View allAll Photos Tagged LargeMagellanicCloud

Edited Hubble Space Telescope image of the globular cluster NGC 1805 in the Large Magellanic Cloud.

 

Original caption: Many colourful stars are packed close together in this image of the globular cluster NGC 1805, taken by the NASA/ESA Hubble Space Telescope. This tight grouping of thousands of stars is located near the edge of the Large Magellanic Cloud, a satellite galaxy of our own Milky Way. The stars orbit closely to one another, like bees swarming around a hive. In the dense centre of one of these clusters, stars are 100 to 1000 times closer together than the nearest stars are to our Sun, making planetary systems around them unlikely. The striking difference in star colours is illustrated beautifully in this image, which combines two different types of light: blue stars, shining brightest in near-ultraviolet light, and red stars, illuminated in red and near-infrared. Space telescopes like Hubble can observe in the ultraviolet because they are positioned above Earth’s atmosphere, which absorbs most of this wavelength, making it inaccessible to ground-based facilities. This young globular cluster can be seen from the southern hemisphere, in the Dorado constellation, which is Portugese for dolphinfish. Usually, globular clusters contain stars which are born at the same time; however, NGC 1805 is unusual as it appears to host two different populations of stars with ages millions of years apart. Observing such clusters of stars can help astronomers understand how stars evolve, and what factors determine whether they end their lives as white dwarfs, or explode as supernovae.

The brightly glowing plumes seen in this image are reminiscent of an underwater scene, with turquoise-tinted currents and nebulous strands reaching out into the surroundings. However, this is no ocean. This image actually shows part of the Large Magellanic Cloud (LMC), a small nearby galaxy that orbits our galaxy, the Milky Way, and appears as a blurred blob in our skies. The NASA/ESA Hubble Space Telescope has peeked many times into this galaxy, releasing stunning images of the whirling clouds of gas and sparkling stars (opo9944a, heic1301, potw1408a). This image shows part of the Tarantula Nebula's outskirts. This famously beautiful nebula, located within the LMC, is a frequent target for Hubble (heic1206, heic1402). In most images of the LMC the colour is completely different to that seen here. This is because, in this new image, a different set of filters was used. The customary R filter, which selects the red light, was replaced by a filter letting through the near-infrared light. In traditional images, the hydrogen gas appears pink because it shines most brightly in the red. Here however, other less prominent emission lines dominate in the blue and green filters. This data is part of the Archival Pure Parallel Project (APPP), a project that gathered together and processed over 1000 images taken using Hubble’s Wide Field Planetary Camera 2, obtained in parallel with other Hubble instruments. Much of the data in the project could be used to study a wide range of astronomical topics, including gravitational lensing and cosmic shear, exploring distant star-forming galaxies, supplementing observations in other wavelength ranges with optical data, and examining star populations from stellar heavyweights all the way down to solar-mass stars. A version of this image was entered into the Hubble’s Hidden Treasures image processing competition by contestant Josh Barrington.

Photo taken by Maki Yanagimachi - Location: Mt John University Observatory, Lake Tekapo, New Zealand

 

Please refer to MakiTKP on You Tube for some stunning time-lapse animations.

Edited European Southern Observatory image of a star forming region in the Large Magellanic Cloud. Inverted grayscale variant. (This version makes the nebula look like one of those odious Ewoks from The Return of the Jedi.)

 

Original caption: This dazzling region of newly-forming stars in the Large Magellanic Cloud (LMC) was captured by the Multi Unit Spectroscopic Explorer instrument on ESO’s Very Large Telescope. The relatively small amount of dust in the LMC and MUSE’s acute vision allowed intricate details of the region to be picked out in visible light.

Edited Hubble Space Telescope image of part of the Tarantula Nebula in the Large Magellanic Cloud.

