View allAll Photos Tagged Endocrine
Gilgit is the largest city in the Northern Areas of Pakistan but still it is quite small. It is over 8 hours from Besham in Swat on the Karakoram Highway. The journey to Gilgit is long and aftera while boring. It is an adventure but I personally tired off the narrow Indus valley with mountains walled closely. After Dassu in Kohistan and all the way to Gilgit itself the journey is through treeless river valley.
Gilgit city is set in mountains whose grey towering peaks guard the city. The bottom of the valley in and around the city its suprisingly green because of the abundant trees.
There are many cheap hotels in Gilgit and its one of the few places in Pakistan where you will see foreign tourists in quite a number. They are from neighbouring China as well as Europe too. Most tourists have come to trek in the many mountainous regions or travel onwards to China.
Gilgit (Urdu: گلگت, Hindi: गिलगित) is the capital city of the Northern Areas, Pakistan. Gilgit City forms a tehsil of Gilgit, within Gilgit District. Its ancient name was Sargin, later to be known as Gilit, and it is still called Gilit or Sargin-Gilit by local people. In the Burushaski language, it is named Geelt. Ghallata is considered its name in ancient Sanskrit literature. Gilgit City is one of the two major hubs in the Northern Areas for mountaineering expeditions to the Karakoram and other the peaks in the Himalayas, the other hub being Skardu.
Gilgit has an area of 38,000 square kilometres (14,700 sq mi). The region is significantly mountainous, lying on the foothills of the Karakoram mountains, and has an average altitude of 1,500 metres (4,900 ft). It is drained by the Indus River, which rises in the neighbouring regions of Ladakh and Baltistan.
Gilgit was an important city on the Silk Road, along which Buddhism was spread from South Asia to the rest of Asia.
The Dards and Chinas appear in many of the old Pauranic lists of peoples who lived in the region, with the former also mentioned in Ptolemy's accounts of the region. Two famous travellers, Faxian and Xuanzang, traversed Gilgit according to their accounts.
“The former rulers had the title of Ra, and there is reason to suppose that they were at one time Hindus, but for the last five centuries and a half they have been Mohammedans. The names of the Hindu Ras have been lost, with the exception of the last of their number, Shri Buddutt. Tradition relates that he was killed by a Mohammedan adventurer, who married his daughter and founded a new dynasty, since called Trakhàn, from a celebrated Ra named Trakhan, who reigned about the commencement of the fourteenth century. The previous rulers—of whom Shri Buddutt was the last—were called Shahreis.
Gilgit was ruled for centuries by the local Trakhàn Dynasty, which ended about 1810 with the death of Raja Abas, the last Trakhàn Raja.[2]
The rulers of Hunza and Nager also claim origin with the Trakhàn dynasty. They claim descent from a heroic Kayani Prince of Persia, Azur Jamshid (also known as Shamsher), who secretly married the daughter of the king Shri Badat. She conspired with him to overthrow her cannibal father.[3] Sri Badat's faith is theorised as Hindu by some[3][4] and Buddhist by others.[5][6] However, considering the region's Buddhist heritage, with the most recent influence being Islam, the most likely preceding influence of the region is Buddhism. Though the titular Sri and the name Badat denotes a Hindu origin of the this ruler.
Prince Azur Jamshid succeeded in overthrowing King Badat who was known as Adam Khor (lit. man-eater)[7][8], often demanding a child a day from his subjects, his demise is still celebrated to this very day by locals in traditional annual celebrations[9]. In the beginning of the new year, where a Juniper procession walks along the river, in memory of chasing the cannibal king Sri Badat away[10].
Azur Jamshid abdicated after 16 years of rule in favour of his wife Nur Bakht Khatùn until their son and heir Garg, grew of age and assumed the title of Raja and ruled, for 55 years. The dynasty flourished under the name of the Kayani dynasty until 1421 when Raja Torra Khan assumed rulership. He ruled as a memorable king until 1475. He distinguished his family line from his step brother Shah Rais Khan (who fled to the king of Badakshan and with who's help he gained Chitral from Raja Torra Khan), as the now known dynastic name of Trakhàn. The descendants of Shah Rais Khan being respectfully known as the Ra'issiya Dynasty.[11]
The period of greatest prosperity was probably under the Shin Ras, whose rule seems to have been peaceable and settled. The whole population, from the Ra to the poorest subject lived by agriculture. According to tradition, Shri Buddutt's rule extended over Chitral, Yassin, Tangir, Darel, Chilas, Gor, Astor, Hunza, Nagar and Haramosh all of which were held by tributary princes of the same family. [12]
”
The area had been a flourishing tract but prosperity was destroyed by warfare over the next fifty years, and by the great flood of 1841 in which the river Indus was blocked by a landslip below the Hatu Pir and the valley was turned into a lake[13]. After the death of Abas, Sulaiman Shah, raja of Yasin, conquered Gilgit. Then, Azad Khan, raja of Punial, killed Sulaiman Shah, taking Gilgit; then Tair Shah, raja of Buroshall (Nagar), took Gilgit and killed Azad Khan. Tair Shah's son Shah Sakandar inherited, only to be killed by Gaur Rahman, raja of Yasin of the Khushwakhte Dynasty, when he took Gilgit. Then in 1842, Shah Sakandar's brother, Karim Khan, expelled Gaur Rahman with the support of a Sikh army from Kashmir. The Sikh general, Nathu Shah, left garrison troops and Karim Khan ruled until Gilgit was ceded to Gulab Singh of Jammu and Kashmir in 1846 by the Treaty of Amritsar,[2] and Dogra troops replaced the Sikh in Gilgit.
Nathu Shah and Karim Khan both transferred their allegiance to Gulab Singh, continuing local administration. When Hunza attacked in 1848, both of them were killed. Gilgit fell to the Hunza and their Yasin and Punial allies, but was soon reconquered by Gulab Singh's Dogra troops. With the support of Gaur Rahman, Gilgit's inhabitants drove their new rulers out in an uprising in 1852. Gaur Rahman then ruled Gilgit until his death in 1860, just before new Dogra forces from Ranbir Singh, son of Gulab Singh, captured the fort and town.[2] The rule of Jammu was restored. Gilgit came under British rule in 1889, when it was unified with neighbouring Nagar and Hunza in the Gilgit Agency.
In 1877, in order to guard against the advance of Russia, the British Government, acting as the suzerain power of Kashmir, established the Gilgit Agency. The Agency was re-established under control of the British Resident in Jammu and Kashmir. It comprised the Gilgit Wazarat; the State of Hunza and Nagar; the Punial Jagir; the Governorships of Yasin, Kuh-Ghizr and Ishkoman, and Chilas.
In 1935, the British demanded Jammu and Kashmir to lease them Gilgit town plus most of the Gilgit Agency and the hill-states Hunza, Nagar, Yasin and Ishkoman for 60 years. Maharaja Hari Singh had no choice but to acquiesce. The leased region was then treated as part of British India, administered by a Political Agent at Gilgit responsible to Delhi, first through the Resident in Jammu and Kashmir and later a British Agent in Peshawar.
Jammu and Kashmir State no longer kept troops in Gilgit and a mercenary force, the Gilgit Scouts, was recruited with British officers and paid for by Delhi. In April 1947, Delhi decided to formally retrocede the leased areas to Hari Singh’s Jammu and Kashmir State as of August 15, 1947. The transfer was to formally take place on August 1.
The Indo-Pakistani War of 1947 affected Gilgit as well. The Pakistani forces advanced against the Indian army quickly. In Gilgit, the Gilgit Scouts joined with them, thereby granting control of northwestern Kashmir to Pakistani forces. Gilgit Scouts progressed with Pakistani troops from north through High Himalayas and contributed in attacking of Skardu in summer 1948, pushing further towards Ladakh area.
After Pakistani good progress of early 1948, Indian troops gathered momentum in late 1948. Finally, the newly-formed India asked UN intervention, and a ceasefire was agreed in December 31, 1948. This conflict left Pakistan with roughly two-fifths of Kashmir, leaving three-fifths to India. This agreement left Gilgit to Pakistan territory.
Weather conditions for Gilgit are dominated by its geographical location, a valley in a mountainous area, southwest of Karakoram range. The prevalent season of Gilgit is winter, occupying the valley eight to nine months a year.
Gilgit lacks significant rainfall, averaging in 120 to 240 millimetres (4.7 to 9.4 in) annually, as monsoon breaks against the southern range of Himalayas. Irrigation for land cultivation is obtained from the rivers, abundant with melting snow water from higher altitudes.
The summer season is brief and hot. The piercing sunrays may raise the temperature up to 40 °C (104 °F), yet it is always cool in the shade.
As a result of this extremity in the weather, landslides and avalanches are frequent in the area.[14]
The Gilgit Manuscript[15] was nominated[16] in 2006 to be included on the UNESCO Memory of the World register, but without success.
The Gilgit manuscripts are among the oldest manuscripts in the world, and the oldest manuscript collection surviving in Pakistan, having major significance in the areas of Buddhist studies and the evolution of Asian and Sanskrit literature. The manuscripts are believed to have been written in the 5th to 6th Century CE, though some more manuscripts were discovered in the succeeding centuries, which were also classified as Gilgit manuscripts.
This corpus of manuscripts was discovered in 1931 in Gilgit, containing four sutras from the Buddhist canon, including the famous Lotus Sutra. The manuscripts were written on birch bark in old Sanskrit language in the Sharada script. The Gilgit manuscripts cover a wide range of themes such as iconometry, folk tales, philosophy, medicine and several related areas of life and general knowledge.
Gilgit city is one of the two major hubs for all mountaineering expeditions in the Northern Areas of Pakistan. Almost all tourists headed for treks in Karakoram or Himalaya Ranges arrive at Gilgit first. Many tourists choose to travel to Gilgit by air, since the road travel between Islamabad and Gilgit, by the Karakoram Highway, takes nearly 24 hours, whereas the air travel takes a mere 45–50 minutes.
There are several tourist attractions relatively close to Gilgit: Naltar Valley with Naltar Peak, Hunza Valley, Ferry Meadows in Raikot, Shigar town, Skardu city, Haramosh Peak in Karakoram Range, Bagrot-Haramosh Valley, Deosai National Park, Astore Valley, Rama Lake, Juglot town, Phunder village, Yasin Valley and Kargah Valley.
Gilgit lies about 10 kilometres (6.2 mi) off the Karakoram Highway (KKH). The KKH connects it to Chilas, Dasu, Besham, Mansehra, Abbottabad and Islamabad in the south. In the North it is connected to Karimabad (Hunza) and Sust in the Northern Areas and to the Chinese cities of Tashkurgan, Upal and Kashgar in Xinjiang.
There are various transports companies i.e. Silk Route Transport Pvt, Masherbrum Transport Pvt and Northern Areas Transport Corporation (NATCO), from these NATCO offers most coverage. It offers passenger road service between Islamabad, Gilgit, Sust and Tashkurgan, and road service between Kashgar and Gilgit (via Tashkurgan and Sust) started in the summer of 2006. However, the border crossing between China and Pakistan at Khunjerab Pass—the highest border of the world—is open only between May 1 and October 15 of every year. During winter, the roads are blocked by snow. Even during the monsoon season in summer, the roads are often blocked due to landslides. The best time to travel on Karakoram Highway is spring or early summer.
Pakistan International Airlines flies ATR 42-500 flights twice daily between Gilgit Airport and Islamabad International Airport and the journey offers one of the most scenic aerial views in the world as it passes close to Nanga Parbat and the mountain peaks are higher than the aircraft's cruising altitude. There are two routes that the aircraft takes. First one is a direct route from the capital Islamabad that takes the plane over the Margalla Hills then over the town of Haripur directly over the Kaghan Valley from where it heads towards Nanga Parbat mountain. Finally, after passing the mountain, descent starts into the Indus valley. The second route takes along the Indus valley, which is also scenic but a little longer. These flights, however, are subject to the clearance of weather and in winters, flights are often delayed by several days due to bad weather. After a military Fokker F27 aircraft crashed near Multan in 2003, the Government of Pakistan banned all Fokker flights in domestic operations.[citation needed]
The health system in northern areas is still in its primary phase with just a District Hospital in whole Gilgit city, supported by a military hospital. Some NGOs do play a minor role in uplift, but are catering for specific communities. Government has yet to fully develop a comprehensive health system in the area.
Tuberculosis, endocrinal disorders with mainly iodine deficiency disorders, iron deficiency, and diarrheal diseases are more common. Sewage system has yet to be fully established, electricity and water supply are still faulty. These factors make a hindrance in developing a strong health care system.
Colleges
•F.G Degree college Jutial
•F.G Degree college for women
•Army Public School and College
•Public School and Colleges Jutial
University
•Karakoram International University Gilgit
Gilgit is the largest city in the Northern Areas of Pakistan but still it is quite small. It is over 8 hours from Besham in Swat on the Karakoram Highway. The journey to Gilgit is long and aftera while boring. It is an adventure but I personally tired off the narrow Indus valley with mountains walled closely. After Dassu in Kohistan and all the way to Gilgit itself the journey is through treeless river valley.
Gilgit city is set in mountains whose grey towering peaks guard the city. The bottom of the valley in and around the city its suprisingly green because of the abundant trees.
There are many cheap hotels in Gilgit and its one of the few places in Pakistan where you will see foreign tourists in quite a number. They are from neighbouring China as well as Europe too. Most tourists have come to trek in the many mountainous regions or travel onwards to China.
Gilgit (Urdu: گلگت, Hindi: गिलगित) is the capital city of the Northern Areas, Pakistan. Gilgit City forms a tehsil of Gilgit, within Gilgit District. Its ancient name was Sargin, later to be known as Gilit, and it is still called Gilit or Sargin-Gilit by local people. In the Burushaski language, it is named Geelt. Ghallata is considered its name in ancient Sanskrit literature. Gilgit City is one of the two major hubs in the Northern Areas for mountaineering expeditions to the Karakoram and other the peaks in the Himalayas, the other hub being Skardu.
Gilgit has an area of 38,000 square kilometres (14,700 sq mi). The region is significantly mountainous, lying on the foothills of the Karakoram mountains, and has an average altitude of 1,500 metres (4,900 ft). It is drained by the Indus River, which rises in the neighbouring regions of Ladakh and Baltistan.
Gilgit was an important city on the Silk Road, along which Buddhism was spread from South Asia to the rest of Asia.
The Dards and Chinas appear in many of the old Pauranic lists of peoples who lived in the region, with the former also mentioned in Ptolemy's accounts of the region. Two famous travellers, Faxian and Xuanzang, traversed Gilgit according to their accounts.
“The former rulers had the title of Ra, and there is reason to suppose that they were at one time Hindus, but for the last five centuries and a half they have been Mohammedans. The names of the Hindu Ras have been lost, with the exception of the last of their number, Shri Buddutt. Tradition relates that he was killed by a Mohammedan adventurer, who married his daughter and founded a new dynasty, since called Trakhàn, from a celebrated Ra named Trakhan, who reigned about the commencement of the fourteenth century. The previous rulers—of whom Shri Buddutt was the last—were called Shahreis.
Gilgit was ruled for centuries by the local Trakhàn Dynasty, which ended about 1810 with the death of Raja Abas, the last Trakhàn Raja.[2]
The rulers of Hunza and Nager also claim origin with the Trakhàn dynasty. They claim descent from a heroic Kayani Prince of Persia, Azur Jamshid (also known as Shamsher), who secretly married the daughter of the king Shri Badat. She conspired with him to overthrow her cannibal father.[3] Sri Badat's faith is theorised as Hindu by some[3][4] and Buddhist by others.[5][6] However, considering the region's Buddhist heritage, with the most recent influence being Islam, the most likely preceding influence of the region is Buddhism. Though the titular Sri and the name Badat denotes a Hindu origin of the this ruler.
Prince Azur Jamshid succeeded in overthrowing King Badat who was known as Adam Khor (lit. man-eater)[7][8], often demanding a child a day from his subjects, his demise is still celebrated to this very day by locals in traditional annual celebrations[9]. In the beginning of the new year, where a Juniper procession walks along the river, in memory of chasing the cannibal king Sri Badat away[10].
Azur Jamshid abdicated after 16 years of rule in favour of his wife Nur Bakht Khatùn until their son and heir Garg, grew of age and assumed the title of Raja and ruled, for 55 years. The dynasty flourished under the name of the Kayani dynasty until 1421 when Raja Torra Khan assumed rulership. He ruled as a memorable king until 1475. He distinguished his family line from his step brother Shah Rais Khan (who fled to the king of Badakshan and with who's help he gained Chitral from Raja Torra Khan), as the now known dynastic name of Trakhàn. The descendants of Shah Rais Khan being respectfully known as the Ra'issiya Dynasty.[11]
The period of greatest prosperity was probably under the Shin Ras, whose rule seems to have been peaceable and settled. The whole population, from the Ra to the poorest subject lived by agriculture. According to tradition, Shri Buddutt's rule extended over Chitral, Yassin, Tangir, Darel, Chilas, Gor, Astor, Hunza, Nagar and Haramosh all of which were held by tributary princes of the same family. [12]
”
The area had been a flourishing tract but prosperity was destroyed by warfare over the next fifty years, and by the great flood of 1841 in which the river Indus was blocked by a landslip below the Hatu Pir and the valley was turned into a lake[13]. After the death of Abas, Sulaiman Shah, raja of Yasin, conquered Gilgit. Then, Azad Khan, raja of Punial, killed Sulaiman Shah, taking Gilgit; then Tair Shah, raja of Buroshall (Nagar), took Gilgit and killed Azad Khan. Tair Shah's son Shah Sakandar inherited, only to be killed by Gaur Rahman, raja of Yasin of the Khushwakhte Dynasty, when he took Gilgit. Then in 1842, Shah Sakandar's brother, Karim Khan, expelled Gaur Rahman with the support of a Sikh army from Kashmir. The Sikh general, Nathu Shah, left garrison troops and Karim Khan ruled until Gilgit was ceded to Gulab Singh of Jammu and Kashmir in 1846 by the Treaty of Amritsar,[2] and Dogra troops replaced the Sikh in Gilgit.
Nathu Shah and Karim Khan both transferred their allegiance to Gulab Singh, continuing local administration. When Hunza attacked in 1848, both of them were killed. Gilgit fell to the Hunza and their Yasin and Punial allies, but was soon reconquered by Gulab Singh's Dogra troops. With the support of Gaur Rahman, Gilgit's inhabitants drove their new rulers out in an uprising in 1852. Gaur Rahman then ruled Gilgit until his death in 1860, just before new Dogra forces from Ranbir Singh, son of Gulab Singh, captured the fort and town.[2] The rule of Jammu was restored. Gilgit came under British rule in 1889, when it was unified with neighbouring Nagar and Hunza in the Gilgit Agency.
In 1877, in order to guard against the advance of Russia, the British Government, acting as the suzerain power of Kashmir, established the Gilgit Agency. The Agency was re-established under control of the British Resident in Jammu and Kashmir. It comprised the Gilgit Wazarat; the State of Hunza and Nagar; the Punial Jagir; the Governorships of Yasin, Kuh-Ghizr and Ishkoman, and Chilas.
In 1935, the British demanded Jammu and Kashmir to lease them Gilgit town plus most of the Gilgit Agency and the hill-states Hunza, Nagar, Yasin and Ishkoman for 60 years. Maharaja Hari Singh had no choice but to acquiesce. The leased region was then treated as part of British India, administered by a Political Agent at Gilgit responsible to Delhi, first through the Resident in Jammu and Kashmir and later a British Agent in Peshawar.
Jammu and Kashmir State no longer kept troops in Gilgit and a mercenary force, the Gilgit Scouts, was recruited with British officers and paid for by Delhi. In April 1947, Delhi decided to formally retrocede the leased areas to Hari Singh’s Jammu and Kashmir State as of August 15, 1947. The transfer was to formally take place on August 1.
The Indo-Pakistani War of 1947 affected Gilgit as well. The Pakistani forces advanced against the Indian army quickly. In Gilgit, the Gilgit Scouts joined with them, thereby granting control of northwestern Kashmir to Pakistani forces. Gilgit Scouts progressed with Pakistani troops from north through High Himalayas and contributed in attacking of Skardu in summer 1948, pushing further towards Ladakh area.
After Pakistani good progress of early 1948, Indian troops gathered momentum in late 1948. Finally, the newly-formed India asked UN intervention, and a ceasefire was agreed in December 31, 1948. This conflict left Pakistan with roughly two-fifths of Kashmir, leaving three-fifths to India. This agreement left Gilgit to Pakistan territory.
Weather conditions for Gilgit are dominated by its geographical location, a valley in a mountainous area, southwest of Karakoram range. The prevalent season of Gilgit is winter, occupying the valley eight to nine months a year.
Gilgit lacks significant rainfall, averaging in 120 to 240 millimetres (4.7 to 9.4 in) annually, as monsoon breaks against the southern range of Himalayas. Irrigation for land cultivation is obtained from the rivers, abundant with melting snow water from higher altitudes.
The summer season is brief and hot. The piercing sunrays may raise the temperature up to 40 °C (104 °F), yet it is always cool in the shade.
As a result of this extremity in the weather, landslides and avalanches are frequent in the area.[14]
The Gilgit Manuscript[15] was nominated[16] in 2006 to be included on the UNESCO Memory of the World register, but without success.
The Gilgit manuscripts are among the oldest manuscripts in the world, and the oldest manuscript collection surviving in Pakistan, having major significance in the areas of Buddhist studies and the evolution of Asian and Sanskrit literature. The manuscripts are believed to have been written in the 5th to 6th Century CE, though some more manuscripts were discovered in the succeeding centuries, which were also classified as Gilgit manuscripts.
This corpus of manuscripts was discovered in 1931 in Gilgit, containing four sutras from the Buddhist canon, including the famous Lotus Sutra. The manuscripts were written on birch bark in old Sanskrit language in the Sharada script. The Gilgit manuscripts cover a wide range of themes such as iconometry, folk tales, philosophy, medicine and several related areas of life and general knowledge.
Gilgit city is one of the two major hubs for all mountaineering expeditions in the Northern Areas of Pakistan. Almost all tourists headed for treks in Karakoram or Himalaya Ranges arrive at Gilgit first. Many tourists choose to travel to Gilgit by air, since the road travel between Islamabad and Gilgit, by the Karakoram Highway, takes nearly 24 hours, whereas the air travel takes a mere 45–50 minutes.
There are several tourist attractions relatively close to Gilgit: Naltar Valley with Naltar Peak, Hunza Valley, Ferry Meadows in Raikot, Shigar town, Skardu city, Haramosh Peak in Karakoram Range, Bagrot-Haramosh Valley, Deosai National Park, Astore Valley, Rama Lake, Juglot town, Phunder village, Yasin Valley and Kargah Valley.
Gilgit lies about 10 kilometres (6.2 mi) off the Karakoram Highway (KKH). The KKH connects it to Chilas, Dasu, Besham, Mansehra, Abbottabad and Islamabad in the south. In the North it is connected to Karimabad (Hunza) and Sust in the Northern Areas and to the Chinese cities of Tashkurgan, Upal and Kashgar in Xinjiang.
There are various transports companies i.e. Silk Route Transport Pvt, Masherbrum Transport Pvt and Northern Areas Transport Corporation (NATCO), from these NATCO offers most coverage. It offers passenger road service between Islamabad, Gilgit, Sust and Tashkurgan, and road service between Kashgar and Gilgit (via Tashkurgan and Sust) started in the summer of 2006. However, the border crossing between China and Pakistan at Khunjerab Pass—the highest border of the world—is open only between May 1 and October 15 of every year. During winter, the roads are blocked by snow. Even during the monsoon season in summer, the roads are often blocked due to landslides. The best time to travel on Karakoram Highway is spring or early summer.
Pakistan International Airlines flies ATR 42-500 flights twice daily between Gilgit Airport and Islamabad International Airport and the journey offers one of the most scenic aerial views in the world as it passes close to Nanga Parbat and the mountain peaks are higher than the aircraft's cruising altitude. There are two routes that the aircraft takes. First one is a direct route from the capital Islamabad that takes the plane over the Margalla Hills then over the town of Haripur directly over the Kaghan Valley from where it heads towards Nanga Parbat mountain. Finally, after passing the mountain, descent starts into the Indus valley. The second route takes along the Indus valley, which is also scenic but a little longer. These flights, however, are subject to the clearance of weather and in winters, flights are often delayed by several days due to bad weather. After a military Fokker F27 aircraft crashed near Multan in 2003, the Government of Pakistan banned all Fokker flights in domestic operations.[citation needed]
The health system in northern areas is still in its primary phase with just a District Hospital in whole Gilgit city, supported by a military hospital. Some NGOs do play a minor role in uplift, but are catering for specific communities. Government has yet to fully develop a comprehensive health system in the area.
Tuberculosis, endocrinal disorders with mainly iodine deficiency disorders, iron deficiency, and diarrheal diseases are more common. Sewage system has yet to be fully established, electricity and water supply are still faulty. These factors make a hindrance in developing a strong health care system.
Colleges
•F.G Degree college Jutial
•F.G Degree college for women
•Army Public School and College
•Public School and Colleges Jutial
University
•Karakoram International University Gilgit
Glyphosate Testing Full Report: Findings in American Mothers’ Breast Milk, Urine and Water.
* Herbicides and water quality & wildlife
* Public health impacts of residential herbicide use
Research finds Round Up chemical in breast milk, what’s next?
All our posts about breast feeding, EDCs, pesticides, phthalates and SaferChemicals.
Sources: The FDA Says…, Natural News, Mar 18 2013
All our posts about AEDs, BPA, BPS, Drugs, EDCs, the FDA, pesticides, SSRIs. See more infographics.
Cartoon by Danny Shanahan and published by Molly Rauch
Read BPA and Plastics: why don’t our Regulations protect all of us from their massive Exposures?
Read Take Action #BPA found in 9/10 Americans, Endocrine Disruptors in 99% of Pregnant Women
All our posts about BPA - Endocrine Disruptors - Pesticides - Phthalates
Gilgit is the largest city in the Northern Areas of Pakistan but still it is quite small. It is over 8 hours from Besham in Swat on the Karakoram Highway. The journey to Gilgit is long and aftera while boring. It is an adventure but I personally tired off the narrow Indus valley with mountains walled closely. After Dassu in Kohistan and all the way to Gilgit itself the journey is through treeless river valley.
Gilgit city is set in mountains whose grey towering peaks guard the city. The bottom of the valley in and around the city its suprisingly green because of the abundant trees.
There are many cheap hotels in Gilgit and its one of the few places in Pakistan where you will see foreign tourists in quite a number. They are from neighbouring China as well as Europe too. Most tourists have come to trek in the many mountainous regions or travel onwards to China.
Gilgit (Urdu: گلگت, Hindi: गिलगित) is the capital city of the Northern Areas, Pakistan. Gilgit City forms a tehsil of Gilgit, within Gilgit District. Its ancient name was Sargin, later to be known as Gilit, and it is still called Gilit or Sargin-Gilit by local people. In the Burushaski language, it is named Geelt. Ghallata is considered its name in ancient Sanskrit literature. Gilgit City is one of the two major hubs in the Northern Areas for mountaineering expeditions to the Karakoram and other the peaks in the Himalayas, the other hub being Skardu.
Gilgit has an area of 38,000 square kilometres (14,700 sq mi). The region is significantly mountainous, lying on the foothills of the Karakoram mountains, and has an average altitude of 1,500 metres (4,900 ft). It is drained by the Indus River, which rises in the neighbouring regions of Ladakh and Baltistan.
Gilgit was an important city on the Silk Road, along which Buddhism was spread from South Asia to the rest of Asia.
The Dards and Chinas appear in many of the old Pauranic lists of peoples who lived in the region, with the former also mentioned in Ptolemy's accounts of the region. Two famous travellers, Faxian and Xuanzang, traversed Gilgit according to their accounts.
“The former rulers had the title of Ra, and there is reason to suppose that they were at one time Hindus, but for the last five centuries and a half they have been Mohammedans. The names of the Hindu Ras have been lost, with the exception of the last of their number, Shri Buddutt. Tradition relates that he was killed by a Mohammedan adventurer, who married his daughter and founded a new dynasty, since called Trakhàn, from a celebrated Ra named Trakhan, who reigned about the commencement of the fourteenth century. The previous rulers—of whom Shri Buddutt was the last—were called Shahreis.
Gilgit was ruled for centuries by the local Trakhàn Dynasty, which ended about 1810 with the death of Raja Abas, the last Trakhàn Raja.[2]
The rulers of Hunza and Nager also claim origin with the Trakhàn dynasty. They claim descent from a heroic Kayani Prince of Persia, Azur Jamshid (also known as Shamsher), who secretly married the daughter of the king Shri Badat. She conspired with him to overthrow her cannibal father.[3] Sri Badat's faith is theorised as Hindu by some[3][4] and Buddhist by others.[5][6] However, considering the region's Buddhist heritage, with the most recent influence being Islam, the most likely preceding influence of the region is Buddhism. Though the titular Sri and the name Badat denotes a Hindu origin of the this ruler.
Prince Azur Jamshid succeeded in overthrowing King Badat who was known as Adam Khor (lit. man-eater)[7][8], often demanding a child a day from his subjects, his demise is still celebrated to this very day by locals in traditional annual celebrations[9]. In the beginning of the new year, where a Juniper procession walks along the river, in memory of chasing the cannibal king Sri Badat away[10].
Azur Jamshid abdicated after 16 years of rule in favour of his wife Nur Bakht Khatùn until their son and heir Garg, grew of age and assumed the title of Raja and ruled, for 55 years. The dynasty flourished under the name of the Kayani dynasty until 1421 when Raja Torra Khan assumed rulership. He ruled as a memorable king until 1475. He distinguished his family line from his step brother Shah Rais Khan (who fled to the king of Badakshan and with who's help he gained Chitral from Raja Torra Khan), as the now known dynastic name of Trakhàn. The descendants of Shah Rais Khan being respectfully known as the Ra'issiya Dynasty.[11]
The period of greatest prosperity was probably under the Shin Ras, whose rule seems to have been peaceable and settled. The whole population, from the Ra to the poorest subject lived by agriculture. According to tradition, Shri Buddutt's rule extended over Chitral, Yassin, Tangir, Darel, Chilas, Gor, Astor, Hunza, Nagar and Haramosh all of which were held by tributary princes of the same family. [12]
”
The area had been a flourishing tract but prosperity was destroyed by warfare over the next fifty years, and by the great flood of 1841 in which the river Indus was blocked by a landslip below the Hatu Pir and the valley was turned into a lake[13]. After the death of Abas, Sulaiman Shah, raja of Yasin, conquered Gilgit. Then, Azad Khan, raja of Punial, killed Sulaiman Shah, taking Gilgit; then Tair Shah, raja of Buroshall (Nagar), took Gilgit and killed Azad Khan. Tair Shah's son Shah Sakandar inherited, only to be killed by Gaur Rahman, raja of Yasin of the Khushwakhte Dynasty, when he took Gilgit. Then in 1842, Shah Sakandar's brother, Karim Khan, expelled Gaur Rahman with the support of a Sikh army from Kashmir. The Sikh general, Nathu Shah, left garrison troops and Karim Khan ruled until Gilgit was ceded to Gulab Singh of Jammu and Kashmir in 1846 by the Treaty of Amritsar,[2] and Dogra troops replaced the Sikh in Gilgit.
Nathu Shah and Karim Khan both transferred their allegiance to Gulab Singh, continuing local administration. When Hunza attacked in 1848, both of them were killed. Gilgit fell to the Hunza and their Yasin and Punial allies, but was soon reconquered by Gulab Singh's Dogra troops. With the support of Gaur Rahman, Gilgit's inhabitants drove their new rulers out in an uprising in 1852. Gaur Rahman then ruled Gilgit until his death in 1860, just before new Dogra forces from Ranbir Singh, son of Gulab Singh, captured the fort and town.[2] The rule of Jammu was restored. Gilgit came under British rule in 1889, when it was unified with neighbouring Nagar and Hunza in the Gilgit Agency.
In 1877, in order to guard against the advance of Russia, the British Government, acting as the suzerain power of Kashmir, established the Gilgit Agency. The Agency was re-established under control of the British Resident in Jammu and Kashmir. It comprised the Gilgit Wazarat; the State of Hunza and Nagar; the Punial Jagir; the Governorships of Yasin, Kuh-Ghizr and Ishkoman, and Chilas.
In 1935, the British demanded Jammu and Kashmir to lease them Gilgit town plus most of the Gilgit Agency and the hill-states Hunza, Nagar, Yasin and Ishkoman for 60 years. Maharaja Hari Singh had no choice but to acquiesce. The leased region was then treated as part of British India, administered by a Political Agent at Gilgit responsible to Delhi, first through the Resident in Jammu and Kashmir and later a British Agent in Peshawar.
Jammu and Kashmir State no longer kept troops in Gilgit and a mercenary force, the Gilgit Scouts, was recruited with British officers and paid for by Delhi. In April 1947, Delhi decided to formally retrocede the leased areas to Hari Singh’s Jammu and Kashmir State as of August 15, 1947. The transfer was to formally take place on August 1.
The Indo-Pakistani War of 1947 affected Gilgit as well. The Pakistani forces advanced against the Indian army quickly. In Gilgit, the Gilgit Scouts joined with them, thereby granting control of northwestern Kashmir to Pakistani forces. Gilgit Scouts progressed with Pakistani troops from north through High Himalayas and contributed in attacking of Skardu in summer 1948, pushing further towards Ladakh area.
After Pakistani good progress of early 1948, Indian troops gathered momentum in late 1948. Finally, the newly-formed India asked UN intervention, and a ceasefire was agreed in December 31, 1948. This conflict left Pakistan with roughly two-fifths of Kashmir, leaving three-fifths to India. This agreement left Gilgit to Pakistan territory.
Weather conditions for Gilgit are dominated by its geographical location, a valley in a mountainous area, southwest of Karakoram range. The prevalent season of Gilgit is winter, occupying the valley eight to nine months a year.
Gilgit lacks significant rainfall, averaging in 120 to 240 millimetres (4.7 to 9.4 in) annually, as monsoon breaks against the southern range of Himalayas. Irrigation for land cultivation is obtained from the rivers, abundant with melting snow water from higher altitudes.
The summer season is brief and hot. The piercing sunrays may raise the temperature up to 40 °C (104 °F), yet it is always cool in the shade.
As a result of this extremity in the weather, landslides and avalanches are frequent in the area.[14]
The Gilgit Manuscript[15] was nominated[16] in 2006 to be included on the UNESCO Memory of the World register, but without success.
The Gilgit manuscripts are among the oldest manuscripts in the world, and the oldest manuscript collection surviving in Pakistan, having major significance in the areas of Buddhist studies and the evolution of Asian and Sanskrit literature. The manuscripts are believed to have been written in the 5th to 6th Century CE, though some more manuscripts were discovered in the succeeding centuries, which were also classified as Gilgit manuscripts.
This corpus of manuscripts was discovered in 1931 in Gilgit, containing four sutras from the Buddhist canon, including the famous Lotus Sutra. The manuscripts were written on birch bark in old Sanskrit language in the Sharada script. The Gilgit manuscripts cover a wide range of themes such as iconometry, folk tales, philosophy, medicine and several related areas of life and general knowledge.
Gilgit city is one of the two major hubs for all mountaineering expeditions in the Northern Areas of Pakistan. Almost all tourists headed for treks in Karakoram or Himalaya Ranges arrive at Gilgit first. Many tourists choose to travel to Gilgit by air, since the road travel between Islamabad and Gilgit, by the Karakoram Highway, takes nearly 24 hours, whereas the air travel takes a mere 45–50 minutes.
There are several tourist attractions relatively close to Gilgit: Naltar Valley with Naltar Peak, Hunza Valley, Ferry Meadows in Raikot, Shigar town, Skardu city, Haramosh Peak in Karakoram Range, Bagrot-Haramosh Valley, Deosai National Park, Astore Valley, Rama Lake, Juglot town, Phunder village, Yasin Valley and Kargah Valley.
Gilgit lies about 10 kilometres (6.2 mi) off the Karakoram Highway (KKH). The KKH connects it to Chilas, Dasu, Besham, Mansehra, Abbottabad and Islamabad in the south. In the North it is connected to Karimabad (Hunza) and Sust in the Northern Areas and to the Chinese cities of Tashkurgan, Upal and Kashgar in Xinjiang.
There are various transports companies i.e. Silk Route Transport Pvt, Masherbrum Transport Pvt and Northern Areas Transport Corporation (NATCO), from these NATCO offers most coverage. It offers passenger road service between Islamabad, Gilgit, Sust and Tashkurgan, and road service between Kashgar and Gilgit (via Tashkurgan and Sust) started in the summer of 2006. However, the border crossing between China and Pakistan at Khunjerab Pass—the highest border of the world—is open only between May 1 and October 15 of every year. During winter, the roads are blocked by snow. Even during the monsoon season in summer, the roads are often blocked due to landslides. The best time to travel on Karakoram Highway is spring or early summer.
Pakistan International Airlines flies ATR 42-500 flights twice daily between Gilgit Airport and Islamabad International Airport and the journey offers one of the most scenic aerial views in the world as it passes close to Nanga Parbat and the mountain peaks are higher than the aircraft's cruising altitude. There are two routes that the aircraft takes. First one is a direct route from the capital Islamabad that takes the plane over the Margalla Hills then over the town of Haripur directly over the Kaghan Valley from where it heads towards Nanga Parbat mountain. Finally, after passing the mountain, descent starts into the Indus valley. The second route takes along the Indus valley, which is also scenic but a little longer. These flights, however, are subject to the clearance of weather and in winters, flights are often delayed by several days due to bad weather. After a military Fokker F27 aircraft crashed near Multan in 2003, the Government of Pakistan banned all Fokker flights in domestic operations.[citation needed]
The health system in northern areas is still in its primary phase with just a District Hospital in whole Gilgit city, supported by a military hospital. Some NGOs do play a minor role in uplift, but are catering for specific communities. Government has yet to fully develop a comprehensive health system in the area.
Tuberculosis, endocrinal disorders with mainly iodine deficiency disorders, iron deficiency, and diarrheal diseases are more common. Sewage system has yet to be fully established, electricity and water supply are still faulty. These factors make a hindrance in developing a strong health care system.
Colleges
•F.G Degree college Jutial
•F.G Degree college for women
•Army Public School and College
•Public School and Colleges Jutial
University
•Karakoram International University Gilgit
The hippopotamus, hippopotamuses or hippopotami, also shortened to hippo, hippos or Hippopotamus amphibius, further qualified as the common hippopotamus, Nile hippopotamus, or river hippopotamus, is a large semiaquatic mammal native to sub-Saharan Africa. It is one of only two extant species in the family Hippopotamidae, the other being the pygmy hippopotamus (Choeropsis liberiensis or Hexaprotodon liberiensis). Its name comes from the ancient Greek for "river horse" (ἱπποπόταμος).
After elephants and rhinoceros, the hippopotamus is the next largest land mammal. It is also the largest extant land artiodactyl. Despite their physical resemblance to pigs and other terrestrial even-toed ungulates, the closest living relatives of the hippopotamids are cetaceans (whales, dolphins, porpoises, etc.), from which they diverged about 55 million years ago. Hippos are recognisable for their barrel-shaped torsos, wide-opening mouths with large canine tusks, nearly hairless bodies, pillar-like legs, and large size: adults average 1,500 kg (3,300 lb) for bulls (males) and 1,300 kg (2,900 lb) for cows (females). Despite its stocky shape and short legs, it is capable of running 30 km/h (19 mph) over short distances.
Hippos inhabit rivers, lakes, and mangrove swamps. Territorial bulls each preside over a stretch of water and a group of five to thirty cows and calves. Mating and birth both occur in the water. During the day, hippos remain cool by staying in water or mud, emerging at dusk to graze on grasses. While hippos rest near each other in the water, grazing is a solitary activity and hippos typically do not display territorial behaviour on land. Hippos are among the most dangerous animals in the world due to their aggressive and unpredictable nature. They are threatened by habitat loss and poaching for their meat and ivory (canine teeth).
Etymology
The Latin word hippopotamus is derived from the ancient Greek ἱπποπόταμος (hippopótamos), from ἵππος (híppos) 'horse' and ποταμός (potamós) 'river', together meaning 'horse of the river'. In English, the plural is "hippopotamuses", but "hippopotami" is also used.
Taxonomy and origins
Classification
The modern hippopotamus and the pygmy hippopotamus are the only living members of the family Hippopotamidae. Some taxonomists place hippos and anthracotheres in the superfamily Anthracotheroidea. Hippopotamidae are classified along with other even-toed ungulates in the order Artiodactyla.
Detail of the head
Five subspecies of hippos have been described based on morphological differences in their skulls as well as differences in geographical range:
H. a. amphibius – (the nominate subspecies) ranges from Gambia east to Ethiopia and then south to Mozambique and historically ranged as far north as Egypt; its skull is distinguished by a moderately reduced preorbital region, a bulging dorsal surface, elongated mandibular symphysis and larger chewing teeth.
H. a. kiboko – found in Kenya and Somalia; was noted to be smaller and more lightly coloured than other hippos with wider nostrils, somewhat longer snout and more rounded and relatively raised orbits with the space between them being incurved.
H. a. capensis – found in Zambia and South Africa; distinguished by wider orbits.
H. a. tschadensis – ranges between Chad and Niger; featured a slightly shorter but broader face, and pronounced, forward-facing orbits.
H. a. constrictus – ranged from the southern Democratic Republic of Congo to Angola and Namibia; skull characterised by a thicker preorbital region, shorter snout, flatter dorsal surface, reduced mandibular symphysis and smaller chewing teeth.
The suggested subspecies above were never widely used or validated by field biologists; the described morphological differences were small enough that they could have resulted from simple variation in nonrepresentative samples. A study examining mitochondrial DNA from skin biopsies taken from 13 sampling locations found "low, but significant, genetic differentiation" among H. a. amphibius, H. a. capensis, and H. a. kiboko. Neither H. a. tschadensis nor H. a. constrictus have been tested.
Evolution
Until 1909, naturalists classified hippos together with pigs based on molar patterns. Several lines of evidence, first from blood proteins, then from molecular systematics and DNA and the fossil record, show their closest living relatives are cetaceans (whales, dolphins, and porpoises). The common ancestor of hippos and whales branched off from Ruminantia and the rest of the even-toed ungulates; the cetacean and hippo lineages split soon afterwards.
Artiodactyla
Tylopoda
Artiofabula
Suina
Cetruminantia
Ruminantia
Whippomorpha
Hippopotamidae
Cetacea
Anthracotherium magnum from the Oligocene of Europe
The most recent theory of the origins of Hippopotamidae suggests hippos and whales shared a common semiaquatic ancestor that branched off from other artiodactyls around 60 million years ago. This hypothesised ancestral group likely split into two branches again around 54 million years ago.
One branch would evolve into cetaceans, possibly beginning about 52 million years ago, with the protowhale Pakicetus and other early whale ancestors collectively known as Archaeoceti. This group eventually underwent aquatic adaptation into the completely aquatic cetaceans. The other branch became the anthracotheres, a large family of four-legged beasts, the earliest of which in the late Eocene would have resembled skinny hippos with comparatively smaller, narrower heads. All branches of the anthracotheres, except that which evolved into Hippopotamidae, became extinct during the Pliocene, leaving no descendants.
A rough evolutionary lineage of the hippo can thus be traced from Eocene and Oligocene species: from Anthracotherium and Elomeryx to the Miocene species Merycopotamus and Libycosaurus and finally the very latest anthracotheres in the Pliocene. These groups lived across Eurasia and Africa. The discovery of Epirigenys in East Africa, which was likely a descent of Asian anthracotheres and a sister taxon to Hippopotamidae, suggests that hippo ancestors entered Africa from Asia around 35 million years ago. An early hippopotamid is the genus Kenyapotamus, which lived in Africa from 15 to 9 million years ago. Hippopotamid species would spread across Africa and Eurasia, including the modern pygmy hippo. From 7.5 to 1.8 million years ago, a possible ancestor to the modern hippo, Archaeopotamus, lived in Africa and the Middle East. The oldest records of the genus Hippopotamus date to the Pliocene (5.3-2.6 million years ago). The oldest unambiguous records of the modern H. amphibius date to the Middle Pleistocene, though there are possible Early Pleistocene records.
Extinct species
Three species of Malagasy hippopotamus became extinct during the Holocene on Madagascar, the last of them within the past 1,000 years. The Malagasy hippos were smaller than the modern hippo, a likely result of the process of insular dwarfism. Fossil evidence indicates many Malagasy hippos were hunted by humans, a factor in their eventual extinction. Isolated individual Malagasy hippos may have survived in remote pockets; in 1976, villagers described a living animal called the kilopilopitsofy, which may have been a Malagasy hippo.
Hippopotamus gorgops from the Early Pleistocene-early Middle Pleistocene of Africa and West Asia grew considerably larger than the living hippopotamus, with an estimated body mass of over 4,000 kilograms (8,800 lb). Hippopotamus antiquus ranged throughout Europe, extending as far north as Britain during the Early and Middle Pleistocene epochs, before being replaced by the modern H. amphibius in Europe during the latter part of the Middle Pleistocene. The Pleistocene also saw a number of dwarf species evolve on several Mediterranean islands, including Crete (Hippopotamus creutzburgi), Cyprus (the Cyprus dwarf hippopotamus, Hippopotamus minor), Malta (Hippopotamus melitensis), and Sicily (Hippopotamus pentlandi). Of these, the Cyprus dwarf hippo survived until the end of the Pleistocene or early Holocene. Evidence from the archaeological site Aetokremnos continues to cause debate on whether or not the species was driven to extinction, or even encountered, by man.
Characteristics
The hippopotamus is a megaherbivore and is exceeded in size among land animals only by elephants and some rhinoceros species. The mean adult weight is around 1,480 kg (3,260 lb) for bulls and 1,365 kg (3,009 lb) for cows. Exceptionally large males have been recorded reaching 2,660 kg (5,860 lb). Male hippos appear to continue growing throughout their lives, while females reach maximum weight at around age 25. Hippos measure 2.90 to 5.05 m (9.5 to 16.6 ft) long, including a tail of about 35 to 56 cm (1.15 to 1.84 ft) in length and 1.30 to 1.65 m (4.3 to 5.4 ft) tall at the shoulder, with males and females ranging 1.40 to 1.65 m (4.6 to 5.4 ft) and 1.30 to 1.45 m (4.3 to 4.8 ft) tall at the shoulder respectively. The species has a typical head-body length of 3.3–3.45 m (10.8–11.3 ft) and an average standing height of 1.4 m (4.6 ft) at the shoulder.
Hippos have barrel-shaped bodies with short tails and legs, and an hourglass-shaped skull with a long snout. Their skeletal structures are graviportal, adapted to carrying their enormous weight, and their dense bones and low centre of gravity allows them to sink and move along the bottom of the water. Hippopotamuses have small legs (relative to other megafauna) because the water in which they live reduces the weight burden. The toes are webbed and the pelvis rests at an angle of 45 degrees. Though chubby-looking, hippos have little fat. The eyes, ears, and nostrils of hippos are placed high on the roof of their skulls. This allows these organs to remain above the surface while the rest of the body is submerged. The nostrils and ears can close when underwater while nictitating membranes cover the eyes. The vocal folds of the hippo are more horizontally positioned, much like cetaceans. Underneath are throat tissues, where vibrations are transmitted to produce underwater calls.
Characteristic "yawn" of a hippo
The hippo's jaw is powered by huge masseter and digastric muscles which give them large, droopy cheeks. The jaw hinge allows the animal to open its mouth at almost 180°. A folded orbicularis oris muscle allows the hippo to attain an extreme gape without tearing any tissue. On the lower jaw, the incisors and canines grow continuously, the former reaching 40 cm (1 ft 4 in), while the latter can grow to up to 50 cm (1 ft 8 in). The lower canines are sharpened through contact with the smaller upper canines. The canines and incisors are used mainly for combat instead of feeding. Hippos rely on their flattened, horny lips to grasp and pull grasses which are then ground by the molars. The hippo is considered to be a pseudoruminant; it has a complex three-chambered stomach, but does not "chew cud".
Completely submerged hippo (San Diego Zoo)
Hippo skin is 6 cm (2 in) thick across much of its body with little hair. The animal is mostly purplish-grey or blue-black, but brownish-pink on the underside and around the eyes and ears. Their skin secretes a natural, red-coloured sunscreen substance that is sometimes referred to as "blood sweat" but is neither blood nor sweat. This secretion is initially colourless and turns red-orange within minutes, eventually becoming brown. Two highly acidic pigments have been identified in the secretions; one red (hipposudoric acid) and one orange (norhipposudoric acid), which inhibit the growth of disease-causing bacteria and their light-absorption profile peaks in the ultraviolet range, creating a sunscreen effect. Regardless of diet, all hippos secrete these pigments so food does not appear to be their source; rather, they may be synthesised from precursors such as the amino acid tyrosine. This natural sunscreen cannot prevent the animal's skin from cracking if it stays out of water too long.
The testes of the males do not fully descend and a scrotum is not present. In addition, the penis retracts into the body when not erect. The genitals of the female hippos are unusual in that the vagina is ridged and the vulval vestibule has two large, protruding diverticula. Both of these have an unknown function.
A hippo's lifespan is typically 40 to 50 years. Donna the Hippo was one of the oldest living hippos in captivity. She lived at the Mesker Park Zoo in Evansville, Indiana, in the US until her death in 2012 at the age of 61. The oldest hippo ever recorded was called Bertha; she had lived in the Manila Zoo in the Philippines since it first opened in 1959. When she died in 2017, her age was estimated to be 65.
Distribution and status
During the Middle Pleistocene to the early Late Pleistocene (~500,000–80,000 years ago) Hippopotamus amphibius was present in Europe, extending as far north as England during the Eemian (130–115,000 years ago), with fossils also known from Portugal, Spain, Italy, and Greece. The species first entered Europe between 560,000 and 460,000 years ago, while the last H. amphibius remains in Europe are dated to about 30,000 years ago. Archaeological evidence exists of its presence in the Levant, dating to less than 3,000 years ago. The species was common in Egypt's Nile region during antiquity, but it has since been driven out. According to Pliny the Elder, in his time, the best location in Egypt for capturing this animal was in the Saite nome; the animal could still be found along the Damietta branch of the Nile after the Arab Conquest in 639. Reports of the slaughter of the last hippo in Natal Province were made at the end of the 19th century. Hippos are still found in the rivers and lakes of the northern Democratic Republic of the Congo, Uganda, Tanzania, and Kenya, north through to Ethiopia, Somalia, and Sudan, west to The Gambia, and south to South Africa.
Genetic evidence suggests common hippos in Africa experienced a marked population expansion during or after the Pleistocene, attributed to an increase in water bodies at the end of the era. These findings have important conservation implications, as hippo populations across the continent are currently threatened by loss of access to fresh water. Hippos are also subject to unregulated hunting and poaching. The species is included in Appendix II of the Convention on International Trade in Endangered Species (CITES) meaning international export/import (including in parts and derivatives) requires CITES documentation to be obtained and presented to border authorities.
As of 2017, the IUCN Red List drawn up by the International Union for Conservation of Nature (IUCN) lists the species as vulnerable, with a stable population estimated between 115,000 and 130,000 animals. The hippo population has declined most dramatically in the Democratic Republic of the Congo. By 2005, the population in Virunga National Park had dropped to 800 or 900 from around 29,000 in the mid-1970s. This decline is attributed to the disruptions caused by the Second Congo War. The poachers are believed to be Mai-Mai rebels, underpaid Congolese soldiers, and local militia groups. Reasons for poaching include the belief hippos are harmful to society, as well as financial gain. As of 2016, the Virunga hippo population appears to have increased again, possibly due to better protection from park rangers, who have worked with local fishermen. The sale of hippo meat is illegal, but black-market sales are difficult for Virunga National Park officers to track. Hippo meat is highly valued in some areas of central Africa and the teeth may be used as a replacement for elephant ivory.
