View allAll Photos Tagged PVO

CUMBRIA CONSTABULARY

SJ15 PVO is a Volvo B5LH/Alexander Dennis Enviro400 MMC new to Stagecoach Strathtay in May 2015 as their number 13049.

SJ15 PVO is a Volvo B5LH/Alexander Dennis Enviro400 MMC new to Stagecoach Strathtay in May 2015 as their number 13049.

Mansfield Bus Station

PVO units regularly encountered prowling foreign aircraft in the northwest close to Sweden and the far east near Japan. NATO ELINT (electronic intelligence) and surveillance aircraft, such as the RC-135, P-3, and Nimrod, flew continual missions near Soviet borders. More troubling were the incursions by spyplanes such as the U-2 and SR-71. By the mid-1980s, the U-2 was no longer conducting overflight missions but the Blackbird occasionally tested Soviet defences by making high-speed runs into Soviet territory, triggering the radar intercept system, and evaluating the response time. The Blackbird flew too high and too fast to be caught by the Su-15 interceptors, and even the MiG-25s were not fast enough. As the SR-71 tested Soviet responses, the PVO was also tracking and evaluating the flight paths and tactics of the spyplane.

 

In this image, a MiG-31 flying with the 174th GvIAP takes off from Monchegorsk AB on a foggy morning. The 174th Guards Pechengskiy Red Banner Fighter Aviation Regiment PVO im. B.F. Safonov (174th GvIAP) took delivery of their new Foxhounds on 20 April 1982, transitioning from the Yak-28P they had flown for 21 years. The 174th were stationed at Monchegorsk airbase in the Murmansk Oblast from 1962 to 2001 and tasked with intercepting NATO reconnaissance aircraft snooping around the Soviet borders. The MiG-31s never fired in anger but acted as a significant deterrent to any encroaching aircraft. The 174th GvIAP flew intercept missions over the Arctic for over 20 years until the regiment was disbanded on 1 September 2001. Note the three “kill” stars on the air intake trunk, denoting three successful drone kills during testing. Also, an “excellent aircraft” maintenance award badge is proudly displayed on the nose.

Victoria Police AW139 VH-PVO at the 2024 Tyabb airshow

Silcox PVO 624 is a Leyland Tiger Cub PSUC1/2T. It was new in 1954, originally fitted with Burlingham Seagull coachwork as East Midland C24. Acquired by Silcox in 1964, it was rebodied in 1967 with the new Plaxton Panorama II coachwork seen here.

PJ60 PVO H3863 of EDDIE STOBART @ M62 ,GOOLE , Thursday 02nd JUNE 2016

1973 Triumph TR6 Injection.

1990 Volkswagen Golf 4+E 3-door.

 

1272cc.

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!

 

Some background:

The Mikoyan-Gurevich MiG-19 (NATO reporting name: "Farmer") was a Soviet second-generation, single-seat, twin jet-engine fighter aircraft. It was the first Soviet production aircraft capable of supersonic speeds in level flight. A comparable U.S. "Century Series" fighter was the North American F-100 Super Sabre, although the MiG-19 would primarily oppose the more modern McDonnell Douglas F-4 Phantom II and Republic F-105 Thunderchief over North Vietnam. Furthermore, the North American YF-100 Super Sabre prototype appeared approximately one year after the MiG-19, making the MiG-19 the first operational supersonic jet in the world.

 

On 20 April 1951, OKB-155 was given the order to develop the MiG-17 into a new fighter called "I-340", also known as "SM-1". It was to be powered by two Mikulin AM-5 non-afterburning jet engines, a scaled-down version of the Mikulin AM-3, with 19.6 kN (4,410 lbf) of thrust. The I-340 was supposed to attain 1,160 km/h (725 mph, Mach 0.97) at 2,000 m (6,562 ft), 1,080 km/h (675 mph, Mach 1.0) at 10,000 m (32,808 ft), climb to 10,000 m (32,808 ft) in 2.9 minutes, and have a service ceiling of no less than 17,500 m (57,415 ft).

After several prototypes with many detail improvements, the ministers of the Soviet Union issued the order #286-133 to start serial production on February 17, 1954, at the factories in Gorkiy and Novosibirsk. Factory trials were completed on September 12 the same year, and government trials started on September 30.

 

Initial enthusiasm for the aircraft was dampened by several problems. The most alarming of these was the danger of a midair explosion due to overheating of the fuselage fuel tanks located between the engines. Deployment of airbrakes at high speeds caused a high-g pitch-up. Elevators lacked authority at supersonic speeds. The high landing speed of 230 km/h (145 mph), compared to 160 km/h (100 mph) for the MiG-15, combined with the lack of a two-seat trainer version, slowed pilot transition to the type. Handling problems were addressed with the second prototype, "SM-9/2", which added a third ventral airbrake and introduced all-moving tailplanes with a damper to prevent pilot-induced oscillations at subsonic speeds. It flew on 16 September 1954, and entered production as the MiG-19S.

 

Approximately 5,500 MiG-19's were produced, first in the USSR and in Czechoslovakia as the Avia S-105, but mainly in the People's Republic of China as the Shenyang J-6. The aircraft saw service with a number of other national air forces, including those of Cuba, North Vietnam, Egypt, Pakistan, and North Korea. The aircraft saw combat during the Vietnam War, the 1967 Six Day War, and the 1971 Bangladesh War.

 

However, jet fighter development made huge leaps in the 1960s, and OKB MiG was constantly trying to improve the MiG-19's performance, esp. against fast and high-flying enemies, primarily bombers but also spy planes like the U-2.

 

As the MiG-19S was brought into service with the Soviet air forces in mid-1956, the OKB MiG was continuing the refinement of the SM-1/I-340 fighter. One of these evolutionary paths was the SM-12 (literally, “SM-1, second generation”) family of prototypes, the ultimate extrapolation of the basic MiG-19 design, which eventually led to the MiG-19bis interceptor that filled the gap between the MiG-19S and the following, highly successful MiG-21.

 

The SM-12 first saw life as an exercise in drag reduction by means of new air intake configurations, since the MiG-19’s original intake with rounded lips became inefficient at supersonic speed (its Western rival, the North American F-100, featured a sharp-lipped nose air intake from the start). The first of three prototypes, the SM-12/1, was essentially a MiG-19S with an extended and straight-tapered nose with sharp-lipped orifice and a pointed, two-position shock cone on the intake splitter. The simple arrangement proved to be successful and was further refined.

 

The next evolutionary step, the SM-12/3, differed from its predecessors primarily in two new R3-26 turbojets developed from the earlier power plant by V. N. Sorokin. These each offered an afterburning thrust of 3,600kg, enabling the SM-12/3 to attain speeds ranging between 1,430km/h at sea level, or Mach=1.16, and 1,930km/h at 12,000m, or Mach=1.8, and an altitude of between 17,500 and 18,000m during its test program. This outstanding performance prompted further development with a view to production as a point defense interceptor.

 

Similarly powered by R3-26 engines, and embodying major nose redesign with a larger orifice permitting introduction of a substantial two-position conical centerbody for a TsD-30 radar, a further prototype was completed as the SM-12PM. Discarding the wing root NR-30 cannon of preceding prototypes, the SM-12PM was armed with only two K-5M (RS-2U) beam-riding missiles and entered flight test in 1957. This configuration would become the basis for the MiG-19bis interceptor that eventually was ordered into limited production (see below).

 

However, the SM-12 development line did not stop at this point. At the end of 1958, yet another prototype, the SM-12PMU, joined the experimental fighter family. This had R3M-26 turbojets uprated to 3.800kg with afterburning, but these were further augmented by a U-19D accelerator, which took the form of a permanent ventral pack containing an RU-013 rocket motor and its propellant tanks. Developed by D. D. Sevruk, the RU-013 delivered 3,000kg of additional thrust, and with the aid of this rocket motor, the SM-12PMU attained an altitude of 24,000m and a speed of Mach=1.69. But this effort was to no avail: the decision had been taken meanwhile to manufacture the Ye-7 in series as the MiG-21, and further development of the SM-12 series was therefore discontinued.

 

Nevertheless, since full operational status of the new MiG-21 was expected to remain pending for some time, production of a modified SM-12PM was ordered as a gap filler. Not only would this fighter bridge the performance gap to the Mach 2-capable MiG-21, it also had the benefit of being based on proven technologies and would not require a new basic pilot training.

 

The new aircraft received the official designation MiG-19bis. Compared with the SM-12PM prototype, the MiG-19bis differed in some details and improvements. The SM-12PM’s most significant shortfall was its short range – at full power, it had only a range of 750 km! This could be mended through an additional fuel tank in an enlarged dorsal fairing behind the cockpit. With this internal extra fuel, range could be extended by a further 200 - 250km range, but drop tanks had typically to be carried, too, in order to extend the fighter’ combat radius with two AAMs to 500 km. Specifically for the MiG-19bis, new, supersonic drop tanks (PTB-490) were designed, and these were later adapted for the MiG-21, too.

 

The air intake shock cone was re-contoured and the shifting mechanism improved: Instead of a simple, conical shape, the shock cone now had a more complex curvature with two steps and the intake orifice area was widened to allow a higher airflow rate. The air intake’s efficiency was further optimized through gradual positions of the shock cone.

As a positive side effect, the revised shock cone offered space for an enlarged radar dish, what improved detection range and resolution. The TsD-30 radar for the fighter’s missile-only armament was retained, even though the K-5’s effective range of only 2–6 km (1¼ – 3¾ mi) made it only suitable against slow and large targets like bombers. All guns were deleted in order to save weight or make room for the electronic equipment. The tail section was also changed because the R3M-26 engines and their afterburners were considerably longer than the MiG-19's original RM-5 engines. The exhausts now markedly protruded from the tail section, and the original, characteristic pen nib fairing between the two engines had been modified accordingly.

 

Production started in 1960, but only a total of roundabout 180 MiG-19bis, which received the NATO code "Farmer F", were built and the Soviet Union remained the only operator of the type. The first aircraft entered Soviet Anti-Air Defense in early 1961, and the machines were concentrated in PVO interceptor units around major sites like Moscow, Sewastopol at the Black Sea and Vladivostok in the Far East.

 

With the advent of the MiG-21, though, their career did not last long. Even though many machines were updated to carry the K-13 (the IR-guided AA-2 "Atoll") as well as the improved K-55 AAMs, with no change of the type’s designation, most MiG-19bis were already phased out towards the late 1960s and quickly replaced by 2nd generation MiG-21s as well as heavier and more capable Suchoj interceptors like the Su-9, -11 and -15. By 1972, all MiG-19bis had been retired.

  

General characteristics:

Crew: 1

Length: 13.54 m (44 ft 4 in), fuselage only with shock cone in forward position

15.48 m (50 8 ½ in) including pitot

Wingspan: 9 m (29 ft 6 in)

Height: 3.8885 m (12 ft 9 in)

Wing area: 25 m² (269 ft²)

Empty weight: 5,210 kg (11,475 lb)

Loaded weight: 7,890 kg (17,380 lb)

Max. takeoff weight: 9,050 kg (19,935 lb)

Fuel capacity: 2,450 l (556 imp gal; 647 US gal) internal;

plus 760 l (170 imp gal; 200 US gal) with 2 drop tanks

 

Powerplant:

2× Sorokin R3M-26 turbojets, rated at 37.2 kN (8,370 lbf) thrust each with afterburning

 

Performance:

Maximum speed: 1,380km/h at sea level (Mach=1.16)

1,850km/h at 12,000m (Mach=1.8)

Range: 1,250 km (775 mi; 750 nmi) at 14,000 m (45,000 ft) with 2 × 490 l drop tanks

Combat range: 500 km (312 mi; 270 nmi)

Ferry range: 2,000 km (1,242 mi; 690 nmi)

Service ceiling: 19,750 m (64,690 ft)

Rate of climb: 180 m/s (35,000 ft/min)

Wing loading: 353.3 kg/m² (72.4 lb/ft²)

Thrust/weight: 0.86

 

Armament:

No internal guns.

4× underwing pylons; typically, a pair of PTB-490 drop tanks were carried on the outer pylon pair,

plus a pair of air-to air missiles on the inner pair: initially two radar-guided Kaliningrad K-5M (RS-2US)

AAMs, later two radar-guided K-55 or IR-guided Vympel K-13 (AA-2 'Atoll') AAMs

  

The kit and its assembly:

Another submission for the 2018 Cold War Group Build at whatifmodelers.com, and again the opportunity to build a whiffy model from the project list. But it’s as fictional as one might think, since the SM-12 line of experimental “hybrid” fighters between the MiG-19 and the MiG-21 was real. But none of these aircraft ever made it into serial production, and in real life the MiG-21 showed so much potential that the attempts to improve the MiG-19 were stopped and no operational fighter entered production or service.

 

However, the SM-12, with its elongated nose and the central shock cone, makes a nice model subject, and I imagined what a service aircraft might have looked like? It would IMHO have been close, if not identical, to the SM-12PM, since this was the most refined pure jet fighter in the development family.

 

The basis for the build was a (dead cheap) Mastercraft MiG-19, which is a re-edition of the venerable Kovozávody Prostějov (KP) kit – as a tribute to modern tastes, it comes with (crudely) engraved panel, but it has a horrible fit all over. For instance, there was a 1mm gap between the fuselage and the right wing, the wing halves’ outlines did not match at all and it is questionable if the canopy actually belongs to the kit at all? PSR everywhere. I also had a Plastyk version of this kit on the table some time ago, but it was of a much better quality! O.K., the Mastercraft kit comes cheap, but it’s, to be honest, not a real bargain.

 

Even though the result would not be crisp I did some mods and changes. Internally, a cockpit tub was implanted (OOB there’s just a wacky seat hanging in mid air) plus some serious lead weight in the nose section for a proper stance.

On the outside, the new air intake is the most obvious change. I found a Su-17 intake (from a Mastercraft kit, too) and used a piece from a Matchbox B-17G’s dorsal turret to elongate the nose – it had an almost perfect diameter and a mildly conical shape. Some massive PSR work was necessary to blend the parts together, though.

The tail received new jet nozzles, scratched from steel needle protection covers, and the tail fairing was adjusted according to the real SM-12’s shape.

 

Ordnance was adapted, too: the drop tanks come from a Mastercraft MiG-21, and these supersonic PTB-490 tanks were indeed carried by the real SM-12 prototypes because the uprated engines were very thirsty and the original, teardrop-shaped MiG-19 tanks simply too draggy for the much faster SM-12. As a side note, the real SM-12’s short range was one of the serious factors that prevented the promising type’s production in real life. In order to overcome the poor range weakness I added an enlarged spine (half of a drop tank), inspired by the MiG-21 SMT, that would house an additional internal fuel tank.

