View allAll Photos Tagged Nebulae
Original 2D-image with the technical details:
astroanarchy.blogspot.com/2010/11/jones-1-extreme-dim-pla...
Other 3D-formats:
I increased the contrast and brightend the colour a bit in the Flame and Horsehead nebulae and then blended it with the first attempt. I also cleaned up the sensor dust a tad and ran it through Neatimage for noise reduction. And rotated just for a different perspective.
Other 3D-formats:
astroanarchy.zenfolio.com/f359296072
Original 2D:
astroanarchy.blogspot.com/2011/01/cone-and-rosette-nebula...
Please View This LARGE On Black
The brilliant streaks of light on this shot are background lighting seen through a large silken banner that was hanging in the air. The motion caused by the cloth caught in a breeze caused the slight blurs making them look more like gas clouds in space.
I was surrounded by these beautifully bright and colourful banners one evening in front of Dilli Haat in New Delhi, India. It had been raining on and off and since there was also slight breeze, the cloth was not completely wet and caught the falling droplets of rain in a slanting fashion across it, which led to these beautiful streaks being caused by the light in the background shining through the wet parts. This image was shot in portrait view and I have rotated it to a landscape view to bring forth the feeling of brilliant gaseous clouds out in deep space where stars are born. As mentioned by Wikipedia - Diffuse nebulae are called so since they are extended and have no well-defined boundaries. In visible light these nebulae may be divided into 'emission nebulae' and 'reflection nebulae', a categorization that depends on how the light we see is created.
LDN (Lynds Dark Nebula) 1001, 1002 & 1003 are dark nebulae found in the constellation Cygnus about 7 degrees 56 minutes 39 seconds southwest of the bright star Deneb. Also located in this region are some Herbig-Haro objects, specifically HH380, HH381, & HH382. In addition to these jewels, we captured a hint of the Red Nebulous Object (RNO) 127.
Dark nebulae, also known as absorption nebulae, are dark cloud regions, composed of sub-micrometer dust particles coated with frozen carbon monoxide and nitrogen gases, that effectively block the passage of visible light that lie behind them. These nebulae are great stellar nurseries where new stars are born.
Herbig-Haro objects are small regions of nebulosity that are formed when narrow jets of gas are ejected by young stars collide with other nearby clouds of gas and dust at speeds of several hundred kilometers per second. These objects are often found around a single star and aligned with its rotational axis. Their lifespan is relatively short, lasting no more than a few thousand years. Herbig-Haro objects were first observed in the late 19th century, but not recognized until the 1940s when George Herbig and Guillermo Haro determined they were a byproduct of the star formation process.
Telescope: Stellarvue Raptor SVR105 Apo @ f/7
Accessories: Stellarvue SFF7-21 flattener; Dew control by Dew Buster; Alnitak Flat Man
Mount: Takahashi EM-200 Temma2
Camera: QSI683wsg-8 CCD @ -15C
Guiding: Starlight Xpress Lodestar via PHD
Filters: Astrodon E-Series Gen II LRGB filters
Exposure: Lum: 12 x 15min. binned 1x1 ; RGB: 16 x 5min. binned 2x2 each channel
Acquisition: ImagesPlus 5.0 Camera Control
Processing: PixInsight 1.8
Date(s): August 21-22, 2014 & August 13, 2015
SQM reading (begin - end): N1:21.20 – 21.32; N2:20.15 – clouds; N3:21.46 – 21.46
Temperature (begin - end): N1:72.9ºF – 69.1ºF; N2:74.3ºF – 69.6ºF; N3:66.0ºF – 62.6ºF
Capture conditions: TRANSPARENCY: N1 = Avg 3/5, N2 = Poor 2/5, N3 = Avg 3/5; SEEING: N1 = Above Avg 4/5, N2 = Above Avg 4/5, N3 = Avg 3/5
Location: Fall Creek Falls State Park, Pikeville, TN, USA
This image from NASAs Wide-field Infrared Survey Explorer, or WISE, highlights several star-forming regions. There are five distinct centers of star birth in this one image alone. Star-forming nebulae (called HII regions by astronomers) are clouds of gas and dust that have been heated up by nearby stars recently formed from the same cloud, and have appeared in previously featured WISE images.
The largest, brightest cloud, in the upper right is known as Gum 22. Its named after Colin Gum, an Australian astronomer who surveyed the southern hemisphere sky in the early 1950s looking for star-forming regions like these. He catalogued 85 new such regions, named Gum 1 to 85 (Gum Crater on the moon was also named in his honor).
Going counter-clockwise from Gum 22, the other catalogued nebulae in the image are Gum 23 (part of same cloud as 22), IRAS 09002-4732 (orange cloud near center), Bran 226 (upper cloud of the two at lower left), and finally Gum 25 at far lower left. There are also several smaller and/or more distant regions scattered throughout the image that have yet to be catalogued. Most of the regions are thought to be part of our local Orion spiral arm spur in the Milky Way Galaxy. Their distances range from about 4,000 to 10,000 light-years away.
Notice the very bright green star near the lower right portion of the image. You can tell its a star because it appears to have spikes sticking out of it (diffraction spikes like these are an optical effect caused by the structure of the telescope). Bright stars in WISE images are typically blue, so you know this one is special. Known as IRAS 08535-4724, its a unique type of stellar giant called a carbon star. Carbon stars are similar to red giants stars, which are much larger than the Sun, glow brightly in longer wavelengths, and are in the late stages of their lives. But they have unusually high amounts of carbon in their outer atmospheres. Astronomers think this carbon comes either from convection currents deep within a star's core, or from a nearby neighboring star, from which it is siphoned. Recent evidence suggests that a carbon star like this one will end its life in an extremely powerful explosion called a gamma-ray burst, briefly outshining the Sun a million trillion times.
The colors used in this image represent specific wavelengths of infrared light. Blue and cyan (blue-green) represent light emitted at wavelengths of 3.4 and 4.6 microns, which is predominantly from stars. Green and red represent light of 12 and 22 microns, respectively, which is mostly emitted by dust.
This photoshow video captures galaxies, nebulae and star clusters in different season.
#astrophotography #nebulae #galaxies #starclusters
Imaged from the Astronomical Society of Edinburgh's remote telescope facility in Trevinca, Spain.
