View allAll Photos Tagged SolarSystemandBeyond

This stunning compilation image of Jupiter’s stormy northern hemisphere was captured by NASA’s Juno spacecraft as it performed a close pass of the gas giant planet. Some bright-white clouds can be seen popping up to high altitudes on the right side of Jupiter’s disk. (The Juno team frequently refers to clouds like these as “pop-up” clouds in image captions.)

 

Juno took the four images used to produce this color-enhanced view on May 29, 2019, between 12:52 a.m. PDT (3:52 a.m. EDT) and 1:03 a.m. PDT (4:03 a.m. EDT), as the spacecraft performed its 20th science pass of Jupiter. At the time the images were taken, the spacecraft was between 11,600 miles (18,600 kilometers) and 5,400 miles (8,600 kilometers) above Jupiter's cloud tops, above a northern latitude spanning from about 59 to 34 degrees.

 

Image Credit: NASA/JPL-Caltech/SwRI/MSSS/Kevin M. Gill

 

Read more

 

More about Juno

 

NASA Media Usage Guidelines

This image taken with the NASA/ESA Hubble Space Telescope showcases the emission nebula NGC 2313. Emission nebulae are bright, diffuse clouds of ionized gas that emit their own light.

 

The bright star V565 (center of the image) highlights a silvery, fan-shaped veil of gas and dust, while the right half of this image is obscured by a dense cloud of dust. Nebulae with similar shapes were once called “cometary nebulae” because the star with an accompanying bright fan looked like a comet with a bright tail.

 

The language that astronomers use changes as we become better acquainted with the universe, and astronomical history is littered with now-obsolete phrases to describe objects in the night sky, such as “spiral nebulae” for spiral galaxies.

 

Image credit: ESA/Hubble, R. Sahai

 

#NASA #MarshallSpaceFlightCenter #MSFC #Marshall #HubbleSpaceTelescope #HST #astronomy #space #astrophysics #solarsystemandbeyond #gsfc #Goddard #GoddardSpaceFlightCenter #ESA #EuropeanSpaceAgency #galaxycluster #galaxy

 

Read more

 

More about the Hubble Space Telescope

 

NASA Media Usage Guidelines

In celebration of the 31st anniversary of the launching of NASA's Hubble Space Telescope, astronomers aimed the renowned observatory at a brilliant "celebrity star," one of the brightest stars seen in our galaxy, surrounded by a glowing halo of gas and dust.

 

The price for the monster star's opulence is "living on the edge." The star, called AG Carinae, is waging a tug-of-war between gravity and radiation to avoid self-destruction.

 

The expanding shell of gas and dust that surrounds the star is about five light-years wide, which equals the distance from here to the nearest star beyond the Sun, Proxima Centauri.

 

The huge structure was created from one or more giant eruptions about 10,000 years ago. The star's outer layers were blown into space – like a boiling teapot popping off its lid. The expelled material amounts to roughly 10 times our Sun's mass.

 

Image credit: NASA, ESA, STScI

 

#NASA #MarshallSpaceFlightCenter #MSFC #Marshall #HubbleSpaceTelescope #HST #astronomy #space #astrophysics #solarsystemandbeyond #gsfc #Goddard #GoddardSpaceFlightCenter #ESA #EuropeanSpaceAgency

 

Read more

 

More about the Hubble Space Telescope

 

NASA Media Usage Guidelines

This latest image of Jupiter, taken by NASA’s Hubble Space Telescope on Aug. 25, 2020, was captured when the planet was 406 million miles from Earth. A unique and exciting detail of Hubble’s snapshot appears at mid-northern latitudes as a bright, white, stretched-out storm traveling around the planet at 350 mph. Hubble shows that the Great Red Spot, rolling counterclockwise in the planet’s southern hemisphere, is plowing into the clouds ahead of it, forming a cascade of white and beige ribbons. Jupiter’s icy moon Europa, thought to hold potential ingredients for life, is visible to the left of the gas giant.

 

Image Credit: NASA, ESA, STScI, A. Simon (Goddard Space Flight Center), M.H. Wong (University of California, Berkeley), and the OPAL team

 

#NASA #MarshallSpaceFlightCenter #MSFC #Marshall #HubbleSpaceTelescope #HST #astronomy #space #astrophysics #Goddard #GoddardSpaceFlightCenter #ESA #EuropeanSpaceAgency #galaxy #supernova #solarsystemandbeyond #gsfc #Jupiter

 

Read more

 

More about the Hubble Space Telescope

 

NASA Media Usage Guidelines

This striking image features a relatively rare celestial phenomenon known as a Herbig-Haro object. This particular object, named HH111, was imaged by the NASA/ESA Hubble Space Telescope’s Wide Field Camera 3 (WFC3). These spectacular objects develop under very specific circumstances. Newly formed stars are often very active, and in some cases they expel very narrow jets of rapidly moving ionized gas – gas that is so hot that its molecules and atoms have lost their electrons, making the gas highly charged. The streams of ionized gas then collide with the clouds of gas and dust surrounding newly formed stars at speeds of hundreds of miles per second. It is these energetic collisions that create Herbig-Haro objects such as HH111.

 

WFC3 takes images at optical, ultraviolet, and infrared wavelengths, which means that it observes objects at a wavelength range similar to the range that human eyes are sensitive to (optical, or visible) and a range of wavelengths that are slightly too short (ultraviolet) or too long (infrared) to be detected by human eyes. Herbig-Haro objects actually release a lot of light at optical wavelengths, but they are difficult to observe because their surrounding dust and gas absorb much of the visible light. Therefore, the WFC3’s ability to observe at infrared wavelengths – where observations are not as affected by gas and dust – is crucial to observing Herbo-Haro objects successfully.

 

Image credit: ESA/Hubble & NASA, B. Nisini

 

#NASA #MarshallSpaceFlightCenter #MSFC #Marshall #HubbleSpaceTelescope #HST #astronomy #space #astrophysics #solarsystemandbeyond #gsfc #Goddard #GoddardSpaceFlightCenter #ESA #EuropeanSpaceAgency #nebula

 

Read more

 

More about the Hubble Space Telescope

 

NASA Media Usage Guidelines

The spacecraft flew closer to Jupiter’s largest moon than any other in more than two decades, offering dramatic glimpses of the icy orb.

 

The first two images from NASA Juno’s June 7, 2021, flyby of Jupiter’s giant moon Ganymede have been received on Earth. The photos – one from the Jupiter orbiter’s JunoCam imager and the other from its Stellar Reference Unit star camera – show the surface in remarkable detail, including craters, clearly distinct dark and bright terrain, and long structural features possibly linked to tectonic faults.

 

This image of Ganymede was obtained by the JunoCam imager during Juno’s June 7, 2021, flyby of the icy moon.

 

Image Credit: NASA/JPL-Caltech/SwRI/MSSS

 

#NASA #MarshallSpaceFlightCenter #MSFC #Marshall #jpl #jetpropulsionlaboratory #nasamarshall #MSFC #solarsystem #juno #jupiter #space #astronomy #nasajuno #nasamarshallspaceflightcenter #GreatRedSpot #junocam #Ganymede

 

Read more

 

More about Juno

 

NASA Media Usage Guidelines

Jupiter's volcanically active moon Io casts its shadow on the planet in this dramatic image from NASA's Juno spacecraft. As with solar eclipses on the Earth, within the dark circle racing across Jupiter's cloud tops one would witness a full solar eclipse as Io passes in front of the Sun.

