View allAll Photos Tagged SpitzerSpaceTelescope

From all of us here at Marshall Space Flight Center, we wish you a healthy and happy holiday season!

 

Celebrate with a stellar snowflake that sits within the cosmic Christmas Tree Cluster!

 

Image Credit: NASA/JPL-Caltech/CfA

 

#NASA #NASAMarshall #JPL #JetPropulsionLaboratory #SpitzerSpaceTelescope #Spitzer #ChristmasTreeCluster

 

Read more

 

More about NASA's Spitzer Space Telescope

 

More about NASA's Wide-field Infrared Survey Explorer

 

NASA Media Usage Guidelines

In the summer of 2022, NASA's James Webb Space Telescope released images from some of its earliest observations with the newly commissioned telescope. Almost instantaneously, these stunning images landed everywhere from the front pages of news outlets to larger-than-life displays in Times Square.

 

Webb, however, will not pursue its exploration of the universe on its own. It is designed to work in concert with NASA's many other telescopes as well as facilities both in space and on the ground. These new versions of Webb’s first images combine its infrared data with X-rays collected by NASA’s Chandra X-ray Observatory, underscoring how the power of any of these telescopes is only enhanced when joined with others.

 

The four galaxies within Stephan’s Quintet are undergoing an intricate dance choreographed by gravity. (The fifth galaxy, on the left, is an interloping galaxy at a different distance.) The Webb image (red, orange, yellow, green, blue) of this object features never-seen-before details of the results of these interactions, including sweeping tails of gas and bursts of star formation. The Chandra data (light blue) of this system has uncovered a shock wave that heats gas to tens of millions of degrees, as one of the galaxies passes through the others at speeds of around 2 million miles per hour. This new composite also includes infrared data from NASA’s now-retired Spitzer Space Telescope (red, green, blue).

 

Image credit: X-ray: NASA/CXC/SAO; IR (Spitzer): NASA/JPL-Caltech; IR (Webb): NASA/ESA/CSA/STScI

 

#NASAMarshall #Chandra #NASA #ChandraXrayObservatory #jwst #jameswebbspacetelescope #SpitzerSpaceTelescope #galaxy

 

Read more

 

Read more about the Chandra X-ray Observatory

 

More about the James Webb Space Telescope

 

NASA Media Usage Guidelines

What looks like a red butterfly in space is in reality a nursery for hundreds of baby stars, revealed in this infrared image from NASA's Spitzer Space Telescope. Officially named W40, the butterfly is a nebula – a giant cloud of gas and dust in space where new stars may form. The butterfly's "wings" are giant bubbles of hot, interstellar gas blowing from the hottest, most massive stars in this region.

 

The material that forms W40's wings was ejected from a dense cluster of stars that lies between the wings in the image. The hottest, most massive of these stars, W40 IRS 1a, lies near the center of the star cluster.

 

W40 is about 1,400 light-years from the Sun, about the same distance as the well-known Orion nebula, although the two are almost 180 degrees apart in the sky.

Image Credit: NASA/JPL-Caltech

 

#NASA #NASAMarshall #JPL #JetPropulsionLaboratory #SpitzerSpaceTelescope #Spitzer #nebula

 

Read more

 

More about NASA's Spitzer Space Telescope

 

NASA Media Usage Guidelines

2006 images from three of NASA's Great Observatories were combined to create this spectacular, multiwavelength view of the starburst galaxy M82. Optical light from stars (yellow-green/Hubble Space Telescope) shows the disk of a modest-sized, apparently normal galaxy.

 

Another Hubble observation designed to image 10,000 degree Celsius hydrogen gas (orange) reveals a startlingly different picture of matter blasting out of the galaxy. The Spitzer Space Telescope infrared image (red) shows that cool gas and dust are also being ejected. Chandra's X-ray image (blue) reveals gas that has been heated to millions of degrees by the violent outflow. The eruption can be traced back to the central regions of the galaxy where stars are forming at a furious rate, some 10 times faster than in the Milky Way Galaxy.

 

Many of these newly formed stars are very massive and race through their evolution to explode as supernovas. Vigorous mass loss from these stars before they explode, and the heat generated by the supernovas drive the gas out of the galaxy at millions of miles per hour. It is thought that the expulsion of matter from a galaxy during bursts of star formation is one of the main ways of spreading elements like carbon and oxygen throughout the universe.

 

The burst of star formation in M82 is thought to have been initiated by shock waves generated in a close encounter with a large nearby galaxy, M81, about 100 million years ago. These shock waves triggered the collapse of giant clouds of dust and gas in M82. In another 100 million years or so, most of the gas and dust will have been used to form stars, or blown out of the galaxy, so the starburst will subside.

 

Image credit: X-ray: NASA/CXC/JHU/D.Strickland; Optical: NASA/ESA/STScI/AURA/The Hubble Heritage Team; IR: NASA/JPL-Caltech/Univ. of AZ/C. Engelbracht

 

#NASA #MarshallSpaceFlightCenter #MSFC #Marshall #ChandraXrayObservatory #cxo #HubbleSpaceTelescope #HST #astronomy #space #astrophysics #solarsystemandbeyond #gsfc #Goddard #GoddardSpaceFlightCenter #ESA #EuropeanSpaceAgency #SpitzerSpaceTelescope #JPL #JetPropulsionLaboratory #galaxy #starburstgalaxy

 

Read more

 

More about the Chandra X-ray Observatory

 

NASA Media Usage Guidelines

This Jan. 10, 2013, composite image of the giant barred spiral galaxy NGC 6872 combines visible light images from the European Southern Observatory's Very Large Telescope with far-ultraviolet data from NASA's Galaxy Evolution Explorer (GALEX) and infrared data acquired by NASA's Spitzer Space Telescope. NGC 6872 is 522,000 light-years across, making it more than five times the size of the Milky Way galaxy. In 2013, astronomers from the United States, Chile, and Brazil found it to be the largest-known spiral galaxy, based on archival data from GALEX.

 

Image Credit: NASA/ESO/JPL-Caltech/DSS

 

#NASA #NASAMarshall #JPL #JetPropulsionLaboratory #SpitzerSpaceTelescope #Spitzer #GALEX #galaxy

 

Read more

 

More about NASA's Spitzer Space Telescope

 

NASA Media Usage Guidelines

Gaseous swirls of hydrogen, sulfur, and hydrocarbons cradle a collection of infant stars in this composite image of the Orion Nebula, as seen by the Hubble Space Telescope and the Spitzer Space telescope. Together, the two telescopes expose carbon-rich molecules in the cosmic cloud of this star-formation factory located 1,500 light-years away.

 

Hubble's ultraviolet and visible-light view reveal hydrogen and sulfur gas that have been heated and ionized by intense ultraviolet radiation from the massive stars, collectively known as the "Trapezium." Meanwhile, Spitzer's infrared view exposes carbon-rich molecules in the cloud. Together, the telescopes expose the stars in Orion as a rainbow of dots sprinkled throughout the image.

 

Image Credit: NASA/JPL-Caltech STScI

 

#NASA #MarshallSpaceFlightCenter #MSFC #Marshall #HubbleSpaceTelescope #HST #astronomy #space #astrophysics #solarsystemandbeyond #gsfc #Goddard #GoddardSpaceFlightCenter #JPL #JetPropulstionLaboratory #nebula #OrionNebula

 

Read more

 

More about the Hubble Space Telescope

 

NASA Media Usage Guidelines

Out of the dark and dusty cosmos comes an unusual valentine — a stellar nursery resembling a shimmering pink rosebud. This cluster of newborn stars, called a reflection nebula, was captured in 2004 by state-of-the-art infrared detectors onboard NASA's Spitzer Space Telescope.

 

A cluster of newborn stars herald their birth in this interstellar Valentine's Day commemorative picture obtained with NASA's Spitzer Space Telescope. These bright young stars are found in a rosebud-shaped (and rose-colored) nebulosity known as NGC 7129. The star cluster and its associated nebula are located at a distance of 3300 light-years in the constellation Cepheus.

 

Image Credit: NASA/JPL/Caltech/Harvard-Smithsonian CfA

 

#NASA #NASAMarshall #JPL #JetPropulsionLaboratory #SpitzerSpaceTelescope #Spitzer #nebula

 

Read more

 

More about NASA's Spitzer Space Telescope

 

NASA Media Usage Guidelines

Sixteen years ago, NASA launched its Spitzer Space Telescope into orbit around the Sun. Since the observatory launched on Aug. 25, 2003, it has been lifting the veil on the wonders of the cosmos, from our own solar system to faraway galaxies, using infrared light. Spitzer's primary mission lasted five-and-a-half years and ended when it ran out of the liquid helium coolant necessary to operate two of its three instruments. But its passive-cooling design has allowed part of its third instrument to continue operating for more than 10 additional years. The mission is scheduled to end on Jan. 30, 2020.

 

This Spitzer image shows the giant star Zeta Ophiuchi and the bow shock, or shock wave, in front of it. Visible only in infrared light, the bow shock is created by winds that flow from the star, making ripples in the surrounding dust. Located roughly 370 light-years from Earth, Zeta Ophiuchi dwarfs our Sun: It is about six times hotter, eight times wider, 20 times more massive and about 80,000 times as bright. Even at its great distance, it would be one of the brightest stars in the sky were it not largely obscured by dust clouds.

 

Image credit: NASA/JPL-Caltech

 

Read more

 

More about the Spitzer Space Telescope

 

NASA Media Usage Guidelines

Newborn stars, hidden behind thick dust, are revealed in this image of a section of the so-called Christmas Tree Cluster from NASA's Spitzer Space Telescope. The newly revealed infant stars appear as pink and red specks toward the center and appear to have formed in regularly spaced intervals along linear structures in a configuration that resembles the spokes of a wheel or the pattern of a snowflake. Hence, astronomers have nicknamed this the "Snowflake Cluster."

 

Star-forming clouds like this one are dynamic and evolving structures. Since the stars trace the straight line pattern of spokes of a wheel, scientists believe that these are newborn stars, or "protostars." At a mere 100,000 years old, these infant structures have yet to "crawl" away from their location of birth. Over time, the natural drifting motions of each star will break this order, and the snowflake design will be no more.

 

While most of the visible-light stars that give the Christmas Tree Cluster its name and triangular shape do not shine brightly in Spitzer's infrared eyes, all of the stars forming from this dusty cloud are considered part of the cluster.

 

Like a dusty cosmic finger pointing up to the newborn clusters, Spitzer also illuminates the optically dark and dense Cone Nebula, the tip of which can be seen towards the bottom left corner of the image.

