View allAll Photos Tagged SpaceTelescopeScienceInstitute
The largest and brightest region of star formation in the Local Group of galaxies, including the Milky Way, is called 30 Doradus (or, informally, the Tarantula Nebula). Located in the Large Magellanic Cloud, a small neighbor galaxy to the Milky Way, 30 Doradus has long been studied by astronomers who want to better understand how stars like the Sun are born and evolve.
NASA's Chandra X-ray Observatory has frequently looked at 30 Doradus over the lifetime of the mission, often under the direction of Dr. Leisa Townsley who passed away in the summer of 2022. These data will continue to be collected and analyzed, providing opportunities for scientists both now and in the future to learn more about star formation and its related processes.
This new composite image combines the X-ray data from Chandra observations of 30 Doradus with an infrared image from NASA's James Webb Space Telescope that was released in the fall of 2022. The X-rays (royal blue and purple) reveal gas that has been heated to millions of degrees by shock waves — similar to sonic booms from airplanes — generated by the winds from massive stars. The Chandra data also identify the remains of supernova explosions, which will ultimately send important elements such as oxygen and carbon into space where they will become part of the next generation of stars.
The infrared data from JWST (red, orange, green, and light blue) show spectacular canvases of cooler gas that provide the raw ingredients for future stars. JWST’s view also reveals “protostars,” that is, stars in their infancy, just igniting their stellar engines. The chemical composition of 30 Doradus is different from most of the nebulas found in the Milky Way. Instead it represents the conditions in our galaxy that existed several billion years ago when stars were forming at a much faster pace than astronomers see today. This, combined with its relative proximity and brightness, means that 30 Doradus provides scientists with an opportunity to learn more about how stars formed in our galaxy in the distant past.
Image credit: X-ray: NASA/CXC/Penn State Univ./L. Townsley et al.; IR: NASA/ESA/CSA/STScI/JWST ERO Production Team
#NASAMarshall #Chandra #NASAChandra #ChandraXrayObservatory #STScI #ESA #jwst #jameswebbspacetelescope #NASAGoddard #nebula #TarantulaNebula
Read more about the Chandra X-ray Observatory
NASA’s James Webb Space Telescope has peered into the chaos of the Cartwheel Galaxy, revealing new details about star formation and the galaxy’s central black hole. Webb’s powerful infrared gaze produced this detailed image of the Cartwheel and two smaller companion galaxies against a backdrop of many other galaxies. This image provides a new view of how the Cartwheel Galaxy has changed over billions of years.
The Cartwheel Galaxy, located about 500 million light-years away in the Sculptor constellation, is a rare sight. Its appearance, much like that of the wheel of a wagon, is the result of an intense event – a high-speed collision between a large spiral galaxy and a smaller galaxy not visible in this image. Collisions of galactic proportions cause a cascade of different, smaller events between the galaxies involved; the Cartwheel is no exception.
The collision most notably affected the galaxy’s shape and structure. The Cartwheel Galaxy sports two rings — a bright inner ring and a surrounding, colorful ring. These two rings expand outwards from the center of the collision, like ripples in a pond after a stone is tossed into it. Because of these distinctive features, astronomers call this a “ring galaxy,” a structure less common than spiral galaxies like our Milky Way.
The bright core contains a tremendous amount of hot dust with the brightest areas being the home to gigantic young star clusters. On the other hand, the outer ring, which has expanded for about 440 million years, is dominated by star formation and supernovas. As this ring expands, it plows into surrounding gas and triggers star formation.
Other telescopes, including the Hubble Space Telescope, have previously examined the Cartwheel. But the dramatic galaxy has been shrouded in mystery – perhaps literally, given the amount of dust that obscures the view. Webb, with its ability to detect infrared light, now uncovers new insights into the nature of the Cartwheel.
Image credit: NASA, ESA, CSA, STScI
#NASA #STScI #SpaceTelescopeScienceInstitute #jwst #jameswebbspacetelescope #GoddardSpaceFlightCenter #Goddard #GSFC #marshallspaceflightcenter #msfc #marshall #galaxy
In this mosaic image stretching 340 light-years across, Webb’s Near-Infrared Camera (NIRCam) displays the Tarantula Nebula star-forming region in a new light, including tens of thousands of never-before-seen young stars that were previously shrouded in cosmic dust. The most active region appears to sparkle with massive young stars, appearing pale blue.
Image credit: NASA, ESA, CSA, STScI
#NASA #STScI #SpaceTelescopeScienceInstitute #jwst #jameswebbspacetelescope #GoddardSpaceFlightCenter #Goddard #GSFC #marshallspaceflightcenter #msfc #marshall #nebula
From 156 million light-years away the heart of active galaxy IC 5063 reveals a mixture of bright rays and dark shadows coming from the blazing core, home of a supermassive black hole.