 

Such events occur frequently on Jupiter because it is a large planet with many moons. In addition, unlike most other planets in our solar system, Jupiter's axis is not highly tilted relative to its orbit, so the Sun never strays far from Jupiter's equatorial plane (+/- 3 degrees). This means Jupiter's moons regularly cast their shadows on the planet throughout its year.

 

Juno's close proximity to Jupiter provides an exceptional fish-eye view, showing a small fraction near the planet's equator. The shadow is about 2,200 miles (3,600 kilometers) wide, approximately the same width as Io, but appears much larger relative to Jupiter.

 

Image Credit: NASA/JPL-Caltech/SwRI/MSSS/Kevin M. Gill (CC-BY)

 

#NASA #MarshallSpaceFlightCenter #MSFC #Marshall #jpl #jetpropulsionlaboratory #nasamarshall #MSFC #solarsystem #juno #jupiter #space #astronomy #nasajuno #nasamarshallspaceflightcenter

 

Read more

 

More about Juno

 

NASA Media Usage Guidelines

This image taken with the NASA/ESA Hubble Space Telescope features NGC 7678 – a galaxy with one particularly prominent arm, located approximately 164 million light-years away in the constellation of Pegasus (the Winged Horse). With a diameter of around 115,000 light-years, this bright spiral galaxy is a similar size to our own galaxy (the Milky Way) and was discovered in 1784 by the German-British astronomer William Herschel.

 

The Atlas of Peculiar Galaxies is a catalog which was produced in 1966 by the American astronomer Halton Arp. NGC 7678 is among the 338 galaxies presented in this catalog, which organizes peculiar galaxies according to their unusual features. Cataloged here as Arp 28, this galaxy is listed together with six others in the group “spiral galaxies with one heavy arm.”

 

Image credit: ESA/Hubble & NASA, A. Riess et al.

 

#NASA #MarshallSpaceFlightCenter #MSFC #Marshall #HubbleSpaceTelescope #HST #astronomy #space #astrophysics #solarsystemandbeyond #gsfc #Goddard #GoddardSpaceFlightCenter #ESA #EuropeanSpaceAgency #galaxy #spiralgalaxy

 

Read more

 

More about the Hubble Space Telescope

 

NASA Media Usage Guidelines

Just as our own Moon floats away from Earth a tiny bit more each year, other moons are doing the same with their host planets. As a moon orbits, its gravity pulls on the planet, causing a temporary bulge in the planet as it passes.

 

Over time, the energy created by the bulging and subsiding transfers from the planet to the moon, nudging it farther and farther out. Our Moon drifts 1.5 inches (3.8 centimeters) from Earth each year.

 

Scientists thought they knew the rate at which the giant moon Titan is moving away from Saturn, but they recently made a surprising discovery: Using data from NASA's Cassini spacecraft, they found Titan drifting a hundred times faster than previously understood -- about 4 inches (11 centimeters) per year.

 

The findings may help address an age-old question. While scientists know that Saturn formed 4.6 billion years ago in the early days of the solar system, there's more uncertainty about when the planet's rings and its system of more than 80 moons formed. Titan is currently 759,000 miles (1.2 million kilometers) from Saturn. The revised rate of its drift suggests that the moon started out much closer to Saturn, which would mean the whole system expanded more quickly than previously believed.

 

Larger than the planet Mercury, huge moon Titan is seen here as it orbits Saturn. Below Titan are the shadows cast by Saturn's rings. This natural color view was created by combining six images captured by NASA's Cassini spacecraft on May 6, 2012.

 

Image Credit: Credits: NASA/JPL-Caltech/Space Science Institute

 

Read More

 

Read more about Cassini

 

NASA Media Usage Guidelines

NASA’s Chandra X-ray Observatory contributes to the understanding of planetary nebulas by studying the hottest and most energetic processes still at work in these beautiful objects. X-ray data from Chandra reveal winds being driven away from the white dwarf so quickly (i.e., millions of miles per hour) that they create shock waves during collisions with slower-moving material previously ejected by the star. Chandra’s exceptional vision in X-rays contributes to the understanding of this brief, yet important, stage of stars’ lives. Here is the NGC 7027 planetary nebula that has been observed both by Chandra and NASA’s Hubble Space Telescope.

 

Image credit: X-ray: NASA/CXC/SAO; Optical: NASA/ESA/AURA/STScI

 

#NASA #NASAMarshall #Chandra #solarsystemandbeyond #nebula

 

Read more

 

More about the Chandra X-ray Observatory

 

NASA Media Usage Guidelines

NASA’s Juno mission captured this view of Jupiter’s southern hemisphere during the spacecraft’s 39th close flyby of the planet on Jan. 12, 2022. Zooming in on the right portion of the image reveals two more worlds in the same frame: Jupiter’s intriguing moons Io (left) and Europa (right).

 

Io is the solar system’s most volcanic body, while Europa’s icy surface hides a global ocean of liquid water beneath. Juno will have an opportunity to capture much more detailed observations of Europa – using several scientific instruments – in September 2022, when the spacecraft makes the closest fly-by of the enigmatic moon in decades. The mission will also make close approaches to Io in late 2023 and early 2024.

 

At the time this image was taken, the Juno spacecraft was about 38,000 miles (61,000 kilometers) from Jupiter’s cloud tops, at a latitude of about 52 degrees south. Citizen scientist Andrea Luck created the image using raw data from the JunoCam instrument.

 

Image credit: NASA/JPL-Caltech/SwRI/MSSS; Image processing by AndreaLuck © CC BY

 

#NASAMarshall #nasajuno #jupiter #io #Europa

 

Read more

 

More about Juno

 

NASA Media Usage Guidelines

The luminous heart of the galaxy M61 dominates this image, framed by its winding spiral arms threaded with dark tendrils of dust. As well as the usual bright bands of stars, the spiral arms of M61 are studded with ruby-red patches of light. Tell-tale signs of recent star formation, these glowing regions lead to M61’s classification as a starburst galaxy.

 

Though the gleaming spiral of this galaxy makes for a spectacular sight, one of the most interesting features of M61 lurks unseen at the center of this image. The heart of the galaxy shows widespread pockets of star formation, and hosts a supermassive black hole more than five million times as massive as the Sun.

 

M61 appears almost face-on, making it a popular subject for astronomical images, even though the galaxy lies more than 52 million light-years from Earth. This particular astronomical image incorporates data from not only Hubble, but also the FOcal Reducer and Spectrograph 2 camera at the European Southern Observatory’s Very Large Telescope, together revealing M61 in unprecedented detail. This striking image is one of many examples of telescope teamwork – astronomers frequently combine data from ground-based and space-based telescopes to learn more about the universe.

 

Image credit: ESA/Hubble & NASA, ESO, J. Lee and the PHANGS-HST Team

 

#NASA #MarshallSpaceFlightCenter #MSFC #Marshall #HubbleSpaceTelescope #HST #astronomy #space #astrophysics #solarsystemandbeyond #gsfc #Goddard #GoddardSpaceFlightCenter #ESA #EuropeanSpaceAgency #galaxy #spiralgalaxy

 

Read more

 

More about the Hubble Space Telescope

 

NASA Media Usage Guidelines

Nestled among the vast clouds of star-forming regions like this one lie potential clues about the formation of our own solar system.

 

This image from the NASA/ESA Hubble Space Telescope features AFGL 5180, a beautiful stellar nursery located in the constellation of Gemini (the Twins).

