View allAll Photos Tagged Synthesis
soundcloud.com/toxi/sets/granular-synthesis
Watch in highres! Spectrum of an image to create an audio sequence of 2048 grains. See description in set & earlier tests...
Brief synthesis
The Ħal Saflieni Hypogeum (underground cemetery) was discovered in 1902 on a hill overlooking the innermost part of the Grand Harbour of Valletta, in the town of Paola. It is a unique prehistoric monument, which seems to have been conceived as an underground cemetery, originally containing the remains of about 7,000 individuals. The cemetery was in use throughout the Żebbuġ, Ġgantija and Tarxien Phases of Maltese Prehistory, spanning from around 4000 B.C. to 2500 B.C.
Originally, one entered the Ħal Saflieni Hypogeum through a structure at ground level. Only a few blocks of this entrance building have been discovered, and its form and dimensions remain uncertain. The plan of the Hypogeum itself is a series of three superimposed levels of chambers cut into soft globigerina limestone, using only chert, flint and obsidian tools and antlers. The earliest of the three levels is the uppermost, scooped out of the brow of a hill. A number of openings and chambers for the burial of the dead were then cut into the sides of the cavity.
The two lower levels were also hewn entirely out of the natural rock. Some natural daylight reached the middle level through a small opening from the upper level, but artificial lighting must have been used to navigate through some of the middle level chambers and the lowest level, which is 10.60 m below the present ground level.
One of the most striking characteristics of the Ħal Saflieni Hypogeum is that some of the chambers appear to have been cut in imitation of the architecture of the contemporary, above-ground megalithic temples. Features include false bays, inspired by trilithon doorways, and windows. Most importantly, some of the chambers have ceilings with one ring of carved stone overhanging the one below to imitate a roof of corbelled masonry. This form echoes the way in which some of the masonry walls of the contemporary above-ground temple chambers are corbelled inwards, suggesting that they too were originally roofed over.
Some of the walls and ceilings of the chambers were decorated with spiral and honey-comb designs in red ochre, a mineral pigment. These decorations are the only prehistoric wall paintings found on the Maltese Islands. In one of these decorated chambers, there is a small niche which echoes when someone speaks into it. While this effect may not have been created intentionally, it may well have been exploited as part of the rituals that took place within the chambers.
Excavation of the Ħal Saflieni Hypogeum produced a wealth of archaeological material, including numerous human bones, which suggests that the burial ritual had more than one stage. It appears that bodies were probably left exposed until the flesh had decomposed and fallen off. The remaining bones and what appear to be some of the personal belongings were then gathered and buried within the chambers together with copious amounts of red ochre. The use of ochre seems to have been a part of the ritual, perhaps to infuse the bones with the colour of blood and life. Individuals were not buried separately, but piled onto each other.
Artefacts recovered from the site include pottery vessels decorated in intricate designs, shell buttons, stone and clay beads and amulets, as well as little stone carved animals and birds that may have originally been worn as pendants. The most striking finds are stone and clay figurines depicting human figures. The most impressive of these figures is that showing a woman lying on a bed or ‘couch’, popularly known as the ‘Sleeping Lady’. This figure is a work of art in itself, demonstrating a keen eye for detail.
Criterion (iii): The Ħal Saflieni Hypogeum is a unique monument of exceptional value. It is the only known European example of a subterranean ‘labyrinth’ from about 4,000 B.C. to 2,500 B.C. The quality of its architecture and its remarkable state of preservation make it an essential prehistoric monument.
Integrity
The Ħal Saflieni Hypogeum is one of the best preserved and most extensive environments that have survived from the Neolithic. With the exception of the fragmentary remains of the above-ground entrance, all the key attributes of the property, including the architectural details and painted wall decorations, have remained intact within the boundaries.
The main threats to the preservation of the Ħal Saflieni Hypogeum are the fluctuating temperature and relative humidity levels within the site, as well as water infiltration and biological infestations.
Authenticity
The Ħal Saflieni Hypogeum is one of the two most important prehistoric burial sites in the Maltese islands and is very well preserved, unlike the fragmentary remains that usually survive from the above-ground structures of this period.
The unusual preservation of the rock-cut chambers allows the study of a system of interconnecting spaces very much as they were conceived and experienced by a Neolithic mind. The imitation of the interior of a megalithic temple built above ground not only provides evidence on the corbelling system that was used to roof the temples, but is also important in terms of the development of human processes of cognition and representation.
The Ħal Saflieni Hypogeum has also yielded several important artefacts of great artistic significance. Foremost amongst these is the so-called ‘Sleeping Lady’, a miniature ceramic figurine that is widely held to be one of the great masterpieces of prehistoric anthropomorphic representation.
Protection and management requirements
The principal legal instrument for the protection of cultural heritage resources in Malta is the Cultural Heritage Act (2002), which provides for and regulates national bodies for the protection and management of cultural heritage resources. Building development and land use is regulated by the Environment and Development Planning Act (2010 and subsequent amendments), which provides for and regulates the Malta Environment and Planning Authority. The Ħal Saflieni Hypogeum is protected by a buffer zone, and both the Ħal Saflieni Hypogeum and its buffer zone are formally designated by the Malta Environment and Planning Authority as a Grade A archaeological site, which means they are subject to wide-ranging restrictions of building development.
A programme of monitoring and research, launched in order to understand the microclimate of the Hypogeum, was followed by a project for the conservation of the property, designed and implemented in the 1990s. Houses directly above the site were acquired and dismantled; light levels within the property are strictly controlled; and visitor numbers limited. These measures have helped to maintain stable temperature and humidity levels, which continue to be monitored closely.
Coventry's Cathedral is a unique synthesis of old a new, born of wartime suffering and forged in the spirit of postwar optimism, famous for it's history and for being the most radically modern of Anglican cathedrals. Two cathedral's stand side by side, the ruins of the medieval building, destroyed by incendiary bombs in 1940 and the bold new building designed by Basil Spence and opened in 1962.
It is a common misconception that Coventry lost it's first cathedral in the wartime blitz, but the bombs actually destroyed it's second; the original medieval cathedral was the monastic St Mary's, a large cruciform building believed to have been similar in appearance to Lichfield Cathedral (whose diocese it shared). Tragically it became the only English cathedral to be destroyed during the Reformation, after which it was quickly quarried away, leaving only scant fragments, but enough evidence survives to indicate it's rich decoration (some pieces were displayed nearby in the Priory Visitors Centre, sadly since closed). Foundations of it's apse were found during the building of the new cathedral in the 1950s, thus technically three cathedrals share the same site.
The mainly 15th century St Michael's parish church became the seat of the new diocese of Coventry in 1918, and being one of the largest parish churches in the country it was upgraded to cathedral status without structural changes (unlike most 'parish church' cathedrals created in the early 20th century). It lasted in this role a mere 22 years before being burned to the ground in the 1940 Coventry Blitz, leaving only the outer walls and the magnificent tapering tower and spire (the extensive arcades and clerestoreys collapsed completely in the fire, precipitated by the roof reinforcement girders, installed in the Victorian restoration, that buckled in the intense heat).
The determination to rebuild the cathedral in some form was born on the day of the bombing, however it wasn't until the mid 1950s that a competition was held and Sir Basil Spence's design was chosen. Spence had been so moved by experiencing the ruined church he resolved to retain it entirely to serve as a forecourt to the new church. He envisaged the two being linked by a glass screen wall so that the old church would be visible from within the new.
Built between 1957-62 at a right-angle to the ruins, the new cathedral attracted controversy for it's modern form, and yet some modernists argued that it didn't go far enough, after all there are echoes of the Gothic style in the great stone-mullioned windows of the nave and the net vaulting (actually a free-standing canopy) within. What is exceptional is the way art has been used as such an integral part of the building, a watershed moment, revolutionising the concept of religious art in Britain.
Spence employed some of the biggest names in contemporary art to contribute their vision to his; the exterior is adorned with Jacob Epstein's triumphant bronze figures of Archangel Michael (patron of the cathedral) vanquishing the Devil. At the entrance is the remarkable glass wall, engraved by John Hutton with strikingly stylised figures of saints and angels, and allowing the interior of the new to communicate with the ruin. Inside, the great tapestry of Christ in majesty surrounded by the evangelistic creatures, draws the eye beyond the high altar; it was designed by Graham Sutherland and was the largest tapestry ever made.
However one of the greatest features of Coventry is it's wealth of modern stained glass, something Spence resolved to include having witnessed the bleakness of Chartres Cathedral in wartime, all it's stained glass having been removed. The first window encountered on entering is the enormous 'chess-board' baptistry window filled with stunning abstract glass by John Piper & Patrick Reyntiens, a symphony of glowing colour. The staggered nave walls are illuminated by ten narrow floor to ceiling windows filled with semi-abstract symbolic designs arranged in pairs of dominant colours (green, red, multi-coloured, purple/blue and gold) representing the souls journey to maturity, and revealed gradually as one approaches the altar. This amazing project was the work of three designers lead by master glass artist Lawrence Lee of the Royal College of Art along with Keith New and Geoffrey Clarke (each artist designed three of the windows individually and all collaborated on the last).
The cathedral still dazzles the visitor with the boldness of it's vision, but alas, half a century on, it was not a vision to be repeated and few of the churches and cathedrals built since can claim to have embraced the synthesis of art and architecture in the way Basil Spence did at Coventry.
The cathedral is generally open to visitors most days. For more see below:-
Attending Theyyam is by far the best thing one can do while they are in Kerala. ”Theyyam” is a ritualistic performance, which can be described as the most visible, spectacular art form of Malabar (Northern part of Kerala), associated with myths and legends. Theyyam can also be described as a form of worship consisting of rituals, colorful costumes, and divine dance through which the gods are appeased and honoured.
Theyyam – the form of worshipping gods, goddesses, legendary heroes, etc is based on a rather simple concept, that after suitable propitiatory rituals, the god or goddess belonging to a temple becomes temporally manifest in the body of an empowered man (the performer), thereby elevating him to a divine status. Theyyam ceremonies usually take place either within the precincts of a small shrine – usually called Kavu, Kazhakam, Muchilottu, Mundiya, Sthanametc, or in the yard of an ancestral house or in an open space with a temporary shrine called Pathi.
According to Hinduism, all the creation-preservation-destruction activities in the universe are controlled by the three Gods – Brahma, Vishnu, and Maheshwara (Shiva), respectively. For upholding righteousness, these gods appear in many godly guises and incarnations. For propitiation of these gods, apart from ritualistic worship and sacrifices, the man also gave form to donning their godly forms and performing as another form of worship. These became a part of their culture, underwent many changes over time, and is an evolution of the clan culture. It is very difficult to find out the exact period of the origin of theyyam. At the same time, none can refute its antiquity.
According to the general belief, the origin of the theyyam is attributed to Manakkadan Gurukkal.(Gurukkal means master) He was a great artist and occultist belonging to the Vannan Community. Once, the Rajah of Chirakkal invited this great occultist to test his capacity as an artist as well as a magician. Gurukkal was residing at Manakkad in Karivellur, about 40 kilometers away from the palace of the Rajah. The Rajah had given several tests like causing obstacles to the ferry as he was trying to cross the river. But Gurukkal managed to cross the river with his divine power. The gates of the fort were also closed to prevent him from entering, but here also he managed to appear before the king with his physical power. The Rajah sat along with a few other persons so that Gurukkal could not identify him. But Gurukkal easily recognized the king and respected. While he was called for the food it was so arranged that he himself would have to throw away the plantain leaf in which food would be supplied. This was intended to make him feel inferior. Gurukkal foreseeing this received the hot rice in a melon leaf and after taking the food he swallowed the leaf and thus he cleverly avoided the indignity of himself taking the leaf and throwing it away. Thus he successfully overcame the tests of the Raja, Manakkadan. Gurukkal was asked to make the costumes for some deities whose ritualistic dances were to be performed in the form of the theyyams in the night. Accordingly, Gurukkal designed 35 different theyyams before the sunrise. Rajah realizing Gurukkal’s skill, a title, Manakkadan was bestowed on Gurukkal. It is believed that this is how the present form of Theyyams originated.
Theyyam reveals the human capabilities of abstraction, synthesis, and idealization; it describes social and economic activities and reveals practices, beliefs, and ideas. It provides a unique insight into spirituality, intellectual life, and cultural adventures. It is a divine dance with ancient testimony of customs, traditions, and artistic creativity. Shrines, ancestral houses, Kavus in villages offer the platform for theyyam festivals. Since the theyyam performer, transforms to the status of a particular deity, theyyam is very much a divine dance. Invoking god or goddess in his body, he dances through the compound of the sacred space where deities are worshipped. The dance is considered not for propitiating gods or goddesses, rather it is dance of the gods or goddesses themselves. Scores of nature deities (including animals and trees), ancestors, village heroes and heroines, and gods and goddesses from Saivite, Vaisnavite, and Sakti traditions of Hinduism form part of the pantheon of theyyam performance.
The fundamental facts of existence of theyyam performance, even in the present day, make the ritual a powerful instrument that influences the thoughts and practices of Malabar society. In support of this, experts point out that the deities are worshipped and propitiated for the blessing of fertility, for protection and security. There are powerful deities who ward off smallpox and other contagious diseases. Theyyam ritual performances also provide judicial services.
Some of the major disputes and caste conflicts are often settled by a specific representative of a particular deity during the theyyam performance. The devotees present their personal problems and troubles to the deities and the deities give them counsel and blessings.
During the time when I attended one of these rituals in theyyam, I was positioned right in front of where the holy bonfire is made in order to click photographs. I was warned by the authorities there to sit somewhere else as the devotee who dances in and around the fire strews the embers in his enthusiasm and that it was dangerous for me. I was quite reluctant to move, because I had travelled far to reach there and really wanted to materialize the composition that I had in my mind. I decided to stay put and watch the performance. As the performer entered the premises, the energy of the area completely changed. Their dance form was extremely exhilarating to watch and they were performing with absolutely no holding back. As he entered the fire, dancing to the music, his movements and actions actually tossed a large number of embers in his surroundings and especially on me because I was in proximity. I got really promising photos but I got burned by the shower of embers and my clothes got badly burnt too albeit at the compensation of getting some really memorable photographs.
Fangruida/Enc:Special multi-purpose anti-radiation suit 50 million dollars
Aerospace Medical Emergency cabin 1.5 billion dollars
Multi-purpose intelligent life support system 10 billion dollars
Mars truck 300 million dollars
Aerospace / Water Planet synthesis 1.2 billion dollars
Cutting-edge aerospace technology transfer 50 million dollars of new rocket radiation material 10 billion dollars against drugs microgravity $ 2 billion contact: Fangda337svb125@gmail.com,banxin123 @ gmail.com, mdin.jshmith @ gmail.com technology entry fee / technical margin of 1 million dollars , signed on demand
Table of Contents
Fangruida: human landing on Mars 10 cutting-edge technology
[Fangruida- human landing on Mars 10 innovative and sophisticated technologies]
Aerospace Science and space science and technology major innovation of the most critical of sophisticated technology R & D project
-------------------------------------------------- -------------
Aerospace Science Space Science and Technology on behalf of the world's most cutting-edge leader in high technology, materials, mechatronics, information and communication, energy, biomedical, marine, aviation aerospace, microelectronics, computer, automation, intelligent biochips, use of nuclear energy, light mechanical and electrical integration, astrophysics, celestial chemistry, astrophysics and so a series of geological science and technology. Especially after the moon landing, the further development of mankind to Mars and other planets into the powerful offensive, the world's major powers eager to Daxian hand of God, increase investment, vigorously develop new sophisticated technology projects for space to space. Satellite, space station, the new spacecraft, the new space suits, the new radiation protection materials, intelligent materials, new manufacturing technology, communications technology, computer technology, detector technology, rover, rover technology, biomedical technology, and so one after another, is expected to greater breakthroughs and leaps. For example, rocket technology, spacecraft design, large power spacecraft, spacesuits design improvements, radiation multifunctional composite materials, life health care technology and space medicine, prevention against microgravity microgravity applicable drugs, tracking control technology, landing and return technology. Mars lander and returned safely to Earth as a top priority. Secondly, Mars, the Moon base and the use of transforming Mars, the Moon and other development will follow. Whether the former or the latter, are the modern aerospace science, space science basic research, applied basic research and applied research in the major cutting-edge technology. These major cutting-edge technology research and innovation, not only for human landing on Mars and the safe return of great significance, but for the entire space science, impact immeasurable universe sciences, earth sciences and human life. Here the most critical of the most important research projects of several sophisticated technology research and development as well as its core technology brief. Limit non-scientific techniques include non-technical limits of technology, the key lies in technology research and development of technology maturity, advanced technology, innovative, practical, reliable, practical application, business value and investment costs, and not simply like the idea mature technology achievements, difficult to put into things. This is the high-tech research and development, testing, prototype, test application testing, until the outcome of industrialization. Especially in aerospace technology, advanced, novelty, practicality, reliability, economy, maturity, commercial value and so on. For technical and research purely science fiction and the like may be irrelevant depth, but not as aerospace engineering and technology practice. Otherwise, Mars will become a dream fantasy, and even into settling crashed out of danger.
Regardless of the moon or Mars, many technical difficulties, especially a human landing on Mars and return safely to Earth, technical difficulties mainly in the following aspects. (Transformation of Mars and the Moon and other planets and detect other livable technology more complex and difficult, at this stage it is difficult to achieve and therefore not discussed in detail in this study). In fact, Mars will be the safe return of a full set of technology, space science, aerospace crucial scientific research development, its significance is not confined to Mars simply a return to scientific value, great commercial value, can not be measure.
1. Powered rocket, the spacecraft overall structural design not be too complex large, otherwise, the safety factor to reduce the risk of failure accidents. Fusion rocket engine main problem to be solved is the high-temperature materials and fuel ignition chamber (reaction chamber temperatures of up to tens of millions of supreme billion degrees), fissile class rocket engine whose essence is the miniaturization of nuclear reactors, and placed on the rocket. Nuclear rocket engine fuel as an energy source, with liquid hydrogen, liquid helium, liquid ammonia working fluid. Nuclear rocket engine mounted in the thrust chamber of the reactor, cooling nozzle, the working fluid delivery and control systems and other components. This engine due to nuclear radiation protection, exhaust pollution, reactor control and efficient heat exchanger design and other issues unresolved. Electrothermal rocket engine utilizing heat energy (resistance heating or electric arc heating) working medium (hydrogen, amines, hydrazine ), vaporized; nozzle expansion accelerated after discharged from the spout to generate thrust. Static rocket engine working fluid (mercury, cesium, hydrogen, etc.) from the tank enter the ionization chamber is formed thrust ionized into a plasma jet. Electric rocket engines with a high specific impulse (700-2500 sec), extremely long life (can be repeated thousands of times a starter, a total of up to thousands of hours of work). But the thrust of less than 100N. This engine is only available for spacecraft attitude control, station-keeping and the like. One nuclear - power rocket design is as follows: Firstly, the reactor heats water to make it into steam, and then the high-speed steam ejected, push the rocket. Nuclear rocket using hydrogen as working substance may be a better solution, it is one of the most commonly used liquid hydrogen rocket fuel rocket carrying liquid hydrogen virtually no technical difficulties. Heating hydrogen nuclear reactor, as long as it eventually reaches or exceeds current jet velocity hydrogen rocket engine jet speed, the same weight of the rocket will be able to work longer, it can accelerate the Rockets faster. Here there are only two problems: First, the final weight includes the weight of the rocket in nuclear reactors, so it must be as light as possible. Ultra-small nuclear reactor has been able to achieve. Furthermore, if used in outer space, we can not consider the problem of radioactive residues, simply to just one proton hydrogen nuclei are less likely to produce induced radioactivity, thus shielding layer can be made thinner, injected hydrogen gas can flow directly through the reactor core, it is not easy to solve, and that is how to get back at high speed heated gas is ejected.
Rocket engine with a nuclear fission reactor, based on the heating liquid hydrogen propellant, rather than igniting flammable propellant
High-speed heavy rocket is a major cutting-edge technology. After all, space flight and aircraft carriers, submarines, nuclear reactors differ greatly from the one hand, the use of traditional fuels, on the one hand can be nuclear reactor technology. From the control, for security reasons, the use of nuclear power rocket technology, safe and reliable overriding indicators. Nuclear atomic energy in line with the norms and rules of outer space. For the immature fetal abdominal hatchery technology, and resolutely reject use. This is the most significant development of nuclear-powered rocket principle.
Nuclear-powered spaceship for Use of nuclear power are three kinds:
The first method: no water or air space such media can not be used propeller must use jet approach. Reactor nuclear fission or fusion to produce a lot of heat, we will propellant (such as liquid hydrogen) injection, the rapid expansion of the propellant will be heated and then discharged from the engine speed tail thrust. This method is most readily available.
The second method: nuclear reactor will have a lot of fast-moving ions, these energetic particles moving very fast, so you can use a magnetic field to control their ejection direction. This principle ion rocket similar to the tail of the rocket ejected from the high-speed mobile ions, so that the recoil movement of a rocket. The advantage of this approach is to promote the unusually large ratio, without carrying any medium, continued strong. Ion engine, which is commonly referred to as "electric rocket", the principle is not complicated, the propellant is ionized particles,
Plasma Engine
Electromagnetic acceleration, high-speed spray. From the development trend, the US research scope covers almost all types of electric thrusters, but mainly to the development of ion engines, NASA in which to play the most active intake technology and preparedness plans. "
The third method: the use of nuclear explosions. It is a bold and crazy way, no longer is the use of a controlled nuclear reaction, but to use nuclear explosions to drive the ship, this is not an engine, and it is called a nuclear pulse rocket. This spacecraft will carry a lot of low-yield atomic bombs out one behind, and then detonated, followed by a spacecraft propulsion installation disk, absorbing the blast pushing the spacecraft forward. This was in 1955 to Orion (Project Orion) name of the project, originally planned to bring two thousand atomic bombs, Orion later fetal nuclear thermal rocket. Its principle is mounted on a small rocket reactor, the reactor utilizing thermal energy generated by the propellant is heated to a high temperature, high pressure and high temperature of the propellant from the high-speed spray nozzle, a tremendous impetus.
Common nuclear fission technologies, including nuclear pulse rocket engines, nuclear rockets, nuclear thermal rocket and nuclear stamping rockets to nuclear thermal rocket, for example, the size of its land-based nuclear power plant reactor structure than the much smaller, more uranium-235 purity requirements high, reaching more than 90%, at the request of the high specific impulse engine core temperature will reach about 3000K, require excellent high temperature properties of materials.
Research and test new IT technologies and new products and new technology and new materials, new equipment, things are difficult, design is the most important part, especially in the overall design, technical solutions, technical route, technical process, technical and economic particularly significant. The overall design is defective, technology there are loopholes in the program, will be a major technical route deviation, but also directly related to the success of research trials. so, any time, under any circumstances, a good grasp of the overall control of design, technical design, is essential. otherwise, a done deal, it is difficult save. aerospace technology research and product development is true.
3, high-performance nuclear rocket
Nuclear rocket nuclear fission and fusion energy can rocket rocket two categories. Nuclear fission and fusion produce heat, radiation and shock waves and other large amounts of energy, but here they are contemplated for use as a thermal energy rocket.
Uranium and other heavy elements, under certain conditions, will split their nuclei, called nuclear fission reaction. The atomic bomb is the result of nuclear fission reactions. Nuclear fission reaction to release energy, is a million times more chemical rocket propellant combustion energy. Therefore, nuclear fission energy is a high-performance rocket rockets. Since it requires much less propellant than chemical rockets can, so to its own weight is much lighter than chemical rockets energy. For the same quality of the rocket, the rocket payload of nuclear fission energy is much greater than the chemical energy of the rocket. Just nuclear fission energy rocket is still in the works.
Use of nuclear fission energy as the energy of the rocket, called the atomic rockets. It is to make hydrogen or other inert gas working fluid through the reactor, the hydrogen after the heating temperature quickly rose to 2000 ℃, and then into the nozzle, high-speed spray to produce thrust.
A vision plan is to use liquid hydrogen working fluid, in operation, the liquid hydrogen tank in the liquid hydrogen pump is withdrawn through the catheter and the engine cooling jacket and liquid hydrogen into hydrogen gas, hydrogen gas turbine-driven, locally expansion. Then by nuclear fission reactors, nuclear fission reactions absorb heat released, a sharp rise in temperature, and finally into the nozzle, the rapid expansion of high-speed spray. Calculations show that the amount of atomic payload rockets, rocket high chemical energy than 5-8 times.
Hydrogen and other light elements, under certain conditions, their nuclei convergent synthesis of new heavy nuclei, and release a lot of energy, called nuclear fusion reaction, also called thermonuclear reaction.
Using energy generated by the fusion reaction for energy rocket, called fusion energy rocket or nuclear thermal rockets. But it is also not only take advantage of controlled nuclear fusion reaction to manufacture hydrogen bombs, rockets and controlled nuclear fusion reaction needs still studying it.
Of course there are various research and development of rocket technology and technical solutions to try.
It is envisaged that the rocket deuterium, an isotope of hydrogen with deuterium nuclear fusion reaction of helium nuclei, protons and neutrons, and release huge amounts of energy, just polymerized ionized helium to temperatures up to 100 million degrees the plasma, and then nozzle expansion, high-speed ejection, the exhaust speed of up to 15,000 km / sec, atomic energy is 1800 times the rocket, the rocket is the chemical energy of 3700 times.
Nuclear rocket engine fuel as an energy source, with liquid hydrogen, liquid helium, liquid ammonia working fluid. Nuclear rocket engine mounted in the thrust chamber of the reactor, cooling nozzle, the working fluid delivery and control systems and other components. In a nuclear reactor, nuclear energy into heat to heat the working fluid, the working fluid is heated after expansion nozzle to accelerate to the speed of 6500 ~ 11,000 m / sec from the discharge orifice to produce thrust. Nuclear rocket engine specific impulse (250 to 1000 seconds) long life, but the technology is complex, apply only to long-term spacecraft. This engine due to nuclear radiation protection, exhaust pollution, reactor control and efficient heat exchanger design and other issues not resolved, is still in the midst of trials. Nuclear rocket technology is cutting-edge aerospace science technology, centralized many professional and technical sciences and aerospace, nuclear physics, nuclear chemistry, materials science, the long term future ___-- wide width. The United States, Russia and Europe, China, India, Japan, Britain, Brazil and other countries in this regard have studies, in particular the United States and Russia led the way, impressive. Of course, at this stage of nuclear rocket technology, technology development there are still many difficulties. Fully formed, still to be. But humanity marching to the universe, nuclear reactor applications is essential.
Outer Space Treaty (International Convention on the Peaceful Uses of Outer Space) ****
Use of Nuclear Power Sources in Outer Space Principle 15
General Assembly,
Having considered the report of its thirty-fifth session of the Committee on the Peaceful Uses of Outer Space and the Commission of 16 nuclear
It can be attached in principle on the use of nuclear power sources in outer space of the text of its report, 17
Recognize that nuclear power sources due to small size, long life and other characteristics, especially suitable for use even necessary
For some missions in outer space,
Recognizing also that the use of nuclear power sources in outer space should focus on the possible use of nuclear power sources
Those uses,
Recognizing also that the use of nuclear power sources should include or probabilistic risk analysis is complete security in outer space
Full evaluation is based, in particular, the public should focus on reducing accidental exposure to harmful radiation or radioactive material risk
risk,
Recognizing the need to a set of principles containing goals and guidelines in this regard to ensure the safety of outer space makes
With nuclear power sources,
Affirming that this set principles apply exclusively on space objects for non-power generation, which is generally characteristic
Mission systems and implementation of nuclear power sources in outer space on similar principles and used by,
Recognizing this need to refer to a new set of principles for future nuclear power applications and internationally for radiological protection
The new proposal will be revised
By the following principles on the use of nuclear power sources in outer space.
Principle 1. Applicability of international law
Involving the use of nuclear power sources in outer space activities should be carried out in accordance with international law, especially the "UN
Principles of the Charter "and" States in the Exploration and Use of Outer Space, including the Moon and Other Celestial Bodies Activities
Treaty "3
.
2. The principle terms
1. For the purpose of these principles, "launching State" and "launching State ......" two words mean, in related
Principles related to a time of nuclear power sources in space objects exercises jurisdiction and control of the country.
2. For the purpose of principle 9, wherein the definition of the term "launching State" as contained in that principle.
3. For the purposes of principle 3, the terms "foreseeable" and "all possible" two words are used to describe the actual hair
The overall likelihood of students that it is considered for safety analysis is credible possibilities for a class of things
Member or circumstances. "General concept of defense in depth" when the term applies to nuclear power sources in outer space refers to various settings
Count form and space operations replace or supplement the operation of the system in order to prevent system failures or mitigate thereafter
"Official Records of the General Assembly, Forty-seventh Session, Supplement No. 20" 16 (A / 47/20).
17 Ibid., Annex.
38
fruit. To achieve this purpose is not necessarily required for each individual member has redundant safety systems. Given space
Use and special requirements of various space missions, impossible to any particular set of systems or features can be specified as
Necessary to achieve this purpose. For the purpose of Principle 3 (d) of paragraph 2, "made critical" does not include
Including such as zero-power testing which are fundamental to ensuring system safety required.
Principle 3. Guidelines and criteria for safe use
To minimize the risk of radioactive material in space and the number involved, nuclear power sources in outer space
Use should be limited to non-nuclear power sources in space missions can not reasonably be performed
1. General goals for radiation protection and nuclear safety
(A) States launching space objects with nuclear power sources on board shall endeavor to protect individuals, populations and the biosphere
From radiation hazards. The design and use of space objects with nuclear power sources on board shall ensure that risk with confidence
Harm in the foreseeable operational or accidental circumstances, paragraph 1 (b) and (c) to define acceptable water
level.
Such design and use shall also ensure that radioactive material does not reliably significant contamination of outer space.
(B) the normal operation of nuclear power sources in space objects, including from paragraph 2 (b) as defined in foot
High enough to return to the track, shall be subject to appropriate anti-radiation recommended by the International Commission on Radiological Protection of the public
Protection goals. During such normal operation there shall be no significant radiation exposure;
(C) To limit exposure in accidents, the design and construction of nuclear power source systems shall take into account the international
Relevant and generally accepted radiological protection guidelines.
In addition to the probability of accidents with potentially serious radiological consequences is extremely low, the nuclear power source
Design systems shall be safely irradiated limited limited geographical area, for the individual radiation dose should be
Limited to no more than a year 1mSv primary dose limits. Allows the use of irradiation year for some years 5mSv deputy agent
Quantity limit, but the average over a lifetime effective dose equivalent annual dose not exceed the principal limit 1mSv
degree.
Should make these conditions occur with potentially serious radiological consequences of the probability of the system design is very
small.
Criteria mentioned in this paragraph Future modifications should be applied as soon as possible;
(D) general concept of defense in depth should be based on the design, construction and operation of systems important for safety. root
According to this concept, foreseeable safety-related failures or malfunctions must be capable of automatic action may be
Or procedures to correct or offset.
It should ensure that essential safety system reliability, inter alia, to make way for these systems
Component redundancy, physical separation, functional isolation and adequate independence.
It should also take other measures to increase the level of safety.
2. The nuclear reactor
(A) nuclear reactor can be used to:
39
(I) On interplanetary missions;
(Ii) the second high enough orbit paragraph (b) as defined;
(Iii) low-Earth orbit, with the proviso that after their mission is complete enough to be kept in a nuclear reactor
High on the track;
(B) sufficiently high orbit the orbital lifetime is long enough to make the decay of fission products to approximately actinides
Element active track. The sufficiently high orbit must be such that existing and future outer space missions of crisis
Risk and danger of collision with other space objects to a minimum. In determining the height of the sufficiently high orbit when
It should also take into account the destroyed reactor components before re-entering the Earth's atmosphere have to go through the required decay time
between.
(C) only 235 nuclear reactors with highly enriched uranium fuel. The design shall take into account the fission and
Activation of radioactive decay products.
(D) nuclear reactors have reached their operating orbit or interplanetary trajectory can not be made critical state
state.
(E) nuclear reactor design and construction shall ensure that, before reaching the operating orbit during all possible events
Can not become critical state, including rocket explosion, re-entry, impact on ground or water, submersion
In water or water intruding into the core.
(F) a significant reduction in satellites with nuclear reactors to operate on a lifetime less than in the sufficiently high orbit orbit
For the period (including during operation into the sufficiently high orbit) the possibility of failure, there should be a very
Reliable operating system, in order to ensure an effective and controlled disposal of the reactor.
3. Radioisotope generators
(A) interplanetary missions and other spacecraft out of Earth's gravitational field tasks using radioactive isotopes
Su generator. As they are stored after completion of their mission in high orbit, the Earth can also be used
track. We are required to make the final treatment under any circumstances.
(B) Radioisotope generators shall be protected closed systems, design and construction of the system should
Ensure that in the foreseeable conditions of the track to withstand the heat and aerodynamic forces of re-entry in the upper atmosphere, orbit
Conditions including highly elliptical or hyperbolic orbits when relevant. Upon impact, the containment system and the occurrence of parity
Physical morpheme shall ensure that no radioactive material is scattered into the environment so you can complete a recovery operation
Clear all radioactive impact area.
Principle 4. Safety Assessment
1. When launching State emission consistent with the principles defined in paragraphs 1, prior to the launch in applicable under the
Designed, constructed or manufactured the nuclear power sources, or will operate the space object person, or from whose territory or facility
Transmits the object will be to ensure a thorough and comprehensive safety assessment. This assessment shall cover
All relevant stages of space mission and shall deal with all systems involved, including the means of launching, the space level
Taiwan, nuclear power source and its equipment and the means of control and communication between ground and space.
2. This assessment shall respect the principle of 3 contained in the guidelines and criteria for safe use.
40
3. The principle of States in the Exploration and Use, including the Moon and Other Celestial Bodies Outer Space Activities Article
Results of about 11, this safety assessment should be published prior to each transmit simultaneously to the extent feasible
Note by the approximate intended time of launch, and shall notify the Secretary-General of the United Nations, how to be issued
This safety assessment before the shot to get the results as soon as possible.
Principle 5. Notification of re-entry
1. Any State launching a space object with nuclear power sources in space objects that failed to produce discharge
When radioactive substances dangerous to return to the earth, it shall promptly notify the country concerned. Notice shall be in the following format:
(A) System parameters:
(I) Name of launching State, including which may be contacted in the event of an accident to Request
Information or assistance to obtain the relevant authorities address;
(Ii) International title;
(Iii) Date and territory or location of launch;
(Iv) the information needed to make the best prediction of orbit lifetime, trajectory and impact region;
(V) General function of spacecraft;
(B) information on the radiological risk of nuclear power source:
(I) the type of power source: radioisotopes / reactor;
(Ii) the fuel could fall into the ground and may be affected by the physical state of contaminated and / or activated components, the number of
The amount and general radiological characteristics. The term "fuel" refers to as a source of heat or power of nuclear material.
This information shall also be sent to the Secretary-General of the United Nations.
2. Once you know the failure, the launching State shall provide information on the compliance with the above format. Information should as far as possible
To be updated frequently, and in the dense layers of the Earth's atmosphere is expected to return to a time when close to the best increase
Frequency of new data, so that the international community understand the situation and will have sufficient time to plan for any deemed necessary
National contingency measures.
3. It should also be at the same frequency of the latest information available to the Secretary-General of the United Nations.
Principle 6. consultation
5 According to the national principles provide information shall, as far as reasonably practicable, other countries
Requirements to obtain further information or consultations promptly reply.
Principle 7. Assistance to States
1. Upon receipt of expected with nuclear power sources on space objects and their components will return through the Earth's atmosphere
After know that all countries possessing space monitoring and tracking facilities, in the spirit of international cooperation, as soon as possible to
The Secretary-General of the United Nations and the countries they may have made space objects carrying nuclear power sources
A fault related information, so that the States may be affected to assess the situation and take any
It is considered to be the necessary precautions.
41
2. In carrying space objects with nuclear power sources back to the Earth's atmosphere after its components:
(A) launching State shall be requested by the affected countries to quickly provide the necessary assistance to eliminate actual
And possible effects, including nuclear power sources to assist in identifying locations hit the Earth's surface, to detect the re substance
Quality and recovery or cleanup activities.
(B) All countries with relevant technical capabilities other than the launching State, and with such technical capabilities
International organizations shall, where possible, in accordance with the requirements of the affected countries to provide the necessary co
help.
When according to the above (a) and subparagraph (b) to provide assistance, should take into account the special needs of developing countries.
Principle 8. Responsibility
In accordance with the States in the Exploration and Use of Outer Space, including the Moon and Other Celestial Bodies activities, including the principles of Article
About Article, States shall bear international responsibility for their use of nuclear power sources in outer space relates to the activities
Whether such activities are carried on by governmental agencies or non-governmental entities, and shall bear international responsibility to ensure that this
Such activities undertaken by the country in line with the principles of the Treaty and the recommendations contained therein. If it involves the use of nuclear power sources
Activities in outer space by an international organization, should be done by the international organizations and States to participate in the organization
Undertakes to comply with the principles of the Treaty and the recommendations contained in these responsibilities.
Principle 9. Liability and Compensation
1. In accordance with the principle of States in the Exploration and Use, including the Moon and Other Celestial Bodies Outer Space Activities Article
And the Convention on International Liability for Damage Caused by Space Objects covenant of Article 7
Provisions, which launches or on behalf of the State
Each State launching a space object and each State from which territory or facility a space object is launched
Kinds of space object or damage caused by components shall bear international liability. This fully applies to this
Kind of space object carrying a nuclear power source case. Two or more States jointly launch a space object,
Each launching State shall in accordance with the above Article of the Convention for any damages jointly and severally liable.
2. Such countries under the aforesaid Convention shall bear the damages shall be in accordance with international law and fair and reasonable
The principles set out in order to provide for damages to make a claim on behalf of its natural or juridical persons, national or
International organizations to restore to the state before the occurrence of the damage.
3. For the purposes of this principle, compensation should be made to include reimbursement of the duly substantiated expenses for search, recovery and clean
Cost management work, including the cost of providing assistance to third parties.
10. The principle of dispute settlement
Since the implementation of these principles will lead to any dispute in accordance with the provisions of the UN Charter, by negotiation or
Other established procedures to resolve the peaceful settlement of disputes.
Here quoted the important provisions of the United Nations concerning the use of outer space for peaceful nuclear research and international conventions, the main emphasis on the Peaceful Uses of provisions related constraints .2 the use of nuclear rockets in outer space nuclear studies, etc., can cause greater attention in nuclear power nuclear rocket ship nuclear research, manufacture, use and other aspects of the mandatory hard indicators. this scientists, engineering and technical experts are also important constraints and requirements. as IAEA supervision and management as very important.
2. radiation. Space radiation is one of the greatest threats to the safety of the astronauts, including X-rays, γ-rays, cosmic rays and high-speed solar particles. Better than aluminum protective effect of high polymer composite materials.
3. Air. Perhaps the oxygen needed to rely on oxidation-reduction reaction of hydrogen and ilmenite production of water, followed by water electrolysis to generate oxygen. Mars oxygen necessary for survival but also from the decomposition of water, electrolytically separating water molecules of oxygen and hydrogen, this oxygen equipment has been successfully used in the International Space Station. Oxygen is released into the air to sustain life, the hydrogen system into the water system.
4. The issue of food waste recycling. At present, the International Space Station on the use of dehumidifiers, sucked moisture in the air to be purified, and then changed back to drinkable water. The astronauts' urine and sweat recycling. 5. water. The spacecraft and the space station on purification system also makes urine and other liquids can be purified utilization. 6. microgravity. In microgravity or weightlessness long-term space travel, if protective measures shall not be treated, the astronauts will be muscle atrophy, bone softening health. 7. contact. 8. Insulation, 9 energy. Any space exploration are inseparable from the energy battery is a new super hybrid energy storage device, the asymmetric lead-acid batteries and supercapacitors in the same compound within the system - and the so-called inside, no additional separate electronic control unit, this is an optimal combination. The traditional lead-acid battery PbO2 monomer is a positive electrode plate and a negative electrode plate spongy Pb composition, not a super cell. : Silicon solar cells, multi-compound thin film solar cells, multi-layer polymer-modified electrode solar cells, nano-crystalline solar cells, batteries and super class. For example, the solar aircraft .10. To protect the health and life safety and security systems. Lysophosphatidic acid LPA is a growth factor-like lipid mediators, the researchers found that this substance can on apoptosis after radiation injury and animal cells was inhibited. Stable lysophosphatidic acid analogs having the hematopoietic system and gastrointestinal tract caused by acute radiation sickness protection, knockout experiments show that lysophosphatidic acid receptors is an important foundation for the protection of radiation injury. In addition to work under high pressure, the astronauts face a number of health threats, including motion sickness, bacterial infections, blindness space, as well as psychological problems, including toxic dust. In the weightless environment of space, the astronaut's body will be like in preadolescents, as the emergence of various changes.
Plantar molt
After the environment to adapt to zero gravity, the astronaut's body will be some strange changes. Weightlessness cause fluid flow around the main flow torso and head, causing the astronauts facial swelling and inflammation, such as nasal congestion. During long-term stay in space
Bone and muscle loss
Most people weightlessness caused by the impact may be known bone and muscle degeneration. In addition, the calcium bones become very fragile and prone to fracture, which is why some of the astronauts after landing need on a stretcher.
Space Blindness
Space Blindness refers astronaut decreased vision.
Solar storms and radiation is one of the biggest challenges facing the long-term space flight. Since losing the protection of Earth's magnetic field, astronauts suffer far more than normal levels of radiation. The cumulative amount of radiation exposure in low earth orbit them exceeded by workers close to nuclear reactors, thereby increasing the risk of cancer.
Prolonged space flight can cause a series of psychological problems, including depression or mood swings, vulnerability, anxiety and fear, as well as other sequelae. We are familiar with the biology of the Earth, the Earth biochemistry, biophysics, after all, the Earth is very different astrophysics, celestial chemistry, biophysics and astrophysics, biochemistry and other celestial bodies. Therefore, you must be familiar with and adapt to these differences and changes.
Osteoporosis and its complications ranked first in the space of disease risk.
Long-term health risks associated with flying Topics
The degree of influence long-term biological effects of radiation in human flight can withstand the radiation and the maximum limit of accumulated radiation on physiology, pathology and genetics.
Physiological effects of weightlessness including: long-term bone loss and a return flight after the maximum extent and severity of the continued deterioration of other pathological problems induced by the; maximum flexibility and severity of possible long-term Flight Center in vascular function.
Long-term risk of disease due to the high risk of flight stress, microbial variation, decreased immune function, leading to infections
Radiation hazards and protection
1) radiation medicine, biology and pathway effects Features
Radiation protection for interplanetary flight, since the lack of protective effect of Earth's magnetic field, and by the irradiation time is longer, the possibility of increased radiation hazard.
Analysis of space flight medical problems that may occur, loss of appetite topped the list, sleep disorders, fatigue and insomnia, in addition, space sickness, musculoskeletal system problems, eye problems, infections problems, skin problems and cardiovascular problems
---------------------------------------------------------
Development of diagnostic techniques in orbit, the development of the volume of power consumption, features a wide range of diagnostic techniques, such as applied research of ultrasound diagnostic techniques in the abdominal thoracic trauma, bone, ligament damage, dental / sinus infections and other complications and integrated;
Actively explore in orbit disposal of medical technology, weightlessness surgical methods, development of special surgical instruments, the role of narcotic drugs and the like.
——————————————————————————————-
However, space technology itself is integrated with the use of the most advanced technology, its challenging technical reserves and periodic demanding
With the continuous development of science and technology, space agencies plan a manned landing on the moon and Mars, space exploration emergency medicine current concern.
Space sickness
In the weightless environment of space, in the weightless environment of space, surgery may be extremely difficult and risky.
Robot surgeons
Space disease in three days after entering the space started to ease, although individual astronauts might subsequently relapse. January 2015 NASA declared working on a fast, anti-nausea and nasal sprays. In addition, due to the zero-gravity environment, and anti-nausea drugs can only be administered by injection or transdermal patches manner.
Manned spaceflight in the 21st century is the era of interplanetary flight, aerospace medicine is closely watched era is the era of China's manned space flourish. Only the central issue, and grasp the opportunity to open up a new world of human survival and development.
Various emergency contingency measures in special circumstances. Invisible accident risk prevention. Enhancing drugs and other screening methods immunity aerospace medicine and tissue engineering a microgravity environment. Drug mixture of APS, ginseng polysaccharides, Ganoderma lucidum polysaccharides, polysaccharides and Lentinan, from other compounds. Drug development space syndrome drug, chemical structure modification will be an important part.
These issues are very sensitive, cutting-edge technology is a major difficulty landing on Mars. Countries in the world, especially the world's major space powers in the country strategies and technical research, the results of all kinds continue to emerge. United States, Russia, China, Europe, India, Japan and other countries is different. United States, Russia extraordinary strength. Many patented technology and health, and most belong to the top-secret technology. Especially in aerospace engineering and technological achievements is different from the general scientific literature, practical, commercial, industrial great, especially the performance of patents, know-how, technical drawings, engineering design and other aspects. Present Mars and return safely to Earth, the first manned, significance, everything is hard in the beginning, especially the first person to land on Mars This Mars for Human Sciences Research Mars, the moon, the earth, the solar system and the universe, life and other significant. Its far greater than the value of direct investments and business interests.
In addition, it is the development of new materials, suitable for deep space operations universe, life, and other detection, wider field.
Many aerospace materials, continuous research and development of materials are key areas of aerospace development, including material rocket, the spacecraft materials, the suit materials, radiation materials, materials and equipment, instruments, materials and so on biochemistry.
Temperature metal-based compound with a metal matrix composite body with a more primordial higher temperature strength, creep resistance, impact resistance, thermal fatigue and other excellent high temperature performance.
In B, C, SiC fiber reinforced Ti3Al, TiAl, Ni3Al intermetallic matrix composites, etc.
W Fiber Reinforced with nickel-based, iron-based alloys as well as SiC, TiB2, Si3N4 and BN particle reinforced metal matrix composites
High temperature service conditions require the development of ceramic and carbon-based composite materials, etc., not in this eleven Cheung said.
Fuel storage
In order to survive in space, people need many things: food, oxygen, shelter, and, perhaps most importantly, fuel. The initial quality Mars mission somewhere around 80 percent of the space launch humans will be propellant. The fuel amount of storage space is very difficult.
This difference in low Earth orbit cause liquid hydrogen and liquid oxygen - rocket fuel - vaporization.
Hydrogen is particularly likely to leak out, resulting in a loss of about 4% per month.
When you want to get people to Mars speed to minimize exposure to weightlessness and space radiation hazards
Mars
Landings on the Martian surface, they realized that they reached the limit. The rapid expansion of the thin Martian atmosphere can not be very large parachute, such as those that will need to be large enough to slow down, carry human spacecraft.
Therefore, the parachute strong mass ratio, high temperature resistance, Bing shot performance and other aspects of textile materials used have special requirements, in order to make a parachute can be used in rockets, missiles, Yu arrows spacecraft and other spacecraft recovery, it is necessary to improve the canopy heat resistance, a high melting point polymeric fiber fabric used, the metal fabric, ceramic fiber fabrics, and other devices.
Super rigid parachute to help slow the landing vehicle.
Spacecraft entered the Martian atmosphere at 24,000 km / h. Even after slowing parachute or inflatable, it will be very
Once we have the protection of the Earth magnetic field, the solar radiation will accumulate in the body, a huge explosion threw the spacecraft may potentially lethal doses of radiation astronauts.
