View allAll Photos Tagged capable

In the capable hands of one of Metroline's compliment of lady drivers, RML 2471 is seen at Aldwych on the start of its busy journey through the West End and up the Edgware Road on route 6 to Willesden Garage early one afternoon in June 2002. This post-London Buses version of Metroline livery applied to their Routemaster fleets based at Willesden (AC) and Holloway (HT) bus garages was an attractive combination with a shallow dark blue skirt and blue grille mesh whilst still retaining the white relief band.

Some background:

The need for a specialized self-propelled anti-aircraft gun, capable of keeping up with the armored divisions, had become increasingly urgent for the German Armed Forces, as from 1943 on the German Air Force was less and less able to protect itself against enemy fighter bombers.

 

Therefore, a multitude of improvised and specially designed self-propelled anti-aircraft guns were built, many based on the Panzer IV chassis. This development started with the Flakpanzer IV “Möbelwagen”, which was only a turretless Kampfpanzer IV with the turret removed and a 20mm Flakvierling installed instead, together with foldable side walls that offered only poor protection for the gun crew. The lineage then progressed through the Wirbelwind and Ostwind models, which had their weapons and the crew protected in fully rotating turrets, but these were still open at the top. This flaw was to be eliminated in the Kugelblitz, the final development of the Flakpanzer IV.

 

The first proposal for the Kugelblitz envisioned mounting a modified anti-aircraft turret, which had originally been developed for U-boats, on the Panzer IV chassis. It was armed with dual 30 mm MK 303 Brunn guns. However, this was eventually abandoned, since development of this gun had not yet been completed, and, in any case, the entire production run of this weapon turret would have been reserved for Germany's Kriegsmarine. However, enough firepower that enabled the Flakpanzer to cope with armoured attack aircraft, namely the Soviet Ilyushin Il-2, which was a major threat to German tanks, was direly needed.

 

As the best readily available alternative, the Kugelblitz eventually used the 30 mm MK 103 cannon in a Zwillingsflak ("twin flak") 103/38 arrangement, and it combined the chassis and basic superstructure of the existing Panzer IV medium battle tank with a newly designed turret. This vehicle received the official designation SdKfz. 161/7 Leichter Flakpanzer IV 3 cm „Kugelblitz”.

 

The turret’s construction was unique, because its spherical body, which was protected with 20 mm steel shells in front and back, was hanging in a ring mount from the Tiger I, suspended by two spigots – it was effectively an independent capsule that only slightly protruded from the tank’s upper side and kept the vehicle’s profile very low, unlike its predecessors. Elevation of the weapons (as well as of the crew sitting inside of the turret!) was from -5° to +80°, turning speed was 60°/sec. The turret was fully enclosed, with full overhead protection, 360° traverse and (rather limited) space for the crew of three plus weapons and ammunition. Driver and radio operator were located in the front of the hull, as with all German tanks. The commander/gunner, who had a small observation cupola on top of the turret, was positioned in the middle, behind the main guns. The two gunner assistants were placed on the left and right side in front of him, in a slightly lower position. The assistant situated left of the guns was responsible for the turret’s movements, the one on the right side was responsible for loading the guns. The spare ammunition was located on the right side. Each of these three crew members had separate hatch doors, which they could use to enter or exit the vehicle. The gunner assistants’ hatch doors each had a small round shaped extra hatch, which were used for mounting sighting devices, and there were plans to outfit the turret with a stereoscopic range finder for the commander.

 

The tank’s MK 103 was a powerful weapon that had formerly been fitted in single mounts to such planes as the Henschel Hs 129 or Bf 1110 in a ventral gun pod against tanks, and it was also fitted to the twin-engine Dornier Do 335 heavy fighter and other interceptors against Allied bombers. When used by the army, it received the designation “3 cm Flak 38”. It had a weight of only 141 kg (311 lb) and a length of 235 cm (93 in) with muzzle brake. Barrel length was 134 cm (53 in), resulting in Kaliber L/44.7 (44.7 caliber). The weapon’s muzzle velocity was around 900 m/s (3,000 ft/s), allowing an armour penetration for APCR 42–52 mm (1.7–2.0 in)/60°/300 m (980 ft) or 75–95 mm (3.0–3.7 in)/ 90°/ 300 m (980 ft), with an effective maximum firing range of around 5.700 m (18.670 ft).

 

The MK 103 was gas-operated, fully automatic and belt-fed (an innovative feature at that time for AA guns). In the Kugelblitz turret the weapons could be fired singly or simultaneously and their theoretical rate of fire was 450 rounds a minute, even though 250 rpm in short bursts was more practical. The total ammunition load for both weapons was 1,200 rounds and the discharged cases fell into canvas bags placed under the guns. Due to the fact that the MK 103 cannons produced a lot of powder smoke when operated, fume extractors were added, which was another novelty.

 

A production rate of 30 per month by December 1944 was planned, but never achieved, because tank production had become seriously hampered and production of the Panzer IV was about to be terminated in favor of the new E-series tank family, anyway. Therefore, almost all Flakpanzer IV with the Kugelblitz turret were conversions of existing hulls, mostly coming from repair shops. In parallel, work was under way to adapt the Kugelblitz turret to the Jagdpanzer 38(t) Hetzer hull, which was still in production in the former Czechoslovakian Skoda works, and to the new, light E-10 and E-25 tank chassis. Due to this transitional and slightly chaotic situation, production numbers of the Panzer IV-based Kugelblitz remained limited.

 

By early 1945, only around 50 operational vehicles had been built and production of the SdKfz. 161/7 already ceased in May. The first five produced vehicles were given to the newly formed “Panzerflak Ersatz- und Ausbildungsabteilung” (armored Flak training and replacement battalion) located near the city of Ohrdruf (Freistaat Thüringen region in central Germany). One company was divided into three platoons equipped with a mix of different Flakpanzers vehicles. The first platoon was equipped with the Wirbelwind, the second with Ostwind, and the third platoon was equipped with experimental vehicles, such as the Kugelblitz or the “Zerstörer 45”, which was basically a Wirbelwind with a 3-cm-Flak-Vierling 103/38 (armed with four MK 103s).

 

During the unit’s initial trials and deployments, the 3 cm Flak 38 turned out to be a troublesome design, largely because of the strong vibration when firing, and gun smoke frequently filled the turret with hazardous effects on the crews. The vibrations made the target aiming difficult and could even cause damage on the mounting itself – but due to the dire war situation, production was kept up. However, during the running production of the Kugelblitz turret, reinforcements to the mount structure were gradually added, as well as improved sighting systems. None of the operational SdKfz. 161/7s received these upgrades, though, since it was only regarded as a transitional model that filled the most urgent defense gaps. Later production Panzer IV Kugelblitz vehicles were almost exclusively sent to units that defended Berlin, where they fought against the Soviet assault on the German capital.

  

Specifications:

Crew: Five (commander/gunner, 2 assistants, driver, radio operator)

Weight: 23 tons

Length: 5.92 m (19 ft 5 in)

Width: 2.88 m (9 ft 5 ¼ in)

Height: 2.3 m (7 ft 6 ½ in)

Suspension: Leaf spring

Fuel capacity: 470 l (120 US gal)

 

Armour:

10 – 50 mm (0.39 – 1.96 in)

 

Performance:

Maximum road speed: 40 km/h (25 mph)

Sustained road speed: 34 km/h (21.1 mph)

Off-road speed: 24 km/h (15 mph)

Operational range: 210 km (125 mi); 130 km (80 mi) off-road

Power/weight: 13 PS/t

 

Engine:

Maybach HL 120 TRM V12 petrol engine with 300 PS (296 hp, 221 kW)

 

Transmission:

ZF Synchromesh SSG 77 gear with 6 forward and 1 reverse ratios

 

Armament:

2× 30 mm 3 cm Flak 38 (MK 103/3) with a total of 1.200 rounds

1× 7.92 mm Maschinengewehr 34 with 1,250 rounds in bow mount

  

The kit and its assembly:

This is a model of a tank that actually existed, but only in marginal numbers – not more than five Panzer IV with the revolutionary Kugelblitz turret are known to have existed or even seen service. However, it fits well into the ranks of fictional/projected Heer ’46 tanks, and I have been wanting to build or create one for along time.

 

There are some 1:72 kits available, e. g. from Mako, but they are rare and/or expensive. So I rather went for an improvisation approach, and it turned out to be very successful. The complete turret comes from one of the Modelcollect “Vierfüssler” mecha kits – these carry such an installation under the belly(!), what makes absolutely NO sense to me. I especially wonder how the crew is supposed to enter and operate the turret in its upside down position? Not to mention a totally confined field of fire…

 

However, the Modelcollect Kugelblitz tower comes complete with its bearing and the armored collar. It was simply mated with the hull from a late Hasegawa Panzer IV – in my case even a Wirbelwind, which also came with some suitable additional details like stowing boxes for gun barrels. The attachment ring for the turret had just to be widened far enough to accept the Kugelblitz installation – and it worked well! Very simple, but highly effective.

  

Painting and markings:

Well, this did not work 100% as intended. I wanted to emphasize the fact that the tanks would have been built from revamped hulls, so I gave all parts an initial overall coat with RAL 3009, Oxydrot. These were then overpainted with a three-tone Hinterhalt scheme in Dunkelgelb (RAL 7028), Olivgrün (RAL 6003) and Rotbraun (RAL 8012). The pattern was adapted from a Wirbelwind, which I had found in literature, consisting of narrow stripes across the hull with additional spots of Dunkelgelb on top of the darker tones. In order to emphasize the idea of a converted tank with the turret coming from another source, I gave the latter a uniform Dunkelgelb livery.

 

The colors used were Humbrol enamels, this time a different selection of tones, namely 167 (RAF Hemp), 159 (Khaki Drab) and a mix of 160 and 10 (German Rotbraun and Chocolate Brown, for a darker hue). However, I wanted the Oxydrot to shine through the camouflage, but despite efforts with thinned paint and sparse use of the enamels the effect is not as visible as expected. I left it that way, though, here and there the red primer is visible, but a lot of the livery became obscured through the following wash with dark red brown, highly thinned acrylic paint and a final coat of pigment dust on the model’s lower areas.

 

The original black vinyl track was treated with a cloudy mix of grey, red brown and iron acrylic paint, and finally dusted with pigments, too.

 

The decals were gathered from several sources – the tactical code was puzzled together with Roman and Arabic numbers in red (seen on some vehicles from assault gun units), the emblem on the turret shows Berlin’s mascot, the bear, taken from a Modelcollect Heer ’46 kit’s sheet.

 

Some dry-brushing with light grey was done to simulate dust and worn edges, but not too much since the vehicle was to be presented in a more or less new state. And then the model was sealed with acrylic matt varnish.

  

A relatively simple build, since only the turret was exchanged/transplanted. The result looks better than expected, though, and the Kugelblitz turret fit into the Panzer IV hull like the hand into a tight glove. Very convincing. And I might add another Kugelblitz variant, this time either on a Hetzer hull (which was a real alternative to the Panzer IV) or on an E-25, it seems as if an 1:72 kit becomes soon available from Modelcollect.

 

Toa Tamaru is capable of wielding a twin set of swords and shields that offers her a balanced defense and offense.

 

Nova beam swords that can launch plasma projectiles when swung with perfected skill

 

Ignore light weight armor & walls. penetrating through easily with her blades reaching a temperature of at least 1800°C, and could be high as 25000°C.

 

Her shields dont heat up the same as her swords but are required to cool down to recharge

Capable of carrying 2,000 passengers, 1,342 cars and 240 trucks, Irish Ferries MV Ulysses provides huge capacity on the Holyhead to Dublin route.

It is seen here passing The Skerries, (Ynysoedd y Moelrhoniaid).

A hoist-capable UH-60 Black Hawk helicopter and aircrew from the 1st Battalion, 207th Aviation Regiment, Alaska Army National Guard, arrives in Bethel, Alaska, April 27, 2021, as part of the State of Alaska’s effort to prepare for disaster response in the Yukon-Kuskokwim region during the spring flood season. While stationed in Bethel, the crew will continue to train on their federal mission and remain ready to respond to any requests for support from civil authorities through the State Emergency Operations Center. (U.S. Army National Guard photo by Dana Rosso)

HI Fiona,

It was a great event! Please see below the story and some photos attached, if you'd like to post this on Indigo where appropriate and on the gallery, I will leave this into your capable hands!

Thanks again for the contribution. We really had a good and inspiring time!

Sandrine

 

****

 

Encouraged by Informa`s One Planet Eating initiatives, the Hong Kong team got together at HOME to share a few healthy tapas, organic cocktails and be inspired by Christian Mongendre, our Guest Speaker, who created HOME. You can check him out: www.lifestyleasia.com/470121/tastemakers-christian-mongen...

 

In balancing mind and body, HOME - Eat to Live strives to use only organic produce whenever possible. Much of our ingredients are sourced locally from a network of farms and our food is made fresh daily. Our menu aims to appeal to everyone. We believe that healthy, plant-based foods should be tasty, filling, and nutritious. We offer vegan, gluten free & raw options, including healthy desserts and organic cocktails. We are committed to supporting a sustainable, plant-based lifestyle, collectively lowering our carbon footprint and preserving our earth's fresh water supply through a plant-based menu, mindful ingredient sourcing, eco-friendly packaging and practices.

 

During the talk, Christian raised awareness about recycling, compost, biodegradable materials like the plastic they use, from corn, LED lights which create no heat.

 

He also told us about the importance of eating more plant based food, and the impact on our planet. As a very demanding person, he wanted to create a vegetarian and sustainable restaurant and also bring taste and colour to our plates, with no processed food. Christian also pointed out the menu of HOME, each dish is called by animals in danger: Golden Snub Nosed Monkey Open Faced Toast, Manta Ray Salad Bowl, Siberian Tiger Earth Bowl, Northern White Rhino Sliders , Hawaiian Monk Seal Flatbread...

 

The team was very engaged and questioned him around the cost of eating healthy, being higher than eating meat. At HOME, they try to educate their customers about the origin of the products they use, Kale is one example, they were the first restaurant to import Kale but as demand grows, price goes down and we reach economies of scale. To make 'Healthy food' affordable, the market demand need to change and it is starting to change.

 

Finally, we asked him for advice around Pledges we should all make:

 

- Wellbeing = Food, "you are what you eat" , what you are eating to regenerate your body

 

- How are you breathing: Try to take time and be conscious of your breath

 

- Try Meditation

 

- Drink high quality water and not distilled

 

- Exercise and organise more events like 'Walk the World'

 

- Cut down on sweets and opt for healthier snacks

 

- Choose an organic range of teas

 

- Recycle

 

- Having LED lights

 

- And last but not least, we all agreed to at least TRY: Meat Free Monday !

 

Alena & Sandrine

 

Sandrine Declippeleir

Account Director - Professional Services, Asia Pacific

 

Business intelligence | informa

 

T: +852 3757 9703

M: +852 9222 1747

sandrine.declippeleir@informa.com<

 

www.informa.com

Agribusiness intelligence | Financial intelligence | Maritime intelligence | Pharma intelligence | TMT intelligence

 

Informa | Nexxus Building, Level 16 | 41 Connaught Road | Central | Hong Kong

 

Follow me on:

 

hk.linkedin.com/in/sandrinedeclippeleir

 

This electronic message and all contents transmitted with it are confidential and may be privileged. They are intended solely for the addressee. If you are not the intended recipient, you are hereby notified that any disclosure, distribution, copying or use of this message or taking any action in reliance on the contents of it is strictly prohibited. If you have received this electronic message in error, please destroy it immediately, and notify the sender.

 

Informa Group plc | Registered in England & Wales No. 3099067 | 5 Howick Place | London | SW1P 1WG

HMS QUEEN ELIZABETH (R08) is the lead ship of the Queen Elizabeth class of aircraft carriers, the largest warships ever built for the Royal Navy of the United Kingdom and capable of carrying up to 60 aircraft.[18] She is named in honour of the first Queen Elizabeth, a renowned World War I era super-dreadnought, which in turn was named after Queen Elizabeth I. This latest Queen Elizabeth will carry her namesakes' honours, as well as her Tudor rose-adorned crest and motto.

 

The ship began sea trials in June 2017, and was commissioned on 7 December 2017. Her first Commanding Officer was Commodore Jerry Kyd, who had previously commanded the carriers Ark Royal and Illustrious.

 

Queen Elizabeth has no catapults or arrestor wires and is instead designed to operate V/STOL aircraft. The air wing will typically consist of F-35B Lightning II multirole fighters and Merlin helicopters for airborne early warning and anti-submarine warfare. The design emphasises flexibility, with accommodation for 250 Royal Marines and the ability to support them with attack helicopters and large troop transports such as Chinooks. She is the second Royal Navy vessel to bear the name Queen Elizabeth and is based at HMNB Portsmouth.

 

Seen leaving Portsmouth Harbour on Sunday 10 June 2018.

 

History:

Name: HMS Queen Elizabeth

Namesake: HMS Queen Elizabeth

Operator: Royal Navy

Ordered: 20 May 2008

Builder: Aircraft Carrier Alliance

Cost:

Programme cost: £6.1 billion

Unit cost: £3 billion

Laid down: 7 July 2009

Launched: 17 July 2014

Sponsored by: HM Queen Elizabeth II

Christened: 4 July 2014

Completed: 7 December 2017

Commissioned: 7 December 2017

In service: 2020 (planned)

Homeport: HMNB Portsmouth

Identification:

Pennant number: R08

Deck code: Q

IMO number: 4907892

ITU callsign: GQLZ

Motto: Semper Eadem ("Always the Same")

 

General characteristics:

Class and type: Queen Elizabeth-class aircraft carrier

Displacement: 65,000 tonnes (64,000 long tons; 72,000 short tons)

Length: 280 m (920 ft)

Beam:

39 m (128 ft) (waterline)

73 m (240 ft) overall

Draught: 11 m (36 ft)

Propulsion: Integrated Electric Propulsion via Two Rolls-Royce Marine 36 MW MT30 gas turbine alternators and four 10 MW diesel engines.

Speed: 25 knots (46 km/h)

Range: 10,000 nautical miles (19,000 km)

Capacity: 1,600

Troops: 250

Complement: 679

Sensors and

processing systems:

S1850M long range radar

Type 997 Artisan 3D medium range radar

Ultra Electronics Series 2500 Electro Optical System (EOS)

Armament:

3 x Phalanx CIWS

4 x 30mm calibre gun, various Miniguns and GPMGs to counter asymmetric threats.

Aircraft carried:

Planned Carrier Air Wing of 24 to 36 STOVL fighter jets & 14 helicopters.

F-35B Lightning II.

Chinook.

Apache AH MK1.

Merlin HM2 and HC4.

Wildcat AH1 and HMA2.

Merlin Crowsnest AEW.

Aviation facilities:

Hangar below deck.

Two aircraft lifts.

Ski jump.

 

The opening of the Connaught Bridge Generating Station, on the Klang River in Selangor, in March 1953 was a real milestone int he history of what was then Malaya - now Malaysia. The power station, capable of being either coal or oil fired, was at 80,000kw by far the largest generating station at the time in the country and, as importantly, the project included elements of a new proposed Malayan 'National Grid' that linked existing stations such as the hydro-electric plant at Chenderoh with stations and locations along the East Coast centred on the Bungsar station in Kuala Lumpur that hitherto had supplied the bulk of the capital's power requirements. As the booklet notes it meant an end to the long post-war years of restriction of supply to both industrial and domestic consumers.

 

The station was originally planned in 1944 by the Malayan Planning Unit in London in anticipation of the return to Malaya after the end of the Japanses occupation. A provisional order for the equipment was placed in 1945, with additional equipment following in 1947. Meanwhile the site at Connaught Bridge alongside the Klang River was selected in 1946 with the contract to start construction given by the Federation's Government in 1949. The first phase of the station, plant and the double circuit 66kv interconnecting lines running the 23 miles to Kuala Lumpur, was ready for opening in March 1953. Full commissioning came in 1955. Initailly the output was linked to the Bangsar (KL) station and that of Ulu Langat hydro-electric station. Construction of the former had started in 1926 and was opened in 1927 by the Government electricity department and in 1933 they purchased the Ulu Langat station from the Sungei Besi Mines Ltd. KL's earlier supplies, from 1905, had been provided from a small hydro-electric plant on the Gombak River, 12 miles from the town, what had two 400kw Pelton wheel-alternators. This had been augmented in 1919 by a mixed steam and diesel engine plant at Gombak Lane in the centre of KL.

 

Elsewhere, Penang's Municipal Department was the first to supply electriicty within Malaya when it started in 1904 - the station on the mainland at Prai came into use in 1926. By this date electricity was available in Ipoh, Johore Bahru (and Singapore), Seremban and Malacca/Melaka. That at Johore Bahru under the Johore adminsitraion grew to include Muar, Batu Pahat, Kluang, Kota Tinggi and Segamat. In Perak supplies were largely in the hands of the Perak River Hydro-Electric Power Company who operated stations at Malim Nawar (1928) and Chenderoh (1929). In North Perak the Government supplied Taiping and in Province Wellesley Messrs. Huttenbach's bought bulk supply from Penang and supplied power to various towns, supplemented by diesel generating stations in Kedah, Perak and Negri Sembilan. Power came to Kota Bharu (Kelantan), Ruab, Bentong, Kuala Lipis and Kuantan between 1928 and 1931, and in 1938 and 1939 to Mentakab, Fraser's Hill and Kuala Kubu.

 

In 1946 the Malayan Union Government acquired most electriicty undertakings except those of private companies and Penang Corporation whilst it also fully acquired the undertkaing operated by the Malacca Electric Light Company in 1948 that it has previously run on a rental basis. On the 1 September 1949 the new Central Electricity Board of the Federation fo Malaya came into existance and took over all functions of the old Electricity Department.

 

The booklet is marvellously detailed and illustrated describing the site, the power station, ancilliary equipment and other works, such as staff accomodaton and housing, with photographs and plans. The latter include a map of the proposed Malayan Grid and the plans show the works designed by both the staff of the Central Electricity Board and the consulting engineers, Preece, Cardew and Rider, and civil engineers Coode and Partners. The station took cooling water from the Klang River and could be powered by either fuel oil (via a pipeline from Port Swettenham) and coal via connections with the Malayan Railways and the colliery at Batu Arang.

 

Needless to say much of the equipment was supplied from the UK - Parsons generators and transformers and switchgear from various manufacturers including British Thomson Houston.

 

The photos are great as they show named members of the operating staff at work which is unusual but that now provided a real social history to the economic history of electricity supply in Malaysia.

Memory loss is not an inevitable part of the ageing process

 

The brain is capable of producing new brain cells at any age, so significant memory loss is not an inevitable result of ageing. But just as it is with muscle strength, you have to use it or lose it. Your lifestyle, health habits, and daily activities have a huge impact on the health of your brain. Whatever your age, there are many ways you can improve your cognitive skills, prevent memory loss, and protect your grey matter.

 

Furthermore, many mental abilities are largely unaffected by normal ageing, such as:

 

Your ability to do the things you’ve always done and continue to do often

The wisdom and knowledge you’ve acquired from life experience

Your innate common sense

Your ability to form reasonable arguments and judgements

  

Brain exercises to combat memory loss

 

When it comes to memory, it’s “use it or lose it.” Just as physical exercise can make and keep your body stronger, mental exercise can make your brain work better and lower the risk of mental decline. Try to find brain exercises that you find enjoyable. If you dislike what you’re doing, it won’t have the same benefit. The more pleasurable an activity is to you, the more powerful its effect will be on your brain. You can make some activities more enjoyable by appealing to your senses—by playing music during the exercise, for example, or lighting a scented candle, or rewarding yourself after you’ve finished.

 

Here are some ideas for brain exercise, from light workouts to heavy lifting:

 

Play games you are not already familiar with that involve strategy, like chess or bridge, and word games like Scrabble.

Try crossword and other word puzzles, or number puzzles such as Sudoku.

Read newspapers, magazines, and books that challenge you.

Get in the habit of learning new things: games, recipes, driving routes, a musical instrument, a foreign language.

Take a course in an unfamiliar subject that interests you. The more interested and engaged your brain, the more likely you’ll be to continue learning and the greater the benefits you’ll experience.

Take on a project that involves design and planning, such as a new garden, a quilt, or a koi pond.

 

Walking: An easy way to fight memory loss

 

New research indicates that walking six to nine miles every week can prevent brain shrinkage and memory loss. According to the American Academy of Neurology, older adults who walked between six and nine miles per week had more gray matter in their brains nine years after the start of the study than people who didn't walk as much.

 

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based on authentic facts. BEWARE!

  

Some background:

The VF-1 was developed by Stonewell/Bellcom/Shinnakasu for the U.N. Spacy by using alien Overtechnology obtained from the SDF-1 Macross alien spaceship. Its production was preceded by an aerodynamic proving version of its airframe, the VF-X. Unlike all later VF vehicles, the VF-X was strictly a jet aircraft, built to demonstrate that a jet fighter with the features necessary to convert to Battroid mode was aerodynamically feasible. After the VF-X's testing was finished, an advanced concept atmospheric-only prototype, the VF-0 Phoenix, was flight-tested from 2005 to 2007 and briefly served as an active-duty fighter from 2007 to the VF-1's rollout in late 2008, while the bugs were being worked out of the full-up VF-1 prototype (VF-X-1).

 

The space-capable VF-1's combat debut was on February 7, 2009, during the Battle of South Ataria Island - the first battle of Space War I - and remained the mainstay fighter of the U.N. Spacy for the entire conflict. Introduced in 2008, the VF-1 would be out of frontline service just five years later, though.

 

The VF-1 proved to be an extremely capable craft, successfully combating a variety of Zentraedi mecha even in most sorties which saw UN Spacy forces significantly outnumbered. The versatility of the Valkyrie design enabled the variable fighter to act as both large-scale infantry and as air/space superiority fighter. The signature skills of U.N. Spacy ace pilot Maximilian Jenius exemplified the effectiveness of the variable systems as he near-constantly transformed the Valkyrie in battle to seize advantages of each mode as combat conditions changed from moment to moment.

 

The basic VF-1 was deployed in four minor variants (designated A, D, J, and S) and its success was increased by continued development of various enhancements including the GBP-1S "Armored" Valkyrie, FAST Pack "Super" Valkyrie and the additional RÖ-X2 heavy cannon pack weapon system for the VF-1S for additional firepower.

The FAST Pack system was designed to enhance the VF-1 Valkyrie variable fighter, and the initial V1.0 came in the form of conformal pallets that could be attached to the fighter’s leg flanks for additional fuel – primarily for Long Range Interdiction tasks in atmospheric environment. Later FAST Packs were designed for space operations.

 

The following FAST Pack 2.0 system featured two 120.000 kg class P&W+EF-2001 booster thrusters (mounted on the dorsal section of the VF-1) and two CTB-04 conformal propellant/coolant tanks (mounted on the leg/engines), since the VF-1's internal tanks could not carry enough propellant to achieve a stable orbit from Earth bases and needed the help of a booster pack to reach Low Earth Orbit. Anyway, the FAST Pack 2.0 wasn't adapted for atmospheric use, due to its impact on a Valkyrie's aerodynamics and its weight; as such, it needed to be discarded before atmospheric entry.

Included in the FAST Pack boosters and conformal tanks were six high-maneuverability vernier thrusters and two low-thrust vernier thrusters beneath multipurpose hook/handles in two dorsal-mounted NP-BP-01, as well as ten more high-maneuverability vernier thrusters and two low-thrust vernier thrusters beneath multipurpose hook/handles in the two leg/engine-mounted NP-FB-01 systems.

Granting the VF-1 a significantly increased weapons payload as well as greater fuel and thrust, Shinnakasu Heavy Industry's FAST Pack system 2.0 was in every way a major success in space combat. The first VF-1 equipped with FAST Packs was deployed in January 2010 for an interception mission.

Following first operational deployment and its effectiveness, the FAST Pack system was embraced enthusiastically by the U.N. Spacy and found wide use. By February 2010, there were already over 300+ so-called "Super Valkyries" stationed onboard the SDF-1 Macross alone.

 

The FAST Pack went through constant further development, including upgraded versions for late production and updated VF-1s (V3.0 and V4.0). Another addition to the early V2.0 variant of 2010 was the so-called “S-FAST Pack”. The S-FAST pack was originally developed at the Apollo lunar base, for the locally based VF-1 interceptor squadrons that were tasked with the defense of this important production and habitat site on the Moon, but it also found its way to other orbital stations and carriers.

 

Officially designated FAST Pack V2.1, the S-FAST Pack consisted of the standard pair of dorsal rocket boosters plus the pallets with additional maneuvering jets, sensors and weapons. The S-FAST pack added another pair of P&W+EF-2001 boosters under the inner wings, having the duty to give to fighter the power necessary to exit easily from the gravity of moons or little planets without atmosphere, and improve acceleration during combat situations. Range was also further extended, together with additional life support systems for prolonged deep space operations, or the case of emergency.

 

In order to accept the S-FAST pack and exploit its potential, the VF-1’s wings and inner wing attachment points had to be strengthened due to the additional load and propulsion. The use of the S-FAST pack also precluded the fighter from transforming into Battroid or Gerwalk mode – the underwing packs had to be jettisoned beforehand. The other standard FAST Pack 2.0 elements could still be carried, though.

 

The modfied Valkyries capable of accepting the S-FAST Pack received an additional “S” to their type designation – more than 100 VF-1s were converted or built in this deep space configuration until late 2011. Initial deployment of the S-FAST Pack was conducted through SVF-24 “Moon Shadows” in early 2010, a unit that was quickly disbanded, though, but re-formed as SVF-124 “Moon Shooters”, tasked with the defense of the lunar Apollo Base and several special missions.

 

After the end of Space War I, the VF-1 continued to be manufactured both in the Sol system and throughout the UNG space colonies. Although the VF-1 would eventually be replaced as the primary Variable Fighter of the U.N. Spacy by the more capable, but also much bigger, VF-4 Lightning III in 2020, a long service record and continued production after the war proved the lasting worth of the design.

 

The VF-1 was without doubt the most recognizable variable fighter of Space War I and was seen as a vibrant symbol of the U.N. Spacy even into the first year of the New Era 0001 in 2013. At the end of 2015 the final rollout of the VF-1 was celebrated at a special ceremony, commemorating this most famous of variable fighters. The VF-1 Valkryie was built from 2006 to 2013 with a total production of 5,459 VF-1 variable fighters with several variants (VF-1A = 5,093, VF-1D = 85, VF-1J = 49, VF-1S = 30, VF-1G = 12, VE-1 = 122, VT-1 = 68)

 

However, the fighter remained active in many second line units and continued to show its worthiness years later, e. g. through Milia Jenius who would use her old VF-1 fighter in defense of the colonization fleet - 35 years after the type's service introduction!

 

General characteristics:

All-environment variable fighter and tactical combat Battroid,

used by U.N. Spacy, U.N. Navy, U.N. Space Air Force

 

Accommodation:

Pilot only in Marty & Beck Mk-7 zero/zero ejection seat

Dimensions:

Fighter Mode:

Length 14.23 meters

Wingspan 14.78 meters (at 20° minimum sweep)

Height 3.84 meters

 

Battroid Mode:

Height 12.68 meters

Width 7.3 meters

Length 4.0 meters

Empty weight: 13.25 metric tons;

Standard T-O mass: 18.5 metric tons;

MTOW: 37.0 metric tons

 

Power Plant:

2x Shinnakasu Heavy Industry/P&W/Roice FF-2001 thermonuclear reaction turbine engines, output 650 MW each, rated at 11,500 kg in standard or in overboost (225.63 kN x 2)

4 x Shinnakasu Heavy Industry NBS-1 high-thrust vernier thrusters (1 x counter reverse vernier thruster nozzle mounted on the side of each leg nacelle/air intake, 1 x wing thruster roll control system on each wingtip);

18 x P&W LHP04 low-thrust vernier thrusters beneath multipurpose hook/handles

 

The S-FAST Pack added 4x P&W+EF-2001 booster thrusters with 120.000 kg each, plus a total of 28x P&W LHP04 low-thrust vernier thrusters

 

Performance:

Battroid Mode: maximum walking speed 160 km/h

Fighter Mode: at 10,000 m Mach 2.71; at 30,000+ m Mach 3.87

g limit: in space +7

Thrust-to-weight ratio: empty 3.47; standard T-O 2.49; maximum T-O 1.24

 

Design Features:

3-mode variable transformation; variable geometry wing; vertical take-off and landing; control-configurable vehicle; single-axis thrust vectoring; three "magic hand" manipulators for maintenance use; retractable canopy shield for Battroid mode and atmospheric reentry; option of GBP-1S system, atmospheric-escape booster, or FAST Pack system

 

Transformation:

Standard time from Fighter to Battroid (automated): under 5 sec.

Min. time from Fighter to Battroid (manual): 0.9 sec.

 

Armament:

2x internal Mauler RÖV-20 anti-aircraft laser cannon, firing 6,000 pulses per minute

1x Howard GU-11 55 mm three-barrel Gatling gun pod with 200 RPG, fired at 1,200 rds/min

 

4x underwing hard points for a wide variety of ordnance, including

12x AMM-1 hybrid guided multipurpose missiles (3/point), or

12x MK-82 LDGB conventional bombs (3/point), or

6x RMS-1 large anti-ship reaction missiles (2/outboard point, 1/inboard point), or

4x UUM-7 micro-missile pods (1/point) each carrying 15 x Bifors HMM-01 micro-missiles,

or a combination of above load-outs

 

The optional Shinnakasu Heavy Industry S-FAST Pack 2.1 augmentative space weapon system added:

6x micro-missiles in two NP-AR-01 micro-missile launcher pods (mounted rear-ward under center ventral section in Fighter mode or on lower arm sections in GERWALK/Battroid mode)

4x12 micro missiles in four HMMP-02 micro-missile launchers, one inside each booster pod

 

The kit and its assembly:

This VF-1 is another contribution to the “Old Kit” Group Build at whatifmodelers.com, running in late 2016. I am not certain about the moulds’ inception date, but since it is an ARII incarnation of this type of kit and even moulded in the early pastel green styrene, I’d think that it was produced in 1982 or 83.

 

Anyway, I love the Macross VF-1, IMHO a design masterpiece created by Shoji Kawamori and one of my favorite mecha designs ever, because it was created as a late 70ies style jet fighter that could transform into a robot in a secondary role. As a simple, purposeful military vehicle. And not like a flashy robot toy.

 

Effectively, this Super Valkyrie is a highly modified OOB kit with many donation parts, and this kit is a bit special, for several reasons. There are several 1:100 OOB kits with FAST Packs from ARII/Bandai available (and still around today), but these are normally only Battroids or Gerwalks with additional parts for the FAST kit conversion. The kit I used here is different: it is, after maybe 25 years of searching and building these kits, the #70 from the original production run. It is (so far!) the only Fighter mode kit with the additional FAST Pack parts! Must be rare, and I have never seen it in catalogues?

 

Until today, I converted my Super or Strike Valkyries from Gerwalk kits, a task that needs some improvisation esp. around the folded arms between the legs, and there’s no OOB option for an extended landing gear. The latter made this Fighter mode kit very attractive, even though the actual kit is pretty disappointing, and AFAIK this kit variant is only available as a VF-1S.

 

With the Super Valkyrie fighter kit you receive basically a Gerwalk with a standard fighter cockpit (which includes a front wheel well and an extended front wheel leg), plus extra parts. The leg/engine-mounted NP-FB-01 systems are less bulbous than the parts on the Gerwalk or Battroid kit, and the OOB dorsally mounted NP-BP-01 boosters are TINY, maybe 1:120 or even 1:144! WTF?

 

Further confusion: the kit includes a set of lower arm parts with integrated rocket launchers, but these are not necessary at all for the Fighter build?! As a kind of compensation there’s a new and exclusive element that simulates the folded arms under the ‘fuselage’ and which, as an added value, properly holds the hand gun under the fuselage. As a quirky flaw, though, the hand gun itself comes in the extended form for the Battroid/Gerwalk mode. For the fighter in flight mode, it has to be modified, but that’s easily done.

 

Anyway, with the potential option to build a Super Valkyrie with an extended landing gear, this was my route to go with this vintage kit. The Super Valkyrie already looks bulky with the FAST Pack added, but then I recently found the S-FAST Pack option with two more boosters under the wings – total overkill, but unique. And I had a spare pair of booster bulks in the stash (w/o their nozzles, though), as well as a complete pair of additional bigger standard FAST boosters that could replace the ridiculous OOB parts…

 

Building such a Super/Strike Valkyrie means building separate components, with a marriage of parts as one of the final steps. Consequently, cockpit, central fuselage with the wings and the air intakes, the folded stabilizer pack, the folded arms element with the handgun, the two legs and the four boosters plus other ordnance had to be built and painted separately.

 

Here and there, details were changed or added, e. g. a different head (a ‘J’ head for the flight leader’s aircraft with two instead of the rare, OOB ‘S’ variant with four laser cannon), covers for the main landing gear (the latter does not come with wells at all, but I did not scratch them since they are hardly recognizable when the kit is sitting on the ground), the typical blade aerials under the cockpit and the feet had to be modified internally to become truly ‘open’ jet exhausts.

 

The wing-mounted boosters received new nozzles and their front end was re-sculpted with 2C putty into a square shape, according to reference sketches. Not 100% exact, but the rest of the VF-1 isn’t either.

 

This VF-1 was also supposed to carry external ordnance and my first choice were four wing-mounted RMS-1 Anti-Ship Reaction Warheads, scratched from four 1.000 lb NATO bombs. But, once finished, I was not happy with them. So I looked for another option, and in a source book I found several laser-guided bombs and missiles, also for orbital use, and from this inspiration comes the final ordnance: four rocket-propelled kinetic impact projectiles. These are actually 1:72 JASDF LGB’s from a Hasegawa weapon set, sans aerodynamic steering surfaces and with rocket boosters added to the tail. Also not perfect, but their white color and sleek shape is a good counterpart to the FAST elements.

 

Experience from many former builds of this mecha kit family helped a lot, since the #70 kit is very basic and nothing really fits well. Even though there are not many major seams or large elements, PSR work was considerable. This is not a pleasant build, rather a fight with a lot of compromises and semi-accuracies.

Seriously, if you want a decent 1:100 VF-1, I’d rather recommend the much more modern WAVE kits (including more realistic proportions).

  

Painting and markings:

The paint scheme for this Super Valkyrie was settled upon before I considered the S-FAST Pack addition: U.N. Spacy’s SVF-124 is authentic, as well as its unique camouflage paint scheme.

The latter is a special scheme for the lunar environment where the unit was originally formed and based, with all-black undersides, a high, wavy waterline and a light grey upper surface, plus some medium grey trim and a few colorful US Navy style markings and codes.

 

My core reference is a ‘naked’ bread-and-butter VF-1A of SVF-124 in Fighter mode, depicted as a profile in a VF-1 source book from SoftBank Publishing. The colors for the FAST Pack elements are guesstimates and personal interpretations, though, since I could not find any reference for their look in this unit.

As a side note, another, later SVF-124 aircraft in a similar design is included as an option in a limited edition 1:72 VF-22S kit from Hasegawa, which is backed by CG pics in a VF-22 source book from Softbank, too.

Furthermore, SVF-124 finds mention in a Japanese modeler magazine, where the aforementioned VF-22S kit was presented in 2008. So there must be something behind the ‘Moon Shooters’ squadron.

 

According to the Hasegawa VF-22S’s painting instructions, the underside becomes black and the upper surfaces are to be painted with FS36270 (with some darker fields on the VF-22, though, similar to the USAF F-15 counter-shaded air superiority scheme, just a tad darker).

Due to the 1:100 scale tininess of my VF-1, I alternatively went for Revell 75 (RAL 7039), which is lighter and also has a brownish hue, so that the resulting aircraft would not look too cold and murky, and not resemble an USAF aircraft.

 

All FAST Pack elements were painted in a uniform dark grey (Humbrol 32), while some subtle decorative trim on the upper surfaces, e.g. the canopy frame, an anti-glare panel and a stripe behind the cockpit and decoration trim on the wings’ upper surfaces, was added with Revell 77 (RAL 7012). Overall, colors are rather dull, but IMHO very effective in the “landscape” this machine is supposed to operate, and the few colorful markings stand out even more!

 

The cockpit interior was painted in a bluish grey, with reddish brown seat cushions (late 70ies style!), and the landing gear became all white. For some added detail I painted the wings’ leading edges in a mustard tone (Humbrol 225, Mid Stone).

 

The kit received some weathering (black ink wash, drybrushing on panels) and extra treatment of the panel lines – even though the FAST Pack elements hide a lot of surface or obscure view.

 

More color and individuality came with the markings. The standard decals like stencils or the U.N. Spacy insignia come from the kit’s and some other VF-1s’ OOB sheets.

Based on the SVF-124 VF-1 profile and taking the basic design a bit further, I used dull red USAF 45° digits for the 2nd flight leader’s “200” modex and the Apollo Base’s code “MA” on the dorsal boosters. Some discreet red trim was also applied to the FAST Packs – but only a little.

 

Since all of SVF-124’s aircraft are rumored to carry personal markings, including nose art and similar decorations, I tried to give this VF-1JS a personal note: the pin-up badges on the dorsal boosters come from a Peddinghouse decal sheet for Allied WWII tanks, placed on a silver roundel base. Unfortunately (and not visible before I applied them) the pin-up decal was not printed on a white basis, so that the contrast on the silver is not very strong, but I left it that way. Additionally, the tagline “You’re a$$ next, Jerry” (which IS printed in opaque white…?) was added next to the artwork – but it’s so tiny that you have to get really close to decipher it at all…

 

Finally, after some soot stains around the exhausts and some vernier nozzels with graphite, the kit received a coat of matt acrylic varnish.

 

Building this vintage VF-1 kit took a while and a lot of effort, but I like the result: with the S-FAST Pack, the elegant VF-1 turned into a massive space fighter hulk! The normal Super Valkyries already look very compact and purposeful, but this here is truly menacing. Especially when standing on its own feet/landing gear, with its nose-down stance and the small, original wheels, this thing reminds of a Space Shuttle that had just landed.

 

Good that I recently built a simple VF-1 fighter as a warm-up session. ARII’s kit #70 is not a pleasant build, rather a fight with the elements and coupled with a lot of compromises – if you want a Super Valkyrie Fighter in 1:100, the much more modern WAVE kit is IMHO the better option (and actually not much more pricey than this vintage collector’s item). But for the vintage feeling, this exotic model kit was just the right ticket, and it turned, despite many weaknesses and rather corny details, into an impressive fighter. Esp. the lunar camouflage scheme looks odd, but very unique and purposeful.

 

Anyway, with so many inherent flaws of the ARII kit, my former method of converting a pure (and much more common) Gerwalk kit into a space-capable VF-1 fighter is not less challenging and complicated than trying to fix this OOB option into a decent model. :-/

+++ DISCLAIMER +++

Nothing you see here is real, even though the model, the conversion or the presented background story might be based on historical facts. BEWARE!