Equipment:
Sharpstar 94 mm f/4.4 (with reducer) Triplet Apo Refractor
TS-Optics ToupTek Colour Astro Camera 2600CP
JTW mount
L Enhance filter
188 x 5 minute exposures (15 hours 40 minutes ).
imaged between the 29th of June and 8th of July 2025
25 Flats, 25 Dark Flats and 25 Darks
Processed with Pixinsight, Photoshop and Topaz De-noise
an HDR image of total 40 minutes (2 x 10min + 2 x 5min + 2 x 150sec + 2 x 75sec + 2 x 38sec + 2 x 18sec + 2 x 9sec + 3 x 4sec + 2 x 2sec + 2 x 1sec) exposure of Lagoon and Trifid nebulae in Sagittarius with IDAS-modified Canon EOS 5D-AP and Takahashi FSQ-106ED with reducer QE 0.73x on EM-200 temma 2 Jr. mount, PHD autoguided with TIS DMK21AF04 and custom designed off-axis guider at 11,000 feet above sea level on Mauna Loa, Hawaii 2007-08-10.
This is actually a running garden water fountain with a light in it that I have abstracted.
Molbak's Nursery, Woodinville, WA.
Nebulae - or "story of a survivor" :D
When I was still living with my parents I used to watch the night sky almost every night - I've seen quite some sunrise...LOL we lived near the sea, so in the summer it was nice to lay there and watch the stars and I always wondered what far galaxies would look like. So about 10 years or more ago I started to try and paint an imaginative Nebulae on self stretched canvas over wood - then I moved in with my soon to become husband (at his parents house...) an could not bring my artsy stuff with me.
"Nebulae" was left at my parents, then it disappeared. I've searched for it, it was no where to be found, they had not seen it - the Nebulae mystery!
Flash forward to 4 years ago when mom and dad moved up here and I helped them moving I found my "painting" nailed to the back of a closet - dad needed to fix that closet and he needed a wooden board so that's what he used...
*quoting* "...that's just a wooden board with some color on it a 'real painting' would be some pretty flowers or a seascape or something like that..."
I took it with me, but it was stained, the wood was curved and it was scratched...still I could not just throw it away....so it has spent the last 4 years in a corner behind my bird's cage. NOw the bird is gone...the "painting" is still here, it's a survivor! It's far from being a good painting, still I like the idea of it and finally got around to fix it and yesterday I was busy adding the final touches: gold foil and crackle paint and aging it, and some patina - oh what fun. It might not be the prettiest but it was fun! :) and yes, I'll hang it on my wall, it's a survivor, it deserves to be hung on a wall finally after all it's been thru!
Orion Nebulae
M42 + M43 + trapezium cluster
Canon 70D unmodded.
Astronomik CLS filter
Canon EF 400mm F5.6 L USM lens
Fornax 10 lightrack mount
iso 3200
50x 120 sec exposures
14 Dark frames 120 sec exposures
Just over 2 hours in total
This is the star Alnitak in Orion's Belt. On the top you can the the Flame Nebula (NGC 2024). Left of Alnitak is the reflection Nebula NGC 2023 and beneath that is the Horsehead Nebula (IC 434). Shot with an EOS 550D mounted to a Skywatcher 150/750 telescope. Exposure was around 16 minutes and 24 seconds with ISO 800.
Hubble's survey of planetary nebulae reveals surprisingly intricate, glowing patterns spun into space by aging stars: pinwheels, lawn sprinkler-style jets, elegant goblet shapes, and even some that look like a rocket engine's exhaust. These nebulae record the complex processes that happen in the final stages of a Sun-like star's evolution when it burns out and collapses to a white dwarf star. This is the Cat's Eye Nebula (NGC 6543), one of the first to be discovered. Credit: Hubble Heritage Team
Picture by NASA Goddard Photo and Video
LDN 10 and 12 are dark nebulae in Scorpius and Sagittarius respectively. Also in Scorpius seen here are LDN 1795 and 1798. There is also an open cluster at the bottom right called NGC 6451
Telescope - Skywatcher Esprit 100 ED Pro
Camera - ASI2600MC - Pro
Guiding - ASIAIR
Image Capture - ASIAIR
Mount - AM5
File - LDN 10 & 12 ShiftCol ABE BN PCC BlurExt NoiseExt SCNR Hist Curves Curves DSE.jpg
Filter - None
Exposure - 13 x 300s - 1 hour 5 mins total
Tenerife, Canary Islands
Date Taken - 18th September 2023
7,000ft above sea level
All processing in PixInsight
These are the Orion Nebula (Messier 42), the De Mairan's Nebula (Messier 43) and the Running Man Nebula (NGC 1977) in the constellation Orion. I used slightly different stacking settings and a different color balance to make the image look a little bit sharper and the colors a little bit less neony and to get the yellow-ish tint out. I also cropped it to a more monitor friendly aspect ratio. Shot with an EOS 550D mounted to a Skywatcher 150/750 telescope. Exposure was around 46 minutes and 45 seconds with ISO 800.
IR HDR. IR converted Canon Rebel XTi. AEB +/-2 total of 3 exposures processed with Photomatix. I shot over 200 pictures this day but at ISO 200 which left most shots too noisy to post. I was able to salvage this one.
High Dynamic Range (HDR)
High-dynamic-range imaging (HDRI) is a high dynamic range (HDR) technique used in imaging and photography to reproduce a greater dynamic range of luminosity than is possible with standard digital imaging or photographic techniques. The aim is to present a similar range of luminance to that experienced through the human visual system. The human eye, through adaptation of the iris and other methods, adjusts constantly to adapt to a broad range of luminance present in the environment. The brain continuously interprets this information so that a viewer can see in a wide range of light conditions.
HDR images can represent a greater range of luminance levels than can be achieved using more 'traditional' methods, such as many real-world scenes containing very bright, direct sunlight to extreme shade, or very faint nebulae. This is often achieved by capturing and then combining several different, narrower range, exposures of the same subject matter. Non-HDR cameras take photographs with a limited exposure range, referred to as LDR, resulting in the loss of detail in highlights or shadows.
The two primary types of HDR images are computer renderings and images resulting from merging multiple low-dynamic-range (LDR) or standard-dynamic-range (SDR) photographs. HDR images can also be acquired using special image sensors, such as an oversampled binary image sensor.
