View allAll Photos Tagged MaxPlanck
Zephyr Filter
Retopology:
This filter allows you to optimize the mesh topology. Triangles will be simplified and Zephyr will try to generate larger triangles where possible. The greater the optimization factor, the larger the size of the generated triangles
■
Building area
Max Planck
intelligent Systems
Cyber-valley.de
Observatorio Astronómico Hispano-Alemán de Calar Alto en Almería. Visita de observación con el Aula de Astronomía de la Universidad de Almería.
Professor Max Planck first derived the spectral distribution as a function of wavelength that the describes the number of photons that carry off the emitted energy at all wavelengths. The peak of this distribution is a function of the temperature of the emitting source. The fact that a given region of the flame is blue means the temperature in those regions is higher than in the regions emitting orange and red light photons.
Light itself is an electromagnetic phenomenon, as discovered by James Clerk Maxwell.
As discovered by James Clerk Maxwell, light is an electromagnetic phenomenon. Maxwell's equations describe the propagation of electromagnetic energy at the speed of light.
Maxwell's equations are a set of partial differential equations that, together with the Lorentz force law, form the foundation of classical electrodynamics, classical optics, and electric circuits. These areas of physics are the basis for all electric, optical and radio technologies like power generation, electric motors, wireless communication, cameras, televisions, computers etc. Maxwell's equations describe how electric and magnetic fields are generated by charges, currents and changes of each other. One important consequence of the equations is that fluctuating electric and magnetic fields can propagate at the speed of light, and this electromagnetic radiation manifests itself in manifold ways from radio waves to light and X- or γ-rays. The equations are named after the physicist and mathematician James Clerk Maxwell, who published an early form of the equations between 1861 and 1862, and first proposed that light is an electromagnetic phenomenon.
IMG_9939 - Version 3
IMG_9939 - Version 2
Tags:
Uncomplicated
Memorial
Candle
Blue
Hot
Part
Flame
Simple
Elegant
Is
"Deeply Relaxing"
Soothing
Beautiful
Yartzeit
Mother
"Mom's Yartzeit"
"Memorial Candle"
"All Day All Night"
Pure
Heavenly
"White Light"
Composition
"Planck's Law"
"Max Planck"
"Planck Distribution"
Radiation
Photons
Rainbow
"Isaac Newton"
Prism
Spectroscopy
Max Planck Institute in Dortmund.
It's abandoned since 1998 because of asbestos. Everything in there is just like people just left. - To be continued -
Professor Max Planck first derived the spectral distribution as a function of wavelength that the describes the number of photons that carry off the emitted energy at all wavelengths. The peak of this distribution is a function of the temperature of the emitting source. The fact that a given region of the flame is blue means the temperature in those regions is higher than in the regions emitting orange and red light photons.
Light itself is an electromagnetic phenomenon, as discovered by James Clerk Maxwell.
As discovered by James Clerk Maxwell, light is an electromagnetic phenomenon. Maxwell's equations describe the propagation of electromagnetic energy at the speed of light.
Maxwell's equations are a set of partial differential equations that, together with the Lorentz force law, form the foundation of classical electrodynamics, classical optics, and electric circuits. These areas of physics are the basis for all electric, optical and radio technologies like power generation, electric motors, wireless communication, cameras, televisions, computers etc. Maxwell's equations describe how electric and magnetic fields are generated by charges, currents and changes of each other. One important consequence of the equations is that fluctuating electric and magnetic fields can propagate at the speed of light, and this electromagnetic radiation manifests itself in manifold ways from radio waves to light and X- or γ-rays. The equations are named after the physicist and mathematician James Clerk Maxwell, who published an early form of the equations between 1861 and 1862, and first proposed that light is an electromagnetic phenomenon.
