scriptural Way of the Cross (which calls for more meditation) at the Colosseum[26][27] on Good Fridays.

In the Middle Ages, the Colosseum was clearly not regarded as a sacred site. Its use as a fortress and then a quarry demonstrates how little spiritual importance was attached to it, at a time when sites associated with martyrs were highly venerated. It was not included in the itineraries compiled for the use of pilgrims nor in works such as the 12th century Mirabilia Urbis Romae ("Marvels of the City of Rome"), which claims the Circus Flaminius — but not the Colosseum — as the site of martyrdoms. Part of the structure was inhabited by a Christian order, but apparently not for any particular religious reason.

It appears to have been only in the 16th and 17th centuries that the Colosseum came to be regarded as a Christian site. Pope Pius V (1566–1572) is said to have recommended that pilgrims gather sand from the arena of the Colosseum to serve as a relic, on the grounds that it was impregnated with the blood of martyrs. This seems to have been a minority view until it was popularised nearly a century later by Fioravante Martinelli, who listed the Colosseum at the head of a list of places sacred to the martyrs in his 1653 book Roma ex ethnica sacra.

Martinelli's book evidently had an effect on public opinion; in response to Cardinal Altieri's proposal some years later to turn the Colosseum into a bullring, Carlo Tomassi published a pamphlet in protest against what he regarded as an act of desecration. The ensuing controversy persuaded Pope Clement X to close the Colosseum's external arcades and declare it a sanctuary, though quarrying continued for some time.

At the instance of St. Leonard of Port Maurice, Pope Benedict XIV (1740–1758) forbade the quarrying of the Colosseum and erected Stations of the Cross around the arena, which remained until February 1874. St. Benedict Joseph Labre spent the later years of his life within the walls of the Colosseum, living on alms, prior to his death in 1783. Several 19th century popes funded repair and restoration work on the Colosseum, and it still retains a Christian connection today. Crosses stand in several points around the arena and every Good Friday the Pope leads a Via Crucis procession to the amphitheatre.

 

Coliseu (Colosseo)

A seguir, um texto, em português, da Wikipédia, a enciclopédia livre:

 

O Coliseu, também conhecido como Anfiteatro Flaviano, deve seu nome à expressão latina Colosseum (ou Coliseus, no latim tardio), devido à estátua colossal de Nero, que ficava perto a edificação. Localizado no centro de Roma, é uma excepção de entre os anfiteatros pelo seu volume e relevo arquitectónico. Originalmente capaz de albergar perto de 50 000 pessoas, e com 48 metros de altura, era usado para variados espetáculos. Foi construído a leste do fórum romano e demorou entre 8 a 10 anos a ser construído.

O Coliseu foi utilizado durante aproximadamente 500 anos, tendo sido o último registro efetuado no século VI da nossa era, bastante depois da queda de Roma em 476. O edifício deixou de ser usado para entretenimento no começo da era medieval, mas foi mais tarde usado como habitação, oficina, forte, pedreira, sede de ordens religiosas e templo cristão.

Embora esteja agora em ruínas devido a terremotos e pilhagens, o Coliseu sempre foi visto como símbolo do Império Romano, sendo um dos melhores exemplos da sua arquitectura. Actualmente é uma das maiores atrações turísticas em Roma e em 7 de julho de 2007 foi eleita umas das "Sete maravilhas do mundo moderno". Além disso, o Coliseu ainda tem ligações à igreja, com o Papa a liderar a procissão da Via Sacra até ao Coliseu todas as Sextas-feiras Santas.

O coliseu era um local onde seriam exibidos toda uma série de espectáculos, inseridos nos vários tipos de jogos realizados na urbe. Os combates entre gladiadores, chamados muneras, eram sempre pagos por pessoas individuais em busca de prestígio e poder em vez do estado. A arena (87,5 m por 55 m) possuía um piso de madeira, normalmente coberto de areia para absorver o sangue dos combates (certa vez foi colocada água na representação de uma batalha naval), sob o qual existia um nível subterrâneo com celas e jaulas que tinham acessos diretos para a arena; Alguns detalhes dessa construção, como a cobertura removível que poupava os espectadores do sol, são bastante interessantes, e mostram o refinamento atingido pelos construtores romanos. Formado por cinco anéis concêntricos de arcos e abóbadas, o Coliseu representa bem o avanço introduzido pelos romanos à engenharia de estruturas. Esses arcos são de concreto (de cimento natural) revestidos por alvenaria. Na verdade, a alvenaria era construída simultaneamente e já servia de forma para a concretagem. Outro tipo de espetáculos era a caça de animais, ou venatio, onde eram utilizados animais selvagens importados de África. Os animais mais utilizados eram os grandes felinos como leões, leopardos e panteras, mas animais como rinocerontes, hipopótamos, elefantes, girafas, crocodilos e avestruzes eram também utilizados. As caçadas, tal como as representações de batalhas famosas, eram efetuadas em elaborados cenários onde constavam árvores e edifícios amovíveis.

Estas últimas eram por vezes representadas numa escala gigante; Trajano celebrou a sua vitória em Dácia no ano 107 com concursos envolvendo 11 000 animais e 10 000 gladiadores no decorrer de 123 dias.

Segundo o documentário produzido pelo canal televisivo fechado, History Channel, o Coliseu também era utilizado para a realização de naumaquias, ou batalhas navais. O coliseu era inundado por dutos subterrâneos alimentados pelos aquedutos que traziam água de longe. Passada esta fase, foi construída uma estrutura, que é a que podemos ver hoje nas ruínas do Coliseu, com altura de um prédio de dois andares, onde no passado se concentravam os gladiadores, feras e todo o pessoal que organizava os duelos que ocorreriam na arena. A arena era como um grande palco, feito de madeira, e se chama arena, que em italiano significa areia, porque era jogada areia sob a estrutura de madeira para esconder as imperfeições. Os animais podiam ser inseridos nos duelos a qualquer momento por um esquema de elevadores que surgiam em alguns pontos da arena; o filme "Gladiador" retrata muito bem esta questão dos elevadores. Os estudiosos, há pouco tempo, descobriram uma rede de dutos inundados por baixo da arena do Coliseu. Acredita-se que o Coliseu foi construído onde, outrora, foi o lago do Palácio Dourado de Nero; O imperador Vespasiano escolheu o local da construção para que o mal causado por Nero fosse esquecido por uma construção gloriosa.

Sylvae, ou recreações de cenas naturais eram também realizadas no Coliseu. Pintores, técnicos e arquitectos construiriam simulações de florestas com árvores e arbustos reais plantados no chão da arena. Animais seriam então introduzidos para dar vida à simulação. Esses cenários podiam servir só para agrado do público ou como pano de fundo para caçadas ou dramas representando episódios da mitologia romana, tão autênticos quanto possível, ao ponto de pessoas condenadas fazerem o papel de heróis onde eram mortos de maneiras horríveis mas mitologicamente autênticas, como mutilados por animais ou queimados vivos.

Embora o Coliseu tenha funcionado até ao século VI da nossa Era, foram proibidos os jogos com mortes humanas desde 404, sendo apenas massacrados animais como elefantes, panteras ou leões.

O Coliseu era sobretudo um enorme instrumento de propaganda e difusão da filosofia de toda uma civilização, e tal como era já profetizado pelo monge e historiador inglês Beda na sua obra do século VII "De temporibus liber": "Enquanto o Coliseu se mantiver de pé, Roma permanecerá; quando o Coliseu ruir, Roma ruirá e quando Roma cair, o mundo cairá".

A construção do Coliseu foi iniciada por Vespasiano, nos anos 70 da nossa era. O edifício foi inaugurado por Tito, em 80, embora apenas tivesse sido finalizado poucos anos depois. Empresa colossal, este edifício, inicialmente, poderia sustentar no seu interior cerca de 50 000 espectadores, constando de três andares. Aquando do reinado de Alexandre Severo e Gordiano III, é ampliado com um quarto andar, podendo suster agora cerca de 90 000 espectadores. A grandiosidade deste monumento testemunha verdadeiramente o poder e esplendor de Roma na época dos Flávios.

Os jogos inaugurais do Coliseu tiveram lugar ano 80, sob o mandato de Tito, para celebrar a finalização da construção. Depois do curto reinado de Tito começar com vários meses de desastres, incluindo a erupção do Monte Vesúvio, um incêndio em Roma, e um surto de peste, o mesmo imperador inaugurou o edifício com uns jogos pródigos que duraram mais de cem dias, talvez para tentar apaziguar o público romano e os deuses. Nesses jogos de cem dias terão ocorrido combates de gladiadores, venationes (lutas de animais), execuções, batalhas navais, caçadas e outros divertimentos numa escala sem precedentes.

O Coliseu, como não se encontrava inserido numa zona de encosta, enterrado, tal como normalmente sucede com a generalidade dos teatros e anfiteatros romanos, possuía um “anel” artificial de rocha à sua volta, para garantir sustentação e, ao mesmo tempo, esta substrutura serve como ornamento ao edifício e como condicionador da entrada dos espectadores. Tal como foi referido anteriormente, possuía três pisos, sendo mais tarde adicionado um outro. É construído em mármore, pedra travertina, ladrilho e tufo (pedra calcária com grandes poros). A sua planta elíptica mede dois eixos que se estendem aproximadamente de 190 m por 155 m. A fachada compõe-se de arcadas decoradas com colunas dóricas, jónicas e coríntias, de acordo com o pavimento em que se encontravam. Esta subdivisão deve-se ao facto de ser uma construção essencialmente vertical, criando assim uma diversificação do espaço.

 

Os assentos eram em mármore e a cavea, escadaria ou arquibancada, dividia-se em três partes, correspondentes às diferentes classes sociais: o podium, para as classes altas; as maeniana, sector destinado à classe média; e os portici, ou pórticos, construídos em madeira, para a plebe e as mulheres. O pulvinar, a tribuna imperial, encontrava-se situada no podium e era balizada pelos assentos reservados aos senadores e magistrados. Rampas no interior do edifício facilitavam o acesso às várias zonas de onde podiam visualizar o espectáculo, sendo protegidos por uma barreira e por uma série de arqueiros posicionados numa passagem de madeira, para o caso de algum acidente. Por cima dos muros ainda são visíveis as mísulas, que sustentavam o velarium, enorme cobertura de lona destinada a proteger do sol os espectadores e, nos subterrâneos, ficavam as jaulas dos animais, bem como todas as celas e galerias necessárias aos serviços do anfiteatro.

O monumento permaneceu como sede principal dos espetáculos da urbe romana até ao período do imperador Honorius, no século V. Danificado por um terremoto no começo do mesmo século, foi alvo de uma extensiva restauração na época de Valentinianus III. Em meados do século XIII, a família Frangipani transformou-o em fortaleza e, ao longo dos séculos XV e XVI, foi por diversas vezes saqueado, perdendo grande parte dos materiais nobres com os quais tinha sido construído.

Os relatos romanos referem-se a cristãos sendo martirizados em locais de Roma descritos pouco pormenorizadamente (no anfiteatro, na arena...), quando Roma tinha numerosos anfiteatros e arenas. Apesar de muito provavelmente o Coliseu não ter sido utilizado para martírios, o Papa Bento XIV consagrou-o no século XVII à Paixão de Cristo e declarou-o lugar sagrado. Os trabalhos de consolidação e restauração parcial do monumento, já há muito em ruínas, foram feitos sobretudo pelos pontífices Gregório XVI e Pio IX, no século XIX.

Colosseum

Following, a text, in english, from the Wikipedia the Free Encyclopedia:

The Colosseum, or the Coliseum, originally the Flavian Amphitheatre (Latin: Amphitheatrum Flavium, Italian Anfiteatro Flavio or Colosseo), is an elliptical amphitheatre in the centre of the city of Rome, Italy, the largest ever built in the Roman Empire. It is considered one of the greatest works of Roman architecture and Roman engineering.

Occupying a site just east of the Roman Forum, its construction started between 70 and 72 AD[1] under the emperor Vespasian and was completed in 80 AD under Titus,[2] with further modifications being made during Domitian's reign (81–96).[3] The name "Amphitheatrum Flavium" derives from both Vespasian's and Titus's family name (Flavius, from the gens Flavia).

Capable of seating 50,000 spectators,[1][4][5] the Colosseum was used for gladiatorial contests and public spectacles such as mock sea battles, animal hunts, executions, re-enactments of famous battles, and dramas based on Classical mythology. The building ceased to be used for entertainment in the early medieval era. It was later reused for such purposes as housing, workshops, quarters for a religious order, a fortress, a quarry, and a Christian shrine.

Although in the 21st century it stays partially ruined because of damage caused by devastating earthquakes and stone-robbers, the Colosseum is an iconic symbol of Imperial Rome. It is one of Rome's most popular tourist attractions and still has close connections with the Roman Catholic Church, as each Good Friday the Pope leads a torchlit "Way of the Cross" procession that starts in the area around the Colosseum.[6]

The Colosseum is also depicted on the Italian version of the five-cent euro coin.

The Colosseum's original Latin name was Amphitheatrum Flavium, often anglicized as Flavian Amphitheater. The building was constructed by emperors of the Flavian dynasty, hence its original name, after the reign of Emperor Nero.[7] This name is still used in modern English, but generally the structure is better known as the Colosseum. In antiquity, Romans may have referred to the Colosseum by the unofficial name Amphitheatrum Caesareum; this name could have been strictly poetic.[8][9] This name was not exclusive to the Colosseum; Vespasian and Titus, builders of the Colosseum, also constructed an amphitheater of the same name in Puteoli (modern Pozzuoli).[10]

The name Colosseum has long been believed to be derived from a colossal statue of Nero nearby.[3] (the statue of Nero itself being named after one of the original ancient wonders, the Colossus of Rhodes[citation needed]. This statue was later remodeled by Nero's successors into the likeness of Helios (Sol) or Apollo, the sun god, by adding the appropriate solar crown. Nero's head was also replaced several times with the heads of succeeding emperors. Despite its pagan links, the statue remained standing well into the medieval era and was credited with magical powers. It came to be seen as an iconic symbol of the permanence of Rome.

In the 8th century, a famous epigram attributed to the Venerable Bede celebrated the symbolic significance of the statue in a prophecy that is variously quoted: Quamdiu stat Colisæus, stat et Roma; quando cadet colisæus, cadet et Roma; quando cadet Roma, cadet et mundus ("as long as the Colossus stands, so shall Rome; when the Colossus falls, Rome shall fall; when Rome falls, so falls the world").[11] This is often mistranslated to refer to the Colosseum rather than the Colossus (as in, for instance, Byron's poem Childe Harold's Pilgrimage). However, at the time that the Pseudo-Bede wrote, the masculine noun coliseus was applied to the statue rather than to what was still known as the Flavian amphitheatre.

The Colossus did eventually fall, possibly being pulled down to reuse its bronze. By the year 1000 the name "Colosseum" had been coined to refer to the amphitheatre. The statue itself was largely forgotten and only its base survives, situated between the Colosseum and the nearby Temple of Venus and Roma.[12]

The name further evolved to Coliseum during the Middle Ages. In Italy, the amphitheatre is still known as il Colosseo, and other Romance languages have come to use similar forms such as le Colisée (French), el Coliseo (Spanish) and o Coliseu (Portuguese).

Construction of the Colosseum began under the rule of the Emperor Vespasian[3] in around 70–72AD. The site chosen was a flat area on the floor of a low valley between the Caelian, Esquiline and Palatine Hills, through which a canalised stream ran. By the 2nd century BC the area was densely inhabited. It was devastated by the Great Fire of Rome in AD 64, following which Nero seized much of the area to add to his personal domain. He built the grandiose Domus Aurea on the site, in front of which he created an artificial lake surrounded by pavilions, gardens and porticoes. The existing Aqua Claudia aqueduct was extended to supply water to the area and the gigantic bronze Colossus of Nero was set up nearby at the entrance to the Domus Aurea.[12]

Although the Colossus was preserved, much of the Domus Aurea was torn down. The lake was filled in and the land reused as the location for the new Flavian Amphitheatre. Gladiatorial schools and other support buildings were constructed nearby within the former grounds of the Domus Aurea. According to a reconstructed inscription found on the site, "the emperor Vespasian ordered this new amphitheatre to be erected from his general's share of the booty." This is thought to refer to the vast quantity of treasure seized by the Romans following their victory in the Great Jewish Revolt in 70AD. The Colosseum can be thus interpreted as a great triumphal monument built in the Roman tradition of celebrating great victories[12], placating the Roman people instead of returning soldiers. Vespasian's decision to build the Colosseum on the site of Nero's lake can also be seen as a populist gesture of returning to the people an area of the city which Nero had appropriated for his own use. In contrast to many other amphitheatres, which were located on the outskirts of a city, the Colosseum was constructed in the city centre; in effect, placing it both literally and symbolically at the heart of Rome.

The Colosseum had been completed up to the third story by the time of Vespasian's death in 79. The top level was finished and the building inaugurated by his son, Titus, in 80.[3] Dio Cassius recounts that over 9,000 wild animals were killed during the inaugural games of the amphitheatre. The building was remodelled further under Vespasian's younger son, the newly designated Emperor Domitian, who constructed the hypogeum, a series of underground tunnels used to house animals and slaves. He also added a gallery to the top of the Colosseum to increase its seating capacity.

In 217, the Colosseum was badly damaged by a major fire (caused by lightning, according to Dio Cassius[13]) which destroyed the wooden upper levels of the amphitheatre's interior. It was not fully repaired until about 240 and underwent further repairs in 250 or 252 and again in 320. An inscription records the restoration of various parts of the Colosseum under Theodosius II and Valentinian III (reigned 425–455), possibly to repair damage caused by a major earthquake in 443; more work followed in 484[14] and 508. The arena continued to be used for contests well into the 6th century, with gladiatorial fights last mentioned around 435. Animal hunts continued until at least 523, when Anicius Maximus celebrated his consulship with some venationes, criticised by King Theodoric the Great for their high cost.

The Colosseum underwent several radical changes of use during the medieval period. By the late 6th century a small church had been built into the structure of the amphitheatre, though this apparently did not confer any particular religious significance on the building as a whole. The arena was converted into a cemetery. The numerous vaulted spaces in the arcades under the seating were converted into housing and workshops, and are recorded as still being rented out as late as the 12th century. Around 1200 the Frangipani family took over the Colosseum and fortified it, apparently using it as a castle.

Severe damage was inflicted on the Colosseum by the great earthquake in 1349, causing the outer south side, lying on a less stable alluvional terrain, to collapse. Much of the tumbled stone was reused to build palaces, churches, hospitals and other buildings elsewhere in Rome. A religious order moved into the northern third of the Colosseum in the mid-14th century and continued to inhabit it until as late as the early 19th century. The interior of the amphitheatre was extensively stripped of stone, which was reused elsewhere, or (in the case of the marble façade) was burned to make quicklime.[12] The bronze clamps which held the stonework together were pried or hacked out of the walls, leaving numerous pockmarks which still scar the building today.

During the 16th and 17th century, Church officials sought a productive role for the vast derelict hulk of the Colosseum. Pope Sixtus V (1585–1590) planned to turn the building into a wool factory to provide employment for Rome's prostitutes, though this proposal fell through with his premature death.[15] In 1671 Cardinal Altieri authorized its use for bullfights; a public outcry caused the idea to be hastily abandoned.

In 1749, Pope Benedict XIV endorsed as official Church policy the view that the Colosseum was a sacred site where early Christians had been martyred. He forbade the use of the Colosseum as a quarry and consecrated the building to the Passion of Christ and installed Stations of the Cross, declaring it sanctified by the blood of the Christian martyrs who perished there (see Christians and the Colosseum). However there is no historical evidence to support Benedict's claim, nor is there even any evidence that anyone prior to the 16th century suggested this might be the case; the Catholic Encyclopedia concludes that there are no historical grounds for the supposition. Later popes initiated various stabilization and restoration projects, removing the extensive vegetation which had overgrown the structure and threatened to damage it further. The façade was reinforced with triangular brick wedges in 1807 and 1827, and the interior was repaired in 1831, 1846 and in the 1930s. The arena substructure was partly excavated in 1810–1814 and 1874 and was fully exposed under Benito Mussolini in the 1930s.

The Colosseum is today one of Rome's most popular tourist attractions, receiving millions of visitors annually. The effects of pollution and general deterioration over time prompted a major restoration programme carried out between 1993 and 2000, at a cost of 40 billion Italian lire ($19.3m / €20.6m at 2000 prices). In recent years it has become a symbol of the international campaign against capital punishment, which was abolished in Italy in 1948. Several anti–death penalty demonstrations took place in front of the Colosseum in 2000. Since that time, as a gesture against the death penalty, the local authorities of Rome change the color of the Colosseum's night time illumination from white to gold whenever a person condemned to the death penalty anywhere in the world gets their sentence commuted or is released,[16] or if a jurisdiction abolishes the death penalty. Most recently, the Colosseum was illuminated in gold when capital punishment was abolished in the American state of New Mexico in April 2009.

Because of the ruined state of the interior, it is impractical to use the Colosseum to host large events; only a few hundred spectators can be accommodated in temporary seating. However, much larger concerts have been held just outside, using the Colosseum as a backdrop. Performers who have played at the Colosseum in recent years have included Ray Charles (May 2002),[18] Paul McCartney (May 2003),[19] Elton John (September 2005),[20] and Billy Joel (July 2006).

Exterior

Unlike earlier Greek theatres that were built into hillsides, the Colosseum is an entirely free-standing structure. It derives its basic exterior and interior architecture from that of two Roman theatres back to back. It is elliptical in plan and is 189 meters (615 ft / 640 Roman feet) long, and 156 meters (510 ft / 528 Roman feet) wide, with a base area of 6 acres (24,000 m2). The height of the outer wall is 48 meters (157 ft / 165 Roman feet). The perimeter originally measured 545 meters (1,788 ft / 1,835 Roman feet). The central arena is an oval 87 m (287 ft) long and 55 m (180 ft) wide, surrounded by a wall 5 m (15 ft) high, above which rose tiers of seating.

