View allAll Photos Tagged HUBBLE
Muchas, muchas gracias por sus visitas, favs y comentarios :)
Many, many thanks for your visits, favs and comments :)
Olympus & 60 mm macro.
A beautiful galactic dance 211 million light years away. Captured by Hubble WFC3 and processed by me.
A macro of a glass of coffee, for Macro Monday, on the theme of beverage.
This was my second try at it, as the first try gave me some very lukewarm image. Also had to take a photo, then leave it for a few seconds, then go back, as the lense kept fogging up!
I was originally going to leave this as colour, but popped it into silver efex after color efex, just to see and I really liked it.
Nikon Z6, 18mm Extension Tube, FTZ, Tamron 90mm Macro Lense, Ring FLash,
Exposure X5, Color Efex Pro 4, Silver Efex Pro 2
It's Dog Day Monday again! I can't believe another week has flown bye.
Meet Hubble. All I know is that he was not named after the space station or Edwin Hubble after whom the space station was named. Hubble was a loveable, happy-go-lucky Welsh Corgi that lived right around the corner from us until he and his owners moved out of the Bay Area in 2014. Every time I'd meet him, he'd "smile." Don't get the idea that every dog I'm going to show you is smiling. I'm getting into the more serious group and then, just plain old. And, you know, we get grumpy as dogs, especially the two who I'll be showing you in a few weeks that were 17 when I met them.
Anyway, Happy Dog Day Monday #19. Any day with a dog is a happy one (a gross exaggeration, but not as exaggerated as any day without a dog isn't half as great as a day with one). When you unravel that, go rescue a dog.
Cats are okay, too, but from what I've seen on You Tube (and at my nephew's home), they are usually cantankerous, shredding rugs and couches, and love to throw things off countertops. So do parrots, but at least a parrot will talk to you while you're trying to correct them. Our cockatiel used to sing all the radio commercials he'd learned from the radio while we went to school. That was 61 years ago. My favorite, "Where there's Life, there's Lucky Strikes!"
La galaxie spirale NGC 634 (Hubble) est située à 217 millions d'années-lumière de la Terre dans la constellation du Triangle (Triangulum). La finesse des détails et la structure spirale exceptionnellement parfaite de la galaxie en ont fait une cible d'observation privilégiée suite à la disparition violente d'une naine blanche. La supernova de type Ia SN2008a y avait ainsi été repérée et brièvement rivalisé d'éclat avec la galaxie hôte.
Les naines blanches constituent le point final de l'évolution des étoiles dont la masse se situe entre 0,07 et 8 masses solaires, soit 97 % des étoiles de la Voie lactée. Avec toutefois des exceptions, dans un système binaire une naine blanche peut accréter la matière provenant de son étoile compagnon et prendre progressivement du poids. Mais l'étoile peut finir par devenir trop pleine, lorsqu'elle dépasse 1,38 masse solaire. Des réactions nucléaires se déclenchent en produisant d'énormes quantités d'énergie et l'étoile explose en supernova de type Ia.
Cette image a été créée à partir d'images prises avec le canal grand champ de la caméra avancée de Hubble. Ces images ont été obtenues à travers un filtre jaune (F555W, coloré en bleu), combinées avec celles images obtenues à travers des filtres rouge (F625W, coloré en vert) et proche infrarouge (F775W, coloré en rouge). Les temps d'exposition totaux par filtre étaient respectivement de 3 750 s, 3 530 s et 2 484 s, et le champ de vision de 2,5 x 1,5 minute d'arc, soir 0,062° (cf. ESA/Hubble et NASA).
Pour situer la galaxie spirale NGC 634 (Hubble) dans la constellation du Triangle (Triangulum) :
… no not the space telescope, the (T)Oil and Trouble one.
Another quick on for Sliders Sunday. I am working on a couple of sets as project, but neither is near enough to completion to share, and time is limited for me just now.
Never one to throw away images (though I am trying to learn how) I have repurposed one of my oil droplet images from Smile on Saturday’s project yesterday. The starting image had lots of detail and texture and a little bit of colour variation from using two oils (see the comment from yesterday for more if you wish).
The work was done mainly in Affinity though I did us a bit of Nik Color Efex to tweak it a bit at the end.
The basic approach takes an oft-travelled path for me. Duplicate the image layer, flip it horizontally and vertically to give the overall result some symmetry and blend the two layers together with Difference blend mode (or any other mode that works for you) which injects lots of colours. The rest is just tweaking the colours.
I’ll post a link to the in-camera image so you can see the rather bland (in comparison) starting point.