A population of hippos exists in Colombia, descended from captive individuals that escaped from Pablo Escobar's estate after his death in 1993. Their numbers grew to 100 by the 2020s and ecologists believe the population should be eradicated, as they are breeding rapidly and are an increasing menace to humans and the environment. Attempts to control them include sterilisation and culling.
Behaviour and ecology
Hippos are semiaquatic and require enough water to immerse in, while being close to grass. Like most herbivores, hippos will consume a variety of plants if presented with them in captivity, but their diet in nature consists almost entirely of grass, with only minimal consumption of aquatic plants. They prefer relatively still waters with gently sloping shores, though male hippos may also be found in very small numbers in more rapid waters with rocky slopes. Hippos mostly live in freshwater habitat, but can be found in estuaries. Despite being semiaquatic, an adult hippo is not a particularly good swimmer, nor can it float. It rarely enters deep water; when it does, the animal moves by bouncing off the bottom. An adult hippo surfaces every four to six minutes, while young need to breathe every two to three minutes.
Hippos spend most the day in water to stay cool and hydrated. Just before night begins, they leave the water to forage on land. Hippos usually trot to move quickly on land and can gallop at 30 km/h (19 mph) when needed. They are incapable of jumping but can walk up steep banks. A hippo will travel 3–5 km (1.9–3.1 mi) per night, eating around 40 kg (88 lb) of grass. By dawn, they are back in the water. The hippopotamus sleeps with both hemispheres of the brain resting, as in all land mammals, and usually sleeps on land or in water with the nostrils exposed. Despite this, it may be capable of sleeping while submerged, intermittently surfacing to breathe without waking. They appear to transition between different phases of sleep more quickly than other mammals.
Because of their size and their habit of taking the same paths to feed, hippos can have a significant impact on the land across which they walk, keeping the land clear of vegetation and depressing the ground. Over prolonged periods, hippos can divert the paths of swamps and channels. By defecating in the water, the animals also appear to pass on microbes from their gut, affecting the biogeochemical cycle. On occasion, hippos have been filmed eating carrion, usually near the water. There are other reports of meat-eating and even cannibalism and predation. Hippos' stomach anatomy lacks adaptions to carnivory and meat-eating is likely caused by lack of nutrients or just an abnormal behaviour.
Social life
It is challenging to study the interaction of bulls and cows because hippos are not sexually dimorphic, so cows and young bulls are almost indistinguishable in the field. Hippo pods fluctuate but can contain over 100 hippos. Although they lie close together, adults develop almost no social bonds. Males establish territories in water but not land, and these may range 250–500 m (270–550 yd) in lakes and 50–100 m (55–109 yd) in rivers. Territories are abandoned when the water dries up. The bull has breeding access to all the cows in his territory. Younger bachelors are allowed to stay as long as they defer to him. A younger male may challenge the old bull for control of the territory. Within the pods, the hippos tend to segregate by sex and status. Bachelor males lounge near other bachelors, females with other females, and the territorial male is on his own. When hippos emerge from the water to graze, they do so individually.
Male hippos fighting
Hippos engage in "muck-spreading" which involves defecating while spinning their tails to distribute the faeces over a greater area. Muck-spreading occurs both on land and in water and its function is not well understood. It is unlikely to serve a territorial function, as the animals only establish territories in the water. They may be used as trails between the water and grazing areas. "Yawning" serves as a threat display. When fighting, bulls use their incisors to block each other's attacks and their large canines as offensive weapons. When hippos become over-populated or a habitat shrinks, bulls sometimes attempt infanticide, but this behaviour is not common under normal conditions.
The most common hippo vocalisation is the "wheeze honk", which can travel over long distances in air. This call starts as a high-pitched squeal followed by a deeper, resonant call. The animals can recognise the calls of other individuals. Hippos are more likely to react to the wheeze honks of strangers than to those they are more familiar with. When threatened or alarmed, they produce exhalations, and fighting bulls will bellow loudly. Hippos are recorded to produce clicks underwater which may have echolocative properties. They have the unique ability to hold their heads partially above the water and send out a cry that travels through both water and air; individuals respond both above and below water.
Reproduction
Cows reach sexual maturity at five to six years of age and have a gestation period of eight months. A study of endocrine systems revealed cows may begin puberty at as early as three or four years. Males reach maturity at around 7.5 years. Both conceptions and births are highest during the wet season. Male hippo always have mobile spermatozoa and can breed year-round. After becoming pregnant, a female hippo will typically not begin ovulation again for 17 months.
Preserved hippopotamus fetus
Hippos mate in the water, with the cow remaining under the surface, her head emerging periodically to draw breath. Cows give birth in seclusion and return within 10 to 14 days. Calves are born on land or shallow water weighing on average 50 kg (110 lb) and at an average length of around 127 cm (4.17 ft). The female lies on her side when nursing, which can occur underwater or on land. The young are carried on their mothers' backs in deep water.
Mother hippos are very protective of their young, not allowing others to get too close. One cow was recorded protecting a calf's carcass after it had died. Calves may be temporarily kept in nurseries, guarded by one or more adults, and will play amongst themselves. Like many other large mammals, hippos are described as K-strategists, in this case typically producing just one large, well-developed infant every couple of years (rather than many small, poorly developed young several times per year, as is common among small mammals such as rodents). Calves no longer need to suckle when they are a year old.
Interspecies interactions
Hippos coexist alongside a variety of large predators in their habitats. Nile crocodiles, lions, and spotted hyenas are known to prey on young hippos. Beyond these, adult hippos are not usually preyed upon by other animals due to their aggression and size. Cases where large lion prides have successfully preyed on adult hippos have been reported, but it is generally rare. Lions occasionally prey on adults at Gorongosa National Park and calves are sometimes taken at Virunga. Crocodiles are frequent targets of hippo aggression, probably because they often inhabit the same riparian habitats; crocodiles may be either aggressively displaced or killed by hippos. In turn, very large Nile crocodiles have been observed preying occasionally on calves, "half-grown" hippos, and possibly also adult female hippos. Groups of crocodiles have also been observed finishing off still-living male hippos that were previously injured in mating battles with other males.
Hippos occasionally visit cleaning stations in order to be cleaned of parasites by certain species of fishes. They signal their readiness for this service by opening their mouths wide. This is an example of mutualism, in which the hippo benefits from the cleaning while the fish receive food. Hippo defecation creates allochthonous deposits of organic matter along the river beds. These deposits have an unclear ecological function. A 2015 study concluded hippo dung provides nutrients from terrestrial material for fish and aquatic invertebrates, while a 2018 study found that their dung can be toxic to aquatic life in large quantities, due to absorption of dissolved oxygen in water bodies.
The parasitic monogenean flatworm Oculotrema hippopotami infests hippopotamus eyes, mainly the nictitating membrane. It is the only monogenean species (which normally live on fish) documented to live on a mammal.
Hippos and humans
The earliest evidence of human interaction with hippos comes from butchery cut marks on hippo bones found at the Bouri Formation and dated to around 160,000 years ago. 4,000–5,000 year art showing hippos being hunted have been found in the Tassili n'Ajjer Mountains of the central Sahara near Djanet. The ancient Egyptians recognised the hippo as a ferocious denizen of the Nile and representations on the tombs of nobles show the animals were hunted by humans.
The hippo was also known to the Greeks and Romans. The Greek historian Herodotus described the hippo in The Histories (written circa 440 BC) and the Roman naturalist Pliny the Elder wrote about the hippo in his encyclopedia Naturalis Historia (written circa 77 AD). The Yoruba people called the hippo erinmi, which means "elephant of the water". Some individual hippos have achieved international fame. Huberta became a celebrity during the Great Depression for trekking a great distance across South Africa.
Attacks on humans
The hippo is considered to be extremely aggressive and has frequently been reported charging and attacking boats. Small boats can easily be capsized by hippos and passengers can be injured or killed by the animals, or drown in the water. In one 2014 case in Niger, a boat was capsized by a hippo and 13 people were killed. Hippos will often raid farm crops if the opportunity arises, and humans may come into conflict with them on these occasions. These encounters can be fatal to either humans or hippos.
According to the Ptolemaic historian Manetho, the pharaoh Menes was carried off and then killed by a hippopotamus.
In zoos
Hippos have long been popular zoo animals. The first record of hippos taken into captivity for display is dated to 3500 BC in Hierakonpolis, Egypt. The first zoo hippo in modern history was Obaysch, who arrived at the London Zoo on 25 May 1850, where he attracted up to 10,000 visitors a day and inspired a popular song, the "Hippopotamus Polka".
Hippos generally breed well in captivity; birth rates are lower than in the wild, but this can be attributed to zoos' desire to limit births, since hippos are relatively expensive to maintain. Starting in 2015, the Cincinnati Zoo built a US$73 million exhibit to house three adult hippos, featuring a 250,000 L (66,000 US gal) tank. Modern hippo enclosures also have a complex filtration system for the animal's waste, an underwater viewing area for the visitors, and glass that may be up to 9 cm (3.5 in) thick and capable of holding water under pressures of 31 kPa (4.5 psi). In 1987, the Toledo Zoo saw the first underwater birth by a captive hippo. The exhibit was so popular, the logo of the Toledo Zoo was updated to feature the hippos.
Cultural significance
In Egyptian mythology, the god Set takes the form of a red hippopotamus and fights Horus for control of the land, but is defeated. The goddess Tawaret is depicted as a pregnant woman with a hippo head, representing fierce maternal love. The Ijaw people of the Niger Delta wore masks of aquatic animals like the hippo when practising their water spirit cults, and hippo ivory was used in the divination rituals of the Yoruba. Hippo masks were also used in Nyau funerary rituals of the Chewa of Southern Africa.[97]: 120 According to Robert Baden-Powell, Zulu warriors referred to hippos in war chants. The Behemoth from the Book of Job, is thought to be based on the hippo.
Hippos have been the subjects of various African folktales. According to a San story, when the Creator assigned each animal its place in nature, the hippos wanted to live in the water, but were refused out of fear they might eat all the fish. After begging and pleading, the hippos were finally allowed to live in the water on the condition they would eat grass instead of fish, and fling their dung so it can be inspected for fish bones. In a Ndebele tale, the hippo originally had long, beautiful hair, but it was set on fire by a jealous hare and the hippo had to jump into a nearby pool. The hippo lost most of his hair and was too embarrassed to leave the water.
The "Hippopotamus Polka"
Hippopotamuses were rarely depicted in European art during the Renaissance and Baroque periods, due to less access to specimens by Europeans. One notable exception is Peter Paul Rubens' The Hippopotamus and Crocodile Hunt (1615–1616). Ever since Obaysch inspired the "Hippopotamus Polka", hippos have been popular animals in Western culture for their rotund appearance, which many consider comical. The Disney film Fantasia featured a ballerina hippo dancing to the opera La Gioconda. The film Hugo the Hippo is set in Tanzania and involves the title character trying to escape being slaughtered with the help of local children. The Madagascar films feature a hippo named Gloria. Hippos even inspired a popular board game, Hungry Hungry Hippos.
Among the most famous poems about the hippo is "The Hippopotamus" by T. S. Eliot, where he uses the animal to represent the Catholic Church. Hippos are mentioned in the novelty Christmas song "I Want a Hippopotamus for Christmas" that became a hit for child star Gayla Peevey in 1953. They also featured in the popular "The Hippopotamous Song" by Flanders and Swann.
A popular internet myth reports that hippos have pink milk. Biologist David Wynick states, "I think this is an Internet legend that is oft repeated but without any evidence for it that I can find... Like all mammals, hippos produce white or off-white milk for their young.
Take these Six Small Steps for Big Results
by UndergroundHealthReporter
These products and additives add layers upon layers of toxins to your body as well as release carcinogens into the air you breathe. By limiting what you bring into your home, you are taking the first step in cancer prevention.
1. Clean-sweep your cleaning products
2. Can the canned goods
3. Choose Organic when possible
4. Trade in your teflon
5. Opt for the stove top
6. Don't be dangerously pretty
* Sources: Prevent Cancer in Your Home in 6 Easy Steps
* Underground Health Reporter is on Facebook and Twitter too
* All our posts about EDCs, safe cosmetics and safer chemicals. See more infographics.
” Feminine care. Feminine hygiene. Personal cleansing products. Intimate care. No matter what you call them, these consumer products are manufactured for and marketed exclusively to women. The purpose of feminine care products is to clean, moisturize, absorb discharge or otherwise treat the sensitive skin and tissues of the vaginal area. Women are told they are necessary for personal hygiene, a “fresher feeling,” or “greater confidence,” and the companies marketing these products imply that this improved cleanliness will promote good health and increase sex appeal.
A closer look at the impacts of these products, and the chemicals they contain, tell a much different story. Products intended for use on or in an incredibly absorbent part of a woman’s body are marketed and sold with little to no data assuring the ingredients they contain are safe. Ingredients are determined “safe,” operating under the premise that they are used on ordinary skin just like other cosmetic products. That means chemicals of concern such as carcinogens, reproductive toxins, endocrine disruptors, and allergens are being used on, or even in, the extremely permeable mucus membranes of the vaginal area. “
Read the Women’s Voices for the Earth November 2013 Chem Fatale report.
Discover Women’s Voices Earth blog, on Facebook and Twitter.
All our posts about EDCs, safe cosmetics and safer chemicals.
Toxic chemicals don’t belong in Tampons. Period.
Tampax: Detox the Box!
Women's Voices for the Earth November 2013 Chem Fatale report found toxic chemicals commonly used in feminine care products like pads and tampons. " Unfortunately, because pads and tampons are regulated as “medical devices” and not “personal care products,” companies aren’t required by law to disclose any of the ingredients used in these products. We know that Procter & Gamble, makers of Tampax and Always, uses some toxic fragrance chemicals – and we have a right to know what else they’re using in pads and tampons. "
Sources and More Information
* Women's Voices Earth blog post and on Facebook.
* Take Action: Tell Tampax and Always to detox the box!
* Tampons & Transparency, by Dr Radium Yttrium, 17 Feb 2014.
* All our posts about EDCs, safe cosmetics and safer chemicals. See more infographics.
IPEN's mission is a toxics-free future for all
IPEN: toxic-fee is a global network of public interest organizations aiming to eliminate toxic substances. IPEN is working to establish and implement safe chemicals policies and practices that protect human health and the environment around the world.
Click to download the brochure
Faces and Voices of People Exposed to Diethylstilbestrol.
A tribute to the millions of lives upended by exposure to DES, Diethylstilbestrol, synthetic estrogen, toxic chemical, and carcinogenic prescription drug. In photographic portraits and interviews, DES daughters, mothers, and sons tell, in their own voice, what it's like to be DES-exposed. Today the DES story continues to unfold as research brings new findings to light. DES Stories rings with daring honesty—and points to broader concerns about the effects of endocrine-disrupting chemicals.
More information
* DES Resources: Cancer, Breast Cancer, CCA, Vaginal Cancer.
* DES Resources: Fertility, Pregnancies and Various Studies.
* DES Resources: In-Utero Exposure to DES and DES Side Effects.
* Watch videos, read our posts tagged DES and the DES-exposed.
Theme of The Week - Product Photography
I have Hashimoto's, an auto-immune disorder which is the cause of my hypothyroidism. Because Hashimoto's only attacks the thyroid and because COVID-19 is new, it is unknown if it puts me at a higher risk. Hypothyroidism is an endocrine disorder, and is related to diabetes. Thyroid disease can interfere with the body’s metabolism and can alter blood sugar levels which can increase the risk of developing diabetes. Having diabetes does put a person in the higher risk group.
Thursday, I went on a 2-mile walk. When I got back to my house, I had trouble breathing and was coughing. And because one of my co-workers had been in England 3 weeks ago, I went into panic mode. After a panicked phone call to my doctor, I texted my co-worker and found that they were not sick. After I calmed down, I realized that the pain in my lungs was the same as when I had bronchitis back in December. I could feel my bronchial tubes, a bizarre tight-feeling upside down Y in my chest. Using the inhaler my doctor gave me back in December helped relieve the tightness.
TOTW winner
To understand the archetypal signature of the rose, it is necessary to suspend one’s intellectual and cultural connections to it and simply be open to the “presence” of the rose. This popular flower has a complicated symbology with paradoxical meanings. It is at once a symbol of both purity and passion, both heavenly perfection and earthly desire; both virginity and fertility; both death and life. The rose is the flower of the goddesses Isis and Venus but also the blood of Osiris, Adonis, and Christ.
The Egyptians early in their history realized the connection of the heart to the pulse. An ancient Egyptian medical treatise of the heart says that it "speaks in the vessels of all the members." It is not suprising then that they believed that the heart held the mind and soul of the individual. Another Egyptian author stated emphatically that "the actions of the arms, the movement of the legs, the motion of every other member is done according to the orders of the heart that has conceived them." It was sometimes said of the dead that their hearts had "departed" because it was believed that . It was the heart which was weighed against the feather of truth in the hall of Ma'at during the diving judgement of the deceased. A heart unburdened with the weight of sin and corruption would balance with the feather and its possessor would enjoy the eternal afterlife. The vital importance of the heart in determining the fate of the deceased in the afterlife lead to a chapter in the Book of the Dead (Spell 30) where the deceased implores his heart not to betray him. In part, it reads: "O my heart which I had from my mother, O my heart which I had upon earth, do not rise up against me as a witness in the presence of the Lord of Things; do not speak against me concerning what I have done, do not bring up anything against me in the presence of the Great God, Lord of the West." Many "heart" scarabs were manufactured in Egypt. These scarabs were designed to be placed over the heart of the deceased. On one side a carving of a scarab was featured. On the other side Spell 30 was inscribed.
During the embalming process, the Egyptians removed most of the internal organs from the body. However, they always left the heart inside the body. The brain was removed using a long bronze hook which was inserted up the nose. The Egyptians were not exactly sure what the brain did, although many believed that its job was to produce snot. According to the priests of Memphis, the god Ptah conceived of all things in his heart and brought them into being by speaking their names.
What is Heart Intelligence? And, what exactly is the difference between Heart Intelligence, IQ, and EQ? In this article, I’ll give you a clear definition of each, and at the end, I will tell you what you can do next to start accessing the intelligence, wisdom and power of your heart. These days everyone is talking about the Heart. Every where you look and listen, people from all religions, cultures, and ages speak about the heart as if was the true center of wisdom: ‘follow your heart’, ‘connect to your heart’, ‘lead from the heart’, ‘speak from the heart’, ‘consult your heart’…
Surely, if Aristoteles were alive today, there would be a big smile on his face! A student of Plato and tutor to Alexander the Great, Aristoteles believed and taught a ‘cardiocentric‘ model of human anatomy where the heart was the true center of human intelligence and not the brain. For the past 30 years Scientist at the HeartMath Institute as well as hundreds of independent researchers, including researchers in the fields neurocardiology, have been speaking about Heart Intelligence, a higher level of awareness that arises from the heart. The human heart has approximately 40,000 neural cells. This means the heart has it’s own nervous system, which actually sends more information to the brain, than the brain sends to the heart! From a biophysical perspective, every heart contraction creates a wave that pushes blood through the veins and arteries providing the energetic signal that helps synchronize all the cells of the body, including the brain. From a hormonal perspective, the heart is a hormone-producing endocrine gland, producing ANF to control blood- pressure, adrenaline, dopamine, and oxytocin (the love hormone). Oxytocin reduces fear, increases eye-contact, and increases trust and generosity. From an electromagnetic perspective, the heart’s electromagnetic field is 5,000 times more powerful than the brain’s! Our heart’s electromagnetic field expands and touches those within 8 – 25 feet of where we are positioned! What science is doing is validating what our spiritual traditions have been telling us for thousands of years: that the heart stands at the center of an intelligence system that gives us access to not only our soul’s wisdom, but the wisdom contained in the entire Universe!
What is Heart Intelligence?
Heart Intelligence (also known as HQ or Heart IQ) is a higher level of awareness that arises when you are able to integrate your physical, mental, emotional and spiritual intelligence.
When fully embodied and integrated, Heart Intelligence gives you the ability to be fully real, present, connected and heart-directed in every area of your life so that you can experience greater levels of performance, creativity, intuition and higher order thinking. What’s the difference between Mental Intelligence, Emotional Intelligence, and Heart Intelligence? Physical Intelligence is the natural intelligence of the body and each one of it’s parts. It’s the consciousness or programming behind each cell, our DNA and molecular structure that tells the body exactly what to do and when. This is how physical healing takes place.
Mental Intelligence, also known as IQ (Intelligence Quotient) is the measure of your ability to think and reason. This intelligence is normally associated with the left side of your brain that thinks in terms of logic, and language. Emotional Intelligence, also referred to as EQ (Emotional Quotient), is your ability to identify and assess your emotions and the emotions of others. This intelligence is normally associated with the right side of your brain, that associated with creativity and emotions.
Spiritual Intelligence, also referred to as SQ, is the intelligence or wisdom of the soul. Think of this as the accumulation of wisdom your soul has acquired as it journey through different dimensions and lifetimes. It’s also an intelligence that connects us to the Greater Intelligence system we call God, Spirit, the Universe, the Great Spirit, or simply Life.
For example, there is increasing evidence suggesting that the cardioelectromagenetic field can actually affect human beings in close proximity.These signals are stronger in amplitude when in direct contact, but are still detectable up to several feet away from the source. Through these interactions, the heart transfers energies between human beings. The heart can therefore be characterized as the engine for distributing and controlling energy of the human body.
These extraordinary results illustrate that the heart is not only responsible for blood regulations, but is also a very powerful intelligence system. This made me wonder, could intelligence be distributed through the body in ways we might not expect? Could this information sent to the brain perhaps even influence emotional states? Or provide insight into some of the unexplained links between "mental" and "bodily" diseases
Our current human experience, the everyday life we all seem willing to participate in, takes its toll, and many people feel that living the lifestyles we do, struggling to pay bills and constantly working, is not a natural way of life for the human race. It’s an experience that makes it hard to maintain a “high frequency” or positive state. What makes this unfortunate reality even more perplexing is the fact that it doesn’t have to be this way — we are capable of so much more. At the same time, many people around the world are struggling to feed, clothe, and shelter themselves. The Earth is being destroyed and our time to turn things around seems to be limited. This is a hard truth that we very much need to address, and we have a number of options to choose from that could alleviate these problems. It can be difficult to maintain a positive state of mind when we see so many terrible things happening in the world, but we cannot create the kind of change we’re looking for unless we do so from a positive, peaceful state.
Despite all of the negativity in the world and our individual struggles, many people do manage to find inner peace and moments of joy, and that’s pretty remarkable. It’s all about perspective — it’s seeing the bigger picture and changing the way you look at things. Happiness is no doubt an inside job, but with a human experience that is not resonating with many it can be hard to maintain. This is evident in a variety of different areas where people are starting to stand up and demand change. More and more people are wanting something different, wanting a life where everybody can thrive and feel good about themselves and their place in the world. If one is suffering, we all suffer — that’s the way we feel here at CE and it’s clear that many are resonating with that message. The funny thing about our feelings is that, for the most part, they are a result of our own choices. We can choose to change the way we feel just by changing our thoughts. Negative emotions are usually a result of the thoughts we have about the people, things, or events in our lives. At the end of the day, it’s just a human experience, and all experiences are opportunities for learning and growth. The bottom line is, feelings of love, gratitude, and compassion — any positive feelings whatsoever — have a larger impact than we could have ever imagined. These are all characteristics of consciousness, and as quantum physics is showing us, consciousness plays a definite role in the creation of our reality. If this is true, then how we feel about things must play a role, too, and with the research coming out from the Institute of HeartMath, it doesn’t seem unreasonable to suggest that feeling good might very well be fundamental to creating global change.
“A fundamental conclusion of the new physics also acknowledges that the observer creates the reality. As observers, we are personally involved with the creation of our own reality. Physicists are being forced to admit that the universe is a ‘mental’ construction. Pioneering physicist Sir James Jeans wrote: ‘The stream of knowledge is heading toward a non-mechanical reality; the universe begins to look more like a great thought than like a great machine. Mind no longer appears to be an accidental intruder into the realm of matter, we ought rather hail it as the creator and governor of the realm of matter. Get over it, and accept the inarguable conclusion. The universe is immaterial-mental and spiritual.’ It have done some amazing work shedding light on the science of the heart.An internationally recognized nonprofit research and education organization, the Institute of HeartMath dedicates itself to helping people reduce stress, self-regulate emotions, and build energy and resilience for healthy, happy lives. HeartMath tools, technology, and training teach people to rely on the intelligence of their hearts in concert with that of their minds at home, school, work, and play.A large portion of their research has investigated heart and brain interaction. Researchers have examined how the heart and brain communicate with each other and how that affects our consciousness and the way in which we perceive our world. For example, when a person is feeling really positive emotions like gratitude, love, or appreciation, the heart beats out a certain message. Because the heart beats out the largest electromagnetic field produced in the body, it can yield significant data for researchers. This is very important work, as it shows how the heart plays an important role far beyond what is commonly known. For instance, did you know that your heart emits electromagnetic fields that change according to your emotions, or that the human heart has a magnetic field that can be measured up to several feet away from the human body? Did you know that positive emotions create physiological benefits in your body, and that you can boost your immune system by conjuring up positive emotions? Did you know that negative emotions can create nervous system chaos, and that positive emotions do the complete opposite? Did you know that the heart has a system of neurons that have both short term and long term memory, and that their signals sent to the brain can affect our emotional experiences? Did you know that in fetal development, the heart forms and starts beating before the brain is developed? Did you know that a mother’s brainwaves can synchronize to her baby’s heartbeats? Did you know that the heart sends more information to the brain than vice versa?
Your heart, when energized, has the capacity to unify, or bring into a state of coherence all systems in your body. This includes not only all your organs but also your intelligences. Doing this will allow you experience a state of flow, or Coherence. Coherence (also known as psycho-physiological coherence), can be understood as the capacity to flow and the capacity to accept things as they happen: accept life and accept the moment-to-moment experience. When we experience coherence, we tend to be in an accepting state that allows us to flow with rather than resist the unfolding of events. Coherence is a fluid state; a state that is relaxed; a state in which you have your full attention on the here and now—you inhabit your moment, your body, and your mind in the most relaxed and joyful way. From this space, you can respond to life from a deeper place of Love, Compassion, and Acceptance which we call the Heart. You can think of Heart Intelligence as the process of integrating the heart, body, and mind so that you can access the Heart behind the heart.
The numerological elements of the rose are also present in Guild documents and meetings. In general, the rose represents the number five. This is because the wild rose has five petals, and the total petals on roses are in multiples of five. Geometrically, the rose corresponds with the pentagram and pentagon. Five represents the Fifth Element, the life force, the heart or essence of something. In an absolute sense, the rose has represented the expanding awareness of life through the development of the senses. Six-petaled varieties indicate balance and love; seven-petaled varieties indicate transformative passion; and rare eight-petaled roses indicate regeneration, a new cycle, or a higher level of space and time. The rose is one of the fundamental symbols of alchemy and became the philosophical basis of Rosicrucian alchemy. It was so important to alchemists that there are many texts called “Rosarium” (Rosary), and all these texts deal with the relationship between the archetypal King and Queen. We have noted the Rosarium of Jaros Griemiller, an original member of the Guild. Another important Rosarium was prepared by alchemist Arnold de Villanova, who also interacted with Guild members. In alchemy, the rose is primarily a symbol of the operation of Conjunction, the Mystical Marriage of opposites. It represents the regeneration of separated essences and their resurrection on a new level. In the Practice of Psychotherapy, Carl Jung discussed the archetypal underpinnings of love between people in terms of the rose: “The wholeness which is a combination of ‘I and you’ is part of a transcendent unity whose nature can only be grasped in symbols like the rose or the coniunctio (Conjunction).” In alchemy the red rose is regarded as a masculine, active, expansive principle of solar spirit (Sulfur), where the white rose represents the feminine, receptive, contractive principle of lunar soul (Salt). The combination of white and red roses (spirit and soul) symbolizes the birth of the Philosopher’s Child (Mercury). During the operation of Conjunction, the relationship of the masculine red rose to the feminine white rose is the same relationship depicted in alchemical images of the Red King and the White Queen or the Red Sun and White Moon. White roses were linked to the White Phase of the Work (albedo) and the White Stone of Multiplication, while the red rose was associated with the Red Phase and the Red Stone of Projection. The single golden (or gilded) rose is a symbol completion of the Great Work or of some consummate achievement in personal or laboratory alchemy. The Popes used to bless a Golden Rose on the fourth Sunday in Lent, as a symbol of their spiritual power and the certainty of resurrection and immortality. In alchemical terms, the golden rose means a successful marriage of opposites to produce the Golden Child, the perfected essence of both King and Queen. Because Mary is the Christian model of union with God, the rose and the rosary became symbols of the union between god and mankind. Scenes of Mary in a rose garden or under a rose arbor or before a tapestry of roses reinforces this idea. Mary holds a rose and not a scepter in the art of the Middle Ages, which means her power comes from divine love. The rose garden in alchemical drawings is a symbol of sacred space. It could mean a meditation chamber or tabernacle, an altar, a sacred place in nature, or paradise itself. In all these instances, the rose garden is the mystical bridal chamber, the place of the mystic marriage. The rose has obvious connections with sexual energy in alchemy. The “rose colored blood of the alchemical redeemer” or the “warm red tincture” were references to healing effects of purified (alchemically distilled or sublimated) sexual energy. For instance, the Renaissance alchemist Gerhardt Dorn calls rose-colored blood a vegetabile naturae whereas ordinary blood was a vegetabile materiae. In other words, rose-colored blood carries the natural essence or soul, while ordinary blood simply functions on the physical level to supply oxygen to cells, etc. That is the meaning of the alchemical phrase, “The soul of the Stone is in its blood,” or as Carl Jung put it: “The rose red color is related to the aqua permanens and the soul, which are extracted from the prima materia.” The sword and knife, symbols of the Separation operation, carry such power in alchemy partly because of their ability to draw blood. In spiritual alchemy, the single red rose represents the mystic center of a person, his or her heart of hearts – one’s true nature. It also represents the process of purification to reveal one’s essence or the inner “pearl beyond price.” Sufi spiritual alchemist Rumi described this idea when he wrote: "In the driest whitest stretch of pain's infinite desert, I lost my sanity and found this rose." As a symbol of the Mystical Marriage on a personal level, the red rose represents a special kind of love in which one “melts away” into the beauty of another, and the old identity is surrendered for that of the beloved or a higher identity within oneself. In this sense, the rose is a symbol of complete surrender and permanent transmutation. Alchemist Daniel Maier discusses the symbolism of the rose in his Septimana Philosophica: “The rose is the first, most beautiful and perfect of flowers. It is guarded because it is a virgin, and the guard is thorns. The Gardens of Philosophy are planted with many roses, both red and white, which colors are in correspondence with gold and silver. The center of the rose is green and is emblematical of the Green Lion [First Matter]. Even as a natural rose is a pleasure to the senses and life of man, on account of its sweetness and salubrity, so is the Philosophical Rose exhilarating to the heart and a giver of strength to the brain. Just as the natural rose turns to the sun and is refreshed by rain, so is the Philosophical Matter prepared in blood, grown in light, and in and by these made perfect." Because of its association with the workings of the heart, the rose in alchemy has come to symbolize secrets of the heart or things that cannot be spoken or an oath of silence in general. In the folded structure of the rose, the flower seems to be concealing a secret inner core. “Mystery glows in the rose bed and the secret is hidden in the rose,” wrote the twelfth-century Persian alchemist Farid ud-din Attar. During Alchemy Guild meetings, a red rose hung from the ceiling indicates the material to be discussed is confidential for members only and is to be kept secret. On the Guild’s websites and in its printed matter, a red rose icon or the Latin phrase “sub rosa” (“under the rose”) indicates the material is secret. Clicking on this icon on websites will take the visitor to password-protected areas intended for members only. This concept originates in the hermetic tradition of hanging red roses from the ceiling of meetings to indicate that discretion was called for and none of the information discussed should leave the room. The symbol was used in a number of hermetic organizations in the late Middle Ages and Renaissance and was well known to alchemists. For instance, in Sebastian Brant's fifteenth-century alchemical treatise “Narrenschiff” (“Ship of Fools”), the author warns: “What here we do say, shall under roses stay.”
We know that the active form of Bisphenol-A (BPA) binds to our steroid receptors, meaning it can affect estrogen, thyroid and testosterone function. A new University of Missouri study shows that the exposure to the controversial chemical BPA through diet has been underestimated by previous lab tests.
Read Exposure to BPA has been underestimated, new MU research says / Bye Bye estrogen, thyroid and testosterone, by Health Research Report, Medical Science not Medical Industry. See more infographics.
Mickey Waffles at the Happiest Place on Earth are so good! They are my favorite breakfast item and make breakfast magical.
These are the Mickey Waffles at Boma, The Flavors of Africa at Disney’s Animal Kingdom Lodge. We stayed in the DVC at Disney’s Kidani Village last summer and enjoyed breakfast at the resort’s sit-down restaurant.
These delicious Mickey Waffles are Gluten-Free and guests with a Gluten Intolerance, Celiac Disease or other gluten/wheat sensitivity can have Mickey Waffles! Walt Disney Dining is so great about providing guests with options that fit their sensitivity (or even severe food allergy). I have a non-celiac gluten sensitivity that presented the last several years as endocrine-autoimmune and I use the allergy menu for to safely select food options.
You may have a favorite magical breakfast item at the Happiest Place on Earth.
Breakfast at Boma | Animal Kingdom Resort, Walt Disney World
Happy Saturday, dear Flickr friends... :-)
Here is my next entry into my crystal database.
Geode, 12 x 10 x 5 cm
Amethyst is an extremely powerful and protective stone with a high spiritual vibration. It guards against psychic attack, transmuting the energy into love. A natural tranquilizer, Amethyst blocks geopathic stress and negative environment energies. Its serenity enhances higher states of consciousness and meditation. Amethyst has strong healing and cleansing powers, and enhances spiritual awareness.
Healing: Amethyst boosts production of hormones, and tunes the endocrine system and metabolism. It strengthens the cleansing and eliminating organs and the immune system. An excellent cleanser for the blood. Amethyst relieves physical, emotional, and psychological pain or stress, and blocks geopathic stress. It eases headaches and releases hearing disorders. It heals dis-eases of the lungs and respiratory tract, is beneficial for the intestines, relating flora, removing parasites and encouraging reabsorption of water. Amethyst treats insomnia and brings restful sleep. At a subtle level it cleanses the aura and transmutes negative energy, and stimulates the throat and crown chakras. It is helpful for people about to make the transition through death.
Calcite is a powerful amplifier and cleanser of energy. More info about Calcite in a separate post... :-)
Received as a present from my wife Sigi...
This shot is not digitally manipulated in any way.
© Nic Kolbe • Please do not use this photo for Blogs or Banners without my permission.
"Personally Dave I feel like the government needs to do more to help rehouse these poor refuges from Corto Maltease. They're US citizens afterall and they should be treated like it!"
"We all think that Kathy. Hopefully the relief fund can make a difference. Remember you can donate using the number below and please do, these people have lost everything and they need as much help as we can give.."
"Hang on Dave I've got some fresh news coming in from the folks in the control room. Apparently a terror group calling themselves 'The American Supremacist Party' have taken two people hostage and are demanding a ransom of fifty million dollars per person."
"Fifty million dollars? Christ who've they got hostage? Lionel Luthor?"
"No. According to the control room they've taken his daughter, Lena Luthor. Apparently they're holding her in an old Lexcorp factory just outside of Metropolis."
"Damn, Lionel isn't going to be best pleased that they're using one his old factories to blackmail him. What about the other hostage?"
"We're not sure yet but apparently it's the son of Maxwell Harp a member of the Wayne Enterprises board."
"Wait two millionaires have had their children abducted by the same gang?"
"Looks that way Dave."
"Doesn't look like it's as good to be rich as we all believe. I presume they're holding the boy where they're holding Lena Luthor?"
"According to the control room he's being held in an old apartment complex in the Gotham slums."
"Well I think I'd be pretty happy if I was Lena Luthor right now. Superman will get her out in a blink of the eye."
"What about the Harp boy?"
"I guess we've just got to hope that the police force there can handle the situation. We'll keep you posted as this situation develops folks."
"The biggest misconception, I think, is the reason I transitioned," Thomas told ABC News and ESPN. "People will say, 'Oh, she just transitioned so she would have an advantage, so she could win.' I transitioned to be happy, to be true to myself."
"Trans women competing in women's sports does not threaten women's sports as a whole," Thomas said. "Trans women are a very small minority of all athletes. The NCAA rules regarding trans women competing in women's sports have been around for 10- plus years. And we haven't seen any massive wave of trans women dominating."
My comment:
In my opinion, Lia shouldn't be competing against women but in a gender group who like her transitioned from male to "female"; Lia came into this world into a "male body" wired as a "male" physically with a "male endocrine" system which can't be turned on at will into a "female endocrine system" regardless of HRT
Science & the world haven't caught up with all there is to know about this new "LGBT" gender, we need to embrace differences within our human family with respect, knowledge, understanding & love but when competing in sport activities these differences must be addressed to ensure no one is "cheating" or given an unfair advantage
Transgender "women" have proportionately more muscle mass, more bone mass, and a lower percentage of body fat than women plus have proportionally smaller buttocks, bigger chests and wider shoulders all these tiny differences do add up to a significant unfair advantage over to women-born athletes in swimming competitions where a race can be won by a fraction of a moment
by Ruby T. Senie, PhD, Professor of Clinical Public Health, Columbia University, New York
With contributions from leading authorities in the field, this one-of-a-kind text explores the major health challenges and conditions specifically affecting women. Epidemiology of Women’s Health covers chronic, infectious, autoimmune and psychological conditions as well as the health disparities and differences in health behaviors to give the reader a comprehensive understanding of the major female-specific needs that may be useful in developing effective public health programs. The text concludes with a review of the ethical aspects of gender-specific research studies. Divided into 10 sections, the book covers the following topic areas: Introduction to Epidemiology of Women’s Health; Personal and Community-Based Health Promotion and Morbidity Prevention; Sexual Health Across the Life Span; Sexually Transmitted Infections; Chronic Psychological and Psychosocial Conditions; Endocrine & Autoimmune Conditions; Malignancies; Chronic Conditions; Aging; and Impact of Research: Lessons from the Past, Challenges of the Future.
DES Action USA published this comment:
Students assigned this excellent textbook are reading about DES - with info sprinkled liberally throughout. Chapter 26 is even dedicated to the memory of a DES Daughter who died of breast cancer. Inside tip: turn to page 473 to see a picture of the author, Rubie Senie. We thank her for keeping DES front and center!
More about DES
* DES DiEthylStilbestrol Resources by NCBI (1):
Cancer, Breast Cancer, CCA, Vaginal Cancer.
* DES DiEthylStilbestrol Resources by NCBI (3):
Fertility, Pregnancies and Various Studies.
* DES DiEthylStilbestrol Resources by NCBI (2):
In-Utero Exposure to DES and DES Side Effects.
* Watch videos, read our posts tagged DES and the DES-exposed.
Pesticides don't attack just the pests. New research shows that aquatic ecosystems in EU are under threat due to chemical pollution and 80-96% of the risk is due to the levels of pesticides in the rivers and lakes. Find out more.
After the success of the 9th edition with more than 1 300 actions in 26 different countries, the Pesticide action week will be back with its 10th edition from March 20th to March 30th2015.
* Download the new call to participate and spread it through your networks...
* Image sources: PAN Europe (Pesticide Action Network)'s Facebook Page, 2 February 2015.
* Our posts tagged EDCs, pesticides and safer chemicals.
Toxic chemicals don’t belong in Tampons. Period.
Always: Detox the Box!
Women's Voices for the Earth November 2013 Chem Fatale report found toxic chemicals commonly used in feminine care products like pads and tampons. " Unfortunately, because pads and tampons are regulated as “medical devices” and not “personal care products,” companies aren’t required by law to disclose any of the ingredients used in these products. We know that Procter & Gamble, makers of Tampax and Always, uses some toxic fragrance chemicals – and we have a right to know what else they’re using in pads and tampons. "
Sources and More Information
* Women's Voices Earth blog post and on Facebook.
* Take Action: Tell Tampax and Always to detox the box!
* Tampons & Transparency, by Dr Radium Yttrium, 17 Feb 2014.
* All our posts about EDCs, safe cosmetics and safer chemicals. See more infographics.
Persistent vegetative state
SpecialtyNeurology
A persistent vegetative state (PVS) is a disorder of consciousness in which patients with severe brain damage are in a state of partial arousal rather than true awareness. After four weeks in a vegetative state (VS), the patient is classified as in a persistent vegetative state. This diagnosis is classified as a permanent vegetative state some months (three in the US and six in the UK) after a non-traumatic brain injury or one year after a traumatic injury. Today, doctors and neuroscientists prefer to call the state of consciousness a syndrome,[1] primarily because of ethical questions about whether a patient can be called "vegetative" or not.[2]
Contents
1Definition
1.1Medical definition
1.2Lack of legal clarity
1.3Vegetative state
1.4Persistent vegetative state
2Signs and symptoms
2.1Recovery
3Causes
4Diagnosis
4.1Diagnostic experiments
4.2Misdiagnoses
5Treatment
5.1Zolpidem
6Epidemiology
7History
8Society and culture
8.1Ethics and policy
8.2Notable cases
9See also
10References
11External links
Definition[edit]
There are several definitions that vary by technical versus layman's usage. There are different legal implications in different countries.
Medical definition[edit]
A wakeful unconscious state that lasts longer than a few weeks is referred to as a persistent (or 'continuing') vegetative state.[3]
Lack of legal clarity[edit]
Unlike brain death, permanent vegetative state (PVS) is recognized by statute law as death in very few legal systems. In the US, courts have required petitions before termination of life support that demonstrate that any recovery of cognitive functions above a vegetative state is assessed as impossible by authoritative medical opinion.[4] In England and Wales the legal precedent for withdrawal of clinically assisted nutrition and hydration in cases of patients in a PVS was set in 1993 in the case of Tony Bland, who sustained catastrophic anoxic brain injury in the 1989 Hillsborough disaster.[3] An application to the Court of Protection is no longer required before nutrition and hydration can be withdrawn or withheld from PVS (or 'minimally conscious' – MCS) patients.[5]
This legal grey area has led to vocal advocates that those in PVS should be allowed to die. Others are equally determined that, if recovery is at all possible, care should continue. The existence of a small number of diagnosed PVS cases that have eventually resulted in improvement makes defining recovery as "impossible" particularly difficult in a legal sense.[6] This legal and ethical issue raises questions about autonomy, quality of life, appropriate use of resources, the wishes of family members, and professional responsibilities.
Vegetative state[edit]
The vegetative state is a chronic or long-term condition. This condition differs from a coma: a coma is a state that lacks both awareness and wakefulness. Patients in a vegetative state may have awoken from a coma, but still have not regained awareness. In the vegetative state patients can open their eyelids occasionally and demonstrate sleep-wake cycles, but completely lack cognitive function. The vegetative state is also called a "coma vigil". The chances of regaining awareness diminish considerably as the time spent in the vegetative state increases.[7]
Persistent vegetative state[edit]
Persistent vegetative state is the standard usage (except in the UK) for a medical diagnosis, made after numerous neurological and other tests, that due to extensive and irreversible brain damage a patient is highly unlikely ever to achieve higher functions above a vegetative state. This diagnosis does not mean that a doctor has diagnosed improvement as impossible, but does open the possibility, in the US, for a judicial request to end life support.[6] Informal guidelines hold that this diagnosis can be made after four weeks in a vegetative state. US caselaw has shown that successful petitions for termination have been made after a diagnosis of a persistent vegetative state, although in some cases, such as that of Terri Schiavo, such rulings have generated widespread controversy.
In the UK, the term is discouraged in favor of two more precisely defined terms that have been strongly recommended by the Royal College of Physicians (RCP). These guidelines recommend using a continuous vegetative state for patients in a vegetative state for more than four weeks. A medical determination of a permanent vegetative state can be made if, after exhaustive testing and a customary 12 months of observation,[8] a medical diagnosis is made that it is impossible by any informed medical expectations that the mental condition will ever improve.[9] Hence, a "continuous vegetative state" in the UK may remain the diagnosis in cases that would be called "persistent" in the US or elsewhere.
While the actual testing criteria for a diagnosis of "permanent" in the UK are quite similar to the criteria for a diagnosis of "persistent" in the US, the semantic difference imparts in the UK a legal presumption that is commonly used in court applications for ending life support.[8] The UK diagnosis is generally only made after 12 months of observing a static vegetative state. A diagnosis of a persistent vegetative state in the US usually still requires a petitioner to prove in court that recovery is impossible by informed medical opinion, while in the UK the "permanent" diagnosis already gives the petitioner this presumption and may make the legal process less time-consuming.[6]
In common usage, the "permanent" and "persistent" definitions are sometimes conflated and used interchangeably. However, the acronym "PVS" is intended[by whom?] to define a "persistent vegetative state", without necessarily the connotations of permanence,[citation needed] and is used as such throughout this article. Bryan Jennett, who originally coined the term "persistent vegetative state", has now recommended using the UK division between continuous and permanent in his book The Vegetative State, arguing that "the 'persistent' component of this term ... may seem to suggest irreversibility".[10]
The Australian National Health and Medical Research Council has suggested "post coma unresponsiveness" as an alternative term for "vegetative state" in general.[11]
Signs and symptoms[edit]
Most PVS patients are unresponsive to external stimuli and their conditions are associated with different levels of consciousness. Some level of consciousness means a person can still respond, in varying degrees, to stimulation. A person in a coma, however, cannot. In addition, PVS patients often open their eyes in response to feeding, which has to be done by others; they are capable of swallowing, whereas patients in a coma subsist with their eyes closed (Emmett, 1989).
Cerebral cortical function (e.g. communication, thinking, purposeful movement, etc) is lost while brainstem functions (e.g. breathing, maintaining circulation and hemodynamic stability, etc) are preserved. Non-cognitive upper brainstem functions such as eye-opening, occasional vocalizations (e.g. crying, laughing), maintaining normal sleep patterns, and spontaneous non-purposeful movements often remain intact.
PVS patients' eyes might be in a relatively fixed position, or track moving objects, or move in a disconjugate (i.e., completely unsynchronized) manner. They may experience sleep-wake cycles, or be in a state of chronic wakefulness. They may exhibit some behaviors that can be construed as arising from partial consciousness, such as grinding their teeth, swallowing, smiling, shedding tears, grunting, moaning, or screaming without any apparent external stimulus.
Individuals in PVS are seldom on any life-sustaining equipment other than a feeding tube because the brainstem, the center of vegetative functions (such as heart rate and rhythm, respiration, and gastrointestinal activity) is relatively intact (Emmett, 1989).
Recovery[edit]
Many people emerge spontaneously from a vegetative state within a few weeks.[10] The chances of recovery depend on the extent of injury to the brain and the patient's age – younger patients having a better chance of recovery than older patients. A 1994 report found that of those who were in a vegetative state a month after a trauma, 54% had regained consciousness by a year after the trauma, whereas 28% had died and 18% were still in the vegetative state. But for non-traumatic injuries such as strokes, only 14% had recovered consciousness at one year, 47% had died, and 39% were still vegetative. Patients who were vegetative six months after the initial event were much less likely to have recovered consciousness a year after the event than in the case of those who were simply reported vegetative at one month.[12] A New Scientist article from 2000 gives a pair of graphs[13] showing changes of patient status during the first 12 months after head injury and after incidents depriving the brain of oxygen.[14] After a year, the chances that a PVS patient will regain consciousness are very low[15] and most patients who do recover consciousness experience significant disability. The longer a patient is in a PVS, the more severe the resulting disabilities are likely to be. Rehabilitation can contribute to recovery, but many patients never progress to the point of being able to take care of themselves.
There are two dimensions of recovery from a persistent vegetative state: recovery of consciousness and recovery of function. Recovery of consciousness can be verified by reliable evidence of awareness of self and the environment, consistent voluntary behavioral responses to visual and auditory stimuli, and interaction with others. Recovery of function is characterized by communication, the ability to learn and to perform adaptive tasks, mobility, self-care, and participation in recreational or vocational activities. Recovery of consciousness may occur without functional recovery, but functional recovery cannot occur without recovery of consciousness (Ashwal, 1994).
Causes[edit]
There are three main causes of PVS (persistent vegetative state):
Acute traumatic brain injury
Non-traumatic: neurodegenerative disorder or metabolic disorder of the brain
Severe congenital abnormality of the central nervous system
Medical books (such as Lippincott, Williams, and Wilkins. (2007). In A Page: Pediatric Signs and Symptoms) describe several potential causes of PVS, which are as follows:
Bacterial, viral, or fungal infection, including meningitis
Increased intracranial pressure, such as a tumor or abscess
Vascular pressure which causes intracranial hemorrhaging or stroke
Hypoxic ischemic injury (hypotension, cardiac arrest, arrhythmia, near-drowning)
Toxins such as uremia, ethanol, atropine, opiates, lead, colloidal silver[16]
Trauma: Concussion, contusion
Seizure, both nonconvulsive status epilepticus and postconvulsive state (postictal state)
Electrolyte imbalance, which involves hyponatremia, hypernatremia, hypomagnesemia, hypoglycemia, hyperglycemia, hypercalcemia, and hypocalcemia
Postinfectious: Acute disseminated encephalomyelitis (ADEM)
Endocrine disorders such as adrenal insufficiency and thyroid disorders
Degenerative and metabolic diseases including urea cycle disorders, Reye syndrome, and mitochondrial disease
Systemic infection and sepsis
Hepatic encephalopathy
In addition, these authors claim that doctors sometimes use the mnemonic device AEIOU-TIPS to recall portions of the differential diagnosis: Alcohol ingestion and acidosis, Epilepsy and encephalopathy, Infection, Opiates, Uremia, Trauma, Insulin overdose or inflammatory disorders, Poisoning and psychogenic causes, and Shock.
Diagnosis[edit]
Despite converging agreement about the definition of persistent vegetative state, recent reports have raised concerns about the accuracy of diagnosis in some patients, and the extent to which, in a selection of cases, residual cognitive functions may remain undetected and patients are diagnosed as being in a persistent vegetative state. Objective assessment of residual cognitive function can be extremely difficult as motor responses may be minimal, inconsistent, and difficult to document in many patients, or may be undetectable in others because no cognitive output is possible (Owen et al., 2002). In recent years, a number of studies have demonstrated an important role for functional neuroimaging in the identification of residual cognitive function in persistent vegetative state; this technology is providing new insights into cerebral activity in patients with severe brain damage. Such studies, when successful, may be particularly useful where there is concern about the accuracy of the diagnosis and the possibility that residual cognitive function has remained undetected.
Diagnostic experiments[edit]
Researchers have begun to use functional neuroimaging studies to study implicit cognitive processing in patients with a clinical diagnosis of persistent vegetative state. Activations in response to sensory stimuli with positron emission tomography (PET), functional magnetic resonance imaging (fMRI), and electrophysiological methods can provide information on the presence, degree, and location of any residual brain function. However, use of these techniques in people with severe brain damage is methodologically, clinically, and theoretically complex and needs careful quantitative analysis and interpretation.
For example, PET studies have shown the identification of residual cognitive function in persistent vegetative state. That is, an external stimulation, such as a painful stimulus, still activates "primary" sensory cortices in these patients but these areas are functionally disconnected from "higher order" associative areas needed for awareness. These results show that parts of the cortex are indeed still functioning in "vegetative" patients (Matsuda et al., 2003).
In addition, other PET studies have revealed preserved and consistent responses in predicted regions of auditory cortex in response to intelligible speech stimuli. Moreover, a preliminary fMRI examination revealed partially intact responses to semantically ambiguous stimuli, which are known to tap higher aspects of speech comprehension (Boly, 2004).
Furthermore, several studies have used PET to assess the central processing of noxious somatosensory stimuli in patients in PVS. Noxious somatosensory stimulation activated midbrain, contralateral thalamus, and primary somatosensory cortex in each and every PVS patient, even in the absence of detectable cortical evoked potentials. In conclusion, somatosensory stimulation of PVS patients, at intensities that elicited pain in controls, resulted in increased neuronal activity in primary somatosensory cortex, even if resting brain metabolism was severely impaired. However, this activation of primary cortex seems to be isolated and dissociated from higher-order associative cortices (Laureys et al., 2002).