  

Some background:

Tyne was the second of the five River-class light cruisers in the Royal Navy, which were introduced during the interwar period and played, after modifications, an active role in World War II, especially in the Mediterranean theatre of operations.

 

After the construction of the Danae-class cruiser, the demerits of the small cruiser concept became apparent. At the end of 1917, plans for an additional six C-class vessels, plus three new-design 7,200 ton-class scouting cruisers were shelved, in favor of an intermediate 5,500 ton-class vessel which could be used as both a long-range, high speed scout ship, and also as a command vessel for destroyer or submarine flotillas. The resulting River-class vessels were essentially enlarged versions of the Danae-class cruisers, with greater speed, range, and weaponry. With improvements in geared-turbine engine technology, the River-class vessels were capable of the high speed of 36 knots (67 km/h), and a range of 9,000 nmi (17,000 km) at 10 kn (12 mph; 19 km/h). The number of BL 6-inch (152.4 mm) L/45 Mark XII guns was increased from only three to seven in single mounts and provision was made for 48 naval mines. However, the four triple torpedo launchers on the Danae-class were reduced to just two double launchers, and the River-class remained highly deficient in anti-aircraft protection, with only two QF 3 in 20 cwt L/45 Mk. I and two QF 2-pounder L/39 Mk. II guns. A total of eight ships were ordered, but, with less pressure after the end of WWI, only five were built and finished.

 

The first River-class ship, H.M.S. “Trent”, was laid down in December 1918 and launched in August 1919. H.M.S. “Tyne” was the second cruiser of this new class, laid down 8 July 1919, launched 24 September 1920 and completed at Chatham Royal Dockyard 2 June 1922. Completed too late to see action in the First World War, “Tyne” was initially assigned to operate in the Baltic Sea against the Bolshevik revolutionaries in Russia. She was then on detached service in the West Indies. Following this assignment, she was attached to the 1st Light Cruiser Squadron of the Atlantic Fleet for the following five years. 1923/24, “Tyne” became a member of the Cruise of the Special Service Squadron, also known as the “Empire Cruise”. Following this tour, she went with the squadron to the Mediterranean for the next few years.

 

In May 1928 “Tyne” was assigned to the North America and West Indies Station, based at the Royal Naval Dockyard in Bermuda. She ran aground on 2 July 1928 on the Thrum Cap Shoal, 5 nautical miles (9.3 km) off Halifax, Nova Scotia, Canada, and was badly damaged, suffering the breach of her engine room and of one of her boiler rooms. She was abandoned by most of her 445 crew, the officers remaining on board. Subsequently, all her guns and torpedo tubes and much of her other equipment had to be removed to lighten her. She was finally refloated on 11 July 1928 and towed off by H.M.S. “Despatch” and several tugs. She was repaired throughout 1929 and then reduced to the reserve.

 

In 1930, however, due to a shortage of ships at foreign theatres of operation, she was reactivated and transferred back to the America and West Indies Station. During 1931-1933 she served with the South American Division, and in 1934 she relieved the cruiser “Curlew” in the Mediterranean and was reassigned to the 3rd Cruiser Squadron. In 1935 she returned to Britain to be paid off into the reserve, but “Tyne” was kept active in British coastal waters for cadet training.

 

On the outbreak of the Second World War, “Tyne” was recommissioned and thoroughly modernized, since the original armament and other equipment had become obsolete by 1939. All five River-class ships were re-designed as light trade protection cruisers and were outfitted with new, state-of-the-art equipment and armament, including six new and very compact turrets. Pairs were placed at the bow and at the stern each, with another two placed singly at port and starboard amidships. Each was armed with twin 5.25-inch (133 mm) guns in high angle mountings. These new, quick-firing weapons were primarily surface weapons, but it was intended to fire the heaviest shell suitable for anti-aircraft defense, so that the ships could be used for convoy protection from aerial attacks.

The ballistic performance of the QF 5.25 was very good, with a maximum range of 24,070 yd (22,010 m) at 45 degrees with an 80 lb (36.3 kg) HE shell. In comparison, the contemporary French 138 mm (5.4 in) Mle 1934 guns as used on the Mogador-class destroyers had a maximum range of 21,872 yards (20,000 m) at 30 degrees with an 88 lb (39.9 kg) SAP shell, and the Italian 135/45 mm gun as used on the Capitani Romani-class cruisers had a maximum range of 21,435 yards (19,600 m) at 45 degrees with a 72.1 lb (32.7 kg) AP shell.

The new turrets were far more modern in design than previous light cruiser turrets and offered efficient loading up to 70 degrees to provide the intended dual-purpose capability. Furthermore, “Tyne” was, like its revamped sister ships, outfitted with four twin QF 2-pounder (40 mm) "pom-poms" and a pair of triple 21-inch (533 mm) torpedo tube launchers, mounted under the main deck. The latter carried a steam catapult for a reconnaissance waterplane, initially a Fairey Swordfish on floats but later replaced by a Supermarine Walrus amphibious flying boat. The depth charge racks were augmented by two new launchers.

 

After her modifications at Portsmouth Royal Dockyard, field tests in the Channel and receiving a light disruptive Admiralty paint scheme, “Tyne” joined the 2nd Cruiser Squadron, escorting convoys to Scandinavia and engaged in the hunt for the German battleships Scharnhorst and Gneisenau. After the Norwegian Campaign she participated in the operations hunting the German battleship Bismarck and, together with the cruiser “Kenya”, intercepted one of the German supply ships, “Belchen”, on 3 June 1941.

 

Between July and August 1941, as part of Force K with the Home Fleet, she was involved in “Operation Gauntlet”, with operations to Spitzbergen and Bear Island. After one of these sorties, in company with the cruiser “Nigeria”, she intercepted a German troop convoy off Northern Norway, and the German ship “Bremse” was sunk. Later that year she was transferred to the Mediterranean and arrived in Alexandria on 21 October 1941 to join a new Force K, where the ship received a new high-contrast paint scheme, typical for this theatre of operations.

 

On 9 November 1941, Force K, consisting of “Tyne”,”Aurora”, “Penelope”, “Lance” and “Lively”, she was involved in the destruction of the Beta Convoy. In the resulting battle the Italian destroyer “Fulmine” was sunk, as well as the German transports “Duisburg” and “San Marco”, the Italian transports “Maria”, “Sagitta” and “Rina Corrado”, and the Italian “Conte di Misurata” and “Minatitlan”. The Italian destroyers “Grecale” and “Euro” were damaged.

 

On 24 November Force K, intercepted an Axis convoy about 100 nautical miles west of Crete. The Axis convoy was bound from the Aegean to Benghazi. The two German transports in the convoy, “Maritza” and “Procida”, were both sunk by H.M.S. “Penelope” and H.M.S. “Lively” despite the presence of the Italian torpedo boats “Lupo” and “Cassiopea”. On 1 December 1941 Force K, with “Tyne”, “Penelope” and ”Lively”, attacked the Mantovani Convoy. The Italian destroyer “Alvise Da Mosto” and the sole cargo ship “Mantovani” were sunk. H.M.S. “Tyne” next participated in the First Battle of Sirte on 17 December 1941. On 19 December, while steaming off Tripoli, she was heavily damaged in a mine field and was forced to retire to Malta for hull repairs.

 

After repairs, which lasted several months into summer 1942, she returned to service in the MTO and joined Force H. In November she became part of the Centre Task Force for the Landings in North Africa, Operation Torch. Off Oran, she engaged the Vichy French destroyers “Tramontane” and “Tornad”e on 8 November 1942, damaging the former so badly that it had to be beached. The following day she badly damaged the destroyer “Épervier” and drove it ashore. By early December 1942 she was operating as part of Force Q at Bône against the Axis evacuation and supply convoys between Trapani and Tunis.

 

However, “Tyne” was hit on 20 December 1942 off Trapani (Sicily) by an air-dropped torpedo. She caught fire, had two of her turrets out of action and was badly flooded. Later that day she was attacked once more by German dive-bombers, and a fatal bomb hit at the ship’s stern eventually led to her loss the following day. 115 men were killed through the attacks, the rest, more than two-thirds of the crew, was rescued.

 

All River-class ships had a very active war career and proved to be satisfactory in service, even though they were hardly a match for full-fledged battleships and worked best in conjunction with other ships. Especially in the Mediterranean they were very effective in protecting crucial convoys to Malta and even managed to see off some ships of the Italian Royal Navy. However, their outdated WWI machinery became their Achilles heel and limited their potential, and the relatively light main guns lacked range and firepower to take on major enemy ships their own.

From 1940 on the ships were to be replaced by the much more modern and better-equipped new Dido-class cruisers, but a shortage of guns for them, due to difficulties in manufacturing them, delayed their introduction so that the River-class cruisers had to soldier on. Two ships, “Tyne” and “Thames”, were lost, and the three post-war survivors “Trent”, “Severn” and “Mersey”, were immediately put into reserve after the end of hostilities in Europe and quickly broken up.

  

General characteristics:

Displacement: 5,100 long tons (5,200 t) (standard)

Length: 500 ft (152.4 m)

Beam: 47 ft (14.2 m)

Draft: 16 ft (4.8 m)

Draught: 12 ft 6 in (3.8 m) (deep)

Armor: Belt: 64 mm (3 in), Deck: 29 mm (1 in)

Complement: 450

 

Propulsion:

12× Admiralty boilers with 4× geared steam turbines, developing 90,000 shp (67,000 kW)

and driving four shafts

 

Performance:

Top speed: 36 knots (67 km/h; 41 mph)

Range: 5,000 nmi (9,300 km; 5,800 mi) at 14 kn (26 km/h; 16 mph)

 

Armament (after conversion):

12× 5.25 guns (133 mm) 50 caliber guns in six twin turrets

4× twin QF 2-pounder (40 mm) "pom-pom" AA guns in powered mounts

2× triple 21-inch (533 mm) torpedo tubes

2× throwers and 2× racks astern with 48 depth charges

  

The kit and its assembly:

The Royal Navy’s River-class light cruisers never existed. These fictional interwar ships were based on the Dido-class cruisers’ concept, just placed in an earlier generation and realized on the basis of an old/outdated ship. Inspiration came with an aftermarket set of six 1:700 white metal turrets that I came across recently, and I wanted to use it to build something like the American Atlanta-class light cruisers with a specialized AA armament.

 

However, this armament called for a suitable and bigger hull than my former destroyer builds, and I was eventually able to hunt down a cheap Tamiya kit of a Japanese Kuma-class light cruiser as starting point. It was perfect in size (almost exactly as big as a Dido-class cruiser!), shape and time frame, even though I I basically only used the kit’s single-piece hull as starting point. I had to modify the superstructures thoroughly to adapt the Japanese ship to the new role and also to a more Western layout and silhouette.

For instance, the typically Japanese tall “pagoda” bridge/command section of that era had to disappear, and I changed the superstructures almost completely, because the new twin turrets needed much more space than the small single guns of the Kuma cruiser. I also wanted to place them at different levels, and this called for suitable staggered platforms, too.

 

Initially there was the plan to mount the six turrets in groups of three at both bow and stern, but it was soon clear that this would not work – this arrangement would have been too long and too high, too, so that I went with two staggered pairs. I also wanted to give the ship – unlike the American Atlanta-class ships – a catapult for an on-board aircraft, and this required some free space on deck.

With this framework I scratched new/additional superstructures, using leftover pieces from the two recently built Matchbox K-class destroyers and from a Revell H.M.S. Ark Royal carrier. Everything evolved through trial-and error, in an attempt to find a plausible layout for all the deck equipment. The lowered hull section for the Kuma-class’ front torpedo tubes was filled with a cabin and re-purposed for lifeboats. Then the initially continuous superstructure was split to make room for the steam catapult amidships at deck level. The rear turrets eventually found their final places on a separate superstructure that would also carry the secondary mast and the crane for the floatplane, and I mounted the last two turrets in lateral positions (again somewhat inspired by the Atlanta-class arrangement with similar positions), above the Kuma-class’ openings for the rear torpedo launch tubes. These did not make sense at this position anymore, so that the OOB openings were closed/filled and moved further forward, under the new “flight deck”. Some PSR had to be done, too, in order to blend some disparate donor parts and fill the worst gaps. Therefore, the finish is certainly not as crisp as an OOB model – but I think that these flaws remained on an acceptable level.

 

Once the general deck layout had been settled, detail work began. This included a re-arrangement of bridge, masts and funnels, and the main deck had to offer enough space for the re-located catapult, together with the turrets in the side positions, lifeboats and AA stations, which found their place at deck level and in two twin alcoves in higher positions. Fiddly stuff, and I must admit that “creating” such a battleship is conceptually not easy.

The aircraft on board is actually the OOB Kawanishi E7K floatplane from the Kuma-class cruiser kit – but it looks similar enough to a Swordfish that this illusion could be easily supported with a suitable paint scheme.

  

Painting and markings:

I used the opportunity to apply another typical Royal Navy paint scheme, a so-called “Alexandria-style” pattern. This was a high-contrast scheme, sometimes described as consisting of black and white, but it was typically made up from 507a (Dark Grey) and 507c (Light Grey). It had been christened after the dockyard where it had been initially applied, and it was actually not a defined pattern (like the Admiralty schemes, which had been designed at offices by people who frequently had no practical naval experience!), but rather a common but individual application of standard paints that had been in ample supply at most dockyards! The ships had to be painted with what was at hand, and so the disruptive scheme caught on and was applied, like Mountbatten Pink, to a considerable number of British ships operating in the MTO. This two-tone scheme was not intended to conceal the ships, but rather to confuse the observer concerning speed, direction and what the ship actually was.

 

The pattern I applied to the model was loosely based on what the cruiser H.M.S. Devonshire carried in 1941, a kind of zebra pattern with wide, well-defined block stripes. As a visual gimmick these stripes were kind of “mirrored” along a line on the hull, as if reflected by the water and therefore making assessing size or distance even more difficult.

The paints are Humbrol 147 (Light Grey, FS 36495) and 27 (Sea Grey). The deck was painted as if the wooden areas had not been overpainted yet and allowed to weather, so that the once-holystoned, yellow-ish light wood had become dull and rather grey-ish. I used Humbrol 168 (RAF Hemp) and Revell 87 (Beige) as basis, and some light shading with thinned sepia ink was done to enhance the wooden look – and it’s nice contrast to the rather cold, grey camouflage. Metal decks, turret tops and the bow area were painted with Revell 47, simulating 507b (Medium Grey). Areas around the bridge were painted with Humbrol 62 (Leather) to simulate Corticene coating.

 

I originally wanted to paint the model in separate elements before final assembly, but this was not possible due to the many adjustments. The model was slightly weathered with a highly thinned black ink wash. Some Sienna Brown water paint was used for rust stains here and there. Portholes along the hull and on the superstructures were created with a thin black felt tip pen. The same tool was used to paint the muzzles of the guns. The crisp black boot topping was easy to create through the kit’s separate waterline bottom – OOB it comes in red, and it just had to be re-painted.

The kit’s segments were sealed with a coat of acrylic matt varnish before final assembly. Finally, rigging with heated and extended dark grey sprue material was done and paper flags were added.

  

It is not obvious, but the fictional H.M.S. “Tyne” took more scratchwork and mods than one would expect – it was/is almost a scratch build on the basis of a stock cruiser hull. More or less, the whole superstructure was re-arranged and the whole armament is new, but I think that the outcome looks quite plausible. The camouflage – even though only consisting of two shades of grey - looks interesting, too, and I think that the confusing effect becomes obvious in some of the beauty pics.

Electronics hobby

  

Designing and building a high power amplifier capable of driving low impedance (as low as 2 Ohm’s @ 50 Vpp) loads.

  

www.diyaudio.com/ see alias FdW

  

History of DIY audio

 

Audio DIY came to prominence in the 50s to 60s, as audio reproduction was relatively new and the technology "complex," audio reproduction equipment, and in particular high performance equipment, was not offered at the retail level. Kits and designs were available for consumers to build their own equipment. Famous vacuum tube kits from Dynaco, Heathkit, and McIntosh, as well as solid state (transistor) kits from Hafler allowed for consumers to build their own hi fidelity systems. Books and magazines were published which explained new concepts regarding the design and operation of vacuum tube and (later) transistor circuits.

 

While audio equipment has become easily accessible in the current day and age, there still exists an interest in building one's own equipment, including amplifiers, speakers, preamplifiers, and even CD players and turntables. Today, a network of companies, parts vendors, and on-line communities exist to foster this interest. DIY is especially active in loudspeaker and in tube amplification. Both are relatively simple to design and fabricate without access to sophisticated industrial equipment. Both enable the builder to pick and choose between various available parts, on matters of price as well as quality, allow for extensive experimentation, and offer the chance to use exotic or highly labor-intensive solutions, which would be expensive for a manufacturer to implement, but only require personal labor by the DIYer, which is a source of satisfaction to them.

  

en.wikipedia.org/wiki/DIY_audio

Some background:

The VF-1 was developed by Stonewell/Bellcom/Shinnakasu for the U.N. Spacy by using alien Overtechnology obtained from the SDF-1 Macross alien spaceship. The space-capable VF-1's combat debut was on February 7, 2009, during the Battle of South Ataria Island - the first battle of Space War I - and remained the mainstay fighter of the U.N. Spacy for the entire conflict. Introduced in 2008, the VF-1 would be out of frontline service just five years later, though.

 

The VF-1 proved to be an extremely capable craft, successfully combating a variety of Zentraedi mecha even in most sorties which saw UN Spacy forces significantly outnumbered. The versatility of the Valkyrie design enabled the variable fighter to act as both large-scale infantry and as air/space superiority fighter. The basic VF-1 was built and deployed in four minor variants (designated A, J, and S single-seater and the D two-seater/trainer) and its success was increased by continued development of various enhancements including the GBP-1S "Armored" Valkyrie exoskeleton with enhanced protection and integrated missile launchers, the so-called FAST (“Fuel And Sensor Tray”) packs that created the fully space-capable "Super" Valkyries and the additional RÖ-X2 heavy cannon pack weapon system for the VF-1S “Super Valkyrie”.

 

After the end of Space War I, the VF-1 continued to be manufactured both in the Sol system and throughout the UNG space colonies. At the end of 2015 the final rollout of the VF-1 was celebrated at a special ceremony, commemorating this most famous of variable fighters. The VF-1 Valkryie was built from 2006 to 2013 with a total production of 5,459 VF-1 variable fighters with several original variants (VF-1A = 5,093, VF-1D = 85, VF-1J = 49, VF-1S = 30, VF-1G = 12, VE-1 = 122, VT-1 = 68), even though these machines were frequently updated and modified during their career, leading to a wide range of sub-variants and different standards.

 

Although the VF-1 would be replaced in 2020 as the primary Variable Fighter of the U.N. Spacy, a long service record and continued production after the war proved the lasting worth of the design. One of these post-war designs became the VF-1EX, a replica variant of the VF-1J with up-to-date avionics and instrumentation. It was only built in small numbers in the late 2040s and was a dedicated variant for advanced training with dissimilar mock aerial and ground fighting.

 

The only operator of this type was Xaos (sometimes spelled as Chaos), a private and independent military and civilian contractor. Xaos was originally a fold navigation business that began venturing into fold wave communication and information, expanding rapidly during the 2050s and entering new business fields like flight tests and providing aggressor aircraft for military training. They were almost entirely independent from the New United Nations Spacy (NUNS) and was led by the mysterious Lady M. During the Vár Syndrome outbreak, Echo Squadron and Delta Flight and the tactical sound unit Thrones and Walküre were formed to counteract its effects in the Brísingr Globular Cluster.

 

The VF-1EX was restricted to its primary objective and never saw real combat. The replica unit retained the overall basic performance of the original VF-1 Valkyrie, the specifications being more than sufficient for training and mock combat. The only difference was the addition of the contemporary military EG-01M/MP EX-Gear system for the pilot as an emergency standard, an exoskeleton unit with personal inner-wear, two variable geometry wings, two hybrid jet/rocket engines, mechanical hardware for the head, torso, arms and legs. This feature gave the VF-1EX its new designation.

Furthermore, the VF-1EX was also outfitted with other electronic contingency functions like AI-assisted flight and remote override controls. Some of these features could be disabled according to necessity or pilot preferences. The gun pod unit was retained but was usually only loaded with paintball rounds for mock combat. For the same purpose, one of the original Mauler RÖV-20 anti-aircraft laser cannon in the "head unit" was replaced by a long-range laser target designator. AMM-1 missiles with dummy warheads or other training ordnance could be added to the wing hardpoints, but the VF-1EX was never seen being equipped this way - it remained an agile dogfighter.

  

General characteristics:

All-environment variable fighter and tactical combat Battroid. 3-mode variable transformation; variable geometry wing; vertical take-off and landing; control-configurable vehicle; single-axis thrust vectoring; three "magic hand" manipulators for maintenance use; retractable canopy shield for Battroid mode and atmospheric reentry; EG-01M/MP EX-Gear system; option of GBP-1S system, atmospheric-escape booster, or FAST Pack system.

 

Accommodation:

Single pilot in Marty & Beck Mk-7 zero/zero ejection seat

 

Dimensions:

Battroid Mode:

Height 12.68 meters

Width 7.3 meters

Length 4.0 meters

Fighter Mode:

Length 14.23 meters

Wingspan 14.78 meters (at 20° minimum sweep)

Height 3.84 meters

 

Empty weight: 13.25 metric tons

Standard take-off mass: 18.5 metric tons

MTOW: 37.0 metric tons

 

Power Plant:

2x Shinnakasu Heavy Industry/P&W/Roice FF-2001 thermonuclear reaction turbine engines, output 650 MW each, rated at 11,500 kg in standard or in overboost (225.63 kN x 2);

4x Shinnakasu Heavy Industry NBS-1 high-thrust vernier thrusters (1 x counter reverse vernier thruster nozzle mounted on the side of each leg nacelle/air intake, 1 x wing thruster roll control system on each wingtip);

18x P&W LHP04 low-thrust vernier thrusters beneath multipurpose hook/handles

 

Performance:

Battroid Mode: maximum walking speed 160 km/h

Fighter Mode: at 10,000 m Mach 2.71; at 30,000+ m Mach 3.87

g limit: in space +7

Thrust-to-weight ratio: empty 3.47; standard TOW 2.49; maximum TOW 1.24

 

Transformation:

Standard time from Fighter to Battroid (automated): under 5 sec.

Min. time from Fighter to Battroid (manual): 0.9 sec.

 

Armament:

1x Mauler RÖV-20 anti-aircraft laser cannon in the "head" unit, firing 6,000 pulses per minute

1x Howard GU-11 55 mm three-barrel Gatling gun pod with 200 RPG, fired at 1,200 rpm

4x underwing hardpoints for a wide variety of ordnance

  

The kit and its assembly:

The VF-1EX Valkyrie is a Variable Fighter introduced in the Macross Δ television series, and it's, as described above, a replica training variant that resembles outwardly the VF-1J. There's even a Hasegawa 1:72 kit from 2016 of this obscure variant.

However, what I tried to recreate is a virtual (and purely fictional/non-canonical) VF-1EX, re-skinned by someone called David L. on the basis of a virtual VF-1S 3D model with a 2 m wing span (sounds like ~1:8 scale) for the Phoenix R/C simulator software. Check this for reference: www.supermotoxl.com/projects-articles/ready-to-drive-fly-...). How bizarre can things be/become? And how sick is a hardware model of it, though...?

 

I found the complex livery very attractive and had the plan to build a 1:100 model for some years now. But it took this long to gather enough mojo to tackle this project, due to the tricolor paint scheme's complex nature...

The "canvas" for this stunt is a vintage Arii 1:100 VF-1 kit, built OOB except for some standard mods. The kit was actually a VF-1A, but I had a spare VF-1J head unit in store as a suitable replacement. Externally, some dorsal blade aerials and vanes on the nose were added, the attachment points under the wings for the pylons were PSRed away. A pilot figure was added to the cockpit because this model would be displayed in flight. As a consequence, the ventral gun pod received an adapter at its tail and I added one of my home-brew wire displays, created on the basis of the kit's OOB plastic base.

  

Painting and markings:

As mentioned above, this VF-1 is based on a re-skinned virtual R/C model, and its creator apparently took inspiration from a canonical VF fighter, namely a VF-31C "Siegfried", and specifically the "Mirage Farina Jenius Custom" version from the Macross Δ series that plays around 2051. Screenshots from the demo flight video under the link above provided various perspectives as painting reference, but the actual implementation on the tiny model caused serious headaches.

The VF-1's shapes are rather round and curvy, the model's jagged surface and small size prohibited masking. The kit is IMHO also best built and painted in single sub-assemblies, but upon closer inspection the screenshots revealed some marking inconsistencies (apparently edited from various videos?), and certain areas were left uncertain, e .g. the inside of the legs or the whole belly area. Therefore, this model is just a personal interpretation of the design, and as such I also deviated in the markings.

 

The paints became Humbrol 20 (Crimson) and 58 (Magenta), plus Revell 301 (Semi-gloss White), and they were applied with brushes. To replicate the edgy and rather fragmented pattern I initially laid down the two reds in a rather rough and thin fashion and painted the white dorsal and ventral areas. Once thoroughly dry, the white edges were quasi-masked with white decal material, either with stripes of various widths or tailored from sheet material, e. g. for the "wedges" on the wings and fins and the dorsal "swallow tail". This went more smoothly than expected, with a very convincing and clean result that i'd never had achieved with brushes alone, even with masking attempts, which would probably have led to chaos and too much paint on the model.

 

Other details like the grey leading edges or the air intakes were created with grey and black decal material, too.

No weathering was done, since the aircraft would be clean and in pristine condition, but I used a soft pencil to emphasize the engraved panel lines, esp. on white background. The gun pod became grey and the exhausts, painted in Revell 91 (Iron), were treated with graphite for a darker shade and a more metallic look.

 

Stencils came from the kit's OOB sheet, but only a few, since there was already a lot "going on" on the VF-1's hull. The flash-shaped Xaos insignia and the NUNS markings on legs and wings were printed at home - as well as the small black vernier thrusters all around the hull, for a uniform look. The USN style Modex and the small letter code on the fins came from an Colorado Decals F-5 sheet, for an aggressor aircraft.

 

Finally, the kit was sealed overall with semi-gloss acrlyic varnish (which turned out glossier than expected...) and position lights etc. added with translucent paint on top of a silver base.

  

Well, while the VF-1 was built OOB with no major mods and just some cosmetical upgrades, the paint scheme and its finish were more demanding - and I am happy that the "decal masking" trick worked so fine. The paint scheme surely is attractive, even though it IMHO does not really takes the VF-1's lines into account. Nevertheless, I am certain that there are not many models that are actually based on a virtual 1:8 scale 3D model of an iconic SF fighter, so that this VF-1EX might be unique.

 

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!

  

Some background:

The Lockheed L300 was originally conceived as a military strategic airlifter that served under the designation C-141 Starlifter with the Military Air Transport Service (MATS), its successor organization the Military Airlift Command (MAC), and finally the Air Mobility Command (AMC) of the United States Air Force (USAF).

 

In the early 1960s, the United States Air Force's Military Air Transport Service (MATS) relied on a substantial number of propeller-driven aircraft for strategic airlift, such as the C-124 Globemaster II and C-133 Cargomaster. As these aircraft were mostly obsolescent designs and the Air Force needed the benefits of jet power, the USAF ordered 48 Boeing C-135 Stratolifters as an interim step. The C-135 was a useful stop-gap, but only had side-loading doors and much of the bulky and oversize equipment employed by the U.S. Army would not fit.

 

In the spring of 1960, the Air Force released Specific Operational Requirement 182, calling for a new aircraft that would be capable of performing both strategic and tactical airlift missions. The strategic role demanded that the aircraft be capable of missions with a radius of at least 3,500 nautical miles (6,500 km) with a 60,000 pounds (27,000 kg) load. The tactical role required it to be able to perform low-altitude air drops of supplies, as well as carry and drop combat paratroops. Several companies responded to SOR 182, including Boeing, Lockheed, and General Dynamics.

 

Lockheed responded to the requirement with a unique design: the Lockheed Model 300, the first large jet designed from the start to carry freight. The Model 300 had a swept high-mounted wing with four 21,000 pounds-force (93 kN) thrust TF33 turbofan engines pod-mounted below the wings. An important aspect was the cabin's floor height of only 50 inches (130 cm) above the ground, allowing easy access to the cabin through the rear doors. The two rear side doors were designed to allow the aircraft to drop paratroops (in August 1965 the aircraft performed the first paratroop drop from a jet-powered aircraft). The rear cargo doors could be opened in flight for airborne cargo drops. The high-mounted wings gave internal clearance in the cargo compartment of 10 feet (3.0 m) wide, 9 ft (2.7 m) high and 70 ft (21 m) long. The size enabled the Starlifter to carry, for example, a complete LGM-30 Minuteman intercontinental ballistic missile in its container. The aircraft was capable of carrying a maximum of 70,847 pounds (32,136 kg) over short distances, and up to 92,000 pounds (42,000 kg) in the version configured to carry the Minuteman, which lacked other equipment. The aircraft could also carry up to 154 troops, 123 paratroops or 80 litter patients.

 

President John F. Kennedy's first official act after his inauguration was to order the development of the Lockheed 300 on 13 March 1961, with a contract for five aircraft for test and evaluation to be designated the C-141. One unusual aspect of the aircraft was that it was designed to meet both military and civil airworthiness standards, since Lockheed hoped to sell the aircraft, much like the C-130 Hercules, to airlines, too. The prototype C-141A (s/n 61-2775) was manufactured and assembled in record time. The prototype was rolled out of the Lockheed factory at Marietta, Georgia on 22 August 1963 and first flew on 17 December, the 60th anniversary of the Wright brothers' first flight. The company and the Air Force then started an operational testing program and the delivery of 284 C-141 aircraft.

 

The effort to sell the aircraft on the civilian market included some detail changes like a different yoke and cockpit equipment. Two versions were offered: the original aircraft (designated L300-100 StarLifter), based on the C-141’s hull, and a strongly stretched version, 37 feet (11 m) longer than the L300-100, and marketed as the L300-200 SuperstarLifter. Specialized versions like an aerial firefighting water bomber were proposed, too, and an initial L300-100 prototype made a global sales tour (which was later donated to NASA).

Response from the civil market was rather lukewarm, though, and resulted only in orders from Flying Tiger Line and Slick Airways for four aircraft each. Nevertheless, production of the civil StarLifter was launched in 1966, since the differences to the military aircraft were only minimal and Lockheed considered the financial risks to be acceptable. However, only twelve aircraft were initially ordered when production was greenlighted, but there was the expectation to attract more sales once the aircraft proved itself in daily business.

 

Despite a very good service record, this did not happen. To make matters worse, unexpected legal problems seriously threatened the newly introduced transport aircraft: In the early 1970s, strict noise limits for civil aircraft threatened operations, esp. in the USA. Several American L300 operators approached Lockheed for suitable noise reduction modifications, but the company did not react. However, third parties that had developed aftermarket hush kits for other airliners like the Boeing 707 or the Douglas DC-8 chimed in and saw their opportunity, and in 1975 General Electric began discussions with the major L300 operators with a view to fitting the new and considerably quieter Franco-American CFM56 engine to the transport aircraft. Lockheed still remained reluctant, but eventually came on board in the late 1970s and supported the conversion kit with new nacelles and pylons. This engine kit was unofficially baptized the “StarSilencer” program, which was offered as a retrofit kit and as an option for newly built aircraft, which were designated L300-1100 and -1200, respectively.

 

The kit was well received and all operational private L300s were upgraded with the fuel-efficient 22,000 lb (98.5 kN) CFM56-2 high-bypass turbofans until 1984, preventing a premature legal end of operations in wide parts of the world. The benefits of the upgrade were remarkable: The new engines were markedly quieter than the original Pratt & Whitney TF33-P-7 turbofans, and fuel efficiency was improved by 20%, resulting in a higher range. The CFM56s also offered 10% more thrust than the TF33-P-7s’ 20,250 lbf (90.1 kN each) output, and this extra thrust improved the aircraft’s take-off performance, too.

The USAF did not adopt the “StarSilencer” upgrade and rather focused on the fuselage extension program that converted all existing C-141As into C-141Bs from 1979 onwards, so that the aircraft’s payload potential could be better exploited. However, the new CFM56 engines made the L300 more attractive to civil operators, and, beyond the upgrade program for existing airframes, a second wave of orders was placed for both the L300-1100 and -1200: until 1981, when civil L300 production was stopped, eighteen more aircraft had been ordered, primarily for operators in North America and Canada, bringing total production to 40 machines, plus the initial demonstrator prototype.

 

One of these late buyers outside of the American continent was Air Greenland. Founded in 1960 as Grønlandsfly, the airline started its first services with Catalina water planes and within the decade expanded to include DHC-3 Otters as well as Sikorsky S-61 helicopters, some of which remain in active service. Grønlandsfly also picked up a Danish government contract to fly reconnaissance missions regarding the sea ice around Greenland.

During the 1970s, Grønlandsfly upgraded its airliner fleet, and mining in the Uummannaq Fjord opened new business opportunities beyond passenger services. To enter the bulk cargo business for mining companies with routes to Canada, North America and Europe as well as civil freight flights for the U.S. Army in Greenland (e. g. for the USAF’s Sondrestrom and Thule Air Bases), the purchase of a dedicated transport aircraft was considered. This eventually led to the procurement of a single, new L300-1100 StarLifter with CFM56-2 engines in 1980 – at the time, the biggest aircraft operated by Grønlandsfly. Domestic as well as international passenger service flourished, too: By the end of 1979, the number of Grønlandsfly passengers served annually exceeded 60,000 – this was more than the population of Greenland itself! However, the airline’s first true jet airliner, a Boeing 757-200, began operation in May 1998. Before, only propeller-driven aircraft like vintage Douglas DC-4 and DC-6 or the DHC Twin Otter and Dash 7 turboprop aircraft had been the main passenger types. In 1999, the airline already served 282,000 passengers, nearly triple the number at the end of the previous decade.

In 2002 the company rebranded itself, anglicizing its name to Air Greenland and adopting a new logo and livery. The L300-1100 was kept in service and remained, until the introduction of a single Airbus A330 in 2003 (purchased after SAS abandoned its Greenland service and Air Greenland took these over), Air Greenland’s biggest aircraft, with frequent cargo flights for the Maarmorilik zinc and iron mines.

 

StarLifters remained in military duty for over 40 years until the USAF withdrew the last C-141s from service in 2006, after replacing the airlifter with the C-17 Globemaster III. In civil service, however, the L300, despite its small production number, outlasted the C-141. After the military aircraft’s retirement, more than twenty StarLifters were still in private service, most of them operating under harsh climatic conditions and in remote parts of the world.

  

General characteristics:

Crew: 4 - 6 (2 pilots, 2 flight engineers, 1 navigator, 1 loadmaster)

Length: 145 ft (44.27 m)

Wingspan: 160 ft 0 in (48.8 m)

Height: 39 ft 3 in (12 m)

Wing area: 3,228 ft² (300 m²)

Empty weight: 136,900 lbs (62,153 kg)

Loaded weight: 323,100 lbs (146,688 kg)

Max Payload, 2.25g: 94,508 lb (42.906 kg)

Max Takeoff Weight, 2.25g: 343,000 lb (155,722 kg)

 

Powerplant:

4× CFM International CFM56-2 high-bypass turbofans, delivering 22,000 lb (98.5 kN) each

 

Performance:

Maximum speed: 567 mph (493 kn, 912 km/h)

Cruise speed: 495 mph (430 kn, 800 km/h)

Range: 4,320 mi (2,350 nmi, 6,955 km)

Ferry range: 7,245 mi (6,305 nmi, 11,660 km)

Service ceiling: 41,000 ft (12,500 m)

Rate of climb: 2,600 ft/min (13.2 m/s)

Wing loading: 100.1 lb/ft2 (490 kg/m²)

Thrust/weight: 0.25

  

The kit and its assembly:

This is another project I had on my agenda for a long time, it was inspired by a picture of the civilian L300 demonstrator and the question what a StarLifter in civil service could look like? Such a type (like the C-130) would only make sense for bulk cargo transport business, and probably only for rather remote locations, so I went up North with my thoughts and initially considered Air Canada or Buffalo Airways as an operator, but then remembered Air Greenland – a very good fit, and the current livery would make the L300 a colorful bird, too.

 

The basis is Roden’s C-141B kit, AFAIK the only affordable IP kit of this aircraft when I had the idea for this build a while ago; A&A Models released in the meantime a C-141A in June 2021, but it is prohibitively expensive, and Anigrand does a C-141A resin kit. The Roden kit is a sound offering. The parts fit well, even though the seams along the long fuselage and the wing roots need attention and PSR, and at the small 1:144 scale the (engraved) surface details are just fine. It’s not a stellar model, but a sturdy representation with surprisingly massive parts, esp. the fuselage: its walls are almost 3mm thick!

 

However, I did not want to build the stretched USAF version. The original civil L300 had the same fuselage as the C-141A, and I found this option to be more plausible for the haul of singular heavy equipment than the stretched version, and the decision to shorten the C-141B also had logistic reasons, because I’d have to store the model somewhere once finished… And, finally, I think that the original, short C-141 is just looking good. ;-)

 

So, I simply “de-plugged” the fuselage. In real life, the C-141B had two extensions: a 160” plug in front and another 120” insert behind its wings. This translated into 2.8 and 2.1 cm long sections on the model that were simply sawed off from the completed fuselage. Thanks to the massive fuselage walls, gluing the parts back together was an easy task, resulting in a very stable connection. The seams were hidden under some PSR, as well as two windows. The C-141B’s fairing for the refueling receptive was also sanded away. The front plug was easily hidden, but the rear plug called for some body sculpting, because the fuselage has a subtle bulge around the cargo door and its ramp – the shapes in front and behind it don’t differ much, though.

 

Another change for a more fictional civil variant: the engines. This was a lucky coincidence, because I had a complete set of four CFM56 turbofan nacelles left over from my shortened Minicraft DC-8 build a while ago, and the StarLifter lent itself to take these different/more modern engines, esp. for the civilian market. The swap was not as easy as expected, though, because the C-141’s nacelles are much different, have longer pylons and their attachment points in the wings were OOB not compatible at all with the CFM56 pods. I eventually filled the attachment slots in the wings and glued the complete CFM56 nacelles with their short DC-8 pylons directly under the wings, blending these areas with PRS. The engines’ position is now markedly different (higher/closer to the wings and further forward), but the engines’ bigger diameter IMHO justifies this change – and it turned out well.

 

The rest of the Roden model was left OOB, I just added a ventral display adapter for the flight scenes.

  

Painting and markings:

As mentioned above, I was looking for a “bush pilot” operator of suitable size in the Northern hemisphere, and Greenland Air was chosen because of its exoticism and the airline’s distinctive and simple livery. Does anyone know this rather small airline at all? Potential freight for the US Army as well as for private mining companies with lots of heavy equipment made the StarLifter’s operation plausible.

 

To make the plan work I was lucky that Draw Decal does an 1:144 sheet for the airline‘s (sole) Boeing 757, and its simple post-2002 all-red paint scheme was easily adapted to the StarLifter. The fuselage and the nacelles were painted with brushes in Humbrol 19 (Gloss Red, it comes IMHO close to the rich real-world tone), while the wings and the engine pylons became Humbrol 40 (Glossy Light Gull Grey). For some variety I added a medium grey (Humbrol 126, FS 36270) Corroguard panel to the wings’ upper surface, later framed with OOB decals. The white door markings came from a generic PAS decals sheet. All decals were very thin, esp. the Draw Decals sheet, which had to be handled with much care, but they also dried up perfectly and the white print inks turned out to have very good opacity. Adapting the Boeing 757 decals to the very different C-141 hull was also easier than expected, even though the "Air Greenland" tag on the nose ended up quite far forward and the emblem on the fin lots its uppermost white circle.

 

The cockpit, which comes with no interior, was painted in black, while the landing gear wells and struts were painted in a very light grey (Humbrol 196, RAL 7035) with white rims.

 

Panel lines were emphasized with a little black ink, and the cockpit glazing turned out to be a bit foggy - which became only apparent after I added the red around it. In order to hide this flaw I just laid out the window panels with Tamiya "Smoke".

 

Finally the model finally received an overall coat of gloss acrylic varnish from a rattle can.

  

A colorful result, even though the bright red C-141 looks unusual, if not odd. The different engines work well; with the shorter fuselage, the new, wider nacelles change the StarLifter’s look considerably. It looks more modern (at least to me), like a juiced-up Bae 146 or a C-17 on a diet?

 

"Love is the only force capable of transforming an enemy into friend." Martin Luther King, Jr.

Some background:

The VF-1 was developed by Stonewell/Bellcom/Shinnakasu for the U.N. Spacy by using alien Overtechnology obtained from the SDF-1 Macross alien spaceship. The space-capable VF-1's combat debut was on February 7, 2009, during the Battle of South Ataria Island - the first battle of Space War I - and remained the mainstay fighter of the U.N. Spacy for the entire conflict. Introduced in 2008, the VF-1 would be out of frontline service just five years later, though.

 

The VF-1 proved to be an extremely capable craft, successfully combating a variety of Zentraedi mecha even in most sorties which saw UN Spacy forces significantly outnumbered. The versatility of the Valkyrie design enabled the variable fighter to act as both large-scale infantry and as air/space superiority fighter. The basic VF-1 was built and deployed in four minor variants (designated A, J, and S single-seater and the D two-seater/trainer) and its success was increased by continued development of various enhancements including the GBP-1S "Armored" Valkyrie exoskeleton with enhanced protection and integrated missile launchers, the so-called FAST (“Fuel And Sensor Tray”) packs that created the fully space-capable "Super" Valkyries and the additional RÖ-X2 heavy cannon pack weapon system for the VF-1S “Super Valkyrie”.

 

After the end of Space War I, the VF-1 continued to be manufactured both in the Sol system and throughout the UNG space colonies. At the end of 2015 the final rollout of the VF-1 was celebrated at a special ceremony, commemorating this most famous of variable fighters. The VF-1 Valkryie was built from 2006 to 2013 with a total production of 5,459 VF-1 variable fighters with several original variants (VF-1A = 5,093, VF-1D = 85, VF-1J = 49, VF-1S = 30, VF-1G = 12, VE-1 = 122, VT-1 = 68), even though these machines were frequently updated and modified during their career, leading to a wide range of sub-variants and different standards.

 

Although the VF-1 would be replaced in 2020 as the primary Variable Fighter of the U.N. Spacy, a long service record and continued production after the war proved the lasting worth of the design. One of these post-war designs became the VF-1EX, a replica variant of the VF-1J with up-to-date avionics and instrumentation. It was only built in small numbers in the late 2040s and was a dedicated variant for advanced training with dissimilar mock aerial and ground fighting.