 

The R2-SU/K-5 AAMs come from a vintage Mastercraft Soviet aircraft weapon set, which carries a pair of these 1st generation AAMs. While the molds seem to be a bit soft, the missiles look pretty convincing. Their pylons were taken from the kit (OOB they carry unguided AAM pods and are placed behind the main landing gear wells), just reversed and placed on the wings’ leading edges – similar to the real SM-12’s arrangement.

  

Painting and markings:

No surprises. In the Sixties, any PVO aircraft was left in bare metal, so there was hardly an alternative to a NMF finish.

 

Painting started with an all-over coat with acrylic Revell 99 (Aluminum), just the spine tank became light grey (Revell 371) for some contrast, and I painted some di-electric covers in a deep green (Revell 48).

The cockpit interior was painted with a bright mix of Revell 55 and some 48, while the landing gear wells and the back section of the cockpit were painted in a bluish grey (Revell 57).

The landing gear was painted in Steel (unpolished Modelmaster metallizer) and received classic, bright green wheel discs (Humbrol 2). As a small, unusual highlight the pitot boom under the chin received red and white stripes – seen on occasional MiG-19S fighters in Soviet service, and the anti-flutter booms on the stabilizers became bright red, too.

 

After the basic painting was done the kit received a black ink wash. Once this had dried and wiped off with a soft cotton cloth, post shading with various metallizer tones was added in order to liven up the uniform aircraft (including Humbrol’s matt and polished aluminum, and the exhaust section was treated with steel). Some panel lines were emphasized with a thin pencil.

 

Decals were puzzled together from various sources, a Guards badge and a few Russian stencils were added, too. Finally, the kit was sealed with a coat of sheen acrylic varnish (a 2:1 mix of Italeri matt and semi-gloss varnish).

 

The K-5 missiles, last but not least, were painted in aluminum, too, but their end caps (both front and tail section) became off-white.

  

The Mastercraft kit on which this conversion was based is crude, so I did not have high expectations concerning the outcome. But the new nose blends nicely into the MiG-19 fuselage, and the wide spine is a subtle detail that makes the aircraft look more “beefy” and less MiG-19-ish. The different drop tanks – even though they are authentic – visually add further speed. And despite many flaws, I am quite happy with the result of roundabout a week’s work.

The international military-technical forum ARMY-2018

Transport for Cornwall Mercedes-Benz Strata LN20 PVO on the 65 Town Service, with Sprinter V100 OTS on the 60 Town Service

Victoria Police AW139 VH-PVO at the 2024 Tyabb airshow

Bristol VR PVO 812R (VS-21-HZ) new to Trent in 1976, now opentop and with Bus Events, Breda, Holland.

Wed 17th May 2017.

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!

 

Some background:

The Mikoyan-Gurevich MiG-19 (NATO reporting name: "Farmer") was a Soviet second-generation, single-seat, twin jet-engine fighter aircraft. It was the first Soviet production aircraft capable of supersonic speeds in level flight. A comparable U.S. "Century Series" fighter was the North American F-100 Super Sabre, although the MiG-19 would primarily oppose the more modern McDonnell Douglas F-4 Phantom II and Republic F-105 Thunderchief over North Vietnam. Furthermore, the North American YF-100 Super Sabre prototype appeared approximately one year after the MiG-19, making the MiG-19 the first operational supersonic jet in the world.

 

On 20 April 1951, OKB-155 was given the order to develop the MiG-17 into a new fighter called "I-340", also known as "SM-1". It was to be powered by two Mikulin AM-5 non-afterburning jet engines, a scaled-down version of the Mikulin AM-3, with 19.6 kN (4,410 lbf) of thrust. The I-340 was supposed to attain 1,160 km/h (725 mph, Mach 0.97) at 2,000 m (6,562 ft), 1,080 km/h (675 mph, Mach 1.0) at 10,000 m (32,808 ft), climb to 10,000 m (32,808 ft) in 2.9 minutes, and have a service ceiling of no less than 17,500 m (57,415 ft).

After several prototypes with many detail improvements, the ministers of the Soviet Union issued the order #286-133 to start serial production on February 17, 1954, at the factories in Gorkiy and Novosibirsk. Factory trials were completed on September 12 the same year, and government trials started on September 30.

 

Initial enthusiasm for the aircraft was dampened by several problems. The most alarming of these was the danger of a midair explosion due to overheating of the fuselage fuel tanks located between the engines. Deployment of airbrakes at high speeds caused a high-g pitch-up. Elevators lacked authority at supersonic speeds. The high landing speed of 230 km/h (145 mph), compared to 160 km/h (100 mph) for the MiG-15, combined with the lack of a two-seat trainer version, slowed pilot transition to the type. Handling problems were addressed with the second prototype, "SM-9/2", which added a third ventral airbrake and introduced all-moving tailplanes with a damper to prevent pilot-induced oscillations at subsonic speeds. It flew on 16 September 1954, and entered production as the MiG-19S.

 

Approximately 5,500 MiG-19's were produced, first in the USSR and in Czechoslovakia as the Avia S-105, but mainly in the People's Republic of China as the Shenyang J-6. The aircraft saw service with a number of other national air forces, including those of Cuba, North Vietnam, Egypt, Pakistan, and North Korea. The aircraft saw combat during the Vietnam War, the 1967 Six Day War, and the 1971 Bangladesh War.

 

However, jet fighter development made huge leaps in the 1960s, and OKB MiG was constantly trying to improve the MiG-19's performance, esp. against fast and high-flying enemies, primarily bombers but also spy planes like the U-2.

 

As the MiG-19S was brought into service with the Soviet air forces in mid-1956, the OKB MiG was continuing the refinement of the SM-1/I-340 fighter. One of these evolutionary paths was the SM-12 (literally, “SM-1, second generation”) family of prototypes, the ultimate extrapolation of the basic MiG-19 design, which eventually led to the MiG-19bis interceptor that filled the gap between the MiG-19S and the following, highly successful MiG-21.

 

The SM-12 first saw life as an exercise in drag reduction by means of new air intake configurations, since the MiG-19’s original intake with rounded lips became inefficient at supersonic speed (its Western rival, the North American F-100, featured a sharp-lipped nose air intake from the start). The first of three prototypes, the SM-12/1, was essentially a MiG-19S with an extended and straight-tapered nose with sharp-lipped orifice and a pointed, two-position shock cone on the intake splitter. The simple arrangement proved to be successful and was further refined.

 

The next evolutionary step, the SM-12/3, differed from its predecessors primarily in two new R3-26 turbojets developed from the earlier power plant by V. N. Sorokin. These each offered an afterburning thrust of 3,600kg, enabling the SM-12/3 to attain speeds ranging between 1,430km/h at sea level, or Mach=1.16, and 1,930km/h at 12,000m, or Mach=1.8, and an altitude of between 17,500 and 18,000m during its test program. This outstanding performance prompted further development with a view to production as a point defense interceptor.

 

Similarly powered by R3-26 engines, and embodying major nose redesign with a larger orifice permitting introduction of a substantial two-position conical centerbody for a TsD-30 radar, a further prototype was completed as the SM-12PM. Discarding the wing root NR-30 cannon of preceding prototypes, the SM-12PM was armed with only two K-5M (RS-2U) beam-riding missiles and entered flight test in 1957. This configuration would become the basis for the MiG-19bis interceptor that eventually was ordered into limited production (see below).

 

However, the SM-12 development line did not stop at this point. At the end of 1958, yet another prototype, the SM-12PMU, joined the experimental fighter family. This had R3M-26 turbojets uprated to 3.800kg with afterburning, but these were further augmented by a U-19D accelerator, which took the form of a permanent ventral pack containing an RU-013 rocket motor and its propellant tanks. Developed by D. D. Sevruk, the RU-013 delivered 3,000kg of additional thrust, and with the aid of this rocket motor, the SM-12PMU attained an altitude of 24,000m and a speed of Mach=1.69. But this effort was to no avail: the decision had been taken meanwhile to manufacture the Ye-7 in series as the MiG-21, and further development of the SM-12 series was therefore discontinued.

 

Nevertheless, since full operational status of the new MiG-21 was expected to remain pending for some time, production of a modified SM-12PM was ordered as a gap filler. Not only would this fighter bridge the performance gap to the Mach 2-capable MiG-21, it also had the benefit of being based on proven technologies and would not require a new basic pilot training.

 

The new aircraft received the official designation MiG-19bis. Compared with the SM-12PM prototype, the MiG-19bis differed in some details and improvements. The SM-12PM’s most significant shortfall was its short range – at full power, it had only a range of 750 km! This could be mended through an additional fuel tank in an enlarged dorsal fairing behind the cockpit. With this internal extra fuel, range could be extended by a further 200 - 250km range, but drop tanks had typically to be carried, too, in order to extend the fighter’ combat radius with two AAMs to 500 km. Specifically for the MiG-19bis, new, supersonic drop tanks (PTB-490) were designed, and these were later adapted for the MiG-21, too.

 

The air intake shock cone was re-contoured and the shifting mechanism improved: Instead of a simple, conical shape, the shock cone now had a more complex curvature with two steps and the intake orifice area was widened to allow a higher airflow rate. The air intake’s efficiency was further optimized through gradual positions of the shock cone.

As a positive side effect, the revised shock cone offered space for an enlarged radar dish, what improved detection range and resolution. The TsD-30 radar for the fighter’s missile-only armament was retained, even though the K-5’s effective range of only 2–6 km (1¼ – 3¾ mi) made it only suitable against slow and large targets like bombers. All guns were deleted in order to save weight or make room for the electronic equipment. The tail section was also changed because the R3M-26 engines and their afterburners were considerably longer than the MiG-19's original RM-5 engines. The exhausts now markedly protruded from the tail section, and the original, characteristic pen nib fairing between the two engines had been modified accordingly.

 

Production started in 1960, but only a total of roundabout 180 MiG-19bis, which received the NATO code "Farmer F", were built and the Soviet Union remained the only operator of the type. The first aircraft entered Soviet Anti-Air Defense in early 1961, and the machines were concentrated in PVO interceptor units around major sites like Moscow, Sewastopol at the Black Sea and Vladivostok in the Far East.

 

With the advent of the MiG-21, though, their career did not last long. Even though many machines were updated to carry the K-13 (the IR-guided AA-2 "Atoll") as well as the improved K-55 AAMs, with no change of the type’s designation, most MiG-19bis were already phased out towards the late 1960s and quickly replaced by 2nd generation MiG-21s as well as heavier and more capable Suchoj interceptors like the Su-9, -11 and -15. By 1972, all MiG-19bis had been retired.

  

General characteristics:

Crew: 1

Length: 13.54 m (44 ft 4 in), fuselage only with shock cone in forward position

15.48 m (50 8 ½ in) including pitot

Wingspan: 9 m (29 ft 6 in)

Height: 3.8885 m (12 ft 9 in)

Wing area: 25 m² (269 ft²)

Empty weight: 5,210 kg (11,475 lb)

Loaded weight: 7,890 kg (17,380 lb)

Max. takeoff weight: 9,050 kg (19,935 lb)

Fuel capacity: 2,450 l (556 imp gal; 647 US gal) internal;

plus 760 l (170 imp gal; 200 US gal) with 2 drop tanks

 

Powerplant:

2× Sorokin R3M-26 turbojets, rated at 37.2 kN (8,370 lbf) thrust each with afterburning

 

Performance:

Maximum speed: 1,380km/h at sea level (Mach=1.16)

1,850km/h at 12,000m (Mach=1.8)

Range: 1,250 km (775 mi; 750 nmi) at 14,000 m (45,000 ft) with 2 × 490 l drop tanks

Combat range: 500 km (312 mi; 270 nmi)

Ferry range: 2,000 km (1,242 mi; 690 nmi)

Service ceiling: 19,750 m (64,690 ft)

Rate of climb: 180 m/s (35,000 ft/min)

Wing loading: 353.3 kg/m² (72.4 lb/ft²)

Thrust/weight: 0.86

 

Armament:

No internal guns.

4× underwing pylons; typically, a pair of PTB-490 drop tanks were carried on the outer pylon pair,

plus a pair of air-to air missiles on the inner pair: initially two radar-guided Kaliningrad K-5M (RS-2US)

AAMs, later two radar-guided K-55 or IR-guided Vympel K-13 (AA-2 'Atoll') AAMs

  

The kit and its assembly:

Another submission for the 2018 Cold War Group Build at whatifmodelers.com, and again the opportunity to build a whiffy model from the project list. But it’s as fictional as one might think, since the SM-12 line of experimental “hybrid” fighters between the MiG-19 and the MiG-21 was real. But none of these aircraft ever made it into serial production, and in real life the MiG-21 showed so much potential that the attempts to improve the MiG-19 were stopped and no operational fighter entered production or service.

 

However, the SM-12, with its elongated nose and the central shock cone, makes a nice model subject, and I imagined what a service aircraft might have looked like? It would IMHO have been close, if not identical, to the SM-12PM, since this was the most refined pure jet fighter in the development family.

 

The basis for the build was a (dead cheap) Mastercraft MiG-19, which is a re-edition of the venerable Kovozávody Prostějov (KP) kit – as a tribute to modern tastes, it comes with (crudely) engraved panel, but it has a horrible fit all over. For instance, there was a 1mm gap between the fuselage and the right wing, the wing halves’ outlines did not match at all and it is questionable if the canopy actually belongs to the kit at all? PSR everywhere. I also had a Plastyk version of this kit on the table some time ago, but it was of a much better quality! O.K., the Mastercraft kit comes cheap, but it’s, to be honest, not a real bargain.

 

Even though the result would not be crisp I did some mods and changes. Internally, a cockpit tub was implanted (OOB there’s just a wacky seat hanging in mid air) plus some serious lead weight in the nose section for a proper stance.

On the outside, the new air intake is the most obvious change. I found a Su-17 intake (from a Mastercraft kit, too) and used a piece from a Matchbox B-17G’s dorsal turret to elongate the nose – it had an almost perfect diameter and a mildly conical shape. Some massive PSR work was necessary to blend the parts together, though.

The tail received new jet nozzles, scratched from steel needle protection covers, and the tail fairing was adjusted according to the real SM-12’s shape.

 

Ordnance was adapted, too: the drop tanks come from a Mastercraft MiG-21, and these supersonic PTB-490 tanks were indeed carried by the real SM-12 prototypes because the uprated engines were very thirsty and the original, teardrop-shaped MiG-19 tanks simply too draggy for the much faster SM-12. As a side note, the real SM-12’s short range was one of the serious factors that prevented the promising type’s production in real life. In order to overcome the poor range weakness I added an enlarged spine (half of a drop tank), inspired by the MiG-21 SMT, that would house an additional internal fuel tank.

 

The R2-SU/K-5 AAMs come from a vintage Mastercraft Soviet aircraft weapon set, which carries a pair of these 1st generation AAMs. While the molds seem to be a bit soft, the missiles look pretty convincing. Their pylons were taken from the kit (OOB they carry unguided AAM pods and are placed behind the main landing gear wells), just reversed and placed on the wings’ leading edges – similar to the real SM-12’s arrangement.