IMG_9939 - Version 3
IMG_9939 - Version 2
Tags:
Uncomplicated
Memorial
Candle
Blue
Hot
Part
Flame
Simple
Elegant
Is
"Deeply Relaxing"
Soothing
Beautiful
Yartzeit
Mother
"Mom's Yartzeit"
"Memorial Candle"
"All Day All Night"
Pure
Heavenly
"White Light"
Composition
"Planck's Law"
"Max Planck"
"Planck Distribution"
Radiation
Photons
Rainbow
"Isaac Newton"
Prism
Spectroscopy
Weismain bei Kulmbach
-
„Anpacken statt diskutieren“, lautet das Motto von Alois Dechant. Nicht zuletzt dank
der Initiative des Bauunternehmers konnte die bestehende Einrichtung in Weismain
sinnvoll ergänzt werden – und das in Rekordzeit. Innerhalb von nur drei Monaten (Planung bis Fertigstellung)
ist
es der Firma dechant hoch- und ingenieurbau gelungen, ein lebenswertes Flüchtlingsdomizil
fertigzustellen.
Ein zentrales Element stellt dabei der Neubau des Flüchtlingsdomizils in Weismain dar. Dieser Bau soll fortan als Prototyp für ähnliche Projekte in ganz Deutschland dienen.
Platz für circa 80 Personen
Richtfest nach 18 Tagen.
Aus Weismain an der Weismain
Abt Mauritius Knauer (1613/1614–1664), der Verfasser des Hundertjährigen Kalenders
Der staatlich anerkannte Erholungsort (seit 1976) Weismain liegt am Nordrand des Naturparks Fränkische Schweiz-Veldensteiner Forst. Er wird vom gleichnamigen Fluss durchflossen, der Weismain. Der tiefste Punkt der Stadt liegt auf 295 m ü. NN, der höchste auf 547 m ü. NN.
www.dhib.de/unternehmen/historie.html
Exif data
Camera
Canon PowerShot SX60 HS
Aperture
f/6.3
Focal Length
206.6 mm - 1150 mm
Exposure
0.025 sec (1/40)
ISO Speed
800
-
Farrenberg
Swabian Jura Alps
Schwäbische Alb
TTR Tubingen
Technologiepark Tübingen- Reutlingen
•Der Standort in Tübingen liegt in der Nordstadt im Bereich der Max-Planck-Institute und in unmittelbarer Nähe der Universität Tübingen sowie des Klinikums.
Forschungseinrichtungen in Tübingen:
•Interfakultäres Institut für Zellbiologie (IFIZ) der Universität Tübingen
•Zentrum für Regenerationsbiologie und Regenerative Medizin (ZRM)
•Friedrich-Miescher-Laboratorium für biologische Arbeitsgruppen in der Max-Planck-Gesellschaft
•Max-Planck-Institut für Entwicklungsbiologie
•Max-Planck-Institut für Biologische Kybernetik, Tübingen
•Deutsches Zentrum für Biomaterialien und Organersatz Stuttgart-Tübingen (BMOZ)
Deutschlands größtes Gründerzentrum für Biotechnologie
Der Technologiepark Tübingen-Reutlingen ist einmalig attraktiv, denn es gibt ihn quasi „doppelt“: Einmal am Standort Tübingen, wo die Biotechnologie einen Schwerpunkt bildet und einmal am Standort Reutlingen, wo die Hochtechnologie ihren Platz hat.
www.tfrt.de/technologiepark-tubingen-reutlingen/die-erfol...
Technologieförderung ist der Stadtverwaltung ein großes Anliegen. Gemeinsam mit der Stadt Reutlingen hat Tübingen die Technologieförderung Reutlingen-Tübingen GmbH (TFRT) → gegründet. Die Gesellschaft fördert vor allem Unternehmen der Biotechnologie und Medizintechnik. Sie berät Existenzgründer und Hochschulabsolventen und vermietet Labor- und Büroflächen im Technologiepark Tübingen-Reutlingen (TTR) →, Deutschlands größtem Gründerzentrum für Biotechnologie.