The outer wall is estimated to have required over 100,000 cubic meters (131,000 cu yd) of travertine stone which were set without mortar held together by 300 tons of iron clamps.[12] However, it has suffered extensive damage over the centuries, with large segments having collapsed following earthquakes. The north side of the perimeter wall is still standing; the distinctive triangular brick wedges at each end are modern additions, having been constructed in the early 19th century to shore up the wall. The remainder of the present-day exterior of the Colosseum is in fact the original interior wall.

The surviving part of the outer wall's monumental façade comprises three stories of superimposed arcades surmounted by a podium on which stands a tall attic, both of which are pierced by windows interspersed at regular intervals. The arcades are framed by half-columns of the Tuscan, Ionic, and Corinthian orders, while the attic is decorated with Corinthian pilasters.[21] Each of the arches in the second- and third-floor arcades framed statues, probably honoring divinities and other figures from Classical mythology.

Two hundred and forty mast corbels were positioned around the top of the attic. They originally supported a retractable awning, known as the velarium, that kept the sun and rain off spectators. This consisted of a canvas-covered, net-like structure made of ropes, with a hole in the center.[3] It covered two-thirds of the arena, and sloped down towards the center to catch the wind and provide a breeze for the audience. Sailors, specially enlisted from the Roman naval headquarters at Misenum and housed in the nearby Castra Misenatium, were used to work the velarium.[22]

The Colosseum's huge crowd capacity made it essential that the venue could be filled or evacuated quickly. Its architects adopted solutions very similar to those used in modern stadiums to deal with the same problem. The amphitheatre was ringed by eighty entrances at ground level, 76 of which were used by ordinary spectators.[3] Each entrance and exit was numbered, as was each staircase. The northern main entrance was reserved for the Roman Emperor and his aides, whilst the other three axial entrances were most likely used by the elite. All four axial entrances were richly decorated with painted stucco reliefs, of which fragments survive. Many of the original outer entrances have disappeared with the collapse of the perimeter wall, but entrances XXIII (23) to LIV (54) still survive.[12]

Spectators were given tickets in the form of numbered pottery shards, which directed them to the appropriate section and row. They accessed their seats via vomitoria (singular vomitorium), passageways that opened into a tier of seats from below or behind. These quickly dispersed people into their seats and, upon conclusion of the event or in an emergency evacuation, could permit their exit within only a few minutes. The name vomitoria derived from the Latin word for a rapid discharge, from which English derives the word vomit.

Interior

According to the Codex-Calendar of 354, the Colosseum could accommodate 87,000 people, although modern estimates put the figure at around 50,000. They were seated in a tiered arrangement that reflected the rigidly stratified nature of Roman society. Special boxes were provided at the north and south ends respectively for the Emperor and the Vestal Virgins, providing the best views of the arena. Flanking them at the same level was a broad platform or podium for the senatorial class, who were allowed to bring their own chairs. The names of some 5th century senators can still be seen carved into the stonework, presumably reserving areas for their use.

The tier above the senators, known as the maenianum primum, was occupied by the non-senatorial noble class or knights (equites). The next level up, the maenianum secundum, was originally reserved for ordinary Roman citizens (plebians) and was divided into two sections. The lower part (the immum) was for wealthy citizens, while the upper part (the summum) was for poor citizens. Specific sectors were provided for other social groups: for instance, boys with their tutors, soldiers on leave, foreign dignitaries, scribes, heralds, priests and so on. Stone (and later marble) seating was provided for the citizens and nobles, who presumably would have brought their own cushions with them. Inscriptions identified the areas reserved for specific groups.

Another level, the maenianum secundum in legneis, was added at the very top of the building during the reign of Domitian. This comprised a gallery for the common poor, slaves and women. It would have been either standing room only, or would have had very steep wooden benches. Some groups were banned altogether from the Colosseum, notably gravediggers, actors and former gladiators.

Each tier was divided into sections (maeniana) by curved passages and low walls (praecinctiones or baltei), and were subdivided into cunei, or wedges, by the steps and aisles from the vomitoria. Each row (gradus) of seats was numbered, permitting each individual seat to be exactly designated by its gradus, cuneus, and number.

The arena itself was 83 meters by 48 meters (272 ft by 157 ft / 280 by 163 Roman feet).[12] It comprised a wooden floor covered by sand (the Latin word for sand is harena or arena), covering an elaborate underground structure called the hypogeum (literally meaning "underground"). Little now remains of the original arena floor, but the hypogeum is still clearly visible. It consisted of a two-level subterranean network of tunnels and cages beneath the arena where gladiators and animals were held before contests began. Eighty vertical shafts provided instant access to the arena for caged animals and scenery pieces concealed underneath; larger hinged platforms, called hegmata, provided access for elephants and the like. It was restructured on numerous occasions; at least twelve different phases of construction can be seen.[12]

The hypogeum was connected by underground tunnels to a number of points outside the Colosseum. Animals and performers were brought through the tunnel from nearby stables, with the gladiators' barracks at the Ludus Magnus to the east also being connected by tunnels. Separate tunnels were provided for the Emperor and the Vestal Virgins to permit them to enter and exit the Colosseum without needing to pass through the crowds.[12]

Substantial quantities of machinery also existed in the hypogeum. Elevators and pulleys raised and lowered scenery and props, as well as lifting caged animals to the surface for release. There is evidence for the existence of major hydraulic mechanisms[12] and according to ancient accounts, it was possible to flood the arena rapidly, presumably via a connection to a nearby aqueduct.

The Colosseum and its activities supported a substantial industry in the area. In addition to the amphitheatre itself, many other buildings nearby were linked to the games. Immediately to the east is the remains of the Ludus Magnus, a training school for gladiators. This was connected to the Colosseum by an underground passage, to allow easy access for the gladiators. The Ludus Magnus had its own miniature training arena, which was itself a popular attraction for Roman spectators. Other training schools were in the same area, including the Ludus Matutinus (Morning School), where fighters of animals were trained, plus the Dacian and Gallic Schools.

Also nearby were the Armamentarium, comprising an armory to store weapons; the Summum Choragium, where machinery was stored; the Sanitarium, which had facilities to treat wounded gladiators; and the Spoliarium, where bodies of dead gladiators were stripped of their armor and disposed of.

Around the perimeter of the Colosseum, at a distance of 18 m (59 ft) from the perimeter, was a series of tall stone posts, with five remaining on the eastern side. Various explanations have been advanced for their presence; they may have been a religious boundary, or an outer boundary for ticket checks, or an anchor for the velarium or awning.

Right next to the Colosseum is also the Arch of Constantine.

he Colosseum was used to host gladiatorial shows as well as a variety of other events. The shows, called munera, were always given by private individuals rather than the state. They had a strong religious element but were also demonstrations of power and family prestige, and were immensely popular with the population. Another popular type of show was the animal hunt, or venatio. This utilized a great variety of wild beasts, mainly imported from Africa and the Middle East, and included creatures such as rhinoceros, hippopotamuses, elephants, giraffes, aurochs, wisents, barbary lions, panthers, leopards, bears, caspian tigers, crocodiles and ostriches. Battles and hunts were often staged amid elaborate sets with movable trees and buildings. Such events were occasionally on a huge scale; Trajan is said to have celebrated his victories in Dacia in 107 with contests involving 11,000 animals and 10,000 gladiators over the course of 123 days.

During the early days of the Colosseum, ancient writers recorded that the building was used for naumachiae (more properly known as navalia proelia) or simulated sea battles. Accounts of the inaugural games held by Titus in AD 80 describe it being filled with water for a display of specially trained swimming horses and bulls. There is also an account of a re-enactment of a famous sea battle between the Corcyrean (Corfiot) Greeks and the Corinthians. This has been the subject of some debate among historians; although providing the water would not have been a problem, it is unclear how the arena could have been waterproofed, nor would there have been enough space in the arena for the warships to move around. It has been suggested that the reports either have the location wrong, or that the Colosseum originally featured a wide floodable channel down its central axis (which would later have been replaced by the hypogeum).[12]

Sylvae or recreations of natural scenes were also held in the arena. Painters, technicians and architects would construct a simulation of a forest with real trees and bushes planted in the arena's floor. Animals would be introduced to populate the scene for the delight of the crowd. Such scenes might be used simply to display a natural environment for the urban population, or could otherwise be used as the backdrop for hunts or dramas depicting episodes from mythology. They were also occasionally used for executions in which the hero of the story — played by a condemned person — was killed in one of various gruesome but mythologically authentic ways, such as being mauled by beasts or burned to death.

The Colosseum today is now a major tourist attraction in Rome with thousands of tourists each year paying to view the interior arena, though entrance for EU citizens is partially subsidised, and under-18 and over-65 EU citizens' entrances are free.[24] There is now a museum dedicated to Eros located in the upper floor of the outer wall of the building. Part of the arena floor has been re-floored. Beneath the Colosseum, a network of subterranean passageways once used to transport wild animals and gladiators to the arena opened to the public in summer 2010.[25]

The Colosseum is also the site of Roman Catholic ceremonies in the 20th and 21st centuries. For instance, Pope Benedict XVI leads the Stations of the Cross called the Scriptural Way of the Cross (which calls for more meditation) at the Colosseum[26][27] on Good Fridays.

In the Middle Ages, the Colosseum was clearly not regarded as a sacred site. Its use as a fortress and then a quarry demonstrates how little spiritual importance was attached to it, at a time when sites associated with martyrs were highly venerated. It was not included in the itineraries compiled for the use of pilgrims nor in works such as the 12th century Mirabilia Urbis Romae ("Marvels of the City of Rome"), which claims the Circus Flaminius — but not the Colosseum — as the site of martyrdoms. Part of the structure was inhabited by a Christian order, but apparently not for any particular religious reason.

It appears to have been only in the 16th and 17th centuries that the Colosseum came to be regarded as a Christian site. Pope Pius V (1566–1572) is said to have recommended that pilgrims gather sand from the arena of the Colosseum to serve as a relic, on the grounds that it was impregnated with the blood of martyrs. This seems to have been a minority view until it was popularised nearly a century later by Fioravante Martinelli, who listed the Colosseum at the head of a list of places sacred to the martyrs in his 1653 book Roma ex ethnica sacra.

Martinelli's book evidently had an effect on public opinion; in response to Cardinal Altieri's proposal some years later to turn the Colosseum into a bullring, Carlo Tomassi published a pamphlet in protest against what he regarded as an act of desecration. The ensuing controversy persuaded Pope Clement X to close the Colosseum's external arcades and declare it a sanctuary, though quarrying continued for some time.

At the instance of St. Leonard of Port Maurice, Pope Benedict XIV (1740–1758) forbade the quarrying of the Colosseum and erected Stations of the Cross around the arena, which remained until February 1874. St. Benedict Joseph Labre spent the later years of his life within the walls of the Colosseum, living on alms, prior to his death in 1783. Several 19th century popes funded repair and restoration work on the Colosseum, and it still retains a Christian connection today. Crosses stand in several points around the arena and every Good Friday the Pope leads a Via Crucis procession to the amphitheatre.

 

Coliseu (Colosseo)

A seguir, um texto, em português, da Wikipédia, a enciclopédia livre:

 

O Coliseu, também conhecido como Anfiteatro Flaviano, deve seu nome à expressão latina Colosseum (ou Coliseus, no latim tardio), devido à estátua colossal de Nero, que ficava perto a edificação. Localizado no centro de Roma, é uma excepção de entre os anfiteatros pelo seu volume e relevo arquitectónico. Originalmente capaz de albergar perto de 50 000 pessoas, e com 48 metros de altura, era usado para variados espetáculos. Foi construído a leste do fórum romano e demorou entre 8 a 10 anos a ser construído.

O Coliseu foi utilizado durante aproximadamente 500 anos, tendo sido o último registro efetuado no século VI da nossa era, bastante depois da queda de Roma em 476. O edifício deixou de ser usado para entretenimento no começo da era medieval, mas foi mais tarde usado como habitação, oficina, forte, pedreira, sede de ordens religiosas e templo cristão.

Embora esteja agora em ruínas devido a terremotos e pilhagens, o Coliseu sempre foi visto como símbolo do Império Romano, sendo um dos melhores exemplos da sua arquitectura. Actualmente é uma das maiores atrações turísticas em Roma e em 7 de julho de 2007 foi eleita umas das "Sete maravilhas do mundo moderno". Além disso, o Coliseu ainda tem ligações à igreja, com o Papa a liderar a procissão da Via Sacra até ao Coliseu todas as Sextas-feiras Santas.

O coliseu era um local onde seriam exibidos toda uma série de espectáculos, inseridos nos vários tipos de jogos realizados na urbe. Os combates entre gladiadores, chamados muneras, eram sempre pagos por pessoas individuais em busca de prestígio e poder em vez do estado. A arena (87,5 m por 55 m) possuía um piso de madeira, normalmente coberto de areia para absorver o sangue dos combates (certa vez foi colocada água na representação de uma batalha naval), sob o qual existia um nível subterrâneo com celas e jaulas que tinham acessos diretos para a arena; Alguns detalhes dessa construção, como a cobertura removível que poupava os espectadores do sol, são bastante interessantes, e mostram o refinamento atingido pelos construtores romanos. Formado por cinco anéis concêntricos de arcos e abóbadas, o Coliseu representa bem o avanço introduzido pelos romanos à engenharia de estruturas. Esses arcos são de concreto (de cimento natural) revestidos por alvenaria. Na verdade, a alvenaria era construída simultaneamente e já servia de forma para a concretagem. Outro tipo de espetáculos era a caça de animais, ou venatio, onde eram utilizados animais selvagens importados de África. Os animais mais utilizados eram os grandes felinos como leões, leopardos e panteras, mas animais como rinocerontes, hipopótamos, elefantes, girafas, crocodilos e avestruzes eram também utilizados. As caçadas, tal como as representações de batalhas famosas, eram efetuadas em elaborados cenários onde constavam árvores e edifícios amovíveis.

Estas últimas eram por vezes representadas numa escala gigante; Trajano celebrou a sua vitória em Dácia no ano 107 com concursos envolvendo 11 000 animais e 10 000 gladiadores no decorrer de 123 dias.

Segundo o documentário produzido pelo canal televisivo fechado, History Channel, o Coliseu também era utilizado para a realização de naumaquias, ou batalhas navais. O coliseu era inundado por dutos subterrâneos alimentados pelos aquedutos que traziam água de longe. Passada esta fase, foi construída uma estrutura, que é a que podemos ver hoje nas ruínas do Coliseu, com altura de um prédio de dois andares, onde no passado se concentravam os gladiadores, feras e todo o pessoal que organizava os duelos que ocorreriam na arena. A arena era como um grande palco, feito de madeira, e se chama arena, que em italiano significa areia, porque era jogada areia sob a estrutura de madeira para esconder as imperfeições. Os animais podiam ser inseridos nos duelos a qualquer momento por um esquema de elevadores que surgiam em alguns pontos da arena; o filme "Gladiador" retrata muito bem esta questão dos elevadores. Os estudiosos, há pouco tempo, descobriram uma rede de dutos inundados por baixo da arena do Coliseu. Acredita-se que o Coliseu foi construído onde, outrora, foi o lago do Palácio Dourado de Nero; O imperador Vespasiano escolheu o local da construção para que o mal causado por Nero fosse esquecido por uma construção gloriosa.

Sylvae, ou recreações de cenas naturais eram também realizadas no Coliseu. Pintores, técnicos e arquitectos construiriam simulações de florestas com árvores e arbustos reais plantados no chão da arena. Animais seriam então introduzidos para dar vida à simulação. Esses cenários podiam servir só para agrado do público ou como pano de fundo para caçadas ou dramas representando episódios da mitologia romana, tão autênticos quanto possível, ao ponto de pessoas condenadas fazerem o papel de heróis onde eram mortos de maneiras horríveis mas mitologicamente autênticas, como mutilados por animais ou queimados vivos.

Embora o Coliseu tenha funcionado até ao século VI da nossa Era, foram proibidos os jogos com mortes humanas desde 404, sendo apenas massacrados animais como elefantes, panteras ou leões.

O Coliseu era sobretudo um enorme instrumento de propaganda e difusão da filosofia de toda uma civilização, e tal como era já profetizado pelo monge e historiador inglês Beda na sua obra do século VII "De temporibus liber": "Enquanto o Coliseu se mantiver de pé, Roma permanecerá; quando o Coliseu ruir, Roma ruirá e quando Roma cair, o mundo cairá".

A construção do Coliseu foi iniciada por Vespasiano, nos anos 70 da nossa era. O edifício foi inaugurado por Tito, em 80, embora apenas tivesse sido finalizado poucos anos depois. Empresa colossal, este edifício, inicialmente, poderia sustentar no seu interior cerca de 50 000 espectadores, constando de três andares. Aquando do reinado de Alexandre Severo e Gordiano III, é ampliado com um quarto andar, podendo suster agora cerca de 90 000 espectadores. A grandiosidade deste monumento testemunha verdadeiramente o poder e esplendor de Roma na época dos Flávios.

Os jogos inaugurais do Coliseu tiveram lugar ano 80, sob o mandato de Tito, para celebrar a finalização da construção. Depois do curto reinado de Tito começar com vários meses de desastres, incluindo a erupção do Monte Vesúvio, um incêndio em Roma, e um surto de peste, o mesmo imperador inaugurou o edifício com uns jogos pródigos que duraram mais de cem dias, talvez para tentar apaziguar o público romano e os deuses. Nesses jogos de cem dias terão ocorrido combates de gladiadores, venationes (lutas de animais), execuções, batalhas navais, caçadas e outros divertimentos numa escala sem precedentes.

O Coliseu, como não se encontrava inserido numa zona de encosta, enterrado, tal como normalmente sucede com a generalidade dos teatros e anfiteatros romanos, possuía um “anel” artificial de rocha à sua volta, para garantir sustentação e, ao mesmo tempo, esta substrutura serve como ornamento ao edifício e como condicionador da entrada dos espectadores. Tal como foi referido anteriormente, possuía três pisos, sendo mais tarde adicionado um outro. É construído em mármore, pedra travertina, ladrilho e tufo (pedra calcária com grandes poros). A sua planta elíptica mede dois eixos que se estendem aproximadamente de 190 m por 155 m. A fachada compõe-se de arcadas decoradas com colunas dóricas, jónicas e coríntias, de acordo com o pavimento em que se encontravam. Esta subdivisão deve-se ao facto de ser uma construção essencialmente vertical, criando assim uma diversificação do espaço.

 

Os assentos eram em mármore e a cavea, escadaria ou arquibancada, dividia-se em três partes, correspondentes às diferentes classes sociais: o podium, para as classes altas; as maeniana, sector destinado à classe média; e os portici, ou pórticos, construídos em madeira, para a plebe e as mulheres. O pulvinar, a tribuna imperial, encontrava-se situada no podium e era balizada pelos assentos reservados aos senadores e magistrados. Rampas no interior do edifício facilitavam o acesso às várias zonas de onde podiam visualizar o espectáculo, sendo protegidos por uma barreira e por uma série de arqueiros posicionados numa passagem de madeira, para o caso de algum acidente. Por cima dos muros ainda são visíveis as mísulas, que sustentavam o velarium, enorme cobertura de lona destinada a proteger do sol os espectadores e, nos subterrâneos, ficavam as jaulas dos animais, bem como todas as celas e galerias necessárias aos serviços do anfiteatro.

O monumento permaneceu como sede principal dos espetáculos da urbe romana até ao período do imperador Honorius, no século V. Danificado por um terremoto no começo do mesmo século, foi alvo de uma extensiva restauração na época de Valentinianus III. Em meados do século XIII, a família Frangipani transformou-o em fortaleza e, ao longo dos séculos XV e XVI, foi por diversas vezes saqueado, perdendo grande parte dos materiais nobres com os quais tinha sido construído.

Os relatos romanos referem-se a cristãos sendo martirizados em locais de Roma descritos pouco pormenorizadamente (no anfiteatro, na arena...), quando Roma tinha numerosos anfiteatros e arenas. Apesar de muito provavelmente o Coliseu não ter sido utilizado para martírios, o Papa Bento XIV consagrou-o no século XVII à Paixão de Cristo e declarou-o lugar sagrado. Os trabalhos de consolidação e restauração parcial do monumento, já há muito em ruínas, foram feitos sobretudo pelos pontífices Gregório XVI e Pio IX, no século XIX.

Colosseum

Following, a text, in english, from the Wikipedia the Free Encyclopedia:

The Colosseum, or the Coliseum, originally the Flavian Amphitheatre (Latin: Amphitheatrum Flavium, Italian Anfiteatro Flavio or Colosseo), is an elliptical amphitheatre in the centre of the city of Rome, Italy, the largest ever built in the Roman Empire. It is considered one of the greatest works of Roman architecture and Roman engineering.

Occupying a site just east of the Roman Forum, its construction started between 70 and 72 AD[1] under the emperor Vespasian and was completed in 80 AD under Titus,[2] with further modifications being made during Domitian's reign (81–96).[3] The name "Amphitheatrum Flavium" derives from both Vespasian's and Titus's family name (Flavius, from the gens Flavia).

Capable of seating 50,000 spectators,[1][4][5] the Colosseum was used for gladiatorial contests and public spectacles such as mock sea battles, animal hunts, executions, re-enactments of famous battles, and dramas based on Classical mythology. The building ceased to be used for entertainment in the early medieval era. It was later reused for such purposes as housing, workshops, quarters for a religious order, a fortress, a quarry, and a Christian shrine.

Although in the 21st century it stays partially ruined because of damage caused by devastating earthquakes and stone-robbers, the Colosseum is an iconic symbol of Imperial Rome. It is one of Rome's most popular tourist attractions and still has close connections with the Roman Catholic Church, as each Good Friday the Pope leads a torchlit "Way of the Cross" procession that starts in the area around the Colosseum.[6]

The Colosseum is also depicted on the Italian version of the five-cent euro coin.