Also, there is evidence of partially functional cerebral regions in catastrophically injured brains. To study five patients in PVS with different behavioral features, researchers employed PET, MRI and magnetoencephalographic (MEG) responses to sensory stimulation. In three of the five patients, co-registered PET/MRI correlate areas of relatively preserved brain metabolism with isolated fragments of behavior. Two patients had suffered anoxic injuries and demonstrated marked decreases in overall cerebral metabolism to 30–40% of normal. Two other patients with non-anoxic, multifocal brain injuries demonstrated several isolated brain regions with higher metabolic rates, that ranged up to 50–80% of normal. Nevertheless, their global metabolic rates remained <50% of normal. MEG recordings from three PVS patients provide clear evidence for the absence, abnormality or reduction of evoked responses. Despite major abnormalities, however, these data also provide evidence for localized residual activity at the cortical level. Each patient partially preserved restricted sensory representations, as evidenced by slow evoked magnetic fields and gamma band activity. In two patients, these activations correlate with isolated behavioral patterns and metabolic activity. Remaining active regions identified in the three PVS patients with behavioral fragments appear to consist of segregated corticothalamic networks that retain connectivity and partial functional integrity. A single patient who suffered severe injury to the tegmental mesencephalon and paramedian thalamus showed widely preserved cortical metabolism, and a global average metabolic rate of 65% of normal. The relatively high preservation of cortical metabolism in this patient defines the first functional correlate of clinical–pathological reports associating permanent unconsciousness with structural damage to these regions. The specific patterns of preserved metabolic activity identified in these patients reflect novel evidence of the modular nature of individual functional networks that underlie conscious brain function. The variations in cerebral metabolism in chronic PVS patients indicate that some cerebral regions can retain partial function in catastrophically injured brains (Schiff et al., 2002).
Misdiagnoses[edit]
Statistical PVS misdiagnosis is common. An example study with 40 patients in the United Kingdom reported 43% of their patients classified as PVS were believed so and another 33% had recovered whilst the study was underway.[17] Some PVS cases may actually be a misdiagnosis of patients being in an undiagnosed minimally conscious state.[18] Since the exact diagnostic criteria of the minimally conscious state were only formulated in 2002, there may be chronic patients diagnosed as PVS before the secondary notion of the minimally conscious state became known.
Whether or not there is any conscious awareness with a patient's vegetative state is a prominent issue. Three completely different aspects of this should be distinguished. First, some patients can be conscious simply because they are misdiagnosed (see above). In fact, they are not in vegetative states. Second, sometimes a patient was correctly diagnosed but is then examined during the early stages of recovery. Third, perhaps some day the notion itself of vegetative states will change so to include elements of conscious awareness. Inability to disentangle these three example cases causes confusion. An example of such confusion is the response to a recent experiment using functional magnetic resonance imaging which revealed that a woman diagnosed with PVS was able to activate predictable portions of her brain in response to the tester's requests that she imagine herself playing tennis or moving from room to room in her house. The brain activity in response to these instructions was indistinguishable from those of healthy patients.[19][20][21]
In 2010, Martin Monti and fellow researchers, working at the MRC Cognition and Brain Sciences Unit at the University of Cambridge, reported in an article in the New England Journal of Medicine[22] that some patients in persistent vegetative states responded to verbal instructions by displaying different patterns of brain activity on fMRI scans. Five out of a total of 54 diagnosed patients were apparently able to respond when instructed to think about one of two different physical activities. One of these five was also able to "answer" yes or no questions, again by imagining one of these two activities.[23] It is unclear, however, whether the fact that portions of the patients' brains light up on fMRI could help these patients assume their own medical decision making.[23]
In November 2011, a publication in The Lancet presented bedside EEG apparatus and indicated that its signal could be used to detect awareness in three of 16 patients diagnosed in the vegetative state.[24]
Treatment[edit]
Currently no treatment for vegetative state exists that would satisfy the efficacy criteria of evidence-based medicine. Several methods have been proposed which can roughly be subdivided into four categories: pharmacological methods, surgery, physical therapy, and various stimulation techniques. Pharmacological therapy mainly uses activating substances such as tricyclic antidepressants or methylphenidate. Mixed results have been reported using dopaminergic drugs such as amantadine and bromocriptine and stimulants such as dextroamphetamine.[25] Surgical methods such as deep brain stimulation are used less frequently due to the invasiveness of the procedures. Stimulation techniques include sensory stimulation, sensory regulation, music and musicokinetic therapy, social-tactile interaction, and cortical stimulation.[26]
Zolpidem[edit]
There is limited evidence that the hypnotic drug zolpidem has an effect.[27] The results of the few scientific studies that have been published so far on the effectiveness of zolpidem have been contradictory.[28][29]
Epidemiology[edit]
In the United States, it is estimated that there may be between 15,000 and 40,000 patients who are in a persistent vegetative state, but due to poor nursing home records exact figures are hard to determine.[30]
History[edit]
The syndrome was first described in 1940 by Ernst Kretschmer who called it apallic syndrome.[31] The term persistent vegetative state was coined in 1972 by Scottish spinal surgeon Bryan Jennett and American neurologist Fred Plum to describe a syndrome that seemed to have been made possible by medicine's increased capacities to keep patients' bodies alive.[10][32]
Society and culture[edit]
Ethics and policy[edit]
An ongoing debate exists as to how much care, if any, patients in a persistent vegetative state should receive in health systems plagued by limited resources. In a case before the New Jersey Superior Court, Betancourt v. Trinitas Hospital, a community hospital sought a ruling that dialysis and CPR for such a patient constitutes futile care. An American bioethicist, Jacob M. Appel, argued that any money spent treating PVS patients would be better spent on other patients with a higher likelihood of recovery.[33] The patient died naturally prior to a decision in the case, resulting in the court finding the issue moot.
In 2010, British and Belgian researchers reported in an article in the New England Journal of Medicine that some patients in persistent vegetative states actually had enough consciousness to "answer" yes or no questions on fMRI scans.[34] However, it is unclear whether the fact that portions of the patients' brains light up on fMRI will help these patient assume their own medical decision making.[34] Professor Geraint Rees, Director of the Institute of Cognitive Neuroscience at University College London, responded to the study by observing that, "As a clinician, it would be important to satisfy oneself that the individual that you are communicating with is competent to make those decisions. At the moment it is premature to conclude that the individual able to answer 5 out of 6 yes/no questions is fully conscious like you or I."[34] In contrast, Jacob M. Appel of the Mount Sinai Hospital told the Telegraph that this development could be a welcome step toward clarifying the wishes of such patients. Appel stated: "I see no reason why, if we are truly convinced such patients are communicating, society should not honour their wishes. In fact, as a physician, I think a compelling case can be made that doctors have an ethical obligation to assist such patients by removing treatment. I suspect that, if such individuals are indeed trapped in their bodies, they may be living in great torment and will request to have their care terminated or even active euthanasia."[34]
Notable cases[edit]
Tony Bland – first patient in English legal history to be allowed to die
Paul Brophy – first American to die after court-authorization
Sunny von Bülow – lived almost 28 years in a persistent vegetative state until her death
Gustavo Cerati – Argentine singer-songwriter, composer and producer who died after four years in a coma
Prichard Colón – Puerto Rican former professional boxer and gold medal winner who spent years in a vegetative state after a bout
Nancy Cruzan – American woman involved in a landmark United States Supreme Court case
Gary Dockery – American police officer who entered, emerged and later reentered a persistent vegetative state
Eluana Englaro – Italian woman from Lecco whose life was ended after a legal case after spending 17 years in a vegetative state
Elaine Esposito – American child who was a previous record holder for having spent 37 years in a coma
Lia Lee – Hmong child who spent 26 years in a vegetative state and was the subject of a 1997 book by Anne Fadiman
Haleigh Poutre
Karen Ann Quinlan
Terri Schiavo
Aruna Shanbaug – Indian woman in persistent vegetative state for 42 years until her death. Due to her case, the Supreme Court of India allowed passive euthanasia in the country.
Ariel Sharon
Chayito Valdez
Vice Vukov
Helga Wanglie
Otto Warmbier
See also[edit]
Anencephaly
Brain death
Botulism
Catatonia
Karolina Olsson
Locked-in syndrome
Process Oriented Coma Work, for an approach to working with residual consciousness in patients in comatose and persistent vegetative states
References[edit]
^ Laureys, Steven; Celesia, Gastone G; Cohadon, Francois; Lavrijsen, Jan; León-Carrión, José; Sannita, Walter G; Sazbon, Leon; Schmutzhard, Erich; von Wild, Klaus R (2010-11-01). "Unresponsive wakefulness syndrome: a new name for the vegetative state or apallic syndrome". BMC Medicine. 8: 68. doi:10.1186/1741-7015-8-68. ISSN 1741-7015. PMC 2987895. PMID 21040571.
^ Laureys S, Celesia GG, Cohadon F, Lavrijsen J, León-Carrión J, Sannita WG, Sazbon L, Schmutzhard E, von Wild KR, Zeman A, Dolce G (2010). "Unresponsive wakefulness syndrome: a new name for the vegetative state or apallic syndrome". BMC Med. 8: 68. doi:10.1186/1741-7015-8-68. PMC 2987895. PMID 21040571.
^ Jump up to: a b Royal College of Physicians 2013 Prolonged Disorders of Consciousness: National Clinical Guidelines, www.rcplondon.ac.uk/resources/prolonged-disorders-conscio...
^ Jennett, B (1999). "Should cases of permanent vegetative state still go to court?. Britain should follow other countries and keep the courts for cases of dispute". BMJ (Clinical Research Ed.). 319 (7213): 796–97. doi:10.1136/bmj.319.7213.796. PMC 1116645. PMID 10496803.
^ Royal College of Physicians 2013 Prolonged Disorders of Consciousness: National Clinical Guidelines
^ Jump up to: a b c Diagnosing The Permanent Vegetative State by Ronald Cranford, MD
^ PVS, The Multi-Society Task Force on (1994-05-26). "Medical Aspects of the Persistent Vegetative State". New England Journal of Medicine. 330 (21): 1499–1508. doi:10.1056/NEJM199405263302107. ISSN 0028-4793. PMID 7818633.
^ Jump up to: a b Wade, DT; Johnston, C (1999). "The permanent vegetative state: Practical guidance on diagnosis and management". BMJ (Clinical Research Ed.). 319 (7213): 841–4. doi:10.1136/bmj.319.7213.841. PMC 1116668. PMID 10496834.
^ Guidance on diagnosis and management: Report of a working party of the Royal College of Physicians. Royal College of Physicians: London. 1996.
^ Jump up to: a b c Bryan Jennett. The Vegetative State: Medical facts, ethical and legal dilemmas (PDF). University of Glasgow: Scotland. Retrieved 2007-11-09.
^ Post-coma unresponsiveness (Vegetative State): a clinical framework for diagnosis. National Health and Medical Research Council (NHMRC): Canberra. 2003. Archived from the original on 2006-08-20.
^ Jennett, B (2002). "Editorial: The vegetative state. The definition, diagnosis, prognosis and pathology of this state are discussed, together with the legal implications". British Medical Journal. 73 (4): 355–357. doi:10.1136/jnnp.73.4.355. PMC 1738081. PMID 12235296. Retrieved 2012-06-11.
^ "New Scientist". 2014-02-02. Archived from the original on 2017-07-11. Retrieved 2019-01-07.
^ Nell Boyce (July 8, 2000). "Is anyone in there?". New Scientist: 36.
^ Schapira, Anthony (December 18, 2006). Neurology and Clinical Neuroscience. Mosby. p. 126. ISBN 978-0323033541.
^ Mirsattari SM, Hammond RR, Sharpe MD, Leung FY, Young GB (April 2004). "Myoclonic status epilepticus following repeated oral ingestion of colloidal silver". Neurology. 62 (8): 1408–10. doi:10.1212/01.WNL.0000120671.73335.EC. PMID 15111684.
^ K Andrews; L Murphy; R Munday; C Littlewood (1996-07-06). "Misdiagnosis of the vegetative state: retrospective study in a rehabilitation unit". British Medical Journal. 313 (7048): 13–16. doi:10.1136/bmj.313.7048.13. PMC 2351462. PMID 8664760.
^ Giacino JT, et al. (2002). "Unknown title". Neurology. 58 (3): 349–353. doi:10.1212/wnl.58.3.349. PMID 11839831.
^ Owen AM, Coleman MR, Boly M, Davis MH, Laureys S, Pickard JD (2006-09-08). "Detecting awareness in the vegetative state". Science. 313 (5792): 1402. CiteSeerX 10.1.1.1022.2193. doi:10.1126/science.1130197. PMID 16959998.
^ "Vegetative patient 'communicates': A patient in a vegetative state can communicate just through using her thoughts, according to research". BBC News. September 7, 2006. Retrieved 2008-08-14.
^ Stein R (September 8, 2006). "Vegetative patient's brain active in test: Unprecedented experiment shows response to instructions to imagine playing tennis". San Francisco Chronicle. Retrieved 2007-09-26.
^ Willful Modulation of Brain Activity in Disorders of Consciousness at nejm.org
^ Jump up to: a b Richard Alleyne and Martin Beckford, Patients in 'vegetative' state can think and communicate,Telegraph (United Kingdom), Feb 4, 2010
^ Cruse Damian; et al. (2011). "Bedside detection of awareness in the vegetative state: a cohort study". The Lancet. 378 (9809): 2088–2094. CiteSeerX 10.1.1.368.3928. doi:10.1016/S0140-6736(11)61224-5. PMID 22078855.
^ Dolce, Giuliano; Sazbon, Leon (2002). The post-traumatic vegetative state. ISBN 9781588901163.
^ Georgiopoulos M, et al. (2010). "Vegetative state and minimally conscious state: a review of the therapeutic interventions". Stereotact Funct Neurosurg. 88 (4): 199–207. doi:10.1159/000314354. PMID 20460949.
^ Georgiopoulos, M; Katsakiori, P; Kefalopoulou, Z; Ellul, J; Chroni, E; Constantoyannis, C (2010). "Vegetative state and minimally conscious state: a review of the therapeutic interventions". Stereotactic and Functional Neurosurgery. 88 (4): 199–207. doi:10.1159/000314354. PMID 20460949.
^ Snyman, N; Egan, JR; London, K; Howman-Giles, R; Gill, D; Gillis, J; Scheinberg, A (2010). "Zolpidem for persistent vegetative state—a placebo-controlled trial in pediatrics". Neuropediatrics. 41 (5): 223–227. doi:10.1055/s-0030-1269893. PMID 21210338.
^ Whyte, J; Myers, R (2009). "Incidence of clinically significant responses to zolpidem among patients with disorders of consciousness: a preliminary placebo controlled trial". Am J Phys Med Rehabil. 88 (5): 410–418. doi:10.1097/PHM.0b013e3181a0e3a0. PMID 19620954.
^ Hirsch, Joy (2005-05-02). "Raising consciousness". The Journal of Clinical Investigation. 115 (5): 1102. doi:10.1172/JCI25320. PMC 1087197. PMID 15864333.
^ Ernst Kretschmer (1940). "Das apallische Syndrom". Neurol. Psychiat. 169: 576–579. doi:10.1007/BF02871384.
^ B Jennett; F Plum (1972). "Persistent vegetative state after brain damage: A syndrome in search of a name". The Lancet. 1 (7753): 734–737. doi:10.1016/S0140-6736(72)90242-5. PMID 4111204.
^ Appel on Betancourt v. Trinitas
^ Jump up to: a b c d Richard Alleyne and Martin Beckford, Patients in 'vegetative' state can think and communicate, Telegraph (United Kingdom), Feb 4, 2010
This article contains text from the NINDS public domain pages on TBI. [1] and [2].
External links[edit]
Sarà, M.; Sacco, S.; Cipolla, F.; Onorati, P.; Scoppetta, C; Albertini, G; Carolei, A (2007). "An unexpected recovery from permanent vegetative state". Brain Injury. 21 (1): 101–103. doi:10.1080/02699050601151761. PMID 17364525.
Canavero S, et al. (2009). "Recovery of consciousness following bifocal extradural cortical stimulation in a permanently vegetative patient". Journal of Neurology. 256 (5): 834–6. doi:10.1007/s00415-009-5019-4. PMID 19252808.
Canavero S (editor) (2009). Textbook of therapeutic cortical stimulation. New York: Nova Science. ISBN 9781606925379.
Canavero S, Massa-Micon B, Cauda F, Montanaro E (May 2009). "Bifocal extradural cortical stimulation-induced recovery of consciousness in the permanent post-traumatic vegetative state". J Neurol. 256 (5): 834–6. doi:10.1007/s00415-009-5019-4. PMID 19252808.
Connolly, Kate. "Car crash victim trapped in a coma for 23 years was conscious", The Guardian, November 23, 2009.
Machado, Calixto, et al. "A Cuban Perspective on Management of Persistent Vegetative State". MEDICC Review 2012;14(1):44–48.
Potential BPA health effects include :
* Harm to brain
* Behavior and prostate in young children
* Many other effects triggered by hormone disruption.
Potential BPS health effects include :
* Related to hormone disruption.
Sources: Mind the Store by SaferChemicals, a national coalition of parents, health advocates, enviros, cancer survivors and 450 organizations working to protect American families. See more infographics
All our posts about BPA - BPS - Endocrine Disruptors - Pesticides - Phthalates
Toxic chemicals don’t belong in feminine products. Period.
Tell Tampax and Always to Detox the Box!
Women's Voices for the Earth November 2013 Chem Fatale report found toxic chemicals commonly used in feminine care products like pads and tampons. " Unfortunately, because pads and tampons are regulated as “medical devices” and not “personal care products,” companies aren’t required by law to disclose any of the ingredients used in these products. We know that Procter & Gamble, makers of Tampax and Always, uses some toxic fragrance chemicals – and we have a right to know what else they’re using in pads and tampons. "
Sources and More Information
* Women's Voices Earth blog post and on Facebook.
* Take Action: Tell Tampax and Always to detox the box!
* Tampons & Transparency, by Dr Radium Yttrium, 17 Feb 2014.
* All our posts about EDCs, safe cosmetics and safer chemicals. See more infographics.
To raise global awareness about endocrine-disrupting chemicals (EDCs) the Endocrine Society and IPEN have joined together to develop this 2014 EDC Guide documenting the threat endocrine disrupting chemicals (EDCs) pose to human health. The guide draws from each organization’s strengths to present a more comprehensive picture of global EDC exposures and health risks than either could have done alone. Endocrine Society authors contributed the scientific and health-related content; IPEN provides knowledge of global policies and perspectives from developing and transition countries.
Our lifestyles and our environment are potential contributors to disease. Diet, lack of exercise and exposure to environmental pollutants, including endocrine (hormone) disrupting chemicals (EDCs) present in many everyday products, may increase the risk of hormone related diseases such as breast cancer.
Sources
. A manifesto for the prevention of breast cancer, breastcanceruk.
. Prevention Week 18 to 24 September 2017, breastcanceruk.
. Supporter tool kit, breastcanceruk.
Endocrine Disruptors
. Endocrine-Disrupting Chemicals: 2nd Endocrine Society Scientific Statement, 2015.
. Endocrine-Disrupting Chemicals: 1st Endocrine Society Scientific Statement, 2009.
. Watch our DES and EDCs research gallery on Flickr.
More Information
. Read #DitchTheJunk, a breast cancer uk campaign and download this guide to safer cosmetics.
. Enjoy our health infographics album on Flickr.
. Our posts tagged EDCs and safe cosmetics.
. Safer chemicals YouTube video playlists: cosmetics and EDCs.
Dan Berger is Cartoonist behind Natural News.
" There is an epidemic of vitamin D deficiency sweeping across our modern world, and it's an epidemic of such depth and seriousness that it makes the H1N1 swine flu epidemic look like a case of the sniffles by comparison. Vitamin D deficiency is not only alarmingly widespread, it's also a root cause of many other serious diseases such as cancer, diabetes, osteoporosis and heart disease.
A study published in the March, 2010 issue of the Journal of Clinical Endocrinology and Metabolism found that a jaw-dropping 59 percent of the population is vitamin D deficient. In addition, nearly 25 percent of the study subjects were found to have extremely low levels of vitamin D." ...
... continue reading: Why you've never heard the truth about Vitamin D, by Mike Adams, the Health Ranger.
All our posts about big pharma, drugs, DrugMoney, the FDA.
See more comics...
Fish, any of approximately 34,000 species of vertebrate animals (phylum Chordata) found in the fresh and salt waters of the world. Living species range from the primitive jawless lampreys and hagfishes through the cartilaginous sharks, skates, and rays to the abundant and diverse bony fishes. Most fish species are cold-blooded; however, one species, the opah (Lampris guttatus), is warm-blooded.
The term fish is applied to a variety of vertebrates of several evolutionary lines. It describes a life-form rather than a taxonomic group. As members of the phylum Chordata, fish share certain features with other vertebrates. These features are gill slits at some point in the life cycle, a notochord, or skeletal supporting rod, a dorsal hollow nerve cord, and a tail. Living fishes represent some five classes, which are as distinct from one another as are the four classes of familiar air-breathing animals—amphibians, reptiles, birds, and mammals. For example, the jawless fishes (Agnatha) have gills in pouches and lack limb girdles. Extant agnathans are the lampreys and the hagfishes. As the name implies, the skeletons of fishes of the class Chondrichthyes (from chondr, “cartilage,” and ichthyes, “fish”) are made entirely of cartilage. Modern fish of this class lack a swim bladder, and their scales and teeth are made up of the same placoid material. Sharks, skates, and rays are examples of cartilaginous fishes. The bony fishes are by far the largest class. Examples range from the tiny seahorse to the 450-kg (1,000-pound) blue marlin, from the flattened soles and flounders to the boxy puffers and ocean sunfishes. Unlike the scales of the cartilaginous fishes, those of bony fishes, when present, grow throughout life and are made up of thin overlapping plates of bone. Bony fishes also have an operculum that covers the gill slits.
The study of fishes, the science of ichthyology, is of broad importance. Fishes are of interest to humans for many reasons, the most important being their relationship with and dependence on the environment. A more obvious reason for interest in fishes is their role as a moderate but important part of the world’s food supply. This resource, once thought unlimited, is now realized to be finite and in delicate balance with the biological, chemical, and physical factors of the aquatic environment. Overfishing, pollution, and alteration of the environment are the chief enemies of proper fisheries management, both in fresh waters and in the ocean. (For a detailed discussion of the technology and economics of fisheries, see commercial fishing.) Another practical reason for studying fishes is their use in disease control. As predators on mosquito larvae, they help curb malaria and other mosquito-borne diseases.
Fishes are valuable laboratory animals in many aspects of medical and biological research. For example, the readiness of many fishes to acclimate to captivity has allowed biologists to study behaviour, physiology, and even ecology under relatively natural conditions. Fishes have been especially important in the study of animal behaviour, where research on fishes has provided a broad base for the understanding of the more flexible behaviour of the higher vertebrates. The zebra fish is used as a model in studies of gene expression.
There are aesthetic and recreational reasons for an interest in fishes. Millions of people keep live fishes in home aquariums for the simple pleasure of observing the beauty and behaviour of animals otherwise unfamiliar to them. Aquarium fishes provide a personal challenge to many aquarists, allowing them to test their ability to keep a small section of the natural environment in their homes. Sportfishing is another way of enjoying the natural environment, also indulged in by millions of people every year. Interest in aquarium fishes and sportfishing supports multimillion-dollar industries throughout the world.
Fishes have been in existence for more than 450 million years, during which time they have evolved repeatedly to fit into almost every conceivable type of aquatic habitat. In a sense, land vertebrates are simply highly modified fishes: when fishes colonized the land habitat, they became tetrapod (four-legged) land vertebrates. The popular conception of a fish as a slippery, streamlined aquatic animal that possesses fins and breathes by gills applies to many fishes, but far more fishes deviate from that conception than conform to it. For example, the body is elongate in many forms and greatly shortened in others; the body is flattened in some (principally in bottom-dwelling fishes) and laterally compressed in many others; the fins may be elaborately extended, forming intricate shapes, or they may be reduced or even lost; and the positions of the mouth, eyes, nostrils, and gill openings vary widely. Air breathers have appeared in several evolutionary lines.
Many fishes are cryptically coloured and shaped, closely matching their respective environments; others are among the most brilliantly coloured of all organisms, with a wide range of hues, often of striking intensity, on a single individual. The brilliance of pigments may be enhanced by the surface structure of the fish, so that it almost seems to glow. A number of unrelated fishes have actual light-producing organs. Many fishes are able to alter their coloration—some for the purpose of camouflage, others for the enhancement of behavioral signals.
Fishes range in adult length from less than 10 mm (0.4 inch) to more than 20 metres (60 feet) and in weight from about 1.5 grams (less than 0.06 ounce) to many thousands of kilograms. Some live in shallow thermal springs at temperatures slightly above 42 °C (100 °F), others in cold Arctic seas a few degrees below 0 °C (32 °F) or in cold deep waters more than 4,000 metres (13,100 feet) beneath the ocean surface. The structural and, especially, the physiological adaptations for life at such extremes are relatively poorly known and provide the scientifically curious with great incentive for study.
Almost all natural bodies of water bear fish life, the exceptions being very hot thermal ponds and extremely salt-alkaline lakes, such as the Dead Sea in Asia and the Great Salt Lake in North America. The present distribution of fishes is a result of the geological history and development of Earth as well as the ability of fishes to undergo evolutionary change and to adapt to the available habitats. Fishes may be seen to be distributed according to habitat and according to geographical area. Major habitat differences are marine and freshwater. For the most part, the fishes in a marine habitat differ from those in a freshwater habitat, even in adjacent areas, but some, such as the salmon, migrate from one to the other. The freshwater habitats may be seen to be of many kinds. Fishes found in mountain torrents, Arctic lakes, tropical lakes, temperate streams, and tropical rivers will all differ from each other, both in obvious gross structure and in physiological attributes. Even in closely adjacent habitats where, for example, a tropical mountain torrent enters a lowland stream, the fish fauna will differ. The marine habitats can be divided into deep ocean floors (benthic), mid-water oceanic (bathypelagic), surface oceanic (pelagic), rocky coast, sandy coast, muddy shores, bays, estuaries, and others. Also, for example, rocky coastal shores in tropical and temperate regions will have different fish faunas, even when such habitats occur along the same coastline.
Although much is known about the present geographical distribution of fishes, far less is known about how that distribution came about. Many parts of the fish fauna of the fresh waters of North America and Eurasia are related and undoubtedly have a common origin. The faunas of Africa and South America are related, extremely old, and probably an expression of the drifting apart of the two continents. The fauna of southern Asia is related to that of Central Asia, and some of it appears to have entered Africa. The extremely large shore-fish faunas of the Indian and tropical Pacific oceans comprise a related complex, but the tropical shore fauna of the Atlantic, although containing Indo-Pacific components, is relatively limited and probably younger. The Arctic and Antarctic marine faunas are quite different from each other. The shore fauna of the North Pacific is quite distinct, and that of the North Atlantic more limited and probably younger. Pelagic oceanic fishes, especially those in deep waters, are similar the world over, showing little geographical isolation in terms of family groups. The deep oceanic habitat is very much the same throughout the world, but species differences do exist, showing geographical areas determined by oceanic currents and water masses.
All aspects of the life of a fish are closely correlated with adaptation to the total environment, physical, chemical, and biological. In studies, all the interdependent aspects of fish, such as behaviour, locomotion, reproduction, and physical and physiological characteristics, must be taken into account.
Correlated with their adaptation to an extremely wide variety of habitats is the extremely wide variety of life cycles that fishes display. The great majority hatch from relatively small eggs a few days to several weeks or more after the eggs are scattered in the water. Newly hatched young are still partially undeveloped and are called larvae until body structures such as fins, skeleton, and some organs are fully formed. Larval life is often very short, usually less than a few weeks, but it can be very long, some lampreys continuing as larvae for at least five years. Young and larval fishes, before reaching sexual maturity, must grow considerably, and their small size and other factors often dictate that they live in a habitat different than that of the adults. For example, most tropical marine shore fishes have pelagic larvae. Larval food also is different, and larval fishes often live in shallow waters, where they may be less exposed to predators.
After a fish reaches adult size, the length of its life is subject to many factors, such as innate rates of aging, predation pressure, and the nature of the local climate. The longevity of a species in the protected environment of an aquarium may have nothing to do with how long members of that species live in the wild. Many small fishes live only one to three years at the most. In some species, however, individuals may live as long as 10 or 20 or even 100 years.
Fish behaviour is a complicated and varied subject. As in almost all animals with a central nervous system, the nature of a response of an individual fish to stimuli from its environment depends upon the inherited characteristics of its nervous system, on what it has learned from past experience, and on the nature of the stimuli. Compared with the variety of human responses, however, that of a fish is stereotyped, not subject to much modification by “thought” or learning, and investigators must guard against anthropomorphic interpretations of fish behaviour.
Fishes perceive the world around them by the usual senses of sight, smell, hearing, touch, and taste and by special lateral line water-current detectors. In the few fishes that generate electric fields, a process that might best be called electrolocation aids in perception. One or another of these senses often is emphasized at the expense of others, depending upon the fish’s other adaptations. In fishes with large eyes, the sense of smell may be reduced; others, with small eyes, hunt and feed primarily by smell (such as some eels).
Specialized behaviour is primarily concerned with the three most important activities in the fish’s life: feeding, reproduction, and escape from enemies. Schooling behaviour of sardines on the high seas, for instance, is largely a protective device to avoid enemies, but it is also associated with and modified by their breeding and feeding requirements. Predatory fishes are often solitary, lying in wait to dart suddenly after their prey, a kind of locomotion impossible for beaked parrot fishes, which feed on coral, swimming in small groups from one coral head to the next. In addition, some predatory fishes that inhabit pelagic environments, such as tunas, often school.
Sleep in fishes, all of which lack true eyelids, consists of a seemingly listless state in which the fish maintains its balance but moves slowly. If attacked or disturbed, most can dart away. A few kinds of fishes lie on the bottom to sleep. Most catfishes, some loaches, and some eels and electric fishes are strictly nocturnal, being active and hunting for food during the night and retiring during the day to holes, thick vegetation, or other protective parts of the environment.
Communication between members of a species or between members of two or more species often is extremely important, especially in breeding behaviour (see below Reproduction). The mode of communication may be visual, as between the small so-called cleaner fish and a large fish of a very different species. The larger fish often allows the cleaner to enter its mouth to remove gill parasites. The cleaner is recognized by its distinctive colour and actions and therefore is not eaten, even if the larger fish is normally a predator. Communication is often chemical, signals being sent by specific chemicals called pheromones.
Many fishes have a streamlined body and swim freely in open water. Fish locomotion is closely correlated with habitat and ecological niche (the general position of the animal to its environment).
Many fishes in both marine and fresh waters swim at the surface and have mouths adapted to feed best (and sometimes only) at the surface. Often such fishes are long and slender, able to dart at surface insects or at other surface fishes and in turn to dart away from predators; needlefishes, halfbeaks, and topminnows (such as killifish and mosquito fish) are good examples. Oceanic flying fishes escape their predators by gathering speed above the water surface, with the lower lobe of the tail providing thrust in the water. They then glide hundreds of yards on enlarged, winglike pectoral and pelvic fins. South American freshwater flying fishes escape their enemies by jumping and propelling their strongly keeled bodies out of the water.
So-called mid-water swimmers, the most common type of fish, are of many kinds and live in many habitats. The powerful fusiform tunas and the trouts, for example, are adapted for strong, fast swimming, the tunas to capture prey speedily in the open ocean and the trouts to cope with the swift currents of streams and rivers. The trout body form is well adapted to many habitats. Fishes that live in relatively quiet waters such as bays or lake shores or slow rivers usually are not strong, fast swimmers but are capable of short, quick bursts of speed to escape a predator. Many of these fishes have their sides flattened, examples being the sunfish and the freshwater angelfish of aquarists. Fish associated with the bottom or substrate usually are slow swimmers. Open-water plankton-feeding fishes almost always remain fusiform and are capable of rapid, strong movement (for example, sardines and herrings of the open ocean and also many small minnows of streams and lakes).
Bottom-living fishes are of many kinds and have undergone many types of modification of their body shape and swimming habits. Rays, which evolved from strong-swimming mid-water sharks, usually stay close to the bottom and move by undulating their large pectoral fins. Flounders live in a similar habitat and move over the bottom by undulating the entire body. Many bottom fishes dart from place to place, resting on the bottom between movements, a motion common in gobies. One goby relative, the mudskipper, has taken to living at the edge of pools along the shore of muddy mangrove swamps. It escapes its enemies by flipping rapidly over the mud, out of the water. Some catfishes, synbranchid eels, the so-called climbing perch, and a few other fishes venture out over damp ground to find more promising waters than those that they left. They move by wriggling their bodies, sometimes using strong pectoral fins; most have accessory air-breathing organs. Many bottom-dwelling fishes live in mud holes or rocky crevices. Marine eels and gobies commonly are found in such habitats and for the most part venture far beyond their cavelike homes. Some bottom dwellers, such as the clingfishes (Gobiesocidae), have developed powerful adhesive disks that enable them to remain in place on the substrate in areas such as rocky coasts, where the action of the waves is great.
The methods of reproduction in fishes are varied, but most fishes lay a large number of small eggs, fertilized and scattered outside of the body. The eggs of pelagic fishes usually remain suspended in the open water. Many shore and freshwater fishes lay eggs on the bottom or among plants. Some have adhesive eggs. The mortality of the young and especially of the eggs is very high, and often only a few individuals grow to maturity out of hundreds, thousands, and in some cases millions of eggs laid.
Males produce sperm, usually as a milky white substance called milt, in two (sometimes one) testes within the body cavity. In bony fishes a sperm duct leads from each testis to a urogenital opening behind the vent or anus. In sharks and rays and in cyclostomes the duct leads to a cloaca. Sometimes the pelvic fins are modified to help transmit the milt to the eggs at the female’s vent or on the substrate where the female has placed them. Sometimes accessory organs are used to fertilize females internally—for example, the claspers of many sharks and rays.
In the females the eggs are formed in two ovaries (sometimes only one) and pass through the ovaries to the urogenital opening and to the outside. In some fishes the eggs are fertilized internally but are shed before development takes place. Members of about a dozen families each of bony fishes (teleosts) and sharks bear live young. Many skates and rays also bear live young. In some bony fishes the eggs simply develop within the female, the young emerging when the eggs hatch (ovoviviparous). Others develop within the ovary and are nourished by ovarian tissues after hatching (viviparous). There are also other methods utilized by fishes to nourish young within the female. In all live-bearers the young are born at a relatively large size and are few in number. In one family of primarily marine fishes, the surfperches from the Pacific coast of North America, Japan, and Korea, the males of at least one species are born sexually mature, although they are not fully grown.
Some fishes are hermaphroditic—an individual producing both sperm and eggs, usually at different stages of its life. Self-fertilization, however, is probably rare.
Successful reproduction and, in many cases, defense of the eggs and the young are assured by rather stereotypical but often elaborate courtship and parental behaviour, either by the male or the female or both. Some fishes prepare nests by hollowing out depressions in the sand bottom (cichlids, for example), build nests with plant materials and sticky threads excreted by the kidneys (sticklebacks), or blow a cluster of mucus-covered bubbles at the water surface (gouramis). The eggs are laid in these structures. Some varieties of cichlids and catfishes incubate eggs in their mouths.
Some fishes, such as salmon, undergo long migrations from the ocean and up large rivers to spawn in the gravel beds where they themselves hatched (anadromous fishes). Some, such as the freshwater eels (family Anguillidae), live and grow to maturity in fresh water and migrate to the sea to spawn (catadromous fishes). Other fishes undertake shorter migrations from lakes into streams, within the ocean, or enter spawning habitats that they do not ordinarily occupy in other ways.
The basic structure and function of the fish body are similar to those of all other vertebrates. The usual four types of tissues are present: surface or epithelial, connective (bone, cartilage, and fibrous tissues, as well as their derivative, blood), nerve, and muscle tissues. In addition, the fish’s organs and organ systems parallel those of other vertebrates.
The typical fish body is streamlined and spindle-shaped, with an anterior head, a gill apparatus, and a heart, the latter lying in the midline just below the gill chamber. The body cavity, containing the vital organs, is situated behind the head in the lower anterior part of the body. The anus usually marks the posterior termination of the body cavity and most often occurs just in front of the base of the anal fin. The spinal cord and vertebral column continue from the posterior part of the head to the base of the tail fin, passing dorsal to the body cavity and through the caudal (tail) region behind the body cavity. Most of the body is of muscular tissue, a high proportion of which is necessitated by swimming. In the course of evolution this basic body plan has been modified repeatedly into the many varieties of fish shapes that exist today.
The skeleton forms an integral part of the fish’s locomotion system, as well as serving to protect vital parts. The internal skeleton consists of the skull bones (except for the roofing bones of the head, which are really part of the external skeleton), the vertebral column, and the fin supports (fin rays). The fin supports are derived from the external skeleton but will be treated here because of their close functional relationship to the internal skeleton. The internal skeleton of cyclostomes, sharks, and rays is of cartilage; that of many fossil groups and some primitive living fishes is mostly of cartilage but may include some bone. In place of the vertebral column, the earliest vertebrates had a fully developed notochord, a flexible stiff rod of viscous cells surrounded by a strong fibrous sheath. During the evolution of modern fishes the rod was replaced in part by cartilage and then by ossified cartilage. Sharks and rays retain a cartilaginous vertebral column; bony fishes have spool-shaped vertebrae that in the more primitive living forms only partially replace the notochord. The skull, including the gill arches and jaws of bony fishes, is fully, or at least partially, ossified. That of sharks and rays remains cartilaginous, at times partially replaced by calcium deposits but never by true bone.
The supportive elements of the fins (basal or radial bones or both) have changed greatly during fish evolution. Some of these changes are described in the section below (Evolution and paleontology). Most fishes possess a single dorsal fin on the midline of the back. Many have two and a few have three dorsal fins. The other fins are the single tail and anal fins and paired pelvic and pectoral fins. A small fin, the adipose fin, with hairlike fin rays, occurs in many of the relatively primitive teleosts (such as trout) on the back near the base of the caudal fin.
The skin of a fish must serve many functions. It aids in maintaining the osmotic balance, provides physical protection for the body, is the site of coloration, contains sensory receptors, and, in some fishes, functions in respiration. Mucous glands, which aid in maintaining the water balance and offer protection from bacteria, are extremely numerous in fish skin, especially in cyclostomes and teleosts. Since mucous glands are present in the modern lampreys, it is reasonable to assume that they were present in primitive fishes, such as the ancient Silurian and Devonian agnathans. Protection from abrasion and predation is another function of the fish skin, and dermal (skin) bone arose early in fish evolution in response to this need. It is thought that bone first evolved in skin and only later invaded the cartilaginous areas of the fish’s body, to provide additional support and protection. There is some argument as to which came first, cartilage or bone, and fossil evidence does not settle the question. In any event, dermal bone has played an important part in fish evolution and has different characteristics in different groups of fishes. Several groups are characterized at least in part by the kind of bony scales they possess.
Scales have played an important part in the evolution of fishes. Primitive fishes usually had thick bony plates or thick scales in several layers of bone, enamel, and related substances. Modern teleost fishes have scales of bone, which, while still protective, allow much more freedom of motion in the body. A few modern teleosts (some catfishes, sticklebacks, and others) have secondarily acquired bony plates in the skin. Modern and early sharks possessed placoid scales, a relatively primitive type of scale with a toothlike structure, consisting of an outside layer of enamel-like substance (vitrodentine), an inner layer of dentine, and a pulp cavity containing nerves and blood vessels. Primitive bony fishes had thick scales of either the ganoid or the cosmoid type. Cosmoid scales have a hard, enamel-like outer layer, an inner layer of cosmine (a form of dentine), and then a layer of vascular bone (isopedine). In ganoid scales the hard outer layer is different chemically and is called ganoin. Under this is a cosminelike layer and then a vascular bony layer. The thin, translucent bony scales of modern fishes, called cycloid and ctenoid (the latter distinguished by serrations at the edges), lack enameloid and dentine layers.
Skin has several other functions in fishes. It is well supplied with nerve endings and presumably receives tactile, thermal, and pain stimuli. Skin is also well supplied with blood vessels. Some fishes breathe in part through the skin, by the exchange of oxygen and carbon dioxide between the surrounding water and numerous small blood vessels near the skin surface.
Skin serves as protection through the control of coloration. Fishes exhibit an almost limitless range of colours. The colours often blend closely with the surroundings, effectively hiding the animal. Many fishes use bright colours for territorial advertisement or as recognition marks for other members of their own species, or sometimes for members of other species. Many fishes can change their colour to a greater or lesser degree, by movement of pigment within the pigment cells (chromatophores). Black pigment cells (melanophores), of almost universal occurrence in fishes, are often juxtaposed with other pigment cells. When placed beneath iridocytes or leucophores (bearing the silvery or white pigment guanine), melanophores produce structural colours of blue and green. These colours are often extremely intense, because they are formed by refraction of light through the needlelike crystals of guanine. The blue and green refracted colours are often relatively pure, lacking the red and yellow rays, which have been absorbed by the black pigment (melanin) of the melanophores. Yellow, orange, and red colours are produced by erythrophores, cells containing the appropriate carotenoid pigments. Other colours are produced by combinations of melanophores, erythrophores, and iridocytes.
The major portion of the body of most fishes consists of muscles. Most of the mass is trunk musculature, the fin muscles usually being relatively small. The caudal fin is usually the most powerful fin, being moved by the trunk musculature. The body musculature is usually arranged in rows of chevron-shaped segments on each side. Contractions of these segments, each attached to adjacent vertebrae and vertebral processes, bends the body on the vertebral joint, producing successive undulations of the body, passing from the head to the tail, and producing driving strokes of the tail. It is the latter that provides the strong forward movement for most fishes.
The digestive system, in a functional sense, starts at the mouth, with the teeth used to capture prey or collect plant foods. Mouth shape and tooth structure vary greatly in fishes, depending on the kind of food normally eaten. Most fishes are predacious, feeding on small invertebrates or other fishes and have simple conical teeth on the jaws, on at least some of the bones of the roof of the mouth, and on special gill arch structures just in front of the esophagus. The latter are throat teeth. Most predacious fishes swallow their prey whole, and the teeth are used for grasping and holding prey, for orienting prey to be swallowed (head first) and for working the prey toward the esophagus. There are a variety of tooth types in fishes. Some fishes, such as sharks and piranhas, have cutting teeth for biting chunks out of their victims. A shark’s tooth, although superficially like that of a piranha, appears in many respects to be a modified scale, while that of the piranha is like that of other bony fishes, consisting of dentine and enamel. Parrot fishes have beaklike mouths with short incisor-like teeth for breaking off coral and have heavy pavementlike throat teeth for crushing the coral. Some catfishes have small brushlike teeth, arranged in rows on the jaws, for scraping plant and animal growth from rocks. Many fishes (such as the Cyprinidae or minnows) have no jaw teeth at all but have very strong throat teeth.
Some fishes gather planktonic food by straining it from their gill cavities with numerous elongate stiff rods (gill rakers) anchored by one end to the gill bars. The food collected on these rods is passed to the throat, where it is swallowed. Most fishes have only short gill rakers that help keep food particles from escaping out the mouth cavity into the gill chamber.
Once reaching the throat, food enters a short, often greatly distensible esophagus, a simple tube with a muscular wall leading into a stomach. The stomach varies greatly in fishes, depending upon the diet. In most predacious fishes it is a simple straight or curved tube or pouch with a muscular wall and a glandular lining. Food is largely digested there and leaves the stomach in liquid form.
Between the stomach and the intestine, ducts enter the digestive tube from the liver and pancreas. The liver is a large, clearly defined organ. The pancreas may be embedded in it, diffused through it, or broken into small parts spread along some of the intestine. The junction between the stomach and the intestine is marked by a muscular valve. Pyloric ceca (blind sacs) occur in some fishes at this junction and have a digestive or absorptive function or both.
The intestine itself is quite variable in length, depending upon the fish’s diet. It is short in predacious forms, sometimes no longer than the body cavity, but long in herbivorous forms, being coiled and several times longer than the entire length of the fish in some species of South American catfishes. The intestine is primarily an organ for absorbing nutrients into the bloodstream. The larger its internal surface, the greater its absorptive efficiency, and a spiral valve is one method of increasing its absorption surface.
Sharks, rays, chimaeras, lungfishes, surviving chondrosteans, holosteans, and even a few of the more primitive teleosts have a spiral valve or at least traces of it in the intestine. Most modern teleosts have increased the area of the intestinal walls by having numerous folds and villi (fingerlike projections) somewhat like those in humans. Undigested substances are passed to the exterior through the anus in most teleost fishes. In lungfishes, sharks, and rays, it is first passed through the cloaca, a common cavity receiving the intestinal opening and the ducts from the urogenital system.
Oxygen and carbon dioxide dissolve in water, and most fishes exchange dissolved oxygen and carbon dioxide in water by means of the gills. The gills lie behind and to the side of the mouth cavity and consist of fleshy filaments supported by the gill arches and filled with blood vessels, which give gills a bright red colour. Water taken in continuously through the mouth passes backward between the gill bars and over the gill filaments, where the exchange of gases takes place. The gills are protected by a gill cover in teleosts and many other fishes but by flaps of skin in sharks, rays, and some of the older fossil fish groups. The blood capillaries in the gill filaments are close to the gill surface to take up oxygen from the water and to give up excess carbon dioxide to the water.
Most modern fishes have a hydrostatic (ballast) organ, called the swim bladder, that lies in the body cavity just below the kidney and above the stomach and intestine. It originated as a diverticulum of the digestive canal. In advanced teleosts, especially the acanthopterygians, the bladder has lost its connection with the digestive tract, a condition called physoclistic. The connection has been retained (physostomous) by many relatively primitive teleosts. In several unrelated lines of fishes, the bladder has become specialized as a lung or, at least, as a highly vascularized accessory breathing organ. Some fishes with such accessory organs are obligate air breathers and will drown if denied access to the surface, even in well-oxygenated water. Fishes with a hydrostatic form of swim bladder can control their depth by regulating the amount of gas in the bladder. The gas, mostly oxygen, is secreted into the bladder by special glands, rendering the fish more buoyant; the gas is absorbed into the bloodstream by another special organ, reducing the overall buoyancy and allowing the fish to sink. Some deep-sea fishes may have oils, rather than gas, in the bladder. Other deep-sea and some bottom-living forms have much-reduced swim bladders or have lost the organ entirely.
The swim bladder of fishes follows the same developmental pattern as the lungs of land vertebrates. There is no doubt that the two structures have the same historical origin in primitive fishes. More or less intermediate forms still survive among the more primitive types of fishes, such as the lungfishes Lepidosiren and Protopterus.
The circulatory, or blood vascular, system consists of the heart, the arteries, the capillaries, and the veins. It is in the capillaries that the interchange of oxygen, carbon dioxide, nutrients, and other substances such as hormones and waste products takes place. The capillaries lead to the veins, which return the venous blood with its waste products to the heart, kidneys, and gills. There are two kinds of capillary beds: those in the gills and those in the rest of the body. The heart, a folded continuous muscular tube with three or four saclike enlargements, undergoes rhythmic contractions and receives venous blood in a sinus venosus. It passes the blood to an auricle and then into a thick muscular pump, the ventricle. From the ventricle the blood goes to a bulbous structure at the base of a ventral aorta just below the gills. The blood passes to the afferent (receiving) arteries of the gill arches and then to the gill capillaries. There waste gases are given off to the environment, and oxygen is absorbed. The oxygenated blood enters efferent (exuant) arteries of the gill arches and then flows into the dorsal aorta. From there blood is distributed to the tissues and organs of the body. One-way valves prevent backflow. The circulation of fishes thus differs from that of the reptiles, birds, and mammals in that oxygenated blood is not returned to the heart prior to distribution to the other parts of the body.
The primary excretory organ in fishes, as in other vertebrates, is the kidney. In fishes some excretion also takes place in the digestive tract, skin, and especially the gills (where ammonia is given off). Compared with land vertebrates, fishes have a special problem in maintaining their internal environment at a constant concentration of water and dissolved substances, such as salts. Proper balance of the internal environment (homeostasis) of a fish is in a great part maintained by the excretory system, especially the kidney.
The kidney, gills, and skin play an important role in maintaining a fish’s internal environment and checking the effects of osmosis. Marine fishes live in an environment in which the water around them has a greater concentration of salts than they can have inside their body and still maintain life. Freshwater fishes, on the other hand, live in water with a much lower concentration of salts than they require inside their bodies. Osmosis tends to promote the loss of water from the body of a marine fish and absorption of water by that of a freshwater fish. Mucus in the skin tends to slow the process but is not a sufficient barrier to prevent the movement of fluids through the permeable skin. When solutions on two sides of a permeable membrane have different concentrations of dissolved substances, water will pass through the membrane into the more concentrated solution, while the dissolved chemicals move into the area of lower concentration (diffusion).
The kidney of freshwater fishes is often larger in relation to body weight than that of marine fishes. In both groups the kidney excretes wastes from the body, but the kidney of freshwater fishes also excretes large amounts of water, counteracting the water absorbed through the skin. Freshwater fishes tend to lose salt to the environment and must replace it. They get some salt from their food, but the gills and skin inside the mouth actively absorb salt from water passed through the mouth. This absorption is performed by special cells capable of moving salts against the diffusion gradient. Freshwater fishes drink very little water and take in little water with their food.
Marine fishes must conserve water, and therefore their kidneys excrete little water. To maintain their water balance, marine fishes drink large quantities of seawater, retaining most of the water and excreting the salt. Most nitrogenous waste in marine fishes appears to be secreted by the gills as ammonia. Marine fishes can excrete salt by clusters of special cells (chloride cells) in the gills.
There are several teleosts—for example, the salmon—that travel between fresh water and seawater and must adjust to the reversal of osmotic gradients. They adjust their physiological processes by spending time (often surprisingly little time) in the intermediate brackish environment.
Marine hagfishes, sharks, and rays have osmotic concentrations in their blood about equal to that of seawater and so do not have to drink water nor perform much physiological work to maintain their osmotic balance. In sharks and rays the osmotic concentration is kept high by retention of urea in the blood. Freshwater sharks have a lowered concentration of urea in the blood.
Endocrine glands secrete their products into the bloodstream and body tissues and, along with the central nervous system, control and regulate many kinds of body functions. Cyclostomes have a well-developed endocrine system, and presumably it was well developed in the early Agnatha, ancestral to modern fishes. Although the endocrine system in fishes is similar to that of higher vertebrates, there are numerous differences in detail. The pituitary, the thyroid, the suprarenals, the adrenals, the pancreatic islets, the sex glands (ovaries and testes), the inner wall of the intestine, and the bodies of the ultimobranchial gland make up the endocrine system in fishes. There are some others whose function is not well understood. These organs regulate sexual activity and reproduction, growth, osmotic pressure, general metabolic activities such as the storage of fat and the utilization of foodstuffs, blood pressure, and certain aspects of skin colour. Many of these activities are also controlled in part by the central nervous system, which works with the endocrine system in maintaining the life of a fish. Some parts of the endocrine system are developmentally, and undoubtedly evolutionarily, derived from the nervous system.
As in all vertebrates, the nervous system of fishes is the primary mechanism coordinating body activities, as well as integrating these activities in the appropriate manner with stimuli from the environment. The central nervous system, consisting of the brain and spinal cord, is the primary integrating mechanism. The peripheral nervous system, consisting of nerves that connect the brain and spinal cord to various body organs, carries sensory information from special receptor organs such as the eyes, internal ears, nares (sense of smell), taste glands, and others to the integrating centres of the brain and spinal cord. The peripheral nervous system also carries information via different nerve cells from the integrating centres of the brain and spinal cord. This coded information is carried to the various organs and body systems, such as the skeletal muscular system, for appropriate action in response to the original external or internal stimulus. Another branch of the nervous system, the autonomic nervous system, helps to coordinate the activities of many glands and organs and is itself closely connected to the integrating centres of the brain.