In this Hubble Space Telescope image, astronomers suggest that a ring of dusty material surrounding the black hole may be casting its shadow into space. According to this scenario, the interplay of light and shadow may occur when light blasted by the monster black hole strikes the dust ring, which is buried deep inside the core. Light streams through gaps in the ring, creating the brilliant cone-shaped rays. However, denser patches in the disk block some of the light, casting long, dark shadows through the galaxy.
This phenomenon is similar to sunlight piercing our Earthly clouds at sunset, creating a mixture of bright rays and dark shadows formed by beams of light scattered by the atmosphere.
However, the bright rays and dark shadows appearing in IC 5063 are happening on a vastly larger scale, shooting across at least 36,000 light-years.
The observations were taken on March 7 and Nov. 25, 2019, by Hubble's Wide Field Camera 3 and Advanced Camera for Surveys.
Image Credit: NASA, ESA, STScI and W.P. Maksym (CfA)
#NASA #MarshallSpaceFlightCenter #MSFC #Marshall #HubbleSpaceTelescope #HST #astronomy #space #astrophysics #solarsystemandbeyond #gsfc #Goddard #GoddardSpaceFlightCenter #ESA #EuropeanSpaceAgency #STScI #SpaceTelescopeScienceInstitute #galaxy
The American Institute of Aeronautics and Astronautics (AIAA) honored NASA’s James Webb Space Telescope and Double Asteroid Redirection Test (DART) missions and contractors as three of the 2023 recipients of its most prestigious awards, the AIAA Premier Awards. The awards recognize the individuals in aerospace AIAA deems as most influential and inspiring.
This image from NASA’s James Webb Space Telescope’s Near-Infrared Camera (NIRCam) instrument shows Dimorphos, the asteroid moonlet in the double-asteroid system of Didymos, about 4 hours after NASA’s Double Asteroid Redirection Test (DART) made impact.
Image credit: NASA, ESA, CSA, Cristina Thomas (Northern Arizona University), Ian Wong (NASA-GSFC); image processing: Joseph DePasquale (STScI)
#NASA #NASAMarshall #DART #DoubleAsteroidRedirectionTest #asteroid #DARTMission #PlanetaryDefenders #PlanetaryDefense #NASAGoddard #STScl #ESA
Analysis of data obtained over the past two weeks by NASA’s Double Asteroid Redirection Test (DART) investigation team shows the spacecraft's kinetic impact with its target asteroid, Dimorphos, successfully altered the asteroid’s orbit. This marks humanity’s first time purposely changing the motion of a celestial object and the first full-scale demonstration of asteroid deflection technology.
“All of us have a responsibility to protect our home planet. After all, it’s the only one we have,” said NASA Administrator Bill Nelson. “This mission shows that NASA is trying to be ready for whatever the universe throws at us. NASA has proven we are serious as a defender of the planet. This is a watershed moment for planetary defense and all of humanity, demonstrating commitment from NASA's exceptional team and partners from around the world.”
Prior to DART’s impact, it took Dimorphos 11 hours and 55 minutes to orbit its larger parent asteroid, Didymos. Since DART’s intentional collision with Dimorphos on Sept. 26, astronomers have been using telescopes on Earth to measure how much that time has changed. Now, the investigation team has confirmed the spacecraft’s impact altered Dimorphos’ orbit around Didymos by 32 minutes, shortening the 11 hour and 55-minute orbit to 11 hours and 23 minutes. This measurement has a margin of uncertainty of approximately plus or minus 2 minutes.
Before its encounter, NASA had defined a minimum successful orbit period change of Dimorphos as change of 73 seconds or more. This early data show DART surpassed this minimum benchmark by more than 25 times.
This imagery from NASA’s Hubble Space Telescope from Oct. 8, 2022, shows the debris blasted from the surface of Dimorphos 285 hours after the asteroid was intentionally impacted by NASA’s DART spacecraft on Sept. 26. The shape of that tail has changed over time. Scientists are continuing to study this material and how it moves in space, in order to better understand the asteroid.
Image credit: NASA/ESA/STScI/Hubble
#NASA #NASAMarshall #DART #DoubleAsteroidRedirectionTest #asteroid #DARTMission #PlanetaryDefenders #PlanetaryDefense #NASAGoddard #STScl #ESA
Newborn stars peek out from beneath their natal blanket of dust in this dynamic image of the Rho Ophiuchi dark cloud from NASA's Spitzer Space Telescope. Spitzer observes infrared light, which in most cases can penetrate gas and dust clouds better than visible light.
Initially scheduled for a minimum 2.5-year primary mission, NASA's Spitzer Space Telescope has gone far beyond its expected lifetime -- and is still going strong after 15 years.