 

At the center of the image, a massive star is forming and blasting cavities through the clouds with a pair of powerful jets, extending to the top right and bottom left of the image. Light from this star is mostly escaping and reaching us by illuminating these cavities, like a lighthouse piercing through the storm clouds.

 

Stars are born in dusty environments and although this dust makes for spectacular images, it can prevent astronomers from seeing stars embedded in it. Hubble’s Wide Field Camera 3 (WFC3) instrument is designed to capture detailed images in both visible and infrared light, meaning that the young stars hidden in vast star-forming regions like AFGL 5180 can be seen much more clearly.

 

Image Credit: ESA/Hubble & NASA, J. C. Tan (Chalmers University & University of Virginia), R. Fedriani (Chalmers University); Acknowledgment: Judy Schmidt

 

#NASA #MarshallSpaceFlightCenter #MSFC #Marshall #HubbleSpaceTelescope #HST #astronomy #space #astrophysics #solarsystemandbeyond #gsfc #Goddard #GoddardSpaceFlightCenter #ESA #EuropeanSpaceAgency #stellarnursery #star

 

Read more

 

More about the Hubble Space Telescope

 

NASA Media Usage Guidelines

In a first, scientists have seen direct evidence of active volcanism on Earth’s twin, setting the stage for the NASA’s VERITAS mission to investigate.

 

Direct geological evidence of recent volcanic activity has been observed on the surface of Venus for the first time. Scientists made the discovery after poring over archival radar images of Venus taken more than 30 years ago, in the 1990s, by NASA’s Magellan mission. The images revealed a volcanic vent changing shape and increasing significantly in size in less than a year.

 

Scientists study active volcanoes to understand how a planet’s interior can shape its crust, drive its evolution, and affect its habitability. One of NASA’s new missions to Venus will do just that. Led by the agency’s Jet Propulsion Laboratory in Southern California, VERITAS – short for Venus Emissivity, Radio science, InSAR, Topography, And Spectroscopy – will launch within a decade. The orbiter will study Venus from surface to core to understand how a rocky planet about the same size as Earth took a very different path, developing into a world covered in volcanic plains and deformed terrain hidden beneath a thick, hot, toxic atmosphere.

 

This computer-generated 3D model of Venus’ surface shows the summit of Maat Mons, the volcano that is exhibiting signs of activity. A new study found one of Maat Mons’ vents became enlarged and changed shape over an eight-month period in 1991, indicating an eruptive event occurred.

 

Image credit: NASA/JPL-Caltech

 

#NASA #MarshallSpaceFlightCenter #MSFC #Marshall #jpl #nasamarshall #Venus #VERITAS #magellan

 

Read more

 

More about VERITAS

 

NASA Media Usage Guidelines

This image shows the spiral galaxy NGC 3254, observed using Hubble's Wide Field Camera 3 (WFC3). WFC3 has the capacity to observe ultraviolet, visible, and near-infrared light. The image is a composite of observations taken in the visible and infrared. NGC 3254 looks like a typical spiral galaxy, viewed side-on. However, NGC 3254 has a fascinating secret hiding in plain sight – it is a Seyfert galaxy. Seyfert galaxies have extraordinarily active cores (called an active galactic nucleus) that release as much energy as the rest of the galaxy put together.

 

Seyfert galaxies are not rare – about 10% of all galaxies may be Seyfert galaxies. They belong to the class of “active galaxies” – galaxies that have supermassive black holes at their centers accreting material, which releases vast amounts of radiation. The active cores of Seyfert galaxies such as NGC 3254 are brightest when observed in light outside the visible spectrum. At other wavelengths, this image would look very different, with the galaxy’s core shining extremely bright.

 

Image credit: ESA/Hubble & NASA, A. Riess et al.

 

#NASA #MarshallSpaceFlightCenter #MSFC #Marshall #HubbleSpaceTelescope #HST #astronomy #space #astrophysics #solarsystemandbeyond #gsfc #Goddard #GoddardSpaceFlightCenter #ESA #EuropeanSpaceAgency #galaxy #spiralgalaxy #Seyfertgalaxy

 

Read more

 

More about the Hubble Space Telescope

 

NASA Media Usage Guidelines

A violent and chaotic-looking mass of gas and dust is seen in this Hubble Space Telescope image of a nearby supernova remnant. Denoted N 63A, the object is the remains of a massive star that exploded, spewing its gaseous layers out into an already turbulent region.

 

The supernova remnant is part of a star-forming region in the Large Magellanic Cloud (LMC), an irregular galaxy 160,000 light-years from our own Milky Way.

 

Supernova remnants have long been thought to set off episodes of star formation when their expanding shock encounters nearby gas. N 63A is still young, and its ruthless shocks are destroying the ambient gas clouds, rather than coercing them to collapse and form stars.

 

Image credit: NASA/ESA/HEIC and The Hubble Heritage Team (STScI/AURA)

 

#NASA #MarshallSpaceFlightCenter #MSFC #Marshall #HubbleSpaceTelescope #HST #astronomy #space #astrophysics #solarsystemandbeyond #gsfc #Goddard #GoddardSpaceFlightCenter #ESA #EuropeanSpaceAgency #supernovaremnant #supernova

 

Read more

 

More about the Hubble Space Telescope

 

NASA Media Usage Guidelines

Magnetic fields in NGC 1068, or M77, are shown as streamlines over a visible light and X-ray composite image of the galaxy from the Hubble Space Telescope, NuSTAR or the Nuclear Spectroscopic Array, and the Sloan Digital Sky Survey. The magnetic fields align along the entire length of the massive spiral arms — 24,000 light years across (0.8 kiloparsecs) — implying that the gravitational forces that created the galaxy’s shape are also compressing the its magnetic field. This supports the leading theory of how the spiral arms are forced into their iconic shape known as “density wave theory.” SOFIA, the Stratospheric Observatory for Infrared Astronomy, studied the galaxy using far-infrared light (89 microns) to reveal facets of its magnetic fields that previous observations using visible and radio telescopes could not detect.

 

Image Credit: NASA/SOFIA; NASA/JPL-Caltech/Roma Tre Univ.

 

#NASA #MarshallSpaceFlightCenter #MSFC #Marshall #HubbleSpaceTelescope #HST #astronomy #space #astrophysics #solarsystemandbeyond #gsfc #Goddard #GoddardSpaceFlightCenter #JPL #JetPropulstionLaboratory #galaxy

 

Read more

 

More about the Hubble Space Telescope

 

NASA Media Usage Guidelines

Absorption nebulae or dark nebulae are clouds of gas and dust that don’t emit or reflect light, but block light coming from behind them. These nebulae tend to contain large amounts of dust, which allows them to absorb visible light from stars or nebulae beyond them. Astronomer William Herschel, discussing these seemingly empty spots in the late 1700s, called them “a hole in the sky.”

 

These opaque, dark knots of gas and dust called "Bok globules" are absorbing light in the center of the nearby emission nebula and star-forming region, NGC 281. Bok globules may form stars, or may eventually dissipate.

 

Image credit: NASA, ESA, and The Hubble Heritage Team (STScI/AURA); Acknowledgment: P. McCullough (STScI)

 

#NASA #MarshallSpaceFlightCenter #MSFC #Marshall #HubbleSpaceTelescope #HST #astronomy #space #astrophysics #solarsystemandbeyond #gsfc #Goddard #GoddardSpaceFlightCenter #ESA #EuropeanSpaceAgency #nebula #absorptionnebula

 

Read more

 

More about the Hubble Space Telescope

 

NASA Media Usage Guidelines

This image shows the spiral galaxy NGC 5037, in the constellation of Virgo. First documented by William Herschel in 1785, the galaxy lies about 150 million light-years away from Earth. Despite this distance, we can see the delicate structures of gas and dust within the galaxy in extraordinary detail. This detail is possible using Hubble’s Wide Field Camera 3 (WFC3), whose combined exposures created this image.