The brain of the fish is divided into several anatomical and functional parts, all closely interconnected but each serving as the primary centre of integrating particular kinds of responses and activities. Several of these centres or parts are primarily associated with one type of sensory perception, such as sight, hearing, or smell (olfaction).
The sense of smell is important in almost all fishes. Certain eels with tiny eyes depend mostly on smell for location of food. The olfactory, or nasal, organ of fishes is located on the dorsal surface of the snout. The lining of the nasal organ has special sensory cells that perceive chemicals dissolved in the water, such as substances from food material, and send sensory information to the brain by way of the first cranial nerve. Odour also serves as an alarm system. Many fishes, especially various species of freshwater minnows, react with alarm to a chemical released from the skin of an injured member of their own species.
Many fishes have a well-developed sense of taste, and tiny pitlike taste buds or organs are located not only within their mouth cavities but also over their heads and parts of their body. Catfishes, which often have poor vision, have barbels (“whiskers”) that serve as supplementary taste organs, those around the mouth being actively used to search out food on the bottom. Some species of naturally blind cave fishes are especially well supplied with taste buds, which often cover most of their body surface.
Sight is extremely important in most fishes. The eye of a fish is basically like that of all other vertebrates, but the eyes of fishes are extremely varied in structure and adaptation. In general, fishes living in dark and dim water habitats have large eyes, unless they have specialized in some compensatory way so that another sense (such as smell) is dominant, in which case the eyes will often be reduced. Fishes living in brightly lighted shallow waters often will have relatively small but efficient eyes. Cyclostomes have somewhat less elaborate eyes than other fishes, with skin stretched over the eyeball perhaps making their vision somewhat less effective. Most fishes have a spherical lens and accommodate their vision to far or near subjects by moving the lens within the eyeball. A few sharks accommodate by changing the shape of the lens, as in land vertebrates. Those fishes that are heavily dependent upon the eyes have especially strong muscles for accommodation. Most fishes see well, despite the restrictions imposed by frequent turbidity of the water and by light refraction.
Fossil evidence suggests that colour vision evolved in fishes more than 300 million years ago, but not all living fishes have retained this ability. Experimental evidence indicates that many shallow-water fishes, if not all, have colour vision and see some colours especially well, but some bottom-dwelling shore fishes live in areas where the water is sufficiently deep to filter out most if not all colours, and these fishes apparently never see colours. When tested in shallow water, they apparently are unable to respond to colour differences.
Sound perception and balance are intimately associated senses in a fish. The organs of hearing are entirely internal, located within the skull, on each side of the brain and somewhat behind the eyes. Sound waves, especially those of low frequencies, travel readily through water and impinge directly upon the bones and fluids of the head and body, to be transmitted to the hearing organs. Fishes readily respond to sound; for example, a trout conditioned to escape by the approach of fishermen will take flight upon perceiving footsteps on a stream bank even if it cannot see a fisherman. Compared with humans, however, the range of sound frequencies heard by fishes is greatly restricted. Many fishes communicate with each other by producing sounds in their swim bladders, in their throats by rasping their teeth, and in other ways.
A fish or other vertebrate seldom has to rely on a single type of sensory information to determine the nature of the environment around it. A catfish uses taste and touch when examining a food object with its oral barbels. Like most other animals, fishes have many touch receptors over their body surface. Pain and temperature receptors also are present in fishes and presumably produce the same kind of information to a fish as to humans. Fishes react in a negative fashion to stimuli that would be painful to human beings, suggesting that they feel a sensation of pain.
An important sensory system in fishes that is absent in other vertebrates (except some amphibians) is the lateral line system. This consists of a series of heavily innervated small canals located in the skin and bone around the eyes, along the lower jaw, over the head, and down the mid-side of the body, where it is associated with the scales. Intermittently along these canals are located tiny sensory organs (pit organs) that apparently detect changes in pressure. The system allows a fish to sense changes in water currents and pressure, thereby helping the fish to orient itself to the various changes that occur in the physical environment.
Although a great many fossil fishes have been found and described, they represent a tiny portion of the long and complex evolution of fishes, and knowledge of fish evolution remains relatively fragmentary. In the classification presented in this article, fishlike vertebrates are divided into seven categories, the members of each having a different basic structural organization and different physical and physiological adaptations for the problems presented by the environment. The broad basic pattern has been one of successive replacement of older groups by newer, better-adapted groups. One or a few members of a group evolved a basically more efficient means of feeding, breathing, or swimming or several better ways of living. These better-adapted groups then forced the extinction of members of the older group with which they competed for available food, breeding places, or other necessities of life. As the new fishes became well established, some of them evolved further and adapted to other habitats, where they continued to replace members of the old group already there. The process was repeated until all or almost all members of the old group in a variety of habitats had been replaced by members of the newer evolutionary line.
The earliest vertebrate fossils of certain relationships are fragments of dermal armour of jawless fishes (superclass Agnatha, order Heterostraci) from the Upper Ordovician Period in North America, about 450 million years in age. Early Ordovician toothlike fragments from the former Soviet Union are less certainly remains of agnathans. It is uncertain whether the North American jawless fishes inhabited shallow coastal marine waters, where their remains became fossilized, or were freshwater vertebrates washed into coastal deposits by stream action.
Jawless fishes probably arose from ancient, small, soft-bodied filter-feeding organisms much like and probably also ancestral to the modern sand-dwelling filter feeders, the Cephalochordata (Amphioxus and its relatives). The body in the ancestral animals was probably stiffened by a notochord. Although a vertebrate origin in fresh water is much debated by paleontologists, it is possible that mobility of the body and protection provided by dermal armour arose in response to streamflow in the freshwater environment and to the need to escape from and resist the clawed invertebrate eurypterids that lived in the same waters. Because of the marine distribution of the surviving primitive chordates, however, many paleontologists doubt that the vertebrates arose in fresh water.
Heterostracan remains are next found in what appear to be delta deposits in two North American localities of Silurian age. By the close of the Silurian, about 416 million years ago, European heterostracan remains are found in what appear to be delta or coastal deposits. In the Late Silurian of the Baltic area, lagoon or freshwater deposits yield jawless fishes of the order Osteostraci. Somewhat later in the Silurian from the same region, layers contain fragments of jawed acanthodians, the earliest group of jawed vertebrates, and of jawless fishes. These layers lie between marine beds but appear to be washed out from fresh waters of a coastal region.
It is evident, therefore, that by the end of the Silurian both jawed and jawless vertebrates were well established and already must have had a long history of development. Yet paleontologists have remains only of specialized forms that cannot have been the ancestors of the placoderms and bony fishes that appear in the next period, the Devonian. No fossils are known of the more primitive ancestors of the agnathans and acanthodians. The extensive marine beds of the Silurian and those of the Ordovician are essentially void of vertebrate history. It is believed that the ancestors of fishlike vertebrates evolved in upland fresh waters, where whatever few and relatively small fossil beds were made probably have been long since eroded away. Remains of the earliest vertebrates may never be found.
By the close of the Silurian, all known orders of jawless vertebrates had evolved, except perhaps the modern cyclostomes, which are without the hard parts that ordinarily are preserved as fossils. Cyclostomes were unknown as fossils until 1968, when a lamprey of modern body structure was reported from the Middle Pennsylvanian of Illinois, in deposits more than 300 million years old. Fossil evidence of the four orders of armoured jawless vertebrates is absent from deposits later than the Devonian. Presumably, these vertebrates became extinct at that time, being replaced by the more efficient and probably more aggressive placoderms, acanthodians, selachians (sharks and relatives), and by early bony fishes. Cyclostomes survived probably because early on they evolved from anaspid agnathans and developed a rasping tonguelike structure and a sucking mouth, enabling them to prey on other fishes. With this way of life they apparently had no competition from other fish groups. Cyclostomes, the hagfishes and lampreys, were once thought to be closely related because of the similarity in their suctorial mouths, but it is now understood that the hagfishes, order Myxiniformes, are the most primitive living chordates, and they are classified separately from the lampreys, order Petromyzontiformes.
Early jawless vertebrates probably fed on tiny organisms by filter feeding, as do the larvae of their descendants, the modern lampreys. The gill cavity of the early agnathans was large. It is thought that small organisms taken from the bottom by a nibbling action of the mouth, or more certainly by a sucking action through the mouth, were passed into the gill cavity along with water for breathing. Small organisms then were strained out by the gill apparatus and directed to the food canal. The gill apparatus thus evolved as a feeding, as well as a breathing, structure. The head and gills in the agnathans were protected by a heavy dermal armour; the tail region was free, allowing motion for swimming.
Most important for the evolution of fishes and vertebrates in general was the early appearance of bone, cartilage, and enamel-like substance. These materials became modified in later fishes, enabling them to adapt to many aquatic environments and finally even to land. Other basic organs and tissues of the vertebrates—such as the central nervous system, heart, liver, digestive tract, kidney, and circulatory system— undoubtedly were present in the ancestors of the agnathans. In many ways, bone, both external and internal, was the key to vertebrate evolution.
The next class of fishes to appear was the Acanthodii, containing the earliest known jawed vertebrates, which arose in the Late Silurian, more than 416 million years ago. The acanthodians declined after the Devonian but lasted into the Early Permian, a little less than 280 million years ago. The first complete specimens appear in Lower Devonian freshwater deposits, but later in the Devonian and Permian some members appear to have been marine. Most were small fishes, not more than 75 cm (approximately 30 inches) in length.
We know nothing of the ancestors of the acanthodians. They must have arisen from some jawless vertebrate, probably in fresh water. They appear to have been active swimmers with almost no head armour but with large eyes, indicating that they depended heavily on vision. Perhaps they preyed on invertebrates. The rows of spines and spinelike fins between the pectoral and pelvic fins give some credence to the idea that paired fins arose from “fin folds” along the body sides.
The relationships of the acanthodians to other jawed vertebrates are obscure. They possess features found in both sharks and bony fishes. They are like early bony fishes in possessing ganoidlike scales and a partially ossified internal skeleton. Certain aspects of the jaw appear to be more like those of bony fishes than sharks, but the bony fin spines and certain aspects of the gill apparatus would seem to favour relationships with early sharks. Acanthodians do not seem particularly close to the Placodermi, although, like the placoderms, they apparently possessed less efficient tooth replacement and tooth structure than the sharks and the bony fishes, possibly one reason for their subsequent extinction.
Hormone Disruptors and the Legacy of DES
In 1941 the Food and Drug Administration approved the use of diethylstilbestrol (DES), the first synthetic chemical to be marketed as an estrogen and one of the first to be identified as a hormone disruptor—a chemical that mimics hormones. Although researchers knew that DES caused cancer and disrupted sexual development, doctors prescribed it for millions of women, initially for menopause and then for miscarriage, while farmers gave cattle the hormone to promote rapid weight gain. Its residues, and those of other chemicals, in the American food supply are changing the internal ecosystems of human, livestock, and wildlife bodies in increasingly troubling ways.
In this gripping exploration, Nancy Langston shows how these chemicals have penetrated into every aspect of our bodies and ecosystems, yet the U.S. government has largely failed to regulate them and has skillfully manipulated scientific uncertainty to delay regulation. Personally affected by endocrine disruptors, Langston argues that the FDA needs to institute proper regulation of these commonly produced synthetic chemicals.
Watch the book video trailer - visit the book website
More information
* DES Resources: Cancer, Breast Cancer, CCA, Vaginal Cancer.
* DES Resources: Fertility, Pregnancies and Various Studies.
* DES Resources: In-Utero Exposure to DES and DES Side Effects.
* Watch videos, read our posts tagged DES and the DES-exposed.
Meet the twelve known Toxic Chemicals that damage our Children's Brains
Leading scientists recently identified a dozen chemicals as being responsible for widespread neurodevelopmental disabilities, including autism, attention-deficit hyperactivity disorder, dyslexia, and other cognitive impairments.
But the scope of the chemical dangers in our environment is likely even greater.
In 2006, Dr Philippe Grandjean did a systematic review and identified six industrial chemicals as developmental neurotoxicants:
arsenic
ethanol
lead
methylmercury
polychlorinated biphenyls PCBs
and toluene.
Seven years later, the number of chemicals known to be toxic to children's developing brains has doubled with these six additional ones:
chlorpyrifos,
dichlorodiphenyltrichloroethane DDT/DDE,
fluoride,
manganese,
tetrachloroethylene PERC,
and the polybrominated diphenyl ethers PBDEs.
Dr Philippe Grandjean - who wrote the book Only One Chance, how to protect the Brains of the Next Generation - assumes that even more neurotoxicants remain undiscovered and proposes a global prevention strategy.
Sources and Press Articles:
The Toxins That Threaten Our Brains, The Atlantic 284466, by James Hamblin, MARCH 18, 2014.
Neurobehavioural effects of developmental toxicity, NCBI, PMID: 24556010, 2014 Feb 17.
Full text: The Lancet Neurology, Volume 13, Issue 3, Pages 330 - 338, March 2014, doi:10.1016/S1474-4422(13)70278-3
More Toxic Chemicals Damaging Children's Brains, HuffingtonPost, n_4790229, by Lynne Peeples, 02/14/2014
Putting the next generation of brains in danger, CNN, chemicals-children-brains, by Saundra Young, February 17, 2014
“Well it's now that time of the week where we head over to the darkside, this is the Dave Endocrine show.”
“Good evening folks welcome back to another episode of the Dave Endocrine show I’m your wonderous host Mr. David Endocrine and joining me as always is the wonderous Kathy Lombard!”
“Glad to be here Dave, looking forward to another good show.”
“Oh it's definately going to be a good show Kathy I can guarantee that but give us a look at todays biggest headlines Kathy!”
“Well it looks like Metropolis is seeing double as apparently people saw not one, but two Supermen racing to the scene of an explosion at the Hubert power plant just outside of Metropolis.”
“Two of them? That plant wasn't letting out some crazy chemical that made them see double?”
“Well Dave if that's the case then their cameras must also be seeing double as we've had quite a few pics in from some of our viewers as we can see on screen.”
“Huh, good old big blue with his red cape but who’s the other guy?”
“That's what we're all wondering Dave.”
“I'll give him credit though it's a rather nice color scheme he’s got going on, black and red go together pretty well.”
“Coming from a man who has a degree in fashion I'm certain that's made his day.”
“I doubt he’s overly fussed what someone on this show thinks Kathy but anyways, this dynamic duo managed to fix everything at the plant I'm assuming?”
“We’re all still here so I think that's a safe assumption to make Dave.”
“Life and soul of the party you are Kathy. Anyways glad to see that big blue seems to be recruiting we need more people like him.”
“What about that supposed superwoman?”
“For the last time Kathy we’re not calling her Superwoman, it's Wonder Woman.”
“How come we can have a Superman but not a Superwoman?”
“There´s no reason. But Wonder Woman sounds better.”
“No to mention you gave her that name so I can't imagine why you're such a big fan of it…..”
“What can I say they should hire me as their PR rep. I gave Superman his name…..”
“I'm pretty sure the Daily Planet gave him that name long before you did.”
“Hey I resent that fact!”
"You wanted to call him the Magic Man originally!”
“Isn't that taken?”
“Who knows, probably. These days all sorts of people with powers seem to be appearing from out of nowhere.”
“So magic man could actually be out there?”
“Who knows Dave. Who knows.”
“I'm just going to take this time to say that if there is someone out there in the world called Magic Man and you're in need of a public relations rep just shoot me a line!”
“If you're so keen in being a PR rep for these costume wearing folk you could always try reaching out to the Batman in Gotham city, I hear he needs it these days.”
“Please, Batman's nothing more than an urban myth the police are spreading in the hopes that everyone in that city will stop trying to rob each.”
“But if he actually did reach out to you for PR help?”
“I'd reject it. I don't support killers.”
“They ever figure out why he killed Marcus Wayne?”
“Not as far as I know, but hell it's Gotham stuff like that happens all the time. Remember Thomas and Martha Wayne?”
“Who doesn't?”
“They were gunned down by some random street punk who apparently wanted Martha Wayne's necklace.”
“Damn, and their son was there when it happened as well.”
“Yeah, apparently the mugger tried to kill him as well.”
“You serious?”
“Apparently when the police found little Bruce had a burn mark on his forehead in the shape of the barrel of the gun.”
“Good grief.”
“Anyways let's not get bogged down on the past. The GCPD have a manhunt going on to try and hunt down this supposed killer boogeyman and Wayne himself has a bounty for bringing in this Batman alive so hopefully this will be put to bed soon.”
“What if the guy that killed Marcus Wayne was also the one who killed Thomas and Martha?”
“Can't be Kathy. Thomas and Martha’s killer was given early parole and ended up being shot the minute he left the court room.”
“What the heck is wrong with that city?”
“Not a clue Kathy. But enough about Gotham city.”
"Yeah we've got some much more serious news. Remember those kidnappings on Corto Maltease?”
“It’s been a while since the last but yeah I remember.”
“Well apparently another three have gone missing without a trace.”
“Damn, and finding them is going to be a nightmare with the evacuation going on.”
“Indeed, very worrying Dave. Hopefully they are at least off that island when that volcano finally erupts.”
“We can only hope, but thank goodness the President finally stepped in and dispatched the miltiary to help in the evacuation of the island. It's scary to think how many people would suffer if we weren’t able to help them.”
“It really is Dave.”
“Whilst we're on the topic folks I just want to take a moment to remind people that the Corto Relocation fund is still accepting donations so they can help relocate those poor citizens. Nothings worse than losing your home but hopefully with all the money raised by this relocation fund we can at least hope to make the transition a little more comfortable for them.”
“Well said Dave. If you want to donate you can pay over the phone with your credit card or send a cheque to…….”
Fish, any of approximately 34,000 species of vertebrate animals (phylum Chordata) found in the fresh and salt waters of the world. Living species range from the primitive jawless lampreys and hagfishes through the cartilaginous sharks, skates, and rays to the abundant and diverse bony fishes. Most fish species are cold-blooded; however, one species, the opah (Lampris guttatus), is warm-blooded.
The term fish is applied to a variety of vertebrates of several evolutionary lines. It describes a life-form rather than a taxonomic group. As members of the phylum Chordata, fish share certain features with other vertebrates. These features are gill slits at some point in the life cycle, a notochord, or skeletal supporting rod, a dorsal hollow nerve cord, and a tail. Living fishes represent some five classes, which are as distinct from one another as are the four classes of familiar air-breathing animals—amphibians, reptiles, birds, and mammals. For example, the jawless fishes (Agnatha) have gills in pouches and lack limb girdles. Extant agnathans are the lampreys and the hagfishes. As the name implies, the skeletons of fishes of the class Chondrichthyes (from chondr, “cartilage,” and ichthyes, “fish”) are made entirely of cartilage. Modern fish of this class lack a swim bladder, and their scales and teeth are made up of the same placoid material. Sharks, skates, and rays are examples of cartilaginous fishes. The bony fishes are by far the largest class. Examples range from the tiny seahorse to the 450-kg (1,000-pound) blue marlin, from the flattened soles and flounders to the boxy puffers and ocean sunfishes. Unlike the scales of the cartilaginous fishes, those of bony fishes, when present, grow throughout life and are made up of thin overlapping plates of bone. Bony fishes also have an operculum that covers the gill slits.
The study of fishes, the science of ichthyology, is of broad importance. Fishes are of interest to humans for many reasons, the most important being their relationship with and dependence on the environment. A more obvious reason for interest in fishes is their role as a moderate but important part of the world’s food supply. This resource, once thought unlimited, is now realized to be finite and in delicate balance with the biological, chemical, and physical factors of the aquatic environment. Overfishing, pollution, and alteration of the environment are the chief enemies of proper fisheries management, both in fresh waters and in the ocean. (For a detailed discussion of the technology and economics of fisheries, see commercial fishing.) Another practical reason for studying fishes is their use in disease control. As predators on mosquito larvae, they help curb malaria and other mosquito-borne diseases.
Fishes are valuable laboratory animals in many aspects of medical and biological research. For example, the readiness of many fishes to acclimate to captivity has allowed biologists to study behaviour, physiology, and even ecology under relatively natural conditions. Fishes have been especially important in the study of animal behaviour, where research on fishes has provided a broad base for the understanding of the more flexible behaviour of the higher vertebrates. The zebra fish is used as a model in studies of gene expression.
There are aesthetic and recreational reasons for an interest in fishes. Millions of people keep live fishes in home aquariums for the simple pleasure of observing the beauty and behaviour of animals otherwise unfamiliar to them. Aquarium fishes provide a personal challenge to many aquarists, allowing them to test their ability to keep a small section of the natural environment in their homes. Sportfishing is another way of enjoying the natural environment, also indulged in by millions of people every year. Interest in aquarium fishes and sportfishing supports multimillion-dollar industries throughout the world.
Fishes have been in existence for more than 450 million years, during which time they have evolved repeatedly to fit into almost every conceivable type of aquatic habitat. In a sense, land vertebrates are simply highly modified fishes: when fishes colonized the land habitat, they became tetrapod (four-legged) land vertebrates. The popular conception of a fish as a slippery, streamlined aquatic animal that possesses fins and breathes by gills applies to many fishes, but far more fishes deviate from that conception than conform to it. For example, the body is elongate in many forms and greatly shortened in others; the body is flattened in some (principally in bottom-dwelling fishes) and laterally compressed in many others; the fins may be elaborately extended, forming intricate shapes, or they may be reduced or even lost; and the positions of the mouth, eyes, nostrils, and gill openings vary widely. Air breathers have appeared in several evolutionary lines.
Many fishes are cryptically coloured and shaped, closely matching their respective environments; others are among the most brilliantly coloured of all organisms, with a wide range of hues, often of striking intensity, on a single individual. The brilliance of pigments may be enhanced by the surface structure of the fish, so that it almost seems to glow. A number of unrelated fishes have actual light-producing organs. Many fishes are able to alter their coloration—some for the purpose of camouflage, others for the enhancement of behavioral signals.
Fishes range in adult length from less than 10 mm (0.4 inch) to more than 20 metres (60 feet) and in weight from about 1.5 grams (less than 0.06 ounce) to many thousands of kilograms. Some live in shallow thermal springs at temperatures slightly above 42 °C (100 °F), others in cold Arctic seas a few degrees below 0 °C (32 °F) or in cold deep waters more than 4,000 metres (13,100 feet) beneath the ocean surface. The structural and, especially, the physiological adaptations for life at such extremes are relatively poorly known and provide the scientifically curious with great incentive for study.
Almost all natural bodies of water bear fish life, the exceptions being very hot thermal ponds and extremely salt-alkaline lakes, such as the Dead Sea in Asia and the Great Salt Lake in North America. The present distribution of fishes is a result of the geological history and development of Earth as well as the ability of fishes to undergo evolutionary change and to adapt to the available habitats. Fishes may be seen to be distributed according to habitat and according to geographical area. Major habitat differences are marine and freshwater. For the most part, the fishes in a marine habitat differ from those in a freshwater habitat, even in adjacent areas, but some, such as the salmon, migrate from one to the other. The freshwater habitats may be seen to be of many kinds. Fishes found in mountain torrents, Arctic lakes, tropical lakes, temperate streams, and tropical rivers will all differ from each other, both in obvious gross structure and in physiological attributes. Even in closely adjacent habitats where, for example, a tropical mountain torrent enters a lowland stream, the fish fauna will differ. The marine habitats can be divided into deep ocean floors (benthic), mid-water oceanic (bathypelagic), surface oceanic (pelagic), rocky coast, sandy coast, muddy shores, bays, estuaries, and others. Also, for example, rocky coastal shores in tropical and temperate regions will have different fish faunas, even when such habitats occur along the same coastline.
Although much is known about the present geographical distribution of fishes, far less is known about how that distribution came about. Many parts of the fish fauna of the fresh waters of North America and Eurasia are related and undoubtedly have a common origin. The faunas of Africa and South America are related, extremely old, and probably an expression of the drifting apart of the two continents. The fauna of southern Asia is related to that of Central Asia, and some of it appears to have entered Africa. The extremely large shore-fish faunas of the Indian and tropical Pacific oceans comprise a related complex, but the tropical shore fauna of the Atlantic, although containing Indo-Pacific components, is relatively limited and probably younger. The Arctic and Antarctic marine faunas are quite different from each other. The shore fauna of the North Pacific is quite distinct, and that of the North Atlantic more limited and probably younger. Pelagic oceanic fishes, especially those in deep waters, are similar the world over, showing little geographical isolation in terms of family groups. The deep oceanic habitat is very much the same throughout the world, but species differences do exist, showing geographical areas determined by oceanic currents and water masses.
All aspects of the life of a fish are closely correlated with adaptation to the total environment, physical, chemical, and biological. In studies, all the interdependent aspects of fish, such as behaviour, locomotion, reproduction, and physical and physiological characteristics, must be taken into account.
Correlated with their adaptation to an extremely wide variety of habitats is the extremely wide variety of life cycles that fishes display. The great majority hatch from relatively small eggs a few days to several weeks or more after the eggs are scattered in the water. Newly hatched young are still partially undeveloped and are called larvae until body structures such as fins, skeleton, and some organs are fully formed. Larval life is often very short, usually less than a few weeks, but it can be very long, some lampreys continuing as larvae for at least five years. Young and larval fishes, before reaching sexual maturity, must grow considerably, and their small size and other factors often dictate that they live in a habitat different than that of the adults. For example, most tropical marine shore fishes have pelagic larvae. Larval food also is different, and larval fishes often live in shallow waters, where they may be less exposed to predators.
After a fish reaches adult size, the length of its life is subject to many factors, such as innate rates of aging, predation pressure, and the nature of the local climate. The longevity of a species in the protected environment of an aquarium may have nothing to do with how long members of that species live in the wild. Many small fishes live only one to three years at the most. In some species, however, individuals may live as long as 10 or 20 or even 100 years.
Fish behaviour is a complicated and varied subject. As in almost all animals with a central nervous system, the nature of a response of an individual fish to stimuli from its environment depends upon the inherited characteristics of its nervous system, on what it has learned from past experience, and on the nature of the stimuli. Compared with the variety of human responses, however, that of a fish is stereotyped, not subject to much modification by “thought” or learning, and investigators must guard against anthropomorphic interpretations of fish behaviour.
Fishes perceive the world around them by the usual senses of sight, smell, hearing, touch, and taste and by special lateral line water-current detectors. In the few fishes that generate electric fields, a process that might best be called electrolocation aids in perception. One or another of these senses often is emphasized at the expense of others, depending upon the fish’s other adaptations. In fishes with large eyes, the sense of smell may be reduced; others, with small eyes, hunt and feed primarily by smell (such as some eels).
Specialized behaviour is primarily concerned with the three most important activities in the fish’s life: feeding, reproduction, and escape from enemies. Schooling behaviour of sardines on the high seas, for instance, is largely a protective device to avoid enemies, but it is also associated with and modified by their breeding and feeding requirements. Predatory fishes are often solitary, lying in wait to dart suddenly after their prey, a kind of locomotion impossible for beaked parrot fishes, which feed on coral, swimming in small groups from one coral head to the next. In addition, some predatory fishes that inhabit pelagic environments, such as tunas, often school.
Sleep in fishes, all of which lack true eyelids, consists of a seemingly listless state in which the fish maintains its balance but moves slowly. If attacked or disturbed, most can dart away. A few kinds of fishes lie on the bottom to sleep. Most catfishes, some loaches, and some eels and electric fishes are strictly nocturnal, being active and hunting for food during the night and retiring during the day to holes, thick vegetation, or other protective parts of the environment.
Communication between members of a species or between members of two or more species often is extremely important, especially in breeding behaviour (see below Reproduction). The mode of communication may be visual, as between the small so-called cleaner fish and a large fish of a very different species. The larger fish often allows the cleaner to enter its mouth to remove gill parasites. The cleaner is recognized by its distinctive colour and actions and therefore is not eaten, even if the larger fish is normally a predator. Communication is often chemical, signals being sent by specific chemicals called pheromones.
Many fishes have a streamlined body and swim freely in open water. Fish locomotion is closely correlated with habitat and ecological niche (the general position of the animal to its environment).
Many fishes in both marine and fresh waters swim at the surface and have mouths adapted to feed best (and sometimes only) at the surface. Often such fishes are long and slender, able to dart at surface insects or at other surface fishes and in turn to dart away from predators; needlefishes, halfbeaks, and topminnows (such as killifish and mosquito fish) are good examples. Oceanic flying fishes escape their predators by gathering speed above the water surface, with the lower lobe of the tail providing thrust in the water. They then glide hundreds of yards on enlarged, winglike pectoral and pelvic fins. South American freshwater flying fishes escape their enemies by jumping and propelling their strongly keeled bodies out of the water.
So-called mid-water swimmers, the most common type of fish, are of many kinds and live in many habitats. The powerful fusiform tunas and the trouts, for example, are adapted for strong, fast swimming, the tunas to capture prey speedily in the open ocean and the trouts to cope with the swift currents of streams and rivers. The trout body form is well adapted to many habitats. Fishes that live in relatively quiet waters such as bays or lake shores or slow rivers usually are not strong, fast swimmers but are capable of short, quick bursts of speed to escape a predator. Many of these fishes have their sides flattened, examples being the sunfish and the freshwater angelfish of aquarists. Fish associated with the bottom or substrate usually are slow swimmers. Open-water plankton-feeding fishes almost always remain fusiform and are capable of rapid, strong movement (for example, sardines and herrings of the open ocean and also many small minnows of streams and lakes).
Bottom-living fishes are of many kinds and have undergone many types of modification of their body shape and swimming habits. Rays, which evolved from strong-swimming mid-water sharks, usually stay close to the bottom and move by undulating their large pectoral fins. Flounders live in a similar habitat and move over the bottom by undulating the entire body. Many bottom fishes dart from place to place, resting on the bottom between movements, a motion common in gobies. One goby relative, the mudskipper, has taken to living at the edge of pools along the shore of muddy mangrove swamps. It escapes its enemies by flipping rapidly over the mud, out of the water. Some catfishes, synbranchid eels, the so-called climbing perch, and a few other fishes venture out over damp ground to find more promising waters than those that they left. They move by wriggling their bodies, sometimes using strong pectoral fins; most have accessory air-breathing organs. Many bottom-dwelling fishes live in mud holes or rocky crevices. Marine eels and gobies commonly are found in such habitats and for the most part venture far beyond their cavelike homes. Some bottom dwellers, such as the clingfishes (Gobiesocidae), have developed powerful adhesive disks that enable them to remain in place on the substrate in areas such as rocky coasts, where the action of the waves is great.
The methods of reproduction in fishes are varied, but most fishes lay a large number of small eggs, fertilized and scattered outside of the body. The eggs of pelagic fishes usually remain suspended in the open water. Many shore and freshwater fishes lay eggs on the bottom or among plants. Some have adhesive eggs. The mortality of the young and especially of the eggs is very high, and often only a few individuals grow to maturity out of hundreds, thousands, and in some cases millions of eggs laid.
Males produce sperm, usually as a milky white substance called milt, in two (sometimes one) testes within the body cavity. In bony fishes a sperm duct leads from each testis to a urogenital opening behind the vent or anus. In sharks and rays and in cyclostomes the duct leads to a cloaca. Sometimes the pelvic fins are modified to help transmit the milt to the eggs at the female’s vent or on the substrate where the female has placed them. Sometimes accessory organs are used to fertilize females internally—for example, the claspers of many sharks and rays.
In the females the eggs are formed in two ovaries (sometimes only one) and pass through the ovaries to the urogenital opening and to the outside. In some fishes the eggs are fertilized internally but are shed before development takes place. Members of about a dozen families each of bony fishes (teleosts) and sharks bear live young. Many skates and rays also bear live young. In some bony fishes the eggs simply develop within the female, the young emerging when the eggs hatch (ovoviviparous). Others develop within the ovary and are nourished by ovarian tissues after hatching (viviparous). There are also other methods utilized by fishes to nourish young within the female. In all live-bearers the young are born at a relatively large size and are few in number. In one family of primarily marine fishes, the surfperches from the Pacific coast of North America, Japan, and Korea, the males of at least one species are born sexually mature, although they are not fully grown.
Some fishes are hermaphroditic—an individual producing both sperm and eggs, usually at different stages of its life. Self-fertilization, however, is probably rare.
Successful reproduction and, in many cases, defense of the eggs and the young are assured by rather stereotypical but often elaborate courtship and parental behaviour, either by the male or the female or both. Some fishes prepare nests by hollowing out depressions in the sand bottom (cichlids, for example), build nests with plant materials and sticky threads excreted by the kidneys (sticklebacks), or blow a cluster of mucus-covered bubbles at the water surface (gouramis). The eggs are laid in these structures. Some varieties of cichlids and catfishes incubate eggs in their mouths.
Some fishes, such as salmon, undergo long migrations from the ocean and up large rivers to spawn in the gravel beds where they themselves hatched (anadromous fishes). Some, such as the freshwater eels (family Anguillidae), live and grow to maturity in fresh water and migrate to the sea to spawn (catadromous fishes). Other fishes undertake shorter migrations from lakes into streams, within the ocean, or enter spawning habitats that they do not ordinarily occupy in other ways.
The basic structure and function of the fish body are similar to those of all other vertebrates. The usual four types of tissues are present: surface or epithelial, connective (bone, cartilage, and fibrous tissues, as well as their derivative, blood), nerve, and muscle tissues. In addition, the fish’s organs and organ systems parallel those of other vertebrates.
The typical fish body is streamlined and spindle-shaped, with an anterior head, a gill apparatus, and a heart, the latter lying in the midline just below the gill chamber. The body cavity, containing the vital organs, is situated behind the head in the lower anterior part of the body. The anus usually marks the posterior termination of the body cavity and most often occurs just in front of the base of the anal fin. The spinal cord and vertebral column continue from the posterior part of the head to the base of the tail fin, passing dorsal to the body cavity and through the caudal (tail) region behind the body cavity. Most of the body is of muscular tissue, a high proportion of which is necessitated by swimming. In the course of evolution this basic body plan has been modified repeatedly into the many varieties of fish shapes that exist today.
The skeleton forms an integral part of the fish’s locomotion system, as well as serving to protect vital parts. The internal skeleton consists of the skull bones (except for the roofing bones of the head, which are really part of the external skeleton), the vertebral column, and the fin supports (fin rays). The fin supports are derived from the external skeleton but will be treated here because of their close functional relationship to the internal skeleton. The internal skeleton of cyclostomes, sharks, and rays is of cartilage; that of many fossil groups and some primitive living fishes is mostly of cartilage but may include some bone. In place of the vertebral column, the earliest vertebrates had a fully developed notochord, a flexible stiff rod of viscous cells surrounded by a strong fibrous sheath. During the evolution of modern fishes the rod was replaced in part by cartilage and then by ossified cartilage. Sharks and rays retain a cartilaginous vertebral column; bony fishes have spool-shaped vertebrae that in the more primitive living forms only partially replace the notochord. The skull, including the gill arches and jaws of bony fishes, is fully, or at least partially, ossified. That of sharks and rays remains cartilaginous, at times partially replaced by calcium deposits but never by true bone.
The supportive elements of the fins (basal or radial bones or both) have changed greatly during fish evolution. Some of these changes are described in the section below (Evolution and paleontology). Most fishes possess a single dorsal fin on the midline of the back. Many have two and a few have three dorsal fins. The other fins are the single tail and anal fins and paired pelvic and pectoral fins. A small fin, the adipose fin, with hairlike fin rays, occurs in many of the relatively primitive teleosts (such as trout) on the back near the base of the caudal fin.
The skin of a fish must serve many functions. It aids in maintaining the osmotic balance, provides physical protection for the body, is the site of coloration, contains sensory receptors, and, in some fishes, functions in respiration. Mucous glands, which aid in maintaining the water balance and offer protection from bacteria, are extremely numerous in fish skin, especially in cyclostomes and teleosts. Since mucous glands are present in the modern lampreys, it is reasonable to assume that they were present in primitive fishes, such as the ancient Silurian and Devonian agnathans. Protection from abrasion and predation is another function of the fish skin, and dermal (skin) bone arose early in fish evolution in response to this need. It is thought that bone first evolved in skin and only later invaded the cartilaginous areas of the fish’s body, to provide additional support and protection. There is some argument as to which came first, cartilage or bone, and fossil evidence does not settle the question. In any event, dermal bone has played an important part in fish evolution and has different characteristics in different groups of fishes. Several groups are characterized at least in part by the kind of bony scales they possess.
Scales have played an important part in the evolution of fishes. Primitive fishes usually had thick bony plates or thick scales in several layers of bone, enamel, and related substances. Modern teleost fishes have scales of bone, which, while still protective, allow much more freedom of motion in the body. A few modern teleosts (some catfishes, sticklebacks, and others) have secondarily acquired bony plates in the skin. Modern and early sharks possessed placoid scales, a relatively primitive type of scale with a toothlike structure, consisting of an outside layer of enamel-like substance (vitrodentine), an inner layer of dentine, and a pulp cavity containing nerves and blood vessels. Primitive bony fishes had thick scales of either the ganoid or the cosmoid type. Cosmoid scales have a hard, enamel-like outer layer, an inner layer of cosmine (a form of dentine), and then a layer of vascular bone (isopedine). In ganoid scales the hard outer layer is different chemically and is called ganoin. Under this is a cosminelike layer and then a vascular bony layer. The thin, translucent bony scales of modern fishes, called cycloid and ctenoid (the latter distinguished by serrations at the edges), lack enameloid and dentine layers.
Skin has several other functions in fishes. It is well supplied with nerve endings and presumably receives tactile, thermal, and pain stimuli. Skin is also well supplied with blood vessels. Some fishes breathe in part through the skin, by the exchange of oxygen and carbon dioxide between the surrounding water and numerous small blood vessels near the skin surface.
Skin serves as protection through the control of coloration. Fishes exhibit an almost limitless range of colours. The colours often blend closely with the surroundings, effectively hiding the animal. Many fishes use bright colours for territorial advertisement or as recognition marks for other members of their own species, or sometimes for members of other species. Many fishes can change their colour to a greater or lesser degree, by movement of pigment within the pigment cells (chromatophores). Black pigment cells (melanophores), of almost universal occurrence in fishes, are often juxtaposed with other pigment cells. When placed beneath iridocytes or leucophores (bearing the silvery or white pigment guanine), melanophores produce structural colours of blue and green. These colours are often extremely intense, because they are formed by refraction of light through the needlelike crystals of guanine. The blue and green refracted colours are often relatively pure, lacking the red and yellow rays, which have been absorbed by the black pigment (melanin) of the melanophores. Yellow, orange, and red colours are produced by erythrophores, cells containing the appropriate carotenoid pigments. Other colours are produced by combinations of melanophores, erythrophores, and iridocytes.
The major portion of the body of most fishes consists of muscles. Most of the mass is trunk musculature, the fin muscles usually being relatively small. The caudal fin is usually the most powerful fin, being moved by the trunk musculature. The body musculature is usually arranged in rows of chevron-shaped segments on each side. Contractions of these segments, each attached to adjacent vertebrae and vertebral processes, bends the body on the vertebral joint, producing successive undulations of the body, passing from the head to the tail, and producing driving strokes of the tail. It is the latter that provides the strong forward movement for most fishes.
The digestive system, in a functional sense, starts at the mouth, with the teeth used to capture prey or collect plant foods. Mouth shape and tooth structure vary greatly in fishes, depending on the kind of food normally eaten. Most fishes are predacious, feeding on small invertebrates or other fishes and have simple conical teeth on the jaws, on at least some of the bones of the roof of the mouth, and on special gill arch structures just in front of the esophagus. The latter are throat teeth. Most predacious fishes swallow their prey whole, and the teeth are used for grasping and holding prey, for orienting prey to be swallowed (head first) and for working the prey toward the esophagus. There are a variety of tooth types in fishes. Some fishes, such as sharks and piranhas, have cutting teeth for biting chunks out of their victims. A shark’s tooth, although superficially like that of a piranha, appears in many respects to be a modified scale, while that of the piranha is like that of other bony fishes, consisting of dentine and enamel. Parrot fishes have beaklike mouths with short incisor-like teeth for breaking off coral and have heavy pavementlike throat teeth for crushing the coral. Some catfishes have small brushlike teeth, arranged in rows on the jaws, for scraping plant and animal growth from rocks. Many fishes (such as the Cyprinidae or minnows) have no jaw teeth at all but have very strong throat teeth.
Some fishes gather planktonic food by straining it from their gill cavities with numerous elongate stiff rods (gill rakers) anchored by one end to the gill bars. The food collected on these rods is passed to the throat, where it is swallowed. Most fishes have only short gill rakers that help keep food particles from escaping out the mouth cavity into the gill chamber.
Once reaching the throat, food enters a short, often greatly distensible esophagus, a simple tube with a muscular wall leading into a stomach. The stomach varies greatly in fishes, depending upon the diet. In most predacious fishes it is a simple straight or curved tube or pouch with a muscular wall and a glandular lining. Food is largely digested there and leaves the stomach in liquid form.
Between the stomach and the intestine, ducts enter the digestive tube from the liver and pancreas. The liver is a large, clearly defined organ. The pancreas may be embedded in it, diffused through it, or broken into small parts spread along some of the intestine. The junction between the stomach and the intestine is marked by a muscular valve. Pyloric ceca (blind sacs) occur in some fishes at this junction and have a digestive or absorptive function or both.
The intestine itself is quite variable in length, depending upon the fish’s diet. It is short in predacious forms, sometimes no longer than the body cavity, but long in herbivorous forms, being coiled and several times longer than the entire length of the fish in some species of South American catfishes. The intestine is primarily an organ for absorbing nutrients into the bloodstream. The larger its internal surface, the greater its absorptive efficiency, and a spiral valve is one method of increasing its absorption surface.
Sharks, rays, chimaeras, lungfishes, surviving chondrosteans, holosteans, and even a few of the more primitive teleosts have a spiral valve or at least traces of it in the intestine. Most modern teleosts have increased the area of the intestinal walls by having numerous folds and villi (fingerlike projections) somewhat like those in humans. Undigested substances are passed to the exterior through the anus in most teleost fishes. In lungfishes, sharks, and rays, it is first passed through the cloaca, a common cavity receiving the intestinal opening and the ducts from the urogenital system.
Oxygen and carbon dioxide dissolve in water, and most fishes exchange dissolved oxygen and carbon dioxide in water by means of the gills. The gills lie behind and to the side of the mouth cavity and consist of fleshy filaments supported by the gill arches and filled with blood vessels, which give gills a bright red colour. Water taken in continuously through the mouth passes backward between the gill bars and over the gill filaments, where the exchange of gases takes place. The gills are protected by a gill cover in teleosts and many other fishes but by flaps of skin in sharks, rays, and some of the older fossil fish groups. The blood capillaries in the gill filaments are close to the gill surface to take up oxygen from the water and to give up excess carbon dioxide to the water.
Most modern fishes have a hydrostatic (ballast) organ, called the swim bladder, that lies in the body cavity just below the kidney and above the stomach and intestine. It originated as a diverticulum of the digestive canal. In advanced teleosts, especially the acanthopterygians, the bladder has lost its connection with the digestive tract, a condition called physoclistic. The connection has been retained (physostomous) by many relatively primitive teleosts. In several unrelated lines of fishes, the bladder has become specialized as a lung or, at least, as a highly vascularized accessory breathing organ. Some fishes with such accessory organs are obligate air breathers and will drown if denied access to the surface, even in well-oxygenated water. Fishes with a hydrostatic form of swim bladder can control their depth by regulating the amount of gas in the bladder. The gas, mostly oxygen, is secreted into the bladder by special glands, rendering the fish more buoyant; the gas is absorbed into the bloodstream by another special organ, reducing the overall buoyancy and allowing the fish to sink. Some deep-sea fishes may have oils, rather than gas, in the bladder. Other deep-sea and some bottom-living forms have much-reduced swim bladders or have lost the organ entirely.
The swim bladder of fishes follows the same developmental pattern as the lungs of land vertebrates. There is no doubt that the two structures have the same historical origin in primitive fishes. More or less intermediate forms still survive among the more primitive types of fishes, such as the lungfishes Lepidosiren and Protopterus.
The circulatory, or blood vascular, system consists of the heart, the arteries, the capillaries, and the veins. It is in the capillaries that the interchange of oxygen, carbon dioxide, nutrients, and other substances such as hormones and waste products takes place. The capillaries lead to the veins, which return the venous blood with its waste products to the heart, kidneys, and gills. There are two kinds of capillary beds: those in the gills and those in the rest of the body. The heart, a folded continuous muscular tube with three or four saclike enlargements, undergoes rhythmic contractions and receives venous blood in a sinus venosus. It passes the blood to an auricle and then into a thick muscular pump, the ventricle. From the ventricle the blood goes to a bulbous structure at the base of a ventral aorta just below the gills. The blood passes to the afferent (receiving) arteries of the gill arches and then to the gill capillaries. There waste gases are given off to the environment, and oxygen is absorbed. The oxygenated blood enters efferent (exuant) arteries of the gill arches and then flows into the dorsal aorta. From there blood is distributed to the tissues and organs of the body. One-way valves prevent backflow. The circulation of fishes thus differs from that of the reptiles, birds, and mammals in that oxygenated blood is not returned to the heart prior to distribution to the other parts of the body.
The primary excretory organ in fishes, as in other vertebrates, is the kidney. In fishes some excretion also takes place in the digestive tract, skin, and especially the gills (where ammonia is given off). Compared with land vertebrates, fishes have a special problem in maintaining their internal environment at a constant concentration of water and dissolved substances, such as salts. Proper balance of the internal environment (homeostasis) of a fish is in a great part maintained by the excretory system, especially the kidney.
The kidney, gills, and skin play an important role in maintaining a fish’s internal environment and checking the effects of osmosis. Marine fishes live in an environment in which the water around them has a greater concentration of salts than they can have inside their body and still maintain life. Freshwater fishes, on the other hand, live in water with a much lower concentration of salts than they require inside their bodies. Osmosis tends to promote the loss of water from the body of a marine fish and absorption of water by that of a freshwater fish. Mucus in the skin tends to slow the process but is not a sufficient barrier to prevent the movement of fluids through the permeable skin. When solutions on two sides of a permeable membrane have different concentrations of dissolved substances, water will pass through the membrane into the more concentrated solution, while the dissolved chemicals move into the area of lower concentration (diffusion).
The kidney of freshwater fishes is often larger in relation to body weight than that of marine fishes. In both groups the kidney excretes wastes from the body, but the kidney of freshwater fishes also excretes large amounts of water, counteracting the water absorbed through the skin. Freshwater fishes tend to lose salt to the environment and must replace it. They get some salt from their food, but the gills and skin inside the mouth actively absorb salt from water passed through the mouth. This absorption is performed by special cells capable of moving salts against the diffusion gradient. Freshwater fishes drink very little water and take in little water with their food.
Marine fishes must conserve water, and therefore their kidneys excrete little water. To maintain their water balance, marine fishes drink large quantities of seawater, retaining most of the water and excreting the salt. Most nitrogenous waste in marine fishes appears to be secreted by the gills as ammonia. Marine fishes can excrete salt by clusters of special cells (chloride cells) in the gills.
There are several teleosts—for example, the salmon—that travel between fresh water and seawater and must adjust to the reversal of osmotic gradients. They adjust their physiological processes by spending time (often surprisingly little time) in the intermediate brackish environment.
Marine hagfishes, sharks, and rays have osmotic concentrations in their blood about equal to that of seawater and so do not have to drink water nor perform much physiological work to maintain their osmotic balance. In sharks and rays the osmotic concentration is kept high by retention of urea in the blood. Freshwater sharks have a lowered concentration of urea in the blood.
Endocrine glands secrete their products into the bloodstream and body tissues and, along with the central nervous system, control and regulate many kinds of body functions. Cyclostomes have a well-developed endocrine system, and presumably it was well developed in the early Agnatha, ancestral to modern fishes. Although the endocrine system in fishes is similar to that of higher vertebrates, there are numerous differences in detail. The pituitary, the thyroid, the suprarenals, the adrenals, the pancreatic islets, the sex glands (ovaries and testes), the inner wall of the intestine, and the bodies of the ultimobranchial gland make up the endocrine system in fishes. There are some others whose function is not well understood. These organs regulate sexual activity and reproduction, growth, osmotic pressure, general metabolic activities such as the storage of fat and the utilization of foodstuffs, blood pressure, and certain aspects of skin colour. Many of these activities are also controlled in part by the central nervous system, which works with the endocrine system in maintaining the life of a fish. Some parts of the endocrine system are developmentally, and undoubtedly evolutionarily, derived from the nervous system.
As in all vertebrates, the nervous system of fishes is the primary mechanism coordinating body activities, as well as integrating these activities in the appropriate manner with stimuli from the environment. The central nervous system, consisting of the brain and spinal cord, is the primary integrating mechanism. The peripheral nervous system, consisting of nerves that connect the brain and spinal cord to various body organs, carries sensory information from special receptor organs such as the eyes, internal ears, nares (sense of smell), taste glands, and others to the integrating centres of the brain and spinal cord. The peripheral nervous system also carries information via different nerve cells from the integrating centres of the brain and spinal cord. This coded information is carried to the various organs and body systems, such as the skeletal muscular system, for appropriate action in response to the original external or internal stimulus. Another branch of the nervous system, the autonomic nervous system, helps to coordinate the activities of many glands and organs and is itself closely connected to the integrating centres of the brain.
The brain of the fish is divided into several anatomical and functional parts, all closely interconnected but each serving as the primary centre of integrating particular kinds of responses and activities. Several of these centres or parts are primarily associated with one type of sensory perception, such as sight, hearing, or smell (olfaction).
The sense of smell is important in almost all fishes. Certain eels with tiny eyes depend mostly on smell for location of food. The olfactory, or nasal, organ of fishes is located on the dorsal surface of the snout. The lining of the nasal organ has special sensory cells that perceive chemicals dissolved in the water, such as substances from food material, and send sensory information to the brain by way of the first cranial nerve. Odour also serves as an alarm system. Many fishes, especially various species of freshwater minnows, react with alarm to a chemical released from the skin of an injured member of their own species.
Many fishes have a well-developed sense of taste, and tiny pitlike taste buds or organs are located not only within their mouth cavities but also over their heads and parts of their body. Catfishes, which often have poor vision, have barbels (“whiskers”) that serve as supplementary taste organs, those around the mouth being actively used to search out food on the bottom. Some species of naturally blind cave fishes are especially well supplied with taste buds, which often cover most of their body surface.
Sight is extremely important in most fishes. The eye of a fish is basically like that of all other vertebrates, but the eyes of fishes are extremely varied in structure and adaptation. In general, fishes living in dark and dim water habitats have large eyes, unless they have specialized in some compensatory way so that another sense (such as smell) is dominant, in which case the eyes will often be reduced. Fishes living in brightly lighted shallow waters often will have relatively small but efficient eyes. Cyclostomes have somewhat less elaborate eyes than other fishes, with skin stretched over the eyeball perhaps making their vision somewhat less effective. Most fishes have a spherical lens and accommodate their vision to far or near subjects by moving the lens within the eyeball. A few sharks accommodate by changing the shape of the lens, as in land vertebrates. Those fishes that are heavily dependent upon the eyes have especially strong muscles for accommodation. Most fishes see well, despite the restrictions imposed by frequent turbidity of the water and by light refraction.
Fossil evidence suggests that colour vision evolved in fishes more than 300 million years ago, but not all living fishes have retained this ability. Experimental evidence indicates that many shallow-water fishes, if not all, have colour vision and see some colours especially well, but some bottom-dwelling shore fishes live in areas where the water is sufficiently deep to filter out most if not all colours, and these fishes apparently never see colours. When tested in shallow water, they apparently are unable to respond to colour differences.
Sound perception and balance are intimately associated senses in a fish. The organs of hearing are entirely internal, located within the skull, on each side of the brain and somewhat behind the eyes. Sound waves, especially those of low frequencies, travel readily through water and impinge directly upon the bones and fluids of the head and body, to be transmitted to the hearing organs. Fishes readily respond to sound; for example, a trout conditioned to escape by the approach of fishermen will take flight upon perceiving footsteps on a stream bank even if it cannot see a fisherman. Compared with humans, however, the range of sound frequencies heard by fishes is greatly restricted. Many fishes communicate with each other by producing sounds in their swim bladders, in their throats by rasping their teeth, and in other ways.