The Colosseum's original Latin name was Amphitheatrum Flavium, often anglicized as Flavian Amphitheater. The building was constructed by emperors of the Flavian dynasty, hence its original name, after the reign of Emperor Nero.[7] This name is still used in modern English, but generally the structure is better known as the Colosseum. In antiquity, Romans may have referred to the Colosseum by the unofficial name Amphitheatrum Caesareum; this name could have been strictly poetic.[8][9] This name was not exclusive to the Colosseum; Vespasian and Titus, builders of the Colosseum, also constructed an amphitheater of the same name in Puteoli (modern Pozzuoli).[10]

The name Colosseum has long been believed to be derived from a colossal statue of Nero nearby.[3] (the statue of Nero itself being named after one of the original ancient wonders, the Colossus of Rhodes[citation needed]. This statue was later remodeled by Nero's successors into the likeness of Helios (Sol) or Apollo, the sun god, by adding the appropriate solar crown. Nero's head was also replaced several times with the heads of succeeding emperors. Despite its pagan links, the statue remained standing well into the medieval era and was credited with magical powers. It came to be seen as an iconic symbol of the permanence of Rome.

In the 8th century, a famous epigram attributed to the Venerable Bede celebrated the symbolic significance of the statue in a prophecy that is variously quoted: Quamdiu stat Colisæus, stat et Roma; quando cadet colisæus, cadet et Roma; quando cadet Roma, cadet et mundus ("as long as the Colossus stands, so shall Rome; when the Colossus falls, Rome shall fall; when Rome falls, so falls the world").[11] This is often mistranslated to refer to the Colosseum rather than the Colossus (as in, for instance, Byron's poem Childe Harold's Pilgrimage). However, at the time that the Pseudo-Bede wrote, the masculine noun coliseus was applied to the statue rather than to what was still known as the Flavian amphitheatre.

The Colossus did eventually fall, possibly being pulled down to reuse its bronze. By the year 1000 the name "Colosseum" had been coined to refer to the amphitheatre. The statue itself was largely forgotten and only its base survives, situated between the Colosseum and the nearby Temple of Venus and Roma.[12]

The name further evolved to Coliseum during the Middle Ages. In Italy, the amphitheatre is still known as il Colosseo, and other Romance languages have come to use similar forms such as le Colisée (French), el Coliseo (Spanish) and o Coliseu (Portuguese).

Construction of the Colosseum began under the rule of the Emperor Vespasian[3] in around 70–72AD. The site chosen was a flat area on the floor of a low valley between the Caelian, Esquiline and Palatine Hills, through which a canalised stream ran. By the 2nd century BC the area was densely inhabited. It was devastated by the Great Fire of Rome in AD 64, following which Nero seized much of the area to add to his personal domain. He built the grandiose Domus Aurea on the site, in front of which he created an artificial lake surrounded by pavilions, gardens and porticoes. The existing Aqua Claudia aqueduct was extended to supply water to the area and the gigantic bronze Colossus of Nero was set up nearby at the entrance to the Domus Aurea.[12]

Although the Colossus was preserved, much of the Domus Aurea was torn down. The lake was filled in and the land reused as the location for the new Flavian Amphitheatre. Gladiatorial schools and other support buildings were constructed nearby within the former grounds of the Domus Aurea. According to a reconstructed inscription found on the site, "the emperor Vespasian ordered this new amphitheatre to be erected from his general's share of the booty." This is thought to refer to the vast quantity of treasure seized by the Romans following their victory in the Great Jewish Revolt in 70AD. The Colosseum can be thus interpreted as a great triumphal monument built in the Roman tradition of celebrating great victories[12], placating the Roman people instead of returning soldiers. Vespasian's decision to build the Colosseum on the site of Nero's lake can also be seen as a populist gesture of returning to the people an area of the city which Nero had appropriated for his own use. In contrast to many other amphitheatres, which were located on the outskirts of a city, the Colosseum was constructed in the city centre; in effect, placing it both literally and symbolically at the heart of Rome.

The Colosseum had been completed up to the third story by the time of Vespasian's death in 79. The top level was finished and the building inaugurated by his son, Titus, in 80.[3] Dio Cassius recounts that over 9,000 wild animals were killed during the inaugural games of the amphitheatre. The building was remodelled further under Vespasian's younger son, the newly designated Emperor Domitian, who constructed the hypogeum, a series of underground tunnels used to house animals and slaves. He also added a gallery to the top of the Colosseum to increase its seating capacity.

In 217, the Colosseum was badly damaged by a major fire (caused by lightning, according to Dio Cassius[13]) which destroyed the wooden upper levels of the amphitheatre's interior. It was not fully repaired until about 240 and underwent further repairs in 250 or 252 and again in 320. An inscription records the restoration of various parts of the Colosseum under Theodosius II and Valentinian III (reigned 425–455), possibly to repair damage caused by a major earthquake in 443; more work followed in 484[14] and 508. The arena continued to be used for contests well into the 6th century, with gladiatorial fights last mentioned around 435. Animal hunts continued until at least 523, when Anicius Maximus celebrated his consulship with some venationes, criticised by King Theodoric the Great for their high cost.

The Colosseum underwent several radical changes of use during the medieval period. By the late 6th century a small church had been built into the structure of the amphitheatre, though this apparently did not confer any particular religious significance on the building as a whole. The arena was converted into a cemetery. The numerous vaulted spaces in the arcades under the seating were converted into housing and workshops, and are recorded as still being rented out as late as the 12th century. Around 1200 the Frangipani family took over the Colosseum and fortified it, apparently using it as a castle.

Severe damage was inflicted on the Colosseum by the great earthquake in 1349, causing the outer south side, lying on a less stable alluvional terrain, to collapse. Much of the tumbled stone was reused to build palaces, churches, hospitals and other buildings elsewhere in Rome. A religious order moved into the northern third of the Colosseum in the mid-14th century and continued to inhabit it until as late as the early 19th century. The interior of the amphitheatre was extensively stripped of stone, which was reused elsewhere, or (in the case of the marble façade) was burned to make quicklime.[12] The bronze clamps which held the stonework together were pried or hacked out of the walls, leaving numerous pockmarks which still scar the building today.

During the 16th and 17th century, Church officials sought a productive role for the vast derelict hulk of the Colosseum. Pope Sixtus V (1585–1590) planned to turn the building into a wool factory to provide employment for Rome's prostitutes, though this proposal fell through with his premature death.[15] In 1671 Cardinal Altieri authorized its use for bullfights; a public outcry caused the idea to be hastily abandoned.

In 1749, Pope Benedict XIV endorsed as official Church policy the view that the Colosseum was a sacred site where early Christians had been martyred. He forbade the use of the Colosseum as a quarry and consecrated the building to the Passion of Christ and installed Stations of the Cross, declaring it sanctified by the blood of the Christian martyrs who perished there (see Christians and the Colosseum). However there is no historical evidence to support Benedict's claim, nor is there even any evidence that anyone prior to the 16th century suggested this might be the case; the Catholic Encyclopedia concludes that there are no historical grounds for the supposition. Later popes initiated various stabilization and restoration projects, removing the extensive vegetation which had overgrown the structure and threatened to damage it further. The façade was reinforced with triangular brick wedges in 1807 and 1827, and the interior was repaired in 1831, 1846 and in the 1930s. The arena substructure was partly excavated in 1810–1814 and 1874 and was fully exposed under Benito Mussolini in the 1930s.

The Colosseum is today one of Rome's most popular tourist attractions, receiving millions of visitors annually. The effects of pollution and general deterioration over time prompted a major restoration programme carried out between 1993 and 2000, at a cost of 40 billion Italian lire ($19.3m / €20.6m at 2000 prices). In recent years it has become a symbol of the international campaign against capital punishment, which was abolished in Italy in 1948. Several anti–death penalty demonstrations took place in front of the Colosseum in 2000. Since that time, as a gesture against the death penalty, the local authorities of Rome change the color of the Colosseum's night time illumination from white to gold whenever a person condemned to the death penalty anywhere in the world gets their sentence commuted or is released,[16] or if a jurisdiction abolishes the death penalty. Most recently, the Colosseum was illuminated in gold when capital punishment was abolished in the American state of New Mexico in April 2009.

Because of the ruined state of the interior, it is impractical to use the Colosseum to host large events; only a few hundred spectators can be accommodated in temporary seating. However, much larger concerts have been held just outside, using the Colosseum as a backdrop. Performers who have played at the Colosseum in recent years have included Ray Charles (May 2002),[18] Paul McCartney (May 2003),[19] Elton John (September 2005),[20] and Billy Joel (July 2006).

Exterior

Unlike earlier Greek theatres that were built into hillsides, the Colosseum is an entirely free-standing structure. It derives its basic exterior and interior architecture from that of two Roman theatres back to back. It is elliptical in plan and is 189 meters (615 ft / 640 Roman feet) long, and 156 meters (510 ft / 528 Roman feet) wide, with a base area of 6 acres (24,000 m2). The height of the outer wall is 48 meters (157 ft / 165 Roman feet). The perimeter originally measured 545 meters (1,788 ft / 1,835 Roman feet). The central arena is an oval 87 m (287 ft) long and 55 m (180 ft) wide, surrounded by a wall 5 m (15 ft) high, above which rose tiers of seating.

The outer wall is estimated to have required over 100,000 cubic meters (131,000 cu yd) of travertine stone which were set without mortar held together by 300 tons of iron clamps.[12] However, it has suffered extensive damage over the centuries, with large segments having collapsed following earthquakes. The north side of the perimeter wall is still standing; the distinctive triangular brick wedges at each end are modern additions, having been constructed in the early 19th century to shore up the wall. The remainder of the present-day exterior of the Colosseum is in fact the original interior wall.

The surviving part of the outer wall's monumental façade comprises three stories of superimposed arcades surmounted by a podium on which stands a tall attic, both of which are pierced by windows interspersed at regular intervals. The arcades are framed by half-columns of the Tuscan, Ionic, and Corinthian orders, while the attic is decorated with Corinthian pilasters.[21] Each of the arches in the second- and third-floor arcades framed statues, probably honoring divinities and other figures from Classical mythology.

Two hundred and forty mast corbels were positioned around the top of the attic. They originally supported a retractable awning, known as the velarium, that kept the sun and rain off spectators. This consisted of a canvas-covered, net-like structure made of ropes, with a hole in the center.[3] It covered two-thirds of the arena, and sloped down towards the center to catch the wind and provide a breeze for the audience. Sailors, specially enlisted from the Roman naval headquarters at Misenum and housed in the nearby Castra Misenatium, were used to work the velarium.[22]

The Colosseum's huge crowd capacity made it essential that the venue could be filled or evacuated quickly. Its architects adopted solutions very similar to those used in modern stadiums to deal with the same problem. The amphitheatre was ringed by eighty entrances at ground level, 76 of which were used by ordinary spectators.[3] Each entrance and exit was numbered, as was each staircase. The northern main entrance was reserved for the Roman Emperor and his aides, whilst the other three axial entrances were most likely used by the elite. All four axial entrances were richly decorated with painted stucco reliefs, of which fragments survive. Many of the original outer entrances have disappeared with the collapse of the perimeter wall, but entrances XXIII (23) to LIV (54) still survive.[12]

Spectators were given tickets in the form of numbered pottery shards, which directed them to the appropriate section and row. They accessed their seats via vomitoria (singular vomitorium), passageways that opened into a tier of seats from below or behind. These quickly dispersed people into their seats and, upon conclusion of the event or in an emergency evacuation, could permit their exit within only a few minutes. The name vomitoria derived from the Latin word for a rapid discharge, from which English derives the word vomit.

Interior

According to the Codex-Calendar of 354, the Colosseum could accommodate 87,000 people, although modern estimates put the figure at around 50,000. They were seated in a tiered arrangement that reflected the rigidly stratified nature of Roman society. Special boxes were provided at the north and south ends respectively for the Emperor and the Vestal Virgins, providing the best views of the arena. Flanking them at the same level was a broad platform or podium for the senatorial class, who were allowed to bring their own chairs. The names of some 5th century senators can still be seen carved into the stonework, presumably reserving areas for their use.

The tier above the senators, known as the maenianum primum, was occupied by the non-senatorial noble class or knights (equites). The next level up, the maenianum secundum, was originally reserved for ordinary Roman citizens (plebians) and was divided into two sections. The lower part (the immum) was for wealthy citizens, while the upper part (the summum) was for poor citizens. Specific sectors were provided for other social groups: for instance, boys with their tutors, soldiers on leave, foreign dignitaries, scribes, heralds, priests and so on. Stone (and later marble) seating was provided for the citizens and nobles, who presumably would have brought their own cushions with them. Inscriptions identified the areas reserved for specific groups.

Another level, the maenianum secundum in legneis, was added at the very top of the building during the reign of Domitian. This comprised a gallery for the common poor, slaves and women. It would have been either standing room only, or would have had very steep wooden benches. Some groups were banned altogether from the Colosseum, notably gravediggers, actors and former gladiators.

Each tier was divided into sections (maeniana) by curved passages and low walls (praecinctiones or baltei), and were subdivided into cunei, or wedges, by the steps and aisles from the vomitoria. Each row (gradus) of seats was numbered, permitting each individual seat to be exactly designated by its gradus, cuneus, and number.

The arena itself was 83 meters by 48 meters (272 ft by 157 ft / 280 by 163 Roman feet).[12] It comprised a wooden floor covered by sand (the Latin word for sand is harena or arena), covering an elaborate underground structure called the hypogeum (literally meaning "underground"). Little now remains of the original arena floor, but the hypogeum is still clearly visible. It consisted of a two-level subterranean network of tunnels and cages beneath the arena where gladiators and animals were held before contests began. Eighty vertical shafts provided instant access to the arena for caged animals and scenery pieces concealed underneath; larger hinged platforms, called hegmata, provided access for elephants and the like. It was restructured on numerous occasions; at least twelve different phases of construction can be seen.[12]

The hypogeum was connected by underground tunnels to a number of points outside the Colosseum. Animals and performers were brought through the tunnel from nearby stables, with the gladiators' barracks at the Ludus Magnus to the east also being connected by tunnels. Separate tunnels were provided for the Emperor and the Vestal Virgins to permit them to enter and exit the Colosseum without needing to pass through the crowds.[12]

Substantial quantities of machinery also existed in the hypogeum. Elevators and pulleys raised and lowered scenery and props, as well as lifting caged animals to the surface for release. There is evidence for the existence of major hydraulic mechanisms[12] and according to ancient accounts, it was possible to flood the arena rapidly, presumably via a connection to a nearby aqueduct.

The Colosseum and its activities supported a substantial industry in the area. In addition to the amphitheatre itself, many other buildings nearby were linked to the games. Immediately to the east is the remains of the Ludus Magnus, a training school for gladiators. This was connected to the Colosseum by an underground passage, to allow easy access for the gladiators. The Ludus Magnus had its own miniature training arena, which was itself a popular attraction for Roman spectators. Other training schools were in the same area, including the Ludus Matutinus (Morning School), where fighters of animals were trained, plus the Dacian and Gallic Schools.

Also nearby were the Armamentarium, comprising an armory to store weapons; the Summum Choragium, where machinery was stored; the Sanitarium, which had facilities to treat wounded gladiators; and the Spoliarium, where bodies of dead gladiators were stripped of their armor and disposed of.

Around the perimeter of the Colosseum, at a distance of 18 m (59 ft) from the perimeter, was a series of tall stone posts, with five remaining on the eastern side. Various explanations have been advanced for their presence; they may have been a religious boundary, or an outer boundary for ticket checks, or an anchor for the velarium or awning.

Right next to the Colosseum is also the Arch of Constantine.

he Colosseum was used to host gladiatorial shows as well as a variety of other events. The shows, called munera, were always given by private individuals rather than the state. They had a strong religious element but were also demonstrations of power and family prestige, and were immensely popular with the population. Another popular type of show was the animal hunt, or venatio. This utilized a great variety of wild beasts, mainly imported from Africa and the Middle East, and included creatures such as rhinoceros, hippopotamuses, elephants, giraffes, aurochs, wisents, barbary lions, panthers, leopards, bears, caspian tigers, crocodiles and ostriches. Battles and hunts were often staged amid elaborate sets with movable trees and buildings. Such events were occasionally on a huge scale; Trajan is said to have celebrated his victories in Dacia in 107 with contests involving 11,000 animals and 10,000 gladiators over the course of 123 days.

During the early days of the Colosseum, ancient writers recorded that the building was used for naumachiae (more properly known as navalia proelia) or simulated sea battles. Accounts of the inaugural games held by Titus in AD 80 describe it being filled with water for a display of specially trained swimming horses and bulls. There is also an account of a re-enactment of a famous sea battle between the Corcyrean (Corfiot) Greeks and the Corinthians. This has been the subject of some debate among historians; although providing the water would not have been a problem, it is unclear how the arena could have been waterproofed, nor would there have been enough space in the arena for the warships to move around. It has been suggested that the reports either have the location wrong, or that the Colosseum originally featured a wide floodable channel down its central axis (which would later have been replaced by the hypogeum).[12]

Sylvae or recreations of natural scenes were also held in the arena. Painters, technicians and architects would construct a simulation of a forest with real trees and bushes planted in the arena's floor. Animals would be introduced to populate the scene for the delight of the crowd. Such scenes might be used simply to display a natural environment for the urban population, or could otherwise be used as the backdrop for hunts or dramas depicting episodes from mythology. They were also occasionally used for executions in which the hero of the story — played by a condemned person — was killed in one of various gruesome but mythologically authentic ways, such as being mauled by beasts or burned to death.

The Colosseum today is now a major tourist attraction in Rome with thousands of tourists each year paying to view the interior arena, though entrance for EU citizens is partially subsidised, and under-18 and over-65 EU citizens' entrances are free.[24] There is now a museum dedicated to Eros located in the upper floor of the outer wall of the building. Part of the arena floor has been re-floored. Beneath the Colosseum, a network of subterranean passageways once used to transport wild animals and gladiators to the arena opened to the public in summer 2010.[25]

The Colosseum is also the site of Roman Catholic ceremonies in the 20th and 21st centuries. For instance, Pope Benedict XVI leads the Stations of the Cross called the Scriptural Way of the Cross (which calls for more meditation) at the Colosseum[26][27] on Good Fridays.

In the Middle Ages, the Colosseum was clearly not regarded as a sacred site. Its use as a fortress and then a quarry demonstrates how little spiritual importance was attached to it, at a time when sites associated with martyrs were highly venerated. It was not included in the itineraries compiled for the use of pilgrims nor in works such as the 12th century Mirabilia Urbis Romae ("Marvels of the City of Rome"), which claims the Circus Flaminius — but not the Colosseum — as the site of martyrdoms. Part of the structure was inhabited by a Christian order, but apparently not for any particular religious reason.

It appears to have been only in the 16th and 17th centuries that the Colosseum came to be regarded as a Christian site. Pope Pius V (1566–1572) is said to have recommended that pilgrims gather sand from the arena of the Colosseum to serve as a relic, on the grounds that it was impregnated with the blood of martyrs. This seems to have been a minority view until it was popularised nearly a century later by Fioravante Martinelli, who listed the Colosseum at the head of a list of places sacred to the martyrs in his 1653 book Roma ex ethnica sacra.

Martinelli's book evidently had an effect on public opinion; in response to Cardinal Altieri's proposal some years later to turn the Colosseum into a bullring, Carlo Tomassi published a pamphlet in protest against what he regarded as an act of desecration. The ensuing controversy persuaded Pope Clement X to close the Colosseum's external arcades and declare it a sanctuary, though quarrying continued for some time.

At the instance of St. Leonard of Port Maurice, Pope Benedict XIV (1740–1758) forbade the quarrying of the Colosseum and erected Stations of the Cross around the arena, which remained until February 1874. St. Benedict Joseph Labre spent the later years of his life within the walls of the Colosseum, living on alms, prior to his death in 1783. Several 19th century popes funded repair and restoration work on the Colosseum, and it still retains a Christian connection today. Crosses stand in several points around the arena and every Good Friday the Pope leads a Via Crucis procession to the amphitheatre.

 

Coliseu (Colosseo)

A seguir, um texto, em português, da Wikipédia, a enciclopédia livre:

 

O Coliseu, também conhecido como Anfiteatro Flaviano, deve seu nome à expressão latina Colosseum (ou Coliseus, no latim tardio), devido à estátua colossal de Nero, que ficava perto a edificação. Localizado no centro de Roma, é uma excepção de entre os anfiteatros pelo seu volume e relevo arquitectónico. Originalmente capaz de albergar perto de 50 000 pessoas, e com 48 metros de altura, era usado para variados espetáculos. Foi construído a leste do fórum romano e demorou entre 8 a 10 anos a ser construído.

O Coliseu foi utilizado durante aproximadamente 500 anos, tendo sido o último registro efetuado no século VI da nossa era, bastante depois da queda de Roma em 476. O edifício deixou de ser usado para entretenimento no começo da era medieval, mas foi mais tarde usado como habitação, oficina, forte, pedreira, sede de ordens religiosas e templo cristão.

Embora esteja agora em ruínas devido a terremotos e pilhagens, o Coliseu sempre foi visto como símbolo do Império Romano, sendo um dos melhores exemplos da sua arquitectura. Actualmente é uma das maiores atrações turísticas em Roma e em 7 de julho de 2007 foi eleita umas das "Sete maravilhas do mundo moderno". Além disso, o Coliseu ainda tem ligações à igreja, com o Papa a liderar a procissão da Via Sacra até ao Coliseu todas as Sextas-feiras Santas.