 

Image Credit: NASA/JPL-Caltech/P.S. Teixeira (Center for Astrophysics)

 

#NASA #nasa #marshallspaceflightcenter #msfc #marshall #astronomy #space #astrophysics #JetPropulsionLaboratory #jpl #Spitzer #SpitzerSpaceTelescope

 

Read more

 

More about the Spitzer Space Telescope

 

NASA Media Usage Guidelines

In this large celestial mosaic taken by NASA's Spitzer Space Telescope and published in 2019, there's a lot to see, including multiple clusters of stars born from the same dense clumps of gas and dust. Some of these clusters are older than others and more evolved, making this a generational stellar portrait. This image is of the Cepheus C and Cepheus B regions and combines data from Spitzer's IRAC and MIPS instruments.

 

The grand green-and-orange delta filling most of the image is a faraway nebula, or a cloud of gas and dust in space. Though the cloud may appear to flow from the bright white spot at its tip, it is actually what remains of a much larger cloud that has been carved away by radiation from stars. The bright region is illuminated by massive stars, belonging to a cluster that extends above the white spot. The white color is the combination of four colors (blue, green, orange and red), each representing a different wavelength of infrared light, which is invisible to human eyes. Dust that has been heated by the stars' radiation creates the surrounding red glow.

 

Image Credit: NASA/JPL-Caltech

 

#NASA #nasa #marshallspaceflightcenter #msfc #marshall #astronomy #space #astrophysics #JetPropulsionLaboratory #jpl #Spitzer #SpitzerSpaceTelescope #nebula

 

Read more

 

More about the Spitzer Space Telescope

 

NASA Media Usage Guidelines

The magnificent spiral arms of the nearby galaxy Messier 81 are highlighted in this image from NASA's Spitzer Space Telescope. Located in the northern constellation of Ursa Major, this galaxy is located about 12 million light-years from Earth.

 

NASA is celebrating the legacy of one of its Great Observatories, the Spitzer Space Telescope, which has studied the universe in infrared light for more than 16 years. The Spitzer mission will come to a close on Jan. 30.

 

Image credit: NASA/JPL-Caltech

 

Read more

 

More about the Spitzer Space Telescope

 

NASA Media Usage Guidelines

These two images contain some of the thousands of stars from a new survey by NASA's Chandra X-ray Observatory, as reported in our latest press release. This was the largest survey of star formation ever conducted in X-rays, covering some 24,000 individual stars in 40 different regions. The study outlines the link between very powerful flares, or outbursts, from young stars and the impact they could have on planets in orbit around them.

 

Within this large dataset, scientists identified over a thousand young stars that gave off flares that are vastly more energetic than the most powerful flare ever observed by modern astronomers on the Sun, the "Solar Carrington Event" in 1859. "Super" flares are at least one hundred thousand times more energetic than the Carrington Event and "mega" flares up to 10 million times more energetic.

 

The Lagoon Nebula (left) is an area about 4,400 light years from Earth in the Milky Way galaxy where stars are actively forming. This field-of-view shows the southern portion of a large bubble of hydrogen gas, plus a cluster of young stars. The Chandra data (purple) have been combined with infrared data (blue, gold, and white) from the Spitzer Space Telescope in this composite image.

 

A sequence of X-ray images from Chandra show a young star (called "Lagoon 180402.88-242140.0") in the Lagoon Nebula that experienced a "mega-flare". This flare was about 250,000 more energetic than the most powerful flare observed by modern astronomers on the Sun, and lasted for about three and a half hours. It was followed by a smaller flare. The total duration of the movie covers almost 23 hours and 27 images are included. This star is only about 1.5 million years old — compared to the Sun's age of 4.5 billion years — and has a mass about three times that of the Sun. (Note: The apparent changes in the shape of the X-ray source are caused by noise rather than a true change in shape.)

 

The image on the right shows the star-forming region called RCW 120, which is also in the Milky Way, but slightly farther away at a distance of about 5,500 light years. This view of RCW 120, which has the same wavelengths and colors as the Lagoon composite, contains an expanding bubble of hydrogen gas, about 13 light years across. This structure may be sweeping up material into a dense shell and triggering the formation of stars.

 

Image credit: X-ray: NASA/CXC/Penn State/K. Getman, et al; Infrared: NASA/JPL/Spitzer

 

#NASA #MarshallSpaceFlightCenter #MSFC #Marshall #ChandraXrayObservatory #cxo #star #nebula #Spitzer #SpitzerSpaceTelescope #JPL #JetPropulsionLaboratory

 

Read more

 

More about the Chandra X-ray Observatory

 

NASA Media Usage Guidelines

 

In the summer of 2022, NASA's James Webb Space Telescope released images from some of its earliest observations with the newly commissioned telescope. Almost instantaneously, these stunning images landed everywhere from the front pages of news outlets to larger-than-life displays in Times Square.

 

Webb, however, will not pursue its exploration of the universe on its own. It is designed to work in concert with NASA's many other telescopes as well as facilities both in space and on the ground. These new versions of Webb’s first images combine its infrared data with X-rays collected by NASA’s Chandra X-ray Observatory, underscoring how the power of any of these telescopes is only enhanced when joined with others.

 

The Cartwheel galaxy gets its shape from a collision with another smaller galaxy — located outside the field of this image — about 100 million years ago. When this smaller galaxy punched through the Cartwheel, it triggered star formation that appears around an outer ring and elsewhere throughout the galaxy. X-rays seen by Chandra (blue and purple) come from superheated gas, individual exploded stars, and neutron stars and black holes pulling material from companion stars. Webb’s infrared view (red, orange, yellow, green, blue) shows the Cartwheel galaxy plus two smaller companion galaxies — not part of the collision — against a backdrop of many more distant galactic cousins.

 

Image credit: X-ray: NASA/CXC/SAO; IR (Spitzer): NASA/JPL-Caltech; IR (Webb): NASA/ESA/CSA/STScI

 

#NASAMarshall #Chandra #NASA #ChandraXrayObservatory #jwst #jameswebbspacetelescope #SpitzerSpaceTelescope #galaxy

 

Read more

 

Read more about the Chandra X-ray Observatory

 

More about the James Webb Space Telescope

 

NASA Media Usage Guidelines

A galaxy about 23 million light years away is the site of impressive, ongoing fireworks. Rather than paper, powder and fire, this galactic light show involves a giant black hole, shock waves and vast reservoirs of gas.

 

This galactic fireworks display is taking place in NGC 4258, also known as M106, a spiral galaxy like our own Milky Way. This galaxy is famous, however, for something that our galaxy doesn’t have – two extra spiral arms that glow in X-ray, optical and radio light. These features, or anomalous arms, are not aligned with the plane of the galaxy, but instead intersect with it.

 

The anomalous arms are seen in this new composite image, where X-rays from NASA's Chandra X-ray Observatory are blue, radio data from the NSF's Karl Jansky Very Large Array are purple, optical data from NASA's Hubble Space Telescope are yellow and infrared data from NASA's Spitzer Space Telescope are red.

 

A new study made with Spitzer shows that shock waves, similar to the sonic booms from supersonic planes, are heating large amounts of gas – equivalent to about 10 million suns. What is generating these shock waves? Researchers think that the supermassive black hole at the center of NGC 4258 is producing powerful jets of high-energy particles. These jets strike the disk of the galaxy and generate shock waves. These shock waves, in turn, heat the gas – composed mainly of hydrogen molecules – to thousands of degrees.

 

The Chandra X-ray image reveals huge bubbles of hot gas above and below the plane of the galaxy. These bubbles indicate that much of the gas that was originally in the disk of the galaxy has been heated and ejected into the outer regions by the jets from the black hole.

 

Image credit: X-ray: Chandra: NASA/CXC/SAO/E. O'Sullivan; XMM: ESA/XMM/E. O'Sullivan; Optical: SDSS

 

Read more

 

More about Chandra's 20th Anniversary

 

More about the Chandra X-ray Observatory

 

NASA Media Usage Guidelines

 

The center of our Milky Way galaxy is hidden from the prying eyes of optical telescopes by clouds of obscuring dust and gas. But in this stunning vista, the Spitzer Space Telescope's infrared cameras penetrate much of the dust, revealing the stars of the crowded galactic center region. The upcoming James Webb Space Telescope will offer a much-improved infrared view, teasing out fainter stars and sharper details.

 

The center of our galaxy is a crowded place: A black hole weighing 4 million times as much as our Sun is surrounded by millions of stars whipping around it at breakneck speeds. This extreme environment is bathed in intense ultraviolet light and X-ray radiation. Yet much of this activity is hidden from our view, obscured by vast swaths of interstellar dust.

 

NASA’s James Webb Space Telescope is designed to view the universe in infrared light, which is invisible to the human eye, but is very important for looking at astronomical objects hidden by dust. After its launch, Webb will gather infrared light that has penetrated the dusty veil, revealing the galactic center in unprecedented detail.

 

Image credit: NASA/JPL-Caltech

 

Read more

 

More about the Spitzer Space Telescope

 

NASA Media Usage Guidelines

 

This 2009 composite image of the Tycho supernova remnant combines X-ray and infrared observations obtained with NASA's Chandra X-ray Observatory and Spitzer Space Telescope, respectively, and the Calar Alto observatory, Spain. It shows the scene more than four centuries after the brilliant star explosion witnessed by Tycho Brahe and other astronomers of that era.

 

The explosion has left a blazing hot cloud of expanding debris (green and yellow) visible in X-rays. The location of ultra-energetic electrons in the blast's outer shock wave can also be seen in X-rays (the circular blue line). Newly synthesized dust in the ejected material and heated pre-existing dust from the area around the supernova radiate at infrared wavelengths of 24 microns (red). Foreground and background stars in the image are white.

 

Image credit: X-ray: NASA/CXC/SAO, Infrared: NASA/JPL-Caltech; Optical: MPIA, Calar Alto, O.Krause et al.

 

Read more

 

More about the Chandra X-ray Observatory

 

NASA Media Usage Guidelines

New Year’s Eve may be past, but we are not done with fireworks just yet. This image, which includes data from ESA’s Herschel Space Observatory, shows the remnants of an explosion – not of the colourful type ignited during celebrations, but of the stellar kind.

 

The object in the image, dubbed G54.1+0.3, is a supernova remnant, the leftovers of a massive star that died a violent death. It is located about 20,000 light-years away from us, in the northern constellation of Sagitta, the arrow.

 

As the star ran out of fuel, it shed its outer layers in a powerful explosion while its core collapsed due to gravity, eventually forming an extremely dense neutron star. The remnant of this particular explosion is a pulsar, a fast-rotating neutron star that shines brightly in the radio and X-ray parts of the electromagnetic spectrum.