Launched into a solar orbit on Aug. 25, 2003, Spitzer was the final of NASA's four Great Observatories to reach space. The space telescope has illuminated some of the oldest galaxies in the universe, revealed a new ring around Saturn, and peered through shrouds of dust to study newborn stars and black holes. Spitzer assisted in the discovery of planets beyond our solar system, including the detection of seven Earth-size planets orbiting the star TRAPPIST-1, among other accomplishments.
Image credit: NASA/JPL-Caltech/Harvard-Smithsonian CfA
In 1936, the young star FU Orionis began gobbling material from its surrounding disk of gas and dust with a sudden voraciousness. During a three-month binge, as matter turned into energy, the star became 100 times brighter, heating the disk around it to temperatures of up to 12,000 degrees Fahrenheit (7,000 Kelvin). FU Orionis is still devouring gas to this day, although not as quickly.
This brightening is the most extreme event of its kind that has been confirmed around a star the size of the sun, and may have implications for how stars and planets form. The intense baking of the star's surrounding disk likely changed its chemistry, permanently altering material that could one day turn into planets.
"By studying FU Orionis, we're seeing the absolute baby years of a solar system," said Joel Green, a project scientist at the Space Telescope Science Institute, Baltimore, Maryland. "Our own sun may have gone through a similar brightening, which would have been a crucial step in the formation of Earth and other planets in our solar system."
To read the full article, click here.
_____________________________________________
These official NASA photographs are being made available for publication by news organizations and/or for personal use printing by the subject(s) of the photographs. The photographs may not be used in materials, advertisements, products, or promotions that in any way suggest approval or endorsement by NASA. All Images used must be credited. For information on usage rights, click here.
This 2009 image of the spiral galaxy Messier 101 (M101) is a composite of data from NASA's Chandra X-ray Observatory, the Hubble Space Telescope, and the Spitzer Space Telescope. The colors correspond to the following wavelengths: The X-rays detected by Chandra are colored blue. Sources of X-rays include million-degree gas, the debris from exploded stars, and material zooming around black holes and neutron stars. The red color shows Spitzer's view in infrared light. It highlights the heat emitted by dust lanes in the galaxy where stars can form. Finally, the yellow coloring is visible light data from Hubble. Most of this light comes from stars, and they trace the same spiral structure as the dust lanes.
M101 is a face-on spiral galaxy about 22 million light years away in the constellation Ursa Major. It is similar to the Milky Way galaxy in many ways, but is larger. The new "Great Observatories" composite image of M101 was distributed to over 100 planetariums, museums, nature centers, and schools across the country in conjunction with Galileo's birthday on February 15. The year 2009 marks the 400th anniversary of Galileo's telescope and has been designated the International Year of Astronomy to celebrate this historic anniversary.
Image credit: X-ray: NASA/CXC/JHU/K.Kuntz et al.; Optical: NASA/ESA/STScI/JHU/K. Kuntz et al; IR: NASA/JPL-Caltech/STScI/K. Gordon
This Hubble Space Telescope view was taken on May 12, 2016, when Mars was 50 million miles from Earth. The Hubble image reveals details as small as 20 to 30 miles across.
The large, dark region at far right is Syrtis Major Planitia, one of the first features identified on the surface of the planet by seventeenth century observers. Christiaan Huygens used this feature to measure the rotation rate of Mars. (A Martian day is about 24 hours and 37 minutes.) Today we know that Syrtis Major is an ancient, inactive shield volcano. Late-afternoon clouds surround its summit in this view.
A large oval feature to the south of Syrtis Major is the bright Hellas Planitia basin. About 1,100 miles across and nearly five miles deep, it was formed about 3.5 billion years ago by an asteroid impact.
The orange area in the center of the image is Arabia Terra, a vast upland region in northern Mars that covers about 2,800 miles. The landscape is densely cratered and heavily eroded, indicating that it could be among the oldest terrains on the planet. Dried river canyons (too small to be seen here) wind through the region and empty into the large northern lowlands.
South of Arabia Terra, running east to west along the equator, are the long dark features known as Sinus Sabaeus (to the east) and Sinus Meridiani (to the west). These darker regions are covered by dark bedrock and fine-grained sand deposits ground down from ancient lava flows and other volcanic features. These sand grains are coarser and less reflective than the fine dust that gives the brighter regions of Mars their ruddy appearance. Early Mars watchers first mapped these regions.
An extended blanket of clouds can be seen over the southern polar cap. The icy northern polar cap has receded to a comparatively small size because it is now late summer in the northern hemisphere. Hubble photographed a wispy, afternoon, lateral cloud extending for at least 1,000 miles at mid-northern latitudes. Early morning clouds and haze extend along the western limb.
This hemisphere of Mars contains landing sites for several NASA Mars surface robotic missions, including Viking 1 (1976), Mars Pathfinder (1997), and the still-operating Opportunity Mars rover. The landing sites of the Spirit and Curiosity Mars rovers are on the other side of the planet.