In addition to radiation, the biggest challenge is manned trip to Mars microgravity, as previously described.
The moon is sterile. Mars is another case entirely.
With dust treatment measures.
Arid Martian environment to create a super-tiny dust particles flying around the Earth for billions of years.
Apollo moon dust encountered. Ultra-sharp and abrasive lunar dust was named something that can clog the basic functions of mechanical damage. High chloride salt, which can cause thyroid problems in people.
Mars geological structure and geological structure of the moon, water on Mars geology, geology of the Moon is very important, because he, like the Earth's geology is related to many important issues. Water, the first element of life, air, temperature, and complex geological formations are geological structure. Cosmic geology research methods, mainly through a variety of detection equipment equipped with a space probe, celestial observations of atmospheric composition, composition and distribution of temperature, pressure, wind speed, vertical structure, composition of the solar wind, the water, the surface topography and Zoning, topsoil the composition and characteristics of the component surface of the rock, type and distribution, stratigraphic sequence, structural system and the internal shell structure.
Mars internal situation only rely on its surface condition of large amounts of data and related information inferred. It is generally believed that the core radius of 1700 km of high-density material composition; outsourcing a layer of lava, it is denser than the Earth's mantle some; outermost layer is a thin crust. Compared to other terrestrial planets, the lower the density of Mars, which indicates that the Martian core of iron (magnesium and iron sulfide) with may contain more sulfur. Like Mercury and the Moon, Mars and lack active plate movement; there is no indication that the crust of Mars occurred can cause translational events like the Earth like so many of folded mountains. Since there is no lateral movement in the earth's crust under the giant hot zone relative to the ground in a stationary state. Slight stress coupled with the ground, resulting in Tharis bumps and huge volcano. For the geological structure of Mars is very important, which is why repeated explorations and studies of Martian geological reasons.
Earth's surface
Each detector component landing site soil analysis:
Element weight percent
Viking 1
Oxygen 40-45
Si 18-25
Iron 12-15
K 8
Calcium 3-5
Magnesium 3-6
S 2-5
Aluminum 2-5
Cesium 0.1-0.5
Core
Mars is about half the radius of the core radius, in addition to the primary iron further comprises 15 to 17% of the sulfur content of lighter elements is also twice the Earth, so the low melting point, so that the core portion of a liquid, such as outside the Earth nuclear.
Mantle
Nuclear outer coating silicate mantle.
Crust
The outermost layer of the crust.
Crustal thickness obtained, the original thickness of the low north 40 km south plateau 70 kilometers thick, an average of 50 kilometers, at least 80 km Tharsis plateau and the Antarctic Plateau, and in the impact basin is thin, as only about 10 kilometers Greece plains.
Canyon of Mars there are two categories: outflow channels (outflow channel) and tree valley (valley network). The former is very large, it can be 100 km wide, over 2000 km long, streamlined, mainly in the younger Northern Hemisphere, such as the plain around Tyre Chris Canyon and Canyon jam.
In addition, the volcanic activity sometimes lava formation lava channels (lava channel); crustal stress generated by fissures, faults, forming numerous parallel extending grooves (fossa), such as around the huge Tharsis volcanic plateau radially distributed numerous grooves, which can again lead to volcanic activity.
Presumably, Mars has an iron as the main component of the nucleus, and contains sulfur, magnesium and other light elements, the nuclear share of Mars, the Earth should be relatively small. The outer core is covered with a thick layer of magnesium-rich silicate mantle, the surface of rocky crust. The density of Earth-like planets Mars is the lowest, only 3.93g / cc.
Hierarchy
The crust
Lunar core
The average density of the Moon is 3.3464 g / cc, the solar system satellites second highest (after Aiou). However, there are few clues mean lunar core is small, only about 350 km radius or less [2]. The core of the moon is only about 20% the size of the moon, the moon's interior has a solid, iron-rich core diameter of about 240 kilometers (150 miles); in addition there is a liquid core, mainly composed of iron outer core, about 330 km in diameter (205 miles), and for the first time compared with the core of the Earth, considered as the earth's outer core, like sulfur and oxygen may have lighter elements [4].
Chemical elements on the lunar surface constituted in accordance with its abundance as follows: oxygen (O), silicon (Si), iron (Fe), magnesium (Mg), calcium (Ca), aluminum (Al), manganese (Mn), titanium ( Ti). The most abundant is oxygen, silicon and iron. The oxygen content is estimated to be 42% (by weight). Carbon (C) and nitrogen (N) only traces seem to exist only in trace amounts deposited in the solar wind brings.
Lunar Prospector from the measured neutron spectra, the hydrogen (H) mainly in the lunar poles [2].
Element content (%)
Oxygen 42%
Silicon 21%
Iron 13%
Calcium 8%
Aluminum 7%
Magnesium 6%
Other 3%
Lunar surface relative content of each element (% by weight)
Moon geological history is an important event in recent global magma ocean crystallization. The specific depth is not clear, but some studies have shown that at least a depth of about 500 kilometers or more.
Lunar landscape
Lunar landscape can be described as impact craters and ejecta, some volcanoes, hills, lava-filled depressions.
Regolith
TABLE bear the asteroid and comets billions of years of bombardment. Over time, the impact of these processes have already broken into fine-grained surface rock debris, called regolith. Young mare area, regolith thickness of about 2 meters, while the oldest dated land, regolith thickness of up to 20 meters. Through the analysis of lunar soil components, in particular the isotopic composition changes can determine the period of solar activity. Solar wind gases possible future lunar base is useful because oxygen, hydrogen (water), carbon and nitrogen is not only essential to life, but also may be useful for fuel production. Lunar soil constituents may also be as a future source of energy.
Here, repeatedly stressed that the geological structure and geological structure of celestial bodies, the Earth, Moon, Mars, or that this human existence and development of biological life forms is very important, especially in a series of data Martian geological structure geological structure is directly related to human landing Mars and the successful transformation of Mars or not. for example, water, liquid water, water, oxygen, synthesis, must not be taken lightly.
____________________________________________________________----
Mars landing 10 Technology
Aerospace Science and space science and technology major innovation of the most critical of sophisticated technology R & D project
[
"1" rocket propulsion technology ion fusion nuclear pulse propulsion rocket powered high-speed heavy rocket technology, space nuclear reactors spacecraft] brought big problems reflected in the nuclear reaction, nuclear radiation on spacecraft launch, control, brakes and other impact.
In particular, for the future of nuclear power spacecraft, the need to solve the nuclear reactor design, manufacture, control, cooling, radiation shielding, exhaust pollution, high thermoelectric conversion efficiency and a series of technical problems.
In particular, nuclear reactors produce radiation on astronauts' health will pose a great threat, which requires the spacecraft to be nuclear radiation shielding to ensure astronaut and ship the goods from radiation and heat from the reactor influence, but this will greatly increase the weight of the detector.
Space nuclear process applications, nuclear reaction decay is not a problem, but in a vacuum, ultra-low temperature environment, the nuclear reaction materials, energy transport materials have very high demands.
Space facing the reality of a nuclear reactor cooling cooling problems. To prevent problems with the reactor, "Washington" aircraft carrier to take four heavy protective measures for the radiation enclosed in the warship. These four measures are: the fuel itself, fuel storage pressure vessel, reactor shell and the hull. US Navy fuel all metal fuel, designed to take the impact resistance of the war, does not release fission product can withstand more than 50 times the gravity of the impact load; product of nuclear fission reactor fuel will never enter loop cooling water. The third layer of protection is specially designed and manufactured the reactor shell. The fourth layer is a very strong anti-impact combat ship, the reactor is arranged in the center of the ship, very safe. Engage in a reactor can only be loaded up to the aircraft, so as to drive the motor, and then drive the propeller. That is the core advantage of the heat generated by the heated gas flow, high temperature high pressure gas discharge backward, thereby generating thrust.
.
After installation AMPS1000 type nuclear power plant, a nuclear fuel assembly: He is a core member of the nuclear fuel chain reaction. Usually made into uranium dioxide, of which only a few percent uranium-235, and most of it is not directly involved in the nuclear fission of uranium 238. The uranium dioxide sintered into cylindrical pieces, into a stainless steel or a zirconium alloy do metal tubes called fuel rods or the original, then the number of fuel rods loaded metal cylinder in an orderly composition of the fuel assembly, and finally put a lot of vertical distribution of fuel assemblies in the reactor.
Nuclear reactor pressure vessel is a housing for containing nuclear fuel and reactor internals, for producing high-quality high-strength steel is made to withstand the pressure of dozens MPa. Import and export of the coolant in the pressure vessel.
The top of the pressure vessel closure, and can be used to accommodate the fixed control rod drive mechanism, pressure vessel head has a semi-circular, flat-topped.
Roof bolt: used to connect the locking pressure vessel head, so that the cylinder to form a completely sealed container.
Neutron Source: Plug in nuclear reactors can provide sufficient neutron, nuclear fuel ignition, to start to enhance the role of nuclear reactors and nuclear power. Neutron source generally composed of radium, polonium, beryllium, antimony production. Neutron source and neutron fission reactors are fast neutron, can not cause fission of uranium 235, in order to slow down, we need to moderator ---- full of pure water in a nuclear reactor. Aircraft carriers, submarines use nuclear reactor control has proven more successful.
Rod: has a strong ability to absorb neutrons, driven by the control rod drive mechanism, can move up and down in a nuclear reactor control rods within the nuclear fuel used to start, shut down the nuclear reactor, and maintain, regulate reactor power. Hafnium control rods in general, silver, indium, cadmium and other metals production.
Control rod drive mechanism: He is the executive body of nuclear reactors operating system and security protection systems, in strict accordance with requirements of the system or its operator control rod drives do move up and down in a nuclear reactor, nuclear reactor for power control. In a crisis situation, you also can quickly control rods fully inserted into the reactor in order to achieve the purpose of the emergency shutdown
Upper and lower support plate: used to secure the fuel assembly. High temperature and pressure inside the reactor is filled with pure water (so called pressurized water reactors), on the one hand he was passing through a nuclear reactor core, cooling the nuclear fuel, to act as a coolant, on the other hand it accumulates in the pressure vessel in play moderated neutrons role, acting as moderator.
Water quality monitoring sampling system:
Adding chemical system: under normal circumstances, for adding hydrazine, hydrogen, pH control agents to the primary coolant system, the main purpose is to remove and reduce coolant oxygen, high oxygen water suppression equipment wall corrosion (usually at a high temperature oxygen with hydrogen, especially at low temperatures during startup of a nuclear reactor with added hydrazine oxygen); when the nuclear reactor control rods stuck for some reason can not shutdown time by the the system can inject the nuclear reactor neutron absorber (such as boric acid solution), emergency shutdown, in order to ensure the safety of nuclear submarines.
Water system: a loop inside the water will be reduced at work, such as water sampling and analysis, equipment leaks, because the shutdown process cooling water and reduction of thermal expansion and contraction.
Equipment cooling water system:
Pressure safety systems: pressure reactor primary coolant system may change rapidly for some reason, the need for effective control. And in severe burn nuclear fuel rods, resulting in a core melt accident, it is necessary to promptly increase the pressure. Turn the regulator measures the electric, heating and cooling water. If necessary, also temporary startup booster pump.
Residual Heat Removal System: reactor scram may be due to an accident, such as when the primary coolant system of the steam generator heat exchanger tube is damaged, it must be urgently closed reactors.
Safety Injection System: The main components of this system is the high-pressure injection pump.
Radioactive waste treatment systems:
Decontamination Systems: for the removal of radioactive deposits equipment, valves, pipes and accessories, and other surfaces.
Europe, the United States and Russia and other countries related to aircraft carriers, submarines, icebreakers, nuclear-powered research aircraft, there are lots of achievements use of nuclear energy, it is worth analysis. However, nuclear reactor technology, rocket ships and the former are very different, therefore, requires special attention and innovative research. Must adopt a new new design techniques, otherwise, fall into the stereotype, it will avail, nothing even cause harm Aerospace.
[ "2" spacecraft structure]
[ "3"] radiation technology is the use of deep-sea sedimentation fabric fabrics deepwater technology development precipitated silver metal fibers or fiber lint and other materials and micronaire value between 4.1 to 4.3 fibers made from blends. For radiation protection field, it greatly enhances the effects of radiation and service life of clothing. Radiation resistant fiber) radiation resistant fiber - fiber polyimide polyimide fibers
60 years the United States has successfully developed polyimide fibers, it has highlighted the high temperature, radiation-resistant, fire-retardant properties.
[ "4" cosmic radiation resistant clothing design multifunctional anti-aging, wear underwear] ① comfort layer: astronauts can not wash clothes in a long flight, a lot of sebum, perspiration, etc. will contaminate underwear, so use soft, absorbent and breathable cotton knitwear making.
② warm layer: at ambient temperature range is not the case, warm layer to maintain a comfortable temperature environment. Choose warm and good thermal resistance large, soft, lightweight material, such as synthetic fibers, flakes, wool and silk and so on.
③ ventilation and cooling clothes clothes
Spacesuit
In astronaut body heat is too high, water-cooled ventilation clothing and clothing to a different way of heat. If the body heat production more than 350 kcal / h (ventilated clothes can not meet the cooling requirements, then that is cooled by a water-cooled suit. Ventilating clothing and water-cooled multi-use compression clothing, durable, flexible plastic tubing, such as polyvinyl chloride pipe or nylon film.
④ airtight limiting layer:
⑤ insulation: astronaut during extravehicular activities, from hot or cold insulation protection. It multilayer aluminized polyester film or a polyimide film and sandwiched between layers of nonwoven fabric to be made.
⑥ protective cover layer: the outermost layer of the suit is to require fire, heat and anti-space radiation on various factors (micrometeorites, cosmic rays, etc.) on the human body. Most of this layer with aluminized fabric.
New space suits using a special radiation shielding material, double design.
And also supporting spacesuit helmet, gloves, boots and so on.
[ "5" space - Aerospace biomedical technology, space, special use of rescue medication Space mental health care systems in space without damage restful sleep positions - drugs, simple space emergency medical system
]
[ "6" landing control technology, alternate control technology, high-performance multi-purpose landing deceleration device (parachute)]
[ "7" Mars truck, unitary Mars spacecraft solar energy battery super multi-legged (rounds) intelligent robot] multifunction remote sensing instruments on Mars, Mars and more intelligent giant telescope
[8 <> Mars warehouse activities, automatic Mars lander - Automatic start off cabin
]
[ "9" Mars - spacecraft docking control system, return to the system design]
Space flight secondary emergency life - support system
Spacecraft automatic, manual, semi-automatic operation control, remote control switch system
Automatic return spacecraft systems, backup design, the spacecraft automatic control operating system modular blocks of]
[10 lunar tracking control system
Martian dust storms, pollution prevention, anti-corrosion and other special conditions thereof
Electric light aircraft, Mars lander, Mars, living spaces, living spaces Mars, Mars entry capsule, compatible utilization technology, plant cultivation techniques, nutrition space - space soil]
Aerospace technology, space technology a lot, a lot of cutting-edge technology. Human landing on Mars technology bear the brunt. The main merge the human landing on Mars 10 cutting-edge technology, in fact, these 10 cutting-edge technology, covering a wide range, focused, and is the key to key technologies. They actually shows overall trends and technology Aerospace Science and Technology space technology. Human triumph Mars and safe return of 10 cutting-edge technology is bound to innovation. Moreover, in order to explore the human Venus, Jupiter satellites and the solar system, the Milky Way and other future development of science and laid the foundation guarantee. But also for the transformation of human to Mars, the Moon and other planets livable provides strong technical support. Aerospace Science and Technology which is a major support system.
Preparation of oxygen, water, synthesis, temperature, radiation, critical force confrontation. Regardless of the moon or Mars, survive three elements bear the brunt.
Chemical formula: H₂O
Formula: H-O-H (OH bond between two angle 104.5 °).
Molecular Weight: 18.016
Chemical Experiment: water electrolysis. Formula: 2H₂O = energized = 2H₂ ↑ + O₂ ↑ (decomposition)
Molecules: a hydrogen atom, an oxygen atom.
Ionization of water: the presence of pure water ionization equilibrium following: H₂O == == H⁺ + OH⁻ reversible or irreversible H₂O + H₂O = = H₃O⁺ + OH⁻.
NOTE: "H₃O⁺" hydronium ions, for simplicity, often abbreviated as H⁺, more accurate to say the H9O4⁺, the amount of hydrogen ion concentration in pure water material is 10⁻⁷mol / L.
Electrolysis of water:
Water at DC, decomposition to produce hydrogen and oxygen, this method is industrially prepared pure hydrogen and oxygen 2H₂O = 2H₂ ↑ + O₂ ↑.
. Hydration Reaction:
Water with an alkaline active metal oxides, as well as some of the most acidic oxide hydration reaction of unsaturated hydrocarbons.
Na₂O + H₂O = 2NaOH
CaO + H₂O = Ca (OH) ₂
SO₃ + H₂O = H₂SO₄
P₂O₅ + 3H₂O = 2H₃PO₄ molecular structure
CH₂ = CH₂ + H₂O ← → C₂H₅OH
6. The diameter of the order of magnitude of 10 water molecules negative power of ten, the water is generally believed that a diameter of 2 to 3 this organization. water
7. Water ionization:
In the water, almost no water molecules ionized to generate ions.
H₂O ← → H⁺ + OH⁻
Heating potassium chlorate or potassium permanganate preparation of oxygen
Pressurized at low temperatures, the air into a liquid, and then evaporated, since the boiling point of liquid nitrogen is -196 deg.] C, lower than the boiling point of liquid oxygen (-183 ℃), so the liquid nitrogen evaporated from the first air, remaining the main liquid oxygen.
Of course, the development of research in space there is a great difference, even more special preparation harsh environments on Earth and sy
Mars tech.
Special multi-purpose anti-radiation suit 50 million dollars
Aerospace Medical Emergency cabin 1.5 billion dollars
Multi-purpose intelligent life support system 10 billion dollars
Mars truck 300 million dollars
Aerospace / Water Planet synthesis 1.2 billion dollars
Cutting-edge aerospace technology transfer 50 million dollars of new rocket radiation material 10 billion dollars against drugs microgravity $ 2 billion contact banxin123 @ gmail.com, mdin.jshmith @ gmail.com technology entry fee / technical margin of 1 million dollars , signed on demand
-----------------------------------------Fangruida: human landing on Mars 10 cutting-edge technology
[Fangruida- human landing on Mars 10 innovative and sophisticated technologies]
Aerospace Science and space science and technology major innovation of the most critical of sophisticated technology R & D project
-------------------------------------------------- -------------
Aerospace Science Space Science and Technology on behalf of the world's most cutting-edge leader in high technology, materials, mechatronics, information and communication, energy, biomedical, marine, aviation aerospace, microelectronics, computer, automation, intelligent biochips, use of nuclear energy, light mechanical and electrical integration, astrophysics, celestial chemistry, astrophysics and so a series of geological science and technology. Especially after the moon landing, the further development of mankind to Mars and other planets into the powerful offensive, the world's major powers eager to Daxian hand of God, increase investment, vigorously develop new sophisticated technology projects for space to space. Satellite, space station, the new spacecraft, the new space suits, the new radiation protection materials, intelligent materials, new manufacturing technology, communications technology, computer technology, detector technology, rover, rover technology, biomedical technology, and so one after another, is expected to greater breakthroughs and leaps. For example, rocket technology, spacecraft design, large power spacecraft, spacesuits design improvements, radiation multifunctional composite materials, life health care technology and space medicine, prevention against microgravity microgravity applicable drugs, tracking control technology, landing and return technology. Mars lander and returned safely to Earth as a top priority. Secondly, Mars, the Moon base and the use of transforming Mars, the Moon and other development will follow. Whether the former or the latter, are the modern aerospace science, space science basic research, applied basic research and applied research in the major cutting-edge technology. These major cutting-edge technology research and innovation, not only for human landing on Mars and the safe return of great significance, but for the entire space science, impact immeasurable universe sciences, earth sciences and human life. Here the most critical of the most important research projects of several sophisticated technology research and development as well as its core technology brief. Limit non-scientific techniques include non-technical limits of technology, the key lies in technology research and development of technology maturity, advanced technology, innovative, practical, reliable, practical application, business value and investment costs, and not simply like the idea mature technology achievements, difficult to put into things. This is the high-tech research and development, testing, prototype, test application testing, until the outcome of industrialization. Especially in aerospace technology, advanced, novelty, practicality, reliability, economy, maturity, commercial value and so on. For technical and research purely science fiction and the like may be irrelevant depth, but not as aerospace engineering and technology practice. Otherwise, Mars will become a dream fantasy, and even into settling crashed out of danger.
Regardless of the moon or Mars, many technical difficulties, especially a human landing on Mars and return safely to Earth, technical difficulties mainly in the following aspects. (Transformation of Mars and the Moon and other planets and detect other livable technology more complex and difficult, at this stage it is difficult to achieve and therefore not discussed in detail in this study). In fact, Mars will be the safe return of a full set of technology, space science, aerospace crucial scientific research development, its significance is not confined to Mars simply a return to scientific value, great commercial value, can not be measure.
1. Powered rocket, the spacecraft overall structural design not be too complex large, otherwise, the safety factor to reduce the risk of failure accidents. Fusion rocket engine main problem to be solved is the high-temperature materials and fuel ignition chamber (reaction chamber temperatures of up to tens of millions of supreme billion degrees), fissile class rocket engine whose essence is the miniaturization of nuclear reactors, and placed on the rocket. Nuclear rocket engine fuel as an energy source, with liquid hydrogen, liquid helium, liquid ammonia working fluid. Nuclear rocket engine mounted in the thrust chamber of the reactor, cooling nozzle, the working fluid delivery and control systems and other components. This engine due to nuclear radiation protection, exhaust pollution, reactor control and efficient heat exchanger design and other issues unresolved. Electrothermal rocket engine utilizing heat energy (resistance heating or electric arc heating) working medium (hydrogen, amines, hydrazine ), vaporized; nozzle expansion accelerated after discharged from the spout to generate thrust. Static rocket engine working fluid (mercury, cesium, hydrogen, etc.) from the tank enter the ionization chamber is formed thrust ionized into a plasma jet. Electric rocket engines with a high specific impulse (700-2500 sec), extremely long life (can be repeated thousands of times a starter, a total of up to thousands of hours of work). But the thrust of less than 100N. This engine is only available for spacecraft attitude control, station-keeping and the like. One nuclear - power rocket design is as follows: Firstly, the reactor heats water to make it into steam, and then the high-speed steam ejected, push the rocket. Nuclear rocket using hydrogen as working substance may be a better solution, it is one of the most commonly used liquid hydrogen rocket fuel rocket carrying liquid hydrogen virtually no technical difficulties. Heating hydrogen nuclear reactor, as long as it eventually reaches or exceeds current jet velocity hydrogen rocket engine jet speed, the same weight of the rocket will be able to work longer, it can accelerate the Rockets faster. Here there are only two problems: First, the final weight includes the weight of the rocket in nuclear reactors, so it must be as light as possible. Ultra-small nuclear reactor has been able to achieve. Furthermore, if used in outer space, we can not consider the problem of radioactive residues, simply to just one proton hydrogen nuclei are less likely to produce induced radioactivity, thus shielding layer can be made thinner, injected hydrogen gas can flow directly through the reactor core, it is not easy to solve, and that is how to get back at high speed heated gas is ejected.
Rocket engine with a nuclear fission reactor, based on the heating liquid hydrogen propellant, rather than igniting flammable propellant
High-speed heavy rocket is a major cutting-edge technology. After all, space flight and aircraft carriers, submarines, nuclear reactors differ greatly from the one hand, the use of traditional fuels, on the one hand can be nuclear reactor technology. From the control, for security reasons, the use of nuclear power rocket technology, safe and reliable overriding indicators. Nuclear atomic energy in line with the norms and rules of outer space. For the immature fetal abdominal hatchery technology, and resolutely reject use. This is the most significant development of nuclear-powered rocket principle.
Nuclear-powered spaceship for Use of nuclear power are three kinds:
The first method: no water or air space such media can not be used propeller must use jet approach. Reactor nuclear fission or fusion to produce a lot of heat, we will propellant (such as liquid hydrogen) injection, the rapid expansion of the propellant will be heated and then discharged from the engine speed tail thrust. This method is most readily available.
The second method: nuclear reactor will have a lot of fast-moving ions, these energetic particles moving very fast, so you can use a magnetic field to control their ejection direction. This principle ion rocket similar to the tail of the rocket ejected from the high-speed mobile ions, so that the recoil movement of a rocket. The advantage of this approach is to promote the unusually large ratio, without carrying any medium, continued strong. Ion engine, which is commonly referred to as "electric rocket", the principle is not complicated, the propellant is ionized particles,
Plasma Engine
Electromagnetic acceleration, high-speed spray. From the development trend, the US research scope covers almost all types of electric thrusters, but mainly to the development of ion engines, NASA in which to play the most active intake technology and preparedness plans. "
The third method: the use of nuclear explosions. It is a bold and crazy way, no longer is the use of a controlled nuclear reaction, but to use nuclear explosions to drive the ship, this is not an engine, and it is called a nuclear pulse rocket. This spacecraft will carry a lot of low-yield atomic bombs out one behind, and then detonated, followed by a spacecraft propulsion installation disk, absorbing the blast pushing the spacecraft forward. This was in 1955 to Orion (Project Orion) name of the project, originally planned to bring two thousand atomic bombs, Orion later fetal nuclear thermal rocket. Its principle is mounted on a small rocket reactor, the reactor utilizing thermal energy generated by the propellant is heated to a high temperature, high pressure and high temperature of the propellant from the high-speed spray nozzle, a tremendous impetus.
Common nuclear fission technologies, including nuclear pulse rocket engines, nuclear rockets, nuclear thermal rocket and nuclear stamping rockets to nuclear thermal rocket, for example, the size of its land-based nuclear power plant reactor structure than the much smaller, more uranium-235 purity requirements high, reaching more than 90%, at the request of the high specific impulse engine core temperature will reach about 3000K, require excellent high temperature properties of materials.
Research and test new IT technologies and new products and new technology and new materials, new equipment, things are difficult, design is the most important part, especially in the overall design, technical solutions, technical route, technical process, technical and economic particularly significant. The overall design is defective, technology there are loopholes in the program, will be a major technical route deviation, but also directly related to the success of research trials. so, any time, under any circumstances, a good grasp of the overall control of design, technical design, is essential. otherwise, a done deal, it is difficult save. aerospace technology research and product development is true.
3, high-performance nuclear rocket
Nuclear rocket nuclear fission and fusion energy can rocket rocket two categories. Nuclear fission and fusion produce heat, radiation and shock waves and other large amounts of energy, but here they are contemplated for use as a thermal energy rocket.
Uranium and other heavy elements, under certain conditions, will split their nuclei, called nuclear fission reaction. The atomic bomb is the result of nuclear fission reactions. Nuclear fission reaction to release energy, is a million times more chemical rocket propellant combustion energy. Therefore, nuclear fission energy is a high-performance rocket rockets. Since it requires much less propellant than chemical rockets can, so to its own weight is much lighter than chemical rockets energy. For the same quality of the rocket, the rocket payload of nuclear fission energy is much greater than the chemical energy of the rocket. Just nuclear fission energy rocket is still in the works.
Use of nuclear fission energy as the energy of the rocket, called the atomic rockets. It is to make hydrogen or other inert gas working fluid through the reactor, the hydrogen after the heating temperature quickly rose to 2000 ℃, and then into the nozzle, high-speed spray to produce thrust.
A vision plan is to use liquid hydrogen working fluid, in operation, the liquid hydrogen tank in the liquid hydrogen pump is withdrawn through the catheter and the engine cooling jacket and liquid hydrogen into hydrogen gas, hydrogen gas turbine-driven, locally expansion. Then by nuclear fission reactors, nuclear fission reactions absorb heat released, a sharp rise in temperature, and finally into the nozzle, the rapid expansion of high-speed spray. Calculations show that the amount of atomic payload rockets, rocket high chemical energy than 5-8 times.
Hydrogen and other light elements, under certain conditions, their nuclei convergent synthesis of new heavy nuclei, and release a lot of energy, called nuclear fusion reaction, also called thermonuclear reaction.
Using energy generated by the fusion reaction for energy rocket, called fusion energy rocket or nuclear thermal rockets. But it is also not only take advantage of controlled nuclear fusion reaction to manufacture hydrogen bombs, rockets and controlled nuclear fusion reaction needs still studying it.
Of course there are various research and development of rocket technology and technical solutions to try.
It is envisaged that the rocket deuterium, an isotope of hydrogen with deuterium nuclear fusion reaction of helium nuclei, protons and neutrons, and release huge amounts of energy, just polymerized ionized helium to temperatures up to 100 million degrees the plasma, and then nozzle expansion, high-speed ejection, the exhaust speed of up to 15,000 km / sec, atomic energy is 1800 times the rocket, the rocket is the chemical energy of 3700 times.
Nuclear rocket engine fuel as an energy source, with liquid hydrogen, liquid helium, liquid ammonia working fluid. Nuclear rocket engine mounted in the thrust chamber of the reactor, cooling nozzle, the working fluid delivery and control systems and other components. In a nuclear reactor, nuclear energy into heat to heat the working fluid, the working fluid is heated after expansion nozzle to accelerate to the speed of 6500 ~ 11,000 m / sec from the discharge orifice to produce thrust. Nuclear rocket engine specific impulse (250 to 1000 seconds) long life, but the technology is complex, apply only to long-term spacecraft. This engine due to nuclear radiation protection, exhaust pollution, reactor control and efficient heat exchanger design and other issues not resolved, is still in the midst of trials. Nuclear rocket technology is cutting-edge aerospace science technology, centralized many professional and technical sciences and aerospace, nuclear physics, nuclear chemistry, materials science, the long term future ___-- wide width. The United States, Russia and Europe, China, India, Japan, Britain, Brazil and other countries in this regard have studies, in particular the United States and Russia led the way, impressive. Of course, at this stage of nuclear rocket technology, technology development there are still many difficulties. Fully formed, still to be. But humanity marching to the universe, nuclear reactor applications is essential.
Outer Space Treaty (International Convention on the Peaceful Uses of Outer Space) ****
Use of Nuclear Power Sources in Outer Space Principle 15
General Assembly,
Having considered the report of its thirty-fifth session of the Committee on the Peaceful Uses of Outer Space and the Commission of 16 nuclear
It can be attached in principle on the use of nuclear power sources in outer space of the text of its report, 17
Recognize that nuclear power sources due to small size, long life and other characteristics, especially suitable for use even necessary
For some missions in outer space,
Recognizing also that the use of nuclear power sources in outer space should focus on the possible use of nuclear power sources
Those uses,
Recognizing also that the use of nuclear power sources should include or probabilistic risk analysis is complete security in outer space
Full evaluation is based, in particular, the public should focus on reducing accidental exposure to harmful radiation or radioactive material risk
risk,
Recognizing the need to a set of principles containing goals and guidelines in this regard to ensure the safety of outer space makes
With nuclear power sources,
Affirming that this set principles apply exclusively on space objects for non-power generation, which is generally characteristic
Mission systems and implementation of nuclear power sources in outer space on similar principles and used by,
Recognizing this need to refer to a new set of principles for future nuclear power applications and internationally for radiological protection
The new proposal will be revised
By the following principles on the use of nuclear power sources in outer space.
Principle 1. Applicability of international law
Involving the use of nuclear power sources in outer space activities should be carried out in accordance with international law, especially the "UN
Principles of the Charter "and" States in the Exploration and Use of Outer Space, including the Moon and Other Celestial Bodies Activities
Treaty "3
.
2. The principle terms
1. For the purpose of these principles, "launching State" and "launching State ......" two words mean, in related
Principles related to a time of nuclear power sources in space objects exercises jurisdiction and control of the country.
2. For the purpose of principle 9, wherein the definition of the term "launching State" as contained in that principle.
3. For the purposes of principle 3, the terms "foreseeable" and "all possible" two words are used to describe the actual hair
The overall likelihood of students that it is considered for safety analysis is credible possibilities for a class of things
Member or circumstances. "General concept of defense in depth" when the term applies to nuclear power sources in outer space refers to various settings
Count form and space operations replace or supplement the operation of the system in order to prevent system failures or mitigate thereafter
"Official Records of the General Assembly, Forty-seventh Session, Supplement No. 20" 16 (A / 47/20).
17 Ibid., Annex.
38
fruit. To achieve this purpose is not necessarily required for each individual member has redundant safety systems. Given space
Use and special requirements of various space missions, impossible to any particular set of systems or features can be specified as
Necessary to achieve this purpose. For the purpose of Principle 3 (d) of paragraph 2, "made critical" does not include
Including such as zero-power testing which are fundamental to ensuring system safety required.
Principle 3. Guidelines and criteria for safe use
To minimize the risk of radioactive material in space and the number involved, nuclear power sources in outer space
Use should be limited to non-nuclear power sources in space missions can not reasonably be performed
1. General goals for radiation protection and nuclear safety
(A) States launching space objects with nuclear power sources on board shall endeavor to protect individuals, populations and the biosphere
From radiation hazards. The design and use of space objects with nuclear power sources on board shall ensure that risk with confidence
Harm in the foreseeable operational or accidental circumstances, paragraph 1 (b) and (c) to define acceptable water
level.
Such design and use shall also ensure that radioactive material does not reliably significant contamination of outer space.
(B) the normal operation of nuclear power sources in space objects, including from paragraph 2 (b) as defined in foot
High enough to return to the track, shall be subject to appropriate anti-radiation recommended by the International Commission on Radiological Protection of the public
Protection goals. During such normal operation there shall be no significant radiation exposure;
(C) To limit exposure in accidents, the design and construction of nuclear power source systems shall take into account the international
Relevant and generally accepted radiological protection guidelines.
In addition to the probability of accidents with potentially serious radiological consequences is extremely low, the nuclear power source
Design systems shall be safely irradiated limited limited geographical area, for the individual radiation dose should be
Limited to no more than a year 1mSv primary dose limits. Allows the use of irradiation year for some years 5mSv deputy agent
Quantity limit, but the average over a lifetime effective dose equivalent annual dose not exceed the principal limit 1mSv
degree.
Should make these conditions occur with potentially serious radiological consequences of the probability of the system design is very
small.
Criteria mentioned in this paragraph Future modifications should be applied as soon as possible;
(D) general concept of defense in depth should be based on the design, construction and operation of systems important for safety. root
According to this concept, foreseeable safety-related failures or malfunctions must be capable of automatic action may be
Or procedures to correct or offset.
It should ensure that essential safety system reliability, inter alia, to make way for these systems
Component redundancy, physical separation, functional isolation and adequate independence.
It should also take other measures to increase the level of safety.
2. The nuclear reactor
(A) nuclear reactor can be used to:
39
(I) On interplanetary missions;
(Ii) the second high enough orbit paragraph (b) as defined;
(Iii) low-Earth orbit, with the proviso that after their mission is complete enough to be kept in a nuclear reactor
High on the track;
(B) sufficiently high orbit the orbital lifetime is long enough to make the decay of fission products to approximately actinides
Element active track. The sufficiently high orbit must be such that existing and future outer space missions of crisis
Risk and danger of collision with other space objects to a minimum. In determining the height of the sufficiently high orbit when
It should also take into account the destroyed reactor components before re-entering the Earth's atmosphere have to go through the required decay time
between.
(C) only 235 nuclear reactors with highly enriched uranium fuel. The design shall take into account the fission and
Activation of radioactive decay products.
(D) nuclear reactors have reached their operating orbit or interplanetary trajectory can not be made critical state
state.
(E) nuclear reactor design and construction shall ensure that, before reaching the operating orbit during all possible events
Can not become critical state, including rocket explosion, re-entry, impact on ground or water, submersion
In water or water intruding into the core.
(F) a significant reduction in satellites with nuclear reactors to operate on a lifetime less than in the sufficiently high orbit orbit
For the period (including during operation into the sufficiently high orbit) the possibility of failure, there should be a very
Reliable operating system, in order to ensure an effective and controlled disposal of the reactor.
3. Radioisotope generators
(A) interplanetary missions and other spacecraft out of Earth's gravitational field tasks using radioactive isotopes
Su generator. As they are stored after completion of their mission in high orbit, the Earth can also be used
track. We are required to make the final treatment under any circumstances.
(B) Radioisotope generators shall be protected closed systems, design and construction of the system should
Ensure that in the foreseeable conditions of the track to withstand the heat and aerodynamic forces of re-entry in the upper atmosphere, orbit
Conditions including highly elliptical or hyperbolic orbits when relevant. Upon impact, the containment system and the occurrence of parity
Physical morpheme shall ensure that no radioactive material is scattered into the environment so you can complete a recovery operation
Clear all radioactive impact area.
Principle 4. Safety Assessment
1. When launching State emission consistent with the principles defined in paragraphs 1, prior to the launch in applicable under the
Designed, constructed or manufactured the nuclear power sources, or will operate the space object person, or from whose territory or facility
Transmits the object will be to ensure a thorough and comprehensive safety assessment. This assessment shall cover
All relevant stages of space mission and shall deal with all systems involved, including the means of launching, the space level
Taiwan, nuclear power source and its equipment and the means of control and communication between ground and space.
2. This assessment shall respect the principle of 3 contained in the guidelines and criteria for safe use.
40
3. The principle of States in the Exploration and Use, including the Moon and Other Celestial Bodies Outer Space Activities Article
Results of about 11, this safety assessment should be published prior to each transmit simultaneously to the extent feasible
Note by the approximate intended time of launch, and shall notify the Secretary-General of the United Nations, how to be issued
This safety assessment before the shot to get the results as soon as possible.
Principle 5. Notification of re-entry
1. Any State launching a space object with nuclear power sources in space objects that failed to produce discharge
When radioactive substances dangerous to return to the earth, it shall promptly notify the country concerned. Notice shall be in the following format:
(A) System parameters:
(I) Name of launching State, including which may be contacted in the event of an accident to Request
Information or assistance to obtain the relevant authorities address;
(Ii) International title;
(Iii) Date and territory or location of launch;
(Iv) the information needed to make the best prediction of orbit lifetime, trajectory and impact region;
(V) General function of spacecraft;
(B) information on the radiological risk of nuclear power source:
(I) the type of power source: radioisotopes / reactor;
(Ii) the fuel could fall into the ground and may be affected by the physical state of contaminated and / or activated components, the number of
The amount and general radiological characteristics. The term "fuel" refers to as a source of heat or power of nuclear material.
This information shall also be sent to the Secretary-General of the United Nations.
2. Once you know the failure, the launching State shall provide information on the compliance with the above format. Information should as far as possible
To be updated frequently, and in the dense layers of the Earth's atmosphere is expected to return to a time when close to the best increase
Frequency of new data, so that the international community understand the situation and will have sufficient time to plan for any deemed necessary
National contingency measures.
3. It should also be at the same frequency of the latest information available to the Secretary-General of the United Nations.
Principle 6. consultation
5 According to the national principles provide information shall, as far as reasonably practicable, other countries
Requirements to obtain further information or consultations promptly reply.
Principle 7. Assistance to States
1. Upon receipt of expected with nuclear power sources on space objects and their components will return through the Earth's atmosphere
After know that all countries possessing space monitoring and tracking facilities, in the spirit of international cooperation, as soon as possible to
The Secretary-General of the United Nations and the countries they may have made space objects carrying nuclear power sources
A fault related information, so that the States may be affected to assess the situation and take any
It is considered to be the necessary precautions.
41
2. In carrying space objects with nuclear power sources back to the Earth's atmosphere after its components:
(A) launching State shall be requested by the affected countries to quickly provide the necessary assistance to eliminate actual
And possible effects, including nuclear power sources to assist in identifying locations hit the Earth's surface, to detect the re substance
Quality and recovery or cleanup activities.
(B) All countries with relevant technical capabilities other than the launching State, and with such technical capabilities
International organizations shall, where possible, in accordance with the requirements of the affected countries to provide the necessary co
help.
When according to the above (a) and subparagraph (b) to provide assistance, should take into account the special needs of developing countries.
Principle 8. Responsibility
In accordance with the States in the Exploration and Use of Outer Space, including the Moon and Other Celestial Bodies activities, including the principles of Article
About Article, States shall bear international responsibility for their use of nuclear power sources in outer space relates to the activities
Whether such activities are carried on by governmental agencies or non-governmental entities, and shall bear international responsibility to ensure that this
Such activities undertaken by the country in line with the principles of the Treaty and the recommendations contained therein. If it involves the use of nuclear power sources
Activities in outer space by an international organization, should be done by the international organizations and States to participate in the organization
Undertakes to comply with the principles of the Treaty and the recommendations contained in these responsibilities.
Principle 9. Liability and Compensation
1. In accordance with the principle of States in the Exploration and Use, including the Moon and Other Celestial Bodies Outer Space Activities Article
And the Convention on International Liability for Damage Caused by Space Objects covenant of Article 7
Provisions, which launches or on behalf of the State
Each State launching a space object and each State from which territory or facility a space object is launched
Kinds of space object or damage caused by components shall bear international liability. This fully applies to this
Kind of space object carrying a nuclear power source case. Two or more States jointly launch a space object,
Each launching State shall in accordance with the above Article of the Convention for any damages jointly and severally liable.
2. Such countries under the aforesaid Convention shall bear the damages shall be in accordance with international law and fair and reasonable
The principles set out in order to provide for damages to make a claim on behalf of its natural or juridical persons, national or
International organizations to restore to the state before the occurrence of the damage.
3. For the purposes of this principle, compensation should be made to include reimbursement of the duly substantiated expenses for search, recovery and clean
Cost management work, including the cost of providing assistance to third parties.
10. The principle of dispute settlement
Since the implementation of these principles will lead to any dispute in accordance with the provisions of the UN Charter, by negotiation or
Other established procedures to resolve the peaceful settlement of disputes.
Here quoted the important provisions of the United Nations concerning the use of outer space for peaceful nuclear research and international conventions, the main emphasis on the Peaceful Uses of provisions related constraints .2 the use of nuclear rockets in outer space nuclear studies, etc., can cause greater attention in nuclear power nuclear rocket ship nuclear research, manufacture, use and other aspects of the mandatory hard indicators. this scientists, engineering and technical experts are also important constraints and requirements. as IAEA supervision and management as very important.
2. radiation. Space radiation is one of the greatest threats to the safety of the astronauts, including X-rays, γ-rays, cosmic rays and high-speed solar particles. Better than aluminum protective effect of high polymer composite materials.
3. Air. Perhaps the oxygen needed to rely on oxidation-reduction reaction of hydrogen and ilmenite production of water, followed by water electrolysis to generate oxygen. Mars oxygen necessary for survival but also from the decomposition of water, electrolytically separating water molecules of oxygen and hydrogen, this oxygen equipment has been successfully used in the International Space Station. Oxygen is released into the air to sustain life, the hydrogen system into the water system.
4. The issue of food waste recycling. At present, the International Space Station on the use of dehumidifiers, sucked moisture in the air to be purified, and then changed back to drinkable water. The astronauts' urine and sweat recycling. 5. water. The spacecraft and the space station on purification system also makes urine and other liquids can be purified utilization. 6. microgravity. In microgravity or weightlessness long-term space travel, if protective measures shall not be treated, the astronauts will be muscle atrophy, bone softening health. 7. contact. 8. Insulation, 9 energy. Any space exploration are inseparable from the energy battery is a new super hybrid energy storage device, the asymmetric lead-acid batteries and supercapacitors in the same compound within the system - and the so-called inside, no additional separate electronic control unit, this is an optimal combination. The traditional lead-acid battery PbO2 monomer is a positive electrode plate and a negative electrode plate spongy Pb composition, not a super cell. : Silicon solar cells, multi-compound thin film solar cells, multi-layer polymer-modified electrode solar cells, nano-crystalline solar cells, batteries and super class. For example, the solar aircraft .10. To protect the health and life safety and security systems. Lysophosphatidic acid LPA is a growth factor-like lipid mediators, the researchers found that this substance can on apoptosis after radiation injury and animal cells was inhibited. Stable lysophosphatidic acid analogs having the hematopoietic system and gastrointestinal tract caused by acute radiation sickness protection, knockout experiments show that lysophosphatidic acid receptors is an important foundation for the protection of radiation injury. In addition to work under high pressure, the astronauts face a number of health threats, including motion sickness, bacterial infections, blindness space, as well as psychological problems, including toxic dust. In the weightless environment of space, the astronaut's body will be like in preadolescents, as the emergence of various changes.
Plantar molt
After the environment to adapt to zero gravity, the astronaut's body will be some strange changes. Weightlessness cause fluid flow around the main flow torso and head, causing the astronauts facial swelling and inflammation, such as nasal congestion. During long-term stay in space
Bone and muscle loss
Most people weightlessness caused by the impact may be known bone and muscle degeneration. In addition, the calcium bones become very fragile and prone to fracture, which is why some of the astronauts after landing need on a stretcher.
Space Blindness
Space Blindness refers astronaut decreased vision.
Solar storms and radiation is one of the biggest challenges facing the long-term space flight. Since losing the protection of Earth's magnetic field, astronauts suffer far more than normal levels of radiation. The cumulative amount of radiation exposure in low earth orbit them exceeded by workers close to nuclear reactors, thereby increasing the risk of cancer.
Prolonged space flight can cause a series of psychological problems, including depression or mood swings, vulnerability, anxiety and fear, as well as other sequelae. We are familiar with the biology of the Earth, the Earth biochemistry, biophysics, after all, the Earth is very different astrophysics, celestial chemistry, biophysics and astrophysics, biochemistry and other celestial bodies. Therefore, you must be familiar with and adapt to these differences and changes.
Osteoporosis and its complications ranked first in the space of disease risk.
Long-term health risks associated with flying Topics
The degree of influence long-term biological effects of radiation in human flight can withstand the radiation and the maximum limit of accumulated radiation on physiology, pathology and genetics.
Physiological effects of weightlessness including: long-term bone loss and a return flight after the maximum extent and severity of the continued deterioration of other pathological problems induced by the; maximum flexibility and severity of possible long-term Flight Center in vascular function.
Long-term risk of disease due to the high risk of flight stress, microbial variation, decreased immune function, leading to infections
Radiation hazards and protection
1) radiation medicine, biology and pathway effects Features
Radiation protection for interplanetary flight, since the lack of protective effect of Earth's magnetic field, and by the irradiation time is longer, the possibility of increased radiation hazard.
Analysis of space flight medical problems that may occur, loss of appetite topped the list, sleep disorders, fatigue and insomnia, in addition, space sickness, musculoskeletal system problems, eye problems, infections problems, skin problems and cardiovascular problems
---------------------------------------------------------
Development of diagnostic techniques in orbit, the development of the volume of power consumption, features a wide range of diagnostic techniques, such as applied research of ultrasound diagnostic techniques in the abdominal thoracic trauma, bone, ligament damage, dental / sinus infections and other complications and integrated;
Actively explore in orbit disposal of medical technology, weightlessness surgical methods, development of special surgical instruments, the role of narcotic drugs and the like.
——————————————————————————————-
However, space technology itself is integrated with the use of the most advanced technology, its challenging technical reserves and periodic demanding
With the continuous development of science and technology, space agencies plan a manned landing on the moon and Mars, space exploration emergency medicine current concern.
Space sickness
In the weightless environment of space, in the weightless environment of space, surgery may be extremely difficult and risky.