 

The only operator of this type was Xaos (sometimes spelled as Chaos), a private and independent military and civilian contractor. Xaos was originally a fold navigation business that began venturing into fold wave communication and information, expanding rapidly during the 2050s and entering new business fields like flight tests and providing aggressor aircraft for military training. They were almost entirely independent from the New United Nations Spacy (NUNS) and was led by the mysterious Lady M. During the Vár Syndrome outbreak, Echo Squadron and Delta Flight and the tactical sound unit Thrones and Walküre were formed to counteract its effects in the Brísingr Globular Cluster.

 

The VF-1EX was restricted to its primary objective and never saw real combat. The replica unit retained the overall basic performance of the original VF-1 Valkyrie, the specifications being more than sufficient for training and mock combat. The only difference was the addition of the contemporary military EG-01M/MP EX-Gear system for the pilot as an emergency standard, an exoskeleton unit with personal inner-wear, two variable geometry wings, two hybrid jet/rocket engines, mechanical hardware for the head, torso, arms and legs. This feature gave the VF-1EX its new designation.

Furthermore, the VF-1EX was also outfitted with other electronic contingency functions like AI-assisted flight and remote override controls. Some of these features could be disabled according to necessity or pilot preferences. The gun pod unit was retained but was usually only loaded with paintball rounds for mock combat. For the same purpose, one of the original Mauler RÖV-20 anti-aircraft laser cannon in the "head unit" was replaced by a long-range laser target designator. AMM-1 missiles with dummy warheads or other training ordnance could be added to the wing hardpoints, but the VF-1EX was never seen being equipped this way - it remained an agile dogfighter.

  

General characteristics:

All-environment variable fighter and tactical combat Battroid. 3-mode variable transformation; variable geometry wing; vertical take-off and landing; control-configurable vehicle; single-axis thrust vectoring; three "magic hand" manipulators for maintenance use; retractable canopy shield for Battroid mode and atmospheric reentry; EG-01M/MP EX-Gear system; option of GBP-1S system, atmospheric-escape booster, or FAST Pack system.

 

Accommodation:

Single pilot in Marty & Beck Mk-7 zero/zero ejection seat

 

Dimensions:

Battroid Mode:

Height 12.68 meters

Width 7.3 meters

Length 4.0 meters

Fighter Mode:

Length 14.23 meters

Wingspan 14.78 meters (at 20° minimum sweep)

Height 3.84 meters

 

Empty weight: 13.25 metric tons

Standard take-off mass: 18.5 metric tons

MTOW: 37.0 metric tons

 

Power Plant:

2x Shinnakasu Heavy Industry/P&W/Roice FF-2001 thermonuclear reaction turbine engines, output 650 MW each, rated at 11,500 kg in standard or in overboost (225.63 kN x 2);

4x Shinnakasu Heavy Industry NBS-1 high-thrust vernier thrusters (1 x counter reverse vernier thruster nozzle mounted on the side of each leg nacelle/air intake, 1 x wing thruster roll control system on each wingtip);

18x P&W LHP04 low-thrust vernier thrusters beneath multipurpose hook/handles

 

Performance:

Battroid Mode: maximum walking speed 160 km/h

Fighter Mode: at 10,000 m Mach 2.71; at 30,000+ m Mach 3.87

g limit: in space +7

Thrust-to-weight ratio: empty 3.47; standard TOW 2.49; maximum TOW 1.24

 

Transformation:

Standard time from Fighter to Battroid (automated): under 5 sec.

Min. time from Fighter to Battroid (manual): 0.9 sec.

 

Armament:

1x Mauler RÖV-20 anti-aircraft laser cannon in the "head" unit, firing 6,000 pulses per minute

1x Howard GU-11 55 mm three-barrel Gatling gun pod with 200 RPG, fired at 1,200 rpm

4x underwing hardpoints for a wide variety of ordnance

  

The kit and its assembly:

The VF-1EX Valkyrie is a Variable Fighter introduced in the Macross Δ television series, and it's, as described above, a replica training variant that resembles outwardly the VF-1J. There's even a Hasegawa 1:72 kit from 2016 of this obscure variant.

However, what I tried to recreate is a virtual (and purely fictional/non-canonical) VF-1EX, re-skinned by someone called David L. on the basis of a virtual VF-1S 3D model with a 2 m wing span (sounds like ~1:8 scale) for the Phoenix R/C simulator software. Check this for reference: www.supermotoxl.com/projects-articles/ready-to-drive-fly-...). How bizarre can things be/become? And how sick is a hardware model of it, though...?

 

I found the complex livery very attractive and had the plan to build a 1:100 model for some years now. But it took this long to gather enough mojo to tackle this project, due to the tricolor paint scheme's complex nature...

The "canvas" for this stunt is a vintage Arii 1:100 VF-1 kit, built OOB except for some standard mods. The kit was actually a VF-1A, but I had a spare VF-1J head unit in store as a suitable replacement. Externally, some dorsal blade aerials and vanes on the nose were added, the attachment points under the wings for the pylons were PSRed away. A pilot figure was added to the cockpit because this model would be displayed in flight. As a consequence, the ventral gun pod received an adapter at its tail and I added one of my home-brew wire displays, created on the basis of the kit's OOB plastic base.

  

Painting and markings:

As mentioned above, this VF-1 is based on a re-skinned virtual R/C model, and its creator apparently took inspiration from a canonical VF fighter, namely a VF-31C "Siegfried", and specifically the "Mirage Farina Jenius Custom" version from the Macross Δ series that plays around 2051. Screenshots from the demo flight video under the link above provided various perspectives as painting reference, but the actual implementation on the tiny model caused serious headaches.

The VF-1's shapes are rather round and curvy, the model's jagged surface and small size prohibited masking. The kit is IMHO also best built and painted in single sub-assemblies, but upon closer inspection the screenshots revealed some marking inconsistencies (apparently edited from various videos?), and certain areas were left uncertain, e .g. the inside of the legs or the whole belly area. Therefore, this model is just a personal interpretation of the design, and as such I also deviated in the markings.

 

The paints became Humbrol 20 (Crimson) and 58 (Magenta), plus Revell 301 (Semi-gloss White), and they were applied with brushes. To replicate the edgy and rather fragmented pattern I initially laid down the two reds in a rather rough and thin fashion and painted the white dorsal and ventral areas. Once thoroughly dry, the white edges were quasi-masked with white decal material, either with stripes of various widths or tailored from sheet material, e. g. for the "wedges" on the wings and fins and the dorsal "swallow tail". This went more smoothly than expected, with a very convincing and clean result that i'd never had achieved with brushes alone, even with masking attempts, which would probably have led to chaos and too much paint on the model.

 

Other details like the grey leading edges or the air intakes were created with grey and black decal material, too.

No weathering was done, since the aircraft would be clean and in pristine condition, but I used a soft pencil to emphasize the engraved panel lines, esp. on white background. The gun pod became grey and the exhausts, painted in Revell 91 (Iron), were treated with graphite for a darker shade and a more metallic look.

 

Stencils came from the kit's OOB sheet, but only a few, since there was already a lot "going on" on the VF-1's hull. The flash-shaped Xaos insignia and the NUNS markings on legs and wings were printed at home - as well as the small black vernier thrusters all around the hull, for a uniform look. The USN style Modex and the small letter code on the fins came from an Colorado Decals F-5 sheet, for an aggressor aircraft.

 

Finally, the kit was sealed overall with semi-gloss acrlyic varnish (which turned out glossier than expected...) and position lights etc. added with translucent paint on top of a silver base.

  

Well, while the VF-1 was built OOB with no major mods and just some cosmetical upgrades, the paint scheme and its finish were more demanding - and I am happy that the "decal masking" trick worked so fine. The paint scheme surely is attractive, even though it IMHO does not really takes the VF-1's lines into account. Nevertheless, I am certain that there are not many models that are actually based on a virtual 1:8 scale 3D model of an iconic SF fighter, so that this VF-1EX might be unique.

 

Fantastic solution for those size queens that need the extra length occasionally. This one has a one, and a two, and a three removable leafs allowing it to adjust to your needs.

Capable of crossing the Atlantic in under three hours, Concorde cruised at over twice the speed of sound and reached an altitude of 60,000ft. Her passengers would marvel at the curvature of the Earth and look up at a blue-black sky, as they travelled at 1320mph and sipped Champagne on the edge of space.

CAMP LEMONIER, Djibouti -- Two CH-53E Super Stallion helicopters receive fuel from a C-130 Hercules airplane while each carries two High Mobility Multipurpose Wheeled Vehicles during an aerial refueling exercise Jan. 30. The helicopters belong to Marine Medium Helicopter Squadron-772, a reserve squadron from Willow Grove, Pa., currently attached to the 24th Marine Expeditionary Unit (Special Operations Capable) in support of the war against terrorism. (USMC photo by Cpl. Paula M. Fitzgerald).

Edinorog Mk3 Class Ground Assault/Missile Superbattleship

 

--------------------

 

A large ship capable of major destruction. An update to the original Edinorog Class, it has been completely renovated. First upgraded in 2032, the Edinorog Mk3 has been equipped with brand new electronics, sensors, radar, and sonars. A completely new rear section has been designed, as the rear railgun has been removed and replaced with a large hangar and a beach assault section.

 

Near the rear, there are new bays installed, a total of 8. Each one is capable of housing and lowering a single amphibious BTR-100 or an attack boat. The new hangar features a large amount of helicopters, all of which can perform both anti-sub/ship roles or ground attack/transport roles.

 

It is able to detect any kind of enemy - ships, subs, and planes, and is able to engage each of them.

 

Armament:

 

• 2x 25 inch Railguns

 

• 8x 100mm DP Railguns

 

• 4x Palma (Kashtan) Laser CIWS (w/ SAM)

gyazo.com/ff7f7b9263888579c4b6706f7fc9a527.png?1345839182

• 4x Saracen Laser CIWS

 

• 160x VLS Cells (40 Quadcells)

• 10x Forward-Facing Missile Cells (House multipurpose missiles, used for dealing w/ subs and ships)

 

Air Force:

 

• 1x Turkish Mi-6T "Hook" Superheavy Gunship/Transport Helicopter (Tier 3)

• 2x Kamov Ka-60 "Strela" Mk2 Light Helicopter Gunships (Tier 4, Stealth)

• 2x Yakovlev Yak-114 "Oceanus" Helicopter Cruise Missile Platform (Tier 4, Stealth)

• 1x Yakovlev Yak-110A "Hyperion" Light Helicopter Gunship/Transport (Tier 4, Stealth)

Yak-110A - Focused on transport.

• 1x Agusta A211 "Tiger" Canard Rotor Medium Transport (ASW role) (Tier 3)

 

--------------------

 

GC Cost: 400,000 Credits, 475,000* Credits

*With ship's airforce

Not long after the F-4C Phantom II entered USAF service in the early 1960s, the service issued a requirement for a heavy, all-missile equipped interceptor with variable-sweep wings and a top speed of nearly Mach 3. This requirement was soon cancelled, however, due to two events: the Vietnam War and the flight of the Soviet MiG-25 Foxbat. Over North Vietnam, the heavy, all-missile F-4 had found itself at a disadvantage against smaller, lighter, gun-equipped MiG-17s, while the new Foxbat was erroneously thought to be a generation ahead of anything then in American service, both agile and capable of Mach 3 performance. The USAF changed its requirement to a lighter aircraft that would include an internal gun, with an emphasis on performance; it rejected a Grumman proposal for a land-based version of the F-14 Tomcat as being too heavy.

 

The new F-X proposal did away with maintenance-intensive swing wings in favor of a more conventional, easier to repair and produce fighter with a high thrust-to-weight ratio and superb performance in the vertical, once more drawing on the Vietnam experience, where North Vietnamese fighters had performed poorly in vertical maneuvers. Almost as much emphasis was given to the F-X’s radar, which had to have look-down, shoot-down capability—another failure of American technology over Vietnam. McDonnell Douglas’ twin-tailed proposal won the F-X competition, despite being roughly the same weight as a F-4E Phantom II, and more expensive; demands for lighter and less expensive fighters as an alternative to this new YF-15 Eagle led to the development of the F-16 Fighting Falcon and F/A-18 Hornet.

 

The first F-15 flew in July 1972 and immediately exhibited superb flight characteristics: for its size, which was slightly larger than a F-4, it was very agile. The combination of powerful turbofan engines and thrust-to-weight ratio made the F-15 one of the first fighters to be able to accelerate in a climb, rather than lose speed. Like the F-4, it used a mix of conformal-fuselage mounted AIM-7 Sparrows and wing rail-mounted AIM-9 Sidewinders, but unlike the F-4, the F-15 was built from the start with an internal 20mm gatling cannon. From a fighter pilot’s standpoint, the best part of the F-15, aside from its phenomenal performance, was the bubbletop canopy, set forward from the wide fuselage, giving superb all-around visibility.

 

Though the cost of the F-15 was brought into question, especially after the defection of a MiG-25 pilot in 1975 revealed that the Foxbat was nowhere near as capable as originally thought, but this only led the USAF to go with a mix of the F-15 and the less expensive F-16, which would prove to be superb “stablemates” in the decades to come. F-15As entered USAF service in 1976. Almost immediately, the F-15A was supplemented and supplanted by the F-15C, which introduced improved avionics, engines, and radar; F-15As underwent the Multi-Stage Improvement Program (MSIP) beginning in 1983, which rendered them basically identical to F-15Cs, and the two types are indistinguishable externally.

 

Though the F-15 was costly, the F-14 Tomcat was even more expensive, and so Israel chose the Eagle as the replacement for the Mirage III in 1978. Not long after the first Israel F-15As became operational, the Eagle scored its first kills over Syrian MiG-21s in 1979. This was to begin the F-15’s excellent combat record: during the 1982 Lebanon War, Israeli F-15s added 40 more kills over MiG-21s, MiG-23 Floggers, and MiG-25s; Saudi Arabia, which had received F-15s in 1981, added two Iranian F-4Es in 1984.

 

The F-15’s shining moment was during the First Gulf War with Iraq in 1991. Eagles had been among the first aircraft deployed to the Gulf region in what was, at the time, the longest deployment ever undertaken by fighters—a grueling 14-hour flight from Langely AFB, Virginia, to Dhahran, Saudi Arabia, soon after Saddam Hussein invaded Kuwait in August 1990. The Eagle fleet, which included Saudi F-15Cs, was added to during Operation Desert Shield; when Desert Storm was unleashed in January 1991, F-15s were in the vanguard, their target the Iraqi Air Force. Over the next six weeks, F-15s achieved air supremacy over Iraq, scoring 34 kills over mostly MiG-23s and MiG-29s, while the Saudis added two Mirage F.1s to the total. (A 37th kill was made by a F-15E Strike Eagle, which shot down a Mi-8 helicopter by dropping a laser-guided bomb on it.) Four Yugoslavian MiG-29s fell to F-15 missiles in 1999, bringing the F-15’s tally to 105 kills to date during its career: in return, no F-15s have been lost in aerial combat.

 

The F-15 Eagle remains the backbone of the USAF’s fighter community, despite suffering from a shortage of parts in the late 1990s and increasing age; the disintegration of a F-15A in 2007 brought home the fact that the Eagle is getting old. F-15s have been updated to carry the AIM-120 AMRAAM and AIM-9X, while Israeli F-15s carry a mix of the AMRAAM and the deadly Python IV helmet-guided missile. The F-22 Raptor was meant to wholly replace the F-15, but the cancellation of further F-22 production in 2010 has left a gap between F-22s in service and F-15s needing to be replaced. As a result, the F-15C may remain in service as late as 2025, with about 70 updated as “Legacy Eagles”—these aircraft are receiving the same AESA advanced radar as the F-22. Boeing (which absorbed McDonnell Douglas) has also offered an advanced variant of the F-15, the so-called “Silent Eagle” that incorporates features of the F-22 into the F-15E airframe, which is still in production. F-15s also continue to serve with Israel, Saudi Arabia, and Japan, with no real replacement in sight. Though getting aged by fighter standards, F-15s will be around for some time to come.

 

This F-15A, 76-0043, was one of the first F-15s deployed to Europe, serving with the 36th Tactical Fighter Wing at Bitburg AB, West Germany. When Dad got this picture at Ramstein's 1979 airshow, the F-15 was still relatively new. 76-0043 wears the older "Compass Ghost" camouflage scheme used by the USAF into the 1990s. After the 36th TFW exchanged its A models for F-15Cs, 76-0043 went to the 405th Tactical Training Wing at Luke AFB, Arizona. After ending its career with the 142nd Fighter Wing (Oregon ANG) at Portland International Airport, Oregon, 76-0043 was retired and scrapped in 2011.

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!

  

Some background:

The Indian „Samudree Baaj“ (समुद्री बाज, Sea Hawk) was a highly modified, navalized version of the British BAE Systems Hawk land-based training jet aircraft, which had been manufactured under license by Hindustan Aeronautics Limited (HAL). The first indigenously built Hawk Mk. 132 trainer was delivered in 2008 to the Indian Air Force, and the type has since then been updated with indigenous avionics into the “Hawk-I” Mk. 132 from 2020 onwards. The aircraft’s Rolls Royce Adour Mk 871 engine was also license-built by HAL, and the company had experience from a wide range of aircraft projects in the past.

 

The Samudree Baaj project was initiated in 2006 by the Indian Navy, as part of the long historic plan to provide the Indian Navy with a fully capable aircraft carrier. This plan had been initiated in 1989, when India announced a plan to replace its ageing British-built aircraft carriers, INS Vikrant and INS Viraat (ex-HMS Hermes), with two new 28,000-ton Air Defence Ships (ADS) that would operate the BAe Sea Harrier aircraft. The first vessel was to replace Vikrant, which was set to decommission in early 1997. Construction of the ADS was to start at the Cochin Shipyard (CSL) in 1993 after the Indian Naval Design Organisation had translated this design study into a production model. Following the 1991 economic crisis, the plans for construction of the vessels were put on hold indefinitely.

 

In 1999, then-Defence Minister George Fernandes revived the project and sanctioned the construction of the Project “71 ADS”. By that time, given the ageing Sea Harrier fleet, the letter of intent called for a carrier that would carry more modern jet fighters. In 2001, CSL released a graphic illustration showing a 32,000-ton STOBAR (Short Take-Off But Arrested Recovery) design with a pronounced ski jump. The aircraft carrier project finally received formal government approval in January 2003. By then, design updates called for a 37,500-ton carrier to operate the MiG-29K. India opted for a three-carrier fleet consisting of one carrier battle group stationed on each seaboard, and a third carrier held in reserve, in order to continuously protect both its flanks, to protect economic interests and mercantile traffic, and to provide humanitarian platforms in times of disasters, since a carrier can provide a self-generating supply of fresh water, medical assistance or engineering expertise to populations in need for assistance.

 

In August 2006, then-Chief of the Naval Staff, Admiral Arun Prakash stated that the designation for the vessel had been changed from Air Defence Ship (ADS) to Indigenous Aircraft Carrier (IAC). The euphemistic ADS had been adopted in planning stages to ward off concerns about a naval build-up. Final revisions to the design increased the displacement of the carrier from 37,500 tons to over 40,000 tons. The length of the ship also increased from 252 metres (827 ft) to 262 metres (860 ft).

It was at this time that, beyond the MiG-29K, primarily a carrier-capable trainer and also a light (and less costly) strike aircraft would be needed. With the running production of the Hawk Mk. 132 for the Indian Air Force and BAE Systems’ connection and experience to the USA and McDonnell/Boeing’s adaptation of the Hawk as the US Navy’s carrier-capable T-45 trainer, HAL was instructed to develop a suitable aircraft family on the Hawk’s basis for the new carriers.

 

HAL’s Samudree Baaj is a fully carrier-capable version of the British Aerospace Hawk Mk. The Hawk had not originally been designed to perform carrier operations, so that numerous modifications were required, such as the extensive strengthening of the airframe to withstand the excessive forces imposed by the stresses involved in catapult launches and high sink-rate landings, both scenarios being routine in aircraft carrier operations.

 

The aerodynamic changes of the aircraft, which were mutually developed by HAL and BAE Systems, included improvements to the low-speed handling characteristics and a reduction in the approach speed. Most notable amongst the changes made to the Hawk's design were extended flaps for better low-speed handling, along with the addition of spoilers on the wings to reduce lift and strakes on the fuselage which improved airflow and stabilizer efficiency.

Other, less obvious modifications included a reinforced airframe, the adoption of a more robust and widened landing gear, complete with a catapult tow bar attachment to the oleo strut of the new two-wheel nose gear design, and an arresting hook. The tail fin was extended by 1 foot (12 in, 30.5 cm) to compensate for the loss of the Hawk’s ventral stabilizing strakes. To make room for the arrester hook, the original ventral air brake was split and re-located to the flanks, similar to the USN’s T-45 trainer.

 

At the time of the Samudree Baaj’s design, the exact catapult arrangement and capacity on board of India’s new carriers was not clear yet – even more so, since the MiG-29K and its powerful engines might have made a catapult obsolete. Therefore, the Samudree Baaj was designed to be operable either with a ski jump ramp (in the style of the Russian Kiev class carriers, of which India had purchased one as INS Vikramaditya) or with only minimal launch support within the projected STOBAR concept, which included a relatively short-stroke steam catapult and a similarly short, undampened arrester gear.

 

By 2009 the basic airframe had been defined and four prototypes were built for two versions: the Mk. 101 trainer, which was basically a navalized version of the land-based Mk. 132 with almost the same mission equipment, and the Mk. 201, a single-seater. Two airframes of each type were built and the first Samudree Baaj flight took place in early 2011. The Indian government ordered 30 trainers and 15 attack aircraft, to be delivered with the first new Indian carrier, INS Vikrant, in late 2017.

 

The Samudree Baaj Mk. 201 was developed from the basic navalized Hawk airframe as a light multirole fighter with a small visual signature and high maneuverability, but high combat efficiency and capable of both strike and point defense missions. It differed from the trainer through a completely new forward fuselage whereby the forward cockpit area, which normally housed the trainee, was replaced by an electronics bay for avionics and onboard systems, including a fire control computer, a LINS 300 ring laser gyroscope inertial navigation system and a lightweight (145 kg) multimode, coherent, pulse-Doppler I band airborne radar. This multimode radar was developed from the Ferranti Blue Fox radar and capable of airborne interception and air-to-surface strike roles over water and land, with look-down/shoot-down and look-up modes. It had ten air-to-surface and ten air-to-ground modes for navigation and weapon aiming purposes.

A ventral fairing behind the radome carried a laser rangefinder and a forward-looking infrared (FLIR). Mid-air refueling was also possible, through a detachable (but fixed) probe. GPS navigation or modern night-flight systems were integrated, too.

 

Like the trainer, the Mk. 201 had a total of seven weapon hardpoints (1 ventral, four underwing and a pair of wing tip launch rails), but the more sophisticated avionics suite allowed a wider range of ordnance to be carried and deployed, which included radar-guided AAMs for BVR strokes and smart weapons and guided missiles – especially the Sea Eagle and AGM-84 “Harpoon” anti-ship missiles in the Indian Navy’s arsenal. For the maritime strike role and as a support for ASW missions, the Samudree Baaj Mk. 201 could even deploy Sting Ray homing torpedoes.

Furthermore, a pair of 30mm (1.18 in) ADEN machine cannon with 150 RPG were housed in a shallow fairing under the cockpit. The self-protection systems include a BAE SkyGuardian 200 RWR and automatic Vinten chaff/flare dispensers located above the engine exhaust.

 

The Samudree Baaj project was highly ambitious, so that it does not wonder that there were many delays and teething troubles. Beyond the complex avionics integration this included the maritime adaptation of the Adour engine, which eventually led to the uprated Adour Mk. 871-1N, which, as a side benefit, also offered about 10% more power.

However, in parallel, INS Vikrant also ran into delays: In July 2012, The Times of India reported that construction of Vikrant has been delayed by three years, and the ship would be ready for commissioning by 2018. Later, in November 2012, Indian English-language news channel NDTV reported that cost of the aircraft carrier had increased, and the delivery has been delayed by at least five years and is expected to be with the Indian Navy only after 2018 as against the scheduled date of delivery of 2014. Work then commenced for the next stage of construction, which included the installation of the integrated propulsion system, the superstructure, the upper decks, the cabling, sensors and weapons. Vikrant was eventually undocked on 10 June 2015 after the completion of structural work. Cabling, piping, heat and ventilation works were to be completed by 2017; sea trials would begin thereafter. In December 2019, it was reported that the engines on board the ship were switched on and in November 2020, only the basin trials of the aircraft carrier were completed.

 

By that time, the first Samudree Baaj aircraft had been delivered to Indian Navy 300 squadron, and even though only based at land at Hansa Air Station, flight training and military operations commenced. In the meantime, the start of Vikrant's trials had initially been scheduled to begin on 12 March 2020, but further construction delays caused that to be moved back to April. With the COVID-19 crisis, the navy explained that trials were unlikely to begin before September/October. During the Navy Day press meeting in December 2019, Navy Chief Admiral Karambir Singh said Vikrant would be fully operational before the end of 2022. The COVID-19 pandemic had already pushed that back to 2023 and further delays appeared possible.

In late 2020, the Indian Navy expected to commission Vikrant by the end of 2021. Until then, the Samudree Baaj fleet will remain land-based at INS Hansa near Goa. This not only is the INAS 300 home base, it is also the location of the Indian Navy's Shore Based Test Facility (SBTF), which is a mock-up of the 283-metre (928 ft) INS Vikramaditya (a modified Kiev-class aircraft carrier) deck built to train and certify navy pilots, primarily the the Mikoyan MiG-29K for operating from the aircraft carrier, but now also for the Samudree Baaj and for the developmental trials of the naval HAL Tejas lightweight fighter.

  

General characteristics:

Crew: 1

Length: 11.38 m (37 ft 4 in)

Wingspan: 9.39 m (30 ft 10 in)

Height: 4.30 m (14 ft 1 in)

Wing area: 17.66 m2 (190.1 sq ft)

Empty weight: 9,394 lb (4,261 kg)

Gross weight: 12,750 lb (5,783 kg)

Max takeoff weight: 9,101 kg (20,064 lb)

Fuel capacity: 1,360 kg (3,000 lb) internal

3,210 kg (7,080 lb) with 3 drop tanks

Powerplant:

1× Rolls-Royce Turbomeca Adour Mk. 871-1N non-afterburning turbofan, 28,89 kN (6,445 lbf) thrust

 

Performance:

Maximum speed: 1,037 km/h (644 mph, 560 kn) at sea level

Maximum speed: Mach 1.2 (never exceed at altitude)

Cruise speed: 796 km/h (495 mph, 430 kn) at 12,500 m (41,000 ft)

Carrier launch speed: 121 kn (139 mph; 224 km/h)

Approach speed: 125 kn (144 mph; 232 km/h)

Never exceed speed: 575 kn (662 mph, 1,065 km/h) / M1.04 design dive limit

Stall speed: 197 km/h (122 mph, 106 kn) flaps down

Range: 892 km (554 mi, 482 nmi) internal fuel only

Combat range: 617 km (383 mi, 333 nmi) with 2x AGM-84 and 2x 592 l (156 US gal; 130 imp gal)

Ferry range: 1,950 km (1,210 mi, 1,050 nmi) with 3 drop tanks

Service ceiling: 15,250 m (50,030 ft)

G-limits: +8/-3

Rate of climb: 58.466 m/s (11,509.1 ft/min)

Takeoff distance with maximum weapon load: 2,134 m (7,001 ft)

Landing distance at maximum landing weight with brake chute: 854 m (2,802 ft)

Landing distance at maximum landing weight without brake chute: 1,250 m (4,100 ft)

 

Armament:

2× 30 mm (1.181 in) Aden cannon with 150 rounds each

7× hardpoints (4× under-wing, 1× under-fuselage and 2 × wingtip)

for a total ordnance of 3.085 kg (6,800 lb) and a wide range of weapons

  

The kit and its assembly:

A subtle kitbashing project, inspired by a CG-rendition of a carrier-based (yet un-navalized) BAe Hawk 200 in Indian Navy service by fellow user SPINNERS in January 2021. I found the idea inspiring but thought that the basic concept could be taken further and into hardware form with a model. And I had a Matchbox Hawk 200 in The Stash™, as well as a McDonnell T-45 trainer from Italeri…

 

The plan sounds simple: take a T-45 and replace the cockpit section with the single-seat cockpit from the Hawk 200. And while the necessary cuts were easy to make, reality rears its ugly head when you try to mate parts from basically the same aircraft but from models by different manufacturers.

 

The challenges started with the fact that the fuselage shapes of both models differ – the Matchbox kit is more “voluminous”, and the different canopy shape called for a partial spine transplant, which turned out to be of very different shape than the T-45’s respective section! Lots of PSR…

In order to improve the pretty basic Matchbox Hawk cockpit I integrated the cockpit tub from the Italeri T-45, including the ejection seat, dashboard and its top cover.

For the totally different T-45 front wheel I had to enlarge the respective well and added a “ceiling” to it, since the strut had to be attached somewhere. The Hawk 200’s ventral tub for the cannons (which only the first prototype carried, later production aircraft did not feature them) were retained – partly because of their “whiffy“ nature, but also because making it disappear would have involved more major surgeries.

Most of the are behind the cockpit comes from the Italeri T-45, I just added a RHAWS fairing to the fin, extending it by 3mm.

 

A major problem became the air intakes, because the two kits differ in their construction. I wanted to use the Italeri parts, because they match the fairings on the fuselage flanks well and are better detailed than the Matchbox parts. But the boundary layer spacers between intakes and fuselage are molded into the Italeri parts, while the Matchbox kit has them molded into the fuselage. This called for major surgery and eventually worked out fine, and more PSR blended the rest of the fuselage donors around the cockpit together. A tedious process, though.

 

The pylons were puzzled together, including a former Matchbox EA-6B wing pylon under the fuselage, cut down and mounted in reverse and upside down! The ordnance comes from the Italeri NATO weapons set (Matra Magic and AGM-84), the ventral drop tank comes IIRC from an Eduard L-39 Albatros. Matra Magics were chosen because India never operated any Sidewinder AAM, just French or Soviet/Russian missiles like the R-60 or R-73 (unlikely on the Hawk, IMHO), and I had preferred a pair of Sea Eagle ASMs (from a Hasegawa Sea Harrier kit), but their span turned out to be too large for the Hawk’s low wings. The alternative, more slender Harpoons are plausible, though, since they are actually part of the Indian Navy’s inventory.

  

Painting and markings:

The Indian Navy theme was already settled, and I wanted to stay close to SPINNERS’ illustration as well as to real world Indian Navy aircraft. SPINNERS’ Hawk carried the typical Sea Harreir scheme in Extra Dark Sea Grey and White, and I found this livery to look a bit too much retro, because I’d place this what-if aircraft in the early 2020s, when the Sea Harriers had already been phased out. A “realistic” livery might have been an overall mid-grey paint scheme (like the land-based Indian Hawk 132s), but I found this to look too boring. As a compromise, I gave the Samudree Baaj a simple two-tone paint scheme, carried by a few late Indian Sea Harriers. It consists of upper surfaces in Dark Sea Grey (Humbrol 164) and undersides in Medium Sea Grey (Modelmaster 2058), with a low waterline. The Modelmaster MSG has – for my taste – a rather bluish hue and appears almost like PRU Blue, but I left it that way.

 

The decals were puzzled together from variosu sources. the roundels come from a MiG-21F (Begemot), the unit markings and tactical codes from a Model Alliance Sea Harrier sheet, and the stencils are a mix from the Matchbox Hawk 200 and the Italeri T-45.

 

The kit was sealed with matt acrylic varnish from Italeri.

 

The fictional HAL „Samudree Baaj“ looks simple, but combining kits of the basically same aircraft from different manufacturers reveals their differences, and they are not to be underestimated! However, I like the result of a navalized Hawk single-seater, and - also with the relatively simple and dull livery - it looks pretty convincing.

Many thanks to SPINNERS for the creative inspiration - even though my build is not a 100% "copy" of the artwork, but rather a step further into the navalisation idea with the T-45 parts.

 

Developed by Orbital Sciences Corporation, the Pegasus is an air-launched orbital launch vehicle capable of carrying small payloads into a low earth orbit. It first flew in 1990 and has three solid propellant stages with an optional monopropellant fourth stage. Launched at 39,000ft, it was initially carried by a NASA B-52 Stratofortress, but more recently by modified Lockheed Tristar ‘N140SC’ known as “Stargazer” and operated by Orbital.

This example was built using a 1994 first-stage motor used for ground testing and the wing recovered from a Pegasus that had been to space. It was donated to the Smithsonian Institute by Orbital Sciences in 2004 and is now part of the National Air and Space Museum.

It is seen on display in the James S. McDonnell Space Hangar at the Steven F. Udvar Hazy Center

Washington Dulles International Airport, Chantilly, Virginia

7th May 2015

c/n 21414.

Built in 1917, this beautiful DH9 was one of a pair recovered from an elephant shed in India. In the more than capable hands of Aero Vintage / Retrotech, the first machine was restored for the Imperial War Museum and is on static display in Duxfords 'AirSpace' hangar.

This second machine has now been restored to a stunning and airworthy condition which will hopefully soon see her back in the air. This will be a truly amazing site!

Her first public appearance (static, of course) was at the Royal International Air Tattoo (RIAT) at RAF Fairford in July 2017, after which she was moved to Duxford and reassembled. She now sits in Hangar 3, which is also the home of the rest of the Historic Aircraft Collection fleet.

Duxford Airfield, Cambridgeshire, UK.

26th January 2018.

 

The following information is from the Historic Aircraft Collection website. Although slightly dated it does give some good info on the aircraft:-

 

"The engine chosen for the DH-9 was the new 200 hp Siddeley Puma, ordered straight off the drawing board. The engine was not a successful design, but nevertheless that was all there was, and both the DH-9 and the Puma were ordered in large numbers. In fact the DH-4 was not designed as a bomber, but only after it was in service was it found to be useful in this role. The DH-9 can therefore claim to be one of the first true strategic purpose-built bombers manufactured in Britain, with bomb bays within the fuselage structure.

Despite the aircraft's shortcomings, it became one of the most produced aircraft of the 1st World War with over 2,000 examples being made.

The DH-9 was utilised in a great number of bombing raids over Germany and over the Western Front; it also saw service in an anti-submarine role, in the Middle East and Indian sub-continent. Due to the large numbers available after the war, the type continued on in numerous guises, both in military roles in every corner of the Empire and also in the conversion to airliners and long distant courier aircraft.

Although produced in huge numbers and despite a long career after the war, surprisingly few still exist. There is one in the Musee de L'Air in Paris, and one in the Saxonwold museum in South Africa. There is also a civilianised version in Australia; however, there were none in the British National Collection. Rumours of two or three secreted away in India abounded for years and their discovery and recovery to the UK by Aero Vintage took many years of negotiation and organisation. Aero Vintage Ltd director, Guy Black, was determined to ensure that one at least was preserved in the UK in a national museum, and the other restored to fly.

E-8894, now registered G-CDLI which has the most degraded woodwork, will be restored to fly with an original Puma engine. The other DH9 recovered, D-5649, is being restored to non-flying status with a high standard of conservation and original content, for the Imperial War and will be displayed, unsuspended in the new Airspace hanger, by the time this new building is opened to the public for the first time.E-8894 was one of a batch of 200 DH-9 aircraft ordered on the 23rd March 1918 under contract no. 351/418/C.296 (BR.394) from the Aircraft Manufacturing Co. Ltd., of Hendon. As far as is known, it probably saw no military action before being placed in storage and sent to India under the Imperial Gift Scheme.

An excellent Puma engine has been found, and once restored to fly, this genuine 1st World War aircraft will not only be the only 1st World War bomber flying, but also the only Imperial Gift aircraft flying anywhere in the world. Completion of the flying DH9 is anticipated in 2017. Both aircraft are being restored in the Retrotec workshops in East Sussex"

+++ DISCLAIMER +++

Nothing you see here is real, even though the model, the conversion or the presented background story might be based on historical facts. BEWARE!

  

Some background:

Tyne was the second of the five River-class light cruisers in the Royal Navy, which were introduced during the interwar period and played, after modifications, an active role in World War II, especially in the Mediterranean theatre of operations.

 

After the construction of the Danae-class cruiser, the demerits of the small cruiser concept became apparent. At the end of 1917, plans for an additional six C-class vessels, plus three new-design 7,200 ton-class scouting cruisers were shelved, in favor of an intermediate 5,500 ton-class vessel which could be used as both a long-range, high speed scout ship, and also as a command vessel for destroyer or submarine flotillas. The resulting River-class vessels were essentially enlarged versions of the Danae-class cruisers, with greater speed, range, and weaponry. With improvements in geared-turbine engine technology, the River-class vessels were capable of the high speed of 36 knots (67 km/h), and a range of 9,000 nmi (17,000 km) at 10 kn (12 mph; 19 km/h). The number of BL 6-inch (152.4 mm) L/45 Mark XII guns was increased from only three to seven in single mounts and provision was made for 48 naval mines. However, the four triple torpedo launchers on the Danae-class were reduced to just two double launchers, and the River-class remained highly deficient in anti-aircraft protection, with only two QF 3 in 20 cwt L/45 Mk. I and two QF 2-pounder L/39 Mk. II guns. A total of eight ships were ordered, but, with less pressure after the end of WWI, only five were built and finished.

 

The first River-class ship, H.M.S. “Trent”, was laid down in December 1918 and launched in August 1919. H.M.S. “Tyne” was the second cruiser of this new class, laid down 8 July 1919, launched 24 September 1920 and completed at Chatham Royal Dockyard 2 June 1922. Completed too late to see action in the First World War, “Tyne” was initially assigned to operate in the Baltic Sea against the Bolshevik revolutionaries in Russia. She was then on detached service in the West Indies. Following this assignment, she was attached to the 1st Light Cruiser Squadron of the Atlantic Fleet for the following five years. 1923/24, “Tyne” became a member of the Cruise of the Special Service Squadron, also known as the “Empire Cruise”. Following this tour, she went with the squadron to the Mediterranean for the next few years.

 

In May 1928 “Tyne” was assigned to the North America and West Indies Station, based at the Royal Naval Dockyard in Bermuda. She ran aground on 2 July 1928 on the Thrum Cap Shoal, 5 nautical miles (9.3 km) off Halifax, Nova Scotia, Canada, and was badly damaged, suffering the breach of her engine room and of one of her boiler rooms. She was abandoned by most of her 445 crew, the officers remaining on board. Subsequently, all her guns and torpedo tubes and much of her other equipment had to be removed to lighten her. She was finally refloated on 11 July 1928 and towed off by H.M.S. “Despatch” and several tugs. She was repaired throughout 1929 and then reduced to the reserve.

 

In 1930, however, due to a shortage of ships at foreign theatres of operation, she was reactivated and transferred back to the America and West Indies Station. During 1931-1933 she served with the South American Division, and in 1934 she relieved the cruiser “Curlew” in the Mediterranean and was reassigned to the 3rd Cruiser Squadron. In 1935 she returned to Britain to be paid off into the reserve, but “Tyne” was kept active in British coastal waters for cadet training.

 

On the outbreak of the Second World War, “Tyne” was recommissioned and thoroughly modernized, since the original armament and other equipment had become obsolete by 1939. All five River-class ships were re-designed as light trade protection cruisers and were outfitted with new, state-of-the-art equipment and armament, including six new and very compact turrets. Pairs were placed at the bow and at the stern each, with another two placed singly at port and starboard amidships. Each was armed with twin 5.25-inch (133 mm) guns in high angle mountings. These new, quick-firing weapons were primarily surface weapons, but it was intended to fire the heaviest shell suitable for anti-aircraft defense, so that the ships could be used for convoy protection from aerial attacks.

The ballistic performance of the QF 5.25 was very good, with a maximum range of 24,070 yd (22,010 m) at 45 degrees with an 80 lb (36.3 kg) HE shell. In comparison, the contemporary French 138 mm (5.4 in) Mle 1934 guns as used on the Mogador-class destroyers had a maximum range of 21,872 yards (20,000 m) at 30 degrees with an 88 lb (39.9 kg) SAP shell, and the Italian 135/45 mm gun as used on the Capitani Romani-class cruisers had a maximum range of 21,435 yards (19,600 m) at 45 degrees with a 72.1 lb (32.7 kg) AP shell.

The new turrets were far more modern in design than previous light cruiser turrets and offered efficient loading up to 70 degrees to provide the intended dual-purpose capability. Furthermore, “Tyne” was, like its revamped sister ships, outfitted with four twin QF 2-pounder (40 mm) "pom-poms" and a pair of triple 21-inch (533 mm) torpedo tube launchers, mounted under the main deck. The latter carried a steam catapult for a reconnaissance waterplane, initially a Fairey Swordfish on floats but later replaced by a Supermarine Walrus amphibious flying boat. The depth charge racks were augmented by two new launchers.

 

After her modifications at Portsmouth Royal Dockyard, field tests in the Channel and receiving a light disruptive Admiralty paint scheme, “Tyne” joined the 2nd Cruiser Squadron, escorting convoys to Scandinavia and engaged in the hunt for the German battleships Scharnhorst and Gneisenau. After the Norwegian Campaign she participated in the operations hunting the German battleship Bismarck and, together with the cruiser “Kenya”, intercepted one of the German supply ships, “Belchen”, on 3 June 1941.

 

Between July and August 1941, as part of Force K with the Home Fleet, she was involved in “Operation Gauntlet”, with operations to Spitzbergen and Bear Island. After one of these sorties, in company with the cruiser “Nigeria”, she intercepted a German troop convoy off Northern Norway, and the German ship “Bremse” was sunk. Later that year she was transferred to the Mediterranean and arrived in Alexandria on 21 October 1941 to join a new Force K, where the ship received a new high-contrast paint scheme, typical for this theatre of operations.

 

On 9 November 1941, Force K, consisting of “Tyne”,”Aurora”, “Penelope”, “Lance” and “Lively”, she was involved in the destruction of the Beta Convoy. In the resulting battle the Italian destroyer “Fulmine” was sunk, as well as the German transports “Duisburg” and “San Marco”, the Italian transports “Maria”, “Sagitta” and “Rina Corrado”, and the Italian “Conte di Misurata” and “Minatitlan”. The Italian destroyers “Grecale” and “Euro” were damaged.

 

On 24 November Force K, intercepted an Axis convoy about 100 nautical miles west of Crete. The Axis convoy was bound from the Aegean to Benghazi. The two German transports in the convoy, “Maritza” and “Procida”, were both sunk by H.M.S. “Penelope” and H.M.S. “Lively” despite the presence of the Italian torpedo boats “Lupo” and “Cassiopea”. On 1 December 1941 Force K, with “Tyne”, “Penelope” and ”Lively”, attacked the Mantovani Convoy. The Italian destroyer “Alvise Da Mosto” and the sole cargo ship “Mantovani” were sunk. H.M.S. “Tyne” next participated in the First Battle of Sirte on 17 December 1941. On 19 December, while steaming off Tripoli, she was heavily damaged in a mine field and was forced to retire to Malta for hull repairs.