 

Besides the stellar remnant, the dust and gas in the surrounding envelope are also quite remarkable. According to a recent study by J. Rho and collaborators, these layers contain silica – also known as silicon dioxide, or SiO2 – a major component of many types of rocks on Earth, making up about 60 percent of our planet’s crust. The study is the first to show that this key ingredient of everyday materials like glass and sand can be formed in supernova explosions.

 

This image combines infrared and X-ray data collected by three space observatories and radio observations obtained from the ground.

 

The data from Herschel, shown in green hues in this view and corresponding to the far-infrared wavelength of 70 microns, played a key part in helping astronomers detect silica in the dusty envelope of this supernova remnant, along with mid-infrared observations from NASA’s Spitzer Space Telescope, corresponding to 24 microns and shown in blue.

 

The radio data, obtained with the Karl G. Jansky Very Large Array in New Mexico, USA, are shown in red, while yellow hues show the X-ray data from NASA’s Chandra X-ray Observatory

 

Operating between 2009 and 2013, Herschel left a legacy of treasured data that are still producing a multitude of scientific results every year. The study of supernova remnant G54.1+0.3 is based on archival data from one of the observatory’s key programmes, the Herschel infrared Galactic Plane Survey (Hi-GAL).

 

Credits: NASA/JPL-Caltech/CXC/ESA/NRAO/J. Rho (SETI Institute)

If you put 228 old TV sets together, the poorly synced views on their screens might look a bit like what you see here. But the science behind these images – and the technology required to obtain them – is far more fascinating than what their appearance might suggest.

 

Rather than pixelated colourful static, the vast majority of these 228 thumbnail images shows dense 'over-concentrations' of far-away galaxies that could be the seeds of the galaxy clusters we see in today’s Universe.

 

Today, 13.8 billion years after the Big Bang, most galaxies are kept together by gravity into groups or larger clusters, but how and when exactly these cosmic structures first started to form is still an open question. Looking far back in time, astronomers observed collections of galaxies that they believe could be bound together by gravity. If they are right, this image could be showing us the birth of over 200 future galaxy clusters, at a time when the Universe was only three billion years old.

 

This science feat was possible by combining the powers of Planck and Herschel, two ESA space telescopes that were launched together on an Ariane 5 rocket eleven years ago, on 14 May 2009.

 

The Planck mission spent more than four years scanning the sky to collect and study the remnant radiation left over after the Big Bang, the cosmic microwave background. The Herschel space observatory, which also operated until 2013, performed detailed observations of a multitude of regions across the sky from the far infrared to the submillimetre part of the electromagnetic spectrum.

 

This image is part of a study published in 2015, in which a team of astronomers used Planck data to identify more than 2000 rare and very distant sources shining brightly in submillimetre wavelengths. One tenth of these sources were then observed using the SPIRE instrument on Herschel at three different wavelengths – 250, 350 and 500 microns – and combined with existing similar observations.

 

Unleashing the powers of Herschel, the team was able to ‘zoom in’ into the 228 most promising sources spotted with Planck to find clues about their nature. The evidence pointed to the vast majority of them being infant clusters of galaxies. The Herschel observations revealed in particular that the galaxies were forming stars at an impressive rate – about 700 solar-mass stars per year, roughly 700 times more intensely than our Milky Way does today.

 

A few years later, astronomers used NASA’s Spitzer Space Telescope, which completed its mission earlier this year, to scrutinise 82 of the previously spotted candidates in detail at near-infrared wavelengths. The new data showed without ambiguity that most of these objects consist of far-away galaxies in large concentrations. But some mysteries remain: what is the origin of such a prolific star-formation activity? Are these structures real proto-clusters? These questions will keep astronomers busy for a while.

 

Credits: ESA/Herschel/SPIRE/Planck consortia and H. Dole, D. Guéry, IAS, CNRS, Université Paris-Saclay

This image from NASA's Spitzer Space Telescope shows the Tarantula Nebula in two wavelengths of infrared light. The red regions indicate the presence of particularly hot gas, while the blue regions are interstellar dust that is similar in composition to ash from coal or wood-burning fires on Earth.

 

NASA is celebrating the legacy of one of its Great Observatories, the Spitzer Space Telescope, which has studied the universe in infrared light for more than 16 years. The Spitzer mission will come to a close on Jan. 30.

 

Image credit: NASA/JPL-Caltech

 

Read more

 

More about the Spitzer Space Telescope

 

NASA Media Usage Guidelines

In 2020, astronomers added a new member to an exclusive family of exotic objects with the discovery of a magnetar. New observations from NASA’s Chandra X-ray Observatory help support the idea that it is also a pulsar, meaning it emits regular pulses of light.

 

Magnetars are a type of neutron star, an incredibly dense object mainly made up of tightly packed neutron, which forms from the collapsed core of a massive star during a supernova.

 

What sets magnetars apart from other neutron stars is that they also have the most powerful known magnetic fields in the universe. For context, the strength of our planet’s magnetic field has a value of about one Gauss, while a refrigerator magnet measures about 100 Gauss. Magnetars, on the other hand, have magnetic fields of about a million billion Gauss. If a magnetar was located a sixth of the way to the Moon (about 40,000 miles), it would wipe the data from all of the credit cards on Earth.

 

On March 12, 2020, astronomers detected a new magnetar with NASA’s Neil Gehrels Swift Telescope. This is only the 31st known magnetar, out of the approximately 3,000 known neutron stars.

 

After follow-up observations, researchers determined that this object, dubbed J1818.0-1607, was special for other reasons. First, it may be the youngest known magnetar, with an age estimated to be about 500 years old. This is based on how quickly the rotation rate is slowing and the assumption that it was born spinning much faster. Secondly, it also spins faster than any previously discovered magnetar, rotating once around every 1.4 seconds.

 

Other astronomers have also observed J1818.0-1607 with radio telescopes, such as the NSF’s Karl Jansky Very Large Array (VLA), and determined that it gives off radio waves. This implies that it also has properties similar to that of a typical “rotation-powered pulsar,” a type of neutron star that gives off beams of radiation that are detected as repeating pulses of emission as it rotates and slows down. Only five magnetars including this one have been recorded to also act like pulsars, constituting less than 0.2% of the known neutron star population.

 

Image credit: X-ray: NASA/CXC/Univ. of West Virginia/H. Blumer; Infrared (Spitzer and Wise): NASA/JPL-CalTech/Spitzer

 

#NASA #MarshallSpaceFlightCenter #MSFC #Marshall #chandraxrayobservatory #ChandraXRay #cxo #chandra #astronomy #space #astrophysics #nasamarshallspaceflightcenter #solarsystemandbeyond #Spitzer #SpitzerSpaceTelescope #gsfc #Goddard #GoddardSpaceFlightCenter #galaxy #JPL #JetPropulsionLaboratory #magnetar #pulsar

 

Read more

 

More about the Chandra X-ray Observatory

 

NASA Media Usage Guidelines

This new multiwavelength image of the Crab Nebula combines X-ray light from the Chandra X-ray Observatory (in blue) with visible light from the Hubble Space Telescope (in yellow) and infrared light seen by the Spitzer Space Telescope (in red). This particular combination of light from across the electromagnetic spectrum highlights the nested structure of the pulsar wind nebula. The X-rays reveal the beating heart of the Crab, the neutron-star remnant from the supernova explosion seen almost a thousand years ago. This neutron star is the super-dense collapsed core of an exploded star and is now a pulsar that rotates at a blistering rate of 30 times per second. A disk of X-ray-emitting material, spewing jets of high-energy particles perpendicular to the disk, surrounds the pulsar. The infrared light in this image shows synchrotron radiation, formed from streams of charged particles spiraling around the pulsar's strong magnetic fields. The visible light is emission from oxygen that has been heated by higher-energy (ultraviolet and X-ray) synchrotron radiation. The delicate tendrils seen in visible light form what astronomers call a "cage" around the rich tapestry of synchrotron radiation, which in turn encompasses the energetic fury of the X-ray disk and jets. These multiwavelength interconnected structures illustrate that the pulsar is the main energy source for the emission seen by all three telescopes. The Crab Nebula resides 6,500 light-years from Earth in the constellation Taurus.

 

Image credit: NASA, ESA and J. DePasquale (STScI) and R. Hurt (Caltech/IPAC)

 

Read more

 

More about the Chandra X-ray Observatory

 

NASA Media Usage Guidelines

Editor's Note: A larger version of the image I posted earlier. By request. :)

 

A beautiful new image of two colliding galaxies has been released by NASA's Great Observatories. The Antennae galaxies, located about 62 million light years from Earth, are shown in this composite image from the Chandra X-ray Observatory (blue), the Hubble Space Telescope (gold), and the Spitzer Space Telescope (red).

 

The collision, which began more than 100 million years ago and is still occurring, has triggered the formation of millions of stars in clouds of dusts and gas in the galaxies. The most massive of these young stars have already sped through their evolution in a few million years and exploded as supernovas.

 

The X-ray image from Chandra shows huge clouds of hot, interstellar gas that have been injected with rich deposits of elements from supernova explosions. This enriched gas, which includes elements such as oxygen, iron, magnesium and silicon, will be incorporated into new generations of stars and planets. The bright, point-like sources in the image are produced by material falling onto black holes and neutron stars that are remnants of the massive stars. Some of these black holes may have masses that are almost one hundred times that of the Sun.

 

The Spitzer data show infrared light from warm dust clouds that have been heated by newborn stars, with the brightest clouds lying in the overlap region between the two galaxies. The Hubble data reveal old stars in red, filaments of dust in brown and star-forming regions in yellow and white. Many of the fainter objects in the optical image are clusters containing thousands of stars.

 

The Antennae galaxies take their name from the long antenna-like "arms," seen in wide-angle views of the system. These features were produced by tidal forces generated in the collision.

  

Read entire caption/view more images: chandra.harvard.edu/photo/2010/antennae/

 

Image credit: X-ray: NASA/CXC/SAO/J.DePasquale; IR: NASA/JPL-Caltech; Optical: NASA/STScI

 

Caption credit: Harvard-Smithsonian Center for Astrophysics

 

Read more about Chandra:

www.nasa.gov/chandra

 

p.s. You can see all of our Chandra photos in the Chandra Group in Flickr at: www.flickr.com/groups/chandranasa/ We'd love to have you as a member!

This infrared image of the Orion Nebula features plenty of dust but no stars. In these infrared wavelengths, it’s possible to see hot spots where new stars are forming, while unseen bright, massive stars have carved out caverns of empty space.