Thanks for taking the time to look. I hope you enjoy the image. Happy Sliders Sunday :)
Lors du lancement du télescope spatial Hubble il y a 35 ans, personne n'aurait pu imaginer à quel point il allait transformer notre vision de l'espace. Lancé le 24 avril 1990, le télescope poursuit aujourd'hui sa mission. Pour célébrer son anniversaire, la NASA a publié quatre images récentes prises par Hubble, qui prouvent sa pérennité, même après trois décennies !
°°°°°°°°°
When the launched 35 years ago, no one would have guessed how much it would shape the way we view space. Launched on April 24, 1990, the telescope continues its mission today. To celebrate its anniversary, NASA released four recent images taken by Hubble that prove its staying power even after three decades !
Credit : NASA, ESA, STScI; Image Processing: Joseph DePasquale (STScI), Alyssa Pagan (STScI)
Hubble rocks out with heavy metal stars!
This 10.5-billion-year-old globular cluster, NGC 6496, is home to heavy-metal stars of a celestial kind! The stars comprising this spectacular spherical cluster are enriched with much higher proportions of metals — elements heavier than hydrogen and helium are curiously known as metals in astronomy — than stars found in similar clusters.
A handful of these high-metallicity stars are also variable stars, meaning that their brightness fluctuates over time. NGC 6496 hosts a selection of long-period variables — giant pulsating stars whose brightness can take up to, and even over, a thousand days to change — and short-period eclipsing binaries, which dim when eclipsed by a stellar companion.
The nature of the variability of these stars can reveal important information about their mass, radius, luminosity, temperature, composition, and evolution, providing astronomers with measurements that would be difficult or even impossible to obtain through other methods.
NGC 6496 was discovered in 1826 by Scottish astronomer James Dunlop. The cluster resides at about 35,000 light-years away in the southern constellation of Scorpius (The Scorpion).
Image credit: ESA/Hubble & NASA, Acknowledgement: Judy Schmidt
Text credit: European Space Agency
Read more: go.nasa.gov/1U2wqGW
The Hubble Space telescope's observations of the universe have seldom produced more intriguing images than that seen in this section of bubble glass in the window of a public house.
We are back from Portugal, a little jet-lagged (always milder going east to west than vice-versa) and none the worse for the wear. Time to upload the 1,136 images that I took. Here's a garden abstract from the archives while I get to it. :)
- Rosa's Garden of Earthly Delights, Keefer Lake, Ontario, Canada -
Cette photomosaïque de la galaxie d'Andromède, située à 2,5 millions d'années-lumière de la Terre, est la plus grande jamais créée à partir d'images du télescope spatial Hubble. Elle comprend plus de 600 images du télescope et a nécessité plus d'une décennie de travail. La photomosaïque comprend 200 millions d'étoiles, soit une fraction de la population d'étoiles estimée à mille milliards d'étoiles d'Andromède.
« Les régions intéressantes comprennent : (a) des amas d'étoiles bleues brillantes intégrées dans la galaxie, des galaxies d'arrière-plan vues beaucoup plus loin et un bombardement photographique par quelques étoiles brillantes au premier plan qui sont en fait à l'intérieur de notre Voie lactée ; (b) NGC 206, le nuage d'étoiles le plus visible d'Andromède ; (c) un jeune amas d'étoiles bleues nouveau-nées ; (d) la galaxie satellite M32, qui pourrait être le noyau résiduel d'une galaxie qui est entrée en collision avec Andromède ; (e) des bandes de poussière sombres à travers une myriade d'étoiles.
°°°°°°°°°°°°°°
This photomosaic of the Andromeda galaxy, located 2.5 million light-years from Earth, is the largest ever created using images from the Hubble Space Telescope. It features over 600 Hubble images and required over a decade to make. The composite features 200 million stars, a fraction of Andromeda’s estimated trillion-star population.
Interesting regions include: (a) Clusters of bright blue stars embedded within the galaxy, background galaxies seen much farther away, and photo-bombing by a couple bright foreground stars that are actually inside our Milky Way; (b) NGC 206 the most conspicuous star cloud in Andromeda; (c) A young cluster of blue newborn stars; (d) The satellite galaxy M32, that may be the residual core of a galaxy that once collided with Andromeda; (e) Dark dust lanes across myriad stars.
Crédit : NASA, ESA, Benjamin F. Williams (Université de Washington), Zhuo Chen (Université de Washington), L. Clifton Johnson (Northwestern) ; traitement des images : Joseph DePasquale (STScI)
__________________________________________PdF_____
La nébuleuse planétaire NGC 2899 est située à 4 500 années-lumière de la Terre et à 25 895 années-lumière du centre galactique dans la constellation australe des Voiles (Vela). Cet objet présente un flux de gaz cylindrique, bipolaire et diagonal propulsé par le rayonnement et les vents stellaires d'une naine blanche située en son centre. En réalité, deux étoiles compagnes pourraient interagir et sculpter la nébuleuse, pincée en son centre par un anneau fragmenté (tore) qui ressemble à un beignet à moitié mangé. Elle présente une forêt de "piliers" gazeux pointant vers la source du rayonnement et des vents stellaires. Ses couleurs proviennent de l'hydrogène et de l'oxygène brillants (cf. NASA, ESA, STScI ; Image Processing : Joseph DePasquale STScI).