Der TTR verfügt dabei über zwei Standorte. Die „Obere Viehweide“ in Tübingen liegt in der Nordstadt im Bereich der Max-Planck-Institute und in unmittelbarer Nähe der Universität sowie des Klinikums. Der Standort Reutlingen befindet sich verkehrsgünstig im Industriegebiet Reutlingen-West direkt an der B 28 in unmittelbarer Nähe zum Naturwissenschaftlichen und Medizinischen Institut der Universität Tübingen.
Camera tool
6.500 Fotos
Canon PowerShot SX60 HS
Max Planck Institute in Dortmund.
It's abandoned since 1998 because of asbestos. Everything in there is just like people just left. - To be continued -
Zürich (- Kloten) (ZRH / LSZH)
Switzerland 12.1999
First Flight 4.1992
Del. 4.1992 to Air UK Leisure G-UKLG
KLM Royal Dutch Airlines G-UKLG
KLM Royal Dutch Airlines PH-BPG
Air One EI-CWF
Aero Contractors of Nigeria 5N-BOC
Max-Planck-Institut für ausländisches und internationales Privatrecht, Hamburg, 2006
by BOF Architects, Hamburg
It's amazing what you can buy on Amazon. This photo was originally taken for a challenge on the elements, hence the description that follows. The wine glasses serve to insulate 7500V from the countertop to prevent carbon tracking for which I'd truly be in the dog house.
When a pure element is heated, individual colors are produced. This puzzled many as more commonly when an object was heated it first glowed red, then yellow, then white. However, for a pure element, the colors remained constant regardless of temperature. In 1885, Johann Balmer showed that hydrogen’s colors of violet, blue, aqua and red fit a simple equation with only step-wise integers in its denominator, and this became known as the Balmer Series. It was accurate, but no one understood why.
In 1899, Max Planck postulated that colors exist at quantized energies, E = h/(color wavelength, λ), where h became Planck’s Constant. For this, Planck received the Nobel Prize in 1919.
In 1913, Niels Bohr proposed a model for the hydrogen atom that explained its colors under the assumption that electrons exist in orbitals with only certain allowed radii. We now know that they’re not circular but instead regions of probability – hydrogen’s looks like concentric balls with three fuzzy Q-tips poking out – but the analogy holds. For this, Bohr received the Nobel Prize in 1922.
So, when an electron falls from a higher energy orbital to a lower energy orbital, the difference is given off as light whose color is defined by Planck’s Equation, ΔE = h/λ, ΔE being the difference in energy between orbitals.
This also works in reverse, energy always being conserved, as inputted light causes electrons to jump to a higher energy orbital, the color associated with the change absorbed, and with our eyes or camera we only see the colors that were rejected and not absorbed.
We can thank the element hydrogen for initially perplexing great minds, for our understanding of how and why the world has color as we see it, and for the birth of Quantum Physics.
Canon FD 100mm f/4 macro, taken at f/32
Dresden - Max Planck Institute of Molecular Cell Biology and Genetics.
--------
Fuji FinePix X100, Fujinon Aspherical 23 mm f/2. ISO 400, 1/6s, f/5.6
With a diameter of 100 meters, the Radio Telescope Effelsberg is one of the largest fully steerable radio telescopes on earth. Since operations started in 1972, the technology has been continually improved (i.e. new surface for the antenna-dish, better reception of high-quality data, extremely low noise electronics) making it one of the most advanced modern telescopes worldwide.
The telescope is employed to observe pulsars, cold gas- and dust clusters, the sites of star formation, jets of matter emitted by black holes and the nuclei (centres) of distant far-off galaxies.
Effelsberg is an important part of the worldwide network of radio telescopes. The combination of different telescopes in interferometric mode makes possible to obtain the sharpest images of the universe.
Text (C) Max Planck Institute for Radio Astronomy
The telescope may receive radio signals from a distance of up to 12bn light years. Together with a redio telescope in the US (Green Bank, Virginia), it is the largest radio telescope in the world.