This observation was made just a few days before Mars opposition on May 22, when the sun and Mars will be on exact opposite sides of Earth, and when Mars will be at a distance of 47.4 million miles from Earth. On May 30, Mars will be the closest it has been to Earth in 11 years, at a distance of 46.8 million miles. Mars is especially photogenic during opposition because it can be seen fully illuminated by the sun as viewed from Earth.
The biennial close approaches between Mars and Earth are not all the same. Mars' orbit around the sun is markedly elliptical; the close approaches to Earth can range from 35 million miles to 63 million miles.
They occur because about every two years Earth's orbit catches up to Mars' orbit, aligning the sun, Earth, and Mars in a straight line, so that Mars and the sun are on "opposing" sides of Earth. This phenomenon is a result of the difference in orbital periods between Earth's orbit and Mars' orbit. While Earth takes the familiar 365 days to travel once around the sun, Mars takes 687 Earth days to make its trip around our star. As a result, Earth makes almost two full orbits in the time it takes Mars to make just one, resulting in the occurrence of Martian oppositions about every 26 months.
Credit: NASA, ESA, the Hubble Heritage Team (STScI/AURA), J. Bell (ASU), and M. Wolff (Space Science Institute)
In this image from 2011, project scientist Mark Clampin is reflected in the flight mirrors of the James Webb Space Telescope during testing at the Marshall Space Flight Center.
In the intervening years, Webb has undergone a series of increasingly intensive tests and is slated to launch on Dec. 18, 2021.
Before launch the mission will host STEAM Day: A Learning Journey Together, a virtual, interactive event on Sept. 30, for educators and students.
Image Credit: Ball Aerospace
#NASA #STScI #SpaceTelescopeScienceInstitute #jwst #jameswebbspacetelescope #blackhole #supermassiveblackhole #GoddardSpaceFlightCenter #Goddard #GSFC #marshallspaceflightcenter #msfc #marshall #space #telescope
Part of 'the Ghost of Cassiopeia' (IC 63 nebula) by Hubble Space Telescope
Acknowledgement to NASA and the Space Telescope Science Institute (STScI)
You can find the original image here: hubblesite.org/contents/media/images/2018/42/4244-Image.h...
"About 550 light-years away in the constellation of Cassiopeia lies IC 63, a stunning and slightly eerie nebula. Also known as the Ghost of Cassiopeia, IC 63 is being shaped by radiation from a nearby unpredictably variable star, Gamma Cassiopeiae, which is slowly eroding away the ghostly cloud of dust and gas."
February marked significant progress for NASA’s James Webb Space Telescope, which completed its final functional performance tests at Northrop Grumman in Redondo Beach, California. Testing teams successfully completed two important milestones that confirmed the observatory’s internal electronics are all functioning as intended, and that the spacecraft and its four scientific instruments can send and receive data properly through the same network they will use in space. These milestones move Webb closer to being ready to launch in October.
These tests are known as the comprehensive systems test, which took place at Northrop Grumman, and the ground segment test, which took place in collaboration with the Space Telescope Science Institute in Baltimore.
Before the launch environment test, technicians ran a full scan known as a comprehensive systems test. This assessment established a baseline of electrical functional performance for the entire observatory, and all of the many components that work together to comprise the world’s premiere space science telescope. Once environmental testing concluded, technicians and engineers moved forward to run another comprehensive systems test and compared the data between the two. After thoroughly examining the data, the team confirmed that the observatory will both mechanically and electronically survive the rigors of launch.
Image credit: NASA
#NASA #STScI #SpaceTelescopeScienceInstitute #jwst #jameswebbspacetelescope #blackhole #supermassiveblackhole #GoddardSpaceFlightCenter #Goddard #GSFC #marshallspaceflightcenter #msfc #marshall #space #telescope
This time-lapse video, assembled from a set of Hubble Space Telescope photos, reveals two asteroids orbiting each other that have comet-like features. The asteroid pair, called 2006 VW139/288P, was observed in September 2016, just before the asteroid made its closest approach to the Sun. The photos revealed ongoing activity in the binary system. The apparent movement of the tail is a projection effect due to the relative alignment between the Sun, Earth, and 2006 VW139/288P changing between observations. The tail orientation is also affected by a change in the particle size. Initially, the tail was pointing towards the direction where comparatively large (about 1 millimeter in size) dust particles were emitted in late July. However, from Sept. 20 on, the tail began to point in the opposite direction from the Sun as the pressure of sunlight affects smaller (10 microns in size) dust particles where they are blown away from the nucleus by radiation pressure.
Image Credit: NASA, ESA, and J. DePasquale and Z. Levay (STScI)
A SpaceX Falcon 9 rocket soars upward after lifting off from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida, carrying NASA's Transiting Exoplanet Survey Satellite (TESS). Liftoff was at 6:51 p.m. EDT. TESS will search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. Photo credit: NASA/Kim Shiflett
“HUBBLE PROBES THE GREAT ORION NEBULA
A NASA Hubble Space Telescope image of a region of the Great Nebula in Orion, as imaged by the Wide Field Planetary Camera 2.