 

Image Credit: NASA

 

#NASA #NASAMarshall #JPL #JetPropulsionLaboratory #ESA #EuropeanSpaceAgency #SpitzerSpaceTelescope #Spitzer #WISE #nebula #OrionNebula

 

Read more

 

More about NASA's Spitzer Space Telescope

 

More about NASA's Wide-field Infrared Survey Explorer

 

NASA Media Usage Guidelines

This 2013 composite image of Kepler's supernova remnant shows Spitzer infrared emission in pink and Chandra X-ray emission from iron in blue. The infrared emission is very similar in shape and location to X-ray emission (not shown here) from material that was expelled by the giant star companion to the white dwarf before the latter exploded. This material forms a disk around the center of the explosion as shown in the labeled version. This composite figure also shows a remarkably large and puzzling concentration of iron on the left side of the center of the remnant but not the right. The authors speculate that the cause of this asymmetry might be the "shadow" in iron that was cast by the companion star, which blocked the ejection of material. Previously, theoretical work has suggested this shadowing is possible for Type Ia supernova remnants.

 

Credit: X-ray: NASA/CXC/NCSU/M.Burkey et al; Infrared: NASA/JPL-Caltech.

 

#NASAMarshall #NASA #astrophysics #NASAChandra #Space #Chandra #Telescope #Universe #supernova #NASASpitzer

 

Read More

 

Read more about the Chandra X-ray Observatory

 

NASA Media Usage Guidelines

The spiral galaxy known as Messier 81 (M81) has a rosy tint in this June 1, 2007, composite image that incorporates data from NASA’s Spitzer and Hubble Space Telescopes, and NASA’s Galaxy Evolution Explorer. Discovered by the German astronomer Johann Elert Bode in 1774, M81 is one of the brightest galaxies in the night sky. It is located 11.6 million light-years from Earth in the constellation Ursa Major.

 

The galaxy’s spiral arms, which wind all the way down into its nucleus, are made up of young, bluish, hot stars formed in the past few million years. They also host a population of stars formed in an episode of star formation that started about 600 million years ago.

 

Credit: NASA/JPL-Caltech/ESA/Harvard-Smithsonian CfA

 

#NASAMarshall #NASA #NASAHubble #Hubble #NASAGoddard #galaxy #NASASpitzer

 

Read more

 

Read more about NASA’s Hubble Space Telescope

 

NASA Media Usage Guidelines

As Humanity began to explore the universe there became a need to record and protect and preserve the historical past. Arkhaiologos II is the second Anthropological, Archeological, and Historical research vessel that roams the universe assisting local communities in preserving their cultural heritage and documenting sites for further investigation. The ship does not collect any artifacts from sites they locate besides those donated from local communities.

 

Length: 103 Studs

Scale: Who Knows?

 

Inspiration from: mark zhang - markzhang.artstation.com/projects/vDkayx

Backround by: NASA - images.nasa.gov/details/PIA08042

This 2009 image of the spiral galaxy Messier 101 (M101) is a composite of data from NASA's Chandra X-ray Observatory, the Hubble Space Telescope, and the Spitzer Space Telescope. The colors correspond to the following wavelengths: The X-rays detected by Chandra are colored blue. Sources of X-rays include million-degree gas, the debris from exploded stars, and material zooming around black holes and neutron stars. The red color shows Spitzer's view in infrared light. It highlights the heat emitted by dust lanes in the galaxy where stars can form. Finally, the yellow coloring is visible light data from Hubble. Most of this light comes from stars, and they trace the same spiral structure as the dust lanes.

 

M101 is a face-on spiral galaxy about 22 million light years away in the constellation Ursa Major. It is similar to the Milky Way galaxy in many ways, but is larger. The new "Great Observatories" composite image of M101 was distributed to over 100 planetariums, museums, nature centers, and schools across the country in conjunction with Galileo's birthday on February 15. The year 2009 marks the 400th anniversary of Galileo's telescope and has been designated the International Year of Astronomy to celebrate this historic anniversary.

 

Image credit: X-ray: NASA/CXC/JHU/K.Kuntz et al.; Optical: NASA/ESA/STScI/JHU/K. Kuntz et al; IR: NASA/JPL-Caltech/STScI/K. Gordon

 

Read more

 

More about the Chandra X-ray Observatory

 

NASA Media Usage Guidelines

Editor's Note: This is an archive image from 2006.

 

Images from three of NASA's Great Observatories were combined to create this spectacular, multiwavelength view of the starburst galaxy M82. Optical light from stars (yellow-green/Hubble Space Telescope) shows the disk of a modest-sized, apparently normal galaxy.

 

Another Hubble observation designed to image 10,000 degree Celsius hydrogen gas (orange) reveals a startlingly different picture of matter blasting out of the galaxy. The Spitzer Space Telescope infrared image (red) shows that cool gas and dust are also being ejected. Chandra's X-ray image (blue) reveals gas that has been heated to millions of degrees by the violent outflow. The eruption can be traced back to the central regions of the galaxy where stars are forming at a furious rate, some 10 times faster than in the Milky Way Galaxy.

 

Many of these newly formed stars are very massive and race through their evolution to explode as supernovas. Vigorous mass loss from these stars before they explode, and the heat generated by the supernovas drive the gas out of the galaxy at millions of miles per hour. It is thought that the expulsion of matter from a galaxy during bursts of star formation is one of the main ways of spreading elements like carbon and oxygen throughout the universe.

 

The burst of star formation in M82 is thought to have been initiated by shock waves generated in a close encounter with a large nearby galaxy, M81, about 100 million years ago. These shock waves triggered the collapse of giant clouds of dust and gas in M82. In another 100 million years or so, most of the gas and dust will have been used to form stars, or blown out of the galaxy, so the starburst will subside.

 

Credits: X-ray: NASA/CXC/JHU/D.Strickland; Optical: NASA/ESA/STScI/AURA/The Hubble Heritage Team; IR: NASA/JPL-Caltech/Univ. of AZ/C. Engelbracht

 

Read entire caption/view more images: chandra.harvard.edu/photo/2006/m82/

 

Caption credit: Harvard-Smithsonian Center for Astrophysics

 

Read more about Chandra:

www.nasa.gov/chandra

 

p.s. You can see all of our Chandra photos in the Chandra Group in Flickr at: www.flickr.com/groups/chandranasa/ We'd love to have you as a member!

A beautiful new image of two colliding galaxies has been released by NASA's Great Observatories. The Antennae galaxies, located about 62 million light years from Earth, are shown in this composite image from the Chandra X-ray Observatory (blue), the Hubble Space Telescope (gold), and the Spitzer Space Telescope (red).

 

The collision, which began more than 100 million years ago and is still occurring, has triggered the formation of millions of stars in clouds of dusts and gas in the galaxies. The most massive of these young stars have already sped through their evolution in a few million years and exploded as supernovas.

 

The X-ray image from Chandra shows huge clouds of hot, interstellar gas that have been injected with rich deposits of elements from supernova explosions. This enriched gas, which includes elements such as oxygen, iron, magnesium and silicon, will be incorporated into new generations of stars and planets. The bright, point-like sources in the image are produced by material falling onto black holes and neutron stars that are remnants of the massive stars. Some of these black holes may have masses that are almost one hundred times that of the Sun.

 

The Spitzer data show infrared light from warm dust clouds that have been heated by newborn stars, with the brightest clouds lying in the overlap region between the two galaxies. The Hubble data reveal old stars in red, filaments of dust in brown and star-forming regions in yellow and white. Many of the fainter objects in the optical image are clusters containing thousands of stars.

 

The Antennae galaxies take their name from the long antenna-like "arms," seen in wide-angle views of the system. These features were produced by tidal forces generated in the collision.

  

Read entire caption/view more images: chandra.harvard.edu/photo/2010/antennae/

 

Image credit: X-ray: NASA/CXC/SAO/J.DePasquale; IR: NASA/JPL-Caltech; Optical: NASA/STScI

 

Caption credit: Harvard-Smithsonian Center for Astrophysics

 

Read more about Chandra:

www.nasa.gov/chandra

 

p.s. You can see all of our Chandra photos in the Chandra Group in Flickr at: www.flickr.com/groups/chandranasa/ We'd love to have you as a member!

 

Editor's note: LOVE this image! Definitely going to add it to the "NASA Goes Pink" gallery, for Breast Cancer Awareness month in October: www.flickr.com/photos/28634332@N05/sets/72157625045060125/

 

High-mass stars are important because they are responsible for much of the energy pumped into our galaxy over its lifetime. Unfortunately, these stars are poorly understood because they are often found relatively far away and can be obscured by gas and dust. The star cluster NGC 281 is an exception to this rule. It is located about 9,200 light years from Earth and, remarkably, almost 1,000 light years above the plane of the Galaxy, giving astronomers a nearly unfettered view of the star formation within it.

 

NGC 281 is known informally as the "Pacman Nebula" because of its appearance in optical images. In optical images the "mouth" of the Pacman character appears dark because of obscuration by dust and gas, but in the infrared Spitzer image the dust in this region glows brightly.

 

Credit: X-ray: NASA/CXC/CfA/S.Wolk; IR: NASA/JPL/CfA/S.Wolk

 

Read entire caption/view more images: chandra.harvard.edu/photo/2011/ngc281/

 

Caption credit: Harvard-Smithsonian Center for Astrophysics

 

Read more about Chandra:

www.nasa.gov/chandra

 

p.s. You can see all of our Chandra photos in the Chandra Group in Flickr at: www.flickr.com/groups/chandranasa/ We'd love to have you as a member!

 

_____________________________________________

These official NASA photographs are being made available for publication by news organizations and/or for personal use printing by the subject(s) of the photographs. The photographs may not be used in materials, advertisements, products, or promotions that in any way suggest approval or endorsement by NASA. All Images used must be credited. For information on usage rights please visit: www.nasa.gov/audience/formedia/features/MP_Photo_Guidelin...

The Small Magellanic Cloud (SMC) is one of the Milky Way's closest galactic neighbors. Even though it is a small, or so-called dwarf galaxy, the SMC is so bright that it is visible to the unaided eye from the Southern Hemisphere and near the equator. Many navigators, including Ferdinand Magellan who lends his name to the SMC, used it to help find their way across the oceans.