 

After repairs, which lasted several months into summer 1942, she returned to service in the MTO and joined Force H. In November she became part of the Centre Task Force for the Landings in North Africa, Operation Torch. Off Oran, she engaged the Vichy French destroyers “Tramontane” and “Tornad”e on 8 November 1942, damaging the former so badly that it had to be beached. The following day she badly damaged the destroyer “Épervier” and drove it ashore. By early December 1942 she was operating as part of Force Q at Bône against the Axis evacuation and supply convoys between Trapani and Tunis.

 

However, “Tyne” was hit on 20 December 1942 off Trapani (Sicily) by an air-dropped torpedo. She caught fire, had two of her turrets out of action and was badly flooded. Later that day she was attacked once more by German dive-bombers, and a fatal bomb hit at the ship’s stern eventually led to her loss the following day. 115 men were killed through the attacks, the rest, more than two-thirds of the crew, was rescued.

 

All River-class ships had a very active war career and proved to be satisfactory in service, even though they were hardly a match for full-fledged battleships and worked best in conjunction with other ships. Especially in the Mediterranean they were very effective in protecting crucial convoys to Malta and even managed to see off some ships of the Italian Royal Navy. However, their outdated WWI machinery became their Achilles heel and limited their potential, and the relatively light main guns lacked range and firepower to take on major enemy ships their own.

From 1940 on the ships were to be replaced by the much more modern and better-equipped new Dido-class cruisers, but a shortage of guns for them, due to difficulties in manufacturing them, delayed their introduction so that the River-class cruisers had to soldier on. Two ships, “Tyne” and “Thames”, were lost, and the three post-war survivors “Trent”, “Severn” and “Mersey”, were immediately put into reserve after the end of hostilities in Europe and quickly broken up.

  

General characteristics:

Displacement: 5,100 long tons (5,200 t) (standard)

Length: 500 ft (152.4 m)

Beam: 47 ft (14.2 m)

Draft: 16 ft (4.8 m)

Draught: 12 ft 6 in (3.8 m) (deep)

Armor: Belt: 64 mm (3 in), Deck: 29 mm (1 in)

Complement: 450

 

Propulsion:

12× Admiralty boilers with 4× geared steam turbines, developing 90,000 shp (67,000 kW)

and driving four shafts

 

Performance:

Top speed: 36 knots (67 km/h; 41 mph)

Range: 5,000 nmi (9,300 km; 5,800 mi) at 14 kn (26 km/h; 16 mph)

 

Armament (after conversion):

12× 5.25 guns (133 mm) 50 caliber guns in six twin turrets

4× twin QF 2-pounder (40 mm) "pom-pom" AA guns in powered mounts

2× triple 21-inch (533 mm) torpedo tubes

2× throwers and 2× racks astern with 48 depth charges

  

The kit and its assembly:

The Royal Navy’s River-class light cruisers never existed. These fictional interwar ships were based on the Dido-class cruisers’ concept, just placed in an earlier generation and realized on the basis of an old/outdated ship. Inspiration came with an aftermarket set of six 1:700 white metal turrets that I came across recently, and I wanted to use it to build something like the American Atlanta-class light cruisers with a specialized AA armament.

 

However, this armament called for a suitable and bigger hull than my former destroyer builds, and I was eventually able to hunt down a cheap Tamiya kit of a Japanese Kuma-class light cruiser as starting point. It was perfect in size (almost exactly as big as a Dido-class cruiser!), shape and time frame, even though I I basically only used the kit’s single-piece hull as starting point. I had to modify the superstructures thoroughly to adapt the Japanese ship to the new role and also to a more Western layout and silhouette.

For instance, the typically Japanese tall “pagoda” bridge/command section of that era had to disappear, and I changed the superstructures almost completely, because the new twin turrets needed much more space than the small single guns of the Kuma cruiser. I also wanted to place them at different levels, and this called for suitable staggered platforms, too.

 

Initially there was the plan to mount the six turrets in groups of three at both bow and stern, but it was soon clear that this would not work – this arrangement would have been too long and too high, too, so that I went with two staggered pairs. I also wanted to give the ship – unlike the American Atlanta-class ships – a catapult for an on-board aircraft, and this required some free space on deck.

With this framework I scratched new/additional superstructures, using leftover pieces from the two recently built Matchbox K-class destroyers and from a Revell H.M.S. Ark Royal carrier. Everything evolved through trial-and error, in an attempt to find a plausible layout for all the deck equipment. The lowered hull section for the Kuma-class’ front torpedo tubes was filled with a cabin and re-purposed for lifeboats. Then the initially continuous superstructure was split to make room for the steam catapult amidships at deck level. The rear turrets eventually found their final places on a separate superstructure that would also carry the secondary mast and the crane for the floatplane, and I mounted the last two turrets in lateral positions (again somewhat inspired by the Atlanta-class arrangement with similar positions), above the Kuma-class’ openings for the rear torpedo launch tubes. These did not make sense at this position anymore, so that the OOB openings were closed/filled and moved further forward, under the new “flight deck”. Some PSR had to be done, too, in order to blend some disparate donor parts and fill the worst gaps. Therefore, the finish is certainly not as crisp as an OOB model – but I think that these flaws remained on an acceptable level.

 

Once the general deck layout had been settled, detail work began. This included a re-arrangement of bridge, masts and funnels, and the main deck had to offer enough space for the re-located catapult, together with the turrets in the side positions, lifeboats and AA stations, which found their place at deck level and in two twin alcoves in higher positions. Fiddly stuff, and I must admit that “creating” such a battleship is conceptually not easy.

The aircraft on board is actually the OOB Kawanishi E7K floatplane from the Kuma-class cruiser kit – but it looks similar enough to a Swordfish that this illusion could be easily supported with a suitable paint scheme.

  

Painting and markings:

I used the opportunity to apply another typical Royal Navy paint scheme, a so-called “Alexandria-style” pattern. This was a high-contrast scheme, sometimes described as consisting of black and white, but it was typically made up from 507a (Dark Grey) and 507c (Light Grey). It had been christened after the dockyard where it had been initially applied, and it was actually not a defined pattern (like the Admiralty schemes, which had been designed at offices by people who frequently had no practical naval experience!), but rather a common but individual application of standard paints that had been in ample supply at most dockyards! The ships had to be painted with what was at hand, and so the disruptive scheme caught on and was applied, like Mountbatten Pink, to a considerable number of British ships operating in the MTO. This two-tone scheme was not intended to conceal the ships, but rather to confuse the observer concerning speed, direction and what the ship actually was.

 

The pattern I applied to the model was loosely based on what the cruiser H.M.S. Devonshire carried in 1941, a kind of zebra pattern with wide, well-defined block stripes. As a visual gimmick these stripes were kind of “mirrored” along a line on the hull, as if reflected by the water and therefore making assessing size or distance even more difficult.

The paints are Humbrol 147 (Light Grey, FS 36495) and 27 (Sea Grey). The deck was painted as if the wooden areas had not been overpainted yet and allowed to weather, so that the once-holystoned, yellow-ish light wood had become dull and rather grey-ish. I used Humbrol 168 (RAF Hemp) and Revell 87 (Beige) as basis, and some light shading with thinned sepia ink was done to enhance the wooden look – and it’s nice contrast to the rather cold, grey camouflage. Metal decks, turret tops and the bow area were painted with Revell 47, simulating 507b (Medium Grey). Areas around the bridge were painted with Humbrol 62 (Leather) to simulate Corticene coating.

 

I originally wanted to paint the model in separate elements before final assembly, but this was not possible due to the many adjustments. The model was slightly weathered with a highly thinned black ink wash. Some Sienna Brown water paint was used for rust stains here and there. Portholes along the hull and on the superstructures were created with a thin black felt tip pen. The same tool was used to paint the muzzles of the guns. The crisp black boot topping was easy to create through the kit’s separate waterline bottom – OOB it comes in red, and it just had to be re-painted.

The kit’s segments were sealed with a coat of acrylic matt varnish before final assembly. Finally, rigging with heated and extended dark grey sprue material was done and paper flags were added.

  

It is not obvious, but the fictional H.M.S. “Tyne” took more scratchwork and mods than one would expect – it was/is almost a scratch build on the basis of a stock cruiser hull. More or less, the whole superstructure was re-arranged and the whole armament is new, but I think that the outcome looks quite plausible. The camouflage – even though only consisting of two shades of grey - looks interesting, too, and I think that the confusing effect becomes obvious in some of the beauty pics.

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based on authentic facts. BEWARE!

  

Some background:

The VF-1 was developed by Stonewell/Bellcom/Shinnakasu for the U.N. Spacy by using alien Overtechnology obtained from the SDF-1 Macross alien spaceship. Its production was preceded by an aerodynamic proving version of its airframe, the VF-X. Unlike all later VF vehicles, the VF-X was strictly a jet aircraft, built to demonstrate that a jet fighter with the features necessary to convert to Battroid mode was aerodynamically feasible. After the VF-X's testing was finished, an advanced concept atmospheric-only prototype, the VF-0 Phoenix, was flight-tested from 2005 to 2007 and briefly served as an active-duty fighter from 2007 to the VF-1's rollout in late 2008, while the bugs were being worked out of the full-up VF-1 prototype (VF-X-1).

 

The space-capable VF-1's combat debut was on February 7, 2009, during the Battle of South Ataria Island - the first battle of Space War I - and remained the mainstay fighter of the U.N. Spacy for the entire conflict. Introduced in 2008, the VF-1 would be out of frontline service just five years later, though.

 

The VF-1 proved to be an extremely capable craft, successfully combating a variety of Zentraedi mecha even in most sorties which saw UN Spacy forces significantly outnumbered. The versatility of the Valkyrie design enabled the variable fighter to act as both large-scale infantry and as air/space superiority fighter. The signature skills of U.N. Spacy ace pilot Maximilian Jenius exemplified the effectiveness of the variable systems as he near-constantly transformed the Valkyrie in battle to seize advantages of each mode as combat conditions changed from moment to moment.

 

The basic VF-1 was deployed in four minor variants (designated A, D, J, and S) and its success was increased by continued development of various enhancements including the GBP-1S "Armored" Valkyrie, FAST Pack "Super" Valkyrie and the additional RÖ-X2 heavy cannon pack weapon system for the VF-1S for additional firepower.

The FAST Pack system was designed to enhance the VF-1 Valkyrie variable fighter, and the initial V1.0 came in the form of conformal pallets that could be attached to the fighter’s leg flanks for additional fuel – primarily for Long Range Interdiction tasks in atmospheric environment. Later FAST Packs were designed for space operations.

 

The following FAST Pack 2.0 system featured two 120.000 kg class P&W+EF-2001 booster thrusters (mounted on the dorsal section of the VF-1) and two CTB-04 conformal propellant/coolant tanks (mounted on the leg/engines), since the VF-1's internal tanks could not carry enough propellant to achieve a stable orbit from Earth bases and needed the help of a booster pack to reach Low Earth Orbit. Anyway, the FAST Pack 2.0 wasn't adapted for atmospheric use, due to its impact on a Valkyrie's aerodynamics and its weight; as such, it needed to be discarded before atmospheric entry.

Included in the FAST Pack boosters and conformal tanks were six high-maneuverability vernier thrusters and two low-thrust vernier thrusters beneath multipurpose hook/handles in two dorsal-mounted NP-BP-01, as well as ten more high-maneuverability vernier thrusters and two low-thrust vernier thrusters beneath multipurpose hook/handles in the two leg/engine-mounted NP-FB-01 systems.

Granting the VF-1 a significantly increased weapons payload as well as greater fuel and thrust, Shinnakasu Heavy Industry's FAST Pack system 2.0 was in every way a major success in space combat. The first VF-1 equipped with FAST Packs was deployed in January 2010 for an interception mission.

Following first operational deployment and its effectiveness, the FAST Pack system was embraced enthusiastically by the U.N. Spacy and found wide use. By February 2010, there were already over 300+ so-called "Super Valkyries" stationed onboard the SDF-1 Macross alone.

 

The FAST Pack went through constant further development, including upgraded versions for late production and updated VF-1s (V3.0 and V4.0). Another addition to the early V2.0 variant of 2010 was the so-called “S-FAST Pack”. The S-FAST pack was originally developed at the Apollo lunar base, for the locally based VF-1 interceptor squadrons that were tasked with the defense of this important production and habitat site on the Moon, but it also found its way to other orbital stations and carriers.

 

Officially designated FAST Pack V2.1, the S-FAST Pack consisted of the standard pair of dorsal rocket boosters plus the pallets with additional maneuvering jets, sensors and weapons. The S-FAST pack added another pair of P&W+EF-2001 boosters under the inner wings, having the duty to give to fighter the power necessary to exit easily from the gravity of moons or little planets without atmosphere, and improve acceleration during combat situations. Range was also further extended, together with additional life support systems for prolonged deep space operations, or the case of emergency.

 

In order to accept the S-FAST pack and exploit its potential, the VF-1’s wings and inner wing attachment points had to be strengthened due to the additional load and propulsion. The use of the S-FAST pack also precluded the fighter from transforming into Battroid or Gerwalk mode – the underwing packs had to be jettisoned beforehand. The other standard FAST Pack 2.0 elements could still be carried, though.

 

The modfied Valkyries capable of accepting the S-FAST Pack received an additional “S” to their type designation – more than 100 VF-1s were converted or built in this deep space configuration until late 2011. Initial deployment of the S-FAST Pack was conducted through SVF-24 “Moon Shadows” in early 2010, a unit that was quickly disbanded, though, but re-formed as SVF-124 “Moon Shooters”, tasked with the defense of the lunar Apollo Base and several special missions.

 

After the end of Space War I, the VF-1 continued to be manufactured both in the Sol system and throughout the UNG space colonies. Although the VF-1 would eventually be replaced as the primary Variable Fighter of the U.N. Spacy by the more capable, but also much bigger, VF-4 Lightning III in 2020, a long service record and continued production after the war proved the lasting worth of the design.

 

The VF-1 was without doubt the most recognizable variable fighter of Space War I and was seen as a vibrant symbol of the U.N. Spacy even into the first year of the New Era 0001 in 2013. At the end of 2015 the final rollout of the VF-1 was celebrated at a special ceremony, commemorating this most famous of variable fighters. The VF-1 Valkryie was built from 2006 to 2013 with a total production of 5,459 VF-1 variable fighters with several variants (VF-1A = 5,093, VF-1D = 85, VF-1J = 49, VF-1S = 30, VF-1G = 12, VE-1 = 122, VT-1 = 68)

 

However, the fighter remained active in many second line units and continued to show its worthiness years later, e. g. through Milia Jenius who would use her old VF-1 fighter in defense of the colonization fleet - 35 years after the type's service introduction!

 

General characteristics:

All-environment variable fighter and tactical combat Battroid,

used by U.N. Spacy, U.N. Navy, U.N. Space Air Force

 

Accommodation:

Pilot only in Marty & Beck Mk-7 zero/zero ejection seat

Dimensions:

Fighter Mode:

Length 14.23 meters

Wingspan 14.78 meters (at 20° minimum sweep)

Height 3.84 meters

 

Battroid Mode:

Height 12.68 meters

Width 7.3 meters

Length 4.0 meters

Empty weight: 13.25 metric tons;

Standard T-O mass: 18.5 metric tons;

MTOW: 37.0 metric tons

 

Power Plant:

2x Shinnakasu Heavy Industry/P&W/Roice FF-2001 thermonuclear reaction turbine engines, output 650 MW each, rated at 11,500 kg in standard or in overboost (225.63 kN x 2)

4 x Shinnakasu Heavy Industry NBS-1 high-thrust vernier thrusters (1 x counter reverse vernier thruster nozzle mounted on the side of each leg nacelle/air intake, 1 x wing thruster roll control system on each wingtip);

18 x P&W LHP04 low-thrust vernier thrusters beneath multipurpose hook/handles

 

The S-FAST Pack added 4x P&W+EF-2001 booster thrusters with 120.000 kg each, plus a total of 28x P&W LHP04 low-thrust vernier thrusters

 

Performance:

Battroid Mode: maximum walking speed 160 km/h

Fighter Mode: at 10,000 m Mach 2.71; at 30,000+ m Mach 3.87

g limit: in space +7

Thrust-to-weight ratio: empty 3.47; standard T-O 2.49; maximum T-O 1.24

 

Design Features:

3-mode variable transformation; variable geometry wing; vertical take-off and landing; control-configurable vehicle; single-axis thrust vectoring; three "magic hand" manipulators for maintenance use; retractable canopy shield for Battroid mode and atmospheric reentry; option of GBP-1S system, atmospheric-escape booster, or FAST Pack system

 

Transformation:

Standard time from Fighter to Battroid (automated): under 5 sec.

Min. time from Fighter to Battroid (manual): 0.9 sec.

 

Armament:

2x internal Mauler RÖV-20 anti-aircraft laser cannon, firing 6,000 pulses per minute

1x Howard GU-11 55 mm three-barrel Gatling gun pod with 200 RPG, fired at 1,200 rds/min

 

4x underwing hard points for a wide variety of ordnance, including

12x AMM-1 hybrid guided multipurpose missiles (3/point), or

12x MK-82 LDGB conventional bombs (3/point), or

6x RMS-1 large anti-ship reaction missiles (2/outboard point, 1/inboard point), or

4x UUM-7 micro-missile pods (1/point) each carrying 15 x Bifors HMM-01 micro-missiles,

or a combination of above load-outs

 

The optional Shinnakasu Heavy Industry S-FAST Pack 2.1 augmentative space weapon system added:

6x micro-missiles in two NP-AR-01 micro-missile launcher pods (mounted rear-ward under center ventral section in Fighter mode or on lower arm sections in GERWALK/Battroid mode)

4x12 micro missiles in four HMMP-02 micro-missile launchers, one inside each booster pod

 

The kit and its assembly:

This VF-1 is another contribution to the “Old Kit” Group Build at whatifmodelers.com, running in late 2016. I am not certain about the moulds’ inception date, but since it is an ARII incarnation of this type of kit and even moulded in the early pastel green styrene, I’d think that it was produced in 1982 or 83.

 

Anyway, I love the Macross VF-1, IMHO a design masterpiece created by Shoji Kawamori and one of my favorite mecha designs ever, because it was created as a late 70ies style jet fighter that could transform into a robot in a secondary role. As a simple, purposeful military vehicle. And not like a flashy robot toy.

 

Effectively, this Super Valkyrie is a highly modified OOB kit with many donation parts, and this kit is a bit special, for several reasons. There are several 1:100 OOB kits with FAST Packs from ARII/Bandai available (and still around today), but these are normally only Battroids or Gerwalks with additional parts for the FAST kit conversion. The kit I used here is different: it is, after maybe 25 years of searching and building these kits, the #70 from the original production run. It is (so far!) the only Fighter mode kit with the additional FAST Pack parts! Must be rare, and I have never seen it in catalogues?

 

Until today, I converted my Super or Strike Valkyries from Gerwalk kits, a task that needs some improvisation esp. around the folded arms between the legs, and there’s no OOB option for an extended landing gear. The latter made this Fighter mode kit very attractive, even though the actual kit is pretty disappointing, and AFAIK this kit variant is only available as a VF-1S.

 

With the Super Valkyrie fighter kit you receive basically a Gerwalk with a standard fighter cockpit (which includes a front wheel well and an extended front wheel leg), plus extra parts. The leg/engine-mounted NP-FB-01 systems are less bulbous than the parts on the Gerwalk or Battroid kit, and the OOB dorsally mounted NP-BP-01 boosters are TINY, maybe 1:120 or even 1:144! WTF?

 

Further confusion: the kit includes a set of lower arm parts with integrated rocket launchers, but these are not necessary at all for the Fighter build?! As a kind of compensation there’s a new and exclusive element that simulates the folded arms under the ‘fuselage’ and which, as an added value, properly holds the hand gun under the fuselage. As a quirky flaw, though, the hand gun itself comes in the extended form for the Battroid/Gerwalk mode. For the fighter in flight mode, it has to be modified, but that’s easily done.

 

Anyway, with the potential option to build a Super Valkyrie with an extended landing gear, this was my route to go with this vintage kit. The Super Valkyrie already looks bulky with the FAST Pack added, but then I recently found the S-FAST Pack option with two more boosters under the wings – total overkill, but unique. And I had a spare pair of booster bulks in the stash (w/o their nozzles, though), as well as a complete pair of additional bigger standard FAST boosters that could replace the ridiculous OOB parts…

 

Building such a Super/Strike Valkyrie means building separate components, with a marriage of parts as one of the final steps. Consequently, cockpit, central fuselage with the wings and the air intakes, the folded stabilizer pack, the folded arms element with the handgun, the two legs and the four boosters plus other ordnance had to be built and painted separately.

 

Here and there, details were changed or added, e. g. a different head (a ‘J’ head for the flight leader’s aircraft with two instead of the rare, OOB ‘S’ variant with four laser cannon), covers for the main landing gear (the latter does not come with wells at all, but I did not scratch them since they are hardly recognizable when the kit is sitting on the ground), the typical blade aerials under the cockpit and the feet had to be modified internally to become truly ‘open’ jet exhausts.

 

The wing-mounted boosters received new nozzles and their front end was re-sculpted with 2C putty into a square shape, according to reference sketches. Not 100% exact, but the rest of the VF-1 isn’t either.

 

This VF-1 was also supposed to carry external ordnance and my first choice were four wing-mounted RMS-1 Anti-Ship Reaction Warheads, scratched from four 1.000 lb NATO bombs. But, once finished, I was not happy with them. So I looked for another option, and in a source book I found several laser-guided bombs and missiles, also for orbital use, and from this inspiration comes the final ordnance: four rocket-propelled kinetic impact projectiles. These are actually 1:72 JASDF LGB’s from a Hasegawa weapon set, sans aerodynamic steering surfaces and with rocket boosters added to the tail. Also not perfect, but their white color and sleek shape is a good counterpart to the FAST elements.

 

Experience from many former builds of this mecha kit family helped a lot, since the #70 kit is very basic and nothing really fits well. Even though there are not many major seams or large elements, PSR work was considerable. This is not a pleasant build, rather a fight with a lot of compromises and semi-accuracies.

Seriously, if you want a decent 1:100 VF-1, I’d rather recommend the much more modern WAVE kits (including more realistic proportions).

  

Painting and markings:

The paint scheme for this Super Valkyrie was settled upon before I considered the S-FAST Pack addition: U.N. Spacy’s SVF-124 is authentic, as well as its unique camouflage paint scheme.

The latter is a special scheme for the lunar environment where the unit was originally formed and based, with all-black undersides, a high, wavy waterline and a light grey upper surface, plus some medium grey trim and a few colorful US Navy style markings and codes.

 

My core reference is a ‘naked’ bread-and-butter VF-1A of SVF-124 in Fighter mode, depicted as a profile in a VF-1 source book from SoftBank Publishing. The colors for the FAST Pack elements are guesstimates and personal interpretations, though, since I could not find any reference for their look in this unit.

As a side note, another, later SVF-124 aircraft in a similar design is included as an option in a limited edition 1:72 VF-22S kit from Hasegawa, which is backed by CG pics in a VF-22 source book from Softbank, too.

Furthermore, SVF-124 finds mention in a Japanese modeler magazine, where the aforementioned VF-22S kit was presented in 2008. So there must be something behind the ‘Moon Shooters’ squadron.

 

According to the Hasegawa VF-22S’s painting instructions, the underside becomes black and the upper surfaces are to be painted with FS36270 (with some darker fields on the VF-22, though, similar to the USAF F-15 counter-shaded air superiority scheme, just a tad darker).

Due to the 1:100 scale tininess of my VF-1, I alternatively went for Revell 75 (RAL 7039), which is lighter and also has a brownish hue, so that the resulting aircraft would not look too cold and murky, and not resemble an USAF aircraft.

 

All FAST Pack elements were painted in a uniform dark grey (Humbrol 32), while some subtle decorative trim on the upper surfaces, e.g. the canopy frame, an anti-glare panel and a stripe behind the cockpit and decoration trim on the wings’ upper surfaces, was added with Revell 77 (RAL 7012). Overall, colors are rather dull, but IMHO very effective in the “landscape” this machine is supposed to operate, and the few colorful markings stand out even more!

 

The cockpit interior was painted in a bluish grey, with reddish brown seat cushions (late 70ies style!), and the landing gear became all white. For some added detail I painted the wings’ leading edges in a mustard tone (Humbrol 225, Mid Stone).

 

The kit received some weathering (black ink wash, drybrushing on panels) and extra treatment of the panel lines – even though the FAST Pack elements hide a lot of surface or obscure view.

 

More color and individuality came with the markings. The standard decals like stencils or the U.N. Spacy insignia come from the kit’s and some other VF-1s’ OOB sheets.

Based on the SVF-124 VF-1 profile and taking the basic design a bit further, I used dull red USAF 45° digits for the 2nd flight leader’s “200” modex and the Apollo Base’s code “MA” on the dorsal boosters. Some discreet red trim was also applied to the FAST Packs – but only a little.

 

Since all of SVF-124’s aircraft are rumored to carry personal markings, including nose art and similar decorations, I tried to give this VF-1JS a personal note: the pin-up badges on the dorsal boosters come from a Peddinghouse decal sheet for Allied WWII tanks, placed on a silver roundel base. Unfortunately (and not visible before I applied them) the pin-up decal was not printed on a white basis, so that the contrast on the silver is not very strong, but I left it that way. Additionally, the tagline “You’re a$$ next, Jerry” (which IS printed in opaque white…?) was added next to the artwork – but it’s so tiny that you have to get really close to decipher it at all…

 

Finally, after some soot stains around the exhausts and some vernier nozzels with graphite, the kit received a coat of matt acrylic varnish.

 

Building this vintage VF-1 kit took a while and a lot of effort, but I like the result: with the S-FAST Pack, the elegant VF-1 turned into a massive space fighter hulk! The normal Super Valkyries already look very compact and purposeful, but this here is truly menacing. Especially when standing on its own feet/landing gear, with its nose-down stance and the small, original wheels, this thing reminds of a Space Shuttle that had just landed.

 

Good that I recently built a simple VF-1 fighter as a warm-up session. ARII’s kit #70 is not a pleasant build, rather a fight with the elements and coupled with a lot of compromises – if you want a Super Valkyrie Fighter in 1:100, the much more modern WAVE kit is IMHO the better option (and actually not much more pricey than this vintage collector’s item). But for the vintage feeling, this exotic model kit was just the right ticket, and it turned, despite many weaknesses and rather corny details, into an impressive fighter. Esp. the lunar camouflage scheme looks odd, but very unique and purposeful.

 

Anyway, with so many inherent flaws of the ARII kit, my former method of converting a pure (and much more common) Gerwalk kit into a space-capable VF-1 fighter is not less challenging and complicated than trying to fix this OOB option into a decent model. :-/

Brass incense burner purchased at the Arab market in Jerusalem. John Maguire, master tinsmith at Black Creek Pioneer Village, Toronto, made a round copper disc with punched holes which is a much better platform on which to burn the incense.

 

Incense is aromatic biotic material that releases fragrant smoke when burned. The term refers to the material itself, rather than to the aroma that it produces. Incense is used for aesthetic reasons, and in therapy, meditation, and ceremony. It may also be used as a simple deodorant or insectifuge.

 

Incense is composed of aromatic plant materials, often combined with essential oils. The forms taken by incense differ with the underlying culture, and have changed with advances in technology and increasing number of uses.

 

Incense can generally be separated into two main types: "indirect-burning" and "direct-burning". Indirect-burning incense (or "non-combustible incense") is not capable of burning on its own, and requires a separate heat source. Direct-burning incense (or "combustible incense") is lit directly by a flame and then fanned or blown out, leaving a glowing ember that smoulders and releases a smoky fragrance. Direct-burning incense is either a paste formed around a bamboo stick, or a paste that is extruded into a stick or cone shape.

 

HISTORY:

 

The word incense comes from Latin incendere meaning "to burn".

 

Combustible bouquets were used by the ancient Egyptians, who employed incense in both pragmatic and mystical capacities. Incense was burnt to counteract or obscure malodorous products of human habitation, but was widely perceived to also deter malevolent demons and appease the gods with its pleasant aroma. Resin balls were found in many prehistoric Egyptian tombs in El Mahasna, giving evidence for the prominence of incense and related compounds in Egyptian antiquity. One of the oldest extant incense burners originates from the 5th dynasty. The Temple of Deir-el-Bahari in Egypt contains a series of carvings that depict an expedition for incense.

 

The Babylonians used incense while offering prayers to divining oracles. Incense spread from there to Greece and Rome.

 

Incense burners have been found in the Indus Civilization (3300–1300 BCE). Evidence suggests oils were used mainly for their aroma. India also adopted techniques from East Asia, adapting the formulation to encompass aromatic roots and other indigenous flora. This was the first usage of subterranean plant parts in incense. New herbs like Sarsaparilla seeds, frankincense, and cypress were used by Indians.

 

At around 2000 BCE, Ancient China began the use of incense in the religious sense, namely for worship. Incense was used by Chinese cultures from Neolithic times and became more widespread in the Xia, Shang, and Zhou dynasties. The earliest documented use of incense comes from the ancient Chinese, who employed incense composed of herbs and plant products (such as cassia, cinnamon, styrax, and sandalwood) as a component of numerous formalized ceremonial rites. Incense usage reached its peak during the Song dynasty with numerous buildings erected specifically for incense ceremonies.

 

Brought to Japan in the 6th century by Korean Buddhist monks, who used the mystical aromas in their purification rites, the delicate scents of Koh (high-quality Japanese incense) became a source of amusement and entertainment with nobles in the Imperial Court during the Heian Era 200 years later. During the 14th-century Ashikaga shogunate, a samurai warrior might perfume his helmet and armor with incense to achieve an aura of invincibility (as well as to make a noble gesture to whoever might take his head in battle). It wasn't until the Muromachi period during the 15th and 16th century that incense appreciation (kōdō) spread to the upper and middle classes of Japanese society.

 

COMPOSITION:

 

A variety of materials have been used in making incense. Historically there has been a preference for using locally available ingredients. For example, sage and cedar were used by the indigenous peoples of North America. Trading in incense materials comprised a major part of commerce along the Silk Road and other trade routes, one notably called the Incense Route.

 

Local knowledge and tools were extremely influential on the style, but methods were also influenced by migrations of foreigners, such as clergy and physicians.

 

COMBUSTIBLE BASE:

 

The combustible base of a direct burning incense mixture not only binds the fragrant material together but also allows the produced incense to burn with a self-sustained ember, which propagates slowly and evenly through an entire piece of incense with such regularity that it can be used to mark time. The base is chosen such that it does not produce a perceptible smell. Commercially, two types of incense base predominate:

 

Fuel and oxidizer mixtures: Charcoal or wood powder provides the fuel for combustion while an oxidizer such as sodium nitrate or potassium nitrate sustains the burning of the incense. Fragrant materials are added to the base prior to shaping, as in the case of powdered incense materials, or after, as in the case of essential oils. The formula for charcoal-based incense is superficially similar to black powder, though it lacks the sulfur.

Natural plant-based binders: Gums such as Gum Arabic or Gum Tragacanth are used to bind the mixture together. Mucilaginous material, which can be derived from many botanical sources, is mixed with fragrant materials and water. The mucilage from the wet binding powder holds the fragrant material together while the cellulose in the powder combusts to form a stable ember when lit. The dry binding powder usually comprises about 10% of the dry weight in the finished incense. These include:

Makko (incense powder) made from the bark of various trees in the genus Persea (such as Persea thunbergii)

Xiangnan pi (made from the bark of trees of genus Phoebe such as Phoebe nanmu or Persea zuihoensis.

Jigit: a resin based binder used in India

Laha or Dar: bark based powders used in Nepal, Tibet, and other East Asian countries.

 

Typical compositions burn at a temperature between 220 °C and 260 °C.

 

TYPES:

 

Incense is available in various forms and degrees of processing. They can generally be separated into "direct-burning" and "indirect-burning" types. Preference for one form or another varies with culture, tradition, and personal taste. The two differ in their composition due to the former's requirement for even, stable, and sustained burning.

 

INDIRECT-BURNING:

 

Indirect-burning incense, also called "non-combustible incense", is an aromatic material or combination of materials, such as resins, that does not contain combustible material and so requires a separate heat source. Finer forms tend to burn more rapidly, while coarsely ground or whole chunks may be consumed very gradually, having less surface area. Heat is traditionally provided by charcoal or glowing embers. In the West, the best known incense materials of this type are the resins frankincense and myrrh, likely due to their numerous mentions in the Bible. Frankincense means "pure incense", though in common usage refers specifically to the resin of the boswellia tree.

 

Whole: The incense material is burned directly in raw form on top of coal embers.

Powdered or granulated: Incense broken into smaller pieces burns quickly and provides brief but intense odor.

Paste: Powdered or granulated incense material is mixed with a sticky incombustible binder, such as dried fruit, honey, or a soft resin and then formed to balls or small pastilles. These may then be allowed to mature in a controlled environment where the fragrances can commingle and unite. Much Arabian incense, also called "Bukhoor" or "Bakhoor", is of this type, and Japan has a history of kneaded incense, called nerikō or awasekō, made using this method. Within the Eastern Orthodox Christian tradition, raw frankincense is ground into a fine powder and then mixed with various sweet-smelling essential oils.

 

DIRECT-BURNING:

 

Direct-burning incense, also called "combustible incense", is lit directly by a flame. The glowing ember on the incense will continue to smoulder and burn the rest of the incense without further application of external heat or flame. Direct-burning incense is either extruded, pressed into forms, or coated onto a supporting material. This class of incense is made from a moldable substrate of fragrant finely ground (or liquid) incense materials and odourless binder. The composition must be adjusted to provide fragrance in the proper concentration and to ensure even burning. The following types are commonly encountered, though direct-burning incense can take nearly any form, whether for expedience or whimsy.

 

Coil: Extruded and shaped into a coil without a core, coil incense can burn for an extended period, from hours to days, and is commonly produced and used in Chinese cultures.

 

Cone: Incense in this form burns relatively quickly. Incense cones were invented in Japan in the 1800s.

Cored stick: A supporting core of bamboo is coated with a thick layer of incense material that burns away with the core. Higher-quality variations have fragrant sandalwood cores. This type of incense is commonly produced in India and China. When used in Chinese folk religion, these are sometimes known as "joss sticks".

Dhoop or solid stick: With no bamboo core, dhoop incense is easily broken for portion control. This is the most commonly produced form of incense in Japan and Tibet.

Powder: The loose incense powder used for making indirect burning incense is sometimes burned without further processing. Powder incense is typically packed into long trails on top of wood ash using a stencil and burned in special censers or incense clocks.

Paper: Paper infused with incense, folded accordion style, is lit and blown out. Examples include Carta d'Armenia and Papier d'Arménie.

Rope: The incense powder is rolled into paper sheets, which are then rolled into ropes, twisted tightly, then doubled over and twisted again, yielding a two-strand rope. The larger end is the bight, and may be stood vertically, in a shallow dish of sand or pebbles. The smaller (pointed) end is lit. This type of incense is easily transported and stays fresh for extremely long periods. It has been used for centuries in Tibet and Nepal.

 

Moxa tablets, which are disks of powdered mugwort used in Traditional Chinese medicine for moxibustion, are not incenses; the treatment is by heat rather than fragrance.

Incense sticks may be termed joss sticks, especially in parts of East Asia, South Asia and Southeast Asia. Among ethnic Chinese and Chinese-influenced communities these are traditionally burned at temples, before the threshold of a home or business, before an image of a religious divinity or local spirit, or in shrines, large and small, found at the main entrance of every village. Here the earth god is propitiated in the hope of bringing wealth and health to the village. They can also be burned in front of a door or open window as an offering to heaven, or the devas. The word "joss" is derived from the Latin deus (god) via the Portuguese deos through the Javanese dejos, through Chinese pidgin English.

 

PRODUCTION:

 

The raw materials are powdered and then mixed together with a binder to form a paste, which, for direct burning incense, is then cut and dried into pellets. Incense of the Athonite Orthodox Christian tradition is made by powdering frankincense or fir resin, mixing it with essential oils. Floral fragrances are the most common, but citrus such as lemon is not uncommon. The incense mixture is then rolled out into a slab approximately 1 cm thick and left until the slab has firmed. It is then cut into small cubes, coated with clay powder to prevent adhesion, and allowed to fully harden and dry. In Greece this rolled incense resin is called 'Moskolibano', and generally comes in either a pink or green colour denoting the fragrance, with pink being rose and green being jasmine.

 

Certain proportions are necessary for direct-burning incense:

 

Oil content: an excess of oils may prevent incense from smoldering effectively. Resinous materials such as myrrh and frankincense are typically balanced with "dry" materials such as wood, bark and leaf powders.

Oxidizer quantity: Too little oxidizer in gum-bound incense may prevent the incense from igniting, while too much will cause the incense to burn too quickly, without producing fragrant smoke.

Binder: Water-soluble binders such as "makko" ensure that the incense mixture does not crumble when dry, dilute the mixture.

Mixture density: Incense mixtures made with natural binders must not be combined with too much water in mixing, or over-compressed while being formed, which would result in either uneven air distribution or undesirable density in the mixture, causing the incense to burn unevenly, too slowly, or too quickly.

Particulate size: The incense mixture has to be well pulverized with similarly sized particulates. Uneven and large particulates result in uneven burning and inconsistent aroma production when burned.

 

"Dipped" or "hand-dipped" direct-burning incense is created by dipping "incense blanks" made of unscented combustible dust into any suitable kind of essential or fragrance oil. These are often sold in the United States by flea-market and sidewalk vendors who have developed their own styles. This form of incense requires the least skill and equipment to manufacture, since the blanks are pre-formed in China or South East Asia.

 

Incense mixtures can be extruded or pressed into shapes. Small quantities of water are combined with the fragrance and incense base mixture and kneaded into a hard dough. The incense dough is then pressed into shaped forms to create cone and smaller coiled incense, or forced through a hydraulic press for solid stick incense. The formed incense is then trimmed and slowly dried. Incense produced in this fashion has a tendency to warp or become misshapen when improperly dried, and as such must be placed in climate-controlled rooms and rotated several times through the drying process.

 

Traditionally, the bamboo core of cored stick incense is prepared by hand from Phyllostachys heterocycla cv. pubescens since this species produces thick wood and easily burns to ashes in the incense stick. In a process known as "splitting the foot of the incense stick", the bamboo is trimmed to length, soaked, peeled, and split in halves until the thin sticks of bamboo have square cross sections of less than 3mm. This process has been largely replaced by machines in modern incense production.

 

In the case of cored incensed sticks, several methods are employed to coat the sticks cores with incense mixture:

 

Paste rolling: A wet, malleable paste of incense mixture is first rolled into a long, thin coil, using a paddle. Then, a thin stick is put next to the coil and the stick and paste are rolled together until the stick is centered in the mixture and the desired thickness is achieved. The stick is then cut to the desired length and dried.

Powder-coating: Powder-coating is used mainly to produce cored incense of either larger coil (up to 1 meter in diameter) or cored stick forms. A bundle of the supporting material (typically thin bamboo or sandalwood slivers) is soaked in water or a thin water/glue mixture for a short time. The thin sticks are evenly separated, then dipped into a tray of incense powder consisting of fragrance materials and occasionally a plant-based binder. The dry incense powder is then tossed and piled over the sticks while they are spread apart. The sticks are then gently rolled and packed to maintain roundness while more incense powder is repeatedly tossed onto the sticks. Three to four layers of powder are coated onto the sticks, forming a 2 mm thick layer of incense material on the stick. The coated incense is then allowed to dry in open air. Additional coatings of incense mixture can be applied after each period of successive drying. Incense sticks produced in this fashion and burned in temples of Chinese folk religion can have a thickness between 2 and 4 millimeters.

Compression: A damp powder is mechanically formed around a cored stick by compression, similar to the way uncored sticks are formed. This form is becoming more common due to the higher labor cost of producing powder-coated or paste-rolled sticks.

 

BURNING INCENSE:

 

Indirect-burning incense burned directly on top of a heat source or on a hot metal plate in a censer or thurible.

 

In Japan a similar censer called a egōro (柄香炉) is used by several Buddhist sects. The egōro is usually made of brass, with a long handle and no chain. Instead of charcoal, makkō powder is poured into a depression made in a bed of ash. The makkō is lit and the incense mixture is burned on top. This method is known as sonae-kō (religious burning).

 

For direct-burning incense, the tip or end of the incense is ignited with a flame or other heat source until the incense begins to turn into ash at the burning end. The flame is then fanned or blown out, leaving the incense to smolder.

 

CULTURAL VARIATIONS:

 

ARABIAN:

 

In most Arab countries, incense is burned in the form of scented chips or blocks called bakhoor (Arabic: بخور‎ [bɑˈxuːɾ, bʊ-]. Incense is used on special occasions like weddings or on Fridays or generally to perfume the house. The bakhoor is usually burned in a mabkhara, a traditional incense burner (censer) similar to the Somali Dabqaad. It is customary in many Arab countries to pass bakhoor among the guests in the majlis ('congregation'). This is done as a gesture of hospitality.

 

CHINESE:

 

For over two thousand years, the Chinese have used incense in religious ceremonies, ancestor veneration, Traditional Chinese medicine, and daily life. Agarwood (chénxiāng) and sandalwood (tánxiāng) are the two most important ingredients in Chinese incense.

 

Along with the introduction of Buddhism in China came calibrated incense sticks and incense clocks. The first known record is by poet Yu Jianwu (487-551): "By burning incense we know the o'clock of the night, With graduated candles we confirm the tally of the watches." The use of these incense timekeeping devices spread from Buddhist monasteries into Chinese secular society.

Incense-stick burning is an everyday practice in traditional Chinese religion. There are many different types of stick used for different purposes or on different festive days. Many of them are long and thin. Sticks are mostly coloured yellow, red, or more rarely, black. Thick sticks are used for special ceremonies, such as funerals. Spiral incense, with exceedingly long burn times, is often hung from temple ceilings. In some states, such as Taiwan,

 

Singapore, or Malaysia, where they celebrate the Ghost Festival, large, pillar-like dragon incense sticks are sometimes used. These generate so much smoke and heat that they are only burned outside.

 

Chinese incense sticks for use in popular religion are generally odorless or only use the slightest trace of jasmine or rose, since it is the smoke, not the scent, which is important in conveying the prayers of the faithful to heaven. They are composed of the dried powdered bark of a non-scented species of cinnamon native to Cambodia, Cinnamomum cambodianum. Inexpensive packs of 300 are often found for sale in Chinese supermarkets. Though they contain no sandalwood, they often include the Chinese character for sandalwood on the label, as a generic term for incense.