 

Original caption: Today’s NASA/ESA Hubble Space Telescope Picture of the Week features a dusty yet sparkling scene from one of the Milky Way’s satellite galaxies, the Large Magellanic Cloud. The Large Magellanic Cloud is a dwarf galaxy situated about 160 000 light-years away in the constellations Dorado and Mensa. Despite being only 10–20% as massive as the Milky Way galaxy, the Large Magellanic Cloud contains some of the most impressive star-forming regions in the nearby Universe. The scene pictured here is on the outskirts of the Tarantula Nebula, the largest and most productive star-forming region in the local Universe. At its center, the Tarantula Nebula hosts the most massive stars known, which weigh in at roughly 200 times the mass of the Sun. The section of the nebula shown here features serene blue gas, brownish-orange dust patches and a sprinkling of multicoloured stars. The stars within and behind the dust clouds appear redder than those that are not obscured by dust. Dust absorbs and scatters blue light more than red light, allowing more of the red light to reach our telescopes and making the stars appear redder than they are. This image incorporates ultraviolet and infrared light as well as visible light. Using Hubble observations of dusty nebulae in the Large Magellanic Cloud and other galaxies, researchers will study these distant dust grains, helping to understand the role that cosmic dust plays in the formation of new stars and planets. [Image Description: A section of a nebula, made up of layers of coloured clouds of gas, of varying thickness. In the background are bluish, translucent and wispy clouds; on top of these are stretches of redder and darker, clumpy dust, mostly along the bottom and right. In the bottom left corner are some dense bars of dust that block light and appear black. Small stars are scattered across the nebula.]

These images show wide and close-up views of a long ribbon of gas called the Magellanic Stream, which stretches nearly halfway around the Milky Way. In the combined radio and visible-light image at the top, the gaseous stream is shown in pink. The radio observations from the Leiden/Argentine/Bonn (LAB) Survey have been combined with the Mellinger All-Sky Panorama in visible light. The Milky Way is the light blue band in the centre of the image. The brown clumps are interstellar dust clouds in our galaxy. The Magellanic Clouds, satellite galaxies of the Milky Way, are the white regions at the bottom right. The image at the bottom, taken at radio wavelengths, is a close-up map of the Magellanic Stream that also was generated from the LAB Survey. Researchers determined the chemistry of the gas filament by using Hubble's Cosmic Origins Spectrograph (COS) to measure the amount of heavy elements, such as oxygen and sulphur, at six locations (marked with an "x") along the Magellanic Stream. COS observed light from faraway quasars that passed through the stream, and detected the spectral fingerprints of these elements from the way they absorb ultraviolet light. Quasars are the brilliant cores of active galaxies. These observations show that most of the gas was stripped from the Small Magellanic Cloud about two billion years ago — but surprisingly, a second region of the stream was formed more recently from the Large Magellanic Cloud. The pink circles to the right mark the location of the Small and Large Magellanic Clouds.

Photo taken by Maki Yanagimachi - Location: Mt John University Observatory, Lake Tekapo, New Zealand

 

Please refer to MakiTKP on You Tube for some stunning time-lapse animations.

EARTH & SKY Photo taken by Maki Yanagimachi - Location: Mt John University Observatory, Lake Tekapo, New Zealand

 

Please refer to MakiTKP on You Tube for some stunning time-lapse animations.

Edited Digitized Sky Survey image via the European Southern Observatory of stars forming in the Large Magellanic Cloud. Color/processing variant.

 

Original caption: This dazzling region of newly-forming stars in the Large Magellanic Cloud (LMC) was captured by the Multi Unit Spectroscopic Explorer instrument on ESO’s Very Large Telescope. The relatively small amount of dust in the LMC and MUSE’s acute vision allowed intricate details of the region to be picked out in visible light. The image is a colour composite made from exposures from the Digitized Sky Survey 2, and shows the region surrounding LHA 120-N 180B, visible at the centre of the image.

Details: Canon T3i mounted on a fixed tripod. F=18mm, f/3.5, ISO 800, T=25s.