Pour situer la nébuleuse planétaire NGC 2899 (Hubble) dans la constellation australe des Voiles (Vela) :
Dans la constellation du Poisson Volant (Volans) à 300 millions d'a.l. de la Terre, l'anneau de Lindsay-Shapley AM 0644-741 est une galaxie lenticulaire non barrée et en anneau. Elle avait autrefois un noyau jaunâtre qui était le centre d’une galaxie spirale normale. Il se serait formé par une collision avec une autre galaxie, ce qui a déclenché un effet gravitationnel et une perturbation provoquant la condensation de la poussière, ce qui l'a forcé à s'étendre et à créer un anneau. D'une taille de 150 000 a.l., il possède aujourd'hui une région de formation d'étoiles dominée par de jeunes étoiles massives, bleues et chaudes. Les régions roses le long de l'anneau sont des nuages raréfiés d'hydrogène gazeux rougeoyant et fluorescent, alors qu'il est bombardé par une forte lumière ultraviolette émise par les étoiles bleues. Il continuera à s’étendre pendant encore 300 millions d’années, après quoi il commencera à se désintégrer.
Outre les deux grandes structures galactiques proches, plusieurs galaxies très éloignées sont visibles sur l'image, principalement dans sa partie inférieure gauche. Les deux stries rougeâtres et les autres petites structures elliptiques témoignent que leur lumière a été émise bien avant celle des galaxies voisines et qu'elles sont donc bien plus éloignées de nous dans l’espace-temps (cf. site Hubble).
Pour situer l'astre dans sa constellation :
www.flickr.com/photos/7208148@N02/48950795956/in/datepost...
A 130 millions d'a.l., les bras gracieux et sinueux de la majestueuse galaxie spirale NGC 3147, d'un diamètre de 83 000 a.l., apparaissent comme un grand escalier en spirale balayant l’espace dans cette image du télescope spatial Hubble. Ce sont en fait de longues bandes de jeunes étoiles bleues, de nébuleuses roses et de poussière. La beauté de la galaxie dément le fait qu’en son centre même se trouve un trou noir mal nourri, entouré d’un disque mince et compact d’étoiles, de gaz et de poussière qui ont été pris dans un maelstrom gravitationnel. La gravité du trou noir est si intense que tout ce qui s’aventure près de lui est balayé dans le disque. Ce dernier est si profondément ancré dans le champ gravitationnel intense du trou noir que la lumière du disque de gaz est modifiée, selon les théories de relativité d’Einstein, donnant aux astronomes un aperçu unique des processus dynamiques proches (cf. hubblesite.org).
Pour mieux situer l'astre dans sa constellation :
www.flickr.com/photos/7208148@N02/48686608841/in/datepost...
Clustered at the center of this image are six brilliant spots of light, four of them creating a circle around a central pair. Appearances can be deceiving, however, as this formation is not composed of six individual galaxies, but is actually two separate galaxies and one distant quasar imaged four times. Data from the NASA/ESA Hubble Space Telescope also indicates that there is a seventh spot of light in the very center, which is a rare fifth image of the distant quasar. This rare phenomenon is the result of the two central galaxies, which are in the foreground, acting as a lens.
The four bright points around the galaxy pair, and the fainter one in the very center, are in fact five separate images of a single quasar (known as 2M1310-1714), an extremely luminous but distant object. The reason we see this quintuple effect is a phenomenon called gravitational lensing. Gravitational lensing occurs when a celestial object with an enormous amount of mass – such as a pair of galaxies – causes the fabric of space to warp. When light from a distant object travels through that gravitationally warped space, it is magnified and bent around the huge mass. This allows humans here on Earth to observe multiple, magnified images of the far-away source. The quasar in this image actually lies farther away from Earth than the pair of galaxies. The galaxy pair’s enormous mass bent and magnified the light from the distant quasar, giving the incredible appearance that the galaxies are surrounded by four quasars – when in reality, a single quasar lies far beyond them!
Hubble’s Wide Field Camera 3 (WFC3) imaged the trio in spectacular detail. It was installed on Hubble in 2009 during Hubble Servicing Mission 4, Hubble’s final servicing mission. WFC3 continues to provide both top-quality data and fantastic images 12 years after its installation.
Image credit: ESA/Hubble & NASA, T. Treu; Acknowledgment: J. Schmidt
NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission.