 

Highly scented Chinese incense sticks are used by some Buddhists. These are often quite expensive due to the use of large amounts of sandalwood, agarwood, or floral scents used. The sandalwood used in Chinese incenses does not come from India, its native home, but rather from groves planted within Chinese territory. Sites belonging to Tzu Chi, Chung Tai Shan, Dharma Drum Mountain, Xingtian Temple, or City of Ten Thousand Buddhas do not use incense.

 

INDIAN:

 

Incense sticks, also known as agarbathi (or agarbatti) and joss sticks, in which an incense paste is rolled or moulded around a bamboo stick, are the main forms of incense in India. The bamboo method originated in India, and is distinct from the Nepali/Tibetan and Japanese methods of stick making without bamboo cores. Though the method is also used in the west, it is strongly associated with India.

 

The basic ingredients are the bamboo stick, the paste (generally made of charcoal dust and joss/jiggit/gum/tabu powder – an adhesive made from the bark of litsea glutinosa and other trees), and the perfume ingredients - which would be a masala (spice mix) powder of ground ingredients into which the stick would be rolled, or a perfume liquid sometimes consisting of synthetic ingredients into which the stick would be dipped. Perfume is sometimes sprayed on the coated sticks. Stick machines are sometimes used, which coat the stick with paste and perfume, though the bulk of production is done by hand rolling at home. There are about 5,000 incense companies in India that take raw unperfumed sticks hand-rolled by approximately 200,000 women working part-time at home, and then apply their own brand of perfume, and package the sticks for sale. An experienced home-worker can produce 4,000 raw sticks a day. There are about 50 large companies that together account for up to 30% of the market, and around 500 of the companies, including a significant number of the main ones, including Moksh Agarbatti and Cycle Pure, are based in Mysore.

 

JEWISH TEMPLE IN JERUSALEM:

 

KETORET:

 

Ketoret was the incense offered in the Temple in Jerusalem and is stated in the Book of Exodus to be a mixture of stacte, onycha, galbanum and frankincense.

 

TIBETAN:

 

Tibetan incense refers to a common style of incense found in Tibet, Nepal, and Bhutan. These incenses have a characteristic "earthy" scent to them. Ingredients vary from cinnamon, clove, and juniper, to kusum flower, ashvagandha, and sahi jeera.

 

Many Tibetan incenses are thought to have medicinal properties. Their recipes come from ancient Vedic texts that are based on even older Ayurvedic medical texts. The recipes have remained unchanged for centuries.

 

JAPANESE:

 

In Japan incense appreciation folklore includes art, culture, history, and ceremony. It can be compared to and has some of the same qualities as music, art, or literature. Incense burning may occasionally take place within the tea ceremony, just like calligraphy, ikebana, and scroll arrangement. The art of incense appreciation, or koh-do, is generally practiced as a separate art form from the tea ceremony, and usually within a tea room of traditional Zen design.

 

Agarwood (沈香 Jinkō) and sandalwood (白檀 byakudan) are the two most important ingredients in Japanese incense. Agarwood is known as "jinkō" in Japan, which translates as "incense that sinks in water", due to the weight of the resin in the wood. Sandalwood is one of the most calming incense ingredients and lends itself well to meditation. It is also used in the Japanese tea ceremony. The most valued Sandalwood comes from Mysore in the state of Karnataka in India.

 

Another important ingredient in Japanese incense is kyara (伽羅). Kyara is one kind of agarwood (Japanese incense companies divide agarwood into 6 categories depending on the region obtained and properties of the agarwood). Kyara is currently worth more than its weight in gold.

 

Some terms used in Japanese incense culture include:

 

Incense arts: [香道, kodo]

Agarwood: [ 沈香 ] – from heartwood from Aquilaria trees, unique, the incense wood most used in incense ceremony, other names are: lignum aloes or aloeswood, gaharu, jinko, or oud.

Censer/Incense burner: [香爐] – usually small and used for heating incense not burning, or larger and used for burning

Charcoal: [木炭] – only the odorless kind is used.

Incense woods: [ 香木 ] – a naturally fragrant resinous wood.

 

USAGE:

 

PRACTICAL:

 

Incense fragrances can be of such great strength that they obscure other less desirable odours. This utility led to the use of incense in funerary ceremonies because the incense could smother the scent of decay. An example, as well as of religious use, is the giant Botafumeiro thurible that swings from the ceiling of the Cathedral of Santiago de Compostela. It is used in part to mask the scent of the many tired, unwashed pilgrims huddled together in the Cathedral of Santiago de Compostela.

 

A similar utilitarian use of incense can be found in the post-Reformation Church of England. Although the ceremonial use of incense was abandoned until the Oxford Movement, it was common to have incense (typically frankincense) burned before grand occasions, when the church would be crowded. The frankincense was carried about by a member of the vestry before the service in a vessel called a 'perfuming pan'. In iconography of the day, this vessel is shown to be elongated and flat, with a single long handle on one side. The perfuming pan was used instead of the thurible, as the latter would have likely offended the Protestant sensibilities of the 17th and 18th centuries.

 

The regular burning of direct-burning incense has been used for chronological measurement in incense clocks. These devices can range from a simple trail of incense material calibrated to burn in a specific time period, to elaborate and ornate instruments with bells or gongs, designed to involve multiple senses.

 

Incense made from materials such as citronella can repel mosquitoes and other irritating, distracting, or pestilential insects. This use has been deployed in concert with religious uses by Zen Buddhists who claim that the incense that is part of their meditative practice is designed to keep bothersome insects from distracting the practitioner. Currently, more effective pyrethroid-based mosquito repellent incense is widely available in Asia.

 

Papier d'Arménie was originally sold as a disinfectant as well as for the fragrance.

 

Incense is also used often by people who smoke indoors and do not want the smell to linger.

 

AESTHETIC:

 

Many people burn incense to appreciate its smell, without assigning any other specific significance to it, in the same way that the foregoing items can be produced or consumed solely for the contemplation or enjoyment of the aroma. An example is the kōdō (香道), where (frequently costly) raw incense materials such as agarwood are appreciated in a formal setting.

 

RELIGIOUS:

 

Religious use of incense is prevalent in many cultures and may have roots in the practical and aesthetic uses, considering that many of these religions have little else in common. One common motif is incense as a form of sacrificial offering to a deity. Such use was common in Judaic worship and remains in use for example in the Catholic, Orthodox, and Anglican churches, Taoist and Buddhist Chinese jingxiang (敬香 "offer incense), etc.

 

Aphrodisiac Incense has been used as an aphrodisiac in some cultures. Both ancient Greek and ancient Egyptian mythology suggest the usage of incense by goddesses and nymphs. Incense is thought to heighten sexual desires and sexual attraction.

 

Time-keeper Incense clocks are used to time social, medical and religious practices in parts of eastern Asia. They are primarily used in Buddhism as a timer of mediation and prayer. Different types of incense burn at different rates; therefore, different incense are used for different practices. The duration of burning ranges from minutes to months.

 

Healing stone cleanser Incense is claimed to cleanse and restore energy in healing stones. The technique used is called “smudging” and is done by holding a healing stone over the smoke of burning incense for 20 to 30 seconds. Some people believe that this process not only restores energy but eliminates negative energy.

 

HEALTH RISK FROM INCENSE SMOKE:

 

Incense smoke contains various contaminants including gaseous pollutants, such as carbon monoxide (CO), nitrogen oxides (NOx), sulfur oxides (SOx), volatile organic compounds (VOCs), and adsorbed toxic pollutants (polycyclic aromatic hydrocarbons and toxic metals). The solid particles range between ~10 and 500 nm. In a comparison, Indian sandalwood was found to have the highest emission rate, followed by Japanese aloeswood, then Taiwanese aloeswood, while Chinese smokeless sandalwood had the least.

 

Research carried out in Taiwan in 2001 linked the burning of incense sticks to the slow accumulation of potential carcinogens in a poorly ventilated environment by measuring the levels of polycyclic aromatic hydrocarbons (including benzopyrene) within Buddhist temples. The study found gaseous aliphatic aldehydes, which are carcinogenic and mutagenic, in incense smoke.

 

A survey of risk factors for lung cancer, also conducted in Taiwan, noted an inverse association between incense burning and adenocarcinoma of the lung, though the finding was not deemed significant.

 

In contrast, epidemiologists at the Hong Kong Anti-Cancer Society, Aichi Cancer Center in Nagoya, and several other centers found: "No association was found between exposure to incense burning and respiratory symptoms like chronic cough, chronic sputum, chronic bronchitis, runny nose, wheezing, asthma, allergic rhinitis, or pneumonia among the three populations studied: i.e. primary school children, their non-smoking mothers, or a group of older non-smoking female controls. Incense burning did not affect lung cancer risk among non-smokers, but it significantly reduced risk among smokers, even after adjusting for lifetime smoking amount." However, the researchers qualified their findings by noting that incense burning in the studied population was associated with certain low-cancer-risk dietary habits, and concluded that "diet can be a significant confounder of epidemiological studies on air pollution and respiratory health."

 

Although several studies have not shown a link between incense and lung cancer, many other types of cancer have been directly linked to burning incense. A study published in 2008 in the medical journal Cancer found that incense use is associated with a statistically significant higher risk of cancers of the upper respiratory tract, with the exception of nasopharyngeal cancer. Those who used incense heavily also were 80% more likely to develop squamous-cell carcinomas. The link between incense use and increased cancer risk held when the researchers weighed other factors, including cigarette smoking, diet and drinking habits. The research team noted that "This association is consistent with a large number of studies identifying carcinogens in incense smoke, and given the widespread and sometimes involuntary exposure to smoke from burning incense, these findings carry significant public health implications."

 

In 2015, the South China University of Technology found toxicity of incense to Chinese hamsters' ovarian cells to be even higher than cigarettes.

 

Incensole acetate, a component of Frankincense, has been shown to have anxiolytic-like and antidepressive-like effects in mice, mediated by activation of poorly-understood TRPV3 ion channels in the brain.

I aspire to become a photographer, it runs like a passion in my heart.

 

Life has never been simple and straight to me .. it has always been full of challenges and twist.

 

Until time puts us on a test one never knows what one is capable of ..

 

Its been 8 years I lost my dad suddenly in an accident .. Dad had been my hero and one the best .. he always made me proud to b his daughter and he taught me to fear nothing.

 

My mom who has always been a person who told me that everything in this world is possible.

Her sparkling eyes always told me that to live one has to always think positive.

 

My life took a sudden turn when my dad expired. Though the time was moving but my entire being came to a sudden halt.

 

But God gave me all the strength to stand on and take care of my mom who was suffering from arthritis.

I took a BPO job to sustain but in this rush many a times i felt lost in the crowd.

 

I feel each and everyone of us face difficult situations but i feel more than the situation its very important how we react to that situation.

 

My Mom was to get operated and i lost my job due to recession but my mom courageously said that we will manage .. u don't worry.

 

If one keeps fighting one never die .. one moves in like a river finding ways towards realising dreams.

 

In all this rush I never let my dream and aspiration to fade away .. I kept them strong and alive in my heart .. carrying a dream and responsibility together taught me about life and made me a strong woman.

 

Today I do have my passion in my hand and vision in my eyes to be a best human and have a sparkling soul within.

 

I feel happiness us within you not outside as life goes by .. you start speaking to yourself, you understand what you really need and everyday gets you closer to your dreams .. after a dark night day has to come because every dark cloud has a silver lining so I feel we all should never let go … do not put sword down .. that sword is ‘hope’ within your eyes and pride to carry yourself through every tough situation.

 

Jiye bina gam ke to kya jiye, aur wo khushi ka maza he kya, jo gam ke raaste na guzra ho.

 

Everything can’t be the way you planned but still moving on with your aspirations is rhythm of life.

 

Junoon ke bina hum sirf zinda hai, par hamen jeena chahiye, sirf zinda rahna kaafi nahi.

 

www.humansofmumbai.in

It seems unbelievable that a company capable of making something like this is also capable of producing the masses of nasty generics littering U.K. retailers! HTI have a long history of importing other peoples 1/64 castings but a few years ago they brought out a nice selection of licensed models based on modern BMW and Mercedes-Benz vehicles which showed a lot of promise. They also imported unlicensed but realistic castings from an unknown Chinese manufacturer but now pretty much all of these have been swept aside by the inexorable rise of their deliberately generic offerings which our retailers have lapped up but not the buying public it seems!

This unlicensed Land-Rover Defender 110 is stuck somewhere in-between. It appears to be a HTI original yet has never been available as a single and invariably appears in farm based multi-sets. If they have the skills to make something like this so realistic and dare I say accurate why on earth can't they do the same to their other 1/64 products!

HTI do indeed make a Land-Rover approved Defender in 1/43 scale so heaven knows how they got away with producing a smaller scale version which isn't. It does without front and rear detailing but more than makes up for it in its robust construction, well proportioned body and an accurate facelifted dashboard design. Im certain selling this as a single and in a variety of Emergency liveries would create a lot of interest from collectors.

In loose but virtually mint condition on account of it being a recent charity shop gift.

Some background:

The VF-1 was developed by Stonewell/Bellcom/Shinnakasu for the U.N. Spacy by using alien Overtechnology obtained from the SDF-1 Macross alien spaceship. Its production was preceded by an aerodynamic proving version of its airframe, the VF-X. Unlike all later VF vehicles, the VF-X was strictly a jet aircraft, built to demonstrate that a jet fighter with the features necessary to convert to Battroid mode was aerodynamically feasible. After the VF-X's testing was finished, an advanced concept atmospheric-only prototype, the VF-0 Phoenix, was flight-tested from 2005 to 2007 and briefly served as an active-duty fighter from 2007 to the VF-1's rollout in late 2008, while the bugs were being worked out of the full-up VF-1 prototype (VF-X-1).

 

The space-capable VF-1's combat debut was on February 7, 2009, during the Battle of South Ataria Island - the first battle of Space War I - and remained the mainstay fighter of the U.N. Spacy for the entire conflict. Introduced in 2008, the VF-1 would be out of frontline service just five years later, though.

 

The VF-1 proved to be an extremely capable craft, successfully combating a variety of Zentraedi mecha even in most sorties which saw UN Spacy forces significantly outnumbered. The versatility of the Valkyrie design enabled the variable fighter to act as both large-scale infantry and as air/space superiority fighter. The signature skills of U.N. Spacy ace pilot Maximilian Jenius exemplified the effectiveness of the variable systems as he near-constantly transformed the Valkyrie in battle to seize advantages of each mode as combat conditions changed from moment to moment.

 

The basic VF-1 was built and deployed in four minor variants (designated A, J, and S single-seater and the D two-seater/trainer) and its success was increased by continued development of various enhancements including the GBP-1S "Armored" Valkyrie exoskeleton with enhanced protection and integrated missile launchers, the so-called FAST (“Fuel And Sensor Tray”) packs that created the fully space-capable "Super" Valkyries and the additional RÖ-X2 heavy cannon pack weapon system for the VF-1S “Super Valkyrie”.

 

After the end of Space War I, the VF-1 continued to be manufactured both in the Sol system and throughout the UNG space colonies. Although the VF-1 would be replaced in 2020 as the primary Variable Fighter of the U.N. Spacy by the more capable, but also much bigger, VF-4 Lightning III, a long service record and continued production after the war proved the lasting worth of the design.

In the course of its career the versatile VF-1 underwent constant upgrade programs. For instance, about a third of all VF-1 Valkyries were upgraded with Infrared Search and Track (IRST) systems from 2016 on, placed in a streamlined fairing in front of the cockpit. This system allowed for long-range search and track modes, freeing the pilot from the need to give away his position with active radar emissions, and it could be used for target illumination and guiding precision weapons. Many Valkyries also received improved radar warning systems, with receivers, depending on the systems, mounted on the wingtips, on the fins and/or on the LERXs. Improved ECR measures were also mounted on some machines, typically in conformal fairings on the flanks of the legs/engine pods. Specialized reconnaissance and ECM sub-versions were developed from existing airframes, too.

 

The VF-1 was without doubt the most recognizable variable fighter of Space War I and was seen as a vibrant symbol of the U.N. Spacy even into the first year of the New Era 0001 in 2013. At the end of 2015 the final rollout of the VF-1 was celebrated at a special ceremony, commemorating this most famous of variable fighters. The VF-1 Valkryie was built from 2006 to 2013 with a total production of 5,459 VF-1 variable fighters with several variants (VF-1A = 5,093, VF-1D = 85, VF-1J = 49, VF-1S = 30, VF-1G = 12, VE-1 = 122, VT-1 = 68). However, beyond this original production several “re-built” variants existed, too, and remained active in many second line units and continued to show its worthiness years later, e. g. through Milia Jenius who would use her old VF-1 fighter in defense of the colonization fleet, even after 35 years after the type's service introduction!

  

General characteristics:

All-environment variable fighter and tactical combat Battroid, used by U.N. Spacy, U.N. Navy, U.N. Space Air Force. 3-mode variable transformation; variable geometry wing; vertical take-off and landing; control-configurable vehicle; single-axis thrust vectoring; three "magic hand" manipulators for maintenance use; retractable canopy shield for Battroid mode and atmospheric reentry; option of GBP-1S system, atmospheric-escape booster, or FAST Pack system

 

Accommodation:

Single pilot in Marty & Beck Mk-7 zero/zero ejection seat

 

Dimensions:

Battroid Mode:

Height 12.68 meters

Width 7.3 meters

Length 4.0 meters

Fighter Mode:

Length 14.23 meters

Wingspan 14.78 meters (at 20° minimum sweep)

Height 3.84 meters

 

Empty weight: 13.25 metric tons

Standard take-off mass: 18.5 metric tons

MTOW: 37.0 metric tons

 

Power Plant:

2x Shinnakasu Heavy Industry/P&W/Roice FF-2001 thermonuclear reaction turbine engines, output 650 MW each, rated at 11,500 kg in standard or in overboost (225.63 kN x 2);

4x Shinnakasu Heavy Industry NBS-1 high-thrust vernier thrusters (1 x counter reverse vernier thruster nozzle mounted on the side of each leg nacelle/air intake, 1 x wing thruster roll control system on each wingtip);

18x P&W LHP04 low-thrust vernier thrusters beneath multipurpose hook/handles

 

Performance:

Battroid Mode: maximum walking speed 160 km/h

Fighter Mode: at 10,000 m Mach 2.71; at 30,000+ m Mach 3.87

g limit: in space +7

Thrust-to-weight ratio: empty 3.47; standard TOW 2.49; maximum TOW 1.24

 

Transformation:

Standard time from Fighter to Battroid (automated): under 5 sec.

Min. time from Fighter to Battroid (manual): 0.9 sec.

 

Armament:

1x Mauler RÖV-20 anti-aircraft laser cannon in the "head" unit, firing 6,000 pulses per minute

1x Howard GU-11 55 mm three-barrel Gatling gun pod with 200 RPG, fired at 1,200 rds/min

4x underwing hard points for a wide variety of ordnance, including

12x AMM-1 hybrid guided multipurpose missiles (3/point), or

12x MK-82 LDGB conventional bombs (3/point), or

6x RMS-1 large anti-spaceship reaction missiles (2/outboard point, 1/inboard point), or

4x UUM-7 micro-missile pods (1/point) each carrying 15 x Bifors HMM-01 micro-missiles,

or a combination of above load-outs and other guided and unguided ordnance

  

The kit and its assembly:

After a long time, I found enough mojo to tackle another ARII 1:100 VF-1, but this time in Battroid mode. Unlike the simple Fighter mode kits, ARII’s Battroid kit of the iconic Valkyrie is more demanding and calls for some structural modifications to create a decent and presentable “giant robot” model – OOB, the model remains quite two-dimensional and “stiff”. The much newer WAVE kit in 1:100 scale is certainly a better model of the VF-1, but I love the old ARII kits because of their simplicity.

 

The kit is a “Super Valykrie” model, but it donated its FAST pack extra parts to a space-capable VF-1 Fighter build a long time ago and has been collecting dust in The Stash™ (SF/mecha sub-department at the Western flank) since then. The complete Battroid model was still left, though, even with most of the decals, and when I recently searched for artwork/visual references for another Macross project I came across screenshots from the original TV series of a canonical VF-1 that I had been planning to build for some years, and so I eventually set things in motion.

 

The kit was basically built OOB, but it received some upgrades. More severe surgery would be necessary to create a “good” Battroid model – e. g. creating vertical recesses around the torso – but this is IMHO not worthwhile. These updates included additional joints in the upper arms and legs, created with styrene tubes, as well as a new hip construction made from coated steel wire and styrene tube material that allows a three-dimensional posture of the legs - for a more vivid appearance and more dynamic poses. Other small mods that enhance the overall impression are “opened” exhausts inside of the feet and a different, open left hand. The GU-11 pod/handgun was taken OOB, it just received a shoulder belt created with painted masking tape. The single laser cannon on the head received a fairing made from paper tissue drenched with white glue.

 

Even though the model kit itself is not complex, it is a very early mecha kit: the VF-1 Battroids already came with vinyl caps (some of the contemporary ARII Macross models did not feature these useful items yet), but the model was constructed in an “onion layer” fashion that makes building and painting a protracted affair, esp. on arms and legs. You are supposed to finish a certain section, and then you add the next section like a clamp, while areas of the initial section become inaccessible for sanding and painting inside of the new section. You can only finish the single sections up to basic painting, mask them, and then add the next stage. Adding some joints during the construction phase helped but building an ARII VF-1 Battroid simply takes time and patience…

  

Painting and markings:

As mentioned above, this Valkyrie’s livery is canonical and it depicts a so-called “Alaska Guard” VF-1, based at the U.N. Spacy’s headquarters at Eielson Air Force Base in the far North of the United States around 2008/9. Several Battroid mode VF-1s in this guise appear during episode #15 of the original Macross TV series and offer a good look at their front and back, even though close inspection reveals that the livery was – intentionally or incidentally – not uniform! There are subtle differences between the VF-1s from the same unit, so that there’s apparently some room for artistic freedom.

However, this rather decorative livery IMHO works best on a VF-1 Battroid model, because the green areas, esp. on head and arms, mostly disappears when the Valkyrie transforms into Fighter mode – in the original TV livery the VF-1 is completely white from above, just with green wing tips and rudders on the V-tail.

 

A full profile of an “Alaska Guard” VF-1 with more details concerning markings and stencils can furthermore be found in Softbank Publishing’s (discontinued) “Variable Fighter Master File VF-1 Valkyrie” source book, even though these drawings show further differences to the original TV appearance. In the book the unit is identified as SVF-15 “Blue Foxes”, evolved from the real USAF’s 18th Aggressor Squadron in 2008. Looking at the VF-1’s colors, this unit name appears a bit odd, because the livery is basically all-white with olive-green trim? This could be a simple translation issue, though, because “blue” and “green” are in written Japanese described with the same kanji (青, “ao”). On the other side, the 18th Aggressor Squadron was/is nicknamed “Blue Foxes”? Strange, strange…

 

To ease painting, the model was built in sub-assemblies (see comments above) and treated separately. To avoid brush painting mess with the basic white, the sub-sections received a coat of very light grey (RAL 7047 Telegrau) and a pure white tone, both applied from rattle cans with an attempt to create a light shading effect. The green trim and further details were added with brushes. I used Revell 360 (Fern Green, RAL 6025), because it is a strong but still somewhat dull/subdued tone that IMHO matches the look from the TV series well. Some detail areas like the air intake louvres, the hollow of the knees and the handgun were painted in medium grey (Humbrol 140), so that the contrast to the rest was not too strong. The “feet” received an initial coat of Humbrol 53 (Iron) as a dark primer.

 

In “reality”, parts of the VF-1’s torso in Battroid mode are actually open – the kit is very simplified. To create an optical illusion of this trench and to visually “stretch” the rather massive breast section, the respective areas were painted with dark grey (Humbrol 79). There are also many position lights all around the hull; these were initially laid out with silver, the bigger ones received felt tip pen details, and they were later overlaid with clear acrylic paints.

 

Once the basic painting had been done, a light black ink washing was applied to the parts to emphasize engraved panel lines and recesses. After that the jet exhaust ‘feet’ were painted with Humbrol’s Steel Metallizer and some post-shading through dry-brushing was done, concentrating on the green areas. This was rather done for visual plasticity than for a worn look: this Valkyrie was supposed to look quite bright and clean, after all it’s from a headquarter unit and not an active frontline vehicle.

The feet received a thorough graphite treatment, so that the Metallizer’s shine was further enhanced. Some surface details that were not molded into the parts (esp. around the shoulders and the covers of the main landing gear) were painted with a thin black felt tip pen.

 

Stencils and markings were taken from the kit’s OOB decal sheet. The thin bands around the arms and legs were created with generic 1mm decal strips and all the vernier thrusters (sixteen are visible on the Battroid) were created with home-printed decals – most of them are molded into the parts and apparently supposed to be painted, but the decals are a tidier and more uniform solution.

 

Before the final assembly, the parts received a coat with matt acrylic varnish. As final measures some black panel lines were emphasized with a felt tip pen and color was added to several lamps and small windows with clear paints.

  

I can hardly remember when I built my last VF-1 Battroid, but tackling this one after a long while was a nice distraction from my usual what-if builds. I am pleased that this model depicts a canonical Valkyrie from the original TV series beyond the well-known “hero” liveries. Furthermore, green is a rare color among VF-1 liveries, so that it is even more “collectible”.

While the vintage ARII kit is a rather limited affair, adding some joints considerably improved the model’s impression, even though there are definitively better kit options available today when you want to build a 1:100 Battroid — but these do certainly not provide this authentic “Eighties feeling”.

 

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!

  

Some background:

The Indian „Samudree Baaj“ (समुद्री बाज, Sea Hawk) was a highly modified, navalized version of the British BAE Systems Hawk land-based training jet aircraft, which had been manufactured under license by Hindustan Aeronautics Limited (HAL). The first indigenously built Hawk Mk. 132 trainer was delivered in 2008 to the Indian Air Force, and the type has since then been updated with indigenous avionics into the “Hawk-I” Mk. 132 from 2020 onwards. The aircraft’s Rolls Royce Adour Mk 871 engine was also license-built by HAL, and the company had experience from a wide range of aircraft projects in the past.

 

The Samudree Baaj project was initiated in 2006 by the Indian Navy, as part of the long historic plan to provide the Indian Navy with a fully capable aircraft carrier. This plan had been initiated in 1989, when India announced a plan to replace its ageing British-built aircraft carriers, INS Vikrant and INS Viraat (ex-HMS Hermes), with two new 28,000-ton Air Defence Ships (ADS) that would operate the BAe Sea Harrier aircraft. The first vessel was to replace Vikrant, which was set to decommission in early 1997. Construction of the ADS was to start at the Cochin Shipyard (CSL) in 1993 after the Indian Naval Design Organisation had translated this design study into a production model. Following the 1991 economic crisis, the plans for construction of the vessels were put on hold indefinitely.

 

In 1999, then-Defence Minister George Fernandes revived the project and sanctioned the construction of the Project “71 ADS”. By that time, given the ageing Sea Harrier fleet, the letter of intent called for a carrier that would carry more modern jet fighters. In 2001, CSL released a graphic illustration showing a 32,000-ton STOBAR (Short Take-Off But Arrested Recovery) design with a pronounced ski jump. The aircraft carrier project finally received formal government approval in January 2003. By then, design updates called for a 37,500-ton carrier to operate the MiG-29K. India opted for a three-carrier fleet consisting of one carrier battle group stationed on each seaboard, and a third carrier held in reserve, in order to continuously protect both its flanks, to protect economic interests and mercantile traffic, and to provide humanitarian platforms in times of disasters, since a carrier can provide a self-generating supply of fresh water, medical assistance or engineering expertise to populations in need for assistance.

 

In August 2006, then-Chief of the Naval Staff, Admiral Arun Prakash stated that the designation for the vessel had been changed from Air Defence Ship (ADS) to Indigenous Aircraft Carrier (IAC). The euphemistic ADS had been adopted in planning stages to ward off concerns about a naval build-up. Final revisions to the design increased the displacement of the carrier from 37,500 tons to over 40,000 tons. The length of the ship also increased from 252 metres (827 ft) to 262 metres (860 ft).

It was at this time that, beyond the MiG-29K, primarily a carrier-capable trainer and also a light (and less costly) strike aircraft would be needed. With the running production of the Hawk Mk. 132 for the Indian Air Force and BAE Systems’ connection and experience to the USA and McDonnell/Boeing’s adaptation of the Hawk as the US Navy’s carrier-capable T-45 trainer, HAL was instructed to develop a suitable aircraft family on the Hawk’s basis for the new carriers.

 

HAL’s Samudree Baaj is a fully carrier-capable version of the British Aerospace Hawk Mk. The Hawk had not originally been designed to perform carrier operations, so that numerous modifications were required, such as the extensive strengthening of the airframe to withstand the excessive forces imposed by the stresses involved in catapult launches and high sink-rate landings, both scenarios being routine in aircraft carrier operations.

 

The aerodynamic changes of the aircraft, which were mutually developed by HAL and BAE Systems, included improvements to the low-speed handling characteristics and a reduction in the approach speed. Most notable amongst the changes made to the Hawk's design were extended flaps for better low-speed handling, along with the addition of spoilers on the wings to reduce lift and strakes on the fuselage which improved airflow and stabilizer efficiency.

Other, less obvious modifications included a reinforced airframe, the adoption of a more robust and widened landing gear, complete with a catapult tow bar attachment to the oleo strut of the new two-wheel nose gear design, and an arresting hook. The tail fin was extended by 1 foot (12 in, 30.5 cm) to compensate for the loss of the Hawk’s ventral stabilizing strakes. To make room for the arrester hook, the original ventral air brake was split and re-located to the flanks, similar to the USN’s T-45 trainer.

 

At the time of the Samudree Baaj’s design, the exact catapult arrangement and capacity on board of India’s new carriers was not clear yet – even more so, since the MiG-29K and its powerful engines might have made a catapult obsolete. Therefore, the Samudree Baaj was designed to be operable either with a ski jump ramp (in the style of the Russian Kiev class carriers, of which India had purchased one as INS Vikramaditya) or with only minimal launch support within the projected STOBAR concept, which included a relatively short-stroke steam catapult and a similarly short, undampened arrester gear.

 

By 2009 the basic airframe had been defined and four prototypes were built for two versions: the Mk. 101 trainer, which was basically a navalized version of the land-based Mk. 132 with almost the same mission equipment, and the Mk. 201, a single-seater. Two airframes of each type were built and the first Samudree Baaj flight took place in early 2011. The Indian government ordered 30 trainers and 15 attack aircraft, to be delivered with the first new Indian carrier, INS Vikrant, in late 2017.

 

The Samudree Baaj Mk. 201 was developed from the basic navalized Hawk airframe as a light multirole fighter with a small visual signature and high maneuverability, but high combat efficiency and capable of both strike and point defense missions. It differed from the trainer through a completely new forward fuselage whereby the forward cockpit area, which normally housed the trainee, was replaced by an electronics bay for avionics and onboard systems, including a fire control computer, a LINS 300 ring laser gyroscope inertial navigation system and a lightweight (145 kg) multimode, coherent, pulse-Doppler I band airborne radar. This multimode radar was developed from the Ferranti Blue Fox radar and capable of airborne interception and air-to-surface strike roles over water and land, with look-down/shoot-down and look-up modes. It had ten air-to-surface and ten air-to-ground modes for navigation and weapon aiming purposes.

A ventral fairing behind the radome carried a laser rangefinder and a forward-looking infrared (FLIR). Mid-air refueling was also possible, through a detachable (but fixed) probe. GPS navigation or modern night-flight systems were integrated, too.

 

Like the trainer, the Mk. 201 had a total of seven weapon hardpoints (1 ventral, four underwing and a pair of wing tip launch rails), but the more sophisticated avionics suite allowed a wider range of ordnance to be carried and deployed, which included radar-guided AAMs for BVR strokes and smart weapons and guided missiles – especially the Sea Eagle and AGM-84 “Harpoon” anti-ship missiles in the Indian Navy’s arsenal. For the maritime strike role and as a support for ASW missions, the Samudree Baaj Mk. 201 could even deploy Sting Ray homing torpedoes.

Furthermore, a pair of 30mm (1.18 in) ADEN machine cannon with 150 RPG were housed in a shallow fairing under the cockpit. The self-protection systems include a BAE SkyGuardian 200 RWR and automatic Vinten chaff/flare dispensers located above the engine exhaust.

 

The Samudree Baaj project was highly ambitious, so that it does not wonder that there were many delays and teething troubles. Beyond the complex avionics integration this included the maritime adaptation of the Adour engine, which eventually led to the uprated Adour Mk. 871-1N, which, as a side benefit, also offered about 10% more power.

However, in parallel, INS Vikrant also ran into delays: In July 2012, The Times of India reported that construction of Vikrant has been delayed by three years, and the ship would be ready for commissioning by 2018. Later, in November 2012, Indian English-language news channel NDTV reported that cost of the aircraft carrier had increased, and the delivery has been delayed by at least five years and is expected to be with the Indian Navy only after 2018 as against the scheduled date of delivery of 2014. Work then commenced for the next stage of construction, which included the installation of the integrated propulsion system, the superstructure, the upper decks, the cabling, sensors and weapons. Vikrant was eventually undocked on 10 June 2015 after the completion of structural work. Cabling, piping, heat and ventilation works were to be completed by 2017; sea trials would begin thereafter. In December 2019, it was reported that the engines on board the ship were switched on and in November 2020, only the basin trials of the aircraft carrier were completed.

 

By that time, the first Samudree Baaj aircraft had been delivered to Indian Navy 300 squadron, and even though only based at land at Hansa Air Station, flight training and military operations commenced. In the meantime, the start of Vikrant's trials had initially been scheduled to begin on 12 March 2020, but further construction delays caused that to be moved back to April. With the COVID-19 crisis, the navy explained that trials were unlikely to begin before September/October. During the Navy Day press meeting in December 2019, Navy Chief Admiral Karambir Singh said Vikrant would be fully operational before the end of 2022. The COVID-19 pandemic had already pushed that back to 2023 and further delays appeared possible.

In late 2020, the Indian Navy expected to commission Vikrant by the end of 2021. Until then, the Samudree Baaj fleet will remain land-based at INS Hansa near Goa. This not only is the INAS 300 home base, it is also the location of the Indian Navy's Shore Based Test Facility (SBTF), which is a mock-up of the 283-metre (928 ft) INS Vikramaditya (a modified Kiev-class aircraft carrier) deck built to train and certify navy pilots, primarily the the Mikoyan MiG-29K for operating from the aircraft carrier, but now also for the Samudree Baaj and for the developmental trials of the naval HAL Tejas lightweight fighter.

  

General characteristics:

Crew: 1

Length: 11.38 m (37 ft 4 in)

Wingspan: 9.39 m (30 ft 10 in)

Height: 4.30 m (14 ft 1 in)

Wing area: 17.66 m2 (190.1 sq ft)

Empty weight: 9,394 lb (4,261 kg)

Gross weight: 12,750 lb (5,783 kg)

Max takeoff weight: 9,101 kg (20,064 lb)

Fuel capacity: 1,360 kg (3,000 lb) internal

3,210 kg (7,080 lb) with 3 drop tanks

Powerplant:

1× Rolls-Royce Turbomeca Adour Mk. 871-1N non-afterburning turbofan, 28,89 kN (6,445 lbf) thrust

 

Performance:

Maximum speed: 1,037 km/h (644 mph, 560 kn) at sea level

Maximum speed: Mach 1.2 (never exceed at altitude)

Cruise speed: 796 km/h (495 mph, 430 kn) at 12,500 m (41,000 ft)

Carrier launch speed: 121 kn (139 mph; 224 km/h)

Approach speed: 125 kn (144 mph; 232 km/h)

Never exceed speed: 575 kn (662 mph, 1,065 km/h) / M1.04 design dive limit

Stall speed: 197 km/h (122 mph, 106 kn) flaps down

Range: 892 km (554 mi, 482 nmi) internal fuel only

Combat range: 617 km (383 mi, 333 nmi) with 2x AGM-84 and 2x 592 l (156 US gal; 130 imp gal)

Ferry range: 1,950 km (1,210 mi, 1,050 nmi) with 3 drop tanks

Service ceiling: 15,250 m (50,030 ft)

G-limits: +8/-3

Rate of climb: 58.466 m/s (11,509.1 ft/min)

Takeoff distance with maximum weapon load: 2,134 m (7,001 ft)

Landing distance at maximum landing weight with brake chute: 854 m (2,802 ft)

Landing distance at maximum landing weight without brake chute: 1,250 m (4,100 ft)

 

Armament:

2× 30 mm (1.181 in) Aden cannon with 150 rounds each

7× hardpoints (4× under-wing, 1× under-fuselage and 2 × wingtip)

for a total ordnance of 3.085 kg (6,800 lb) and a wide range of weapons

  

The kit and its assembly:

A subtle kitbashing project, inspired by a CG-rendition of a carrier-based (yet un-navalized) BAe Hawk 200 in Indian Navy service by fellow user SPINNERS in January 2021. I found the idea inspiring but thought that the basic concept could be taken further and into hardware form with a model. And I had a Matchbox Hawk 200 in The Stash™, as well as a McDonnell T-45 trainer from Italeri…

 

The plan sounds simple: take a T-45 and replace the cockpit section with the single-seat cockpit from the Hawk 200. And while the necessary cuts were easy to make, reality rears its ugly head when you try to mate parts from basically the same aircraft but from models by different manufacturers.

 

The challenges started with the fact that the fuselage shapes of both models differ – the Matchbox kit is more “voluminous”, and the different canopy shape called for a partial spine transplant, which turned out to be of very different shape than the T-45’s respective section! Lots of PSR…

In order to improve the pretty basic Matchbox Hawk cockpit I integrated the cockpit tub from the Italeri T-45, including the ejection seat, dashboard and its top cover.

For the totally different T-45 front wheel I had to enlarge the respective well and added a “ceiling” to it, since the strut had to be attached somewhere. The Hawk 200’s ventral tub for the cannons (which only the first prototype carried, later production aircraft did not feature them) were retained – partly because of their “whiffy“ nature, but also because making it disappear would have involved more major surgeries.

Most of the are behind the cockpit comes from the Italeri T-45, I just added a RHAWS fairing to the fin, extending it by 3mm.

 

A major problem became the air intakes, because the two kits differ in their construction. I wanted to use the Italeri parts, because they match the fairings on the fuselage flanks well and are better detailed than the Matchbox parts. But the boundary layer spacers between intakes and fuselage are molded into the Italeri parts, while the Matchbox kit has them molded into the fuselage. This called for major surgery and eventually worked out fine, and more PSR blended the rest of the fuselage donors around the cockpit together. A tedious process, though.

 

The pylons were puzzled together, including a former Matchbox EA-6B wing pylon under the fuselage, cut down and mounted in reverse and upside down! The ordnance comes from the Italeri NATO weapons set (Matra Magic and AGM-84), the ventral drop tank comes IIRC from an Eduard L-39 Albatros. Matra Magics were chosen because India never operated any Sidewinder AAM, just French or Soviet/Russian missiles like the R-60 or R-73 (unlikely on the Hawk, IMHO), and I had preferred a pair of Sea Eagle ASMs (from a Hasegawa Sea Harrier kit), but their span turned out to be too large for the Hawk’s low wings. The alternative, more slender Harpoons are plausible, though, since they are actually part of the Indian Navy’s inventory.

  

Painting and markings:

The Indian Navy theme was already settled, and I wanted to stay close to SPINNERS’ illustration as well as to real world Indian Navy aircraft. SPINNERS’ Hawk carried the typical Sea Harreir scheme in Extra Dark Sea Grey and White, and I found this livery to look a bit too much retro, because I’d place this what-if aircraft in the early 2020s, when the Sea Harriers had already been phased out. A “realistic” livery might have been an overall mid-grey paint scheme (like the land-based Indian Hawk 132s), but I found this to look too boring. As a compromise, I gave the Samudree Baaj a simple two-tone paint scheme, carried by a few late Indian Sea Harriers. It consists of upper surfaces in Dark Sea Grey (Humbrol 164) and undersides in Medium Sea Grey (Modelmaster 2058), with a low waterline. The Modelmaster MSG has – for my taste – a rather bluish hue and appears almost like PRU Blue, but I left it that way.

 

The decals were puzzled together from variosu sources. the roundels come from a MiG-21F (Begemot), the unit markings and tactical codes from a Model Alliance Sea Harrier sheet, and the stencils are a mix from the Matchbox Hawk 200 and the Italeri T-45.

 

The kit was sealed with matt acrylic varnish from Italeri.

 

The fictional HAL „Samudree Baaj“ looks simple, but combining kits of the basically same aircraft from different manufacturers reveals their differences, and they are not to be underestimated! However, I like the result of a navalized Hawk single-seater, and - also with the relatively simple and dull livery - it looks pretty convincing.

Many thanks to SPINNERS for the creative inspiration - even though my build is not a 100% "copy" of the artwork, but rather a step further into the navalisation idea with the T-45 parts.

 

Loch Fyne Skiff – ‘Cumbrae Lass’

  

One of two replica Loch Fyne Skiffs, or ‘Slopemasts’ as they were known on the west coast; she was built by MacDuff Shipyards in the 1970’s she is a unique piece of Scottish Maritime history. Having spent the last 25+years in the same ownership based in Stornoway she has proved a very capable and sea worthy classic cruising boat. Delivered by the vendor to the main land for collection by the new owner we were please to assist with arranging to have the boat de-rigged and prepared for road transport to her new home in Brixham

 

Comments

This traditional skiff was designed by G L Watson and built by MacDuff Boatbuilding in 1979 as a cruising yacht along the lines of the iconic Loch Fyne herring skiff. Instantly recognisable with an almost plumb stem, the unmistakable stern and steeply raked sternpost. Ruggedly built in the fishing boat style she is a rare opportunity to acquire a relatively recent traditional boat with a recent modern Diesel. During recent years the current owner has upgraded the boat making her easier to handle with a smaller crew, with additions to the inventory and fit out on and below decks.

A deep cockpit aft is well sheltered by the doghouse with the long tiller extending far enough forward for the helmsman to enjoy the full benefits of the doghouse. Below decks comfortable accommodation for a full crew of 4 is provided with all bunks of a good size and the large saloon provides an excellent space for eating and entertaining.

With her interesting history and classic design she would be quiet at home attending classic boat festivals around Europe if desired. Currently lying afloat in Stornoway, Isle of Lewis. Contact office to arrange viewing or discuss transport arrangements.