Phil and Gary at the 18" with the Magelanic Clouds and the Eta Carina region above. Photo © 2011 Alan Dyer

This view shows part of the very active star-forming region around the Tarantula Nebula in the Large Magellanic Cloud, a small neighbour of the Milky Way. At the exact centre lies the brilliant but isolated star VFTS 682 and to its lower right the very rich star cluster R 136. The origins of VFTS are unclear — was it ejected from R 136 or did it form on its own? The star appears yellow-red in this view, which includes both visible-light and infrared images from the Wide Field Imager at the 2.2-metre MPG/ESO telescope at La Silla and the 4.1-metre infrared VISTA telescope at Paranal, because of the effects of dust.

Supernova Remnant LMC N49 situated in the Large Magellanic Cloud (LMC).

 

Gear:

Celestron C11 SCT.

Celestron AVX Mount.

No Autoguiding.

Fujifilm X-T1 camera.

 

Imaging:

Lights: 947 x 13 seconds, at ISO 3200.

Darks: 947 dark frames.

Bias: 50 frames.

Flats: 50 frames.

 

Processing:

DSS 3.3.2 and Photoshop.

 

Jaco Brink

This view shows part of the very active star-forming region around the Tarantula Nebula in the Large Magellanic Cloud, a small neighbour of the Milky Way. At the exact centre lies the brilliant but isolated star VFTS 682 and to its lower right the very rich star cluster R 136. The origins of VFTS are unclear — was it ejected from R 136 or did it form on its own? The star appears yellow-red in this view, which includes both visible-light and infrared images from the Wide Field Imager at the 2.2-metre MPG/ESO telescope at La Silla and the 4.1-metre infrared VISTA telescope at Paranal, because of the effects of dust.

Edited Digitized Sky Survey 2 ground-based image of part of the Large Magellanic Cloud showing the context for the Hubble Space Telescope image of NTC 2014 and NGC 2020. Image by way of the European Space Agency. Color/processing variant.

 

This wide-field view captures the pair of nebulae NGC 2014 and NGC 2020 in the constellation of Dorado (The Swordfish). These two glowing clouds of gas, in the centre of the frame, are located in the Large Magellanic Cloud, one of the Milky Way's satellite galaxies. Both are sculpted by powerful winds from hot young stars. This view was created from images forming part of the Digitized Sky Survey 2.

Tarantula Nebula, NGC2070, in the Large Magellanic Cloud, a neighbouring galaxy to the Milky Way, 180,000 light years from my house. Colour as detected by the camera with a single 60 second shot.

Gaze up at the night sky from ESO's Paranal Observatory in Chile, and you will be greeted with a stunning view like this one. Flecks of blue, orange, red; each a different star, galaxy, nebula, or more, together forming a sparkling sky overhead. Astronomers peer at this beautiful backdrop, trying to unravel the mysteries of the Universe. To do this, they use telescopes like the ones shown here, the VLT Auxiliary Telescopes. This image shows three of the four moveable units that feed light into the Very Large Telescope Interferometer, the world's most advanced optical instrument. Combining to form one larger telescope, they are greater than the sum of their parts: they reveal details that would be visible with a telescope as large as the distance between them.

Edited Hubble Space Telescope image of the star forming region LH 95 in the Large Magellanic Cloud. Color/processing variant.

 

Original caption: The latest photo from the Hubble Space Telescope, presented at the 2006 General Assembly of the International Astronomical Union in Prague this week, shows a star forming region in the Large Magellanic Cloud (LMC). This sharp image reveals a large number of low-mass infant stars coexisting with young massive stars.

This view shows part of the very active star-forming region around the Tarantula Nebula in the Large Magellanic Cloud, a small neighbour of the Milky Way. At the exact centre lies the brilliant but isolated star VFTS 682 and to its lower right the very rich star cluster R 136. The origins of VFTS are unclear — was it ejected from R 136 or did it form on its own? The star appears yellow-red in this view, which includes both visible-light and infrared images from the Wide Field Imager at the 2.2-metre MPG/ESO telescope at La Silla and the 4.1-metre infrared VISTA telescope at Paranal, because of the effects of dust.