Follow us on Twitter
Like us on Facebook
Find us on Instagram
After seeing yesterday's APOD, a Hubble Legacy Archive image processed by Hunter Wilson; (apod.nasa.gov/apod/ap160309.html) I really enjoyed the presentation, but there were a few things that I didn't like about the way the image was processed. So naturally I decided to have a go at it myself and downloaded the data from the website last night (hla.stsci.edu/) and started tinkering with it this morning. I finished it to an initial satisfactory processing and was quite pleased at the results!
Spanning from 2003 to 2021, this collection of images from the NASA/ESA Hubble Space Telescope features galaxies that are all hosts to both Cepheid variables and supernovae. These two celestial phenomena are both crucial tools used by astronomers to determine astronomical distance, and have been used to refine our measurement of Hubble’s constant, the expansion rate of the Universe.
Credits: NASA, ESA CC BY 4.0
Spotted in Explore by DMC43. Thanks Donna! #228 23/11/08
Pretty chilly here today so back to indoor flowers for the moment!
This image from the NASA/ESA Hubble Space Telescope shows two of the galaxies in the galactic triplet Arp 248 — also known as Wild's Triplet — which lies around 200 million light-years from Earth in the constellation Virgo. The two large spiral galaxies visible in this image — which flank a smaller, unrelated background spiral galaxy — seem to be connected by a luminous bridge. This elongated stream of stars and interstellar dust is known as a tidal tail, and it was formed by the mutual gravitational attraction of the two foreground galaxies.
This observation comes from a project which delves into two rogues’ galleries of weird and wonderful galaxies: A Catalogue Of Southern Peculiar Galaxies And Associations, compiled by astronomers Halton Arp and Barry Madore, and the Atlas of Peculiar Galaxies, compiled by Halton Arp. Each collection contains a menagerie of spectacularly peculiar galaxies, including interacting galaxies such as Arp 248, as well as one- or three-armed spiral galaxies, galaxies with shell-like structures, and a variety of other space oddities.
Hubble used its Advanced Camera for Surveys to scour this menagerie of eccentric galaxies in search of promising candidates for future observations with the NASA/ESA/CSA James Webb Space Telescope, the Atacama Large Millimeter/submillimeter Array, and Hubble itself. With such a wealth of astronomical objects to study in the night sky, projects such as this, which guide future observations, are a valuable investment of observing time. As well as the scientific merits of observing these weird and wonderful galaxies, they were also — very unusually — selected as Hubble targets because of their visual appeal to the general public!
Credit: ESA/Hubble & NASA, Dark Energy Survey/DOE/FNAL/DECam/CTIO/NOIRLab/NSF/AURA, J. Dalcanton; CC BY 4.0
[Image description: Two spiral galaxies are viewed almost face-on; they are a mix of pale blue and yellow in colour, crossed by strands of dark red dust. They lie in the upper-left and lower-right corners. A long, faint streak of pale blue joins them, extending from an arm of one galaxy and crossing the field diagonally. A small spiral galaxy, orange in colour, is visible edge-on, left of the lower galaxy.]
Four composite images deliver dazzling views from NASA's Chandra X-ray Observatory and James Webb Space Telescope of two galaxies, a nebula, and a star cluster. Each image combines Chandra's X-rays — a form of high-energy light — with infrared data from previously released Webb images, both of which are invisible to the unaided eye. Data from NASA's Hubble Space Telescope (optical light) and retired Spitzer Space Telescope (infrared), plus the European Space Agency's XMM-Newton (X-ray) and the European Southern Observatory's New Technology Telescope (optical) is also used. These cosmic wonders and details are made available by mapping the data to colors that humans can perceive.
Messier 74 is also a spiral galaxy — like our Milky Way — that we see face-on from our vantage point on Earth. It is about 32 million light-years away. Messier 74 is nicknamed the Phantom Galaxy because it is relatively dim, making it harder to spot with small telescopes than other galaxies in Charles Messier’s famous catalog from the 18th century. Webb outlines gas and dust in the infrared while Chandra data spotlights high-energy activity from stars at X-ray wavelengths. Hubble optical data showcases additional stars and dust along the dust lanes. (X-ray: purple; optical: orange, cyan, blue, infrared: green, yellow, red, magenta)
Image credit: X-ray: Chandra: NASA/CXC/SAO, XMM: ESA/XMM-Newton; IR: JWST: NASA/ESA/CSA/STScI, Spitzer: NASA/JPL/CalTech; Optical: Hubble: NASA/ESA/STScI, ESO; Image Processing: L. Frattare, J. Major, and K. Arcand
#NASAMarshall #NASA #astrophysics #astronomy #chandra #NASAChandra #NASA #STScI #jwst #jameswebbspacetelescope #NASAGoddard #galaxy
Read more about the Chanddra X-ray Observatory
This NASA/ESA Hubble Space Telescope observation has captured the galaxy CGCG 396-2, an unusual multi-armed galaxy merger which lies around 520 million light-years from Earth in the constellation Orion.