 

Modern astronomers are also interested in studying the SMC (and its cousin, the Large Magellanic Cloud), but for very different reasons. Because the SMC is so close and bright, it offers an opportunity to study phenomena that are difficult to examine in more distant galaxies. New Chandra data of the SMC have provided one such discovery: the first detection of X-ray emission from young stars with masses similar to our Sun outside our Milky Way galaxy. The new Chandra observations of these low-mass stars were made of the region known as the "Wing" of the SMC. In this composite image of the Wing the Chandra data is shown in purple, optical data from the Hubble Space Telescope is shown in red, green and blue and infrared data from the Spitzer Space Telescope is shown in red.

 

Astronomers call all elements heavier than hydrogen and helium -- that is, with more than two protons in the atom's nucleus -- "metals." The Wing is a region known to have fewer metals compared to most areas within the Milky Way. There are also relatively lower amounts of gas, dust, and stars in the Wing compared to the Milky Way.

 

Taken together, these properties make the Wing an excellent location to study the life cycle of stars and the gas lying in between them. Not only are these conditions typical for dwarf irregular galaxies like the SMC, they also mimic ones that would have existed in the early Universe.

 

Most star formation near the tip of the Wing is occurring in a small region known as NGC 602, which contains a collection of at least three star clusters. One of them, NGC 602a, is similar in age, mass, and size to the famous Orion Nebula Cluster. Researchers have studied NGC 602a to see if young stars -- that is, those only a few million years old -- have different properties when they have low levels of metals, like the ones found in NGC 602a.

 

Using Chandra, astronomers discovered extended X-ray emission, from the two most densely populated regions in NGC 602a. The extended X-ray cloud likely comes from the population of young, low-mass stars in the cluster, which have previously been picked out by infrared and optical surveys, using Spitzer and Hubble respectively. This emission is not likely to be hot gas blown away by massive stars, because the low metal content of stars in NGC 602a implies that these stars should have weak winds. The failure to detect X-ray emission from the most massive star in NGC 602a supports this conclusion, because X-ray emission is an indicator of the strength of winds from massive stars. No individual low-mass stars are detected, but the overlapping emission from several thousand stars is bright enough to be observed.

 

The Chandra results imply that the young, metal-poor stars in NGC 602a produce X-rays in a manner similar to stars with much higher metal content found in the Orion cluster in our galaxy. The authors speculate that if the X-ray properties of young stars are similar in different

environments, then other related properties -- including the formation and evolution of disks where planets form -- are also likely to be similar.

 

X-ray emission traces the magnetic activity of young stars and is related to how efficiently their magnetic dynamo operates. Magnetic dynamos generate magnetic fields in stars through a process involving the star's speed of rotation, and convection, the rising and falling of hot gas in the star's interior.

 

The combined X-ray, optical and infrared data also revealed, for the first time outside our Galaxy, objects representative of an even younger stage of evolution of a star. These so-called "young stellar objects" have ages of a few thousand years and are still embedded in the pillar of dust and gas from which stars form, as in the famous "Pillars of Creation" of the Eagle Nebula.

 

A paper describing these results was published online and in the March 1, 2013 issue of The Astrophysical Journal. The first author is Lidia Oskinova from the University of Potsdam in Germany and the co-authors are Wei Sun from Nanjing University, China; Chris Evans from the Royal

Observatory Edinburgh, UK; Vincent Henault-Brunet from University of Edinburgh, UK; You-Hua Chu from the University of Illinois, Urbana, IL; John Gallagher III from the University of Wisconsin-Madison, Madison, WI; Martin Guerrero from the Instituto de Astrofísica de Andalucía, Spain; Robert Gruendl from the University of Illinois, Urbana, IL; Manuel Gudel from the University of Vienna, Austria; Sergey Silich from the Instituto Nacional de Astrofısica Optica y Electr´onica, Puebla, Mexico; Yang Chen from Nanjing University, China; Yael Naze from Universite de Liege, Liege, Belgium; Rainer Hainich from the University of Potsdam, Germany, and Jorge Reyes-Iturbide from the Universidade Estadual de Santa Cruz, Ilheus, Brazil.

 

Read entire caption/view more images: www.chandra.harvard.edu/photo/2013/ngc602/

 

Image credit: X-ray: NASA/CXC/Univ.Potsdam/L.Oskinova et al; Optical: NASA/STScI; Infrared: NASA/JPL-Caltech

 

Caption credit: Harvard-Smithsonian Center for Astrophysics

 

Read more about Chandra:

www.nasa.gov/chandra

 

p.s. You can see all of our Chandra photos in the Chandra Group in Flickr at: www.flickr.com/groups/chandranasa/ We'd love to have you as a member!

 

_____________________________________________

These official NASA photographs are being made available for publication by news organizations and/or for personal use printing by the subject(s) of the photographs. The photographs may not be used in materials, advertisements, products, or promotions that in any way suggest approval or

endorsement by NASA. All Images used must be credited. For information on usage rights please visit: www.nasa.gov/audience/formedia/features/MP_Photo_Guidelin...

A composite of an edited Hubble/Spitzer image of the Orion Nebula with a photograph of the Acropolis in Athens. 2008 Photoshop Guru Award Finalist, Photo Montage category, Photoshop World, Las Vegas, Nevada. © José Francisco Salgado, PhD

 

View a 2003 Photoshop Guru Award finalist.

Editor's note: posted in large size -- the better to enjoy the details, my dear. :)

 

To celebrate its 22nd anniversary in orbit, the Hubble Space Telescope has released a dramatic new image of the star-forming region 30 Doradus, also known as the Tarantula Nebula because its glowing filaments resemble spider legs. A new image from all three of NASA's Great Observatories - Chandra, Hubble, and Spitzer - has also been created to mark the event.

 

30 Doradus is located in the neighboring galaxy called the Large Magellanic Cloud, and is one of the largest star-forming regions located close to the Milky Way . At the center of 30 Doradus, thousands of massive stars are blowing off material and producing intense radiation along with powerful winds. The Chandra X-ray Observatory detects gas that has been heated to millions of degrees by these stellar winds and also by supernova explosions. These X-rays, colored blue in this composite image, come from shock fronts -- similar to sonic booms -- formed by this high-energy stellar activity.

 

The Hubble data in the composite image, colored green, reveals the light from these massive stars along with different stages of star birth including embryonic stars a few thousand years old still wrapped in cocoons of dark gas. Infrared emission from Spitzer, seen in red, shows cooler gas and dust that have giant bubbles carved into them. These bubbles are sculpted by the same searing radiation and strong winds that comes from the massive stars at the center of 30 Doradus.

 

Credit: X-ray: NASA/CXC/PSU/L.Townsley et al.; Optical: NASA/STScI; Infrared: NASA/JPL/PSU/L.Townsley et al.

 

Read entire caption/view more images: chandra.harvard.edu/photo/2012/30dor/

 

Caption credit: Harvard-Smithsonian Center for Astrophysics

 

Read more about Chandra:

www.nasa.gov/chandra

 

p.s. You can see all of our Chandra photos in the Chandra Group in Flickr at: www.flickr.com/groups/chandranasa/ We'd love to have you as a member!

  

_____________________________________________

These official NASA photographs are being made available for publication by news organizations and/or for personal use printing by the subject(s) of the photographs. The photographs may not be used in materials, advertisements, products, or promotions that in any way suggest approval or endorsement by NASA. All Images used must be credited. For information on usage rights please visit: www.nasa.gov/audience/formedia/features/MP_Photo_Guidelin...

For the first time, astronomers have combined data from NASA’s Chandra X-ray Observatory and James Webb Space Telescope to study the well-known supernova remnant Cassiopeia A (Cas A). As described in our latest press release, this work has helped explain an unusual structure in the debris from the destroyed star called the “Green Monster,” first discovered in Webb data in April 2023. The research has also uncovered new details about the explosion that created Cas A about 340 years ago, from Earth’s perspective.

 

A new composite image contains X-rays from Chandra (blue), infrared data from Webb (red, green, blue), and optical data from Hubble (red and white). The outer parts of the image also include infrared data from NASA’s Spitzer Space Telescope (red, green and blue). To see the outline of the "Green Monster," go to this link

 

Credit: X-ray: NASA/CXC/SAO; Optical: NASA/ESA/STScI; IR: NASA/ESA/CSA/STScI/Milisavljevic et al., NASA/JPL/CalTech; Image Processing: NASA/CXC/SAO/J. Schmidt and K. Arcand

 

#NASAMarshall #NASA #astrophysics #NASAChandra #NASA #supernova #NASAWebb #JWST #NASASpitzer

 

Read more

 

Read more about the Chandra X-ray Observatory

 

NASA Media Usage Guidelines

 

This image of the Pinwheel Galaxy, or also known as M101, combines data in the infrared, visible, ultraviolet and X-rays from four of NASA's space-based telescopes. This multi-spectral view shows that both young and old stars are evenly distributed along M101's tightly-wound spiral arms. Such composite images allow astronomers to see how features in one part of the spectrum match up with those seen in other parts. It is like seeing with a regular camera, an ultraviolet camera, night-vision goggles and X-ray vision, all at the same time.

 

The Pinwheel Galaxy is in the constellation of Ursa Major (also known as the Big Dipper). It is about 70 percent larger than our own Milky Way Galaxy, with a diameter of about 170,000 light years, and sits at a distance of 21 million light years from Earth. This means that the light we're seeing in this image left the Pinwheel Galaxy about 21 million years ago - many millions of years before humans ever walked the Earth.

 

The hottest and most energetic areas in this composite image are shown in purple, where the Chandra X-ray Observatory observed the X-ray emission from exploded stars, million-degree gas, and material colliding around black holes.

 

The red colors in the image show infrared light, as seen by the Spitzer Space Telescope. These areas show the heat emitted by dusty lanes in the galaxy, where stars are forming.

 

The yellow component is visible light, observed by the Hubble Space Telescope. Most of this light comes from stars, and they trace the same spiral structure as the dust lanes seen in the infrared.

 

The blue areas are ultraviolet light, given out by hot, young stars that formed about one million years ago, captured by the Galaxy Evolution Explorer (GALEX).

 

Read entire caption/view more images: chandra.harvard.edu/photo/2012/m101/

 

Image credit: X-ray: NASA/CXC/SAO; IR & UV: NASA/JPL-Caltech; Optical: NASA/STScI

 

Caption credit: Harvard-Smithsonian Center for Astrophysics

 

Read more about Chandra:

www.nasa.gov/chandra

 

p.s. You can see all of our Chandra photos in the Chandra Group in Flickr at: www.flickr.com/groups/chandranasa/ We'd love to have you as a member!

  

_____________________________________________

These official NASA photographs are being made available for publication by news organizations and/or for personal use printing by the subject(s) of the photographs. The photographs may not be used in materials, advertisements, products, or promotions that in any way suggest approval or endorsement by NASA. All Images used must be credited. For information on usage rights please visit: www.nasa.gov/audience/formedia/features/MP_Photo_Guidelin...