O coliseu era um local onde seriam exibidos toda uma série de espectáculos, inseridos nos vários tipos de jogos realizados na urbe. Os combates entre gladiadores, chamados muneras, eram sempre pagos por pessoas individuais em busca de prestígio e poder em vez do estado. A arena (87,5 m por 55 m) possuía um piso de madeira, normalmente coberto de areia para absorver o sangue dos combates (certa vez foi colocada água na representação de uma batalha naval), sob o qual existia um nível subterrâneo com celas e jaulas que tinham acessos diretos para a arena; Alguns detalhes dessa construção, como a cobertura removível que poupava os espectadores do sol, são bastante interessantes, e mostram o refinamento atingido pelos construtores romanos. Formado por cinco anéis concêntricos de arcos e abóbadas, o Coliseu representa bem o avanço introduzido pelos romanos à engenharia de estruturas. Esses arcos são de concreto (de cimento natural) revestidos por alvenaria. Na verdade, a alvenaria era construída simultaneamente e já servia de forma para a concretagem. Outro tipo de espetáculos era a caça de animais, ou venatio, onde eram utilizados animais selvagens importados de África. Os animais mais utilizados eram os grandes felinos como leões, leopardos e panteras, mas animais como rinocerontes, hipopótamos, elefantes, girafas, crocodilos e avestruzes eram também utilizados. As caçadas, tal como as representações de batalhas famosas, eram efetuadas em elaborados cenários onde constavam árvores e edifícios amovíveis.

Estas últimas eram por vezes representadas numa escala gigante; Trajano celebrou a sua vitória em Dácia no ano 107 com concursos envolvendo 11 000 animais e 10 000 gladiadores no decorrer de 123 dias.

Segundo o documentário produzido pelo canal televisivo fechado, History Channel, o Coliseu também era utilizado para a realização de naumaquias, ou batalhas navais. O coliseu era inundado por dutos subterrâneos alimentados pelos aquedutos que traziam água de longe. Passada esta fase, foi construída uma estrutura, que é a que podemos ver hoje nas ruínas do Coliseu, com altura de um prédio de dois andares, onde no passado se concentravam os gladiadores, feras e todo o pessoal que organizava os duelos que ocorreriam na arena. A arena era como um grande palco, feito de madeira, e se chama arena, que em italiano significa areia, porque era jogada areia sob a estrutura de madeira para esconder as imperfeições. Os animais podiam ser inseridos nos duelos a qualquer momento por um esquema de elevadores que surgiam em alguns pontos da arena; o filme "Gladiador" retrata muito bem esta questão dos elevadores. Os estudiosos, há pouco tempo, descobriram uma rede de dutos inundados por baixo da arena do Coliseu. Acredita-se que o Coliseu foi construído onde, outrora, foi o lago do Palácio Dourado de Nero; O imperador Vespasiano escolheu o local da construção para que o mal causado por Nero fosse esquecido por uma construção gloriosa.

Sylvae, ou recreações de cenas naturais eram também realizadas no Coliseu. Pintores, técnicos e arquitectos construiriam simulações de florestas com árvores e arbustos reais plantados no chão da arena. Animais seriam então introduzidos para dar vida à simulação. Esses cenários podiam servir só para agrado do público ou como pano de fundo para caçadas ou dramas representando episódios da mitologia romana, tão autênticos quanto possível, ao ponto de pessoas condenadas fazerem o papel de heróis onde eram mortos de maneiras horríveis mas mitologicamente autênticas, como mutilados por animais ou queimados vivos.

Embora o Coliseu tenha funcionado até ao século VI da nossa Era, foram proibidos os jogos com mortes humanas desde 404, sendo apenas massacrados animais como elefantes, panteras ou leões.

O Coliseu era sobretudo um enorme instrumento de propaganda e difusão da filosofia de toda uma civilização, e tal como era já profetizado pelo monge e historiador inglês Beda na sua obra do século VII "De temporibus liber": "Enquanto o Coliseu se mantiver de pé, Roma permanecerá; quando o Coliseu ruir, Roma ruirá e quando Roma cair, o mundo cairá".

A construção do Coliseu foi iniciada por Vespasiano, nos anos 70 da nossa era. O edifício foi inaugurado por Tito, em 80, embora apenas tivesse sido finalizado poucos anos depois. Empresa colossal, este edifício, inicialmente, poderia sustentar no seu interior cerca de 50 000 espectadores, constando de três andares. Aquando do reinado de Alexandre Severo e Gordiano III, é ampliado com um quarto andar, podendo suster agora cerca de 90 000 espectadores. A grandiosidade deste monumento testemunha verdadeiramente o poder e esplendor de Roma na época dos Flávios.

Os jogos inaugurais do Coliseu tiveram lugar ano 80, sob o mandato de Tito, para celebrar a finalização da construção. Depois do curto reinado de Tito começar com vários meses de desastres, incluindo a erupção do Monte Vesúvio, um incêndio em Roma, e um surto de peste, o mesmo imperador inaugurou o edifício com uns jogos pródigos que duraram mais de cem dias, talvez para tentar apaziguar o público romano e os deuses. Nesses jogos de cem dias terão ocorrido combates de gladiadores, venationes (lutas de animais), execuções, batalhas navais, caçadas e outros divertimentos numa escala sem precedentes.

O Coliseu, como não se encontrava inserido numa zona de encosta, enterrado, tal como normalmente sucede com a generalidade dos teatros e anfiteatros romanos, possuía um “anel” artificial de rocha à sua volta, para garantir sustentação e, ao mesmo tempo, esta substrutura serve como ornamento ao edifício e como condicionador da entrada dos espectadores. Tal como foi referido anteriormente, possuía três pisos, sendo mais tarde adicionado um outro. É construído em mármore, pedra travertina, ladrilho e tufo (pedra calcária com grandes poros). A sua planta elíptica mede dois eixos que se estendem aproximadamente de 190 m por 155 m. A fachada compõe-se de arcadas decoradas com colunas dóricas, jónicas e coríntias, de acordo com o pavimento em que se encontravam. Esta subdivisão deve-se ao facto de ser uma construção essencialmente vertical, criando assim uma diversificação do espaço.

 

Os assentos eram em mármore e a cavea, escadaria ou arquibancada, dividia-se em três partes, correspondentes às diferentes classes sociais: o podium, para as classes altas; as maeniana, sector destinado à classe média; e os portici, ou pórticos, construídos em madeira, para a plebe e as mulheres. O pulvinar, a tribuna imperial, encontrava-se situada no podium e era balizada pelos assentos reservados aos senadores e magistrados. Rampas no interior do edifício facilitavam o acesso às várias zonas de onde podiam visualizar o espectáculo, sendo protegidos por uma barreira e por uma série de arqueiros posicionados numa passagem de madeira, para o caso de algum acidente. Por cima dos muros ainda são visíveis as mísulas, que sustentavam o velarium, enorme cobertura de lona destinada a proteger do sol os espectadores e, nos subterrâneos, ficavam as jaulas dos animais, bem como todas as celas e galerias necessárias aos serviços do anfiteatro.

O monumento permaneceu como sede principal dos espetáculos da urbe romana até ao período do imperador Honorius, no século V. Danificado por um terremoto no começo do mesmo século, foi alvo de uma extensiva restauração na época de Valentinianus III. Em meados do século XIII, a família Frangipani transformou-o em fortaleza e, ao longo dos séculos XV e XVI, foi por diversas vezes saqueado, perdendo grande parte dos materiais nobres com os quais tinha sido construído.

Os relatos romanos referem-se a cristãos sendo martirizados em locais de Roma descritos pouco pormenorizadamente (no anfiteatro, na arena...), quando Roma tinha numerosos anfiteatros e arenas. Apesar de muito provavelmente o Coliseu não ter sido utilizado para martírios, o Papa Bento XIV consagrou-o no século XVII à Paixão de Cristo e declarou-o lugar sagrado. Os trabalhos de consolidação e restauração parcial do monumento, já há muito em ruínas, foram feitos sobretudo pelos pontífices Gregório XVI e Pio IX, no século XIX.

The Chance Vought F4U Corsair was a carrier-capable fighter aircraft that saw service primarily in World War II and the Korean War. Demand for the aircraft soon overwhelmed Vought's manufacturing capability, resulting in production by Goodyear and Brewster: Goodyear-built Corsairs were designated FG and Brewster-built aircraft F3A. From the first prototype delivery to the U.S. Navy in 1940, to final delivery in 1953 to the French, 12,571 F4U Corsairs were manufactured by Vought, in 16 separate models, in the longest production run of any piston-engined fighter in U.S. history (1942–1953).

 

The Corsair served in the U.S. Navy, U.S. Marines, Fleet Air Arm and the Royal New Zealand Air Force, as well as the French Navy Aéronavale and other, smaller, air forces until the 1960s. It quickly became the most capable carrier-based fighter-bomber of World War II. Some Japanese pilots regarded it as the most formidable American fighter of World War II, and the U.S. Navy counted an 11:1 kill ratio with the F4U Corsair. As well as being an outstanding fighter, the Corsair proved to be an excellent fighter-bomber, serving almost exclusively in the latter role throughout the Korean War and during the French colonial wars in Indochina and Algeria.

 

Wings over Camarillo Air Show (Camarillo, CA)

 

www.willmoneymaker.com

C.S. SOVEREIGN

C.S. Sovereign is a multi-role DPS-2 vessel capable of undertaking both cable maintenance and installation projects. Her open deck enables her to deploy a variety of subsea vehicles and her powered turntables make her the ideal solution for a diverse range of offshore engineering activities. C.S. Sovereign is primarily committed to serving ACMA, the Atlantic Cable Maintenance Agreement, and is based in Portland, UK.

 

C.S. Sovereign has been involved in many projects as well as being used as a charter vessel. Her accomplishments include: installation and burial of 30km of inter platform cable on the Fibre to Judy project in 2010 and completing the main lay installation operation, utilising the Atlas ROV and Cable Plough on the ValHall Clyde project.

 

Vessel

BuildersVan Der Giessen, Netherlands

Date built1991

FlagUK

ClassABS, A1, Ice Class 1C, AMS, ACCU DPS-2

Length overall130.70m

Breadth moulded21.00m

Designed draft7.014m

Gross tonnage11,242t

Maximum speed13.5kts

Main engines3

Bow thruster2

Stern thruster2

DP systemDPS-2 Duplex C-Series

Berths78

Bollard pull80t

Fuel

Fuel capacity1,108t MGO​

Communications

1 x VSAT SEATEL 4006, MTN Service Contract on KU Band

2 x Satcom B

Cable Tanks

Main cable tanks2 x 2,300t powered turntables installed in C/Tks 1 & 3. Basket height 5.50m

Outer diameter15.20m

Cone external diameter6.00m

Maximum load per tank2,200t

Wing tanks2

Internal diameter6.60m

Cone outer diameter2.45m

Maximum load per tank432t

 

While the C-141A Starlifter had done well in the 1960s, especially in supply efforts over Vietnam, the aircraft had one glaring problem: it would “bulk out” before it reached its projected payload weight: the fuselage would be full, but the aircraft was capable of carrying more. In response to this and the C-141’s need for fueling stops on long trips, the USAF began upgrading the C-141A fleet to C-141B standard.

 

By adding two plugs fore and aft of the wings, the fuselage was stretched 23 feet. While the Starlifter was still incapable of carrying oversize loads, it now could carry up to its full weight. Inflight refuelling capability was also added. All surviving C-141As were upgraded between 1977 and 1982 to B standard, essentially adding 90 new C-141s to the fleet without building new aircraft. With the C-5B Galaxy also entering service, the C-141B gave the USAF unmatched air transport capability, something that would be very useful in time of war. Its first wartime service would be Operation Desert Shield, the buildup to the First Gulf War of 1991. Starlifters carried nearly half of all payloads delivered to the Southwest Asia theater.

 

The 1990s would see the most use of the aircraft, especially over the wartorn former nations of Yugoslavia. During NATO efforts to resupply Bosnian towns cut off by Serbian forces, C-141s were flown from Rhein-Main airbase at low level over Bosnia, where cargo pallets were dropped from the rear filled with food. As these pallets could cause damage when they hit the ground, the pallets were replaced by food boxes tied together: these boxes would break apart in midair and float down on individual parachutes. These “food bombs” would be used later in other areas where the C-141 was unable to land. Other Rhein-Main based Starlifters made the trip into the Bosnian capital of Sarajevo, the airport of which was considered one of the most dangerous spots on earth, constantly subject to mortar and sniper fire, and required a diving approach to avoid being shot at by Serbian antiaircraft units posted in the mountains around the airport. C-141s and other NATO transports kept the city alive during its three-year siege, which finally ended in 1995.

 

In response to this, 13 C-141Bs were modified to SOLL II standard, with low-light vision equipment, GPS, and defensive chaff/flare countermeasures, for operations over high-threat areas or in conjunction with Special Forces units. Later, about a third of the lowest-timed Starlifters were modified to C-141C standard, with a new “glass” cockpit and upgraded avionics.

 

Despite the upgrade, the days of the C-141 were numbered. It was getting old, and wing cracks had begun to appear on older aircraft. As the C-17 Globemaster III was now coming into service, Starlifters began to be retired. The C-141Cs soldiered on long enough to be used in Afghanistan and Iraq, where they finally used their paratroop-carrying capability in combat, dropping elements of the 101st Airborne Division near Tikrit in northern Iraq. After 2004, the Starlifter was retired from active units and passed on to Air National Guard and Reserve units; the last eight operational C-141s were used to shuttle supplies into New Orleans after the Hurricane Katrina disaster of 2005. This was the Starlifter’s swan song, as after this operation ended the C-141 finally left USAF service after forty years of service. Of 285 aircraft, 19 were lost in accidents; 13 are preserved in museums.

 

The most famous C-141 ever flown, 66-0177 is known better by its nickname--the "Hanoi Taxi." First assigned as a C-141A to the 63rd Military Airlift Wing at Norton AFB, California, 66-0177 was a regular visitor to Southeast Asia on transport missions. A month after the Paris Peace Accords were signed, North Vietnam began the release of American prisoners of war held at the infamous "Hanoi Hilton"--in some cases, since 1965. 66-0177 was the first to land at Hanoi to pick up the first batch of 80 POWs, and as such became the first bit of America to welcome the prisoners home. Though only one of almost a dozen C-141s that brought POWs out of North Vietnam, 66-0177 was the first, and thus became dubbed the Hanoi Taxi.

 

Long after the Vietnam War was over, 66-0177 remained in service. In the early 1980s, it was stretched and became a C-141B, and was eventually assigned to the 445th Airlift Wing (USAF Reserve), based at Wright-Patterson AFB, Ohio; in the early 1990s, it received the C-141C upgrade. As the Taxi closed in on the end of her service life, she was repainted from her AMC Gray scheme to the older Military Airlift Command colors to commemorate the aircraft's history. As such, the Taxi became something of a touchstone and living history museum for former Vietnam POWs. In 2004, the Taxi made one final trip to Hanoi, this time to pick up the remains of two American servicemembers once listed as missing in action. Finally, in May 2006, it was retired and made the short flight from the main part of Wright-Patterson to the National Museum of the USAF.

 

Today the Hanoi Taxi sits in the Experimental Aircraft and Transport Gallery at the NMUSAF. As mentioned above, it carries the old white-over-gray MAC scheme, complete with MAC stripe on the tail (though it reads "AFRC" for Air Force Reserve Command). The aircraft is open to the public to tour the cavernous cargo bay, as well as see the signatures of POWs who signed the interior.

This animal is widely domesticated, and has been used in forestry in South and Southeast Asia for centuries and also in ceremonial purposes. Historical sources indicate that they were sometimes used during the harvest season primarily for milling. Wild elephants attract tourist money to the areas where they can most readily be seen, but damage crops, and may enter villages to raid gardens.

 

The Asian Elephant is slightly smaller than its African relatives; the easiest way to distinguish the two is that the Asian elephant has smaller ears. The Asian Elephant tends to grow to around two to four meters (7–12 feet) in height and 3,000–5,000 kilograms (6,500–11,000 pounds) in weight.

 

The Asian Elephant has other differences from its African relatives, including a more arched back than the African, one semi-prehensile "finger" at the tip of its trunk as opposed to two, four nails on each hind foot instead of three, and 19 pairs of ribs instead of 21. Also, unlike the African Elephant, the female Asian Elephant usually lacks tusks; if tusks — in that case called "tushes" — are present, they are barely visible, and only seen when the female opens her mouth. The enamel plates of the molars are greater in number and closer together in Asian elephants.

Some males may also lack tusks; these individuals are called "makhnas", and are especially common among the Sri Lankan elephant population. Furthermore, the forehead has two hemispherical bulges, unlike the flat front of the African elephant. Unlike African elephants which rarely use their forefeet for anything other than digging or scraping soil, Asian elephants are more agile at using their feet in conjunction with the trunk for manipulating objects. The Asian elephant also has very thin eyes and a yellow hide in the summer.The sizes of elephants in the wild have been exaggerated in the past. However, record elephants may have measured as high as 12 feet (3.7 m) at the shoulder. Height is often estimated using the rule of thumb of twice the forefoot circumference.The height of the adult male usually does not exceed nine feet, and that of the female eight feet; but these dimensions are occasionally considerably exceeded. George P. Sanderson measured a male standing nine feet seven inches at the shoulder, and measuring twenty-six feet two and one-half inches from the tip of the trunk to the extremity of the tail; and he records others respectively reaching nine feet eight inches and nine feet ten inches at the shoulder. An elephant shot by General Kinloch stood upward of ten feet one inch; and another measured by Sanderson ten feet seven and one-half inches. These dimensions are, however, exceeded by a specimen killed by the late Sir Victor Brooke, which is reported to have reached a height of eleven feet: and there is a rumor of a Ceylon elephant of twelve feet. That such giants may occasionally exist is indicated by a skeleton in the Museum at Calcutta, which is believed to have belonged to an individual living between 1856 and 1860 in the neighborhood of the Rajamahal hills, in Bengal. As now mounted this enormous skeleton stands eleven feet three inches at the shoulders, but Mr. O. S. Fraser, in a letter to the Asian newspaper, states that it is made to stand too low, and that its true height was several inches more. If this be so, there can be no doubt that, when alive, this elephant must have stood fully twelve feet.

 

A record tusk described by George P. Sanderson measured five feet along the curve, with a girth of sixteen inches (406 mm) at the point of emergence from the jaw, the weight being one hundred and four and one-half pounds. This was from an elephant killed by Sir V. Brooke and measured eight feet in length, and nearly seventeen inches in circumference, and weighed ninety pounds. This tusk's weight is, however, exceeded by [the weight of] a shorter tusk of about six feet in length which weighed one hundred pounds.The heaviest wild male recorded was shot by the Maharajah of Susang in the Garo Hills of Assam, India in 1924, and was 8 tonnes (8.8 short tons), 3.35 m (11.1 ft) tall and 8.06 m (26.6 ft) long.In the wild, elephant herds follow well-defined seasonal migration routes. These are made around the monsoon seasons, often between the wet and dry zones, and it is the task of the eldest elephant to remember and follow the traditional migration routes. When human farms are founded along these old routes there is often considerable damage done to crops, and it is common for elephants to be killed in the ensuing conflicts. The adult Asian Elephant has no natural predators, but young elephants may fall prey to tigers.

  

A herd of wild Indian elephants in the Jim Corbett National Park, India.Elephants life spans have been exaggerated in the past and live on average for 60 years in the wild and 80 in captivity. They eat 10% of their body weight each day, which for adults is between 170-200 kilograms of food per day. They need 80–200 litres of water a day, and use more for bathing. They sometimes scrape the soil for minerals.

 

Elephants use infrasound to communicate; this was first noted by the Indian naturalist M. Krishnan and later studied by Katherine Payne.

 

Bull elephants are usually solitary, and fight over females during the breeding season. Younger bulls may form small groups. Males reach sexual maturity during their 15th year, after which they annually enter "musth". This is a period where the testosterone level is high (up to 60 times greater) and they become extremely aggressive. Secretions containing pheromones occur during this period, from the temporal glands on the forehead.

 

Female elephants live in small groups. They have a matriarchal society, and the group is led by the oldest female. The herd consists of relatives. An individual reaches sexual maturity at 9-15 years of age. The gestation period is 18–22 months, and the female gives birth to one calf, or occasionally twins. The calf is fully developed by the 19th month but stays in the womb to grow so that it can reach its mother to feed. At birth, the calf weighs about 100 kg (220 lb), and is suckled for up to 2–3 years. Females stay on with the herd, but mature males are chased away.

 

Females produce sex pheromones; a principal component thereof, (Z)-7-dodecen-1-yl acetate, has also been found to be a sex pheromone in numerous species of insects.

At most seasons of the year the Indian elephant is a timid animal, much more ready to flee from a foe than to make an attack. Solitary rogues are, however, frequently an exception to this rule, and sometimes make unprovoked attacks on passers-by. Rogue elephant sometimes take up a position near a road, and make it impassable to travellers. Females with calves are at all times dangerous to approach. Contrary to what is stated to be the case with the African species, when an Indian elephant makes a charge, it does so with its trunk tightly curled up, and it makes its attack by trampling its victim with its feet or knees, or, if a male, by pinning it to the ground with its tusks. During musth the male elephant is highly dangerous, not only to human beings, but to its fellow animals. At the first indications of this, domestic elephants are secured tightly to prevent any mishaps; xylazine is also used.While elephant charges are often displays of aggression that do not go beyond threats, some elephants, such as rogues, may actually attack.

 

In regard to movement on land, Mr. Sanderson says that "the only pace of the elephant is the walk, capable of being increased to a fast shuffle of about fifteen miles (24 km) an hour for very short distances. It can neither trot, canter, nor gallop. It does not move with the legs on the same side together, but nearly so. A very good runner might keep out of an elephant's way on a smooth piece of turf, but on the ground in which they are generally met with, any attempt to escape by flight, unless supplemented by concealment, would be unavailing."

When an elephant does charge, it requires all the coolness and presence of mind of the sportsman to avoid a catastrophe- "A grander animated object," writes Mr. Sanderson, "than a wild elephant in full charge can hardly be imagined. The cocked ears and broad forehead present an immense frontage; the head is held high, with the trunk curled between the tusks, to be uncoiled in the moment of attack; the massive fore-legs come down with the force and regularity of ponderous machinery; and the whole figure is rapidly foreshortened, and appears to double in size with each advancing stride. The trunk being curled and unable to emit any sound, the attack is made in silence, after the usual premonitory shriek, which adds to its impressiveness. The usual pictorial representations of the Indian elephant charging with upraised trunk are accordingly quite incorrect."