This observation is a gem from the Galaxy Zoo project, a citizen science project involving hundreds of thousands of volunteers from around the world who classified galaxies to help scientists solve a problem of astronomical proportions: how to sort through the vast amounts of data generated by telescopes. A public vote selected the most astronomically intriguing objects for follow-up observations with Hubble. CGCG 396-2 is one such object, imaged here by Hubble’s Advanced Camera for Surveys.
Image credit: ESA/Hubble & NASA, W. Keel
#NASA #MarshallSpaceFlightCenter #MSFC #Marshall #HubbleSpaceTelescope #HST #astrophysics #gsfc #galaxy
Astronomers using NASA’s Hubble Space Telescope have discovered an immense cloud of hydrogen dubbed “The Behemoth” bleeding from a planet orbiting a nearby star. The enormous, comet-like feature is about 50 times the size of the parent star. The hydrogen is evaporating from a warm, Neptune-sized planet, due to extreme radiation from the star.
This phenomenon has never been seen around an exoplanet so small. It may offer clues to how other planets with hydrogen-enveloped atmospheres could have their outer layers evaporated by their parent star, leaving behind solid, rocky cores. Hot, rocky planets such as these that roughly the size of Earth are known as Hot-Super Earths.
“This cloud is very spectacular, though the evaporation rate does not threaten the planet right now,” explains the study’s leader, David Ehrenreich of the Observatory of the University of Geneva in Switzerland. “But we know that in the past, the star, which is a faint red dwarf, was more active. This means that the planet evaporated faster during its first billion years of existence because of the strong radiation from the young star. Overall, we estimate that it may have lost up to 10 percent of its atmosphere over the past several billion years.”
Read more: www.nasa.gov/feature/goddard/hubble-sees-a-behemoth-bleed...
Caption: This artist's concept shows "The Behemoth," an enormous comet-like cloud of hydrogen bleeding off of a warm, Neptune-sized planet just 30 light-years from Earth. Also depicted is the parent star, which is a faint red dwarf named GJ 436. The hydrogen is evaporating from the planet due to extreme radiation from the star. A phenomenon this large has never before been seen around any exoplanet.
Credits: NASA, ESA, and G. Bacon (STScI)
NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission.
Follow us on Twitter
Like us on Facebook
Find us on Instagram
The twin galaxies NGC 4496A and NGC 4496B dominate the frame in this image from the NASA/ESA Hubble Space Telescope. Both galaxies lie in the constellation Virgo, but despite appearing side-by-side in this image they are at vastly different distances from both Earth and one another. NGC 4496A is 47 million light-years from Earth while NGC 4496B is 212 million light-years away. The enormous distances between the two galaxies mean that the two are not interacting, and only appear to overlap because of a chance alignment.
Chance galactic alignments such as this provide astronomers with the opportunity to delve into the distribution of dust in these galaxies. Galactic dust – the dark tendrils threading through both NGC 4496A and NGC 4496B – adds to the beauty of astronomical images, but it also complicates astronomers’ observations. Dust in the universe tends to scatter and absorb blue light, making stars seem dimmer and redder in a process called “reddening.” Reddening due to dust is different from redshift, which is due to the expansion of space itself. By carefully measuring how dust in the foreground galaxy affects starlight from the background galaxy, astronomers can map the dust in the foreground galaxy’s spiral arms. The resulting “dust maps” help astronomers calibrate measurements of everything from cosmological distances to the types of stars populating these galaxies.
Image Credit: ESA/Hubble & NASA, T. Boeker, B. Holwerda, Dark Energy Survey, Department of Energy, Fermilab/Dark Energy Camera (DECam), Cerro Tololo Inter-American Observatory/NOIRLab/National Science Foundation/Association of Universities for Research in Astronomy, Sloan Digital Sky Survey; Acknowledgment: R. Colombari
#NASA #NASAMarshall #Hubble #nebula #star
UGCA 307 hangs against an irregular backdrop of distant galaxies in this image from the NASA/ESA Hubble Space Telescope. The small galaxy consists of a diffuse band of stars containing red bubbles of gas that mark regions of recent star formation and lies roughly 26 million light-years from Earth in the constellation Corvus. Appearing as just a small patch of stars, UGCA 307 is a diminutive dwarf galaxy without a defined structure, resembling nothing more than a hazy patch of passing cloud.
This image is part of a Hubble project to explore every known nearby galaxy, giving astronomers insights into our galactic neighborhood. Before this set of observations, Hubble investigated almost three quarters of nearby galaxies in enough detail to spot the brightest stars and build up an understanding of the stars populating each galaxy. This Hubble project set out to explore the remaining quarter of nearby galaxies by taking advantage of short gaps in Hubble’s observing schedule.