 

Features of Loch Fyne Skiff:

Basic data

Type: Sailing cruiser

Year : 1979

Length: 9.9 m

Location: Aberdeenshire (United Kingdom)

Name: Cumbrae Lass

Flag: -

Shipyard: Loch Fyne

Material: Wood

Dimensions

Beam: 3.0 m

Draft: -

Ballast: -

Displacement: 18290 Kg

Capacity

Maximum number of passengers: -

Cabins: -

Berths: -

Heads: -

Water capacity: -

Motor

Number of engines: 1

Power: 62 HP

Fuel capacity: -

Motor type : Inboard

Fuel type : Diesel

Make of the motor: Beta (Kubota) BF2803

Engine usage (hours): -

This Sailing cruiser's equipment

Electronics

Gps, Depthsounder, Vhf, Compass, Plotter, Radar

 

Deck equipment

Liferaft, Tender, Tiller, Cockpit cover

 

Comfort / Interior

Manual bilge pump, Marine head, Oven, Heating

 

Additional Equipment

30kg CQR mainstay with 60 metres 10mm chain.CQR and fisherman kedges.

 

Construction

Designed around the lines of iconic Loch Fyne Skiff, a traditional working vessel; and manufactured by MacDuff Boatbuilding as you would expect the build is of a robust nature. Below decks the fit out is traditional in type and as such the massive structural frames and body planking are all readily visible. The body is of carvel type development with planking of 1.25" larch on substantial 3"x6" sawn oak frames. The deck is of 0.75" marina plywood on oak beams, sheathed in GRP. All interior fit out is of marina grade plywood with larch trims.

During the last lay-up the rudder was removed and overhauled including some subtle changes to its profile. These overhaul and modification has given the rudder improved qualities, reducing weather helm and making the vessel less tiring to helm with the rudder now being semi-balanced.

The vessel was last surveyed for insurance purposes in 2012 and a copy of this survey is available for any interested parties.

  

Accommodation

Below decks the fit out is of a traditional type with minimal linings to conceal the vessels structural timbers and planking giving the vessel a very traditional feel. Despite the classic design the seating space below decks is very roomy and well pre-owned with 5'10" of headroom and all bunks being 6'+.

The forepeak has two large single bunks in a V-berth formation with the stout square sectioned mast running through the room onto its solid oak keel step. Storage is provided with a selection of shelves and a small hanging safe

A small quantity room is located to starboard at the forward end of the bar with a sea toilet and pull out tank.

The bar area in the central part of the vessel is open plan in layout creating a great living space. The recently re-tailored galley is located at the forward end of the space to seaport with gasoline cooker, sink and stowage. A large bar desk is tailored centrally with stout bench seating running along its range outboard seaport and starboard. A diesel fired heater is located at the forward end of the bar with 2 hotplates on top to make use of excess heat, ideal for a kettle.

Two large quarter bunks are located seaport and starboard at the aft end of the space and run under the cockpit, both are of generous proseaportions.

Bathoney Hamilton

 

The world’s top female surfers proved by pairing up grace, strength and talent, that they are capable of taking the sport to new heights.

 

The 2nd SWATCH GIRLS PRO France 2011 in Hossegor delivered a firework of spectacular surfing! Moving through the rounds, the ladies faced strong currents and fast crashing waves. Heat after heat they tackled the rough challenge by laying down outstanding performances with technical, smooth and stylish surfing. Unfortunately last year’s winner and 4-time World Champion Stephanie Gilmore (AUS) and top favourite Coco Ho (HAW) were already eliminated in the early rounds.

 

In the end Sally Fitzgibbons (AUS) defeated Sage Erickson (USA) on an epic final day of competition to win the SWATCH GIRLS PRO France at Seignosse in Hossegor.

 

Both Fitzgibbons and Erickson surfed at their limit on the final day of competition in front of the packed holiday crowd who flocked to the beach to support some of the world’s finest women’s surfers, but it was Fitzgibbons who found the scores needed to take the victory over the American surfer.

 

Fitzgibbons, who is currently rated No. 2 on the elite ASP Women’s World Title Series, competed in her second consecutive SWATCH GIRLS PRO France event and her victory marks her third major ASP win this year.

 

Erickson was impressive throughout the entire competition, eventually defeating Sarah Baum (ZAF) in the Semifinals, but was unable to surpass Fitzgibbons for the win.

 

Sarah Mason Wins 2-Star Swatch Girls Pro Junior France

 

Sarah Mason (Gisbourne, NZL) 16, today took out the ASP 2-Star Swatch Girls Pro Junior France over Dimity Stoyle (Sunshine Coast QLD, AUS) 19, it a closely contested 35-minute final that went down to the wire in tricky 3ft (1m) waves at Les Bourdaines.

 

Europe’s finest under-21 athletes faced some of the world’s best up-and-comers in the Swatch Girls Pro Junior France in their attempt to qualify for the ASP World Junior Series which starts October 3, in Bali, Indonesia.

 

Mason, who impressed the entire event with her precise and stylish forehand attack, left little to chance in the 35-minute final getting off to a quick start to open her account and then built on her two-wave total to claim victory with 11.73 out of 20. The quietly spoken goofy-footer was a standout performer in the ASP 6-Star Swatch Girls Pro France and backed it up with a commanding performance against her fellow Pro Junior members.

 

“It is amazing. I am so happy and it is one of my best results for sure. It was tricky to try and pick the good ones but I picked a couple so it was great. All the girls are definitely ripping so you have to step up the level to get through your heats so I am stoked with the win. It has been super fun and I have enjoyed the entire event so to win is just amazing.”

 

Dimity Stoyle was unable to bridge the gap over her opponent in the final finishing second despite holding priority several times in the later stages of the encounter. The Swatch Girls Pro Junior France has proved the perfect training ground for Stoyle to continue with her excellent results already obtained this season on the ASP Australasia Pro Junior series where she is currently ranked nº2.

 

“I am still happy with second and I really wanted to win here but I tried my best. This is the best event I have been in so far it is really good the set up, the waves and everyone loves it. I can’t believe how good the French crowd are. They love surfing and they love us all so I am definitely going to come back.”

 

Felicity Palmateer (Perth WA, AUS) 18, ranked nº9 on the ASP Women’s Star Tour, finished equal 3rd in a low scoring tactical heat against Stoyle where positioning and priority tactics towards the final part played a major role as the frequency of set waves dropped.

 

“When I first paddled out I thought it was breaking more out the back but as the tide started to change it moved in and became a little inconsistent. At the start of the heat there were heaps of waves but then it went slow and priority came into play and I kept trying to get one. I am not really fussed because I am travelling with Dimity (Stoyle) and stoked that she has made the final.”

 

Palmateer has used the Swatch Girls Pro Junior France as a building block towards her ultimate goal of being full-time on the ASP Women’s World Tour. Her objectives are clear and 2011 is an extremely important year.

 

“I would love to get a World Junior title but at the moment my goal is to qualify for the World Tour through the Star events. If I can get more practice without that much pressure on me like this year and then if I qualify it will be even better for 2012.”

 

Bianca Buitendag (ZAF) 17, placed 3rd in the Swatch Girls Pro Junior France after failing to oust eventual event winner Sarah Mason in semi-final nº1. Buitendag looked dangerous throughout the final day of competition and was unlucky not to find any quality scoring waves in a slow heat. Trailing for the majority of the encounter, Buitendag secured her best ride in the final moments which proved not enough to advance.

 

“The swell definitely dropped and although the conditions were quite nice I didn’t get any good scoring waves. I have a Pro Junior event coming up in South Africa and it is very important to get a result there to qualify for the World Juniors.”

 

Maud Le Car (St Martin, FRA) 19, claimed the best result of the European contingent finishing equal 5th to jump to nº1 position on the ASP Women’s European Pro Junior series. Le Car led a low scoring quarter-final bout against Bianca Buitendag until losing priority in a tactical error which allowed her opponent to sneak under her guard and claim the modest score required to win.

 

“I didn’t surf really well in that heat and I am a little bit disappointed because it is for the selection to the World Juniors with the other European girls. The waves were not the best and it was difficult to catch some good waves and unfortunately I didn’t make it. It is really good to be at the top but I have some other contests to improve and to do some good results and to make it to the World Juniors.”

 

The Swatch Time to Tear Expression Session was won by the team composed of Swatch Girls Pro France finalists Sally Fitzgibbons (AUS), Sage Erickson (USA) and equal 3rd placed Courtney Conlogue (USA) in a dynamic display of modern progressive surfing in the punchy 3ft peaks in front of a packed surf hungry audience lining the shore.

 

The Swatch Girls Pro is webcast LIVE on www.swatchgirlspro.com

 

For all results, videos, daily highlights, photos and news log-on to www.swatchgirlsproor www.aspeurope.com

 

Swatch Girls Pro Junior France Final Result

Sarah Mason (NZL) 11.73 Def. Dimity Stoyle (AUS) 10.27

 

Swatch Girls Pro Junior France Semi-Final Results

Heat 1: Sarah Mason (NZL) 14.00 Def. Bianca Buitendag (ZAF) 9.60

Heat 2: Dimity Stoyle (AUS) 10.67 Def. Felicity Palmateer (AUS) 9.57

 

Swatch Girls Pro Junior France Quarter-Final Results

Heat 1: Sarah Mason (NZL) 12.75 Def. Lakey Peterson (USA) 6.25

Heat 2: Bianca Buitendag (ZAF) 8.95 Def. Maud Le Car (FRA) 8.50

Heat 3: Dimity Stoyle (AUS) 11.00 Def. Georgia Fish (AUS) 4.50

Heat 4: Felicity Palmateer (AUS) 17.00 Def. Nao Omura (JPN) 8.75

 

Swatch Girls Pro Junior France Round Three Results

Heat 1: Sarah Mason (NZL) 15.25, Maud Le Car (FRA) 11.00, Marie Dejean (FRA) 9.35, Camille Davila (FRA) 4.90

Heat 2: Bianca Buitendag (ZAF) 14.50, Lakey Peterson (USA) 11.50, Justine Dupont (FRA) 10.75, Phillipa Anderson (AUS) 5.10

Heat 3: Georgia Fish (AUS) 12.50, Felicity Palmateer (AUS) 9.15, Joanne Defay (FRA) 7.15, Loiola Canales (EUK) 2.90

Heat 4: Nao Omura (JPN) 10.00, Dimity Stoyle (AUS) 9.50, Barbara Segatto (BRA) 3.90, Ana Morau (FRA) 3.05

 

Photos Aquashot/ASPEurope - Swatch

The Chance Vought F4U Corsair was a carrier-capable fighter aircraft that saw service primarily in World War II and the Korean War.

 

Demand for the aircraft soon overwhelmed Vought's manufacturing capability, resulting in production by Goodyear and Brewster: Goodyear-built Corsairs were designated FG and Brewster-built aircraft F3A. From the first prototype delivery to the U.S. Navy in 1940, to final delivery in 1953 to the French, 12,571 F4U Corsairs were manufactured by Vought, in 16 separate models, in the longest production run of any piston-engined fighter in U.S. history (1942–1953).

 

The Corsair served in the U.S. Navy, U.S. Marines, Fleet Air Arm and the Royal New Zealand Air Force, as well as the French Navy Aéronavale and other, smaller, air forces until the 1960s. It quickly became the most capable carrier-based fighter-bomber of World War II. Some Japanese pilots regarded it as the most formidable American fighter of World War II, and the U.S. Navy counted an 11:1 kill ratio with the F4U Corsair. As well as being an outstanding fighter, the Corsair proved to be an excellent fighter-bomber, serving almost exclusively in the latter role throughout the Korean War and during the French colonial wars in Indochina and Algeria.

The Lamborghini Diablo is a high-performance mid-engined sports car that was built by Italian automaker Lamborghini between 1990 and 2001. It was the first Lamborghini capable of attaining a top speed in excess of 200 miles per hour (320 km/h). After the end of its production run in 2001, the Diablo was replaced by the Lamborghini Murciélago. Diablo is "devil" in Spanish, which is diavolo in Italian.

 

History of development

 

At a time when the company was financed by the Swiss-based Mimran brothers, Lamborghini began development of what was codenamed Project 132 in June 1985 as a replacement for the Countach model. The brief stated that its top speed had to be at least 315 km/h (196 mph).

 

The design of the car was contracted to Marcello Gandini, who had designed its two predecessors. When Chrysler bought the company in 1987, providing money to complete its development, its management was uncomfortable with Gandini’s designs and commissioned its design team in Detroit to execute a third extensive redesign, smoothing out the trademark sharp edges and corners of Gandini's original design, and leaving him famously unimpressed. In fact, Gandini was so disappointed with the "softened" shape that he would later realize his original design in the Cizeta-Moroder V16T.

 

The car became known as the Diablo, carrying on Lamborghini's tradition of naming its cars after breeds of fighting bull. The Diablo was named after a ferocious bull raised by the Duke of Veragua in the 19th century, famous for fighting an epic battle with 'El Chicorro' in Madrid on July 11, 1869. In the words of Top Gear presenter Jeremy Clarkson, the Diablo was designed "solely to be the biggest head-turner in the world."

 

The development is believed to have cost a total of 6 billion Italian lira.

 

Diablo VT Roadster

 

1995-1998 Lamborghini Diablo VT Roadster

 

The Diablo VT Roadster was introduced in December 1995 and featured an electrically operated carbon fiber targa top which was stored above the engine lid when not in use. Besides the roof, the roadster's body was altered from the fixed-top VT model in a number of ways. The front bumper was revised, replacing the quad rectangular driving lamps with two rectangular and two round units. The brake cooling ducts were moved inboard of the driving lamps and changed to a straked design, while the rear ducts featured the vertical painted design seen on the SE30.

 

The engine lid was changed substantially in order to vent properly when the roof panel was covering it. The roadster also featured revised 17 inch wheels. The air intakes on top/sides were made larger than the coupe Diablos. In 1998 the wheels have been updated to 18 inch, and the engine power raised to 530 HP by adding the variable valve timing system. Top speed specification was raised to 335 km/h (208 mph).

 

In 1999 the dashboard received a major optical update by Audi, and the pop-up headlights were replaced by fixed headlights, same as for the coupés. This resulted in a better aerodynamic shape and modern optics.

 

[Text from Wikipedia]

 

en.wikipedia.org/wiki/Lamborghini_Diablo

 

This Lego miniland scale Lamborghini Diablo VT Roadster has been created for Flickr LUGNuts' 96th Build Challenge - The 8th Birthday, titled - 'Happy Crazy Eight Birthday, LUGNuts' - where all previous build challenges are available to build to. This model is built to the LUGNuts 92nd build challenge, - "Stuck in the 90s" featuring vehicles from the decade of the 1990s

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!

  

Some background:

The North American FJ-4 Fury was a swept-wing carrier-capable fighter-bomber, originally developed for the United States Navy and Marine Corps. It was the final development in a lineage that included the Air Force's F-86 Sabre. The FJ-4 shared its general layout and engine with the earlier FJ-3, but featured an entirely new wing design. And it was, as a kind of final embodiment with the FJ-4B, a very different aircraft from the F-86 .

 

The first FJ-4 flew on 28 October 1954 and delivery began in February 1955. Of the original order for 221 FJ-4 fighters, the last 71 were modified into the FJ-4B fighter-bomber version, of which the Netherlands received 16 aircraft under the designation FJ-4B from the USA in the course of NATO support. Even though the main roles of the MLD were maritime patrol, anti-submarine warfare and search and rescue, the FJ-4B was a dedicated fighter-bomber, and these aircraft were to be used with the Dutch Navy’s Colossus-Class carrier HNLMS Karel Doorman (R81).

 

Compared to the lighter FJ-4 interceptor, the FJ-4B had a stronger wing with six instead of four underwing stations, a stronger landing gear and additional aerodynamic brakes under the aft fuselage. The latter made landing safer by allowing pilots to use higher thrust settings, and were also useful for dive attacks. Compared to the FJ-4, external load was doubled, and the US FJ-4Bs were capable of carrying a nuclear weapon on the inboard port station, a feature the MLD Furies lacked. The MLD aircraft were still equipped with the corresponding LABS or Low-Altitude Bombing System for accurate delivery of ordnance.

The Dutch Furies were primarily intended for anti-ship missions (toting up to five of the newly developed ASM-N-7 missiles - renamed in AGM-12B Bullpup after 1962 - plus a guidance pod) and CAS duties against coastal targets, as well as for precision strikes. In a secondary role, the FJ-4B could carry Sidewinder AAMs for interception purposes.

 

The MLD's FJ-4B became operational in 1956, just in time to enhance the firepower of the Karel Doorman, which just had its 24 WW-II era propeller driven Fairey Firefly strike fighters and Hawker Sea Fury fighter/anti-ship aircraft backed up with 14 TBF Avenger ASW/torpedo bombers and 10 Hawker Sea Hawk fighters (the MLD owned 22 of these) for an ASW/Strike profile. The Furies joined the carrier in late 1957 and replaced the piston-engined attack aircraft.

 

In 1960, during the Dutch decolonization and planned independence of Western New Guinea, a territory which was also claimed by Indonesia, the Karel Doorman set sail along with two destroyers and a modified oil tanker to 'show the flag'. In order to avoid possible problems with Indonesia's ally Egypt at the Suez Canal, the carrier instead sailed around the horn of Africa. She arrived in Fremantle, Australia, where the local seamen's union struck in sympathy with Indonesia; the crew used the propeller thrust of aircraft chained down on deck to nudge the carrier into dock without tugs! In addition to her air wing, she was ferrying twelve Hawker Hunter fighters to bolster the local Dutch defense forces, which the Karel Doorman delivered when she arrived at Hollandia, New Guinea.

 

During the 1960 crisis, Indonesia prepared for a military action named Operation Trikora (in the Indonesian language, "Tri Komando Rakyat" means "The Three Commands of the People"). In addition to planning for an invasion, the TNI-AU (Indonesian Air Forces) hoped to sink the Karel Doorman with Soviet-supplied Tupolev Tu-16KS-1 Badger naval bombers using AS-1 Kennel/KS-1 Kometa anti-ship missiles. This bomber-launched missile strike mission was cancelled on short notice, though, because of the implementation of the cease-fire between Indonesia and the Netherlands. This led to a Dutch withdrawal and temporary UN peacekeeping administration, followed by occupation and annexation through Indonesia. While the Dutch aircraft served actively during this conflict, flying patrols and demonstrating presence, visibly armed and in alert condition, no 'hot' sortie or casualty occured, even though one aircraft, 10-18, was lost in a start accident. The pilot ejected safely.

 

The MLD FJ-4Bs only served on the carrier until its overhaul in 1964, after which the carrier-borne attack role was eliminated and all aircraft were transferred to land bases (Valkenburg) or in reserve storage. The Seahawks were retired from service by the end of the 1960s after the sale of the Karel Doorman to Argentina, and the FJ-4Bs were returned to the United States, where they were re-integrated into the USMC until the end of the 1960ies, when all FJ-4 aircraft were phased out.

  

General characteristics:

Crew: 1

Length: 36 ft 4 in (11.1 m)

Wingspan: 39 ft 1 in (11.9 m)

Height: 13 ft 11 in (4.2 m)

Wing area: 338.66 ft² (31.46 m²)

Empty weight: 13,210 lb (6,000 kg)

Loaded weight: 20,130 lb (9,200 kg)

Max. take-off weight: 23,700 lb (10,750 kg)

Powerplant: 1 × Wright J65-W-16A turbojet, 7,700 lbf (34 kN)

 

Performance:

Maximum speed: 680 mph (1,090 km/h) at 35,000 ft (10,670 m)

Range: 2,020 mi (3,250 km) with 2× 200 gal (760 l) drop tanks and 2× AIM-9 missiles

Service ceiling: 46,800 ft (14,300 m)

Rate of climb: 7,660 ft/min (38.9 m/s)

Wing loading: 69.9 lb/ft² (341.7 kg/m²)

Thrust/weight: .325

 

Armament:

4× 20 mm (0.787 in) cannon

6× pylons under the wings for 3,000 lb (1,400 kg) external ordnance, including up to 6× AIM-9 Sidewinder AAMs, bombs and guided/unguided ASM, e .g. ASM-N-7 (AGM-12B Bullpup) missiles.

  

The kit and its assembly

Originally, this model project was inspired by a (whiffy) Dutch F3H Demon profile, designed by fellow user Darth Panda at whatifmodelers.com. I found the idea of a foreign/NATO user of one of these early carrier-borne jet fighters very inspiring – not only because of the strange design of many of these aircraft, but also since the USN and USMC had been the only real world users of many of these types.

 

Initially, I planned to convert a F3H accordingly. But with limited storage/display space at home I decided to apply the MLD idea to another smaller, but maybe even more exotic, type: the North American FJ-4B Fury, which was in 1962 recoded into AF-1E.

I like the beefy Sabre cousin very much. It’s one of those aircraft that received little attention, even from model kit manufacturers. In fact, in 1:72 scale there are only vintage vacu kits or the very basic Emhar kit available. Th Emhar kit, which I used here and which is a kind donation of a fellow modeler (Thanks a lot, André!), a rather rough thing with raised panel lines and much room for improvements. As a side note, there's also a FJ-4B from Revell, but it's just a 1996 re-issue with no improvements, whatsoever.

 

Another facet of the model: When I did legwork concerning a possible background story, I was surprised to find out that the Netherlands actually operated aircraft carriers in the 1950s, including carrier-borne, fixed-wing aircraft, even jets in the form of Hawker Sea Hawks. The real life FJ-4Bs service introduction, the naissance of NATO and the Indonesian conflict as well as the corresponding intervention of the Karel Doorman carrier all fell into a very plausible time frame – and so there’s a very good and plausible story why the MLD could actually have used the Fury fighter bomber!

 

The Emhar kit was not modified structurally, but saw some changes in detail. These include a scratch-built cockpit with side walls, side consoles and a new ejection seat, plus a Matchbox pilot figure, a new front wheel (from a Kangnam Yak-38, I believe), plus a lot of added blade aerials and a finer pitot.

The flaps were lowered, for a more lively look- Another new feature is the opened air intake, which features a central splitter - in fact a vertically placed piece of a Vicker Wellesley bomb container from Matchbox. At the rear end, the exhaust pipe was opened and lengthened internally.

 

The six weapon hardpoints were taken from the original kit, but I did not use the four Sidewinder AAMs and the rather bulky drop tanks. So, all ordnance is new: the Bullpups come from the Hasegawa air-to-ground missile set, the drop tanks are leftover pieces from a Hobby Boss F-86. They are much more 'delicate', and make the Fury look less stout and cumbersome. The guidance pod for the Bullpups (a typical FJ-4B feature with these weapons) is a WWII drop tank, shaped with the help of benchmark pictures. Certainly not perfect, but, hey - it's just a MODEL!

  

Painting and markings

I used mid-1950ies MLD Sea Furys and Sea Hawks as a design benchmark, but this Fury is placed just into the time frame around 1960 when the MLD introduced a new 3-digit code system. Before that, a code "6-XX" with the XX somewhere in the 70 region would have been appropriate, and I actually painted the fuselage sides a bit darker so as if the old code had recently been painted over.

 

Dutch MLD aircraft tended to keep their former users’ liveries, but in the FJ-4B’s case I thought that a light grey and white aircraft (USN style) with Dutch roundels would look a bit odd. So I settled for early NATO style with Extra Dark Sea Grey upper sides (Humbrol 123) and Sky from below (Testors 2049 from their Authentic Line).

 

I also went for an early design style with a low waterline - early Hawker Sea Furies were painted this way, and a high waterline would probably be more typical. But in the face of potential seriosu action, who knows...? Things tend to be toned down quickly, just remember the RN Harriers during the Falkland conflict. I'll admit that the aircraft looks a bit simple and dull now, but this IMHO just adds to the plausible look of this whif. I prefer such subtleties to garish designs.

 

The surfaces were weathered with dry-brushed lighter shades of the basic tones (mostly Humbrol 79, but also some 140 and 67, and Humbrol 90 and 166 below), including overpainted old codes in a slightly darker tone of EDSG, done with Revell 77. A light wash with black ink emphasizes edges and some details - the machine was not to look worn.

 

The interior was painted in medium grey (Humbrol 140), the landing gear is white (Humbrol 130), and some details like the air intake rim, the edges of the landing gear covers, the flaps or the tips of the wing fences were painted in bright red (Humbrol 174), for some contrast to the overall grey upper sides.

 

The MLD markings were puzzled together. The roundels come from an Xtradecal sheet for various Hawker Sea Furies, the '202' code comes, among others, from a Grumman Bearcat aftermarket sheet. The 'KON. MARINE' line is hand-made, letter by letter, from a TL Modellbau aftremarket sheet.

Most stencils and warning sign decals come from the original decal sheet, as well as from a FJ-4 Xtradecal aftermarket sheet, from F-86 kits and the scrap box. I wanted these details to provide the color to the aircraft, so that it would not look too uniform, but still without flashy decorations and like a rather utilarian military item.

 

finally, the model received a coat of semi-matt varnish (Tamiya Acryllic), since MLD aircraft had a pretty glossy finish. No dirt or soot stains were added - the Dutch kept their (few) shipborne aircraft very clean and tidy!

  

So, all in all, a simple looking aircraft, but this Dutch Fury has IMHO a certain, subtle charm - probably also because it is a rather rare and unpopular aircraft, which in itself has a certain whiffy aura.

Some background:

The idea for a heavy infantry support vehicle capable of demolishing heavily defended buildings or fortified areas with a single shot came out of the experiences of the heavy urban fighting in the Battle of Stalingrad in 1942. At the time, the Wehrmacht had only the Sturm-Infanteriegeschütz 33B available for destroying buildings, a Sturmgeschütz III variant armed with a 15 cm sIG 33 heavy infantry gun. Twelve of them were lost in the fighting at Stalingrad. Its successor, the Sturmpanzer IV, also known by Allies as Brummbär, was in production from early 1943. This was essentially an improved version of the earlier design, mounting the same gun on the Panzer IV chassis with greatly improved armour protection.

 

While greatly improved compared to the earlier models, by this time infantry anti-tank weapons were improving dramatically, too, and the Wehrmacht still saw a need for a similar, but more heavily armoured and armed vehicle. Therefore, a decision was made to create a new vehicle based on the Tiger tank and arm it with a 210 mm howitzer. However, this weapon turned out not to be available at the time and was therefore replaced by a 380 mm rocket launcher, which was adapted from a Kriegsmarine depth charge launcher.

 

The 380 mm Raketen-Werfer 61 L/5.4 was a breech-loading barrel, which fired a short-range, rocket-propelled projectile roughly 1.5 m (4 ft 11 in) long. The gun itself existed in two iterations at the time. One, the RaG 43 (Raketenabschuss-Gerät 43), was a ship-mounted anti-aircraft weapon used for firing a cable-spooled parachute-anchor creating a hazard for aircraft. The second, the RTG 38 (Raketen Tauch-Geschoss 38), was a land-based system, originally planned for use in coastal installations by the Kriegsmarine firing depth-charges against submarines with a range of about 3.000 m. For use in a vehicle, the RTG 38 was to find use as a demolition gun and had to be modified for that role. This modification work was carried out by Rheinmetall at their Sommerda works.

 

The design of the rocket system caused some problems. Modified for use in a vehicle, the recoil from the modified rocket-mortar was enormous, about 40-tonnes, and this meant that only a heavy chassis could be used to mount the gun. The hot rocket exhaust could not be vented into the fighting compartment nor could the barrel withstand the pressure if the gasses were not vented. Therefore, a ring of ventilation shafts was put around the barrel which channeled the exhaust and gave the weapon something of a pepperbox appearance.

 

The shells for the weapon were extremely heavy, far too heavy for a man to load manually. As a result, each of them had to be carried by means of a ceiling-mounted trolley from their rack to a roller-mounted tray at the breech. Once on the tray, four soldiers could then push it into the breech to load it. The whole process took 10 minutes per shot from loading, aiming, elevating and, finally, to firing.

There were a variety of rocket-assisted round types with a weight of up to 376 kg (829 lb), and a maximum range of up to 6,000 m (20,000 ft), which either contained a high explosive charge of 125 kg (276 lb) or a shaped charge for use against fortifications, which could penetrate up to 2.5 m (8 ft 2 in) of reinforced concrete. The stated range of the former was 5,650 m (6,180 yd). A normal charge first accelerated the projectile to 45 m/s (150 ft/s) to leave the short, rifled barrel, the 40 kg (88 lb) rocket charge then boosted this to about 250 m/s (820 ft/s).

 

In September 1943 plans were made for Krupp to fabricate new Tiger I armored hulls for the Sturmtiger. The Tiger I hulls were to be sent to Henschel for chassis assembly and then to Alkett, where the superstructures would be mounted. The first prototype was ready and presented in October 1943. By May 1944, the Sturmtiger prototype had been kept busy with trials and firing tests for the development of range tables, but production had still not started yet and the concept was likely to be scrapped. Rather than ditch the idea though, orders were given that, instead of interrupting the production of the Tiger I, the Sturmtigers would be built on the chassis of Tiger I tanks which had already been in action and suffered serious damage. Twelve superstructures and RW 61 weapons were prepared and mounted on rebuilt Tiger I chassis. However, by August 1944 the dire need for this kind of vehicle led to the adaptation of another chassis to the 380 mm Sturmmörser: the SdKfz. 184, better known as “Ferdinand” (after its designer’s forename) and later, in an upgraded version, “Elefant”.

 

The Elefant (German for "elephant") was actually a heavy tank destroyer and the result of mismanagement and poor planning: Porsche GmbH had manufactured about 100 chassis for their unsuccessful proposal for the Tiger I tank, the so-called "Porsche Tiger". Both the successful Henschel proposal and the Porsche design used the same Krupp-designed turret—the Henschel design had its turret more-or-less centrally located on its hull, while the Porsche design placed the turret much closer to the front of the superstructure. Since the competing Henschel Tiger design was chosen for production, the Porsche chassis were no longer required for the Tiger tank project, and Porsche was left with 100 unfinished heavy tank hulls.

It was therefore decided that the Porsche chassis were to be used as the basis of a new heavy tank hunter, the Ferdinand, mounting Krupp's newly developed 88 mm (3.5 in) Panzerjägerkanone 43/2 (PaK 43) anti-tank gun with a new, long L71 barrel. This precise long-range weapon was intended to destroy enemy tanks before they came within their own range of effective fire, but in order to mount the very long and heavy weapon on the Porsche hull, its layout had to be completely redesigned.

 

Porsche’s SdKfz. 184’s unusual petrol-electric transmission made it much easier to relocate the engines than would be the case on a mechanical-transmission vehicle, since the engines could be mounted anywhere, and only the length of the power cables needed to be altered, as opposed to re-designing the driveshafts and locating the engines for the easiest routing of power shafts to the gearbox. Without the forward-mounted turret of the Porsche Tiger prototype, the twin engines were relocated to the front, where the turret had been, leaving room ahead of them for the driver and radio operator. As the engines were placed in the middle, the driver and the radio operator were isolated from the rest of the crew and could be addressed only by intercom. The now empty rear half of the hull was covered with a heavily armored, full five-sided casemate with slightly sloped upper faces and armored solid roof, and turned into a crew compartment, mounting a single 8.8 cm Pak 43 cannon in the forward face of the casemate.

 

From this readily available basis, the SdKfz. 184/1 was hurriedly developed. It differed from the tank hunter primarily through its new casemate that held the 380 mm Raketenwerfer. Since the SdKfz. 184/1 was intended for use in urban areas in close range street fighting, it needed to be heavily armoured to survive. Its front plate had a greater slope than the Ferdinand while the sides were more vertical and the roof was flat. Its sloped (at 47° from vertical) frontal casemate armor was 150 mm (5.9 in) thick, while its superstructure side and rear plates had a strength of 82 mm (3.2 in). The SdKfz.184/1 also received add-on armor of 100 mm thickness, bolted to the hull’s original vertical front plates, increasing the thickness to 200 mm but adding 5 tons of weight. All these measures pushed the weight of the vehicle up from the Ferdinand’s already bulky 65 t to 75 t, limiting the vehicle’s manoeuvrability even further. Located at the rear of the loading hatch was a Nahverteidigungswaffe launcher which was used for close defense against infantry with SMi 35 anti-personnel mines, even though smoke grenades or signal flares could be fired with the device in all directions, too. For close-range defense, a 7.92 mm MG 34 machine gun was carried in a ball mount in the front plate, an addition that was introduced to the Elefant tank hunters, too, after the SdKfz. 184 had during its initial deployments turned out to be very vulnerable to infantry attacks.

 

Due to the size of the RW 61 and the bulkiness of the ammunition, only fourteen rounds could be carried internally, of which one was already loaded, with another stored in the loading tray, and the rest were carried in two storage racks, leaving only little space for the crew of four in the rear compartment. To help with the loading of ammunition into the vehicle, a loading crane was fitted at the rear of the superstructure next to the loading hatch on the roof.

Due to the internal limits and the tactical nature of the vehicle, it was intended that each SdKfz. 184/1 (as well as each Sturmtiger) would be accompanied by an ammunition carrier, typically based on the Panzer IV chassis, but the lack of resources did not make this possible. There were even plans to build a dedicated, heavily armored ammunition carrier on the Tiger I chassis, but only one such carrier was completed and tested, it never reached production status.

 

By the time the first RW 61 carriers had become available, Germany had lost the initiative, with the Wehrmacht being almost exclusively on the defensive rather than the offensive, and this new tactical situation significantly weakened the value of both Sturmtiger and Sturmelefant, how the SdKfz 184/1 was semi-officially baptized. Nevertheless, three new Panzer companies were raised to operate the Sturmpanzer types: Panzer Sturmmörser Kompanien (PzStuMrKp) ("Armored Assault Mortar Company") 1000, 1001 and 1002. These originally were supposed to be equipped with fourteen vehicles each, but this figure was later reduced to four each, divided into two platoons, consisting of mixed vehicle types – whatever was available and operational.

 

PzStuMrKp 1000 was raised on 13 August 1944 and fought during the Warsaw Uprising with two vehicles, as did the prototype in a separate action, which may have been the only time the Sturmtiger was used in its intended role. PzStuMrKp 1001 and 1002 followed in September and October. Both PzStuMrKp 1000 and 1001 served during the Ardennes Offensive, with a total of four Sturmtiger and three Sturmelefanten.

After this offensive, the Sturmpanzer were used in the defence of Germany, mainly on the Western Front. During the battle for the bridge at Remagen, German forces mobilized Sturmmörserkompanie 1000 and 1001 (with a total of 7 vehicles, five Sturmtiger and two Sturmelefanten) to take part in the battle. The tanks were originally tasked with using their mortars against the bridge itself, though it was discovered that they lacked the accuracy needed to hit the bridge and cause significant damage with precise hits to vital structures. During this action, one of the Sturmtigers in Sturmmörserkompanie 1001 near Düren and Euskirchen allegedly hit a group of stationary Shermans tanks in a village with a 380mm round, resulting in nearly all the Shermans being put out of action and their crews killed or wounded - the only recorded tank-on-tank combat a Sturmtiger was ever engaged in. After the bridge fell to the Allies, Sturmmörserkompanie 1000 and 1001 were tasked with bombardment of Allied forces to cover the German retreat, as opposed to the bunker busting for which they had originally been designed for. None was actually destroyed through enemy fire, but many vehicles had to be given up due to mechanical failures or the lack of fuel. Most were blown up by their crews, but a few fell into allied hands in an operational state.

 

Total production numbers of the SdKfz. 184/1 are uncertain but, being an emergency product and based on a limited chassis supply, the number of vehicles that left the Nibelungenwerke in Austria was no more than ten – also because the tank hunter conversion had top priority and the exotic RW 61 launcher was in very limited supply. As a consequence, only a total of 18 Sturmtiger had been finished by December 1945 and put into service, too. However, the 380 mm Raketen-Werfer 61 remained in production and was in early 1946 adapted to the new Einheitspanzer E-50/75 chassis.

  

Specifications:

Crew: Six (driver, radio operator/machine gunner in the front cabin,

commander, gunner, 2× loader in the casemate section)

Weight: 75 tons

Length: 7,05 m (23 ft 1½ in)

Width: 3,38 m (11 ft 1 in)

Height w/o crane: 3,02 m (9 ft 10¾ in)

Ground clearance: 1ft 6¾ in (48 cm)

Climbing: 2 ft 6½ in (78 cm)

Fording depth: 3 ft 3¼ (1m)

Trench crossing: 8 ft 7 ¾ in (2,64 m)

Suspension: Longitudinal torsion-bar

Fuel capacity: 1.050 liters

 

Armour:

62 to 200 mm (2.44 to 7.87 in)

 

Performance:

30 km/h (19 mph) on road

15 km/h (10 miles per hour () off road

Operational range: 150 km (93 mi) on road

90 km (56 mi) cross-country

Power/weight: 8 hp/ton

 

Engine:

2× Maybach HL120 TRM petrol engines with 300 PS (246 hp, 221 kW) each, powering…

2× Siemens-Schuckert D1495a 500 Volt electric engines with 320 PS (316 hp, 230 kW) each

 

Transmission:

Electric

 

Armament:

1x 380 mm RW 61 rocket launcher L/5.4 with 14 rounds

1x 7.92 mm (0.312 in) MG 34 machine gun with 600 rounds

1x 100 mm grenade launcher (firing anti-personnel mines, smoke grenades or signal flares)

  

The kit and its assembly:.

This fictional tank model is not my own idea, it is rather based on a picture of a similar kitbashing of an Elefant with a Sturmtiger casemate and its massive missile launcher – even though it was a rather crude model, with a casemate created from cardboard. However, I found the idea charming, even more so because the Ferdinand/Elefant was rather a rolling bunker than an agile tank hunter, despite its powerful weapon. Why not use the same chassis as a carrier for the Sturmtiger’s huge mortar as an assault SPG?

 

The resulting Sturmelefant was created as a kitbashing: the chassis is an early boxing of the Trumpeter Elefant, which comes not only with IP track segments but also alternative vinyl tracks (later boxing do not feature them), and casemate parts come from a Trumpeter Sturmtiger.

While one would think that switching the casemate would be straightforward affair, the conversion turned out to be more complex than expected. Both Elefant and Sturmtiger come with separate casemate pieces, but they are not compatible. The Sturmtiger casemate is 2mm wider than the Elefant’s hull, and its glacis plate is deeper than the Elefant’s, leaving 4mm wide gaps at the sides and the rear. One option could have been to trim down the glacis plate, but I found the roofline to become much too low – and the casemate’s length would have been reduced.

 

So, I used the Sturmtiger casemate “as is” and filled the gaps with styrene sheet strips. This worked, but the casemate’s width created now inward-bent sections that looked unplausible. Nobody, even grazed German engineers, would not have neglected the laws of structural integrity. What to do? Tailoring the casemate’s sides down would have been one route, but this would have had created a strange shape. The alternative I chose was to widen the flanks of the Elefant’s hull underneath the casemate, which was achieved with tailored 0.5 mm styrene sheet panels and some PSR – possible through the Elefant’s simple shape and the mudguards that run along the vehicle’s flanks.

Some more PSR was necessary to blend the rear into a coherent shape and to fill a small gap at the glacis plate’s base. Putty was also used to fill/hide almost all openings on the glacis plate, since no driver sight or ball mount for a machine gun was necessary anymore. New bolts between hull and casemate were created with small drops of white glue. The rest of the surface details were taken from the respective donor kits.

  

Painting and markings:

This was not an easy choice. A classic Hinterhalt scheme would have been a natural choice, but since the Sturmelefant would have been converted from existing hulls with new parts, I decided to emphasize this heritage through a simple, uniform livery: all Ferdinand elements would be painted/left in a uniform Dunkelgelb (RAL, 7028, Humbrol 83), while the new casemate as well as the bolted-on front armor were left in a red primer livery, in two different shades (Humbrol 70 and 113). This looked a little too simple for my taste, so that I eventually added snaky lines in Dunkelgelb onto the primer-painted sections, blurring the contrast between the two tones.

 

Markings remained minimal, just three German crosses on the flanks and at the rear and a tactical code on the casemate – the latter in black and in a hand-written style, as if the vehicle had been rushed into frontline service.

 

After the decals had been secured under sone varnish the model received an overall washing with dark brown, highly thinned acrylic paint, some dry-brushing with light grey and some rust traces, before it was sealed overall with matt acrylic varnish and received some dirt stains with mixed watercolors and finally, after the tracks had been mounted, some artist pigments as physical dust on the lower areas.

  

Again a project that appeared simple but turned out to be more demanding because the parts would not fit as well as expected. The resulting bunker breaker looks plausible, less massive than the real Sturmtiger but still a menacing sight.

 

DISCLAIMER

Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!

 

The Indian HAL HG-30 Bāja (‘Hawk’) had been designed and manufactured by Hindustan Aeronautics Ltd. in the early 60ies, when it became clear that the Indian Air Force was left without a capable and rather simple aircraft for these roles - the “jet age” had been in full development, but fast and large aircraft like the Su-7 or Hawker Hunter were just not suited for low-altitude missions against day and night visible ground targets in a broad area.

 

Indian military planners assumed that potential aggressor will first disable airfields, so the Bāja was designed to take-off from short unprepared runways, and it was readily available to be loaded with weapons and supplied through a flexible system of auxiliary airfields that required no special preparations, especially in mountainous regions.

 

The resulting HG-30 Bāja was a light, single-engine, low-wing single-seat aircraft with a metal airframe, capable of performing close air support, counter insurgency (COIN), and reconnaissance missions. The type featured a license-built Rolls Royce Dart turboprop engine and a reinforced, retractable tricycle landing gear for operations on rugged terrain. The unpressurized cockpit was placed as far forward and high as possible, offering the pilot an excellent view. The ejection seat was armored and the cockpit lined with nylon flak curtains.

The first HG-30 prototype flew in February 1962, and a total of 89 examples of the Bāja were built between 1963 and 1965, including two pre-production aircraft. These introduced some improvements like fixed wingtip tanks, a bulged canopy which improved the rear view or self-sealing and foam-filled fuselage tanks.

 

Armament consisted of four fixed 20mm cannons in the wings, plus unguided missiles, unguided bombs or napalm tanks under the wings and the fuselage on a total of 11 hardpoints. The inner pair under the wings as well as the centerline pylon were able to carry 1.000 lbs each and were ‘wet’ for optional drop tanks. The next pair could carry 500 lbs each, and the outer six attachment points were reserved for missile rails or single bombs of up to 200 lbs caliber. A total external ordnance load of up to 4.500 lbs could be carried, even though this was rarely practiced since it severely hampered handling.

 

The Bāja was exclusively used by the Indian Air Force, serving with 3rd (‘Cobras’) and 5th (‘Tuskers’) Squadrons in the Eastern and Western regions, alongside Toofani and Ajeet fighter bombers. Even though there was some foreign interest (e .g. from Israel and Yugoslavia,) no export sales came to fruition.

A tandem-seated trainer version was envisaged, but never left the drawing board, since Hindustan had already developed the HJT-16 Kiran jet trainer for the IAF which was more suitable, esp. with its side-by-side cockpit. Even a maritime version with foldable outer wings, arresting hook and structural reinforcements was considered for the Indian Navy.