A fish or other vertebrate seldom has to rely on a single type of sensory information to determine the nature of the environment around it. A catfish uses taste and touch when examining a food object with its oral barbels. Like most other animals, fishes have many touch receptors over their body surface. Pain and temperature receptors also are present in fishes and presumably produce the same kind of information to a fish as to humans. Fishes react in a negative fashion to stimuli that would be painful to human beings, suggesting that they feel a sensation of pain.
An important sensory system in fishes that is absent in other vertebrates (except some amphibians) is the lateral line system. This consists of a series of heavily innervated small canals located in the skin and bone around the eyes, along the lower jaw, over the head, and down the mid-side of the body, where it is associated with the scales. Intermittently along these canals are located tiny sensory organs (pit organs) that apparently detect changes in pressure. The system allows a fish to sense changes in water currents and pressure, thereby helping the fish to orient itself to the various changes that occur in the physical environment.
Not sure but I believe this is from the Old Testament. Anyway it never leaves my thoughts......
This is why I always feel so much closer to God in the wilderness and Not in a Church.
Our Declining Bee Population And You....
I thought that you all needed to know this.... about our declining Bee population and what ~You could do about it. An article recently opened my eyes into what we all might have been doing wrong and did not even know it, Thanks to our Lax protective measures here in the good old U.S.of A.
~BTW ~I just applied Advantage the other day on my own cats....... ;>{(
Shouldn't the damn label tell me any of this? All pet owners should ~at least~! read the section starting with the Star.
Another Bee Story.
In July the EPA issued a Final Work Plan for the Imidacloprid (Bayer Chemical), a neonicotinoid (synthetic nicotine) insecticide, affecting the central nervous system, highly toxic to honeybees, and implicated is in Colony Collapse Disorder (CCD). This neurotoxin is also mutagenic (causing genetic mutation), causes reproductive problems and is finally being evaluated for endocrine disruption.
Imidacloprid is used on a wide array of agricultural products, mostly cotton and vegetable crops. It is a systemic pesticide, meaning the chemical is incorporated into the plant tissue, and can therefore be present in nectar and pollen, which is of particular importance to bees, as after "visiting" treated areas they become disoriented, and forget how to get back to the hive. It also has long persistence in the soil, and can be absorbed by multiple generations of crops, increasing the likelihood of exposure for bees. It is also used on turf grass (golf courses), in termite control and lawn care (grub control), in home and garden insect control products, and also in flea and tick products for pets (Advantage).
*~*Of particular concern for pet owners*, research on transferable residues (second hand exposure from petting) taken from the coats of six household dogs treated with Advantage, found that repeated chronic exposure to Imidacloprid may pose health risks to veterinarians, vet techs, dog caretakers, and owners. Many pets have been adversely affected (convulsions) and some have died from this spot on flea treatment. The implications for human health, especially for those chronically exposed (petting and pet hairs) may prove to be far reaching.
Last May Germany in the midst of dramatically declining bee populations, the German Office for Consumer Protection and Food Safety suspended the approval of Imidacloprid, believing it to be responsible for for the fate of these important pollinators. Slovenia and France have also banned this chemical. last Fall the Italian government issued an immediate suspension after they accepted it was killing bees.
The US lags far behind the EU in addressing the harm this chemical has imposed not only on honeybees, but all of us. Many people believe that our Government fully tests the many toxic substances that have been put before us and our children. Sadly, this is not the case, as corporate interests, science and profits, have taken precedence over the health of Americans. Our ongoing and ever growing health care crises is a huge red flag and pragmatic proof of something gone terribly wrong.
There are currently 626 Imidacloprid products listed for use in the US.
In The Garden
Plant native species and brightly colored flowering plants like butterfly weed, Butterfly Bush and Lantana to attract bees butterflies and hummingbirds-- they provide and excellent food source for pollinators. For night time pollinators like moths and bats, plant fragrant Datura and Nicotiana.
Reprinted portion of an article seen in The Nashville Free Press, article by Katina Williams
katinawilliams@thenashvillefreepress.com
Fish, any of approximately 34,000 species of vertebrate animals (phylum Chordata) found in the fresh and salt waters of the world. Living species range from the primitive jawless lampreys and hagfishes through the cartilaginous sharks, skates, and rays to the abundant and diverse bony fishes. Most fish species are cold-blooded; however, one species, the opah (Lampris guttatus), is warm-blooded.
The term fish is applied to a variety of vertebrates of several evolutionary lines. It describes a life-form rather than a taxonomic group. As members of the phylum Chordata, fish share certain features with other vertebrates. These features are gill slits at some point in the life cycle, a notochord, or skeletal supporting rod, a dorsal hollow nerve cord, and a tail. Living fishes represent some five classes, which are as distinct from one another as are the four classes of familiar air-breathing animals—amphibians, reptiles, birds, and mammals. For example, the jawless fishes (Agnatha) have gills in pouches and lack limb girdles. Extant agnathans are the lampreys and the hagfishes. As the name implies, the skeletons of fishes of the class Chondrichthyes (from chondr, “cartilage,” and ichthyes, “fish”) are made entirely of cartilage. Modern fish of this class lack a swim bladder, and their scales and teeth are made up of the same placoid material. Sharks, skates, and rays are examples of cartilaginous fishes. The bony fishes are by far the largest class. Examples range from the tiny seahorse to the 450-kg (1,000-pound) blue marlin, from the flattened soles and flounders to the boxy puffers and ocean sunfishes. Unlike the scales of the cartilaginous fishes, those of bony fishes, when present, grow throughout life and are made up of thin overlapping plates of bone. Bony fishes also have an operculum that covers the gill slits.
The study of fishes, the science of ichthyology, is of broad importance. Fishes are of interest to humans for many reasons, the most important being their relationship with and dependence on the environment. A more obvious reason for interest in fishes is their role as a moderate but important part of the world’s food supply. This resource, once thought unlimited, is now realized to be finite and in delicate balance with the biological, chemical, and physical factors of the aquatic environment. Overfishing, pollution, and alteration of the environment are the chief enemies of proper fisheries management, both in fresh waters and in the ocean. (For a detailed discussion of the technology and economics of fisheries, see commercial fishing.) Another practical reason for studying fishes is their use in disease control. As predators on mosquito larvae, they help curb malaria and other mosquito-borne diseases.
Fishes are valuable laboratory animals in many aspects of medical and biological research. For example, the readiness of many fishes to acclimate to captivity has allowed biologists to study behaviour, physiology, and even ecology under relatively natural conditions. Fishes have been especially important in the study of animal behaviour, where research on fishes has provided a broad base for the understanding of the more flexible behaviour of the higher vertebrates. The zebra fish is used as a model in studies of gene expression.
There are aesthetic and recreational reasons for an interest in fishes. Millions of people keep live fishes in home aquariums for the simple pleasure of observing the beauty and behaviour of animals otherwise unfamiliar to them. Aquarium fishes provide a personal challenge to many aquarists, allowing them to test their ability to keep a small section of the natural environment in their homes. Sportfishing is another way of enjoying the natural environment, also indulged in by millions of people every year. Interest in aquarium fishes and sportfishing supports multimillion-dollar industries throughout the world.
Fishes have been in existence for more than 450 million years, during which time they have evolved repeatedly to fit into almost every conceivable type of aquatic habitat. In a sense, land vertebrates are simply highly modified fishes: when fishes colonized the land habitat, they became tetrapod (four-legged) land vertebrates. The popular conception of a fish as a slippery, streamlined aquatic animal that possesses fins and breathes by gills applies to many fishes, but far more fishes deviate from that conception than conform to it. For example, the body is elongate in many forms and greatly shortened in others; the body is flattened in some (principally in bottom-dwelling fishes) and laterally compressed in many others; the fins may be elaborately extended, forming intricate shapes, or they may be reduced or even lost; and the positions of the mouth, eyes, nostrils, and gill openings vary widely. Air breathers have appeared in several evolutionary lines.
Many fishes are cryptically coloured and shaped, closely matching their respective environments; others are among the most brilliantly coloured of all organisms, with a wide range of hues, often of striking intensity, on a single individual. The brilliance of pigments may be enhanced by the surface structure of the fish, so that it almost seems to glow. A number of unrelated fishes have actual light-producing organs. Many fishes are able to alter their coloration—some for the purpose of camouflage, others for the enhancement of behavioral signals.
Fishes range in adult length from less than 10 mm (0.4 inch) to more than 20 metres (60 feet) and in weight from about 1.5 grams (less than 0.06 ounce) to many thousands of kilograms. Some live in shallow thermal springs at temperatures slightly above 42 °C (100 °F), others in cold Arctic seas a few degrees below 0 °C (32 °F) or in cold deep waters more than 4,000 metres (13,100 feet) beneath the ocean surface. The structural and, especially, the physiological adaptations for life at such extremes are relatively poorly known and provide the scientifically curious with great incentive for study.
Almost all natural bodies of water bear fish life, the exceptions being very hot thermal ponds and extremely salt-alkaline lakes, such as the Dead Sea in Asia and the Great Salt Lake in North America. The present distribution of fishes is a result of the geological history and development of Earth as well as the ability of fishes to undergo evolutionary change and to adapt to the available habitats. Fishes may be seen to be distributed according to habitat and according to geographical area. Major habitat differences are marine and freshwater. For the most part, the fishes in a marine habitat differ from those in a freshwater habitat, even in adjacent areas, but some, such as the salmon, migrate from one to the other. The freshwater habitats may be seen to be of many kinds. Fishes found in mountain torrents, Arctic lakes, tropical lakes, temperate streams, and tropical rivers will all differ from each other, both in obvious gross structure and in physiological attributes. Even in closely adjacent habitats where, for example, a tropical mountain torrent enters a lowland stream, the fish fauna will differ. The marine habitats can be divided into deep ocean floors (benthic), mid-water oceanic (bathypelagic), surface oceanic (pelagic), rocky coast, sandy coast, muddy shores, bays, estuaries, and others. Also, for example, rocky coastal shores in tropical and temperate regions will have different fish faunas, even when such habitats occur along the same coastline.
Although much is known about the present geographical distribution of fishes, far less is known about how that distribution came about. Many parts of the fish fauna of the fresh waters of North America and Eurasia are related and undoubtedly have a common origin. The faunas of Africa and South America are related, extremely old, and probably an expression of the drifting apart of the two continents. The fauna of southern Asia is related to that of Central Asia, and some of it appears to have entered Africa. The extremely large shore-fish faunas of the Indian and tropical Pacific oceans comprise a related complex, but the tropical shore fauna of the Atlantic, although containing Indo-Pacific components, is relatively limited and probably younger. The Arctic and Antarctic marine faunas are quite different from each other. The shore fauna of the North Pacific is quite distinct, and that of the North Atlantic more limited and probably younger. Pelagic oceanic fishes, especially those in deep waters, are similar the world over, showing little geographical isolation in terms of family groups. The deep oceanic habitat is very much the same throughout the world, but species differences do exist, showing geographical areas determined by oceanic currents and water masses.
All aspects of the life of a fish are closely correlated with adaptation to the total environment, physical, chemical, and biological. In studies, all the interdependent aspects of fish, such as behaviour, locomotion, reproduction, and physical and physiological characteristics, must be taken into account.
Correlated with their adaptation to an extremely wide variety of habitats is the extremely wide variety of life cycles that fishes display. The great majority hatch from relatively small eggs a few days to several weeks or more after the eggs are scattered in the water. Newly hatched young are still partially undeveloped and are called larvae until body structures such as fins, skeleton, and some organs are fully formed. Larval life is often very short, usually less than a few weeks, but it can be very long, some lampreys continuing as larvae for at least five years. Young and larval fishes, before reaching sexual maturity, must grow considerably, and their small size and other factors often dictate that they live in a habitat different than that of the adults. For example, most tropical marine shore fishes have pelagic larvae. Larval food also is different, and larval fishes often live in shallow waters, where they may be less exposed to predators.
After a fish reaches adult size, the length of its life is subject to many factors, such as innate rates of aging, predation pressure, and the nature of the local climate. The longevity of a species in the protected environment of an aquarium may have nothing to do with how long members of that species live in the wild. Many small fishes live only one to three years at the most. In some species, however, individuals may live as long as 10 or 20 or even 100 years.
Fish behaviour is a complicated and varied subject. As in almost all animals with a central nervous system, the nature of a response of an individual fish to stimuli from its environment depends upon the inherited characteristics of its nervous system, on what it has learned from past experience, and on the nature of the stimuli. Compared with the variety of human responses, however, that of a fish is stereotyped, not subject to much modification by “thought” or learning, and investigators must guard against anthropomorphic interpretations of fish behaviour.
Fishes perceive the world around them by the usual senses of sight, smell, hearing, touch, and taste and by special lateral line water-current detectors. In the few fishes that generate electric fields, a process that might best be called electrolocation aids in perception. One or another of these senses often is emphasized at the expense of others, depending upon the fish’s other adaptations. In fishes with large eyes, the sense of smell may be reduced; others, with small eyes, hunt and feed primarily by smell (such as some eels).
Specialized behaviour is primarily concerned with the three most important activities in the fish’s life: feeding, reproduction, and escape from enemies. Schooling behaviour of sardines on the high seas, for instance, is largely a protective device to avoid enemies, but it is also associated with and modified by their breeding and feeding requirements. Predatory fishes are often solitary, lying in wait to dart suddenly after their prey, a kind of locomotion impossible for beaked parrot fishes, which feed on coral, swimming in small groups from one coral head to the next. In addition, some predatory fishes that inhabit pelagic environments, such as tunas, often school.
Sleep in fishes, all of which lack true eyelids, consists of a seemingly listless state in which the fish maintains its balance but moves slowly. If attacked or disturbed, most can dart away. A few kinds of fishes lie on the bottom to sleep. Most catfishes, some loaches, and some eels and electric fishes are strictly nocturnal, being active and hunting for food during the night and retiring during the day to holes, thick vegetation, or other protective parts of the environment.
Communication between members of a species or between members of two or more species often is extremely important, especially in breeding behaviour (see below Reproduction). The mode of communication may be visual, as between the small so-called cleaner fish and a large fish of a very different species. The larger fish often allows the cleaner to enter its mouth to remove gill parasites. The cleaner is recognized by its distinctive colour and actions and therefore is not eaten, even if the larger fish is normally a predator. Communication is often chemical, signals being sent by specific chemicals called pheromones.
Many fishes have a streamlined body and swim freely in open water. Fish locomotion is closely correlated with habitat and ecological niche (the general position of the animal to its environment).
Many fishes in both marine and fresh waters swim at the surface and have mouths adapted to feed best (and sometimes only) at the surface. Often such fishes are long and slender, able to dart at surface insects or at other surface fishes and in turn to dart away from predators; needlefishes, halfbeaks, and topminnows (such as killifish and mosquito fish) are good examples. Oceanic flying fishes escape their predators by gathering speed above the water surface, with the lower lobe of the tail providing thrust in the water. They then glide hundreds of yards on enlarged, winglike pectoral and pelvic fins. South American freshwater flying fishes escape their enemies by jumping and propelling their strongly keeled bodies out of the water.
So-called mid-water swimmers, the most common type of fish, are of many kinds and live in many habitats. The powerful fusiform tunas and the trouts, for example, are adapted for strong, fast swimming, the tunas to capture prey speedily in the open ocean and the trouts to cope with the swift currents of streams and rivers. The trout body form is well adapted to many habitats. Fishes that live in relatively quiet waters such as bays or lake shores or slow rivers usually are not strong, fast swimmers but are capable of short, quick bursts of speed to escape a predator. Many of these fishes have their sides flattened, examples being the sunfish and the freshwater angelfish of aquarists. Fish associated with the bottom or substrate usually are slow swimmers. Open-water plankton-feeding fishes almost always remain fusiform and are capable of rapid, strong movement (for example, sardines and herrings of the open ocean and also many small minnows of streams and lakes).
Bottom-living fishes are of many kinds and have undergone many types of modification of their body shape and swimming habits. Rays, which evolved from strong-swimming mid-water sharks, usually stay close to the bottom and move by undulating their large pectoral fins. Flounders live in a similar habitat and move over the bottom by undulating the entire body. Many bottom fishes dart from place to place, resting on the bottom between movements, a motion common in gobies. One goby relative, the mudskipper, has taken to living at the edge of pools along the shore of muddy mangrove swamps. It escapes its enemies by flipping rapidly over the mud, out of the water. Some catfishes, synbranchid eels, the so-called climbing perch, and a few other fishes venture out over damp ground to find more promising waters than those that they left. They move by wriggling their bodies, sometimes using strong pectoral fins; most have accessory air-breathing organs. Many bottom-dwelling fishes live in mud holes or rocky crevices. Marine eels and gobies commonly are found in such habitats and for the most part venture far beyond their cavelike homes. Some bottom dwellers, such as the clingfishes (Gobiesocidae), have developed powerful adhesive disks that enable them to remain in place on the substrate in areas such as rocky coasts, where the action of the waves is great.
The methods of reproduction in fishes are varied, but most fishes lay a large number of small eggs, fertilized and scattered outside of the body. The eggs of pelagic fishes usually remain suspended in the open water. Many shore and freshwater fishes lay eggs on the bottom or among plants. Some have adhesive eggs. The mortality of the young and especially of the eggs is very high, and often only a few individuals grow to maturity out of hundreds, thousands, and in some cases millions of eggs laid.
Males produce sperm, usually as a milky white substance called milt, in two (sometimes one) testes within the body cavity. In bony fishes a sperm duct leads from each testis to a urogenital opening behind the vent or anus. In sharks and rays and in cyclostomes the duct leads to a cloaca. Sometimes the pelvic fins are modified to help transmit the milt to the eggs at the female’s vent or on the substrate where the female has placed them. Sometimes accessory organs are used to fertilize females internally—for example, the claspers of many sharks and rays.
In the females the eggs are formed in two ovaries (sometimes only one) and pass through the ovaries to the urogenital opening and to the outside. In some fishes the eggs are fertilized internally but are shed before development takes place. Members of about a dozen families each of bony fishes (teleosts) and sharks bear live young. Many skates and rays also bear live young. In some bony fishes the eggs simply develop within the female, the young emerging when the eggs hatch (ovoviviparous). Others develop within the ovary and are nourished by ovarian tissues after hatching (viviparous). There are also other methods utilized by fishes to nourish young within the female. In all live-bearers the young are born at a relatively large size and are few in number. In one family of primarily marine fishes, the surfperches from the Pacific coast of North America, Japan, and Korea, the males of at least one species are born sexually mature, although they are not fully grown.
Some fishes are hermaphroditic—an individual producing both sperm and eggs, usually at different stages of its life. Self-fertilization, however, is probably rare.
Successful reproduction and, in many cases, defense of the eggs and the young are assured by rather stereotypical but often elaborate courtship and parental behaviour, either by the male or the female or both. Some fishes prepare nests by hollowing out depressions in the sand bottom (cichlids, for example), build nests with plant materials and sticky threads excreted by the kidneys (sticklebacks), or blow a cluster of mucus-covered bubbles at the water surface (gouramis). The eggs are laid in these structures. Some varieties of cichlids and catfishes incubate eggs in their mouths.
Some fishes, such as salmon, undergo long migrations from the ocean and up large rivers to spawn in the gravel beds where they themselves hatched (anadromous fishes). Some, such as the freshwater eels (family Anguillidae), live and grow to maturity in fresh water and migrate to the sea to spawn (catadromous fishes). Other fishes undertake shorter migrations from lakes into streams, within the ocean, or enter spawning habitats that they do not ordinarily occupy in other ways.
The basic structure and function of the fish body are similar to those of all other vertebrates. The usual four types of tissues are present: surface or epithelial, connective (bone, cartilage, and fibrous tissues, as well as their derivative, blood), nerve, and muscle tissues. In addition, the fish’s organs and organ systems parallel those of other vertebrates.
The typical fish body is streamlined and spindle-shaped, with an anterior head, a gill apparatus, and a heart, the latter lying in the midline just below the gill chamber. The body cavity, containing the vital organs, is situated behind the head in the lower anterior part of the body. The anus usually marks the posterior termination of the body cavity and most often occurs just in front of the base of the anal fin. The spinal cord and vertebral column continue from the posterior part of the head to the base of the tail fin, passing dorsal to the body cavity and through the caudal (tail) region behind the body cavity. Most of the body is of muscular tissue, a high proportion of which is necessitated by swimming. In the course of evolution this basic body plan has been modified repeatedly into the many varieties of fish shapes that exist today.
The skeleton forms an integral part of the fish’s locomotion system, as well as serving to protect vital parts. The internal skeleton consists of the skull bones (except for the roofing bones of the head, which are really part of the external skeleton), the vertebral column, and the fin supports (fin rays). The fin supports are derived from the external skeleton but will be treated here because of their close functional relationship to the internal skeleton. The internal skeleton of cyclostomes, sharks, and rays is of cartilage; that of many fossil groups and some primitive living fishes is mostly of cartilage but may include some bone. In place of the vertebral column, the earliest vertebrates had a fully developed notochord, a flexible stiff rod of viscous cells surrounded by a strong fibrous sheath. During the evolution of modern fishes the rod was replaced in part by cartilage and then by ossified cartilage. Sharks and rays retain a cartilaginous vertebral column; bony fishes have spool-shaped vertebrae that in the more primitive living forms only partially replace the notochord. The skull, including the gill arches and jaws of bony fishes, is fully, or at least partially, ossified. That of sharks and rays remains cartilaginous, at times partially replaced by calcium deposits but never by true bone.
The supportive elements of the fins (basal or radial bones or both) have changed greatly during fish evolution. Some of these changes are described in the section below (Evolution and paleontology). Most fishes possess a single dorsal fin on the midline of the back. Many have two and a few have three dorsal fins. The other fins are the single tail and anal fins and paired pelvic and pectoral fins. A small fin, the adipose fin, with hairlike fin rays, occurs in many of the relatively primitive teleosts (such as trout) on the back near the base of the caudal fin.
The skin of a fish must serve many functions. It aids in maintaining the osmotic balance, provides physical protection for the body, is the site of coloration, contains sensory receptors, and, in some fishes, functions in respiration. Mucous glands, which aid in maintaining the water balance and offer protection from bacteria, are extremely numerous in fish skin, especially in cyclostomes and teleosts. Since mucous glands are present in the modern lampreys, it is reasonable to assume that they were present in primitive fishes, such as the ancient Silurian and Devonian agnathans. Protection from abrasion and predation is another function of the fish skin, and dermal (skin) bone arose early in fish evolution in response to this need. It is thought that bone first evolved in skin and only later invaded the cartilaginous areas of the fish’s body, to provide additional support and protection. There is some argument as to which came first, cartilage or bone, and fossil evidence does not settle the question. In any event, dermal bone has played an important part in fish evolution and has different characteristics in different groups of fishes. Several groups are characterized at least in part by the kind of bony scales they possess.
Scales have played an important part in the evolution of fishes. Primitive fishes usually had thick bony plates or thick scales in several layers of bone, enamel, and related substances. Modern teleost fishes have scales of bone, which, while still protective, allow much more freedom of motion in the body. A few modern teleosts (some catfishes, sticklebacks, and others) have secondarily acquired bony plates in the skin. Modern and early sharks possessed placoid scales, a relatively primitive type of scale with a toothlike structure, consisting of an outside layer of enamel-like substance (vitrodentine), an inner layer of dentine, and a pulp cavity containing nerves and blood vessels. Primitive bony fishes had thick scales of either the ganoid or the cosmoid type. Cosmoid scales have a hard, enamel-like outer layer, an inner layer of cosmine (a form of dentine), and then a layer of vascular bone (isopedine). In ganoid scales the hard outer layer is different chemically and is called ganoin. Under this is a cosminelike layer and then a vascular bony layer. The thin, translucent bony scales of modern fishes, called cycloid and ctenoid (the latter distinguished by serrations at the edges), lack enameloid and dentine layers.
Skin has several other functions in fishes. It is well supplied with nerve endings and presumably receives tactile, thermal, and pain stimuli. Skin is also well supplied with blood vessels. Some fishes breathe in part through the skin, by the exchange of oxygen and carbon dioxide between the surrounding water and numerous small blood vessels near the skin surface.
Skin serves as protection through the control of coloration. Fishes exhibit an almost limitless range of colours. The colours often blend closely with the surroundings, effectively hiding the animal. Many fishes use bright colours for territorial advertisement or as recognition marks for other members of their own species, or sometimes for members of other species. Many fishes can change their colour to a greater or lesser degree, by movement of pigment within the pigment cells (chromatophores). Black pigment cells (melanophores), of almost universal occurrence in fishes, are often juxtaposed with other pigment cells. When placed beneath iridocytes or leucophores (bearing the silvery or white pigment guanine), melanophores produce structural colours of blue and green. These colours are often extremely intense, because they are formed by refraction of light through the needlelike crystals of guanine. The blue and green refracted colours are often relatively pure, lacking the red and yellow rays, which have been absorbed by the black pigment (melanin) of the melanophores. Yellow, orange, and red colours are produced by erythrophores, cells containing the appropriate carotenoid pigments. Other colours are produced by combinations of melanophores, erythrophores, and iridocytes.
The major portion of the body of most fishes consists of muscles. Most of the mass is trunk musculature, the fin muscles usually being relatively small. The caudal fin is usually the most powerful fin, being moved by the trunk musculature. The body musculature is usually arranged in rows of chevron-shaped segments on each side. Contractions of these segments, each attached to adjacent vertebrae and vertebral processes, bends the body on the vertebral joint, producing successive undulations of the body, passing from the head to the tail, and producing driving strokes of the tail. It is the latter that provides the strong forward movement for most fishes.
The digestive system, in a functional sense, starts at the mouth, with the teeth used to capture prey or collect plant foods. Mouth shape and tooth structure vary greatly in fishes, depending on the kind of food normally eaten. Most fishes are predacious, feeding on small invertebrates or other fishes and have simple conical teeth on the jaws, on at least some of the bones of the roof of the mouth, and on special gill arch structures just in front of the esophagus. The latter are throat teeth. Most predacious fishes swallow their prey whole, and the teeth are used for grasping and holding prey, for orienting prey to be swallowed (head first) and for working the prey toward the esophagus. There are a variety of tooth types in fishes. Some fishes, such as sharks and piranhas, have cutting teeth for biting chunks out of their victims. A shark’s tooth, although superficially like that of a piranha, appears in many respects to be a modified scale, while that of the piranha is like that of other bony fishes, consisting of dentine and enamel. Parrot fishes have beaklike mouths with short incisor-like teeth for breaking off coral and have heavy pavementlike throat teeth for crushing the coral. Some catfishes have small brushlike teeth, arranged in rows on the jaws, for scraping plant and animal growth from rocks. Many fishes (such as the Cyprinidae or minnows) have no jaw teeth at all but have very strong throat teeth.
Some fishes gather planktonic food by straining it from their gill cavities with numerous elongate stiff rods (gill rakers) anchored by one end to the gill bars. The food collected on these rods is passed to the throat, where it is swallowed. Most fishes have only short gill rakers that help keep food particles from escaping out the mouth cavity into the gill chamber.
Once reaching the throat, food enters a short, often greatly distensible esophagus, a simple tube with a muscular wall leading into a stomach. The stomach varies greatly in fishes, depending upon the diet. In most predacious fishes it is a simple straight or curved tube or pouch with a muscular wall and a glandular lining. Food is largely digested there and leaves the stomach in liquid form.
Between the stomach and the intestine, ducts enter the digestive tube from the liver and pancreas. The liver is a large, clearly defined organ. The pancreas may be embedded in it, diffused through it, or broken into small parts spread along some of the intestine. The junction between the stomach and the intestine is marked by a muscular valve. Pyloric ceca (blind sacs) occur in some fishes at this junction and have a digestive or absorptive function or both.
The intestine itself is quite variable in length, depending upon the fish’s diet. It is short in predacious forms, sometimes no longer than the body cavity, but long in herbivorous forms, being coiled and several times longer than the entire length of the fish in some species of South American catfishes. The intestine is primarily an organ for absorbing nutrients into the bloodstream. The larger its internal surface, the greater its absorptive efficiency, and a spiral valve is one method of increasing its absorption surface.
Sharks, rays, chimaeras, lungfishes, surviving chondrosteans, holosteans, and even a few of the more primitive teleosts have a spiral valve or at least traces of it in the intestine. Most modern teleosts have increased the area of the intestinal walls by having numerous folds and villi (fingerlike projections) somewhat like those in humans. Undigested substances are passed to the exterior through the anus in most teleost fishes. In lungfishes, sharks, and rays, it is first passed through the cloaca, a common cavity receiving the intestinal opening and the ducts from the urogenital system.
Oxygen and carbon dioxide dissolve in water, and most fishes exchange dissolved oxygen and carbon dioxide in water by means of the gills. The gills lie behind and to the side of the mouth cavity and consist of fleshy filaments supported by the gill arches and filled with blood vessels, which give gills a bright red colour. Water taken in continuously through the mouth passes backward between the gill bars and over the gill filaments, where the exchange of gases takes place. The gills are protected by a gill cover in teleosts and many other fishes but by flaps of skin in sharks, rays, and some of the older fossil fish groups. The blood capillaries in the gill filaments are close to the gill surface to take up oxygen from the water and to give up excess carbon dioxide to the water.
Most modern fishes have a hydrostatic (ballast) organ, called the swim bladder, that lies in the body cavity just below the kidney and above the stomach and intestine. It originated as a diverticulum of the digestive canal. In advanced teleosts, especially the acanthopterygians, the bladder has lost its connection with the digestive tract, a condition called physoclistic. The connection has been retained (physostomous) by many relatively primitive teleosts. In several unrelated lines of fishes, the bladder has become specialized as a lung or, at least, as a highly vascularized accessory breathing organ. Some fishes with such accessory organs are obligate air breathers and will drown if denied access to the surface, even in well-oxygenated water. Fishes with a hydrostatic form of swim bladder can control their depth by regulating the amount of gas in the bladder. The gas, mostly oxygen, is secreted into the bladder by special glands, rendering the fish more buoyant; the gas is absorbed into the bloodstream by another special organ, reducing the overall buoyancy and allowing the fish to sink. Some deep-sea fishes may have oils, rather than gas, in the bladder. Other deep-sea and some bottom-living forms have much-reduced swim bladders or have lost the organ entirely.
The swim bladder of fishes follows the same developmental pattern as the lungs of land vertebrates. There is no doubt that the two structures have the same historical origin in primitive fishes. More or less intermediate forms still survive among the more primitive types of fishes, such as the lungfishes Lepidosiren and Protopterus.
The circulatory, or blood vascular, system consists of the heart, the arteries, the capillaries, and the veins. It is in the capillaries that the interchange of oxygen, carbon dioxide, nutrients, and other substances such as hormones and waste products takes place. The capillaries lead to the veins, which return the venous blood with its waste products to the heart, kidneys, and gills. There are two kinds of capillary beds: those in the gills and those in the rest of the body. The heart, a folded continuous muscular tube with three or four saclike enlargements, undergoes rhythmic contractions and receives venous blood in a sinus venosus. It passes the blood to an auricle and then into a thick muscular pump, the ventricle. From the ventricle the blood goes to a bulbous structure at the base of a ventral aorta just below the gills. The blood passes to the afferent (receiving) arteries of the gill arches and then to the gill capillaries. There waste gases are given off to the environment, and oxygen is absorbed. The oxygenated blood enters efferent (exuant) arteries of the gill arches and then flows into the dorsal aorta. From there blood is distributed to the tissues and organs of the body. One-way valves prevent backflow. The circulation of fishes thus differs from that of the reptiles, birds, and mammals in that oxygenated blood is not returned to the heart prior to distribution to the other parts of the body.
The primary excretory organ in fishes, as in other vertebrates, is the kidney. In fishes some excretion also takes place in the digestive tract, skin, and especially the gills (where ammonia is given off). Compared with land vertebrates, fishes have a special problem in maintaining their internal environment at a constant concentration of water and dissolved substances, such as salts. Proper balance of the internal environment (homeostasis) of a fish is in a great part maintained by the excretory system, especially the kidney.
The kidney, gills, and skin play an important role in maintaining a fish’s internal environment and checking the effects of osmosis. Marine fishes live in an environment in which the water around them has a greater concentration of salts than they can have inside their body and still maintain life. Freshwater fishes, on the other hand, live in water with a much lower concentration of salts than they require inside their bodies. Osmosis tends to promote the loss of water from the body of a marine fish and absorption of water by that of a freshwater fish. Mucus in the skin tends to slow the process but is not a sufficient barrier to prevent the movement of fluids through the permeable skin. When solutions on two sides of a permeable membrane have different concentrations of dissolved substances, water will pass through the membrane into the more concentrated solution, while the dissolved chemicals move into the area of lower concentration (diffusion).
The kidney of freshwater fishes is often larger in relation to body weight than that of marine fishes. In both groups the kidney excretes wastes from the body, but the kidney of freshwater fishes also excretes large amounts of water, counteracting the water absorbed through the skin. Freshwater fishes tend to lose salt to the environment and must replace it. They get some salt from their food, but the gills and skin inside the mouth actively absorb salt from water passed through the mouth. This absorption is performed by special cells capable of moving salts against the diffusion gradient. Freshwater fishes drink very little water and take in little water with their food.
Marine fishes must conserve water, and therefore their kidneys excrete little water. To maintain their water balance, marine fishes drink large quantities of seawater, retaining most of the water and excreting the salt. Most nitrogenous waste in marine fishes appears to be secreted by the gills as ammonia. Marine fishes can excrete salt by clusters of special cells (chloride cells) in the gills.
There are several teleosts—for example, the salmon—that travel between fresh water and seawater and must adjust to the reversal of osmotic gradients. They adjust their physiological processes by spending time (often surprisingly little time) in the intermediate brackish environment.
Marine hagfishes, sharks, and rays have osmotic concentrations in their blood about equal to that of seawater and so do not have to drink water nor perform much physiological work to maintain their osmotic balance. In sharks and rays the osmotic concentration is kept high by retention of urea in the blood. Freshwater sharks have a lowered concentration of urea in the blood.
Endocrine glands secrete their products into the bloodstream and body tissues and, along with the central nervous system, control and regulate many kinds of body functions. Cyclostomes have a well-developed endocrine system, and presumably it was well developed in the early Agnatha, ancestral to modern fishes. Although the endocrine system in fishes is similar to that of higher vertebrates, there are numerous differences in detail. The pituitary, the thyroid, the suprarenals, the adrenals, the pancreatic islets, the sex glands (ovaries and testes), the inner wall of the intestine, and the bodies of the ultimobranchial gland make up the endocrine system in fishes. There are some others whose function is not well understood. These organs regulate sexual activity and reproduction, growth, osmotic pressure, general metabolic activities such as the storage of fat and the utilization of foodstuffs, blood pressure, and certain aspects of skin colour. Many of these activities are also controlled in part by the central nervous system, which works with the endocrine system in maintaining the life of a fish. Some parts of the endocrine system are developmentally, and undoubtedly evolutionarily, derived from the nervous system.
As in all vertebrates, the nervous system of fishes is the primary mechanism coordinating body activities, as well as integrating these activities in the appropriate manner with stimuli from the environment. The central nervous system, consisting of the brain and spinal cord, is the primary integrating mechanism. The peripheral nervous system, consisting of nerves that connect the brain and spinal cord to various body organs, carries sensory information from special receptor organs such as the eyes, internal ears, nares (sense of smell), taste glands, and others to the integrating centres of the brain and spinal cord. The peripheral nervous system also carries information via different nerve cells from the integrating centres of the brain and spinal cord. This coded information is carried to the various organs and body systems, such as the skeletal muscular system, for appropriate action in response to the original external or internal stimulus. Another branch of the nervous system, the autonomic nervous system, helps to coordinate the activities of many glands and organs and is itself closely connected to the integrating centres of the brain.
The brain of the fish is divided into several anatomical and functional parts, all closely interconnected but each serving as the primary centre of integrating particular kinds of responses and activities. Several of these centres or parts are primarily associated with one type of sensory perception, such as sight, hearing, or smell (olfaction).
The sense of smell is important in almost all fishes. Certain eels with tiny eyes depend mostly on smell for location of food. The olfactory, or nasal, organ of fishes is located on the dorsal surface of the snout. The lining of the nasal organ has special sensory cells that perceive chemicals dissolved in the water, such as substances from food material, and send sensory information to the brain by way of the first cranial nerve. Odour also serves as an alarm system. Many fishes, especially various species of freshwater minnows, react with alarm to a chemical released from the skin of an injured member of their own species.
Many fishes have a well-developed sense of taste, and tiny pitlike taste buds or organs are located not only within their mouth cavities but also over their heads and parts of their body. Catfishes, which often have poor vision, have barbels (“whiskers”) that serve as supplementary taste organs, those around the mouth being actively used to search out food on the bottom. Some species of naturally blind cave fishes are especially well supplied with taste buds, which often cover most of their body surface.
Sight is extremely important in most fishes. The eye of a fish is basically like that of all other vertebrates, but the eyes of fishes are extremely varied in structure and adaptation. In general, fishes living in dark and dim water habitats have large eyes, unless they have specialized in some compensatory way so that another sense (such as smell) is dominant, in which case the eyes will often be reduced. Fishes living in brightly lighted shallow waters often will have relatively small but efficient eyes. Cyclostomes have somewhat less elaborate eyes than other fishes, with skin stretched over the eyeball perhaps making their vision somewhat less effective. Most fishes have a spherical lens and accommodate their vision to far or near subjects by moving the lens within the eyeball. A few sharks accommodate by changing the shape of the lens, as in land vertebrates. Those fishes that are heavily dependent upon the eyes have especially strong muscles for accommodation. Most fishes see well, despite the restrictions imposed by frequent turbidity of the water and by light refraction.
Fossil evidence suggests that colour vision evolved in fishes more than 300 million years ago, but not all living fishes have retained this ability. Experimental evidence indicates that many shallow-water fishes, if not all, have colour vision and see some colours especially well, but some bottom-dwelling shore fishes live in areas where the water is sufficiently deep to filter out most if not all colours, and these fishes apparently never see colours. When tested in shallow water, they apparently are unable to respond to colour differences.
Sound perception and balance are intimately associated senses in a fish. The organs of hearing are entirely internal, located within the skull, on each side of the brain and somewhat behind the eyes. Sound waves, especially those of low frequencies, travel readily through water and impinge directly upon the bones and fluids of the head and body, to be transmitted to the hearing organs. Fishes readily respond to sound; for example, a trout conditioned to escape by the approach of fishermen will take flight upon perceiving footsteps on a stream bank even if it cannot see a fisherman. Compared with humans, however, the range of sound frequencies heard by fishes is greatly restricted. Many fishes communicate with each other by producing sounds in their swim bladders, in their throats by rasping their teeth, and in other ways.
A fish or other vertebrate seldom has to rely on a single type of sensory information to determine the nature of the environment around it. A catfish uses taste and touch when examining a food object with its oral barbels. Like most other animals, fishes have many touch receptors over their body surface. Pain and temperature receptors also are present in fishes and presumably produce the same kind of information to a fish as to humans. Fishes react in a negative fashion to stimuli that would be painful to human beings, suggesting that they feel a sensation of pain.
An important sensory system in fishes that is absent in other vertebrates (except some amphibians) is the lateral line system. This consists of a series of heavily innervated small canals located in the skin and bone around the eyes, along the lower jaw, over the head, and down the mid-side of the body, where it is associated with the scales. Intermittently along these canals are located tiny sensory organs (pit organs) that apparently detect changes in pressure. The system allows a fish to sense changes in water currents and pressure, thereby helping the fish to orient itself to the various changes that occur in the physical environment.
Our lifestyles and our environment are potential contributors to disease. Diet, lack of exercise and exposure to environmental pollutants, including endocrine (hormone) disrupting chemicals (EDCs) present in many everyday products, may increase the risk of hormone related diseases such as breast cancer.
Sources
. A manifesto for the prevention of breast cancer, breastcanceruk.
. Prevention Week 18 to 24 September 2017, breastcanceruk.
. Supporter tool kit, breastcanceruk.
Endocrine Disruptors
. Endocrine-Disrupting Chemicals: 2nd Endocrine Society Scientific Statement, 2015.
. Endocrine-Disrupting Chemicals: 1st Endocrine Society Scientific Statement, 2009.
. Watch our DES and EDCs research gallery on Flickr.
More Information
. Read #DitchTheJunk, a breast cancer uk campaign and download this guide to safer cosmetics.
. Enjoy our health infographics album on Flickr.
. Our posts tagged EDCs and safe cosmetics.
. Safer chemicals YouTube video playlists: cosmetics and EDCs.
The Scientific and Social Origins of the Environmental Endocrine Hypothesis
The broader environmental endocrine hypothesis (EEH), is the subject of Hormonal Chaos, by Sheldon Krimsky, 2000.
The premise behind the EEH is that chemicals mimicking endocrine hormones can bind to receptors and thus can cause health problems in humans as well as other animals. Krimsky shows how this hypothesis first developed within the scientific community, in large part as a result of the persistence and insight of Theo Colborn. While working for the nonprofit Conservation Foundation in the 1980s, Colborn formulated the EEH, linking together evidence from several disparate sources: deleterious effects on wildlife exposed to pesticides, defects in babies whose mothers took the estrogen substitute diethylstilbestrol (DES) and controversial claims that human sperm is declining in quantity and quality.
Sources and book reviews:
* Hormonal Chaos: The Scientific and Social Origin of the Environmental Endocrine Hypothesis, NCBI PMC1118410, British Medical Journal; 321(7259):516, BMJ 2000 Aug 19.
* The Case of the Deformed Frogs, americanscientist, July-August 2000.
* Amazon customer reviews.
More DES DiEthylStilbestrol Resources
All our posts tagged DES, the DES-exposed and DES victims.
DES studies on cancer, breast cancer, CCA, vaginal cancer, screening.
DES studies on fertility, gender identity, pregnancy.
DES studies on in-utero exposure to DES and DES side-effects.
DES articles on lawsuits and various studies.
Watch DES videos, read more about DES Daughters and DES Sons.
Always: detox the box!
Toxic chemicals don’t belong in pads. Period.
Women’s Voices for the Earth November 2013 Chem Fatale report found toxic chemicals commonly used in feminine care products like pads and tampons.
* Take Action => Tell Always to detox the box!
* Tampons & Transparency, skepchick, Dr Radium Yttrium, 17 Feb 2014.
* All our posts about EDCs, safe cosmetics and safer chemicals.
The hippopotamus, hippopotamuses or hippopotami, also shortened to hippo, hippos or Hippopotamus amphibius, further qualified as the common hippopotamus, Nile hippopotamus, or river hippopotamus, is a large semiaquatic mammal native to sub-Saharan Africa. It is one of only two extant species in the family Hippopotamidae, the other being the pygmy hippopotamus (Choeropsis liberiensis or Hexaprotodon liberiensis). Its name comes from the ancient Greek for "river horse" (ἱπποπόταμος).
After elephants and rhinoceros, the hippopotamus is the next largest land mammal. It is also the largest extant land artiodactyl. Despite their physical resemblance to pigs and other terrestrial even-toed ungulates, the closest living relatives of the hippopotamids are cetaceans (whales, dolphins, porpoises, etc.), from which they diverged about 55 million years ago. Hippos are recognisable for their barrel-shaped torsos, wide-opening mouths with large canine tusks, nearly hairless bodies, pillar-like legs, and large size: adults average 1,500 kg (3,300 lb) for bulls (males) and 1,300 kg (2,900 lb) for cows (females). Despite its stocky shape and short legs, it is capable of running 30 km/h (19 mph) over short distances.
Hippos inhabit rivers, lakes, and mangrove swamps. Territorial bulls each preside over a stretch of water and a group of five to thirty cows and calves. Mating and birth both occur in the water. During the day, hippos remain cool by staying in water or mud, emerging at dusk to graze on grasses. While hippos rest near each other in the water, grazing is a solitary activity and hippos typically do not display territorial behaviour on land. Hippos are among the most dangerous animals in the world due to their aggressive and unpredictable nature. They are threatened by habitat loss and poaching for their meat and ivory (canine teeth).
Etymology
The Latin word hippopotamus is derived from the ancient Greek ἱπποπόταμος (hippopótamos), from ἵππος (híppos) 'horse' and ποταμός (potamós) 'river', together meaning 'horse of the river'. In English, the plural is "hippopotamuses", but "hippopotami" is also used.
Taxonomy and origins
Classification
The modern hippopotamus and the pygmy hippopotamus are the only living members of the family Hippopotamidae. Some taxonomists place hippos and anthracotheres in the superfamily Anthracotheroidea. Hippopotamidae are classified along with other even-toed ungulates in the order Artiodactyla.
Detail of the head
Five subspecies of hippos have been described based on morphological differences in their skulls as well as differences in geographical range:
H. a. amphibius – (the nominate subspecies) ranges from Gambia east to Ethiopia and then south to Mozambique and historically ranged as far north as Egypt; its skull is distinguished by a moderately reduced preorbital region, a bulging dorsal surface, elongated mandibular symphysis and larger chewing teeth.
H. a. kiboko – found in Kenya and Somalia; was noted to be smaller and more lightly coloured than other hippos with wider nostrils, somewhat longer snout and more rounded and relatively raised orbits with the space between them being incurved.
H. a. capensis – found in Zambia and South Africa; distinguished by wider orbits.
H. a. tschadensis – ranges between Chad and Niger; featured a slightly shorter but broader face, and pronounced, forward-facing orbits.
H. a. constrictus – ranged from the southern Democratic Republic of Congo to Angola and Namibia; skull characterised by a thicker preorbital region, shorter snout, flatter dorsal surface, reduced mandibular symphysis and smaller chewing teeth.
The suggested subspecies above were never widely used or validated by field biologists; the described morphological differences were small enough that they could have resulted from simple variation in nonrepresentative samples. A study examining mitochondrial DNA from skin biopsies taken from 13 sampling locations found "low, but significant, genetic differentiation" among H. a. amphibius, H. a. capensis, and H. a. kiboko. Neither H. a. tschadensis nor H. a. constrictus have been tested.
Evolution
Until 1909, naturalists classified hippos together with pigs based on molar patterns. Several lines of evidence, first from blood proteins, then from molecular systematics and DNA and the fossil record, show their closest living relatives are cetaceans (whales, dolphins, and porpoises). The common ancestor of hippos and whales branched off from Ruminantia and the rest of the even-toed ungulates; the cetacean and hippo lineages split soon afterwards.
Artiodactyla
Tylopoda
Artiofabula
Suina
Cetruminantia
Ruminantia
Whippomorpha
Hippopotamidae
Cetacea
Anthracotherium magnum from the Oligocene of Europe
The most recent theory of the origins of Hippopotamidae suggests hippos and whales shared a common semiaquatic ancestor that branched off from other artiodactyls around 60 million years ago. This hypothesised ancestral group likely split into two branches again around 54 million years ago.
One branch would evolve into cetaceans, possibly beginning about 52 million years ago, with the protowhale Pakicetus and other early whale ancestors collectively known as Archaeoceti. This group eventually underwent aquatic adaptation into the completely aquatic cetaceans. The other branch became the anthracotheres, a large family of four-legged beasts, the earliest of which in the late Eocene would have resembled skinny hippos with comparatively smaller, narrower heads. All branches of the anthracotheres, except that which evolved into Hippopotamidae, became extinct during the Pliocene, leaving no descendants.
A rough evolutionary lineage of the hippo can thus be traced from Eocene and Oligocene species: from Anthracotherium and Elomeryx to the Miocene species Merycopotamus and Libycosaurus and finally the very latest anthracotheres in the Pliocene. These groups lived across Eurasia and Africa. The discovery of Epirigenys in East Africa, which was likely a descent of Asian anthracotheres and a sister taxon to Hippopotamidae, suggests that hippo ancestors entered Africa from Asia around 35 million years ago. An early hippopotamid is the genus Kenyapotamus, which lived in Africa from 15 to 9 million years ago. Hippopotamid species would spread across Africa and Eurasia, including the modern pygmy hippo. From 7.5 to 1.8 million years ago, a possible ancestor to the modern hippo, Archaeopotamus, lived in Africa and the Middle East. The oldest records of the genus Hippopotamus date to the Pliocene (5.3-2.6 million years ago). The oldest unambiguous records of the modern H. amphibius date to the Middle Pleistocene, though there are possible Early Pleistocene records.
Extinct species
Three species of Malagasy hippopotamus became extinct during the Holocene on Madagascar, the last of them within the past 1,000 years. The Malagasy hippos were smaller than the modern hippo, a likely result of the process of insular dwarfism. Fossil evidence indicates many Malagasy hippos were hunted by humans, a factor in their eventual extinction. Isolated individual Malagasy hippos may have survived in remote pockets; in 1976, villagers described a living animal called the kilopilopitsofy, which may have been a Malagasy hippo.
Hippopotamus gorgops from the Early Pleistocene-early Middle Pleistocene of Africa and West Asia grew considerably larger than the living hippopotamus, with an estimated body mass of over 4,000 kilograms (8,800 lb). Hippopotamus antiquus ranged throughout Europe, extending as far north as Britain during the Early and Middle Pleistocene epochs, before being replaced by the modern H. amphibius in Europe during the latter part of the Middle Pleistocene. The Pleistocene also saw a number of dwarf species evolve on several Mediterranean islands, including Crete (Hippopotamus creutzburgi), Cyprus (the Cyprus dwarf hippopotamus, Hippopotamus minor), Malta (Hippopotamus melitensis), and Sicily (Hippopotamus pentlandi). Of these, the Cyprus dwarf hippo survived until the end of the Pleistocene or early Holocene. Evidence from the archaeological site Aetokremnos continues to cause debate on whether or not the species was driven to extinction, or even encountered, by man.
Characteristics
The hippopotamus is a megaherbivore and is exceeded in size among land animals only by elephants and some rhinoceros species. The mean adult weight is around 1,480 kg (3,260 lb) for bulls and 1,365 kg (3,009 lb) for cows. Exceptionally large males have been recorded reaching 2,660 kg (5,860 lb). Male hippos appear to continue growing throughout their lives, while females reach maximum weight at around age 25. Hippos measure 2.90 to 5.05 m (9.5 to 16.6 ft) long, including a tail of about 35 to 56 cm (1.15 to 1.84 ft) in length and 1.30 to 1.65 m (4.3 to 5.4 ft) tall at the shoulder, with males and females ranging 1.40 to 1.65 m (4.6 to 5.4 ft) and 1.30 to 1.45 m (4.3 to 4.8 ft) tall at the shoulder respectively. The species has a typical head-body length of 3.3–3.45 m (10.8–11.3 ft) and an average standing height of 1.4 m (4.6 ft) at the shoulder.
Hippos have barrel-shaped bodies with short tails and legs, and an hourglass-shaped skull with a long snout. Their skeletal structures are graviportal, adapted to carrying their enormous weight, and their dense bones and low centre of gravity allows them to sink and move along the bottom of the water. Hippopotamuses have small legs (relative to other megafauna) because the water in which they live reduces the weight burden. The toes are webbed and the pelvis rests at an angle of 45 degrees. Though chubby-looking, hippos have little fat. The eyes, ears, and nostrils of hippos are placed high on the roof of their skulls. This allows these organs to remain above the surface while the rest of the body is submerged. The nostrils and ears can close when underwater while nictitating membranes cover the eyes. The vocal folds of the hippo are more horizontally positioned, much like cetaceans. Underneath are throat tissues, where vibrations are transmitted to produce underwater calls.
Characteristic "yawn" of a hippo
The hippo's jaw is powered by huge masseter and digastric muscles which give them large, droopy cheeks. The jaw hinge allows the animal to open its mouth at almost 180°. A folded orbicularis oris muscle allows the hippo to attain an extreme gape without tearing any tissue. On the lower jaw, the incisors and canines grow continuously, the former reaching 40 cm (1 ft 4 in), while the latter can grow to up to 50 cm (1 ft 8 in). The lower canines are sharpened through contact with the smaller upper canines. The canines and incisors are used mainly for combat instead of feeding. Hippos rely on their flattened, horny lips to grasp and pull grasses which are then ground by the molars. The hippo is considered to be a pseudoruminant; it has a complex three-chambered stomach, but does not "chew cud".