Editor's note: one of my favorite Chandra images in a long time. Happy Friday, hope everyone has a great weekend.

 

This image combines data from four different space telescopes to create a multi-wavelength view of all that remains of the oldest documented example of a supernova, called RCW 86. The Chinese witnessed the event in 185 A.D., documenting a mysterious "guest star" that remained in the sky for eight months. X-ray images from NASA's Chandra X-ray Observatory and the European Space Agency's XMM-Newton Observatory are combined to form the blue and green colors in the image. The X-rays show the interstellar gas that has been heated to millions of degrees by the passage of the shock wave from the supernova.

 

Infrared data from NASA's Spitzer Space Telescope, as well as NASA's Wide-Field Infrared Survey Explorer (WISE) are shown in yellow and red, and reveal dust radiating at a temperature of several hundred degrees below zero, warm by comparison to normal dust in our Milky Way galaxy.

 

By studying the X-ray and infrared data together, astronomers were able to determine that the cause of the explosion witnessed nearly 2,000 years ago was a Type Ia supernova, in which an otherwise-stable white dwarf, or dead star, was pushed beyond the brink of stability when a companion star dumped material onto it. Furthermore, scientists used the data to solve another mystery surrounding the remnant -- how it got to be so large in such a short amount of time. By blowing a wind prior to exploding, the white dwarf was able to clear out a huge "cavity," a region of very low-density surrounding the system. The explosion into this cavity was able to expand much faster than it otherwise would have.

 

This is the first time that this type of cavity has been seen around a white dwarf system prior to explosion. Scientists say the results may have significant implications for theories of white-dwarf binary systems and Type Ia supernovae.

 

RCW 86 is approximately 8,000 light-years away. At about 85 light-years in diameter, it occupies a region of the sky in the southern constellation of Circinus that is slightly larger than the full moon.

 

Credit: X-ray: NASA/CXC/SAO & ESA; Infared: NASA/JPL-Caltech/B. Williams (NCSU)

 

Read entire caption/view more images: chandra.harvard.edu/photo/2011/rcw86/

 

Caption credit: Harvard-Smithsonian Center for Astrophysics

 

Read more about Chandra:

www.nasa.gov/chandra

 

p.s. You can see all of our Chandra photos in the Chandra Group in Flickr at: www.flickr.com/groups/chandranasa/ We'd love to have you as a member!

 

_____________________________________________

These official NASA photographs are being made available for publication by news organizations and/or for personal use printing by the subject(s) of the photographs. The photographs may not be used in materials, advertisements, products, or promotions that in any way suggest approval or endorsement by NASA. All Images used must be credited. For information on usage rights please visit: www.nasa.gov/audience/formedia/features/MP_Photo_Guidelin...

A colorful, festive image shows different types of light containing the remains of not one, but at least two, exploded stars. This supernova remnant is known as 30 Doradus B (30 Dor B for short) and is part of a larger region of space where stars have been continuously forming for the past 8 to 10 million years. It is a complex landscape of dark clouds of gas, young stars, high-energy shocks, and superheated gas, located 160,000 light-years away from Earth in the Large Magellanic Cloud, a small satellite galaxy of the Milky Way.

 

The new image of 30 Dor B was made by combining X-ray data from NASA’s Chandra X-ray Observatory (purple), optical data from the Blanco 4-meter telescope in Chile (orange and cyan), and infrared data from NASA’s Spitzer Space Telescope (red). Optical data from NASA’s Hubble Space Telescope was also added in black and white to highlight sharp features in the image.

 

Credit: X-ray: NASA/CXC/Penn State Univ./L. Townsley et al.; Optical: NASA/STScI/HST; Infrared: NASA/JPL/CalTech/SST; Image Processing: NASA/CXC/SAO/J. Schmidt, N. Wolk, K. Arcand

 

#NASAMarshall #NASA #astrophysics #NASAChandra #NASA #NASAHubble #NASASpitzer #supernova #pulsar

 

Read more

 

NASA Media Usage Guidelines

This composite image shows a superbubble in the Large Magellanic Cloud (LMC), a small satellite galaxy of the Milky Way located about 160,000 light years from Earth. Many new stars, some of them very massive, are forming in the star cluster NGC 1929, which is embedded in the nebula N44, so named because it is the 44th nebula in a catalog of such objects in the Magellanic Clouds. The massive stars produce intense radiation, expel matter at high speeds, and race through their evolution to explode as supernovas. The winds and supernova shock waves carve out huge cavities called superbubbles in the surrounding gas. X-rays from NASA's Chandra X-ray Observatory (blue) show hot regions created by these winds and shocks, while infrared data from NASA's Spitzer Space Telescope (red) outline where the dust and cooler gas are found. The optical light from the 2.2-m Max-Planck-ESO telescope (yellow) in Chile shows where ultraviolet radiation from hot, young stars is causing gas in the nebula to glow.

 

A long-running problem in high-energy astrophysics has been that some superbubbles in the LMC, including N44, give off a lot more X-rays than expected from models of their structure. These models assume that hot, X-ray emitting gas has been produced by winds from massive stars and the remains of several supernovas. A Chandra study published in 2011 showed that there are two extra sources of N44’s X-ray emission not included in these models: supernova shock waves striking the walls of the cavities, and hot material evaporating from the cavity walls. The Chandra observations also show no evidence for an enhancement of elements heavier than hydrogen and helium in the cavities, thus ruling out this possibility as a third explanation for the bright X-ray emission. Only with long observations making full use of the capabilities of Chandra has it now become possible to distinguish between different sources of the X-rays produced by superbubbles.

 

The Chandra study of N44 and another superbubble in the LMC was led by Anne Jaskot from the University of Michigan in Ann Arbor. The co-authors were Dave Strickland from Johns Hopkins University in Baltimore, MD, Sally Oey from University of Michigan, You-Hua Chu from University of Illinois and Guillermo Garcia-Segura from Instituto de Astronomia-UNAM in Ensenada, Mexico.

 

NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass.

 

Read entire caption/view more images: chandra.harvard.edu/photo/2012/n1929/

 

Image credit: X-ray: NASA/CXC/U.Mich./S.Oey, IR: NASA/JPL, Optical: ESO/WFI/2.2-m

 

Caption credit: Harvard-Smithsonian Center for Astrophysics

 

Read more about Chandra:

www.nasa.gov/chandra

 

p.s. You can see all of our Chandra photos in the Chandra Group in Flickr at: www.flickr.com/groups/chandranasa/ We'd love to have you as a member!

  

_____________________________________________

These official NASA photographs are being made available for publication by news organizations and/or for personal use printing by the subject(s) of the photographs. The photographs may not be used in materials, advertisements, products, or promotions that in any way suggest approval or endorsement by NASA. All Images used must be credited. For information on usage rights please visit: www.nasa.gov/audience/formedia/features/MP_Photo_Guidelin...

Spiral galaxy revealed! This is a beauty from the 2007 archives. Original release date: April 10, 2007)

 

A combination of space and ground-based observations, including X-ray data from Chandra, has helped reveal the nature of the so-called anomalous arms in the spiral galaxy NGC 4258 (also known as M106). These arms have been known for decades, but their origin remained mysterious to astronomers.

 

In visible (shown in gold) and infrared (red) light, two prominent arms emanate from the bright nucleus and spiral outward. These arms are dominated by young, bright stars, which light up the gas within the arms. But in radio (purple) and Chandra's X-ray (blue) images, two additional spiral arms are seen.

 

By analyzing data from XMM-Newton, Spitzer, and Chandra, scientists have confirmed earlier suspicions that the ghostly arms represent regions of gas that are being violently heated by shock waves. Previously, some astronomers had suggested that the anomalous arms are jets of particles being ejected by a supermassive black hole in nucleus of NGC 4258. But radio observations at the Very Large Array later identified another pair of jets originating in the core.

 

However, the jets do heat the gas in their line of travel, forming an expanding cocoon. Because the jets lie close to M106's disk, the cocoon generates shock waves and heat the gas in the disk to millions of degrees, causing it to radiate brightly in X-rays and other wavelengths.

 

Image credit:

X-ray: NASA/CXC/Univ. of Maryland/A.S. Wilson et al.; Optical: Pal.Obs. DSS; IR: NASA/JPL-Caltech; VLA: NRAO/AUI/NSF

 

Read more about this image:

www.chandra.harvard.edu/photo/2007/ngc4258/

 

Read more about Chandra:

www.nasa.gov/chandra

 

p.s. You can see all of our Chandra photos in the Chandra Group in Flickr at: www.flickr.com/groups/chandranasa/ We'd love to have you as a member!

The star-forming region, 30 Doradus, is one of the largest located close to the Milky Way and is found in the neighboring galaxy Large Magellanic Cloud. About 2,400 massive stars in the center of 30 Doradus, also known as the Tarantula Nebula, are producing intense radiation and powerful winds as they blow off material.

 

Multimillion-degree gas detected in X-rays (blue) by the Chandra X-ray Observatory comes from shock fronts -- similar to sonic booms --formed by these stellar winds and by supernova explosions. This hot gas carves out gigantic bubbles in the surrounding cooler gas and dust shown here in infrared emission from the Spitzer Space Telescope (orange).

 

30 Doradus is also known as an HII (pronounced "H-two") region, created when the radiation from hot, young stars strips away the electrons from neutral hydrogen atoms (HI) to form clouds of ionized hydrogen (HII). It is the most massive and largest HII region in the Local Group of galaxies, which contains the Milky Way, Andromeda and about 30 other smaller galaxies including the two Magellanic Clouds. Because of its proximity and size, 30 Doradus is an excellent target for studying the effects of massive stars on the evolution of an HII region.

 

The Tarantula Nebula is expanding, and researchers have recently published two studies that attempt to determine what drives this growth. The most recent study concluded that the evolution and the large-scale structure of 30 Doradus is determined by the bubbles of hot, X-ray bright gas confined by surrounding gas, and that pressure from radiation generated by massive stars does not currently play an important role in shaping the overall structure. A study published earlier in 2011 came to the opposite conclusion and argued that radiation pressure is more important than pressure from hot gas in driving the evolution of 30 Doradus, especially in the central regions near the massive stars. More detailed analysis and deeper Chandra observations of 30 Doradus may help decide between these different ideas.

 

Credit: X-ray: NASA/CXC/PSU/L. Townsley et al.; Infrared: NASA/JPL/PSU/L. Townsley et al.