The photos show the telescope at different angles because it was turning quite a bit during our visit.
With a diameter of 100 meters, the Radio Telescope Effelsberg is one of the largest fully steerable radio telescopes on earth. Since operations started in 1972, the technology has been continually improved (i.e. new surface for the antenna-dish, better reception of high-quality data, extremely low noise electronics) making it one of the most advanced modern telescopes worldwide.
The telescope is employed to observe pulsars, cold gas and dust clusters, the sites of star formation, jets of matter emitted by black holes and the nuclei (centres) of distant far-off galaxies.
Effelsberg is an important part of the worldwide network of radio telescopes. The combination of different telescopes in interferometric mode makes possible to obtain the sharpest images of the universe.
Text (C) Max Planck Institute for Radio Astronomy
The telescope may receive radio signals from a distance of up to 12bn light years. Together with a redio telescope in the US (Green Bank, Virginia), it is the largest radio telescope in the world.
The photos show the telescope at different angles because it was turning quite a bit during our visit.
Creator/Photographer: Unidentified photographer
Medium: Medium unknown
Dimensions: 16.3 cm x 11.5 cm
Date: Prior to 1947
Collection: Scientific Identity: Portraits from the Dibner Library of the History of Science and Technology - As a supplement to the Dibner Library for the History of Science and Technology's collection of written works by scientists, engineers, natural philosophers, and inventors, the library also has a collection of thousands of portraits of these individuals. The portraits come in a variety of formats: drawings, woodcuts, engravings, paintings, and photographs, all collected by donor Bern Dibner. Presented here are a few photos from the collection, from the late 19th and early 20th century.
Persistent URL: http://photography.si.edu/SearchImage.aspx?t=5&id=3594&q=SIL14-P004-01
Repository: Smithsonian Institution Libraries
Accession number: SIL14-P004-01
Exif_JPEG_PICTURE R1104886 Nowbody knows something about this. The archaeologists don't see such structures in Germany before. I found roman tiles and ceramics. Have a look at my first picture of this location: flic.kr/p/9JPEXG
Have a look (via Google) to: Getty Villa . Thats a replik of the roman villa dei papyri in Herkulaneum/Itali.
Quantum Mechanics
Copyright © 2015 by Ian J MacDonald. Permission required for any use. All rights reserved
Pen and Ink on paper.
Part of a series attempting to depict artistically and aesthetically the different fields of physics. Trying to be scientifically accurate but not constrained to textbook figures or lists of equations. There is a beauty to the subject that is hard to see beyond the boring problems, mathematical tinkering, terminology, that one can get bogged down in. As a student I often found myself scrambling to pass exams and and turn in homework. Only long after I graduated and looked back at the basic equations did I really understand them and how much information they contained and how they so neatly described the world.
see the rest here. www.flickr.com/photos/ianmacdonald/sets/72157644687156427
Rome, Italy
The Bibliotheca Hertziana – Max Planck Institute for Art History is a German research institute. It was founded by a donation of Henriette Hertz in 1912 as a Kaiser Wilhelm Institute. The institute is situated in a cluster of four buildings along the Via Gregoriana: the 16th-century Palazzo Zuccari, the adjacent Palazzo Stroganoff, the Villino Stroganoff across the road and the new library building (completed in 2012) designed by the Spanish architect Juan Navarro Baldeweg.
Scan from the 1961 book "Karlsruhe - Ein Bildband" by Erich Bauer - rare thing, given I found this at an English house in 2014..
post-it note dodecahedron, from 2001
everything2.com/index.pl?node_id=983440
(just happened to have the song in my head)
With a diameter of 100 meters, the Radio Telescope Effelsberg is one of the largest fully steerable radio telescopes on earth. Since operations started in 1972, the technology has been continually improved (i.e. new surface for the antenna-dish, better reception of high-quality data, extremely low noise electronics) making it one of the most advanced modern telescopes worldwide.