Completely submerged hippo (San Diego Zoo)
Hippo skin is 6 cm (2 in) thick across much of its body with little hair. The animal is mostly purplish-grey or blue-black, but brownish-pink on the underside and around the eyes and ears. Their skin secretes a natural, red-coloured sunscreen substance that is sometimes referred to as "blood sweat" but is neither blood nor sweat. This secretion is initially colourless and turns red-orange within minutes, eventually becoming brown. Two highly acidic pigments have been identified in the secretions; one red (hipposudoric acid) and one orange (norhipposudoric acid), which inhibit the growth of disease-causing bacteria and their light-absorption profile peaks in the ultraviolet range, creating a sunscreen effect. Regardless of diet, all hippos secrete these pigments so food does not appear to be their source; rather, they may be synthesised from precursors such as the amino acid tyrosine. This natural sunscreen cannot prevent the animal's skin from cracking if it stays out of water too long.
The testes of the males do not fully descend and a scrotum is not present. In addition, the penis retracts into the body when not erect. The genitals of the female hippos are unusual in that the vagina is ridged and the vulval vestibule has two large, protruding diverticula. Both of these have an unknown function.
A hippo's lifespan is typically 40 to 50 years. Donna the Hippo was one of the oldest living hippos in captivity. She lived at the Mesker Park Zoo in Evansville, Indiana, in the US until her death in 2012 at the age of 61. The oldest hippo ever recorded was called Bertha; she had lived in the Manila Zoo in the Philippines since it first opened in 1959. When she died in 2017, her age was estimated to be 65.
Distribution and status
During the Middle Pleistocene to the early Late Pleistocene (~500,000–80,000 years ago) Hippopotamus amphibius was present in Europe, extending as far north as England during the Eemian (130–115,000 years ago), with fossils also known from Portugal, Spain, Italy, and Greece. The species first entered Europe between 560,000 and 460,000 years ago, while the last H. amphibius remains in Europe are dated to about 30,000 years ago. Archaeological evidence exists of its presence in the Levant, dating to less than 3,000 years ago. The species was common in Egypt's Nile region during antiquity, but it has since been driven out. According to Pliny the Elder, in his time, the best location in Egypt for capturing this animal was in the Saite nome; the animal could still be found along the Damietta branch of the Nile after the Arab Conquest in 639. Reports of the slaughter of the last hippo in Natal Province were made at the end of the 19th century. Hippos are still found in the rivers and lakes of the northern Democratic Republic of the Congo, Uganda, Tanzania, and Kenya, north through to Ethiopia, Somalia, and Sudan, west to The Gambia, and south to South Africa.
Genetic evidence suggests common hippos in Africa experienced a marked population expansion during or after the Pleistocene, attributed to an increase in water bodies at the end of the era. These findings have important conservation implications, as hippo populations across the continent are currently threatened by loss of access to fresh water. Hippos are also subject to unregulated hunting and poaching. The species is included in Appendix II of the Convention on International Trade in Endangered Species (CITES) meaning international export/import (including in parts and derivatives) requires CITES documentation to be obtained and presented to border authorities.
As of 2017, the IUCN Red List drawn up by the International Union for Conservation of Nature (IUCN) lists the species as vulnerable, with a stable population estimated between 115,000 and 130,000 animals. The hippo population has declined most dramatically in the Democratic Republic of the Congo. By 2005, the population in Virunga National Park had dropped to 800 or 900 from around 29,000 in the mid-1970s. This decline is attributed to the disruptions caused by the Second Congo War. The poachers are believed to be Mai-Mai rebels, underpaid Congolese soldiers, and local militia groups. Reasons for poaching include the belief hippos are harmful to society, as well as financial gain. As of 2016, the Virunga hippo population appears to have increased again, possibly due to better protection from park rangers, who have worked with local fishermen. The sale of hippo meat is illegal, but black-market sales are difficult for Virunga National Park officers to track. Hippo meat is highly valued in some areas of central Africa and the teeth may be used as a replacement for elephant ivory.
A population of hippos exists in Colombia, descended from captive individuals that escaped from Pablo Escobar's estate after his death in 1993. Their numbers grew to 100 by the 2020s and ecologists believe the population should be eradicated, as they are breeding rapidly and are an increasing menace to humans and the environment. Attempts to control them include sterilisation and culling.
Behaviour and ecology
Hippos are semiaquatic and require enough water to immerse in, while being close to grass. Like most herbivores, hippos will consume a variety of plants if presented with them in captivity, but their diet in nature consists almost entirely of grass, with only minimal consumption of aquatic plants. They prefer relatively still waters with gently sloping shores, though male hippos may also be found in very small numbers in more rapid waters with rocky slopes. Hippos mostly live in freshwater habitat, but can be found in estuaries. Despite being semiaquatic, an adult hippo is not a particularly good swimmer, nor can it float. It rarely enters deep water; when it does, the animal moves by bouncing off the bottom. An adult hippo surfaces every four to six minutes, while young need to breathe every two to three minutes.
Hippos spend most the day in water to stay cool and hydrated. Just before night begins, they leave the water to forage on land. Hippos usually trot to move quickly on land and can gallop at 30 km/h (19 mph) when needed. They are incapable of jumping but can walk up steep banks. A hippo will travel 3–5 km (1.9–3.1 mi) per night, eating around 40 kg (88 lb) of grass. By dawn, they are back in the water. The hippopotamus sleeps with both hemispheres of the brain resting, as in all land mammals, and usually sleeps on land or in water with the nostrils exposed. Despite this, it may be capable of sleeping while submerged, intermittently surfacing to breathe without waking. They appear to transition between different phases of sleep more quickly than other mammals.
Because of their size and their habit of taking the same paths to feed, hippos can have a significant impact on the land across which they walk, keeping the land clear of vegetation and depressing the ground. Over prolonged periods, hippos can divert the paths of swamps and channels. By defecating in the water, the animals also appear to pass on microbes from their gut, affecting the biogeochemical cycle. On occasion, hippos have been filmed eating carrion, usually near the water. There are other reports of meat-eating and even cannibalism and predation. Hippos' stomach anatomy lacks adaptions to carnivory and meat-eating is likely caused by lack of nutrients or just an abnormal behaviour.
Social life
It is challenging to study the interaction of bulls and cows because hippos are not sexually dimorphic, so cows and young bulls are almost indistinguishable in the field. Hippo pods fluctuate but can contain over 100 hippos. Although they lie close together, adults develop almost no social bonds. Males establish territories in water but not land, and these may range 250–500 m (270–550 yd) in lakes and 50–100 m (55–109 yd) in rivers. Territories are abandoned when the water dries up. The bull has breeding access to all the cows in his territory. Younger bachelors are allowed to stay as long as they defer to him. A younger male may challenge the old bull for control of the territory. Within the pods, the hippos tend to segregate by sex and status. Bachelor males lounge near other bachelors, females with other females, and the territorial male is on his own. When hippos emerge from the water to graze, they do so individually.
Male hippos fighting
Hippos engage in "muck-spreading" which involves defecating while spinning their tails to distribute the faeces over a greater area. Muck-spreading occurs both on land and in water and its function is not well understood. It is unlikely to serve a territorial function, as the animals only establish territories in the water. They may be used as trails between the water and grazing areas. "Yawning" serves as a threat display. When fighting, bulls use their incisors to block each other's attacks and their large canines as offensive weapons. When hippos become over-populated or a habitat shrinks, bulls sometimes attempt infanticide, but this behaviour is not common under normal conditions.
The most common hippo vocalisation is the "wheeze honk", which can travel over long distances in air. This call starts as a high-pitched squeal followed by a deeper, resonant call. The animals can recognise the calls of other individuals. Hippos are more likely to react to the wheeze honks of strangers than to those they are more familiar with. When threatened or alarmed, they produce exhalations, and fighting bulls will bellow loudly. Hippos are recorded to produce clicks underwater which may have echolocative properties. They have the unique ability to hold their heads partially above the water and send out a cry that travels through both water and air; individuals respond both above and below water.
Reproduction
Cows reach sexual maturity at five to six years of age and have a gestation period of eight months. A study of endocrine systems revealed cows may begin puberty at as early as three or four years. Males reach maturity at around 7.5 years. Both conceptions and births are highest during the wet season. Male hippo always have mobile spermatozoa and can breed year-round. After becoming pregnant, a female hippo will typically not begin ovulation again for 17 months.
Preserved hippopotamus fetus
Hippos mate in the water, with the cow remaining under the surface, her head emerging periodically to draw breath. Cows give birth in seclusion and return within 10 to 14 days. Calves are born on land or shallow water weighing on average 50 kg (110 lb) and at an average length of around 127 cm (4.17 ft). The female lies on her side when nursing, which can occur underwater or on land. The young are carried on their mothers' backs in deep water.
Mother hippos are very protective of their young, not allowing others to get too close. One cow was recorded protecting a calf's carcass after it had died. Calves may be temporarily kept in nurseries, guarded by one or more adults, and will play amongst themselves. Like many other large mammals, hippos are described as K-strategists, in this case typically producing just one large, well-developed infant every couple of years (rather than many small, poorly developed young several times per year, as is common among small mammals such as rodents). Calves no longer need to suckle when they are a year old.
Interspecies interactions
Hippos coexist alongside a variety of large predators in their habitats. Nile crocodiles, lions, and spotted hyenas are known to prey on young hippos. Beyond these, adult hippos are not usually preyed upon by other animals due to their aggression and size. Cases where large lion prides have successfully preyed on adult hippos have been reported, but it is generally rare. Lions occasionally prey on adults at Gorongosa National Park and calves are sometimes taken at Virunga. Crocodiles are frequent targets of hippo aggression, probably because they often inhabit the same riparian habitats; crocodiles may be either aggressively displaced or killed by hippos. In turn, very large Nile crocodiles have been observed preying occasionally on calves, "half-grown" hippos, and possibly also adult female hippos. Groups of crocodiles have also been observed finishing off still-living male hippos that were previously injured in mating battles with other males.
Hippos occasionally visit cleaning stations in order to be cleaned of parasites by certain species of fishes. They signal their readiness for this service by opening their mouths wide. This is an example of mutualism, in which the hippo benefits from the cleaning while the fish receive food. Hippo defecation creates allochthonous deposits of organic matter along the river beds. These deposits have an unclear ecological function. A 2015 study concluded hippo dung provides nutrients from terrestrial material for fish and aquatic invertebrates, while a 2018 study found that their dung can be toxic to aquatic life in large quantities, due to absorption of dissolved oxygen in water bodies.
The parasitic monogenean flatworm Oculotrema hippopotami infests hippopotamus eyes, mainly the nictitating membrane. It is the only monogenean species (which normally live on fish) documented to live on a mammal.
Hippos and humans
The earliest evidence of human interaction with hippos comes from butchery cut marks on hippo bones found at the Bouri Formation and dated to around 160,000 years ago. 4,000–5,000 year art showing hippos being hunted have been found in the Tassili n'Ajjer Mountains of the central Sahara near Djanet. The ancient Egyptians recognised the hippo as a ferocious denizen of the Nile and representations on the tombs of nobles show the animals were hunted by humans.
The hippo was also known to the Greeks and Romans. The Greek historian Herodotus described the hippo in The Histories (written circa 440 BC) and the Roman naturalist Pliny the Elder wrote about the hippo in his encyclopedia Naturalis Historia (written circa 77 AD). The Yoruba people called the hippo erinmi, which means "elephant of the water". Some individual hippos have achieved international fame. Huberta became a celebrity during the Great Depression for trekking a great distance across South Africa.
Attacks on humans
The hippo is considered to be extremely aggressive and has frequently been reported charging and attacking boats. Small boats can easily be capsized by hippos and passengers can be injured or killed by the animals, or drown in the water. In one 2014 case in Niger, a boat was capsized by a hippo and 13 people were killed. Hippos will often raid farm crops if the opportunity arises, and humans may come into conflict with them on these occasions. These encounters can be fatal to either humans or hippos.
According to the Ptolemaic historian Manetho, the pharaoh Menes was carried off and then killed by a hippopotamus.
In zoos
Hippos have long been popular zoo animals. The first record of hippos taken into captivity for display is dated to 3500 BC in Hierakonpolis, Egypt. The first zoo hippo in modern history was Obaysch, who arrived at the London Zoo on 25 May 1850, where he attracted up to 10,000 visitors a day and inspired a popular song, the "Hippopotamus Polka".
Hippos generally breed well in captivity; birth rates are lower than in the wild, but this can be attributed to zoos' desire to limit births, since hippos are relatively expensive to maintain. Starting in 2015, the Cincinnati Zoo built a US$73 million exhibit to house three adult hippos, featuring a 250,000 L (66,000 US gal) tank. Modern hippo enclosures also have a complex filtration system for the animal's waste, an underwater viewing area for the visitors, and glass that may be up to 9 cm (3.5 in) thick and capable of holding water under pressures of 31 kPa (4.5 psi). In 1987, the Toledo Zoo saw the first underwater birth by a captive hippo. The exhibit was so popular, the logo of the Toledo Zoo was updated to feature the hippos.
Cultural significance
In Egyptian mythology, the god Set takes the form of a red hippopotamus and fights Horus for control of the land, but is defeated. The goddess Tawaret is depicted as a pregnant woman with a hippo head, representing fierce maternal love. The Ijaw people of the Niger Delta wore masks of aquatic animals like the hippo when practising their water spirit cults, and hippo ivory was used in the divination rituals of the Yoruba. Hippo masks were also used in Nyau funerary rituals of the Chewa of Southern Africa.[97]: 120 According to Robert Baden-Powell, Zulu warriors referred to hippos in war chants. The Behemoth from the Book of Job, is thought to be based on the hippo.
Hippos have been the subjects of various African folktales. According to a San story, when the Creator assigned each animal its place in nature, the hippos wanted to live in the water, but were refused out of fear they might eat all the fish. After begging and pleading, the hippos were finally allowed to live in the water on the condition they would eat grass instead of fish, and fling their dung so it can be inspected for fish bones. In a Ndebele tale, the hippo originally had long, beautiful hair, but it was set on fire by a jealous hare and the hippo had to jump into a nearby pool. The hippo lost most of his hair and was too embarrassed to leave the water.
The "Hippopotamus Polka"
Hippopotamuses were rarely depicted in European art during the Renaissance and Baroque periods, due to less access to specimens by Europeans. One notable exception is Peter Paul Rubens' The Hippopotamus and Crocodile Hunt (1615–1616). Ever since Obaysch inspired the "Hippopotamus Polka", hippos have been popular animals in Western culture for their rotund appearance, which many consider comical. The Disney film Fantasia featured a ballerina hippo dancing to the opera La Gioconda. The film Hugo the Hippo is set in Tanzania and involves the title character trying to escape being slaughtered with the help of local children. The Madagascar films feature a hippo named Gloria. Hippos even inspired a popular board game, Hungry Hungry Hippos.
Among the most famous poems about the hippo is "The Hippopotamus" by T. S. Eliot, where he uses the animal to represent the Catholic Church. Hippos are mentioned in the novelty Christmas song "I Want a Hippopotamus for Christmas" that became a hit for child star Gayla Peevey in 1953. They also featured in the popular "The Hippopotamous Song" by Flanders and Swann.
A popular internet myth reports that hippos have pink milk. Biologist David Wynick states, "I think this is an Internet legend that is oft repeated but without any evidence for it that I can find... Like all mammals, hippos produce white or off-white milk for their young.
The hippopotamus, hippopotamuses or hippopotami, also shortened to hippo, hippos or Hippopotamus amphibius, further qualified as the common hippopotamus, Nile hippopotamus, or river hippopotamus, is a large semiaquatic mammal native to sub-Saharan Africa. It is one of only two extant species in the family Hippopotamidae, the other being the pygmy hippopotamus (Choeropsis liberiensis or Hexaprotodon liberiensis). Its name comes from the ancient Greek for "river horse" (ἱπποπόταμος).
After elephants and rhinoceros, the hippopotamus is the next largest land mammal. It is also the largest extant land artiodactyl. Despite their physical resemblance to pigs and other terrestrial even-toed ungulates, the closest living relatives of the hippopotamids are cetaceans (whales, dolphins, porpoises, etc.), from which they diverged about 55 million years ago. Hippos are recognisable for their barrel-shaped torsos, wide-opening mouths with large canine tusks, nearly hairless bodies, pillar-like legs, and large size: adults average 1,500 kg (3,300 lb) for bulls (males) and 1,300 kg (2,900 lb) for cows (females). Despite its stocky shape and short legs, it is capable of running 30 km/h (19 mph) over short distances.
Hippos inhabit rivers, lakes, and mangrove swamps. Territorial bulls each preside over a stretch of water and a group of five to thirty cows and calves. Mating and birth both occur in the water. During the day, hippos remain cool by staying in water or mud, emerging at dusk to graze on grasses. While hippos rest near each other in the water, grazing is a solitary activity and hippos typically do not display territorial behaviour on land. Hippos are among the most dangerous animals in the world due to their aggressive and unpredictable nature. They are threatened by habitat loss and poaching for their meat and ivory (canine teeth).
Etymology
The Latin word hippopotamus is derived from the ancient Greek ἱπποπόταμος (hippopótamos), from ἵππος (híppos) 'horse' and ποταμός (potamós) 'river', together meaning 'horse of the river'. In English, the plural is "hippopotamuses", but "hippopotami" is also used.
Taxonomy and origins
Classification
The modern hippopotamus and the pygmy hippopotamus are the only living members of the family Hippopotamidae. Some taxonomists place hippos and anthracotheres in the superfamily Anthracotheroidea. Hippopotamidae are classified along with other even-toed ungulates in the order Artiodactyla.
Detail of the head
Five subspecies of hippos have been described based on morphological differences in their skulls as well as differences in geographical range:
H. a. amphibius – (the nominate subspecies) ranges from Gambia east to Ethiopia and then south to Mozambique and historically ranged as far north as Egypt; its skull is distinguished by a moderately reduced preorbital region, a bulging dorsal surface, elongated mandibular symphysis and larger chewing teeth.
H. a. kiboko – found in Kenya and Somalia; was noted to be smaller and more lightly coloured than other hippos with wider nostrils, somewhat longer snout and more rounded and relatively raised orbits with the space between them being incurved.
H. a. capensis – found in Zambia and South Africa; distinguished by wider orbits.
H. a. tschadensis – ranges between Chad and Niger; featured a slightly shorter but broader face, and pronounced, forward-facing orbits.
H. a. constrictus – ranged from the southern Democratic Republic of Congo to Angola and Namibia; skull characterised by a thicker preorbital region, shorter snout, flatter dorsal surface, reduced mandibular symphysis and smaller chewing teeth.
The suggested subspecies above were never widely used or validated by field biologists; the described morphological differences were small enough that they could have resulted from simple variation in nonrepresentative samples. A study examining mitochondrial DNA from skin biopsies taken from 13 sampling locations found "low, but significant, genetic differentiation" among H. a. amphibius, H. a. capensis, and H. a. kiboko. Neither H. a. tschadensis nor H. a. constrictus have been tested.
Evolution
Until 1909, naturalists classified hippos together with pigs based on molar patterns. Several lines of evidence, first from blood proteins, then from molecular systematics and DNA and the fossil record, show their closest living relatives are cetaceans (whales, dolphins, and porpoises). The common ancestor of hippos and whales branched off from Ruminantia and the rest of the even-toed ungulates; the cetacean and hippo lineages split soon afterwards.
Artiodactyla
Tylopoda
Artiofabula
Suina
Cetruminantia
Ruminantia
Whippomorpha
Hippopotamidae
Cetacea
Anthracotherium magnum from the Oligocene of Europe
The most recent theory of the origins of Hippopotamidae suggests hippos and whales shared a common semiaquatic ancestor that branched off from other artiodactyls around 60 million years ago. This hypothesised ancestral group likely split into two branches again around 54 million years ago.
One branch would evolve into cetaceans, possibly beginning about 52 million years ago, with the protowhale Pakicetus and other early whale ancestors collectively known as Archaeoceti. This group eventually underwent aquatic adaptation into the completely aquatic cetaceans. The other branch became the anthracotheres, a large family of four-legged beasts, the earliest of which in the late Eocene would have resembled skinny hippos with comparatively smaller, narrower heads. All branches of the anthracotheres, except that which evolved into Hippopotamidae, became extinct during the Pliocene, leaving no descendants.
A rough evolutionary lineage of the hippo can thus be traced from Eocene and Oligocene species: from Anthracotherium and Elomeryx to the Miocene species Merycopotamus and Libycosaurus and finally the very latest anthracotheres in the Pliocene. These groups lived across Eurasia and Africa. The discovery of Epirigenys in East Africa, which was likely a descent of Asian anthracotheres and a sister taxon to Hippopotamidae, suggests that hippo ancestors entered Africa from Asia around 35 million years ago. An early hippopotamid is the genus Kenyapotamus, which lived in Africa from 15 to 9 million years ago. Hippopotamid species would spread across Africa and Eurasia, including the modern pygmy hippo. From 7.5 to 1.8 million years ago, a possible ancestor to the modern hippo, Archaeopotamus, lived in Africa and the Middle East. The oldest records of the genus Hippopotamus date to the Pliocene (5.3-2.6 million years ago). The oldest unambiguous records of the modern H. amphibius date to the Middle Pleistocene, though there are possible Early Pleistocene records.
Extinct species
Three species of Malagasy hippopotamus became extinct during the Holocene on Madagascar, the last of them within the past 1,000 years. The Malagasy hippos were smaller than the modern hippo, a likely result of the process of insular dwarfism. Fossil evidence indicates many Malagasy hippos were hunted by humans, a factor in their eventual extinction. Isolated individual Malagasy hippos may have survived in remote pockets; in 1976, villagers described a living animal called the kilopilopitsofy, which may have been a Malagasy hippo.
Hippopotamus gorgops from the Early Pleistocene-early Middle Pleistocene of Africa and West Asia grew considerably larger than the living hippopotamus, with an estimated body mass of over 4,000 kilograms (8,800 lb). Hippopotamus antiquus ranged throughout Europe, extending as far north as Britain during the Early and Middle Pleistocene epochs, before being replaced by the modern H. amphibius in Europe during the latter part of the Middle Pleistocene. The Pleistocene also saw a number of dwarf species evolve on several Mediterranean islands, including Crete (Hippopotamus creutzburgi), Cyprus (the Cyprus dwarf hippopotamus, Hippopotamus minor), Malta (Hippopotamus melitensis), and Sicily (Hippopotamus pentlandi). Of these, the Cyprus dwarf hippo survived until the end of the Pleistocene or early Holocene. Evidence from the archaeological site Aetokremnos continues to cause debate on whether or not the species was driven to extinction, or even encountered, by man.
Characteristics
The hippopotamus is a megaherbivore and is exceeded in size among land animals only by elephants and some rhinoceros species. The mean adult weight is around 1,480 kg (3,260 lb) for bulls and 1,365 kg (3,009 lb) for cows. Exceptionally large males have been recorded reaching 2,660 kg (5,860 lb). Male hippos appear to continue growing throughout their lives, while females reach maximum weight at around age 25. Hippos measure 2.90 to 5.05 m (9.5 to 16.6 ft) long, including a tail of about 35 to 56 cm (1.15 to 1.84 ft) in length and 1.30 to 1.65 m (4.3 to 5.4 ft) tall at the shoulder, with males and females ranging 1.40 to 1.65 m (4.6 to 5.4 ft) and 1.30 to 1.45 m (4.3 to 4.8 ft) tall at the shoulder respectively. The species has a typical head-body length of 3.3–3.45 m (10.8–11.3 ft) and an average standing height of 1.4 m (4.6 ft) at the shoulder.
Hippos have barrel-shaped bodies with short tails and legs, and an hourglass-shaped skull with a long snout. Their skeletal structures are graviportal, adapted to carrying their enormous weight, and their dense bones and low centre of gravity allows them to sink and move along the bottom of the water. Hippopotamuses have small legs (relative to other megafauna) because the water in which they live reduces the weight burden. The toes are webbed and the pelvis rests at an angle of 45 degrees. Though chubby-looking, hippos have little fat. The eyes, ears, and nostrils of hippos are placed high on the roof of their skulls. This allows these organs to remain above the surface while the rest of the body is submerged. The nostrils and ears can close when underwater while nictitating membranes cover the eyes. The vocal folds of the hippo are more horizontally positioned, much like cetaceans. Underneath are throat tissues, where vibrations are transmitted to produce underwater calls.
Characteristic "yawn" of a hippo
The hippo's jaw is powered by huge masseter and digastric muscles which give them large, droopy cheeks. The jaw hinge allows the animal to open its mouth at almost 180°. A folded orbicularis oris muscle allows the hippo to attain an extreme gape without tearing any tissue. On the lower jaw, the incisors and canines grow continuously, the former reaching 40 cm (1 ft 4 in), while the latter can grow to up to 50 cm (1 ft 8 in). The lower canines are sharpened through contact with the smaller upper canines. The canines and incisors are used mainly for combat instead of feeding. Hippos rely on their flattened, horny lips to grasp and pull grasses which are then ground by the molars. The hippo is considered to be a pseudoruminant; it has a complex three-chambered stomach, but does not "chew cud".
Completely submerged hippo (San Diego Zoo)
Hippo skin is 6 cm (2 in) thick across much of its body with little hair. The animal is mostly purplish-grey or blue-black, but brownish-pink on the underside and around the eyes and ears. Their skin secretes a natural, red-coloured sunscreen substance that is sometimes referred to as "blood sweat" but is neither blood nor sweat. This secretion is initially colourless and turns red-orange within minutes, eventually becoming brown. Two highly acidic pigments have been identified in the secretions; one red (hipposudoric acid) and one orange (norhipposudoric acid), which inhibit the growth of disease-causing bacteria and their light-absorption profile peaks in the ultraviolet range, creating a sunscreen effect. Regardless of diet, all hippos secrete these pigments so food does not appear to be their source; rather, they may be synthesised from precursors such as the amino acid tyrosine. This natural sunscreen cannot prevent the animal's skin from cracking if it stays out of water too long.
The testes of the males do not fully descend and a scrotum is not present. In addition, the penis retracts into the body when not erect. The genitals of the female hippos are unusual in that the vagina is ridged and the vulval vestibule has two large, protruding diverticula. Both of these have an unknown function.
A hippo's lifespan is typically 40 to 50 years. Donna the Hippo was one of the oldest living hippos in captivity. She lived at the Mesker Park Zoo in Evansville, Indiana, in the US until her death in 2012 at the age of 61. The oldest hippo ever recorded was called Bertha; she had lived in the Manila Zoo in the Philippines since it first opened in 1959. When she died in 2017, her age was estimated to be 65.
Distribution and status
During the Middle Pleistocene to the early Late Pleistocene (~500,000–80,000 years ago) Hippopotamus amphibius was present in Europe, extending as far north as England during the Eemian (130–115,000 years ago), with fossils also known from Portugal, Spain, Italy, and Greece. The species first entered Europe between 560,000 and 460,000 years ago, while the last H. amphibius remains in Europe are dated to about 30,000 years ago. Archaeological evidence exists of its presence in the Levant, dating to less than 3,000 years ago. The species was common in Egypt's Nile region during antiquity, but it has since been driven out. According to Pliny the Elder, in his time, the best location in Egypt for capturing this animal was in the Saite nome; the animal could still be found along the Damietta branch of the Nile after the Arab Conquest in 639. Reports of the slaughter of the last hippo in Natal Province were made at the end of the 19th century. Hippos are still found in the rivers and lakes of the northern Democratic Republic of the Congo, Uganda, Tanzania, and Kenya, north through to Ethiopia, Somalia, and Sudan, west to The Gambia, and south to South Africa.
Genetic evidence suggests common hippos in Africa experienced a marked population expansion during or after the Pleistocene, attributed to an increase in water bodies at the end of the era. These findings have important conservation implications, as hippo populations across the continent are currently threatened by loss of access to fresh water. Hippos are also subject to unregulated hunting and poaching. The species is included in Appendix II of the Convention on International Trade in Endangered Species (CITES) meaning international export/import (including in parts and derivatives) requires CITES documentation to be obtained and presented to border authorities.
As of 2017, the IUCN Red List drawn up by the International Union for Conservation of Nature (IUCN) lists the species as vulnerable, with a stable population estimated between 115,000 and 130,000 animals. The hippo population has declined most dramatically in the Democratic Republic of the Congo. By 2005, the population in Virunga National Park had dropped to 800 or 900 from around 29,000 in the mid-1970s. This decline is attributed to the disruptions caused by the Second Congo War. The poachers are believed to be Mai-Mai rebels, underpaid Congolese soldiers, and local militia groups. Reasons for poaching include the belief hippos are harmful to society, as well as financial gain. As of 2016, the Virunga hippo population appears to have increased again, possibly due to better protection from park rangers, who have worked with local fishermen. The sale of hippo meat is illegal, but black-market sales are difficult for Virunga National Park officers to track. Hippo meat is highly valued in some areas of central Africa and the teeth may be used as a replacement for elephant ivory.
A population of hippos exists in Colombia, descended from captive individuals that escaped from Pablo Escobar's estate after his death in 1993. Their numbers grew to 100 by the 2020s and ecologists believe the population should be eradicated, as they are breeding rapidly and are an increasing menace to humans and the environment. Attempts to control them include sterilisation and culling.
Behaviour and ecology
Hippos are semiaquatic and require enough water to immerse in, while being close to grass. Like most herbivores, hippos will consume a variety of plants if presented with them in captivity, but their diet in nature consists almost entirely of grass, with only minimal consumption of aquatic plants. They prefer relatively still waters with gently sloping shores, though male hippos may also be found in very small numbers in more rapid waters with rocky slopes. Hippos mostly live in freshwater habitat, but can be found in estuaries. Despite being semiaquatic, an adult hippo is not a particularly good swimmer, nor can it float. It rarely enters deep water; when it does, the animal moves by bouncing off the bottom. An adult hippo surfaces every four to six minutes, while young need to breathe every two to three minutes.
Hippos spend most the day in water to stay cool and hydrated. Just before night begins, they leave the water to forage on land. Hippos usually trot to move quickly on land and can gallop at 30 km/h (19 mph) when needed. They are incapable of jumping but can walk up steep banks. A hippo will travel 3–5 km (1.9–3.1 mi) per night, eating around 40 kg (88 lb) of grass. By dawn, they are back in the water. The hippopotamus sleeps with both hemispheres of the brain resting, as in all land mammals, and usually sleeps on land or in water with the nostrils exposed. Despite this, it may be capable of sleeping while submerged, intermittently surfacing to breathe without waking. They appear to transition between different phases of sleep more quickly than other mammals.
Because of their size and their habit of taking the same paths to feed, hippos can have a significant impact on the land across which they walk, keeping the land clear of vegetation and depressing the ground. Over prolonged periods, hippos can divert the paths of swamps and channels. By defecating in the water, the animals also appear to pass on microbes from their gut, affecting the biogeochemical cycle. On occasion, hippos have been filmed eating carrion, usually near the water. There are other reports of meat-eating and even cannibalism and predation. Hippos' stomach anatomy lacks adaptions to carnivory and meat-eating is likely caused by lack of nutrients or just an abnormal behaviour.
Social life
It is challenging to study the interaction of bulls and cows because hippos are not sexually dimorphic, so cows and young bulls are almost indistinguishable in the field. Hippo pods fluctuate but can contain over 100 hippos. Although they lie close together, adults develop almost no social bonds. Males establish territories in water but not land, and these may range 250–500 m (270–550 yd) in lakes and 50–100 m (55–109 yd) in rivers. Territories are abandoned when the water dries up. The bull has breeding access to all the cows in his territory. Younger bachelors are allowed to stay as long as they defer to him. A younger male may challenge the old bull for control of the territory. Within the pods, the hippos tend to segregate by sex and status. Bachelor males lounge near other bachelors, females with other females, and the territorial male is on his own. When hippos emerge from the water to graze, they do so individually.
Male hippos fighting
Hippos engage in "muck-spreading" which involves defecating while spinning their tails to distribute the faeces over a greater area. Muck-spreading occurs both on land and in water and its function is not well understood. It is unlikely to serve a territorial function, as the animals only establish territories in the water. They may be used as trails between the water and grazing areas. "Yawning" serves as a threat display. When fighting, bulls use their incisors to block each other's attacks and their large canines as offensive weapons. When hippos become over-populated or a habitat shrinks, bulls sometimes attempt infanticide, but this behaviour is not common under normal conditions.
The most common hippo vocalisation is the "wheeze honk", which can travel over long distances in air. This call starts as a high-pitched squeal followed by a deeper, resonant call. The animals can recognise the calls of other individuals. Hippos are more likely to react to the wheeze honks of strangers than to those they are more familiar with. When threatened or alarmed, they produce exhalations, and fighting bulls will bellow loudly. Hippos are recorded to produce clicks underwater which may have echolocative properties. They have the unique ability to hold their heads partially above the water and send out a cry that travels through both water and air; individuals respond both above and below water.
Reproduction
Cows reach sexual maturity at five to six years of age and have a gestation period of eight months. A study of endocrine systems revealed cows may begin puberty at as early as three or four years. Males reach maturity at around 7.5 years. Both conceptions and births are highest during the wet season. Male hippo always have mobile spermatozoa and can breed year-round. After becoming pregnant, a female hippo will typically not begin ovulation again for 17 months.
Preserved hippopotamus fetus
Hippos mate in the water, with the cow remaining under the surface, her head emerging periodically to draw breath. Cows give birth in seclusion and return within 10 to 14 days. Calves are born on land or shallow water weighing on average 50 kg (110 lb) and at an average length of around 127 cm (4.17 ft). The female lies on her side when nursing, which can occur underwater or on land. The young are carried on their mothers' backs in deep water.
Mother hippos are very protective of their young, not allowing others to get too close. One cow was recorded protecting a calf's carcass after it had died. Calves may be temporarily kept in nurseries, guarded by one or more adults, and will play amongst themselves. Like many other large mammals, hippos are described as K-strategists, in this case typically producing just one large, well-developed infant every couple of years (rather than many small, poorly developed young several times per year, as is common among small mammals such as rodents). Calves no longer need to suckle when they are a year old.
Interspecies interactions
Hippos coexist alongside a variety of large predators in their habitats. Nile crocodiles, lions, and spotted hyenas are known to prey on young hippos. Beyond these, adult hippos are not usually preyed upon by other animals due to their aggression and size. Cases where large lion prides have successfully preyed on adult hippos have been reported, but it is generally rare. Lions occasionally prey on adults at Gorongosa National Park and calves are sometimes taken at Virunga. Crocodiles are frequent targets of hippo aggression, probably because they often inhabit the same riparian habitats; crocodiles may be either aggressively displaced or killed by hippos. In turn, very large Nile crocodiles have been observed preying occasionally on calves, "half-grown" hippos, and possibly also adult female hippos. Groups of crocodiles have also been observed finishing off still-living male hippos that were previously injured in mating battles with other males.
Hippos occasionally visit cleaning stations in order to be cleaned of parasites by certain species of fishes. They signal their readiness for this service by opening their mouths wide. This is an example of mutualism, in which the hippo benefits from the cleaning while the fish receive food. Hippo defecation creates allochthonous deposits of organic matter along the river beds. These deposits have an unclear ecological function. A 2015 study concluded hippo dung provides nutrients from terrestrial material for fish and aquatic invertebrates, while a 2018 study found that their dung can be toxic to aquatic life in large quantities, due to absorption of dissolved oxygen in water bodies.
The parasitic monogenean flatworm Oculotrema hippopotami infests hippopotamus eyes, mainly the nictitating membrane. It is the only monogenean species (which normally live on fish) documented to live on a mammal.
Hippos and humans
The earliest evidence of human interaction with hippos comes from butchery cut marks on hippo bones found at the Bouri Formation and dated to around 160,000 years ago. 4,000–5,000 year art showing hippos being hunted have been found in the Tassili n'Ajjer Mountains of the central Sahara near Djanet. The ancient Egyptians recognised the hippo as a ferocious denizen of the Nile and representations on the tombs of nobles show the animals were hunted by humans.
The hippo was also known to the Greeks and Romans. The Greek historian Herodotus described the hippo in The Histories (written circa 440 BC) and the Roman naturalist Pliny the Elder wrote about the hippo in his encyclopedia Naturalis Historia (written circa 77 AD). The Yoruba people called the hippo erinmi, which means "elephant of the water". Some individual hippos have achieved international fame. Huberta became a celebrity during the Great Depression for trekking a great distance across South Africa.
Attacks on humans
The hippo is considered to be extremely aggressive and has frequently been reported charging and attacking boats. Small boats can easily be capsized by hippos and passengers can be injured or killed by the animals, or drown in the water. In one 2014 case in Niger, a boat was capsized by a hippo and 13 people were killed. Hippos will often raid farm crops if the opportunity arises, and humans may come into conflict with them on these occasions. These encounters can be fatal to either humans or hippos.
According to the Ptolemaic historian Manetho, the pharaoh Menes was carried off and then killed by a hippopotamus.
In zoos
Hippos have long been popular zoo animals. The first record of hippos taken into captivity for display is dated to 3500 BC in Hierakonpolis, Egypt. The first zoo hippo in modern history was Obaysch, who arrived at the London Zoo on 25 May 1850, where he attracted up to 10,000 visitors a day and inspired a popular song, the "Hippopotamus Polka".
Hippos generally breed well in captivity; birth rates are lower than in the wild, but this can be attributed to zoos' desire to limit births, since hippos are relatively expensive to maintain. Starting in 2015, the Cincinnati Zoo built a US$73 million exhibit to house three adult hippos, featuring a 250,000 L (66,000 US gal) tank. Modern hippo enclosures also have a complex filtration system for the animal's waste, an underwater viewing area for the visitors, and glass that may be up to 9 cm (3.5 in) thick and capable of holding water under pressures of 31 kPa (4.5 psi). In 1987, the Toledo Zoo saw the first underwater birth by a captive hippo. The exhibit was so popular, the logo of the Toledo Zoo was updated to feature the hippos.
Cultural significance
In Egyptian mythology, the god Set takes the form of a red hippopotamus and fights Horus for control of the land, but is defeated. The goddess Tawaret is depicted as a pregnant woman with a hippo head, representing fierce maternal love. The Ijaw people of the Niger Delta wore masks of aquatic animals like the hippo when practising their water spirit cults, and hippo ivory was used in the divination rituals of the Yoruba. Hippo masks were also used in Nyau funerary rituals of the Chewa of Southern Africa.[97]: 120 According to Robert Baden-Powell, Zulu warriors referred to hippos in war chants. The Behemoth from the Book of Job, is thought to be based on the hippo.
Hippos have been the subjects of various African folktales. According to a San story, when the Creator assigned each animal its place in nature, the hippos wanted to live in the water, but were refused out of fear they might eat all the fish. After begging and pleading, the hippos were finally allowed to live in the water on the condition they would eat grass instead of fish, and fling their dung so it can be inspected for fish bones. In a Ndebele tale, the hippo originally had long, beautiful hair, but it was set on fire by a jealous hare and the hippo had to jump into a nearby pool. The hippo lost most of his hair and was too embarrassed to leave the water.
The "Hippopotamus Polka"
Hippopotamuses were rarely depicted in European art during the Renaissance and Baroque periods, due to less access to specimens by Europeans. One notable exception is Peter Paul Rubens' The Hippopotamus and Crocodile Hunt (1615–1616). Ever since Obaysch inspired the "Hippopotamus Polka", hippos have been popular animals in Western culture for their rotund appearance, which many consider comical. The Disney film Fantasia featured a ballerina hippo dancing to the opera La Gioconda. The film Hugo the Hippo is set in Tanzania and involves the title character trying to escape being slaughtered with the help of local children. The Madagascar films feature a hippo named Gloria. Hippos even inspired a popular board game, Hungry Hungry Hippos.
Among the most famous poems about the hippo is "The Hippopotamus" by T. S. Eliot, where he uses the animal to represent the Catholic Church. Hippos are mentioned in the novelty Christmas song "I Want a Hippopotamus for Christmas" that became a hit for child star Gayla Peevey in 1953. They also featured in the popular "The Hippopotamous Song" by Flanders and Swann.
A popular internet myth reports that hippos have pink milk. Biologist David Wynick states, "I think this is an Internet legend that is oft repeated but without any evidence for it that I can find... Like all mammals, hippos produce white or off-white milk for their young.
Wash. ag officials investigate possible GMO alfalfa contamination...
Call for a pesticide-free spring! Join us!
Sources: Peter Kross tweet, eatnakednow and stltoday.
* Add your voice to the Safe Alternatives to Pesticide Action Week expanding international movement: get involved!
* Download the new call to participate and spread it through your networks...
* Our posts tagged EDCs, pesticides and safer chemicals.
Are you (still) enjoying festive holiday meals?
Did you tell regulators that we prefer EDCfree holidays next year?
Image source: Pesticide Action Network Europe Twitter feed.
A recent survey shows people are hungry for more information about what they put into their bodies.
Image sources: Consumer Attitudes and Preferences About Food Safety, Shopping Options, Allergies and Diets on healthline.
* Read Consumers Concerned About Pesticides, GMO Foods, Survey Shows on healthline and on usatoday, March 18, 2015.
* All our posts tagged EDCs and pesticides.
Amidst the growing burden of diabetes worldwide, diabetes care leader Novo Nordisk, the University of Santo Tomas (UST) Hospital Section of Endocrine, Diabetes and Metabolism, the UST College of Education, and the Philippine Society for Endocrinology, Diabetes and Metabolism (PSEDM) conducted screening activities, patient education and simulation of diabetes complications at the UST campus as part of the country’s observance of World Diabetes Day (WDD). The event themed “Reducing Risk for Diabetes, Reducing Risk for Complications” was attended by more than 150 people where the culminating activity was the formation of the World Diabetes Day Blue Circle.
Latest data from the International Diabetes Federation (IDF) reveal that 415 Million people worldwide have diabetes. The IDF estimates that this figure will increase to 642 million by 2040.1
About 3.27 million people in the Philippines have diabetes, affecting one in 16 of the country’s adult population. An estimated 1.74 million Filipinos remain undiagnosed and are therefore untreated, putting them at risk for complications such as heart attack, blindness, kidney failure and loss of limbs. In 2014, over 50,000 deaths in the country were related to diabetes.
“The number of Filipinos with diabetes continues to rise. If not controlled, diabetes causes life-threatening complications. As such, we need to increase awareness on diabetes prevention, early diagnosis and optimal treatment,” said Dr. Sjoberg Kho, Chief, Section of Endocrinology, Diabetes and Metabolism, University of Santo Tomas Hospital (USTH).
“Patient education and awareness is crucial in the prevention and optimal management of diabetes. An informed patient has a much better chance of preventing the serious complications of the disease,” said Associate Professor Cristina Sagum, Program Chair, UST College of Education, Department of Nutrition and Dietetics.
“Diabetes management requires a multi-disciplinary team consisting of endocrinologists, nurses, diabetes educators, podiatrists, nutritionists-dietitians and, most importantly, patients. Patient self-management is vital in optimal diabetes management,” said Associate Professor Zenaida Velasco, UST Department of Nutrition and Dietetics; and former Board of Director, Philippine Association of Diabetes Educators (PADE).
“The number of people living with diabetes continues to grow. Of the 415 million people with the condition, almost half do not even know they have it, putting them at risk of developing serious complications such as heart attacks, blindness, kidney failure
and loss of limbs. Novo Nordisk is committed to change diabetes and we are honored to work with our partners in celebrating World Diabetes Day in the Philippines,” said Mr. Jeppe B. Theisen, General Manager, Novo Nordisk Pharmaceuticals Philippines, Inc (NNPPI).
“A healthy lifestyle, which includes proper diet and regular exercise, combined with optimal treatment compliance is the key to reducing the risk for serious, life-threatening complications of diabetes. Self-management as well as helping educate family members who may also be at risk is a vital role of patients,” said PSEDM President Dr. Bien Matawaran.
Held at the UST College of Education quadrangle on November 10, 2015, the World Diabetes Day activity was organized by Novo Nordisk Philippines in partnership with the USTH Section of Endocrinology, Diabetes and Metabolism, the UST College of Education and the PSEDM. Activities included screening tests for fasting blood sugar (FBS), lectures on healthy eating and reducing risk of complications, and interactive simulation booths designed to let people “experience” the serious complications of diabetes such as hypoglycemia, blindness, amputation, dialysis and peripheral neuropathy (loss or tingling of sensation in hands or feet).
In the Blindness Booth, a person wears a blindfold and walks around the booth for three minutes. In the Amputation Booth, a person uses crutches to walk around the booth for five minutes. In the Hypo Simulation Booth, a person wears a 3D simulator headgear and watches a 3-minute video on how hypoglycemia feels. In the Nutrition Counselling Booth, a person receives healthy eating advice from a nutritionist-dietician. In the Dialysis Simulation Booth, a person wears a 3D simulator headgear and watches a 5-minute video on how undergoing dialysis feels. The Neuropathy booth, while patient is wearing thick gloves, they will touch certain textures to experience limited touch sensation.
For the culminating activity of the World Diabetes Day activity at UST, members of the Ugnayan Diabetes Club, UST faculty members and students, USTH healthcare professionals, and Novo Nordisk Philippines employees formed a Blue Circle in the UST Football Field. The Blue Circle is the international ‘unite for diabetes’ symbol.
Fish, any of approximately 34,000 species of vertebrate animals (phylum Chordata) found in the fresh and salt waters of the world. Living species range from the primitive jawless lampreys and hagfishes through the cartilaginous sharks, skates, and rays to the abundant and diverse bony fishes. Most fish species are cold-blooded; however, one species, the opah (Lampris guttatus), is warm-blooded.
The term fish is applied to a variety of vertebrates of several evolutionary lines. It describes a life-form rather than a taxonomic group. As members of the phylum Chordata, fish share certain features with other vertebrates. These features are gill slits at some point in the life cycle, a notochord, or skeletal supporting rod, a dorsal hollow nerve cord, and a tail. Living fishes represent some five classes, which are as distinct from one another as are the four classes of familiar air-breathing animals—amphibians, reptiles, birds, and mammals. For example, the jawless fishes (Agnatha) have gills in pouches and lack limb girdles. Extant agnathans are the lampreys and the hagfishes. As the name implies, the skeletons of fishes of the class Chondrichthyes (from chondr, “cartilage,” and ichthyes, “fish”) are made entirely of cartilage. Modern fish of this class lack a swim bladder, and their scales and teeth are made up of the same placoid material. Sharks, skates, and rays are examples of cartilaginous fishes. The bony fishes are by far the largest class. Examples range from the tiny seahorse to the 450-kg (1,000-pound) blue marlin, from the flattened soles and flounders to the boxy puffers and ocean sunfishes. Unlike the scales of the cartilaginous fishes, those of bony fishes, when present, grow throughout life and are made up of thin overlapping plates of bone. Bony fishes also have an operculum that covers the gill slits.
The study of fishes, the science of ichthyology, is of broad importance. Fishes are of interest to humans for many reasons, the most important being their relationship with and dependence on the environment. A more obvious reason for interest in fishes is their role as a moderate but important part of the world’s food supply. This resource, once thought unlimited, is now realized to be finite and in delicate balance with the biological, chemical, and physical factors of the aquatic environment. Overfishing, pollution, and alteration of the environment are the chief enemies of proper fisheries management, both in fresh waters and in the ocean. (For a detailed discussion of the technology and economics of fisheries, see commercial fishing.) Another practical reason for studying fishes is their use in disease control. As predators on mosquito larvae, they help curb malaria and other mosquito-borne diseases.
Fishes are valuable laboratory animals in many aspects of medical and biological research. For example, the readiness of many fishes to acclimate to captivity has allowed biologists to study behaviour, physiology, and even ecology under relatively natural conditions. Fishes have been especially important in the study of animal behaviour, where research on fishes has provided a broad base for the understanding of the more flexible behaviour of the higher vertebrates. The zebra fish is used as a model in studies of gene expression.
There are aesthetic and recreational reasons for an interest in fishes. Millions of people keep live fishes in home aquariums for the simple pleasure of observing the beauty and behaviour of animals otherwise unfamiliar to them. Aquarium fishes provide a personal challenge to many aquarists, allowing them to test their ability to keep a small section of the natural environment in their homes. Sportfishing is another way of enjoying the natural environment, also indulged in by millions of people every year. Interest in aquarium fishes and sportfishing supports multimillion-dollar industries throughout the world.
Fishes have been in existence for more than 450 million years, during which time they have evolved repeatedly to fit into almost every conceivable type of aquatic habitat. In a sense, land vertebrates are simply highly modified fishes: when fishes colonized the land habitat, they became tetrapod (four-legged) land vertebrates. The popular conception of a fish as a slippery, streamlined aquatic animal that possesses fins and breathes by gills applies to many fishes, but far more fishes deviate from that conception than conform to it. For example, the body is elongate in many forms and greatly shortened in others; the body is flattened in some (principally in bottom-dwelling fishes) and laterally compressed in many others; the fins may be elaborately extended, forming intricate shapes, or they may be reduced or even lost; and the positions of the mouth, eyes, nostrils, and gill openings vary widely. Air breathers have appeared in several evolutionary lines.
Many fishes are cryptically coloured and shaped, closely matching their respective environments; others are among the most brilliantly coloured of all organisms, with a wide range of hues, often of striking intensity, on a single individual. The brilliance of pigments may be enhanced by the surface structure of the fish, so that it almost seems to glow. A number of unrelated fishes have actual light-producing organs. Many fishes are able to alter their coloration—some for the purpose of camouflage, others for the enhancement of behavioral signals.
Fishes range in adult length from less than 10 mm (0.4 inch) to more than 20 metres (60 feet) and in weight from about 1.5 grams (less than 0.06 ounce) to many thousands of kilograms. Some live in shallow thermal springs at temperatures slightly above 42 °C (100 °F), others in cold Arctic seas a few degrees below 0 °C (32 °F) or in cold deep waters more than 4,000 metres (13,100 feet) beneath the ocean surface. The structural and, especially, the physiological adaptations for life at such extremes are relatively poorly known and provide the scientifically curious with great incentive for study.
Almost all natural bodies of water bear fish life, the exceptions being very hot thermal ponds and extremely salt-alkaline lakes, such as the Dead Sea in Asia and the Great Salt Lake in North America. The present distribution of fishes is a result of the geological history and development of Earth as well as the ability of fishes to undergo evolutionary change and to adapt to the available habitats. Fishes may be seen to be distributed according to habitat and according to geographical area. Major habitat differences are marine and freshwater. For the most part, the fishes in a marine habitat differ from those in a freshwater habitat, even in adjacent areas, but some, such as the salmon, migrate from one to the other. The freshwater habitats may be seen to be of many kinds. Fishes found in mountain torrents, Arctic lakes, tropical lakes, temperate streams, and tropical rivers will all differ from each other, both in obvious gross structure and in physiological attributes. Even in closely adjacent habitats where, for example, a tropical mountain torrent enters a lowland stream, the fish fauna will differ. The marine habitats can be divided into deep ocean floors (benthic), mid-water oceanic (bathypelagic), surface oceanic (pelagic), rocky coast, sandy coast, muddy shores, bays, estuaries, and others. Also, for example, rocky coastal shores in tropical and temperate regions will have different fish faunas, even when such habitats occur along the same coastline.
Although much is known about the present geographical distribution of fishes, far less is known about how that distribution came about. Many parts of the fish fauna of the fresh waters of North America and Eurasia are related and undoubtedly have a common origin. The faunas of Africa and South America are related, extremely old, and probably an expression of the drifting apart of the two continents. The fauna of southern Asia is related to that of Central Asia, and some of it appears to have entered Africa. The extremely large shore-fish faunas of the Indian and tropical Pacific oceans comprise a related complex, but the tropical shore fauna of the Atlantic, although containing Indo-Pacific components, is relatively limited and probably younger. The Arctic and Antarctic marine faunas are quite different from each other. The shore fauna of the North Pacific is quite distinct, and that of the North Atlantic more limited and probably younger. Pelagic oceanic fishes, especially those in deep waters, are similar the world over, showing little geographical isolation in terms of family groups. The deep oceanic habitat is very much the same throughout the world, but species differences do exist, showing geographical areas determined by oceanic currents and water masses.