Elephants have been captured from the wild and tamed for use by humans. Their ability to work under instruction makes them particularly useful for carrying heavy objects. They have been used particularly for timber-carrying in jungle areas. Other than their work use, they have been used in war, in ceremonies, and for carriage. They have been used for their ability to travel over difficult terrain by hunters, for whom they served as mobile hunting platforms. The same purpose is met in safaris in modern times.

 

The first historical record of domestication of Asian elephants was in Harappan times. Ultimately the elephant went on to become a siege engine, a mount in war, a status symbol, a work animal, and an elevated platform for hunting during historical times in South Asia.

The elephant plays an important part in the culture of the subcontinent and beyond, featuring prominently in Jataka tales and the Panchatantra. It plays a major role in Hinduism: the god Ganesha's head is that of an elephant, and the "blessings" of a temple elephant are highly valued. Elephants have been used in processions in Kerala where the animals are adorned with festive outfits. They were also used by almost all armies in India as war elephants, terrifying opponents unused to the massive beast.

  

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!

 

The Indian HAL HG-30 Bāja (‘Hawk’) had been designed and manufactured by Hindustan Aeronautics Ltd. in the early 60ies, when it became clear that the Indian Air Force was left without a capable and rather simple aircraft for these roles - the “jet age” had been in full development, but fast and large aircraft like the Su-7 or Hawker Hunter were just not suited for low-altitude missions against day and night visible ground targets in a broad area.

 

Indian military planners assumed that potential aggressor will first disable airfields, so the Bāja was designed to take-off from short unprepared runways, and it was readily available to be loaded with weapons and supplied through a flexible system of auxiliary airfields that required no special preparations, especially in mountainous regions.

 

The resulting HG-30 Bāja was a light, single-engine, low-wing single-seat aircraft with a metal airframe, capable of performing close air support, counter insurgency (COIN), and reconnaissance missions. The type featured a license-built Rolls Royce Dart turboprop engine and a reinforced, retractable tricycle landing gear for operations on rugged terrain. The unpressurized cockpit was placed as far forward and high as possible, offering the pilot an excellent view. The ejection seat was armored and the cockpit lined with nylon flak curtains.

The first HG-30 prototype flew in February 1962, and a total of 89 examples of the Bāja were built between 1963 and 1965, including two pre-production aircraft. These introduced some improvements like fixed wingtip tanks, a bulged canopy which improved the rear view or self-sealing and foam-filled fuselage tanks.

 

Armament consisted of four fixed 20mm cannons in the wings, plus unguided missiles, unguided bombs or napalm tanks under the wings and the fuselage on a total of 11 hardpoints. The inner pair under the wings as well as the centerline pylon were able to carry 1.000 lbs each and were ‘wet’ for optional drop tanks. The next pair could carry 500 lbs each, and the outer six attachment points were reserved for missile rails or single bombs of up to 200 lbs caliber. A total external ordnance load of up to 4.500 lbs could be carried, even though this was rarely practiced since it severely hampered handling.

 

The Bāja was exclusively used by the Indian Air Force, serving with 3rd (‘Cobras’) and 5th (‘Tuskers’) Squadrons in the Eastern and Western regions, alongside Toofani and Ajeet fighter bombers. Even though there was some foreign interest (e .g. from Israel and Yugoslavia,) no export sales came to fruition.

A tandem-seated trainer version was envisaged, but never left the drawing board, since Hindustan had already developed the HJT-16 Kiran jet trainer for the IAF which was more suitable, esp. with its side-by-side cockpit. Even a maritime version with foldable outer wings, arresting hook and structural reinforcements was considered for the Indian Navy.

 

The HG-30 did not make it in time into service for the five-week Indo-Pakistani war of 1965, but later saw serious action in the course of the Bangladesh Liberation War and the ensuing next clash between India and Pakistan in December 1971, when all aircraft (originally delivered in a natural metal finish) quickly received improvised camouflage schemes.

 

The 1971 campaign settled down to series of daylight anti-airfield, anti-radar and close-support attacks by fighters, with night attacks against airfields and strategic targets, into which the HG-30s were heavily involved. Sporadic raids by the IAF continued against Pakistan's forward air bases in the West until the end of the war, and large scale interdiction and close-support operations were maintained.

The HG-30 excelled at close air support. Its straight wings allowed it to engage targets 150 MPH slower than swept-wing jet fighters. This slower speed improved shooting and bombing accuracy, enabling pilots to achieve an average accuracy of less than 40 feet, and the turboprop engine offered a much better fuel consumption than the jet engines of that era.

While it was not a fast aircraft and its pilots were a bit looked down upon by their jet pilot colleagues, the HG-30 was well liked by its crews because of its agility, stability at low speed, ease of service under field conditions and the crucial ability to absorb a lot of punishment with its rigid and simple structure.

 

After the 1971 conflict the Bāja served with the IAF without any further warfare duty until 1993, when, after the loss of about two dozen aircraft due to enemy fire and (only three) accidents, the type was completely retired and its COIN duties taken over by Mi-25 and Mi-35 helicopters, which had been gradually introduced into IAF service since 1984.

  

General characteristics

Crew: 1

Length: 10.23 m (33 ft 6¼ in)

Wingspan: 12.38 m (40 ft 7¼ in) incl. wing tip tanks

Height: 3.95 m (12 ft 11¼ in)

Empty weight: 7,689 lb (3,488 kg)

Max. take-off weight: Loaded weight: 11,652 lb (5,285 kg)

 

Powerplant:

1× Rolls Royce Dart RDa.7 turboprop engine, with 1.815 ehp (1.354 kW)/1.630 shp (1.220 kW) at 15,000 rpm

 

Performance

Maximum speed: 469 mph (755 km/h) at sea level and in clean configuration

Stall speed: 88 km/h (48 knots 55 mph)

Service ceiling: 34,000 ft (10,363 m)

Rate of climb: 5,020 ft/min (25.5 m/s)

Range: 1,385 miles (2,228 km) at max. take-off weight

 

Armament:

4× 20mm cannons (2 per wing) with 250 RPG

A total of 11 underwing and fuselage hardpoints with a capacity of 4.500 lbs (2.034 kg); provisions to carry combinations of general purpose or cluster bombs, machine gun pods, unguided missiles, air-to-ground rocket pods, fuel drop tanks, and napalm tanks.

     

The kit and its assembly

This fictional COIN aircraft came to be when I stumbled across the vintage Heller Breguet Alizé kit in 1:100 scale. I did some math and came to the conclusion that the kit would make a pretty plausible single-seat propeller aircraft in 1:72...

 

Finding a story and a potential user was more of a challenge. I finally settled on India – not only because the country had and has a potent aircraft industry, a COIN aircraft (apart from obsolete WWII types) would have matched well into the IAF in the early 70ies. Brazil was another manufacturer candidate – but then I had the vision of Indian Su-7 and their unique camouflage scheme, and this was what the kit was to evolve to! Muahahah!

 

What started as a simple adaptation idea turned into a true Frankenstein job, because only little was left from the Heller Alizé – the kit is SO crappy…

 

What was thrown into the mix:

• Fuselage, rudder and front wheel doors from the Heller Alizé

• Horizontal stabilizers from an Airfix P-51 Mustang

• Wings are the outer parts from an Airfix Fw 189, clipped and with new landing gear wells

• Landing gear comes from a Hobby Boss F-86, the main wheels from the scrap box

• Cockpit tub comes from a Heller Alpha Jet, seat and pilot from the scrap box

• The canopy comes from a Hobby Boss F4U Corsair

• Ordnance hardpoints were cut from styrene strips

• Propeller consists of a spinner from a Matchbox Mitsubishi Zero and blades from two AH-1 tail rotors

• Ordnance was puzzled together from the scrap box; the six retarder bombs appeared appropriate, the four missile pods were built from Matchbox parts. The wingtip tanks are streamlines 1.000 lbs bombs.

 

The only major sculpting work was done around the nose, in order to make the bigger propeller fiat and to simulate an appropriate air intake for the engine. Overall this thing looks pretty goofy, rather jet-like, with the slightly swept wings. On the other side, the Bāja does not look bad at all, and it has that “Small man’s A-10” aura to it.

 

Putting the parts together only posed two trouble zones: the canopy and the wings. The Corsair canopy would more or less fit, getting it in place and shaping the spine intersection was more demanding than expected. Still not perfect, but this was a “quick and dirty” project with a poor basis, anyway, so I don’t bother much.

Another tricky thing were the wings and getting them on the fuselage. That the Fw 189 wings ended up here has a reason: the original kit provided two pairs of upper wing halves, the lower halves were lacking! Here these obsolete parts finally found a good use, even though the resulting wing is pretty thick and called for some serious putty work on the belly side… Anyway, this was still easier than trying to modify the Alizé wings into something useful, and a thick wing ain’t bad for low altitude and bigger external loads.

  

Painting and markings

As mentioned before, the garish paint scheme is inspired by IAF Su-7 fighter bombers during/after the India-Pakistani confrontation of 1971. It’s almost surreal, reason enough to use it. Since a 1:72 Su-7 takes up so much shelf space I was happy to find this smaller aircraft as a suitable placebo.

 

I used Su-7 pictures as benchmarks, and settled for the following enamels as basic tones for the upper grey, brown and green:

• Humbrol 176 (Neutral Grey, out of production), for a dull and bluish medium grey

• Testors 1583 (Rubber), a very dark, reddish brown

• Humbrol 114 (Russian Green, out of production)

 

For the lower sides I used Testors 2123 (Russian Underside Blue). The kit received a black ink wash and some dry painting for weathering/more depth. Judging real life aircraft pics of IAF Su-7 and MiG-21, the original underside tone is hardly different from the upper blue grey and it seems on some aircraft as if the upper tone had been wrapped around. The aircraft do not appear very uniform at all, anyway.

 

Together with the bright IAF roundels the result looks a bit as if that thing had been designed by 6 year old, but the livery has its charm - the thing looks VERY unique! The roundels come from a generic TL Modellbau aftermarket sheet, the tactical codes are single white letters from the same manufacturer. Other stencils, warning signs and the squadron emblem come from the scrap box – Indian aircraft tend to look rather bleak and purposeful, except when wearing war game markings...

   

In the end, a small and quick project. The model was assembled in just two days, basic painting done on the third day and decals plus some weathering and detail work on the forth – including pics. A new record, even though this one was not built for perfectionism, rather as a recycling kit with lots of stock material at hand. But overall the Bāja looks exotic and somehow quite convincing?

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!

  

Some background:

The North American FJ-4 Fury was a swept-wing carrier-capable fighter-bomber, originally developed for the United States Navy and Marine Corps. It was the final development in a lineage that included the Air Force's F-86 Sabre. The FJ-4 shared its general layout and engine with the earlier FJ-3, but featured an entirely new wing design. And it was, as a kind of final embodiment with the FJ-4B, a very different aircraft from the F-86 .

 

The first FJ-4 flew on 28 October 1954 and delivery began in February 1955. Of the original order for 221 FJ-4 fighters, the last 71 were modified into the FJ-4B fighter-bomber version, of which the Netherlands received 16 aircraft under the designation FJ-4B from the USA in the course of NATO support. Even though the main roles of the MLD were maritime patrol, anti-submarine warfare and search and rescue, the FJ-4B was a dedicated fighter-bomber, and these aircraft were to be used with the Dutch Navy’s Colossus-Class carrier HNLMS Karel Doorman (R81).

 

Compared to the lighter FJ-4 interceptor, the FJ-4B had a stronger wing with six instead of four underwing stations, a stronger landing gear and additional aerodynamic brakes under the aft fuselage. The latter made landing safer by allowing pilots to use higher thrust settings, and were also useful for dive attacks. Compared to the FJ-4, external load was doubled, and the US FJ-4Bs were capable of carrying a nuclear weapon on the inboard port station, a feature the MLD Furies lacked. The MLD aircraft were still equipped with the corresponding LABS or Low-Altitude Bombing System for accurate delivery of ordnance.

The Dutch Furies were primarily intended for anti-ship missions (toting up to five of the newly developed ASM-N-7 missiles - renamed in AGM-12B Bullpup after 1962 - plus a guidance pod) and CAS duties against coastal targets, as well as for precision strikes. In a secondary role, the FJ-4B could carry Sidewinder AAMs for interception purposes.

 

The MLD's FJ-4B became operational in 1956, just in time to enhance the firepower of the Karel Doorman, which just had its 24 WW-II era propeller driven Fairey Firefly strike fighters and Hawker Sea Fury fighter/anti-ship aircraft backed up with 14 TBF Avenger ASW/torpedo bombers and 10 Hawker Sea Hawk fighters (the MLD owned 22 of these) for an ASW/Strike profile. The Furies joined the carrier in late 1957 and replaced the piston-engined attack aircraft.

 

In 1960, during the Dutch decolonization and planned independence of Western New Guinea, a territory which was also claimed by Indonesia, the Karel Doorman set sail along with two destroyers and a modified oil tanker to 'show the flag'. In order to avoid possible problems with Indonesia's ally Egypt at the Suez Canal, the carrier instead sailed around the horn of Africa. She arrived in Fremantle, Australia, where the local seamen's union struck in sympathy with Indonesia; the crew used the propeller thrust of aircraft chained down on deck to nudge the carrier into dock without tugs! In addition to her air wing, she was ferrying twelve Hawker Hunter fighters to bolster the local Dutch defense forces, which the Karel Doorman delivered when she arrived at Hollandia, New Guinea.

 

During the 1960 crisis, Indonesia prepared for a military action named Operation Trikora (in the Indonesian language, "Tri Komando Rakyat" means "The Three Commands of the People"). In addition to planning for an invasion, the TNI-AU (Indonesian Air Forces) hoped to sink the Karel Doorman with Soviet-supplied Tupolev Tu-16KS-1 Badger naval bombers using AS-1 Kennel/KS-1 Kometa anti-ship missiles. This bomber-launched missile strike mission was cancelled on short notice, though, because of the implementation of the cease-fire between Indonesia and the Netherlands. This led to a Dutch withdrawal and temporary UN peacekeeping administration, followed by occupation and annexation through Indonesia. While the Dutch aircraft served actively during this conflict, flying patrols and demonstrating presence, visibly armed and in alert condition, no 'hot' sortie or casualty occured, even though one aircraft, 10-18, was lost in a start accident. The pilot ejected safely.

 

The MLD FJ-4Bs only served on the carrier until its overhaul in 1964, after which the carrier-borne attack role was eliminated and all aircraft were transferred to land bases (Valkenburg) or in reserve storage. The Seahawks were retired from service by the end of the 1960s after the sale of the Karel Doorman to Argentina, and the FJ-4Bs were returned to the United States, where they were re-integrated into the USMC until the end of the 1960ies, when all FJ-4 aircraft were phased out.

  

General characteristics:

Crew: 1

Length: 36 ft 4 in (11.1 m)

Wingspan: 39 ft 1 in (11.9 m)

Height: 13 ft 11 in (4.2 m)

Wing area: 338.66 ft² (31.46 m²)

Empty weight: 13,210 lb (6,000 kg)

Loaded weight: 20,130 lb (9,200 kg)

Max. take-off weight: 23,700 lb (10,750 kg)

Powerplant: 1 × Wright J65-W-16A turbojet, 7,700 lbf (34 kN)

 

Performance:

Maximum speed: 680 mph (1,090 km/h) at 35,000 ft (10,670 m)

Range: 2,020 mi (3,250 km) with 2× 200 gal (760 l) drop tanks and 2× AIM-9 missiles

Service ceiling: 46,800 ft (14,300 m)

Rate of climb: 7,660 ft/min (38.9 m/s)

Wing loading: 69.9 lb/ft² (341.7 kg/m²)

Thrust/weight: .325

 

Armament:

4× 20 mm (0.787 in) cannon

6× pylons under the wings for 3,000 lb (1,400 kg) external ordnance, including up to 6× AIM-9 Sidewinder AAMs, bombs and guided/unguided ASM, e .g. ASM-N-7 (AGM-12B Bullpup) missiles.

  

The kit and its assembly

Originally, this model project was inspired by a (whiffy) Dutch F3H Demon profile, designed by fellow user Darth Panda at whatifmodelers.com. I found the idea of a foreign/NATO user of one of these early carrier-borne jet fighters very inspiring – not only because of the strange design of many of these aircraft, but also since the USN and USMC had been the only real world users of many of these types.

 

Initially, I planned to convert a F3H accordingly. But with limited storage/display space at home I decided to apply the MLD idea to another smaller, but maybe even more exotic, type: the North American FJ-4B Fury, which was in 1962 recoded into AF-1E.

I like the beefy Sabre cousin very much. It’s one of those aircraft that received little attention, even from model kit manufacturers. In fact, in 1:72 scale there are only vintage vacu kits or the very basic Emhar kit available. Th Emhar kit, which I used here and which is a kind donation of a fellow modeler (Thanks a lot, André!), a rather rough thing with raised panel lines and much room for improvements. As a side note, there's also a FJ-4B from Revell, but it's just a 1996 re-issue with no improvements, whatsoever.

 

Another facet of the model: When I did legwork concerning a possible background story, I was surprised to find out that the Netherlands actually operated aircraft carriers in the 1950s, including carrier-borne, fixed-wing aircraft, even jets in the form of Hawker Sea Hawks. The real life FJ-4Bs service introduction, the naissance of NATO and the Indonesian conflict as well as the corresponding intervention of the Karel Doorman carrier all fell into a very plausible time frame – and so there’s a very good and plausible story why the MLD could actually have used the Fury fighter bomber!

 

The Emhar kit was not modified structurally, but saw some changes in detail. These include a scratch-built cockpit with side walls, side consoles and a new ejection seat, plus a Matchbox pilot figure, a new front wheel (from a Kangnam Yak-38, I believe), plus a lot of added blade aerials and a finer pitot.

The flaps were lowered, for a more lively look- Another new feature is the opened air intake, which features a central splitter - in fact a vertically placed piece of a Vicker Wellesley bomb container from Matchbox. At the rear end, the exhaust pipe was opened and lengthened internally.

 

The six weapon hardpoints were taken from the original kit, but I did not use the four Sidewinder AAMs and the rather bulky drop tanks. So, all ordnance is new: the Bullpups come from the Hasegawa air-to-ground missile set, the drop tanks are leftover pieces from a Hobby Boss F-86. They are much more 'delicate', and make the Fury look less stout and cumbersome. The guidance pod for the Bullpups (a typical FJ-4B feature with these weapons) is a WWII drop tank, shaped with the help of benchmark pictures. Certainly not perfect, but, hey - it's just a MODEL!

  

Painting and markings

I used mid-1950ies MLD Sea Furys and Sea Hawks as a design benchmark, but this Fury is placed just into the time frame around 1960 when the MLD introduced a new 3-digit code system. Before that, a code "6-XX" with the XX somewhere in the 70 region would have been appropriate, and I actually painted the fuselage sides a bit darker so as if the old code had recently been painted over.

 

Dutch MLD aircraft tended to keep their former users’ liveries, but in the FJ-4B’s case I thought that a light grey and white aircraft (USN style) with Dutch roundels would look a bit odd. So I settled for early NATO style with Extra Dark Sea Grey upper sides (Humbrol 123) and Sky from below (Testors 2049 from their Authentic Line).

 

I also went for an early design style with a low waterline - early Hawker Sea Furies were painted this way, and a high waterline would probably be more typical. But in the face of potential seriosu action, who knows...? Things tend to be toned down quickly, just remember the RN Harriers during the Falkland conflict. I'll admit that the aircraft looks a bit simple and dull now, but this IMHO just adds to the plausible look of this whif. I prefer such subtleties to garish designs.

 

The surfaces were weathered with dry-brushed lighter shades of the basic tones (mostly Humbrol 79, but also some 140 and 67, and Humbrol 90 and 166 below), including overpainted old codes in a slightly darker tone of EDSG, done with Revell 77. A light wash with black ink emphasizes edges and some details - the machine was not to look worn.

 

The interior was painted in medium grey (Humbrol 140), the landing gear is white (Humbrol 130), and some details like the air intake rim, the edges of the landing gear covers, the flaps or the tips of the wing fences were painted in bright red (Humbrol 174), for some contrast to the overall grey upper sides.

 

The MLD markings were puzzled together. The roundels come from an Xtradecal sheet for various Hawker Sea Furies, the '202' code comes, among others, from a Grumman Bearcat aftermarket sheet. The 'KON. MARINE' line is hand-made, letter by letter, from a TL Modellbau aftremarket sheet.

Most stencils and warning sign decals come from the original decal sheet, as well as from a FJ-4 Xtradecal aftermarket sheet, from F-86 kits and the scrap box. I wanted these details to provide the color to the aircraft, so that it would not look too uniform, but still without flashy decorations and like a rather utilarian military item.

 

finally, the model received a coat of semi-matt varnish (Tamiya Acryllic), since MLD aircraft had a pretty glossy finish. No dirt or soot stains were added - the Dutch kept their (few) shipborne aircraft very clean and tidy!

  

So, all in all, a simple looking aircraft, but this Dutch Fury has IMHO a certain, subtle charm - probably also because it is a rather rare and unpopular aircraft, which in itself has a certain whiffy aura.

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!

 

The English Electric Lightning was a supersonic jet fighter aircraft of the Cold War era, noted for its great speed. It was the only all-British Mach 2 fighter aircraft and the first aircraft in the world capable of supercruise. The Lightning was renowned for its capabilities as an interceptor; pilots commonly described it as "being saddled to a skyrocket". Following English Electric's integration into the unified British Aircraft Corporation, the aircraft was marketed as the BAC Lightning.

 

The Lightning was prominently used by the Royal Air Force, but also by Saudi Arabia, Kuwait and Singapore. The first aircraft to enter service with the RAF, three pre-production P.1Bs, arrived at RAF Coltishall in Norfolk on 23 December 1959, and from there the aircraft was permanently developed further.