Looking south amid the dark skies of the Tankwa Karoo National Park towards Centauraus and some of the densest parts of the Milky Way, as well as the Large and Small Magellanic Clouds. The very bright star near the top of the shot, to the right of the Milky Way, is Canopus. And is that aurora on the southern horizon visible from 32º South?!?!?!

Edited European Southern Observatory image of a star forming region in the Large Magellanic Cloud. Color/processing variant.

 

Original caption: ESO's Very Large Telescope has captured a detailed view of a star-forming region in the Large Magellanic Cloud — one of the Milky Way's satellite galaxies. This sharp image reveals two glowing clouds of gas. NGC 2014 (right) is irregularly shaped and red and its neighbour, NGC 2020, is round and blue. These odd and very different forms were both sculpted by powerful stellar winds from extremely hot newborn stars that also radiate into the gas, causing it to glow brightly.

Edited Hubble Space Telescope image of the globular cluster NGC 1898 in the Large Magellanic Cloud. Dithered variant.

 

Original caption: This glittering ball of stars is the globular cluster NGC 1898, which lies towards the centre of the Large Magellanic Cloud — one of our closest cosmic neighbours. The Large Magellanic Cloud is a dwarf galaxy that hosts an extremely rich population of star clusters, making it an ideal laboratory for investigating star formation. Discovered in November 1834 by British astronomer John Herschel, NGC 1898 has been scrutinised numerous times by the NASA/ESA Hubble Space Telescope. Today we know that globular clusters belong to the oldest known objects in the Universe and that they are relics of the first epochs of galaxy formation. While we already have a pretty good picture on the globular clusters of the Milky Way — still with many unanswered questions — our studies on globular clusters in nearby dwarf galaxies just started. The observations of NGC 1898 will help to determine if their properties are similar to the ones found in the Milky Way, or if they have different features, due to being in a different cosmic environment. This image was taken by Hubble’s Advanced Camera for Surveys (ACS) and Wide Field Camera 3 (WFC3). The WFC3 observes light ranging from near-infrared to near-ultraviolet wavelengths, while the ACS explores the near-infrared to the ultraviolet.

Southern Tail of the Milky Way, LMC and a meteor

The brightly glowing plumes seen in this image are reminiscent of an underwater scene, with turquoise-tinted currents and nebulous strands reaching out into the surroundings. However, this is no ocean. This image actually shows part of the Large Magellanic Cloud (LMC), a small nearby galaxy that orbits our galaxy, the Milky Way, and appears as a blurred blob in our skies. The NASA/ESA Hubble Space Telescope has peeked many times into this galaxy, releasing stunning images of the whirling clouds of gas and sparkling stars (opo9944a, heic1301, potw1408a). This image shows part of the Tarantula Nebula's outskirts. This famously beautiful nebula, located within the LMC, is a frequent target for Hubble (heic1206, heic1402). In most images of the LMC the colour is completely different to that seen here. This is because, in this new image, a different set of filters was used. The customary R filter, which selects the red light, was replaced by a filter letting through the near-infrared light. In traditional images, the hydrogen gas appears pink because it shines most brightly in the red. Here however, other less prominent emission lines dominate in the blue and green filters. This data is part of the Archival Pure Parallel Project (APPP), a project that gathered together and processed over 1000 images taken using Hubble’s Wide Field Planetary Camera 2, obtained in parallel with other Hubble instruments. Much of the data in the project could be used to study a wide range of astronomical topics, including gravitational lensing and cosmic shear, exploring distant star-forming galaxies, supplementing observations in other wavelength ranges with optical data, and examining star populations from stellar heavyweights all the way down to solar-mass stars. A version of this image was entered into the Hubble’s Hidden Treasures image processing competition by contestant Josh Barrington.

Edited Hubble Space Telescope image of the globular cluster NGC 1805 in the Large Magellanic Cloud. Inverted grayscale variant.