This is one of the nearest regions of very recent star formation (300,000 years ago). The nebula is a giant gas cloud illuminated by the brightest of the young hot stars at the top of the picture. Many of the fainter young stars are surrounded by disks of dust and gas, that are slightly more than twice the diameter of the solar system (or 100 Astronomical Units in diameter).
The great plume of gas in the lower left in this picture is the result of the ejection of material from a recently formed star.
The diagonal length of the image is 1.6 light years. Red light depicts emission in Nitrogen, green is Hydrogen, and blue is Oxygen.
The picture was obtained with second generation Wide Field and Planetary Camera (WFPC-2), which was installed in the Hubble Space Telescope during the STS-61 Hubble Servicing Mission. The WFPC-2 includes within it optics that correct for the aberration of the telescope’s primary mirror, restoring the optical quality of images obtained with the telescope to the level that the telescope was originally designed to provide.
credit: C.R. O'Dell/Rice University NASA”
8” x 10.375”. The image is oriented per the description of its affixed caption.
Also:
hubblesite.org/contents/news-releases/1994/news-1994-10.h...
Credit: HUBBLESITE website
esahubble.org/images/opo9410a/
Credit: ESA/Hubble website
NASA Administrator Bill Nelson, left, and Associate Administrator for NASA’s Science Mission Directorate, Thomas Zurbuchen, right, speak with Webb project scientist at the Space Telescope Science Institute, Klaus Pontoppidan, center, after being shown the first full-color images from NASA’s James Webb Space Telescope in a preview meeting, Monday, July 11, 2022, at the Mary W. Jackson NASA Headquarters building in Washington. The first images and spectroscopic data from the world’s largest and most powerful space telescope, set to be released July 11 and 12, will demonstrate Webb at its full power, as it begins its mission to unfold the infrared universe. Photo Credit: (NASA/Aubrey Gemignani)
NASA Administrator Bill Nelson, left, and Associate Administrator for NASA’s Science Mission Directorate, Thomas Zurbuchen, center, react to the first full-color images from NASA’s James Webb Space Telescope in a preview meeting with Webb project scientist at the Space Telescope Science Institute, Klaus Pontoppidan, right, Monday, July 11, 2022 at the Mary W. Jackson NASA Headquarters building in Washington. The first images and spectroscopic data from the world’s largest and most powerful space telescope, set to be released July 11 and 12, will demonstrate Webb at its full power, as it begins its mission to unfold the infrared universe. Photo Credit: (NASA/Aubrey Gemignani)
NASA Administrator Bill Nelson, center, and Associate Administrator for NASA’s Science Mission Directorate, Thomas Zurbuchen, right, react to the first full-color images from NASA’s James Webb Space Telescope in a preview meeting with Webb project scientist at the Space Telescope Science Institute, Klaus Pontoppidan, left, Monday, July 11, 2022 at the Mary W. Jackson NASA Headquarters building in Washington. The first images and spectroscopic data from the world’s largest and most powerful space telescope, set to be released July 11 and 12, will demonstrate Webb at its full power, as it begins its mission to unfold the infrared universe. Photo Credit: (NASA/Aubrey Gemignani)
“Resembling an interstellar Frisbee, this is a disk of dust seen edge-on around a newborn star in the Orion nebula, located 1,500 light-years away. Because the disk is edge-on, the star is largely hidden inside, in this striking Hubble Space Telescope picture. The disk may be an embryonic planetary system in the making. Our solar system probably formed out of just such a disk 4.5 billion years ago. At 17 times the diameter of our own solar system, this disk is the largest of several recently discovered in the Orion nebula.
The left image is a three-color composite, taken in blue, green, and red emission lines from glowing gas in the nebula. The right image was taken through a different filter, which blocks any bright spectral emission lines from the nebula, and hence the disk itself is less distinctly silhouetted against the background. However, clearly visible in this image are nebulosities above and below the plane of the disk; these betray the presence of the otherwise invisible central star, which cannot be seen directly due to dust in the edge-on disk.
The images were taken between January 1994 and March 1995, and a study of their characteristics has been submitted for publication to the Astronomical Journal.