 

The F.6 was the ultimate Lightning version to see British service. Originally, it was nearly identical to the former F.3A (which introduced a large ventral tank and new cambered wings), with the exception that it had provisions to carry 260 gal (1,180 l) ferry tanks on pylons over the wings. These tanks were jettisonable in an emergency, and gave the F.6 a substantially improved deployment capability. The Ferranti A.I.23B radar supported autonomous search, automatic target tracking, and ranging for all weapons, while the pilot attack sight provided gyroscopically derived lead angle and backup stadiametric ranging for gun firing. The radar and gunsight were collectively designated the AIRPASS: Airborne Interception Radar and Pilot Attack Sight System. Combined with the Red Top missile, the system offered a limited forward hemisphere attack capability.

 

There remained one glaring shortcoming of the late Lightning versions, though: the lack of cannon. This was finally rectified in the form of a modified ventral tank with two ADEN cannon mounted in the front. The addition of the cannon and their ammunition decreased the tank's fuel capacity from 610 gal to 535 gal (2,430 l), but the cannon made the F.6 a 'real fighter' again.

 

Singapore's Lightnings came as a bargain, as they had been taken over directly from RAF stocks. In 1967 No. 74 'Tiger' Squadron was moved to RAF Tengah in Singapore to take over the air defense role from the Gloster Javelin equipped 64 Squadron. When 74 Squadron was disbanded in September 1971, following the withdrawal of British forces from Singapore (in the course of the "East of Suez" campaign, which already started in 1968), Tengah Air Base and many other RAF sites like Seletar, Sembawang and Changi as well as the RAF air defense radar station and Bloodhound II surface-to-air missiles were handed over to the SADC, Singapore’s Air Defense Command, which was suddenly entrusted with a huge responsibility and resources.

 

Anyway, in order to fulfill its aerial defense role, Singapore's air force lacked a potent interceptor, and so it was agreed with the RAF that 74 Squadron would leave fourteen Lightnings (twelve F.6 fighters and two T.5 trainers behind, while the rest was transferred to Akrotiri, Cyprus, where the RAF aircraft were integrated into 56 Squadron.

 

The ex-RAF Lightnings, however, immediately formed the small country's quick alert interceptor backbone and were grouped into the newly established 139th Squadron, “Swifts”. The small squadron kept its base at Tengah, as a sister unit to 140th Squadron which operated the Hawker Hunter FGA.74 in the fighter role since 1971.

 

Singapore's Lightnings differed slightly from the RAF F.6: In order to minimize the maintenance costs of this specialized aircraft, the SADC decided to drop the Red Top missile armament. The Red Top gave all-weather capability, but operating this standalone system for just a dozen of aircraft was deemed cost-inefficient. Keeping the high-performance Lightnings airworthy was already costly and demanding enough.

 

As a cost-effective measure, all SADC Lightnings were modified to carry four AIM-9B and later E Sidewinder AAMs on special, Y-shaped pylons, not unlike those used on the US Navy's F-8 Crusader. In order to enhance all-weather capability, an AAS-15 IRST sensor was added, located in a fairing in front of the wind shield. Its electronics used the space of the omitted, fuselage-mounted cannons of the F.6 variant.

 

Long range and loitering time were only of secondary relevance, so that the Singaporean Lightnings typically carried two 30 mm ADEN cannons with 120 RPG in the lower fuselage, which reduced the internal fuel capacity slightly but made the Lightning a true close combat fighter with high agility, speed and rate of climb. Since the RSAF interceptors would only engage in combat after direct visual contact and target identification, the Sidewinders' short range was no operational problem - and because that missile type was also in use with RSAF's Hawker Hunters, this solution was very cost-efficient.

 

The F.6's ability to carry the overwing ferry tanks (the so-called 'Overburgers') was retained, though, as well as the refueling probe and, and with its modified/updated avionics the RSAF Lightnings received the local designations of F.6S and T.5S. They were exclusively used in the interceptor role and retained their natural metal finish all though their service career.

 

In 1975, the SADC was eventually renamed into ‘Republic of Singapore Air Force’ (RSAF), and the aircraft received appropriate markings.

 

The RSAF Lightnings saw an uneventful career. One aircraft was lost due to hydraulic failure in August 1979 (the pilot ejected safely), and when in 1983 RSAF's F-5S fighters took over the duties of airborne interception from the Royal Australian Air Force's Mirage IIIOs detachment stationed at Tengah, all remaining RSAF Lightnings were retired and phased out of service in March 1984 and scrapped. The type's global career did not last much longer: the last RAF Lightnings were retired in 1988 and replaced by the Panavia Tornado ADV.

  

BAE Lightning F.6S general characteristics

Crew: 1

Length: 55 ft 3 in (16.8 m)

Wingspan: 34 ft 10 in (10.6 m)

Height: 19 ft 7 in (5.97 m)

Wing area: 474.5 ft² (44.08 m²)

Empty weight: 31,068 lb (14.092 kg)

Max. take-off weight: 45,750 lb (20.752 kg)

 

Powerplant:

2× Rolls-Royce Avon 301R afterburning turbojets with 12,530 lbf (55.74 kN) dry thrust each and 16,000 lbf (71.17 kN) with afterburner

 

Performance:

Maximum speed: Mach 2.0 (1.300 mph/2.100 km/h) at 36.000 ft.

Range: 850 mi (1.370 km) Supersonic intercept radius: 155 mi (250 km)

Ferry range: 920 mi (800 NM/ 1.660 km) 1,270 mi (1.100 NM/ 2.040 km) with ferry tanks

Service ceiling: 54.000 ft (16.000 m); zoom ceiling >70.000 ft

Rate of climb: 20.000 ft/min (100 m/s)

Wing loading: 76 lb/ft² (370 kg/m²)

Thrust/weight: 0.78

 

Armament:

2× under-fuselage hardpoints for mounting air-to-air missiles (2 or 4 AIM-9 Sidewinder)

Optional, but typically fitted: 2× 30 mm (1.18 in) ADEN cannons with 120 RPG in the lower fuselage, reducing the ventral tank's fuel capacity from 610 gal to 535 gal (2,430 l)

2× overwing pylon stations for 260 gal ferry tanks

    

The kit and its assembly

The inspiration to this whiffy Lightning came through fellow user Nick at whatifmodelers.com (credits go to him), who brought up the idea of EE/BAC Lightnings in Singapore use: such a small country would be the ideal user of this fast interceptor with its limited range. I found the idea very convincing and plausible, and since I like the Lightning and its unique design very much, I (too) had to make one for the 2013 group build "Asiarama" - even if a respective model would potentially be built twice. But it's always fun to see how the same theme is interpreted by different modelers, I am looking forward to my creation's sister ship.

 

The kit is the Matchbox Lightning F.2A/F.6 (PK-114) from 1976, and only little was changed. Fit is O.K., building the model poses no real problems. But the kit needs some putty work at the fuselage seams, and the many raised panel lines (esp. at the belly tank) and other relatively fine and many details for a Matchbox kit make sanding rather hazardous. Nevertheless, it's a solid kit. A bit toy-like, yes, but good value for the relatively little money. What's saved might be well invested into an extra decal sheet (see below).

 

Internal mods include some added details inside of the cockpit and the landing gear wells, but these were just enhancements to the original parts. The Avons' afterburners were simulated with implanted sprocket wheels from a 1:72 Panzer IV - not intended to be realistic at all, but IMO better than the kit's original, plain end caps!

 

Externally…

· the flaps were lowered

· some antennae and a finer pitot added

· about a dozen small air intakes/outlets were added (cut from styrene) or drilled open

· the IRST sensor fairing added, sculpted from a simple piece of sprue

· a pair of 30mm barrels mounted in the lower fuselage (hollow steel needles)

· the scratch-built quadruple Sidewinder rails are worth mentioning

 

The AIM-9E missiles come from the scrap heap, I was lucky to find a matching set of four. The optional overwing fuel tanks were not fitted, as this was supposed to become a "standard RSAF aircraft". I also did not opt for (popular) weapons mounted above the wings, since this would have called for modifications of the F.6 which did not appear worthwhile to me in context with the envisaged RSAF use. Switching to four Sidewinders on the fuselage hardpoints was IMHO enough.

  

Painting and markings

More effort went into this project part. The end of RAF's 74 Squadron at Tengah and the return of the Lightnings to Europe opened a nice historical window for my whif. Since the Tiger Squadron's aircraft sported a natural metal finish, partly with black fins (accidentally, the Matchbox kit offers just the correct decal/painting option), I decided that the RSAF would keep their aircraft this way: without camouflage, just RSAF markings, with some bold and highly visible colors added.

A SEA scheme (as on the RSAF Hunters, Strikemasters of Skyhawks) would have been another serious option and certainly look weird on a Lightning, as well as a three-tone gray wraparound low-viz scheme as used on the F-5E/S fighters, plausible in the 80ies onwards.

 

Testors Aluminum Metallizer was used as basic color, but several other shades including Steel and Titanium Metallizer, Testors normal Aluminum enamel paint, Humbrol 11 and 56 as well as Revell Aqua Color Aluminum were used for selected surface portions or panels all around the hull.

 

The spine including the cockpit frame was painted black. Using RSAF's 140 Squadron's colors as a benchmark, the fin received a checkered decoration in black and red, reminiscent of RAF 56 Squadron Lightnings. This was created through a black, painted base, onto which decals - every red field was cut from a red surface sheet from TL Modellbau - were transferred. Sounds horrible, but it was easier and more exact than expected. A very convenient solution with sharp edges and good contrast. A red trim line, 1mm wide, was added as a decal along the spine in a similar fashion.

 

The squadron emblem on the Lightning's nose was created through the same scratch method: from colored 1.5mm wide stripes, 3mm pieces were cut and applied one by one to form the checkered bar. The swift emblem comes from a 1:48 sheet for French WWI aircraft, made by Peddinghaus Decals from Germany. The overall look was supposed to be similar to the (real) 140 Squadron badge.

 

As a consequence, this created a logical problem: where to put the national roundel? Lightnings usually wore them on the nose, but unlike RAF style (where a bar was added around the roundel), I used RSAF Hunters as benchmark.

The RSAF roundels were a challenge. In order not to cramp the nose section too much I decided to place the roundels behind the wings. Not the must prominent position, but plausible. I originally wanted to use decals from the current 1:72 Airfix BAC Strikemaster kit, but they turned out to be too small.

After long search I was happy to find a 1:48 aftermarket decal sheet from Morgan Decals for an A-4S, with full color yin-yang roundels - in Canada! It took three weeks to wait for these parts, though, even though work had to wait for this final but vital detail !

 

As a side not, AFAIK any RSAF aircraft only carried and carries these roundels on the fuselage sides, not on the wings' upper or lower surfaces? It leaves the model a bit naked, so I decided to add 'RSAF' letters and the tactical code '237' to the wings' upper and lower sides. But the fin is surely bold enough to compensate ;)

 

The cockpit interior was painted in Medium Sea Gray (Humbrol 27), the landing gear and the wells in a mix of Humbrol 56 and 34, for a light gray with a metallic shimmer.

 

Other details include the white area behind the cockpit, which contained an AVPIN/isopropyl nitrate tank for the Lightning's start engine. Hazardous stuff - the light color was to prevent excessive heating in the sun, a common detail for Lightnings used in Cyprus. Another piece that took some effort was the shaggy nose cone, which was painted in a mix of Humbrol 56 and 86 and received some serious dry painting in light gray and ochre.

 

Stencils etc. were taken from an extensive aftermarket sheet for Lightnings from Xtradecal (X72096). The Matchbox decal sheet of PK-114 just offers the ejection seat warning triangles - that's all! The later T.55 kit is much better in this regard, but still far from being complete.

 

After decal application and to enhance the metallic look, the kit received a careful rubbing with finely grinded graphite, which, as a side effect, also emphasized the raised panel lines. A little dry painting was done around some exhaust openings, but nothing to make the aircraft look really old. This is supposed to be a bright and well-maintained interceptor!

 

Finally, the kit received a thin coat with glossy acrylic varnish, the spine and fin received a semi-matt coat and the black glare shield in front of the cockpit became matt.

   

A pretty straightforward build for the Asiarama group build, and with best regards and credits to Nick who came up with the original idea. Most work went into the decals and the NMF finish. I like the bold colors, and despite being flamboyant, they do not make the Lightning look too far out of place?

 

As a final note: XR773 never ended up in Singapore service, just like any BAC Lightning. In real life, the aircraft (first flight was in February 1966 with Roly Beamont at the controls) was transferred from 74 Squadron at RAF Tengah to Akrotiri in late 1971 and had a pretty long life, further serving with 56, 5 and 11 Squadrons as well as the Lightning Training Flight. And even then it’s life was far from over: XR773 is one of the Lightning survivors; in South Africa it flew in private hands as ZU-BEW until 2010, when it was grounded and the airframe put up to sale.

Incense is aromatic biotic material that releases fragrant smoke when burned. The term refers to the material itself, rather than to the aroma that it produces. Incense is used for aesthetic reasons, and in therapy, meditation, and ceremony. It may also be used as a simple deodorant or insectifuge.

 

Incense is composed of aromatic plant materials, often combined with essential oils. The forms taken by incense differ with the underlying culture, and have changed with advances in technology and increasing number of uses.

 

Incense can generally be separated into two main types: "indirect-burning" and "direct-burning". Indirect-burning incense (or "non-combustible incense") is not capable of burning on its own, and requires a separate heat source. Direct-burning incense (or "combustible incense") is lit directly by a flame and then fanned or blown out, leaving a glowing ember that smoulders and releases a smoky fragrance. Direct-burning incense is either a paste formed around a bamboo stick, or a paste that is extruded into a stick or cone shape.

 

HISTORY

The word incense comes from Latin incendere meaning "to burn".

 

Combustible bouquets were used by the ancient Egyptians, who employed incense in both pragmatic and mystical capacities. Incense was burnt to counteract or obscure malodorous products of human habitation, but was widely perceived to also deter malevolent demons and appease the gods with its pleasant aroma. Resin balls were found in many prehistoric Egyptian tombs in El Mahasna, giving evidence for the prominence of incense and related compounds in Egyptian antiquity. One of the oldest extant incense burners originates from the 5th dynasty. The Temple of Deir-el-Bahari in Egypt contains a series of carvings that depict an expedition for incense.

 

The Babylonians used incense while offering prayers to divining oracles. Incense spread from there to Greece and Rome.

 

Incense burners have been found in the Indus Civilization (3300–1300 BCE). Evidence suggests oils were used mainly for their aroma. India also adopted techniques from East Asia, adapting the formulation to encompass aromatic roots and other indigenous flora. This was the first usage of subterranean plant parts in incense. New herbs like Sarsaparilla seeds, frankincense, and cypress were used by Indians.

 

At around 2000 BCE, Ancient China began the use of incense in the religious sense, namely for worship. Incense was used by Chinese cultures from Neolithic times and became more widespread in the Xia, Shang, and Zhou dynasties. The earliest documented use of incense comes from the ancient Chinese, who employed incense composed of herbs and plant products (such as cassia, cinnamon, styrax, and sandalwood) as a component of numerous formalized ceremonial rites. Incense usage reached its peak during the Song dynasty with numerous buildings erected specifically for incense ceremonies.

 

Brought to Japan in the 6th century by Korean Buddhist monks, who used the mystical aromas in their purification rites, the delicate scents of Koh (high-quality Japanese incense) became a source of amusement and entertainment with nobles in the Imperial Court during the Heian Era 200 years later. During the 14th-century Ashikaga shogunate, a samurai warrior might perfume his helmet and armor with incense to achieve an aura of invincibility (as well as to make a noble gesture to whoever might take his head in battle). It wasn't until the Muromachi period during the 15th and 16th century that incense appreciation (kōdō) spread to the upper and middle classes of Japanese society.

 

COMPOSITION

A variety of materials have been used in making incense. Historically there has been a preference for using locally available ingredients. For example, sage and cedar were used by the indigenous peoples of North America. Trading in incense materials comprised a major part of commerce along the Silk Road and other trade routes, one notably called the Incense Route.

 

Local knowledge and tools were extremely influential on the style, but methods were also influenced by migrations of foreigners, such as clergy and physicians.

 

COMBUSTIBLE BASE

The combustible base of a direct burning incense mixture not only binds the fragrant material together but also allows the produced incense to burn with a self-sustained ember, which propagates slowly and evenly through an entire piece of incense with such regularity that it can be used to mark time. The base is chosen such that it does not produce a perceptible smell. Commercially, two types of incense base predominate:

 

Fuel and oxidizer mixtures: Charcoal or wood powder provides the fuel for combustion while an oxidizer such as sodium nitrate or potassium nitrate sustains the burning of the incense. Fragrant materials are added to the base prior to shaping, as in the case of powdered incense materials, or after, as in the case of essential oils. The formula for charcoal-based incense is superficially similar to black powder, though it lacks the sulfur.

Natural plant-based binders: Gums such as Gum Arabic or Gum Tragacanth are used to bind the mixture together. Mucilaginous material, which can be derived from many botanical sources, is mixed with fragrant materials and water. The mucilage from the wet binding powder holds the fragrant material together while the cellulose in the powder combusts to form a stable ember when lit. The dry binding powder usually comprises about 10% of the dry weight in the finished incense. These include:

Makko (incense powder) made from the bark of various trees in the genus Persea (such as Persea thunbergii)

Xiangnan pi (made from the bark of trees of genus Phoebe such as Phoebe nanmu or Persea zuihoensis.

Jigit: a resin based binder used in India

Laha or Dar: bark based powders used in Nepal, Tibet, and other East Asian countries.

 

Typical compositions burn at a temperature between 220 °C and 260 °C.

 

TYPES

Incense is available in various forms and degrees of processing. They can generally be separated into "direct-burning" and "indirect-burning" types. Preference for one form or another varies with culture, tradition, and personal taste. The two differ in their composition due to the former's requirement for even, stable, and sustained burning.

 

INDIRECT-BURNING

Indirect-burning incense, also called "non-combustible incense", is an aromatic material or combination of materials, such as resins, that does not contain combustible material and so requires a separate heat source. Finer forms tend to burn more rapidly, while coarsely ground or whole chunks may be consumed very gradually, having less surface area. Heat is traditionally provided by charcoal or glowing embers. In the West, the best known incense materials of this type are the resins frankincense and myrrh, likely due to their numerous mentions in the Bible. Frankincense means "pure incense", though in common usage refers specifically to the resin of the boswellia tree.

 

Whole: The incense material is burned directly in raw form on top of coal embers.

Powdered or granulated: Incense broken into smaller pieces burns quickly and provides brief but intense odor.

Paste: Powdered or granulated incense material is mixed with a sticky incombustible binder, such as dried fruit, honey, or a soft resin and then formed to balls or small pastilles. These may then be allowed to mature in a controlled environment where the fragrances can commingle and unite. Much Arabian incense, also called "Bukhoor" or "Bakhoor", is of this type, and Japan has a history of kneaded incense, called nerikō or awasekō, made using this method. Within the Eastern Orthodox Christian tradition, raw frankincense is ground into a fine powder and then mixed with various sweet-smelling essential oils.

 

DIRECT-BURNING

Direct-burning incense, also called "combustible incense", is lit directly by a flame. The glowing ember on the incense will continue to smoulder and burn the rest of the incense without further application of external heat or flame. Direct-burning incense is either extruded, pressed into forms, or coated onto a supporting material. This class of incense is made from a moldable substrate of fragrant finely ground (or liquid) incense materials and odourless binder. The composition must be adjusted to provide fragrance in the proper concentration and to ensure even burning. The following types are commonly encountered, though direct-burning incense can take nearly any form, whether for expedience or whimsy.

 

Coil: Extruded and shaped into a coil without a core, coil incense can burn for an extended period, from hours to days, and is commonly produced and used in Chinese cultures.

 

Cone: Incense in this form burns relatively quickly. Incense cones were invented in Japan in the 1800s.

Cored stick: A supporting core of bamboo is coated with a thick layer of incense material that burns away with the core. Higher-quality variations have fragrant sandalwood cores. This type of incense is commonly produced in India and China. When used in Chinese folk religion, these are sometimes known as "joss sticks".

Dhoop or solid stick: With no bamboo core, dhoop incense is easily broken for portion control. This is the most commonly produced form of incense in Japan and Tibet.

Powder: The loose incense powder used for making indirect burning incense is sometimes burned without further processing. Powder incense is typically packed into long trails on top of wood ash using a stencil and burned in special censers or incense clocks.

Paper: Paper infused with incense, folded accordion style, is lit and blown out. Examples include Carta d'Armenia and Papier d'Arménie.

Rope: The incense powder is rolled into paper sheets, which are then rolled into ropes, twisted tightly, then doubled over and twisted again, yielding a two-strand rope. The larger end is the bight, and may be stood vertically, in a shallow dish of sand or pebbles. The smaller (pointed) end is lit. This type of incense is easily transported and stays fresh for extremely long periods. It has been used for centuries in Tibet and Nepal.

 

Moxa tablets, which are disks of powdered mugwort used in Traditional Chinese medicine for moxibustion, are not incenses; the treatment is by heat rather than fragrance.

Incense sticks may be termed joss sticks, especially in parts of East Asia, South Asia and Southeast Asia. Among ethnic Chinese and Chinese-influenced communities these are traditionally burned at temples, before the threshold of a home or business, before an image of a religious divinity or local spirit, or in shrines, large and small, found at the main entrance of every village. Here the earth god is propitiated in the hope of bringing wealth and health to the village. They can also be burned in front of a door or open window as an offering to heaven, or the devas. The word "joss" is derived from the Latin deus (god) via the Portuguese deos through the Javanese dejos, through Chinese pidgin English.

 

PRODUCTION

The raw materials are powdered and then mixed together with a binder to form a paste, which, for direct burning incense, is then cut and dried into pellets. Incense of the Athonite Orthodox Christian tradition is made by powdering frankincense or fir resin, mixing it with essential oils. Floral fragrances are the most common, but citrus such as lemon is not uncommon. The incense mixture is then rolled out into a slab approximately 1 cm thick and left until the slab has firmed. It is then cut into small cubes, coated with clay powder to prevent adhesion, and allowed to fully harden and dry. In Greece this rolled incense resin is called 'Moskolibano', and generally comes in either a pink or green colour denoting the fragrance, with pink being rose and green being jasmine.