Robot surgeons
Space disease in three days after entering the space started to ease, although individual astronauts might subsequently relapse. January 2015 NASA declared working on a fast, anti-nausea and nasal sprays. In addition, due to the zero-gravity environment, and anti-nausea drugs can only be administered by injection or transdermal patches manner.
Manned spaceflight in the 21st century is the era of interplanetary flight, aerospace medicine is closely watched era is the era of China's manned space flourish. Only the central issue, and grasp the opportunity to open up a new world of human survival and development.
Various emergency contingency measures in special circumstances. Invisible accident risk prevention. Enhancing drugs and other screening methods immunity aerospace medicine and tissue engineering a microgravity environment. Drug mixture of APS, ginseng polysaccharides, Ganoderma lucidum polysaccharides, polysaccharides and Lentinan, from other compounds. Drug development space syndrome drug, chemical structure modification will be an important part.
These issues are very sensitive, cutting-edge technology is a major difficulty landing on Mars. Countries in the world, especially the world's major space powers in the country strategies and technical research, the results of all kinds continue to emerge. United States, Russia, China, Europe, India, Japan and other countries is different. United States, Russia extraordinary strength. Many patented technology and health, and most belong to the top-secret technology. Especially in aerospace engineering and technological achievements is different from the general scientific literature, practical, commercial, industrial great, especially the performance of patents, know-how, technical drawings, engineering design and other aspects. Present Mars and return safely to Earth, the first manned, significance, everything is hard in the beginning, especially the first person to land on Mars This Mars for Human Sciences Research Mars, the moon, the earth, the solar system and the universe, life and other significant. Its far greater than the value of direct investments and business interests.
In addition, it is the development of new materials, suitable for deep space operations universe, life, and other detection, wider field.
Many aerospace materials, continuous research and development of materials are key areas of aerospace development, including material rocket, the spacecraft materials, the suit materials, radiation materials, materials and equipment, instruments, materials and so on biochemistry.
Temperature metal-based compound with a metal matrix composite body with a more primordial higher temperature strength, creep resistance, impact resistance, thermal fatigue and other excellent high temperature performance.
In B, C, SiC fiber reinforced Ti3Al, TiAl, Ni3Al intermetallic matrix composites, etc.
W Fiber Reinforced with nickel-based, iron-based alloys as well as SiC, TiB2, Si3N4 and BN particle reinforced metal matrix composites
High temperature service conditions require the development of ceramic and carbon-based composite materials, etc., not in this eleven Cheung said.
Fuel storage
In order to survive in space, people need many things: food, oxygen, shelter, and, perhaps most importantly, fuel. The initial quality Mars mission somewhere around 80 percent of the space launch humans will be propellant. The fuel amount of storage space is very difficult.
This difference in low Earth orbit cause liquid hydrogen and liquid oxygen - rocket fuel - vaporization.
Hydrogen is particularly likely to leak out, resulting in a loss of about 4% per month.
When you want to get people to Mars speed to minimize exposure to weightlessness and space radiation hazards
Mars
Landings on the Martian surface, they realized that they reached the limit. The rapid expansion of the thin Martian atmosphere can not be very large parachute, such as those that will need to be large enough to slow down, carry human spacecraft.
Therefore, the parachute strong mass ratio, high temperature resistance, Bing shot performance and other aspects of textile materials used have special requirements, in order to make a parachute can be used in rockets, missiles, Yu arrows spacecraft and other spacecraft recovery, it is necessary to improve the canopy heat resistance, a high melting point polymeric fiber fabric used, the metal fabric, ceramic fiber fabrics, and other devices.
Super rigid parachute to help slow the landing vehicle.
Spacecraft entered the Martian atmosphere at 24,000 km / h. Even after slowing parachute or inflatable, it will be very
Once we have the protection of the Earth magnetic field, the solar radiation will accumulate in the body, a huge explosion threw the spacecraft may potentially lethal doses of radiation astronauts.
In addition to radiation, the biggest challenge is manned trip to Mars microgravity, as previously described.
The moon is sterile. Mars is another case entirely.
With dust treatment measures.
Arid Martian environment to create a super-tiny dust particles flying around the Earth for billions of years.
Apollo moon dust encountered. Ultra-sharp and abrasive lunar dust was named something that can clog the basic functions of mechanical damage. High chloride salt, which can cause thyroid problems in people.
*** Mars geological structure and geological structure of the moon, water on Mars geology, geology of the Moon is very important, because he, like the Earth's geology is related to many important issues. Water, the first element of life, air, temperature, and complex geological formations are geological structure. Cosmic geology research methods, mainly through a variety of detection equipment equipped with a space probe, celestial observations of atmospheric composition, composition and distribution of temperature, pressure, wind speed, vertical structure, composition of the solar wind, the water, the surface topography and Zoning, topsoil the composition and characteristics of the component surface of the rock, type and distribution, stratigraphic sequence, structural system and the internal shell structure.
Mars internal situation only rely on its surface condition of large amounts of data and related information inferred. It is generally believed that the core radius of 1700 km of high-density material composition; outsourcing a layer of lava, it is denser than the Earth's mantle some; outermost layer is a thin crust. Compared to other terrestrial planets, the lower the density of Mars, which indicates that the Martian core of iron (magnesium and iron sulfide) with may contain more sulfur. Like Mercury and the Moon, Mars and lack active plate movement; there is no indication that the crust of Mars occurred can cause translational events like the Earth like so many of folded mountains. Since there is no lateral movement in the earth's crust under the giant hot zone relative to the ground in a stationary state. Slight stress coupled with the ground, resulting in Tharis bumps and huge volcano. For the geological structure of Mars is very important, which is why repeated explorations and studies of Martian geological reasons.
Earth's surface
Each detector component landing site soil analysis:
Element weight percent
Viking 1
Oxygen 40-45
Si 18-25
Iron 12-15
K 8
Calcium 3-5
Magnesium 3-6
S 2-5
Aluminum 2-5
Cesium 0.1-0.5
Core
Mars is about half the radius of the core radius, in addition to the primary iron further comprises 15 to 17% of the sulfur content of lighter elements is also twice the Earth, so the low melting point, so that the core portion of a liquid, such as outside the Earth nuclear.
Mantle
Nuclear outer coating silicate mantle.
Crust
The outermost layer of the crust.
Crustal thickness obtained, the original thickness of the low north 40 km south plateau 70 kilometers thick, an average of 50 kilometers, at least 80 km Tharsis plateau and the Antarctic Plateau, and in the impact basin is thin, as only about 10 kilometers Greece plains.
Canyon of Mars there are two categories: outflow channels (outflow channel) and tree valley (valley network). The former is very large, it can be 100 km wide, over 2000 km long, streamlined, mainly in the younger Northern Hemisphere, such as the plain around Tyre Chris Canyon and Canyon jam.
In addition, the volcanic activity sometimes lava formation lava channels (lava channel); crustal stress generated by fissures, faults, forming numerous parallel extending grooves (fossa), such as around the huge Tharsis volcanic plateau radially distributed numerous grooves, which can again lead to volcanic activity.
Presumably, Mars has an iron as the main component of the nucleus, and contains sulfur, magnesium and other light elements, the nuclear share of Mars, the Earth should be relatively small. The outer core is covered with a thick layer of magnesium-rich silicate mantle, the surface of rocky crust. The density of Earth-like planets Mars is the lowest, only 3.93g / cc.
Hierarchy
The crust
Lunar core
The average density of the Moon is 3.3464 g / cc, the solar system satellites second highest (after Aiou). However, there are few clues mean lunar core is small, only about 350 km radius or less [2]. The core of the moon is only about 20% the size of the moon, the moon's interior has a solid, iron-rich core diameter of about 240 kilometers (150 miles); in addition there is a liquid core, mainly composed of iron outer core, about 330 km in diameter (205 miles), and for the first time compared with the core of the Earth, considered as the earth's outer core, like sulfur and oxygen may have lighter elements [4].
Chemical elements on the lunar surface constituted in accordance with its abundance as follows: oxygen (O), silicon (Si), iron (Fe), magnesium (Mg), calcium (Ca), aluminum (Al), manganese (Mn), titanium ( Ti). The most abundant is oxygen, silicon and iron. The oxygen content is estimated to be 42% (by weight). Carbon (C) and nitrogen (N) only traces seem to exist only in trace amounts deposited in the solar wind brings.
Lunar Prospector from the measured neutron spectra, the hydrogen (H) mainly in the lunar poles [2].
Element content (%)
Oxygen 42%
Silicon 21%
Iron 13%
Calcium 8%
Aluminum 7%
Magnesium 6%
Other 3%
Lunar surface relative content of each element (% by weight)
Moon geological history is an important event in recent global magma ocean crystallization. The specific depth is not clear, but some studies have shown that at least a depth of about 500 kilometers or more.
Lunar landscape
Lunar landscape can be described as impact craters and ejecta, some volcanoes, hills, lava-filled depressions.
Regolith
TABLE bear the asteroid and comets billions of years of bombardment. Over time, the impact of these processes have already broken into fine-grained surface rock debris, called regolith. Young mare area, regolith thickness of about 2 meters, while the oldest dated land, regolith thickness of up to 20 meters. Through the analysis of lunar soil components, in particular the isotopic composition changes can determine the period of solar activity. Solar wind gases possible future lunar base is useful because oxygen, hydrogen (water), carbon and nitrogen is not only essential to life, but also may be useful for fuel production. Lunar soil constituents may also be as a future source of energy.
Here, repeatedly stressed that the geological structure and geological structure of celestial bodies, the Earth, Moon, Mars, or that this human existence and development of biological life forms is very important, especially in a series of data Martian geological structure geological structure is directly related to human landing Mars and the successful transformation of Mars or not. for example, water, liquid water, water, oxygen, synthesis, must not be taken lightly.
____________________________________________________________----
Mars landing 10 Technology
Aerospace Science and space science and technology major innovation of the most critical of sophisticated technology R & D project
[
"1" rocket propulsion technology ion fusion nuclear pulse propulsion rocket powered high-speed heavy rocket technology, space nuclear reactors spacecraft] brought big problems reflected in the nuclear reaction, nuclear radiation on spacecraft launch, control, brakes and other impact.
In particular, for the future of nuclear power spacecraft, the need to solve the nuclear reactor design, manufacture, control, cooling, radiation shielding, exhaust pollution, high thermoelectric conversion efficiency and a series of technical problems.
In particular, nuclear reactors produce radiation on astronauts' health will pose a great threat, which requires the spacecraft to be nuclear radiation shielding to ensure astronaut and ship the goods from radiation and heat from the reactor influence, but this will greatly increase the weight of the detector.
Space nuclear process applications, nuclear reaction decay is not a problem, but in a vacuum, ultra-low temperature environment, the nuclear reaction materials, energy transport materials have very high demands.
Space facing the reality of a nuclear reactor cooling cooling problems. To prevent problems with the reactor, "Washington" aircraft carrier to take four heavy protective measures for the radiation enclosed in the warship. These four measures are: the fuel itself, fuel storage pressure vessel, reactor shell and the hull. US Navy fuel all metal fuel, designed to take the impact resistance of the war, does not release fission product can withstand more than 50 times the gravity of the impact load; product of nuclear fission reactor fuel will never enter loop cooling water. The third layer of protection is specially designed and manufactured the reactor shell. The fourth layer is a very strong anti-impact combat ship, the reactor is arranged in the center of the ship, very safe. Engage in a reactor can only be loaded up to the aircraft, so as to drive the motor, and then drive the propeller. That is the core advantage of the heat generated by the heated gas flow, high temperature high pressure gas discharge backward, thereby generating thrust.
.
After installation AMPS1000 type nuclear power plant, a nuclear fuel assembly: He is a core member of the nuclear fuel chain reaction. Usually made into uranium dioxide, of which only a few percent uranium-235, and most of it is not directly involved in the nuclear fission of uranium 238. The uranium dioxide sintered into cylindrical pieces, into a stainless steel or a zirconium alloy do metal tubes called fuel rods or the original, then the number of fuel rods loaded metal cylinder in an orderly composition of the fuel assembly, and finally put a lot of vertical distribution of fuel assemblies in the reactor.
Nuclear reactor pressure vessel is a housing for containing nuclear fuel and reactor internals, for producing high-quality high-strength steel is made to withstand the pressure of dozens MPa. Import and export of the coolant in the pressure vessel.
The top of the pressure vessel closure, and can be used to accommodate the fixed control rod drive mechanism, pressure vessel head has a semi-circular, flat-topped.
Roof bolt: used to connect the locking pressure vessel head, so that the cylinder to form a completely sealed container.
Neutron Source: Plug in nuclear reactors can provide sufficient neutron, nuclear fuel ignition, to start to enhance the role of nuclear reactors and nuclear power. Neutron source generally composed of radium, polonium, beryllium, antimony production. Neutron source and neutron fission reactors are fast neutron, can not cause fission of uranium 235, in order to slow down, we need to moderator ---- full of pure water in a nuclear reactor. Aircraft carriers, submarines use nuclear reactor control has proven more successful.
Rod: has a strong ability to absorb neutrons, driven by the control rod drive mechanism, can move up and down in a nuclear reactor control rods within the nuclear fuel used to start, shut down the nuclear reactor, and maintain, regulate reactor power. Hafnium control rods in general, silver, indium, cadmium and other metals production.
Control rod drive mechanism: He is the executive body of nuclear reactors operating system and security protection systems, in strict accordance with requirements of the system or its operator control rod drives do move up and down in a nuclear reactor, nuclear reactor for power control. In a crisis situation, you also can quickly control rods fully inserted into the reactor in order to achieve the purpose of the emergency shutdown
Upper and lower support plate: used to secure the fuel assembly. High temperature and pressure inside the reactor is filled with pure water (so called pressurized water reactors), on the one hand he was passing through a nuclear reactor core, cooling the nuclear fuel, to act as a coolant, on the other hand it accumulates in the pressure vessel in play moderated neutrons role, acting as moderator.
Water quality monitoring sampling system:
Adding chemical system: under normal circumstances, for adding hydrazine, hydrogen, pH control agents to the primary coolant system, the main purpose is to remove and reduce coolant oxygen, high oxygen water suppression equipment wall corrosion (usually at a high temperature oxygen with hydrogen, especially at low temperatures during startup of a nuclear reactor with added hydrazine oxygen); when the nuclear reactor control rods stuck for some reason can not shutdown time by the the system can inject the nuclear reactor neutron absorber (such as boric acid solution), emergency shutdown, in order to ensure the safety of nuclear submarines.
Water system: a loop inside the water will be reduced at work, such as water sampling and analysis, equipment leaks, because the shutdown process cooling water and reduction of thermal expansion and contraction.
Equipment cooling water system:
Pressure safety systems: pressure reactor primary coolant system may change rapidly for some reason, the need for effective control. And in severe burn nuclear fuel rods, resulting in a core melt accident, it is necessary to promptly increase the pressure. Turn the regulator measures the electric, heating and cooling water. If necessary, also temporary startup booster pump.
Residual Heat Removal System: reactor scram may be due to an accident, such as when the primary coolant system of the steam generator heat exchanger tube is damaged, it must be urgently closed reactors.
Safety Injection System: The main components of this system is the high-pressure injection pump.
Radioactive waste treatment systems:
Decontamination Systems: for the removal of radioactive deposits equipment, valves, pipes and accessories, and other surfaces.
Europe, the United States and Russia and other countries related to aircraft carriers, submarines, icebreakers, nuclear-powered research aircraft, there are lots of achievements use of nuclear energy, it is worth analysis. However, nuclear reactor technology, rocket ships and the former are very different, therefore, requires special attention and innovative research. Must adopt a new new design techniques, otherwise, fall into the stereotype, it will avail, nothing even cause harm Aerospace.
[ "2" spacecraft structure]
[ "3"] radiation technology is the use of deep-sea sedimentation fabric fabrics deepwater technology development precipitated silver metal fibers or fiber lint and other materials and micronaire value between 4.1 to 4.3 fibers made from blends. For radiation protection field, it greatly enhances the effects of radiation and service life of clothing. Radiation resistant fiber) radiation resistant fiber - fiber polyimide polyimide fibers
60 years the United States has successfully developed polyimide fibers, it has highlighted the high temperature, radiation-resistant, fire-retardant properties.
[ "4" cosmic radiation resistant clothing design multifunctional anti-aging, wear underwear] ① comfort layer: astronauts can not wash clothes in a long flight, a lot of sebum, perspiration, etc. will contaminate underwear, so use soft, absorbent and breathable cotton knitwear making.
② warm layer: at ambient temperature range is not the case, warm layer to maintain a comfortable temperature environment. Choose warm and good thermal resistance large, soft, lightweight material, such as synthetic fibers, flakes, wool and silk and so on.
③ ventilation and cooling clothes clothes
Spacesuit
In astronaut body heat is too high, water-cooled ventilation clothing and clothing to a different way of heat. If the body heat production more than 350 kcal / h (ventilated clothes can not meet the cooling requirements, then that is cooled by a water-cooled suit. Ventilating clothing and water-cooled multi-use compression clothing, durable, flexible plastic tubing, such as polyvinyl chloride pipe or nylon film.
④ airtight limiting layer:
⑤ insulation: astronaut during extravehicular activities, from hot or cold insulation protection. It multilayer aluminized polyester film or a polyimide film and sandwiched between layers of nonwoven fabric to be made.
⑥ protective cover layer: the outermost layer of the suit is to require fire, heat and anti-space radiation on various factors (micrometeorites, cosmic rays, etc.) on the human body. Most of this layer with aluminized fabric.
New space suits using a special radiation shielding material, double design.
And also supporting spacesuit helmet, gloves, boots and so on.
[ "5" space - Aerospace biomedical technology, space, special use of rescue medication Space mental health care systems in space without damage restful sleep positions - drugs, simple space emergency medical system
]
[ "6" landing control technology, alternate control technology, high-performance multi-purpose landing deceleration device (parachute)]
[ "7" Mars truck, unitary Mars spacecraft solar energy battery super multi-legged (rounds) intelligent robot] multifunction remote sensing instruments on Mars, Mars and more intelligent giant telescope
[8 <> Mars warehouse activities, automatic Mars lander - Automatic start off cabin
]
[ "9" Mars - spacecraft docking control system, return to the system design]
Space flight secondary emergency life - support system
Spacecraft automatic, manual, semi-automatic operation control, remote control switch system
Automatic return spacecraft systems, backup design, the spacecraft automatic control operating system modular blocks of]
[10 lunar tracking control system
Martian dust storms, pollution prevention, anti-corrosion and other special conditions thereof
Electric light aircraft, Mars lander, Mars, living spaces, living spaces Mars, Mars entry capsule, compatible utilization technology, plant cultivation techniques, nutrition space - space soil]
Aerospace technology, space technology a lot, a lot of cutting-edge technology. Human landing on Mars technology bear the brunt. The main merge the human landing on Mars 10 cutting-edge technology, in fact, these 10 cutting-edge technology, covering a wide range, focused, and is the key to key technologies. They actually shows overall trends and technology Aerospace Science and Technology space technology. Human triumph Mars and safe return of 10 cutting-edge technology is bound to innovation. Moreover, in order to explore the human Venus, Jupiter satellites and the solar system, the Milky Way and other future development of science and laid the foundation guarantee. But also for the transformation of human to Mars, the Moon and other planets livable provides strong technical support. Aerospace Science and Technology which is a major support system.
Preparation of oxygen, water, synthesis, temperature, radiation, critical force confrontation. Regardless of the moon or Mars, survive three elements bear the brunt.
Chemical formula: H₂O
Formula: H-O-H (OH bond between two angle 104.5 °).
Molecular Weight: 18.016
Chemical Experiment: water electrolysis. Formula: 2H₂O = energized = 2H₂ ↑ + O₂ ↑ (decomposition)
Molecules: a hydrogen atom, an oxygen atom.
Ionization of water: the presence of pure water ionization equilibrium following: H₂O == == H⁺ + OH⁻ reversible or irreversible H₂O + H₂O = = H₃O⁺ + OH⁻.
NOTE: "H₃O⁺" hydronium ions, for simplicity, often abbreviated as H⁺, more accurate to say the H9O4⁺, the amount of hydrogen ion concentration in pure water material is 10⁻⁷mol / L.
Electrolysis of water:
Water at DC, decomposition to produce hydrogen and oxygen, this method is industrially prepared pure hydrogen and oxygen 2H₂O = 2H₂ ↑ + O₂ ↑.
. Hydration Reaction:
Water with an alkaline active metal oxides, as well as some of the most acidic oxide hydration reaction of unsaturated hydrocarbons.
Na₂O + H₂O = 2NaOH
CaO + H₂O = Ca (OH) ₂
SO₃ + H₂O = H₂SO₄
P₂O₅ + 3H₂O = 2H₃PO₄ molecular structure
CH₂ = CH₂ + H₂O ← → C₂H₅OH
6. The diameter of the order of magnitude of 10 water molecules negative power of ten, the water is generally believed that a diameter of 2 to 3 this organization. water
7. Water ionization:
In the water, almost no water molecules ionized to generate ions.
H₂O ← → H⁺ + OH⁻
Heating potassium chlorate or potassium per
Chemists at Brookhaven National Laboratory have been world leaders in the synthesis of short-lived radioisotopes for nuclear medicine, under sustained support from the U.S. Department of Energy's Office of Science.
In 2012, the American Chemical Society officially recognized the historical significance of the synthesis of 2-deoxy-2-[18F]fluoro-D-glucose (18FDG) in 1976 by chemists in the Brookhaven National Laboratory Chemistry Department in collaboration with the National Institutes of Health and the University of Pennsylvania by designating BNL's chemistry building as a historic research landmark. 18FDG is used to measure glucose metabolism in the living human brain.
18FDG is now the standard radiotracer used for positron emission tomography (PET) neuroimaging and cancer diagnosis, with more than 1.5 million 18FDG PET scans performed annually.
Brookhaven's Joanna Fowler is shown here with an early 18FDG synthesis aparatus in 1979.
The enormous tapestry designed by Graham Sutherland adorns the end wall beyond the altar, forming the focal point and climax of tnhe interior.
Coventry's Cathedral is a unique synthesis of old a new, born of wartime suffering and forged in the spirit of postwar optimism, famous for it's history and for being the most radically modern of Anglican cathedrals. Two cathedral's stand side by side, the ruins of the medieval building, destroyed by incendiary bombs in 1940 and the bold new building designed by Basil Spence and opened in 1962.
It is a common misconception that Coventry lost it's first cathedral in the wartime blitz, but the bombs actually destroyed it's second; the original medieval cathedral was the monastic St Mary's, a large cruciform building believed to have been similar in appearance to Lichfield Cathedral (whose diocese it shared). Tragically it became the only English cathedral to be destroyed during the Reformation, after which it was quickly quarried away, leaving only scant fragments, but enough evidence survives to indicate it's rich decoration (some pieces were displayed nearby in the Priory Visitors Centre, sadly since closed). Foundations of it's apse were found during the building of the new cathedral in the 1950s, thus technically three cathedrals share the same site.
The mainly 15th century St Michael's parish church became the seat of the new diocese of Coventry in 1918, and being one of the largest parish churches in the country it was upgraded to cathedral status without structural changes (unlike most 'parish church' cathedrals created in the early 20th century). It lasted in this role a mere 22 years before being burned to the ground in the 1940 Coventry Blitz, leaving only the outer walls and the magnificent tapering tower and spire (the extensive arcades and clerestoreys collapsed completely in the fire, precipitated by the roof reinforcement girders, installed in the Victorian restoration, that buckled in the intense heat).
The determination to rebuild the cathedral in some form was born on the day of the bombing, however it wasn't until the mid 1950s that a competition was held and Sir Basil Spence's design was chosen. Spence had been so moved by experiencing the ruined church he resolved to retain it entirely to serve as a forecourt to the new church. He envisaged the two being linked by a glass screen wall so that the old church would be visible from within the new.
Built between 1957-62 at a right-angle to the ruins, the new cathedral attracted controversy for it's modern form, and yet some modernists argued that it didn't go far enough, after all there are echoes of the Gothic style in the great stone-mullioned windows of the nave and the net vaulting (actually a free-standing canopy) within. What is exceptional is the way art has been used as such an integral part of the building, a watershed moment, revolutionising the concept of religious art in Britain.
Spence employed some of the biggest names in contemporary art to contribute their vision to his; the exterior is adorned with Jacob Epstein's triumphant bronze figures of Archangel Michael (patron of the cathedral) vanquishing the Devil. At the entrance is the remarkable glass wall, engraved by John Hutton with strikingly stylised figures of saints and angels, and allowing the interior of the new to communicate with the ruin. Inside, the great tapestry of Christ in majesty surrounded by the evangelistic creatures, draws the eye beyond the high altar; it was designed by Graham Sutherland and was the largest tapestry ever made.
However one of the greatest features of Coventry is it's wealth of modern stained glass, something Spence resolved to include having witnessed the bleakness of Chartres Cathedral in wartime, all it's stained glass having been removed. The first window encountered on entering is the enormous 'chess-board' baptistry window filled with stunning abstract glass by John Piper & Patrick Reyntiens, a symphony of glowing colour. The staggered nave walls are illuminated by ten narrow floor to ceiling windows filled with semi-abstract symbolic designs arranged in pairs of dominant colours (green, red, multi-coloured, purple/blue and gold) representing the souls journey to maturity, and revealed gradually as one approaches the altar. This amazing project was the work of three designers lead by master glass artist Lawrence Lee of the Royal College of Art along with Keith New and Geoffrey Clarke (each artist designed three of the windows individually and all collaborated on the last).
The cathedral still dazzles the visitor with the boldness of it's vision, but alas, half a century on, it was not a vision to be repeated and few of the churches and cathedrals built since can claim to have embraced the synthesis of art and architecture in the way Basil Spence did at Coventry.
The cathedral is generally open to visitors most days. For more see below:-
Coventry's Cathedral is a unique synthesis of old a new, born of wartime suffering and forged in the spirit of postwar optimism, famous for it's history and for being the most radically modern of Anglican cathedrals. Two cathedral's stand side by side, the ruins of the medieval building, destroyed by incendiary bombs in 1940 and the bold new building designed by Basil Spence and opened in 1962.
It is a common misconception that Coventry lost it's first cathedral in the wartime blitz, but the bombs actually destroyed it's second; the original medieval cathedral was the monastic St Mary's, a large cruciform building believed to have been similar in appearance to Lichfield Cathedral (whose diocese it shared). Tragically it became the only English cathedral to be destroyed during the Reformation, after which it was quickly quarried away, leaving only scant fragments, but enough evidence survives to indicate it's rich decoration (some pieces were displayed nearby in the Priory Visitors Centre, sadly since closed). Foundations of it's apse were found during the building of the new cathedral in the 1950s, thus technically three cathedrals share the same site.
The mainly 15th century St Michael's parish church became the seat of the new diocese of Coventry in 1918, and being one of the largest parish churches in the country it was upgraded to cathedral status without structural changes (unlike most 'parish church' cathedrals created in the early 20th century). It lasted in this role a mere 22 years before being burned to the ground in the 1940 Coventry Blitz, leaving only the outer walls and the magnificent tapering tower and spire (the extensive arcades and clerestoreys collapsed completely in the fire, precipitated by the roof reinforcement girders, installed in the Victorian restoration, that buckled in the intense heat).
The determination to rebuild the cathedral in some form was born on the day of the bombing, however it wasn't until the mid 1950s that a competition was held and Sir Basil Spence's design was chosen. Spence had been so moved by experiencing the ruined church he resolved to retain it entirely to serve as a forecourt to the new church. He envisaged the two being linked by a glass screen wall so that the old church would be visible from within the new.
Built between 1957-62 at a right-angle to the ruins, the new cathedral attracted controversy for it's modern form, and yet some modernists argued that it didn't go far enough, after all there are echoes of the Gothic style in the great stone-mullioned windows of the nave and the net vaulting (actually a free-standing canopy) within. What is exceptional is the way art has been used as such an integral part of the building, a watershed moment, revolutionising the concept of religious art in Britain.
Spence employed some of the biggest names in contemporary art to contribute their vision to his; the exterior is adorned with Jacob Epstein's triumphant bronze figures of Archangel Michael (patron of the cathedral) vanquishing the Devil. At the entrance is the remarkable glass wall, engraved by John Hutton with strikingly stylised figures of saints and angels, and allowing the interior of the new to communicate with the ruin. Inside, the great tapestry of Christ in majesty surrounded by the evangelistic creatures, draws the eye beyond the high altar; it was designed by Graham Sutherland and was the largest tapestry ever made.
However one of the greatest features of Coventry is it's wealth of modern stained glass, something Spence resolved to include having witnessed the bleakness of Chartres Cathedral in wartime, all it's stained glass having been removed. The first window encountered on entering is the enormous 'chess-board' baptistry window filled with stunning abstract glass by John Piper & Patrick Reyntiens, a symphony of glowing colour. The staggered nave walls are illuminated by ten narrow floor to ceiling windows filled with semi-abstract symbolic designs arranged in pairs of dominant colours (green, red, multi-coloured, purple/blue and gold) representing the souls journey to maturity, and revealed gradually as one approaches the altar. This amazing project was the work of three designers lead by master glass artist Lawrence Lee of the Royal College of Art along with Keith New and Geoffrey Clarke (each artist designed three of the windows individually and all collaborated on the last).
The cathedral still dazzles the visitor with the boldness of it's vision, but alas, half a century on, it was not a vision to be repeated and few of the churches and cathedrals built since can claim to have embraced the synthesis of art and architecture in the way Basil Spence did at Coventry.
The cathedral is generally open to visitors most days. For more see below:-
Coventry's Cathedral is a unique synthesis of old a new, born of wartime suffering and forged in the spirit of postwar optimism, famous for it's history and for being the most radically modern of Anglican cathedrals. Two cathedral's stand side by side, the ruins of the medieval building, destroyed by incendiary bombs in 1940 and the bold new building designed by Basil Spence and opened in 1962.
It is a common misconception that Coventry lost it's first cathedral in the wartime blitz, but the bombs actually destroyed it's second; the original medieval cathedral was the monastic St Mary's, a large cruciform building believed to have been similar in appearance to Lichfield Cathedral (whose diocese it shared). Tragically it became the only English cathedral to be destroyed during the Reformation, after which it was quickly quarried away, leaving only scant fragments, but enough evidence survives to indicate it's rich decoration (some pieces were displayed nearby in the Priory Visitors Centre, sadly since closed). Foundations of it's apse were found during the building of the new cathedral in the 1950s, thus technically three cathedrals share the same site.
The mainly 15th century St Michael's parish church became the seat of the new diocese of Coventry in 1918, and being one of the largest parish churches in the country it was upgraded to cathedral status without structural changes (unlike most 'parish church' cathedrals created in the early 20th century). It lasted in this role a mere 22 years before being burned to the ground in the 1940 Coventry Blitz, leaving only the outer walls and the magnificent tapering tower and spire (the extensive arcades and clerestoreys collapsed completely in the fire, precipitated by the roof reinforcement girders, installed in the Victorian restoration, that buckled in the intense heat).
The determination to rebuild the cathedral in some form was born on the day of the bombing, however it wasn't until the mid 1950s that a competition was held and Sir Basil Spence's design was chosen. Spence had been so moved by experiencing the ruined church he resolved to retain it entirely to serve as a forecourt to the new church. He envisaged the two being linked by a glass screen wall so that the old church would be visible from within the new.
Built between 1957-62 at a right-angle to the ruins, the new cathedral attracted controversy for it's modern form, and yet some modernists argued that it didn't go far enough, after all there are echoes of the Gothic style in the great stone-mullioned windows of the nave and the net vaulting (actually a free-standing canopy) within. What is exceptional is the way art has been used as such an integral part of the building, a watershed moment, revolutionising the concept of religious art in Britain.
Spence employed some of the biggest names in contemporary art to contribute their vision to his; the exterior is adorned with Jacob Epstein's triumphant bronze figures of Archangel Michael (patron of the cathedral) vanquishing the Devil. At the entrance is the remarkable glass wall, engraved by John Hutton with strikingly stylised figures of saints and angels, and allowing the interior of the new to communicate with the ruin. Inside, the great tapestry of Christ in majesty surrounded by the evangelistic creatures, draws the eye beyond the high altar; it was designed by Graham Sutherland and was the largest tapestry ever made.
However one of the greatest features of Coventry is it's wealth of modern stained glass, something Spence resolved to include having witnessed the bleakness of Chartres Cathedral in wartime, all it's stained glass having been removed. The first window encountered on entering is the enormous 'chess-board' baptistry window filled with stunning abstract glass by John Piper & Patrick Reyntiens, a symphony of glowing colour. The staggered nave walls are illuminated by ten narrow floor to ceiling windows filled with semi-abstract symbolic designs arranged in pairs of dominant colours (green, red, multi-coloured, purple/blue and gold) representing the souls journey to maturity, and revealed gradually as one approaches the altar. This amazing project was the work of three designers lead by master glass artist Lawrence Lee of the Royal College of Art along with Keith New and Geoffrey Clarke (each artist designed three of the windows individually and all collaborated on the last).
The cathedral still dazzles the visitor with the boldness of it's vision, but alas, half a century on, it was not a vision to be repeated and few of the churches and cathedrals built since can claim to have embraced the synthesis of art and architecture in the way Basil Spence did at Coventry.
The cathedral is generally open to visitors most days. For more see below:-
The Gumpert Apollo is the perfect synthesis between road vehicle and racing car. It exceeds all expectations with its passion and maximum driving fun. 650 HP, up to 360 km/h top-speed and an acceleration of 0 to 100 km/h in just 3.0 seconds make it a full-blooded super sports car to which there is no alternative. The complete package is available at a cost-performance ratio unequalled in this exclusive vehicle class.
The production process is the one part of the manufacture philosophy in which exclusivity and precision are paramount to speed. Gumpert Sportwagenmanufaktur associates the term ‚manufacture' with it's the commitment to achieve quality and luxury by means of craftsmanship and hand-made production.
Roland Gumpert, founder, managing director and the driving force behind Sportwagenmanufaktur, has created a manufacturing environment that combines engineering excellence with a broad automotive and racing competence. Experts within the motorsports scene are all familiar with the name Gumpert: In the mid 1970s, the long-standing Audi manager was the driving force behind the development of the four-wheel drive "Iltis", the original predecessor of today's "Quattro". In 1979 he not only succeeded in preparing the gnarled four-wheel drive "Iltis" for the Paris-Dakar rally, but also achieved victory. In the years that followed under his management, Audi Sport won a total of 25 World Rally Championship races and was the 4-time winner of the World Rally Championship. Gumpert's professional success is distinguished by his ability to combine innovative ideas with proven technology effectively and successfully.
Gumpert Apollo (2008)
2008 Gumpert Apollo
A team of automotive and motor sports specialists joined forces to pool their enthusiasm and energy into developing and creating the Gumpert Apollo. Their abilities create the space for the finest workmanship and utmost individuality, with the use of high-tech processes and integration of proven standard components securing the technical basis.
With the Gumpert Apollo we are providing a select clientele of ambitious sports drivers and car enthusiasts with the opportunity of experiencing the unique synergy between hand-made high-end components optimised for performance on the road and the track, and of distinguishing themselves from the remainder of the world of sports cars. Up to 100 vehicles will leave the factory each year - just enough to ensure that these exceptional vehicles retain their exclusive status.
Gumpert Sportwagenmanufaktur is an independent, privately financed company. The financial stability of the company is being secured by well-known investors. Their operative commitment will also promote the international sales and distribution of Gumpert Apollo.
The challenge was to develop an exceptional design that combined the extreme aerodynamic requirements of a performance-oriented, purist super sports car with the aesthetic design of an exclusive vehicle. We wanted to achieve the perfect synthesis of design and function. Without compromising. And we have succeeded with Gumpert Apollo: Its silhouette, optimised in numerous wind tunnel tests, reflects its by far superior capabilities.
In its profile, the Gumpert Apollo dynamic appearance is further enhanced by its dimensions (4.46 m length, almost 2 m width and 1.24 m height) and its streamlined, long and wide shoulder lines. The mid-engine layout is emphasised by the cockpit, which is clearly located toward the front of the vehicle, and the long wheel base; both factors ensure optimum driving qualities. Massive air inlets and outlets in the front and on the side in front of and behind the doors leave no doubt about its potency. Above all, though, they supply the two turbo-chargers and the high-performance braking system with enough fresh air to ensure optimum operation for the duration of a race. The high-set air intake for the engine is reminiscent of Formula 1 vehicles and emphasises Gumpert Apollo racing character. The dominant rear provides a view of the diffuser and the underbody, encased completely in carbon, - which, combined with the front diffuser and flow channels, achieves an exceptionally high negative lift for a road vehicle.
Gumpert Apollo leaves a lasting impression on anyone who sees it: It symbolises unusual power, dynamism and sportiness. It reflects above-average performance capability paired with timeless elegance, and even when it is not moving, shows that the design can only adhere to function: driving dynamics.
The secret of Gumpert Apollo is an innovative design concept from racing car engineering. The base and symbolic backbone of Gumpert Apollo consists a round tube frame made of top-quality and highly stable chrome-molybdenum-steel with an integrated monocoque safety cell made of high quality carbon fibre screwed directly onto the frame. The 161 kg (355 lbs.) construction design is so effective, so torsion proof and bend resistant that it complies with both the specifications of the European MOT approval and the international manufacture specifications of motor sports (see annex J of the FIA regulations). Gumpert Apollo succeeds in combining low weight with the rigidity of a racing car, finest driving dynamics and maximum safety. The Gumpert Apollo is one of the safest and most agile vehicles of its class.
PERFORMANCE IN A NEW DIMENSION
The Gumpert Apollo is not the only sports car on the market; however its concept is so unique and realised so consistently that it aspires to redefine the standard for this vehicle class. The Gumpert Apollo has more to offer:
•Approved both for use on the road and on the track
•Maximum safety in accordance with the international motor racing standards
•Low curb weight of below 1,200 kg (2,645 lbs.)
•Perfect road-holding and ultra-precise handling
•Maximum driving pleasure and unbeatable driving performance
•Excellent aerodynamic efficiency and driving dynamics
•Synthesis of reliable racing and series technology
•Unique, futuristic, and striking design
•Best cost-benefit ratio
Despite the series production process, every Gumpert Apollo is unique. It is customized to the owner's wishes and needs and proudly bears his touch. We can also offer you:
•Luxury package with air conditioning, navigation radio with DVD/CD-Player and backwards facing camera with rear-view mirror function
•Car body made of fibreglass (GFK) or carbon-fibre (CFK)
•Carbon fibre for various components and car body parts
•Design variants created by use of different air intakes for the engine
•Carbon rear wing (optional available)
•Engine variants with 650 / 700 / 800 HP output
In addition to these different options and equipment packages, we can of course also accommodate any other special requests made by our customers. Just talk to us.
The consistent achievement of maximum driving dynamics and uncompromising functionality is also visible in the interior design: Every detail was designed according to functional viewpoints equivalent to those of a racing car, yet without neglecting the required amount of comfort and quality.
TAILOR-MADE PURISM AND LUXURY
Light weight was the top priority and has been achieved through the exclusive use of high-tech materials. The instrument panel, like the monocoque it is integrated into, is made of carbon fibre. The seat buckets, too, are fitted into the monocoque - although you will not find seats in the conventional meaning in the Gumpert Apollo. The seat position is adjusted to each customer individually, using padding, upholstery, adjustable pedals, and the steering column. Yet you are not required to forgo proven technology in the Gumpert Apollo: air conditioning, high-end navigation system with an integrated reverse camera, CD/DVD player and much more are available.
The Gumpert Apollo is a tailor-made sports car, and individual masterpiece. In line with this principle, customers can design the interior to meet their preferences, be it pure performance or somewhat more luxurious. Decide the colours and designs yourself, whether leather, seams or embroideries are concerned. We guarantee you a car that will fulfil all of your requirements. Just talk to us.
READY FOR RACETRACK
A sports car's supremacy is not defined by pure engine power alone: only a car that can put this power on the asphalt and create a balance between all occurring internal and external forces will leave the contestants behind, on the road and the race track. The chassis is the key to this supremacy - and Gumpert Apollo has already proven itself spectacularly under the toughest testing conditions on various test tracks, public roads and real racing tracks such as Hockenheim, Imola and the historical "Nordschleife".
The Gumpert Apollo is built as a racing car according to FIA GT and ACO regulations upon request.
Success is one of Gumpert Sportwagenmanufaktur's clearly defined objectives in racing. Naturally the factory benefits from the years of experience in motor sports and the remarkable successes of company owner Roland Gumpert.
The Gumpert Apollo made a great third place with the Belgian racing driver, Ruben Maes, in the cockpit at its racing debut at the Divinol Cup in Hockenheim in April 2005.
PROVEN PERFORMANCE IN A NEW DIMENSION
The impressive power of the high-performance eight cylinder engine is based on proven V8-high-performance aggregates from Audi. In the standard configuration this engine is optimised for use in racing and road vehicles and produces 650 HP as a Biturbo engine. Weighing only 196 kg (432 lbs.), it plays a major role in ensuring the ideal weight and fascinating driving dynamics of Gumpert Apollo. An angle of 90° between the two cylinder banks is a sign of a classic 8-cylinder engine. Efficient utilisation of its remarkable energy in the back wheels guarantees the fully-synchronised, sequential six-speed transmission that incorporates Formula 1 know-how. The short gear paths allow high speed gear changes. The arrangement of the gears in a longitudinal direction in the path of travel ensures a very low centre of gravity and optimum weight distribution. The characteristic sound of the double-flow exhaust system of the Gumpert Apollo with its 3-way catalytic converters says it best - the Gumpert Apollo is pure, unbeatable performance as reflected in the data. Like a comet, the Gumpert Apollo catapults its pilot from 0 to 100 km/h (0-62 mph) in just 3.0 seconds and only requires 8.9 seconds from 0 to 200 km/h (0-124 mph).
For connoisseurs form whom driving fun does not necessarily equal maximum motor performance and ultimate acceleration, the engine is also ideally suited for day-to-day driving at lower speeds.
DRIVING DYNAMICS REDEFINED
The Gumpert Apollo's suspension was developed to ideally complement the body's sophisticated aerodynamics. The resulting is unusual driving dynamics. The Gumpert Apollo is taut but not hard and provides driver and passenger with an extraordinar level of comfort for a car designed purely for performance. It demands the pilot's unswerving attention, yet due to its ultra-precise and predictable driving characteristics does not overwhelm, even at top speed.
An ideal weight balance of 42 to 58 percent between the front and rear axis rounds it off: It provides optimum traction during acceleration, whilst ensuring stable control even when braking in critical situations.
The Gumpert Apollo owes the finely tuned sensitivity of the suspension system and the optimised exertion of power to its double transverse control arm pushrod configuration at the front and back. The double transverse control arms ensure that the tires maintain optimum contact with the road surface, independent of the bound rate of suspension system. The suspension system allows the owner to seamlessly set the ground clearance in a range between 40 and 120 mm (1.57-4.72 in). Sealed uniball joints ensure that the forces are transferred precisely and with little friction. Stabilisers support the efficiency of the suspension and pitch compensation prevents the vehicle from diving during braking and lifting during accelerating. Despite its low trim, the Gumpert Apollo provides long wheel travel in compression and rebound, facilitating the finely-tuned and precise functioning of the absorbers and springs.
The high level of driving dynamics is supported by an agile electro-hydraulic power steering system that provides the driver with direct feedback. In order to securely transfer the 850 nm torque to the road, Gumpert Apollo has a traction control system (TCS) used in motor sports. Developed together with the company Racelogic, the permitted slip can be accurately set on the rear axle - according to the drivers wishes. An optional launch control, adjusted to the Gumpert Apollo especially, ensures swift starts like those of Formula 1. The Gumpert Apollo's driving performance is controlled with a 2-circuit high-performance braking system with adjustable 3-level Bosch-ABS, 378 mm (14.9 in) ventilated discs, and 6-piston callipers on the front and rear axle.
All of these are primary technical principles, the sportive orientation of which could not be clearer. Thanks to its suspension, the Gumpert Apollo proves itself in every curve: It redefines the term ‚driving dynamics'.
TECHNICAL SPECIFICATIONS
•DIMENSIONS◦Length 4,460 mm / 175.6"
◦Width 1,998 mm / 78.6"
◦Height 1,114 mm / 43.8"
◦Wheel base 2,700 mm / 106.3"
◦Wheel gauge ◾front: 1,670 mm / 65.7"
◾back: 1,598 mm / 62.9"
◦Boot volume: 100 l
•WEIGHT◦Kerb weight: below 1,200 kg / 2,645 lbs
◦Allowed total weight: 1,500 kg / 3,306 lbs
◦Approved axle load ◾front: 650 kg / 1,452 lbs
◾back: 900 kg / 1,984 lbs
•ENGINE◦Cylinders: 8
◦Type: 90° - V
◦Valves per cylinder: 5
◦Displacement: 4,163 cm3 / 254 in3
◦Stroke: 93 mm / 3.66"
◦Bore: 84.5 mm / 3.32"
◦Nominal output: 478 kW (650 HP) @ 6,500 rpm
◦Maximum torque: 850 Nm (626.9 lb-ft) @ 4,000 rpm [with 820 Nm @ 2700 rpm]
◦Maximum revs: 7,200 rpm
◦Compression ratio: 9,3
◦Recommended fuel type: 98 ROZ / 88 MOZ
◦Emission standard: Euro 4
•GEARBOX◦Sequential six-speed gear box with synchronisation and oil cooling
◦Twin plate clutch configuration (diameter 200 mm / 7.87" each)
◦Differential lock by Torsen
◦Custom-made gear ratios
•WHEELS◦Tire dimension ◾front: 255/35ZR19
◾back: 345/35ZR19
◦Wheel dimension ◾front: 10J x 19
◾back: 13J x 19
◦Wheel rim type: Aluminium cast wheels with centre lock
•PERFORMANCE◦Top speed: 360 km/h (224 mph)
◦0-100 km/h (0-62 mph): 3.0 s
◦0-200 km/h (0-124 mph): 8.9 s
The Synthesis Technology E340 Cloud Generator is just about to go into production. We should get modules in the next 4-5 weeks. This should be another unique oscillator amongst several that have been released recently. The price for the module is expected to be $299. LINK: www.synthtech.com/ .
Here's a photo of the next Synthesis Technology module, the E580 Resampling Mini-Delay. It will be shown next week at NAMM. The module is operational and there will be demos soon. It will go into production shortly and we hope to get stock sometime in February.
LINK for more info: muffwiggler.com/forum/viewtopic.php?t=27392&postdays=... .
Detail of one of the second pair of nave windows, predominantly red in colour and designed by Lawrence Lee. The red windows symbolise the soul's journey into maturity..
Coventry's Cathedral is a unique synthesis of old a new, born of wartime suffering and forged in the spirit of postwar optimism, famous for it's history and for being the most radically modern of Anglican cathedrals. Two cathedral's stand side by side, the ruins of the medieval building, destroyed by incendiary bombs in 1940 and the bold new building designed by Basil Spence and opened in 1962.
It is a common misconception that Coventry lost it's first cathedral in the wartime blitz, but the bombs actually destroyed it's second; the original medieval cathedral was the monastic St Mary's, a large cruciform building believed to have been similar in appearance to Lichfield Cathedral (whose diocese it shared). Tragically it became the only English cathedral to be destroyed during the Reformation, after which it was quickly quarried away, leaving only scant fragments, but enough evidence survives to indicate it's rich decoration (some pieces displayed nearby in the Priory Visitors Centre). Foundations of it's apse were found during the building of the new cathedral in the 1950s, thus technically three cathedrals share the same site.