 

WFC3 is a very versatile camera, as it can collect ultraviolet, visible, and infrared light, thereby providing a wealth of information about the objects it observes. WFC3 was installed on Hubble by astronauts in 2009, during Servicing Mission 4 (SM4). SM4 was Hubble’s final Space Shuttle servicing mission, expected to prolong Hubble’s life for at least another five years. Twelve years later, both Hubble and WFC3 remain very active and scientifically productive.

 

Image credit: ESA/Hubble & NASA, D. Rosario; Acknowledgment: L. Shatz

 

#NASA #MarshallSpaceFlightCenter #MSFC #Marshall #HubbleSpaceTelescope #HST #astronomy #space #astrophysics #solarsystemandbeyond #gsfc #Goddard #GoddardSpaceFlightCenter #ESA #EuropeanSpaceAgency #galaxy

 

Read more

 

More about the Hubble Space Telescope

 

NASA Media Usage Guidelines

This observation from the NASA/ESA Hubble Space Telescope showcases Arp 86, a peculiar pair of interacting galaxies which lies roughly 220 million light-years from Earth in the constellation Pegasus. Arp 86 is composed of the two galaxies NGC 7752 and NGC 7753 – NGC 7753 is the large spiral galaxy dominating this image, and NGC 7752 is its smaller companion. The diminutive companion galaxy almost appears attached to NGC 7753, and it is this peculiarity that has earned the designation “Arp 86” – signifying that the galaxy pair appears in the Atlas of Peculiar Galaxies compiled by the astronomer Halton Arp in 1966. The gravitational dance between the two galaxies will eventually result in NGC 7752 being tossed out into intergalactic space or entirely engulfed by its much larger neighbor.

 

Hubble observed Arp 86 as part of a larger effort to understand the connections between young stars and the clouds of cold gas in which they form. Hubble gazed into star clusters and clouds of gas and dust in a variety of environments dotted throughout nearby galaxies. Combined with measurements from ALMA, a gigantic radio telescope perched high in the Chilean Andes, these Hubble observations provide a treasure trove of data for astronomers working to understand how stars are born.

 

These observations also helped sow the seeds of future research using the NASA/ESA James Webb Space Telescope. Due to launch later this year, Webb will study star formation in dusty regions like those in the galaxies of Arp 86.

 

Image credit: ESA/Hubble & NASA, Dark Energy Survey, J. Dalcanton

 

#NASA #MarshallSpaceFlightCenter #MSFC #Marshall #HubbleSpaceTelescope #HST #astronomy #space #astrophysics #solarsystemandbeyond #gsfc #Goddard #GoddardSpaceFlightCenter #ESA #EuropeanSpaceAgency #supernovaremnant #galaxy

 

Read more

 

More about the Hubble Space Telescope

 

NASA Media Usage Guidelines

 

This 2006 composite image was made with X-ray (blue/Chandra), radio (green/Very Large Array), and optical (red/Digitized Sky Survey) observations of a portion of the supernova remnant, IC443. The detailed image shows a neutron star - known as CXOU J061705.3+222127, or J0617 for short - that is spewing out a comet-like wake of high-energy particles as it races through space. Based on an analysis of the swept-back shape of the wake, astronomers deduced that the neutron star is located in the multimillion degree Celsius gas in the remnant. The direction of the wake is puzzling since it should point back toward the center of the remnant. A possible explanation is that it is being pushed aside by fast-moving gusts of gas in the remnant, much like cometary tails are pushed away by the solar wind.

 

Image credit: Chandra X-ray: NASA/CXC/B.Gaensler et al; Radio Detail: NRAO/AUI/NSF; Optical: DSS

 

#NASA #MarshallSpaceFlightCenter #MSFC #Marshall #ChandraXrayObservatory #cxo #astronomy #space #astrophysics #solarsystemandbeyond #neutronstar

 

Read more

 

More about the Chandra X-ray Observatory

 

NASA Media Usage Guidelines

This look at the complex surface of Jupiter’s moon Ganymede came from NASA’s Juno mission during a close pass by the giant moon in June 2021. At closest approach, the spacecraft came within just 650 miles (1,046 kilometers) of Ganymede’s surface.

 

Most of Ganymede's craters have bright rays extending from the impact scar, but about 1 percent of the craters have dark rays. This image taken by JunoCam during the close Ganymede pass shows one of the dark-rayed craters. The crater, named Kittu, is about 9 miles (15 kilometers) across, surrounded by darker material ejected during the impact that formed the crater. Scientists believe that contamination from the impactor produced the dark rays. As time passes, the rays stay dark because they are a bit warmer than the surroundings, so ice is driven off to condense on nearby colder, brighter terrain.

 

Ganymede is the largest moon in our solar system, larger even than the planet Mercury. It’s the only moon known to have its own magnetic field, which causes auroras that circle the moon’s poles. Evidence also indicates Ganymede may hide a liquid water ocean beneath its icy surface.

 

Image credit: NASA/JPL-Caltech/SwRI/MSSS; Image processing by Thomas Thomopoulos © CC BY

 

#NASAMarshall #nasajuno #jupiter #ganymede #planet

 

Read more

 

More about Juno

 

NASA Media Usage Guidelines

Gaseous swirls of hydrogen, sulfur, and hydrocarbons cradle a collection of infant stars in this composite image of the Orion Nebula, as seen by the Hubble Space Telescope and the Spitzer Space telescope. Together, the two telescopes expose carbon-rich molecules in the cosmic cloud of this star-formation factory located 1,500 light-years away.

 

Hubble's ultraviolet and visible-light view reveal hydrogen and sulfur gas that have been heated and ionized by intense ultraviolet radiation from the massive stars, collectively known as the "Trapezium." Meanwhile, Spitzer's infrared view exposes carbon-rich molecules in the cloud. Together, the telescopes expose the stars in Orion as a rainbow of dots sprinkled throughout the image.

 

Image Credit: NASA/JPL-Caltech STScI

 

#NASA #MarshallSpaceFlightCenter #MSFC #Marshall #HubbleSpaceTelescope #HST #astronomy #space #astrophysics #solarsystemandbeyond #gsfc #Goddard #GoddardSpaceFlightCenter #JPL #JetPropulstionLaboratory #nebula #OrionNebula

 

Read more

 

More about the Hubble Space Telescope

 

NASA Media Usage Guidelines

NASA’s Chandra X-ray Observatory contributes to the understanding of planetary nebulas by studying the hottest and most energetic processes still at work in these beautiful objects. X-ray data from Chandra reveal winds being driven away from the white dwarf so quickly (i.e., millions of miles per hour) that they create shock waves during collisions with slower-moving material previously ejected by the star. Chandra’s exceptional vision in X-rays contributes to the understanding of this brief, yet important, stage of stars’ lives. Here is the IC 418 planetary nebula that has been observed both by Chandra and NASA’s Hubble Space Telescope.