  

Painting and markings:

No surprises. In the Sixties, any PVO aircraft was left in bare metal, so there was hardly an alternative to a NMF finish.

 

Painting started with an all-over coat with acrylic Revell 99 (Aluminum), just the spine tank became light grey (Revell 371) for some contrast, and I painted some di-electric covers in a deep green (Revell 48).

The cockpit interior was painted with a bright mix of Revell 55 and some 48, while the landing gear wells and the back section of the cockpit were painted in a bluish grey (Revell 57).

The landing gear was painted in Steel (unpolished Modelmaster metallizer) and received classic, bright green wheel discs (Humbrol 2). As a small, unusual highlight the pitot boom under the chin received red and white stripes – seen on occasional MiG-19S fighters in Soviet service, and the anti-flutter booms on the stabilizers became bright red, too.

 

After the basic painting was done the kit received a black ink wash. Once this had dried and wiped off with a soft cotton cloth, post shading with various metallizer tones was added in order to liven up the uniform aircraft (including Humbrol’s matt and polished aluminum, and the exhaust section was treated with steel). Some panel lines were emphasized with a thin pencil.

 

Decals were puzzled together from various sources, a Guards badge and a few Russian stencils were added, too. Finally, the kit was sealed with a coat of sheen acrylic varnish (a 2:1 mix of Italeri matt and semi-gloss varnish).

 

The K-5 missiles, last but not least, were painted in aluminum, too, but their end caps (both front and tail section) became off-white.

  

The Mastercraft kit on which this conversion was based is crude, so I did not have high expectations concerning the outcome. But the new nose blends nicely into the MiG-19 fuselage, and the wide spine is a subtle detail that makes the aircraft look more “beefy” and less MiG-19-ish. The different drop tanks – even though they are authentic – visually add further speed. And despite many flaws, I am quite happy with the result of roundabout a week’s work.

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!

 

Some background:

The Mikoyan-Gurevich MiG-19 (NATO reporting name: "Farmer") was a Soviet second-generation, single-seat, twin jet-engine fighter aircraft. It was the first Soviet production aircraft capable of supersonic speeds in level flight. A comparable U.S. "Century Series" fighter was the North American F-100 Super Sabre, although the MiG-19 would primarily oppose the more modern McDonnell Douglas F-4 Phantom II and Republic F-105 Thunderchief over North Vietnam. Furthermore, the North American YF-100 Super Sabre prototype appeared approximately one year after the MiG-19, making the MiG-19 the first operational supersonic jet in the world.

 

On 20 April 1951, OKB-155 was given the order to develop the MiG-17 into a new fighter called "I-340", also known as "SM-1". It was to be powered by two Mikulin AM-5 non-afterburning jet engines, a scaled-down version of the Mikulin AM-3, with 19.6 kN (4,410 lbf) of thrust. The I-340 was supposed to attain 1,160 km/h (725 mph, Mach 0.97) at 2,000 m (6,562 ft), 1,080 km/h (675 mph, Mach 1.0) at 10,000 m (32,808 ft), climb to 10,000 m (32,808 ft) in 2.9 minutes, and have a service ceiling of no less than 17,500 m (57,415 ft).

After several prototypes with many detail improvements, the ministers of the Soviet Union issued the order #286-133 to start serial production on February 17, 1954, at the factories in Gorkiy and Novosibirsk. Factory trials were completed on September 12 the same year, and government trials started on September 30.

 

Initial enthusiasm for the aircraft was dampened by several problems. The most alarming of these was the danger of a midair explosion due to overheating of the fuselage fuel tanks located between the engines. Deployment of airbrakes at high speeds caused a high-g pitch-up. Elevators lacked authority at supersonic speeds. The high landing speed of 230 km/h (145 mph), compared to 160 km/h (100 mph) for the MiG-15, combined with the lack of a two-seat trainer version, slowed pilot transition to the type. Handling problems were addressed with the second prototype, "SM-9/2", which added a third ventral airbrake and introduced all-moving tailplanes with a damper to prevent pilot-induced oscillations at subsonic speeds. It flew on 16 September 1954, and entered production as the MiG-19S.

 

Approximately 5,500 MiG-19's were produced, first in the USSR and in Czechoslovakia as the Avia S-105, but mainly in the People's Republic of China as the Shenyang J-6. The aircraft saw service with a number of other national air forces, including those of Cuba, North Vietnam, Egypt, Pakistan, and North Korea. The aircraft saw combat during the Vietnam War, the 1967 Six Day War, and the 1971 Bangladesh War.

 

However, jet fighter development made huge leaps in the 1960s, and OKB MiG was constantly trying to improve the MiG-19's performance, esp. against fast and high-flying enemies, primarily bombers but also spy planes like the U-2.

 

As the MiG-19S was brought into service with the Soviet air forces in mid-1956, the OKB MiG was continuing the refinement of the SM-1/I-340 fighter. One of these evolutionary paths was the SM-12 (literally, “SM-1, second generation”) family of prototypes, the ultimate extrapolation of the basic MiG-19 design, which eventually led to the MiG-19bis interceptor that filled the gap between the MiG-19S and the following, highly successful MiG-21.

 

The SM-12 first saw life as an exercise in drag reduction by means of new air intake configurations, since the MiG-19’s original intake with rounded lips became inefficient at supersonic speed (its Western rival, the North American F-100, featured a sharp-lipped nose air intake from the start). The first of three prototypes, the SM-12/1, was essentially a MiG-19S with an extended and straight-tapered nose with sharp-lipped orifice and a pointed, two-position shock cone on the intake splitter. The simple arrangement proved to be successful and was further refined.

 

The next evolutionary step, the SM-12/3, differed from its predecessors primarily in two new R3-26 turbojets developed from the earlier power plant by V. N. Sorokin. These each offered an afterburning thrust of 3,600kg, enabling the SM-12/3 to attain speeds ranging between 1,430km/h at sea level, or Mach=1.16, and 1,930km/h at 12,000m, or Mach=1.8, and an altitude of between 17,500 and 18,000m during its test program. This outstanding performance prompted further development with a view to production as a point defense interceptor.

 

Similarly powered by R3-26 engines, and embodying major nose redesign with a larger orifice permitting introduction of a substantial two-position conical centerbody for a TsD-30 radar, a further prototype was completed as the SM-12PM. Discarding the wing root NR-30 cannon of preceding prototypes, the SM-12PM was armed with only two K-5M (RS-2U) beam-riding missiles and entered flight test in 1957. This configuration would become the basis for the MiG-19bis interceptor that eventually was ordered into limited production (see below).

 

However, the SM-12 development line did not stop at this point. At the end of 1958, yet another prototype, the SM-12PMU, joined the experimental fighter family. This had R3M-26 turbojets uprated to 3.800kg with afterburning, but these were further augmented by a U-19D accelerator, which took the form of a permanent ventral pack containing an RU-013 rocket motor and its propellant tanks. Developed by D. D. Sevruk, the RU-013 delivered 3,000kg of additional thrust, and with the aid of this rocket motor, the SM-12PMU attained an altitude of 24,000m and a speed of Mach=1.69. But this effort was to no avail: the decision had been taken meanwhile to manufacture the Ye-7 in series as the MiG-21, and further development of the SM-12 series was therefore discontinued.

 

Nevertheless, since full operational status of the new MiG-21 was expected to remain pending for some time, production of a modified SM-12PM was ordered as a gap filler. Not only would this fighter bridge the performance gap to the Mach 2-capable MiG-21, it also had the benefit of being based on proven technologies and would not require a new basic pilot training.

 

The new aircraft received the official designation MiG-19bis. Compared with the SM-12PM prototype, the MiG-19bis differed in some details and improvements. The SM-12PM’s most significant shortfall was its short range – at full power, it had only a range of 750 km! This could be mended through an additional fuel tank in an enlarged dorsal fairing behind the cockpit. With this internal extra fuel, range could be extended by a further 200 - 250km range, but drop tanks had typically to be carried, too, in order to extend the fighter’ combat radius with two AAMs to 500 km. Specifically for the MiG-19bis, new, supersonic drop tanks (PTB-490) were designed, and these were later adapted for the MiG-21, too.

 

The air intake shock cone was re-contoured and the shifting mechanism improved: Instead of a simple, conical shape, the shock cone now had a more complex curvature with two steps and the intake orifice area was widened to allow a higher airflow rate. The air intake’s efficiency was further optimized through gradual positions of the shock cone.

As a positive side effect, the revised shock cone offered space for an enlarged radar dish, what improved detection range and resolution. The TsD-30 radar for the fighter’s missile-only armament was retained, even though the K-5’s effective range of only 2–6 km (1¼ – 3¾ mi) made it only suitable against slow and large targets like bombers. All guns were deleted in order to save weight or make room for the electronic equipment. The tail section was also changed because the R3M-26 engines and their afterburners were considerably longer than the MiG-19's original RM-5 engines. The exhausts now markedly protruded from the tail section, and the original, characteristic pen nib fairing between the two engines had been modified accordingly.

 

Production started in 1960, but only a total of roundabout 180 MiG-19bis, which received the NATO code "Farmer F", were built and the Soviet Union remained the only operator of the type. The first aircraft entered Soviet Anti-Air Defense in early 1961, and the machines were concentrated in PVO interceptor units around major sites like Moscow, Sewastopol at the Black Sea and Vladivostok in the Far East.

 

With the advent of the MiG-21, though, their career did not last long. Even though many machines were updated to carry the K-13 (the IR-guided AA-2 "Atoll") as well as the improved K-55 AAMs, with no change of the type’s designation, most MiG-19bis were already phased out towards the late 1960s and quickly replaced by 2nd generation MiG-21s as well as heavier and more capable Suchoj interceptors like the Su-9, -11 and -15. By 1972, all MiG-19bis had been retired.

  

General characteristics:

Crew: 1

Length: 13.54 m (44 ft 4 in), fuselage only with shock cone in forward position

15.48 m (50 8 ½ in) including pitot

Wingspan: 9 m (29 ft 6 in)

Height: 3.8885 m (12 ft 9 in)

Wing area: 25 m² (269 ft²)

Empty weight: 5,210 kg (11,475 lb)

Loaded weight: 7,890 kg (17,380 lb)

Max. takeoff weight: 9,050 kg (19,935 lb)

Fuel capacity: 2,450 l (556 imp gal; 647 US gal) internal;

plus 760 l (170 imp gal; 200 US gal) with 2 drop tanks

 

Powerplant:

2× Sorokin R3M-26 turbojets, rated at 37.2 kN (8,370 lbf) thrust each with afterburning

 

Performance:

Maximum speed: 1,380km/h at sea level (Mach=1.16)

1,850km/h at 12,000m (Mach=1.8)

Range: 1,250 km (775 mi; 750 nmi) at 14,000 m (45,000 ft) with 2 × 490 l drop tanks

Combat range: 500 km (312 mi; 270 nmi)

Ferry range: 2,000 km (1,242 mi; 690 nmi)

Service ceiling: 19,750 m (64,690 ft)

Rate of climb: 180 m/s (35,000 ft/min)

Wing loading: 353.3 kg/m² (72.4 lb/ft²)

Thrust/weight: 0.86

 

Armament:

No internal guns.

4× underwing pylons; typically, a pair of PTB-490 drop tanks were carried on the outer pylon pair,

plus a pair of air-to air missiles on the inner pair: initially two radar-guided Kaliningrad K-5M (RS-2US)

AAMs, later two radar-guided K-55 or IR-guided Vympel K-13 (AA-2 'Atoll') AAMs

  

The kit and its assembly:

Another submission for the 2018 Cold War Group Build at whatifmodelers.com, and again the opportunity to build a whiffy model from the project list. But it’s as fictional as one might think, since the SM-12 line of experimental “hybrid” fighters between the MiG-19 and the MiG-21 was real. But none of these aircraft ever made it into serial production, and in real life the MiG-21 showed so much potential that the attempts to improve the MiG-19 were stopped and no operational fighter entered production or service.

 

However, the SM-12, with its elongated nose and the central shock cone, makes a nice model subject, and I imagined what a service aircraft might have looked like? It would IMHO have been close, if not identical, to the SM-12PM, since this was the most refined pure jet fighter in the development family.

 

The basis for the build was a (dead cheap) Mastercraft MiG-19, which is a re-edition of the venerable Kovozávody Prostějov (KP) kit – as a tribute to modern tastes, it comes with (crudely) engraved panel, but it has a horrible fit all over. For instance, there was a 1mm gap between the fuselage and the right wing, the wing halves’ outlines did not match at all and it is questionable if the canopy actually belongs to the kit at all? PSR everywhere. I also had a Plastyk version of this kit on the table some time ago, but it was of a much better quality! O.K., the Mastercraft kit comes cheap, but it’s, to be honest, not a real bargain.

 

Even though the result would not be crisp I did some mods and changes. Internally, a cockpit tub was implanted (OOB there’s just a wacky seat hanging in mid air) plus some serious lead weight in the nose section for a proper stance.

On the outside, the new air intake is the most obvious change. I found a Su-17 intake (from a Mastercraft kit, too) and used a piece from a Matchbox B-17G’s dorsal turret to elongate the nose – it had an almost perfect diameter and a mildly conical shape. Some massive PSR work was necessary to blend the parts together, though.

The tail received new jet nozzles, scratched from steel needle protection covers, and the tail fairing was adjusted according to the real SM-12’s shape.

 

Ordnance was adapted, too: the drop tanks come from a Mastercraft MiG-21, and these supersonic PTB-490 tanks were indeed carried by the real SM-12 prototypes because the uprated engines were very thirsty and the original, teardrop-shaped MiG-19 tanks simply too draggy for the much faster SM-12. As a side note, the real SM-12’s short range was one of the serious factors that prevented the promising type’s production in real life. In order to overcome the poor range weakness I added an enlarged spine (half of a drop tank), inspired by the MiG-21 SMT, that would house an additional internal fuel tank.

 

The R2-SU/K-5 AAMs come from a vintage Mastercraft Soviet aircraft weapon set, which carries a pair of these 1st generation AAMs. While the molds seem to be a bit soft, the missiles look pretty convincing. Their pylons were taken from the kit (OOB they carry unguided AAM pods and are placed behind the main landing gear wells), just reversed and placed on the wings’ leading edges – similar to the real SM-12’s arrangement.

  

Painting and markings:

No surprises. In the Sixties, any PVO aircraft was left in bare metal, so there was hardly an alternative to a NMF finish.

 

Painting started with an all-over coat with acrylic Revell 99 (Aluminum), just the spine tank became light grey (Revell 371) for some contrast, and I painted some di-electric covers in a deep green (Revell 48).