Due to the limitations of printing and display contrast, the extended luminosity range of an HDR image has to be compressed to be made visible. The method of rendering an HDR image to a standard monitor or printing device is called tone mapping. This method reduces the overall contrast of an HDR image to facilitate display on devices or printouts with lower dynamic range, and can be applied to produce images with preserved local contrast (or exaggerated for artistic effect).
In photography, dynamic range is measured in exposure value (EV) differences (known as stops). An increase of one EV, or 'one stop', represents a doubling of the amount of light. Conversely, a decrease of one EV represents a halving of the amount of light. Therefore, revealing detail in the darkest of shadows requires high exposures, while preserving detail in very bright situations requires very low exposures. Most cameras cannot provide this range of exposure values within a single exposure, due to their low dynamic range. High-dynamic-range photographs are generally achieved by capturing multiple standard-exposure images, often using exposure bracketing, and then later merging them into a single HDR image, usually within a photo manipulation program). Digital images are often encoded in a camera's raw image format, because 8-bit JPEG encoding does not offer a wide enough range of values to allow fine transitions (and regarding HDR, later introduces undesirable effects due to lossy compression).
Any camera that allows manual exposure control can make images for HDR work, although one equipped with auto exposure bracketing (AEB) is far better suited. Images from film cameras are less suitable as they often must first be digitized, so that they can later be processed using software HDR methods.
In most imaging devices, the degree of exposure to light applied to the active element (be it film or CCD) can be altered in one of two ways: by either increasing/decreasing the size of the aperture or by increasing/decreasing the time of each exposure. Exposure variation in an HDR set is only done by altering the exposure time and not the aperture size; this is because altering the aperture size also affects the depth of field and so the resultant multiple images would be quite different, preventing their final combination into a single HDR image.
An important limitation for HDR photography is that any movement between successive images will impede or prevent success in combining them afterwards. Also, as one must create several images (often three or five and sometimes more) to obtain the desired luminance range, such a full 'set' of images takes extra time. HDR photographers have developed calculation methods and techniques to partially overcome these problems, but the use of a sturdy tripod is, at least, advised.
Some cameras have an auto exposure bracketing (AEB) feature with a far greater dynamic range than others, from the 3 EV of the Canon EOS 40D, to the 18 EV of the Canon EOS-1D Mark II. As the popularity of this imaging method grows, several camera manufactures are now offering built-in HDR features. For example, the Pentax K-7 DSLR has an HDR mode that captures an HDR image and outputs (only) a tone mapped JPEG file. The Canon PowerShot G12, Canon PowerShot S95 and Canon PowerShot S100 offer similar features in a smaller format.. Nikon's approach is called 'Active D-Lighting' which applies exposure compensation and tone mapping to the image as it comes from the sensor, with the accent being on retaing a realistic effect . Some smartphones provide HDR modes, and most mobile platforms have apps that provide HDR picture taking.
Camera characteristics such as gamma curves, sensor resolution, noise, photometric calibration and color calibration affect resulting high-dynamic-range images.
Color film negatives and slides consist of multiple film layers that respond to light differently. As a consequence, transparent originals (especially positive slides) feature a very high dynamic range
Tone mapping
Tone mapping reduces the dynamic range, or contrast ratio, of an entire image while retaining localized contrast. Although it is a distinct operation, tone mapping is often applied to HDRI files by the same software package.
Several software applications are available on the PC, Mac and Linux platforms for producing HDR files and tone mapped images. Notable titles include
Adobe Photoshop
Aurora HDR
Dynamic Photo HDR
HDR Efex Pro
HDR PhotoStudio
Luminance HDR
MagicRaw
Oloneo PhotoEngine
Photomatix Pro
PTGui
Information stored in high-dynamic-range images typically corresponds to the physical values of luminance or radiance that can be observed in the real world. This is different from traditional digital images, which represent colors as they should appear on a monitor or a paper print. Therefore, HDR image formats are often called scene-referred, in contrast to traditional digital images, which are device-referred or output-referred. Furthermore, traditional images are usually encoded for the human visual system (maximizing the visual information stored in the fixed number of bits), which is usually called gamma encoding or gamma correction. The values stored for HDR images are often gamma compressed (power law) or logarithmically encoded, or floating-point linear values, since fixed-point linear encodings are increasingly inefficient over higher dynamic ranges.
HDR images often don't use fixed ranges per color channel—other than traditional images—to represent many more colors over a much wider dynamic range. For that purpose, they don't use integer values to represent the single color channels (e.g., 0-255 in an 8 bit per pixel interval for red, green and blue) but instead use a floating point representation. Common are 16-bit (half precision) or 32-bit floating point numbers to represent HDR pixels. However, when the appropriate transfer function is used, HDR pixels for some applications can be represented with a color depth that has as few as 10–12 bits for luminance and 8 bits for chrominance without introducing any visible quantization artifacts.
History of HDR photography
The idea of using several exposures to adequately reproduce a too-extreme range of luminance was pioneered as early as the 1850s by Gustave Le Gray to render seascapes showing both the sky and the sea. Such rendering was impossible at the time using standard methods, as the luminosity range was too extreme. Le Gray used one negative for the sky, and another one with a longer exposure for the sea, and combined the two into one picture in positive.
Mid 20th century
Manual tone mapping was accomplished by dodging and burning – selectively increasing or decreasing the exposure of regions of the photograph to yield better tonality reproduction. This was effective because the dynamic range of the negative is significantly higher than would be available on the finished positive paper print when that is exposed via the negative in a uniform manner. An excellent example is the photograph Schweitzer at the Lamp by W. Eugene Smith, from his 1954 photo essay A Man of Mercy on Dr. Albert Schweitzer and his humanitarian work in French Equatorial Africa. The image took 5 days to reproduce the tonal range of the scene, which ranges from a bright lamp (relative to the scene) to a dark shadow.
Ansel Adams elevated dodging and burning to an art form. Many of his famous prints were manipulated in the darkroom with these two methods. Adams wrote a comprehensive book on producing prints called The Print, which prominently features dodging and burning, in the context of his Zone System.