The mainly 15th century St Michael's parish church became the seat of the new diocese of Coventry in 1918, and being one of the largest parish churches in the country it was upgraded to cathedral status without structural changes (unlike most 'parish church' cathedrals created in the early 20th century). It lasted in this role a mere 22 years before being burned to the ground in the 1940 Coventry Blitz, leaving only the outer walls and the magnificent tapering tower and spire (the extensive arcades and clerestoreys collapsed completely in the fire, precipitated by the roof reinforcement girders, installed in the Victorian restoration, that buckled in the intense heat).
The determination to rebuild the cathedral in some form was born on the day of the bombing, however it wasn't until the mid 1950s that a competition was held and Sir Basil Spence's design was chosen. Spence had been so moved by experiencing the ruined church he resolved to retain it entirely to serve as a forecourt to the new church. He envisaged the two being linked by a glass screen wall so that the old church would be visible from within the new.
Built between 1957-62 at a right-angle to the ruins, the new cathedral attracted controversy for it's modern form, and yet some modernists argued that it didn't go far enough, afterall there are echoes of the gothic style in the great stone-mullioned windows of the nave and the net vaulting (actually a free-standing canopy) within. What is exceptional is the way art has been used as such an integral part of the building, a watershed moment, revolutionising the concept of religious art in Britain.
Spence employed some of the biggest names in contemporary art to contribute their vision to his; the exterior is adorned with Jacob Epstein's triumphant bronze figures of Archangel Michael (patron of the cathedral) vanquishing the Devil. At the entrance is the remarkable glass wall, engraved by John Hutton with strikingly stylised figures of saints and angels, and allowing the interior of the new to communicate with the ruin. Inside, the great tapestry of Christ in majesty surrounded by the evangelistic creatures, draws the eye beyond the high altar; it was designed by Graham Sutherland and was the largest tapestry ever made.
However one of the greatest features of Coventry is it's wealth of modern stained glass, something Spence resolved to include having witnessed the bleakness of Chartres Cathedral in wartime, when all it's stained glass had been removed. The first window encountered on entering is the enormous 'chess-board' baptistry window filled with stunning abstract glass by John Piper & Patrick Reyntiens, a symphony of glowing colour. The staggered nave walls are illuminated by ten narrow floor to ceiling windows filled with semi-abstract symbolic designs arranged in pairs of dominant colours (green, red, multi-coloured, purple/blue and gold) representing the souls journey to maturity, and revealed gradually as one approaches the altar. This amazing project was the work of three designers lead by master glass artist Lawrence Lee of the Royal College of Art along with Keith New and Geoffrey Clarke (each artist designed three of the windows individually and all collaborated on the last).
The cathedral still dazzles the visitor with the boldness of it's vision, but alas, half a century on, it was not a vision to be repeated and few of the churches and cathedrals built since can claim to have embraced the synthesis of art and architecture in the way Basil Spence did at Coventry.
The cathedral is generally open to visitors most days, but now charges an entry fee (a fix for recent financial worries; gone are the frequent days I used to wander around it in search of inspiration!)and sadly visitors are also encouraged to enter by the far end of the building, contrary to Spence's intentions.
For more see below:-
Coventry's Cathedral is a unique synthesis of old a new, born of wartime suffering and forged in the spirit of postwar optimism, famous for it's history and for being the most radically modern of Anglican cathedrals. Two cathedral's stand side by side, the ruins of the medieval building, destroyed by incendiary bombs in 1940 and the bold new building designed by Basil Spence and opened in 1962.
It is a common misconception that Coventry lost it's first cathedral in the wartime blitz, but the bombs actually destroyed it's second; the original medieval cathedral was the monastic St Mary's, a large cruciform building believed to have been similar in appearance to Lichfield Cathedral (whose diocese it shared). Tragically it became the only English cathedral to be destroyed during the Reformation, after which it was quickly quarried away, leaving only scant fragments, but enough evidence survives to indicate it's rich decoration (some pieces were displayed nearby in the Priory Visitors Centre, sadly since closed). Foundations of it's apse were found during the building of the new cathedral in the 1950s, thus technically three cathedrals share the same site.
The mainly 15th century St Michael's parish church became the seat of the new diocese of Coventry in 1918, and being one of the largest parish churches in the country it was upgraded to cathedral status without structural changes (unlike most 'parish church' cathedrals created in the early 20th century). It lasted in this role a mere 22 years before being burned to the ground in the 1940 Coventry Blitz, leaving only the outer walls and the magnificent tapering tower and spire (the extensive arcades and clerestoreys collapsed completely in the fire, precipitated by the roof reinforcement girders, installed in the Victorian restoration, that buckled in the intense heat).
The determination to rebuild the cathedral in some form was born on the day of the bombing, however it wasn't until the mid 1950s that a competition was held and Sir Basil Spence's design was chosen. Spence had been so moved by experiencing the ruined church he resolved to retain it entirely to serve as a forecourt to the new church. He envisaged the two being linked by a glass screen wall so that the old church would be visible from within the new.
Built between 1957-62 at a right-angle to the ruins, the new cathedral attracted controversy for it's modern form, and yet some modernists argued that it didn't go far enough, after all there are echoes of the Gothic style in the great stone-mullioned windows of the nave and the net vaulting (actually a free-standing canopy) within. What is exceptional is the way art has been used as such an integral part of the building, a watershed moment, revolutionising the concept of religious art in Britain.
Spence employed some of the biggest names in contemporary art to contribute their vision to his; the exterior is adorned with Jacob Epstein's triumphant bronze figures of Archangel Michael (patron of the cathedral) vanquishing the Devil. At the entrance is the remarkable glass wall, engraved by John Hutton with strikingly stylised figures of saints and angels, and allowing the interior of the new to communicate with the ruin. Inside, the great tapestry of Christ in majesty surrounded by the evangelistic creatures, draws the eye beyond the high altar; it was designed by Graham Sutherland and was the largest tapestry ever made.
However one of the greatest features of Coventry is it's wealth of modern stained glass, something Spence resolved to include having witnessed the bleakness of Chartres Cathedral in wartime, all it's stained glass having been removed. The first window encountered on entering is the enormous 'chess-board' baptistry window filled with stunning abstract glass by John Piper & Patrick Reyntiens, a symphony of glowing colour. The staggered nave walls are illuminated by ten narrow floor to ceiling windows filled with semi-abstract symbolic designs arranged in pairs of dominant colours (green, red, multi-coloured, purple/blue and gold) representing the souls journey to maturity, and revealed gradually as one approaches the altar. This amazing project was the work of three designers lead by master glass artist Lawrence Lee of the Royal College of Art along with Keith New and Geoffrey Clarke (each artist designed three of the windows individually and all collaborated on the last).
The cathedral still dazzles the visitor with the boldness of it's vision, but alas, half a century on, it was not a vision to be repeated and few of the churches and cathedrals built since can claim to have embraced the synthesis of art and architecture in the way Basil Spence did at Coventry.
The cathedral is generally open to visitors most days. For more see below:-
Coventry's Cathedral is a unique synthesis of old a new, born of wartime suffering and forged in the spirit of postwar optimism, famous for it's history and for being the most radically modern of Anglican cathedrals. Two cathedral's stand side by side, the ruins of the medieval building, destroyed by incendiary bombs in 1940 and the bold new building designed by Basil Spence and opened in 1962.
It is a common misconception that Coventry lost it's first cathedral in the wartime blitz, but the bombs actually destroyed it's second; the original medieval cathedral was the monastic St Mary's, a large cruciform building believed to have been similar in appearance to Lichfield Cathedral (whose diocese it shared). Tragically it became the only English cathedral to be destroyed during the Reformation, after which it was quickly quarried away, leaving only scant fragments, but enough evidence survives to indicate it's rich decoration (some pieces displayed nearby in the Priory Visitors Centre). Foundations of it's apse were found during the building of the new cathedral in the 1950s, thus technically three cathedrals share the same site.
The mainly 15th century St Michael's parish church became the seat of the new diocese of Coventry in 1918, and being one of the largest parish churches in the country it was upgraded to cathedral status without structural changes (unlike most 'parish church' cathedrals created in the early 20th century). It lasted in this role a mere 22 years before being burned to the ground in the 1940 Coventry Blitz, leaving only the outer walls and the magnificent tapering tower and spire (the extensive arcades and clerestoreys collapsed completely in the fire, precipitated by the roof reinforcement girders, installed in the Victorian restoration, that buckled in the intense heat).
The determination to rebuild the cathedral in some form was born on the day of the bombing, however it wasn't until the mid 1950s that a competition was held and Sir Basil Spence's design was chosen. Spence had been so moved by experiencing the ruined church he resolved to retain it entirely to serve as a forecourt to the new church. He envisaged the two being linked by a glass screen wall so that the old church would be visible from within the new.
Built between 1957-62 at a right-angle to the ruins, the new cathedral attracted controversy for it's modern form, and yet some modernists argued that it didn't go far enough, afterall there are echoes of the gothic style in the great stone-mullioned windows of the nave and the net vaulting (actually a free-standing canopy) within. What is exceptional is the way art has been used as such an integral part of the building, a watershed moment, revolutionising the concept of religious art in Britain.
Spence employed some of the biggest names in contemporary art to contribute their vision to his; the exterior is adorned with Jacob Epstein's triumphant bronze figures of Archangel Michael (patron of the cathedral) vanquishing the Devil. At the entrance is the remarkable glass wall, engraved by John Hutton with strikingly stylised figures of saints and angels, and allowing the interior of the new to communicate with the ruin. Inside, the great tapestry of Christ in majesty surrounded by the evangelistic creatures, draws the eye beyond the high altar; it was designed by Graham Sutherland and was the largest tapestry ever made.
However one of the greatest features of Coventry is it's wealth of modern stained glass, something Spence resolved to include having witnessed the bleakness of Chartres Cathedral in wartime, when all it's stained glass had been removed. The first window encountered on entering is the enormous 'chess-board' baptistry window filled with stunning abstract glass by John Piper & Patrick Reyntiens, a symphony of glowing colour. The staggered nave walls are illuminated by ten narrow floor to ceiling windows filled with semi-abstract symbolic designs arranged in pairs of dominant colours (green, red, multi-coloured, purple/blue and gold) representing the souls journey to maturity, and revealed gradually as one approaches the altar. This amazing project was the work of three designers lead by master glass artist Lawrence Lee of the Royal College of Art along with Keith New and Geoffrey Clarke (each artist designed three of the windows individually and all collaborated on the last).
The cathedral still dazzles the visitor with the boldness of it's vision, but alas, half a century on, it was not a vision to be repeated and few of the churches and cathedrals built since can claim to have embraced the synthesis of art and architecture in the way Basil Spence did at Coventry.
The cathedral is generally open to visitors most days, but now charges an entry fee (a fix for recent financial worries; gone are the frequent days I used to wander around it in search of inspiration!)and sadly visitors are also encouraged to enter by the far end of the building, contrary to Spence's intentions.
For more see below:-
Mars--Fangruida//science tech.
Enc:Special multi-purpose anti-radiation suit 50 million dollars
Aerospace Medical Emergency cabin 1.5 billion dollars
Multi-purpose intelligent life support system 10 billion dollars
Mars truck 300 million dollars
Aerospace / Water Planet synthesis 1.2 billion dollars
Cutting-edge aerospace technology transfer 50 million dollars of new rocket radiation material 10 billion dollars against drugs microgravity $ 2 billion contact: Fangda337svb125@gmail.com,banxin123 @ gmail.com, mdin.jshmith @ gmail.com technology entry fee / technical margin of 1 million dollars , signed on demand
Table of Contents
Fangruida: human landing on Mars 10 cutting-edge technology
[Fangruida- human landing on Mars 10 innovative and sophisticated technologies]
Aerospace Science and space science and technology major innovation of the most critical of sophisticated technology R & D project
-------------------------------------------------- -------------
Aerospace Science Space Science and Technology on behalf of the world's most cutting-edge leader in high technology, materials, mechatronics, information and communication, energy, biomedical, marine, aviation aerospace, microelectronics, computer, automation, intelligent biochips, use of nuclear energy, light mechanical and electrical integration, astrophysics, celestial chemistry, astrophysics and so a series of geological science and technology. Especially after the moon landing, the further development of mankind to Mars and other planets into the powerful offensive, the world's major powers eager to Daxian hand of God, increase investment, vigorously develop new sophisticated technology projects for space to space. Satellite, space station, the new spacecraft, the new space suits, the new radiation protection materials, intelligent materials, new manufacturing technology, communications technology, computer technology, detector technology, rover, rover technology, biomedical technology, and so one after another, is expected to greater breakthroughs and leaps. For example, rocket technology, spacecraft design, large power spacecraft, spacesuits design improvements, radiation multifunctional composite materials, life health care technology and space medicine, prevention against microgravity microgravity applicable drugs, tracking control technology, landing and return technology. Mars lander and returned safely to Earth as a top priority. Secondly, Mars, the Moon base and the use of transforming Mars, the Moon and other development will follow. Whether the former or the latter, are the modern aerospace science, space science basic research, applied basic research and applied research in the major cutting-edge technology. These major cutting-edge technology research and innovation, not only for human landing on Mars and the safe return of great significance, but for the entire space science, impact immeasurable universe sciences, earth sciences and human life. Here the most critical of the most important research projects of several sophisticated technology research and development as well as its core technology brief. Limit non-scientific techniques include non-technical limits of technology, the key lies in technology research and development of technology maturity, advanced technology, innovative, practical, reliable, practical application, business value and investment costs, and not simply like the idea mature technology achievements, difficult to put into things. This is the high-tech research and development, testing, prototype, test application testing, until the outcome of industrialization. Especially in aerospace technology, advanced, novelty, practicality, reliability, economy, maturity, commercial value and so on. For technical and research purely science fiction and the like may be irrelevant depth, but not as aerospace engineering and technology practice. Otherwise, Mars will become a dream fantasy, and even into settling crashed out of danger.
Regardless of the moon or Mars, many technical difficulties, especially a human landing on Mars and return safely to Earth, technical difficulties mainly in the following aspects. (Transformation of Mars and the Moon and other planets and detect other livable technology more complex and difficult, at this stage it is difficult to achieve and therefore not discussed in detail in this study). In fact, Mars will be the safe return of a full set of technology, space science, aerospace crucial scientific research development, its significance is not confined to Mars simply a return to scientific value, great commercial value, can not be measure.
1. Powered rocket, the spacecraft overall structural design not be too complex large, otherwise, the safety factor to reduce the risk of failure accidents. Fusion rocket engine main problem to be solved is the high-temperature materials and fuel ignition chamber (reaction chamber temperatures of up to tens of millions of supreme billion degrees), fissile class rocket engine whose essence is the miniaturization of nuclear reactors, and placed on the rocket. Nuclear rocket engine fuel as an energy source, with liquid hydrogen, liquid helium, liquid ammonia working fluid. Nuclear rocket engine mounted in the thrust chamber of the reactor, cooling nozzle, the working fluid delivery and control systems and other components. This engine due to nuclear radiation protection, exhaust pollution, reactor control and efficient heat exchanger design and other issues unresolved. Electrothermal rocket engine utilizing heat energy (resistance heating or electric arc heating) working medium (hydrogen, amines, hydrazine ), vaporized; nozzle expansion accelerated after discharged from the spout to generate thrust. Static rocket engine working fluid (mercury, cesium, hydrogen, etc.) from the tank enter the ionization chamber is formed thrust ionized into a plasma jet. Electric rocket engines with a high specific impulse (700-2500 sec), extremely long life (can be repeated thousands of times a starter, a total of up to thousands of hours of work). But the thrust of less than 100N. This engine is only available for spacecraft attitude control, station-keeping and the like. One nuclear - power rocket design is as follows: Firstly, the reactor heats water to make it into steam, and then the high-speed steam ejected, push the rocket. Nuclear rocket using hydrogen as working substance may be a better solution, it is one of the most commonly used liquid hydrogen rocket fuel rocket carrying liquid hydrogen virtually no technical difficulties. Heating hydrogen nuclear reactor, as long as it eventually reaches or exceeds current jet velocity hydrogen rocket engine jet speed, the same weight of the rocket will be able to work longer, it can accelerate the Rockets faster. Here there are only two problems: First, the final weight includes the weight of the rocket in nuclear reactors, so it must be as light as possible. Ultra-small nuclear reactor has been able to achieve. Furthermore, if used in outer space, we can not consider the problem of radioactive residues, simply to just one proton hydrogen nuclei are less likely to produce induced radioactivity, thus shielding layer can be made thinner, injected hydrogen gas can flow directly through the reactor core, it is not easy to solve, and that is how to get back at high speed heated gas is ejected.
Rocket engine with a nuclear fission reactor, based on the heating liquid hydrogen propellant, rather than igniting flammable propellant
High-speed heavy rocket is a major cutting-edge technology. After all, space flight and aircraft carriers, submarines, nuclear reactors differ greatly from the one hand, the use of traditional fuels, on the one hand can be nuclear reactor technology. From the control, for security reasons, the use of nuclear power rocket technology, safe and reliable overriding indicators. Nuclear atomic energy in line with the norms and rules of outer space. For the immature fetal abdominal hatchery technology, and resolutely reject use. This is the most significant development of nuclear-powered rocket principle.
Nuclear-powered spaceship for Use of nuclear power are three kinds:
The first method: no water or air space such media can not be used propeller must use jet approach. Reactor nuclear fission or fusion to produce a lot of heat, we will propellant (such as liquid hydrogen) injection, the rapid expansion of the propellant will be heated and then discharged from the engine speed tail thrust. This method is most readily available.
The second method: nuclear reactor will have a lot of fast-moving ions, these energetic particles moving very fast, so you can use a magnetic field to control their ejection direction. This principle ion rocket similar to the tail of the rocket ejected from the high-speed mobile ions, so that the recoil movement of a rocket. The advantage of this approach is to promote the unusually large ratio, without carrying any medium, continued strong. Ion engine, which is commonly referred to as "electric rocket", the principle is not complicated, the propellant is ionized particles,
Plasma Engine
Electromagnetic acceleration, high-speed spray. From the development trend, the US research scope covers almost all types of electric thrusters, but mainly to the development of ion engines, NASA in which to play the most active intake technology and preparedness plans. "
The third method: the use of nuclear explosions. It is a bold and crazy way, no longer is the use of a controlled nuclear reaction, but to use nuclear explosions to drive the ship, this is not an engine, and it is called a nuclear pulse rocket. This spacecraft will carry a lot of low-yield atomic bombs out one behind, and then detonated, followed by a spacecraft propulsion installation disk, absorbing the blast pushing the spacecraft forward. This was in 1955 to Orion (Project Orion) name of the project, originally planned to bring two thousand atomic bombs, Orion later fetal nuclear thermal rocket. Its principle is mounted on a small rocket reactor, the reactor utilizing thermal energy generated by the propellant is heated to a high temperature, high pressure and high temperature of the propellant from the high-speed spray nozzle, a tremendous impetus.
Common nuclear fission technologies, including nuclear pulse rocket engines, nuclear rockets, nuclear thermal rocket and nuclear stamping rockets to nuclear thermal rocket, for example, the size of its land-based nuclear power plant reactor structure than the much smaller, more uranium-235 purity requirements high, reaching more than 90%, at the request of the high specific impulse engine core temperature will reach about 3000K, require excellent high temperature properties of materials.
Research and test new IT technologies and new products and new technology and new materials, new equipment, things are difficult, design is the most important part, especially in the overall design, technical solutions, technical route, technical process, technical and economic particularly significant. The overall design is defective, technology there are loopholes in the program, will be a major technical route deviation, but also directly related to the success of research trials. so, any time, under any circumstances, a good grasp of the overall control of design, technical design, is essential. otherwise, a done deal, it is difficult save. aerospace technology research and product development is true.
3, high-performance nuclear rocket
Nuclear rocket nuclear fission and fusion energy can rocket rocket two categories. Nuclear fission and fusion produce heat, radiation and shock waves and other large amounts of energy, but here they are contemplated for use as a thermal energy rocket.
Uranium and other heavy elements, under certain conditions, will split their nuclei, called nuclear fission reaction. The atomic bomb is the result of nuclear fission reactions. Nuclear fission reaction to release energy, is a million times more chemical rocket propellant combustion energy. Therefore, nuclear fission energy is a high-performance rocket rockets. Since it requires much less propellant than chemical rockets can, so to its own weight is much lighter than chemical rockets energy. For the same quality of the rocket, the rocket payload of nuclear fission energy is much greater than the chemical energy of the rocket. Just nuclear fission energy rocket is still in the works.
Use of nuclear fission energy as the energy of the rocket, called the atomic rockets. It is to make hydrogen or other inert gas working fluid through the reactor, the hydrogen after the heating temperature quickly rose to 2000 ℃, and then into the nozzle, high-speed spray to produce thrust.
A vision plan is to use liquid hydrogen working fluid, in operation, the liquid hydrogen tank in the liquid hydrogen pump is withdrawn through the catheter and the engine cooling jacket and liquid hydrogen into hydrogen gas, hydrogen gas turbine-driven, locally expansion. Then by nuclear fission reactors, nuclear fission reactions absorb heat released, a sharp rise in temperature, and finally into the nozzle, the rapid expansion of high-speed spray. Calculations show that the amount of atomic payload rockets, rocket high chemical energy than 5-8 times.
Hydrogen and other light elements, under certain conditions, their nuclei convergent synthesis of new heavy nuclei, and release a lot of energy, called nuclear fusion reaction, also called thermonuclear reaction.
Using energy generated by the fusion reaction for energy rocket, called fusion energy rocket or nuclear thermal rockets. But it is also not only take advantage of controlled nuclear fusion reaction to manufacture hydrogen bombs, rockets and controlled nuclear fusion reaction needs still studying it.
Of course there are various research and development of rocket technology and technical solutions to try.
It is envisaged that the rocket deuterium, an isotope of hydrogen with deuterium nuclear fusion reaction of helium nuclei, protons and neutrons, and release huge amounts of energy, just polymerized ionized helium to temperatures up to 100 million degrees the plasma, and then nozzle expansion, high-speed ejection, the exhaust speed of up to 15,000 km / sec, atomic energy is 1800 times the rocket, the rocket is the chemical energy of 3700 times.
Nuclear rocket engine fuel as an energy source, with liquid hydrogen, liquid helium, liquid ammonia working fluid. Nuclear rocket engine mounted in the thrust chamber of the reactor, cooling nozzle, the working fluid delivery and control systems and other components. In a nuclear reactor, nuclear energy into heat to heat the working fluid, the working fluid is heated after expansion nozzle to accelerate to the speed of 6500 ~ 11,000 m / sec from the discharge orifice to produce thrust. Nuclear rocket engine specific impulse (250 to 1000 seconds) long life, but the technology is complex, apply only to long-term spacecraft. This engine due to nuclear radiation protection, exhaust pollution, reactor control and efficient heat exchanger design and other issues not resolved, is still in the midst of trials. Nuclear rocket technology is cutting-edge aerospace science technology, centralized many professional and technical sciences and aerospace, nuclear physics, nuclear chemistry, materials science, the long term future _-- wide width. The United States, Russia and Europe, China, India, Japan, Britain, Brazil and other countries in this regard have studies, in particular the United States and Russia led the way, impressive. Of course, at this stage of nuclear rocket technology, technology development there are still many difficulties. Fully formed, still to be. But humanity marching to the universe, nuclear reactor applications is essential.
Outer Space Treaty (International Convention on the Peaceful Uses of Outer Space) **
Use of Nuclear Power Sources in Outer Space Principle 15
General Assembly,
Having considered the report of its thirty-fifth session of the Committee on the Peaceful Uses of Outer Space and the Commission of 16 nuclear
It can be attached in principle on the use of nuclear power sources in outer space of the text of its report, 17
Recognize that nuclear power sources due to small size, long life and other characteristics, especially suitable for use even necessary
For some missions in outer space,
Recognizing also that the use of nuclear power sources in outer space should focus on the possible use of nuclear power sources
Those uses,
Recognizing also that the use of nuclear power sources should include or probabilistic risk analysis is complete security in outer space
Full evaluation is based, in particular, the public should focus on reducing accidental exposure to harmful radiation or radioactive material risk
risk,
Recognizing the need to a set of principles containing goals and guidelines in this regard to ensure the safety of outer space makes
With nuclear power sources,
Affirming that this set principles apply exclusively on space objects for non-power generation, which is generally characteristic
Mission systems and implementation of nuclear power sources in outer space on similar principles and used by,
Recognizing this need to refer to a new set of principles for future nuclear power applications and internationally for radiological protection
The new proposal will be revised
By the following principles on the use of nuclear power sources in outer space.
Principle 1. Applicability of international law
Involving the use of nuclear power sources in outer space activities should be carried out in accordance with international law, especially the "UN
Principles of the Charter "and" States in the Exploration and Use of Outer Space, including the Moon and Other Celestial Bodies Activities
Treaty "3
.
2. The principle terms
1. For the purpose of these principles, "launching State" and "launching State ......" two words mean, in related
Principles related to a time of nuclear power sources in space objects exercises jurisdiction and control of the country.
2. For the purpose of principle 9, wherein the definition of the term "launching State" as contained in that principle.
3. For the purposes of principle 3, the terms "foreseeable" and "all possible" two words are used to describe the actual hair
The overall likelihood of students that it is considered for safety analysis is credible possibilities for a class of things
Member or circumstances. "General concept of defense in depth" when the term applies to nuclear power sources in outer space refers to various settings
Count form and space operations replace or supplement the operation of the system in order to prevent system failures or mitigate thereafter
"Official Records of the General Assembly, Forty-seventh Session, Supplement No. 20" 16 (A / 47/20).
17 Ibid., Annex.
38
fruit. To achieve this purpose is not necessarily required for each individual member has redundant safety systems. Given space
Use and special requirements of various space missions, impossible to any particular set of systems or features can be specified as
Necessary to achieve this purpose. For the purpose of Principle 3 (d) of paragraph 2, "made critical" does not include
Including such as zero-power testing which are fundamental to ensuring system safety required.
Principle 3. Guidelines and criteria for safe use
To minimize the risk of radioactive material in space and the number involved, nuclear power sources in outer space
Use should be limited to non-nuclear power sources in space missions can not reasonably be performed
1. General goals for radiation protection and nuclear safety
(A) States launching space objects with nuclear power sources on board shall endeavor to protect individuals, populations and the biosphere
From radiation hazards. The design and use of space objects with nuclear power sources on board shall ensure that risk with confidence
Harm in the foreseeable operational or accidental circumstances, paragraph 1 (b) and (c) to define acceptable water
level.
Such design and use shall also ensure that radioactive material does not reliably significant contamination of outer space.
(B) the normal operation of nuclear power sources in space objects, including from paragraph 2 (b) as defined in foot
High enough to return to the track, shall be subject to appropriate anti-radiation recommended by the International Commission on Radiological Protection of the public
Protection goals. During such normal operation there shall be no significant radiation exposure;
(C) To limit exposure in accidents, the design and construction of nuclear power source systems shall take into account the international
Relevant and generally accepted radiological protection guidelines.
In addition to the probability of accidents with potentially serious radiological consequences is extremely low, the nuclear power source
Design systems shall be safely irradiated limited limited geographical area, for the individual radiation dose should be
Limited to no more than a year 1mSv primary dose limits. Allows the use of irradiation year for some years 5mSv deputy agent
Quantity limit, but the average over a lifetime effective dose equivalent annual dose not exceed the principal limit 1mSv
degree.
Should make these conditions occur with potentially serious radiological consequences of the probability of the system design is very
small.
Criteria mentioned in this paragraph Future modifications should be applied as soon as possible;
(D) general concept of defense in depth should be based on the design, construction and operation of systems important for safety. root
According to this concept, foreseeable safety-related failures or malfunctions must be capable of automatic action may be
Or procedures to correct or offset.
It should ensure that essential safety system reliability, inter alia, to make way for these systems
Component redundancy, physical separation, functional isolation and adequate independence.
It should also take other measures to increase the level of safety.
2. The nuclear reactor
(A) nuclear reactor can be used to:
39
(I) On interplanetary missions;
(Ii) the second high enough orbit paragraph (b) as defined;
(Iii) low-Earth orbit, with the proviso that after their mission is complete enough to be kept in a nuclear reactor
High on the track;
(B) sufficiently high orbit the orbital lifetime is long enough to make the decay of fission products to approximately actinides
Element active track. The sufficiently high orbit must be such that existing and future outer space missions of crisis
Risk and danger of collision with other space objects to a minimum. In determining the height of the sufficiently high orbit when
It should also take into account the destroyed reactor components before re-entering the Earth's atmosphere have to go through the required decay time
between.
(C) only 235 nuclear reactors with highly enriched uranium fuel. The design shall take into account the fission and
Activation of radioactive decay products.
(D) nuclear reactors have reached their operating orbit or interplanetary trajectory can not be made critical state
state.
(E) nuclear reactor design and construction shall ensure that, before reaching the operating orbit during all possible events
Can not become critical state, including rocket explosion, re-entry, impact on ground or water, submersion
In water or water intruding into the core.
(F) a significant reduction in satellites with nuclear reactors to operate on a lifetime less than in the sufficiently high orbit orbit
For the period (including during operation into the sufficiently high orbit) the possibility of failure, there should be a very
Reliable operating system, in order to ensure an effective and controlled disposal of the reactor.
3. Radioisotope generators
(A) interplanetary missions and other spacecraft out of Earth's gravitational field tasks using radioactive isotopes
Su generator. As they are stored after completion of their mission in high orbit, the Earth can also be used
track. We are required to make the final treatment under any circumstances.
(B) Radioisotope generators shall be protected closed systems, design and construction of the system should
Ensure that in the foreseeable conditions of the track to withstand the heat and aerodynamic forces of re-entry in the upper atmosphere, orbit
Conditions including highly elliptical or hyperbolic orbits when relevant. Upon impact, the containment system and the occurrence of parity
Physical morpheme shall ensure that no radioactive material is scattered into the environment so you can complete a recovery operation
Clear all radioactive impact area.
Principle 4. Safety Assessment
1. When launching State emission consistent with the principles defined in paragraphs 1, prior to the launch in applicable under the
Designed, constructed or manufactured the nuclear power sources, or will operate the space object person, or from whose territory or facility
Transmits the object will be to ensure a thorough and comprehensive safety assessment. This assessment shall cover
All relevant stages of space mission and shall deal with all systems involved, including the means of launching, the space level
Taiwan, nuclear power source and its equipment and the means of control and communication between ground and space.
2. This assessment shall respect the principle of 3 contained in the guidelines and criteria for safe use.
40
3. The principle of States in the Exploration and Use, including the Moon and Other Celestial Bodies Outer Space Activities Article
Results of about 11, this safety assessment should be published prior to each transmit simultaneously to the extent feasible
Note by the approximate intended time of launch, and shall notify the Secretary-General of the United Nations, how to be issued
This safety assessment before the shot to get the results as soon as possible.
Principle 5. Notification of re-entry
1. Any State launching a space object with nuclear power sources in space objects that failed to produce discharge
When radioactive substances dangerous to return to the earth, it shall promptly notify the country concerned. Notice shall be in the following format:
(A) System parameters:
(I) Name of launching State, including which may be contacted in the event of an accident to Request
Information or assistance to obtain the relevant authorities address;
(Ii) International title;
(Iii) Date and territory or location of launch;
(Iv) the information needed to make the best prediction of orbit lifetime, trajectory and impact region;
(V) General function of spacecraft;
(B) information on the radiological risk of nuclear power source:
(I) the type of power source: radioisotopes / reactor;
(Ii) the fuel could fall into the ground and may be affected by the physical state of contaminated and / or activated components, the number of
The amount and general radiological characteristics. The term "fuel" refers to as a source of heat or power of nuclear material.
This information shall also be sent to the Secretary-General of the United Nations.
2. Once you know the failure, the launching State shall provide information on the compliance with the above format. Information should as far as possible
To be updated frequently, and in the dense layers of the Earth's atmosphere is expected to return to a time when close to the best increase
Frequency of new data, so that the international community understand the situation and will have sufficient time to plan for any deemed necessary
National contingency measures.
3. It should also be at the same frequency of the latest information available to the Secretary-General of the United Nations.
Principle 6. consultation
5 According to the national principles provide information shall, as far as reasonably practicable, other countries
Requirements to obtain further information or consultations promptly reply.
Principle 7. Assistance to States
1. Upon receipt of expected with nuclear power sources on space objects and their components will return through the Earth's atmosphere
After know that all countries possessing space monitoring and tracking facilities, in the spirit of international cooperation, as soon as possible to
The Secretary-General of the United Nations and the countries they may have made space objects carrying nuclear power sources
A fault related information, so that the States may be affected to assess the situation and take any
It is considered to be the necessary precautions.
41
2. In carrying space objects with nuclear power sources back to the Earth's atmosphere after its components:
(A) launching State shall be requested by the affected countries to quickly provide the necessary assistance to eliminate actual
And possible effects, including nuclear power sources to assist in identifying locations hit the Earth's surface, to detect the re substance
Quality and recovery or cleanup activities.
(B) All countries with relevant technical capabilities other than the launching State, and with such technical capabilities
International organizations shall, where possible, in accordance with the requirements of the affected countries to provide the necessary co
help.
When according to the above (a) and subparagraph (b) to provide assistance, should take into account the special needs of developing countries.
Principle 8. Responsibility
In accordance with the States in the Exploration and Use of Outer Space, including the Moon and Other Celestial Bodies activities, including the principles of Article
About Article, States shall bear international responsibility for their use of nuclear power sources in outer space relates to the activities
Whether such activities are carried on by governmental agencies or non-governmental entities, and shall bear international responsibility to ensure that this
Such activities undertaken by the country in line with the principles of the Treaty and the recommendations contained therein. If it involves the use of nuclear power sources
Activities in outer space by an international organization, should be done by the international organizations and States to participate in the organization
Undertakes to comply with the principles of the Treaty and the recommendations contained in these responsibilities.
Principle 9. Liability and Compensation
1. In accordance with the principle of States in the Exploration and Use, including the Moon and Other Celestial Bodies Outer Space Activities Article
And the Convention on International Liability for Damage Caused by Space Objects covenant of Article 7
Provisions, which launches or on behalf of the State
Each State launching a space object and each State from which territory or facility a space object is launched
Kinds of space object or damage caused by components shall bear international liability. This fully applies to this
Kind of space object carrying a nuclear power source case. Two or more States jointly launch a space object,
Each launching State shall in accordance with the above Article of the Convention for any damages jointly and severally liable.
2. Such countries under the aforesaid Convention shall bear the damages shall be in accordance with international law and fair and reasonable
The principles set out in order to provide for damages to make a claim on behalf of its natural or juridical persons, national or
International organizations to restore to the state before the occurrence of the damage.
3. For the purposes of this principle, compensation should be made to include reimbursement of the duly substantiated expenses for search, recovery and clean
Cost management work, including the cost of providing assistance to third parties.
10. The principle of dispute settlement
Since the implementation of these principles will lead to any dispute in accordance with the provisions of the UN Charter, by negotiation or
Other established procedures to resolve the peaceful settlement of disputes.
Here quoted the important provisions of the United Nations concerning the use of outer space for peaceful nuclear research and international conventions, the main emphasis on the Peaceful Uses of provisions related constraints .2 the use of nuclear rockets in outer space nuclear studies, etc., can cause greater attention in nuclear power nuclear rocket ship nuclear research, manufacture, use and other aspects of the mandatory hard indicators. this scientists, engineering and technical experts are also important constraints and requirements. as IAEA supervision and management as very important.
2. radiation. Space radiation is one of the greatest threats to the safety of the astronauts, including X-rays, γ-rays, cosmic rays and high-speed solar particles. Better than aluminum protective effect of high polymer composite materials.
3. Air. Perhaps the oxygen needed to rely on oxidation-reduction reaction of hydrogen and ilmenite production of water, followed by water electrolysis to generate oxygen. Mars oxygen necessary for survival but also from the decomposition of water, electrolytically separating water molecules of oxygen and hydrogen, this oxygen equipment has been successfully used in the International Space Station. Oxygen is released into the air to sustain life, the hydrogen system into the water system.
4. The issue of food waste recycling. At present, the International Space Station on the use of dehumidifiers, sucked moisture in the air to be purified, and then changed back to drinkable water. The astronauts' urine and sweat recycling. 5. water. The spacecraft and the space station on purification system also makes urine and other liquids can be purified utilization. 6. microgravity. In microgravity or weightlessness long-term space travel, if protective measures shall not be treated, the astronauts will be muscle atrophy, bone softening health. 7. contact. 8. Insulation, 9 energy. Any space exploration are inseparable from the energy battery is a new super hybrid energy storage device, the asymmetric lead-acid batteries and supercapacitors in the same compound within the system - and the so-called inside, no additional separate electronic control unit, this is an optimal combination. The traditional lead-acid battery PbO2 monomer is a positive electrode plate and a negative electrode plate spongy Pb composition, not a super cell. : Silicon solar cells, multi-compound thin film solar cells, multi-layer polymer-modified electrode solar cells, nano-crystalline solar cells, batteries and super class. For example, the solar aircraft .10. To protect the health and life safety and security systems. Lysophosphatidic acid LPA is a growth factor-like lipid mediators, the researchers found that this substance can on apoptosis after radiation injury and animal cells was inhibited. Stable lysophosphatidic acid analogs having the hematopoietic system and gastrointestinal tract caused by acute radiation sickness protection, knockout experiments show that lysophosphatidic acid receptors is an important foundation for the protection of radiation injury. In addition to work under high pressure, the astronauts face a number of health threats, including motion sickness, bacterial infections, blindness space, as well as psychological problems, including toxic dust. In the weightless environment of space, the astronaut's body will be like in preadolescents, as the emergence of various changes.
Plantar molt
After the environment to adapt to zero gravity, the astronaut's body will be some strange changes. Weightlessness cause fluid flow around the main flow torso and head, causing the astronauts facial swelling and inflammation, such as nasal congestion. During long-term stay in space
Bone and muscle loss
Most people weightlessness caused by the impact may be known bone and muscle degeneration. In addition, the calcium bones become very fragile and prone to fracture, which is why some of the astronauts after landing need on a stretcher.
Space Blindness
Space Blindness refers astronaut decreased vision.
Solar storms and radiation is one of the biggest challenges facing the long-term space flight. Since losing the protection of Earth's magnetic field, astronauts suffer far more than normal levels of radiation. The cumulative amount of radiation exposure in low earth orbit them exceeded by workers close to nuclear reactors, thereby increasing the risk of cancer.
Prolonged space flight can cause a series of psychological problems, including depression or mood swings, vulnerability, anxiety and fear, as well as other sequelae. We are familiar with the biology of the Earth, the Earth biochemistry, biophysics, after all, the Earth is very different astrophysics, celestial chemistry, biophysics and astrophysics, biochemistry and other celestial bodies. Therefore, you must be familiar with and adapt to these differences and changes.
Osteoporosis and its complications ranked first in the space of disease risk.
Long-term health risks associated with flying Topics
The degree of influence long-term biological effects of radiation in human flight can withstand the radiation and the maximum limit of accumulated radiation on physiology, pathology and genetics.
Physiological effects of weightlessness including: long-term bone loss and a return flight after the maximum extent and severity of the continued deterioration of other pathological problems induced by the; maximum flexibility and severity of possible long-term Flight Center in vascular function.
Long-term risk of disease due to the high risk of flight stress, microbial variation, decreased immune function, leading to infections
Radiation hazards and protection
1) radiation medicine, biology and pathway effects Features
Radiation protection for interplanetary flight, since the lack of protective effect of Earth's magnetic field, and by the irradiation time is longer, the possibility of increased radiation hazard.
Analysis of space flight medical problems that may occur, loss of appetite topped the list, sleep disorders, fatigue and insomnia, in addition, space sickness, musculoskeletal system problems, eye problems, infections problems, skin problems and cardiovascular problems
---------------------------------------------------------
Development of diagnostic techniques in orbit, the development of the volume of power consumption, features a wide range of diagnostic techniques, such as applied research of ultrasound diagnostic techniques in the abdominal thoracic trauma, bone, ligament damage, dental / sinus infections and other complications and integrated;
Actively explore in orbit disposal of medical technology, weightlessness surgical methods, development of special surgical instruments, the role of narcotic drugs and the like.
——————————————————————————————-
However, space technology itself is integrated with the use of the most advanced technology, its challenging technical reserves and periodic demanding
With the continuous development of science and technology, space agencies plan a manned landing on the moon and Mars, space exploration emergency medicine current concern.
Space sickness
In the weightless environment of space, in the weightless environment of space, surgery may be extremely difficult and risky.
Robot surgeons
Space disease in three days after entering the space started to ease, although individual astronauts might subsequently relapse. January 2015 NASA declared working on a fast, anti-nausea and nasal sprays. In addition, due to the zero-gravity environment, and anti-nausea drugs can only be administered by injection or transdermal patches manner.
Manned spaceflight in the 21st century is the era of interplanetary flight, aerospace medicine is closely watched era is the era of China's manned space flourish. Only the central issue, and grasp the opportunity to open up a new world of human survival and development.
Various emergency contingency measures in special circumstances. Invisible accident risk prevention. Enhancing drugs and other screening methods immunity aerospace medicine and tissue engineering a microgravity environment. Drug mixture of APS, ginseng polysaccharides, Ganoderma lucidum polysaccharides, polysaccharides and Lentinan, from other compounds. Drug development space syndrome drug, chemical structure modification will be an important part.
These issues are very sensitive, cutting-edge technology is a major difficulty landing on Mars. Countries in the world, especially the world's major space powers in the country strategies and technical research, the results of all kinds continue to emerge. United States, Russia, China, Europe, India, Japan and other countries is different. United States, Russia extraordinary strength. Many patented technology and health, and most belong to the top-secret technology. Especially in aerospace engineering and technological achievements is different from the general scientific literature, practical, commercial, industrial great, especially the performance of patents, know-how, technical drawings, engineering design and other aspects. Present Mars and return safely to Earth, the first manned, significance, everything is hard in the beginning, especially the first person to land on Mars This Mars for Human Sciences Research Mars, the moon, the earth, the solar system and the universe, life and other significant. Its far greater than the value of direct investments and business interests.
In addition, it is the development of new materials, suitable for deep space operations universe, life, and other detection, wider field.
Many aerospace materials, continuous research and development of materials are key areas of aerospace development, including material rocket, the spacecraft materials, the suit materials, radiation materials, materials and equipment, instruments, materials and so on biochemistry.
Temperature metal-based compound with a metal matrix composite body with a more primordial higher temperature strength, creep resistance, impact resistance, thermal fatigue and other excellent high temperature performance.
In B, C, SiC fiber reinforced Ti3Al, TiAl, Ni3Al intermetallic matrix composites, etc.
W Fiber Reinforced with nickel-based, iron-based alloys as well as SiC, TiB2, Si3N4 and BN particle reinforced metal matrix composites
High temperature service conditions require the development of ceramic and carbon-based composite materials, etc., not in this eleven Cheung said.
Fuel storage
In order to survive in space, people need many things: food, oxygen, shelter, and, perhaps most importantly, fuel. The initial quality Mars mission somewhere around 80 percent of the space launch humans will be propellant. The fuel amount of storage space is very difficult.
This difference in low Earth orbit cause liquid hydrogen and liquid oxygen - rocket fuel - vaporization.
Hydrogen is particularly likely to leak out, resulting in a loss of about 4% per month.
When you want to get people to Mars speed to minimize exposure to weightlessness and space radiation hazards
Mars
Landings on the Martian surface, they realized that they reached the limit. The rapid expansion of the thin Martian atmosphere can not be very large parachute, such as those that will need to be large enough to slow down, carry human spacecraft.
Therefore, the parachute strong mass ratio, high temperature resistance, Bing shot performance and other aspects of textile materials used have special requirements, in order to make a parachute can be used in rockets, missiles, Yu arrows spacecraft and other spacecraft recovery, it is necessary to improve the canopy heat resistance, a high melting point polymeric fiber fabric used, the metal fabric, ceramic fiber fabrics, and other devices.
Super rigid parachute to help slow the landing vehicle.
Spacecraft entered the Martian atmosphere at 24,000 km / h. Even after slowing parachute or inflatable, it will be very
Once we have the protection of the Earth magnetic field, the solar radiation will accumulate in the body, a huge explosion threw the spacecraft may potentially lethal doses of radiation astronauts.
In addition to radiation, the biggest challenge is manned trip to Mars microgravity, as previously described.
The moon is sterile. Mars is another case entirely.
With dust treatment measures.
Arid Martian environment to create a super-tiny dust particles flying around the Earth for billions of years.
Apollo moon dust encountered. Ultra-sharp and abrasive lunar dust was named something that can clog the basic functions of mechanical damage. High chloride salt, which can cause thyroid problems in people.
Mars geological structure and geological structure of the moon, water on Mars geology, geology of the Moon is very important, because he, like the Earth's geology is related to many important issues. Water, the first element of life, air, temperature, and complex geological formations are geological structure. Cosmic geology research methods, mainly through a variety of detection equipment equipped with a space probe, celestial observations of atmospheric composition, composition and distribution of temperature, pressure, wind speed, vertical structure, composition of the solar wind, the water, the surface topography and Zoning, topsoil the composition and characteristics of the component surface of the rock, type and distribution, stratigraphic sequence, structural system and the internal shell structure.
Mars internal situation only rely on its surface condition of large amounts of data and related information inferred. It is generally believed that the core radius of 1700 km of high-density material composition; outsourcing a layer of lava, it is denser than the Earth's mantle some; outermost layer is a thin crust. Compared to other terrestrial planets, the lower the density of Mars, which indicates that the Martian core of iron (magnesium and iron sulfide) with may contain more sulfur. Like Mercury and the Moon, Mars and lack active plate movement; there is no indication that the crust of Mars occurred can cause translational events like the Earth like so many of folded mountains. Since there is no lateral movement in the earth's crust under the giant hot zone relative to the ground in a stationary state. Slight stress coupled with the ground, resulting in Tharis bumps and huge volcano. For the geological structure of Mars is very important, which is why repeated explorations and studies of Martian geological reasons.
Earth's surface
Each detector component landing site soil analysis:
Element weight percent
Viking 1
Oxygen 40-45
Si 18-25
Iron 12-15
K 8
Calcium 3-5
Magnesium 3-6
S 2-5
Aluminum 2-5
Cesium 0.1-0.5
Core
Mars is about half the radius of the core radius, in addition to the primary iron further comprises 15 to 17% of the sulfur content of lighter elements is also twice the Earth, so the low melting point, so that the core portion of a liquid, such as outside the Earth nuclear.
Mantle
Nuclear outer coating silicate mantle.
Crust
The outermost layer of the crust.
Crustal thickness obtained, the original thickness of the low north 40 km south plateau 70 kilometers thick, an average of 50 kilometers, at least 80 km Tharsis plateau and the Antarctic Plateau, and in the impact basin is thin, as only about 10 kilometers Greece plains.
Canyon of Mars there are two categories: outflow channels (outflow channel) and tree valley (valley network). The former is very large, it can be 100 km wide, over 2000 km long, streamlined, mainly in the younger Northern Hemisphere, such as the plain around Tyre Chris Canyon and Canyon jam.
In addition, the volcanic activity sometimes lava formation lava channels (lava channel); crustal stress generated by fissures, faults, forming numerous parallel extending grooves (fossa), such as around the huge Tharsis volcanic plateau radially distributed numerous grooves, which can again lead to volcanic activity.