The cockpit interior was painted with a bright mix of Revell 55 and some 48, while the landing gear wells and the back section of the cockpit were painted in a bluish grey (Revell 57).

The landing gear was painted in Steel (unpolished Modelmaster metallizer) and received classic, bright green wheel discs (Humbrol 2). As a small, unusual highlight the pitot boom under the chin received red and white stripes – seen on occasional MiG-19S fighters in Soviet service, and the anti-flutter booms on the stabilizers became bright red, too.

 

After the basic painting was done the kit received a black ink wash. Once this had dried and wiped off with a soft cotton cloth, post shading with various metallizer tones was added in order to liven up the uniform aircraft (including Humbrol’s matt and polished aluminum, and the exhaust section was treated with steel). Some panel lines were emphasized with a thin pencil.

 

Decals were puzzled together from various sources, a Guards badge and a few Russian stencils were added, too. Finally, the kit was sealed with a coat of sheen acrylic varnish (a 2:1 mix of Italeri matt and semi-gloss varnish).

 

The K-5 missiles, last but not least, were painted in aluminum, too, but their end caps (both front and tail section) became off-white.

  

The Mastercraft kit on which this conversion was based is crude, so I did not have high expectations concerning the outcome. But the new nose blends nicely into the MiG-19 fuselage, and the wide spine is a subtle detail that makes the aircraft look more “beefy” and less MiG-19-ish. The different drop tanks – even though they are authentic – visually add further speed. And despite many flaws, I am quite happy with the result of roundabout a week’s work.

1994 Honda Civic CRX ESi auto.

STO 81X

 

MAN SR280 / MAN

 

Skills of Nottingham

 

New to Skills of Nottingham 8/1982 as 81

 

-----------------------------------------------------------------------

 

PVO 21X

 

Volvo B58-61 / Duple

 

Skills of Nottingham

 

New to Skills of Nottingham 8/1981 as 21

Stagecoach East Scotland Volvo B5L Hybrid 13049

 

Vehicle Details

Operator: Stagecoach East Scotland

Fleet Details: 13049

Registration: SJ15 PVO

Vehicle Type: Volvo B5LH, ADL Enviro400MMC

Victoria Police AW139 VH-PVO at the 2024 Tyabb airshow

1973 Triumph TR6 Injection.

 

East Anglian Motor Auctions, Wymondham.

Sold for £16,616 (including premium) on an estimate of £14,000 - £18,000.

1994 Honda Civic CRX ESi auto.

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!

 

Some background:

The Mikoyan-Gurevich MiG-19 (NATO reporting name: "Farmer") was a Soviet second-generation, single-seat, twin jet-engine fighter aircraft. It was the first Soviet production aircraft capable of supersonic speeds in level flight. A comparable U.S. "Century Series" fighter was the North American F-100 Super Sabre, although the MiG-19 would primarily oppose the more modern McDonnell Douglas F-4 Phantom II and Republic F-105 Thunderchief over North Vietnam. Furthermore, the North American YF-100 Super Sabre prototype appeared approximately one year after the MiG-19, making the MiG-19 the first operational supersonic jet in the world.

 

On 20 April 1951, OKB-155 was given the order to develop the MiG-17 into a new fighter called "I-340", also known as "SM-1". It was to be powered by two Mikulin AM-5 non-afterburning jet engines, a scaled-down version of the Mikulin AM-3, with 19.6 kN (4,410 lbf) of thrust. The I-340 was supposed to attain 1,160 km/h (725 mph, Mach 0.97) at 2,000 m (6,562 ft), 1,080 km/h (675 mph, Mach 1.0) at 10,000 m (32,808 ft), climb to 10,000 m (32,808 ft) in 2.9 minutes, and have a service ceiling of no less than 17,500 m (57,415 ft).

After several prototypes with many detail improvements, the ministers of the Soviet Union issued the order #286-133 to start serial production on February 17, 1954, at the factories in Gorkiy and Novosibirsk. Factory trials were completed on September 12 the same year, and government trials started on September 30.

 

Initial enthusiasm for the aircraft was dampened by several problems. The most alarming of these was the danger of a midair explosion due to overheating of the fuselage fuel tanks located between the engines. Deployment of airbrakes at high speeds caused a high-g pitch-up. Elevators lacked authority at supersonic speeds. The high landing speed of 230 km/h (145 mph), compared to 160 km/h (100 mph) for the MiG-15, combined with the lack of a two-seat trainer version, slowed pilot transition to the type. Handling problems were addressed with the second prototype, "SM-9/2", which added a third ventral airbrake and introduced all-moving tailplanes with a damper to prevent pilot-induced oscillations at subsonic speeds. It flew on 16 September 1954, and entered production as the MiG-19S.

 

Approximately 5,500 MiG-19's were produced, first in the USSR and in Czechoslovakia as the Avia S-105, but mainly in the People's Republic of China as the Shenyang J-6. The aircraft saw service with a number of other national air forces, including those of Cuba, North Vietnam, Egypt, Pakistan, and North Korea. The aircraft saw combat during the Vietnam War, the 1967 Six Day War, and the 1971 Bangladesh War.

 

However, jet fighter development made huge leaps in the 1960s, and OKB MiG was constantly trying to improve the MiG-19's performance, esp. against fast and high-flying enemies, primarily bombers but also spy planes like the U-2.

 

As the MiG-19S was brought into service with the Soviet air forces in mid-1956, the OKB MiG was continuing the refinement of the SM-1/I-340 fighter. One of these evolutionary paths was the SM-12 (literally, “SM-1, second generation”) family of prototypes, the ultimate extrapolation of the basic MiG-19 design, which eventually led to the MiG-19bis interceptor that filled the gap between the MiG-19S and the following, highly successful MiG-21.

 

The SM-12 first saw life as an exercise in drag reduction by means of new air intake configurations, since the MiG-19’s original intake with rounded lips became inefficient at supersonic speed (its Western rival, the North American F-100, featured a sharp-lipped nose air intake from the start). The first of three prototypes, the SM-12/1, was essentially a MiG-19S with an extended and straight-tapered nose with sharp-lipped orifice and a pointed, two-position shock cone on the intake splitter. The simple arrangement proved to be successful and was further refined.

 

The next evolutionary step, the SM-12/3, differed from its predecessors primarily in two new R3-26 turbojets developed from the earlier power plant by V. N. Sorokin. These each offered an afterburning thrust of 3,600kg, enabling the SM-12/3 to attain speeds ranging between 1,430km/h at sea level, or Mach=1.16, and 1,930km/h at 12,000m, or Mach=1.8, and an altitude of between 17,500 and 18,000m during its test program. This outstanding performance prompted further development with a view to production as a point defense interceptor.

 

Similarly powered by R3-26 engines, and embodying major nose redesign with a larger orifice permitting introduction of a substantial two-position conical centerbody for a TsD-30 radar, a further prototype was completed as the SM-12PM. Discarding the wing root NR-30 cannon of preceding prototypes, the SM-12PM was armed with only two K-5M (RS-2U) beam-riding missiles and entered flight test in 1957. This configuration would become the basis for the MiG-19bis interceptor that eventually was ordered into limited production (see below).

 

However, the SM-12 development line did not stop at this point. At the end of 1958, yet another prototype, the SM-12PMU, joined the experimental fighter family. This had R3M-26 turbojets uprated to 3.800kg with afterburning, but these were further augmented by a U-19D accelerator, which took the form of a permanent ventral pack containing an RU-013 rocket motor and its propellant tanks. Developed by D. D. Sevruk, the RU-013 delivered 3,000kg of additional thrust, and with the aid of this rocket motor, the SM-12PMU attained an altitude of 24,000m and a speed of Mach=1.69. But this effort was to no avail: the decision had been taken meanwhile to manufacture the Ye-7 in series as the MiG-21, and further development of the SM-12 series was therefore discontinued.

 

Nevertheless, since full operational status of the new MiG-21 was expected to remain pending for some time, production of a modified SM-12PM was ordered as a gap filler. Not only would this fighter bridge the performance gap to the Mach 2-capable MiG-21, it also had the benefit of being based on proven technologies and would not require a new basic pilot training.

 

The new aircraft received the official designation MiG-19bis. Compared with the SM-12PM prototype, the MiG-19bis differed in some details and improvements. The SM-12PM’s most significant shortfall was its short range – at full power, it had only a range of 750 km! This could be mended through an additional fuel tank in an enlarged dorsal fairing behind the cockpit. With this internal extra fuel, range could be extended by a further 200 - 250km range, but drop tanks had typically to be carried, too, in order to extend the fighter’ combat radius with two AAMs to 500 km. Specifically for the MiG-19bis, new, supersonic drop tanks (PTB-490) were designed, and these were later adapted for the MiG-21, too.

 

The air intake shock cone was re-contoured and the shifting mechanism improved: Instead of a simple, conical shape, the shock cone now had a more complex curvature with two steps and the intake orifice area was widened to allow a higher airflow rate. The air intake’s efficiency was further optimized through gradual positions of the shock cone.

As a positive side effect, the revised shock cone offered space for an enlarged radar dish, what improved detection range and resolution. The TsD-30 radar for the fighter’s missile-only armament was retained, even though the K-5’s effective range of only 2–6 km (1¼ – 3¾ mi) made it only suitable against slow and large targets like bombers. All guns were deleted in order to save weight or make room for the electronic equipment. The tail section was also changed because the R3M-26 engines and their afterburners were considerably longer than the MiG-19's original RM-5 engines. The exhausts now markedly protruded from the tail section, and the original, characteristic pen nib fairing between the two engines had been modified accordingly.

 

Production started in 1960, but only a total of roundabout 180 MiG-19bis, which received the NATO code "Farmer F", were built and the Soviet Union remained the only operator of the type. The first aircraft entered Soviet Anti-Air Defense in early 1961, and the machines were concentrated in PVO interceptor units around major sites like Moscow, Sewastopol at the Black Sea and Vladivostok in the Far East.

 

With the advent of the MiG-21, though, their career did not last long. Even though many machines were updated to carry the K-13 (the IR-guided AA-2 "Atoll") as well as the improved K-55 AAMs, with no change of the type’s designation, most MiG-19bis were already phased out towards the late 1960s and quickly replaced by 2nd generation MiG-21s as well as heavier and more capable Suchoj interceptors like the Su-9, -11 and -15. By 1972, all MiG-19bis had been retired.

  

General characteristics:

Crew: 1

Length: 13.54 m (44 ft 4 in), fuselage only with shock cone in forward position

15.48 m (50 8 ½ in) including pitot

Wingspan: 9 m (29 ft 6 in)

Height: 3.8885 m (12 ft 9 in)

Wing area: 25 m² (269 ft²)

Empty weight: 5,210 kg (11,475 lb)

Loaded weight: 7,890 kg (17,380 lb)

Max. takeoff weight: 9,050 kg (19,935 lb)

Fuel capacity: 2,450 l (556 imp gal; 647 US gal) internal;

plus 760 l (170 imp gal; 200 US gal) with 2 drop tanks

 

Powerplant:

2× Sorokin R3M-26 turbojets, rated at 37.2 kN (8,370 lbf) thrust each with afterburning

 

Performance:

Maximum speed: 1,380km/h at sea level (Mach=1.16)

1,850km/h at 12,000m (Mach=1.8)

Range: 1,250 km (775 mi; 750 nmi) at 14,000 m (45,000 ft) with 2 × 490 l drop tanks

Combat range: 500 km (312 mi; 270 nmi)

Ferry range: 2,000 km (1,242 mi; 690 nmi)

Service ceiling: 19,750 m (64,690 ft)

Rate of climb: 180 m/s (35,000 ft/min)

Wing loading: 353.3 kg/m² (72.4 lb/ft²)

Thrust/weight: 0.86

 

Armament:

No internal guns.

4× underwing pylons; typically, a pair of PTB-490 drop tanks were carried on the outer pylon pair,

plus a pair of air-to air missiles on the inner pair: initially two radar-guided Kaliningrad K-5M (RS-2US)

AAMs, later two radar-guided K-55 or IR-guided Vympel K-13 (AA-2 'Atoll') AAMs

  

The kit and its assembly:

Another submission for the 2018 Cold War Group Build at whatifmodelers.com, and again the opportunity to build a whiffy model from the project list. But it’s as fictional as one might think, since the SM-12 line of experimental “hybrid” fighters between the MiG-19 and the MiG-21 was real. But none of these aircraft ever made it into serial production, and in real life the MiG-21 showed so much potential that the attempts to improve the MiG-19 were stopped and no operational fighter entered production or service.

 

However, the SM-12, with its elongated nose and the central shock cone, makes a nice model subject, and I imagined what a service aircraft might have looked like? It would IMHO have been close, if not identical, to the SM-12PM, since this was the most refined pure jet fighter in the development family.

 

The basis for the build was a (dead cheap) Mastercraft MiG-19, which is a re-edition of the venerable Kovozávody Prostějov (KP) kit – as a tribute to modern tastes, it comes with (crudely) engraved panel, but it has a horrible fit all over. For instance, there was a 1mm gap between the fuselage and the right wing, the wing halves’ outlines did not match at all and it is questionable if the canopy actually belongs to the kit at all? PSR everywhere. I also had a Plastyk version of this kit on the table some time ago, but it was of a much better quality! O.K., the Mastercraft kit comes cheap, but it’s, to be honest, not a real bargain.

 

Even though the result would not be crisp I did some mods and changes. Internally, a cockpit tub was implanted (OOB there’s just a wacky seat hanging in mid air) plus some serious lead weight in the nose section for a proper stance.

On the outside, the new air intake is the most obvious change. I found a Su-17 intake (from a Mastercraft kit, too) and used a piece from a Matchbox B-17G’s dorsal turret to elongate the nose – it had an almost perfect diameter and a mildly conical shape. Some massive PSR work was necessary to blend the parts together, though.

The tail received new jet nozzles, scratched from steel needle protection covers, and the tail fairing was adjusted according to the real SM-12’s shape.

 

Ordnance was adapted, too: the drop tanks come from a Mastercraft MiG-21, and these supersonic PTB-490 tanks were indeed carried by the real SM-12 prototypes because the uprated engines were very thirsty and the original, teardrop-shaped MiG-19 tanks simply too draggy for the much faster SM-12. As a side note, the real SM-12’s short range was one of the serious factors that prevented the promising type’s production in real life. In order to overcome the poor range weakness I added an enlarged spine (half of a drop tank), inspired by the MiG-21 SMT, that would house an additional internal fuel tank.

 

The R2-SU/K-5 AAMs come from a vintage Mastercraft Soviet aircraft weapon set, which carries a pair of these 1st generation AAMs. While the molds seem to be a bit soft, the missiles look pretty convincing. Their pylons were taken from the kit (OOB they carry unguided AAM pods and are placed behind the main landing gear wells), just reversed and placed on the wings’ leading edges – similar to the real SM-12’s arrangement.