With the advent of color photography, tone mapping in the darkroom was no longer possible due to the specific timing needed during the developing process of color film. Photographers looked to film manufacturers to design new film stocks with improved response, or continued to shoot in black and white to use tone mapping methods.
Color film capable of directly recording high-dynamic-range images was developed by Charles Wyckoff and EG&G "in the course of a contract with the Department of the Air Force". This XR film had three emulsion layers, an upper layer having an ASA speed rating of 400, a middle layer with an intermediate rating, and a lower layer with an ASA rating of 0.004. The film was processed in a manner similar to color films, and each layer produced a different color. The dynamic range of this extended range film has been estimated as 1:108. It has been used to photograph nuclear explosions, for astronomical photography, for spectrographic research, and for medical imaging. Wyckoff's detailed pictures of nuclear explosions appeared on the cover of Life magazine in the mid-1950s.
Late 20th century
Georges Cornuéjols and licensees of his patents (Brdi, Hymatom) introduced the principle of HDR video image, in 1986, by interposing a matricial LCD screen in front of the camera's image sensor, increasing the sensors dynamic by five stops. The concept of neighborhood tone mapping was applied to video cameras by a group from the Technion in Israel led by Dr. Oliver Hilsenrath and Prof. Y.Y.Zeevi who filed for a patent on this concept in 1988.
In February and April 1990, Georges Cornuéjols introduced the first real-time HDR camera that combined two images captured by a sensor3435 or simultaneously3637 by two sensors of the camera. This process is known as bracketing used for a video stream.
In 1991, the first commercial video camera was introduced that performed real-time capturing of multiple images with different exposures, and producing an HDR video image, by Hymatom, licensee of Georges Cornuéjols.
Also in 1991, Georges Cornuéjols introduced the HDR+ image principle by non-linear accumulation of images to increase the sensitivity of the camera: for low-light environments, several successive images are accumulated, thus increasing the signal to noise ratio.
In 1993, another commercial medical camera producing an HDR video image, by the Technion.
Modern HDR imaging uses a completely different approach, based on making a high-dynamic-range luminance or light map using only global image operations (across the entire image), and then tone mapping the result. Global HDR was first introduced in 19931 resulting in a mathematical theory of differently exposed pictures of the same subject matter that was published in 1995 by Steve Mann and Rosalind Picard.
On October 28, 1998, Ben Sarao created one of the first nighttime HDR+G (High Dynamic Range + Graphic image)of STS-95 on the launch pad at NASA's Kennedy Space Center. It consisted of four film images of the shuttle at night that were digitally composited with additional digital graphic elements. The image was first exhibited at NASA Headquarters Great Hall, Washington DC in 1999 and then published in Hasselblad Forum, Issue 3 1993, Volume 35 ISSN 0282-5449.
The advent of consumer digital cameras produced a new demand for HDR imaging to improve the light response of digital camera sensors, which had a much smaller dynamic range than film. Steve Mann developed and patented the global-HDR method for producing digital images having extended dynamic range at the MIT Media Laboratory. Mann's method involved a two-step procedure: (1) generate one floating point image array by global-only image operations (operations that affect all pixels identically, without regard to their local neighborhoods); and then (2) convert this image array, using local neighborhood processing (tone-remapping, etc.), into an HDR image. The image array generated by the first step of Mann's process is called a lightspace image, lightspace picture, or radiance map. Another benefit of global-HDR imaging is that it provides access to the intermediate light or radiance map, which has been used for computer vision, and other image processing operations.
21st century
In 2005, Adobe Systems introduced several new features in Photoshop CS2 including Merge to HDR, 32 bit floating point image support, and HDR tone mapping.
On June 30, 2016, Microsoft added support for the digital compositing of HDR images to Windows 10 using the Universal Windows Platform.
HDR sensors
Modern CMOS image sensors can often capture a high dynamic range from a single exposure. The wide dynamic range of the captured image is non-linearly compressed into a smaller dynamic range electronic representation. However, with proper processing, the information from a single exposure can be used to create an HDR image.
Such HDR imaging is used in extreme dynamic range applications like welding or automotive work. Some other cameras designed for use in security applications can automatically provide two or more images for each frame, with changing exposure. For example, a sensor for 30fps video will give out 60fps with the odd frames at a short exposure time and the even frames at a longer exposure time. Some of the sensor may even combine the two images on-chip so that a wider dynamic range without in-pixel compression is directly available to the user for display or processing.
en.wikipedia.org/wiki/High-dynamic-range_imaging
Infrared Photography
In infrared photography, the film or image sensor used is sensitive to infrared light. The part of the spectrum used is referred to as near-infrared to distinguish it from far-infrared, which is the domain of thermal imaging. Wavelengths used for photography range from about 700 nm to about 900 nm. Film is usually sensitive to visible light too, so an infrared-passing filter is used; this lets infrared (IR) light pass through to the camera, but blocks all or most of the visible light spectrum (the filter thus looks black or deep red). ("Infrared filter" may refer either to this type of filter or to one that blocks infrared but passes other wavelengths.)
When these filters are used together with infrared-sensitive film or sensors, "in-camera effects" can be obtained; false-color or black-and-white images with a dreamlike or sometimes lurid appearance known as the "Wood Effect," an effect mainly caused by foliage (such as tree leaves and grass) strongly reflecting in the same way visible light is reflected from snow. There is a small contribution from chlorophyll fluorescence, but this is marginal and is not the real cause of the brightness seen in infrared photographs. The effect is named after the infrared photography pioneer Robert W. Wood, and not after the material wood, which does not strongly reflect infrared.
The other attributes of infrared photographs include very dark skies and penetration of atmospheric haze, caused by reduced Rayleigh scattering and Mie scattering, respectively, compared to visible light. The dark skies, in turn, result in less infrared light in shadows and dark reflections of those skies from water, and clouds will stand out strongly. These wavelengths also penetrate a few millimeters into skin and give a milky look to portraits, although eyes often look black.