 

Certain proportions are necessary for direct-burning incense:

 

Oil content: an excess of oils may prevent incense from smoldering effectively. Resinous materials such as myrrh and frankincense are typically balanced with "dry" materials such as wood, bark and leaf powders.

Oxidizer quantity: Too little oxidizer in gum-bound incense may prevent the incense from igniting, while too much will cause the incense to burn too quickly, without producing fragrant smoke.

Binder: Water-soluble binders such as "makko" ensure that the incense mixture does not crumble when dry, dilute the mixture.

Mixture density: Incense mixtures made with natural binders must not be combined with too much water in mixing, or over-compressed while being formed, which would result in either uneven air distribution or undesirable density in the mixture, causing the incense to burn unevenly, too slowly, or too quickly.

Particulate size: The incense mixture has to be well pulverized with similarly sized particulates. Uneven and large particulates result in uneven burning and inconsistent aroma production when burned.

 

"Dipped" or "hand-dipped" direct-burning incense is created by dipping "incense blanks" made of unscented combustible dust into any suitable kind of essential or fragrance oil. These are often sold in the United States by flea-market and sidewalk vendors who have developed their own styles. This form of incense requires the least skill and equipment to manufacture, since the blanks are pre-formed in China or South East Asia.

 

Incense mixtures can be extruded or pressed into shapes. Small quantities of water are combined with the fragrance and incense base mixture and kneaded into a hard dough. The incense dough is then pressed into shaped forms to create cone and smaller coiled incense, or forced through a hydraulic press for solid stick incense. The formed incense is then trimmed and slowly dried. Incense produced in this fashion has a tendency to warp or become misshapen when improperly dried, and as such must be placed in climate-controlled rooms and rotated several times through the drying process.

 

Traditionally, the bamboo core of cored stick incense is prepared by hand from Phyllostachys heterocycla cv. pubescens since this species produces thick wood and easily burns to ashes in the incense stick. In a process known as "splitting the foot of the incense stick", the bamboo is trimmed to length, soaked, peeled, and split in halves until the thin sticks of bamboo have square cross sections of less than 3mm. This process has been largely replaced by machines in modern incense production.

 

In the case of cored incensed sticks, several methods are employed to coat the sticks cores with incense mixture:

 

Paste rolling: A wet, malleable paste of incense mixture is first rolled into a long, thin coil, using a paddle. Then, a thin stick is put next to the coil and the stick and paste are rolled together until the stick is centered in the mixture and the desired thickness is achieved. The stick is then cut to the desired length and dried.

Powder-coating: Powder-coating is used mainly to produce cored incense of either larger coil (up to 1 meter in diameter) or cored stick forms. A bundle of the supporting material (typically thin bamboo or sandalwood slivers) is soaked in water or a thin water/glue mixture for a short time. The thin sticks are evenly separated, then dipped into a tray of incense powder consisting of fragrance materials and occasionally a plant-based binder. The dry incense powder is then tossed and piled over the sticks while they are spread apart. The sticks are then gently rolled and packed to maintain roundness while more incense powder is repeatedly tossed onto the sticks. Three to four layers of powder are coated onto the sticks, forming a 2 mm thick layer of incense material on the stick. The coated incense is then allowed to dry in open air. Additional coatings of incense mixture can be applied after each period of successive drying. Incense sticks produced in this fashion and burned in temples of Chinese folk religion can have a thickness between 2 and 4 millimeters.

Compression: A damp powder is mechanically formed around a cored stick by compression, similar to the way uncored sticks are formed. This form is becoming more common due to the higher labor cost of producing powder-coated or paste-rolled sticks.

 

BURNING INCENSE

Indirect-burning incense burned directly on top of a heat source or on a hot metal plate in a censer or thurible.

 

In Japan a similar censer called a egōro (柄香炉) is used by several Buddhist sects. The egōro is usually made of brass, with a long handle and no chain. Instead of charcoal, makkō powder is poured into a depression made in a bed of ash. The makkō is lit and the incense mixture is burned on top. This method is known as sonae-kō (religious burning).

 

For direct-burning incense, the tip or end of the incense is ignited with a flame or other heat source until the incense begins to turn into ash at the burning end. The flame is then fanned or blown out, leaving the incense to smolder.

 

CULTURAL VARIATIONS

ARABIAN

In most Arab countries, incense is burned in the form of scented chips or blocks called bakhoor (Arabic: بخور‎ [bɑˈxuːɾ, bʊ-]. Incense is used on special occasions like weddings or on Fridays or generally to perfume the house. The bakhoor is usually burned in a mabkhara, a traditional incense burner (censer) similar to the Somali Dabqaad. It is customary in many Arab countries to pass bakhoor among the guests in the majlis ('congregation'). This is done as a gesture of hospitality.

 

CHINESE

For over two thousand years, the Chinese have used incense in religious ceremonies, ancestor veneration, Traditional Chinese medicine, and daily life. Agarwood (chénxiāng) and sandalwood (tánxiāng) are the two most important ingredients in Chinese incense.

 

Along with the introduction of Buddhism in China came calibrated incense sticks and incense clocks. The first known record is by poet Yu Jianwu (487-551): "By burning incense we know the o'clock of the night, With graduated candles we confirm the tally of the watches." The use of these incense timekeeping devices spread from Buddhist monasteries into Chinese secular society.

Incense-stick burning is an everyday practice in traditional Chinese religion. There are many different types of stick used for different purposes or on different festive days. Many of them are long and thin. Sticks are mostly coloured yellow, red, or more rarely, black. Thick sticks are used for special ceremonies, such as funerals. Spiral incense, with exceedingly long burn times, is often hung from temple ceilings. In some states, such as Taiwan,

 

Singapore, or Malaysia, where they celebrate the Ghost Festival, large, pillar-like dragon incense sticks are sometimes used. These generate so much smoke and heat that they are only burned outside.

 

Chinese incense sticks for use in popular religion are generally odorless or only use the slightest trace of jasmine or rose, since it is the smoke, not the scent, which is important in conveying the prayers of the faithful to heaven. They are composed of the dried powdered bark of a non-scented species of cinnamon native to Cambodia, Cinnamomum cambodianum. Inexpensive packs of 300 are often found for sale in Chinese supermarkets. Though they contain no sandalwood, they often include the Chinese character for sandalwood on the label, as a generic term for incense.

 

Highly scented Chinese incense sticks are used by some Buddhists. These are often quite expensive due to the use of large amounts of sandalwood, agarwood, or floral scents used. The sandalwood used in Chinese incenses does not come from India, its native home, but rather from groves planted within Chinese territory. Sites belonging to Tzu Chi, Chung Tai Shan, Dharma Drum Mountain, Xingtian Temple, or City of Ten Thousand Buddhas do not use incense.

 

INDIAN

Incense sticks, also known as agarbathi (or agarbatti) and joss sticks, in which an incense paste is rolled or moulded around a bamboo stick, are the main forms of incense in India. The bamboo method originated in India, and is distinct from the Nepali/Tibetan and Japanese methods of stick making without bamboo cores. Though the method is also used in the west, it is strongly associated with India.

 

The basic ingredients are the bamboo stick, the paste (generally made of charcoal dust and joss/jiggit/gum/tabu powder – an adhesive made from the bark of litsea glutinosa and other trees), and the perfume ingredients - which would be a masala (spice mix) powder of ground ingredients into which the stick would be rolled, or a perfume liquid sometimes consisting of synthetic ingredients into which the stick would be dipped. Perfume is sometimes sprayed on the coated sticks. Stick machines are sometimes used, which coat the stick with paste and perfume, though the bulk of production is done by hand rolling at home. There are about 5,000 incense companies in India that take raw unperfumed sticks hand-rolled by approximately 200,000 women working part-time at home, and then apply their own brand of perfume, and package the sticks for sale. An experienced home-worker can produce 4,000 raw sticks a day. There are about 50 large companies that together account for up to 30% of the market, and around 500 of the companies, including a significant number of the main ones, including Moksh Agarbatti and Cycle Pure, are based in Mysore.

 

JEWISH TEMPLE IN JERUSALEM

KETORET

Ketoret was the incense offered in the Temple in Jerusalem and is stated in the Book of Exodus to be a mixture of stacte, onycha, galbanum and frankincense.

 

TIBETAN

Tibetan incense refers to a common style of incense found in Tibet, Nepal, and Bhutan. These incenses have a characteristic "earthy" scent to them. Ingredients vary from cinnamon, clove, and juniper, to kusum flower, ashvagandha, and sahi jeera.

 

Many Tibetan incenses are thought to have medicinal properties. Their recipes come from ancient Vedic texts that are based on even older Ayurvedic medical texts. The recipes have remained unchanged for centuries.

 

JAPANESE

In Japan incense appreciation folklore includes art, culture, history, and ceremony. It can be compared to and has some of the same qualities as music, art, or literature. Incense burning may occasionally take place within the tea ceremony, just like calligraphy, ikebana, and scroll arrangement. The art of incense appreciation, or koh-do, is generally practiced as a separate art form from the tea ceremony, and usually within a tea room of traditional Zen design.

 

Agarwood (沈香 Jinkō) and sandalwood (白檀 byakudan) are the two most important ingredients in Japanese incense. Agarwood is known as "jinkō" in Japan, which translates as "incense that sinks in water", due to the weight of the resin in the wood. Sandalwood is one of the most calming incense ingredients and lends itself well to meditation. It is also used in the Japanese tea ceremony. The most valued Sandalwood comes from Mysore in the state of Karnataka in India.

 

Another important ingredient in Japanese incense is kyara (伽羅). Kyara is one kind of agarwood (Japanese incense companies divide agarwood into 6 categories depending on the region obtained and properties of the agarwood). Kyara is currently worth more than its weight in gold.

 

Some terms used in Japanese incense culture include:

 

Incense arts: [香道, kodo]

Agarwood: [ 沈香 ] – from heartwood from Aquilaria trees, unique, the incense wood most used in incense ceremony, other names are: lignum aloes or aloeswood, gaharu, jinko, or oud.

Censer/Incense burner: [香爐] – usually small and used for heating incense not burning, or larger and used for burning

Charcoal: [木炭] – only the odorless kind is used.

Incense woods: [ 香木 ] – a naturally fragrant resinous wood.

 

USAGE

PRACTICAL

Incense fragrances can be of such great strength that they obscure other less desirable odours. This utility led to the use of incense in funerary ceremonies because the incense could smother the scent of decay. An example, as well as of religious use, is the giant Botafumeiro thurible that swings from the ceiling of the Cathedral of Santiago de Compostela. It is used in part to mask the scent of the many tired, unwashed pilgrims huddled together in the Cathedral of Santiago de Compostela.

 

A similar utilitarian use of incense can be found in the post-Reformation Church of England. Although the ceremonial use of incense was abandoned until the Oxford Movement, it was common to have incense (typically frankincense) burned before grand occasions, when the church would be crowded. The frankincense was carried about by a member of the vestry before the service in a vessel called a 'perfuming pan'. In iconography of the day, this vessel is shown to be elongated and flat, with a single long handle on one side. The perfuming pan was used instead of the thurible, as the latter would have likely offended the Protestant sensibilities of the 17th and 18th centuries.

 

The regular burning of direct-burning incense has been used for chronological measurement in incense clocks. These devices can range from a simple trail of incense material calibrated to burn in a specific time period, to elaborate and ornate instruments with bells or gongs, designed to involve multiple senses.

 

Incense made from materials such as citronella can repel mosquitoes and other irritating, distracting, or pestilential insects. This use has been deployed in concert with religious uses by Zen Buddhists who claim that the incense that is part of their meditative practice is designed to keep bothersome insects from distracting the practitioner. Currently, more effective pyrethroid-based mosquito repellent incense is widely available in Asia.

 

Papier d'Arménie was originally sold as a disinfectant as well as for the fragrance.

 

Incense is also used often by people who smoke indoors and do not want the smell to linger.

 

AESTHETIC

Many people burn incense to appreciate its smell, without assigning any other specific significance to it, in the same way that the foregoing items can be produced or consumed solely for the contemplation or enjoyment of the aroma. An example is the kōdō (香道), where (frequently costly) raw incense materials such as agarwood are appreciated in a formal setting.

 

RELIGIOUS

Religious use of incense is prevalent in many cultures and may have roots in the practical and aesthetic uses, considering that many of these religions have little else in common. One common motif is incense as a form of sacrificial offering to a deity. Such use was common in Judaic worship and remains in use for example in the Catholic, Orthodox, and Anglican churches, Taoist and Buddhist Chinese jingxiang (敬香 "offer incense), etc.

 

Aphrodisiac Incense has been used as an aphrodisiac in some cultures. Both ancient Greek and ancient Egyptian mythology suggest the usage of incense by goddesses and nymphs. Incense is thought to heighten sexual desires and sexual attraction.

 

Time-keeper Incense clocks are used to time social, medical and religious practices in parts of eastern Asia. They are primarily used in Buddhism as a timer of mediation and prayer. Different types of incense burn at different rates; therefore, different incense are used for different practices. The duration of burning ranges from minutes to months.

 

Healing stone cleanser Incense is claimed to cleanse and restore energy in healing stones. The technique used is called “smudging” and is done by holding a healing stone over the smoke of burning incense for 20 to 30 seconds. Some people believe that this process not only restores energy but eliminates negative energy.

 

HEALTH RISK FROM INCENSE SMOKE

Incense smoke contains various contaminants including gaseous pollutants, such as carbon monoxide (CO), nitrogen oxides (NOx), sulfur oxides (SOx), volatile organic compounds (VOCs), and adsorbed toxic pollutants (polycyclic aromatic hydrocarbons and toxic metals). The solid particles range between ~10 and 500 nm. In a comparison, Indian sandalwood was found to have the highest emission rate, followed by Japanese aloeswood, then Taiwanese aloeswood, while Chinese smokeless sandalwood had the least.

 

Research carried out in Taiwan in 2001 linked the burning of incense sticks to the slow accumulation of potential carcinogens in a poorly ventilated environment by measuring the levels of polycyclic aromatic hydrocarbons (including benzopyrene) within Buddhist temples. The study found gaseous aliphatic aldehydes, which are carcinogenic and mutagenic, in incense smoke.

 

A survey of risk factors for lung cancer, also conducted in Taiwan, noted an inverse association between incense burning and adenocarcinoma of the lung, though the finding was not deemed significant.

 

In contrast, epidemiologists at the Hong Kong Anti-Cancer Society, Aichi Cancer Center in Nagoya, and several other centers found: "No association was found between exposure to incense burning and respiratory symptoms like chronic cough, chronic sputum, chronic bronchitis, runny nose, wheezing, asthma, allergic rhinitis, or pneumonia among the three populations studied: i.e. primary school children, their non-smoking mothers, or a group of older non-smoking female controls. Incense burning did not affect lung cancer risk among non-smokers, but it significantly reduced risk among smokers, even after adjusting for lifetime smoking amount." However, the researchers qualified their findings by noting that incense burning in the studied population was associated with certain low-cancer-risk dietary habits, and concluded that "diet can be a significant confounder of epidemiological studies on air pollution and respiratory health."

 

Although several studies have not shown a link between incense and lung cancer, many other types of cancer have been directly linked to burning incense. A study published in 2008 in the medical journal Cancer found that incense use is associated with a statistically significant higher risk of cancers of the upper respiratory tract, with the exception of nasopharyngeal cancer. Those who used incense heavily also were 80% more likely to develop squamous-cell carcinomas. The link between incense use and increased cancer risk held when the researchers weighed other factors, including cigarette smoking, diet and drinking habits. The research team noted that "This association is consistent with a large number of studies identifying carcinogens in incense smoke, and given the widespread and sometimes involuntary exposure to smoke from burning incense, these findings carry significant public health implications."

 

In 2015, the South China University of Technology found toxicity of incense to Chinese hamsters' ovarian cells to be even higher than cigarettes.

 

Incensole acetate, a component of Frankincense, has been shown to have anxiolytic-like and antidepressive-like effects in mice, mediated by activation of poorly-understood TRPV3 ion channels in the brain.

 

WIKIPEDIA

Incense is aromatic biotic material which releases fragrant smoke when burned. The term refers to the material itself, rather than to the aroma that it produces. Incense is used for a variety of purposes, including the ceremonies of religion, to overcome bad smells, repel insects, spirituality, aromatherapy, meditation, and for simple pleasure.

 

Incense is composed of aromatic plant materials, often combined with essential oils. The forms taken by incense differ with the underlying culture, and have changed with advances in technology and increasing diversity in the reasons for burning it. Incense can generally be separated into two main types: "indirect-burning" and "direct-burning". Indirect-burning incense (or "non-combustible incense") is not capable of burning on its own, and requires a separate heat source. Direct-burning incense (or "combustible incense") is lit directly by a flame and then fanned or blown out, leaving a glowing ember that smoulders and releases fragrance. Direct-burning incense is either a paste formed around a bamboo stick, or a paste that is extruded into a stick or cone shape.

 

HISTORY

The word incense comes from Latin for incendere meaning "to burn".

 

Combustible bouquets were used by the ancient Egyptians, who employed incense within both pragmatic and mystical capacities. Incense was burnt to counteract or obscure malodorous products of human habitation, but was widely perceived to also deter malevolent demons and appease the gods with its pleasant aroma. Resin balls were found in many prehistoric Egyptian tombs in El Mahasna, furnishing tangible archaeological substantiation to the prominence of incense and related compounds within Egyptian antiquity. One of the oldest extant incense burners originates from the 5th dynasty. The Temple of Deir-el-Bahari in Egypt contains a series of carvings that depict an expedition for incense.

 

The Babylonians used incense while offering prayers to divining oracles. Incense spread from there to Greece and Rome.

 

Incense burners have been found in the Indus Civilization (3300 BCE- 1300 BCE). Evidence suggests oils were used mainly for their aroma. India also adopted techniques from East Asia, adapting the inherited formulation to encompass aromatic roots and other indigenous flora. This comprised the initial usage of subterranean plant parts within the fabrication of incense. New herbs like Sarsaparilla seeds, frankincense, and cypress were used by Indians for incense.

 

At around 2000 BCE, Ancient China began the use of incense in the religious sense, namely for worship. Incense was used by Chinese cultures from Neolithic times and became more widespread in the Xia, Shang, and Zhou dynasties. The earliest documented instance of incense utilization comes from the ancient Chinese, who employed incense composed of herbs and plant products (such as cassia, cinnamon, styrax, sandalwood, amongst others) as a component of numerous formalized ceremonial rites. Incense usage reached its peak during the Song Dynasty with numerous buildings erected specifically for incense ceremonies.

 

Brought to Japan in the 6th century by Korean Buddhist monks, who used the mystical aromas in their purification rites, the delicate scents of Koh (high-quality Japanese incense) became a source of amusement and entertainment with nobles in the Imperial Court during the Heian Era 200 years later. During the 14th century Shogunate, a samurai warrior might perfume his helmet and armor with incense to achieve an aura of invincibility (as well as to make a noble gesture to whomever might take his head in battle). It wasn't until the Muromachi Era during the 15th and 16th century that incense appreciation (Kōdō) spread to the upper and middle classes of Japanese society.

 

COMPOSITION

A variety of materials have been used in making incense. Historically there has been a preference for using locally available ingredients. For example, sage and cedar were used by the indigenous peoples of North America. Trading in incense materials comprised a major part of commerce along the Silk Road and other trade routes, one notably called the Incense Route.

 

The same could be said for the techniques used to make incense. Local knowledge and tools were extremely influential on the style, but methods were also influenced by migrations of foreigners, among them clergy and physicians who were both familiar with incense arts.

 

COMBUSTIBLE BASE

The combustible base of a direct burning incense mixture not only binds the fragrant material together but also allows the produced incense to burn with a self-sustained ember, which propagates slowly and evenly through an entire piece of incense with such regularity that it can be used to mark time. The base is chosen such that it does not produce a perceptible smell. Commercially, two types of incense base predominate:

- Fuel and oxidizer mixtures: Charcoal or wood powder forms the fuel for the combustion. Gums such as Gum Arabic or Gum Tragacanth are used to bind the mixture together while an oxidizer such as sodium nitrate or potassium nitrate sustains the burning of the incense. Fragrant materials are combined into the base prior to formation as in the case of powdered incense materials or after formation as in the case of essential oils. The formula for the charcoal-based incense is superficially similar to black powder, though it lacks the sulfur.

- Natural plant-based binders: Mucilaginous material, which can be derived from many botanical sources, is mixed with fragrant materials and water. The mucilage from the wet binding powder holds the fragrant material together while the cellulose in the powder combusts to form a stable ember when lit. The dry binding powder usually comprises about 10% of the dry weight in the finished incense. This includes:

- Makko (incense powder): made from the bark of various trees from the Persea such as Persea thunbergii)

- Xiangnan pi (made from the bark of Phoebe genus trees such as Phoebe nanmu, Persea zuihoensis.

- Jigit: a resin based binder used in India

- Laha or Dar: bark based powders used in Nepal, Tibet, and other East Asian countries.

 

TYPES

Incense materials are available in various forms and degrees of processing. They can generally be separated into "direct-burning" and "indirect-burning" types depending on use. Preference for one form or another varies with culture, tradition, and personal taste. Although the production of direct- and indirect-burning incense are both blended to produce a pleasant smell when burned, the two differ in their composition due to the former's requirement for even, stale, and sustained burning.

 

INDIRECT BURNING

Indirect-burning incense, also called "non-combustible incense", is a combination of aromatic ingredients that are not prepared in any particular way or encouraged into any particular form, leaving it mostly unsuitable for direct combustion. The use of this class of incense requires a separate heat source since it does not generally kindle a fire capable of burning itself and may not ignite at all under normal conditions. This incense can vary in the duration of its burning with the texture of the material. Finer ingredients tend to burn more rapidly, while coarsely ground or whole chunks may be consumed very gradually as they have less total surface area. The heat is traditionally provided by charcoal or glowing embers.