  

Painting and markings:

No surprises. In the Sixties, any PVO aircraft was left in bare metal, so there was hardly an alternative to a NMF finish.

 

Painting started with an all-over coat with acrylic Revell 99 (Aluminum), just the spine tank became light grey (Revell 371) for some contrast, and I painted some di-electric covers in a deep green (Revell 48).

The cockpit interior was painted with a bright mix of Revell 55 and some 48, while the landing gear wells and the back section of the cockpit were painted in a bluish grey (Revell 57).

The landing gear was painted in Steel (unpolished Modelmaster metallizer) and received classic, bright green wheel discs (Humbrol 2). As a small, unusual highlight the pitot boom under the chin received red and white stripes – seen on occasional MiG-19S fighters in Soviet service, and the anti-flutter booms on the stabilizers became bright red, too.

 

After the basic painting was done the kit received a black ink wash. Once this had dried and wiped off with a soft cotton cloth, post shading with various metallizer tones was added in order to liven up the uniform aircraft (including Humbrol’s matt and polished aluminum, and the exhaust section was treated with steel). Some panel lines were emphasized with a thin pencil.

 

Decals were puzzled together from various sources, a Guards badge and a few Russian stencils were added, too. Finally, the kit was sealed with a coat of sheen acrylic varnish (a 2:1 mix of Italeri matt and semi-gloss varnish).

 

The K-5 missiles, last but not least, were painted in aluminum, too, but their end caps (both front and tail section) became off-white.

  

The Mastercraft kit on which this conversion was based is crude, so I did not have high expectations concerning the outcome. But the new nose blends nicely into the MiG-19 fuselage, and the wide spine is a subtle detail that makes the aircraft look more “beefy” and less MiG-19-ish. The different drop tanks – even though they are authentic – visually add further speed. And despite many flaws, I am quite happy with the result of roundabout a week’s work.

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!

 

Some background:

The Mikoyan-Gurevich MiG-19 (NATO reporting name: "Farmer") was a Soviet second-generation, single-seat, twin jet-engine fighter aircraft. It was the first Soviet production aircraft capable of supersonic speeds in level flight. A comparable U.S. "Century Series" fighter was the North American F-100 Super Sabre, although the MiG-19 would primarily oppose the more modern McDonnell Douglas F-4 Phantom II and Republic F-105 Thunderchief over North Vietnam. Furthermore, the North American YF-100 Super Sabre prototype appeared approximately one year after the MiG-19, making the MiG-19 the first operational supersonic jet in the world.

 

On 20 April 1951, OKB-155 was given the order to develop the MiG-17 into a new fighter called "I-340", also known as "SM-1". It was to be powered by two Mikulin AM-5 non-afterburning jet engines, a scaled-down version of the Mikulin AM-3, with 19.6 kN (4,410 lbf) of thrust. The I-340 was supposed to attain 1,160 km/h (725 mph, Mach 0.97) at 2,000 m (6,562 ft), 1,080 km/h (675 mph, Mach 1.0) at 10,000 m (32,808 ft), climb to 10,000 m (32,808 ft) in 2.9 minutes, and have a service ceiling of no less than 17,500 m (57,415 ft).

After several prototypes with many detail improvements, the ministers of the Soviet Union issued the order #286-133 to start serial production on February 17, 1954, at the factories in Gorkiy and Novosibirsk. Factory trials were completed on September 12 the same year, and government trials started on September 30.

 

Initial enthusiasm for the aircraft was dampened by several problems. The most alarming of these was the danger of a midair explosion due to overheating of the fuselage fuel tanks located between the engines. Deployment of airbrakes at high speeds caused a high-g pitch-up. Elevators lacked authority at supersonic speeds. The high landing speed of 230 km/h (145 mph), compared to 160 km/h (100 mph) for the MiG-15, combined with the lack of a two-seat trainer version, slowed pilot transition to the type. Handling problems were addressed with the second prototype, "SM-9/2", which added a third ventral airbrake and introduced all-moving tailplanes with a damper to prevent pilot-induced oscillations at subsonic speeds. It flew on 16 September 1954, and entered production as the MiG-19S.

 

Approximately 5,500 MiG-19's were produced, first in the USSR and in Czechoslovakia as the Avia S-105, but mainly in the People's Republic of China as the Shenyang J-6. The aircraft saw service with a number of other national air forces, including those of Cuba, North Vietnam, Egypt, Pakistan, and North Korea. The aircraft saw combat during the Vietnam War, the 1967 Six Day War, and the 1971 Bangladesh War.

 

However, jet fighter development made huge leaps in the 1960s, and OKB MiG was constantly trying to improve the MiG-19's performance, esp. against fast and high-flying enemies, primarily bombers but also spy planes like the U-2.

 

As the MiG-19S was brought into service with the Soviet air forces in mid-1956, the OKB MiG was continuing the refinement of the SM-1/I-340 fighter. One of these evolutionary paths was the SM-12 (literally, “SM-1, second generation”) family of prototypes, the ultimate extrapolation of the basic MiG-19 design, which eventually led to the MiG-19bis interceptor that filled the gap between the MiG-19S and the following, highly successful MiG-21.

 

The SM-12 first saw life as an exercise in drag reduction by means of new air intake configurations, since the MiG-19’s original intake with rounded lips became inefficient at supersonic speed (its Western rival, the North American F-100, featured a sharp-lipped nose air intake from the start). The first of three prototypes, the SM-12/1, was essentially a MiG-19S with an extended and straight-tapered nose with sharp-lipped orifice and a pointed, two-position shock cone on the intake splitter. The simple arrangement proved to be successful and was further refined.

 

The next evolutionary step, the SM-12/3, differed from its predecessors primarily in two new R3-26 turbojets developed from the earlier power plant by V. N. Sorokin. These each offered an afterburning thrust of 3,600kg, enabling the SM-12/3 to attain speeds ranging between 1,430km/h at sea level, or Mach=1.16, and 1,930km/h at 12,000m, or Mach=1.8, and an altitude of between 17,500 and 18,000m during its test program. This outstanding performance prompted further development with a view to production as a point defense interceptor.

 

Similarly powered by R3-26 engines, and embodying major nose redesign with a larger orifice permitting introduction of a substantial two-position conical centerbody for a TsD-30 radar, a further prototype was completed as the SM-12PM. Discarding the wing root NR-30 cannon of preceding prototypes, the SM-12PM was armed with only two K-5M (RS-2U) beam-riding missiles and entered flight test in 1957. This configuration would become the basis for the MiG-19bis interceptor that eventually was ordered into limited production (see below).

 

However, the SM-12 development line did not stop at this point. At the end of 1958, yet another prototype, the SM-12PMU, joined the experimental fighter family. This had R3M-26 turbojets uprated to 3.800kg with afterburning, but these were further augmented by a U-19D accelerator, which took the form of a permanent ventral pack containing an RU-013 rocket motor and its propellant tanks. Developed by D. D. Sevruk, the RU-013 delivered 3,000kg of additional thrust, and with the aid of this rocket motor, the SM-12PMU attained an altitude of 24,000m and a speed of Mach=1.69. But this effort was to no avail: the decision had been taken meanwhile to manufacture the Ye-7 in series as the MiG-21, and further development of the SM-12 series was therefore discontinued.

 

Nevertheless, since full operational status of the new MiG-21 was expected to remain pending for some time, production of a modified SM-12PM was ordered as a gap filler. Not only would this fighter bridge the performance gap to the Mach 2-capable MiG-21, it also had the benefit of being based on proven technologies and would not require a new basic pilot training.

 

The new aircraft received the official designation MiG-19bis. Compared with the SM-12PM prototype, the MiG-19bis differed in some details and improvements. The SM-12PM’s most significant shortfall was its short range – at full power, it had only a range of 750 km! This could be mended through an additional fuel tank in an enlarged dorsal fairing behind the cockpit. With this internal extra fuel, range could be extended by a further 200 - 250km range, but drop tanks had typically to be carried, too, in order to extend the fighter’ combat radius with two AAMs to 500 km. Specifically for the MiG-19bis, new, supersonic drop tanks (PTB-490) were designed, and these were later adapted for the MiG-21, too.

 

The air intake shock cone was re-contoured and the shifting mechanism improved: Instead of a simple, conical shape, the shock cone now had a more complex curvature with two steps and the intake orifice area was widened to allow a higher airflow rate. The air intake’s efficiency was further optimized through gradual positions of the shock cone.

As a positive side effect, the revised shock cone offered space for an enlarged radar dish, what improved detection range and resolution. The TsD-30 radar for the fighter’s missile-only armament was retained, even though the K-5’s effective range of only 2–6 km (1¼ – 3¾ mi) made it only suitable against slow and large targets like bombers. All guns were deleted in order to save weight or make room for the electronic equipment. The tail section was also changed because the R3M-26 engines and their afterburners were considerably longer than the MiG-19's original RM-5 engines. The exhausts now markedly protruded from the tail section, and the original, characteristic pen nib fairing between the two engines had been modified accordingly.

 

Production started in 1960, but only a total of roundabout 180 MiG-19bis, which received the NATO code "Farmer F", were built and the Soviet Union remained the only operator of the type. The first aircraft entered Soviet Anti-Air Defense in early 1961, and the machines were concentrated in PVO interceptor units around major sites like Moscow, Sewastopol at the Black Sea and Vladivostok in the Far East.

 

With the advent of the MiG-21, though, their career did not last long. Even though many machines were updated to carry the K-13 (the IR-guided AA-2 "Atoll") as well as the improved K-55 AAMs, with no change of the type’s designation, most MiG-19bis were already phased out towards the late 1960s and quickly replaced by 2nd generation MiG-21s as well as heavier and more capable Suchoj interceptors like the Su-9, -11 and -15. By 1972, all MiG-19bis had been retired.

  

General characteristics:

Crew: 1

Length: 13.54 m (44 ft 4 in), fuselage only with shock cone in forward position

15.48 m (50 8 ½ in) including pitot

Wingspan: 9 m (29 ft 6 in)

Height: 3.8885 m (12 ft 9 in)

Wing area: 25 m² (269 ft²)

Empty weight: 5,210 kg (11,475 lb)

Loaded weight: 7,890 kg (17,380 lb)

Max. takeoff weight: 9,050 kg (19,935 lb)

Fuel capacity: 2,450 l (556 imp gal; 647 US gal) internal;

plus 760 l (170 imp gal; 200 US gal) with 2 drop tanks

 

Powerplant:

2× Sorokin R3M-26 turbojets, rated at 37.2 kN (8,370 lbf) thrust each with afterburning

 

Performance:

Maximum speed: 1,380km/h at sea level (Mach=1.16)

1,850km/h at 12,000m (Mach=1.8)

Range: 1,250 km (775 mi; 750 nmi) at 14,000 m (45,000 ft) with 2 × 490 l drop tanks

Combat range: 500 km (312 mi; 270 nmi)

Ferry range: 2,000 km (1,242 mi; 690 nmi)

Service ceiling: 19,750 m (64,690 ft)

Rate of climb: 180 m/s (35,000 ft/min)

Wing loading: 353.3 kg/m² (72.4 lb/ft²)

Thrust/weight: 0.86

 

Armament:

No internal guns.

4× underwing pylons; typically, a pair of PTB-490 drop tanks were carried on the outer pylon pair,

plus a pair of air-to air missiles on the inner pair: initially two radar-guided Kaliningrad K-5M (RS-2US)

AAMs, later two radar-guided K-55 or IR-guided Vympel K-13 (AA-2 'Atoll') AAMs

  

The kit and its assembly:

Another submission for the 2018 Cold War Group Build at whatifmodelers.com, and again the opportunity to build a whiffy model from the project list. But it’s as fictional as one might think, since the SM-12 line of experimental “hybrid” fighters between the MiG-19 and the MiG-21 was real. But none of these aircraft ever made it into serial production, and in real life the MiG-21 showed so much potential that the attempts to improve the MiG-19 were stopped and no operational fighter entered production or service.

 

However, the SM-12, with its elongated nose and the central shock cone, makes a nice model subject, and I imagined what a service aircraft might have looked like? It would IMHO have been close, if not identical, to the SM-12PM, since this was the most refined pure jet fighter in the development family.

 

The basis for the build was a (dead cheap) Mastercraft MiG-19, which is a re-edition of the venerable Kovozávody Prostějov (KP) kit – as a tribute to modern tastes, it comes with (crudely) engraved panel, but it has a horrible fit all over. For instance, there was a 1mm gap between the fuselage and the right wing, the wing halves’ outlines did not match at all and it is questionable if the canopy actually belongs to the kit at all? PSR everywhere. I also had a Plastyk version of this kit on the table some time ago, but it was of a much better quality! O.K., the Mastercraft kit comes cheap, but it’s, to be honest, not a real bargain.

 

Even though the result would not be crisp I did some mods and changes. Internally, a cockpit tub was implanted (OOB there’s just a wacky seat hanging in mid air) plus some serious lead weight in the nose section for a proper stance.

On the outside, the new air intake is the most obvious change. I found a Su-17 intake (from a Mastercraft kit, too) and used a piece from a Matchbox B-17G’s dorsal turret to elongate the nose – it had an almost perfect diameter and a mildly conical shape. Some massive PSR work was necessary to blend the parts together, though.

The tail received new jet nozzles, scratched from steel needle protection covers, and the tail fairing was adjusted according to the real SM-12’s shape.

 

Ordnance was adapted, too: the drop tanks come from a Mastercraft MiG-21, and these supersonic PTB-490 tanks were indeed carried by the real SM-12 prototypes because the uprated engines were very thirsty and the original, teardrop-shaped MiG-19 tanks simply too draggy for the much faster SM-12. As a side note, the real SM-12’s short range was one of the serious factors that prevented the promising type’s production in real life. In order to overcome the poor range weakness I added an enlarged spine (half of a drop tank), inspired by the MiG-21 SMT, that would house an additional internal fuel tank.

 

The R2-SU/K-5 AAMs come from a vintage Mastercraft Soviet aircraft weapon set, which carries a pair of these 1st generation AAMs. While the molds seem to be a bit soft, the missiles look pretty convincing. Their pylons were taken from the kit (OOB they carry unguided AAM pods and are placed behind the main landing gear wells), just reversed and placed on the wings’ leading edges – similar to the real SM-12’s arrangement.

  

Painting and markings:

No surprises. In the Sixties, any PVO aircraft was left in bare metal, so there was hardly an alternative to a NMF finish.

 

Painting started with an all-over coat with acrylic Revell 99 (Aluminum), just the spine tank became light grey (Revell 371) for some contrast, and I painted some di-electric covers in a deep green (Revell 48).

The cockpit interior was painted with a bright mix of Revell 55 and some 48, while the landing gear wells and the back section of the cockpit were painted in a bluish grey (Revell 57).