Presumably, Mars has an iron as the main component of the nucleus, and contains sulfur, magnesium and other light elements, the nuclear share of Mars, the Earth should be relatively small. The outer core is covered with a thick layer of magnesium-rich silicate mantle, the surface of rocky crust. The density of Earth-like planets Mars is the lowest, only 3.93g / cc.
Hierarchy
The crust
Lunar core
The average density of the Moon is 3.3464 g / cc, the solar system satellites second highest (after Aiou). However, there are few clues mean lunar core is small, only about 350 km radius or less [2]. The core of the moon is only about 20% the size of the moon, the moon's interior has a solid, iron-rich core diameter of about 240 kilometers (150 miles); in addition there is a liquid core, mainly composed of iron outer core, about 330 km in diameter (205 miles), and for the first time compared with the core of the Earth, considered as the earth's outer core, like sulfur and oxygen may have lighter elements [4].
Chemical elements on the lunar surface constituted in accordance with its abundance as follows: oxygen (O), silicon (Si), iron (Fe), magnesium (Mg), calcium (Ca), aluminum (Al), manganese (Mn), titanium ( Ti). The most abundant is oxygen, silicon and iron. The oxygen content is estimated to be 42% (by weight). Carbon (C) and nitrogen (N) only traces seem to exist only in trace amounts deposited in the solar wind brings.
Lunar Prospector from the measured neutron spectra, the hydrogen (H) mainly in the lunar poles [2].
Element content (%)
Oxygen 42%
Silicon 21%
Iron 13%
Calcium 8%
Aluminum 7%
Magnesium 6%
Other 3%
Lunar surface relative content of each element (% by weight)
Moon geological history is an important event in recent global magma ocean crystallization. The specific depth is not clear, but some studies have shown that at least a depth of about 500 kilometers or more.
Lunar landscape
Lunar landscape can be described as impact craters and ejecta, some volcanoes, hills, lava-filled depressions.
Regolith
TABLE bear the asteroid and comets billions of years of bombardment. Over time, the impact of these processes have already broken into fine-grained surface rock debris, called regolith. Young mare area, regolith thickness of about 2 meters, while the oldest dated land, regolith thickness of up to 20 meters. Through the analysis of lunar soil components, in particular the isotopic composition changes can determine the period of solar activity. Solar wind gases possible future lunar base is useful because oxygen, hydrogen (water), carbon and nitrogen is not only essential to life, but also may be useful for fuel production. Lunar soil constituents may also be as a future source of energy.
Here, repeatedly stressed that the geological structure and geological structure of celestial bodies, the Earth, Moon, Mars, or that this human existence and development of biological life forms is very important, especially in a series of data Martian geological structure geological structure is directly related to human landing Mars and the successful transformation of Mars or not. for example, water, liquid water, water, oxygen, synthesis, must not be taken lightly.
__________________________________________________________----
Mars landing 10 Technology
Aerospace Science and space science and technology major innovation of the most critical of sophisticated technology R & D project
[
"1" rocket propulsion technology ion fusion nuclear pulse propulsion rocket powered high-speed heavy rocket technology, space nuclear reactors spacecraft] brought big problems reflected in the nuclear reaction, nuclear radiation on spacecraft launch, control, brakes and other impact.
In particular, for the future of nuclear power spacecraft, the need to solve the nuclear reactor design, manufacture, control, cooling, radiation shielding, exhaust pollution, high thermoelectric conversion efficiency and a series of technical problems.
In particular, nuclear reactors produce radiation on astronauts' health will pose a great threat, which requires the spacecraft to be nuclear radiation shielding to ensure astronaut and ship the goods from radiation and heat from the reactor influence, but this will greatly increase the weight of the detector.
Space nuclear process applications, nuclear reaction decay is not a problem, but in a vacuum, ultra-low temperature environment, the nuclear reaction materials, energy transport materials have very high demands.
Space facing the reality of a nuclear reactor cooling cooling problems. To prevent problems with the reactor, "Washington" aircraft carrier to take four heavy protective measures for the radiation enclosed in the warship. These four measures are: the fuel itself, fuel storage pressure vessel, reactor shell and the hull. US Navy fuel all metal fuel, designed to take the impact resistance of the war, does not release fission product can withstand more than 50 times the gravity of the impact load; product of nuclear fission reactor fuel will never enter loop cooling water. The third layer of protection is specially designed and manufactured the reactor shell. The fourth layer is a very strong anti-impact combat ship, the reactor is arranged in the center of the ship, very safe. Engage in a reactor can only be loaded up to the aircraft, so as to drive the motor, and then drive the propeller. That is the core advantage of the heat generated by the heated gas flow, high temperature high pressure gas discharge backward, thereby generating thrust.
.
After installation AMPS1000 type nuclear power plant, a nuclear fuel assembly: He is a core member of the nuclear fuel chain reaction. Usually made into uranium dioxide, of which only a few percent uranium-235, and most of it is not directly involved in the nuclear fission of uranium 238. The uranium dioxide sintered into cylindrical pieces, into a stainless steel or a zirconium alloy do metal tubes called fuel rods or the original, then the number of fuel rods loaded metal cylinder in an orderly composition of the fuel assembly, and finally put a lot of vertical distribution of fuel assemblies in the reactor.
Nuclear reactor pressure vessel is a housing for containing nuclear fuel and reactor internals, for producing high-quality high-strength steel is made to withstand the pressure of dozens MPa. Import and export of the coolant in the pressure vessel.
The top of the pressure vessel closure, and can be used to accommodate the fixed control rod drive mechanism, pressure vessel head has a semi-circular, flat-topped.
Roof bolt: used to connect the locking pressure vessel head, so that the cylinder to form a completely sealed container.
Neutron Source: Plug in nuclear reactors can provide sufficient neutron, nuclear fuel ignition, to start to enhance the role of nuclear reactors and nuclear power. Neutron source generally composed of radium, polonium, beryllium, antimony production. Neutron source and neutron fission reactors are fast neutron, can not cause fission of uranium 235, in order to slow down, we need to moderator ---- full of pure water in a nuclear reactor. Aircraft carriers, submarines use nuclear reactor control has proven more successful.
Rod: has a strong ability to absorb neutrons, driven by the control rod drive mechanism, can move up and down in a nuclear reactor control rods within the nuclear fuel used to start, shut down the nuclear reactor, and maintain, regulate reactor power. Hafnium control rods in general, silver, indium, cadmium and other metals production.
Control rod drive mechanism: He is the executive body of nuclear reactors operating system and security protection systems, in strict accordance with requirements of the system or its operator control rod drives do move up and down in a nuclear reactor, nuclear reactor for power control. In a crisis situation, you also can quickly control rods fully inserted into the reactor in order to achieve the purpose of the emergency shutdown
Upper and lower support plate: used to secure the fuel assembly. High temperature and pressure inside the reactor is filled with pure water (so called pressurized water reactors), on the one hand he was passing through a nuclear reactor core, cooling the nuclear fuel, to act as a coolant, on the other hand it accumulates in the pressure vessel in play moderated neutrons role, acting as moderator.
Water quality monitoring sampling system:
Adding chemical system: under normal circumstances, for adding hydrazine, hydrogen, pH control agents to the primary coolant system, the main purpose is to remove and reduce coolant oxygen, high oxygen water suppression equipment wall corrosion (usually at a high temperature oxygen with hydrogen, especially at low temperatures during startup of a nuclear reactor with added hydrazine oxygen); when the nuclear reactor control rods stuck for some reason can not shutdown time by the the system can inject the nuclear reactor neutron absorber (such as boric acid solution), emergency shutdown, in order to ensure the safety of nuclear submarines.
Water system: a loop inside the water will be reduced at work, such as water sampling and analysis, equipment leaks, because the shutdown process cooling water and reduction of thermal expansion and contraction.
Equipment cooling water system:
Pressure safety systems: pressure reactor primary coolant system may change rapidly for some reason, the need for effective control. And in severe burn nuclear fuel rods, resulting in a core melt accident, it is necessary to promptly increase the pressure. Turn the regulator measures the electric, heating and cooling water. If necessary, also temporary startup booster pump.
Residual Heat Removal System: reactor scram may be due to an accident, such as when the primary coolant system of the steam generator heat exchanger tube is damaged, it must be urgently closed reactors.
Safety Injection System: The main components of this system is the high-pressure injection pump.
Radioactive waste treatment systems:
Decontamination Systems: for the removal of radioactive deposits equipment, valves, pipes and accessories, and other surfaces.
Europe, the United States and Russia and other countries related to aircraft carriers, submarines, icebreakers, nuclear-powered research aircraft, there are lots of achievements use of nuclear energy, it is worth analysis. However, nuclear reactor technology, rocket ships and the former are very different, therefore, requires special attention and innovative research. Must adopt a new new design techniques, otherwise, fall into the stereotype, it will avail, nothing even cause harm Aerospace.
[ "2" spacecraft structure]
[ "3"] radiation technology is the use of deep-sea sedimentation fabric fabrics deepwater technology development precipitated silver metal fibers or fiber lint and other materials and micronaire value between 4.1 to 4.3 fibers made from blends. For radiation protection field, it greatly enhances the effects of radiation and service life of clothing. Radiation resistant fiber) radiation resistant fiber - fiber polyimide polyimide fibers
60 years the United States has successfully developed polyimide fibers, it has highlighted the high temperature, radiation-resistant, fire-retardant properties.
[ "4" cosmic radiation resistant clothing design multifunctional anti-aging, wear underwear] ① comfort layer: astronauts can not wash clothes in a long flight, a lot of sebum, perspiration, etc. will contaminate underwear, so use soft, absorbent and breathable cotton knitwear making.
② warm layer: at ambient temperature range is not the case, warm layer to maintain a comfortable temperature environment. Choose warm and good thermal resistance large, soft, lightweight material, such as synthetic fibers, flakes, wool and silk and so on.
③ ventilation and cooling clothes clothes
Spacesuit
In astronaut body heat is too high, water-cooled ventilation clothing and clothing to a different way of heat. If the body heat production more than 350 kcal / h (ventilated clothes can not meet the cooling requirements, then that is cooled by a water-cooled suit. Ventilating clothing and water-cooled multi-use compression clothing, durable, flexible plastic tubing, such as polyvinyl chloride pipe or nylon film.
④ airtight limiting layer:
⑤ insulation: astronaut during extravehicular activities, from hot or cold insulation protection. It multilayer aluminized polyester film or a polyimide film and sandwiched between layers of nonwoven fabric to be made.
⑥ protective cover layer: the outermost layer of the suit is to require fire, heat and anti-space radiation on various factors (micrometeorites, cosmic rays, etc.) on the human body. Most of this layer with aluminized fabric.
New space suits using a special radiation shielding material, double design.
And also supporting spacesuit helmet, gloves, boots and so on.
[ "5" space - Aerospace biomedical technology, space, special use of rescue medication Space mental health care systems in space without damage restful sleep positions - drugs, simple space emergency medical system
]
[ "6" landing control technology, alternate control technology, high-performance multi-purpose landing deceleration device (parachute)]
[ "7" Mars truck, unitary Mars spacecraft solar energy battery super multi-legged (rounds) intelligent robot] multifunction remote sensing instruments on Mars, Mars and more intelligent giant telescope
[8 <> Mars warehouse activities, automatic Mars lander - Automatic start off cabin
]
[ "9" Mars - spacecraft docking control system, return to the system design]
Space flight secondary emergency life - support system
Spacecraft automatic, manual, semi-automatic operation control, remote control switch system
Automatic return spacecraft systems, backup design, the spacecraft automatic control operating system modular blocks of]
[10 lunar tracking control system
Martian dust storms, pollution prevention, anti-corrosion and other special conditions thereof
Electric light aircraft, Mars lander, Mars, living spaces, living spaces Mars, Mars entry capsule, compatible utilization technology, plant cultivation techniques, nutrition space - space soil]
Aerospace technology, space technology a lot, a lot of cutting-edge technology. Human landing on Mars technology bear the brunt. The main merge the human landing on Mars 10 cutting-edge technology, in fact, these 10 cutting-edge technology, covering a wide range, focused, and is the key to key technologies. They actually shows overall trends and technology Aerospace Science and Technology space technology. Human triumph Mars and safe return of 10 cutting-edge technology is bound to innovation. Moreover, in order to explore the human Venus, Jupiter satellites and the solar system, the Milky Way and other future development of science and laid the foundation guarantee. But also for the transformation of human to Mars, the Moon and other planets livable provides strong technical support. Aerospace Science and Technology which is a major support system.
Preparation of oxygen, water, synthesis, temperature, radiation, critical force confrontation. Regardless of the moon or Mars, survive three elements bear the brunt.
Chemical formula: H₂O
Formula: H-O-H (OH bond between two angle 104.5 °).
Molecular Weight: 18.016
Chemical Experiment: water electrolysis. Formula: 2H₂O = energized = 2H₂ ↑ + O₂ ↑ (decomposition)
Molecules: a hydrogen atom, an oxygen atom.
Ionization of water: the presence of pure water ionization equilibrium following: H₂O == == H⁺ + OH⁻ reversible or irreversible H₂O + H₂O = = H₃O⁺ + OH⁻.
NOTE: "H₃O⁺" hydronium ions, for simplicity, often abbreviated as H⁺, more accurate to say the H9O4⁺, the amount of hydrogen ion concentration in pure water material is 10⁻⁷mol / L.
Electrolysis of water:
Water at DC, decomposition to produce hydrogen and oxygen, this method is industrially prepared pure hydrogen and oxygen 2H₂O = 2H₂ ↑ + O₂ ↑.
. Hydration Reaction:
Water with an alkaline active metal oxides, as well as some of the most acidic oxide hydration reaction of unsaturated hydrocarbons.
Na₂O + H₂O = 2NaOH
CaO + H₂O = Ca (OH) ₂
SO₃ + H₂O = H₂SO₄
P₂O₅ + 3H₂O = 2H₃PO₄ molecular structure
CH₂ = CH₂ + H₂O ← → C₂H₅OH
6. The diameter of the order of magnitude of 10 water molecules negative power of ten, the water is generally believed that a diameter of 2 to 3 this organization. water
7. Water ionization:
In the water, almost no water molecules ionized to generate ions.
H₂O ← → H⁺ + OH⁻
Heating potassium chlorate or potassium permanganate preparation of oxygen
Pressurized at low temperatures, the air into a liquid, and then evaporated, since the boiling point of liquid nitrogen is -196 deg.] C, lower than the boiling point of liquid oxygen (-183 ℃), so the liquid nitrogen evaporated from the first air, remaining the main liquid oxygen.
Of course, the development of research in space there is a great difference, even more special preparation harsh environmen
The Gumpert Apollo is the perfect synthesis between road vehicle and racing car. It exceeds all expectations with its passion and maximum driving fun. 650 HP, up to 360 km/h top-speed and an acceleration of 0 to 100 km/h in just 3.0 seconds make it a full-blooded super sports car to which there is no alternative. The complete package is available at a cost-performance ratio unequalled in this exclusive vehicle class.
The production process is the one part of the manufacture philosophy in which exclusivity and precision are paramount to speed. Gumpert Sportwagenmanufaktur associates the term ‚manufacture' with it's the commitment to achieve quality and luxury by means of craftsmanship and hand-made production.
Roland Gumpert, founder, managing director and the driving force behind Sportwagenmanufaktur, has created a manufacturing environment that combines engineering excellence with a broad automotive and racing competence. Experts within the motorsports scene are all familiar with the name Gumpert: In the mid 1970s, the long-standing Audi manager was the driving force behind the development of the four-wheel drive "Iltis", the original predecessor of today's "Quattro". In 1979 he not only succeeded in preparing the gnarled four-wheel drive "Iltis" for the Paris-Dakar rally, but also achieved victory. In the years that followed under his management, Audi Sport won a total of 25 World Rally Championship races and was the 4-time winner of the World Rally Championship. Gumpert's professional success is distinguished by his ability to combine innovative ideas with proven technology effectively and successfully.
Gumpert Apollo (2008)
2008 Gumpert Apollo
A team of automotive and motor sports specialists joined forces to pool their enthusiasm and energy into developing and creating the Gumpert Apollo. Their abilities create the space for the finest workmanship and utmost individuality, with the use of high-tech processes and integration of proven standard components securing the technical basis.
With the Gumpert Apollo we are providing a select clientele of ambitious sports drivers and car enthusiasts with the opportunity of experiencing the unique synergy between hand-made high-end components optimised for performance on the road and the track, and of distinguishing themselves from the remainder of the world of sports cars. Up to 100 vehicles will leave the factory each year - just enough to ensure that these exceptional vehicles retain their exclusive status.
Gumpert Sportwagenmanufaktur is an independent, privately financed company. The financial stability of the company is being secured by well-known investors. Their operative commitment will also promote the international sales and distribution of Gumpert Apollo.
The challenge was to develop an exceptional design that combined the extreme aerodynamic requirements of a performance-oriented, purist super sports car with the aesthetic design of an exclusive vehicle. We wanted to achieve the perfect synthesis of design and function. Without compromising. And we have succeeded with Gumpert Apollo: Its silhouette, optimised in numerous wind tunnel tests, reflects its by far superior capabilities.
In its profile, the Gumpert Apollo dynamic appearance is further enhanced by its dimensions (4.46 m length, almost 2 m width and 1.24 m height) and its streamlined, long and wide shoulder lines. The mid-engine layout is emphasised by the cockpit, which is clearly located toward the front of the vehicle, and the long wheel base; both factors ensure optimum driving qualities. Massive air inlets and outlets in the front and on the side in front of and behind the doors leave no doubt about its potency. Above all, though, they supply the two turbo-chargers and the high-performance braking system with enough fresh air to ensure optimum operation for the duration of a race. The high-set air intake for the engine is reminiscent of Formula 1 vehicles and emphasises Gumpert Apollo racing character. The dominant rear provides a view of the diffuser and the underbody, encased completely in carbon, - which, combined with the front diffuser and flow channels, achieves an exceptionally high negative lift for a road vehicle.
Gumpert Apollo leaves a lasting impression on anyone who sees it: It symbolises unusual power, dynamism and sportiness. It reflects above-average performance capability paired with timeless elegance, and even when it is not moving, shows that the design can only adhere to function: driving dynamics.
The secret of Gumpert Apollo is an innovative design concept from racing car engineering. The base and symbolic backbone of Gumpert Apollo consists a round tube frame made of top-quality and highly stable chrome-molybdenum-steel with an integrated monocoque safety cell made of high quality carbon fibre screwed directly onto the frame. The 161 kg (355 lbs.) construction design is so effective, so torsion proof and bend resistant that it complies with both the specifications of the European MOT approval and the international manufacture specifications of motor sports (see annex J of the FIA regulations). Gumpert Apollo succeeds in combining low weight with the rigidity of a racing car, finest driving dynamics and maximum safety. The Gumpert Apollo is one of the safest and most agile vehicles of its class.
PERFORMANCE IN A NEW DIMENSION
The Gumpert Apollo is not the only sports car on the market; however its concept is so unique and realised so consistently that it aspires to redefine the standard for this vehicle class. The Gumpert Apollo has more to offer:
•Approved both for use on the road and on the track
•Maximum safety in accordance with the international motor racing standards
•Low curb weight of below 1,200 kg (2,645 lbs.)
•Perfect road-holding and ultra-precise handling
•Maximum driving pleasure and unbeatable driving performance
•Excellent aerodynamic efficiency and driving dynamics
•Synthesis of reliable racing and series technology
•Unique, futuristic, and striking design
•Best cost-benefit ratio
Despite the series production process, every Gumpert Apollo is unique. It is customized to the owner's wishes and needs and proudly bears his touch. We can also offer you:
•Luxury package with air conditioning, navigation radio with DVD/CD-Player and backwards facing camera with rear-view mirror function
•Car body made of fibreglass (GFK) or carbon-fibre (CFK)
•Carbon fibre for various components and car body parts
•Design variants created by use of different air intakes for the engine
•Carbon rear wing (optional available)
•Engine variants with 650 / 700 / 800 HP output
In addition to these different options and equipment packages, we can of course also accommodate any other special requests made by our customers. Just talk to us.
The consistent achievement of maximum driving dynamics and uncompromising functionality is also visible in the interior design: Every detail was designed according to functional viewpoints equivalent to those of a racing car, yet without neglecting the required amount of comfort and quality.
TAILOR-MADE PURISM AND LUXURY
Light weight was the top priority and has been achieved through the exclusive use of high-tech materials. The instrument panel, like the monocoque it is integrated into, is made of carbon fibre. The seat buckets, too, are fitted into the monocoque - although you will not find seats in the conventional meaning in the Gumpert Apollo. The seat position is adjusted to each customer individually, using padding, upholstery, adjustable pedals, and the steering column. Yet you are not required to forgo proven technology in the Gumpert Apollo: air conditioning, high-end navigation system with an integrated reverse camera, CD/DVD player and much more are available.
The Gumpert Apollo is a tailor-made sports car, and individual masterpiece. In line with this principle, customers can design the interior to meet their preferences, be it pure performance or somewhat more luxurious. Decide the colours and designs yourself, whether leather, seams or embroideries are concerned. We guarantee you a car that will fulfil all of your requirements. Just talk to us.
READY FOR RACETRACK
A sports car's supremacy is not defined by pure engine power alone: only a car that can put this power on the asphalt and create a balance between all occurring internal and external forces will leave the contestants behind, on the road and the race track. The chassis is the key to this supremacy - and Gumpert Apollo has already proven itself spectacularly under the toughest testing conditions on various test tracks, public roads and real racing tracks such as Hockenheim, Imola and the historical "Nordschleife".
The Gumpert Apollo is built as a racing car according to FIA GT and ACO regulations upon request.
Success is one of Gumpert Sportwagenmanufaktur's clearly defined objectives in racing. Naturally the factory benefits from the years of experience in motor sports and the remarkable successes of company owner Roland Gumpert.
The Gumpert Apollo made a great third place with the Belgian racing driver, Ruben Maes, in the cockpit at its racing debut at the Divinol Cup in Hockenheim in April 2005.
PROVEN PERFORMANCE IN A NEW DIMENSION
The impressive power of the high-performance eight cylinder engine is based on proven V8-high-performance aggregates from Audi. In the standard configuration this engine is optimised for use in racing and road vehicles and produces 650 HP as a Biturbo engine. Weighing only 196 kg (432 lbs.), it plays a major role in ensuring the ideal weight and fascinating driving dynamics of Gumpert Apollo. An angle of 90° between the two cylinder banks is a sign of a classic 8-cylinder engine. Efficient utilisation of its remarkable energy in the back wheels guarantees the fully-synchronised, sequential six-speed transmission that incorporates Formula 1 know-how. The short gear paths allow high speed gear changes. The arrangement of the gears in a longitudinal direction in the path of travel ensures a very low centre of gravity and optimum weight distribution. The characteristic sound of the double-flow exhaust system of the Gumpert Apollo with its 3-way catalytic converters says it best - the Gumpert Apollo is pure, unbeatable performance as reflected in the data. Like a comet, the Gumpert Apollo catapults its pilot from 0 to 100 km/h (0-62 mph) in just 3.0 seconds and only requires 8.9 seconds from 0 to 200 km/h (0-124 mph).
For connoisseurs form whom driving fun does not necessarily equal maximum motor performance and ultimate acceleration, the engine is also ideally suited for day-to-day driving at lower speeds.
DRIVING DYNAMICS REDEFINED
The Gumpert Apollo's suspension was developed to ideally complement the body's sophisticated aerodynamics. The resulting is unusual driving dynamics. The Gumpert Apollo is taut but not hard and provides driver and passenger with an extraordinar level of comfort for a car designed purely for performance. It demands the pilot's unswerving attention, yet due to its ultra-precise and predictable driving characteristics does not overwhelm, even at top speed.
An ideal weight balance of 42 to 58 percent between the front and rear axis rounds it off: It provides optimum traction during acceleration, whilst ensuring stable control even when braking in critical situations.
The Gumpert Apollo owes the finely tuned sensitivity of the suspension system and the optimised exertion of power to its double transverse control arm pushrod configuration at the front and back. The double transverse control arms ensure that the tires maintain optimum contact with the road surface, independent of the bound rate of suspension system. The suspension system allows the owner to seamlessly set the ground clearance in a range between 40 and 120 mm (1.57-4.72 in). Sealed uniball joints ensure that the forces are transferred precisely and with little friction. Stabilisers support the efficiency of the suspension and pitch compensation prevents the vehicle from diving during braking and lifting during accelerating. Despite its low trim, the Gumpert Apollo provides long wheel travel in compression and rebound, facilitating the finely-tuned and precise functioning of the absorbers and springs.
The high level of driving dynamics is supported by an agile electro-hydraulic power steering system that provides the driver with direct feedback. In order to securely transfer the 850 nm torque to the road, Gumpert Apollo has a traction control system (TCS) used in motor sports. Developed together with the company Racelogic, the permitted slip can be accurately set on the rear axle - according to the drivers wishes. An optional launch control, adjusted to the Gumpert Apollo especially, ensures swift starts like those of Formula 1. The Gumpert Apollo's driving performance is controlled with a 2-circuit high-performance braking system with adjustable 3-level Bosch-ABS, 378 mm (14.9 in) ventilated discs, and 6-piston callipers on the front and rear axle.
All of these are primary technical principles, the sportive orientation of which could not be clearer. Thanks to its suspension, the Gumpert Apollo proves itself in every curve: It redefines the term ‚driving dynamics'.
TECHNICAL SPECIFICATIONS
•DIMENSIONS◦Length 4,460 mm / 175.6"
◦Width 1,998 mm / 78.6"
◦Height 1,114 mm / 43.8"
◦Wheel base 2,700 mm / 106.3"
◦Wheel gauge ◾front: 1,670 mm / 65.7"
◾back: 1,598 mm / 62.9"
◦Boot volume: 100 l
•WEIGHT◦Kerb weight: below 1,200 kg / 2,645 lbs
◦Allowed total weight: 1,500 kg / 3,306 lbs
◦Approved axle load ◾front: 650 kg / 1,452 lbs
◾back: 900 kg / 1,984 lbs
•ENGINE◦Cylinders: 8
◦Type: 90° - V
◦Valves per cylinder: 5
◦Displacement: 4,163 cm3 / 254 in3
◦Stroke: 93 mm / 3.66"
◦Bore: 84.5 mm / 3.32"
◦Nominal output: 478 kW (650 HP) @ 6,500 rpm
◦Maximum torque: 850 Nm (626.9 lb-ft) @ 4,000 rpm [with 820 Nm @ 2700 rpm]
◦Maximum revs: 7,200 rpm
◦Compression ratio: 9,3
◦Recommended fuel type: 98 ROZ / 88 MOZ
◦Emission standard: Euro 4
•GEARBOX◦Sequential six-speed gear box with synchronisation and oil cooling
◦Twin plate clutch configuration (diameter 200 mm / 7.87" each)
◦Differential lock by Torsen
◦Custom-made gear ratios
•WHEELS◦Tire dimension ◾front: 255/35ZR19
◾back: 345/35ZR19
◦Wheel dimension ◾front: 10J x 19
◾back: 13J x 19
◦Wheel rim type: Aluminium cast wheels with centre lock
•PERFORMANCE◦Top speed: 360 km/h (224 mph)
◦0-100 km/h (0-62 mph): 3.0 s
◦0-200 km/h (0-124 mph): 8.9 s
The lab focuses on the synthesis of well-defined homopolymers and copolymers with complex macromolecular architecture by using combinations of all available polymerization methodologies.
Here's a photo of a batch of Synthesis Technology Eurorack modules before shipping. The manufacturer is preparing another small shipment of them to us for next week. They come in slowly and always sell out. Synthesis Technology have made a great start in Eurorack after many successful years selling 5u MOTM format modules. LINK: www.analoguehaven.com/synthesistechnology/ .
The Gumpert Apollo is the perfect synthesis between road vehicle and racing car. It exceeds all expectations with its passion and maximum driving fun. 650 HP, up to 360 km/h top-speed and an acceleration of 0 to 100 km/h in just 3.0 seconds make it a full-blooded super sports car to which there is no alternative. The complete package is available at a cost-performance ratio unequalled in this exclusive vehicle class.
The production process is the one part of the manufacture philosophy in which exclusivity and precision are paramount to speed. Gumpert Sportwagenmanufaktur associates the term ‚manufacture' with it's the commitment to achieve quality and luxury by means of craftsmanship and hand-made production.
Roland Gumpert, founder, managing director and the driving force behind Sportwagenmanufaktur, has created a manufacturing environment that combines engineering excellence with a broad automotive and racing competence. Experts within the motorsports scene are all familiar with the name Gumpert: In the mid 1970s, the long-standing Audi manager was the driving force behind the development of the four-wheel drive "Iltis", the original predecessor of today's "Quattro". In 1979 he not only succeeded in preparing the gnarled four-wheel drive "Iltis" for the Paris-Dakar rally, but also achieved victory. In the years that followed under his management, Audi Sport won a total of 25 World Rally Championship races and was the 4-time winner of the World Rally Championship. Gumpert's professional success is distinguished by his ability to combine innovative ideas with proven technology effectively and successfully.
Gumpert Apollo (2008)
2008 Gumpert Apollo
A team of automotive and motor sports specialists joined forces to pool their enthusiasm and energy into developing and creating the Gumpert Apollo. Their abilities create the space for the finest workmanship and utmost individuality, with the use of high-tech processes and integration of proven standard components securing the technical basis.
With the Gumpert Apollo we are providing a select clientele of ambitious sports drivers and car enthusiasts with the opportunity of experiencing the unique synergy between hand-made high-end components optimised for performance on the road and the track, and of distinguishing themselves from the remainder of the world of sports cars. Up to 100 vehicles will leave the factory each year - just enough to ensure that these exceptional vehicles retain their exclusive status.
Gumpert Sportwagenmanufaktur is an independent, privately financed company. The financial stability of the company is being secured by well-known investors. Their operative commitment will also promote the international sales and distribution of Gumpert Apollo.
The challenge was to develop an exceptional design that combined the extreme aerodynamic requirements of a performance-oriented, purist super sports car with the aesthetic design of an exclusive vehicle. We wanted to achieve the perfect synthesis of design and function. Without compromising. And we have succeeded with Gumpert Apollo: Its silhouette, optimised in numerous wind tunnel tests, reflects its by far superior capabilities.
In its profile, the Gumpert Apollo dynamic appearance is further enhanced by its dimensions (4.46 m length, almost 2 m width and 1.24 m height) and its streamlined, long and wide shoulder lines. The mid-engine layout is emphasised by the cockpit, which is clearly located toward the front of the vehicle, and the long wheel base; both factors ensure optimum driving qualities. Massive air inlets and outlets in the front and on the side in front of and behind the doors leave no doubt about its potency. Above all, though, they supply the two turbo-chargers and the high-performance braking system with enough fresh air to ensure optimum operation for the duration of a race. The high-set air intake for the engine is reminiscent of Formula 1 vehicles and emphasises Gumpert Apollo racing character. The dominant rear provides a view of the diffuser and the underbody, encased completely in carbon, - which, combined with the front diffuser and flow channels, achieves an exceptionally high negative lift for a road vehicle.
Gumpert Apollo leaves a lasting impression on anyone who sees it: It symbolises unusual power, dynamism and sportiness. It reflects above-average performance capability paired with timeless elegance, and even when it is not moving, shows that the design can only adhere to function: driving dynamics.
The secret of Gumpert Apollo is an innovative design concept from racing car engineering. The base and symbolic backbone of Gumpert Apollo consists a round tube frame made of top-quality and highly stable chrome-molybdenum-steel with an integrated monocoque safety cell made of high quality carbon fibre screwed directly onto the frame. The 161 kg (355 lbs.) construction design is so effective, so torsion proof and bend resistant that it complies with both the specifications of the European MOT approval and the international manufacture specifications of motor sports (see annex J of the FIA regulations). Gumpert Apollo succeeds in combining low weight with the rigidity of a racing car, finest driving dynamics and maximum safety. The Gumpert Apollo is one of the safest and most agile vehicles of its class.
PERFORMANCE IN A NEW DIMENSION
The Gumpert Apollo is not the only sports car on the market; however its concept is so unique and realised so consistently that it aspires to redefine the standard for this vehicle class. The Gumpert Apollo has more to offer:
•Approved both for use on the road and on the track
•Maximum safety in accordance with the international motor racing standards
•Low curb weight of below 1,200 kg (2,645 lbs.)
•Perfect road-holding and ultra-precise handling
•Maximum driving pleasure and unbeatable driving performance
•Excellent aerodynamic efficiency and driving dynamics
•Synthesis of reliable racing and series technology
•Unique, futuristic, and striking design
•Best cost-benefit ratio
Despite the series production process, every Gumpert Apollo is unique. It is customized to the owner's wishes and needs and proudly bears his touch. We can also offer you:
•Luxury package with air conditioning, navigation radio with DVD/CD-Player and backwards facing camera with rear-view mirror function
•Car body made of fibreglass (GFK) or carbon-fibre (CFK)
•Carbon fibre for various components and car body parts
•Design variants created by use of different air intakes for the engine
•Carbon rear wing (optional available)
•Engine variants with 650 / 700 / 800 HP output
In addition to these different options and equipment packages, we can of course also accommodate any other special requests made by our customers. Just talk to us.
The consistent achievement of maximum driving dynamics and uncompromising functionality is also visible in the interior design: Every detail was designed according to functional viewpoints equivalent to those of a racing car, yet without neglecting the required amount of comfort and quality.
TAILOR-MADE PURISM AND LUXURY
Light weight was the top priority and has been achieved through the exclusive use of high-tech materials. The instrument panel, like the monocoque it is integrated into, is made of carbon fibre. The seat buckets, too, are fitted into the monocoque - although you will not find seats in the conventional meaning in the Gumpert Apollo. The seat position is adjusted to each customer individually, using padding, upholstery, adjustable pedals, and the steering column. Yet you are not required to forgo proven technology in the Gumpert Apollo: air conditioning, high-end navigation system with an integrated reverse camera, CD/DVD player and much more are available.
The Gumpert Apollo is a tailor-made sports car, and individual masterpiece. In line with this principle, customers can design the interior to meet their preferences, be it pure performance or somewhat more luxurious. Decide the colours and designs yourself, whether leather, seams or embroideries are concerned. We guarantee you a car that will fulfil all of your requirements. Just talk to us.
READY FOR RACETRACK
A sports car's supremacy is not defined by pure engine power alone: only a car that can put this power on the asphalt and create a balance between all occurring internal and external forces will leave the contestants behind, on the road and the race track. The chassis is the key to this supremacy - and Gumpert Apollo has already proven itself spectacularly under the toughest testing conditions on various test tracks, public roads and real racing tracks such as Hockenheim, Imola and the historical "Nordschleife".
The Gumpert Apollo is built as a racing car according to FIA GT and ACO regulations upon request.
Success is one of Gumpert Sportwagenmanufaktur's clearly defined objectives in racing. Naturally the factory benefits from the years of experience in motor sports and the remarkable successes of company owner Roland Gumpert.
The Gumpert Apollo made a great third place with the Belgian racing driver, Ruben Maes, in the cockpit at its racing debut at the Divinol Cup in Hockenheim in April 2005.
PROVEN PERFORMANCE IN A NEW DIMENSION
The impressive power of the high-performance eight cylinder engine is based on proven V8-high-performance aggregates from Audi. In the standard configuration this engine is optimised for use in racing and road vehicles and produces 650 HP as a Biturbo engine. Weighing only 196 kg (432 lbs.), it plays a major role in ensuring the ideal weight and fascinating driving dynamics of Gumpert Apollo. An angle of 90° between the two cylinder banks is a sign of a classic 8-cylinder engine. Efficient utilisation of its remarkable energy in the back wheels guarantees the fully-synchronised, sequential six-speed transmission that incorporates Formula 1 know-how. The short gear paths allow high speed gear changes. The arrangement of the gears in a longitudinal direction in the path of travel ensures a very low centre of gravity and optimum weight distribution. The characteristic sound of the double-flow exhaust system of the Gumpert Apollo with its 3-way catalytic converters says it best - the Gumpert Apollo is pure, unbeatable performance as reflected in the data. Like a comet, the Gumpert Apollo catapults its pilot from 0 to 100 km/h (0-62 mph) in just 3.0 seconds and only requires 8.9 seconds from 0 to 200 km/h (0-124 mph).
For connoisseurs form whom driving fun does not necessarily equal maximum motor performance and ultimate acceleration, the engine is also ideally suited for day-to-day driving at lower speeds.
DRIVING DYNAMICS REDEFINED
The Gumpert Apollo's suspension was developed to ideally complement the body's sophisticated aerodynamics. The resulting is unusual driving dynamics. The Gumpert Apollo is taut but not hard and provides driver and passenger with an extraordinar level of comfort for a car designed purely for performance. It demands the pilot's unswerving attention, yet due to its ultra-precise and predictable driving characteristics does not overwhelm, even at top speed.
An ideal weight balance of 42 to 58 percent between the front and rear axis rounds it off: It provides optimum traction during acceleration, whilst ensuring stable control even when braking in critical situations.
The Gumpert Apollo owes the finely tuned sensitivity of the suspension system and the optimised exertion of power to its double transverse control arm pushrod configuration at the front and back. The double transverse control arms ensure that the tires maintain optimum contact with the road surface, independent of the bound rate of suspension system. The suspension system allows the owner to seamlessly set the ground clearance in a range between 40 and 120 mm (1.57-4.72 in). Sealed uniball joints ensure that the forces are transferred precisely and with little friction. Stabilisers support the efficiency of the suspension and pitch compensation prevents the vehicle from diving during braking and lifting during accelerating. Despite its low trim, the Gumpert Apollo provides long wheel travel in compression and rebound, facilitating the finely-tuned and precise functioning of the absorbers and springs.
The high level of driving dynamics is supported by an agile electro-hydraulic power steering system that provides the driver with direct feedback. In order to securely transfer the 850 nm torque to the road, Gumpert Apollo has a traction control system (TCS) used in motor sports. Developed together with the company Racelogic, the permitted slip can be accurately set on the rear axle - according to the drivers wishes. An optional launch control, adjusted to the Gumpert Apollo especially, ensures swift starts like those of Formula 1. The Gumpert Apollo's driving performance is controlled with a 2-circuit high-performance braking system with adjustable 3-level Bosch-ABS, 378 mm (14.9 in) ventilated discs, and 6-piston callipers on the front and rear axle.
All of these are primary technical principles, the sportive orientation of which could not be clearer. Thanks to its suspension, the Gumpert Apollo proves itself in every curve: It redefines the term ‚driving dynamics'.
TECHNICAL SPECIFICATIONS
•DIMENSIONS◦Length 4,460 mm / 175.6"
◦Width 1,998 mm / 78.6"
◦Height 1,114 mm / 43.8"
◦Wheel base 2,700 mm / 106.3"
◦Wheel gauge ◾front: 1,670 mm / 65.7"
◾back: 1,598 mm / 62.9"
◦Boot volume: 100 l
•WEIGHT◦Kerb weight: below 1,200 kg / 2,645 lbs
◦Allowed total weight: 1,500 kg / 3,306 lbs
◦Approved axle load ◾front: 650 kg / 1,452 lbs
◾back: 900 kg / 1,984 lbs
•ENGINE◦Cylinders: 8
◦Type: 90° - V
◦Valves per cylinder: 5
◦Displacement: 4,163 cm3 / 254 in3
◦Stroke: 93 mm / 3.66"
◦Bore: 84.5 mm / 3.32"
◦Nominal output: 478 kW (650 HP) @ 6,500 rpm
◦Maximum torque: 850 Nm (626.9 lb-ft) @ 4,000 rpm [with 820 Nm @ 2700 rpm]
◦Maximum revs: 7,200 rpm
◦Compression ratio: 9,3
◦Recommended fuel type: 98 ROZ / 88 MOZ
◦Emission standard: Euro 4
•GEARBOX◦Sequential six-speed gear box with synchronisation and oil cooling
◦Twin plate clutch configuration (diameter 200 mm / 7.87" each)
◦Differential lock by Torsen
◦Custom-made gear ratios
•WHEELS◦Tire dimension ◾front: 255/35ZR19
◾back: 345/35ZR19
◦Wheel dimension ◾front: 10J x 19
◾back: 13J x 19
◦Wheel rim type: Aluminium cast wheels with centre lock
•PERFORMANCE◦Top speed: 360 km/h (224 mph)
◦0-100 km/h (0-62 mph): 3.0 s
◦0-200 km/h (0-124 mph): 8.9 s
World leader, scientist, medical scientist, virologist, pharmacist, Professor Fangruida (F.D Smith) on the world epidemic and the nemesis and prevention of new coronaviruses and mutant viruses (Jacques Lucy) 2021v1.5)
_-----------------------------------------
The Nemesis and Killer of New Coronavirus and Mutated Viruses-Joint Development of Vaccines and Drugs (Fangruida) July 2021
*The particularity of new coronaviruses and mutant viruses*The broad spectrum, high efficiency, redundancy, and safety of the new coronavirus vaccine design and development , Redundancy and safety
*New coronavirus drug chemical structure modification*Computer-aided design and drug screening. *"Antiviral biological missile", "New Coronavirus Anti-epidemic Tablets", "Composite Antiviral Oral Liquid", "New Coronavirus Long-acting Oral Tablets", "New Coronavirus Inhibitors" (injection)
——————————————————————————
(World leader, scientist, medical scientist, biologist, virologist, pharmacist, FD Smith) "The Nemesis and Killer of New Coronavirus and Mutated Viruses-The Joint Development of Vaccines and Drugs" is an important scientific research document. Now it has been revised and re-published by the original author several times. The compilation is published and published according to the original manuscript to meet the needs of readers and netizens all over the world. At the same time, it is also of great benefit to the vast number of medical clinical drug researchers and various experts and scholars. We hope that it will be corrected in the reprint.------Compiled by Jacques Lucy in Geneva, August 2021
-------------------------------------------------- ---------------------
According to Worldometer's real-time statistics, as of about 6:30 on July 23, there were a total of 193,323,815 confirmed cases of new coronary pneumonia worldwide, and a total of 4,150,213 deaths. There were 570,902 new confirmed cases and 8,766 new deaths worldwide in a single day. Data shows that the United States, Brazil, the United Kingdom, India, and Indonesia are the five countries with the largest number of new confirmed cases, and Indonesia, Brazil, Russia, South Africa, and India are the five countries with the largest number of new deaths.
The new coronavirus and delta mutant strains have been particularly serious in the recent past. Many countries and places have revived, and the number of cases has not decreased, but has increased.
, It is worthy of vigilance. Although many countries have strengthened vaccine prevention and control and other prevention and control measures, there are still many shortcomings and deficiencies in virus suppression and prevention. The new coronavirus and various mutant strains have a certain degree of antagonism to traditional drugs and most vaccines. Although most vaccines have great anti-epidemic properties and have important and irreplaceable effects and protection for prevention and treatment, it is impossible to completely prevent the spread and infection of viruses. The spread of the new crown virus pneumonia has been delayed for nearly two years. There are hundreds of millions of people infected worldwide, millions of deaths, and the time is long, the spread is widespread, and billions of people around the world are among them. The harm of the virus is quite terrible. This is well known. of. More urgent
What is more serious is that the virus and mutant strains have not completely retreated, especially many people are still infected and infected after being injected with various vaccines. The effectiveness of the vaccine and the resistance of the mutant virus are worthy of medical scientists, virologists, pharmacologists Zoologists and others seriously think and analyze. The current epidemic situation in European and American countries, China, Brazil, India, the United States, Russia and other countries has greatly improved from last year. However, relevant figures show that the global epidemic situation has not completely improved, and some countries and regions are still very serious. In particular, after extensive use of various vaccines, cases still occur, and in some places they are still very serious, which deserves a high degree of vigilance. Prevention and control measures are very important. In addition, vaccines and various anti-epidemic drugs are the first and necessary choices, and other methods are irreplaceable. It is particularly important to develop and develop comprehensive drugs, antiviral drugs, immune drugs, and genetic drugs. Research experiments on new coronaviruses and mutant viruses require more rigorous and in-depth data analysis, pathological pathogenic tissues, cell genes, molecular chemistry, quantum chemistry, etc., as well as vaccine molecular chemistry, quantum physics, quantum biology, cytological histology, medicinal chemistry, and drugs And the vaccine’s symptomatic, effectiveness, safety, long-term effectiveness, etc., of course, including tens of thousands of clinical cases and deaths and other first-hand information and evidence. The task of RNA (ribonucleic acid) in the human body is to use the information of our genetic material DNA to produce protein. It accomplishes this task in the ribosome, the protein-producing area of the cell. The ribosome is the place where protein biosynthesis occurs.
Medicine takes advantage of this: In vaccination, artificially produced mRNA provides ribosomes with instructions for constructing pathogen antigens to fight against—for example, the spike protein of coronavirus.
Traditional live vaccines or inactivated vaccines contain antigens that cause the immune system to react. The mRNA vaccine is produced in the cell
(1) The specificity of new coronaviruses and mutant viruses, etc., virology and quantum chemistry of mutant viruses, quantum physics, quantum microbiology
(2) New crown vaccine design, molecular biology and chemical structure, etc.
(3) The generality and particularity of the development of new coronavirus drugs
(4) Various drug design for new coronavirus pneumonia, medicinal chemistry, pharmacology, etc., cells, proteins, DNA, enzyme chemistry, pharmaceutical quantum chemistry, pharmaceutical quantum physics, human biochemistry, human biophysics, etc.
(5) The evolution and mutation characteristics of the new coronavirus and various mutant viruses, the long-term nature, repeatability, drug resistance, and epidemic resistance of the virus, etc.
(6) New coronavirus pneumonia and the infectious transmission of various new coronaviruses and their particularities
(7) The invisible transmission of new coronavirus pneumonia and various mutant viruses in humans or animals, and the mutual symbiosis of cross infection of various bacteria and viruses are also one of the very serious causes of serious harm to new coronaviruses and mutant viruses. Virology, pathology, etiology, gene sequencing, gene mapping, and a large number of analytical studies have shown that there are many cases in China, the United States, India, Russia, Brazil, and other countries.
(8) For the symptomatic prevention and treatment of the new coronavirus, the combination of various vaccines and various antiviral drugs is critical.
(9) According to the current epidemic situation and research judgments, the epidemic situation may improve in the next period of time and 2021-2022, and we are optimistic about its success. However, completely worry-free, it is still too early to win easily. It is not just relying on vaccination. Wearing masks to close the city and other prevention and control measures and methods can sit back and relax, and you can win a big victory. Because all kinds of research and exploration still require a lot of time and various experimental studies. It is not a day's work. A simple taste is very dangerous and harmful. The power and migratory explosiveness of viruses sometimes far exceed human thinking and perception. In the future, next year, or in the future, whether viruses and various evolutionary mutation viruses will re-attack, we still need to study, analyze, prevent and control, rather than being complacent, thinking that the vaccine can win a big victory is inevitably naive and ridiculous. Vaccine protection is very important, but it must not be taken carelessly. The mutation of the new crown virus is very rampant, and the cross-infection of recessive and virulent bacteria makes epidemic prevention and anti-epidemic very complicated.