 

Image credit: X-ray: NASA/CXC/SAO; Optical: NASA/ESA/AURA/STScI

 

#NASA #NASAMarshall #Chandra #solarsystemandbeyond #planetarynebula

 

Read more

 

More about the Chandra X-ray Observatory

 

NASA Media Usage Guidelines

Since its arrival on April 29, the Psyche spacecraft has moved into the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, where technicians removed it from its protective shipping container, rotated it to vertical, and have begun the final steps to prepare the spacecraft for launch. In the coming months, crews will perform a range of work including re-installing solar arrays, re-integrating a radio, testing the telecommunications system, loading propellants, and encapsulating the spacecraft inside payload fairings before it leaves the facility and moves to the launch pad.

 

The Psyche spacecraft will explore a metal-rich asteroid between Mars and Jupiter, made largely of nickel-iron metal. The mission is targeting an Aug. 1 launch atop a SpaceX Falcon Heavy rocket from Launch Complex 39A at Kennedy. After arriving in 2026, the spacecraft will spend 21 months orbiting its namesake asteroid, mapping and gathering data, potentially providing insights on how planets with a metal core, including Earth, formed.

 

Image Credit: NASA/Isaac Watson

 

#SolarSystemandBeyond #NASAMarshall #jpl #psyche #asteroid

 

Read more

 

More about Psyche

 

NASA Media Usage Guidelines

The Small Magellanic Cloud (SMC), located 210,000 light-years away, is one of the most dynamic and intricately detailed star-forming regions in space. At the center of the region is a brilliant star cluster called NGC 346. A dramatic structure of arched, ragged filaments with a distinct ridge surrounds the cluster.

 

A torrent of radiation from the cluster's hot stars eats into denser areas creating a fantasy sculpture of dust and gas. The dark, intricately beaded edge of the ridge, seen in silhouette by Hubble, is particularly dramatic. It contains several small dust globules that point back towards the central cluster, like windsocks caught in a gale.

 

Energetic outflows and radiation from hot young stars are eroding the dense outer portions of the star-forming region, formally known as N66, exposing new stellar nurseries. The diffuse fringes of the nebula prevent the energetic outflows from streaming directly away from the cluster, leaving instead a trail of filaments marking the swirling path of the outflows.

 

The NGC 346 cluster at the center of this image from the Hubble Space Telescope contains dozens of hot, blue, high-mass stars, more than half of the known high-mass stars in the entire SMC galaxy. A myriad of smaller, compact clusters is also visible throughout the region.

 

Image Credit: NASA, ESA and A. Nota (STScI/ESA)

 

#NASA #MarshallSpaceFlightCenter #MSFC #Marshall #HubbleSpaceTelescope #HST #astronomy #space #astrophysics #solarsystemandbeyond #gsfc #Goddard #GoddardSpaceFlightCenter #ESA #EuropeanSpaceAgency #galaxy #spiralgalaxy

 

Read more

 

More about the Hubble Space Telescope

 

NASA Media Usage Guidelines

Cassini captured this striking view of Saturn’s moon Dione on July 23, 2012. Dione is about 698 miles (1,123 kilometers) across. Its density suggests that about a third of the moon is made up of a dense core (probably silicate rock) with the remainder of its material being water ice. At Dione's average temperature of -304 degrees Fahrenheit (-186 degrees Celsius), ice is so hard it behaves like rock.

 

Image Credit: NASA/JPL-Caltech/Space Science Institute

 

Read More

 

Read more about Cassini

 

NASA Media Usage Guidelines

To avoid patches of knife-edged rocks, the mission has taken an alternative path up Mount Sharp.

 

NASA’s Curiosity Mars rover spent most of March climbing the “Greenheugh Pediment” – a gentle slope capped by rubbly sandstone. The rover briefly summited this feature’s north face two years ago; now on the pediment’s southern side, Curiosity has navigated back onto the pediment to explore it more fully.

 

But on March 18, the mission team saw an unexpected terrain change ahead and realized they would have to turn around: The path before Curiosity was carpeted with more wind-sharpened rocks, or ventifacts, than they have ever seen in the rover’s nearly 10 years on the Red Planet.

 

Ventifacts chewed up Curiosity’s wheels earlier in the mission. Since then, rover engineers have found ways to slow wheel wear, including a traction control algorithm, to reduce how frequently they need to assess the wheels. And they also plan rover routes that avoid driving over such rocks, including these latest ventifacts, which are made of sandstone – the hardest type of rock Curiosity has encountered on Mars.

 

The team nicknamed their scalelike appearance “gator-back” terrain. Although the mission had scouted the area using orbital imagery, it took seeing these rocks close-up to reveal the ventifacts.

 

Image Credit: NASA/JPL-Caltech/MSSS

 

#NASA #moontomars #MarsScienceLaboratory #MarsCuriosityRover #curiosityrover

 

Read more

 

More about Curiosity Rover

 

NASA Media Usage Guidelines

Soft pastels enhance the rich colors of the swirls and storms in Jupiter's clouds. This image of a vortex on Jupiter, taken by the Juno mission camera, JunoCam, captures the amazing internal structure of the giant storm.

 

Image Credit: Image data: NASA/JPL-Caltech/SwRI/MSSS Image processing by Gerald Eichstädt/Seán Doran, © BY NC ND

 

Read more

 

More about Juno

 

NASA Media Usage Guidelines

The spacecraft flew closer to Jupiter's largest moon than any other in more than two decades, offering dramatic glimpses of the icy orb.

 

The first two images from NASA Juno's June 7, 2021, flyby of Jupiter's giant moon Ganymede have been received on Earth. The photos - one from the Jupiter orbiter's JunoCam imager and the other from its Stellar Reference Unit star camera - show the surface in remarkable detail, including craters, clearly distinct dark and bright terrain, and long structural features possibly linked to tectonic faults.

 

This image of the dark side of Ganymede was obtained by Juno's Stellar Reference Unit navigation camera during its June 7, 2021, flyby of the moon

 

Image Credit: NASA/JPL-Caltech/SwRI

 

#NASA #MarshallSpaceFlightCenter #MSFC #Marshall #jpl #jetpropulsionlaboratory #nasamarshall #MSFC #solarsystem #juno #jupiter #space #astronomy #nasajuno #nasamarshallspaceflightcenter #GreatRedSpot #junocam #Ganymede

 

Read more

 

More about Juno

 

NASA Media Usage Guidelines

This view of Jupiter’s turbulent atmosphere from NASA’s Juno spacecraft includes several of the planet’s southern jet streams. Using data from Juno’s instruments, scientists discovered that Jupiter’s powerful atmospheric jet streams extend far deeper than previously imagined. Evidence from Juno shows the jet streams and belts penetrate about 1,800 miles (3,000 kilometers) down into the planet.

 

The storm known as the Great Red Spot is also visible on the horizon, nearly rotated out of view as Juno sped away from Jupiter at about 30 miles per second (48 kilometers per second), which is more than 100,000 mph (160,900 kilometers per hour).

 

Citizen scientist Tanya Oleksuik created this color-enhanced image using data from the JunoCam camera. The original image was taken on Dec. 30, 2020 as the Juno spacecraft performed its 31st close flyby of Jupiter. At the time, the spacecraft was about 31,000 miles (about 50,000 kilometers) from the planet’s cloud tops, at a latitude of about 50 degrees South.