 

Read entire caption/view more images: chandra.harvard.edu/photo/2011/30dor/

 

Caption credit: Harvard-Smithsonian Center for Astrophysics

 

Read more about Chandra:

www.nasa.gov/chandra

 

p.s. You can see all of our Chandra photos in the Chandra Group in Flickr at: www.flickr.com/groups/chandranasa/ We'd love to have you as a member!

  

_____________________________________________

These official NASA photographs are being made available for publication by news organizations and/or for personal use printing by the subject(s) of the photographs. The photographs may not be used in materials, advertisements, products, or promotions that in any way suggest approval or endorsement by NASA. All Images used must be credited. For information on usage rights please visit: www.nasa.gov/audience/formedia/features/MP_Photo_Guidelin...

This composite image, combining data from the Chandra X-ray Observatory and the Spitzer Space Telescope shows the molecular cloud Cepheus B, located in our Galaxy about 2,400 light years from the Earth. A molecular cloud is a region containing cool interstellar gas and dust left over from the formation of the galaxy and mostly contains molecular hydrogen. The Spitzer data, in red, green and blue shows the molecular cloud (in the bottom part of the image) plus young stars in and around Cepheus B, and the Chandra data in violet shows the young stars in the field.

 

The Chandra observations allowed the astronomers to pick out young stars within and near Cepheus B, identified by their strong X-ray emission. The Spitzer data showed whether the young stars have a so-called "protoplanetary" disk around them. Such disks only exist in very young systems where planets are still forming, so their presence is an indication of the age of a star system.

 

These data provide an excellent opportunity to test a model for how stars form. The new study suggests that star formation in Cepheus B is mainly triggered by radiation from one bright, massive star (HD 217086) outside the molecular cloud. According to the particular model of triggered star formation that was tested -- called the radiation- driven implosion (RDI) model -- radiation from this massive star drives a compression wave into the cloud triggering star formation in the interior, while evaporating the cloud's outer layers.

 

The labeled version of the image shows important regions in and around Cepheus B. The "inner layer" shows the Cepheus B region itself, where the stars are mostly about one million years old and about 70-80% of them have protoplanetary disks. The "intermediate layer" shows the area immediately next to Cepheus B, where the stars are two to three million years old and about 60% of them have disks, while in the "outer layer" the stars are about three to five million years old and about 30% of them have disks. This increase in age as the stars are further away from Cepheus B is exactly what is predicted from the RDI model of triggered star formation.

 

Different types of triggered star formation have been observed in other environments. For example, the formation of our solar system was thought to have been triggered by a supernova explosion, In the star- forming region W5, a "collect-and-collapse" mechanism is thought to apply, where shock fronts generated by massive stars sweep up material as they progress outwards. Eventually the accumulated gas becomes dense enough to collapse and form hundreds of stars. The RDI mechanism is also thought to be responsible for the formation of dozens of stars in W5. The main cause of star formation that does not involve triggering is where a cloud of gas cools, gravity gets the upper hand, and the cloud falls in on itself.

 

Image credit: X-ray: NASA/CXC/PSU/K. Getman et al.; IRL NASA/JPL-Caltech/CfA/J. Wang et al.

 

Read more about this image:

 

www.chandra.harvard.edu/photo/2009/cepb/

 

Read more about Chandra:

www.nasa.gov/chandra

 

p.s. You can see all of our Chandra photos in the Chandra Group in Flickr at: www.flickr.com/groups/chandranasa/ We'd love to have you as a member!

A star's spectacular death in the constellation Taurus was observed on Earth as the supernova of 1054 A.D. Now, almost a thousand years later, a superdense neutron star left behind by the stellar death is spewing out a blizzard of extremely high-energy particles into the expanding debris field known as the Crab Nebula.

 

This composite image uses data from three of NASA's Great Observatories. The Chandra X-ray image is shown in light blue, the Hubble Space Telescope optical images are in green and dark blue, and the Spitzer Space Telescope's infrared image is in red. The size of the X-ray image is smaller than the others because ultrahigh-energy X-ray emitting electrons radiate away their energy more quickly than the lower-energy electrons emitting optical and infrared light. The neutron star, which has the mass equivalent to the sun crammed into a rapidly spinning ball of neutrons twelve miles across, is the bright white dot in the center of the image.

 

Image credit:

Credit: X-ray: NASA/CXC/ASU/J.Hester et al.; Optical: NASA/ESA/ASU/J.Hester & A.Loll; Infrared: NASA/JPL-Caltech/Univ. Minn./R.Gehrz

 

Learn more about Chandra:

www.nasa.gov/chandra

chandra.harvard.edu/photo/2006/crab/

 

p.s. You can see all of our Chandra photos in the Chandra Group in Flickr at: www.flickr.com/groups/chandranasa/ We'd love to have you as a member!

A galaxy about 23 million light years away is the site of impressive, ongoing fireworks. Rather than paper, powder and fire, this

 

galactic light show involves a giant black hole, shock waves and vast reservoirs of gas.

 

This galactic fireworks display is taking place in NGC 4258, also known as M106, a spiral galaxy like the Milky Way. This galaxy is

 

famous, however, for something that our galaxy doesn’t have – two extra spiral arms that glow in X-ray, optical and radio light. These

 

features, or anomalous arms, are not aligned with the plane of the galaxy, but instead intersect with it.

 

The anomalous arms are seen in this new composite image of NGC 4258, where X-rays from NASA’s Chandra X-ray Observatory are blue, radio

 

data from the NSF’s Karl Jansky Very Large Array are purple, optical data from NASA’s Hubble Space Telescope are yellow and infrared

 

data from NASA’s Spitzer Space Telescope are red.

 

A new study made with Spitzer shows that shock waves, similar to sonic booms from supersonic planes, are heating large amounts of gas –

 

equivalent to about 10 million suns. What is generating these shock waves? Researchers think that the supermassive black hole at the

 

center of NGC 4258 is producing powerful jets of high-energy particles. These jets strike the disk of the galaxy and generate shock

 

waves. These shock waves, in turn, heat the gas – composed mainly of hydrogen molecules – to thousands of degrees.

 

The Chandra X-ray image reveals huge bubbles of hot gas above and below the plane of the galaxy. These bubbles indicate that much of

 

the gas that was originally in the disk of the galaxy has been heated and ejected into the outer regions by the jets from the black

 

hole.

 

The ejection of gas from the disk by the jets has important implications for the fate of this galaxy. Researchers estimate that all of

 

the remaining gas will be ejected within the next 300 million years – very soon on cosmic time scales – unless it is somehow

 

replenished. Because most of the gas in the disk has already been ejected, less gas is available for new stars to form. Indeed, the

 

researchers used Spitzer data to estimate that stars are forming in the central regions of NGC 4258, at a rate which is about ten times

 

less than in the Milky Way galaxy.

 

The European Space Agency’s Herschel Space Observatory was used to confirm the estimate from Spitzer data of the low star formation

 

rate in the central regions of NGC 4258. Herschel was also used to make an independent estimate of how much gas remains in the center

 

of the galaxy. After allowing for the large boost in infrared emission caused by the shocks, the researchers found that the gas mass is

 

ten times smaller than had been previously estimated.

 

Because NGC 4258 is relatively close to Earth, astronomers can study how this black hole is affecting its galaxy in great detail. The

 

supermassive black hole at the center of NGC 4258 is about ten times larger than the one in the Milky Way and is consuming material at

 

a faster rate, potentially increasing its impact on the evolution of its host galaxy.

 

These results were published in the June 20, 2014 issue of The Astrophysical Journal Letters and are available online. The authors are

 

Patrick Ogle, Lauranne Lanz and Philip Appleton from the California Institute of Technology in Pasadena, California.

 

NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program for NASA's Science Mission Directorate in

 

Washington. The Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, controls Chandra's science and flight operations.

 

Original caption/more images: www.nasa.gov/chandra/multimedia/galactic-pyrotechnics.html

 

Image credit: X-ray: NASA/CXC/Caltech/P.Ogle et al; Optical: NASA/STScI; IR: NASA/JPL-Caltech; Radio: NSF/NRAO/VLA

 

Read more about Chandra:

www.nasa.gov/chandra

 

p.s. You can see all of our Chandra photos in the Chandra Group in Flickr at: www.flickr.com/groups/chandranasa/ We'd love to have you as a member!

 

_____________________________________________

These official NASA photographs are being made available for publication by news organizations and/or for personal use printing by the

 

subject(s) of the photographs. The photographs may not be used in materials, advertisements, products, or promotions that in any way

 

suggest approval or endorsement by NASA. All Images used must be credited. For information on usage rights please visit: www.nasa.gov/audience/formedia/features/MP_Photo_Guidelin...

The spiral galaxy NGC 3627 is located about 30 million light years from Earth. This composite image includes X-ray data from NASA's Chandra X-ray Observatory (blue), infrared data from the Spitzer Space Telescope (red), and optical data from the Hubble Space Telescope and the Very Large Telescope (yellow). The inset shows the central region, which contains a bright X-ray source that is likely powered by material falling onto a supermassive black hole.

 

A search using archival data from previous Chandra observations of a sample of 62 nearby galaxies has shown that 37 of the galaxies, including NGC 3627, contain X-ray sources in their centers. Most of these sources are likely powered by central supermassive black holes. The survey, which also used data from the Spitzer Infrared Nearby Galaxy Survey, found that seven of the 37 sources are new supermassive black hole candidates.

 

Confirming previous Chandra results, this study finds the fraction of galaxies found to be hosting supermassive black holes is much higher than found with optical searches. This shows the ability of X-ray observations to find black holes in galaxies where relatively low-level black hole activity has either been hidden by obscuring material or washed out by the bright optical light of the galaxy.

 

The combined X-ray and infrared data suggest that the nuclear activity in a galaxy is not necessarily related to the amount of star-formation in the galaxy, contrary to some early claims. In contrast, these new results suggest that the mass of the supermassive black hole and the rate at which the black hole accretes matter are both greater for galaxies with greater total masses.

 

A paper describing these results was published in the April 10, 2011 issue of The Astrophysical Journal. The authors are Catherine Grier and Smita Mathur of The Ohio State University in Columbus, OH; Himel GHosh of CNRS/CEA-Saclay in Guf-sur-Yvette, France and Laura Ferrarese from Herzberg Institute of Astrophysics in Victoria, Canada.

 

NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass.