The telescope is employed to observe pulsars, cold gas- and dust clusters, the sites of star formation, jets of matter emitted by black holes and the nuclei (centres) of distant far-off galaxies.
Effelsberg is an important part of the worldwide network of radio telescopes. The combination of different telescopes in interferometric mode makes possible to obtain the sharpest images of the universe.
Text (C) Max Planck Institute for Radio Astronomy
The telescope may receive radio signals from a distance of up to 12bn light years. Together with a redio telescope in the US (Green Bank, Virginia), it is the largest radio telescope in the world.
The photos show the telescope at different angles because it was turning quite a bit during our visit.
Göttingen-Stadtfriedhof: Nobelpreisträger - Nobel Prize Laureates:
Max Born 11.12.1882 Breslau - 05.01.1970 Göttingen
1954 Nobelpreis für Physik
Otto Hahn 08.03.1879 Frankfurt/Main - 28.07.1968 Göttingen
1944 Nobelpreis für Chemie
Walther Nernst 25.06.1864 Briesen/Westpreußen - 28.11.1941 Oberzibelle bei Muskau/Oberlausitz
1920 Nobelpreis für Chemie
Max von Laue (our favourite) - 09.10.1879 Pfaffendorf b. Koblenz - 24.04.1960 Berlin
1914 Nobelpreis für Physik "für seine Entdeckung der Beugung von Röntgenstrahlen beim Durchgang durch Kristalle"
1914 Nobelprize for his discovery of the diffraction of X-rays by crystals
Max Planck 23.04.1858 Kiel - 04.10.1947 Göttingen
1918 Nobelpreis für Physik
Otto Wallach 27.03.1847 Königsberg - 26.02.1931 Göttingen
1910 Nobelpreis für Chemie
Adolf Windaus 25.12.1876 Berlin - 09.06.1959 Göttingen
1928 Nobelpreis für Chemie
Richard Zsigmondy 01.04.1865 Wien - 24.09.1929 Göttingen
1925 Nobelpreis für Chemie
fotografiert am 30.9.2006 in 14193 Berlin-Grunewald, Bismarckallee 23
"Von 1898 bis 1908 erbaute der kaiserliche Hofbaurat Ernst von Ihne für den Bankier Franz von Mendelssohn (ein Großneffe von Felix Mendelssohn-Bartholdy) an der Ecke Bismarckallee/Herthastraße
ein aufwendiges Palais im englischen Landhausstil. Es war eine „Kopie“ des Schlosses Kronberg im Taunus und dem Schloß Cecilienhof in Potsdam sehr ähnlich. Robert von Mendelssohn, der Berliner Bankier und Kunstliebhaber, wurde 1902 hier geboren. Sein Vater, Franz von Mendelssohn, späterer Präsident der Berliner Industrie- und Handelskammer, schuf eine Atmosphäre gelebter Toleranz und Nächstenliebe - in seinem Palais verkehrten Wilhelm II. ebenso wie Max Planck oder Albert Einstein, der hier im heutigen Salon Mendelssohn musizierte."
Quelle sowie weitere Details zur Geschichte des Gebäudes vgl.: www.johannisches-sozialwerk.de/angebot/jugendgaestehaus/g...
zur Geschichte der jüdischen Familie Mendelssohn, die früher in diesem Gebäude gelebt hat vgl.:
1) www.flickr.com/photos/37925259@N00/269463016/
2) de.wikipedia.org/wiki/Mendelssohn_(Familie)
alle meine Berlin-Fotos: www.flickr.com/photos/37925259@N00/tags/berlin/
With a diameter of 100 meters, the Radio Telescope Effelsberg is one of the largest fully steerable radio telescopes on earth. Since operations started in 1972, the technology has been continually improved (i.e. new surface for the antenna-dish, better reception of high-quality data, extremely low noise electronics) making it one of the most advanced modern telescopes worldwide.
The telescope is employed to observe pulsars, cold gas- and dust clusters, the sites of star formation, jets of matter emitted by black holes and the nuclei (centres) of distant far-off galaxies.