(10) New crown virus pneumonia and the virus's stubbornness, strength, migration, susceptibility, multi-infectiousness, and occult. The effectiveness of various vaccines and the particularity of virus mutations The long-term hidden dangers and repeated recurrences of the new coronavirus
(11) The formation mechanism and invisible transmission of invisible viruses, asymptomatic infections and asymptomatic infections, asymptomatic transmission routes, asymptomatic infections, pathological pathogens. The spread and infection of viruses and mutated viruses, the blind spots and blind spots of virus vaccines, viral quantum chemistry and
The chemical and physical corresponding reactions at the meeting points of highly effective vaccine drugs, etc. The variability of mutated viruses is very complicated, and vaccination cannot completely prevent the spread of infection.
(12) New crown virus pneumonia and various respiratory infectious diseases are susceptible to infections in animals and humans, and are frequently recurring. This is one of the frequently-occurring and difficult diseases of common infectious diseases. Even with various vaccines and various antiviral immune drugs, it is difficult to completely prevent the occurrence and spread of viral pneumonia. Therefore, epidemic prevention and anti-epidemic is a major issue facing human society, and no country should take it lightly. The various costs that humans pay on this issue are very expensive, such as Ebola virus, influenza A virus,
Hepatitis virus,
Marburg virus
Sars coronavirus, plague, anthracnose, cholera
and many more. The B.1.1.7 mutant virus that was first discovered in the UK was renamed Alpha mutant virus; the B.1.351 that was first discovered in South Africa was renamed Beta mutant virus; the P.1 that was first discovered in Brazil was renamed Gamma mutant virus; the mutation was first discovered in India There are two branches of the virus. B.1.617.2, which was listed as "mutated virus of concern", was renamed Delta mutant virus, and B.1.617.1 of "mutated virus to be observed" was renamed Kappa mutant virus.
However, experts in many countries believe that the current vaccination is still effective, at least it can prevent severe illness and reduce deaths.
Delta mutant strain
According to the degree of risk, the WHO divides the new crown variant strains into two categories: worrying variant strains (VOC, variant of concern) and noteworthy variant strains (VOI, variant of interest). The former has caused many cases and a wide range of cases worldwide, and data confirms its transmission ability, strong toxicity, high power, complex migration, and high insidious transmission of infection. Resistance to vaccines may lead to the effectiveness of vaccines and clinical treatments. Decrease; the latter has confirmed cases of community transmission worldwide, or has been found in multiple countries, but has not yet formed a large-scale infection. Need to be very vigilant. Various cases and deaths in many countries in the world are related to this. In some countries, the epidemic situation is repeated, and it is also caused by various reasons and viruses, of course, including new cases and so on.
At present, VOC is the mutant strain that has the greatest impact on the epidemic and the greatest threat to the world, including: Alpha, Beta, Gamma and Delta. , Will the change of the spur protein in the VOC affect the immune protection effect of the existing vaccine, or whether it will affect the sensitivity of the VOC to the existing vaccine? For this problem, it is necessary to directly test neutralizing antibodies, such as those that can prevent the protection of infection. Antibodies recognize specific protein sequences on viral particles, especially those spike protein sequences used in mRNA vaccines.
(13) Countries around the world, especially countries and regions with more severe epidemics, have a large number of clinical cases, severe cases, and deaths, especially including many young and middle-aged patients, including those who have been vaccinated. The epidemic is more complicated and serious. Injecting various vaccines, taking strict control measures such as closing the city and wearing masks are very important and the effect is very obvious. However, the new coronavirus and mutant viruses are so repeated, their pathological pathogen research will also be very complicated and difficult. After the large-scale use of the vaccine, many people are still infected. In addition to the lack of prevention and control measures, it is very important that the viability of the new coronavirus and various mutant viruses is very important. It can escape the inactivation of the vaccine. It is very resistant to stubbornness. Therefore, the recurrence of new coronavirus pneumonia is very dangerous. What is more noteworthy is that medical scientists, virologists, pharmacists, biologists, zoologists and clinicians should seriously consider the correspondence between virus specificity and vaccine drugs, and the coupling of commonality and specificity. Only in this way can we find targets. Track and kill viruses. Only in this sense can the new crown virus produce a nemesis, put an end to and eradicate the new crown virus pneumonia. Of course, this is not a temporary battle, but a certain amount of time and process to achieve the goal in the end.
(14) The development and evolution of the natural universe and earth species, as well as life species. With the continuous evolution of human cell genes, microbes and bacterial viruses are constantly mutated and inherited. The new world will inevitably produce a variety of new pathogens.
And viruses. For example, neurological genetic disease, digestive system disease, respiratory system disease, blood system disease, cardiopulmonary system disease, etc., new diseases will continue to emerge as humans develop and evolve. Human migration to space, space diseases, space psychological diseases, space cell diseases, space genetic diseases, etc. Therefore, for the new coronavirus and mutated viruses, we must have sufficient knowledge and response, and do not think that it will be completely wiped out.
, And is not a scientific attitude. Viruses and humans mutually reinforce each other, and viruses and animals and plants mutually reinforce each other. This is the iron law of the natural universe. Human beings can only adapt to natural history, but cannot deliberately modify natural history.
Active immune products made from specific bacteria, viruses, rickettsiae, spirochetes, mycoplasma and other microorganisms and parasites are collectively called vaccines. Vaccination of animals can make the animal body have specific immunity. The principle of vaccines is to artificially attenuate, inactivate, and genetically attenuate pathogenic microorganisms (such as bacteria, viruses, rickettsia, etc.) and their metabolites. Purification and preparation methods, made into immune preparations for the prevention of infectious diseases. In terms of ingredients, the vaccine retains the antigenic properties and other characteristics of the pathogen, which can stimulate the body's immune response and produce protective antibodies. But it has no pathogenicity and does not cause harm to the body. When the body is exposed to this pathogen again, the immune system will produce more antibodies according to the previous memory to prevent the pathogen from invading or to fight against the damage to the body. (1) Inactivated vaccines: select pathogenic microorganisms with strong immunogenicity, culture them, inactivate them by physical or chemical methods, and then purify and prepare them. The virus species used in inactivated vaccines are generally virulent strains, but the use of attenuated attenuated strains also has good immunogenicity, such as the inactivated polio vaccine produced by the Sabin attenuated strain. The inactivated vaccine has lost its infectivity to the body, but still maintains its immunogenicity, which can stimulate the body to produce corresponding immunity and resist the infection of wild strains. Inactivated vaccines have a good immune effect. They can generally be stored for more than one year at 2~8°C without the risk of reversion of virulence; however, the inactivated vaccines cannot grow and reproduce after entering the human body. They stimulate the human body for a short time and must be strong and long-lasting. In general, adjuvants are required for immunity, and multiple injections in large doses are required, and the local immune protection of natural infection is lacking. Including bacteria, viruses, rickettsiae and toxoid preparations.
(2) Live attenuated vaccine: It is a vaccine made by using artificial targeted mutation methods or by screening live microorganisms with highly weakened or basically non-toxic virulence from the natural world. After inoculation, the live attenuated vaccine has a certain ability to grow and reproduce in the body, which can cause the body to have a reaction similar to a recessive infection or a mild infection, and it is widely used.
(3) Subunit vaccine: Among the multiple specific antigenic determinants carried by macromolecular antigens, only a small number of antigenic sites play an important role in the protective immune response. Separate natural proteins through chemical decomposition or controlled proteolysis, and extract bacteria and virusesVaccines made from fragments with immunological activity are screened out of the special protein structure of, called subunit vaccines. Subunit vaccines have only a few major surface proteins, so they can eliminate antibodies induced by many unrelated antigens, thereby reducing the side effects of the vaccine and related diseases and other side effects caused by the vaccine. (4) Genetically engineered vaccine: It uses DNA recombination biotechnology to direct the natural or synthetic genetic material in the pathogen coat protein that can induce the body's immune response into bacteria, yeast or mammalian cells to make it fully expressed. A vaccine prepared after purification. The application of genetic engineering technology can produce subunit vaccines that do not contain infectious substances, stable attenuated vaccines with live viruses as carriers, and multivalent vaccines that can prevent multiple diseases. This is the second-generation vaccine following the first-generation traditional vaccine. It has the advantages of safety, effectiveness, long-term immune response, and easy realization of combined immunization. It has certain advantages and effects.
New coronavirus drug development, drug targets and chemical modification.
Ligand-based drug design (or indirect drug design planning) relies on the knowledge of other molecules that bind to the target biological target. These other molecules can be used to derive pharmacophore models and structural modalities, which define the minimum necessary structural features that the molecule must have in order to bind to the target. In other words, a model of a biological target can be established based on the knowledge of the binding target, and the model can be used to design new molecular entities and other parts that interact with the target. Among them, the quantitative structure-activity relationship (QSAR) is included, in which the correlation between the calculated properties of the molecule and its experimentally determined biological activity can be derived. These QSAR relationships can be used to predict the activity of new analogs. The structure-activity relationship is very complicated.
Based on structure
Structure-based drug design relies on knowledge of the three-dimensional structure of biological targets obtained by methods such as X-ray crystallography or NMR spectroscopy and quantum chemistry. If the experimental structure of the target is not available, it is possible to create a homology model of the target and other standard models that can be compared based on the experimental structure of the relevant protein. Using the structure of biological targets, interactive graphics and medical chemists’ intuitive design can be used to predict drug candidates with high affinity and selective binding to the target. Various automatic calculation programs can also be used to suggest new drug candidates.
The current structure-based drug design methods can be roughly divided into three categories. The 3D method is to search a large database of small molecule 3D structures to find new ligands for a given receptor, in order to use a rapid approximate docking procedure to find those suitable for the receptor binding pocket. This method is called virtual screening. The second category is the de novo design of new ligands. In this method, by gradually assembling small fragments, a ligand molecule is established within the constraints of the binding pocket. These fragments can be single atoms or molecular fragments. The main advantage of this method is that it can propose novel structures that are not found in any database. The third method is to optimize the known ligand acquisition by evaluating the proposed analogs in the binding cavity.
Bind site ID
Binding site recognition is a step in structure-based design. If the structure of the target or a sufficiently similar homologue is determined in the presence of the bound ligand, the ligand should be observable in that structure, in which case the location of the binding site is small. However, there may not be an allosteric binding site of interest. In addition, only apo protein structures may be available, and it is not easy to reliably identify unoccupied sites that have the potential to bind ligands with high affinity. In short, the recognition of binding sites usually depends on the recognition of pits. The protein on the protein surface can hold molecules the size of drugs, etc. These molecules also have appropriate "hot spots" that drive ligand binding, hydrophobic surfaces, hydrogen bonding sites, and so on.
Drug design is a creative process of finding new drugs based on the knowledge of biological targets. The most common type of drug is small organic molecules that activate or inhibit the function of biomolecules, thereby producing therapeutic benefits for patients. In the most important sense, drug design involves the design of molecules with complementary shapes and charges that bind to their interacting biomolecular targets, and therefore will bind to them. Drug design often but does not necessarily rely on computer modeling techniques. A more accurate term is ligand design. Although the design technology for predicting binding affinity is quite successful, there are many other characteristics, such as bioavailability, metabolic half-life, side effects, etc., which must be optimized first before the ligand can become safe and effective. drug. These other features are usually difficult to predict and realize through reasonable design techniques. However, due to the high turnover rate, especially in the clinical stage of drug development, in the early stage of the drug design process, more attention is paid to the selection of drug candidates. The physical and chemical properties of these drug candidates are expected to be reduced during the development process. Complications are therefore more likely to lead to the approval of the marketed drug. In addition, in early drug discovery, in vitro experiments with computational methods are increasingly used to select compounds with more favorable ADME (absorption, distribution, metabolism, and excretion) and toxicological characteristics. A more accurate term is ligand design. Although the design technique for predicting binding affinity is quite successful, there are many other characteristics, such as bioavailability, metabolic half-life, side effects, iatrogenic effects, etc., which must be optimized first, and then the ligand To become safe and effective.
For drug targets, two aspects should be considered when selecting drug targets:
1. The effectiveness of the target, that is, the target is indeed related to the disease, and the symptoms of the disease can be effectively improved by regulating the physiological activity of the target.
2. The side effects of the target. If the regulation of the physiological activity of the target inevitably produces serious side effects, it is inappropriate to select it as the target of drug action or lose its important biological activity. The reference frame of the target should be expanded in multiple dimensions to have a big choice.
3. Search for biomolecular clues related to diseases: use genomics, proteomics and biochip technology to obtain biomolecular information related to diseases, and perform bioinformatics analysis to obtain clue information.
4. Perform functional research on related biomolecules to determine the target of candidate drugs. Multiple targets or individual targets.
5. Candidate drug targets, design small molecule compounds, and conduct pharmacological research at the molecular, cellular and overall animal levels.
Covalent bonding type
The covalent bonding type is an irreversible form of bonding, similar to the organic synthesis reaction that occurs. Covalent bonding types mostly occur in the mechanism of action of chemotherapeutic drugs. For example, alkylating agent anti-tumor drugs produce covalent bonding bonds to guanine bases in DNA, resulting in cytotoxic activity.
. Verify the effectiveness of the target.
Based on the targets that interact with drugs, that is, receptors in a broad sense, such as enzymes, receptors, ion channels, membranes, antigens, viruses, nucleic acids, polysaccharides, proteins, enzymes, etc., find and design reasonable drug molecules. Targets of action and drug screening should focus on multiple points. Drug intermediates and chemical modification. Combining the development of new drugs with the chemical structure modification of traditional drugs makes it easier to find breakthroughs and develop new antiviral drugs. For example, careful selection, modification and modification of existing related drugs that can successfully treat and recover a large number of cases, elimination and screening of invalid drugs from severe death cases, etc., are targeted, rather than screening and capturing needles in a haystack, aimless, with half the effort. Vaccine design should also be multi-pronged and focused. The broad-spectrum, long-term, safety, efficiency and redundancy of the vaccine should all be considered. In this way, it will be more powerful to deal with the mutation and evolution of the virus. Of course, series of vaccines, series of drugs, second-generation vaccines, third-generation vaccines, second-generation drugs, third-generation drugs, etc. can also be developed. Vaccines focus on epidemic prevention, and medicines focus on medical treatment. The two are very different; however, the two complement each other and complement each other. Therefore, in response to large-scale epidemics of infectious diseases, vaccines and various drugs are the nemesis and killers of viral diseases. Of course, it also includes other methods and measures, so I won't repeat them here.
Mainly through the comprehensive and accurate understanding of the structure of the drug and the receptor at the molecular level and even the electronic level, structure-based drug design and the understanding of the structure, function, and drug action mode of the target and the mechanism of physiological activity Mechanism-based drug design.
Compared with the traditional extensive pharmacological screening and lead compound optimization, it has obvious advantages.
Viral RNA replicase, also known as RNA-dependent RNA polymerase (RdRp) is responsible for the replication and transcription of RNA virus genome, and plays a very important role in the process of virus self-replication in host cells, and It also has a major impact on the mutation of the virus, it will change and accelerate the replication and recombination. Because RdRp from different viruses has a highly conserved core structure, the virus replicase is an important antiviral drug target and there are other selection sites, rather than a single isolated target target such as the new coronavirus As with various mutant viruses, inhibitors developed for viral replicase are expected to become a broad-spectrum antiviral drug. The currently well-known anti-coronavirus drug remdesivir (remdesivir) is a drug for viral replicase.
New antiviral therapies are gradually emerging. In addition to traditional polymerase and protease inhibitors, nucleic acid drugs, cell entry inhibitors, nucleocapsid inhibitors, and drugs targeting host cells are also increasingly appearing in the research and development of major pharmaceutical companies. The treatment of mutated viruses is becoming increasingly urgent. The development of drugs for the new coronavirus pneumonia is very important. It is not only for the current global new coronavirus epidemic, but more importantly, it is of great significance to face the severe pneumonia-respiratory infectious disease that poses a huge threat to humans.
There are many vaccines and related drugs developed for the new coronavirus pneumonia, and countries are vying for a while, mainly including the following:
Identification test, appearance, difference in loading, moisture, pH value, osmolality, polysaccharide content, free polysaccharide content, potency test, sterility test, pyrogen test, bacterial endotoxin test, abnormal toxicity test.
Among them: such as sterility inspection, pyrogen inspection, bacterial endotoxin, and abnormal toxicity inspection are indicators closely related to safety.
Polysaccharide content, free polysaccharide content, and efficacy test are indicators closely related to vaccine effectiveness.
Usually, a vaccine will go through a long research and development process of at least 8 years or even more than 20 years from research and development to marketing. The outbreak of the new crown epidemic requires no delay, and the design and development of vaccines is speeding up. It is not surprising in this special period. Of course, it is understandable that vaccine design, development and testing can be accelerated, shortened the cycle, and reduced some procedures. However, science needs to be rigorous and rigorous to achieve great results. The safety and effectiveness of vaccines are of the utmost importance. There must not be a single error. Otherwise, it will be counterproductive and need to be continuously improved and perfected.
Pre-clinical research: The screening of strains and cells is the basic guarantee to ensure the safety, effectiveness, and continuous supply of vaccines. Taking virus vaccines as an example, the laboratory stage needs to carry out strain screening, necessary strain attenuation, strain adaptation to the cultured cell matrix and stability studies in the process of passaging, and explore the stability of process quality, establish animal models, etc. . Choose mice, guinea pigs, rabbits or monkeys for animal experiments according to each vaccine situation. Pre-clinical research generally takes 5-10 years or longer on the premise that the process is controllable, the quality is stable, and it is safe and effective. In order to be safe and effective, a certain redundant design is also needed, so that the safety and effectiveness of the vaccine can be importantly guaranteed.
These include the establishment of vaccine strain/cell seed bank, production process research, quality research, stability research, animal safety evaluation and effectiveness evaluation, and clinical trial programs, etc.
The ARS-CoV-2 genome contains at least 10 ORFs. ORF1ab is converted into a polyprotein and processed into 16 non-structural proteins (NSP). These NSPs have a variety of functional biological activities, physical and chemical reactions, such as genome replication, induction of host mRNA cleavage, membrane rearrangement, autophagosome production, NSP polyprotein cleavage, capping, tailing, methylation, RNA double-stranded Uncoiling, etc., and others, play an important role in the virus life cycle. In addition, SARS-CoV-2 contains 4 structural proteins, namely spike (S), nucleocapsid (N), envelope (E) and membrane (M), all of which are encoded by the 3'end of the viral genome. Among the four structural proteins, S protein is a large multifunctional transmembrane protein that plays an important role in the process of virus adsorption, fusion, and injection into host cells, and requires in-depth observation and research.
1S protein is composed of S1 and S2 subunits, and each subunit can be further divided into different functional domains. The S1 subunit has 2 domains: NTD and RBD, and RBD contains conservative RBM. The S2 subunit has 3 structural domains: FP, HR1 and HR2. The S1 subunit is arranged at the top of the S2 subunit to form an immunodominant S protein.
The virus uses the host transmembrane protease Serine 2 (TMPRSS2) and the endosomal cysteine protease CatB/L to enter the cell. TMPRSS2 is responsible for the cleavage of the S protein to expose the FP region of the S2 subunit, which is responsible for initiating endosome-mediated host cell entry into it. It shows that TMPRSS2 is a host factor necessary for virus entry. Therefore, the use of drugs that inhibit this protease can achieve the purpose of treatment.
mRNA-1273
The mRNA encoding the full length of SARS-CoV-2, and the pre-spike protein fusion is encapsulated into lipid nanoparticles to form mRNA-1273 vaccine. It can induce a high level of S protein specific antiviral response. It can also consist of inactivated antigens or subunit antigens. The vaccine was quickly approved by the FDA and has entered phase II clinical trials. The company has announced the antibody data of 8 subjects who received different immunization doses. The 25ug dose group achieved an effect similar to the antibody level during the recovery period. The 100ug dose group exceeded the antibody level during the recovery period. In the 25ug and 100ug dose groups, the vaccine was basically safe and tolerable, while the 250ug dose group had 3 levels of systemic symptoms.
Viral vector vaccines can provide long-term high-level expression of antigen proteins, induce CTLs, and ultimately eliminate viral infections.
1, Ad5-nCov
A vaccine of SARS-CoV-2 recombinant spike protein expressed by recombinant, replication-deficient type 5 adenovirus (Ad5) vector. Load the optimized full-length S protein gene together with the plasminogen activation signal peptide gene into the E1 and E3 deleted Ad5 vectors. The vaccine is constructed by the Admax system derived from Microbix Biosystem. In phase I clinical trials, RBD (S1 subunit receptor binding domain) and S protein neutralizing antibody increased by 4 times 14 days after immunization, reaching a peak on 28 days. CD4+T and CD8+T cells reached a peak 14 days after immunization. The existing Ad5 immune resistance partially limits the response of antibodies and T cells. This study will be further conducted in the 18-60 age group, receiving 1/3 of the study dose, and follow-up for 3-6 months after immunization.
DNA vaccine
The introduction of antigen-encoding DNA and adjuvants as vaccines is the most innovative vaccine method. The transfected cells stably express the transgenic protein, similar to live viruses. The antigen will be endocytosed by immature DC, and finally provide antigen to CD4 + T, CD8 + T cells (by MHC differentiation) To induce humoral and cellular immunity. Some specificities of the virus and the new coronavirus mutant are different from general vaccines and other vaccines. Therefore, it is worth noting the gene expression of the vaccine. Otherwise, the effectiveness and efficiency of the vaccine will be questioned.
Live attenuated vaccine
DelNS1-SARS-CoV2-RBD
Basic influenza vaccine, delete NS1 gene. Express SARS-CoV-2 RBD domain. Cultured in CEF and MDCK (canine kidney cells) cells. It is more immunogenic than wild-type influenza virus and can be administered by nasal spray.
The viral genome is susceptible to mutation, antigen transfer and drift can occur, and spread among the population. Mutations can vary depending on the environmental conditions and population density of the geographic area. After screening and comparing 7,500 samples of infected patients, scientists found 198 mutations, indicating the evolutionary mutation of the virus in the human host. These mutations may form different virus subtypes, which means that even after vaccine immunization, viral infections may occur. A certain amount of increment and strengthening is needed here.
Inactivated vaccines, adenovirus vector vaccines, recombinant protein vaccines, nucleic acid vaccines, attenuated influenza virus vector vaccines, etc. According to relevant information, there are dozens of new coronavirus vaccines in the world, and more varieties are being developed and upgraded. Including the United States, Britain, China, Russia, India and other countries, there are more R&D and production units.
AZ vaccine
Modena vaccine
Lianya Vaccine
High-end vaccine
Pfizer vaccine
Pfizer-BioNTech
A large study found that the vaccine developed by Pfizer and German biotechnology company BioNTech is 95% effective in preventing COVID-19.
The vaccine is divided into two doses, which are injected every three weeks.
This vaccine uses a molecule called mRNA as its basis. mRNA is a molecular cousin of DNA, which contains instructions to build specific proteins; in this case, the mRNA in the vaccine encodes the coronavirus spike protein, which is attached to the surface of the virus and used to infect human cells. Once the vaccine enters the human body, it will instruct the body's cells to make this protein, and the immune system will learn to recognize and attack it.
Moderna
The vaccine developed by the American biotechnology company Moderna and the National Institute of Allergy and Infectious Diseases (NIAID) is also based on mRNA and is estimated to be 94.5% effective in preventing COVID-19.
Like Pfizer's vaccine, this vaccine is divided into two doses, but injected every four weeks instead of three weeks. Another difference is that the Moderna vaccine can be stored at minus 20 degrees Celsius instead of deep freezing like Pfizer vaccine. At present, the importance of one of the widely used vaccines is self-evident.
Oxford-AstraZeneca
The vaccine developed by the University of Oxford and the pharmaceutical company AstraZeneca is approximately 70% effective in preventing COVID-19-that is, in clinical trials, adjusting the dose seems to improve this effect.
In the population who received two high-dose vaccines (28 days apart), the effectiveness of the vaccine was about 62%; according to early analysis, the effectiveness of the vaccine in those patients who received the half-dose first and then the full-dose Is 90%. However, in clinical trials, participants taking half doses of the drug are wrong, and some scientists question whether these early results are representative.
Sinopharm Group (Beijing Institute of Biological Products, China)
China National Pharmaceutical Group Sinopharm and Beijing Institute of Biological Products have developed a vaccine from inactivated coronavirus (SARS-CoV-2). The inactivated coronavirus is an improved version that cannot be replicated.
Estimates of the effectiveness of vaccines against COVID-19 vary.
Gamaleya Institute
The Gamaleya Institute of the Russian Ministry of Health has developed a coronavirus vaccine candidate called Sputnik V. This vaccine contains two common cold viruses, adenoviruses, which have been modified so that they will not replicate in the human body; the modified virus also contains a gene encoding the coronavirus spike protein.
New crown drugs
There are many small molecule antiviral drug candidates in the clinical research stage around the world. Including traditional drugs in the past and various drugs yet to be developed, antiviral drugs, immune drugs, Gene drugs, compound drugs, etc.
(A) Molnupiravir
Molnupiravir is a prodrug of the nucleoside analog N4-hydroxycytidine (NHC), jointly developed by Merck and Ridgeback Biotherapeutics.
The positive rate of infectious virus isolation and culture in nasopharyngeal swabs was 0% (0/47), while that of patients in the placebo group was 24% (6/25). However, data from the Phase II/III study indicate that the drug has no benefit in preventing death or shortening the length of stay in hospitalized patients.
Therefore, Merck has decided to fully advance the research of 800mg molnupiravir in the treatment of patients with mild to moderate COVID-19.
(B) AT-527
AT-527 is a small molecule inhibitor of viral RNA polymerase, jointly developed by Roche and Atea. Not only can it be used as an oral therapy to treat hospitalized COVID-19 patients, but it also has the potential as a preventive treatment after exposure.
Including 70 high-risk COVID-19 hospitalized patients data, of which 62 patients' data can be used for virological analysis and evaluation. The results of interim virological analysis show that AT-527 can quickly reduce viral load. On day 2, compared with placebo, patients treated with AT-527 had a greater decline in viral load than the baseline level, and the continuous difference in viral load decline was maintained until day 8.
In addition, compared with the control group, the potent antiviral activity of AT-527 was also observed in patients with a baseline median viral load higher than 5.26 log10. When testing by RT-qPCR to assess whether the virus is cleared,
The safety aspect is consistent with previous studies. AT-527 showed good safety and tolerability, and no new safety problems or risks were found. Of course, there is still a considerable distance between experiment and clinical application, and a large amount of experimental data can prove it.
(C) Prokrutamide
Prokalamide is an AR (androgen receptor) antagonist. Activated androgen receptor AR can induce the expression of transmembrane serine protease (TMPRSS2). TMPRSS2 has a shearing effect on the new coronavirus S protein and ACE2, which can promote the binding of viral spike protein (S protein) to ACE, thereby promoting The virus enters the host cell. Therefore, inhibiting the androgen receptor may inhibit the viral infection process, and AR antagonists are expected to become anti-coronavirus drugs.
Positive results were obtained in a randomized, double-blind, placebo-controlled phase III clinical trial. The data shows that Prokalutamide reduces the risk of death in severely ill patients with new coronary disease by 92%, reduces the risk of new ventilator use by 92%, and shortens the length of hospital stay by 9 days. This shows that procrulamide has a certain therapeutic effect for patients with severe new coronary disease, which can significantly reduce the mortality of patients, and at the same time greatly reduce the new mechanical ventilation and shorten the patient's hospital stay.
With the continuous development of COVID-19 on a global scale, in addition to vaccines and prevention and control measures, we need a multi-pronged plan to control this disease. Oral antiviral therapy undoubtedly provides a convenient treatment option.
In addition, there are other drugs under development and experimentation. In dealing with the plague virus, in addition to the strict control of protective measures, it is very important that various efficient and safe vaccines and various drugs (including medical instruments, etc.) are the ultimate nemesis and killer of the virus.
(A) "Antiviral biological missiles" are mainly drugs for new coronaviruses and mutant viruses, which act on respiratory and lung diseases. The drugs use redundant designs to inhibit new coronaviruses and variant viruses.
(B) "New Coronavirus Epidemic Prevention Tablets" mainly use natural purified elements and chemical structure modifications.
(C) "Composite antiviral oral liquid" antiviral intermediate, natural antiviral plant, plus other preparations
(D) "New Coronavirus Long-acting Oral Tablets" Chemical modification of antiviral drugs, multiple targets, etc.
(E) "New Coronavirus Inhibitors" (injections) are mainly made of chemical drug structure modification and other preparations.
The development of these drugs mainly includes: drug target screening, structure-activity relationship, chemical modification, natural purification, etc., which require a lot of work and experimentation.
Humans need to vigorously develop drugs to deal with various viruses. These drugs are very important for the prevention and treatment of viruses and respiratory infectious diseases, influenza, pneumonia, etc.
The history of human development The history of human evolution, like all living species, will always be accompanied by the survival and development of microorganisms. It is not surprising that viruses and infectious diseases are frequent and prone to occur. The key is to prevent and control them before they happen.
This strain was first discovered in India in October 2020 and was initially called a "double mutant" virus by the media. According to the announcement by the Ministry of Health of India at the end of March this year, the "India New Coronavirus Genomics Alliance" composed of 10 laboratories found in samples collected in Maharashtra that this new mutant strain carries E484Q and L452R mutations. , May lead to immune escape and increased infectivity. This mutant strain was named B.1.617 by the WHO and was named with the Greek letter δ (delta) on May 31.
Shahid Jamil, the dean of the Trivedi School of Biological Sciences at Ashoka University in India and a virologist, said in an interview with the Shillong Times of India that this mutant strain called "double mutation" is not accurate enough. B. 1.617 contains a total of 15 mutations, of which 6 occur on the spike protein, of which 3 are more critical: L452R and E484Q mutations occur on the spike protein and the human cell "Angiotensin Converting Enzyme 2 (ACE2)" receptor In the bound region, L452R improves the ability of the virus to invade cells, and E484Q helps to enhance the immune escape of the virus; the third mutation P681R can also make the virus enter the cell more effectively. (Encyclopedia website)
There are currently dozens of antiviral COVID-19 therapies under development. The large drugmakers Merck and Pfizer are the closest to the end, as expected, a pair of oral antiviral COVID-19 therapies are undergoing advanced human clinical trials.
Merck's drug candidate is called monupiravir. It was originally developed as an influenza antiviral drug several years ago. However, preclinical studies have shown that it has a good effect on SARS and MERS coronavirus.
Monupiravir is currently undergoing in-depth large-scale Phase 3 human trials. So far, the data is so promising that the US government recently pre-ordered 1.7 million courses of drugs at a cost of $1.2 billion. If everything goes according to plan, the company hopes that the drug will be authorized by the FDA for emergency use and be on the market before the end of 2021.
Pfizer's large COVID-19 antiviral drug candidate is more unique. Currently known as PF-07321332, this drug is the first oral antiviral drug to enter human clinical trials, specifically targeting SARS-CoV-2.
Variant of Concern WHO Label First Detected in World First Detected in Washington State
B.1.1.7 Alpha United Kingdom, September 2020 January 2021
B.1.351 Beta South Africa, December 2020 February 2021
P.1 Gamma Brazil, April 2020 March 2021
B.1.617.2 Delta India, October 2020 April 2021
Although this particular molecule was developed in 2020 after the emergence of the new coronavirus, a somewhat related drug called PF-00835231 has been in operation for several years, targeting the original SARS virus. However, the new drug candidate PF-07321332 is designed as a simple pill that can be taken under non-hospital conditions in the initial stages of SARS-CoV-2 infection.
"The protease inhibitor binds to a viral enzyme and prevents the virus from replicating in the cell," Pfizer said when explaining the mechanism of its new antiviral drug. "Protease inhibitors have been effective in the treatment of other viral pathogens, such as HIV and hepatitis C virus, whether used alone or in combination with other antiviral drugs. Currently marketed therapeutic drugs for viral proteases are generally not toxic Therefore, such molecules may provide well-tolerated treatments against COVID-19."
Various studies on other types of antiviral drugs are also gaining momentum. For example, the new coronavirus pneumonia "antiviral biological missile", "new coronavirus prevention tablets", "composite antiviral oral liquid", "new coronavirus long-acting oral tablets", "new coronavirus inhibitors" (injections), etc., are worthy of attention. Like all kinds of vaccines, they will play a major role in preventing and fighting epidemics.
In addition, Japanese pharmaceutical company Shionoyoshi Pharmaceutical is currently conducting a phase 1 trial of a protease inhibitor similar to SARS-CoV-2. This is called S-217622, which is another oral antiviral drug, and hopes to provide people with an easy-to-take pill in the early stages of COVID-19. At present, the research and development of vaccines and various new crown drugs is very active and urgent. Time does not wait. With the passage of time, various new crown drugs will appear on the stage one after another, bringing the gospel to the complete victory of mankind.
The COVID-19 pandemic is far from over. The Delta mutant strain has quickly become the most prominent SARS-CoV-2 strain in the world. Although our vaccine is still maintained, it is clear that we need more tools to combat this new type of coronavirus. Delta will certainly not be the last new SARS-CoV-2 variant we encountered. Therefore, it is necessary for all mankind to persevere and fight the epidemic together.
Overcome illness and meet new challenges. The new crown epidemic and various mutated viruses are very important global epidemic prevention and anti-epidemic top priorities, especially for the current period of time. Vaccine injections, research and development of new drugs, strict prevention and control, wear masks, reduce gatherings, strictly control large gatherings, prevent the spread of various viruses Masks, disinfection and sterilization, lockdown of the city, vaccinations, accounting and testing are very important, but this does not mean that humans can completely overcome the virus. In fact, many spreading and new latently transmitted infections are still unsuccessful. There are detections, such as invisible patients, asymptomatic patients, migratory latent patients, new-onset patients, etc. The struggle between humans and the virus is still very difficult and complicated, and long-term efforts and exploration are still needed, especially for medical research on the new coronavirus. The origin of the disease, the course of the disease, the virus invaded The deep-level path and the reasons for the evolution and mutation of the new coronavirus and the particularity of prevention and treatment, etc.). Therefore, human beings should be highly vigilant and must not be taken lightly. The fierce battle between humans and various viruses must not be slackened. Greater efforts are needed to successfully overcome this pandemic, fully restore the normal life of the whole society, restore the normal production and work order, restore the normal operation of society, economy and culture, and give up food due to choking. Or eager for success, will pay a high price.
———————————————————————————————————————————————— ————
References References are made to web resources, and related images are from web resources and related websites.
Who official website UN .org www.gavi.org/ispe.org
Wikipedia, "The Lancet", "English Journal of Medicine", "Nature", "Science", "Journal of the American Medical Association", etc.
Learning from history: do not flatten the curve of antiviral research!
T Bobrowski, CC Melo-Filho, D Korn, VM Alves...-Drug discovery today, 2020-
A critical overview of computational approaches employed for COVID-19 drug discovery
EN Muratov, R Amaro, CH Andrade, N Brown...-Chemical Society..., 2021-pubs.rsc.org
Global Research Performance on COVID 19 in Dimensions Database
J Balasubramani, M Anbalagan-2021-researchgate.net
Adoption of a contact tracing app for containing COVID-19: a health belief model approach
M Walrave, C Waeterloos...- JMIR public health and..., 2020-publichealth.jmir.org
Prophylactic Treatment Protocol Against the Severity of COVID-19 Using Melatonin
N Charaa, M Chahed, H Ghedira...-Available at SSRN..., 2020-papers.ssrn.com
Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, The Lancet
Transmission of 2019-nCoV Infection from an Asymptomatic Contact in Germany, New England Journal of Medicine
The actions of respiratory therapists facing COVID-19
Zhu Jiacheng-Respiratory Therapy, 2021-pesquisa.bvsalud.org
Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study, The Lancet
Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China, JAMA, February 7
Epidemiologic and Clinical Characteristics of Novel Coronavirus Infections Involving 13 Patients Outside Wuhan, China, JAMA
Delta variant triggers new phase in the pandemic | Science
science.sciencemag.org›
COVID vaccines slash viral spread – but Delta is an unknown
www.nature.com ›articles
Novel coronavirus pneumonia during ophthalmic surgery management strategy and recommendations
YH HUANG, SS LI, X YAO, YR YANG, DH QIN…-jnewmed.com
Delta variant: What is happening with transmission, hospital ...
Risk of long QT syndrome in novel coronavirus COVID-19
VN Oslopov, JV Oslopova, EV Hazova…-Kazan medical…, 2020-kazanmedjournal.ru
Study compares mRNA and adenovirus-based SARS-CoV-2 vaccines ...
First molecular-based detection of SARS-CoV-2 virus in the field-collected houseflies
A Soltani, M Jamalidoust, A Hosseinpour, M Vahedi...-Scientific Reports, 2021-nature.com
Covid 19 DELTA Variant Archives-Online essay writing service
sourceessay.com ›tag› covid-19-delta-variant
SARS-CoV-2 Delta variant Likely to become dominant in the ...
Compilation postscript
Once Fang Ruida's research literature on the new crown virus and mutant virus was published, it has been enthusiastically praised by readers and netizens in dozens of countries around the world, and has proposed some amendments and suggestions. Hope to publish a multilingual version of the book as an emergency To meet the needs of many readers around the world, in the face of the new crown epidemic and the prevention and treatment of various mutant viruses, including the general public, college and middle school students, medical workers, medical colleagues and so on. According to the English original manuscript, it will be re-compiled and published. Inconsistencies will be revised separately. Thank you very much.
Jacques Lucy, Geneva, Switzerland, August 2021
*********************************************************************
Leader mondial, scientifique, scientifique médical, virologue, pharmacien et professeur Fangruida (F.D Smith) sur l'épidémie mondiale et l'ennemi juré et la prévention des nouveaux coronavirus et virus mutants (Jacques Lucy 2021v1.5)
_-----------------------------------------
L'ennemi juré et le tueur du nouveau coronavirus et des virus mutés - Développement conjoint de vaccins et de médicaments (Fangruida) Juillet 2021
* La particularité des nouveaux coronavirus et des virus mutants * Le large spectre, la haute efficacité, la redondance et la sécurité de la conception et du développement du nouveau vaccin contre le coronavirus, Redondance et sécurité
* Nouvelle modification de la structure chimique des médicaments contre les coronavirus * Conception et dépistage des médicaments assistés par ordinateur. *"Missile biologique antiviral", "Nouveaux comprimés anti-épidémiques contre le coronavirus", "Liquide oral antiviral composite", "Nouveaux comprimés oraux à action prolongée contre le coronavirus", "Nouveaux inhibiteurs de coronavirus" (injection)
——————————————————————————
(leader mondial, scientifique, scientifique médical, biologiste, virologue, pharmacien, FD Smith) "The Nemesis and Killer of New Coronavirus and Mutated Viruses-The Joint Development of Vaccines and Drugs" est un important document de recherche scientifique. Il a maintenant été révisé et réédité par l'auteur original à plusieurs reprises. La compilation est publiée et publiée selon le manuscrit original pour répondre aux besoins des lecteurs et des internautes du monde entier. En même temps, elle est également très bénéfique pour le grand nombre de chercheurs en médicaments cliniques médicaux et de divers experts et universitaires. Nous espérons qu'il sera corrigé dans la réimpression.------Compilé par Jacques Lucy à Genève, août 2021
-------------------------------------------------- ---------------------
Selon les statistiques en temps réel de Worldometer, vers 6h30 le 23 juillet, il y avait un total de 193 323 815 cas confirmés de nouvelle pneumonie coronarienne dans le monde, et un total de 4 150 213 décès. Il y a eu 570 902 nouveaux cas confirmés et 8 766 nouveaux décès dans le monde en une seule journée. Les données montrent que les États-Unis, le Brésil, le Royaume-Uni, l'Inde et l'Indonésie sont les cinq pays avec le plus grand nombre de nouveaux cas confirmés, et l'Indonésie, le Brésil, la Russie, l'Afrique du Sud et l'Inde sont les cinq pays avec le plus grand nombre de nouveaux décès.
Les nouvelles souches de coronavirus et de mutants delta ont été particulièrement graves ces derniers temps. De nombreux pays et lieux ont repris vie et le nombre de cas n'a pas diminué, mais a augmenté.
, Il est digne de vigilance. Bien que de nombreux pays aient renforcé la prévention et le contrôle des vaccins et d'autres mesures de prévention et de contrôle, il existe encore de nombreuses lacunes et carences dans la suppression et la prévention du virus. Le nouveau coronavirus et diverses souches mutantes présentent un certain degré d'antagonisme par rapport aux médicaments traditionnels et à la plupart des vaccins. Bien que la plupart des vaccins aient de grandes propriétés anti-épidémiques et aient des effets et une protection importants et irremplaçables pour la prévention et le traitement, il est impossible d'empêcher complètement la propagation et l'infection des virus. La propagation de la nouvelle pneumonie à virus couronne a été retardée de près de deux ans. Il y a des centaines de millions de personnes infectées dans le monde, des millions de décès, et le temps est long, la propagation est généralisée et des milliards de personnes dans le monde sont parmi Les dommages causés par le virus sont assez terribles, c'est bien connu. Plus urgent
Ce qui est plus grave, c'est que le virus et les souches mutantes n'ont pas complètement reculé, surtout que de nombreuses personnes sont encore infectées et infectées après avoir été injectées avec divers vaccins.L'efficacité du vaccin et la résistance du virus mutant sont dignes des scientifiques médicaux, virologues , les pharmacologues Les zoologistes et autres réfléchissent et analysent sérieusement. La situation épidémique actuelle dans les pays européens et américains, la Chine, le Brésil, l'Inde, les États-Unis, la Russie et d'autres pays s'est considérablement améliorée par rapport à l'année dernière.Cependant, les chiffres pertinents montrent que la situation épidémique mondiale ne s'est pas complètement améliorée, et certains pays et régions sont encore très graves. En particulier, après une utilisation intensive de divers vaccins, des cas surviennent encore, et dans certains endroits ils sont encore très graves, ce qui mérite une grande vigilance. Les mesures de prévention et de contrôle sont très importantes.De plus, les vaccins et divers médicaments antiépidémiques sont les premiers choix nécessaires, et les autres méthodes sont irremplaçables. Il est particulièrement important de développer et de développer des médicaments complets, des médicaments antiviraux, des médicaments immunitaires et des médicaments génétiques. Les expériences de recherche sur les nouveaux coronavirus et virus mutants nécessitent une analyse plus rigoureuse et approfondie des données, des tissus pathogènes pathologiques, des gènes cellulaires, de la chimie moléculaire, de la chimie quantique, etc., ainsi que de la chimie moléculaire des vaccins, de la physique quantique, de la biologie quantique, de l'histologie cytologique, la chimie médicinale et les médicaments Et les symptômes, l'efficacité, la sécurité, l'efficacité à long terme, etc. du vaccin, bien sûr, y compris des dizaines de milliers de cas cliniques et de décès et d'autres informations et preuves de première main. La tâche de l'ARN (acide ribonucléique) dans le corps humain est d'utiliser les informations de notre matériel génétique ADN pour produire des protéines. Il accomplit cette tâche dans le ribosome, la zone productrice de protéines de la cellule. Le ribosome est le lieu où se produit la biosynthèse des protéines.
La médecine en profite : dans la vaccination, l'ARNm produit artificiellement fournit aux ribosomes des instructions pour construire des antigènes pathogènes contre lesquels lutter, par exemple, la protéine de pointe du coronavirus.
Les vaccins vivants traditionnels ou les vaccins inactivés contiennent des antigènes qui provoquent la réaction du système immunitaire. Le vaccin à ARNm est produit dans la cellule
(1) La spécificité des nouveaux coronavirus et virus mutants, etc., virologie et chimie quantique des virus mutants, physique quantique, microbiologie quantique
(2) Nouvelle conception de vaccin couronne, biologie moléculaire et structure chimique, etc.
(3) La généralité et la particularité du développement de nouveaux médicaments contre le coronavirus
(4) Diverses conceptions de médicaments pour la pneumonie à nouveau coronavirus, la chimie médicinale, la pharmacologie, etc., les cellules, les protéines, l'ADN, la chimie des enzymes, la chimie quantique pharmaceutique, la physique quantique pharmaceutique, la biochimie humaine, la biophysique humaine, etc.
(5) Les caractéristiques d'évolution et de mutation du nouveau coronavirus et de divers virus mutants, la nature à long terme, la répétabilité, la résistance aux médicaments et la résistance épidémique du virus, etc.
(6) Pneumonie à nouveau coronavirus et transmission infectieuse de divers nouveaux coronavirus et leurs particularités
(7) La transmission invisible de la pneumonie à nouveau coronavirus et de divers virus mutants chez l'homme ou l'animal, et la symbiose mutuelle de l'infection croisée de diverses bactéries et virus sont également l'une des causes très graves de dommages graves aux nouveaux coronavirus et virus mutants. La virologie, la pathologie, l'étiologie, le séquençage des gènes, la cartographie des gènes et un grand nombre d'études analytiques ont montré qu'il existe de nombreux cas en Chine, aux États-Unis, en Inde, en Russie, au Brésil et dans d'autres pays.
(8) Pour la prévention et le traitement symptomatiques du nouveau coronavirus, la combinaison de divers vaccins et de di
The Gumpert Apollo is the perfect synthesis between road vehicle and racing car. It exceeds all expectations with its passion and maximum driving fun. 650 HP, up to 360 km/h top-speed and an acceleration of 0 to 100 km/h in just 3.0 seconds make it a full-blooded super sports car to which there is no alternative. The complete package is available at a cost-performance ratio unequalled in this exclusive vehicle class.
The production process is the one part of the manufacture philosophy in which exclusivity and precision are paramount to speed. Gumpert Sportwagenmanufaktur associates the term ‚manufacture' with it's the commitment to achieve quality and luxury by means of craftsmanship and hand-made production.
Roland Gumpert, founder, managing director and the driving force behind Sportwagenmanufaktur, has created a manufacturing environment that combines engineering excellence with a broad automotive and racing competence. Experts within the motorsports scene are all familiar with the name Gumpert: In the mid 1970s, the long-standing Audi manager was the driving force behind the development of the four-wheel drive "Iltis", the original predecessor of today's "Quattro". In 1979 he not only succeeded in preparing the gnarled four-wheel drive "Iltis" for the Paris-Dakar rally, but also achieved victory. In the years that followed under his management, Audi Sport won a total of 25 World Rally Championship races and was the 4-time winner of the World Rally Championship. Gumpert's professional success is distinguished by his ability to combine innovative ideas with proven technology effectively and successfully.
Gumpert Apollo (2008)
2008 Gumpert Apollo
A team of automotive and motor sports specialists joined forces to pool their enthusiasm and energy into developing and creating the Gumpert Apollo. Their abilities create the space for the finest workmanship and utmost individuality, with the use of high-tech processes and integration of proven standard components securing the technical basis.
With the Gumpert Apollo we are providing a select clientele of ambitious sports drivers and car enthusiasts with the opportunity of experiencing the unique synergy between hand-made high-end components optimised for performance on the road and the track, and of distinguishing themselves from the remainder of the world of sports cars. Up to 100 vehicles will leave the factory each year - just enough to ensure that these exceptional vehicles retain their exclusive status.
Gumpert Sportwagenmanufaktur is an independent, privately financed company. The financial stability of the company is being secured by well-known investors. Their operative commitment will also promote the international sales and distribution of Gumpert Apollo.
The challenge was to develop an exceptional design that combined the extreme aerodynamic requirements of a performance-oriented, purist super sports car with the aesthetic design of an exclusive vehicle. We wanted to achieve the perfect synthesis of design and function. Without compromising. And we have succeeded with Gumpert Apollo: Its silhouette, optimised in numerous wind tunnel tests, reflects its by far superior capabilities.