The landing gear was painted in Steel (unpolished Modelmaster metallizer) and received classic, bright green wheel discs (Humbrol 2). As a small, unusual highlight the pitot boom under the chin received red and white stripes – seen on occasional MiG-19S fighters in Soviet service, and the anti-flutter booms on the stabilizers became bright red, too.

 

After the basic painting was done the kit received a black ink wash. Once this had dried and wiped off with a soft cotton cloth, post shading with various metallizer tones was added in order to liven up the uniform aircraft (including Humbrol’s matt and polished aluminum, and the exhaust section was treated with steel). Some panel lines were emphasized with a thin pencil.

 

Decals were puzzled together from various sources, a Guards badge and a few Russian stencils were added, too. Finally, the kit was sealed with a coat of sheen acrylic varnish (a 2:1 mix of Italeri matt and semi-gloss varnish).

 

The K-5 missiles, last but not least, were painted in aluminum, too, but their end caps (both front and tail section) became off-white.

  

The Mastercraft kit on which this conversion was based is crude, so I did not have high expectations concerning the outcome. But the new nose blends nicely into the MiG-19 fuselage, and the wide spine is a subtle detail that makes the aircraft look more “beefy” and less MiG-19-ish. The different drop tanks – even though they are authentic – visually add further speed. And despite many flaws, I am quite happy with the result of roundabout a week’s work.

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!

 

Some background:

The Mikoyan-Gurevich MiG-19 (NATO reporting name: "Farmer") was a Soviet second-generation, single-seat, twin jet-engine fighter aircraft. It was the first Soviet production aircraft capable of supersonic speeds in level flight. A comparable U.S. "Century Series" fighter was the North American F-100 Super Sabre, although the MiG-19 would primarily oppose the more modern McDonnell Douglas F-4 Phantom II and Republic F-105 Thunderchief over North Vietnam. Furthermore, the North American YF-100 Super Sabre prototype appeared approximately one year after the MiG-19, making the MiG-19 the first operational supersonic jet in the world.

 

On 20 April 1951, OKB-155 was given the order to develop the MiG-17 into a new fighter called "I-340", also known as "SM-1". It was to be powered by two Mikulin AM-5 non-afterburning jet engines, a scaled-down version of the Mikulin AM-3, with 19.6 kN (4,410 lbf) of thrust. The I-340 was supposed to attain 1,160 km/h (725 mph, Mach 0.97) at 2,000 m (6,562 ft), 1,080 km/h (675 mph, Mach 1.0) at 10,000 m (32,808 ft), climb to 10,000 m (32,808 ft) in 2.9 minutes, and have a service ceiling of no less than 17,500 m (57,415 ft).

After several prototypes with many detail improvements, the ministers of the Soviet Union issued the order #286-133 to start serial production on February 17, 1954, at the factories in Gorkiy and Novosibirsk. Factory trials were completed on September 12 the same year, and government trials started on September 30.

 

Initial enthusiasm for the aircraft was dampened by several problems. The most alarming of these was the danger of a midair explosion due to overheating of the fuselage fuel tanks located between the engines. Deployment of airbrakes at high speeds caused a high-g pitch-up. Elevators lacked authority at supersonic speeds. The high landing speed of 230 km/h (145 mph), compared to 160 km/h (100 mph) for the MiG-15, combined with the lack of a two-seat trainer version, slowed pilot transition to the type. Handling problems were addressed with the second prototype, "SM-9/2", which added a third ventral airbrake and introduced all-moving tailplanes with a damper to prevent pilot-induced oscillations at subsonic speeds. It flew on 16 September 1954, and entered production as the MiG-19S.

 

Approximately 5,500 MiG-19's were produced, first in the USSR and in Czechoslovakia as the Avia S-105, but mainly in the People's Republic of China as the Shenyang J-6. The aircraft saw service with a number of other national air forces, including those of Cuba, North Vietnam, Egypt, Pakistan, and North Korea. The aircraft saw combat during the Vietnam War, the 1967 Six Day War, and the 1971 Bangladesh War.

 

However, jet fighter development made huge leaps in the 1960s, and OKB MiG was constantly trying to improve the MiG-19's performance, esp. against fast and high-flying enemies, primarily bombers but also spy planes like the U-2.

 

As the MiG-19S was brought into service with the Soviet air forces in mid-1956, the OKB MiG was continuing the refinement of the SM-1/I-340 fighter. One of these evolutionary paths was the SM-12 (literally, “SM-1, second generation”) family of prototypes, the ultimate extrapolation of the basic MiG-19 design, which eventually led to the MiG-19bis interceptor that filled the gap between the MiG-19S and the following, highly successful MiG-21.

 

The SM-12 first saw life as an exercise in drag reduction by means of new air intake configurations, since the MiG-19’s original intake with rounded lips became inefficient at supersonic speed (its Western rival, the North American F-100, featured a sharp-lipped nose air intake from the start). The first of three prototypes, the SM-12/1, was essentially a MiG-19S with an extended and straight-tapered nose with sharp-lipped orifice and a pointed, two-position shock cone on the intake splitter. The simple arrangement proved to be successful and was further refined.

 

The next evolutionary step, the SM-12/3, differed from its predecessors primarily in two new R3-26 turbojets developed from the earlier power plant by V. N. Sorokin. These each offered an afterburning thrust of 3,600kg, enabling the SM-12/3 to attain speeds ranging between 1,430km/h at sea level, or Mach=1.16, and 1,930km/h at 12,000m, or Mach=1.8, and an altitude of between 17,500 and 18,000m during its test program. This outstanding performance prompted further development with a view to production as a point defense interceptor.

 

Similarly powered by R3-26 engines, and embodying major nose redesign with a larger orifice permitting introduction of a substantial two-position conical centerbody for a TsD-30 radar, a further prototype was completed as the SM-12PM. Discarding the wing root NR-30 cannon of preceding prototypes, the SM-12PM was armed with only two K-5M (RS-2U) beam-riding missiles and entered flight test in 1957. This configuration would become the basis for the MiG-19bis interceptor that eventually was ordered into limited production (see below).

 

However, the SM-12 development line did not stop at this point. At the end of 1958, yet another prototype, the SM-12PMU, joined the experimental fighter family. This had R3M-26 turbojets uprated to 3.800kg with afterburning, but these were further augmented by a U-19D accelerator, which took the form of a permanent ventral pack containing an RU-013 rocket motor and its propellant tanks. Developed by D. D. Sevruk, the RU-013 delivered 3,000kg of additional thrust, and with the aid of this rocket motor, the SM-12PMU attained an altitude of 24,000m and a speed of Mach=1.69. But this effort was to no avail: the decision had been taken meanwhile to manufacture the Ye-7 in series as the MiG-21, and further development of the SM-12 series was therefore discontinued.

 

Nevertheless, since full operational status of the new MiG-21 was expected to remain pending for some time, production of a modified SM-12PM was ordered as a gap filler. Not only would this fighter bridge the performance gap to the Mach 2-capable MiG-21, it also had the benefit of being based on proven technologies and would not require a new basic pilot training.

 

The new aircraft received the official designation MiG-19bis. Compared with the SM-12PM prototype, the MiG-19bis differed in some details and improvements. The SM-12PM’s most significant shortfall was its short range – at full power, it had only a range of 750 km! This could be mended through an additional fuel tank in an enlarged dorsal fairing behind the cockpit. With this internal extra fuel, range could be extended by a further 200 - 250km range, but drop tanks had typically to be carried, too, in order to extend the fighter’ combat radius with two AAMs to 500 km. Specifically for the MiG-19bis, new, supersonic drop tanks (PTB-490) were designed, and these were later adapted for the MiG-21, too.

 

The air intake shock cone was re-contoured and the shifting mechanism improved: Instead of a simple, conical shape, the shock cone now had a more complex curvature with two steps and the intake orifice area was widened to allow a higher airflow rate. The air intake’s efficiency was further optimized through gradual positions of the shock cone.

As a positive side effect, the revised shock cone offered space for an enlarged radar dish, what improved detection range and resolution. The TsD-30 radar for the fighter’s missile-only armament was retained, even though the K-5’s effective range of only 2–6 km (1¼ – 3¾ mi) made it only suitable against slow and large targets like bombers. All guns were deleted in order to save weight or make room for the electronic equipment. The tail section was also changed because the R3M-26 engines and their afterburners were considerably longer than the MiG-19's original RM-5 engines. The exhausts now markedly protruded from the tail section, and the original, characteristic pen nib fairing between the two engines had been modified accordingly.

 

Production started in 1960, but only a total of roundabout 180 MiG-19bis, which received the NATO code "Farmer F", were built and the Soviet Union remained the only operator of the type. The first aircraft entered Soviet Anti-Air Defense in early 1961, and the machines were concentrated in PVO interceptor units around major sites like Moscow, Sewastopol at the Black Sea and Vladivostok in the Far East.

 

With the advent of the MiG-21, though, their career did not last long. Even though many machines were updated to carry the K-13 (the IR-guided AA-2 "Atoll") as well as the improved K-55 AAMs, with no change of the type’s designation, most MiG-19bis were already phased out towards the late 1960s and quickly replaced by 2nd generation MiG-21s as well as heavier and more capable Suchoj interceptors like the Su-9, -11 and -15. By 1972, all MiG-19bis had been retired.

  

General characteristics:

Crew: 1

Length: 13.54 m (44 ft 4 in), fuselage only with shock cone in forward position

15.48 m (50 8 ½ in) including pitot

Wingspan: 9 m (29 ft 6 in)

Height: 3.8885 m (12 ft 9 in)

Wing area: 25 m² (269 ft²)

Empty weight: 5,210 kg (11,475 lb)

Loaded weight: 7,890 kg (17,380 lb)

Max. takeoff weight: 9,050 kg (19,935 lb)

Fuel capacity: 2,450 l (556 imp gal; 647 US gal) internal;

plus 760 l (170 imp gal; 200 US gal) with 2 drop tanks

 

Powerplant:

2× Sorokin R3M-26 turbojets, rated at 37.2 kN (8,370 lbf) thrust each with afterburning

 

Performance:

Maximum speed: 1,380km/h at sea level (Mach=1.16)

1,850km/h at 12,000m (Mach=1.8)

Range: 1,250 km (775 mi; 750 nmi) at 14,000 m (45,000 ft) with 2 × 490 l drop tanks

Combat range: 500 km (312 mi; 270 nmi)

Ferry range: 2,000 km (1,242 mi; 690 nmi)

Service ceiling: 19,750 m (64,690 ft)

Rate of climb: 180 m/s (35,000 ft/min)

Wing loading: 353.3 kg/m² (72.4 lb/ft²)

Thrust/weight: 0.86

 

Armament:

No internal guns.

4× underwing pylons; typically, a pair of PTB-490 drop tanks were carried on the outer pylon pair,

plus a pair of air-to air missiles on the inner pair: initially two radar-guided Kaliningrad K-5M (RS-2US)

AAMs, later two radar-guided K-55 or IR-guided Vympel K-13 (AA-2 'Atoll') AAMs

  

The kit and its assembly:

Another submission for the 2018 Cold War Group Build at whatifmodelers.com, and again the opportunity to build a whiffy model from the project list. But it’s as fictional as one might think, since the SM-12 line of experimental “hybrid” fighters between the MiG-19 and the MiG-21 was real. But none of these aircraft ever made it into serial production, and in real life the MiG-21 showed so much potential that the attempts to improve the MiG-19 were stopped and no operational fighter entered production or service.

 

However, the SM-12, with its elongated nose and the central shock cone, makes a nice model subject, and I imagined what a service aircraft might have looked like? It would IMHO have been close, if not identical, to the SM-12PM, since this was the most refined pure jet fighter in the development family.

 

The basis for the build was a (dead cheap) Mastercraft MiG-19, which is a re-edition of the venerable Kovozávody Prostějov (KP) kit – as a tribute to modern tastes, it comes with (crudely) engraved panel, but it has a horrible fit all over. For instance, there was a 1mm gap between the fuselage and the right wing, the wing halves’ outlines did not match at all and it is questionable if the canopy actually belongs to the kit at all? PSR everywhere. I also had a Plastyk version of this kit on the table some time ago, but it was of a much better quality! O.K., the Mastercraft kit comes cheap, but it’s, to be honest, not a real bargain.

 

Even though the result would not be crisp I did some mods and changes. Internally, a cockpit tub was implanted (OOB there’s just a wacky seat hanging in mid air) plus some serious lead weight in the nose section for a proper stance.

On the outside, the new air intake is the most obvious change. I found a Su-17 intake (from a Mastercraft kit, too) and used a piece from a Matchbox B-17G’s dorsal turret to elongate the nose – it had an almost perfect diameter and a mildly conical shape. Some massive PSR work was necessary to blend the parts together, though.

The tail received new jet nozzles, scratched from steel needle protection covers, and the tail fairing was adjusted according to the real SM-12’s shape.

 

Ordnance was adapted, too: the drop tanks come from a Mastercraft MiG-21, and these supersonic PTB-490 tanks were indeed carried by the real SM-12 prototypes because the uprated engines were very thirsty and the original, teardrop-shaped MiG-19 tanks simply too draggy for the much faster SM-12. As a side note, the real SM-12’s short range was one of the serious factors that prevented the promising type’s production in real life. In order to overcome the poor range weakness I added an enlarged spine (half of a drop tank), inspired by the MiG-21 SMT, that would house an additional internal fuel tank.

 

The R2-SU/K-5 AAMs come from a vintage Mastercraft Soviet aircraft weapon set, which carries a pair of these 1st generation AAMs. While the molds seem to be a bit soft, the missiles look pretty convincing. Their pylons were taken from the kit (OOB they carry unguided AAM pods and are placed behind the main landing gear wells), just reversed and placed on the wings’ leading edges – similar to the real SM-12’s arrangement.

  

Painting and markings:

No surprises. In the Sixties, any PVO aircraft was left in bare metal, so there was hardly an alternative to a NMF finish.

 

Painting started with an all-over coat with acrylic Revell 99 (Aluminum), just the spine tank became light grey (Revell 371) for some contrast, and I painted some di-electric covers in a deep green (Revell 48).

The cockpit interior was painted with a bright mix of Revell 55 and some 48, while the landing gear wells and the back section of the cockpit were painted in a bluish grey (Revell 57).

The landing gear was painted in Steel (unpolished Modelmaster metallizer) and received classic, bright green wheel discs (Humbrol 2). As a small, unusual highlight the pitot boom under the chin received red and white stripes – seen on occasional MiG-19S fighters in Soviet service, and the anti-flutter booms on the stabilizers became bright red, too.

 

After the basic painting was done the kit received a black ink wash. Once this had dried and wiped off with a soft cotton cloth, post shading with various metallizer tones was added in order to liven up the uniform aircraft (including Humbrol’s matt and polished aluminum, and the exhaust section was treated with steel). Some panel lines were emphasized with a thin pencil.