 

Original caption: Many colourful stars are packed close together in this image of the globular cluster NGC 1805, taken by the NASA/ESA Hubble Space Telescope. This tight grouping of thousands of stars is located near the edge of the Large Magellanic Cloud, a satellite galaxy of our own Milky Way. The stars orbit closely to one another, like bees swarming around a hive. In the dense centre of one of these clusters, stars are 100 to 1000 times closer together than the nearest stars are to our Sun, making planetary systems around them unlikely. The striking difference in star colours is illustrated beautifully in this image, which combines two different types of light: blue stars, shining brightest in near-ultraviolet light, and red stars, illuminated in red and near-infrared. Space telescopes like Hubble can observe in the ultraviolet because they are positioned above Earth’s atmosphere, which absorbs most of this wavelength, making it inaccessible to ground-based facilities. This young globular cluster can be seen from the southern hemisphere, in the Dorado constellation, which is Portugese for dolphinfish. Usually, globular clusters contain stars which are born at the same time; however, NGC 1805 is unusual as it appears to host two different populations of stars with ages millions of years apart. Observing such clusters of stars can help astronomers understand how stars evolve, and what factors determine whether they end their lives as white dwarfs, or explode as supernovae.

Edited European Southern Observatory image of part of the Tarantula Nebula in the Large Magellanic Cloud. Color/processing variant.

 

Original caption: Located inside the Large Magellanic Cloud (LMC) – one of our closest galaxies – in what some describe as a frightening sight, the Tarantula nebula is worth looking at in detail. Also known as 30 Doradus or NGC 2070, the nebula owes its name to the arrangement of its bright patches that somewhat resemble the legs of a tarantula. Taking the name of one of the biggest spiders on Earth is very fitting in view of the gigantic proportions of this celestial nebula — it measures nearly 1,000 light years across ! Its proximity, the favourable inclination of the LMC, and the absence of intervening dust make this nebula one of the best laboratories to better understand the formation of massive stars. This spectacular nebula is energised by an exceptionally high concentration of massive stars, often referred to as super star clusters. This image is based on data acquired with the 1.5 m Danish telescope at the ESO La Silla Observatory in Chile, through three filters (B: 80 s, V: 60 s, R: 50 s).

30 second exposure on a very clear and moonless night

Edited Hubble Space Telescope image of the globular cluster NGC 1898 in the Large Magellanic Cloud. Inverted grayscale variant.

 

Original caption: This glittering ball of stars is the globular cluster NGC 1898, which lies towards the centre of the Large Magellanic Cloud — one of our closest cosmic neighbours. The Large Magellanic Cloud is a dwarf galaxy that hosts an extremely rich population of star clusters, making it an ideal laboratory for investigating star formation. Discovered in November 1834 by British astronomer John Herschel, NGC 1898 has been scrutinised numerous times by the NASA/ESA Hubble Space Telescope. Today we know that globular clusters belong to the oldest known objects in the Universe and that they are relics of the first epochs of galaxy formation. While we already have a pretty good picture on the globular clusters of the Milky Way — still with many unanswered questions — our studies on globular clusters in nearby dwarf galaxies just started. The observations of NGC 1898 will help to determine if their properties are similar to the ones found in the Milky Way, or if they have different features, due to being in a different cosmic environment. This image was taken by Hubble’s Advanced Camera for Surveys (ACS) and Wide Field Camera 3 (WFC3). The WFC3 observes light ranging from near-infrared to near-ultraviolet wavelengths, while the ACS explores the near-infrared to the ultraviolet.

Phil and Gary at the 18" with the Magelanic Clouds and the Eta Carina region above. Photo © 2011 Alan Dyer

This is my first attempt at a star trail photo.

 

It was a 10 minute exposure looking south at Redgate Beach, near Margaret River.

 

It may be autumn but it felt like winter when I was out there.

Edited Hubble Space Telescope image of the globular cluster NGC 1805 in the Large Magellanic Cloud. Color/processing variant.