 

In the West, the best known incense materials of this type are frankincense and myrrh, likely due to their numerous mentions in the Christian Bible. In fact, the word for "frankincense" in many European languages also alludes to any form of incense.

 

- Whole: The incense material is burned directly in its raw unprocessed form on top of coal embers.

- Powdered or granulated: The incense material is broken down into finer bits. This incense burns quickly and provides a short period of intense smells.

- Paste: The powdered or granulated incense material is mixed with a sticky and incombustible binder, such as dried fruit, honey, or a soft resin and then formed to balls or small pastilles. These may then be allowed to mature in a controlled environment where the fragrances can commingle and unite. Much Arabian incense, also called "Bukhoor" or "Bakhoor", is of this type (Bakhoor actually refers to frankincense in Arabic) and Japan has a history of kneaded incense, called nerikō or awasekō, using this method.[17] Within the Eastern Orthodox Christian tradition, raw frankincense is ground into a fine powder and then mixed with various sweet-smelling essential oils.

 

DIRECT BURNING

Direct-burning incense also called "combustible incense", is lit directly by a flame. The glowing ember on the incense will continue to smoulder and burn away the rest of the incense without continued application of heat or flame from an outside source. Direct-burning incense is either extruded, pressed into forms, or coated onto a supporting material. This class of incense is made from a moldable substrate of fragrant finely ground (or liquid) incense materials and odourless binder. The composition must be adjusted to provide fragrance in the proper concentration and to ensure even burning. The following types of direct-burning incense are commonly encountered, though the material itself can take virtually any form, according to expediency or whimsy:

 

- Coil: Extruded and shaped into a coil without a core. This type of incense is able to burn for an extended period, from hours to days, and is commonly produced and used by Chinese culture

- Cone: Incense in this form burns relatively fast. Incense cones were invented in Japan in the 1800s.

- Cored stick: This form of stick incense has a supporting core of bamboo. Higher quality varieties of this form have fragrant sandalwood cores. The core is coated by a thick layer of incense material that burns away with the core. This type of incense is commonly produced in India and China. When used for worship in Chinese folk religion, cored incensed sticks are sometimes known as "joss sticks".

- Solid stick: This stick incense has no supporting core and is completely made of incense material. Easily broken into pieces, it allows one to determine the specific amount of incense they wish to burn. This is the most commonly produced form of incense in Japan and Tibet.

- Powder: The loose incense powder used for making indirect burning incense is sometimes burned without further processing. They are typically packed into long trails on top of wood ash using a stencil and burned in special censers or incense clocks.

- Paper: Paper infused with incense, folded accordion style, lit and blown out. Examples are Carta d'Armenia and Papier d'Arménie.

- Rope: The incense powder is rolled into paper sheets, which are then rolled into ropes, twisted tightly, then doubled over and twisted again, yielding a two-strand rope. The larger end is the bight, and may be stood vertically, in a shallow dish of sand or pebbles. The smaller (pointed) end is lit. This type of incense is highly transportable and stays fresh for extremely long periods. It has been used for centuries in Tibet and Nepal.

 

The disks of powdered mugwort called 'moxa' sold in Chinese shops and herbalists are used in Traditional Chinese medicine for moxibustion treatment. Moxa tablets are not incenses; the treatment relies on heat rather than fragrance.

  

REED DIFFUSING

A reed diffuser is a form of incense that uses no heat. It comes in three parts: a bottle/container, scented essential incense oil, and bamboo reeds. The incense oil is placed into the container and bamboo reeds are then put into the same container. This is done to absorb some of the incense oil, as well as to help carry its scent and essence out of the container and into the surrounding air. Reeds typically have tiny tube openings that run the entire length of the stick. Oil is absorbed by the reed sticks and carried along the entire reed. These are do-it-yourself incense sticks that do not burn and look almost identical to typical incense sticks

 

PRODUCTION

INDIRECT BURNING

The raw materials are powdered and then mixed together with a binder to form a paste, which, for direct burning incense, are then cut and dried into pellets. Incense of the Athonite Orthodox Christian tradition are made by powdering frankincense or fir resin, mixing it with essential oils. Floral fragrances are the most common, but citrus such as lemon is not uncommon. The incense mixture is then rolled out into a slab approximately 1 cm thick and left until the slab has firmed. It is then cut into small cubes, coated with clay powder to prevent adhesion, and allowed to fully harden and dry. In Greece this rolled incense resin is called 'Moskolibano', and generally comes in either a pink or green colour denoting the fragrance, with pink being rose and green being jasmine.

 

DIRECT BURNING

In order to obtain desired combustion qualities, attention has to be paid to certain proportions in direct burning incense mixtures:

 

- Oil content: Resinous materials such as myrrh and frankincense must not exceed the amount of dry materials in the mixture to such a degree that the incense will not smolder and burn.[citation needed] The higher the oil content relative to the dry mass, the less likely the mixture is to burn effectively.[citation needed] Typically the resinous or oily substances are balanced with "dry" materials such as wood, bark and leaf powders.

- Oxidizer quantity: The amount of chemical oxidizer in gum-bound incense must be carefully proportioned. If too little, the incense will not ignite, and if too much, the incense will burn too quickly and not produce fragrant smoke.

- Mixture density: Incense mixtures made with natural binders must not be combined with too much water in mixing, or over-compressed while being formed, which would result in either uneven air distribution or undesirable density in the mixture, causing the incense to burn unevenly, too slowly, or too quickly.

- Particulate size: The incense mixture has to be well pulverized with similarly sized particulates. Uneven and large particulates result in uneven burning and inconsistent aroma production when burned.

- Binder: Water-soluble binders such as "makko" have to be used in the right proportion to ensure that the incense mixture does not crumble when dry but also that the binder does not take up too much of the mixture.

 

Some kinds of direct-burning incense are created from "incense blanks" made of unscented combustible dust immersed into any suitable kind of essential or fragrance oil. These are often sold in America by flea-market and sidewalk vendors who have developed their own styles. Such items are often known as "dipped" or "hand-dipped" incense. This form of incense requires the least skill and equipment to manufacture, since the blanks are pre-formed in China or South East Asia, then simply scented with essential oils.

 

Incense mixtures can be extruded or pressed into shapes. Small quantities of water are combined with the fragrance and incense base mixture and kneaded into a hard dough. The incense dough is then pressed into shaped forms to create cone and smaller coiled incense, or forced through a hydraulic press for solid stick incense. The formed incense is then trimmed and slowly dried. Incense produced in this fashion has a tendency to warp or become misshapen when improperly dried, and as such must be placed in climate-controlled rooms and rotated several times through the drying process.

 

Traditionally, the bamboo cores of cored stick incense is prepared by hand from Phyllostachys heterocycla cv. pubescens since this species produces thick wood and easily burns to ashes in the incense stick. Through this process, known as "splitting the foot of the incense stick", the bamboo is trimmed to length, soaked, peeled, and then continuously split in halves until thin sticks of bamboo with square cross sections of less than 3mm This process has been largely been replaced by machines in modern incense production.

 

In the case of cored incensed sticks, several methods are employed to coat the sticks cores with incense mixture:

 

- Paste rolling: A wet, malleable paste of incense mixture is first rolled into a long, thin coil, using a paddle. Then, a thin stick is put next to the coil and the stick and paste are rolled together until the stick is centered in the mixture and the desired thickness is achieved. The stick is then cut to the desired length and dried.

- Powder-coating: Powder-coating is used mainly to produce cored incense of either larger coil (up to 1 meter in diameter) or cored stick forms. A bundle of the supporting material (typically thin bamboo or sandalwood slivers) is soaked in water or a thin water/glue mixture for a short time. The thin sticks are then evenly separated, then dipped into a tray of incense powder, consisting of fragrance materials and occasionally a plant-based binder. The dry incense powder is then tossed and piled over the stick while they are spread apart. The sticks are then gently rolled and packed to maintain roundness while more incense powder is repeatedly tossed onto the sticks. Three to four layers of powder are coated onto the sticks, forming a 2 mm thick layer of incense material on the stick. The coated incense is then allowed to dry in open air. Additional coatings of incense mixture can be applied after each period of successive drying. Incense sticks that are burned in temples of Chinese folk religion produced in this fashion can have a thickness between 2 and 4 millimeters.

- Compression: A damp powder is mechanically formed around a cored stick by compression, similar to the way uncored sticks are formed. This form is becoming more commonly found due to the higher labor cost of producing powder-coated or paste-rolled sticks.

 

JOSS STICKS

Joss sticks are the name given to incense sticks used for a variety of purposes associated with ritual and religious devotion in China and India. They are used in Chinese influenced East Asian and Southeast Asian countries, traditionally burned before the threshold of a home or business, before an image of a Chinese popular religion divinity or spirit of place, or in small and humble or large and elaborate shrine found at the main entrance to each and every village. Here the earth god is propitiated in the hope of bringing wealth and health to the village. They can also be burned in front of a door, or open window as an offering to heaven, or devas. The word "joss" is derived from the Latin deus (god) via the Portuguese deos through the Javanese dejos, through Chinese pidgin English.

 

Joss-stick burning is an everyday practice in traditional Chinese religion. There are many different types of joss sticks used for different purposes or on different festive days. Many of them are long and thin and are mostly colored yellow, red, and more rarely, black. Thick joss sticks are used for special ceremonies, such as funerals. Spiral joss sticks are also used on a regular basis, which are found hanging above temple ceilings, with burn times that are exceedingly long. In some states, such as Taiwan, Singapore, or Malaysia, where they celebrate the Ghost Festival, large, pillar-like dragon joss sticks are sometimes used. These generate such a massive amount of smoke and heat that they are only ever burned outside.

 

Chinese incense sticks for use in popular religion are generally without aroma or only the slightest trace of jasmine or rose, since it is the smoke, not the scent, which is important in conveying the prayers of the faithful to heaven. They are composed of the dried powdered bark of a non-scented species of cinnamon native to Cambodia, Cinnamomum cambodianum.[citation needed] Inexpensive packs of 300 are often found for sale in Chinese supermarkets. Despite the fact that they contain no sandalwood at all, they often include the Chinese character for sandalwood on the label, as a generic term for incense.

 

Highly scented Chinese incense sticks are only used by some Buddhists. These are often quite expensive due to the use of large amounts of sandalwood, aloeswood, or floral scents used. The Sandalwood used in Chinese incenses does not come from India, its native home, but rather from groves planted within Chinese territory. Sites belonging to Tzu Chi, Chung Tai Shan, Dharma Drum Mountain, Xingtian Temple, Buddhism in Sri Lanka, Buddhism in Burma and Korean Buddhism do not use incense.

 

BURNING INCENSE

For indirect-burning incense, pieces of the incense are burned by placing them directly on top of a heat source or on a hot metal plate in a censer or thurible.

 

In Japan a similar censer called a egōro (柄香炉?) is used by several Buddhist sects. The egōro is usually made of brass with a long handle and no chain. Instead of charcoal, makkō powder is poured into a depression made in a bed of ash. The makkō is lit and the incense mixture is burned on top. This method is known as Sonae-kō (Religious Burning).

 

For direct-burning incense, the tip or end of the incense is ignited with a flame or other heat source until the incense begins to turn into ash at the burning end. Flames on the incense are then fanned or blown out, with the incense continuing to burn without a flame on its own.

 

CULTURAL VARIATIONS

CHINESE INCENSE

For over two thousand years, the Chinese have used incense in religious ceremonies, ancestor veneration, Traditional Chinese medicine, and daily life.

 

Agarwood (chénxiāng) and sandalwood (tánxiāng) are the two most important ingredients in Chinese incense.

 

Along with the introduction of Buddhism in China came calibrated incense sticks and incense clocks. The poet Yu Jianwu (487-551) first recorded them: "By burning incense we know the o'clock of the night, With graduated candles we confirm the tally of the watches." The use of these incense timekeeping devices spread from Buddhist monasteries into Chinese secular society.

 

It is incorrect to assume that the Chinese only burn incense in the home before the family shrine. In Taoist traditions, incense is inextricably associated with the 'yin' energies of the dead, temples, shrines, and ghosts. Therefore, Taoist Chinese believe burning undedicated incense in the home attracts the dreaded hungry ghosts, who consume the smoke and ruin the fortunes of the family.

 

However, since Neolithic times, the Chinese have evolved using incense not only for religious ceremonies, but also for personal and environmental aromatherapy.

 

INDIAN INCENSE

Incense stick, also known as agarbathi (or agarbatti) and joss sticks, in which an incense paste is rolled or moulded around a bamboo stick, is one of the main forms of incense in India. The bamboo method originated in India, and is distinct from the Nepal/Tibet and Japanese methods of stick making which don't use a bamboo core. Though the method is also used in the west, particularly in America, it is strongly associated with India.

 

The basic ingredients are the bamboo stick, the paste (generally made of charcoal dust and joss/jiggit/gum/tabu powder - an adhesive made from the bark of litsea glutinosa and other trees), and the perfume ingredients - which would be a masala (spice mix) powder of ground ingredients into which the stick would be rolled, or a perfume liquid sometimes consisting of synthetic ingredients into which the stick would be dipped. Perfume is sometimes sprayed on the coated sticks. Stick machines are sometimes used, which coat the stick with paste and perfume, though the bulk of production is done by hand rolling at home. There are about 5,000 incense companies in India which take raw unperfumed sticks hand-rolled by approx 200,000 women working part-time at home, and then apply their own brand of perfume, and package the sticks for sale.[38] An experienced home-worker can produce 4,000 raw sticks a day. There are about 50 main companies who together account for up to 30% of the market, and around 500 of the companies, including a significant number of the main ones, including Moksh Agarbatti and Cycle Pure, are based in Bangalore.

 

In the Middle East, incense burning has been along tradition. The word bukhur means incense in Arabic. The well known choice for incense is the famous agarwood which is very popular in Africa, the Gulf and amongst some south Asians, but there are many many more choices. Incense come in a variety of forms such as blocks, pieces, pellets, granules or powdered, which is placed in the oil burner called mabkharah for several minutes to heat either with coal in the traditional way or via power in the modern way, allowing it to release its rich smell. However this takes awhile and the quick alternative is to use incense sticks called Oud in Middle East and Africa, and agarbatti in south Asia - again referring to the agar wood + batti meaning some sort of agar-stick. Occasionally some get confused between bukhur and oud, bukhur is the insence ie agarwood, sandlewood etc and oud being the incense sticks (and not the otherway round sometimes wires get twisted)

 

JERUSALEM TEMPLE INCENSE

Ketoret was the incense offered in the Temple in Jerusalem and is stated in the Book of Exodus as a mixture of stacte, onycha, galbanum and frankincense.

 

TIBETAN INCENSE

Tibetan incense refers to a common style of incense found in Tibet, Nepal, and Bhutan. These incenses have a characteristic "earthy" scent to them. Ingredients vary from cinnamon, clove, and juniper, to kusum flower, ashvagandha, or sahi jeera.

 

Many Tibetan incenses are thought to have medicinal properties. Their recipes come from ancient Vedic texts that are based on even older Ayurvedic medical texts. The recipes have remained unchanged for centuries.

 

JAPANESE INCENSE

In Japan incense appreciation folklore includes art, culture, history, and ceremony. It can be compared to and has some of the same qualities as music, art, or literature. Incense burning may occasionally take place within the tea ceremony, just like Calligraphy, Ikebana, and Scroll Arrangement. However the art of incense appreciation or Koh-do, is generally practiced as a separate art form from the tea ceremony, however usually practiced within a tea room of traditional Zen design.

 

Agarwood (沈香 Jinkō) and sandalwood (白檀 Byakudan) are the two most important ingredients in Japanese incense. Agarwood is known as "Jinkō" in Japan, which translates as "incense that sinks in water", due to the weight of the resin in the wood. Sandalwood is one of the most calming incense ingredients and lends itself well to meditation.[citation needed] It is also used in the Japanese tea ceremony. The most valued Sandalwood comes from Mysore in the state of Karnataka in India.

 

Another important ingredient in Japanese incense is kyara (伽羅). Kyara is one kind of agarwood (Japanese incense companies divide agarwood into 6 categories depending on the region obtained and properties of the agarwood). Kyara is currently worth more than its weight in gold.

 

Some terms used in Japanese incense culture include:

 

- Incense Arts: [香道, Kodo]

- Agarwood: [ 沈香 ] – from heartwood from Aquilaria trees, unique, the incense wood most used in incense ceremony, other names are: lignum aloes or aloeswood, gaharu, jinko, or oud.

- Censer/Incense burner: [香爐] – usually small and used for heating incense not burning, or larger and used for burning

- Charcoal: [木炭] – only the odorless kind is used.

- Incense woods: [ 香木 ] – a naturally fragrant resinous wood.

 

USAGE

Incense is used for a variety of purposes, including the ceremonies of all the main religions, to overcome bad smells, repel insects, purify or improve the atmosphere, aromatherapy, meditation, and for simple pleasure.

 

PRACTICAL

Incense fragrances can be of such great strength that they obscure other, less desirable odours. This utility led to the use of incense in funerary ceremonies because the incense could smother the scent of decay. Another example of this use, as well as of religious use, is the giant Botafumeiro thurible which swings from the ceiling of the Cathedral of Santiago de Compostela. It is used in part to mask the scent of the many tired, unwashed pilgrims huddled together in the Cathedral of Santiago de Compostela.

 

A similar utilitarian use of incense can be found in the post-Reformation Church of England. Although the ceremonial use of incense was abandoned until the Oxford Movement, it was common to have incense (typically frankincense) burned before grand occasions, when the church would be crowded. The frankincense was carried about by a member of the vestry before the service in a vessel called a 'perfuming pan'. In iconography of the day, this vessel is shown to be elongated and flat, with a single, long handle on one side. It is important to note that the perfuming pan was used instead of the thurible, as the latter would have likely offended the Protestant sensibilities of the 17th and 18th centuries.

 

The regular burning of direct combustion incense has been used for chronological measurement in incense clocks. These devices can range from a simple trail of incense material calibrated to burn in a specific time period, to elaborate and ornate instruments with bells or gongs, designed to involve and captivate several of the senses.

 

Incense made from materials such as citronella can repel mosquitoes and other aggravating, distracting or pestilential insects. This use has been deployed in concert with religious uses by Zen Buddhists who claim that the incense that is part of their meditative practice is designed to keep bothersome insects from distracting the practitioner. Currently, more effective pyrethroid-based mosquito repellent incense is widely available in Asia.

 

Papier d'Arménie was originally sold as a disinfectant as well as for the fragrance.

 

Incense is also used often by people who smoke indoors, and do not want the scent to linger.

 

AestheticMany people burn incense to appreciate its smell, without assigning any other specific significance to it, in the same way that the foregoing items can be produced or consumed solely for the contemplation or enjoyment of the refined sensory experience. This use is perhaps best exemplified in the kōdō (香道?), where (frequently costly) raw incense materials such as agarwood are appreciated in a formal setting.ReligiousUse of incense in religion is prevalent in many cultures and may have their roots in the practical and aesthetic uses considering that many religions with not much else in common all use incense. One common motif is incense as a form of sacrificial offering to a deity. Such use was common in Judaic worship and remains in use for example in the Catholic, Orthodox, and Anglican churches, Taoist and Buddhist Chinese jingxiang (敬香 "offer incense [to ancestors/gods]), etc.

 

HEALTH

Incense smoke contains various contaminants including gaseous pollutants, such as carbon monoxide (CO), nitrogen oxides (NOx), sulfur oxides (SOx), volatile organic compounds (VOCs), and absorbed toxic pollutants (polycyclic aromatic hydrocarbons and toxic metals). The solid particles range between ~10 and 500 nm. The emission rate decreases in the row Indian sandalwood > Japanese aloeswood > Taiwanese aloeswood > smokeless sandalwood.

 

Research carried out in Taiwan in 2001 linked the burning of incense sticks to the slow accumulation of potential carcinogens in a poorly ventilated environment by measuring the levels of polycyclic aromatic hydrocarbons (including benzopyrene) within Buddhist temples. The study found gaseous aliphatic aldehydes, which are carcinogenic and mutagenic, in incense smoke.

 

A survey of risk factors for lung cancer, also conducted in Taiwan, noted an inverse association between incense burning and adenocarcinoma of the lung, though the finding was not deemed significant.

 

In contrast, a study by several Asian Cancer Research Centers showed: "No association was found between exposure to incense burning and respiratory symptoms like chronic cough, chronic sputum, chronic bronchitis, runny nose, wheezing, asthma, allergic rhinitis, or pneumonia among the three populations studied: i.e. primary school children, their non-smoking mothers, or a group of older non-smoking female controls. Incense burning did not affect lung cancer risk among non-smokers, but it significantly reduced risk among smokers, even after adjusting for lifetime smoking amount." However, the researchers qualified the findings by noting that incense burning in the studied population was associated with certain low-cancer-risk dietary habits, and concluded that "diet can be a significant confounder of epidemiological studies on air pollution and respiratory health."

 

Although several studies have not shown a link between incense and cancer of the lung, many other types of cancer have been directly linked to burning incense. A study published in 2008 in the medical journal Cancer found that incense use is associated with a statistically significant higher risk of cancers of the upper respiratory tract, with the exception of nasopharyngeal cancer. Those who used incense heavily also had higher rates of a type of cancer called squamous-cell carcinoma, which refers to tumors that arise in the cells lining the internal and external surfaces of the body. The link between incense use and increased cancer risk held when the researchers weighed other factors, including cigarette smoking, diet and drinking habits. The research team noted that "This association is consistent with a large number of studies identifying carcinogens in incense smoke, and given the widespread and sometimes involuntary exposure to smoke from burning incense, these findings carry significant public health implications."

 

In 2015, the South China University of Technology found toxicity of incense to Chinese hamsters ovary cells to be even higher than cigarettes.

 

Frankincense has been shown to cause antidepressive behavior in mice. It activated the poorly understood ion channels in the brain to alleviate anxiety and depression.

 

WIKIPEDIA

1 2 ••• 35 36 38 40 41 ••• 79 80