In its profile, the Gumpert Apollo dynamic appearance is further enhanced by its dimensions (4.46 m length, almost 2 m width and 1.24 m height) and its streamlined, long and wide shoulder lines. The mid-engine layout is emphasised by the cockpit, which is clearly located toward the front of the vehicle, and the long wheel base; both factors ensure optimum driving qualities. Massive air inlets and outlets in the front and on the side in front of and behind the doors leave no doubt about its potency. Above all, though, they supply the two turbo-chargers and the high-performance braking system with enough fresh air to ensure optimum operation for the duration of a race. The high-set air intake for the engine is reminiscent of Formula 1 vehicles and emphasises Gumpert Apollo racing character. The dominant rear provides a view of the diffuser and the underbody, encased completely in carbon, - which, combined with the front diffuser and flow channels, achieves an exceptionally high negative lift for a road vehicle.
Gumpert Apollo leaves a lasting impression on anyone who sees it: It symbolises unusual power, dynamism and sportiness. It reflects above-average performance capability paired with timeless elegance, and even when it is not moving, shows that the design can only adhere to function: driving dynamics.
The secret of Gumpert Apollo is an innovative design concept from racing car engineering. The base and symbolic backbone of Gumpert Apollo consists a round tube frame made of top-quality and highly stable chrome-molybdenum-steel with an integrated monocoque safety cell made of high quality carbon fibre screwed directly onto the frame. The 161 kg (355 lbs.) construction design is so effective, so torsion proof and bend resistant that it complies with both the specifications of the European MOT approval and the international manufacture specifications of motor sports (see annex J of the FIA regulations). Gumpert Apollo succeeds in combining low weight with the rigidity of a racing car, finest driving dynamics and maximum safety. The Gumpert Apollo is one of the safest and most agile vehicles of its class.
PERFORMANCE IN A NEW DIMENSION
The Gumpert Apollo is not the only sports car on the market; however its concept is so unique and realised so consistently that it aspires to redefine the standard for this vehicle class. The Gumpert Apollo has more to offer:
•Approved both for use on the road and on the track
•Maximum safety in accordance with the international motor racing standards
•Low curb weight of below 1,200 kg (2,645 lbs.)
•Perfect road-holding and ultra-precise handling
•Maximum driving pleasure and unbeatable driving performance
•Excellent aerodynamic efficiency and driving dynamics
•Synthesis of reliable racing and series technology
•Unique, futuristic, and striking design
•Best cost-benefit ratio
Despite the series production process, every Gumpert Apollo is unique. It is customized to the owner's wishes and needs and proudly bears his touch. We can also offer you:
•Luxury package with air conditioning, navigation radio with DVD/CD-Player and backwards facing camera with rear-view mirror function
•Car body made of fibreglass (GFK) or carbon-fibre (CFK)
•Carbon fibre for various components and car body parts
•Design variants created by use of different air intakes for the engine
•Carbon rear wing (optional available)
•Engine variants with 650 / 700 / 800 HP output
In addition to these different options and equipment packages, we can of course also accommodate any other special requests made by our customers. Just talk to us.
The consistent achievement of maximum driving dynamics and uncompromising functionality is also visible in the interior design: Every detail was designed according to functional viewpoints equivalent to those of a racing car, yet without neglecting the required amount of comfort and quality.
TAILOR-MADE PURISM AND LUXURY
Light weight was the top priority and has been achieved through the exclusive use of high-tech materials. The instrument panel, like the monocoque it is integrated into, is made of carbon fibre. The seat buckets, too, are fitted into the monocoque - although you will not find seats in the conventional meaning in the Gumpert Apollo. The seat position is adjusted to each customer individually, using padding, upholstery, adjustable pedals, and the steering column. Yet you are not required to forgo proven technology in the Gumpert Apollo: air conditioning, high-end navigation system with an integrated reverse camera, CD/DVD player and much more are available.
The Gumpert Apollo is a tailor-made sports car, and individual masterpiece. In line with this principle, customers can design the interior to meet their preferences, be it pure performance or somewhat more luxurious. Decide the colours and designs yourself, whether leather, seams or embroideries are concerned. We guarantee you a car that will fulfil all of your requirements. Just talk to us.
READY FOR RACETRACK
A sports car's supremacy is not defined by pure engine power alone: only a car that can put this power on the asphalt and create a balance between all occurring internal and external forces will leave the contestants behind, on the road and the race track. The chassis is the key to this supremacy - and Gumpert Apollo has already proven itself spectacularly under the toughest testing conditions on various test tracks, public roads and real racing tracks such as Hockenheim, Imola and the historical "Nordschleife".
The Gumpert Apollo is built as a racing car according to FIA GT and ACO regulations upon request.
Success is one of Gumpert Sportwagenmanufaktur's clearly defined objectives in racing. Naturally the factory benefits from the years of experience in motor sports and the remarkable successes of company owner Roland Gumpert.
The Gumpert Apollo made a great third place with the Belgian racing driver, Ruben Maes, in the cockpit at its racing debut at the Divinol Cup in Hockenheim in April 2005.
PROVEN PERFORMANCE IN A NEW DIMENSION
The impressive power of the high-performance eight cylinder engine is based on proven V8-high-performance aggregates from Audi. In the standard configuration this engine is optimised for use in racing and road vehicles and produces 650 HP as a Biturbo engine. Weighing only 196 kg (432 lbs.), it plays a major role in ensuring the ideal weight and fascinating driving dynamics of Gumpert Apollo. An angle of 90° between the two cylinder banks is a sign of a classic 8-cylinder engine. Efficient utilisation of its remarkable energy in the back wheels guarantees the fully-synchronised, sequential six-speed transmission that incorporates Formula 1 know-how. The short gear paths allow high speed gear changes. The arrangement of the gears in a longitudinal direction in the path of travel ensures a very low centre of gravity and optimum weight distribution. The characteristic sound of the double-flow exhaust system of the Gumpert Apollo with its 3-way catalytic converters says it best - the Gumpert Apollo is pure, unbeatable performance as reflected in the data. Like a comet, the Gumpert Apollo catapults its pilot from 0 to 100 km/h (0-62 mph) in just 3.0 seconds and only requires 8.9 seconds from 0 to 200 km/h (0-124 mph).
For connoisseurs form whom driving fun does not necessarily equal maximum motor performance and ultimate acceleration, the engine is also ideally suited for day-to-day driving at lower speeds.
DRIVING DYNAMICS REDEFINED
The Gumpert Apollo's suspension was developed to ideally complement the body's sophisticated aerodynamics. The resulting is unusual driving dynamics. The Gumpert Apollo is taut but not hard and provides driver and passenger with an extraordinar level of comfort for a car designed purely for performance. It demands the pilot's unswerving attention, yet due to its ultra-precise and predictable driving characteristics does not overwhelm, even at top speed.
An ideal weight balance of 42 to 58 percent between the front and rear axis rounds it off: It provides optimum traction during acceleration, whilst ensuring stable control even when braking in critical situations.
The Gumpert Apollo owes the finely tuned sensitivity of the suspension system and the optimised exertion of power to its double transverse control arm pushrod configuration at the front and back. The double transverse control arms ensure that the tires maintain optimum contact with the road surface, independent of the bound rate of suspension system. The suspension system allows the owner to seamlessly set the ground clearance in a range between 40 and 120 mm (1.57-4.72 in). Sealed uniball joints ensure that the forces are transferred precisely and with little friction. Stabilisers support the efficiency of the suspension and pitch compensation prevents the vehicle from diving during braking and lifting during accelerating. Despite its low trim, the Gumpert Apollo provides long wheel travel in compression and rebound, facilitating the finely-tuned and precise functioning of the absorbers and springs.
The high level of driving dynamics is supported by an agile electro-hydraulic power steering system that provides the driver with direct feedback. In order to securely transfer the 850 nm torque to the road, Gumpert Apollo has a traction control system (TCS) used in motor sports. Developed together with the company Racelogic, the permitted slip can be accurately set on the rear axle - according to the drivers wishes. An optional launch control, adjusted to the Gumpert Apollo especially, ensures swift starts like those of Formula 1. The Gumpert Apollo's driving performance is controlled with a 2-circuit high-performance braking system with adjustable 3-level Bosch-ABS, 378 mm (14.9 in) ventilated discs, and 6-piston callipers on the front and rear axle.
All of these are primary technical principles, the sportive orientation of which could not be clearer. Thanks to its suspension, the Gumpert Apollo proves itself in every curve: It redefines the term ‚driving dynamics'.
TECHNICAL SPECIFICATIONS
•DIMENSIONS◦Length 4,460 mm / 175.6"
◦Width 1,998 mm / 78.6"
◦Height 1,114 mm / 43.8"
◦Wheel base 2,700 mm / 106.3"
◦Wheel gauge ◾front: 1,670 mm / 65.7"
◾back: 1,598 mm / 62.9"
◦Boot volume: 100 l
•WEIGHT◦Kerb weight: below 1,200 kg / 2,645 lbs
◦Allowed total weight: 1,500 kg / 3,306 lbs
◦Approved axle load ◾front: 650 kg / 1,452 lbs
◾back: 900 kg / 1,984 lbs
•ENGINE◦Cylinders: 8
◦Type: 90° - V
◦Valves per cylinder: 5
◦Displacement: 4,163 cm3 / 254 in3
◦Stroke: 93 mm / 3.66"
◦Bore: 84.5 mm / 3.32"
◦Nominal output: 478 kW (650 HP) @ 6,500 rpm
◦Maximum torque: 850 Nm (626.9 lb-ft) @ 4,000 rpm [with 820 Nm @ 2700 rpm]
◦Maximum revs: 7,200 rpm
◦Compression ratio: 9,3
◦Recommended fuel type: 98 ROZ / 88 MOZ
◦Emission standard: Euro 4
•GEARBOX◦Sequential six-speed gear box with synchronisation and oil cooling
◦Twin plate clutch configuration (diameter 200 mm / 7.87" each)
◦Differential lock by Torsen
◦Custom-made gear ratios
•WHEELS◦Tire dimension ◾front: 255/35ZR19
◾back: 345/35ZR19
◦Wheel dimension ◾front: 10J x 19
◾back: 13J x 19
◦Wheel rim type: Aluminium cast wheels with centre lock
•PERFORMANCE◦Top speed: 360 km/h (224 mph)
◦0-100 km/h (0-62 mph): 3.0 s
◦0-200 km/h (0-124 mph): 8.9 s
The Gumpert Apollo is the perfect synthesis between road vehicle and racing car. It exceeds all expectations with its passion and maximum driving fun. 650 HP, up to 360 km/h top-speed and an acceleration of 0 to 100 km/h in just 3.0 seconds make it a full-blooded super sports car to which there is no alternative. The complete package is available at a cost-performance ratio unequalled in this exclusive vehicle class.
The production process is the one part of the manufacture philosophy in which exclusivity and precision are paramount to speed. Gumpert Sportwagenmanufaktur associates the term ‚manufacture' with it's the commitment to achieve quality and luxury by means of craftsmanship and hand-made production.
Roland Gumpert, founder, managing director and the driving force behind Sportwagenmanufaktur, has created a manufacturing environment that combines engineering excellence with a broad automotive and racing competence. Experts within the motorsports scene are all familiar with the name Gumpert: In the mid 1970s, the long-standing Audi manager was the driving force behind the development of the four-wheel drive "Iltis", the original predecessor of today's "Quattro". In 1979 he not only succeeded in preparing the gnarled four-wheel drive "Iltis" for the Paris-Dakar rally, but also achieved victory. In the years that followed under his management, Audi Sport won a total of 25 World Rally Championship races and was the 4-time winner of the World Rally Championship. Gumpert's professional success is distinguished by his ability to combine innovative ideas with proven technology effectively and successfully.
Gumpert Apollo (2008)
2008 Gumpert Apollo
A team of automotive and motor sports specialists joined forces to pool their enthusiasm and energy into developing and creating the Gumpert Apollo. Their abilities create the space for the finest workmanship and utmost individuality, with the use of high-tech processes and integration of proven standard components securing the technical basis.
With the Gumpert Apollo we are providing a select clientele of ambitious sports drivers and car enthusiasts with the opportunity of experiencing the unique synergy between hand-made high-end components optimised for performance on the road and the track, and of distinguishing themselves from the remainder of the world of sports cars. Up to 100 vehicles will leave the factory each year - just enough to ensure that these exceptional vehicles retain their exclusive status.
Gumpert Sportwagenmanufaktur is an independent, privately financed company. The financial stability of the company is being secured by well-known investors. Their operative commitment will also promote the international sales and distribution of Gumpert Apollo.
The challenge was to develop an exceptional design that combined the extreme aerodynamic requirements of a performance-oriented, purist super sports car with the aesthetic design of an exclusive vehicle. We wanted to achieve the perfect synthesis of design and function. Without compromising. And we have succeeded with Gumpert Apollo: Its silhouette, optimised in numerous wind tunnel tests, reflects its by far superior capabilities.
In its profile, the Gumpert Apollo dynamic appearance is further enhanced by its dimensions (4.46 m length, almost 2 m width and 1.24 m height) and its streamlined, long and wide shoulder lines. The mid-engine layout is emphasised by the cockpit, which is clearly located toward the front of the vehicle, and the long wheel base; both factors ensure optimum driving qualities. Massive air inlets and outlets in the front and on the side in front of and behind the doors leave no doubt about its potency. Above all, though, they supply the two turbo-chargers and the high-performance braking system with enough fresh air to ensure optimum operation for the duration of a race. The high-set air intake for the engine is reminiscent of Formula 1 vehicles and emphasises Gumpert Apollo racing character. The dominant rear provides a view of the diffuser and the underbody, encased completely in carbon, - which, combined with the front diffuser and flow channels, achieves an exceptionally high negative lift for a road vehicle.
Gumpert Apollo leaves a lasting impression on anyone who sees it: It symbolises unusual power, dynamism and sportiness. It reflects above-average performance capability paired with timeless elegance, and even when it is not moving, shows that the design can only adhere to function: driving dynamics.
The secret of Gumpert Apollo is an innovative design concept from racing car engineering. The base and symbolic backbone of Gumpert Apollo consists a round tube frame made of top-quality and highly stable chrome-molybdenum-steel with an integrated monocoque safety cell made of high quality carbon fibre screwed directly onto the frame. The 161 kg (355 lbs.) construction design is so effective, so torsion proof and bend resistant that it complies with both the specifications of the European MOT approval and the international manufacture specifications of motor sports (see annex J of the FIA regulations). Gumpert Apollo succeeds in combining low weight with the rigidity of a racing car, finest driving dynamics and maximum safety. The Gumpert Apollo is one of the safest and most agile vehicles of its class.
PERFORMANCE IN A NEW DIMENSION
The Gumpert Apollo is not the only sports car on the market; however its concept is so unique and realised so consistently that it aspires to redefine the standard for this vehicle class. The Gumpert Apollo has more to offer:
•Approved both for use on the road and on the track
•Maximum safety in accordance with the international motor racing standards
•Low curb weight of below 1,200 kg (2,645 lbs.)
•Perfect road-holding and ultra-precise handling
•Maximum driving pleasure and unbeatable driving performance
•Excellent aerodynamic efficiency and driving dynamics
•Synthesis of reliable racing and series technology
•Unique, futuristic, and striking design
•Best cost-benefit ratio
Despite the series production process, every Gumpert Apollo is unique. It is customized to the owner's wishes and needs and proudly bears his touch. We can also offer you:
•Luxury package with air conditioning, navigation radio with DVD/CD-Player and backwards facing camera with rear-view mirror function
•Car body made of fibreglass (GFK) or carbon-fibre (CFK)
•Carbon fibre for various components and car body parts
•Design variants created by use of different air intakes for the engine
•Carbon rear wing (optional available)
•Engine variants with 650 / 700 / 800 HP output
In addition to these different options and equipment packages, we can of course also accommodate any other special requests made by our customers. Just talk to us.
The consistent achievement of maximum driving dynamics and uncompromising functionality is also visible in the interior design: Every detail was designed according to functional viewpoints equivalent to those of a racing car, yet without neglecting the required amount of comfort and quality.
TAILOR-MADE PURISM AND LUXURY
Light weight was the top priority and has been achieved through the exclusive use of high-tech materials. The instrument panel, like the monocoque it is integrated into, is made of carbon fibre. The seat buckets, too, are fitted into the monocoque - although you will not find seats in the conventional meaning in the Gumpert Apollo. The seat position is adjusted to each customer individually, using padding, upholstery, adjustable pedals, and the steering column. Yet you are not required to forgo proven technology in the Gumpert Apollo: air conditioning, high-end navigation system with an integrated reverse camera, CD/DVD player and much more are available.
The Gumpert Apollo is a tailor-made sports car, and individual masterpiece. In line with this principle, customers can design the interior to meet their preferences, be it pure performance or somewhat more luxurious. Decide the colours and designs yourself, whether leather, seams or embroideries are concerned. We guarantee you a car that will fulfil all of your requirements. Just talk to us.
READY FOR RACETRACK
A sports car's supremacy is not defined by pure engine power alone: only a car that can put this power on the asphalt and create a balance between all occurring internal and external forces will leave the contestants behind, on the road and the race track. The chassis is the key to this supremacy - and Gumpert Apollo has already proven itself spectacularly under the toughest testing conditions on various test tracks, public roads and real racing tracks such as Hockenheim, Imola and the historical "Nordschleife".
The Gumpert Apollo is built as a racing car according to FIA GT and ACO regulations upon request.
Success is one of Gumpert Sportwagenmanufaktur's clearly defined objectives in racing. Naturally the factory benefits from the years of experience in motor sports and the remarkable successes of company owner Roland Gumpert.
The Gumpert Apollo made a great third place with the Belgian racing driver, Ruben Maes, in the cockpit at its racing debut at the Divinol Cup in Hockenheim in April 2005.
PROVEN PERFORMANCE IN A NEW DIMENSION
The impressive power of the high-performance eight cylinder engine is based on proven V8-high-performance aggregates from Audi. In the standard configuration this engine is optimised for use in racing and road vehicles and produces 650 HP as a Biturbo engine. Weighing only 196 kg (432 lbs.), it plays a major role in ensuring the ideal weight and fascinating driving dynamics of Gumpert Apollo. An angle of 90° between the two cylinder banks is a sign of a classic 8-cylinder engine. Efficient utilisation of its remarkable energy in the back wheels guarantees the fully-synchronised, sequential six-speed transmission that incorporates Formula 1 know-how. The short gear paths allow high speed gear changes. The arrangement of the gears in a longitudinal direction in the path of travel ensures a very low centre of gravity and optimum weight distribution. The characteristic sound of the double-flow exhaust system of the Gumpert Apollo with its 3-way catalytic converters says it best - the Gumpert Apollo is pure, unbeatable performance as reflected in the data. Like a comet, the Gumpert Apollo catapults its pilot from 0 to 100 km/h (0-62 mph) in just 3.0 seconds and only requires 8.9 seconds from 0 to 200 km/h (0-124 mph).
For connoisseurs form whom driving fun does not necessarily equal maximum motor performance and ultimate acceleration, the engine is also ideally suited for day-to-day driving at lower speeds.
DRIVING DYNAMICS REDEFINED
The Gumpert Apollo's suspension was developed to ideally complement the body's sophisticated aerodynamics. The resulting is unusual driving dynamics. The Gumpert Apollo is taut but not hard and provides driver and passenger with an extraordinar level of comfort for a car designed purely for performance. It demands the pilot's unswerving attention, yet due to its ultra-precise and predictable driving characteristics does not overwhelm, even at top speed.
An ideal weight balance of 42 to 58 percent between the front and rear axis rounds it off: It provides optimum traction during acceleration, whilst ensuring stable control even when braking in critical situations.
The Gumpert Apollo owes the finely tuned sensitivity of the suspension system and the optimised exertion of power to its double transverse control arm pushrod configuration at the front and back. The double transverse control arms ensure that the tires maintain optimum contact with the road surface, independent of the bound rate of suspension system. The suspension system allows the owner to seamlessly set the ground clearance in a range between 40 and 120 mm (1.57-4.72 in). Sealed uniball joints ensure that the forces are transferred precisely and with little friction. Stabilisers support the efficiency of the suspension and pitch compensation prevents the vehicle from diving during braking and lifting during accelerating. Despite its low trim, the Gumpert Apollo provides long wheel travel in compression and rebound, facilitating the finely-tuned and precise functioning of the absorbers and springs.
The high level of driving dynamics is supported by an agile electro-hydraulic power steering system that provides the driver with direct feedback. In order to securely transfer the 850 nm torque to the road, Gumpert Apollo has a traction control system (TCS) used in motor sports. Developed together with the company Racelogic, the permitted slip can be accurately set on the rear axle - according to the drivers wishes. An optional launch control, adjusted to the Gumpert Apollo especially, ensures swift starts like those of Formula 1. The Gumpert Apollo's driving performance is controlled with a 2-circuit high-performance braking system with adjustable 3-level Bosch-ABS, 378 mm (14.9 in) ventilated discs, and 6-piston callipers on the front and rear axle.
All of these are primary technical principles, the sportive orientation of which could not be clearer. Thanks to its suspension, the Gumpert Apollo proves itself in every curve: It redefines the term ‚driving dynamics'.
TECHNICAL SPECIFICATIONS
•DIMENSIONS◦Length 4,460 mm / 175.6"
◦Width 1,998 mm / 78.6"
◦Height 1,114 mm / 43.8"
◦Wheel base 2,700 mm / 106.3"
◦Wheel gauge ◾front: 1,670 mm / 65.7"
◾back: 1,598 mm / 62.9"
◦Boot volume: 100 l
•WEIGHT◦Kerb weight: below 1,200 kg / 2,645 lbs
◦Allowed total weight: 1,500 kg / 3,306 lbs
◦Approved axle load ◾front: 650 kg / 1,452 lbs
◾back: 900 kg / 1,984 lbs
•ENGINE◦Cylinders: 8
◦Type: 90° - V
◦Valves per cylinder: 5
◦Displacement: 4,163 cm3 / 254 in3
◦Stroke: 93 mm / 3.66"
◦Bore: 84.5 mm / 3.32"
◦Nominal output: 478 kW (650 HP) @ 6,500 rpm
◦Maximum torque: 850 Nm (626.9 lb-ft) @ 4,000 rpm [with 820 Nm @ 2700 rpm]
◦Maximum revs: 7,200 rpm
◦Compression ratio: 9,3
◦Recommended fuel type: 98 ROZ / 88 MOZ
◦Emission standard: Euro 4
•GEARBOX◦Sequential six-speed gear box with synchronisation and oil cooling
◦Twin plate clutch configuration (diameter 200 mm / 7.87" each)
◦Differential lock by Torsen
◦Custom-made gear ratios
•WHEELS◦Tire dimension ◾front: 255/35ZR19
◾back: 345/35ZR19
◦Wheel dimension ◾front: 10J x 19
◾back: 13J x 19
◦Wheel rim type: Aluminium cast wheels with centre lock
•PERFORMANCE◦Top speed: 360 km/h (224 mph)
◦0-100 km/h (0-62 mph): 3.0 s
◦0-200 km/h (0-124 mph): 8.9 s
I have a weakness for greenhouses.
Since I was a little girl, I've suffered with pretty severe seasonal depression, and when I was wee, I spent a lot of time with my paternal grandparents who had not only green thumbs, but green fingers and toes, as well. My grandmother would take me to greenhouses in the bleakest and coldest of Colorado winters when the entire state shrivels up with the dryness and goes entirely beige.
When it's snowing outside, and you are standing in a humid, warm, green haven--surrounded by blooms and drunk on the smell of rich soil and the tangy sharpness of new plant life, it's easy to feel a bit like a plant yourself.
I turn my face to the sun and stretch.
The Gumpert Apollo is the perfect synthesis between road vehicle and racing car. It exceeds all expectations with its passion and maximum driving fun. 650 HP, up to 360 km/h top-speed and an acceleration of 0 to 100 km/h in just 3.0 seconds make it a full-blooded super sports car to which there is no alternative. The complete package is available at a cost-performance ratio unequalled in this exclusive vehicle class.
The production process is the one part of the manufacture philosophy in which exclusivity and precision are paramount to speed. Gumpert Sportwagenmanufaktur associates the term ‚manufacture' with it's the commitment to achieve quality and luxury by means of craftsmanship and hand-made production.
Roland Gumpert, founder, managing director and the driving force behind Sportwagenmanufaktur, has created a manufacturing environment that combines engineering excellence with a broad automotive and racing competence. Experts within the motorsports scene are all familiar with the name Gumpert: In the mid 1970s, the long-standing Audi manager was the driving force behind the development of the four-wheel drive "Iltis", the original predecessor of today's "Quattro". In 1979 he not only succeeded in preparing the gnarled four-wheel drive "Iltis" for the Paris-Dakar rally, but also achieved victory. In the years that followed under his management, Audi Sport won a total of 25 World Rally Championship races and was the 4-time winner of the World Rally Championship. Gumpert's professional success is distinguished by his ability to combine innovative ideas with proven technology effectively and successfully.
Gumpert Apollo (2008)
2008 Gumpert Apollo
A team of automotive and motor sports specialists joined forces to pool their enthusiasm and energy into developing and creating the Gumpert Apollo. Their abilities create the space for the finest workmanship and utmost individuality, with the use of high-tech processes and integration of proven standard components securing the technical basis.
With the Gumpert Apollo we are providing a select clientele of ambitious sports drivers and car enthusiasts with the opportunity of experiencing the unique synergy between hand-made high-end components optimised for performance on the road and the track, and of distinguishing themselves from the remainder of the world of sports cars. Up to 100 vehicles will leave the factory each year - just enough to ensure that these exceptional vehicles retain their exclusive status.
Gumpert Sportwagenmanufaktur is an independent, privately financed company. The financial stability of the company is being secured by well-known investors. Their operative commitment will also promote the international sales and distribution of Gumpert Apollo.
The challenge was to develop an exceptional design that combined the extreme aerodynamic requirements of a performance-oriented, purist super sports car with the aesthetic design of an exclusive vehicle. We wanted to achieve the perfect synthesis of design and function. Without compromising. And we have succeeded with Gumpert Apollo: Its silhouette, optimised in numerous wind tunnel tests, reflects its by far superior capabilities.
In its profile, the Gumpert Apollo dynamic appearance is further enhanced by its dimensions (4.46 m length, almost 2 m width and 1.24 m height) and its streamlined, long and wide shoulder lines. The mid-engine layout is emphasised by the cockpit, which is clearly located toward the front of the vehicle, and the long wheel base; both factors ensure optimum driving qualities. Massive air inlets and outlets in the front and on the side in front of and behind the doors leave no doubt about its potency. Above all, though, they supply the two turbo-chargers and the high-performance braking system with enough fresh air to ensure optimum operation for the duration of a race. The high-set air intake for the engine is reminiscent of Formula 1 vehicles and emphasises Gumpert Apollo racing character. The dominant rear provides a view of the diffuser and the underbody, encased completely in carbon, - which, combined with the front diffuser and flow channels, achieves an exceptionally high negative lift for a road vehicle.
Gumpert Apollo leaves a lasting impression on anyone who sees it: It symbolises unusual power, dynamism and sportiness. It reflects above-average performance capability paired with timeless elegance, and even when it is not moving, shows that the design can only adhere to function: driving dynamics.
The secret of Gumpert Apollo is an innovative design concept from racing car engineering. The base and symbolic backbone of Gumpert Apollo consists a round tube frame made of top-quality and highly stable chrome-molybdenum-steel with an integrated monocoque safety cell made of high quality carbon fibre screwed directly onto the frame. The 161 kg (355 lbs.) construction design is so effective, so torsion proof and bend resistant that it complies with both the specifications of the European MOT approval and the international manufacture specifications of motor sports (see annex J of the FIA regulations). Gumpert Apollo succeeds in combining low weight with the rigidity of a racing car, finest driving dynamics and maximum safety. The Gumpert Apollo is one of the safest and most agile vehicles of its class.
PERFORMANCE IN A NEW DIMENSION
The Gumpert Apollo is not the only sports car on the market; however its concept is so unique and realised so consistently that it aspires to redefine the standard for this vehicle class. The Gumpert Apollo has more to offer:
•Approved both for use on the road and on the track
•Maximum safety in accordance with the international motor racing standards
•Low curb weight of below 1,200 kg (2,645 lbs.)
•Perfect road-holding and ultra-precise handling
•Maximum driving pleasure and unbeatable driving performance
•Excellent aerodynamic efficiency and driving dynamics
•Synthesis of reliable racing and series technology
•Unique, futuristic, and striking design
•Best cost-benefit ratio
Despite the series production process, every Gumpert Apollo is unique. It is customized to the owner's wishes and needs and proudly bears his touch. We can also offer you:
•Luxury package with air conditioning, navigation radio with DVD/CD-Player and backwards facing camera with rear-view mirror function
•Car body made of fibreglass (GFK) or carbon-fibre (CFK)
•Carbon fibre for various components and car body parts
•Design variants created by use of different air intakes for the engine
•Carbon rear wing (optional available)
•Engine variants with 650 / 700 / 800 HP output
In addition to these different options and equipment packages, we can of course also accommodate any other special requests made by our customers. Just talk to us.
The consistent achievement of maximum driving dynamics and uncompromising functionality is also visible in the interior design: Every detail was designed according to functional viewpoints equivalent to those of a racing car, yet without neglecting the required amount of comfort and quality.
TAILOR-MADE PURISM AND LUXURY
Light weight was the top priority and has been achieved through the exclusive use of high-tech materials. The instrument panel, like the monocoque it is integrated into, is made of carbon fibre. The seat buckets, too, are fitted into the monocoque - although you will not find seats in the conventional meaning in the Gumpert Apollo. The seat position is adjusted to each customer individually, using padding, upholstery, adjustable pedals, and the steering column. Yet you are not required to forgo proven technology in the Gumpert Apollo: air conditioning, high-end navigation system with an integrated reverse camera, CD/DVD player and much more are available.
The Gumpert Apollo is a tailor-made sports car, and individual masterpiece. In line with this principle, customers can design the interior to meet their preferences, be it pure performance or somewhat more luxurious. Decide the colours and designs yourself, whether leather, seams or embroideries are concerned. We guarantee you a car that will fulfil all of your requirements. Just talk to us.
READY FOR RACETRACK
A sports car's supremacy is not defined by pure engine power alone: only a car that can put this power on the asphalt and create a balance between all occurring internal and external forces will leave the contestants behind, on the road and the race track. The chassis is the key to this supremacy - and Gumpert Apollo has already proven itself spectacularly under the toughest testing conditions on various test tracks, public roads and real racing tracks such as Hockenheim, Imola and the historical "Nordschleife".
The Gumpert Apollo is built as a racing car according to FIA GT and ACO regulations upon request.
Success is one of Gumpert Sportwagenmanufaktur's clearly defined objectives in racing. Naturally the factory benefits from the years of experience in motor sports and the remarkable successes of company owner Roland Gumpert.
The Gumpert Apollo made a great third place with the Belgian racing driver, Ruben Maes, in the cockpit at its racing debut at the Divinol Cup in Hockenheim in April 2005.
PROVEN PERFORMANCE IN A NEW DIMENSION
The impressive power of the high-performance eight cylinder engine is based on proven V8-high-performance aggregates from Audi. In the standard configuration this engine is optimised for use in racing and road vehicles and produces 650 HP as a Biturbo engine. Weighing only 196 kg (432 lbs.), it plays a major role in ensuring the ideal weight and fascinating driving dynamics of Gumpert Apollo. An angle of 90° between the two cylinder banks is a sign of a classic 8-cylinder engine. Efficient utilisation of its remarkable energy in the back wheels guarantees the fully-synchronised, sequential six-speed transmission that incorporates Formula 1 know-how. The short gear paths allow high speed gear changes. The arrangement of the gears in a longitudinal direction in the path of travel ensures a very low centre of gravity and optimum weight distribution. The characteristic sound of the double-flow exhaust system of the Gumpert Apollo with its 3-way catalytic converters says it best - the Gumpert Apollo is pure, unbeatable performance as reflected in the data. Like a comet, the Gumpert Apollo catapults its pilot from 0 to 100 km/h (0-62 mph) in just 3.0 seconds and only requires 8.9 seconds from 0 to 200 km/h (0-124 mph).
For connoisseurs form whom driving fun does not necessarily equal maximum motor performance and ultimate acceleration, the engine is also ideally suited for day-to-day driving at lower speeds.
DRIVING DYNAMICS REDEFINED
The Gumpert Apollo's suspension was developed to ideally complement the body's sophisticated aerodynamics. The resulting is unusual driving dynamics. The Gumpert Apollo is taut but not hard and provides driver and passenger with an extraordinar level of comfort for a car designed purely for performance. It demands the pilot's unswerving attention, yet due to its ultra-precise and predictable driving characteristics does not overwhelm, even at top speed.
An ideal weight balance of 42 to 58 percent between the front and rear axis rounds it off: It provides optimum traction during acceleration, whilst ensuring stable control even when braking in critical situations.
The Gumpert Apollo owes the finely tuned sensitivity of the suspension system and the optimised exertion of power to its double transverse control arm pushrod configuration at the front and back. The double transverse control arms ensure that the tires maintain optimum contact with the road surface, independent of the bound rate of suspension system. The suspension system allows the owner to seamlessly set the ground clearance in a range between 40 and 120 mm (1.57-4.72 in). Sealed uniball joints ensure that the forces are transferred precisely and with little friction. Stabilisers support the efficiency of the suspension and pitch compensation prevents the vehicle from diving during braking and lifting during accelerating. Despite its low trim, the Gumpert Apollo provides long wheel travel in compression and rebound, facilitating the finely-tuned and precise functioning of the absorbers and springs.
The high level of driving dynamics is supported by an agile electro-hydraulic power steering system that provides the driver with direct feedback. In order to securely transfer the 850 nm torque to the road, Gumpert Apollo has a traction control system (TCS) used in motor sports. Developed together with the company Racelogic, the permitted slip can be accurately set on the rear axle - according to the drivers wishes. An optional launch control, adjusted to the Gumpert Apollo especially, ensures swift starts like those of Formula 1. The Gumpert Apollo's driving performance is controlled with a 2-circuit high-performance braking system with adjustable 3-level Bosch-ABS, 378 mm (14.9 in) ventilated discs, and 6-piston callipers on the front and rear axle.
All of these are primary technical principles, the sportive orientation of which could not be clearer. Thanks to its suspension, the Gumpert Apollo proves itself in every curve: It redefines the term ‚driving dynamics'.
TECHNICAL SPECIFICATIONS
•DIMENSIONS◦Length 4,460 mm / 175.6"
◦Width 1,998 mm / 78.6"
◦Height 1,114 mm / 43.8"
◦Wheel base 2,700 mm / 106.3"
◦Wheel gauge ◾front: 1,670 mm / 65.7"
◾back: 1,598 mm / 62.9"
◦Boot volume: 100 l
•WEIGHT◦Kerb weight: below 1,200 kg / 2,645 lbs
◦Allowed total weight: 1,500 kg / 3,306 lbs
◦Approved axle load ◾front: 650 kg / 1,452 lbs
◾back: 900 kg / 1,984 lbs
•ENGINE◦Cylinders: 8
◦Type: 90° - V
◦Valves per cylinder: 5
◦Displacement: 4,163 cm3 / 254 in3
◦Stroke: 93 mm / 3.66"
◦Bore: 84.5 mm / 3.32"
◦Nominal output: 478 kW (650 HP) @ 6,500 rpm
◦Maximum torque: 850 Nm (626.9 lb-ft) @ 4,000 rpm [with 820 Nm @ 2700 rpm]
◦Maximum revs: 7,200 rpm
◦Compression ratio: 9,3
◦Recommended fuel type: 98 ROZ / 88 MOZ
◦Emission standard: Euro 4
•GEARBOX◦Sequential six-speed gear box with synchronisation and oil cooling
◦Twin plate clutch configuration (diameter 200 mm / 7.87" each)
◦Differential lock by Torsen
◦Custom-made gear ratios
•WHEELS◦Tire dimension ◾front: 255/35ZR19
◾back: 345/35ZR19
◦Wheel dimension ◾front: 10J x 19
◾back: 13J x 19
◦Wheel rim type: Aluminium cast wheels with centre lock
•PERFORMANCE◦Top speed: 360 km/h (224 mph)
◦0-100 km/h (0-62 mph): 3.0 s
◦0-200 km/h (0-124 mph): 8.9 s
The Gumpert Apollo is the perfect synthesis between road vehicle and racing car. It exceeds all expectations with its passion and maximum driving fun. 650 HP, up to 360 km/h top-speed and an acceleration of 0 to 100 km/h in just 3.0 seconds make it a full-blooded super sports car to which there is no alternative. The complete package is available at a cost-performance ratio unequalled in this exclusive vehicle class.
The production process is the one part of the manufacture philosophy in which exclusivity and precision are paramount to speed. Gumpert Sportwagenmanufaktur associates the term ‚manufacture' with it's the commitment to achieve quality and luxury by means of craftsmanship and hand-made production.
Roland Gumpert, founder, managing director and the driving force behind Sportwagenmanufaktur, has created a manufacturing environment that combines engineering excellence with a broad automotive and racing competence. Experts within the motorsports scene are all familiar with the name Gumpert: In the mid 1970s, the long-standing Audi manager was the driving force behind the development of the four-wheel drive "Iltis", the original predecessor of today's "Quattro". In 1979 he not only succeeded in preparing the gnarled four-wheel drive "Iltis" for the Paris-Dakar rally, but also achieved victory. In the years that followed under his management, Audi Sport won a total of 25 World Rally Championship races and was the 4-time winner of the World Rally Championship. Gumpert's professional success is distinguished by his ability to combine innovative ideas with proven technology effectively and successfully.
Gumpert Apollo (2008)
2008 Gumpert Apollo
A team of automotive and motor sports specialists joined forces to pool their enthusiasm and energy into developing and creating the Gumpert Apollo. Their abilities create the space for the finest workmanship and utmost individuality, with the use of high-tech processes and integration of proven standard components securing the technical basis.
With the Gumpert Apollo we are providing a select clientele of ambitious sports drivers and car enthusiasts with the opportunity of experiencing the unique synergy between hand-made high-end components optimised for performance on the road and the track, and of distinguishing themselves from the remainder of the world of sports cars. Up to 100 vehicles will leave the factory each year - just enough to ensure that these exceptional vehicles retain their exclusive status.
Gumpert Sportwagenmanufaktur is an independent, privately financed company. The financial stability of the company is being secured by well-known investors. Their operative commitment will also promote the international sales and distribution of Gumpert Apollo.
The challenge was to develop an exceptional design that combined the extreme aerodynamic requirements of a performance-oriented, purist super sports car with the aesthetic design of an exclusive vehicle. We wanted to achieve the perfect synthesis of design and function. Without compromising. And we have succeeded with Gumpert Apollo: Its silhouette, optimised in numerous wind tunnel tests, reflects its by far superior capabilities.
In its profile, the Gumpert Apollo dynamic appearance is further enhanced by its dimensions (4.46 m length, almost 2 m width and 1.24 m height) and its streamlined, long and wide shoulder lines. The mid-engine layout is emphasised by the cockpit, which is clearly located toward the front of the vehicle, and the long wheel base; both factors ensure optimum driving qualities. Massive air inlets and outlets in the front and on the side in front of and behind the doors leave no doubt about its potency. Above all, though, they supply the two turbo-chargers and the high-performance braking system with enough fresh air to ensure optimum operation for the duration of a race. The high-set air intake for the engine is reminiscent of Formula 1 vehicles and emphasises Gumpert Apollo racing character. The dominant rear provides a view of the diffuser and the underbody, encased completely in carbon, - which, combined with the front diffuser and flow channels, achieves an exceptionally high negative lift for a road vehicle.
Gumpert Apollo leaves a lasting impression on anyone who sees it: It symbolises unusual power, dynamism and sportiness. It reflects above-average performance capability paired with timeless elegance, and even when it is not moving, shows that the design can only adhere to function: driving dynamics.
The secret of Gumpert Apollo is an innovative design concept from racing car engineering. The base and symbolic backbone of Gumpert Apollo consists a round tube frame made of top-quality and highly stable chrome-molybdenum-steel with an integrated monocoque safety cell made of high quality carbon fibre screwed directly onto the frame. The 161 kg (355 lbs.) construction design is so effective, so torsion proof and bend resistant that it complies with both the specifications of the European MOT approval and the international manufacture specifications of motor sports (see annex J of the FIA regulations). Gumpert Apollo succeeds in combining low weight with the rigidity of a racing car, finest driving dynamics and maximum safety. The Gumpert Apollo is one of the safest and most agile vehicles of its class.
PERFORMANCE IN A NEW DIMENSION
The Gumpert Apollo is not the only sports car on the market; however its concept is so unique and realised so consistently that it aspires to redefine the standard for this vehicle class. The Gumpert Apollo has more to offer:
•Approved both for use on the road and on the track
•Maximum safety in accordance with the international motor racing standards
•Low curb weight of below 1,200 kg (2,645 lbs.)
•Perfect road-holding and ultra-precise handling
•Maximum driving pleasure and unbeatable driving performance
•Excellent aerodynamic efficiency and driving dynamics
•Synthesis of reliable racing and series technology
•Unique, futuristic, and striking design
•Best cost-benefit ratio
Despite the series production process, every Gumpert Apollo is unique. It is customized to the owner's wishes and needs and proudly bears his touch. We can also offer you:
•Luxury package with air conditioning, navigation radio with DVD/CD-Player and backwards facing camera with rear-view mirror function
•Car body made of fibreglass (GFK) or carbon-fibre (CFK)
•Carbon fibre for various components and car body parts
•Design variants created by use of different air intakes for the engine
•Carbon rear wing (optional available)
•Engine variants with 650 / 700 / 800 HP output
In addition to these different options and equipment packages, we can of course also accommodate any other special requests made by our customers. Just talk to us.
The consistent achievement of maximum driving dynamics and uncompromising functionality is also visible in the interior design: Every detail was designed according to functional viewpoints equivalent to those of a racing car, yet without neglecting the required amount of comfort and quality.
TAILOR-MADE PURISM AND LUXURY
Light weight was the top priority and has been achieved through the exclusive use of high-tech materials. The instrument panel, like the monocoque it is integrated into, is made of carbon fibre. The seat buckets, too, are fitted into the monocoque - although you will not find seats in the conventional meaning in the Gumpert Apollo. The seat position is adjusted to each customer individually, using padding, upholstery, adjustable pedals, and the steering column. Yet you are not required to forgo proven technology in the Gumpert Apollo: air conditioning, high-end navigation system with an integrated reverse camera, CD/DVD player and much more are available.
The Gumpert Apollo is a tailor-made sports car, and individual masterpiece. In line with this principle, customers can design the interior to meet their preferences, be it pure performance or somewhat more luxurious. Decide the colours and designs yourself, whether leather, seams or embroideries are concerned. We guarantee you a car that will fulfil all of your requirements. Just talk to us.
READY FOR RACETRACK
A sports car's supremacy is not defined by pure engine power alone: only a car that can put this power on the asphalt and create a balance between all occurring internal and external forces will leave the contestants behind, on the road and the race track. The chassis is the key to this supremacy - and Gumpert Apollo has already proven itself spectacularly under the toughest testing conditions on various test tracks, public roads and real racing tracks such as Hockenheim, Imola and the historical "Nordschleife".
The Gumpert Apollo is built as a racing car according to FIA GT and ACO regulations upon request.
Success is one of Gumpert Sportwagenmanufaktur's clearly defined objectives in racing. Naturally the factory benefits from the years of experience in motor sports and the remarkable successes of company owner Roland Gumpert.
The Gumpert Apollo made a great third place with the Belgian racing driver, Ruben Maes, in the cockpit at its racing debut at the Divinol Cup in Hockenheim in April 2005.
PROVEN PERFORMANCE IN A NEW DIMENSION
The impressive power of the high-performance eight cylinder engine is based on proven V8-high-performance aggregates from Audi. In the standard configuration this engine is optimised for use in racing and road vehicles and produces 650 HP as a Biturbo engine. Weighing only 196 kg (432 lbs.), it plays a major role in ensuring the ideal weight and fascinating driving dynamics of Gumpert Apollo. An angle of 90° between the two cylinder banks is a sign of a classic 8-cylinder engine. Efficient utilisation of its remarkable energy in the back wheels guarantees the fully-synchronised, sequential six-speed transmission that incorporates Formula 1 know-how. The short gear paths allow high speed gear changes. The arrangement of the gears in a longitudinal direction in the path of travel ensures a very low centre of gravity and optimum weight distribution. The characteristic sound of the double-flow exhaust system of the Gumpert Apollo with its 3-way catalytic converters says it best - the Gumpert Apollo is pure, unbeatable performance as reflected in the data. Like a comet, the Gumpert Apollo catapults its pilot from 0 to 100 km/h (0-62 mph) in just 3.0 seconds and only requires 8.9 seconds from 0 to 200 km/h (0-124 mph).
For connoisseurs form whom driving fun does not necessarily equal maximum motor performance and ultimate acceleration, the engine is also ideally suited for day-to-day driving at lower speeds.
DRIVING DYNAMICS REDEFINED
The Gumpert Apollo's suspension was developed to ideally complement the body's sophisticated aerodynamics. The resulting is unusual driving dynamics. The Gumpert Apollo is taut but not hard and provides driver and passenger with an extraordinar level of comfort for a car designed purely for performance. It demands the pilot's unswerving attention, yet due to its ultra-precise and predictable driving characteristics does not overwhelm, even at top speed.
An ideal weight balance of 42 to 58 percent between the front and rear axis rounds it off: It provides optimum traction during acceleration, whilst ensuring stable control even when braking in critical situations.
The Gumpert Apollo owes the finely tuned sensitivity of the suspension system and the optimised exertion of power to its double transverse control arm pushrod configuration at the front and back. The double transverse control arms ensure that the tires maintain optimum contact with the road surface, independent of the bound rate of suspension system. The suspension system allows the owner to seamlessly set the ground clearance in a range between 40 and 120 mm (1.57-4.72 in). Sealed uniball joints ensure that the forces are transferred precisely and with little friction. Stabilisers support the efficiency of the suspension and pitch compensation prevents the vehicle from diving during braking and lifting during accelerating. Despite its low trim, the Gumpert Apollo provides long wheel travel in compression and rebound, facilitating the finely-tuned and precise functioning of the absorbers and springs.
The high level of driving dynamics is supported by an agile electro-hydraulic power steering system that provides the driver with direct feedback. In order to securely transfer the 850 nm torque to the road, Gumpert Apollo has a traction control system (TCS) used in motor sports. Developed together with the company Racelogic, the permitted slip can be accurately set on the rear axle - according to the drivers wishes. An optional launch control, adjusted to the Gumpert Apollo especially, ensures swift starts like those of Formula 1. The Gumpert Apollo's driving performance is controlled with a 2-circuit high-performance braking system with adjustable 3-level Bosch-ABS, 378 mm (14.9 in) ventilated discs, and 6-piston callipers on the front and rear axle.
All of these are primary technical principles, the sportive orientation of which could not be clearer. Thanks to its suspension, the Gumpert Apollo proves itself in every curve: It redefines the term ‚driving dynamics'.