Credit: Mark McCaughrean (Max-Planck-Institute for Astronomy), C. Robert O'Dell (Rice University), and NASA”
Not surprisingly, the URLs listed at the bottom of the photo’s verso are no longer valid. However, thankfully, the image can be found at the HUBBLESITE/Space Telescope Science Institute (STScI) website:
NASA Administrator Bill Nelson, center, and Associate Administrator for NASA’s Science Mission Directorate, Thomas Zurbuchen, right, speak with Webb project scientist at the Space Telescope Science Institute, Klaus Pontoppidan, left, after being shown the first full-color images from NASA’s James Webb Space Telescope in a preview meeting, Monday, July 11, 2022, at the Mary W. Jackson NASA Headquarters building in Washington. The first images and spectroscopic data from the world’s largest and most powerful space telescope, set to be released July 11 and 12, will demonstrate Webb at its full power, as it begins its mission to unfold the infrared universe. Photo Credit: (NASA/Aubrey Gemignani)
NASA Administrator Bill Nelson, center, and Associate Administrator for NASA’s Science Mission Directorate, Thomas Zurbuchen, right, speak with Webb project scientist at the Space Telescope Science Institute, Klaus Pontoppidan, left, after being shown the first full-color images from NASA’s James Webb Space Telescope in a preview meeting, Monday, July 11, 2022, at the Mary W. Jackson NASA Headquarters building in Washington. The first images and spectroscopic data from the world’s largest and most powerful space telescope, set to be released July 11 and 12, will demonstrate Webb at its full power, as it begins its mission to unfold the infrared universe. Photo Credit: (NASA/Aubrey Gemignani)
The SpaceX Falcon 9 rocket is ready to roll out to Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida, with NASA's Transiting Exoplanet Survey Satellite (TESS) secured in its payload fairing. TESS will launch on the Falcon 9 no earlier than 6:51 p.m. EDT on April 18. TESS will search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. Photo credit: NASA/Kim Shiflett
A SpaceX Falcon 9 rocket soars upward after lifting off from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida, carrying NASA's Transiting Exoplanet Survey Satellite (TESS). Liftoff was at 6:51 p.m. EDT. TESS will search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. Photo credit: NASA/Kim Shiflett
The SpaceX Falcon 9 rocket is ready to roll out to Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida, with NASA's Transiting Exoplanet Survey Satellite (TESS) secured in its payload fairing. TESS will launch on the Falcon 9 no earlier than 6:51 p.m. EDT on April 18. TESS will search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. Photo credit: NASA/Kim Shiflett
“SPACE TELESCOPE SCIENCE INSTITUTE -- HUBBLE TELESCOPE REVEALS STELLAR DEATH PROCESS -- This NASA Hubble Space Telescope image of planetary nebula NGC 7027 shows remarkable new details of the process by which a star like the Sun dies.
New features include: faint, blue, concentric shells surrounding the nebula; and extensive network of red dust clouds throughout the bright inner region; and the hot central white dwarf, visible as a white dot at the center.
The nebula is a record of the star’s final death throes. Initially the ejection of the star's outer layers, when it was at its red giant stage of evolution, occurred at a low rate and was spherical. The Hubble photo reveals that the initial ejections occurred episodically to produce the concentric shells. This culminated in a vigorous ejection of all of the remaining outer layers, which produced the bright inner regions. At this later stage the ejection was non-spherical, and dense clouds of dust condensed from the ejected material.
When a star like the Sun nears the end of its life, it expands to more than 50 times its original diameter, becoming a red giant star. Then its outer layers are ejected into space, exposing the small, extremely hot core of the star, which cools off to become a white dwarf. Although stars like the Sun can live for up to 10 billion years before becoming a red giant and ejecting a nebula, the actual ejection process takes only a few thousand years.
The NGC 7027 photograph is a composite of two Hubble images, taken in visible and infrared light, and is shown in "pseudo-color.
Credit: H. Bond (STScI) and NASA”
hubblesite.org/contents/media/images/1996/05/395-Image.html
Credit: HUBBLESITE website
astroa.physics.metu.edu.tr/Astronom/PN/NGC7027.HTM
Credit: Middle East Technical University/Astrophysics-Physics Department website
apod.nasa.gov/apod/ap960117.html
Credit: Astronomy Picture of the Day website
The payload fairing for NASA's Transiting Exoplanet Survey Satellite (TESS) is moved inside the Payload Hazardous Servicing Facility at the agency's Kennedy Space Center in Florida. Inside the facility, TESS will be encapsulated in the payload fairing. The satellite is scheduled to launch atop a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station on April 16. The satellite is the next step in NASA's search for planets outside our solar system, known as exoplanets. TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Orbital ATK, NASA’s Ames Research Center, the Harvard-Smithsonian Center for Astrophysics and the Space Telescope Science Institute. More than a dozen universities, research institutes and observatories worldwide are participants in the mission. NASA’s Launch Services Program is responsible for launch management. Photo credit: NASA/Frankie Martin
The payload fairing for NASA's Transiting Exoplanet Survey Satellite (TESS) is being moved to the Payload Hazardous Servicing Facility at the agency's Kennedy Space Center in Florida. Inside the facility, TESS will be encapsulated in the payload fairing. The satellite is scheduled to launch atop a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station on April 16. The satellite is the next step in NASA's search for planets outside our solar system, known as exoplanets. TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASAâs Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MITâs Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Orbital ATK, NASAâs Ames Research Center, the Harvard-Smithsonian Center for Astrophysics and the Space Telescope Science Institute. More than a dozen universities, research institutes and observatories worldwide are participants in the mission. NASAâs Launch Services Program is responsible for launch management. Photo credit: NASA
A SpaceX Falcon 9 rocket soars upward after lifting off from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida, carrying NASA's Transiting Exoplanet Survey Satellite (TESS). Liftoff was at 6:51 p.m. EDT. TESS will search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. Photo credit: NASA/Kim Shiflett
In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, the agency's Transiting Exoplanet Survey Satellite, or TESS, has been uncreated from its shipping container for inspections and preflight processing. The satellite is NASA's next step in the search for planets outside of the solar system also known as "exoplanets." TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Orbital ATK, NASA’s Ames Research Center, and the Harvard-Smithsonian Center for Astrophysics and the Space Telescope Science Institute. More than a dozen universities, research institutes and observatories worldwide are participants in the mission. NASA’s Launch Services Program is responsible for launch management. SpaceX of Hawthorne, California, is the provider of the Falcon 9 launch service. TESS is scheduled to launch atop a Falcon 9 rocket no earlier than April 16, 2018 from Space Launch Complex 41 at Cape Canaveral Air Force Station.