Effelsberg is an important part of the worldwide network of radio telescopes. The combination of different telescopes in interferometric mode makes possible to obtain the sharpest images of the universe.
Text (C) Max Planck Institute for Radio Astronomy
The telescope may receive radio signals from a distance of up to 12bn light years. Together with a redio telescope in the US (Green Bank, Virginia), it is the largest radio telescope in the world.
The photos show the telescope at different angles because it was turning quite a bit during our visit.
With a diameter of 100 meters, the Radio Telescope Effelsberg is one of the largest fully steerable radio telescopes on earth. Since operations started in 1972, the technology has been continually improved (i.e. new surface for the antenna-dish, better reception of high-quality data, extremely low noise electronics) making it one of the most advanced modern telescopes worldwide.
The telescope is employed to observe pulsars, cold gas and dust clusters, the sites of star formation, jets of matter emitted by black holes and the nuclei (centres) of distant far-off galaxies.
Effelsberg is an important part of the worldwide network of radio telescopes. The combination of different telescopes in interferometric mode makes possible to obtain the sharpest images of the universe.
Text (C) Max Planck Institute for Radio Astronomy
The telescope may receive radio signals from a distance of up to 12bn light years. Together with a redio telescope in the US (Green Bank, Virginia), it is the largest radio telescope in the world.
The photos show the telescope at different angles because it was turning quite a bit during our visit.
Lux-Lesebogen / Heft-Reihe
Hans Hartmann / Max Planck
Begründer des Atomzeitalters
Cover: Karlheinz Dobsky
Sebastian Lux Verlag
(Murnau / Deutschland; 1946 - 1964)
ex libris MTP
With a diameter of 100 meters, the Radio Telescope Effelsberg is one of the largest fully steerable radio telescopes on earth. Since operations started in 1972, the technology has been continually improved (i.e. new surface for the antenna-dish, better reception of high-quality data, extremely low noise electronics) making it one of the most advanced modern telescopes worldwide.
The telescope is employed to observe pulsars, cold gas- and dust clusters, the sites of star formation, jets of matter emitted by black holes and the nuclei (centres) of distant far-off galaxies.
Effelsberg is an important part of the worldwide network of radio telescopes. The combination of different telescopes in interferometric mode makes possible to obtain the sharpest images of the universe.
Text (C) Max Planck Institute for Radio Astronomy
The telescope may receive radio signals from a distance of up to 12bn light years. Together with a redio telescope in the US (Green Bank, Virginia), it is the largest radio telescope in the world.
The photos show the telescope at different angles because it was turning quite a bit during our visit.
Bernhard Heiliger
Max Planck
Bronze
1949/50; 16. Oktober 2006
Marc Wellmann schreibt:
"Aufgestellt mit über 50 Jahren Verspätung am 16. Oktober 2006.
Das Denkmal sollte von Anfang an auf dem Ehrenhof der Berliner Universität seinen Platz finden. Anlass war der Tod Max Plancks (1858-1947), der lange an der früheren Friedrich Wilhelms Universität gelehrt hatte und hier seine banhnbrechenden Foschungen zur Quantenphysik leistete. Die Akademie der Wissenschaften schrieb 1948 einen begrenzten Wettbewerb aus - der erste für eine Denkmal im öffentlichen Raum Berlins nach dem Krieg. Überraschend gewann ihn Bernhard Heiliger vor berühmteren Namen wie Gustav Seitz und Richard Scheibe. Heiliger hatte damals einen Lehrauftrag an der Kunsthochschule Weißensee, doch zog er noch vor der Staatsgründung der DDR in den Westteil Berlins und ahm Ende 1949 eine Professur an der HfBK am Steinplatz an. Mittlerweile war das Denkmal in der Gießerei Noack in Bronze gegossen worden Zum Jahreswechsel 1949/50 wurde der Sockel im Ehrenhof der Universität montiert, die mittlerweile in Gedenken an die Brüder Humboldt umbenannt worden war, die Einladungen. Danach verschickte der Präsident der Universität die Einladungen. Doch dann sagte man die feierliche Einweihung überraschend ab. Vermutlich wurde Heiligers Planck-Denkmal Opfer des "Kalten Krieges". Die in der ehemaligen DDR geführte Formalismusdebatte denunzierte namentlich die abstrakte Kunst als "bürgerlich" und "dekadent". An einem derart prominenten Platz sollte das stark abstrahierte Bildnis des "West-Künstlers" Bernhard Heiliger nicht aufgestellt werden. Hinzu kamen Proteste der Physiker, die in dem Denkmal nicht ihren "verehrten Leher" erkennen konnten. Das Standbild fand dann am südöstlichen Stadtrand Berlins vor dem Gebäude der Akademie der Wissenschaften in Zeuthen, dem heutigen DESY, einen Aufstellungsort, der sich in den nächsten Jahrzehnten nicht mehr ändern sollte.