Until the early 20th century, infrared photography was not possible because silver halide emulsions are not sensitive to longer wavelengths than that of blue light (and to a lesser extent, green light) without the addition of a dye to act as a color sensitizer. The first infrared photographs (as distinct from spectrographs) to be published appeared in the February 1910 edition of The Century Magazine and in the October 1910 edition of the Royal Photographic Society Journal to illustrate papers by Robert W. Wood, who discovered the unusual effects that now bear his name. The RPS co-ordinated events to celebrate the centenary of this event in 2010. Wood's photographs were taken on experimental film that required very long exposures; thus, most of his work focused on landscapes. A further set of infrared landscapes taken by Wood in Italy in 1911 used plates provided for him by CEK Mees at Wratten & Wainwright. Mees also took a few infrared photographs in Portugal in 1910, which are now in the Kodak archives.
Infrared-sensitive photographic plates were developed in the United States during World War I for spectroscopic analysis, and infrared sensitizing dyes were investigated for improved haze penetration in aerial photography. After 1930, new emulsions from Kodak and other manufacturers became useful to infrared astronomy.
Infrared photography became popular with photography enthusiasts in the 1930s when suitable film was introduced commercially. The Times regularly published landscape and aerial photographs taken by their staff photographers using Ilford infrared film. By 1937 33 kinds of infrared film were available from five manufacturers including Agfa, Kodak and Ilford. Infrared movie film was also available and was used to create day-for-night effects in motion pictures, a notable example being the pseudo-night aerial sequences in the James Cagney/Bette Davis movie The Bride Came COD.
False-color infrared photography became widely practiced with the introduction of Kodak Ektachrome Infrared Aero Film and Ektachrome Infrared EIR. The first version of this, known as Kodacolor Aero-Reversal-Film, was developed by Clark and others at the Kodak for camouflage detection in the 1940s. The film became more widely available in 35mm form in the 1960s but KODAK AEROCHROME III Infrared Film 1443 has been discontinued.
Infrared photography became popular with a number of 1960s recording artists, because of the unusual results; Jimi Hendrix, Donovan, Frank and a slow shutter speed without focus compensation, however wider apertures like f/2.0 can produce sharp photos only if the lens is meticulously refocused to the infrared index mark, and only if this index mark is the correct one for the filter and film in use. However, it should be noted that diffraction effects inside a camera are greater at infrared wavelengths so that stopping down the lens too far may actually reduce sharpness.
Most apochromatic ('APO') lenses do not have an Infrared index mark and do not need to be refocused for the infrared spectrum because they are already optically corrected into the near-infrared spectrum. Catadioptric lenses do not often require this adjustment because their mirror containing elements do not suffer from chromatic aberration and so the overall aberration is comparably less. Catadioptric lenses do, of course, still contain lenses, and these lenses do still have a dispersive property.
Infrared black-and-white films require special development times but development is usually achieved with standard black-and-white film developers and chemicals (like D-76). Kodak HIE film has a polyester film base that is very stable but extremely easy to scratch, therefore special care must be used in the handling of Kodak HIE throughout the development and printing/scanning process to avoid damage to the film. The Kodak HIE film was sensitive to 900 nm.
As of November 2, 2007, "KODAK is preannouncing the discontinuance" of HIE Infrared 35 mm film stating the reasons that, "Demand for these products has been declining significantly in recent years, and it is no longer practical to continue to manufacture given the low volume, the age of the product formulations and the complexity of the processes involved." At the time of this notice, HIE Infrared 135-36 was available at a street price of around $12.00 a roll at US mail order outlets.
Arguably the greatest obstacle to infrared film photography has been the increasing difficulty of obtaining infrared-sensitive film. However, despite the discontinuance of HIE, other newer infrared sensitive emulsions from EFKE, ROLLEI, and ILFORD are still available, but these formulations have differing sensitivity and specifications from the venerable KODAK HIE that has been around for at least two decades. Some of these infrared films are available in 120 and larger formats as well as 35 mm, which adds flexibility to their application. With the discontinuance of Kodak HIE, Efke's IR820 film has become the only IR film on the marketneeds update with good sensitivity beyond 750 nm, the Rollei film does extend beyond 750 nm but IR sensitivity falls off very rapidly.
Color infrared transparency films have three sensitized layers that, because of the way the dyes are coupled to these layers, reproduce infrared as red, red as green, and green as blue. All three layers are sensitive to blue so the film must be used with a yellow filter, since this will block blue light but allow the remaining colors to reach the film. The health of foliage can be determined from the relative strengths of green and infrared light reflected; this shows in color infrared as a shift from red (healthy) towards magenta (unhealthy). Early color infrared films were developed in the older E-4 process, but Kodak later manufactured a color transparency film that could be developed in standard E-6 chemistry, although more accurate results were obtained by developing using the AR-5 process. In general, color infrared does not need to be refocused to the infrared index mark on the lens.
In 2007 Kodak announced that production of the 35 mm version of their color infrared film (Ektachrome Professional Infrared/EIR) would cease as there was insufficient demand. Since 2011, all formats of color infrared film have been discontinued. Specifically, Aerochrome 1443 and SO-734.
There is no currently available digital camera that will produce the same results as Kodak color infrared film although the equivalent images can be produced by taking two exposures, one infrared and the other full-color, and combining in post-production. The color images produced by digital still cameras using infrared-pass filters are not equivalent to those produced on color infrared film. The colors result from varying amounts of infrared passing through the color filters on the photo sites, further amended by the Bayer filtering. While this makes such images unsuitable for the kind of applications for which the film was used, such as remote sensing of plant health, the resulting color tonality has proved popular artistically.
Color digital infrared, as part of full spectrum photography is gaining popularity. The ease of creating a softly colored photo with infrared characteristics has found interest among hobbyists and professionals.
In 2008, Los Angeles photographer, Dean Bennici started cutting and hand rolling Aerochrome color Infrared film. All Aerochrome medium and large format which exists today came directly from his lab. The trend in infrared photography continues to gain momentum with the success of photographer Richard Mosse and multiple users all around the world.
Digital camera sensors are inherently sensitive to infrared light, which would interfere with the normal photography by confusing the autofocus calculations or softening the image (because infrared light is focused differently from visible light), or oversaturating the red channel. Also, some clothing is transparent in the infrared, leading to unintended (at least to the manufacturer) uses of video cameras. Thus, to improve image quality and protect privacy, many digital cameras employ infrared blockers. Depending on the subject matter, infrared photography may not be practical with these cameras because the exposure times become overly long, often in the range of 30 seconds, creating noise and motion blur in the final image. However, for some subject matter the long exposure does not matter or the motion blur effects actually add to the image. Some lenses will also show a 'hot spot' in the centre of the image as their coatings are optimised for visible light and not for IR.