Image Credit: ESA/Hubble & NASA, R. Tully
#NASA #NASAMarshall #NASAGoddard #ESA #HubbleSpaceTelescope #HST #astrophysics #galaxy
This is an image of the Cartwheel Galaxy taken with the NASA/ESA (European Space Agency) Hubble Space Telescope.
The object was first spotted on wide-field images from the U.K. Schmidt telescope and then studied in detail using the Anglo-Australian Telescope.
Lying about 500 million light-years away in the constellation of Sculptor, the cartwheel shape of this galaxy is the result of a violent galactic collision. A smaller galaxy has passed right through a large disk galaxy and produced shock waves that swept up gas and dust — much like the ripples produced when a stone is dropped into a lake — and sparked regions of intense star formation (appearing blue). The outermost ring of the galaxy, which is 1.5 times the size of our Milky Way, marks the shock wave’s leading edge. This object is one of the most dramatic examples of the small class of ring galaxies.
Image Credit: ESA/Hubble & NASA
This intriguing observation from the NASA/ESA Hubble Space Telescope shows a gravitationally lensed galaxy with the long-winded identification SGAS J143845+145407. Gravitational lensing has resulted in a mirror image of the galaxy near the center of this image, creating a captivating centerpiece. A third distorted image of the galaxy appears as a bridge between them.
Gravitational lensing occurs when the mass of an enormous celestial body – such as a galaxy cluster – curves spacetime and causes the path of light from distant objects to visibly bend around it, as if by a lens. Appropriately, the body causing the light to curve is called a gravitational lens, and the distorted background object is referred to as being "lensed.” Gravitational lensing can result in multiple images of the original galaxy, as seen in this image, or in the background object appearing as a distorted arc or even a ring. Another important consequence of this lensing distortion is magnification, allowing astronomers to observe objects that would otherwise be too far away or be too faint to see.
Hubble has a special flair for detecting lensed galaxies. The telescope's sensitivity and crystal-clear vision let it see faint and distant gravitational lenses that ground-based telescopes cannot detect because of the blurring effect of Earth's atmosphere. Hubble was the first telescope to resolve details within lensed images of galaxies and is capable of imaging both their shape and internal structure.
This particular lensed galaxy is from a set of Hubble observations that take advantage of gravitational lensing to peer inside galaxies in the early universe. The lensing reveals details that allow astronomers to better understand star formation in early galaxies, which gives scientists insight into how the overall evolution of galaxies unfolded.
Image credit: ESA/Hubble & NASA, J. Rigby
#NASA #MarshallSpaceFlightCenter #MSFC #Marshall #HubbleSpaceTelescope #HST #astrophysics #NASAGoddard #gsfc #Gravitationallensing #galaxy
This NASA/ESA Hubble Space Telescope observation has captured the galaxy CGCG 396-2, an unusual multi-armed galaxy merger which lies around 520 million light-years from Earth in the constellation Orion.
This observation is a gem from the Galaxy Zoo project, a citizen science project in which hundreds of thousands of volunteers classified galaxies to help scientists solve a problem of astronomical proportions — how to sort through the vast amounts of data generated by robotic telescopes. Following a public vote, a selection of the most astronomically intriguing objects from the Galaxy Zoo were selected for follow-up observations with Hubble. CGCG 396-2 is one such object, and was captured in this image by Hubble’s Advanced Camera for Surveys.
The Galaxy Zoo project originated when an astronomer was set an impossibly mind-numbing task; classifying more than 900 000 galaxies by eye. By making a web interface and inviting citizen scientists to contribute to the challenge, the Galaxy Zoo team was able to crowdsource the analysis, and within six months a legion of 100 000 volunteer citizen astronomers had contributed more than 40 million galaxy classifications.
Since its initial success, the Galaxy Zoo project and its successor projects have contributed to more than 100 peer-reviewed scientific articles and led to a rich variety of intriguing astronomical discoveries above and beyond their initial goals. The success of the project also inspired more than 100 citizen science projects on the Zooniverse portal, ranging from analysing data from the ESA Rosetta spacecraft's visit to Comet 67P/Churyumov–Gerasimenko to counting killer whales around remote Alaskan islands!
Credits: ESA/Hubble & NASA, W. Keel; CC BY 4.0
NGC 1672 is a barred spiral galaxy located in the constellation Dorado and is 60 million light-years away from earth.
This Data was taken from the Hubble Legacy Archive and processed by me.
Programms used for processing: Pixinsight, Darktable, GIMP
Based on observations made with the NASA/ESA Hubble Space Telescope, and obtained from the Hubble Legacy Archive, which is a collaboration between the Space Telescope Science Institute (STScI/NASA), the Space Telescope European Coordinating Facility (ST-ECF/ESA) and the Canadian Astronomy Data Centre (CADC/NRC/CSA).