Photo credit: NASA/Kim Shiflett
NASA and science investigators from MIT participate in a science briefing for the agency's Transiting Exoplanet Survey Satellite (TESS) in the Press Site auditorium at Kennedy Space Center in Florida. Felicia Chou, NASA Communications, asks questions from online participants during the briefing. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16. Photo credit: NASA/Ben Smegelsky
A SpaceX Falcon 9 rocket lifts off from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida, carrying NASA's Transiting Exoplanet Survey Satellite (TESS). Liftoff was at 6:51 p.m. EDT. TESS will search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. Photo credit: NASA/Tony Gray
A SpaceX Falcon 9 rocket lifts off from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida, carrying NASA's Transiting Exoplanet Survey Satellite (TESS). Liftoff was at 6:51 p.m. EDT. TESS will search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. Photo credit: NASA/Tony Gray
A SpaceX Falcon 9 rocket lifts off from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida, carrying NASA's Transiting Exoplanet Survey Satellite (TESS). Liftoff was at 6:51 p.m. EDT. TESS will search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. Photo credit: NASA/Kim Shiflett
In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, the agency's Transiting Exoplanet Survey Satellite, or TESS, has been uncreated from its shipping container for inspections and preflight processing. The satellite is NASA's next step in the search for planets outside of the solar system also known as "exoplanets." TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Orbital ATK, NASA’s Ames Research Center, and the Harvard-Smithsonian Center for Astrophysics and the Space Telescope Science Institute. More than a dozen universities, research institutes and observatories worldwide are participants in the mission. NASA’s Launch Services Program is responsible for launch management. SpaceX of Hawthorne, California, is the provider of the Falcon 9 launch service. TESS is scheduled to launch atop a Falcon 9 rocket no earlier than April 16, 2018 from Space Launch Complex 41 at Cape Canaveral Air Force Station.
Photo credit: NASA/Kim Shiflett
A SpaceX Falcon 9 rocket lifts off from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida, carrying NASA's Transiting Exoplanet Survey Satellite (TESS). Liftoff was at 6:51 p.m. EDT. TESS will search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. Photo credit: NASA/Tony Gray
A SpaceX Falcon 9 rocket lifts off from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida, carrying NASA's Transiting Exoplanet Survey Satellite (TESS). Liftoff was at 6:51 p.m. EDT. TESS will search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. Photo credit: NASA/Tony Gray
The payload fairing for NASA's Transiting Exoplanet Survey Satellite (TESS) is moved inside the Payload Hazardous Servicing Facility at the agency's Kennedy Space Center in Florida. Inside the facility, TESS will be encapsulated in the payload fairing. The satellite is scheduled to launch atop a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station on April 16. The satellite is the next step in NASA's search for planets outside our solar system, known as exoplanets. TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Orbital ATK, NASA’s Ames Research Center, the Harvard-Smithsonian Center for Astrophysics and the Space Telescope Science Institute. More than a dozen universities, research institutes and observatories worldwide are participants in the mission. NASA’s Launch Services Program is responsible for launch management. Photo credit: NASA/Frankie Martin
The Infrared Station on the National Mall across from the National Air and Space museum where you can look at the sun and “See” yourself in an invisible type of light called infrared and learn about JWST, NASA’s new infrared observatory, with the Space Telescope Science Institute.
The National Air and Space Museum’s Tour of the Universe on the National Mall sponsored by the Bezos Learning Center in Washington, DC, July 20, 2022. (Smithsonian photo by Jim Preston)
This photo is subject to Smithsonian Terms of Use: si.edu/termsofuse.
Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, technicians assist as the SpaceX payload fairing containing the agency's Transiting Exoplanet Survey Satellite (TESS) is moved by crane to a transporter. The fairing will be moved to Space Launch Complex 40 at Cape Canaveral Air Force Station. TESS is scheduled to launch on the SpaceX Falcon 9 rocket at 6:32 p.m. EDT on April 16. The satellite is the next step in NASA's search for planets outside our solar system, known as exoplanets. TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Orbital ATK, NASA’s Ames Research Center, the Harvard-Smithsonian Center for Astrophysics and the Space Telescope Science Institute. More than a dozen universities, research institutes and observatories worldwide are participants in the mission. NASA’s Launch Services Program is responsible for launch management. Photo credit: NASA/Kim Shiflett
Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, the SpaceX payload fairing containing the agency's Transiting Exoplanet Survey Satellite (TESS) is secured onto a transporter. The fairing will be moved to Space Launch Complex 40 at Cape Canaveral Air Force Station. TESS is scheduled to launch on the SpaceX Falcon 9 rocket at 6:32 p.m. EDT on April 16. The satellite is the next step in NASA's search for planets outside our solar system, known as exoplanets. TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Orbital ATK, NASA’s Ames Research Center, the Harvard-Smithsonian Center for Astrophysics and the Space Telescope Science Institute. More than a dozen universities, research institutes and observatories worldwide are participants in the mission. NASA’s Launch Services Program is responsible for launch management. Photo credit: NASA/Kim Shiflett
Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, the SpaceX payload fairing containing the agency's Transiting Exoplanet Survey Satellite (TESS) is secured onto a transporter. The fairing will be moved to Space Launch Complex 40 at Cape Canaveral Air Force Station. TESS is scheduled to launch on the SpaceX Falcon 9 rocket at 6:32 p.m. EDT on April 16. The satellite is the next step in NASA's search for planets outside our solar system, known as exoplanets. TESS is a NASA Astrophysics Explorer mission led and operated by MIT in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners include Orbital ATK, NASA’s Ames Research Center, the Harvard-Smithsonian Center for Astrophysics and the Space Telescope Science Institute. More than a dozen universities, research institutes and observatories worldwide are participants in the mission. NASA’s Launch Services Program is responsible for launch management. Photo credit: NASA/Kim Shiflett
A SpaceX Falcon 9 rocket lifts off from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida, carrying NASA's Transiting Exoplanet Survey Satellite (TESS). Liftoff was at 6:51 p.m. EDT. TESS will search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. Photo credit: NASA/Kim Shiflett
A SpaceX Falcon 9 rocket lifts off from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida, carrying NASA's Transiting Exoplanet Survey Satellite (TESS). Liftoff was at 6:51 p.m. EDT. TESS will search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. Photo credit: NASA/Tony Gray
A SpaceX Falcon 9 rocket lifts off from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida, carrying NASA's Transiting Exoplanet Survey Satellite (TESS). Liftoff was at 6:51 p.m. EDT. TESS will search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. Photo credit: NASA/Tony Gray
A SpaceX Falcon 9 rocket lifts off from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida, carrying NASA's Transiting Exoplanet Survey Satellite (TESS). Liftoff was at 6:51 p.m. EDT. TESS will search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. Photo credit: NASA/Tony Gray
A SpaceX Falcon 9 rocket lifts off from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida, carrying NASA's Transiting Exoplanet Survey Satellite (TESS). Liftoff was at 6:51 p.m. EDT. TESS will search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. Photo credit: NASA/Kim Shiflett
NASA and industry leaders speak to NASA Social participants about the agency's Transiting Exoplanet Survey Satellite (TESS) in the Press Site auditorium at Kennedy Space Center in Florida. Speaking to the group, from left are Natalia Guerrero, TESS researcher, Massachusetts Institute of Technology, and Robert Lockwood, TESS Spacecraft Program Manager, Orbital ATK. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16. Photo credit: NASA/Ben Smegelsky
NASA and science investigators from MIT participate in a science briefing for the agency's Transiting Exoplanet Survey Satellite (TESS) in the Press Site auditorium at Kennedy Space Center in Florida. From left are moderator Claire Saravia, NASA Communications; Paul Hertz, Astrophysics Division director, NASA Headquarters; George Ricker, TESS principal investigator, Massachusetts Institute of Technology; Padi Boyd, TESS Guest Investigator Program lead, NASA’s Goddard Space Flight Center; Stephen Rinehart, TESS Project scientist, NASA’s Goddard Space Flight Center; and Diana Dragomir, NASA Hubble Postdoctoral Fellow, Massachusetts Institute of Technology. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16. Photo credit: NASA/Ben Smegelsky