 

Original caption: Many colourful stars are packed close together in this image of the globular cluster NGC 1805, taken by the NASA/ESA Hubble Space Telescope. This tight grouping of thousands of stars is located near the edge of the Large Magellanic Cloud, a satellite galaxy of our own Milky Way. The stars orbit closely to one another, like bees swarming around a hive. In the dense centre of one of these clusters, stars are 100 to 1000 times closer together than the nearest stars are to our Sun, making planetary systems around them unlikely. The striking difference in star colours is illustrated beautifully in this image, which combines two different types of light: blue stars, shining brightest in near-ultraviolet light, and red stars, illuminated in red and near-infrared. Space telescopes like Hubble can observe in the ultraviolet because they are positioned above Earth’s atmosphere, which absorbs most of this wavelength, making it inaccessible to ground-based facilities. This young globular cluster can be seen from the southern hemisphere, in the Dorado constellation, which is Portugese for dolphinfish. Usually, globular clusters contain stars which are born at the same time; however, NGC 1805 is unusual as it appears to host two different populations of stars with ages millions of years apart. Observing such clusters of stars can help astronomers understand how stars evolve, and what factors determine whether they end their lives as white dwarfs, or explode as supernovae.

Edited Hubble Space Telescope image of the globular cluster NGC 1898 in the Large Magellanic Cloud.

 

Original caption: This glittering ball of stars is the globular cluster NGC 1898, which lies towards the centre of the Large Magellanic Cloud — one of our closest cosmic neighbours. The Large Magellanic Cloud is a dwarf galaxy that hosts an extremely rich population of star clusters, making it an ideal laboratory for investigating star formation. Discovered in November 1834 by British astronomer John Herschel, NGC 1898 has been scrutinised numerous times by the NASA/ESA Hubble Space Telescope. Today we know that globular clusters belong to the oldest known objects in the Universe and that they are relics of the first epochs of galaxy formation. While we already have a pretty good picture on the globular clusters of the Milky Way — still with many unanswered questions — our studies on globular clusters in nearby dwarf galaxies just started. The observations of NGC 1898 will help to determine if their properties are similar to the ones found in the Milky Way, or if they have different features, due to being in a different cosmic environment. This image was taken by Hubble’s Advanced Camera for Surveys (ACS) and Wide Field Camera 3 (WFC3). The WFC3 observes light ranging from near-infrared to near-ultraviolet wavelengths, while the ACS explores the near-infrared to the ultraviolet.

Edited Hubble Space Telescope image of the globular cluster NGC 1898 in the Large Magellanic Cloud. Color/processing variant.

 

Original caption: This glittering ball of stars is the globular cluster NGC 1898, which lies towards the centre of the Large Magellanic Cloud — one of our closest cosmic neighbours. The Large Magellanic Cloud is a dwarf galaxy that hosts an extremely rich population of star clusters, making it an ideal laboratory for investigating star formation. Discovered in November 1834 by British astronomer John Herschel, NGC 1898 has been scrutinised numerous times by the NASA/ESA Hubble Space Telescope. Today we know that globular clusters belong to the oldest known objects in the Universe and that they are relics of the first epochs of galaxy formation. While we already have a pretty good picture on the globular clusters of the Milky Way — still with many unanswered questions — our studies on globular clusters in nearby dwarf galaxies just started. The observations of NGC 1898 will help to determine if their properties are similar to the ones found in the Milky Way, or if they have different features, due to being in a different cosmic environment. This image was taken by Hubble’s Advanced Camera for Surveys (ACS) and Wide Field Camera 3 (WFC3). The WFC3 observes light ranging from near-infrared to near-ultraviolet wavelengths, while the ACS explores the near-infrared to the ultraviolet.

Edited Hubble Space Telescope image of Supernova 1987A's ring, set in the Large Magellanic Cloud.

 

Original caption: This new image of the supernova remnant SN 1987A was taken by the NASA/ESA Hubble Space Telescope in January 2017 using its Wide Field Camera 3 (WFC3). Since its launch in 1990 Hubble has observed the expanding dust cloud of SN 1987A several times and this way helped astronomers to create a better understanding of these cosmic explosions. Supernova 1987A is located in the centre of the image amidst a backdrop of stars. The bright ring around the central region of the exploded star is composed of material ejected by the star about 20 000 years before the actual explosion took place. The supernova is surrounded by gaseous clouds. The clouds’ red colour represents the glow of hydrogen gas. The colours of the foreground and background stars were added from observations taken by Hubble’s Wide Field Planetary Camera 2 (WFPC2).