 

Decals were puzzled together from various sources, a Guards badge and a few Russian stencils were added, too. Finally, the kit was sealed with a coat of sheen acrylic varnish (a 2:1 mix of Italeri matt and semi-gloss varnish).

 

The K-5 missiles, last but not least, were painted in aluminum, too, but their end caps (both front and tail section) became off-white.

  

The Mastercraft kit on which this conversion was based is crude, so I did not have high expectations concerning the outcome. But the new nose blends nicely into the MiG-19 fuselage, and the wide spine is a subtle detail that makes the aircraft look more “beefy” and less MiG-19-ish. The different drop tanks – even though they are authentic – visually add further speed. And despite many flaws, I am quite happy with the result of roundabout a week’s work.

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!

 

Some background:

The Mikoyan-Gurevich MiG-19 (NATO reporting name: "Farmer") was a Soviet second-generation, single-seat, twin jet-engine fighter aircraft. It was the first Soviet production aircraft capable of supersonic speeds in level flight. A comparable U.S. "Century Series" fighter was the North American F-100 Super Sabre, although the MiG-19 would primarily oppose the more modern McDonnell Douglas F-4 Phantom II and Republic F-105 Thunderchief over North Vietnam. Furthermore, the North American YF-100 Super Sabre prototype appeared approximately one year after the MiG-19, making the MiG-19 the first operational supersonic jet in the world.

 

On 20 April 1951, OKB-155 was given the order to develop the MiG-17 into a new fighter called "I-340", also known as "SM-1". It was to be powered by two Mikulin AM-5 non-afterburning jet engines, a scaled-down version of the Mikulin AM-3, with 19.6 kN (4,410 lbf) of thrust. The I-340 was supposed to attain 1,160 km/h (725 mph, Mach 0.97) at 2,000 m (6,562 ft), 1,080 km/h (675 mph, Mach 1.0) at 10,000 m (32,808 ft), climb to 10,000 m (32,808 ft) in 2.9 minutes, and have a service ceiling of no less than 17,500 m (57,415 ft).

After several prototypes with many detail improvements, the ministers of the Soviet Union issued the order #286-133 to start serial production on February 17, 1954, at the factories in Gorkiy and Novosibirsk. Factory trials were completed on September 12 the same year, and government trials started on September 30.

 

Initial enthusiasm for the aircraft was dampened by several problems. The most alarming of these was the danger of a midair explosion due to overheating of the fuselage fuel tanks located between the engines. Deployment of airbrakes at high speeds caused a high-g pitch-up. Elevators lacked authority at supersonic speeds. The high landing speed of 230 km/h (145 mph), compared to 160 km/h (100 mph) for the MiG-15, combined with the lack of a two-seat trainer version, slowed pilot transition to the type. Handling problems were addressed with the second prototype, "SM-9/2", which added a third ventral airbrake and introduced all-moving tailplanes with a damper to prevent pilot-induced oscillations at subsonic speeds. It flew on 16 September 1954, and entered production as the MiG-19S.

 

Approximately 5,500 MiG-19's were produced, first in the USSR and in Czechoslovakia as the Avia S-105, but mainly in the People's Republic of China as the Shenyang J-6. The aircraft saw service with a number of other national air forces, including those of Cuba, North Vietnam, Egypt, Pakistan, and North Korea. The aircraft saw combat during the Vietnam War, the 1967 Six Day War, and the 1971 Bangladesh War.

 

However, jet fighter development made huge leaps in the 1960s, and OKB MiG was constantly trying to improve the MiG-19's performance, esp. against fast and high-flying enemies, primarily bombers but also spy planes like the U-2.

 

As the MiG-19S was brought into service with the Soviet air forces in mid-1956, the OKB MiG was continuing the refinement of the SM-1/I-340 fighter. One of these evolutionary paths was the SM-12 (literally, “SM-1, second generation”) family of prototypes, the ultimate extrapolation of the basic MiG-19 design, which eventually led to the MiG-19bis interceptor that filled the gap between the MiG-19S and the following, highly successful MiG-21.

 

The SM-12 first saw life as an exercise in drag reduction by means of new air intake configurations, since the MiG-19’s original intake with rounded lips became inefficient at supersonic speed (its Western rival, the North American F-100, featured a sharp-lipped nose air intake from the start). The first of three prototypes, the SM-12/1, was essentially a MiG-19S with an extended and straight-tapered nose with sharp-lipped orifice and a pointed, two-position shock cone on the intake splitter. The simple arrangement proved to be successful and was further refined.

 

The next evolutionary step, the SM-12/3, differed from its predecessors primarily in two new R3-26 turbojets developed from the earlier power plant by V. N. Sorokin. These each offered an afterburning thrust of 3,600kg, enabling the SM-12/3 to attain speeds ranging between 1,430km/h at sea level, or Mach=1.16, and 1,930km/h at 12,000m, or Mach=1.8, and an altitude of between 17,500 and 18,000m during its test program. This outstanding performance prompted further development with a view to production as a point defense interceptor.

 

Similarly powered by R3-26 engines, and embodying major nose redesign with a larger orifice permitting introduction of a substantial two-position conical centerbody for a TsD-30 radar, a further prototype was completed as the SM-12PM. Discarding the wing root NR-30 cannon of preceding prototypes, the SM-12PM was armed with only two K-5M (RS-2U) beam-riding missiles and entered flight test in 1957. This configuration would become the basis for the MiG-19bis interceptor that eventually was ordered into limited production (see below).

 

However, the SM-12 development line did not stop at this point. At the end of 1958, yet another prototype, the SM-12PMU, joined the experimental fighter family. This had R3M-26 turbojets uprated to 3.800kg with afterburning, but these were further augmented by a U-19D accelerator, which took the form of a permanent ventral pack containing an RU-013 rocket motor and its propellant tanks. Developed by D. D. Sevruk, the RU-013 delivered 3,000kg of additional thrust, and with the aid of this rocket motor, the SM-12PMU attained an altitude of 24,000m and a speed of Mach=1.69. But this effort was to no avail: the decision had been taken meanwhile to manufacture the Ye-7 in series as the MiG-21, and further development of the SM-12 series was therefore discontinued.

 

Nevertheless, since full operational status of the new MiG-21 was expected to remain pending for some time, production of a modified SM-12PM was ordered as a gap filler. Not only would this fighter bridge the performance gap to the Mach 2-capable MiG-21, it also had the benefit of being based on proven technologies and would not require a new basic pilot training.

 

The new aircraft received the official designation MiG-19bis. Compared with the SM-12PM prototype, the MiG-19bis differed in some details and improvements. The SM-12PM’s most significant shortfall was its short range – at full power, it had only a range of 750 km! This could be mended through an additional fuel tank in an enlarged dorsal fairing behind the cockpit. With this internal extra fuel, range could be extended by a further 200 - 250km range, but drop tanks had typically to be carried, too, in order to extend the fighter’ combat radius with two AAMs to 500 km. Specifically for the MiG-19bis, new, supersonic drop tanks (PTB-490) were designed, and these were later adapted for the MiG-21, too.

 

The air intake shock cone was re-contoured and the shifting mechanism improved: Instead of a simple, conical shape, the shock cone now had a more complex curvature with two steps and the intake orifice area was widened to allow a higher airflow rate. The air intake’s efficiency was further optimized through gradual positions of the shock cone.

As a positive side effect, the revised shock cone offered space for an enlarged radar dish, what improved detection range and resolution. The TsD-30 radar for the fighter’s missile-only armament was retained, even though the K-5’s effective range of only 2–6 km (1¼ – 3¾ mi) made it only suitable against slow and large targets like bombers. All guns were deleted in order to save weight or make room for the electronic equipment. The tail section was also changed because the R3M-26 engines and their afterburners were considerably longer than the MiG-19's original RM-5 engines. The exhausts now markedly protruded from the tail section, and the original, characteristic pen nib fairing between the two engines had been modified accordingly.

 

Production started in 1960, but only a total of roundabout 180 MiG-19bis, which received the NATO code "Farmer F", were built and the Soviet Union remained the only operator of the type. The first aircraft entered Soviet Anti-Air Defense in early 1961, and the machines were concentrated in PVO interceptor units around major sites like Moscow, Sewastopol at the Black Sea and Vladivostok in the Far East.

 

With the advent of the MiG-21, though, their career did not last long. Even though many machines were updated to carry the K-13 (the IR-guided AA-2 "Atoll") as well as the improved K-55 AAMs, with no change of the type’s designation, most MiG-19bis were already phased out towards the late 1960s and quickly replaced by 2nd generation MiG-21s as well as heavier and more capable Suchoj interceptors like the Su-9, -11 and -15. By 1972, all MiG-19bis had been retired.

  

General characteristics:

Crew: 1

Length: 13.54 m (44 ft 4 in), fuselage only with shock cone in forward position

15.48 m (50 8 ½ in) including pitot

Wingspan: 9 m (29 ft 6 in)

Height: 3.8885 m (12 ft 9 in)

Wing area: 25 m² (269 ft²)

Empty weight: 5,210 kg (11,475 lb)

Loaded weight: 7,890 kg (17,380 lb)

Max. takeoff weight: 9,050 kg (19,935 lb)

Fuel capacity: 2,450 l (556 imp gal; 647 US gal) internal;

plus 760 l (170 imp gal; 200 US gal) with 2 drop tanks

 

Powerplant:

2× Sorokin R3M-26 turbojets, rated at 37.2 kN (8,370 lbf) thrust each with afterburning

 

Performance:

Maximum speed: 1,380km/h at sea level (Mach=1.16)

1,850km/h at 12,000m (Mach=1.8)

Range: 1,250 km (775 mi; 750 nmi) at 14,000 m (45,000 ft) with 2 × 490 l drop tanks

Combat range: 500 km (312 mi; 270 nmi)

Ferry range: 2,000 km (1,242 mi; 690 nmi)

Service ceiling: 19,750 m (64,690 ft)

Rate of climb: 180 m/s (35,000 ft/min)

Wing loading: 353.3 kg/m² (72.4 lb/ft²)

Thrust/weight: 0.86

 

Armament:

No internal guns.

4× underwing pylons; typically, a pair of PTB-490 drop tanks were carried on the outer pylon pair,

plus a pair of air-to air missiles on the inner pair: initially two radar-guided Kaliningrad K-5M (RS-2US)

AAMs, later two radar-guided K-55 or IR-guided Vympel K-13 (AA-2 'Atoll') AAMs

  

The kit and its assembly:

Another submission for the 2018 Cold War Group Build at whatifmodelers.com, and again the opportunity to build a whiffy model from the project list. But it’s as fictional as one might think, since the SM-12 line of experimental “hybrid” fighters between the MiG-19 and the MiG-21 was real. But none of these aircraft ever made it into serial production, and in real life the MiG-21 showed so much potential that the attempts to improve the MiG-19 were stopped and no operational fighter entered production or service.

 

However, the SM-12, with its elongated nose and the central shock cone, makes a nice model subject, and I imagined what a service aircraft might have looked like? It would IMHO have been close, if not identical, to the SM-12PM, since this was the most refined pure jet fighter in the development family.

 

The basis for the build was a (dead cheap) Mastercraft MiG-19, which is a re-edition of the venerable Kovozávody Prostějov (KP) kit – as a tribute to modern tastes, it comes with (crudely) engraved panel, but it has a horrible fit all over. For instance, there was a 1mm gap between the fuselage and the right wing, the wing halves’ outlines did not match at all and it is questionable if the canopy actually belongs to the kit at all? PSR everywhere. I also had a Plastyk version of this kit on the table some time ago, but it was of a much better quality! O.K., the Mastercraft kit comes cheap, but it’s, to be honest, not a real bargain.

 

Even though the result would not be crisp I did some mods and changes. Internally, a cockpit tub was implanted (OOB there’s just a wacky seat hanging in mid air) plus some serious lead weight in the nose section for a proper stance.

On the outside, the new air intake is the most obvious change. I found a Su-17 intake (from a Mastercraft kit, too) and used a piece from a Matchbox B-17G’s dorsal turret to elongate the nose – it had an almost perfect diameter and a mildly conical shape. Some massive PSR work was necessary to blend the parts together, though.

The tail received new jet nozzles, scratched from steel needle protection covers, and the tail fairing was adjusted according to the real SM-12’s shape.

 

Ordnance was adapted, too: the drop tanks come from a Mastercraft MiG-21, and these supersonic PTB-490 tanks were indeed carried by the real SM-12 prototypes because the uprated engines were very thirsty and the original, teardrop-shaped MiG-19 tanks simply too draggy for the much faster SM-12. As a side note, the real SM-12’s short range was one of the serious factors that prevented the promising type’s production in real life. In order to overcome the poor range weakness I added an enlarged spine (half of a drop tank), inspired by the MiG-21 SMT, that would house an additional internal fuel tank.

 

The R2-SU/K-5 AAMs come from a vintage Mastercraft Soviet aircraft weapon set, which carries a pair of these 1st generation AAMs. While the molds seem to be a bit soft, the missiles look pretty convincing. Their pylons were taken from the kit (OOB they carry unguided AAM pods and are placed behind the main landing gear wells), just reversed and placed on the wings’ leading edges – similar to the real SM-12’s arrangement.

  

Painting and markings:

No surprises. In the Sixties, any PVO aircraft was left in bare metal, so there was hardly an alternative to a NMF finish.

 

Painting started with an all-over coat with acrylic Revell 99 (Aluminum), just the spine tank became light grey (Revell 371) for some contrast, and I painted some di-electric covers in a deep green (Revell 48).

The cockpit interior was painted with a bright mix of Revell 55 and some 48, while the landing gear wells and the back section of the cockpit were painted in a bluish grey (Revell 57).

The landing gear was painted in Steel (unpolished Modelmaster metallizer) and received classic, bright green wheel discs (Humbrol 2). As a small, unusual highlight the pitot boom under the chin received red and white stripes – seen on occasional MiG-19S fighters in Soviet service, and the anti-flutter booms on the stabilizers became bright red, too.

 

After the basic painting was done the kit received a black ink wash. Once this had dried and wiped off with a soft cotton cloth, post shading with various metallizer tones was added in order to liven up the uniform aircraft (including Humbrol’s matt and polished aluminum, and the exhaust section was treated with steel). Some panel lines were emphasized with a thin pencil.

 

Decals were puzzled together from various sources, a Guards badge and a few Russian stencils were added, too. Finally, the kit was sealed with a coat of sheen acrylic varnish (a 2:1 mix of Italeri matt and semi-gloss varnish).

 

The K-5 missiles, last but not least, were painted in aluminum, too, but their end caps (both front and tail section) became off-white.

  

The Mastercraft kit on which this conversion was based is crude, so I did not have high expectations concerning the outcome. But the new nose blends nicely into the MiG-19 fuselage, and the wide spine is a subtle detail that makes the aircraft look more “beefy” and less MiG-19-ish. The different drop tanks – even though they are authentic – visually add further speed. And despite many flaws, I am quite happy with the result of roundabout a week’s work.