 

Image Credit: Image data: NASA/JPL-Caltech/SwRI/MSSS; Image processing by Tanya Oleksuik © CC NC SA

 

#NASA #MarshallSpaceFlightCenter #MSFC #Marshall #jpl #jetpropulsionlaboratory #nasamarshall #MSFC #solarsystem #juno #jupiter #space #astronomy #nasajuno #nasamarshallspaceflightcenter #GreatRedSpot

 

Read more

 

More about Juno

 

NASA Media Usage Guidelines

This 1999 image from the Chandra X-ray Observatory illustrates the two-dimensional spectral capability of the Advanced CCD Imaging Spectrometer (ACIS) instrument. The image shows the supernova remnant Cas A, where the colors reflect the temperature of the hot gas. Red colors correspond to temperatures below approximately 20 million degrees Celsius, and blue colors correspond to temperatures above approximately 30 million degrees Celsius.

 

Image credit: NASA/CXC/SAO (courtesy, Gordon Garmire, Penn State U & the ACIS Team)

 

#NASAMarshall #Chandra #astronomy #solarsystemandbeyond

 

Read more

 

NASA Media Usage Guidelines

This image, taken by the NASA/ESA Hubble Space Telescope, shows a close-up view of a galaxy named NGC 2770. This galaxy is intriguing, as over time it has hosted four different observed supernovae (not visible here).

 

Supernovae form in a few different ways, but always involve a dying star. These stars become unbalanced, lose control, and explode violently, briefly shining as brightly as an entire galaxy before slowly fading away.

 

One of the four supernovae observed within this galaxy, SN 2015bh, is especially interesting. This particular supernova initially had its identity called into question. When it was first discovered in 2015, astronomers classified SN 2015bh as a supernova imposter, believing it to be not an exploding star but simply an unpredictable outburst from a massive star in its final phase of life. Thankfully, astronomers eventually discovered the truth and the object was given its correct classification as a Type II supernova, resulting from the death of a star between eight and 50 times the mass of the Sun.

 

Image Credit: ESA/Hubble & NASA, A. Filippenko

 

#NASA #MarshallSpaceFlightCenter #MSFC #Marshall #HubbleSpaceTelescope #HST #astronomy #space #astrophysics #solarsystemandbeyond #gsfc #Goddard #GoddardSpaceFlightCenter #ESA #EuropeanSpaceAgency #galaxy #supernova

 

Read more

 

More about the Hubble Space Telescope

 

NASA Media Usage Guidelines

This detailed image features Abell 3827, a galaxy cluster that offers a wealth of exciting possibilities for study. Hubble observed it in order to study dark matter, which is one of the greatest puzzles cosmologists face today. The science team used Hubble’s Advanced Camera for Surveys and Wide Field Camera 3 to complete their observations. The two cameras have different specifications and can observe different parts of the electromagnetic spectrum, so using them both allowed the astronomers to collect more complete information. Hubble also observed Abell 3827 previously because of the interesting gravitational lens at its core.

 

Looking at this cluster of hundreds of galaxies, it is amazing to recall that less than 100 years ago, many astronomers thought the Milky Way was the only galaxy in the universe. Although astronomers debated the existence of other galaxies, it took Edwin Hubble’s observations of the Great Andromeda Nebula to confirm that it was in fact far too distant to be part of the Milky Way. The Great Andromeda Nebula became the Andromeda Galaxy, and astronomers recognized that our universe was much, much bigger than humanity had envisioned. We can only imagine how Edwin Hubble – after whom the Hubble Space Telescope is named – would have felt if he’d seen this spectacular image of Abell 3827.

 

Image credit: ESA/Hubble & NASA, R. Massey

 

#NASA #MarshallSpaceFlightCenter #MSFC #Marshall #HubbleSpaceTelescope #HST #astronomy #space #astrophysics #solarsystemandbeyond #gsfc #Goddard #GoddardSpaceFlightCenter #ESA #EuropeanSpaceAgency

 

Read more

 

More about the Hubble Space Telescope

 

NASA Media Usage Guidelines

 

This image taken by the Mars Reconnaissance Orbiter spacecraft’s HIRISE instrument on Oct. 23, 2022, of the northern plains of Arabia Terra shows craters that contain curious deposits with mysterious shapes and distribution. For instance, the deposits are located on the south sides of the craters, but not usually in the north, and are found only in craters larger than 600 meters in diameter. Scientists suspect that these features formed by sublimation of ice-rich material.

 

Image Credit: NASA/JPL-Caltech/University of Arizona

 

#NASA #jpl #jetpropulsionlaboratory #marshallspaceflightcenter #msfc #mars #moontomars #planet #space #MarsReconnaissanceOrbiter #MRO

 

Read more

 

More about NASA’s Mars Reconnaissance Orbiter

 

NASA Media Usage Guidelines

The blue and orange stars of the faint galaxy named NGC 2188 sparkle in this image taken with the NASA/ESA Hubble Space Telescope. Although NGC 2188 appears at first glance to consist solely of a narrow band of stars, it is classified by astronomers as a barred spiral galaxy. It appears this way from our viewpoint on Earth as the center and spiral arms of the galaxy are tilted away from us, with only the very narrow outer edge of the galaxy’s disk visible to us. Astronomers liken this occurrence to turning a dinner plate in your hands so you see only its outer edge. The true shape of the galaxy was identified by studying the distribution of the stars in the inner central bulge and outer disk and by observing the stars’ colors.

 

NGC 2188 is estimated to be just half the size of our Milky Way, at 50,000 light-years across, and it is situated in the constellation of Columba (the Dove). Named in the late 1500s after Noah’s dove in biblical stories, the small constellation consists of many faint yet beautiful stars and astronomical objects.

 

Image Credit: ESA/Hubble & NASA, R. Tully

 

#NASA #MarshallSpaceFlightCenter #MSFC #Marshall #HubbleSpaceTelescope #HST #astronomy #space #astrophysics #solarsystemandbeyond #gsfc #Goddard #GoddardSpaceFlightCenter #ESA #EuropeanSpaceAgency #galaxy

 

Read more

 

More about the Hubble Space Telescope

 

NASA Media Usage Guidelines

This image taken by the NASA/ESA Hubble Space Telescope revisits the Veil Nebula, which was featured in a previous Hubble image release. In this image, new processing techniques have been applied, bringing out fine details of the nebula’s delicate threads and filaments of ionized gas.

 

To create this colorful image, observations were taken by Hubble's Wide Field Camera 3 instrument using five different filters. The new post-processing methods have further enhanced details of emissions from doubly ionized oxygen (seen here in blues), ionized hydrogen, and ionized nitrogen (seen here in reds).

 

The Veil Nebula lies around 2,100 light-years from Earth in the constellation of Cygnus (the Swan), making it a relatively close neighbor in astronomical terms. Only a small portion of the nebula was captured in this image.

 

The Veil Nebula is the visible portion of the nearby Cygnus Loop, a supernova remnant formed roughly 10,000 years ago by the death of a massive star. That star – which was 20 times the mass of the Sun – lived fast and died young, ending its life in a cataclysmic release of energy. Despite this stellar violence, the shockwaves and debris from the supernova sculpted the Veil Nebula’s delicate tracery of ionized gas – creating a scene of surprising astronomical beauty.

 

The Veil Nebula is also featured in Hubble’s Caldwell Catalog, a collection of astronomical objects that have been imaged by Hubble and are visible to amateur astronomers in the night sky.