This new image shows the Large Magellanic Cloud galaxy in infrared light as seen by the Herschel Space Observatory, a European Space Agency-led mission with important NASA contributions, and NASA's Spitzer Space Telescope. In the instruments' combined data, this nearby dwarf galaxy looks like a fiery, circular explosion. Rather than fire, however, those ribbons are actually giant ripples of dust spanning tens or hundreds of light-years. Significant fields of star formation are noticeable in the center, just left of center and at right. The brightest center-left region is called 30 Doradus, or the Tarantula Nebula, for its appearance in visible light..

.

The colors in this image indicate temperatures in the dust that permeates the Cloud. Colder regions show where star formation is at its earliest stages or is shut off, while warm expanses point to new stars heating surrounding dust. The coolest areas and objects appear in red, corresponding to infrared light taken up by Herschel's Spectral and Photometric Imaging Receiver at 250 microns, or millionths of a meter. Herschel's Photodetector Array Camera and Spectrometer fills out the mid-temperature bands, shown here in green, at 100 and 160 microns. The warmest spots appear in blue, courtesy of 24- and 70-micron data from Spitzer.

Edited European Southern Observatory image of a star forming region in the Large Magellanic Cloud. Color/processing variant.

 

Original caption: ESO's Very Large Telescope has captured a detailed view of a star-forming region in the Large Magellanic Cloud — one of the Milky Way's satellite galaxies. This sharp image reveals two glowing clouds of gas. NGC 2014 (right) is irregularly shaped and red and its neighbour, NGC 2020, is round and blue. These odd and very different forms were both sculpted by powerful stellar winds from extremely hot newborn stars that also radiate into the gas, causing it to glow brightly.

I hurriedly took this photo of the Large and Small Magellanic Clouds from right outside the dorms at Cerro Tololo before heading up to check on the other observers to get ready for my run tomorrow. I'm really hoping to get a better one in the next few days when the Moon comes up later at night.

Edited European Southern Observatory image of a star forming region in the Large Magellanic Cloud.

 

Original caption: ESO's Very Large Telescope has captured a detailed view of a star-forming region in the Large Magellanic Cloud — one of the Milky Way's satellite galaxies. This sharp image reveals two glowing clouds of gas. NGC 2014 (right) is irregularly shaped and red and its neighbour, NGC 2020, is round and blue. These odd and very different forms were both sculpted by powerful stellar winds from extremely hot newborn stars that also radiate into the gas, causing it to glow brightly.

The brightly glowing plumes seen in this image are reminiscent of an underwater scene, with turquoise-tinted currents and nebulous strands reaching out into the surroundings. However, this is no ocean. This image actually shows part of the Large Magellanic Cloud (LMC), a small nearby galaxy that orbits our galaxy, the Milky Way, and appears as a blurred blob in our skies. The NASA/ESA Hubble Space Telescope has peeked many times into this galaxy, releasing stunning images of the whirling clouds of gas and sparkling stars (opo9944a, heic1301, potw1408a). This image shows part of the Tarantula Nebula's outskirts. This famously beautiful nebula, located within the LMC, is a frequent target for Hubble (heic1206, heic1402). In most images of the LMC the colour is completely different to that seen here. This is because, in this new image, a different set of filters was used. The customary R filter, which selects the red light, was replaced by a filter letting through the near-infrared light. In traditional images, the hydrogen gas appears pink because it shines most brightly in the red. Here however, other less prominent emission lines dominate in the blue and green filters. This data is part of the Archival Pure Parallel Project (APPP), a project that gathered together and processed over 1000 images taken using Hubble’s Wide Field Planetary Camera 2, obtained in parallel with other Hubble instruments. Much of the data in the project could be used to study a wide range of astronomical topics, including gravitational lensing and cosmic shear, exploring distant star-forming galaxies, supplementing observations in other wavelength ranges with optical data, and examining star populations from stellar heavyweights all the way down to solar-mass stars. A version of this image was entered into the Hubble’s Hidden Treasures image processing competition by contestant Josh Barrington.