Trent's Bristol VR stands at Alfreton bus station on 16-08-87 displaying a striking advertisment for Eagle Star.

+++ DISCLAIMER +++

Nothing you see here is real, even though the conversion or the presented background story might be based historical facts. BEWARE!

 

Some background:

The Mikoyan-Gurevich MiG-19 (NATO reporting name: "Farmer") was a Soviet second-generation, single-seat, twin jet-engine fighter aircraft. It was the first Soviet production aircraft capable of supersonic speeds in level flight. A comparable U.S. "Century Series" fighter was the North American F-100 Super Sabre, although the MiG-19 would primarily oppose the more modern McDonnell Douglas F-4 Phantom II and Republic F-105 Thunderchief over North Vietnam. Furthermore, the North American YF-100 Super Sabre prototype appeared approximately one year after the MiG-19, making the MiG-19 the first operational supersonic jet in the world.

 

On 20 April 1951, OKB-155 was given the order to develop the MiG-17 into a new fighter called "I-340", also known as "SM-1". It was to be powered by two Mikulin AM-5 non-afterburning jet engines, a scaled-down version of the Mikulin AM-3, with 19.6 kN (4,410 lbf) of thrust. The I-340 was supposed to attain 1,160 km/h (725 mph, Mach 0.97) at 2,000 m (6,562 ft), 1,080 km/h (675 mph, Mach 1.0) at 10,000 m (32,808 ft), climb to 10,000 m (32,808 ft) in 2.9 minutes, and have a service ceiling of no less than 17,500 m (57,415 ft).

After several prototypes with many detail improvements, the ministers of the Soviet Union issued the order #286-133 to start serial production on February 17, 1954, at the factories in Gorkiy and Novosibirsk. Factory trials were completed on September 12 the same year, and government trials started on September 30.

 

Initial enthusiasm for the aircraft was dampened by several problems. The most alarming of these was the danger of a midair explosion due to overheating of the fuselage fuel tanks located between the engines. Deployment of airbrakes at high speeds caused a high-g pitch-up. Elevators lacked authority at supersonic speeds. The high landing speed of 230 km/h (145 mph), compared to 160 km/h (100 mph) for the MiG-15, combined with the lack of a two-seat trainer version, slowed pilot transition to the type. Handling problems were addressed with the second prototype, "SM-9/2", which added a third ventral airbrake and introduced all-moving tailplanes with a damper to prevent pilot-induced oscillations at subsonic speeds. It flew on 16 September 1954, and entered production as the MiG-19S.

 

Approximately 5,500 MiG-19's were produced, first in the USSR and in Czechoslovakia as the Avia S-105, but mainly in the People's Republic of China as the Shenyang J-6. The aircraft saw service with a number of other national air forces, including those of Cuba, North Vietnam, Egypt, Pakistan, and North Korea. The aircraft saw combat during the Vietnam War, the 1967 Six Day War, and the 1971 Bangladesh War.

 

However, jet fighter development made huge leaps in the 1960s, and OKB MiG was constantly trying to improve the MiG-19's performance, esp. against fast and high-flying enemies, primarily bombers but also spy planes like the U-2.

 

As the MiG-19S was brought into service with the Soviet air forces in mid-1956, the OKB MiG was continuing the refinement of the SM-1/I-340 fighter. One of these evolutionary paths was the SM-12 (literally, “SM-1, second generation”) family of prototypes, the ultimate extrapolation of the basic MiG-19 design, which eventually led to the MiG-19bis interceptor that filled the gap between the MiG-19S and the following, highly successful MiG-21.

 

The SM-12 first saw life as an exercise in drag reduction by means of new air intake configurations, since the MiG-19’s original intake with rounded lips became inefficient at supersonic speed (its Western rival, the North American F-100, featured a sharp-lipped nose air intake from the start). The first of three prototypes, the SM-12/1, was essentially a MiG-19S with an extended and straight-tapered nose with sharp-lipped orifice and a pointed, two-position shock cone on the intake splitter. The simple arrangement proved to be successful and was further refined.

 

The next evolutionary step, the SM-12/3, differed from its predecessors primarily in two new R3-26 turbojets developed from the earlier power plant by V. N. Sorokin. These each offered an afterburning thrust of 3,600kg, enabling the SM-12/3 to attain speeds ranging between 1,430km/h at sea level, or Mach=1.16, and 1,930km/h at 12,000m, or Mach=1.8, and an altitude of between 17,500 and 18,000m during its test program. This outstanding performance prompted further development with a view to production as a point defense interceptor.

 

Similarly powered by R3-26 engines, and embodying major nose redesign with a larger orifice permitting introduction of a substantial two-position conical centerbody for a TsD-30 radar, a further prototype was completed as the SM-12PM. Discarding the wing root NR-30 cannon of preceding prototypes, the SM-12PM was armed with only two K-5M (RS-2U) beam-riding missiles and entered flight test in 1957. This configuration would become the basis for the MiG-19bis interceptor that eventually was ordered into limited production (see below).

 

However, the SM-12 development line did not stop at this point. At the end of 1958, yet another prototype, the SM-12PMU, joined the experimental fighter family. This had R3M-26 turbojets uprated to 3.800kg with afterburning, but these were further augmented by a U-19D accelerator, which took the form of a permanent ventral pack containing an RU-013 rocket motor and its propellant tanks. Developed by D. D. Sevruk, the RU-013 delivered 3,000kg of additional thrust, and with the aid of this rocket motor, the SM-12PMU attained an altitude of 24,000m and a speed of Mach=1.69. But this effort was to no avail: the decision had been taken meanwhile to manufacture the Ye-7 in series as the MiG-21, and further development of the SM-12 series was therefore discontinued.

 

Nevertheless, since full operational status of the new MiG-21 was expected to remain pending for some time, production of a modified SM-12PM was ordered as a gap filler. Not only would this fighter bridge the performance gap to the Mach 2-capable MiG-21, it also had the benefit of being based on proven technologies and would not require a new basic pilot training.

 

The new aircraft received the official designation MiG-19bis. Compared with the SM-12PM prototype, the MiG-19bis differed in some details and improvements. The SM-12PM’s most significant shortfall was its short range – at full power, it had only a range of 750 km! This could be mended through an additional fuel tank in an enlarged dorsal fairing behind the cockpit. With this internal extra fuel, range could be extended by a further 200 - 250km range, but drop tanks had typically to be carried, too, in order to extend the fighter’ combat radius with two AAMs to 500 km. Specifically for the MiG-19bis, new, supersonic drop tanks (PTB-490) were designed, and these were later adapted for the MiG-21, too.

 

The air intake shock cone was re-contoured and the shifting mechanism improved: Instead of a simple, conical shape, the shock cone now had a more complex curvature with two steps and the intake orifice area was widened to allow a higher airflow rate. The air intake’s efficiency was further optimized through gradual positions of the shock cone.

As a positive side effect, the revised shock cone offered space for an enlarged radar dish, what improved detection range and resolution. The TsD-30 radar for the fighter’s missile-only armament was retained, even though the K-5’s effective range of only 2–6 km (1¼ – 3¾ mi) made it only suitable against slow and large targets like bombers. All guns were deleted in order to save weight or make room for the electronic equipment. The tail section was also changed because the R3M-26 engines and their afterburners were considerably longer than the MiG-19's original RM-5 engines. The exhausts now markedly protruded from the tail section, and the original, characteristic pen nib fairing between the two engines had been modified accordingly.

 

Production started in 1960, but only a total of roundabout 180 MiG-19bis, which received the NATO code "Farmer F", were built and the Soviet Union remained the only operator of the type. The first aircraft entered Soviet Anti-Air Defense in early 1961, and the machines were concentrated in PVO interceptor units around major sites like Moscow, Sewastopol at the Black Sea and Vladivostok in the Far East.

 

With the advent of the MiG-21, though, their career did not last long. Even though many machines were updated to carry the K-13 (the IR-guided AA-2 "Atoll") as well as the improved K-55 AAMs, with no change of the type’s designation, most MiG-19bis were already phased out towards the late 1960s and quickly replaced by 2nd generation MiG-21s as well as heavier and more capable Suchoj interceptors like the Su-9, -11 and -15. By 1972, all MiG-19bis had been retired.

  

General characteristics:

Crew: 1

Length: 13.54 m (44 ft 4 in), fuselage only with shock cone in forward position

15.48 m (50 8 ½ in) including pitot

Wingspan: 9 m (29 ft 6 in)

Height: 3.8885 m (12 ft 9 in)

Wing area: 25 m² (269 ft²)

Empty weight: 5,210 kg (11,475 lb)

Loaded weight: 7,890 kg (17,380 lb)

Max. takeoff weight: 9,050 kg (19,935 lb)

Fuel capacity: 2,450 l (556 imp gal; 647 US gal) internal;

plus 760 l (170 imp gal; 200 US gal) with 2 drop tanks

 

Powerplant:

2× Sorokin R3M-26 turbojets, rated at 37.2 kN (8,370 lbf) thrust each with afterburning

 

Performance:

Maximum speed: 1,380km/h at sea level (Mach=1.16)

1,850km/h at 12,000m (Mach=1.8)

Range: 1,250 km (775 mi; 750 nmi) at 14,000 m (45,000 ft) with 2 × 490 l drop tanks

Combat range: 500 km (312 mi; 270 nmi)

Ferry range: 2,000 km (1,242 mi; 690 nmi)

Service ceiling: 19,750 m (64,690 ft)

Rate of climb: 180 m/s (35,000 ft/min)

Wing loading: 353.3 kg/m² (72.4 lb/ft²)

Thrust/weight: 0.86

 

Armament:

No internal guns.

4× underwing pylons; typically, a pair of PTB-490 drop tanks were carried on the outer pylon pair,

plus a pair of air-to air missiles on the inner pair: initially two radar-guided Kaliningrad K-5M (RS-2US)

AAMs, later two radar-guided K-55 or IR-guided Vympel K-13 (AA-2 'Atoll') AAMs

  

The kit and its assembly:

Another submission for the 2018 Cold War Group Build at whatifmodelers.com, and again the opportunity to build a whiffy model from the project list. But it’s as fictional as one might think, since the SM-12 line of experimental “hybrid” fighters between the MiG-19 and the MiG-21 was real. But none of these aircraft ever made it into serial production, and in real life the MiG-21 showed so much potential that the attempts to improve the MiG-19 were stopped and no operational fighter entered production or service.

 

However, the SM-12, with its elongated nose and the central shock cone, makes a nice model subject, and I imagined what a service aircraft might have looked like? It would IMHO have been close, if not identical, to the SM-12PM, since this was the most refined pure jet fighter in the development family.

 

The basis for the build was a (dead cheap) Mastercraft MiG-19, which is a re-edition of the venerable Kovozávody Prostějov (KP) kit – as a tribute to modern tastes, it comes with (crudely) engraved panel, but it has a horrible fit all over. For instance, there was a 1mm gap between the fuselage and the right wing, the wing halves’ outlines did not match at all and it is questionable if the canopy actually belongs to the kit at all? PSR everywhere. I also had a Plastyk version of this kit on the table some time ago, but it was of a much better quality! O.K., the Mastercraft kit comes cheap, but it’s, to be honest, not a real bargain.

 

Even though the result would not be crisp I did some mods and changes. Internally, a cockpit tub was implanted (OOB there’s just a wacky seat hanging in mid air) plus some serious lead weight in the nose section for a proper stance.

On the outside, the new air intake is the most obvious change. I found a Su-17 intake (from a Mastercraft kit, too) and used a piece from a Matchbox B-17G’s dorsal turret to elongate the nose – it had an almost perfect diameter and a mildly conical shape. Some massive PSR work was necessary to blend the parts together, though.

The tail received new jet nozzles, scratched from steel needle protection covers, and the tail fairing was adjusted according to the real SM-12’s shape.

 

Ordnance was adapted, too: the drop tanks come from a Mastercraft MiG-21, and these supersonic PTB-490 tanks were indeed carried by the real SM-12 prototypes because the uprated engines were very thirsty and the original, teardrop-shaped MiG-19 tanks simply too draggy for the much faster SM-12. As a side note, the real SM-12’s short range was one of the serious factors that prevented the promising type’s production in real life. In order to overcome the poor range weakness I added an enlarged spine (half of a drop tank), inspired by the MiG-21 SMT, that would house an additional internal fuel tank.

 

The R2-SU/K-5 AAMs come from a vintage Mastercraft Soviet aircraft weapon set, which carries a pair of these 1st generation AAMs. While the molds seem to be a bit soft, the missiles look pretty convincing. Their pylons were taken from the kit (OOB they carry unguided AAM pods and are placed behind the main landing gear wells), just reversed and placed on the wings’ leading edges – similar to the real SM-12’s arrangement.

  

Painting and markings:

No surprises. In the Sixties, any PVO aircraft was left in bare metal, so there was hardly an alternative to a NMF finish.

 

Painting started with an all-over coat with acrylic Revell 99 (Aluminum), just the spine tank became light grey (Revell 371) for some contrast, and I painted some di-electric covers in a deep green (Revell 48).

The cockpit interior was painted with a bright mix of Revell 55 and some 48, while the landing gear wells and the back section of the cockpit were painted in a bluish grey (Revell 57).

The landing gear was painted in Steel (unpolished Modelmaster metallizer) and received classic, bright green wheel discs (Humbrol 2). As a small, unusual highlight the pitot boom under the chin received red and white stripes – seen on occasional MiG-19S fighters in Soviet service, and the anti-flutter booms on the stabilizers became bright red, too.

 

After the basic painting was done the kit received a black ink wash. Once this had dried and wiped off with a soft cotton cloth, post shading with various metallizer tones was added in order to liven up the uniform aircraft (including Humbrol’s matt and polished aluminum, and the exhaust section was treated with steel). Some panel lines were emphasized with a thin pencil.

 

Decals were puzzled together from various sources, a Guards badge and a few Russian stencils were added, too. Finally, the kit was sealed with a coat of sheen acrylic varnish (a 2:1 mix of Italeri matt and semi-gloss varnish).

 

The K-5 missiles, last but not least, were painted in aluminum, too, but their end caps (both front and tail section) became off-white.

  

The Mastercraft kit on which this conversion was based is crude, so I did not have high expectations concerning the outcome. But the new nose blends nicely into the MiG-19 fuselage, and the wide spine is a subtle detail that makes the aircraft look more “beefy” and less MiG-19-ish. The different drop tanks – even though they are authentic – visually add further speed. And despite many flaws, I am quite happy with the result of roundabout a week’s work.

PVÖ OG Weihnachtsfeier

Trent VR in Chesterfield

1 3 4 5 6 7 ••• 79 80