 

Image credit: ESA/Hubble & NASA, Z. Levay

 

#NASA #MarshallSpaceFlightCenter #MSFC #Marshall #HubbleSpaceTelescope #HST #astronomy #space #astrophysics #solarsystemandbeyond #gsfc #Goddard #GoddardSpaceFlightCenter #ESA #EuropeanSpaceAgency #nebula

 

Read more

 

More about the Hubble Space Telescope

 

NASA Media Usage Guidelines

A multitude of swirling clouds in Jupiter's dynamic North North Temperate Belt is captured in this image from NASA's Juno spacecraft. Appearing in the scene are several bright-white “pop-up” clouds as well as an anticyclonic storm, known as a white oval.

 

This color-enhanced image was taken at 4:58 p.m. EDT on Oct. 29, 2018, as the spacecraft performed its 16th close flyby of Jupiter. At the time, Juno was about 4,400 miles from the planet's cloud tops, at a latitude of approximately 40 degrees north.

 

Citizen scientists Gerald Eichstädt and Seán Doran created this image using data from the spacecraft's JunoCam imager.

 

Image Credit: Enhanced image by Gerald Eichstädt and Sean Doran (CC BY-NC-SA) based on images provided courtesy of NASA/JPL-Caltech/SwRI/MSSS

 

Read more

 

More about Juno

 

NASA Media Usage Guidelines

Mars has a thin atmosphere – just 1% as dense as Earth's. As a result, there's less of a protective barrier to burn up space debris. That means larger meteors make it through the Red Planet's atmosphere than Earth's. CTX has detected over 800 new impact craters during MRO's mission. After CTX spotted this one, scientists took a more detailed image with the HiRISE camera aboard NASA's Mars Reconnaissance Orbiter.

 

The crater spans approximately 100 feet (30 meters) in diameter and is surrounded by a large, rayed blast zone. In examining the distribution of ejecta – the debris tossed outward during the formation of a crater – scientists can learn more about the impact event. The explosion that created this crater threw ejecta as far as 9.3 miles (15 kilometers).

 

Image credit: NASA/JPL-Caltech/Univ. of Arizona

 

#NASA #jpl #jetpropulsionlaboratory #marshallspaceflightcenter #msfc #mars #moontomars #planet #space #MarsReconnaissanceOrbiter #MRO

 

Read more

 

More about the InSight Mars Lander

 

NASA Media Usage Guidelines

Five years ago today, NASA’s New Horizons spacecraft made history. After a voyage of nearly 10 years and more than 3 billion miles, the intrepid piano-sized probe flew within 7,800 miles of Pluto. For the first time ever, we saw the surface of this distant world in spectacular, colored detail.

 

?The encounter—which also included a detailed look at the largest of Pluto’s five moons, Charon—capped the initial reconnaissance of the planets started by NASA’s Mariner 2 more than 50 years before, and revealed an icy world replete in magnificent landscapes and geology—towering mountains, giant ice sheets, pits, scarps, valleys and terrains seen nowhere else in the solar system.

 

And that was only the beginning.

 

In the five years since that groundbreaking flyby, nearly every conjecture about Pluto possibly being an inert ball of ice has been thrown out the window or flipped on its head.

 

Here is a natural-color view of Pluto and its large moon Charon, compiled from images taken by NASA’s New Horizons spacecraft on July 13 and 14, 2015.

 

Image credit: NASA/JHUAPL/SwRI

 

Read more

 

For more about New Horizons

 

NASA Media Usage Guidelines

In time for Valentine’s Day, NASA’s Imaging X-Ray Polarimetry Explorer which launched Dec. 9, 2021, has delivered its first imaging data since completing its month-long commissioning phase.

 

All instruments are functioning well aboard the observatory, which is on a quest to study some of the most mysterious and extreme objects in the universe.

 

IXPE first focused its X-ray eyes on Cassiopeia A, an object consisting of the remains of a star that exploded in the 17th century. The shock waves from the explosion have swept up surrounding gas, heating it to high temperatures and accelerating cosmic ray particles to make a cloud that glows in X-ray light. Other telescopes have studied Cassiopeia A before, but IXPE will allow researchers to examine it in a new way.

 

In the image above, the saturation of the magenta color corresponds to the intensity of X-ray light observeded by IXPE. It overlays high energy X-ray data, shown in blue, from NASA’s Chandra X-Ray Observatory. Chandra and IXPE, with different kinds of detectors, capture different levels of angular resolution, or sharpness. An additional version of this image is available showing only IXPE data. These images contain IXPE data collected from Jan. 11 to 18.

 

Image credit: NASA

 

#NASAMarshall #Chandra #IXPE #astronomy #solarsystemandbeyond

 

Read more

 

NASA Media Usage Guidelines

This galaxy resembles a bull's eye, which is appropriate because its appearance is partly due to a smaller galaxy that passed through the middle of this object. The violent collision produced shock waves that swept through the galaxy and triggered large amounts of star formation. X-rays from Chandra (purple) show disturbed hot gas initially hosted by the Cartwheel galaxy being dragged over more than 150,000 light years by the collision. Optical data from Hubble (red, green, and blue) show where this collision may have triggered the star formation.

 

Image credit: X-ray: NASA/CXC; Optical: NASA/STScI

 

#NASA #MarshallSpaceFlightCenter #MSFC #Marshall #chandraxrayobservatory #ChandraXRay #cxo #chandra #astronomy #space #astrophysics #nasamarshallspaceflightcenter #solarsystemandbeyond #GoddardSpaceFlightCenter #GSFC #Hubble #HST #HubbleSpaceTelescope #galaxy

 

Read more

 

More about the Chandra X-ray Observatory

 

NASA Media Usage Guidelines

This image, taken with the NASA/ESA Hubble Space Telescope, depicts a special class of star-forming nursery known as Free-floating Evaporating Gaseous Globules, or frEGGs for short. This object is formally known as J025157.5+600606.

 

When a massive new star starts to shine while still within the cool molecular gas cloud from which it formed, its energetic radiation can ionize the cloud’s hydrogen and create a large, hot bubble of ionized gas. Amazingly, located within this bubble of hot gas around a nearby massive star are the frEGGs: dark compact globules of dust and gas, some of which are giving birth to low-mass stars. The boundary between the cool, dusty frEGG and the hot gas bubble is seen as the glowing purple/blue edges in this fascinating image.

 

Image Credit: ESA/Hubble & NASA, R. Sahai

 

#NASA #MarshallSpaceFlightCenter #MSFC #Marshall #HubbleSpaceTelescope #HST #astronomy #space #astrophysics #solarsystemandbeyond #gsfc #Goddard #GoddardSpaceFlightCenter #ESA #EuropeanSpaceAgency #nebula

 

Read more

 

More about the Hubble Space Telescope

 

NASA Media Usage Guidelines

The galaxy NGC 6946 is nothing short of spectacular. In the last century alone, NGC 6946 has experienced 10 observed supernovae, earning its nickname as the Fireworks Galaxy. In comparison, our Milky Way averages just one to two supernova events per century. This NASA/ESA Hubble Space Telescope image shows the stars, spiral arms, and various stellar environments of NGC 6946 in phenomenal detail.

 

We are able to marvel at NGC 6946 as it is a face-on galaxy, which means that we see the galaxy “facing” us, rather than seeing it from the side (known as edge-on). The Fireworks Galaxy is further classified as an intermediate spiral galaxy and as a starburst galaxy. The former means the structure of NGC 6946 sits between a full spiral and a barred spiral galaxy, with only a slight bar in its center, and the latter means it has an exceptionally high rate of star formation.

 

The galaxy resides 25.2 million light-years away, along the border of the northern constellations of Cepheus and Cygnus (The Swan).