This image shows the winding green filaments observed by the NASA/ESA Hubble Space Telescope within eight different galaxies. The ethereal wisps in these images were illuminated, perhaps briefly, by a blast of radiation from a quasar – a very luminous and compact region that surrounds a supermassive black hole at the centre of a galaxy.
In each of these eight images a quasar beam has caused once-invisible filaments in deep space to glow through a process called photoionisation. Oxygen, helium, nitrogen, sulphur and neon in the filaments absorb light from the quasar and slowly re-emit it over many thousands of years.
Their unmistakable emerald hue is caused by ionised oxygen, which glows green.
The Hubble team found a total of twenty galaxies that had gas ionised by quasars; those featured here are (from left to right on top row) the Teacup (more formally known as 2MASX J14302986+1339117), NGC 5972, 2MASX J15100402+0740370 and UGC 7342, and (from left to right on bottom row) NGC 5252, Mrk 1498, UGC 11185 and 2MASX J22014163+1151237.
Credit: NASA, ESA, Galaxy Zoo Team and W. Keel (University of Alabama, USA)
The jellyfish galaxy JW39 hangs serenely in this image from the NASA/ESA Hubble Space Telescope. This galaxy lies over 900 million light-years away in the constellation Coma Berenices, and is one of several jellyfish galaxies that Hubble has been studying over the past two years.
Despite this jellyfish galaxy’s serene appearance, it is adrift in a ferociously hostile environment; a galaxy cluster. Compared to their more isolated counterparts, the galaxies in galaxy clusters are often distorted by the gravitational pull of larger neighbours, which can twist galaxies into a variety of weird and wonderful shapes. If that was not enough, the space between galaxies in a cluster is also pervaded with a searingly hot plasma known as the intracluster medium. While this plasma is extremely tenuous, galaxies moving through it experience it almost like swimmers fighting against a current, and this interaction can strip galaxies of their star-forming gas.
This interaction between the intracluster medium and the galaxies is called ram-pressure stripping, and is the process responsible for the trailing tendrils of this jellyfish galaxy. As JW39 has moved through the cluster the pressure of the intracluster medium has stripped away gas and dust into long trailing ribbons of star formation that now stretch away from the disc of the galaxy.
Astronomers using Hubble’s Wide Field Camera 3 studied these trailing tendrils in detail, as they are a particularly extreme environment for star formation. Surprisingly, they found that star formation in the ‘tentacles’ of jellyfish galaxies was not noticeably different from star formation in the galaxy disc.
[Image Description: A spiral galaxy. It is large in the centre with a lot of detail visible. The core glows brightly and is surrounded by concentric rings of dark and light dust. The spiral arms are thick and puffy with grey dust and glowing blue areas of star formation. They wrap around the galaxy to form a ring. Part of the arm is drawn out into a dark thread above the galaxy, and dust from the arm trails off to the right.]
Credit: ESA/Hubble & NASA, M. Gullieuszik and the GASP team CC BY 4.0
The Prawn Nebula is located in the Sagittarius Arm of the Milky Way, in the constellation Scorpius. Other names include both IC 4628, and Gum 56. From our vantage point, it is about 6,000 light-years away. IC 4628 is an extensive stellar nursery containing a large number of very hot, luminous, young stars created from the surrounding gases.
The nebula is about 250 light-years in diameter, with an apparent size of 1.5 degrees. For reference, this would cover an area three to four times the size of the moon. With my instrument, the full moon will fill my sensor. Unfortunately, I can’t fit the entire complex within this image.
Gum 56 is very faint and emits light at wavelengths not visible to our eyes. Two luminous giants and several young stars in this nebula emit an incredible amount of ultraviolet radiation ionising the hydrogen gas. The result, it glows. Within this invisibility, many things are concealed. Material ejected from violent supernova in the past provides new materials that allow for the formation of new stars. The cycle of stellar life and death continues as dust and gases collapse down, forming new stars.
The photo presented is a narrowband image created by combining filtered light from SII, Ha, and OIII filters. It allows us to reveal details of objects that we cannot see easily, or not at all. Often, the results can be very striking and dramatic. I tried to retain that pleasing gradient of yellow golds, through bands of teal, and hues of blue found in a traditional Hubble Palette image. I was pleased with the star colours ranging from blue to red, using only the narrowband filters. These colours appear very different from a traditional true colour image constructed with red, green, blue filtered light.