All aspects of the life of a fish are closely correlated with adaptation to the total environment, physical, chemical, and biological. In studies, all the interdependent aspects of fish, such as behaviour, locomotion, reproduction, and physical and physiological characteristics, must be taken into account.
Correlated with their adaptation to an extremely wide variety of habitats is the extremely wide variety of life cycles that fishes display. The great majority hatch from relatively small eggs a few days to several weeks or more after the eggs are scattered in the water. Newly hatched young are still partially undeveloped and are called larvae until body structures such as fins, skeleton, and some organs are fully formed. Larval life is often very short, usually less than a few weeks, but it can be very long, some lampreys continuing as larvae for at least five years. Young and larval fishes, before reaching sexual maturity, must grow considerably, and their small size and other factors often dictate that they live in a habitat different than that of the adults. For example, most tropical marine shore fishes have pelagic larvae. Larval food also is different, and larval fishes often live in shallow waters, where they may be less exposed to predators.
After a fish reaches adult size, the length of its life is subject to many factors, such as innate rates of aging, predation pressure, and the nature of the local climate. The longevity of a species in the protected environment of an aquarium may have nothing to do with how long members of that species live in the wild. Many small fishes live only one to three years at the most. In some species, however, individuals may live as long as 10 or 20 or even 100 years.
Fish behaviour is a complicated and varied subject. As in almost all animals with a central nervous system, the nature of a response of an individual fish to stimuli from its environment depends upon the inherited characteristics of its nervous system, on what it has learned from past experience, and on the nature of the stimuli. Compared with the variety of human responses, however, that of a fish is stereotyped, not subject to much modification by “thought” or learning, and investigators must guard against anthropomorphic interpretations of fish behaviour.
Fishes perceive the world around them by the usual senses of sight, smell, hearing, touch, and taste and by special lateral line water-current detectors. In the few fishes that generate electric fields, a process that might best be called electrolocation aids in perception. One or another of these senses often is emphasized at the expense of others, depending upon the fish’s other adaptations. In fishes with large eyes, the sense of smell may be reduced; others, with small eyes, hunt and feed primarily by smell (such as some eels).
Specialized behaviour is primarily concerned with the three most important activities in the fish’s life: feeding, reproduction, and escape from enemies. Schooling behaviour of sardines on the high seas, for instance, is largely a protective device to avoid enemies, but it is also associated with and modified by their breeding and feeding requirements. Predatory fishes are often solitary, lying in wait to dart suddenly after their prey, a kind of locomotion impossible for beaked parrot fishes, which feed on coral, swimming in small groups from one coral head to the next. In addition, some predatory fishes that inhabit pelagic environments, such as tunas, often school.
Sleep in fishes, all of which lack true eyelids, consists of a seemingly listless state in which the fish maintains its balance but moves slowly. If attacked or disturbed, most can dart away. A few kinds of fishes lie on the bottom to sleep. Most catfishes, some loaches, and some eels and electric fishes are strictly nocturnal, being active and hunting for food during the night and retiring during the day to holes, thick vegetation, or other protective parts of the environment.
Communication between members of a species or between members of two or more species often is extremely important, especially in breeding behaviour (see below Reproduction). The mode of communication may be visual, as between the small so-called cleaner fish and a large fish of a very different species. The larger fish often allows the cleaner to enter its mouth to remove gill parasites. The cleaner is recognized by its distinctive colour and actions and therefore is not eaten, even if the larger fish is normally a predator. Communication is often chemical, signals being sent by specific chemicals called pheromones.
Many fishes have a streamlined body and swim freely in open water. Fish locomotion is closely correlated with habitat and ecological niche (the general position of the animal to its environment).
Many fishes in both marine and fresh waters swim at the surface and have mouths adapted to feed best (and sometimes only) at the surface. Often such fishes are long and slender, able to dart at surface insects or at other surface fishes and in turn to dart away from predators; needlefishes, halfbeaks, and topminnows (such as killifish and mosquito fish) are good examples. Oceanic flying fishes escape their predators by gathering speed above the water surface, with the lower lobe of the tail providing thrust in the water. They then glide hundreds of yards on enlarged, winglike pectoral and pelvic fins. South American freshwater flying fishes escape their enemies by jumping and propelling their strongly keeled bodies out of the water.
So-called mid-water swimmers, the most common type of fish, are of many kinds and live in many habitats. The powerful fusiform tunas and the trouts, for example, are adapted for strong, fast swimming, the tunas to capture prey speedily in the open ocean and the trouts to cope with the swift currents of streams and rivers. The trout body form is well adapted to many habitats. Fishes that live in relatively quiet waters such as bays or lake shores or slow rivers usually are not strong, fast swimmers but are capable of short, quick bursts of speed to escape a predator. Many of these fishes have their sides flattened, examples being the sunfish and the freshwater angelfish of aquarists. Fish associated with the bottom or substrate usually are slow swimmers. Open-water plankton-feeding fishes almost always remain fusiform and are capable of rapid, strong movement (for example, sardines and herrings of the open ocean and also many small minnows of streams and lakes).
Bottom-living fishes are of many kinds and have undergone many types of modification of their body shape and swimming habits. Rays, which evolved from strong-swimming mid-water sharks, usually stay close to the bottom and move by undulating their large pectoral fins. Flounders live in a similar habitat and move over the bottom by undulating the entire body. Many bottom fishes dart from place to place, resting on the bottom between movements, a motion common in gobies. One goby relative, the mudskipper, has taken to living at the edge of pools along the shore of muddy mangrove swamps. It escapes its enemies by flipping rapidly over the mud, out of the water. Some catfishes, synbranchid eels, the so-called climbing perch, and a few other fishes venture out over damp ground to find more promising waters than those that they left. They move by wriggling their bodies, sometimes using strong pectoral fins; most have accessory air-breathing organs. Many bottom-dwelling fishes live in mud holes or rocky crevices. Marine eels and gobies commonly are found in such habitats and for the most part venture far beyond their cavelike homes. Some bottom dwellers, such as the clingfishes (Gobiesocidae), have developed powerful adhesive disks that enable them to remain in place on the substrate in areas such as rocky coasts, where the action of the waves is great.
The methods of reproduction in fishes are varied, but most fishes lay a large number of small eggs, fertilized and scattered outside of the body. The eggs of pelagic fishes usually remain suspended in the open water. Many shore and freshwater fishes lay eggs on the bottom or among plants. Some have adhesive eggs. The mortality of the young and especially of the eggs is very high, and often only a few individuals grow to maturity out of hundreds, thousands, and in some cases millions of eggs laid.
Males produce sperm, usually as a milky white substance called milt, in two (sometimes one) testes within the body cavity. In bony fishes a sperm duct leads from each testis to a urogenital opening behind the vent or anus. In sharks and rays and in cyclostomes the duct leads to a cloaca. Sometimes the pelvic fins are modified to help transmit the milt to the eggs at the female’s vent or on the substrate where the female has placed them. Sometimes accessory organs are used to fertilize females internally—for example, the claspers of many sharks and rays.
In the females the eggs are formed in two ovaries (sometimes only one) and pass through the ovaries to the urogenital opening and to the outside. In some fishes the eggs are fertilized internally but are shed before development takes place. Members of about a dozen families each of bony fishes (teleosts) and sharks bear live young. Many skates and rays also bear live young. In some bony fishes the eggs simply develop within the female, the young emerging when the eggs hatch (ovoviviparous). Others develop within the ovary and are nourished by ovarian tissues after hatching (viviparous). There are also other methods utilized by fishes to nourish young within the female. In all live-bearers the young are born at a relatively large size and are few in number. In one family of primarily marine fishes, the surfperches from the Pacific coast of North America, Japan, and Korea, the males of at least one species are born sexually mature, although they are not fully grown.
Some fishes are hermaphroditic—an individual producing both sperm and eggs, usually at different stages of its life. Self-fertilization, however, is probably rare.
Successful reproduction and, in many cases, defense of the eggs and the young are assured by rather stereotypical but often elaborate courtship and parental behaviour, either by the male or the female or both. Some fishes prepare nests by hollowing out depressions in the sand bottom (cichlids, for example), build nests with plant materials and sticky threads excreted by the kidneys (sticklebacks), or blow a cluster of mucus-covered bubbles at the water surface (gouramis). The eggs are laid in these structures. Some varieties of cichlids and catfishes incubate eggs in their mouths.
Some fishes, such as salmon, undergo long migrations from the ocean and up large rivers to spawn in the gravel beds where they themselves hatched (anadromous fishes). Some, such as the freshwater eels (family Anguillidae), live and grow to maturity in fresh water and migrate to the sea to spawn (catadromous fishes). Other fishes undertake shorter migrations from lakes into streams, within the ocean, or enter spawning habitats that they do not ordinarily occupy in other ways.
The basic structure and function of the fish body are similar to those of all other vertebrates. The usual four types of tissues are present: surface or epithelial, connective (bone, cartilage, and fibrous tissues, as well as their derivative, blood), nerve, and muscle tissues. In addition, the fish’s organs and organ systems parallel those of other vertebrates.
The typical fish body is streamlined and spindle-shaped, with an anterior head, a gill apparatus, and a heart, the latter lying in the midline just below the gill chamber. The body cavity, containing the vital organs, is situated behind the head in the lower anterior part of the body. The anus usually marks the posterior termination of the body cavity and most often occurs just in front of the base of the anal fin. The spinal cord and vertebral column continue from the posterior part of the head to the base of the tail fin, passing dorsal to the body cavity and through the caudal (tail) region behind the body cavity. Most of the body is of muscular tissue, a high proportion of which is necessitated by swimming. In the course of evolution this basic body plan has been modified repeatedly into the many varieties of fish shapes that exist today.
The skeleton forms an integral part of the fish’s locomotion system, as well as serving to protect vital parts. The internal skeleton consists of the skull bones (except for the roofing bones of the head, which are really part of the external skeleton), the vertebral column, and the fin supports (fin rays). The fin supports are derived from the external skeleton but will be treated here because of their close functional relationship to the internal skeleton. The internal skeleton of cyclostomes, sharks, and rays is of cartilage; that of many fossil groups and some primitive living fishes is mostly of cartilage but may include some bone. In place of the vertebral column, the earliest vertebrates had a fully developed notochord, a flexible stiff rod of viscous cells surrounded by a strong fibrous sheath. During the evolution of modern fishes the rod was replaced in part by cartilage and then by ossified cartilage. Sharks and rays retain a cartilaginous vertebral column; bony fishes have spool-shaped vertebrae that in the more primitive living forms only partially replace the notochord. The skull, including the gill arches and jaws of bony fishes, is fully, or at least partially, ossified. That of sharks and rays remains cartilaginous, at times partially replaced by calcium deposits but never by true bone.
The supportive elements of the fins (basal or radial bones or both) have changed greatly during fish evolution. Some of these changes are described in the section below (Evolution and paleontology). Most fishes possess a single dorsal fin on the midline of the back. Many have two and a few have three dorsal fins. The other fins are the single tail and anal fins and paired pelvic and pectoral fins. A small fin, the adipose fin, with hairlike fin rays, occurs in many of the relatively primitive teleosts (such as trout) on the back near the base of the caudal fin.
The skin of a fish must serve many functions. It aids in maintaining the osmotic balance, provides physical protection for the body, is the site of coloration, contains sensory receptors, and, in some fishes, functions in respiration. Mucous glands, which aid in maintaining the water balance and offer protection from bacteria, are extremely numerous in fish skin, especially in cyclostomes and teleosts. Since mucous glands are present in the modern lampreys, it is reasonable to assume that they were present in primitive fishes, such as the ancient Silurian and Devonian agnathans. Protection from abrasion and predation is another function of the fish skin, and dermal (skin) bone arose early in fish evolution in response to this need. It is thought that bone first evolved in skin and only later invaded the cartilaginous areas of the fish’s body, to provide additional support and protection. There is some argument as to which came first, cartilage or bone, and fossil evidence does not settle the question. In any event, dermal bone has played an important part in fish evolution and has different characteristics in different groups of fishes. Several groups are characterized at least in part by the kind of bony scales they possess.
Scales have played an important part in the evolution of fishes. Primitive fishes usually had thick bony plates or thick scales in several layers of bone, enamel, and related substances. Modern teleost fishes have scales of bone, which, while still protective, allow much more freedom of motion in the body. A few modern teleosts (some catfishes, sticklebacks, and others) have secondarily acquired bony plates in the skin. Modern and early sharks possessed placoid scales, a relatively primitive type of scale with a toothlike structure, consisting of an outside layer of enamel-like substance (vitrodentine), an inner layer of dentine, and a pulp cavity containing nerves and blood vessels. Primitive bony fishes had thick scales of either the ganoid or the cosmoid type. Cosmoid scales have a hard, enamel-like outer layer, an inner layer of cosmine (a form of dentine), and then a layer of vascular bone (isopedine). In ganoid scales the hard outer layer is different chemically and is called ganoin. Under this is a cosminelike layer and then a vascular bony layer. The thin, translucent bony scales of modern fishes, called cycloid and ctenoid (the latter distinguished by serrations at the edges), lack enameloid and dentine layers.
Skin has several other functions in fishes. It is well supplied with nerve endings and presumably receives tactile, thermal, and pain stimuli. Skin is also well supplied with blood vessels. Some fishes breathe in part through the skin, by the exchange of oxygen and carbon dioxide between the surrounding water and numerous small blood vessels near the skin surface.
Skin serves as protection through the control of coloration. Fishes exhibit an almost limitless range of colours. The colours often blend closely with the surroundings, effectively hiding the animal. Many fishes use bright colours for territorial advertisement or as recognition marks for other members of their own species, or sometimes for members of other species. Many fishes can change their colour to a greater or lesser degree, by movement of pigment within the pigment cells (chromatophores). Black pigment cells (melanophores), of almost universal occurrence in fishes, are often juxtaposed with other pigment cells. When placed beneath iridocytes or leucophores (bearing the silvery or white pigment guanine), melanophores produce structural colours of blue and green. These colours are often extremely intense, because they are formed by refraction of light through the needlelike crystals of guanine. The blue and green refracted colours are often relatively pure, lacking the red and yellow rays, which have been absorbed by the black pigment (melanin) of the melanophores. Yellow, orange, and red colours are produced by erythrophores, cells containing the appropriate carotenoid pigments. Other colours are produced by combinations of melanophores, erythrophores, and iridocytes.
The major portion of the body of most fishes consists of muscles. Most of the mass is trunk musculature, the fin muscles usually being relatively small. The caudal fin is usually the most powerful fin, being moved by the trunk musculature. The body musculature is usually arranged in rows of chevron-shaped segments on each side. Contractions of these segments, each attached to adjacent vertebrae and vertebral processes, bends the body on the vertebral joint, producing successive undulations of the body, passing from the head to the tail, and producing driving strokes of the tail. It is the latter that provides the strong forward movement for most fishes.
The digestive system, in a functional sense, starts at the mouth, with the teeth used to capture prey or collect plant foods. Mouth shape and tooth structure vary greatly in fishes, depending on the kind of food normally eaten. Most fishes are predacious, feeding on small invertebrates or other fishes and have simple conical teeth on the jaws, on at least some of the bones of the roof of the mouth, and on special gill arch structures just in front of the esophagus. The latter are throat teeth. Most predacious fishes swallow their prey whole, and the teeth are used for grasping and holding prey, for orienting prey to be swallowed (head first) and for working the prey toward the esophagus. There are a variety of tooth types in fishes. Some fishes, such as sharks and piranhas, have cutting teeth for biting chunks out of their victims. A shark’s tooth, although superficially like that of a piranha, appears in many respects to be a modified scale, while that of the piranha is like that of other bony fishes, consisting of dentine and enamel. Parrot fishes have beaklike mouths with short incisor-like teeth for breaking off coral and have heavy pavementlike throat teeth for crushing the coral. Some catfishes have small brushlike teeth, arranged in rows on the jaws, for scraping plant and animal growth from rocks. Many fishes (such as the Cyprinidae or minnows) have no jaw teeth at all but have very strong throat teeth.
Some fishes gather planktonic food by straining it from their gill cavities with numerous elongate stiff rods (gill rakers) anchored by one end to the gill bars. The food collected on these rods is passed to the throat, where it is swallowed. Most fishes have only short gill rakers that help keep food particles from escaping out the mouth cavity into the gill chamber.
Once reaching the throat, food enters a short, often greatly distensible esophagus, a simple tube with a muscular wall leading into a stomach. The stomach varies greatly in fishes, depending upon the diet. In most predacious fishes it is a simple straight or curved tube or pouch with a muscular wall and a glandular lining. Food is largely digested there and leaves the stomach in liquid form.
Between the stomach and the intestine, ducts enter the digestive tube from the liver and pancreas. The liver is a large, clearly defined organ. The pancreas may be embedded in it, diffused through it, or broken into small parts spread along some of the intestine. The junction between the stomach and the intestine is marked by a muscular valve. Pyloric ceca (blind sacs) occur in some fishes at this junction and have a digestive or absorptive function or both.
The intestine itself is quite variable in length, depending upon the fish’s diet. It is short in predacious forms, sometimes no longer than the body cavity, but long in herbivorous forms, being coiled and several times longer than the entire length of the fish in some species of South American catfishes. The intestine is primarily an organ for absorbing nutrients into the bloodstream. The larger its internal surface, the greater its absorptive efficiency, and a spiral valve is one method of increasing its absorption surface.
Sharks, rays, chimaeras, lungfishes, surviving chondrosteans, holosteans, and even a few of the more primitive teleosts have a spiral valve or at least traces of it in the intestine. Most modern teleosts have increased the area of the intestinal walls by having numerous folds and villi (fingerlike projections) somewhat like those in humans. Undigested substances are passed to the exterior through the anus in most teleost fishes. In lungfishes, sharks, and rays, it is first passed through the cloaca, a common cavity receiving the intestinal opening and the ducts from the urogenital system.
Oxygen and carbon dioxide dissolve in water, and most fishes exchange dissolved oxygen and carbon dioxide in water by means of the gills. The gills lie behind and to the side of the mouth cavity and consist of fleshy filaments supported by the gill arches and filled with blood vessels, which give gills a bright red colour. Water taken in continuously through the mouth passes backward between the gill bars and over the gill filaments, where the exchange of gases takes place. The gills are protected by a gill cover in teleosts and many other fishes but by flaps of skin in sharks, rays, and some of the older fossil fish groups. The blood capillaries in the gill filaments are close to the gill surface to take up oxygen from the water and to give up excess carbon dioxide to the water.
Most modern fishes have a hydrostatic (ballast) organ, called the swim bladder, that lies in the body cavity just below the kidney and above the stomach and intestine. It originated as a diverticulum of the digestive canal. In advanced teleosts, especially the acanthopterygians, the bladder has lost its connection with the digestive tract, a condition called physoclistic. The connection has been retained (physostomous) by many relatively primitive teleosts. In several unrelated lines of fishes, the bladder has become specialized as a lung or, at least, as a highly vascularized accessory breathing organ. Some fishes with such accessory organs are obligate air breathers and will drown if denied access to the surface, even in well-oxygenated water. Fishes with a hydrostatic form of swim bladder can control their depth by regulating the amount of gas in the bladder. The gas, mostly oxygen, is secreted into the bladder by special glands, rendering the fish more buoyant; the gas is absorbed into the bloodstream by another special organ, reducing the overall buoyancy and allowing the fish to sink. Some deep-sea fishes may have oils, rather than gas, in the bladder. Other deep-sea and some bottom-living forms have much-reduced swim bladders or have lost the organ entirely.
The swim bladder of fishes follows the same developmental pattern as the lungs of land vertebrates. There is no doubt that the two structures have the same historical origin in primitive fishes. More or less intermediate forms still survive among the more primitive types of fishes, such as the lungfishes Lepidosiren and Protopterus.
The circulatory, or blood vascular, system consists of the heart, the arteries, the capillaries, and the veins. It is in the capillaries that the interchange of oxygen, carbon dioxide, nutrients, and other substances such as hormones and waste products takes place. The capillaries lead to the veins, which return the venous blood with its waste products to the heart, kidneys, and gills. There are two kinds of capillary beds: those in the gills and those in the rest of the body. The heart, a folded continuous muscular tube with three or four saclike enlargements, undergoes rhythmic contractions and receives venous blood in a sinus venosus. It passes the blood to an auricle and then into a thick muscular pump, the ventricle. From the ventricle the blood goes to a bulbous structure at the base of a ventral aorta just below the gills. The blood passes to the afferent (receiving) arteries of the gill arches and then to the gill capillaries. There waste gases are given off to the environment, and oxygen is absorbed. The oxygenated blood enters efferent (exuant) arteries of the gill arches and then flows into the dorsal aorta. From there blood is distributed to the tissues and organs of the body. One-way valves prevent backflow. The circulation of fishes thus differs from that of the reptiles, birds, and mammals in that oxygenated blood is not returned to the heart prior to distribution to the other parts of the body.
The primary excretory organ in fishes, as in other vertebrates, is the kidney. In fishes some excretion also takes place in the digestive tract, skin, and especially the gills (where ammonia is given off). Compared with land vertebrates, fishes have a special problem in maintaining their internal environment at a constant concentration of water and dissolved substances, such as salts. Proper balance of the internal environment (homeostasis) of a fish is in a great part maintained by the excretory system, especially the kidney.
The kidney, gills, and skin play an important role in maintaining a fish’s internal environment and checking the effects of osmosis. Marine fishes live in an environment in which the water around them has a greater concentration of salts than they can have inside their body and still maintain life. Freshwater fishes, on the other hand, live in water with a much lower concentration of salts than they require inside their bodies. Osmosis tends to promote the loss of water from the body of a marine fish and absorption of water by that of a freshwater fish. Mucus in the skin tends to slow the process but is not a sufficient barrier to prevent the movement of fluids through the permeable skin. When solutions on two sides of a permeable membrane have different concentrations of dissolved substances, water will pass through the membrane into the more concentrated solution, while the dissolved chemicals move into the area of lower concentration (diffusion).
The kidney of freshwater fishes is often larger in relation to body weight than that of marine fishes. In both groups the kidney excretes wastes from the body, but the kidney of freshwater fishes also excretes large amounts of water, counteracting the water absorbed through the skin. Freshwater fishes tend to lose salt to the environment and must replace it. They get some salt from their food, but the gills and skin inside the mouth actively absorb salt from water passed through the mouth. This absorption is performed by special cells capable of moving salts against the diffusion gradient. Freshwater fishes drink very little water and take in little water with their food.
Marine fishes must conserve water, and therefore their kidneys excrete little water. To maintain their water balance, marine fishes drink large quantities of seawater, retaining most of the water and excreting the salt. Most nitrogenous waste in marine fishes appears to be secreted by the gills as ammonia. Marine fishes can excrete salt by clusters of special cells (chloride cells) in the gills.
There are several teleosts—for example, the salmon—that travel between fresh water and seawater and must adjust to the reversal of osmotic gradients. They adjust their physiological processes by spending time (often surprisingly little time) in the intermediate brackish environment.
Marine hagfishes, sharks, and rays have osmotic concentrations in their blood about equal to that of seawater and so do not have to drink water nor perform much physiological work to maintain their osmotic balance. In sharks and rays the osmotic concentration is kept high by retention of urea in the blood. Freshwater sharks have a lowered concentration of urea in the blood.
Endocrine glands secrete their products into the bloodstream and body tissues and, along with the central nervous system, control and regulate many kinds of body functions. Cyclostomes have a well-developed endocrine system, and presumably it was well developed in the early Agnatha, ancestral to modern fishes. Although the endocrine system in fishes is similar to that of higher vertebrates, there are numerous differences in detail. The pituitary, the thyroid, the suprarenals, the adrenals, the pancreatic islets, the sex glands (ovaries and testes), the inner wall of the intestine, and the bodies of the ultimobranchial gland make up the endocrine system in fishes. There are some others whose function is not well understood. These organs regulate sexual activity and reproduction, growth, osmotic pressure, general metabolic activities such as the storage of fat and the utilization of foodstuffs, blood pressure, and certain aspects of skin colour. Many of these activities are also controlled in part by the central nervous system, which works with the endocrine system in maintaining the life of a fish. Some parts of the endocrine system are developmentally, and undoubtedly evolutionarily, derived from the nervous system.
As in all vertebrates, the nervous system of fishes is the primary mechanism coordinating body activities, as well as integrating these activities in the appropriate manner with stimuli from the environment. The central nervous system, consisting of the brain and spinal cord, is the primary integrating mechanism. The peripheral nervous system, consisting of nerves that connect the brain and spinal cord to various body organs, carries sensory information from special receptor organs such as the eyes, internal ears, nares (sense of smell), taste glands, and others to the integrating centres of the brain and spinal cord. The peripheral nervous system also carries information via different nerve cells from the integrating centres of the brain and spinal cord. This coded information is carried to the various organs and body systems, such as the skeletal muscular system, for appropriate action in response to the original external or internal stimulus. Another branch of the nervous system, the autonomic nervous system, helps to coordinate the activities of many glands and organs and is itself closely connected to the integrating centres of the brain.
The brain of the fish is divided into several anatomical and functional parts, all closely interconnected but each serving as the primary centre of integrating particular kinds of responses and activities. Several of these centres or parts are primarily associated with one type of sensory perception, such as sight, hearing, or smell (olfaction).
The sense of smell is important in almost all fishes. Certain eels with tiny eyes depend mostly on smell for location of food. The olfactory, or nasal, organ of fishes is located on the dorsal surface of the snout. The lining of the nasal organ has special sensory cells that perceive chemicals dissolved in the water, such as substances from food material, and send sensory information to the brain by way of the first cranial nerve. Odour also serves as an alarm system. Many fishes, especially various species of freshwater minnows, react with alarm to a chemical released from the skin of an injured member of their own species.
Many fishes have a well-developed sense of taste, and tiny pitlike taste buds or organs are located not only within their mouth cavities but also over their heads and parts of their body. Catfishes, which often have poor vision, have barbels (“whiskers”) that serve as supplementary taste organs, those around the mouth being actively used to search out food on the bottom. Some species of naturally blind cave fishes are especially well supplied with taste buds, which often cover most of their body surface.
Sight is extremely important in most fishes. The eye of a fish is basically like that of all other vertebrates, but the eyes of fishes are extremely varied in structure and adaptation. In general, fishes living in dark and dim water habitats have large eyes, unless they have specialized in some compensatory way so that another sense (such as smell) is dominant, in which case the eyes will often be reduced. Fishes living in brightly lighted shallow waters often will have relatively small but efficient eyes. Cyclostomes have somewhat less elaborate eyes than other fishes, with skin stretched over the eyeball perhaps making their vision somewhat less effective. Most fishes have a spherical lens and accommodate their vision to far or near subjects by moving the lens within the eyeball. A few sharks accommodate by changing the shape of the lens, as in land vertebrates. Those fishes that are heavily dependent upon the eyes have especially strong muscles for accommodation. Most fishes see well, despite the restrictions imposed by frequent turbidity of the water and by light refraction.
Fossil evidence suggests that colour vision evolved in fishes more than 300 million years ago, but not all living fishes have retained this ability. Experimental evidence indicates that many shallow-water fishes, if not all, have colour vision and see some colours especially well, but some bottom-dwelling shore fishes live in areas where the water is sufficiently deep to filter out most if not all colours, and these fishes apparently never see colours. When tested in shallow water, they apparently are unable to respond to colour differences.
Sound perception and balance are intimately associated senses in a fish. The organs of hearing are entirely internal, located within the skull, on each side of the brain and somewhat behind the eyes. Sound waves, especially those of low frequencies, travel readily through water and impinge directly upon the bones and fluids of the head and body, to be transmitted to the hearing organs. Fishes readily respond to sound; for example, a trout conditioned to escape by the approach of fishermen will take flight upon perceiving footsteps on a stream bank even if it cannot see a fisherman. Compared with humans, however, the range of sound frequencies heard by fishes is greatly restricted. Many fishes communicate with each other by producing sounds in their swim bladders, in their throats by rasping their teeth, and in other ways.
A fish or other vertebrate seldom has to rely on a single type of sensory information to determine the nature of the environment around it. A catfish uses taste and touch when examining a food object with its oral barbels. Like most other animals, fishes have many touch receptors over their body surface. Pain and temperature receptors also are present in fishes and presumably produce the same kind of information to a fish as to humans. Fishes react in a negative fashion to stimuli that would be painful to human beings, suggesting that they feel a sensation of pain.
An important sensory system in fishes that is absent in other vertebrates (except some amphibians) is the lateral line system. This consists of a series of heavily innervated small canals located in the skin and bone around the eyes, along the lower jaw, over the head, and down the mid-side of the body, where it is associated with the scales. Intermittently along these canals are located tiny sensory organs (pit organs) that apparently detect changes in pressure. The system allows a fish to sense changes in water currents and pressure, thereby helping the fish to orient itself to the various changes that occur in the physical environment.
Fish, any of approximately 34,000 species of vertebrate animals (phylum Chordata) found in the fresh and salt waters of the world. Living species range from the primitive jawless lampreys and hagfishes through the cartilaginous sharks, skates, and rays to the abundant and diverse bony fishes. Most fish species are cold-blooded; however, one species, the opah (Lampris guttatus), is warm-blooded.
The term fish is applied to a variety of vertebrates of several evolutionary lines. It describes a life-form rather than a taxonomic group. As members of the phylum Chordata, fish share certain features with other vertebrates. These features are gill slits at some point in the life cycle, a notochord, or skeletal supporting rod, a dorsal hollow nerve cord, and a tail. Living fishes represent some five classes, which are as distinct from one another as are the four classes of familiar air-breathing animals—amphibians, reptiles, birds, and mammals. For example, the jawless fishes (Agnatha) have gills in pouches and lack limb girdles. Extant agnathans are the lampreys and the hagfishes. As the name implies, the skeletons of fishes of the class Chondrichthyes (from chondr, “cartilage,” and ichthyes, “fish”) are made entirely of cartilage. Modern fish of this class lack a swim bladder, and their scales and teeth are made up of the same placoid material. Sharks, skates, and rays are examples of cartilaginous fishes. The bony fishes are by far the largest class. Examples range from the tiny seahorse to the 450-kg (1,000-pound) blue marlin, from the flattened soles and flounders to the boxy puffers and ocean sunfishes. Unlike the scales of the cartilaginous fishes, those of bony fishes, when present, grow throughout life and are made up of thin overlapping plates of bone. Bony fishes also have an operculum that covers the gill slits.
The study of fishes, the science of ichthyology, is of broad importance. Fishes are of interest to humans for many reasons, the most important being their relationship with and dependence on the environment. A more obvious reason for interest in fishes is their role as a moderate but important part of the world’s food supply. This resource, once thought unlimited, is now realized to be finite and in delicate balance with the biological, chemical, and physical factors of the aquatic environment. Overfishing, pollution, and alteration of the environment are the chief enemies of proper fisheries management, both in fresh waters and in the ocean. (For a detailed discussion of the technology and economics of fisheries, see commercial fishing.) Another practical reason for studying fishes is their use in disease control. As predators on mosquito larvae, they help curb malaria and other mosquito-borne diseases.
Fishes are valuable laboratory animals in many aspects of medical and biological research. For example, the readiness of many fishes to acclimate to captivity has allowed biologists to study behaviour, physiology, and even ecology under relatively natural conditions. Fishes have been especially important in the study of animal behaviour, where research on fishes has provided a broad base for the understanding of the more flexible behaviour of the higher vertebrates. The zebra fish is used as a model in studies of gene expression.
There are aesthetic and recreational reasons for an interest in fishes. Millions of people keep live fishes in home aquariums for the simple pleasure of observing the beauty and behaviour of animals otherwise unfamiliar to them. Aquarium fishes provide a personal challenge to many aquarists, allowing them to test their ability to keep a small section of the natural environment in their homes. Sportfishing is another way of enjoying the natural environment, also indulged in by millions of people every year. Interest in aquarium fishes and sportfishing supports multimillion-dollar industries throughout the world.
Fishes have been in existence for more than 450 million years, during which time they have evolved repeatedly to fit into almost every conceivable type of aquatic habitat. In a sense, land vertebrates are simply highly modified fishes: when fishes colonized the land habitat, they became tetrapod (four-legged) land vertebrates. The popular conception of a fish as a slippery, streamlined aquatic animal that possesses fins and breathes by gills applies to many fishes, but far more fishes deviate from that conception than conform to it. For example, the body is elongate in many forms and greatly shortened in others; the body is flattened in some (principally in bottom-dwelling fishes) and laterally compressed in many others; the fins may be elaborately extended, forming intricate shapes, or they may be reduced or even lost; and the positions of the mouth, eyes, nostrils, and gill openings vary widely. Air breathers have appeared in several evolutionary lines.
Many fishes are cryptically coloured and shaped, closely matching their respective environments; others are among the most brilliantly coloured of all organisms, with a wide range of hues, often of striking intensity, on a single individual. The brilliance of pigments may be enhanced by the surface structure of the fish, so that it almost seems to glow. A number of unrelated fishes have actual light-producing organs. Many fishes are able to alter their coloration—some for the purpose of camouflage, others for the enhancement of behavioral signals.
Fishes range in adult length from less than 10 mm (0.4 inch) to more than 20 metres (60 feet) and in weight from about 1.5 grams (less than 0.06 ounce) to many thousands of kilograms. Some live in shallow thermal springs at temperatures slightly above 42 °C (100 °F), others in cold Arctic seas a few degrees below 0 °C (32 °F) or in cold deep waters more than 4,000 metres (13,100 feet) beneath the ocean surface. The structural and, especially, the physiological adaptations for life at such extremes are relatively poorly known and provide the scientifically curious with great incentive for study.
Almost all natural bodies of water bear fish life, the exceptions being very hot thermal ponds and extremely salt-alkaline lakes, such as the Dead Sea in Asia and the Great Salt Lake in North America. The present distribution of fishes is a result of the geological history and development of Earth as well as the ability of fishes to undergo evolutionary change and to adapt to the available habitats. Fishes may be seen to be distributed according to habitat and according to geographical area. Major habitat differences are marine and freshwater. For the most part, the fishes in a marine habitat differ from those in a freshwater habitat, even in adjacent areas, but some, such as the salmon, migrate from one to the other. The freshwater habitats may be seen to be of many kinds. Fishes found in mountain torrents, Arctic lakes, tropical lakes, temperate streams, and tropical rivers will all differ from each other, both in obvious gross structure and in physiological attributes. Even in closely adjacent habitats where, for example, a tropical mountain torrent enters a lowland stream, the fish fauna will differ. The marine habitats can be divided into deep ocean floors (benthic), mid-water oceanic (bathypelagic), surface oceanic (pelagic), rocky coast, sandy coast, muddy shores, bays, estuaries, and others. Also, for example, rocky coastal shores in tropical and temperate regions will have different fish faunas, even when such habitats occur along the same coastline.
Although much is known about the present geographical distribution of fishes, far less is known about how that distribution came about. Many parts of the fish fauna of the fresh waters of North America and Eurasia are related and undoubtedly have a common origin. The faunas of Africa and South America are related, extremely old, and probably an expression of the drifting apart of the two continents. The fauna of southern Asia is related to that of Central Asia, and some of it appears to have entered Africa. The extremely large shore-fish faunas of the Indian and tropical Pacific oceans comprise a related complex, but the tropical shore fauna of the Atlantic, although containing Indo-Pacific components, is relatively limited and probably younger. The Arctic and Antarctic marine faunas are quite different from each other. The shore fauna of the North Pacific is quite distinct, and that of the North Atlantic more limited and probably younger. Pelagic oceanic fishes, especially those in deep waters, are similar the world over, showing little geographical isolation in terms of family groups. The deep oceanic habitat is very much the same throughout the world, but species differences do exist, showing geographical areas determined by oceanic currents and water masses.
All aspects of the life of a fish are closely correlated with adaptation to the total environment, physical, chemical, and biological. In studies, all the interdependent aspects of fish, such as behaviour, locomotion, reproduction, and physical and physiological characteristics, must be taken into account.
Correlated with their adaptation to an extremely wide variety of habitats is the extremely wide variety of life cycles that fishes display. The great majority hatch from relatively small eggs a few days to several weeks or more after the eggs are scattered in the water. Newly hatched young are still partially undeveloped and are called larvae until body structures such as fins, skeleton, and some organs are fully formed. Larval life is often very short, usually less than a few weeks, but it can be very long, some lampreys continuing as larvae for at least five years. Young and larval fishes, before reaching sexual maturity, must grow considerably, and their small size and other factors often dictate that they live in a habitat different than that of the adults. For example, most tropical marine shore fishes have pelagic larvae. Larval food also is different, and larval fishes often live in shallow waters, where they may be less exposed to predators.
After a fish reaches adult size, the length of its life is subject to many factors, such as innate rates of aging, predation pressure, and the nature of the local climate. The longevity of a species in the protected environment of an aquarium may have nothing to do with how long members of that species live in the wild. Many small fishes live only one to three years at the most. In some species, however, individuals may live as long as 10 or 20 or even 100 years.
Fish behaviour is a complicated and varied subject. As in almost all animals with a central nervous system, the nature of a response of an individual fish to stimuli from its environment depends upon the inherited characteristics of its nervous system, on what it has learned from past experience, and on the nature of the stimuli. Compared with the variety of human responses, however, that of a fish is stereotyped, not subject to much modification by “thought” or learning, and investigators must guard against anthropomorphic interpretations of fish behaviour.
Fishes perceive the world around them by the usual senses of sight, smell, hearing, touch, and taste and by special lateral line water-current detectors. In the few fishes that generate electric fields, a process that might best be called electrolocation aids in perception. One or another of these senses often is emphasized at the expense of others, depending upon the fish’s other adaptations. In fishes with large eyes, the sense of smell may be reduced; others, with small eyes, hunt and feed primarily by smell (such as some eels).
Specialized behaviour is primarily concerned with the three most important activities in the fish’s life: feeding, reproduction, and escape from enemies. Schooling behaviour of sardines on the high seas, for instance, is largely a protective device to avoid enemies, but it is also associated with and modified by their breeding and feeding requirements. Predatory fishes are often solitary, lying in wait to dart suddenly after their prey, a kind of locomotion impossible for beaked parrot fishes, which feed on coral, swimming in small groups from one coral head to the next. In addition, some predatory fishes that inhabit pelagic environments, such as tunas, often school.
Sleep in fishes, all of which lack true eyelids, consists of a seemingly listless state in which the fish maintains its balance but moves slowly. If attacked or disturbed, most can dart away. A few kinds of fishes lie on the bottom to sleep. Most catfishes, some loaches, and some eels and electric fishes are strictly nocturnal, being active and hunting for food during the night and retiring during the day to holes, thick vegetation, or other protective parts of the environment.
Communication between members of a species or between members of two or more species often is extremely important, especially in breeding behaviour (see below Reproduction). The mode of communication may be visual, as between the small so-called cleaner fish and a large fish of a very different species. The larger fish often allows the cleaner to enter its mouth to remove gill parasites. The cleaner is recognized by its distinctive colour and actions and therefore is not eaten, even if the larger fish is normally a predator. Communication is often chemical, signals being sent by specific chemicals called pheromones.
Many fishes have a streamlined body and swim freely in open water. Fish locomotion is closely correlated with habitat and ecological niche (the general position of the animal to its environment).
Many fishes in both marine and fresh waters swim at the surface and have mouths adapted to feed best (and sometimes only) at the surface. Often such fishes are long and slender, able to dart at surface insects or at other surface fishes and in turn to dart away from predators; needlefishes, halfbeaks, and topminnows (such as killifish and mosquito fish) are good examples. Oceanic flying fishes escape their predators by gathering speed above the water surface, with the lower lobe of the tail providing thrust in the water. They then glide hundreds of yards on enlarged, winglike pectoral and pelvic fins. South American freshwater flying fishes escape their enemies by jumping and propelling their strongly keeled bodies out of the water.
So-called mid-water swimmers, the most common type of fish, are of many kinds and live in many habitats. The powerful fusiform tunas and the trouts, for example, are adapted for strong, fast swimming, the tunas to capture prey speedily in the open ocean and the trouts to cope with the swift currents of streams and rivers. The trout body form is well adapted to many habitats. Fishes that live in relatively quiet waters such as bays or lake shores or slow rivers usually are not strong, fast swimmers but are capable of short, quick bursts of speed to escape a predator. Many of these fishes have their sides flattened, examples being the sunfish and the freshwater angelfish of aquarists. Fish associated with the bottom or substrate usually are slow swimmers. Open-water plankton-feeding fishes almost always remain fusiform and are capable of rapid, strong movement (for example, sardines and herrings of the open ocean and also many small minnows of streams and lakes).
Bottom-living fishes are of many kinds and have undergone many types of modification of their body shape and swimming habits. Rays, which evolved from strong-swimming mid-water sharks, usually stay close to the bottom and move by undulating their large pectoral fins. Flounders live in a similar habitat and move over the bottom by undulating the entire body. Many bottom fishes dart from place to place, resting on the bottom between movements, a motion common in gobies. One goby relative, the mudskipper, has taken to living at the edge of pools along the shore of muddy mangrove swamps. It escapes its enemies by flipping rapidly over the mud, out of the water. Some catfishes, synbranchid eels, the so-called climbing perch, and a few other fishes venture out over damp ground to find more promising waters than those that they left. They move by wriggling their bodies, sometimes using strong pectoral fins; most have accessory air-breathing organs. Many bottom-dwelling fishes live in mud holes or rocky crevices. Marine eels and gobies commonly are found in such habitats and for the most part venture far beyond their cavelike homes. Some bottom dwellers, such as the clingfishes (Gobiesocidae), have developed powerful adhesive disks that enable them to remain in place on the substrate in areas such as rocky coasts, where the action of the waves is great.
The methods of reproduction in fishes are varied, but most fishes lay a large number of small eggs, fertilized and scattered outside of the body. The eggs of pelagic fishes usually remain suspended in the open water. Many shore and freshwater fishes lay eggs on the bottom or among plants. Some have adhesive eggs. The mortality of the young and especially of the eggs is very high, and often only a few individuals grow to maturity out of hundreds, thousands, and in some cases millions of eggs laid.
Males produce sperm, usually as a milky white substance called milt, in two (sometimes one) testes within the body cavity. In bony fishes a sperm duct leads from each testis to a urogenital opening behind the vent or anus. In sharks and rays and in cyclostomes the duct leads to a cloaca. Sometimes the pelvic fins are modified to help transmit the milt to the eggs at the female’s vent or on the substrate where the female has placed them. Sometimes accessory organs are used to fertilize females internally—for example, the claspers of many sharks and rays.
In the females the eggs are formed in two ovaries (sometimes only one) and pass through the ovaries to the urogenital opening and to the outside. In some fishes the eggs are fertilized internally but are shed before development takes place. Members of about a dozen families each of bony fishes (teleosts) and sharks bear live young. Many skates and rays also bear live young. In some bony fishes the eggs simply develop within the female, the young emerging when the eggs hatch (ovoviviparous). Others develop within the ovary and are nourished by ovarian tissues after hatching (viviparous). There are also other methods utilized by fishes to nourish young within the female. In all live-bearers the young are born at a relatively large size and are few in number. In one family of primarily marine fishes, the surfperches from the Pacific coast of North America, Japan, and Korea, the males of at least one species are born sexually mature, although they are not fully grown.
Some fishes are hermaphroditic—an individual producing both sperm and eggs, usually at different stages of its life. Self-fertilization, however, is probably rare.
Successful reproduction and, in many cases, defense of the eggs and the young are assured by rather stereotypical but often elaborate courtship and parental behaviour, either by the male or the female or both. Some fishes prepare nests by hollowing out depressions in the sand bottom (cichlids, for example), build nests with plant materials and sticky threads excreted by the kidneys (sticklebacks), or blow a cluster of mucus-covered bubbles at the water surface (gouramis). The eggs are laid in these structures. Some varieties of cichlids and catfishes incubate eggs in their mouths.
Some fishes, such as salmon, undergo long migrations from the ocean and up large rivers to spawn in the gravel beds where they themselves hatched (anadromous fishes). Some, such as the freshwater eels (family Anguillidae), live and grow to maturity in fresh water and migrate to the sea to spawn (catadromous fishes). Other fishes undertake shorter migrations from lakes into streams, within the ocean, or enter spawning habitats that they do not ordinarily occupy in other ways.
The basic structure and function of the fish body are similar to those of all other vertebrates. The usual four types of tissues are present: surface or epithelial, connective (bone, cartilage, and fibrous tissues, as well as their derivative, blood), nerve, and muscle tissues. In addition, the fish’s organs and organ systems parallel those of other vertebrates.
The typical fish body is streamlined and spindle-shaped, with an anterior head, a gill apparatus, and a heart, the latter lying in the midline just below the gill chamber. The body cavity, containing the vital organs, is situated behind the head in the lower anterior part of the body. The anus usually marks the posterior termination of the body cavity and most often occurs just in front of the base of the anal fin. The spinal cord and vertebral column continue from the posterior part of the head to the base of the tail fin, passing dorsal to the body cavity and through the caudal (tail) region behind the body cavity. Most of the body is of muscular tissue, a high proportion of which is necessitated by swimming. In the course of evolution this basic body plan has been modified repeatedly into the many varieties of fish shapes that exist today.
The skeleton forms an integral part of the fish’s locomotion system, as well as serving to protect vital parts. The internal skeleton consists of the skull bones (except for the roofing bones of the head, which are really part of the external skeleton), the vertebral column, and the fin supports (fin rays). The fin supports are derived from the external skeleton but will be treated here because of their close functional relationship to the internal skeleton. The internal skeleton of cyclostomes, sharks, and rays is of cartilage; that of many fossil groups and some primitive living fishes is mostly of cartilage but may include some bone. In place of the vertebral column, the earliest vertebrates had a fully developed notochord, a flexible stiff rod of viscous cells surrounded by a strong fibrous sheath. During the evolution of modern fishes the rod was replaced in part by cartilage and then by ossified cartilage. Sharks and rays retain a cartilaginous vertebral column; bony fishes have spool-shaped vertebrae that in the more primitive living forms only partially replace the notochord. The skull, including the gill arches and jaws of bony fishes, is fully, or at least partially, ossified. That of sharks and rays remains cartilaginous, at times partially replaced by calcium deposits but never by true bone.
The supportive elements of the fins (basal or radial bones or both) have changed greatly during fish evolution. Some of these changes are described in the section below (Evolution and paleontology). Most fishes possess a single dorsal fin on the midline of the back. Many have two and a few have three dorsal fins. The other fins are the single tail and anal fins and paired pelvic and pectoral fins. A small fin, the adipose fin, with hairlike fin rays, occurs in many of the relatively primitive teleosts (such as trout) on the back near the base of the caudal fin.
The skin of a fish must serve many functions. It aids in maintaining the osmotic balance, provides physical protection for the body, is the site of coloration, contains sensory receptors, and, in some fishes, functions in respiration. Mucous glands, which aid in maintaining the water balance and offer protection from bacteria, are extremely numerous in fish skin, especially in cyclostomes and teleosts. Since mucous glands are present in the modern lampreys, it is reasonable to assume that they were present in primitive fishes, such as the ancient Silurian and Devonian agnathans. Protection from abrasion and predation is another function of the fish skin, and dermal (skin) bone arose early in fish evolution in response to this need. It is thought that bone first evolved in skin and only later invaded the cartilaginous areas of the fish’s body, to provide additional support and protection. There is some argument as to which came first, cartilage or bone, and fossil evidence does not settle the question. In any event, dermal bone has played an important part in fish evolution and has different characteristics in different groups of fishes. Several groups are characterized at least in part by the kind of bony scales they possess.
Scales have played an important part in the evolution of fishes. Primitive fishes usually had thick bony plates or thick scales in several layers of bone, enamel, and related substances. Modern teleost fishes have scales of bone, which, while still protective, allow much more freedom of motion in the body. A few modern teleosts (some catfishes, sticklebacks, and others) have secondarily acquired bony plates in the skin. Modern and early sharks possessed placoid scales, a relatively primitive type of scale with a toothlike structure, consisting of an outside layer of enamel-like substance (vitrodentine), an inner layer of dentine, and a pulp cavity containing nerves and blood vessels. Primitive bony fishes had thick scales of either the ganoid or the cosmoid type. Cosmoid scales have a hard, enamel-like outer layer, an inner layer of cosmine (a form of dentine), and then a layer of vascular bone (isopedine). In ganoid scales the hard outer layer is different chemically and is called ganoin. Under this is a cosminelike layer and then a vascular bony layer. The thin, translucent bony scales of modern fishes, called cycloid and ctenoid (the latter distinguished by serrations at the edges), lack enameloid and dentine layers.
Skin has several other functions in fishes. It is well supplied with nerve endings and presumably receives tactile, thermal, and pain stimuli. Skin is also well supplied with blood vessels. Some fishes breathe in part through the skin, by the exchange of oxygen and carbon dioxide between the surrounding water and numerous small blood vessels near the skin surface.
Skin serves as protection through the control of coloration. Fishes exhibit an almost limitless range of colours. The colours often blend closely with the surroundings, effectively hiding the animal. Many fishes use bright colours for territorial advertisement or as recognition marks for other members of their own species, or sometimes for members of other species. Many fishes can change their colour to a greater or lesser degree, by movement of pigment within the pigment cells (chromatophores). Black pigment cells (melanophores), of almost universal occurrence in fishes, are often juxtaposed with other pigment cells. When placed beneath iridocytes or leucophores (bearing the silvery or white pigment guanine), melanophores produce structural colours of blue and green. These colours are often extremely intense, because they are formed by refraction of light through the needlelike crystals of guanine. The blue and green refracted colours are often relatively pure, lacking the red and yellow rays, which have been absorbed by the black pigment (melanin) of the melanophores. Yellow, orange, and red colours are produced by erythrophores, cells containing the appropriate carotenoid pigments. Other colours are produced by combinations of melanophores, erythrophores, and iridocytes.
The major portion of the body of most fishes consists of muscles. Most of the mass is trunk musculature, the fin muscles usually being relatively small. The caudal fin is usually the most powerful fin, being moved by the trunk musculature. The body musculature is usually arranged in rows of chevron-shaped segments on each side. Contractions of these segments, each attached to adjacent vertebrae and vertebral processes, bends the body on the vertebral joint, producing successive undulations of the body, passing from the head to the tail, and producing driving strokes of the tail. It is the latter that provides the strong forward movement for most fishes.
The digestive system, in a functional sense, starts at the mouth, with the teeth used to capture prey or collect plant foods. Mouth shape and tooth structure vary greatly in fishes, depending on the kind of food normally eaten. Most fishes are predacious, feeding on small invertebrates or other fishes and have simple conical teeth on the jaws, on at least some of the bones of the roof of the mouth, and on special gill arch structures just in front of the esophagus. The latter are throat teeth. Most predacious fishes swallow their prey whole, and the teeth are used for grasping and holding prey, for orienting prey to be swallowed (head first) and for working the prey toward the esophagus. There are a variety of tooth types in fishes. Some fishes, such as sharks and piranhas, have cutting teeth for biting chunks out of their victims. A shark’s tooth, although superficially like that of a piranha, appears in many respects to be a modified scale, while that of the piranha is like that of other bony fishes, consisting of dentine and enamel. Parrot fishes have beaklike mouths with short incisor-like teeth for breaking off coral and have heavy pavementlike throat teeth for crushing the coral. Some catfishes have small brushlike teeth, arranged in rows on the jaws, for scraping plant and animal growth from rocks. Many fishes (such as the Cyprinidae or minnows) have no jaw teeth at all but have very strong throat teeth.
Some fishes gather planktonic food by straining it from their gill cavities with numerous elongate stiff rods (gill rakers) anchored by one end to the gill bars. The food collected on these rods is passed to the throat, where it is swallowed. Most fishes have only short gill rakers that help keep food particles from escaping out the mouth cavity into the gill chamber.