 

Read entire caption/view more images: chandra.harvard.edu/photo/2012/ngc3627/

 

Image credit: NASA/CXC/Ohio State Univ./C.Grier et al.; Optical: NASA/STScI, ESO/WFI; Infrared: NASA/JPL-Caltech

 

Caption credit: Harvard-Smithsonian Center for Astrophysics

 

Read more about Chandra:

www.nasa.gov/chandra

 

p.s. You can see all of our Chandra photos in the Chandra Group in Flickr at: www.flickr.com/groups/chandranasa/ We'd love to have you as a member!

  

_____________________________________________

These official NASA photographs are being made available for publication by news organizations and/or for personal use printing by the subject(s) of the photographs. The photographs may not be used in materials, advertisements, products, or promotions that in any way suggest approval or endorsement by NASA. All Images used must be credited. For information on usage rights please visit: www.nasa.gov/audience/formedia/features/MP_Photo_Guidelin...

The Milky Way and other galaxies in the universe harbor many young star clusters and associations that each contain hundreds to thousands of hot, massive, young stars known as O and B stars. The star cluster Cygnus OB2 contains more than 60 O-type stars and about a thousand B-type stars. Deep observations with NASA’s Chandra X-ray Observatory have been used to detect the X-ray emission from the hot outer atmospheres, or coronas, of young stars in the cluster and to probe how these fascinating star factories form and evolve. About 1,700 X-ray sources were detected, including about 1,450 thought to be stars in the cluster. In this image, X-rays from Chandra (blue) have been combined with infrared data from NASA’s Spitzer Space Telescope (red) and optical data from the Isaac Newton Telescope (orange).

 

Young stars ranging in age from one million to seven million years were found. The infrared data indicates that a very low fraction of the stars have circumstellar disks of dust and gas. Even fewer disks were found close to the massive OB stars, betraying the corrosive power of their intense radiation that leads to early destruction of their disks. There is also evidence that the older population of stars has lost its most massive members because of supernova explosions. Finally, a total mass of about 30,000 times the mass of the sun is derived for Cygnus OB2, similar to that of the most massive star forming regions in our Galaxy. This means that Cygnus OB2, located only about 5,000 light years from Earth, is the closest massive star cluster.

 

NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass.

 

Read entire caption/view more images: chandra.harvard.edu/photo/2012/cygob2/

 

Image credit: X-ray: NASA/CXC/SAO/J.Drake et al, Optical: Univ. of Hertfordshire/INT/IPHAS, Infrared: NASA/JPL-Caltech

 

Caption credit: Harvard-Smithsonian Center for Astrophysics

 

Read more about Chandra:

www.nasa.gov/chandra

 

p.s. You can see all of our Chandra photos in the Chandra Group in Flickr at: www.flickr.com/groups/chandranasa/ We'd love to have you as a member!

  

_____________________________________________

These official NASA photographs are being made available for publication by news organizations and/or for personal use printing by the subject(s) of the photographs. The photographs may not be used in materials, advertisements, products, or promotions that in any way suggest approval or endorsement by NASA. All Images used must be credited. For information on usage rights please visit: www.nasa.gov/audience/formedia/features/MP_Photo_Guidelin...

Editor's note: last of my "freeform" entries for this Friday. From 2006, an all-time favorite Chandra image, showing the Cartwheel Galaxy...

 

(From 2006) This image combines data from four different observatories: the Chandra X-ray Observatory (purple); the Galaxy Evolution Explorer satellite (ultraviolet/blue); the Hubble Space Telescope (visible/green); the Spitzer Space Telescope (infrared/red). The unusual shape of the Cartwheel Galaxy is likely due to a collision with one of the smaller galaxies on the lower left several hundred million years ago.

 

The smaller galaxy produced compression waves in the gas of the Cartwheel as it plunged through it. These compression waves trigger bursts of star formation. The most recent star burst has lit up the Cartwheel's rim, which has a diameter larger than that of the Milky Way galaxy, with millions of bright young stars.

 

When the most massive of these stars explode as supernovas, they leave behind neutron stars and black holes. Some of these neutron stars and black holes have nearby companion stars, and have become powerful sources of X-rays as they pull matter off their companions.

 

The brightest X-ray sources are likely black holes with companion stars, and appear as the white dots that lie along the rim of the X-ray image. The Cartwheel contains an exceptionally large number of these black hole binary X-ray sources, because many massive stars formed in the rim.

 

Original caption/more images: chandra.harvard.edu/photo/2006/cartwheel/

 

Image credit: Composite: NASA/JPL/Caltech/P.Appleton et al. X-ray: NASA/CXC/A.Wolter & G.Trinchieri et al.

 

Read more about Chandra:

www.nasa.gov/chandra

 

p.s. You can see all of our Chandra photos in the Chandra Group in Flickr at: www.flickr.com/groups/chandranasa/ We'd love to have you as a member!

 

_____________________________________________

These official NASA photographs are being made available for publication by news organizations and/or for personal use printing by the subject(s) of the photographs. The photographs may not be used in materials, advertisements, products, or promotions that in any way suggest approval or endorsement by NASA. All Images used must be credited. For information on usage rights please visit: www.nasa.gov/audience/formedia/features/MP_Photo_Guidelin...

Observations with NASA's Chandra, Swift, and Rossi X-ray observatories, Fermi Gamma-ray Space Telescope, and ESA's XMM-Newton have revealed that a slowly rotating neutron star with an ordinary surface magnetic field is giving off bursts of X-rays and gamma rays. This discovery may indicate the presence of an internal magnetic field much more intense than the surface magnetic field, with implications for how the most powerful magnets in the cosmos evolve.

 

The neutron star, SGR 0418+5729, was discovered on June 5, 2009 when the Fermi Gamma-ray Space Telescope detected bursts of gamma-rays from this object. Follow-up observations four days later with the Rossi X-Ray Timing Explorer (RXTE) showed that, in addition to sporadic X-ray bursts, the neutron star exhibits persistent X-ray emission with regular pulsations that indicate that the star has a rotational period of 9.1 seconds. RXTE was able to monitor this activity for about 100 days. This behavior is similar to a class of neutron stars called magnetars, which have strong to extreme magnetic fields 20 to 1000 times above the average of the galactic radio pulsars.

 

As neutron stars rotate, the radiation of low frequency electromagnetic waves or winds of high-energy particles carry energy away from the star, causing the rotation rate of the star to gradually decrease. Careful monitoring of SGR 0418 was possible because Chandra and XMM-Newton were able to measure its pulsation period even though it faded by a factor of 10 after the initial detection. What sets SGR 0418 apart from other magnetars is that careful monitoring over a span of 490 days has revealed no detectable decrease in its rotation rate.

 

The lack of rotational slowing implies that the radiation of low frequency waves must be weak, and hence the surface magnetic field must be much weaker than normal. But this raises another question: where does the energy come from to power bursts and the persistent X-ray emission from the source?

 

The generally accepted answer for magnetars is that the energy to power the X- and gamma-ray emission comes from an internal magnetic field that has been twisted and amplified in the turbulent interior of the neutron star, as depicted in the illustration above. Theoretical studies indicate that if the internal field becomes about ten or more times stronger than the surface field, the decay or untwisting of the field can lead to the production of steady and bursting X-ray emission through the heating of the neutron star crust or the acceleration of particles.

 

A crucial question is how large an imbalance can be maintained between the surface and interior fields. SGR 0418 represents an important test case. The observations already imply an imbalance of between 50 and 100. If further observations by Chandra push the surface magnetic field limit lower, then theorists may have to dig deeper for an explanation of this enigmatic object.

 

This discovery is the result of an international teamwork from CSIC-IEEC, INAF, University of Padua, MSSL-UCL, CEA-Saclay, Sabanci University and NASA's Marshall Space Flight Center (MSFC). These results appear in the October 14th issue of Science Express, which provides electronic publication of selected Science papers in advance of print. NASA's MSFC in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass.

 

Credits: CXC/M. Weiss

 

Read entire caption/view more images: chandra.harvard.edu/photo/2010/sgr0418/

 

Caption credit: Harvard-Smithsonian Center for Astrophysics

 

Read more about Chandra:

www.nasa.gov/chandra

 

p.s. You can see all of our Chandra photos in the Chandra Group in Flickr at: www.flickr.com/groups/chandranasa/ We'd love to have you as a member!

On the left, an optical image from the Digitized Sky Survey shows Cygnus X-1, outlined in a red box. Cygnus X-1 is located near large active regions of star formation in the Milky Way, as seen in this image that spans some 700 light years across. An artist's illustration on the right depicts what astronomers think is happening within the Cygnus X-1 system. Cygnus X-1 is a so-called stellar-mass black hole, a class of black holes that comes from the collapse of a massive star. The black hole pulls material from a massive, blue companion star toward it. This material forms a disk (shown in red and orange) that rotates around the black hole before falling into it or being redirected away from the black hole in the form of powerful jets.

 

A trio of papers with data from radio, optical and X-ray telescopes, including NASA's Chandra X-ray Observatory, has revealed new details about the birth of this famous black hole that took place millions of years ago. Using X-ray data from Chandra, the Rossi X-ray Timing Explorer, and the Advanced Satellite for Cosmology and Astrophysics, scientists were able to determine the spin of Cygnus X-1 with unprecedented accuracy, showing that the black hole is spinning at very close to its maximum rate. Its event horizon -- the point of no return for material falling towards a black hole -- is spinning around more than 800 times a second.

 

Using optical observations of the companion star and its motion around its unseen companion, the team also made the most precise determination ever for the mass of Cygnus X-1, of 14.8 times the mass of the Sun. It was likely to have been almost this massive at birth, because of lack of time for it to grow appreciably.

 

The researchers also announced that they have made the most accurate distance estimate yet of Cygnus X-1 using the National Radio Observatory's Very Long Baseline Array (VLBA). The new distance is about 6,070 light years from Earth. This accurate distance was a crucial ingredient for making the precise mass and spin determinations.

 

Credit: X-ray: NASA/CXC; Optical: Digitized Sky Survey

 

Read entire caption/view more images: chandra.harvard.edu/photo/2011/cygx1/

 

Caption credit: Harvard-Smithsonian Center for Astrophysics

 

Read more about Chandra:

www.nasa.gov/chandra

 

p.s. You can see all of our Chandra photos in the Chandra Group in Flickr at: www.flickr.com/groups/chandranasa/ We'd love to have you as a member!

  

_____________________________________________

These official NASA photographs are being made available for publication by news organizations and/or for personal use printing by the subject(s) of the photographs. The photographs may not be used in materials, advertisements, products, or promotions that in any way suggest approval or endorsement by NASA. All Images used must be credited. For information on usage rights please visit: www.nasa.gov/audience/formedia/features/MP_Photo_Guidelin...

1 3 4 5 6 7 ••• 11 12