 

The HG-30 did not make it in time into service for the five-week Indo-Pakistani war of 1965, but later saw serious action in the course of the Bangladesh Liberation War and the ensuing next clash between India and Pakistan in December 1971, when all aircraft (originally delivered in a natural metal finish) quickly received improvised camouflage schemes.

 

The 1971 campaign settled down to series of daylight anti-airfield, anti-radar and close-support attacks by fighters, with night attacks against airfields and strategic targets, into which the HG-30s were heavily involved. Sporadic raids by the IAF continued against Pakistan's forward air bases in the West until the end of the war, and large scale interdiction and close-support operations were maintained.

The HG-30 excelled at close air support. Its straight wings allowed it to engage targets 150 MPH slower than swept-wing jet fighters. This slower speed improved shooting and bombing accuracy, enabling pilots to achieve an average accuracy of less than 40 feet, and the turboprop engine offered a much better fuel consumption than the jet engines of that era.

While it was not a fast aircraft and its pilots were a bit looked down upon by their jet pilot colleagues, the HG-30 was well liked by its crews because of its agility, stability at low speed, ease of service under field conditions and the crucial ability to absorb a lot of punishment with its rigid and simple structure.

 

After the 1971 conflict the Bāja served with the IAF without any further warfare duty until 1993, when, after the loss of about two dozen aircraft due to enemy fire and (only three) accidents, the type was completely retired and its COIN duties taken over by Mi-25 and Mi-35 helicopters, which had been gradually introduced into IAF service since 1984.

  

General characteristics

Crew: 1

Length: 10.23 m (33 ft 6¼ in)

Wingspan: 12.38 m (40 ft 7¼ in) incl. wing tip tanks

Height: 3.95 m (12 ft 11¼ in)

Empty weight: 7,689 lb (3,488 kg)

Max. take-off weight: Loaded weight: 11,652 lb (5,285 kg)

 

Powerplant:

1× Rolls Royce Dart RDa.7 turboprop engine, with 1.815 ehp (1.354 kW)/1.630 shp (1.220 kW) at 15,000 rpm

 

Performance

Maximum speed: 469 mph (755 km/h) at sea level and in clean configuration

Stall speed: 88 km/h (48 knots 55 mph)

Service ceiling: 34,000 ft (10,363 m)

Rate of climb: 5,020 ft/min (25.5 m/s)

Range: 1,385 miles (2,228 km) at max. take-off weight

 

Armament:

4× 20mm cannons (2 per wing) with 250 RPG

A total of 11 underwing and fuselage hardpoints with a capacity of 4.500 lbs (2.034 kg); provisions to carry combinations of general purpose or cluster bombs, machine gun pods, unguided missiles, air-to-ground rocket pods, fuel drop tanks, and napalm tanks.

     

The kit and its assembly

This fictional COIN aircraft came to be when I stumbled across the vintage Heller Breguet Alizé kit in 1:100 scale. I did some math and came to the conclusion that the kit would make a pretty plausible single-seat propeller aircraft in 1:72...

 

Finding a story and a potential user was more of a challenge. I finally settled on India – not only because the country had and has a potent aircraft industry, a COIN aircraft (apart from obsolete WWII types) would have matched well into the IAF in the early 70ies. Brazil was another manufacturer candidate – but then I had the vision of Indian Su-7 and their unique camouflage scheme, and this was what the kit was to evolve to! Muahahah!

 

What started as a simple adaptation idea turned into a true Frankenstein job, because only little was left from the Heller Alizé – the kit is SO crappy…

 

What was thrown into the mix:

• Fuselage, rudder and front wheel doors from the Heller Alizé

• Horizontal stabilizers from an Airfix P-51 Mustang

• Wings are the outer parts from an Airfix Fw 189, clipped and with new landing gear wells

• Landing gear comes from a Hobby Boss F-86, the main wheels from the scrap box

• Cockpit tub comes from a Heller Alpha Jet, seat and pilot from the scrap box

• The canopy comes from a Hobby Boss F4U Corsair

• Ordnance hardpoints were cut from styrene strips

• Propeller consists of a spinner from a Matchbox Mitsubishi Zero and blades from two AH-1 tail rotors

• Ordnance was puzzled together from the scrap box; the six retarder bombs appeared appropriate, the four missile pods were built from Matchbox parts. The wingtip tanks are streamlines 1.000 lbs bombs.

 

The only major sculpting work was done around the nose, in order to make the bigger propeller fiat and to simulate an appropriate air intake for the engine. Overall this thing looks pretty goofy, rather jet-like, with the slightly swept wings. On the other side, the Bāja does not look bad at all, and it has that “Small man’s A-10” aura to it.

 

Putting the parts together only posed two trouble zones: the canopy and the wings. The Corsair canopy would more or less fit, getting it in place and shaping the spine intersection was more demanding than expected. Still not perfect, but this was a “quick and dirty” project with a poor basis, anyway, so I don’t bother much.

Another tricky thing were the wings and getting them on the fuselage. That the Fw 189 wings ended up here has a reason: the original kit provided two pairs of upper wing halves, the lower halves were lacking! Here these obsolete parts finally found a good use, even though the resulting wing is pretty thick and called for some serious putty work on the belly side… Anyway, this was still easier than trying to modify the Alizé wings into something useful, and a thick wing ain’t bad for low altitude and bigger external loads.

  

Painting and markings

As mentioned before, the garish paint scheme is inspired by IAF Su-7 fighter bombers during/after the India-Pakistani confrontation of 1971. It’s almost surreal, reason enough to use it. Since a 1:72 Su-7 takes up so much shelf space I was happy to find this smaller aircraft as a suitable placebo.

 

I used Su-7 pictures as benchmarks, and settled for the following enamels as basic tones for the upper grey, brown and green:

• Humbrol 176 (Neutral Grey, out of production), for a dull and bluish medium grey

• Testors 1583 (Rubber), a very dark, reddish brown

• Humbrol 114 (Russian Green, out of production)

 

For the lower sides I used Testors 2123 (Russian Underside Blue). The kit received a black ink wash and some dry painting for weathering/more depth. Judging real life aircraft pics of IAF Su-7 and MiG-21, the original underside tone is hardly different from the upper blue grey and it seems on some aircraft as if the upper tone had been wrapped around. The aircraft do not appear very uniform at all, anyway.

 

Together with the bright IAF roundels the result looks a bit as if that thing had been designed by 6 year old, but the livery has its charm - the thing looks VERY unique! The roundels come from a generic TL Modellbau aftermarket sheet, the tactical codes are single white letters from the same manufacturer. Other stencils, warning signs and the squadron emblem come from the scrap box – Indian aircraft tend to look rather bleak and purposeful, except when wearing war game markings...

   

In the end, a small and quick project. The model was assembled in just two days, basic painting done on the third day and decals plus some weathering and detail work on the forth – including pics. A new record, even though this one was not built for perfectionism, rather as a recycling kit with lots of stock material at hand. But overall the Bāja looks exotic and somehow quite convincing?

An interesting photo, not because of its subject, but because of the way it has come about.

 

I've found a way to trick the minimum synchronization time of a D80, without the expensive HSS capable flash units. But from the beginning:

 

I own a Nikon D80, some lenses and a variety of flash units. My "flagship" is a Yongnuo YN565EX and two YN560II serve me as "workhorses" next to a Nikon SB-25 (and some other, older equipment from analog times).

 

A few days ago put a Facebook friend of mine, Galllo, an interesting task in his blog:

"Take a photo with flash exposure, with 1/4000th second, that is correctly exposed and no black bars ...

WITHOUT HSS / FP SYNC TO USE!"

 

Ok, my YN565EX is not capable of HSS and I always wanted to know, what I'm missing ;)

 

Under the following conditions, my trick seems to work reliably:

 

- I have set the D80 to "m"-mode, shutter speed is 1/1000 to 1/4000

(at least shorter than the regular sync speed)

 

- in the hot shoe of the D80 is the YN565EX, mode "m", power = 1/128,

Reflector head turned about 130 degrees to the back towards the YN560II

 

- diagonally behind me is one YN560II, mode "S1", power = 1/1.

Full power is important, even at 1/2 Power this trick goes wrong (I've tried!)

 

And off you go. Lack of sun today, I took ​​a picture of one of my favorite colleagues (here in the inspection of a desk lamp). I think even if the light is turned on, the direction and the strength of the shadow in the picture is relatively clear and the Exif data also.

In the image "4849 1 over 4000 fail" I only reduced the power of the YN560II from 1/1 to 1/2 - and it no longer worked.

 

The reason why this trick works at all, is the measurement pre-flash which the D80 sends over the YN565EX .

 

This measurement pre-flash occurs BEFORE the the focal plane shutter begins to open and ignites the YN560II, which works as an optical slave.

 

Only when the YN560II fires at full power, the flash duration seems to be long enough in order to properly expose the image.

 

At half the power of the 560II, you can only at 1/500 sec recognize a narrow strip that is exposed by lightning

(DSC 4854 1 over 500 half)

and only at 1/320 sec the Shutter is open long enough again to be able to exploit the shorter duration of the flash

(DSC 4856 over 1 320, little bit overexposed;) )

 

For a better understanding, I show a schematic of the setup (HSS-Hack D80) and some "photographic evidence".

 

( Thanks to Galllo for the provision of lighting sympols for Photoshop an PS Elements ).

 

Pictures and Text from Gizmag

For motorcyclists wishing to balance the inequities of the road-going pecking order, this could be the perfect mount. Vespa's 150 TAP might only be good for 40 mph, but the integrated M20 light anti-armor cannon shoots 75 mm rounds capable of penetrating 100 mm of armor from four miles.

Many motorcyclists over the years have wished for more "presence" with which to balance the inequities of the road-going pecking order, but until I wandered into the newly opened Vespa Museum near the Australian Albert Park Formula One Circuit this week, I had no idea that there had ever been a production two-wheeler which could command complete respect from fellow-roadgoers

n the late 1950s, French Vespa licensee ACMA (Ateliers de Construction de Motocycles et Automobiles) produced 500 (perhaps more) examples of this military Vespa with integrated M20 recoilless rifle / light anti-armor cannon, in two production runs in 1956 and 1959.

 

Though there's a lot of dubious information on the Vespa 150 TAP on the internet, much of which claims the rider could fire the M20 on the move, a close inspection of the 150 TAP convinced me that it was not set up to be fired from the scooter, partly due to the lack of access to the firing mechanism of the American-made M20 recoilless rifle, partly due to its mounting slightly across the frame (which would no doubt have resulted in some handling difficulties for the rider of the lightweight 150 kg scooter – recoilless is only a relative term in this instant), and partly due to the thin saddle covering, which might well have resulted in a fate worse than death. There's also the slight issue of aiming the M20 – not much point in getting that much firepower in place with limited ammunition and wasting it.

 

The idea behind a military Vespa was not entirely new, even though the iconic freedom machine of the Baby Boomers was less than a decade old when it was pressed into military service.

 

The Italian Vespa factory had developed a Vespa Force Armate (Armed Forces) prototype between 1949 and 1951 which boasted many advantages over the military motorcycles of the time: lighter weight; better low speed maneuverability; lower fuel consumption; the ability to carry a spare wheel and to change it rapidly on either end (if you think fixing a motorcycle tire is problematic, try doing it while people are shooting at you); and thanks to the scooter's reliable drive train (chains were one of the weaknesses of motorcycles of the period), less likelihood of being stranded in a hostile environment.

Vespa's factory-developed Vespa Force Armate prototype was envisaged with a variety of options, including mounting a submachine-gun on the handlebars, a radio under the saddle and an armored leg shield.

 

Though NATO trials showed the Vespa Force Armate was only 3 mph (5 km/h) down on the much larger traditional military bikes of the time in terms of top speed, and resulted in glowing appraisals. But after more than two years of negotiations, Enrico Piaggio canned the model. In a letter sent by Piaggio himself in 1952, he concluded he was “not interested in canvassing for State Orders since we know that its organs pay low prices and late” and that he was convinced that “the military are not worth the time of day.”

 

Hence when the French military decided it wanted a better mobility option for its airborne special forces ("Troupes Aéro Portées", hence the subsequent “TAP” acronym) than its existing American-made WWII Cushman scooters for the Algerian War, it organized a competition between French manufacturers for a replacement model.

 

In the end, it boiled down to a three-way shoot-out between prototypes based on the Valmobile 100, the Bernardet 250 and the Vespa. French Vespa licensee ACMA won the gig.

 

Despite an unmistakably different profile, the Vespa 150 TAP differed little from the Vespa scooter of the time. It used a 150cc two-stroke engine derived by ACMA from the Vespa 125 motor, with different bore and stroke to the Vespa 150 engine from the factory.

Other than the engine, plus the M20 light anti-armor cannon, rack and ammunition mounts, the only major differences to a standard Vespa were a strengthened frame and lower gearing which gave it a top speed of just 40 mph (64 km/h).

 

The TAPs were designed to be dropped into theater by parachute on a palette, protected by hay-bales, fully assembled and ready for almost immediate action. As such, the TAP offered a highly mobile lethal capability with which to counter guerrillas – the M20 was originally designed as an anti-tank weapon and using a HEAT warhead, it was claimed to be capable of penetrating 100mm of armor and striking from a distance of 7,000 yards (6.4 km). The 150 TAP was often deployed with a trailer, which was used for additional supplies and a lightweight stand for the M20.

 

Though the M20 with HEAT warhead was found to be ineffective against up-armored T-34 tanks during the Korean War, it was ideal against more makeshift field fortifications and used quite effectively during the Algerian and Indochine conflicts (the second ultimately becoming the Vietnam War).

 

Alternative warheads were available for the M20, one of which could lay a smokescreen – another helpful capability in the asymmetric conflicts in which it was used.

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!

  

Some background:

The origins of the Henschel Hs 165 date back to early 1937, when the Reichsluftfahrtministerium (RLM, German Ministry of Aviation) issued a specification for a carrier-based torpedo bomber to operate from Germany's first aircraft carrier, the Graf Zeppelin construction of which had started at the end of 1936. The specification was originally issued to two aircraft producers, Fieseler and Arado, and demanded an all-metal biplane with a maximum speed of at least 300 km/h (186 mph), a range of at least 1,000 km and capable both of torpedo and dive-bombing. By the summer of 1938 the Fieseler design proved to be superior to the Arado design, the Ar 195.

Anyway, by the time the Fi 167 prototype was ready for tests and proved its excellent handling, the biplane layout was already outdated and did not promise much development potential. Therefore, the RLM's request was repeated in late 1938 and a monoplane requested. Since the Graf Zeppelin was not expected to be completed before the end of 1940, the RLM did not put much pressure behind the project.

 

Among others, Henschel replied with the Hs 165. It was a compact and conservative low wing monoplane of all-metal construction with a crew of two (pilot and navigator/observer/gunner) under a common, heavily framed and high glasshouse canopy. In order to achieve a high performance, the airframe was originally developed around the new 14 cylinder BMW 139 radial engine with 1,550 hp (1,140 kW). The main landing gear was fully retractable, retracting outwards into wells that were part of the outer, foldable wings. Similar to the Ju87 C, the wings could manually be folded backwards, so that the aircraft became very compact for onboard stowage.

The tail wheel, placed behind a V-shaped arrester hook, could not be retracted, even though a mechanism allowed the control of the tail's ground clearance for the carriage of a torpedo under the fuselage and an optimized angle of attack for starts and landings.

 

Armament consisted of a pair of 20mm MG FF cannons in the wings, a pair of 7.92mm machine guns above the engine, synchronized to fire through the propeller arc, and another single light machine gun for rear defense.

 

Among the special equipment of the Hs 165 for naval operations was a two-seat rubber dinghy with signal ammunition and emergency ammunition. A quick fuel dump mechanism and two inflatable 750 L (200 US gal) bags in each wing and a further two 500 L (130 US gal) bags in the fuselage enabled the aircraft to remain afloat for up to three days in calm seas.

 

When the first two prototypes of the Hs 165 (the V-1 and V-2) were about to be finished, it became clear that the BMW 139 would not materialize, but rather be replaced by an even more powerful engine. The new design was given the name BMW 801 after BMW was given a new block of "109-800" engine numbers by the RLM to use after their merger with Bramo. The first BMW 801A's ran in April 1939, only six months after starting work on the design, with production commencing in 1940.

 

Hs 165 V-1 was re-engined and ready for testing in mid 1940, while the first catapult launch tests on board of the Graf Zeppelin carrier were already carried out with Arado Ar 197s, modified Junkers Ju 87Bs and modified Messerschmitt Bf 109Ds. However, the Graf Zeppelin was still incomplete and not ready for full military service, and the changing strategic situation led to further work on her being suspended. In the wake of this decision, the completion of further carrier-borne aircraft was stopped and the completed examples were taken into Luftwaffe service in several evaluation/test units.

 

The Hs 165 initially fell victim to this decision, and only five airworthy airframes were completed as Hs 165 A-0 pre-production aircraft. Anyway, these were kept in service as test beds and other development duties, and Henschel kept working on detail improvements since the aircraft was also intended to become a land-based replacement for the Ju 87 dive bombers which had become obsolete by 1941, too. This aircraft was planned as the Hs 165 B.

 

However, by the spring of 1942 the usefulness of aircraft carriers in modern naval warfare had been amply demonstrated, and on 13 May 1942, the German Naval Supreme Command ordered work resumed on the German carrier projects. Henschel was happy to have the refined Hs 165 A at hand, and the type was immediately put into production.

 

The resulting Hs 165 A-1 differed in many equipment details from the former pre-production aircraft, and the armament was upgraded, too. The wing-mounted MG FF 20mm cannons were replaced with more effective and lighter MG 151/20 guns, while the pair of MG 17 machine guns above the engine was replaced by a pair of heavy MG 131 machine guns. The observer's single, light MG 15 machine gun was also upgraded to a belt-fed MG 81Z with two barrels, or a single MG 131.

The original BMW 801A engine remained the same, though, and due to the Hs 165 A-1’s higher overall weight the aircraft's performance deteriorated slightly.

 

Production did not last for long though, because further work on the Graf Zeppelin was soon terminated, and this time for good. In the meantime, the RLM had also decided to reduce the variety of aircraft types and rather develop specialized versions of existing aircraft than dedicated types like the Hs 165. As a consequence Hs 165 production was stopped again in June 1943, with several improved versions on the drawing board. These included the A-2 single seater and the C with an alternative liquid-cooled Jumo 213 powerplant.

The land-based Hs 165 B never materialized because, at the time of the type’s introduction into service, the dive bomber concept had turned out to be much too vulnerable in the European theatre of operations. Effectively, the Hs 165 needed cover from more agile fighters and did not stand a chance against enemy fighters.

 

However, until the end of production about 100 Hs 165 aircraft had been delivered to land-based front line units, since no German aircraft carrier ever materialized, and these machines were primarily used in Northern Europe in the coastal defense role and for harassment attacks in the North and Baltic Sea until 1945.

In service, they were gradually replaced by Ju 88 torpedo bombers and the Fw 190 A-5a/U14, which was able to carry a single torpedo, too, but offered a much better performance than the heavy and large Hs 165.

  

General characteristics:

Crew: 2 (pilot and observer/gunner)

Length: 11.08 m (36 ft 4 in)

Wingspan: 13.95 m (45 ft 9 in)

Height: 4.18 m (13 ft 8 in)

Wing area: 26.8 m² (288 ft²)

Empty weight: 9,725 lb (4,411 kg)

Max. takeoff weight: 14,300 lb (6,486 kg)

 

Powerplant:

1 × BMW 801A air-cooled 14 cylinder two row radial engine, 1,700 hp (1,250 kW)

 

Performance:

Maximum speed: 302 mph (262 kn, 486 km/h) at 11,000 ft (3,350 m)

Cruise speed: 235 mph (204 kn, 378 km/h)

Range: 1,400 miles (1,220 nmi, 2,253 km)

Service ceiling: 22,500 ft (6,860 m)

Wing loading: 43.1 lb/ft² (210 kg/m²)

Power/mass: 0.12 hp/lb (0.19 kW/kg)

 

Armament:

2× 20 mm MG 151/20 cannon in the wings

2 × 13 mm MG 131 machine gun above the engine

1 × 7.92 mm MG 81Z, firing backwards

 

1× 1000 kg (2,200 lb) bomb, or

1× 765 kg (1,685 lb) torpedo, or

1 × 500 kg (1,100 lb) bomb plus 4 × 50 kg (110 lb) bombs, or

4 × 250 kg (551 lb) ventrally

  

The kit and its assembly:

Another entry for the 2016 "In the Navy" Group Build at whatfimodelers.com, and in this case a complete kitbash for a fictional aircraft. Originally, this idea started as a Hs 126 on floats, which then turned into a low wing aircraft (in the Ju 87 class) and finally evolved into a carrier-capable torpedo bomber. Pretty dramatic evolution, but once the plan was settled, things quickly turned into hardware.

 

Ingredients include:

- Fuselage, cockpit and stabilizers (though mounted differently) from an Italeri Hs 126

- Wings from a Mastercraft (ex ZTM Plastyk) PZL 23 Karas, with the ventral gondala removed

- Landing gear from a Matchbox He 70, wheels from a Mastercraft Su-22;

- Engine/cowling from an Academy Fw 190, plus various donation parts and a putty plug

- Canopy from a Matchbox Brewster Buffalo

- German torpedo from the spares box (IIRC from an Italeri He 111)

 

Even though this is a kitbash, work was rather easy and straightforward, because most of the parts come from OOB donation kits. First, the Hs 126 fuselage was finished without an interior and the Fw 190 nose section transplanted. Inside, a styrene tube was added in order to hold the propeller and let it spin freely. In parallel, the landing gear wells were cut into the wings and the flaps separated/opened. Then the canopy was integrated into the fuselage, using styrene strips and putty.

For the wings, a wide opening had to be cut into the Hs 126’s lower fuselage, and the parts took some putty work to blend together.

Once the wings were in place, the landing gear was mounted as well as the scratched torpedo hardpoint. The cockpit interior followed suit with new seats and two figures, then the Buffalo canopy was modified for the rear machine gun mount and glued into place.

  

Painting and markings:

I wanted a rather "dry", typical German livery, and settled for a simple splinter scheme with a low waterline in the naval colors RLM 72 (a kind of very dark olive drab) and 73 (a bluish, very dark green) with light blue (RLM 65) undersides.

 

In this case I used enamels from the Modelmaster Authentic range, treated with a light black ink wash and with serious panel shading (with Humbrol 66 and a mix of Humbrol 30 + 77, respectively), because some color pictures I got hands on from early German naval aircraft (e. g. He 115 or Ar 196) suggest that the two murky, green tones weathered and bleached easily, and the enhanced contrast between the very similar colors was IMHO helpful, anyway.

 

The interior and the landing gearw as painted in contemporary RLM 02, the torpedo is simple black with a gun metal tip and a brass propeller.

 

The markings had to be puzzled together; I originally wanted the kit to be part of one of the Küstenfliegergruppen, in particular KüFliGr 106. But in mid 1943, these were partly integrated into the Kampffliegergruppen, and offensive parts of KüFliGr 106 were added to KG 6. It took some time to figure out where KG 6 was operating in the time frame I wanted to place the Hs 165, and eventually found 8./KG 6 from the third group that was based in Belgium at that time and flew Ju 88 torpedo bombers - so I added the Hs 165 to that squadron.

 

As a side effect, the aircraft would not carry any of the fuselage bands or other bright ID markings - the only color highlights are the red wing tip and the individual code "K" letter, and I used a grey decal for the 8th squadron's code letter "S" for better contrast with the dark green livery. Another "highlight" is a KG 6 emblem behind the engine, which I found on a Peddinghaus Decals sheet in the stash. Anyway, this minimal and very conservative livery does not look bad at all, though?

  

A complex kitbashing,done in about a week, and despite some trouble and major body work the result looks IMHO very good - especially the flight scenes, with the retracted (retouched...) landing gear show the sleek lines of the Hs 126, the fictional Hs 165 looks pretty fast and purposeful. And with a different engine, this could also carry some Hinomaru - the thing reminds me a lot of Japanese torpedo bombers (e. g. the B5N?) and carrier-borne reconnaissance aircraft?

 

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!

  

Some background:

The Supermarine Seafire was a naval version of the Supermarine Spitfire adapted for operation from aircraft carriers. It was analogous in concept to the Hawker Sea Hurricane, a navalized version of the Spitfire's stablemate, the Hawker Hurricane. The name Seafire was derived from the abbreviation of the longer name Sea Spitfire.

 

The idea of adopting a navalized, carrier-capable version of the Supermarine Spitfire had been mooted by the Admiralty as early as May 1938. Despite a pressing need to replace various types of obsolete aircraft that were still in operation with the Fleet Air Arm (FAA), some opposed the notion, such as Winston Churchill, although these disputes were often a result of an overriding priority being placed on maximizing production of land-based Spitfires instead. During 1941 and early 1942, the concept was again pushed for by the Admiralty, culminating in an initial batch of Seafire Mk Ib fighters being provided in late 1941, which were mainly used for pilots to gain experience operating the type at sea. While there were concerns over the low strength of its undercarriage, which had not been strengthened like many naval aircraft would have been, its performance was found to be acceptable.

 

From 1942 onwards, further Seafire models were quickly ordered, including the first operationally-viable Seafire F Mk III variant. This led to the type rapidly spreading throughout the FAA. In November 1942, the first combat use of the Seafire occurred during Operation Torch, the Allied landings in North Africa. In July 1943, the Seafire was used to provide air cover for the Allied invasion of Sicily; and reprised this role in September 1943 during the subsequent Allied invasion of Italy. During 1944, the type was again used in quantity to provide aerial support to Allied ground forces during the Normandy landings and Operation Dragoon in Southern France. During the latter half of 1944, the Seafire became a part of the aerial component of the British Pacific Fleet, where it quickly proved to be a capable interceptor against the feared kamikaze attacks by Japanese pilots which had become increasingly common during the final years of the Pacific War. Several Seafire variants were produced during WWII, more or less mirroring the development of its land-based ancestor.

 

The Seafire continued to be used for some time after the end of the war, and new, dedicated versions were developed and exported. The FAA opted to promptly withdraw all of its Merlin-powered Seafires and replace them with Griffon-powered counterparts. The type saw further active combat use during the Korean War, in which FAA Seafires performed hundreds of missions in the ground attack and combat air patrol roles against North Korean forces during 1950. The Seafire was withdrawn from FAA service during the 1950s and was replaced by the newer Hawker Sea Fury, the last piston engine fighter to be used by the service, along with the first generation of jet-propelled naval fighters, such as the de Havilland Vampire, Supermarine Attacker, and Hawker Sea Hawk.

 

After WWII, the Royal Canadian Navy and French Aviation Navale also obtained Seafires to operate from ex-Royal Navy aircraft carriers. France received a total of 140 Seafires of various versions from 1946 on, including 114 Seafire Mk IIIs in two tranches (35 of them were set aside for spare part) until 1948, and these were followed in 1949 by fifteen Mk. 15 fighters and twelve FR Mk. 23 armed photo reconnaissance aircraft. Additionally, twenty land-based Mk. IXs were delivered to Naval Air Station Cuers-Pierrefeu as trainers.

 

The Seafire Mk. 23 was a dedicated post-war export version. It combined several old and new features and was the final “new” Spitfire variant to be powered by a Merlin engine, namely a Rolls-Royce Merlin 66M with 1,720 hp (1,283 kW) that drove a four-blade propeller. The Mk. 23 was originally built as a fighter (as Seafire F Mk. 23), but most machines were delivered or later converted with provisions for being fitted with two F24 cameras in the rear fuselage and received the service designation FR Mk. 23 (or just FR.23). Only 32 of this interim post-war version were built by Cunliffe-Owen, and all of them were sold to foreign customers.

 

Like the Seafire 17, the 23 had a cut-down rear fuselage and teardrop canopy, which afforded a better all-round field of view than the original cockpit. The windscreen was modified, too, to a rounded section, with narrow quarter windows, rather than the flat windscreen used on land-based Spitfires. As a novel feature the Seafire 23 featured a "sting" arrestor hook instead of the previous V-shaped ventral arrangement.

The fuel capacity was 120 gal (545 l) distributed in two main forward fuselage tanks: the lower tank carried 48 gal (218 l) while the upper tank carried 36 gal (163 l), plus two fuel tanks built into the leading edges of the wings with capacities of 12.5 (57 l) and 5.5 gal (25 l) respectively. It featured a reinforced main undercarriage with longer oleos and a lower rebound ratio, a measure to tame the deck behavior of the Mk. 15 and reducing the propensity of the propeller tips "pecking" the deck during an arrested landing. The softer oleos also stopped the aircraft from occasionally bouncing over the arrestor wires and into the crash barrier.

The wings were taken over from the contemporary Spitfire 21 and therefore not foldable. However, this saved weight and complexity, and the Seafire’s compact dimensions made this flaw acceptable for its operators. The wings were furthermore reinforced, with a stronger main spar necessitated by the new undercarriage, and as a bonus they were able to carry heavier underwing loads than previous Seafire variants. This made the type not only suitable for classic dogfighting (basic armament consisted of four short-barreled 20 mm Hispano V cannon in the outer wings), but also for attack missions with bombs and unguided rockets.

 

The Seafire’s Aéronavale service was quite short, even though they saw hot battle duty. 24 Mk. IIIs were deployed on the carrier Arromanches in 1948 when it sailed for Vietnam to fight in the First Indochina War. The French Seafires operated from land bases and from Arromanches on ground attack missions against the Viet Minh before being withdrawn from combat operations in January 1949.

After returning to European waters, the Aéronavale’s Seafire frontline units were re-equipped with the more modern and capable Seafire 15s and FR 23s, but these were also quickly replaced by Grumman F6F Hellcats from American surplus stock, starting already in 1950. The fighters were retired from carrier operations and soon relegated to training and liaison duties, and eventually scrapped. However, the FR.23s were at this time the only carrier-capable photo reconnaissance aircraft in the Aéronavale’s ranks, so that these machines remained active with Flottille 1.F until 1955, but their career was rather short, too, and immediately ended when the first naval jets became available and raised the performance bar.

  

General characteristics:

Crew: 1

Length: 31 ft 10 in (9.70 m)

Wingspan: 36 ft 10 in (11.23 m)

Height: 12 ft 9 in (3.89 m) tail down with propeller blade vertical

Wing area: 242.1 ft² (22.5 m²)

Empty weight: 5,564 lb (2,524 kg)

Gross weight: 7,415 lb (3,363 kg)

 

Powerplant:

1× Rolls-Royce Merlin 66M V-12 liquid-cooled piston engine,

delivering 1,720 hp (1,283 kW) at 11,000 ft and driving a 4-bladed constant-speed propeller

 

Performance:

Maximum speed: 404 mph (650 km/h) at 21,000 ft (6,400 m)

Cruise speed: 272 mph (438 km/h, 236 kn)

Range: 493 mi (793 km) on internal fuel at cruising speed

965 mi (1,553 km) with 90 gal drop tank

Service ceiling: 42,500 ft (12,954 m)

Rate of climb: 4,745 ft/min (24.1 m/s) at 10,000 ft (3,048 m)

Time to altitude: 20,000 ft (6,096 m) in 8 minutes 6 seconds

 

Armament:

4× 20 mm Hispano V cannon; 175 rpg inboard, 150 rpg outboard

Hardpoints for up to 2× 250 lb (110 kg) bombs (outer wings), plus 1× 500 lb (230 kg) bomb

(ventral hardpoint) or drop tanks, or up to 8× "60 lb" RP-3 rockets on zero-length launchers

  

The kit and its assembly:

This build was another attempt to reduce The Stash. The basis was a Special Hobby FR Mk. 47, which I had originally bought as a donor kit: the engine housing bulges of its Griffon engine were transplanted onto a racing P-51D Mustang. Most of the kit was still there, and from this basis I decided to create a fictional post-WWII Seafire/Spitfire variant.

 

With the Griffon fairings gone a Merlin engine was settled, and the rest developed spontaneously. The propeller was improvised, with a P-51D spinner (Academy kit) and blades from the OOB 5-blade propeller, which are slightly deeper than the blades from the Spitfire Mk. IX/XVI prop. In order to attach it to the hull and keep it movable, I implanted my standard metal axis/styrene tube arrangement.

 

With the smaller Merlin engine, I used the original, smaller Spitfire stabilizers but had to use the big, late rudder, due to the taller fin of the post-ware Spit-/Seafire models. The four-spoke wheels also belong to an earlier Seafire variant. Since it was an option in the kit, I went for a fuselage with camera openings (the kit comes with two alternative fuselages as well as a vast range of optional parts for probably ANY late Spit- and Seafire variant – and also for many fictional hybrids!), resulting in a low spine and a bubble canopy, what gives the aircraft IMHO very sleek and elegant lines. In order to maintain this impression I also used the short cannon barrels from the kit. For extended range on recce missions I furthermore gave the model the exotic underwing slipper tanks instead of the optional missile launch rail stubs under the outer wing sections. Another mod is the re-installment of the small oil cooler under the left wing root from a Spitfire Mk. V instead of the symmetrical standard radiator pair – just another subtle sign that “something’s not right” here.

  

Painting and markings:

The decision to build this model as a French aircraft was inspired by a Caracal Decals set with an Aéronavale Seafire III from the Vietnam tour of duty in 1948, an aircraft with interesting roundels that still carried British FAA WWII colors (Dark Slate Grey/Dark Sea Grey, Sky). Later liveries of the type remain a little obscure, though, and information about them is contradictive. Some profiles show French Seafires in British colors, with uniform (Extra) Dark Sea Grey upper and Sky lower surfaces, combined with a high waterline – much like contemporary FAA aircraft like the Sea Fury. However, I am a bit in doubt concerning the Sky, because French naval aircraft of that era, esp. recce types like the Shorts Sunderland or PBY Catalina, were rather painted in white or very light grey, just with uniform dark grey upper surfaces, reminding of British Coastal Command WWII aircraft.

 

Since this model would be a whif, anyway, and for a pretty look, I adopted the latter design, backed by an undated profile of a contemporary Seafire Mk. XV from Flottille S.54, a training unit, probably from the Fifties - not any valid guarantee for authenticity, but it looks good, if not elegant!

Another option from that era would have been an all-blue USN style livery, which should look great on a Spitfire, too. But I wanted something more elegant and odd, underpinning the bubbletop Seafire’s clean lines.

 

I settled for Extra Dark Sea Grey (Humbrol 123) and Light Grey (FS. 36495, Humbrol 147) as basic tones, with a very high waterline. The spinner was painted yellow, the only colorful marking. Being a post-war aircraft of British origin, the cockpit interior was painted in black (Revell 09, anthracite). The landing gear wells became RAF Cockpit Green (Humbrol 78), while the inside of the respective covers became Sky (Humbrol 90) – reflecting the RAF/FAA’s post-war practice of applying the external camouflage paint on these surfaces on Spit-/Seafires, too. On this specific aircraft the model displays, just the exterior had been painted over by the new operator. Looks weird, but it’s a nice detail.

 

The roundels came from the aforementioned 1948 Seafire Mk. III, and their odd design – esp. the large ones on the wings, and only the fuselage roundels carry the Aéronavale’s anchor icon and a yellow border – creates a slightly confusing look. Unfortunately, the roundels were not 100% opaque, this became only apparent after their application, and they did not adhere well, either.

The tactical code had to be improvised with single, black letters of various sizes – they come from a Hobby Boss F4F USN pre-WWII Wildcat, but were completely re-arrenged into the French format. The fin flash on the rudder had to be painted, with red and blue paint, in an attempt to match the decals’ tones, and separated by a white decal stripe. The anchor icon on the rudder had to be printed by myself, unfortunately the decal on the bow side partly disintegrated. Stencils were taken from the Special Hobby kit’s OOB sheet.

 

The model received a light black ink washing, post-panel shading with dry-brushing and some soot stains around the exhausts, but not too much weathering, since it would be relatively new. Finally, everything was sealed with matt acrylic varnish.

  

A relatively quick and simple build, and the Special Hobby kit went together with little problems – a very nice and versatile offering. The mods are subtle, but I like the slender look of this late Spitfire model, coupled with the elegant Merlin engine – combined into the fictional Mk. 23. The elegant livery just underlines the aircraft’s sleek lines. Not spectacular, but a pretty result.

 

Some background:

The idea for a heavy infantry support vehicle capable of demolishing heavily defended buildings or fortified areas with a single shot came out of the experiences of the heavy urban fighting in the Battle of Stalingrad in 1942. At the time, the Wehrmacht had only the Sturm-Infanteriegeschütz 33B available for destroying buildings, a Sturmgeschütz III variant armed with a 15 cm sIG 33 heavy infantry gun. Twelve of them were lost in the fighting at Stalingrad. Its successor, the Sturmpanzer IV, also known by Allies as Brummbär, was in production from early 1943. This was essentially an improved version of the earlier design, mounting the same gun on the Panzer IV chassis with greatly improved armour protection.

 

While greatly improved compared to the earlier models, by this time infantry anti-tank weapons were improving dramatically, too, and the Wehrmacht still saw a need for a similar, but more heavily armoured and armed vehicle. Therefore, a decision was made to create a new vehicle based on the Tiger tank and arm it with a 210 mm howitzer. However, this weapon turned out not to be available at the time and was therefore replaced by a 380 mm rocket launcher, which was adapted from a Kriegsmarine depth charge launcher.

 

The 380 mm Raketen-Werfer 61 L/5.4 was a breech-loading barrel, which fired a short-range, rocket-propelled projectile roughly 1.5 m (4 ft 11 in) long. The gun itself existed in two iterations at the time. One, the RaG 43 (Raketenabschuss-Gerät 43), was a ship-mounted anti-aircraft weapon used for firing a cable-spooled parachute-anchor creating a hazard for aircraft. The second, the RTG 38 (Raketen Tauch-Geschoss 38), was a land-based system, originally planned for use in coastal installations by the Kriegsmarine firing depth-charges against submarines with a range of about 3.000 m. For use in a vehicle, the RTG 38 was to find use as a demolition gun and had to be modified for that role. This modification work was carried out by Rheinmetall at their Sommerda works.

 

The design of the rocket system caused some problems. Modified for use in a vehicle, the recoil from the modified rocket-mortar was enormous, about 40-tonnes, and this meant that only a heavy chassis could be used to mount the gun. The hot rocket exhaust could not be vented into the fighting compartment nor could the barrel withstand the pressure if the gasses were not vented. Therefore, a ring of ventilation shafts was put around the barrel which channeled the exhaust and gave the weapon something of a pepperbox appearance.

 

The shells for the weapon were extremely heavy, far too heavy for a man to load manually. As a result, each of them had to be carried by means of a ceiling-mounted trolley from their rack to a roller-mounted tray at the breech. Once on the tray, four soldiers could then push it into the breech to load it. The whole process took 10 minutes per shot from loading, aiming, elevating and, finally, to firing.

There were a variety of rocket-assisted round types with a weight of up to 376 kg (829 lb), and a maximum range of up to 6,000 m (20,000 ft), which either contained a high explosive charge of 125 kg (276 lb) or a shaped charge for use against fortifications, which could penetrate up to 2.5 m (8 ft 2 in) of reinforced concrete. The stated range of the former was 5,650 m (6,180 yd). A normal charge first accelerated the projectile to 45 m/s (150 ft/s) to leave the short, rifled barrel, the 40 kg (88 lb) rocket charge then boosted this to about 250 m/s (820 ft/s).

 

In September 1943 plans were made for Krupp to fabricate new Tiger I armored hulls for the Sturmtiger. The Tiger I hulls were to be sent to Henschel for chassis assembly and then to Alkett, where the superstructures would be mounted. The first prototype was ready and presented in October 1943. By May 1944, the Sturmtiger prototype had been kept busy with trials and firing tests for the development of range tables, but production had still not started yet and the concept was likely to be scrapped. Rather than ditch the idea though, orders were given that, instead of interrupting the production of the Tiger I, the Sturmtigers would be built on the chassis of Tiger I tanks which had already been in action and suffered serious damage. Twelve superstructures and RW 61 weapons were prepared and mounted on rebuilt Tiger I chassis. However, by August 1944 the dire need for this kind of vehicle led to the adaptation of another chassis to the 380 mm Sturmmörser: the SdKfz. 184, better known as “Ferdinand” (after its designer’s forename) and later, in an upgraded version, “Elefant”.

 

The Elefant (German for "elephant") was actually a heavy tank destroyer and the result of mismanagement and poor planning: Porsche GmbH had manufactured about 100 chassis for their unsuccessful proposal for the Tiger I tank, the so-called "Porsche Tiger". Both the successful Henschel proposal and the Porsche design used the same Krupp-designed turret—the Henschel design had its turret more-or-less centrally located on its hull, while the Porsche design placed the turret much closer to the front of the superstructure. Since the competing Henschel Tiger design was chosen for production, the Porsche chassis were no longer required for the Tiger tank project, and Porsche was left with 100 unfinished heavy tank hulls.

It was therefore decided that the Porsche chassis were to be used as the basis of a new heavy tank hunter, the Ferdinand, mounting Krupp's newly developed 88 mm (3.5 in) Panzerjägerkanone 43/2 (PaK 43) anti-tank gun with a new, long L71 barrel. This precise long-range weapon was intended to destroy enemy tanks before they came within their own range of effective fire, but in order to mount the very long and heavy weapon on the Porsche hull, its layout had to be completely redesigned.

 

Porsche’s SdKfz. 184’s unusual petrol-electric transmission made it much easier to relocate the engines than would be the case on a mechanical-transmission vehicle, since the engines could be mounted anywhere, and only the length of the power cables needed to be altered, as opposed to re-designing the driveshafts and locating the engines for the easiest routing of power shafts to the gearbox. Without the forward-mounted turret of the Porsche Tiger prototype, the twin engines were relocated to the front, where the turret had been, leaving room ahead of them for the driver and radio operator. As the engines were placed in the middle, the driver and the radio operator were isolated from the rest of the crew and could be addressed only by intercom. The now empty rear half of the hull was covered with a heavily armored, full five-sided casemate with slightly sloped upper faces and armored solid roof, and turned into a crew compartment, mounting a single 8.8 cm Pak 43 cannon in the forward face of the casemate.

 

From this readily available basis, the SdKfz. 184/1 was hurriedly developed. It differed from the tank hunter primarily through its new casemate that held the 380 mm Raketenwerfer. Since the SdKfz. 184/1 was intended for use in urban areas in close range street fighting, it needed to be heavily armoured to survive. Its front plate had a greater slope than the Ferdinand while the sides were more vertical and the roof was flat. Its sloped (at 47° from vertical) frontal casemate armor was 150 mm (5.9 in) thick, while its superstructure side and rear plates had a strength of 82 mm (3.2 in). The SdKfz.184/1 also received add-on armor of 100 mm thickness, bolted to the hull’s original vertical front plates, increasing the thickness to 200 mm but adding 5 tons of weight. All these measures pushed the weight of the vehicle up from the Ferdinand’s already bulky 65 t to 75 t, limiting the vehicle’s manoeuvrability even further. Located at the rear of the loading hatch was a Nahverteidigungswaffe launcher which was used for close defense against infantry with SMi 35 anti-personnel mines, even though smoke grenades or signal flares could be fired with the device in all directions, too. For close-range defense, a 7.92 mm MG 34 machine gun was carried in a ball mount in the front plate, an addition that was introduced to the Elefant tank hunters, too, after the SdKfz. 184 had during its initial deployments turned out to be very vulnerable to infantry attacks.