Once reaching the throat, food enters a short, often greatly distensible esophagus, a simple tube with a muscular wall leading into a stomach. The stomach varies greatly in fishes, depending upon the diet. In most predacious fishes it is a simple straight or curved tube or pouch with a muscular wall and a glandular lining. Food is largely digested there and leaves the stomach in liquid form.
Between the stomach and the intestine, ducts enter the digestive tube from the liver and pancreas. The liver is a large, clearly defined organ. The pancreas may be embedded in it, diffused through it, or broken into small parts spread along some of the intestine. The junction between the stomach and the intestine is marked by a muscular valve. Pyloric ceca (blind sacs) occur in some fishes at this junction and have a digestive or absorptive function or both.
The intestine itself is quite variable in length, depending upon the fish’s diet. It is short in predacious forms, sometimes no longer than the body cavity, but long in herbivorous forms, being coiled and several times longer than the entire length of the fish in some species of South American catfishes. The intestine is primarily an organ for absorbing nutrients into the bloodstream. The larger its internal surface, the greater its absorptive efficiency, and a spiral valve is one method of increasing its absorption surface.
Sharks, rays, chimaeras, lungfishes, surviving chondrosteans, holosteans, and even a few of the more primitive teleosts have a spiral valve or at least traces of it in the intestine. Most modern teleosts have increased the area of the intestinal walls by having numerous folds and villi (fingerlike projections) somewhat like those in humans. Undigested substances are passed to the exterior through the anus in most teleost fishes. In lungfishes, sharks, and rays, it is first passed through the cloaca, a common cavity receiving the intestinal opening and the ducts from the urogenital system.
Oxygen and carbon dioxide dissolve in water, and most fishes exchange dissolved oxygen and carbon dioxide in water by means of the gills. The gills lie behind and to the side of the mouth cavity and consist of fleshy filaments supported by the gill arches and filled with blood vessels, which give gills a bright red colour. Water taken in continuously through the mouth passes backward between the gill bars and over the gill filaments, where the exchange of gases takes place. The gills are protected by a gill cover in teleosts and many other fishes but by flaps of skin in sharks, rays, and some of the older fossil fish groups. The blood capillaries in the gill filaments are close to the gill surface to take up oxygen from the water and to give up excess carbon dioxide to the water.
Most modern fishes have a hydrostatic (ballast) organ, called the swim bladder, that lies in the body cavity just below the kidney and above the stomach and intestine. It originated as a diverticulum of the digestive canal. In advanced teleosts, especially the acanthopterygians, the bladder has lost its connection with the digestive tract, a condition called physoclistic. The connection has been retained (physostomous) by many relatively primitive teleosts. In several unrelated lines of fishes, the bladder has become specialized as a lung or, at least, as a highly vascularized accessory breathing organ. Some fishes with such accessory organs are obligate air breathers and will drown if denied access to the surface, even in well-oxygenated water. Fishes with a hydrostatic form of swim bladder can control their depth by regulating the amount of gas in the bladder. The gas, mostly oxygen, is secreted into the bladder by special glands, rendering the fish more buoyant; the gas is absorbed into the bloodstream by another special organ, reducing the overall buoyancy and allowing the fish to sink. Some deep-sea fishes may have oils, rather than gas, in the bladder. Other deep-sea and some bottom-living forms have much-reduced swim bladders or have lost the organ entirely.
The swim bladder of fishes follows the same developmental pattern as the lungs of land vertebrates. There is no doubt that the two structures have the same historical origin in primitive fishes. More or less intermediate forms still survive among the more primitive types of fishes, such as the lungfishes Lepidosiren and Protopterus.
The circulatory, or blood vascular, system consists of the heart, the arteries, the capillaries, and the veins. It is in the capillaries that the interchange of oxygen, carbon dioxide, nutrients, and other substances such as hormones and waste products takes place. The capillaries lead to the veins, which return the venous blood with its waste products to the heart, kidneys, and gills. There are two kinds of capillary beds: those in the gills and those in the rest of the body. The heart, a folded continuous muscular tube with three or four saclike enlargements, undergoes rhythmic contractions and receives venous blood in a sinus venosus. It passes the blood to an auricle and then into a thick muscular pump, the ventricle. From the ventricle the blood goes to a bulbous structure at the base of a ventral aorta just below the gills. The blood passes to the afferent (receiving) arteries of the gill arches and then to the gill capillaries. There waste gases are given off to the environment, and oxygen is absorbed. The oxygenated blood enters efferent (exuant) arteries of the gill arches and then flows into the dorsal aorta. From there blood is distributed to the tissues and organs of the body. One-way valves prevent backflow. The circulation of fishes thus differs from that of the reptiles, birds, and mammals in that oxygenated blood is not returned to the heart prior to distribution to the other parts of the body.
The primary excretory organ in fishes, as in other vertebrates, is the kidney. In fishes some excretion also takes place in the digestive tract, skin, and especially the gills (where ammonia is given off). Compared with land vertebrates, fishes have a special problem in maintaining their internal environment at a constant concentration of water and dissolved substances, such as salts. Proper balance of the internal environment (homeostasis) of a fish is in a great part maintained by the excretory system, especially the kidney.
The kidney, gills, and skin play an important role in maintaining a fish’s internal environment and checking the effects of osmosis. Marine fishes live in an environment in which the water around them has a greater concentration of salts than they can have inside their body and still maintain life. Freshwater fishes, on the other hand, live in water with a much lower concentration of salts than they require inside their bodies. Osmosis tends to promote the loss of water from the body of a marine fish and absorption of water by that of a freshwater fish. Mucus in the skin tends to slow the process but is not a sufficient barrier to prevent the movement of fluids through the permeable skin. When solutions on two sides of a permeable membrane have different concentrations of dissolved substances, water will pass through the membrane into the more concentrated solution, while the dissolved chemicals move into the area of lower concentration (diffusion).
The kidney of freshwater fishes is often larger in relation to body weight than that of marine fishes. In both groups the kidney excretes wastes from the body, but the kidney of freshwater fishes also excretes large amounts of water, counteracting the water absorbed through the skin. Freshwater fishes tend to lose salt to the environment and must replace it. They get some salt from their food, but the gills and skin inside the mouth actively absorb salt from water passed through the mouth. This absorption is performed by special cells capable of moving salts against the diffusion gradient. Freshwater fishes drink very little water and take in little water with their food.
Marine fishes must conserve water, and therefore their kidneys excrete little water. To maintain their water balance, marine fishes drink large quantities of seawater, retaining most of the water and excreting the salt. Most nitrogenous waste in marine fishes appears to be secreted by the gills as ammonia. Marine fishes can excrete salt by clusters of special cells (chloride cells) in the gills.
There are several teleosts—for example, the salmon—that travel between fresh water and seawater and must adjust to the reversal of osmotic gradients. They adjust their physiological processes by spending time (often surprisingly little time) in the intermediate brackish environment.
Marine hagfishes, sharks, and rays have osmotic concentrations in their blood about equal to that of seawater and so do not have to drink water nor perform much physiological work to maintain their osmotic balance. In sharks and rays the osmotic concentration is kept high by retention of urea in the blood. Freshwater sharks have a lowered concentration of urea in the blood.
Endocrine glands secrete their products into the bloodstream and body tissues and, along with the central nervous system, control and regulate many kinds of body functions. Cyclostomes have a well-developed endocrine system, and presumably it was well developed in the early Agnatha, ancestral to modern fishes. Although the endocrine system in fishes is similar to that of higher vertebrates, there are numerous differences in detail. The pituitary, the thyroid, the suprarenals, the adrenals, the pancreatic islets, the sex glands (ovaries and testes), the inner wall of the intestine, and the bodies of the ultimobranchial gland make up the endocrine system in fishes. There are some others whose function is not well understood. These organs regulate sexual activity and reproduction, growth, osmotic pressure, general metabolic activities such as the storage of fat and the utilization of foodstuffs, blood pressure, and certain aspects of skin colour. Many of these activities are also controlled in part by the central nervous system, which works with the endocrine system in maintaining the life of a fish. Some parts of the endocrine system are developmentally, and undoubtedly evolutionarily, derived from the nervous system.
As in all vertebrates, the nervous system of fishes is the primary mechanism coordinating body activities, as well as integrating these activities in the appropriate manner with stimuli from the environment. The central nervous system, consisting of the brain and spinal cord, is the primary integrating mechanism. The peripheral nervous system, consisting of nerves that connect the brain and spinal cord to various body organs, carries sensory information from special receptor organs such as the eyes, internal ears, nares (sense of smell), taste glands, and others to the integrating centres of the brain and spinal cord. The peripheral nervous system also carries information via different nerve cells from the integrating centres of the brain and spinal cord. This coded information is carried to the various organs and body systems, such as the skeletal muscular system, for appropriate action in response to the original external or internal stimulus. Another branch of the nervous system, the autonomic nervous system, helps to coordinate the activities of many glands and organs and is itself closely connected to the integrating centres of the brain.
The brain of the fish is divided into several anatomical and functional parts, all closely interconnected but each serving as the primary centre of integrating particular kinds of responses and activities. Several of these centres or parts are primarily associated with one type of sensory perception, such as sight, hearing, or smell (olfaction).
The sense of smell is important in almost all fishes. Certain eels with tiny eyes depend mostly on smell for location of food. The olfactory, or nasal, organ of fishes is located on the dorsal surface of the snout. The lining of the nasal organ has special sensory cells that perceive chemicals dissolved in the water, such as substances from food material, and send sensory information to the brain by way of the first cranial nerve. Odour also serves as an alarm system. Many fishes, especially various species of freshwater minnows, react with alarm to a chemical released from the skin of an injured member of their own species.
Many fishes have a well-developed sense of taste, and tiny pitlike taste buds or organs are located not only within their mouth cavities but also over their heads and parts of their body. Catfishes, which often have poor vision, have barbels (“whiskers”) that serve as supplementary taste organs, those around the mouth being actively used to search out food on the bottom. Some species of naturally blind cave fishes are especially well supplied with taste buds, which often cover most of their body surface.
Sight is extremely important in most fishes. The eye of a fish is basically like that of all other vertebrates, but the eyes of fishes are extremely varied in structure and adaptation. In general, fishes living in dark and dim water habitats have large eyes, unless they have specialized in some compensatory way so that another sense (such as smell) is dominant, in which case the eyes will often be reduced. Fishes living in brightly lighted shallow waters often will have relatively small but efficient eyes. Cyclostomes have somewhat less elaborate eyes than other fishes, with skin stretched over the eyeball perhaps making their vision somewhat less effective. Most fishes have a spherical lens and accommodate their vision to far or near subjects by moving the lens within the eyeball. A few sharks accommodate by changing the shape of the lens, as in land vertebrates. Those fishes that are heavily dependent upon the eyes have especially strong muscles for accommodation. Most fishes see well, despite the restrictions imposed by frequent turbidity of the water and by light refraction.
Fossil evidence suggests that colour vision evolved in fishes more than 300 million years ago, but not all living fishes have retained this ability. Experimental evidence indicates that many shallow-water fishes, if not all, have colour vision and see some colours especially well, but some bottom-dwelling shore fishes live in areas where the water is sufficiently deep to filter out most if not all colours, and these fishes apparently never see colours. When tested in shallow water, they apparently are unable to respond to colour differences.
Sound perception and balance are intimately associated senses in a fish. The organs of hearing are entirely internal, located within the skull, on each side of the brain and somewhat behind the eyes. Sound waves, especially those of low frequencies, travel readily through water and impinge directly upon the bones and fluids of the head and body, to be transmitted to the hearing organs. Fishes readily respond to sound; for example, a trout conditioned to escape by the approach of fishermen will take flight upon perceiving footsteps on a stream bank even if it cannot see a fisherman. Compared with humans, however, the range of sound frequencies heard by fishes is greatly restricted. Many fishes communicate with each other by producing sounds in their swim bladders, in their throats by rasping their teeth, and in other ways.
A fish or other vertebrate seldom has to rely on a single type of sensory information to determine the nature of the environment around it. A catfish uses taste and touch when examining a food object with its oral barbels. Like most other animals, fishes have many touch receptors over their body surface. Pain and temperature receptors also are present in fishes and presumably produce the same kind of information to a fish as to humans. Fishes react in a negative fashion to stimuli that would be painful to human beings, suggesting that they feel a sensation of pain.
An important sensory system in fishes that is absent in other vertebrates (except some amphibians) is the lateral line system. This consists of a series of heavily innervated small canals located in the skin and bone around the eyes, along the lower jaw, over the head, and down the mid-side of the body, where it is associated with the scales. Intermittently along these canals are located tiny sensory organs (pit organs) that apparently detect changes in pressure. The system allows a fish to sense changes in water currents and pressure, thereby helping the fish to orient itself to the various changes that occur in the physical environment.
Estrogen in lakes feminizes fish
Sources and more information
artizans, 2007-05-23.
"Intersex" male bass found throughout protected Northeast US waters..
EDCs - Intersex Fish Now in Three Pennsylvania River Basins.
Increasing impact of estrogen pollution in waters and endocrine disruption in fish.
Increasing impact of estrogen pollution in waters and endocrine disruption in fish.
Excessive amount of antibiotics found in Chinese waters threatens health of millions, ecosystems.
Exposure to widespread metformin diabetes drug in wastewater feminizes male fish, impacts fertility.
Watch this health cartoons, comics album on Flickr.
"to go for a blow" (was the translation by LEO) I'd like to go out into the fresh air again, after posting the trees and hearing about the hot, wet and humid weather in Florida from LightSpectral and Sophie (it's dedicated to her again) ...
InterEsting !!! Do you want to win ?
So many Europeans get bad colds immediately when they stay in the US concerning to too cold air conditioning (as LightSpectral currently).
The inside temperatures are mostly less than 65 (18) degrees. Even if the outside temperatures are between 86 to 104 (30 bis 40). You get a shock going from the outside to the inside and reverse.
Being in the hot Florida (for instance) means freezing the whole day.
Temperatures should be between 70 and 80 (and even higher)!
Temperatures beneath 70 degress are bad for health and waste enormous amounts of energie (to cool needs more enrgy than to heat) and increases inviromental pollution unnecessarily by a very high amount (not only in the US but world wide - unbeleavable).
What most people don't know yet !!!
"Studies have shown that women who live in 80 degree chambers burn almost 250 more calories per day at rest than women in 70 degree chambers. Heat further increases weight loss by suppressing appetites and by making you less guilty about all the energy you're waisting (I threw that last one in there myself.)
Independent from the Climate Control's effects on obesity, industrial chemicals such as pesticides, dyes, perfumes, flavorings and plastics have been shown to significantly increase the body mass of mice in extremely small quantities.
And people who eat x-rayed foods and fish contaminated with PCBs have been shown to be heavier than those who did not. Many of these industrial chemicals are endocrine blockers that confuse body chemistry and increase storage of fats.
Who knew!?
I used to think that leading an environmentally sound lifestyle would only help me stay pretty if I was actually marching around in the forest doing jumping jacks and eating Balance bars.
Apparently, clean air and energy efficiency keeps me lean just sitting here in front of the computer, and I'm lovin' it."
Fish, any of approximately 34,000 species of vertebrate animals (phylum Chordata) found in the fresh and salt waters of the world. Living species range from the primitive jawless lampreys and hagfishes through the cartilaginous sharks, skates, and rays to the abundant and diverse bony fishes. Most fish species are cold-blooded; however, one species, the opah (Lampris guttatus), is warm-blooded.
The term fish is applied to a variety of vertebrates of several evolutionary lines. It describes a life-form rather than a taxonomic group. As members of the phylum Chordata, fish share certain features with other vertebrates. These features are gill slits at some point in the life cycle, a notochord, or skeletal supporting rod, a dorsal hollow nerve cord, and a tail. Living fishes represent some five classes, which are as distinct from one another as are the four classes of familiar air-breathing animals—amphibians, reptiles, birds, and mammals. For example, the jawless fishes (Agnatha) have gills in pouches and lack limb girdles. Extant agnathans are the lampreys and the hagfishes. As the name implies, the skeletons of fishes of the class Chondrichthyes (from chondr, “cartilage,” and ichthyes, “fish”) are made entirely of cartilage. Modern fish of this class lack a swim bladder, and their scales and teeth are made up of the same placoid material. Sharks, skates, and rays are examples of cartilaginous fishes. The bony fishes are by far the largest class. Examples range from the tiny seahorse to the 450-kg (1,000-pound) blue marlin, from the flattened soles and flounders to the boxy puffers and ocean sunfishes. Unlike the scales of the cartilaginous fishes, those of bony fishes, when present, grow throughout life and are made up of thin overlapping plates of bone. Bony fishes also have an operculum that covers the gill slits.
The study of fishes, the science of ichthyology, is of broad importance. Fishes are of interest to humans for many reasons, the most important being their relationship with and dependence on the environment. A more obvious reason for interest in fishes is their role as a moderate but important part of the world’s food supply. This resource, once thought unlimited, is now realized to be finite and in delicate balance with the biological, chemical, and physical factors of the aquatic environment. Overfishing, pollution, and alteration of the environment are the chief enemies of proper fisheries management, both in fresh waters and in the ocean. (For a detailed discussion of the technology and economics of fisheries, see commercial fishing.) Another practical reason for studying fishes is their use in disease control. As predators on mosquito larvae, they help curb malaria and other mosquito-borne diseases.
Fishes are valuable laboratory animals in many aspects of medical and biological research. For example, the readiness of many fishes to acclimate to captivity has allowed biologists to study behaviour, physiology, and even ecology under relatively natural conditions. Fishes have been especially important in the study of animal behaviour, where research on fishes has provided a broad base for the understanding of the more flexible behaviour of the higher vertebrates. The zebra fish is used as a model in studies of gene expression.
There are aesthetic and recreational reasons for an interest in fishes. Millions of people keep live fishes in home aquariums for the simple pleasure of observing the beauty and behaviour of animals otherwise unfamiliar to them. Aquarium fishes provide a personal challenge to many aquarists, allowing them to test their ability to keep a small section of the natural environment in their homes. Sportfishing is another way of enjoying the natural environment, also indulged in by millions of people every year. Interest in aquarium fishes and sportfishing supports multimillion-dollar industries throughout the world.
Fishes have been in existence for more than 450 million years, during which time they have evolved repeatedly to fit into almost every conceivable type of aquatic habitat. In a sense, land vertebrates are simply highly modified fishes: when fishes colonized the land habitat, they became tetrapod (four-legged) land vertebrates. The popular conception of a fish as a slippery, streamlined aquatic animal that possesses fins and breathes by gills applies to many fishes, but far more fishes deviate from that conception than conform to it. For example, the body is elongate in many forms and greatly shortened in others; the body is flattened in some (principally in bottom-dwelling fishes) and laterally compressed in many others; the fins may be elaborately extended, forming intricate shapes, or they may be reduced or even lost; and the positions of the mouth, eyes, nostrils, and gill openings vary widely. Air breathers have appeared in several evolutionary lines.
Many fishes are cryptically coloured and shaped, closely matching their respective environments; others are among the most brilliantly coloured of all organisms, with a wide range of hues, often of striking intensity, on a single individual. The brilliance of pigments may be enhanced by the surface structure of the fish, so that it almost seems to glow. A number of unrelated fishes have actual light-producing organs. Many fishes are able to alter their coloration—some for the purpose of camouflage, others for the enhancement of behavioral signals.
Fishes range in adult length from less than 10 mm (0.4 inch) to more than 20 metres (60 feet) and in weight from about 1.5 grams (less than 0.06 ounce) to many thousands of kilograms. Some live in shallow thermal springs at temperatures slightly above 42 °C (100 °F), others in cold Arctic seas a few degrees below 0 °C (32 °F) or in cold deep waters more than 4,000 metres (13,100 feet) beneath the ocean surface. The structural and, especially, the physiological adaptations for life at such extremes are relatively poorly known and provide the scientifically curious with great incentive for study.
Almost all natural bodies of water bear fish life, the exceptions being very hot thermal ponds and extremely salt-alkaline lakes, such as the Dead Sea in Asia and the Great Salt Lake in North America. The present distribution of fishes is a result of the geological history and development of Earth as well as the ability of fishes to undergo evolutionary change and to adapt to the available habitats. Fishes may be seen to be distributed according to habitat and according to geographical area. Major habitat differences are marine and freshwater. For the most part, the fishes in a marine habitat differ from those in a freshwater habitat, even in adjacent areas, but some, such as the salmon, migrate from one to the other. The freshwater habitats may be seen to be of many kinds. Fishes found in mountain torrents, Arctic lakes, tropical lakes, temperate streams, and tropical rivers will all differ from each other, both in obvious gross structure and in physiological attributes. Even in closely adjacent habitats where, for example, a tropical mountain torrent enters a lowland stream, the fish fauna will differ. The marine habitats can be divided into deep ocean floors (benthic), mid-water oceanic (bathypelagic), surface oceanic (pelagic), rocky coast, sandy coast, muddy shores, bays, estuaries, and others. Also, for example, rocky coastal shores in tropical and temperate regions will have different fish faunas, even when such habitats occur along the same coastline.
Although much is known about the present geographical distribution of fishes, far less is known about how that distribution came about. Many parts of the fish fauna of the fresh waters of North America and Eurasia are related and undoubtedly have a common origin. The faunas of Africa and South America are related, extremely old, and probably an expression of the drifting apart of the two continents. The fauna of southern Asia is related to that of Central Asia, and some of it appears to have entered Africa. The extremely large shore-fish faunas of the Indian and tropical Pacific oceans comprise a related complex, but the tropical shore fauna of the Atlantic, although containing Indo-Pacific components, is relatively limited and probably younger. The Arctic and Antarctic marine faunas are quite different from each other. The shore fauna of the North Pacific is quite distinct, and that of the North Atlantic more limited and probably younger. Pelagic oceanic fishes, especially those in deep waters, are similar the world over, showing little geographical isolation in terms of family groups. The deep oceanic habitat is very much the same throughout the world, but species differences do exist, showing geographical areas determined by oceanic currents and water masses.
All aspects of the life of a fish are closely correlated with adaptation to the total environment, physical, chemical, and biological. In studies, all the interdependent aspects of fish, such as behaviour, locomotion, reproduction, and physical and physiological characteristics, must be taken into account.
Correlated with their adaptation to an extremely wide variety of habitats is the extremely wide variety of life cycles that fishes display. The great majority hatch from relatively small eggs a few days to several weeks or more after the eggs are scattered in the water. Newly hatched young are still partially undeveloped and are called larvae until body structures such as fins, skeleton, and some organs are fully formed. Larval life is often very short, usually less than a few weeks, but it can be very long, some lampreys continuing as larvae for at least five years. Young and larval fishes, before reaching sexual maturity, must grow considerably, and their small size and other factors often dictate that they live in a habitat different than that of the adults. For example, most tropical marine shore fishes have pelagic larvae. Larval food also is different, and larval fishes often live in shallow waters, where they may be less exposed to predators.
After a fish reaches adult size, the length of its life is subject to many factors, such as innate rates of aging, predation pressure, and the nature of the local climate. The longevity of a species in the protected environment of an aquarium may have nothing to do with how long members of that species live in the wild. Many small fishes live only one to three years at the most. In some species, however, individuals may live as long as 10 or 20 or even 100 years.
Fish behaviour is a complicated and varied subject. As in almost all animals with a central nervous system, the nature of a response of an individual fish to stimuli from its environment depends upon the inherited characteristics of its nervous system, on what it has learned from past experience, and on the nature of the stimuli. Compared with the variety of human responses, however, that of a fish is stereotyped, not subject to much modification by “thought” or learning, and investigators must guard against anthropomorphic interpretations of fish behaviour.
Fishes perceive the world around them by the usual senses of sight, smell, hearing, touch, and taste and by special lateral line water-current detectors. In the few fishes that generate electric fields, a process that might best be called electrolocation aids in perception. One or another of these senses often is emphasized at the expense of others, depending upon the fish’s other adaptations. In fishes with large eyes, the sense of smell may be reduced; others, with small eyes, hunt and feed primarily by smell (such as some eels).
Specialized behaviour is primarily concerned with the three most important activities in the fish’s life: feeding, reproduction, and escape from enemies. Schooling behaviour of sardines on the high seas, for instance, is largely a protective device to avoid enemies, but it is also associated with and modified by their breeding and feeding requirements. Predatory fishes are often solitary, lying in wait to dart suddenly after their prey, a kind of locomotion impossible for beaked parrot fishes, which feed on coral, swimming in small groups from one coral head to the next. In addition, some predatory fishes that inhabit pelagic environments, such as tunas, often school.
Sleep in fishes, all of which lack true eyelids, consists of a seemingly listless state in which the fish maintains its balance but moves slowly. If attacked or disturbed, most can dart away. A few kinds of fishes lie on the bottom to sleep. Most catfishes, some loaches, and some eels and electric fishes are strictly nocturnal, being active and hunting for food during the night and retiring during the day to holes, thick vegetation, or other protective parts of the environment.
Communication between members of a species or between members of two or more species often is extremely important, especially in breeding behaviour (see below Reproduction). The mode of communication may be visual, as between the small so-called cleaner fish and a large fish of a very different species. The larger fish often allows the cleaner to enter its mouth to remove gill parasites. The cleaner is recognized by its distinctive colour and actions and therefore is not eaten, even if the larger fish is normally a predator. Communication is often chemical, signals being sent by specific chemicals called pheromones.
Many fishes have a streamlined body and swim freely in open water. Fish locomotion is closely correlated with habitat and ecological niche (the general position of the animal to its environment).
Many fishes in both marine and fresh waters swim at the surface and have mouths adapted to feed best (and sometimes only) at the surface. Often such fishes are long and slender, able to dart at surface insects or at other surface fishes and in turn to dart away from predators; needlefishes, halfbeaks, and topminnows (such as killifish and mosquito fish) are good examples. Oceanic flying fishes escape their predators by gathering speed above the water surface, with the lower lobe of the tail providing thrust in the water. They then glide hundreds of yards on enlarged, winglike pectoral and pelvic fins. South American freshwater flying fishes escape their enemies by jumping and propelling their strongly keeled bodies out of the water.
So-called mid-water swimmers, the most common type of fish, are of many kinds and live in many habitats. The powerful fusiform tunas and the trouts, for example, are adapted for strong, fast swimming, the tunas to capture prey speedily in the open ocean and the trouts to cope with the swift currents of streams and rivers. The trout body form is well adapted to many habitats. Fishes that live in relatively quiet waters such as bays or lake shores or slow rivers usually are not strong, fast swimmers but are capable of short, quick bursts of speed to escape a predator. Many of these fishes have their sides flattened, examples being the sunfish and the freshwater angelfish of aquarists. Fish associated with the bottom or substrate usually are slow swimmers. Open-water plankton-feeding fishes almost always remain fusiform and are capable of rapid, strong movement (for example, sardines and herrings of the open ocean and also many small minnows of streams and lakes).
Bottom-living fishes are of many kinds and have undergone many types of modification of their body shape and swimming habits. Rays, which evolved from strong-swimming mid-water sharks, usually stay close to the bottom and move by undulating their large pectoral fins. Flounders live in a similar habitat and move over the bottom by undulating the entire body. Many bottom fishes dart from place to place, resting on the bottom between movements, a motion common in gobies. One goby relative, the mudskipper, has taken to living at the edge of pools along the shore of muddy mangrove swamps. It escapes its enemies by flipping rapidly over the mud, out of the water. Some catfishes, synbranchid eels, the so-called climbing perch, and a few other fishes venture out over damp ground to find more promising waters than those that they left. They move by wriggling their bodies, sometimes using strong pectoral fins; most have accessory air-breathing organs. Many bottom-dwelling fishes live in mud holes or rocky crevices. Marine eels and gobies commonly are found in such habitats and for the most part venture far beyond their cavelike homes. Some bottom dwellers, such as the clingfishes (Gobiesocidae), have developed powerful adhesive disks that enable them to remain in place on the substrate in areas such as rocky coasts, where the action of the waves is great.
The methods of reproduction in fishes are varied, but most fishes lay a large number of small eggs, fertilized and scattered outside of the body. The eggs of pelagic fishes usually remain suspended in the open water. Many shore and freshwater fishes lay eggs on the bottom or among plants. Some have adhesive eggs. The mortality of the young and especially of the eggs is very high, and often only a few individuals grow to maturity out of hundreds, thousands, and in some cases millions of eggs laid.
Males produce sperm, usually as a milky white substance called milt, in two (sometimes one) testes within the body cavity. In bony fishes a sperm duct leads from each testis to a urogenital opening behind the vent or anus. In sharks and rays and in cyclostomes the duct leads to a cloaca. Sometimes the pelvic fins are modified to help transmit the milt to the eggs at the female’s vent or on the substrate where the female has placed them. Sometimes accessory organs are used to fertilize females internally—for example, the claspers of many sharks and rays.
In the females the eggs are formed in two ovaries (sometimes only one) and pass through the ovaries to the urogenital opening and to the outside. In some fishes the eggs are fertilized internally but are shed before development takes place. Members of about a dozen families each of bony fishes (teleosts) and sharks bear live young. Many skates and rays also bear live young. In some bony fishes the eggs simply develop within the female, the young emerging when the eggs hatch (ovoviviparous). Others develop within the ovary and are nourished by ovarian tissues after hatching (viviparous). There are also other methods utilized by fishes to nourish young within the female. In all live-bearers the young are born at a relatively large size and are few in number. In one family of primarily marine fishes, the surfperches from the Pacific coast of North America, Japan, and Korea, the males of at least one species are born sexually mature, although they are not fully grown.
Some fishes are hermaphroditic—an individual producing both sperm and eggs, usually at different stages of its life. Self-fertilization, however, is probably rare.
Successful reproduction and, in many cases, defense of the eggs and the young are assured by rather stereotypical but often elaborate courtship and parental behaviour, either by the male or the female or both. Some fishes prepare nests by hollowing out depressions in the sand bottom (cichlids, for example), build nests with plant materials and sticky threads excreted by the kidneys (sticklebacks), or blow a cluster of mucus-covered bubbles at the water surface (gouramis). The eggs are laid in these structures. Some varieties of cichlids and catfishes incubate eggs in their mouths.
Some fishes, such as salmon, undergo long migrations from the ocean and up large rivers to spawn in the gravel beds where they themselves hatched (anadromous fishes). Some, such as the freshwater eels (family Anguillidae), live and grow to maturity in fresh water and migrate to the sea to spawn (catadromous fishes). Other fishes undertake shorter migrations from lakes into streams, within the ocean, or enter spawning habitats that they do not ordinarily occupy in other ways.
The basic structure and function of the fish body are similar to those of all other vertebrates. The usual four types of tissues are present: surface or epithelial, connective (bone, cartilage, and fibrous tissues, as well as their derivative, blood), nerve, and muscle tissues. In addition, the fish’s organs and organ systems parallel those of other vertebrates.
The typical fish body is streamlined and spindle-shaped, with an anterior head, a gill apparatus, and a heart, the latter lying in the midline just below the gill chamber. The body cavity, containing the vital organs, is situated behind the head in the lower anterior part of the body. The anus usually marks the posterior termination of the body cavity and most often occurs just in front of the base of the anal fin. The spinal cord and vertebral column continue from the posterior part of the head to the base of the tail fin, passing dorsal to the body cavity and through the caudal (tail) region behind the body cavity. Most of the body is of muscular tissue, a high proportion of which is necessitated by swimming. In the course of evolution this basic body plan has been modified repeatedly into the many varieties of fish shapes that exist today.
The skeleton forms an integral part of the fish’s locomotion system, as well as serving to protect vital parts. The internal skeleton consists of the skull bones (except for the roofing bones of the head, which are really part of the external skeleton), the vertebral column, and the fin supports (fin rays). The fin supports are derived from the external skeleton but will be treated here because of their close functional relationship to the internal skeleton. The internal skeleton of cyclostomes, sharks, and rays is of cartilage; that of many fossil groups and some primitive living fishes is mostly of cartilage but may include some bone. In place of the vertebral column, the earliest vertebrates had a fully developed notochord, a flexible stiff rod of viscous cells surrounded by a strong fibrous sheath. During the evolution of modern fishes the rod was replaced in part by cartilage and then by ossified cartilage. Sharks and rays retain a cartilaginous vertebral column; bony fishes have spool-shaped vertebrae that in the more primitive living forms only partially replace the notochord. The skull, including the gill arches and jaws of bony fishes, is fully, or at least partially, ossified. That of sharks and rays remains cartilaginous, at times partially replaced by calcium deposits but never by true bone.
The supportive elements of the fins (basal or radial bones or both) have changed greatly during fish evolution. Some of these changes are described in the section below (Evolution and paleontology). Most fishes possess a single dorsal fin on the midline of the back. Many have two and a few have three dorsal fins. The other fins are the single tail and anal fins and paired pelvic and pectoral fins. A small fin, the adipose fin, with hairlike fin rays, occurs in many of the relatively primitive teleosts (such as trout) on the back near the base of the caudal fin.
The skin of a fish must serve many functions. It aids in maintaining the osmotic balance, provides physical protection for the body, is the site of coloration, contains sensory receptors, and, in some fishes, functions in respiration. Mucous glands, which aid in maintaining the water balance and offer protection from bacteria, are extremely numerous in fish skin, especially in cyclostomes and teleosts. Since mucous glands are present in the modern lampreys, it is reasonable to assume that they were present in primitive fishes, such as the ancient Silurian and Devonian agnathans. Protection from abrasion and predation is another function of the fish skin, and dermal (skin) bone arose early in fish evolution in response to this need. It is thought that bone first evolved in skin and only later invaded the cartilaginous areas of the fish’s body, to provide additional support and protection. There is some argument as to which came first, cartilage or bone, and fossil evidence does not settle the question. In any event, dermal bone has played an important part in fish evolution and has different characteristics in different groups of fishes. Several groups are characterized at least in part by the kind of bony scales they possess.
Scales have played an important part in the evolution of fishes. Primitive fishes usually had thick bony plates or thick scales in several layers of bone, enamel, and related substances. Modern teleost fishes have scales of bone, which, while still protective, allow much more freedom of motion in the body. A few modern teleosts (some catfishes, sticklebacks, and others) have secondarily acquired bony plates in the skin. Modern and early sharks possessed placoid scales, a relatively primitive type of scale with a toothlike structure, consisting of an outside layer of enamel-like substance (vitrodentine), an inner layer of dentine, and a pulp cavity containing nerves and blood vessels. Primitive bony fishes had thick scales of either the ganoid or the cosmoid type. Cosmoid scales have a hard, enamel-like outer layer, an inner layer of cosmine (a form of dentine), and then a layer of vascular bone (isopedine). In ganoid scales the hard outer layer is different chemically and is called ganoin. Under this is a cosminelike layer and then a vascular bony layer. The thin, translucent bony scales of modern fishes, called cycloid and ctenoid (the latter distinguished by serrations at the edges), lack enameloid and dentine layers.
Skin has several other functions in fishes. It is well supplied with nerve endings and presumably receives tactile, thermal, and pain stimuli. Skin is also well supplied with blood vessels. Some fishes breathe in part through the skin, by the exchange of oxygen and carbon dioxide between the surrounding water and numerous small blood vessels near the skin surface.
Skin serves as protection through the control of coloration. Fishes exhibit an almost limitless range of colours. The colours often blend closely with the surroundings, effectively hiding the animal. Many fishes use bright colours for territorial advertisement or as recognition marks for other members of their own species, or sometimes for members of other species. Many fishes can change their colour to a greater or lesser degree, by movement of pigment within the pigment cells (chromatophores). Black pigment cells (melanophores), of almost universal occurrence in fishes, are often juxtaposed with other pigment cells. When placed beneath iridocytes or leucophores (bearing the silvery or white pigment guanine), melanophores produce structural colours of blue and green. These colours are often extremely intense, because they are formed by refraction of light through the needlelike crystals of guanine. The blue and green refracted colours are often relatively pure, lacking the red and yellow rays, which have been absorbed by the black pigment (melanin) of the melanophores. Yellow, orange, and red colours are produced by erythrophores, cells containing the appropriate carotenoid pigments. Other colours are produced by combinations of melanophores, erythrophores, and iridocytes.
The major portion of the body of most fishes consists of muscles. Most of the mass is trunk musculature, the fin muscles usually being relatively small. The caudal fin is usually the most powerful fin, being moved by the trunk musculature. The body musculature is usually arranged in rows of chevron-shaped segments on each side. Contractions of these segments, each attached to adjacent vertebrae and vertebral processes, bends the body on the vertebral joint, producing successive undulations of the body, passing from the head to the tail, and producing driving strokes of the tail. It is the latter that provides the strong forward movement for most fishes.
The digestive system, in a functional sense, starts at the mouth, with the teeth used to capture prey or collect plant foods. Mouth shape and tooth structure vary greatly in fishes, depending on the kind of food normally eaten. Most fishes are predacious, feeding on small invertebrates or other fishes and have simple conical teeth on the jaws, on at least some of the bones of the roof of the mouth, and on special gill arch structures just in front of the esophagus. The latter are throat teeth. Most predacious fishes swallow their prey whole, and the teeth are used for grasping and holding prey, for orienting prey to be swallowed (head first) and for working the prey toward the esophagus. There are a variety of tooth types in fishes. Some fishes, such as sharks and piranhas, have cutting teeth for biting chunks out of their victims. A shark’s tooth, although superficially like that of a piranha, appears in many respects to be a modified scale, while that of the piranha is like that of other bony fishes, consisting of dentine and enamel. Parrot fishes have beaklike mouths with short incisor-like teeth for breaking off coral and have heavy pavementlike throat teeth for crushing the coral. Some catfishes have small brushlike teeth, arranged in rows on the jaws, for scraping plant and animal growth from rocks. Many fishes (such as the Cyprinidae or minnows) have no jaw teeth at all but have very strong throat teeth.
Some fishes gather planktonic food by straining it from their gill cavities with numerous elongate stiff rods (gill rakers) anchored by one end to the gill bars. The food collected on these rods is passed to the throat, where it is swallowed. Most fishes have only short gill rakers that help keep food particles from escaping out the mouth cavity into the gill chamber.
Once reaching the throat, food enters a short, often greatly distensible esophagus, a simple tube with a muscular wall leading into a stomach. The stomach varies greatly in fishes, depending upon the diet. In most predacious fishes it is a simple straight or curved tube or pouch with a muscular wall and a glandular lining. Food is largely digested there and leaves the stomach in liquid form.
Between the stomach and the intestine, ducts enter the digestive tube from the liver and pancreas. The liver is a large, clearly defined organ. The pancreas may be embedded in it, diffused through it, or broken into small parts spread along some of the intestine. The junction between the stomach and the intestine is marked by a muscular valve. Pyloric ceca (blind sacs) occur in some fishes at this junction and have a digestive or absorptive function or both.
The intestine itself is quite variable in length, depending upon the fish’s diet. It is short in predacious forms, sometimes no longer than the body cavity, but long in herbivorous forms, being coiled and several times longer than the entire length of the fish in some species of South American catfishes. The intestine is primarily an organ for absorbing nutrients into the bloodstream. The larger its internal surface, the greater its absorptive efficiency, and a spiral valve is one method of increasing its absorption surface.
Sharks, rays, chimaeras, lungfishes, surviving chondrosteans, holosteans, and even a few of the more primitive teleosts have a spiral valve or at least traces of it in the intestine. Most modern teleosts have increased the area of the intestinal walls by having numerous folds and villi (fingerlike projections) somewhat like those in humans. Undigested substances are passed to the exterior through the anus in most teleost fishes. In lungfishes, sharks, and rays, it is first passed through the cloaca, a common cavity receiving the intestinal opening and the ducts from the urogenital system.
Oxygen and carbon dioxide dissolve in water, and most fishes exchange dissolved oxygen and carbon dioxide in water by means of the gills. The gills lie behind and to the side of the mouth cavity and consist of fleshy filaments supported by the gill arches and filled with blood vessels, which give gills a bright red colour. Water taken in continuously through the mouth passes backward between the gill bars and over the gill filaments, where the exchange of gases takes place. The gills are protected by a gill cover in teleosts and many other fishes but by flaps of skin in sharks, rays, and some of the older fossil fish groups. The blood capillaries in the gill filaments are close to the gill surface to take up oxygen from the water and to give up excess carbon dioxide to the water.
Most modern fishes have a hydrostatic (ballast) organ, called the swim bladder, that lies in the body cavity just below the kidney and above the stomach and intestine. It originated as a diverticulum of the digestive canal. In advanced teleosts, especially the acanthopterygians, the bladder has lost its connection with the digestive tract, a condition called physoclistic. The connection has been retained (physostomous) by many relatively primitive teleosts. In several unrelated lines of fishes, the bladder has become specialized as a lung or, at least, as a highly vascularized accessory breathing organ. Some fishes with such accessory organs are obligate air breathers and will drown if denied access to the surface, even in well-oxygenated water. Fishes with a hydrostatic form of swim bladder can control their depth by regulating the amount of gas in the bladder. The gas, mostly oxygen, is secreted into the bladder by special glands, rendering the fish more buoyant; the gas is absorbed into the bloodstream by another special organ, reducing the overall buoyancy and allowing the fish to sink. Some deep-sea fishes may have oils, rather than gas, in the bladder. Other deep-sea and some bottom-living forms have much-reduced swim bladders or have lost the organ entirely.
The swim bladder of fishes follows the same developmental pattern as the lungs of land vertebrates. There is no doubt that the two structures have the same historical origin in primitive fishes. More or less intermediate forms still survive among the more primitive types of fishes, such as the lungfishes Lepidosiren and Protopterus.
The circulatory, or blood vascular, system consists of the heart, the arteries, the capillaries, and the veins. It is in the capillaries that the interchange of oxygen, carbon dioxide, nutrients, and other substances such as hormones and waste products takes place. The capillaries lead to the veins, which return the venous blood with its waste products to the heart, kidneys, and gills. There are two kinds of capillary beds: those in the gills and those in the rest of the body. The heart, a folded continuous muscular tube with three or four saclike enlargements, undergoes rhythmic contractions and receives venous blood in a sinus venosus. It passes the blood to an auricle and then into a thick muscular pump, the ventricle. From the ventricle the blood goes to a bulbous structure at the base of a ventral aorta just below the gills. The blood passes to the afferent (receiving) arteries of the gill arches and then to the gill capillaries. There waste gases are given off to the environment, and oxygen is absorbed. The oxygenated blood enters efferent (exuant) arteries of the gill arches and then flows into the dorsal aorta. From there blood is distributed to the tissues and organs of the body. One-way valves prevent backflow. The circulation of fishes thus differs from that of the reptiles, birds, and mammals in that oxygenated blood is not returned to the heart prior to distribution to the other parts of the body.
The primary excretory organ in fishes, as in other vertebrates, is the kidney. In fishes some excretion also takes place in the digestive tract, skin, and especially the gills (where ammonia is given off). Compared with land vertebrates, fishes have a special problem in maintaining their internal environment at a constant concentration of water and dissolved substances, such as salts. Proper balance of the internal environment (homeostasis) of a fish is in a great part maintained by the excretory system, especially the kidney.
The kidney, gills, and skin play an important role in maintaining a fish’s internal environment and checking the effects of osmosis. Marine fishes live in an environment in which the water around them has a greater concentration of salts than they can have inside their body and still maintain life. Freshwater fishes, on the other hand, live in water with a much lower concentration of salts than they require inside their bodies. Osmosis tends to promote the loss of water from the body of a marine fish and absorption of water by that of a freshwater fish. Mucus in the skin tends to slow the process but is not a sufficient barrier to prevent the movement of fluids through the permeable skin. When solutions on two sides of a permeable membrane have different concentrations of dissolved substances, water will pass through the membrane into the more concentrated solution, while the dissolved chemicals move into the area of lower concentration (diffusion).
The kidney of freshwater fishes is often larger in relation to body weight than that of marine fishes. In both groups the kidney excretes wastes from the body, but the kidney of freshwater fishes also excretes large amounts of water, counteracting the water absorbed through the skin. Freshwater fishes tend to lose salt to the environment and must replace it. They get some salt from their food, but the gills and skin inside the mouth actively absorb salt from water passed through the mouth. This absorption is performed by special cells capable of moving salts against the diffusion gradient. Freshwater fishes drink very little water and take in little water with their food.
Marine fishes must conserve water, and therefore their kidneys excrete little water. To maintain their water balance, marine fishes drink large quantities of seawater, retaining most of the water and excreting the salt. Most nitrogenous waste in marine fishes appears to be secreted by the gills as ammonia. Marine fishes can excrete salt by clusters of special cells (chloride cells) in the gills.
There are several teleosts—for example, the salmon—that travel between fresh water and seawater and must adjust to the reversal of osmotic gradients. They adjust their physiological processes by spending time (often surprisingly little time) in the intermediate brackish environment.
Marine hagfishes, sharks, and rays have osmotic concentrations in their blood about equal to that of seawater and so do not have to drink water nor perform much physiological work to maintain their osmotic balance. In sharks and rays the osmotic concentration is kept high by retention of urea in the blood. Freshwater sharks have a lowered concentration of urea in the blood.
Endocrine glands secrete their products into the bloodstream and body tissues and, along with the central nervous system, control and regulate many kinds of body functions. Cyclostomes have a well-developed endocrine system, and presumably it was well developed in the early Agnatha, ancestral to modern fishes. Although the endocrine system in fishes is similar to that of higher vertebrates, there are numerous differences in detail. The pituitary, the thyroid, the suprarenals, the adrenals, the pancreatic islets, the sex glands (ovaries and testes), the inner wall of the intestine, and the bodies of the ultimobranchial gland make up the endocrine system in fishes. There are some others whose function is not well understood. These organs regulate sexual activity and reproduction, growth, osmotic pressure, general metabolic activities such as the storage of fat and the utilization of foodstuffs, blood pressure, and certain aspects of skin colour. Many of these activities are also controlled in part by the central nervous system, which works with the endocrine system in maintaining the life of a fish. Some parts of the endocrine system are developmentally, and undoubtedly evolutionarily, derived from the nervous system.
As in all vertebrates, the nervous system of fishes is the primary mechanism coordinating body activities, as well as integrating these activities in the appropriate manner with stimuli from the environment. The central nervous system, consisting of the brain and spinal cord, is the primary integrating mechanism. The peripheral nervous system, consisting of nerves that connect the brain and spinal cord to various body organs, carries sensory information from special receptor organs such as the eyes, internal ears, nares (sense of smell), taste glands, and others to the integrating centres of the brain and spinal cord. The peripheral nervous system also carries information via different nerve cells from the integrating centres of the brain and spinal cord. This coded information is carried to the various organs and body systems, such as the skeletal muscular system, for appropriate action in response to the original external or internal stimulus. Another branch of the nervous system, the autonomic nervous system, helps to coordinate the activities of many glands and organs and is itself closely connected to the integrating centres of the brain.
The brain of the fish is divided into several anatomical and functional parts, all closely interconnected but each serving as the primary centre of integrating particular kinds of responses and activities. Several of these centres or parts are primarily associated with one type of sensory perception, such as sight, hearing, or smell (olfaction).
The sense of smell is important in almost all fishes. Certain eels with tiny eyes depend mostly on smell for location of food. The olfactory, or nasal, organ of fishes is located on the dorsal surface of the snout. The lining of the nasal organ has special sensory cells that perceive chemicals dissolved in the water, such as substances from food material, and send sensory information to the brain by way of the first cranial nerve. Odour also serves as an alarm system. Many fishes, especially various species of freshwater minnows, react with alarm to a chemical released from the skin of an injured member of their own species.
Many fishes have a well-developed sense of taste, and tiny pitlike taste buds or organs are located not only within their mouth cavities but also over their heads and parts of their body. Catfishes, which often have poor vision, have barbels (“whiskers”) that serve as supplementary taste organs, those around the mouth being actively used to search out food on the bottom. Some species of naturally blind cave fishes are especially well supplied with taste buds, which often cover most of their body surface.
Sight is extremely important in most fishes. The eye of a fish is basically like that of all other vertebrates, but the eyes of fishes are extremely varied in structure and adaptation. In general, fishes living in dark and dim water habitats have large eyes, unless they have specialized in some compensatory way so that another sense (such as smell) is dominant, in which case the eyes will often be reduced. Fishes living in brightly lighted shallow waters often will have relatively small but efficient eyes. Cyclostomes have somewhat less elaborate eyes than other fishes, with skin stretched over the eyeball perhaps making their vision somewhat less effective. Most fishes have a spherical lens and accommodate their vision to far or near subjects by moving the lens within the eyeball. A few sharks accommodate by changing the shape of the lens, as in land vertebrates. Those fishes that are heavily dependent upon the eyes have especially strong muscles for accommodation. Most fishes see well, despite the restrictions imposed by frequent turbidity of the water and by light refraction.
Fossil evidence suggests that colour vision evolved in fishes more than 300 million years ago, but not all living fishes have retained this ability. Experimental evidence indicates that many shallow-water fishes, if not all, have colour vision and see some colours especially well, but some bottom-dwelling shore fishes live in areas where the water is sufficiently deep to filter out most if not all colours, and these fishes apparently never see colours. When tested in shallow water, they apparently are unable to respond to colour differences.
Sound perception and balance are intimately associated senses in a fish. The organs of hearing are entirely internal, located within the skull, on each side of the brain and somewhat behind the eyes. Sound waves, especially those of low frequencies, travel readily through water and impinge directly upon the bones and fluids of the head and body, to be transmitted to the hearing organs. Fishes readily respond to sound; for example, a trout conditioned to escape by the approach of fishermen will take flight upon perceiving footsteps on a stream bank even if it cannot see a fisherman. Compared with humans, however, the range of sound frequencies heard by fishes is greatly restricted. Many fishes communicate with each other by producing sounds in their swim bladders, in their throats by rasping their teeth, and in other ways.
A fish or other vertebrate seldom has to rely on a single type of sensory information to determine the nature of the environment around it. A catfish uses taste and touch when examining a food object with its oral barbels. Like most other animals, fishes have many touch receptors over their body surface. Pain and temperature receptors also are present in fishes and presumably produce the same kind of information to a fish as to humans. Fishes react in a negative fashion to stimuli that would be painful to human beings, suggesting that they feel a sensation of pain.
An important sensory system in fishes that is absent in other vertebrates (except some amphibians) is the lateral line system. This consists of a series of heavily innervated small canals located in the skin and bone around the eyes, along the lower jaw, over the head, and down the mid-side of the body, where it is associated with the scales. Intermittently along these canals are located tiny sensory organs (pit organs) that apparently detect changes in pressure. The system allows a fish to sense changes in water currents and pressure, thereby helping the fish to orient itself to the various changes that occur in the physical environment.
Go to Page 22 in the Internet Archive
Title: Endocrinology, 06
Creator: Association for the Study of Internal Secretions (U.S.)
Creator: Endocrine Society
Publisher: Los Angeles, Calif. : Association for the Study of Internal Secretions
Sponsor: University of Toronto
Contributor: Gerstein - University of Toronto
Date: 1917
Vol: 06
Language: eng
Description: Published: Menash, Wis. : George Banta Co., 1936-1961; Philadelphia, Pa. : J.B. Lippincott, 1962-1977; Baltimore, Md. : Published for the Endocrine Society by Williams & Wilkins, 1978-<1989>
Description based on: Vol. 2, no. 3 (July-Sept. 1918); title from cover
Excerpta medica
Index medicus
Bibliography of agriculture
Biological abstracts
Chemical abstracts
Energy information abstracts
Energy research abstracts
Environment abstracts
Life sciences collection
International aerospace abstracts
Nuclear science abstracts
PESTDOC
RINGDOC
VETDOC
Issues carry also whole numbering, <1918-1920>
Issued by the Association for the Study of Internal Secretions, 1917-1952; by the Endocrine Society, 1952-<1989>
Vols. 26 (Jan. 1940)-40 (June 1947). 1 v. 29 cm
14 61 63
14
If you have questions concerning reproductions, please contact the Contributing Library.
Note: The colors, contrast and appearance of these illustrations are unlikely to be true to life. They are derived from scanned images that have been enhanced for machine interpretation and have been altered from their originals.
Read/Download from the Internet Archive