 

Image credit: ESA/Hubble & NASA, A. Leroy, K.S. Long

 

#NASA #MarshallSpaceFlightCenter #MSFC #Marshall #HubbleSpaceTelescope #HST #astronomy #space #astrophysics #solarsystemandbeyond #gsfc #Goddard #GoddardSpaceFlightCenter #galaxy

 

Read more

 

More about the Hubble Space Telescope

 

NASA Media Usage Guidelines

 

Land changes over time, so having a spacecraft at Mars for years offers a unique perspective. "The more we look, the more we discover," said Leslie Tamppari, MRO's deputy project scientist at JPL. "Before MRO, it wasn't clear what on Mars really changed, if anything. We thought the atmosphere was so thin that there was almost no sand motion and most dune movement happened in the ancient past."

 

We now know that's not the case. "False color" has been added to this image from NASA's Mars Reconnaissance Orbiter to accentuate certain details, like the tops of dunes and ripples. Many of these landforms are migrating, as they do on Earth: Sand grain by sand grain, they're carried by wind, crawling across the planet over millions of years.

 

Image credit: NASA/JPL-Caltech/Univ. of Arizona

 

#NASA #jpl #jetpropulsionlaboratory #marshallspaceflightcenter #msfc #mars #moontomars #planet #space #MarsReconnaissanceOrbiter #MRO

 

Read more

 

More about the InSight Mars Lander

 

NASA Media Usage Guidelines

This image shows knots of cold, dense interstellar gas where new stars are forming. These Free-floating Evaporating Gaseous Globules (frEGGs) were first seen in Hubble’s famous 1995 image of the Eagle Nebula. Because these lumps of gas are dark, they are rarely seen by telescopes. They can be observed when the newly forming stars ignite, their intense ultraviolet radiation eroding the surrounding gas away and letting the denser, more resistant frEGGs remain. These frEGGs are located in the Northern Coalsack Nebula in the direction of Cygnus, the Swan.

 

This Hubble image also features two giant stars. The left star is a rare, giant O-type star, very bright, blue-white stars known to be the hottest in the universe. These massive stars are 10,000 to a million times the brightness of the Sun and burn themselves out quickly, in a few million years. The right star is an even more massive supergiant B-type star. Supergiant stars also burn through their fuel quickly, anywhere between a few hundred thousand years to tens of millions of years, and die in titanic supernova explosions.

 

Image Credit: NASA, ESA, and R. Sahai (Jet Propulsion Laboratory); Processing: Gladys Kober (NASA/Catholic University of America)

 

#NASA #MarshallSpaceFlightCenter #MSFC #Marshall #HubbleSpaceTelescope #HST #astronomy #space #astrophysics #solarsystemandbeyond #gsfc #Goddard #GoddardSpaceFlightCenter #ESA #EuropeanSpaceAgency #nebula

 

Read more

 

More about the Hubble Space Telescope

 

NASA Media Usage Guidelines

This June 2020 image from the Hubble Space Telescope shows the galaxy cluster MACS J0416. This is one of six galaxy clusters being studied by the Hubble Frontier Fields program, which produced the deepest images of gravitational lensing ever made. Scientists used intracluster light (visible in blue) to study the distribution of dark matter within the cluster.

 

Image credit: NASA, ESA and M. Montes (University of New South Wales)

 

#NASA #MarshallSpaceFlightCenter #MSFC #Marshall #HubbleSpaceTelescope #HST #astronomy #space #astrophysics #solarsystemandbeyond #gsfc #Goddard #GoddardSpaceFlightCenter #ESA #EuropeanSpaceAgency #galaxycluster #galaxy

 

Read more

 

More about the Hubble Space Telescope

 

NASA Media Usage Guidelines

A dramatic triplet of galaxies takes center stage in this image from the NASA/ESA Hubble Space Telescope, which captures a three-way gravitational tug-of-war between interacting galaxies. This system – known as Arp 195 – is featured in the Atlas of Peculiar Galaxies, a list which showcases some of the weirder and more wonderful galaxies in the universe. Observing time with Hubble is extremely valuable, so astronomers don't want to waste a second. The schedule for Hubble observations is calculated using a computer algorithm which allows the spacecraft to occasionally gather bonus snapshots of data between longer observations. This image of the clashing triplet of galaxies in Arp 195 is one such snapshot. Extra observations such as these do more than provide spectacular images – they also help to identify promising targets to follow up with using telescopes such as the upcoming NASA/ESA/CSA James Webb Space Telescope.

 

Image Credit: ESA/Hubble & NASA, J. Dalcanton

 

#NASA #MarshallSpaceFlightCenter #MSFC #Marshall #HubbleSpaceTelescope #HST #astronomy #space #astrophysics #solarsystemandbeyond #gsfc #Goddard #GoddardSpaceFlightCenter #ESA #EuropeanSpaceAgency #galaxy

 

Read more

 

More about the Hubble Space Telescope

 

NASA Media Usage Guidelines

In celebration of July 4th, we give you NGC 6946, a medium-sized, face-on spiral galaxy about 22 million light years away from Earth. In the past century, eight supernovas have been observed to explode in the arms of this galaxy. Chandra observations (purple) have, in fact, revealed three of the oldest supernovas ever detected in X-rays, giving more credence to its nickname of the "Fireworks Galaxy." This composite image also includes optical data from the Gemini Observatory in red, yellow, and cyan.

 

Image credit: NASA/CXC/MSSL/R.Soria et al, Optical: AURA/Gemini OBs)

 

#NASA #MarshallSpaceFlightCenter #MSFC #Marshall #ChandraXrayObservatory #cxo #supernova #supernovaremnant #galaxy #solarsystemandbeyond #nasamarshallspaceflightcenter #nasamarshall #independenceday #4th #4thofjuly #fourthofjuly #america #fireworks #usa

 

Read more

 

More about the Chandra X-ray Observatory

 

NASA Media Usage Guidelines

An orange glow radiates from the center of NGC 1792, the heart of this stellar furnace. Captured by the NASA/ESA Hubble Space Telescope, this intimate view of NGC 1792 gives us some insight into this galactic powerhouse. The vast swathes of tell-tale blue seen throughout the galaxy indicate areas that are full of young, hot stars, and it is in the shades of orange, seen nearer the center, that the older, cooler stars reside.

 

Nestled in the constellation of Columba (The Dove), NGC 1792 is both a spiral galaxy and a starburst galaxy. Within starburst galaxies, stars are forming at comparatively exorbitant rates. The rate of star formation can be more than 10 times faster in a starburst galaxy than in our galaxy, the Milky Way. When galaxies have a large reservoir of gas, like NGC 1792, these short-lived starburst phases can be sparked by galactic events such as mergers and tidal interactions. One might think that these starburst galaxies would easily consume all of their gas in a large forming event. However, supernova explosions and intense stellar winds produced in these powerful starbursts can inject energy into the gas and disperse it. This halts the star formation before it can completely deplete the galaxy of all its fuel. Scientists are actively working to understand this complex interplay between the dynamics that drive and quench these fierce bursts of star formation.

 

Image credit: ESA/Hubble & NASA, J. Lee; Acknowledgement: Leo Shatz

 

#NASA #MarshallSpaceFlightCenter #MSFC #Marshall #HubbleSpaceTelescope #HST #astronomy #space #astrophysics #solarsystemandbeyond #gsfc #Goddard #GoddardSpaceFlightCenter #globularcluster #blackhole

 

Read more

 

More about the Hubble Space Telescope

 

NASA Media Usage Guidelines

2 4 5 6 7