 

Due to the size of the RW 61 and the bulkiness of the ammunition, only fourteen rounds could be carried internally, of which one was already loaded, with another stored in the loading tray, and the rest were carried in two storage racks, leaving only little space for the crew of four in the rear compartment. To help with the loading of ammunition into the vehicle, a loading crane was fitted at the rear of the superstructure next to the loading hatch on the roof.

Due to the internal limits and the tactical nature of the vehicle, it was intended that each SdKfz. 184/1 (as well as each Sturmtiger) would be accompanied by an ammunition carrier, typically based on the Panzer IV chassis, but the lack of resources did not make this possible. There were even plans to build a dedicated, heavily armored ammunition carrier on the Tiger I chassis, but only one such carrier was completed and tested, it never reached production status.

 

By the time the first RW 61 carriers had become available, Germany had lost the initiative, with the Wehrmacht being almost exclusively on the defensive rather than the offensive, and this new tactical situation significantly weakened the value of both Sturmtiger and Sturmelefant, how the SdKfz 184/1 was semi-officially baptized. Nevertheless, three new Panzer companies were raised to operate the Sturmpanzer types: Panzer Sturmmörser Kompanien (PzStuMrKp) ("Armored Assault Mortar Company") 1000, 1001 and 1002. These originally were supposed to be equipped with fourteen vehicles each, but this figure was later reduced to four each, divided into two platoons, consisting of mixed vehicle types – whatever was available and operational.

 

PzStuMrKp 1000 was raised on 13 August 1944 and fought during the Warsaw Uprising with two vehicles, as did the prototype in a separate action, which may have been the only time the Sturmtiger was used in its intended role. PzStuMrKp 1001 and 1002 followed in September and October. Both PzStuMrKp 1000 and 1001 served during the Ardennes Offensive, with a total of four Sturmtiger and three Sturmelefanten.

After this offensive, the Sturmpanzer were used in the defence of Germany, mainly on the Western Front. During the battle for the bridge at Remagen, German forces mobilized Sturmmörserkompanie 1000 and 1001 (with a total of 7 vehicles, five Sturmtiger and two Sturmelefanten) to take part in the battle. The tanks were originally tasked with using their mortars against the bridge itself, though it was discovered that they lacked the accuracy needed to hit the bridge and cause significant damage with precise hits to vital structures. During this action, one of the Sturmtigers in Sturmmörserkompanie 1001 near Düren and Euskirchen allegedly hit a group of stationary Shermans tanks in a village with a 380mm round, resulting in nearly all the Shermans being put out of action and their crews killed or wounded - the only recorded tank-on-tank combat a Sturmtiger was ever engaged in. After the bridge fell to the Allies, Sturmmörserkompanie 1000 and 1001 were tasked with bombardment of Allied forces to cover the German retreat, as opposed to the bunker busting for which they had originally been designed for. None was actually destroyed through enemy fire, but many vehicles had to be given up due to mechanical failures or the lack of fuel. Most were blown up by their crews, but a few fell into allied hands in an operational state.

 

Total production numbers of the SdKfz. 184/1 are uncertain but, being an emergency product and based on a limited chassis supply, the number of vehicles that left the Nibelungenwerke in Austria was no more than ten – also because the tank hunter conversion had top priority and the exotic RW 61 launcher was in very limited supply. As a consequence, only a total of 18 Sturmtiger had been finished by December 1945 and put into service, too. However, the 380 mm Raketen-Werfer 61 remained in production and was in early 1946 adapted to the new Einheitspanzer E-50/75 chassis.

  

Specifications:

Crew: Six (driver, radio operator/machine gunner in the front cabin,

commander, gunner, 2× loader in the casemate section)

Weight: 75 tons

Length: 7,05 m (23 ft 1½ in)

Width: 3,38 m (11 ft 1 in)

Height w/o crane: 3,02 m (9 ft 10¾ in)

Ground clearance: 1ft 6¾ in (48 cm)

Climbing: 2 ft 6½ in (78 cm)

Fording depth: 3 ft 3¼ (1m)

Trench crossing: 8 ft 7 ¾ in (2,64 m)

Suspension: Longitudinal torsion-bar

Fuel capacity: 1.050 liters

 

Armour:

62 to 200 mm (2.44 to 7.87 in)

 

Performance:

30 km/h (19 mph) on road

15 km/h (10 miles per hour () off road

Operational range: 150 km (93 mi) on road

90 km (56 mi) cross-country

Power/weight: 8 hp/ton

 

Engine:

2× Maybach HL120 TRM petrol engines with 300 PS (246 hp, 221 kW) each, powering…

2× Siemens-Schuckert D1495a 500 Volt electric engines with 320 PS (316 hp, 230 kW) each

 

Transmission:

Electric

 

Armament:

1x 380 mm RW 61 rocket launcher L/5.4 with 14 rounds

1x 7.92 mm (0.312 in) MG 34 machine gun with 600 rounds

1x 100 mm grenade launcher (firing anti-personnel mines, smoke grenades or signal flares)

  

The kit and its assembly:.

This fictional tank model is not my own idea, it is rather based on a picture of a similar kitbashing of an Elefant with a Sturmtiger casemate and its massive missile launcher – even though it was a rather crude model, with a casemate created from cardboard. However, I found the idea charming, even more so because the Ferdinand/Elefant was rather a rolling bunker than an agile tank hunter, despite its powerful weapon. Why not use the same chassis as a carrier for the Sturmtiger’s huge mortar as an assault SPG?

 

The resulting Sturmelefant was created as a kitbashing: the chassis is an early boxing of the Trumpeter Elefant, which comes not only with IP track segments but also alternative vinyl tracks (later boxing do not feature them), and casemate parts come from a Trumpeter Sturmtiger.

While one would think that switching the casemate would be straightforward affair, the conversion turned out to be more complex than expected. Both Elefant and Sturmtiger come with separate casemate pieces, but they are not compatible. The Sturmtiger casemate is 2mm wider than the Elefant’s hull, and its glacis plate is deeper than the Elefant’s, leaving 4mm wide gaps at the sides and the rear. One option could have been to trim down the glacis plate, but I found the roofline to become much too low – and the casemate’s length would have been reduced.

 

So, I used the Sturmtiger casemate “as is” and filled the gaps with styrene sheet strips. This worked, but the casemate’s width created now inward-bent sections that looked unplausible. Nobody, even grazed German engineers, would not have neglected the laws of structural integrity. What to do? Tailoring the casemate’s sides down would have been one route, but this would have had created a strange shape. The alternative I chose was to widen the flanks of the Elefant’s hull underneath the casemate, which was achieved with tailored 0.5 mm styrene sheet panels and some PSR – possible through the Elefant’s simple shape and the mudguards that run along the vehicle’s flanks.

Some more PSR was necessary to blend the rear into a coherent shape and to fill a small gap at the glacis plate’s base. Putty was also used to fill/hide almost all openings on the glacis plate, since no driver sight or ball mount for a machine gun was necessary anymore. New bolts between hull and casemate were created with small drops of white glue. The rest of the surface details were taken from the respective donor kits.

  

Painting and markings:

This was not an easy choice. A classic Hinterhalt scheme would have been a natural choice, but since the Sturmelefant would have been converted from existing hulls with new parts, I decided to emphasize this heritage through a simple, uniform livery: all Ferdinand elements would be painted/left in a uniform Dunkelgelb (RAL, 7028, Humbrol 83), while the new casemate as well as the bolted-on front armor were left in a red primer livery, in two different shades (Humbrol 70 and 113). This looked a little too simple for my taste, so that I eventually added snaky lines in Dunkelgelb onto the primer-painted sections, blurring the contrast between the two tones.

 

Markings remained minimal, just three German crosses on the flanks and at the rear and a tactical code on the casemate – the latter in black and in a hand-written style, as if the vehicle had been rushed into frontline service.

 

After the decals had been secured under sone varnish the model received an overall washing with dark brown, highly thinned acrylic paint, some dry-brushing with light grey and some rust traces, before it was sealed overall with matt acrylic varnish and received some dirt stains with mixed watercolors and finally, after the tracks had been mounted, some artist pigments as physical dust on the lower areas.

  

Again a project that appeared simple but turned out to be more demanding because the parts would not fit as well as expected. The resulting bunker breaker looks plausible, less massive than the real Sturmtiger but still a menacing sight.

 

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!

  

Some background:

The Waffenträger (Weapon Carrier) VTS3 “Diana” was a prototype for a wheeled tank destroyer. It was developed by Thyssen-Henschel (later Rheinmetall) in Kassel, Germany, in the late Seventies, in response to a German Army requirement for a highly mobile tank destroyer with the firepower of the Leopard 1 main battle tank then in service and about to be replaced with the more capable Leopard 2 MBT, but less complex and costly. The main mission of the Diana was light to medium territorial defense, protection of infantry units and other, lighter, elements of the cavalry as well as tactical reconnaissance. Instead of heavy armor it would rather use its good power-to-weight ratio, excellent range and cross-country ability (despite the wheeled design) for defense and a computerized fire control system to accomplish this mission.

 

In order to save development cost and time, the vehicle was heavily based on the Spähpanzer Luchs (Lynx), a new German 8x8 amphibious reconnaissance armored fighting vehicle that had just entered Bundeswehr service in 1975. The all-wheel drive Luchs made was well armored against light weapons, had a full NBC protection system and was characterized by its extremely low-noise running. The eight large low-pressure tires had run-flat properties, and, at speeds up to about 50 km/h, all four axles could be steered, giving the relatively large vehicle a surprising agility and very good off-road performance. As a special feature, the vehicle was equipped with a rear-facing driver with his own driving position (normally the radio operator), so that the vehicle could be driven at full speed into both directions – a heritage from German WWII designs, and a tactical advantage when the vehicle had to quickly retreat from tactical position after having been detected. The original Luchs weighed less than 20 tons, was fully amphibious and could surmount water obstacles quickly and independently using propellers at the rear and the fold back trim vane at the front. Its armament was relatively light, though, a 20 mm Rheinmetall MK 20 Rh 202 gun in the turret that was effective against both ground and air targets.

 

The Waffenträger “Diana” used the Luchs’ hull and dynamic components as basis, and Thyssen-Henschel solved the challenge to mount a large and heavy 105 mm L7 gun with its mount on the light chassis through a minimalistic, unmanned mount and an autoloader. Avoiding a traditional manned and heavy, armored turret, a lot of weight and internal volume that had to be protected could be saved, and crew safety was indirectly improved, too. This concept had concurrently been tested in the form of the VTS1 (“Versuchsträger Scheitellafette #1) experimental tank in 1976 for the Kampfpanzer 3 development, which eventually led to the Leopard 2 MBT (which retained a traditional turret, though).

 

For the “Diana” test vehicle, Thyssen-Henschel developed a new low-profile turret with a very small frontal area. Two crew members, the commander (on the right side) and the gunner (to the left), were seated in/under the gun mount, completely inside of the vehicle’s hull. The turret was a very innovative construction for its time, fully stabilized and mounted the proven 105mm L7 rifled cannon with a smoke discharger. Its autoloader contained 8 rounds in a carousel magazine. 16 more rounds could be carried in the hull, but they had to be manually re-loaded into the magazine, which was only externally accessible. A light, co-axial 7,62mm machine gun against soft targets was available, too, as well as eight defensive smoke grenade mortars.

 

The automated L7 had a rate of fire of ten rounds per minute and could fire four types of ammunition: a kinetic energy penetrator to destroy armored vehicles; a high explosive anti-tank round to destroy thin-skinned vehicles and provide anti-personnel fragmentation; a high explosive plastic round to destroy bunkers, machine gun and sniper positions, and create openings in walls for infantry to access; and a canister shot for use against dismounted infantry in the open or for smoke charges. The rounds to be fired could be pre-selected, so that the gun was able to automatically fire a certain ammunition sequence, but manual round selection was possible at any time, too.

 

In order to take the new turret, the Luchs hull had to be modified. Early calculations had revealed that a simple replacement of the Luchs’ turret with the new L7 mount would have unfavorably shifted the vehicle’s center of gravity up- and forward, making it very nose-heavy and hard to handle in rough terrain or at high speed, and the long barrel would have markedly overhung the front end, impairing handling further. It was also clear that the additional weight and the rise of the CoG made amphibious operations impossible - a fate that met the upgraded Luchs recce tanks in the Eighties, too, after several accidents with overturned vehicles during wading and drowned crews. With this insight the decision was made to omit the vehicle’s amphibious capability, save weight and complexity, and to modify the vehicle’s layout considerably to optimize the weight distribution.

 

Taking advantage of the fact that the Luchs already had two complete driver stations at both ends, a pair of late-production hulls were set aside in 1977 and their internal layout reversed. The engine bay was now in the vehicle’s front, the secured ammunition storage was placed next to it, behind the separate driver compartment, and the combat section with the turret mechanism was located behind it. Since the VTS3s were only prototypes, only minimal adaptations were made. This meant that the driver was now located on the right side of the vehicle, while and the now-rear-facing secondary driver/radio operator station ended up on the left side – much like a RHD vehicle – but this was easily accepted in the light of cost and time savings. As a result, the gun and its long, heavy barrel were now located above the vehicle’s hull, so that the overall weight distribution was almost neutral and overall dimensions remained compact.

 

Both test vehicles were completed in early 1978 and field trials immediately started. While the overall mobility was on par with the Luchs and the Diana’s high speed and low noise profile was highly appreciated, the armament was and remained a source of constant concern. Shooting in motion from the Diana turned out to be very problematic, and even firing from a standstill was troublesome. The gun mount and the vehicle’s complex suspension were able to "hold" the recoil of the full-fledged 105-mm tank gun, which had always been famous for its rather large muzzle energy. But when fired, even in the longitudinal plane, the vehicle body fell heavily towards the stern, so that the target was frequently lost and aiming had to be resumed – effectively negating the benefit from the autoloader’s high rate of fire and exposing the vehicle to potential target retaliation. Firing to the side was even worse. Several attempts were made to mend this flaw, but neither the addition of a muzzle brake, stronger shock absorbers and even hydro-pneumatic suspension elements did not solve the problem. In addition, the high muzzle flames and the resulting significant shockwave required the infantry to stay away from the vehicle intended to support them. The Bundeswehr also criticized the too small ammunition load, as well as the fact that the autoloader magazine could not be re-filled under armor protection, so that the vehicle had to retreat to safe areas to re-arm and/or to adapt to a new mission profile. This inherent flaw not only put the crew under the hazards of enemy fire, it also negated the vehicle’s NBC protection – a serious issue and likely Cold War scenario. Another weak point was the Diana’s weight: even though the net gain of weight compared with the Luchs was less than 3 tons after the conversion, this became another serious problem that led to the Diana’s demise: during trials the Bundeswehr considered the possibility to airlift the Diana, but its weight (even that of the Luchs, BTW) was too much for the Luftwaffe’s biggest own transport aircraft, the C-160 Transall. Even aircraft from other NATO members, e.g. the common C-130 Hercules, could hardly carry the vehicle. In theory, equipment had to be removed, including the cannon and parts of its mount.

 

Since the tactical value of the vehicle was doubtful and other light anti-tank weapons in the form of the HOT anti-tank missile had reached operational status, so that very light vehicles and even small infantry groups could now effectively fight against full-fledged enemy battle tanks from a safe distance, the Diana’s development was stopped in 1988. Both VTS3 prototypes were mothballed, stored at the Bundeswehr Munster Training Area camp and are still waiting to be revamped as historic exhibits alongside other prototypes like the Kampfpanzer 70 in the German Tank Museum located there, too.

  

Specifications:

Crew: 4 (commander, driver, gunner, radio operator/second driver)

Weight: 22.6 t

Length: 7.74 m (25 ft 4 ¼ in)

Width: 2.98 m ( 9 ft 9 in)

Height: XXX

Ground clearance: 440 mm (1 ft 4 in)

Suspension: hydraulic all-wheel drive and steering

 

Armor:

Unknown, but sufficient to withstand 14.5 mm AP rounds

 

Performance:

Speed: 90 km/h (56 mph) on roads

Operational range: 720 km (445 mi)

Power/weight: 13,3 hp/ton with petrol, 17,3 hp/ton with diesel

 

Engine:

1× Daimler Benz OM 403A turbocharged 10-cylinder 4-stroke multi-fuel engine,

delivering 300 hp with petrol, 390 hp with diesel

 

Armament:

1× 105 mm L7 rifled gun with autoloader (8 rounds ready, plus 16 in reserve)

1× co-axial 7.92 mm M3 machine gun with 2.000 rounds

Two groups of four Wegmann 76 mm smoke mortars

  

The kit and its assembly:

I have been a big Luchs fan since I witnessed one in action during a public Bundeswehr demo day when I was around 10 years old: a huge, boxy and futuristic vehicle with strange proportions, gigantic wheels, water propellers, a mind-boggling mobility and all of this utterly silent. Today you’d assume that this vehicle had an electric engine – spooky! So I always had a soft spot for it, and now it was time and a neat occasion to build a what-if model around it.

 

This fictional wheeled tank prototype model was spawned by a leftover Revell 1:72 Luchs kit, which I had bought some time ago primarily for the turret, used in a fictional post-WWII SdKfz. 234 “Puma” conversion. With just the chassis left I wondered what other use or equipment it might take, and, after several weeks with the idea in the back of my mind, I stumbled at Silesian Models over an M1128 resin conversion set for the Trumpeter M1126 “Stryker” 8x8 APC model. From this set as potential donor for a conversion the prototype idea with an unmanned turret was born.

 

Originally I just planned to mount the new turret onto the OOB hull, but when playing with the parts I found the look with an overhanging gun barrel and the bigger turret placed well forward on the hull goofy and unbalanced. I was about to shelf the idea again, until I recognized that the Luchs’ hull is almost symmetrical – the upper hull half could be easily reversed on the chassis tub (at least on the kit…), and this would allow much better proportions. From this conceptual change the build went straightforward, reversing the upper hull only took some minor PSR. The resin turret was taken mostly OOB, it only needed a scratched adapter to fit into the respective hull opening. I just added a co-axial machine gun fairing, antenna bases (from the Luchs kit, since they could, due to the long gun barrel, not be attached to the hull anymore) and smoke grenade mortars (also taken from the Luchs).

 

An unnerving challenge became the Luchs kit’s suspension and drive train – it took two days to assemble the vehicle’s underside alone! While this area is very accurate and delicate, the fact that almost EVERY lever and stabilizer is a separate piece on four(!) axles made the assembly a very slow process. Just for reference: the kit comes with three and a half sprues. A full one for the wheels (each consists of three parts, and more than another one for suspension and drivetrain!

Furthermore, the many hull surface details like tools or handles – these are more than a dozen bits and pieces – are separate, very fragile and small (tiny!), too. Cutting all these wee parts out and cleaning them was a tedious affair, too, plus painting them separately.

Otherwise the model went together well, but it’s certainly not good for quick builders and those with big fingers and/or poor sight.

  

Painting and markings:

The paint scheme was a conservative choice; it is a faithful adaptation of the Bundeswehr’s NATO standard camouflage for the European theatre of operations that was introduced in the Eighties. It was adopted by many armies to confuse potential aggressors from the East, so that observers could not easily identify a vehicle and its nationality. It consists of a green base with red-brown and black blotches, in Germany it was executed with RAL tones, namely 6031 (Bronze Green), 8027 (Leather Brown) and 9021 (Tar Black). The pattern was standardized for each vehicle type and I stuck to the official Luchs pattern, trying to adapt it to the new/bigger turret. I used Revell acrylic paints, since the authentic RAL tones are readily available in this product range (namely the tones 06, 65 and 84). The big tires were painted with Revell 09 (Anthracite).

 

Next the model was treated with a highly thinned washing with black and red-brown acrylic paint, before decals were applied, taken from the OOB sheet and without unit markings, since the Diana would represent a test vehicle. After sealing them with a thin coat of clear varnish the model was furthermore treated with lightly dry-brushed Revell 45 and 75 to emphasize edges and surface details, and the separately painted hull equipment was mounted. The following step was a cloudy treatment with watercolors (from a typical school paintbox, it’s great stuff for weathering!), simulating dust residue all over the hull. After a final protective coat with matt acrylic varnish I finally added some mineral artist pigments to the lower hull areas and created mud crusts on the wheels through light wet varnish traces into which pigments were “dusted”.

  

Basically a simple project, but the complex Luchs kit with its zillion of wee bits and pieces took time and cost some nerves. However, the result looks pretty good, and the Stryker turret blends well into the overall package. Not certain how realistic the swap of the Luchs’ internal layout would have been, but I think that the turret moved to the rear makes more sense than the original forward position? After all, the model is supposed to be a prototype, so there’s certainly room for creative freedom. And in classic Bundeswehr colors, the whole thing even looks pretty convincing.

 

Some background:

Simple, efficient and reliable, the Regult (リガード, Rigādo) was the standard mass production mecha of the Zentraedi forces. Produced by Esbeliben at the 4.432.369th Zentraedi Fully Automated Weaponry Development and Production Factory Satellite in staggering numbers to fill the need for an all-purpose mecha, this battle pod accommodated a single Zentraedi soldier in a compact cockpit and was capable of operating in space or on a planet's surface. The Regult saw much use during Space War I in repeated engagements against the forces of the SDF-1 Macross and the U.N. Spacy, but its lack of versatility against superior mecha often resulted in average effectiveness and heavy losses. The vehicle was regarded as expendable and was therefore cheap, simple, but also very effective when fielded in large numbers. Possessing minimal defensive features, the Regult was a simple weapon that performed best in large numbers and when supported by other mecha such as Gnerl Fighter Pods. Total production is said to have exceeded 300 million in total.

 

The cockpit could be accesses through a hatch on the back of the Regult’s body, which was, however, extremely cramped, with poor habitability and means of survival. The giant Zentraedi that operated it often found themselves crouching, with some complaining that "It would have been easier had they just walked on their own feet". Many parts of the craft relied on being operated on manually, which increased the fatigue of the pilot. On the other hand, the overall structure was extremely simple, with relatively few failures, making operational rate high.

 

In space, the Regult made use of two booster engines and numerous vernier thrusters to propel itself at very high speeds, capable of engaging and maintaining pace with the U.N. Spacy's VF-1 Valkyrie variable fighter. Within an atmosphere, the Regult was largely limited to ground combat but retained high speed and maneuverability. On land, the Regult was surprisingly fast and agile, too, capable of closing with the VF-1 variable fighter in GERWALK flight (though likely unable to maintain pace at full GERWALK velocity). The Regult was not confined to land operations, though, it was also capable of operating underwater for extended periods of time. Thanks to its boosters, the Regult was capable of high leaping that allowed the pod to cover long distances, surprise enemies and even engage low-flying aircraft.

 

Armed with a variety of direct-fire energy weapons and anti-personnel/anti-aircraft guns, the Regult offered considerable firepower and was capable of engaging both air and ground units. It was also able to deliver powerful kicks. The armor of the body shell wasn't very strong, though, and could easily be penetrated by a Valkyrie's 55 mm Gatling gun pod. Even bare fist attacks of a VF-1 could crack the Regult’s cockpit or immobilize it. The U.N. Spacy’s MBR-07 Destroid Spartan was, after initial battel experience with the Regult, specifically designed to engage the Zentraedi forces’ primary infantry weapon in close-combat.

 

The Regult was, despite general shortcomings, a highly successful design and it became the basis for a wide range of specialized versions, including advanced battle pods for commanders, heavy infantry weapon carriers and reconnaissance/command vehicles. The latter included the Regult Tactical Scout (リガード偵察型). manufactured by electronics specialist Ectromelia. The Tactical Scout variant was a deadly addition to the Zentraedi Regult mecha troops. Removing all weaponry, the Tactical Scout was equipped with many additional sensor clusters and long-range detection equipment. Always found operating among other Regult mecha or supporting Glaug command pods, the Scout was capable of early warning enemy detection as well as ECM/ECCM roles (Electronic Countermeasures/Electronic Counter-Countermeasures). In Space War I, the Tactical Scout was utilized to devastating effect, often providing radar jamming, communication relay and superior tactical positioning for the many Zentraedi mecha forces.

 

At the end of Space War I in January 2012, production of the Regult for potential Earth defensive combat continued when the seizure operation of the Factory Satellite was executed. After the war, Regults were used by both U.N. Spacy and Zentraedi insurgents. Many surviving units were incorporated into the New U.N. Forces and given new model numbers. The normal Regult became the “Zentraedi Battle Pod” ZBP-104 (often just called “Type 104”) and was, for example, used by Al-Shahal's New U.N. Army's Zentraedi garrison. The related ZBP-106 was a modernized version for Zentraedi commanders, with built-in boosters, additional Queadluun-Rhea arms and extra armaments. These primarily replaced the Glaug battle pod, of which only a handful had survived. By 2067, Regult pods of all variants were still in operation among mixed human/Zentraedi units.

  

General characteristics:

Accommodation: pilot only, in standard cockpit in main body

Overall Height: 18.2 meters

Overall Length: 7.6 meters

Overall Width: 12.6 meters

Max Weight: 39.8 metric tons

 

Powerplant & propulsion:

1x 1.3 GGV class Ectromelia thermonuclear reaction furnace,

driving 2x main booster Thrusters and 12x vernier thrusters

 

Performance:

unknown

 

Armament:

None

 

Special Equipment and Features:

Standard all-frequency radar antenna

Standard laser long-range sensor

Ectromelia infrared, visible light and ultraviolet frequency sensor cluster

ECM/ECCM suite

  

The kit and its assembly:

I had this kit stashed away for a couple of years, together with a bunch of other 1:100 Zentraedi pods of all kinds and the plan to build a full platoon one day – but this has naturally not happened so far and the kits were and are still waiting. The “Reconnaissance & Surveillance” group build at whatifmodellers.com in August 2021 was a good occasion and motivation to tackle the Tactical Scout model from the pile, though, as it perfectly fits the GB’s theme and also adds an exotic science fiction/anime twist to the submissions.

 

The kit is an original ARII boxing from 1983, AFAIK the only edition of this model. One might expect this kit to be a variation of the 1982 standard Regult (sometimes spelled “Reguld”) kit with extra parts, but that’s not the case – it is a new mold with different parts and technical solutions, and it offers optional parts for the standard Regult pod as well as the two missile carrier versions that were published at the same time, too. The Tactical Scout uses the same basis, but it comes with parts exclusive for this variant (hull and a sprue with the many antennae and sensors).

 

I remembered from a former ARII Regult build in the late Eighties that the legs were a wobbly affair. Careful sprue inspection revealed, however, that this second generation comes with some sensible detail changes, e. g. the feet, which originally consisted of separate toe and heel sections (and these were hollow from behind/below!). To my biggest surprise the knees – a notorious weak spot of the 1st generation Regult kit – were not only held by small and flimsy vinyl caps anymore: These were replaced with much bigger vinyl rings, fitted into sturdy single-piece enclosures made from a tough styrene which can even be tuned with small metal screws(!), which are included in the kit. Interesting!

 

But the joy is still limited: even though the mold is newer, fit is mediocre at best, PSR is necessary on every seam. However, the good news is that the kit does not fight with you. The whole thing was mostly built OOB, because at 1:100 there's little that makes sense to add to the surface, and the kit comes with anything you'd expect on a Regult Scout pod. I just added some lenses and small stuff behind the large "eye", which is (also to my surprise) a clear part. The stuff might only appear in schemes on the finished model, but that's better than leaving the area blank.

 

Otherwise, the model was built in sub-sections for easier painting and handling, to be assembled in a final step – made possible by the kit’s design which avoids the early mecha kit’s “onion layer” construction, except for the feet. This is the only area that requires some extra effort, and which is also a bit tricky to assemble.

 

However, while the knees appear to be a robust construction, the kit showed some material weakness: while handling the leg assembly, one leg suddenly came off under the knees - turned out that the locator that holds the knee joint above (which I expected to be the weak point) completely broke off of the lower leg! Weird damage. I tried to glue the leg into place, but this did not work, and so I inserted a replacement for the broken. This eventually worked.

  

Painting and markings:

Colorful, but pretty standard and with the attempt to be authentic. However, information concerning the Regults’ paint scheme is somewhat inconsistent. I decided to use a more complex interpretation of the standard blue/grey Regult scheme, with a lighter “face shield” and some other details that make the mecha look more interesting. I used the box art and some screenshots from the Macross TV series as reference; the Tactical Scout pod already appears in episode #2 for the first time, and there are some good views at it, even though the anime version is highly simplified.

 

Humbrol enamels were used, including 48 (Mediterranean Blue), 196 (RAL 7035, instead of pure white), 40 (Pale Grey) and 27 (Sea Grey). The many optics were created with clear acrylics over a silver base, and the large frontal “eye” is a piece of clear plastic with a coat of clear turquoise paint, too.

 

The model received a black ink washing to emphasize details, engraved panel lines and recesses, as well as some light post-shading through dry-brushing. Some surface details were created with decal stripes, e. g. on the upper legs, or with a black fineliner, and some color highlights were distributed all over the hull, e. g. the yellowish-beige tips of the wide antenna or the bright blue panels on the upper legs.

 

The decals were taken OOB, and thanks to a translation chart I was able to decipher some of the markings which I’d interpret as a serial number and a unit code – but who knows?

 

Finally, the kit received an overall coat of matt acrylic varnish and some weathering/dust traces around the feet with simple watercolors – more would IMHO look out of place, due to the mecha’s sheer size in real life and the fact that the Regult has to be considered a disposable item. Either it’s brand new and shiny, or busted, there’s probably little in between that justifies serious weathering which better suits the tank-like Destroids.

  

A “normal” build, even though the model and the topic are exotic enough. This 2nd generation Regult kit went together easier than expected, even though it has its weak points, too. However, material ageing turned out to be the biggest challenge (after all, the kit is almost 40 years old!), but all problems could be overcome and the resulting model looks decent – and it has this certain Eighties flavor! :D

 

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based on historical facts. BEWARE!

  

Some background:

The Waffenträger (Weapon Carrier) VTS3 “Diana” was a prototype for a wheeled tank destroyer. It was developed by Thyssen-Henschel (later Rheinmetall) in Kassel, Germany, in the late Seventies, in response to a German Army requirement for a highly mobile tank destroyer with the firepower of the Leopard 1 main battle tank then in service and about to be replaced with the more capable Leopard 2 MBT, but less complex and costly. The main mission of the Diana was light to medium territorial defense, protection of infantry units and other, lighter, elements of the cavalry as well as tactical reconnaissance. Instead of heavy armor it would rather use its good power-to-weight ratio, excellent range and cross-country ability (despite the wheeled design) for defense and a computerized fire control system to accomplish this mission.

 

In order to save development cost and time, the vehicle was heavily based on the Spähpanzer Luchs (Lynx), a new German 8x8 amphibious reconnaissance armored fighting vehicle that had just entered Bundeswehr service in 1975. The all-wheel drive Luchs made was well armored against light weapons, had a full NBC protection system and was characterized by its extremely low-noise running. The eight large low-pressure tires had run-flat properties, and, at speeds up to about 50 km/h, all four axles could be steered, giving the relatively large vehicle a surprising agility and very good off-road performance. As a special feature, the vehicle was equipped with a rear-facing driver with his own driving position (normally the radio operator), so that the vehicle could be driven at full speed into both directions – a heritage from German WWII designs, and a tactical advantage when the vehicle had to quickly retreat from tactical position after having been detected. The original Luchs weighed less than 20 tons, was fully amphibious and could surmount water obstacles quickly and independently using propellers at the rear and the fold back trim vane at the front. Its armament was relatively light, though, a 20 mm Rheinmetall MK 20 Rh 202 gun in the turret that was effective against both ground and air targets.

 

The Waffenträger “Diana” used the Luchs’ hull and dynamic components as basis, and Thyssen-Henschel solved the challenge to mount a large and heavy 105 mm L7 gun with its mount on the light chassis through a minimalistic, unmanned mount and an autoloader. Avoiding a traditional manned and heavy, armored turret, a lot of weight and internal volume that had to be protected could be saved, and crew safety was indirectly improved, too. This concept had concurrently been tested in the form of the VTS1 (“Versuchsträger Scheitellafette #1) experimental tank in 1976 for the Kampfpanzer 3 development, which eventually led to the Leopard 2 MBT (which retained a traditional turret, though).

 

For the “Diana” test vehicle, Thyssen-Henschel developed a new low-profile turret with a very small frontal area. Two crew members, the commander (on the right side) and the gunner (to the left), were seated in/under the gun mount, completely inside of the vehicle’s hull. The turret was a very innovative construction for its time, fully stabilized and mounted the proven 105mm L7 rifled cannon with a smoke discharger. Its autoloader contained 8 rounds in a carousel magazine. 16 more rounds could be carried in the hull, but they had to be manually re-loaded into the magazine, which was only externally accessible. A light, co-axial 7,62mm machine gun against soft targets was available, too, as well as eight defensive smoke grenade mortars.

 

The automated L7 had a rate of fire of ten rounds per minute and could fire four types of ammunition: a kinetic energy penetrator to destroy armored vehicles; a high explosive anti-tank round to destroy thin-skinned vehicles and provide anti-personnel fragmentation; a high explosive plastic round to destroy bunkers, machine gun and sniper positions, and create openings in walls for infantry to access; and a canister shot for use against dismounted infantry in the open or for smoke charges. The rounds to be fired could be pre-selected, so that the gun was able to automatically fire a certain ammunition sequence, but manual round selection was possible at any time, too.

 

In order to take the new turret, the Luchs hull had to be modified. Early calculations had revealed that a simple replacement of the Luchs’ turret with the new L7 mount would have unfavorably shifted the vehicle’s center of gravity up- and forward, making it very nose-heavy and hard to handle in rough terrain or at high speed, and the long barrel would have markedly overhung the front end, impairing handling further. It was also clear that the additional weight and the rise of the CoG made amphibious operations impossible - a fate that met the upgraded Luchs recce tanks in the Eighties, too, after several accidents with overturned vehicles during wading and drowned crews. With this insight the decision was made to omit the vehicle’s amphibious capability, save weight and complexity, and to modify the vehicle’s layout considerably to optimize the weight distribution.

 

Taking advantage of the fact that the Luchs already had two complete driver stations at both ends, a pair of late-production hulls were set aside in 1977 and their internal layout reversed. The engine bay was now in the vehicle’s front, the secured ammunition storage was placed next to it, behind the separate driver compartment, and the combat section with the turret mechanism was located behind it. Since the VTS3s were only prototypes, only minimal adaptations were made. This meant that the driver was now located on the right side of the vehicle, while and the now-rear-facing secondary driver/radio operator station ended up on the left side – much like a RHD vehicle – but this was easily accepted in the light of cost and time savings. As a result, the gun and its long, heavy barrel were now located above the vehicle’s hull, so that the overall weight distribution was almost neutral and overall dimensions remained compact.

 

Both test vehicles were completed in early 1978 and field trials immediately started. While the overall mobility was on par with the Luchs and the Diana’s high speed and low noise profile was highly appreciated, the armament was and remained a source of constant concern. Shooting in motion from the Diana turned out to be very problematic, and even firing from a standstill was troublesome. The gun mount and the vehicle’s complex suspension were able to "hold" the recoil of the full-fledged 105-mm tank gun, which had always been famous for its rather large muzzle energy. But when fired, even in the longitudinal plane, the vehicle body fell heavily towards the stern, so that the target was frequently lost and aiming had to be resumed – effectively negating the benefit from the autoloader’s high rate of fire and exposing the vehicle to potential target retaliation. Firing to the side was even worse. Several attempts were made to mend this flaw, but neither the addition of a muzzle brake, stronger shock absorbers and even hydro-pneumatic suspension elements did not solve the problem. In addition, the high muzzle flames and the resulting significant shockwave required the infantry to stay away from the vehicle intended to support them. The Bundeswehr also criticized the too small ammunition load, as well as the fact that the autoloader magazine could not be re-filled under armor protection, so that the vehicle had to retreat to safe areas to re-arm and/or to adapt to a new mission profile. This inherent flaw not only put the crew under the hazards of enemy fire, it also negated the vehicle’s NBC protection – a serious issue and likely Cold War scenario. Another weak point was the Diana’s weight: even though the net gain of weight compared with the Luchs was less than 3 tons after the conversion, this became another serious problem that led to the Diana’s demise: during trials the Bundeswehr considered the possibility to airlift the Diana, but its weight (even that of the Luchs, BTW) was too much for the Luftwaffe’s biggest own transport aircraft, the C-160 Transall. Even aircraft from other NATO members, e.g. the common C-130 Hercules, could hardly carry the vehicle. In theory, equipment had to be removed, including the cannon and parts of its mount.

 

Since the tactical value of the vehicle was doubtful and other light anti-tank weapons in the form of the HOT anti-tank missile had reached operational status, so that very light vehicles and even small infantry groups could now effectively fight against full-fledged enemy battle tanks from a safe distance, the Diana’s development was stopped in 1988. Both VTS3 prototypes were mothballed, stored at the Bundeswehr Munster Training Area camp and are still waiting to be revamped as historic exhibits alongside other prototypes like the Kampfpanzer 70 in the German Tank Museum located there, too.

  

Specifications:

Crew: 4 (commander, driver, gunner, radio operator/second driver)

Weight: 22.6 t

Length: 7.74 m (25 ft 4 ¼ in)

Width: 2.98 m ( 9 ft 9 in)

Height: XXX

Ground clearance: 440 mm (1 ft 4 in)

Suspension: hydraulic all-wheel drive and steering

 

Armor:

Unknown, but sufficient to withstand 14.5 mm AP rounds

 

Performance:

Speed: 90 km/h (56 mph) on roads

Operational range: 720 km (445 mi)

Power/weight: 13,3 hp/ton with petrol, 17,3 hp/ton with diesel

 

Engine:

1× Daimler Benz OM 403A turbocharged 10-cylinder 4-stroke multi-fuel engine,

delivering 300 hp with petrol, 390 hp with diesel

 

Armament:

1× 105 mm L7 rifled gun with autoloader (8 rounds ready, plus 16 in reserve)

1× co-axial 7.92 mm M3 machine gun with 2.000 rounds

Two groups of four Wegmann 76 mm smoke mortars

  

The kit and its assembly:

I have been a big Luchs fan since I witnessed one in action during a public Bundeswehr demo day when I was around 10 years old: a huge, boxy and futuristic vehicle with strange proportions, gigantic wheels, water propellers, a mind-boggling mobility and all of this utterly silent. Today you’d assume that this vehicle had an electric engine – spooky! So I always had a soft spot for it, and now it was time and a neat occasion to build a what-if model around it.

 

This fictional wheeled tank prototype model was spawned by a leftover Revell 1:72 Luchs kit, which I had bought some time ago primarily for the turret, used in a fictional post-WWII SdKfz. 234 “Puma” conversion. With just the chassis left I wondered what other use or equipment it might take, and, after several weeks with the idea in the back of my mind, I stumbled at Silesian Models over an M1128 resin conversion set for the Trumpeter M1126 “Stryker” 8x8 APC model. From this set as potential donor for a conversion the prototype idea with an unmanned turret was born.

 

Originally I just planned to mount the new turret onto the OOB hull, but when playing with the parts I found the look with an overhanging gun barrel and the bigger turret placed well forward on the hull goofy and unbalanced. I was about to shelf the idea again, until I recognized that the Luchs’ hull is almost symmetrical – the upper hull half could be easily reversed on the chassis tub (at least on the kit…), and this would allow much better proportions. From this conceptual change the build went straightforward, reversing the upper hull only took some minor PSR. The resin turret was taken mostly OOB, it only needed a scratched adapter to fit into the respective hull opening. I just added a co-axial machine gun fairing, antenna bases (from the Luchs kit, since they could, due to the long gun barrel, not be attached to the hull anymore) and smoke grenade mortars (also taken from the Luchs).

 

An unnerving challenge became the Luchs kit’s suspension and drive train – it took two days to assemble the vehicle’s underside alone! While this area is very accurate and delicate, the fact that almost EVERY lever and stabilizer is a separate piece on four(!) axles made the assembly a very slow process. Just for reference: the kit comes with three and a half sprues. A full one for the wheels (each consists of three parts, and more than another one for suspension and drivetrain!

Furthermore, the many hull surface details like tools or handles – these are more than a dozen bits and pieces – are separate, very fragile and small (tiny!), too. Cutting all these wee parts out and cleaning them was a tedious affair, too, plus painting them separately.

Otherwise the model went together well, but it’s certainly not good for quick builders and those with big fingers and/or poor sight.

  

Painting and markings:

The paint scheme was a conservative choice; it is a faithful adaptation of the Bundeswehr’s NATO standard camouflage for the European theatre of operations that was introduced in the Eighties. It was adopted by many armies to confuse potential aggressors from the East, so that observers could not easily identify a vehicle and its nationality. It consists of a green base with red-brown and black blotches, in Germany it was executed with RAL tones, namely 6031 (Bronze Green), 8027 (Leather Brown) and 9021 (Tar Black). The pattern was standardized for each vehicle type and I stuck to the official Luchs pattern, trying to adapt it to the new/bigger turret. I used Revell acrylic paints, since the authentic RAL tones are readily available in this product range (namely the tones 06, 65 and 84). The big tires were painted with Revell 09 (Anthracite).

 

Next the model was treated with a highly thinned washing with black and red-brown acrylic paint, before decals were applied, taken from the OOB sheet and without unit markings, since the Diana would represent a test vehicle. After sealing them with a thin coat of clear varnish the model was furthermore treated with lightly dry-brushed Revell 45 and 75 to emphasize edges and surface details, and the separately painted hull equipment was mounted. The following step was a cloudy treatment with watercolors (from a typical school paintbox, it’s great stuff for weathering!), simulating dust residue all over the hull. After a final protective coat with matt acrylic varnish I finally added some mineral artist pigments to the lower hull areas and created mud crusts on the wheels through light wet varnish traces into which pigments were “dusted”.

  

Basically a simple project, but the complex Luchs kit with its zillion of wee bits and pieces took time and cost some nerves. However, the result looks pretty good, and the Stryker turret blends well into the overall package. Not certain how realistic the swap of the Luchs’ internal layout would have been, but I think that the turret moved to the rear makes more sense than the original forward position? After all, the model is supposed to be a prototype, so there’s certainly room for creative freedom. And in classic Bundeswehr colors, the whole thing even looks pretty convincing.

 

1 2 ••• 27 28 30 32 33 ••• 79 80