Erst 16 Jahre nach der Wiedervereinigung und insbesonders durch das Engagement des 2006 neugewählten Präsidenten der HU, Prof. Dr. Christoph Markschies, gelangte das Denkmal an den ursprünglich für ihn vorgsehenen Ort."
Quelle:
www.bildhauerei-in-berlin.de/_html/_katalog/details-324.html
With a diameter of 100 meters, the Radio Telescope Effelsberg is one of the largest fully steerable radio telescopes on earth. Since operations started in 1972, the technology has been continually improved (i.e. new surface for the antenna-dish, better reception of high-quality data, extremely low noise electronics) making it one of the most advanced modern telescopes worldwide.
The telescope is employed to observe pulsars, cold gas- and dust clusters, the sites of star formation, jets of matter emitted by black holes and the nuclei (centres) of distant far-off galaxies.
Effelsberg is an important part of the worldwide network of radio telescopes. The combination of different telescopes in interferometric mode makes possible to obtain the sharpest images of the universe.
Text (C) Max Planck Institute for Radio Astronomy
The telescope may receive radio signals from a distance of up to 12bn light years. Together with a redio telescope in the US (Green Bank, Virginia), it is the largest radio telescope in the world.
The photos show the telescope at different angles because it was turning quite a bit during our visit.
Custom modular display system created for exhibiting items at Max Planck Neuroscience Discovery Day, part of the grand opening of the Max Planck Florida Institute. ©Bombshell Productions. Ft. Lauderdale, FL. Photos by Tracey Benson Photography.
Custom modular display system created for exhibiting items at Max Planck Neuroscience Discovery Day, part of the grand opening of the Max Planck Florida Institute. ©Bombshell Productions. Ft. Lauderdale, FL. Photos by Tracey Benson Photography.
Custom modular display system created for exhibiting items at Max Planck Neuroscience Discovery Day, part of the grand opening of the Max Planck Florida Institute. ©Bombshell Productions. Ft. Lauderdale, FL. Photos by Tracey Benson Photography.
With a diameter of 100 meters, the Radio Telescope Effelsberg is one of the largest fully steerable radio telescopes on earth. Since operations started in 1972, the technology has been continually improved (i.e. new surface for the antenna-dish, better reception of high-quality data, extremely low noise electronics) making it one of the most advanced modern telescopes worldwide.
The telescope is employed to observe pulsars, cold gas- and dust clusters, the sites of star formation, jets of matter emitted by black holes and the nuclei (centres) of distant far-off galaxies.
Effelsberg is an important part of the worldwide network of radio telescopes. The combination of different telescopes in interferometric mode makes possible to obtain the sharpest images of the universe.
Text (C) Max Planck Institute for Radio Astronomy
The telescope may receive radio signals from a distance of up to 12bn light years. Together with a redio telescope in the US (Green Bank, Virginia), it is the largest radio telescope in the world.
The photos show the telescope at different angles because it was turning quite a bit during our visit.