TECHNICAL SPECIFICATIONS
•DIMENSIONS◦Length 4,460 mm / 175.6"
◦Width 1,998 mm / 78.6"
◦Height 1,114 mm / 43.8"
◦Wheel base 2,700 mm / 106.3"
◦Wheel gauge ◾front: 1,670 mm / 65.7"
◾back: 1,598 mm / 62.9"
◦Boot volume: 100 l
•WEIGHT◦Kerb weight: below 1,200 kg / 2,645 lbs
◦Allowed total weight: 1,500 kg / 3,306 lbs
◦Approved axle load ◾front: 650 kg / 1,452 lbs
◾back: 900 kg / 1,984 lbs
•ENGINE◦Cylinders: 8
◦Type: 90° - V
◦Valves per cylinder: 5
◦Displacement: 4,163 cm3 / 254 in3
◦Stroke: 93 mm / 3.66"
◦Bore: 84.5 mm / 3.32"
◦Nominal output: 478 kW (650 HP) @ 6,500 rpm
◦Maximum torque: 850 Nm (626.9 lb-ft) @ 4,000 rpm [with 820 Nm @ 2700 rpm]
◦Maximum revs: 7,200 rpm
◦Compression ratio: 9,3
◦Recommended fuel type: 98 ROZ / 88 MOZ
◦Emission standard: Euro 4
•GEARBOX◦Sequential six-speed gear box with synchronisation and oil cooling
◦Twin plate clutch configuration (diameter 200 mm / 7.87" each)
◦Differential lock by Torsen
◦Custom-made gear ratios
•WHEELS◦Tire dimension ◾front: 255/35ZR19
◾back: 345/35ZR19
◦Wheel dimension ◾front: 10J x 19
◾back: 13J x 19
◦Wheel rim type: Aluminium cast wheels with centre lock
•PERFORMANCE◦Top speed: 360 km/h (224 mph)
◦0-100 km/h (0-62 mph): 3.0 s
◦0-200 km/h (0-124 mph): 8.9 s
The Gumpert Apollo is the perfect synthesis between road vehicle and racing car. It exceeds all expectations with its passion and maximum driving fun. 650 HP, up to 360 km/h top-speed and an acceleration of 0 to 100 km/h in just 3.0 seconds make it a full-blooded super sports car to which there is no alternative. The complete package is available at a cost-performance ratio unequalled in this exclusive vehicle class.
The production process is the one part of the manufacture philosophy in which exclusivity and precision are paramount to speed. Gumpert Sportwagenmanufaktur associates the term ‚manufacture' with it's the commitment to achieve quality and luxury by means of craftsmanship and hand-made production.
Roland Gumpert, founder, managing director and the driving force behind Sportwagenmanufaktur, has created a manufacturing environment that combines engineering excellence with a broad automotive and racing competence. Experts within the motorsports scene are all familiar with the name Gumpert: In the mid 1970s, the long-standing Audi manager was the driving force behind the development of the four-wheel drive "Iltis", the original predecessor of today's "Quattro". In 1979 he not only succeeded in preparing the gnarled four-wheel drive "Iltis" for the Paris-Dakar rally, but also achieved victory. In the years that followed under his management, Audi Sport won a total of 25 World Rally Championship races and was the 4-time winner of the World Rally Championship. Gumpert's professional success is distinguished by his ability to combine innovative ideas with proven technology effectively and successfully.
Gumpert Apollo (2008)
2008 Gumpert Apollo
A team of automotive and motor sports specialists joined forces to pool their enthusiasm and energy into developing and creating the Gumpert Apollo. Their abilities create the space for the finest workmanship and utmost individuality, with the use of high-tech processes and integration of proven standard components securing the technical basis.
With the Gumpert Apollo we are providing a select clientele of ambitious sports drivers and car enthusiasts with the opportunity of experiencing the unique synergy between hand-made high-end components optimised for performance on the road and the track, and of distinguishing themselves from the remainder of the world of sports cars. Up to 100 vehicles will leave the factory each year - just enough to ensure that these exceptional vehicles retain their exclusive status.
Gumpert Sportwagenmanufaktur is an independent, privately financed company. The financial stability of the company is being secured by well-known investors. Their operative commitment will also promote the international sales and distribution of Gumpert Apollo.
The challenge was to develop an exceptional design that combined the extreme aerodynamic requirements of a performance-oriented, purist super sports car with the aesthetic design of an exclusive vehicle. We wanted to achieve the perfect synthesis of design and function. Without compromising. And we have succeeded with Gumpert Apollo: Its silhouette, optimised in numerous wind tunnel tests, reflects its by far superior capabilities.
In its profile, the Gumpert Apollo dynamic appearance is further enhanced by its dimensions (4.46 m length, almost 2 m width and 1.24 m height) and its streamlined, long and wide shoulder lines. The mid-engine layout is emphasised by the cockpit, which is clearly located toward the front of the vehicle, and the long wheel base; both factors ensure optimum driving qualities. Massive air inlets and outlets in the front and on the side in front of and behind the doors leave no doubt about its potency. Above all, though, they supply the two turbo-chargers and the high-performance braking system with enough fresh air to ensure optimum operation for the duration of a race. The high-set air intake for the engine is reminiscent of Formula 1 vehicles and emphasises Gumpert Apollo racing character. The dominant rear provides a view of the diffuser and the underbody, encased completely in carbon, - which, combined with the front diffuser and flow channels, achieves an exceptionally high negative lift for a road vehicle.
Gumpert Apollo leaves a lasting impression on anyone who sees it: It symbolises unusual power, dynamism and sportiness. It reflects above-average performance capability paired with timeless elegance, and even when it is not moving, shows that the design can only adhere to function: driving dynamics.
The secret of Gumpert Apollo is an innovative design concept from racing car engineering. The base and symbolic backbone of Gumpert Apollo consists a round tube frame made of top-quality and highly stable chrome-molybdenum-steel with an integrated monocoque safety cell made of high quality carbon fibre screwed directly onto the frame. The 161 kg (355 lbs.) construction design is so effective, so torsion proof and bend resistant that it complies with both the specifications of the European MOT approval and the international manufacture specifications of motor sports (see annex J of the FIA regulations). Gumpert Apollo succeeds in combining low weight with the rigidity of a racing car, finest driving dynamics and maximum safety. The Gumpert Apollo is one of the safest and most agile vehicles of its class.
PERFORMANCE IN A NEW DIMENSION
The Gumpert Apollo is not the only sports car on the market; however its concept is so unique and realised so consistently that it aspires to redefine the standard for this vehicle class. The Gumpert Apollo has more to offer:
•Approved both for use on the road and on the track
•Maximum safety in accordance with the international motor racing standards
•Low curb weight of below 1,200 kg (2,645 lbs.)
•Perfect road-holding and ultra-precise handling
•Maximum driving pleasure and unbeatable driving performance
•Excellent aerodynamic efficiency and driving dynamics
•Synthesis of reliable racing and series technology
•Unique, futuristic, and striking design
•Best cost-benefit ratio
Despite the series production process, every Gumpert Apollo is unique. It is customized to the owner's wishes and needs and proudly bears his touch. We can also offer you:
•Luxury package with air conditioning, navigation radio with DVD/CD-Player and backwards facing camera with rear-view mirror function
•Car body made of fibreglass (GFK) or carbon-fibre (CFK)
•Carbon fibre for various components and car body parts
•Design variants created by use of different air intakes for the engine
•Carbon rear wing (optional available)
•Engine variants with 650 / 700 / 800 HP output
In addition to these different options and equipment packages, we can of course also accommodate any other special requests made by our customers. Just talk to us.
The consistent achievement of maximum driving dynamics and uncompromising functionality is also visible in the interior design: Every detail was designed according to functional viewpoints equivalent to those of a racing car, yet without neglecting the required amount of comfort and quality.
TAILOR-MADE PURISM AND LUXURY
Light weight was the top priority and has been achieved through the exclusive use of high-tech materials. The instrument panel, like the monocoque it is integrated into, is made of carbon fibre. The seat buckets, too, are fitted into the monocoque - although you will not find seats in the conventional meaning in the Gumpert Apollo. The seat position is adjusted to each customer individually, using padding, upholstery, adjustable pedals, and the steering column. Yet you are not required to forgo proven technology in the Gumpert Apollo: air conditioning, high-end navigation system with an integrated reverse camera, CD/DVD player and much more are available.
The Gumpert Apollo is a tailor-made sports car, and individual masterpiece. In line with this principle, customers can design the interior to meet their preferences, be it pure performance or somewhat more luxurious. Decide the colours and designs yourself, whether leather, seams or embroideries are concerned. We guarantee you a car that will fulfil all of your requirements. Just talk to us.
READY FOR RACETRACK
A sports car's supremacy is not defined by pure engine power alone: only a car that can put this power on the asphalt and create a balance between all occurring internal and external forces will leave the contestants behind, on the road and the race track. The chassis is the key to this supremacy - and Gumpert Apollo has already proven itself spectacularly under the toughest testing conditions on various test tracks, public roads and real racing tracks such as Hockenheim, Imola and the historical "Nordschleife".
The Gumpert Apollo is built as a racing car according to FIA GT and ACO regulations upon request.
Success is one of Gumpert Sportwagenmanufaktur's clearly defined objectives in racing. Naturally the factory benefits from the years of experience in motor sports and the remarkable successes of company owner Roland Gumpert.
The Gumpert Apollo made a great third place with the Belgian racing driver, Ruben Maes, in the cockpit at its racing debut at the Divinol Cup in Hockenheim in April 2005.
PROVEN PERFORMANCE IN A NEW DIMENSION
The impressive power of the high-performance eight cylinder engine is based on proven V8-high-performance aggregates from Audi. In the standard configuration this engine is optimised for use in racing and road vehicles and produces 650 HP as a Biturbo engine. Weighing only 196 kg (432 lbs.), it plays a major role in ensuring the ideal weight and fascinating driving dynamics of Gumpert Apollo. An angle of 90° between the two cylinder banks is a sign of a classic 8-cylinder engine. Efficient utilisation of its remarkable energy in the back wheels guarantees the fully-synchronised, sequential six-speed transmission that incorporates Formula 1 know-how. The short gear paths allow high speed gear changes. The arrangement of the gears in a longitudinal direction in the path of travel ensures a very low centre of gravity and optimum weight distribution. The characteristic sound of the double-flow exhaust system of the Gumpert Apollo with its 3-way catalytic converters says it best - the Gumpert Apollo is pure, unbeatable performance as reflected in the data. Like a comet, the Gumpert Apollo catapults its pilot from 0 to 100 km/h (0-62 mph) in just 3.0 seconds and only requires 8.9 seconds from 0 to 200 km/h (0-124 mph).
For connoisseurs form whom driving fun does not necessarily equal maximum motor performance and ultimate acceleration, the engine is also ideally suited for day-to-day driving at lower speeds.
DRIVING DYNAMICS REDEFINED
The Gumpert Apollo's suspension was developed to ideally complement the body's sophisticated aerodynamics. The resulting is unusual driving dynamics. The Gumpert Apollo is taut but not hard and provides driver and passenger with an extraordinar level of comfort for a car designed purely for performance. It demands the pilot's unswerving attention, yet due to its ultra-precise and predictable driving characteristics does not overwhelm, even at top speed.
An ideal weight balance of 42 to 58 percent between the front and rear axis rounds it off: It provides optimum traction during acceleration, whilst ensuring stable control even when braking in critical situations.
The Gumpert Apollo owes the finely tuned sensitivity of the suspension system and the optimised exertion of power to its double transverse control arm pushrod configuration at the front and back. The double transverse control arms ensure that the tires maintain optimum contact with the road surface, independent of the bound rate of suspension system. The suspension system allows the owner to seamlessly set the ground clearance in a range between 40 and 120 mm (1.57-4.72 in). Sealed uniball joints ensure that the forces are transferred precisely and with little friction. Stabilisers support the efficiency of the suspension and pitch compensation prevents the vehicle from diving during braking and lifting during accelerating. Despite its low trim, the Gumpert Apollo provides long wheel travel in compression and rebound, facilitating the finely-tuned and precise functioning of the absorbers and springs.
The high level of driving dynamics is supported by an agile electro-hydraulic power steering system that provides the driver with direct feedback. In order to securely transfer the 850 nm torque to the road, Gumpert Apollo has a traction control system (TCS) used in motor sports. Developed together with the company Racelogic, the permitted slip can be accurately set on the rear axle - according to the drivers wishes. An optional launch control, adjusted to the Gumpert Apollo especially, ensures swift starts like those of Formula 1. The Gumpert Apollo's driving performance is controlled with a 2-circuit high-performance braking system with adjustable 3-level Bosch-ABS, 378 mm (14.9 in) ventilated discs, and 6-piston callipers on the front and rear axle.
All of these are primary technical principles, the sportive orientation of which could not be clearer. Thanks to its suspension, the Gumpert Apollo proves itself in every curve: It redefines the term ‚driving dynamics'.
TECHNICAL SPECIFICATIONS
•DIMENSIONS◦Length 4,460 mm / 175.6"
◦Width 1,998 mm / 78.6"
◦Height 1,114 mm / 43.8"
◦Wheel base 2,700 mm / 106.3"
◦Wheel gauge ◾front: 1,670 mm / 65.7"
◾back: 1,598 mm / 62.9"
◦Boot volume: 100 l
•WEIGHT◦Kerb weight: below 1,200 kg / 2,645 lbs
◦Allowed total weight: 1,500 kg / 3,306 lbs
◦Approved axle load ◾front: 650 kg / 1,452 lbs
◾back: 900 kg / 1,984 lbs
•ENGINE◦Cylinders: 8
◦Type: 90° - V
◦Valves per cylinder: 5
◦Displacement: 4,163 cm3 / 254 in3
◦Stroke: 93 mm / 3.66"
◦Bore: 84.5 mm / 3.32"
◦Nominal output: 478 kW (650 HP) @ 6,500 rpm
◦Maximum torque: 850 Nm (626.9 lb-ft) @ 4,000 rpm [with 820 Nm @ 2700 rpm]
◦Maximum revs: 7,200 rpm
◦Compression ratio: 9,3
◦Recommended fuel type: 98 ROZ / 88 MOZ
◦Emission standard: Euro 4
•GEARBOX◦Sequential six-speed gear box with synchronisation and oil cooling
◦Twin plate clutch configuration (diameter 200 mm / 7.87" each)
◦Differential lock by Torsen
◦Custom-made gear ratios
•WHEELS◦Tire dimension ◾front: 255/35ZR19
◾back: 345/35ZR19
◦Wheel dimension ◾front: 10J x 19
◾back: 13J x 19
◦Wheel rim type: Aluminium cast wheels with centre lock
•PERFORMANCE◦Top speed: 360 km/h (224 mph)
◦0-100 km/h (0-62 mph): 3.0 s
◦0-200 km/h (0-124 mph): 8.9 s
The Materials Synthesis and Characterization Facility at Brookhaven's Center for Functional Nanomaterials includes laboratories devoted to producing nanostructured materials and their basic structural, chemical and optical characterization.
Coventry's Cathedral is a unique synthesis of old a new, born of wartime suffering and forged in the spirit of postwar optimism, famous for it's history and for being the most radically modern of Anglican cathedrals. Two cathedral's stand side by side, the ruins of the medieval building, destroyed by incendiary bombs in 1940 and the bold new building designed by Basil Spence and opened in 1962.
It is a common misconception that Coventry lost it's first cathedral in the wartime blitz, but the bombs actually destroyed it's second; the original medieval cathedral was the monastic St Mary's, a large cruciform building believed to have been similar in appearance to Lichfield Cathedral (whose diocese it shared). Tragically it became the only English cathedral to be destroyed during the Reformation, after which it was quickly quarried away, leaving only scant fragments, but enough evidence survives to indicate it's rich decoration (some pieces were displayed nearby in the Priory Visitors Centre, sadly since closed). Foundations of it's apse were found during the building of the new cathedral in the 1950s, thus technically three cathedrals share the same site.
The mainly 15th century St Michael's parish church became the seat of the new diocese of Coventry in 1918, and being one of the largest parish churches in the country it was upgraded to cathedral status without structural changes (unlike most 'parish church' cathedrals created in the early 20th century). It lasted in this role a mere 22 years before being burned to the ground in the 1940 Coventry Blitz, leaving only the outer walls and the magnificent tapering tower and spire (the extensive arcades and clerestoreys collapsed completely in the fire, precipitated by the roof reinforcement girders, installed in the Victorian restoration, that buckled in the intense heat).
The determination to rebuild the cathedral in some form was born on the day of the bombing, however it wasn't until the mid 1950s that a competition was held and Sir Basil Spence's design was chosen. Spence had been so moved by experiencing the ruined church he resolved to retain it entirely to serve as a forecourt to the new church. He envisaged the two being linked by a glass screen wall so that the old church would be visible from within the new.
Built between 1957-62 at a right-angle to the ruins, the new cathedral attracted controversy for it's modern form, and yet some modernists argued that it didn't go far enough, after all there are echoes of the Gothic style in the great stone-mullioned windows of the nave and the net vaulting (actually a free-standing canopy) within. What is exceptional is the way art has been used as such an integral part of the building, a watershed moment, revolutionising the concept of religious art in Britain.
Spence employed some of the biggest names in contemporary art to contribute their vision to his; the exterior is adorned with Jacob Epstein's triumphant bronze figures of Archangel Michael (patron of the cathedral) vanquishing the Devil. At the entrance is the remarkable glass wall, engraved by John Hutton with strikingly stylised figures of saints and angels, and allowing the interior of the new to communicate with the ruin. Inside, the great tapestry of Christ in majesty surrounded by the evangelistic creatures, draws the eye beyond the high altar; it was designed by Graham Sutherland and was the largest tapestry ever made.
However one of the greatest features of Coventry is it's wealth of modern stained glass, something Spence resolved to include having witnessed the bleakness of Chartres Cathedral in wartime, all it's stained glass having been removed. The first window encountered on entering is the enormous 'chess-board' baptistry window filled with stunning abstract glass by John Piper & Patrick Reyntiens, a symphony of glowing colour. The staggered nave walls are illuminated by ten narrow floor to ceiling windows filled with semi-abstract symbolic designs arranged in pairs of dominant colours (green, red, multi-coloured, purple/blue and gold) representing the souls journey to maturity, and revealed gradually as one approaches the altar. This amazing project was the work of three designers lead by master glass artist Lawrence Lee of the Royal College of Art along with Keith New and Geoffrey Clarke (each artist designed three of the windows individually and all collaborated on the last).
The cathedral still dazzles the visitor with the boldness of it's vision, but alas, half a century on, it was not a vision to be repeated and few of the churches and cathedrals built since can claim to have embraced the synthesis of art and architecture in the way Basil Spence did at Coventry.
The cathedral is generally open to visitors most days. For more see below:-
The Gumpert Apollo is the perfect synthesis between road vehicle and racing car. It exceeds all expectations with its passion and maximum driving fun. 650 HP, up to 360 km/h top-speed and an acceleration of 0 to 100 km/h in just 3.0 seconds make it a full-blooded super sports car to which there is no alternative. The complete package is available at a cost-performance ratio unequalled in this exclusive vehicle class.
The production process is the one part of the manufacture philosophy in which exclusivity and precision are paramount to speed. Gumpert Sportwagenmanufaktur associates the term ‚manufacture' with it's the commitment to achieve quality and luxury by means of craftsmanship and hand-made production.
Roland Gumpert, founder, managing director and the driving force behind Sportwagenmanufaktur, has created a manufacturing environment that combines engineering excellence with a broad automotive and racing competence. Experts within the motorsports scene are all familiar with the name Gumpert: In the mid 1970s, the long-standing Audi manager was the driving force behind the development of the four-wheel drive "Iltis", the original predecessor of today's "Quattro". In 1979 he not only succeeded in preparing the gnarled four-wheel drive "Iltis" for the Paris-Dakar rally, but also achieved victory. In the years that followed under his management, Audi Sport won a total of 25 World Rally Championship races and was the 4-time winner of the World Rally Championship. Gumpert's professional success is distinguished by his ability to combine innovative ideas with proven technology effectively and successfully.
Gumpert Apollo (2008)
2008 Gumpert Apollo
A team of automotive and motor sports specialists joined forces to pool their enthusiasm and energy into developing and creating the Gumpert Apollo. Their abilities create the space for the finest workmanship and utmost individuality, with the use of high-tech processes and integration of proven standard components securing the technical basis.
With the Gumpert Apollo we are providing a select clientele of ambitious sports drivers and car enthusiasts with the opportunity of experiencing the unique synergy between hand-made high-end components optimised for performance on the road and the track, and of distinguishing themselves from the remainder of the world of sports cars. Up to 100 vehicles will leave the factory each year - just enough to ensure that these exceptional vehicles retain their exclusive status.
Gumpert Sportwagenmanufaktur is an independent, privately financed company. The financial stability of the company is being secured by well-known investors. Their operative commitment will also promote the international sales and distribution of Gumpert Apollo.
The challenge was to develop an exceptional design that combined the extreme aerodynamic requirements of a performance-oriented, purist super sports car with the aesthetic design of an exclusive vehicle. We wanted to achieve the perfect synthesis of design and function. Without compromising. And we have succeeded with Gumpert Apollo: Its silhouette, optimised in numerous wind tunnel tests, reflects its by far superior capabilities.
In its profile, the Gumpert Apollo dynamic appearance is further enhanced by its dimensions (4.46 m length, almost 2 m width and 1.24 m height) and its streamlined, long and wide shoulder lines. The mid-engine layout is emphasised by the cockpit, which is clearly located toward the front of the vehicle, and the long wheel base; both factors ensure optimum driving qualities. Massive air inlets and outlets in the front and on the side in front of and behind the doors leave no doubt about its potency. Above all, though, they supply the two turbo-chargers and the high-performance braking system with enough fresh air to ensure optimum operation for the duration of a race. The high-set air intake for the engine is reminiscent of Formula 1 vehicles and emphasises Gumpert Apollo racing character. The dominant rear provides a view of the diffuser and the underbody, encased completely in carbon, - which, combined with the front diffuser and flow channels, achieves an exceptionally high negative lift for a road vehicle.
Gumpert Apollo leaves a lasting impression on anyone who sees it: It symbolises unusual power, dynamism and sportiness. It reflects above-average performance capability paired with timeless elegance, and even when it is not moving, shows that the design can only adhere to function: driving dynamics.
The secret of Gumpert Apollo is an innovative design concept from racing car engineering. The base and symbolic backbone of Gumpert Apollo consists a round tube frame made of top-quality and highly stable chrome-molybdenum-steel with an integrated monocoque safety cell made of high quality carbon fibre screwed directly onto the frame. The 161 kg (355 lbs.) construction design is so effective, so torsion proof and bend resistant that it complies with both the specifications of the European MOT approval and the international manufacture specifications of motor sports (see annex J of the FIA regulations). Gumpert Apollo succeeds in combining low weight with the rigidity of a racing car, finest driving dynamics and maximum safety. The Gumpert Apollo is one of the safest and most agile vehicles of its class.
PERFORMANCE IN A NEW DIMENSION
The Gumpert Apollo is not the only sports car on the market; however its concept is so unique and realised so consistently that it aspires to redefine the standard for this vehicle class. The Gumpert Apollo has more to offer:
•Approved both for use on the road and on the track
•Maximum safety in accordance with the international motor racing standards
•Low curb weight of below 1,200 kg (2,645 lbs.)
•Perfect road-holding and ultra-precise handling
•Maximum driving pleasure and unbeatable driving performance
•Excellent aerodynamic efficiency and driving dynamics
•Synthesis of reliable racing and series technology
•Unique, futuristic, and striking design
•Best cost-benefit ratio
Despite the series production process, every Gumpert Apollo is unique. It is customized to the owner's wishes and needs and proudly bears his touch. We can also offer you:
•Luxury package with air conditioning, navigation radio with DVD/CD-Player and backwards facing camera with rear-view mirror function
•Car body made of fibreglass (GFK) or carbon-fibre (CFK)
•Carbon fibre for various components and car body parts
•Design variants created by use of different air intakes for the engine
•Carbon rear wing (optional available)
•Engine variants with 650 / 700 / 800 HP output
In addition to these different options and equipment packages, we can of course also accommodate any other special requests made by our customers. Just talk to us.
The consistent achievement of maximum driving dynamics and uncompromising functionality is also visible in the interior design: Every detail was designed according to functional viewpoints equivalent to those of a racing car, yet without neglecting the required amount of comfort and quality.
TAILOR-MADE PURISM AND LUXURY
Light weight was the top priority and has been achieved through the exclusive use of high-tech materials. The instrument panel, like the monocoque it is integrated into, is made of carbon fibre. The seat buckets, too, are fitted into the monocoque - although you will not find seats in the conventional meaning in the Gumpert Apollo. The seat position is adjusted to each customer individually, using padding, upholstery, adjustable pedals, and the steering column. Yet you are not required to forgo proven technology in the Gumpert Apollo: air conditioning, high-end navigation system with an integrated reverse camera, CD/DVD player and much more are available.
The Gumpert Apollo is a tailor-made sports car, and individual masterpiece. In line with this principle, customers can design the interior to meet their preferences, be it pure performance or somewhat more luxurious. Decide the colours and designs yourself, whether leather, seams or embroideries are concerned. We guarantee you a car that will fulfil all of your requirements. Just talk to us.
READY FOR RACETRACK
A sports car's supremacy is not defined by pure engine power alone: only a car that can put this power on the asphalt and create a balance between all occurring internal and external forces will leave the contestants behind, on the road and the race track. The chassis is the key to this supremacy - and Gumpert Apollo has already proven itself spectacularly under the toughest testing conditions on various test tracks, public roads and real racing tracks such as Hockenheim, Imola and the historical "Nordschleife".
The Gumpert Apollo is built as a racing car according to FIA GT and ACO regulations upon request.
Success is one of Gumpert Sportwagenmanufaktur's clearly defined objectives in racing. Naturally the factory benefits from the years of experience in motor sports and the remarkable successes of company owner Roland Gumpert.
The Gumpert Apollo made a great third place with the Belgian racing driver, Ruben Maes, in the cockpit at its racing debut at the Divinol Cup in Hockenheim in April 2005.
PROVEN PERFORMANCE IN A NEW DIMENSION
The impressive power of the high-performance eight cylinder engine is based on proven V8-high-performance aggregates from Audi. In the standard configuration this engine is optimised for use in racing and road vehicles and produces 650 HP as a Biturbo engine. Weighing only 196 kg (432 lbs.), it plays a major role in ensuring the ideal weight and fascinating driving dynamics of Gumpert Apollo. An angle of 90° between the two cylinder banks is a sign of a classic 8-cylinder engine. Efficient utilisation of its remarkable energy in the back wheels guarantees the fully-synchronised, sequential six-speed transmission that incorporates Formula 1 know-how. The short gear paths allow high speed gear changes. The arrangement of the gears in a longitudinal direction in the path of travel ensures a very low centre of gravity and optimum weight distribution. The characteristic sound of the double-flow exhaust system of the Gumpert Apollo with its 3-way catalytic converters says it best - the Gumpert Apollo is pure, unbeatable performance as reflected in the data. Like a comet, the Gumpert Apollo catapults its pilot from 0 to 100 km/h (0-62 mph) in just 3.0 seconds and only requires 8.9 seconds from 0 to 200 km/h (0-124 mph).
For connoisseurs form whom driving fun does not necessarily equal maximum motor performance and ultimate acceleration, the engine is also ideally suited for day-to-day driving at lower speeds.
DRIVING DYNAMICS REDEFINED
The Gumpert Apollo's suspension was developed to ideally complement the body's sophisticated aerodynamics. The resulting is unusual driving dynamics. The Gumpert Apollo is taut but not hard and provides driver and passenger with an extraordinar level of comfort for a car designed purely for performance. It demands the pilot's unswerving attention, yet due to its ultra-precise and predictable driving characteristics does not overwhelm, even at top speed.
An ideal weight balance of 42 to 58 percent between the front and rear axis rounds it off: It provides optimum traction during acceleration, whilst ensuring stable control even when braking in critical situations.
The Gumpert Apollo owes the finely tuned sensitivity of the suspension system and the optimised exertion of power to its double transverse control arm pushrod configuration at the front and back. The double transverse control arms ensure that the tires maintain optimum contact with the road surface, independent of the bound rate of suspension system. The suspension system allows the owner to seamlessly set the ground clearance in a range between 40 and 120 mm (1.57-4.72 in). Sealed uniball joints ensure that the forces are transferred precisely and with little friction. Stabilisers support the efficiency of the suspension and pitch compensation prevents the vehicle from diving during braking and lifting during accelerating. Despite its low trim, the Gumpert Apollo provides long wheel travel in compression and rebound, facilitating the finely-tuned and precise functioning of the absorbers and springs.
The high level of driving dynamics is supported by an agile electro-hydraulic power steering system that provides the driver with direct feedback. In order to securely transfer the 850 nm torque to the road, Gumpert Apollo has a traction control system (TCS) used in motor sports. Developed together with the company Racelogic, the permitted slip can be accurately set on the rear axle - according to the drivers wishes. An optional launch control, adjusted to the Gumpert Apollo especially, ensures swift starts like those of Formula 1. The Gumpert Apollo's driving performance is controlled with a 2-circuit high-performance braking system with adjustable 3-level Bosch-ABS, 378 mm (14.9 in) ventilated discs, and 6-piston callipers on the front and rear axle.
All of these are primary technical principles, the sportive orientation of which could not be clearer. Thanks to its suspension, the Gumpert Apollo proves itself in every curve: It redefines the term ‚driving dynamics'.
TECHNICAL SPECIFICATIONS
•DIMENSIONS◦Length 4,460 mm / 175.6"
◦Width 1,998 mm / 78.6"
◦Height 1,114 mm / 43.8"
◦Wheel base 2,700 mm / 106.3"
◦Wheel gauge ◾front: 1,670 mm / 65.7"
◾back: 1,598 mm / 62.9"
◦Boot volume: 100 l
•WEIGHT◦Kerb weight: below 1,200 kg / 2,645 lbs
◦Allowed total weight: 1,500 kg / 3,306 lbs
◦Approved axle load ◾front: 650 kg / 1,452 lbs
◾back: 900 kg / 1,984 lbs
•ENGINE◦Cylinders: 8
◦Type: 90° - V
◦Valves per cylinder: 5
◦Displacement: 4,163 cm3 / 254 in3
◦Stroke: 93 mm / 3.66"
◦Bore: 84.5 mm / 3.32"
◦Nominal output: 478 kW (650 HP) @ 6,500 rpm
◦Maximum torque: 850 Nm (626.9 lb-ft) @ 4,000 rpm [with 820 Nm @ 2700 rpm]
◦Maximum revs: 7,200 rpm
◦Compression ratio: 9,3
◦Recommended fuel type: 98 ROZ / 88 MOZ
◦Emission standard: Euro 4
•GEARBOX◦Sequential six-speed gear box with synchronisation and oil cooling
◦Twin plate clutch configuration (diameter 200 mm / 7.87" each)
◦Differential lock by Torsen
◦Custom-made gear ratios
•WHEELS◦Tire dimension ◾front: 255/35ZR19
◾back: 345/35ZR19
◦Wheel dimension ◾front: 10J x 19
◾back: 13J x 19
◦Wheel rim type: Aluminium cast wheels with centre lock
•PERFORMANCE◦Top speed: 360 km/h (224 mph)
◦0-100 km/h (0-62 mph): 3.0 s
◦0-200 km/h (0-124 mph): 8.9 s
The Materials Synthesis and Characterization Facility at Brookhaven's Center for Functional Nanomaterials includes laboratories devoted to producing nanostructured materials and their basic structural, chemical and optical characterization.
The Gumpert Apollo is the perfect synthesis between road vehicle and racing car. It exceeds all expectations with its passion and maximum driving fun. 650 HP, up to 360 km/h top-speed and an acceleration of 0 to 100 km/h in just 3.0 seconds make it a full-blooded super sports car to which there is no alternative. The complete package is available at a cost-performance ratio unequalled in this exclusive vehicle class.
The production process is the one part of the manufacture philosophy in which exclusivity and precision are paramount to speed. Gumpert Sportwagenmanufaktur associates the term ‚manufacture' with it's the commitment to achieve quality and luxury by means of craftsmanship and hand-made production.
Roland Gumpert, founder, managing director and the driving force behind Sportwagenmanufaktur, has created a manufacturing environment that combines engineering excellence with a broad automotive and racing competence. Experts within the motorsports scene are all familiar with the name Gumpert: In the mid 1970s, the long-standing Audi manager was the driving force behind the development of the four-wheel drive "Iltis", the original predecessor of today's "Quattro". In 1979 he not only succeeded in preparing the gnarled four-wheel drive "Iltis" for the Paris-Dakar rally, but also achieved victory. In the years that followed under his management, Audi Sport won a total of 25 World Rally Championship races and was the 4-time winner of the World Rally Championship. Gumpert's professional success is distinguished by his ability to combine innovative ideas with proven technology effectively and successfully.
Gumpert Apollo (2008)
2008 Gumpert Apollo
A team of automotive and motor sports specialists joined forces to pool their enthusiasm and energy into developing and creating the Gumpert Apollo. Their abilities create the space for the finest workmanship and utmost individuality, with the use of high-tech processes and integration of proven standard components securing the technical basis.
With the Gumpert Apollo we are providing a select clientele of ambitious sports drivers and car enthusiasts with the opportunity of experiencing the unique synergy between hand-made high-end components optimised for performance on the road and the track, and of distinguishing themselves from the remainder of the world of sports cars. Up to 100 vehicles will leave the factory each year - just enough to ensure that these exceptional vehicles retain their exclusive status.
Gumpert Sportwagenmanufaktur is an independent, privately financed company. The financial stability of the company is being secured by well-known investors. Their operative commitment will also promote the international sales and distribution of Gumpert Apollo.
The challenge was to develop an exceptional design that combined the extreme aerodynamic requirements of a performance-oriented, purist super sports car with the aesthetic design of an exclusive vehicle. We wanted to achieve the perfect synthesis of design and function. Without compromising. And we have succeeded with Gumpert Apollo: Its silhouette, optimised in numerous wind tunnel tests, reflects its by far superior capabilities.
In its profile, the Gumpert Apollo dynamic appearance is further enhanced by its dimensions (4.46 m length, almost 2 m width and 1.24 m height) and its streamlined, long and wide shoulder lines. The mid-engine layout is emphasised by the cockpit, which is clearly located toward the front of the vehicle, and the long wheel base; both factors ensure optimum driving qualities. Massive air inlets and outlets in the front and on the side in front of and behind the doors leave no doubt about its potency. Above all, though, they supply the two turbo-chargers and the high-performance braking system with enough fresh air to ensure optimum operation for the duration of a race. The high-set air intake for the engine is reminiscent of Formula 1 vehicles and emphasises Gumpert Apollo racing character. The dominant rear provides a view of the diffuser and the underbody, encased completely in carbon, - which, combined with the front diffuser and flow channels, achieves an exceptionally high negative lift for a road vehicle.
Gumpert Apollo leaves a lasting impression on anyone who sees it: It symbolises unusual power, dynamism and sportiness. It reflects above-average performance capability paired with timeless elegance, and even when it is not moving, shows that the design can only adhere to function: driving dynamics.
The secret of Gumpert Apollo is an innovative design concept from racing car engineering. The base and symbolic backbone of Gumpert Apollo consists a round tube frame made of top-quality and highly stable chrome-molybdenum-steel with an integrated monocoque safety cell made of high quality carbon fibre screwed directly onto the frame. The 161 kg (355 lbs.) construction design is so effective, so torsion proof and bend resistant that it complies with both the specifications of the European MOT approval and the international manufacture specifications of motor sports (see annex J of the FIA regulations). Gumpert Apollo succeeds in combining low weight with the rigidity of a racing car, finest driving dynamics and maximum safety. The Gumpert Apollo is one of the safest and most agile vehicles of its class.
PERFORMANCE IN A NEW DIMENSION
The Gumpert Apollo is not the only sports car on the market; however its concept is so unique and realised so consistently that it aspires to redefine the standard for this vehicle class. The Gumpert Apollo has more to offer:
•Approved both for use on the road and on the track
•Maximum safety in accordance with the international motor racing standards
•Low curb weight of below 1,200 kg (2,645 lbs.)
•Perfect road-holding and ultra-precise handling
•Maximum driving pleasure and unbeatable driving performance
•Excellent aerodynamic efficiency and driving dynamics
•Synthesis of reliable racing and series technology
•Unique, futuristic, and striking design
•Best cost-benefit ratio
Despite the series production process, every Gumpert Apollo is unique. It is customized to the owner's wishes and needs and proudly bears his touch. We can also offer you:
•Luxury package with air conditioning, navigation radio with DVD/CD-Player and backwards facing camera with rear-view mirror function
•Car body made of fibreglass (GFK) or carbon-fibre (CFK)
•Carbon fibre for various components and car body parts
•Design variants created by use of different air intakes for the engine
•Carbon rear wing (optional available)
•Engine variants with 650 / 700 / 800 HP output
In addition to these different options and equipment packages, we can of course also accommodate any other special requests made by our customers. Just talk to us.
The consistent achievement of maximum driving dynamics and uncompromising functionality is also visible in the interior design: Every detail was designed according to functional viewpoints equivalent to those of a racing car, yet without neglecting the required amount of comfort and quality.
TAILOR-MADE PURISM AND LUXURY
Light weight was the top priority and has been achieved through the exclusive use of high-tech materials. The instrument panel, like the monocoque it is integrated into, is made of carbon fibre. The seat buckets, too, are fitted into the monocoque - although you will not find seats in the conventional meaning in the Gumpert Apollo. The seat position is adjusted to each customer individually, using padding, upholstery, adjustable pedals, and the steering column. Yet you are not required to forgo proven technology in the Gumpert Apollo: air conditioning, high-end navigation system with an integrated reverse camera, CD/DVD player and much more are available.
The Gumpert Apollo is a tailor-made sports car, and individual masterpiece. In line with this principle, customers can design the interior to meet their preferences, be it pure performance or somewhat more luxurious. Decide the colours and designs yourself, whether leather, seams or embroideries are concerned. We guarantee you a car that will fulfil all of your requirements. Just talk to us.
READY FOR RACETRACK
A sports car's supremacy is not defined by pure engine power alone: only a car that can put this power on the asphalt and create a balance between all occurring internal and external forces will leave the contestants behind, on the road and the race track. The chassis is the key to this supremacy - and Gumpert Apollo has already proven itself spectacularly under the toughest testing conditions on various test tracks, public roads and real racing tracks such as Hockenheim, Imola and the historical "Nordschleife".
The Gumpert Apollo is built as a racing car according to FIA GT and ACO regulations upon request.
Success is one of Gumpert Sportwagenmanufaktur's clearly defined objectives in racing. Naturally the factory benefits from the years of experience in motor sports and the remarkable successes of company owner Roland Gumpert.
The Gumpert Apollo made a great third place with the Belgian racing driver, Ruben Maes, in the cockpit at its racing debut at the Divinol Cup in Hockenheim in April 2005.
PROVEN PERFORMANCE IN A NEW DIMENSION
The impressive power of the high-performance eight cylinder engine is based on proven V8-high-performance aggregates from Audi. In the standard configuration this engine is optimised for use in racing and road vehicles and produces 650 HP as a Biturbo engine. Weighing only 196 kg (432 lbs.), it plays a major role in ensuring the ideal weight and fascinating driving dynamics of Gumpert Apollo. An angle of 90° between the two cylinder banks is a sign of a classic 8-cylinder engine. Efficient utilisation of its remarkable energy in the back wheels guarantees the fully-synchronised, sequential six-speed transmission that incorporates Formula 1 know-how. The short gear paths allow high speed gear changes. The arrangement of the gears in a longitudinal direction in the path of travel ensures a very low centre of gravity and optimum weight distribution. The characteristic sound of the double-flow exhaust system of the Gumpert Apollo with its 3-way catalytic converters says it best - the Gumpert Apollo is pure, unbeatable performance as reflected in the data. Like a comet, the Gumpert Apollo catapults its pilot from 0 to 100 km/h (0-62 mph) in just 3.0 seconds and only requires 8.9 seconds from 0 to 200 km/h (0-124 mph).
For connoisseurs form whom driving fun does not necessarily equal maximum motor performance and ultimate acceleration, the engine is also ideally suited for day-to-day driving at lower speeds.
DRIVING DYNAMICS REDEFINED
The Gumpert Apollo's suspension was developed to ideally complement the body's sophisticated aerodynamics. The resulting is unusual driving dynamics. The Gumpert Apollo is taut but not hard and provides driver and passenger with an extraordinar level of comfort for a car designed purely for performance. It demands the pilot's unswerving attention, yet due to its ultra-precise and predictable driving characteristics does not overwhelm, even at top speed.
An ideal weight balance of 42 to 58 percent between the front and rear axis rounds it off: It provides optimum traction during acceleration, whilst ensuring stable control even when braking in critical situations.
The Gumpert Apollo owes the finely tuned sensitivity of the suspension system and the optimised exertion of power to its double transverse control arm pushrod configuration at the front and back. The double transverse control arms ensure that the tires maintain optimum contact with the road surface, independent of the bound rate of suspension system. The suspension system allows the owner to seamlessly set the ground clearance in a range between 40 and 120 mm (1.57-4.72 in). Sealed uniball joints ensure that the forces are transferred precisely and with little friction. Stabilisers support the efficiency of the suspension and pitch compensation prevents the vehicle from diving during braking and lifting during accelerating. Despite its low trim, the Gumpert Apollo provides long wheel travel in compression and rebound, facilitating the finely-tuned and precise functioning of the absorbers and springs.
The high level of driving dynamics is supported by an agile electro-hydraulic power steering system that provides the driver with direct feedback. In order to securely transfer the 850 nm torque to the road, Gumpert Apollo has a traction control system (TCS) used in motor sports. Developed together with the company Racelogic, the permitted slip can be accurately set on the rear axle - according to the drivers wishes. An optional launch control, adjusted to the Gumpert Apollo especially, ensures swift starts like those of Formula 1. The Gumpert Apollo's driving performance is controlled with a 2-circuit high-performance braking system with adjustable 3-level Bosch-ABS, 378 mm (14.9 in) ventilated discs, and 6-piston callipers on the front and rear axle.
All of these are primary technical principles, the sportive orientation of which could not be clearer. Thanks to its suspension, the Gumpert Apollo proves itself in every curve: It redefines the term ‚driving dynamics'.
TECHNICAL SPECIFICATIONS
•DIMENSIONS◦Length 4,460 mm / 175.6"
◦Width 1,998 mm / 78.6"
◦Height 1,114 mm / 43.8"
◦Wheel base 2,700 mm / 106.3"
◦Wheel gauge ◾front: 1,670 mm / 65.7"
◾back: 1,598 mm / 62.9"
◦Boot volume: 100 l
•WEIGHT◦Kerb weight: below 1,200 kg / 2,645 lbs
◦Allowed total weight: 1,500 kg / 3,306 lbs
◦Approved axle load ◾front: 650 kg / 1,452 lbs
◾back: 900 kg / 1,984 lbs
•ENGINE◦Cylinders: 8
◦Type: 90° - V
◦Valves per cylinder: 5
◦Displacement: 4,163 cm3 / 254 in3
◦Stroke: 93 mm / 3.66"
◦Bore: 84.5 mm / 3.32"
◦Nominal output: 478 kW (650 HP) @ 6,500 rpm
◦Maximum torque: 850 Nm (626.9 lb-ft) @ 4,000 rpm [with 820 Nm @ 2700 rpm]
◦Maximum revs: 7,200 rpm
◦Compression ratio: 9,3
◦Recommended fuel type: 98 ROZ / 88 MOZ
◦Emission standard: Euro 4
•GEARBOX◦Sequential six-speed gear box with synchronisation and oil cooling
◦Twin plate clutch configuration (diameter 200 mm / 7.87" each)
◦Differential lock by Torsen
◦Custom-made gear ratios
•WHEELS◦Tire dimension ◾front: 255/35ZR19
◾back: 345/35ZR19
◦Wheel dimension ◾front: 10J x 19
◾back: 13J x 19
◦Wheel rim type: Aluminium cast wheels with centre lock
•PERFORMANCE◦Top speed: 360 km/h (224 mph)
◦0-100 km/h (0-62 mph): 3.0 s
◦0-200 km/h (0-124 mph): 8.9 s
The present work shows a brief review of some natural sources used to produce metallic nanoparticles and leaves the issue open for further discussion and new investigations. The use of nanoparticles has gained an increased attention due to its potential application as a drug delivery medium. The nanoparticle drug delivery characteristics can be engineered to obtain a certain rate or localization, increase the drug load per particle, among others. Some plants have biomolcules for specific functions as reduction and stabilization of the particles formed inside. These biomolecules are for example polyphenolic compounds, hydroxyflavons, oxalic acid, terpenoids and many more. Even the exact nature of the bioreduction of metal ions is not completely understood, the production and investigation of metallic nanoparticles formed in plants have been increased on last 10 years. A wide variety of sizes, 5-150 nm, and shapes, spherical, triangular, rods, hexagonal, have been obtained in plants and fruit extracts. The plant Phaseolus vulgaris (beans) was used to form silver nanoparticles through bioreduction of Ag (I) to Ag (0) in the living plant. Two groups of plants were used. One group of plants grew at garden soil and the other in cotton. To determine the nanoparticles formed in plants, they have been analyzed by using X-ray absorption spectroscopy (XAS). In both cases, a solution of AgNO3 was added initially in a concentration of 0.01M then the concentration was changed to 0.1 mM.). In stem and leaves silver were found as Ag (0). The XAS spectra were adjusted for more accurate results. Plants may reduce the valence of silver and form nanoparticles. The TEM images show that the average particle size is 18 nm, showing in various forms and a greater number of them in the leaves of plants grown in soil. Results also indicate that nanoparticles obtained from the stem and leaves have different forms and they can affect the soil pH.
Biography of author(s)
Jose Alberto Duarte Moller
Universidad DeLaSalle Bajío, Av. Universidad 602, Col. Lomas del Campestre, León, Gto. 37150, Méxicoe-mail: jduarte@delasalle.edu.nx
Anel Rocío Carrasco Hernández
Centro de Investigación en Materiales Avanzados, S. C. Miguel de Cervantes 120, Complejo Industrial Chihuahua. Chihuahua, Chih. 31136, México
Esperanza Gallegos Loya
Centro de Investigación en Materiales Avanzados, S. C. Miguel de Cervantes 120, Complejo Industrial Chihuahua. Chihuahua, Chih. 31136, México
C. González-Valenzuela
Universidad Autónoma de Chihuahua Av. Escorza No. 900, Zona Centro. CP. 31000, Chihuahua, Chih., México
E. Orrantia
Centro de Investigación en Materiales Avanzados, S. C. Miguel de Cervantes 120, Complejo Industrial Chihuahua. Chihuahua, Chih. 31136, México
Judith Parra Berumen
Centro de Investigación en Materiales Avanzados, S. C. Miguel de Cervantes 120, Complejo Industrial Chihuahua. Chihuahua, Chih. 31136, México
Olivares R. Juan Manuel
Universidad Tecnológica de San Juan del Río. Av. Palma No. 125, Col La Palma No. 125, Col. Vista Hermosa| San Juan del Río, Qro.| C.P. 76800. México
Rosa Isela Ruvalcaba Ontiveros
Centro de Investigación en Materiales Avanzados, S. C. Miguel de Cervantes 120, Complejo Industrial Chihuahua. Chihuahua, Chih. 31136, México
Read full article: bp.bookpi.org/index.php/bpi/catalog/view/19/22/109-1
View More: www.youtube.com/watch?v=K5l9b2LSp0M