Instruments:
• 10 Inch RCOS fl 9.1
• Astro Physics AP-900 Mount
• SBIG STL 11000m
• FLI Filter Wheel
• Baader Planetarium H-alpha 7nm Narrowband-Filter
• Baader Planetarium OIII 8.5nm Narrowband-Filter
• Baader Planetarium SII 8.0nm Narrowband-Filter
Exposure Details:
• SII 22 X 1800
• Ha 22 X 1800
• OIII 24 X 1800
Total Exposure Time: 34.0 Hours
ABELL 2151
3zObservatory deep field
Con il socio Giorgio Mazzacurati abbiamo deciso di omaggiare i 30 anni dell'Hubble space telescope scimmiottando una delle più belle foto che ha fatto il telescopio spaziale.
L'Ammasso di Ercole (Abell 2151) è un ammasso di galassie situato nell'omonima costellazione alla distanza di oltre un miliardo di anni luce dalla Terra.
È inserito nel Catalogo Abell redatto nel 1958 ed ha una classe di ricchezza 2, in quanto formato da 129 galassie. È un ammasso di tipo III secondo la classificazione di Bautz-Morgan in quanto contiene anche numerose galassie spirali. Inoltre sono presenti diverse galassie interagenti. (fonte wiki)
Composizione LRGB circa 6h ore di integrazione a bin2
Strumentazione:
RC12GSO su EQ8
CCD G24000-Astrodon Filter LRGB - OA Starlight
Elaborazione tramite Pixinsight/Photoshop
Autori: Paolo Zampolini e Giorgio Mazzacurati @3zObservatory
I have recently published an article on narrowband imaging, and creating Hubble Palette astrophotography images.
This post should be useful for those looking to get into this type of imaging - as it took me quite a while to get up to speed on the subject myself!
astrobackyard.com/narrowband-imaging/
Here is Melotte 15 inside of the Heart Nebula in SHO (SII, Ha, OIII)
Située dans la constellation de la Chevelure de Bérénice (Coma Berenices), dans l'amas de Coma, la galaxie spirale NGC 4921 se situe à 310 millions d'a.l. de la Terre. Elle possède un noyau lumineux, une barre centrale brillante, un anneau proéminent de poussière noire et des amas bleus d’étoiles récemment formées. Plusieurs galaxies plus petites l'accompagnent, des galaxies non apparentées, tout comme dans la Voie lactée (cf. site Hubble).
Pour situer l'astre dans sa constellation :
www.flickr.com/photos/7208148@N02/48775942151/in/datepost...
This new NASA Hubble Space Telescope image captures the central region of the gigantic elliptical galaxy NGC 474. Located some 100 million light-years from Earth, NGC 474 spans about 250,000 light-years across – that’s 2.5 times larger than our own Milky Way galaxy! Along with its enormous size, NGC 474 has a series of complex layered shells that surround its spherical-shaped core. The cause of these shells is unknown, but astronomers theorize that they may be the aftereffects of the giant galaxy absorbing one or more smaller galaxies. In the same way a pebble creates ripples on a pond when dropped into the water, the absorbed galaxy creates waves that form the shells.
About 10% of elliptical galaxies have shell structures, but unlike the majority of elliptical galaxies, which are associated with galaxy clusters, shelled ellipticals usually lie in relatively empty space. It may be that they’ve cannibalized their neighbors.
The image was created using data from Hubble's Advanced Camera for Surveys. Additional gap-filling data was provided by Hubble's Wide Field and Planetary Camera 2 and Wide Field Camera 3. The color blue represents visible blue light while the color orange represents near infrared light.
Image credit: NASA, ESA, and D. Carter (Liverpool John Moores University); Image processing: G. Kober (NASA Goddard/Catholic University of America)
#NASA #MarshallSpaceFlightCenter #MSFC #Marshall #HubbleSpaceTelescope #HST #astrophysics #gsfc #galaxy
This NASA/ESA Hubble Space Telescope image of the asteroid Dimorphos was taken on 19 December 2022, nearly four months after the asteroid was impacted by NASA’s DART (Double Asteroid Redirection Test) mission. Hubble’s sensitivity reveals a few dozen boulders knocked off the asteroid by the force of the collision. These are among the faintest objects Hubble has ever photographed inside the Solar System. The ejected boulders range in size from 1 m to 6.7 m across, based on Hubble photometry. They are drifting away from the asteroid at around 1 km per hour. The discovery yields invaluable insights into the behaviour of a small asteroid when it is hit by a projectile for the purpose of altering its trajectory.
[Image Description: The bright white object at lower left is the asteroid Dimorphos. It has a blue dust tail extending diagonally to the upper right. A cluster of blue dots surrounds the asteroid. These are boulders that were knocked off the asteroid when, on 26 September 2022, NASA deliberately slammed the half-tonne DART impactor spacecraft into the asteroid as a test of what it would take to deflect some future asteroid from hitting Earth. Hubble photographed the slow-moving boulders in December 2022.]
Credits: NASA, ESA, D. Jewitt (UCLA); CC BY 4.0