An alternative method of DSLR infrared photography is to remove the infrared blocker in front of the sensor and replace it with a filter that removes visible light. This filter is behind the mirror, so the camera can be used normally - handheld, normal shutter speeds, normal composition through the viewfinder, and focus, all work like a normal camera. Metering works but is not always accurate because of the difference between visible and infrared refraction. When the IR blocker is removed, many lenses which did display a hotspot cease to do so, and become perfectly usable for infrared photography. Additionally, because the red, green and blue micro-filters remain and have transmissions not only in their respective color but also in the infrared, enhanced infrared color may be recorded.
Since the Bayer filters in most digital cameras absorb a significant fraction of the infrared light, these cameras are sometimes not very sensitive as infrared cameras and can sometimes produce false colors in the images. An alternative approach is to use a Foveon X3 sensor, which does not have absorptive filters on it; the Sigma SD10 DSLR has a removable IR blocking filter and dust protector, which can be simply omitted or replaced by a deep red or complete visible light blocking filter. The Sigma SD14 has an IR/UV blocking filter that can be removed/installed without tools. The result is a very sensitive digital IR camera.
While it is common to use a filter that blocks almost all visible light, the wavelength sensitivity of a digital camera without internal infrared blocking is such that a variety of artistic results can be obtained with more conventional filtration. For example, a very dark neutral density filter can be used (such as the Hoya ND400) which passes a very small amount of visible light compared to the near-infrared it allows through. Wider filtration permits an SLR viewfinder to be used and also passes more varied color information to the sensor without necessarily reducing the Wood effect. Wider filtration is however likely to reduce other infrared artefacts such as haze penetration and darkened skies. This technique mirrors the methods used by infrared film photographers where black-and-white infrared film was often used with a deep red filter rather than a visually opaque one.
Another common technique with near-infrared filters is to swap blue and red channels in software (e.g. photoshop) which retains much of the characteristic 'white foliage' while rendering skies a glorious blue.
Several Sony cameras had the so-called Night Shot facility, which physically moves the blocking filter away from the light path, which makes the cameras very sensitive to infrared light. Soon after its development, this facility was 'restricted' by Sony to make it difficult for people to take photos that saw through clothing. To do this the iris is opened fully and exposure duration is limited to long times of more than 1/30 second or so. It is possible to shoot infrared but neutral density filters must be used to reduce the camera's sensitivity and the long exposure times mean that care must be taken to avoid camera-shake artifacts.
Fuji have produced digital cameras for use in forensic criminology and medicine which have no infrared blocking filter. The first camera, designated the S3 PRO UVIR, also had extended ultraviolet sensitivity (digital sensors are usually less sensitive to UV than to IR). Optimum UV sensitivity requires special lenses, but ordinary lenses usually work well for IR. In 2007, FujiFilm introduced a new version of this camera, based on the Nikon D200/ FujiFilm S5 called the IS Pro, also able to take Nikon lenses. Fuji had earlier introduced a non-SLR infrared camera, the IS-1, a modified version of the FujiFilm FinePix S9100. Unlike the S3 PRO UVIR, the IS-1 does not offer UV sensitivity. FujiFilm restricts the sale of these cameras to professional users with their EULA specifically prohibiting "unethical photographic conduct".
Phase One digital camera backs can be ordered in an infrared modified form.
Remote sensing and thermographic cameras are sensitive to longer wavelengths of infrared (see Infrared spectrum#Commonly used sub-division scheme). They may be multispectral and use a variety of technologies which may not resemble common camera or filter designs. Cameras sensitive to longer infrared wavelengths including those used in infrared astronomy often require cooling to reduce thermally induced dark currents in the sensor (see Dark current (physics)). Lower cost uncooled thermographic digital cameras operate in the Long Wave infrared band (see Thermographic camera#Uncooled infrared detectors). These cameras are generally used for building inspection or preventative maintenance but can be used for artistic pursuits as well.
"There are those who believe that life here began out there, far across the universe, with tribes of humans who may have been the forefathers of the Egyptians, or the Toltecs, or the Mayans. Some believe that there may yet be brothers of man who even now fight to survive somewhere beyond the heavens." - Battlestar Galactica Intro (1978)
Lagoon and Trifid nebulae in monochrome. The 8th and 20th objects to be catalogued by Messier, these are familiar sights in the core are of the Milky Way.
M8 also is home to cluster NGC6530, which is the source of its dreamy glow. M20 is a fascinating mix of an emission nebula, a reflection nebula, a dark nebula and an open star cluster, which gives it the distinct multicolour and 'trifid' appearance.
FS60CB, EM200 and ASI094. Singapore, March 2018.
Edited Hubble Space Telescope image of a region rich with nebulae in the Large Magellanic Cloud.
Original caption: This shot from the NASA/ESA Hubble Space Telescope shows a maelstrom of glowing gas and dark dust within one of the Milky Way’s satellite galaxies, the Large Magellanic Cloud (LMC). This stormy scene shows a stellar nursery known as N159, an HII region over 150 light-years across. N159 contains many hot young stars. These stars are emitting intense ultraviolet light, which causes nearby hydrogen gas to glow, and torrential stellar winds, which are carving out ridges, arcs, and filaments from the surrounding material. At the heart of this cosmic cloud lies the Papillon Nebula, a butterfly-shaped region of nebulosity. This small, dense object is classified as a High-Excitation Blob, and is thought to be tightly linked to the early stages of massive star formation. N159 is located over 160 000 light-years away. It resides just south of the Tarantula Nebula (heic1402), another massive star-forming complex within the LMC. It was previously imaged by Hubble’s Wide Field Planetary Camera 2, which also resolved the Papillon Nebula for the first time.
Edited Digitized Sky Survey 2 ground-based image of part of the Large Magellanic Cloud showing the context for the Hubble Space Telescope image of NTC 2014 and NGC 2020. Image by way of the European Space Agency.
This wide-field view captures the pair of nebulae NGC 2014 and NGC 2020 in the constellation of Dorado (The Swordfish). These two glowing clouds of gas, in the centre of the frame, are located in the Large Magellanic Cloud, one of the Milky Way's satellite galaxies. Both are sculpted by powerful winds from hot young stars. This view was created from images forming part of the Digitized Sky Survey 2.