Edited European Southern Observatory image of a star forming region in the Large Magellanic Cloud. Color/processing variant.

 

Original caption: ESO's Very Large Telescope has captured a detailed view of a star-forming region in the Large Magellanic Cloud — one of the Milky Way's satellite galaxies. This sharp image reveals two glowing clouds of gas. NGC 2014 (right) is irregularly shaped and red and its neighbour, NGC 2020, is round and blue. These odd and very different forms were both sculpted by powerful stellar winds from extremely hot newborn stars that also radiate into the gas, causing it to glow brightly.

These images show wide and close-up views of a long ribbon of gas called the Magellanic Stream, which stretches nearly halfway around the Milky Way. In the combined radio and visible-light image at the top, the gaseous stream is shown in pink. The radio observations from the Leiden/Argentine/Bonn (LAB) Survey have been combined with the Mellinger All-Sky Panorama in visible light. The Milky Way is the light blue band in the centre of the image. The brown clumps are interstellar dust clouds in our galaxy. The Magellanic Clouds, satellite galaxies of the Milky Way, are the white regions at the bottom right. The image at the bottom, taken at radio wavelengths, is a close-up map of the Magellanic Stream that also was generated from the LAB Survey. Researchers determined the chemistry of the gas filament by using Hubble's Cosmic Origins Spectrograph (COS) to measure the amount of heavy elements, such as oxygen and sulphur, at six locations (marked with an "x") along the Magellanic Stream. COS observed light from faraway quasars that passed through the stream, and detected the spectral fingerprints of these elements from the way they absorb ultraviolet light. Quasars are the brilliant cores of active galaxies. These observations show that most of the gas was stripped from the Small Magellanic Cloud about two billion years ago — but surprisingly, a second region of the stream was formed more recently from the Large Magellanic Cloud. The pink circles to the right mark the location of the Small and Large Magellanic Clouds.

I couldn't get the LMC, SMC, and Milky Way comfortably in one shot here, but two out of three is pretty cool, too

Small Magellanic Cloud

 

Canon 300D (un-modded) 50 mm f /1.8 prime

unguided EQ2

30secs x 20

Location:Linden Blue Mountains

This was a real failure. First time out shooting with a newly modified (H-alpha) Nikon Z7. I did not know the camera sufficiently, so my attempted custom settings of ISO 1600 or 2000 were replaced by the camera selecting auto ISOs of 160 and 250-280 - DOH!

Despite the major faux pas, I stacked these in StarrySkyStacker. Now, is that a faint aurora at the horizon, as was forecast, or the distant glow of Cooma? The waxing half-moon was still up of course, so overall viewing remained compromised.

 

8 light frames and 5 dark, all at a mere ISO160!

  

(File: Astro-ISO160_Z7A1845-58-Dark Median)

Edited Hubble Space Telescope image of Supernova 1987A's ring, set in the Large Magellanic Cloud. Color/processing variant.

 

Original caption: This new image of the supernova remnant SN 1987A was taken by the NASA/ESA Hubble Space Telescope in January 2017 using its Wide Field Camera 3 (WFC3). Since its launch in 1990 Hubble has observed the expanding dust cloud of SN 1987A several times and this way helped astronomers to create a better understanding of these cosmic explosions. Supernova 1987A is located in the centre of the image amidst a backdrop of stars. The bright ring around the central region of the exploded star is composed of material ejected by the star about 20 000 years before the actual explosion took place. The supernova is surrounded by gaseous clouds. The clouds’ red colour represents the glow of hydrogen gas. The colours of the foreground and background stars were added from observations taken by Hubble’s Wide Field Planetary Camera 2 (WFPC2).

1 2 ••• 17 19 20 21 22