Sky-Watcher Star Adventurer + Sky-Watcher Evostar 72ED + field flattener + Nikon D610 (ISO200, 21s & 120s, cccd for the shooting app). Guided using Astro Essentials guider scope (32mm f/4) and modded webcam (lin_guider for the guiding app). Pre-processed with darks and flats using Siril. Initial post-processing also in Siril. Enfused the stacks to obtain HDR. Further post-proc done in RawTherapee. Cleanup with starfixer
an HDR image of total 40 minutes (2 x 10min + 2 x 5min + 2 x 150sec + 2 x 75sec + 2 x 38sec + 2 x 18sec + 2 x 9sec + 3 x 4sec + 2 x 2sec + 2 x 1sec) exposure of Lagoon and Trifid nebulae in Sagittarius with IDAS-modified Canon EOS 5D-AP and Takahashi FSQ-106ED with reducer QE 0.73x on EM-200 temma 2 Jr. mount, PHD autoguided with TIS DMK21AF04 and custom designed off-axis guider at 11,000 feet above sea level on Mauna Loa, Hawaii 2007-08-10.
Object: Emission nebulae
Constellation: Cygnus
Distance: 2200 ly
Magnitude (visual): 4 (diffuse, low surface brightness)
AstroTech AT65EDQ quadruplet apochromatic refractor
Canon 350D, modified
Unbinned, ISO 1600, Ha filter
15X10m
Processed in DSS and Nebulosity
Date: 4/30/11
First night with AT65 after repair! I originally wanted this scope for wide-field but was unable to buy it online so I bought the Meade 80mm. This scope was available at NEAF so I bought it and subsequently sold the Meade. There was a problem with pinched stars that was easily fixed by loosening the objective ring. With the built-in flattener element the stars are round out to the corners of the field - this is the entire sensor field, covering an area of 2X3 degrees (roughly 24 full moons could fit in this field). Other than some filter reflections on the brightest stars and a satellite trail (which I left in the image on purpose) this is a pretty good image of a difficult object. The AT is piggybacked on the SCT and since the resolution is about 3"/pixel small guiding errors are not visible, so it is possible to take long subs, which is necessary when using a narrowband filter.
Many bright nebulae and star clusters in planet Earth's sky are associated with the name of astronomer Charles Messier, from his famous 18th century catalog. His name is also given to these two large and remarkable craters on the Moon. Standouts in the dark, smooth lunar Sea of Fertility or Mare Fecunditatis, Messier (left) and Messier A have dimensions of 15 by 8 and 16 by 11 kilometers respectively. Their elongated shapes are explained by a left-to-right moving, extremely shallow-angle trajectory followed by an impactor that gouged out the craters. The shallow impact also resulted in two bright rays of material extending along the surface to the right, beyond the picture. Intended to be viewed with red/blue glasses (red for the left eye), this striking stereo picture of the crater pair was recently created from high resolution scans of two images (AS11-42-6304, AS11-42-6305) taken during the Apollo 11 mission to the moon. via NASA ift.tt/2jBSk78
an HDR image of total 40 minutes (2 x 10min + 2 x 5min + 2 x 150sec + 2 x 75sec + 2 x 38sec + 2 x 18sec + 2 x 9sec + 3 x 4sec + 2 x 2sec + 2 x 1sec) exposure of Lagoon and Trifid nebulae in Sagittarius with IDAS-modified Canon EOS 5D-AP and Takahashi FSQ-106ED with reducer QE 0.73x on EM-200 temma 2 Jr. mount, PHD autoguided with TIS DMK21AF04 and custom designed off-axis guider at 11,000 feet above sea level on Mauna Loa, Hawaii 2007-08-10.
The Little Dumbbell Nebula (also known as Messier 76, NGC 650/651, the Barbell Nebula, or the Cork Nebula) is a planetary nebula in the constellation Perseus. It was discovered by Pierre Méchain in 1780 and included in Charles Messier's catalog of comet-like objects as number 76. It was recognized as a planetary nebula in 1918 by the astronomer Heber Doust Curtis.
M76's distance is not well known, with estimates ranging from 1,700 to 15,000 light years, and consequently its dimensions are also not well known. The nebula shines at an apparent magnitude of +10.1 with a central star of magnitude +16.6. This star, whose expanding outer layers form the present nebula, has a surface temperature of 60,000 kelvins.
The Little Dumbbell Nebula got its name from its resemblance to the Dumbbell Nebula (M27) in Vulpecula. It was originally thought to consist of two separate nebulae and was thus given two catalog numbers in the NGC, 650 and 651. It is one of the faintest and hardest to see objects in Messier's list.
description source wikipedia
From left to right, the Flame, Horsehead, Running Man, and Orion nebulae, the star attractions of the Orion molecular cloud complex. Canon 7Dii, EF 200 f/2.8L, stack of 40 x 1 minute tracked exposures, ISO 400, f/2.8.
A nebula (from Latin: "cloud" ; pl. nebulae or nebulæ, with ligature or nebulas) is an interstellar cloud of dust, hydrogen gas, helium gas and plasma.
"The Flame Nebula, designated as NGC 2024, is in the Constellation Orion. It is about 900 to 1,500 light-years away.
The bright star Alnitak (ζ Ori), the easternmost star in the Belt of Orion, shines energetic ultraviolet light into the Flame and this knocks electrons away from the great clouds of hydrogen gas that reside there. Much of the glow results when the electrons and ionized hydrogen recombine. Additional dark gas and dust lies in front of the bright part of the nebula and this is what causes the dark network that appears in the center of the glowing gas."
The Pelican Nebula lies at a distance of 1,800 light years and has a visual magnitude of 8.0. It occupies an area of 60′ x 50′ and is separated from the considerably larger North America Nebula by a dark molecular cloud. The two nebulae are parts of the same interstellar cloud of ionized hydrogen.
Objects: North America and Pelican Nebulae (NGC 7000, IC 5070)
Location: Bergamo, Italy
Light pollution: Bortle 5
Acquisition date: 07/23/2023
Camera: ZWO ASI533MC Pro (Gain 200, Offset 60, -10°C, Bin 1x1)
Filter: Optolong L-eNhance
Lens: Samyang 135mm f/2.0 UMC
Star Tracker: Sky Watcher Star Adventurer
Light: 180" * 43 (2h 9m)
Dark: 180" * 10
Flat: 4.14" * 40
Dark flat: 4.14" * 20
Softwares: NINA, PixInsight
Astrobin: www.astrobin.com/948wmd/
The Asterisk: asterisk.apod.com/viewtopic.php?p=332478#p332478
040516 C600D IDAS 36min ISO3200 Varages Fr.
Most spectacular region of the Milky Way in Sagittarius. The 2 nebulae with different sizes, aspects and colours.
I always come back to this area. Technically not the best this time, need to foresee more time.
In the Middle of Central Park, New York City.
Handeheld, No Flash, Non-HDR, Minor PS Tone Curves and Sharpening.
Original 2D-image with the technical details:
astroanarchy.blogspot.com/2010/11/sh2-188-project-finaliz...
Other 3D-formats:
The attached shows a dense section of the summer Milky Way in the constellation of Sagittarius which contains, among other objects, the Lagoon, Trifid & IC 4685 nebulae (at bottom right, upper right and lower left respectively).
Object Details: While the upper bluish part of the smaller Trifid Nebula is dust reflecting the light of stars, and so is aptly known as a reflection nebula; the largest objects in this image, including the lower bright portions of the Trifid, are giant star forming regions known as emission nebulae, composed mainly of hydrogen, much of it is ionized (heated / energized) by radiation from nearby and imbedded stars.
The Lagoon Nebula (a.k.a Messier 8 / NGC 6530) is a massive star-forming region located between 4000 and 5000 light-years from Earth and spanning a region of space 110 by 50 light-years in size. The nebula's glow is due to the extremely hot O & B type stars which make up the scattered open star cluster (i.e. NGC 6530). Having formed from the material of M8, at a 'mere' 2 million years old the cluster is very young (relatively speaking) and has carved out a cavity in this enormous cloud of interstellar dust and gas. The Lagoon can be found just above the spout of the Teapot asterism in Sagittarius and has a visual magnitude of 6 and apparent dimensions of 90 by 40 arc-minutes (i.e. three by one and one-third full moons in apparent width by height), as such it is visible to the naked-eye as a small oval patch of light in reasonably dark skies. Although not rising very high above the horizon from mid-northern latitudes, it is a wonderful object for binoculars and small telescopes. Getting it's name from a 'lagoon-shaped' dusk lane which runs through the center of the nebula, when viewed through a larger instrument from a dark location the interplay of it's hot, bright stars, interstellar dust clouds, and light & dark nebulae can be truly mesmerizing!
The Trifid Nebula (a.k.a. Messier 20 / NGC 6514), is a combination of an emission nebula (bottom), a reflection nebula (top), a dark nebula (trisecting the emission nebula and cataloged as Barnard 85) and an open star cluster. Approximately the same distance from Earth as the Lagoon, M20 spans over 40 light-years in diameter. Extremely young (relatively speaking); at a mere 300,000 years old it is believed to be one of the youngest emission nebulae known. Glowing at magnitude 6.3 with an apparent diameter of 28 arc-minutes (e.g. approximately the size of the full moon), it is visible in binoculars and lies just two degrees from the larger and brighter Lagoon Nebula.
IC 4685 is often overshadowed by it's more prominent neighbors, M8 & M20, and as such it is rarely imaged by itself and more frequently as part of a shot including the Lagoon. This area consists of several individual objects of various types: the top-left 'bulbous-shaped' region, being an emission nebula, is catalogued as IC 1275; the center section (IC 4685 itself, also an emission nebula) is somewhat bisected by a dark nebula, appearing like a sinuous, meandering 'river' running from upper-right to lower-left, it is a cloud of dark obscuring interstellar gas and dust known as Barnard 303; while the brighter 'bow-shaped' portion at the river's lower-left end, emission nebula NGC 6559, has to it's immediate lower left is a somewhat roundish reflection nebula.
Within all these emission nebulae can also be found many smaller, dark objects known as 'Bok globules' - dense clouds of interstellar gas and dust under contraction that can lead to the formation of new stars and planetary systems.
Imaged Details: Taken by Jay Edwards on June 19, 2023 from the scope field of Cherry Springs State Park in PA during CSSP's 2023 summer star party. The image utilized an Orion ED80T CF (i.e. an 80mm, f/6 carbon-fiber, triplet apochromatic refractor) connected to a Televue 0.8x field flattener / focal reducer with an IDAS dual narrowband Hydrogen-alpha / Oxygen III filter and an ASI2600MC Pro camera running at -10 degrees centigrade and controlled by an ASIair running on an IPad Air. Guided by an ASI290MC autoguider / planetary camera in an Orion 60mm, f/4 guidescope; they ride on a Losmandy G-11 mount running a Gemini 2 control system.
This is one of two Losmandy G-11's in my observatory and it was the first time this G-11 mount was away from the observatory I built at my home here in upstate, NY in the past 20 or so years. Since I have two G-11's I am leaving the newer one in my observatory while using this one as a new portable / transportable system for on-the-road events like this summer's CSSP.
Given that I was simply testing out this new imaging rig that weekend, although due to the large brightness difference between the inner portions of the Lagoon Nebula and the fainter nebulosity in the image I would normally use an HDR approach varying the exposure, the data for the attached is a relatively short stack of twenty-one exposures all 3 minutes in length (i.e. 'lights'); so the image only contains a total of 63 minutes of integration time (excluding darks, flats and flat-darks) and was processed in a blend of HOO, SHO & Foraxx palettes using a combination PixInsight and PaintShopPro. As shown here the entire composite has been re-sized down to HD resolution and the bit depth lowered to 8 bits per channel.
A rendering of this data in just an HOO palette (H-alpha assigned to the red channel and OIII to both the green and blue) can be found at the link attached here:
www.flickr.com/photos/homcavobservatory/53012789409/
Having also purchased an IDAS Oxygen III / Sulfur II dual band filter later in the summer, I'm looking forward to trying these types of alternate palettes on some objects I captured the H-a, OIII, and SII data for when I was back at cherry springs state park for the Black Forest Star party in September.
Wishing a Happy Thanksgiving to all who celebrate !